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Introduction

Welcome to the 2009 Conference on Empirical Methods in Natural Language Processing!

The conference is organized under the auspices of SIGDAT, the ACL Special Interest Group for linguistic
data and corpus-based approaches to natural language processing. It is co-located this year with ACL-
IJCNLP 2009 in Singapore.

EMNLP received 475 submissions, a new record. We were able to accept 163 papers in total (an
acceptance rate of 34%). Of these, 96 (20%) were accepted for oral presentation, and 67 (14%) for
poster presentation. The papers were selected by a program committee of 15 area chairs, from Asia,
Europe, and North America, assisted by a panel of 389 reviewers. This year EMNLP again held an
author response period. Authors were able to read and respond to the reviews of their paper before
the program committee made a final decision. They were asked to correct factual errors in the reviews
and answer questions raised in the reviewer comments.The intention was to help produce more accurate
reviews. In some cases, reviewers changed their scores in view of the authors response and the area
chairs read all responses carefully prior to making recommendations for acceptance.

First and foremost, we would like to thank the authors who submitted their work to EMNLP. The sheer
number of submissions reflects how broad and active our field is. We are deeply indebted to the area
chairs and the reviewers for their hard work. They enabled us to select an exciting program and to
provide valuable feedback to the authors. Additional thanks to the Publications Chair, David Chiang,
who put this volume together. Jason Eisner helped us immensely by compiling a web site on “How
to Serve as Program Chair of a Conference.”! Special thanks to David Yarowsky and Ken Church of
SIGDAT who provided much valuable advice and assistance over the past months. We are akso grateful
for the financial support from Microsoft.

We are most grateful to Haizhou Li who helped us with various logistic and organizational aspects of the
conference. Rich Gerber and the START team responded to our questions quickly, and helped us manage
the large number of submissions smoothly. Finally, thanks are due to our predecessors, Mirella Lapata
and Hwee Tou Ng, whose experience and example we shamelessly exploited.

Philipp Koehn
Rada Mihalcea

lhttp: //www.cs.Jjhu.edu/jason/advice/how-to-chair-a-conference.html
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Abstract In this paper we develop the first unsupervised
approach to semantic parsing, using Markov logic

We present the first unsupervised approach  (Richardson and Domingos, 2006). Our USP sys-
to the problem of learning a semantic  tem starts by clustering tokens of the same type,
parser, using Markov logic. Our USP  and then recursively clusters expressions whose
system transforms dependency trees into  sybexpressions belong to the same clusters. Ex-
quasi-logical forms, recursively induces  periments on a biomedical corpus show that this
lambda forms from these, and clusters  gpproach is able to successfully translate syntac-
them to abstract away syntactic variations tjc variations into a logical representation of their
of the same meaning. The MAP semantic  common meaning (e.g., USP learns to map active
parse of a sentence is obtained by recur-  and passive voice to the same logical form, etc.).
sively assigning its parts to lambda-form  Thjs in turn allows it to correctly answer many
clusters and composing them. We evalu-  more questions than systems based on TextRun-
ate our approach by using it to extract @  ner (Banko et al., 2007) and DIRT (Lin and Pantel,
knowledge base from biomedical abstracts  2001).
and answer questions. USP substantially We begin by reviewing the necessary back-
outperforms TextRunner, DIRT and anin-  ground on semantic parsing and Markov logic. We
formed baseline on both precision and re-  then describe our Markov logic network for un-
call on this task. supervised semantic parsing, and the learning and
inference algorithms we used. Finally, we present
our experiments and results.

Semantic parsing maps text to formal meaning
representations. This contrasts with semantic rol@ Background
labeling (Carreras and Marquez, 2004) and othe&
forms of shallow semantic processing, which do™
not aim to produce complete formal meanings.The standard language for formal meaning repre-
Traditionally, semantic parsers were constructedgentation is first-order logic. A term is any ex-
manually, but this is too costly and brittle. Re- pression representing an object in the domain. An
cently, a number of machine learning approachestomic formula or atom is a predicate symbol ap-
have been proposed (Zettlemoyer and Collinsplied to a tuple of terms. Formulas are recursively
2005; Mooney, 2007). However, they are superconstructed from atomic formulas using logical
vised, and providing the target logical form for connectives and quantifiers. l&xical entryde-
each sentence is costly and difficult to do consisfines the logical form for a lexical item (e.g., a
tently and with high quality. Unsupervised ap-word). The semantic parse of a sentence is de-
proaches have been applied to shallow semantidved by starting with logical forms in the lexi-
tasks (e.g., paraphrasing (Lin and Pantel, 2001)xal entries and recursively composing the mean-
information extraction (Banko et al., 2007)), buting of larger fragments from their parts. In tradi-
not to semantic parsing. tional approaches, the lexical entries and meaning-

1 Introduction

1 Semantic Parsing

1
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composition rules are both manually constructed. The major limitation of supervised approaches
Below are sample rules in a definite clause gramis that they require meaning annotations for ex-
mar (DCG) for parsing the sentence: “Utah bor-ample sentences. Even in a restricted domain,

ders Idaho”. doing this consistently and with high quality re-
quires nontrivial effort. For unrestricted text, the

Verb[AyAx.borders(x,y)] — borders complexity and subjectivity of annotation render it
NP[Utah| — Utah essentially infeasible; even pre-specifying the tar-

N P[Idaho| — Idaho get predicates and objects is very difficult. There-

V P[rel(obj)] — Verbrel] NP[obj] fore, to apply semantic parsing beyond limited do-
Slrel(obj)] — NPlobj] VP[rel] mains, it is crucial to develop unsupervised meth-

ods that do not rely on labeled meanings.

The first three lines are lexical entries. They are |, the past, unsupervised approaches have been
fired upon seeing the individual words. For exam-gpplied to some semantic tasks, but not to seman-
ple, the first rule applies to the word “borders” andy; parsing. For example, DIRT (Lin and Pan-
generates syntactic categovgrbwith the mean- g 2001) learns paraphrases of binary relations
ing AyAx.borders(x, y) that represents the next- pased on distributional similarity of their argu-
to relation. nge, we use the standard lambdaments: TextRunner (Banko et al., 2007) automati-
calculus notation, where\yAx.borders(x,y)  cally extracts relational triples in open domains us-
represents a function that is true for any {)- g a self-trained extractor; SNE applies relational
pair such thaborders(x,y) holds. The last two  ¢jystering to generate a semantic network from
rules compose the meanings of sub-parts '”to_thafextRunner triples (Kok and Domingos, 2008).
of the larger part. For example, after the firStyyhile these systems illustrate the promise of un-
and third rules are fired, the fourth rule fires andsupervised methods, the semantic content they ex-
generated’ P[AyAx.borders(x,y)(Idaho)[; this  tract is nonetheless shallow and does not constitute

meaning simplifies to\x.borders(x, Idaho) by  the complete formal meaning that can be obtained
the A-reduction rule which substitutes the argu- py 5 semantic parser.

ment for a variable in a functional application. Another issue is that existing approaches to se-

A major challenge to semantic parsing is Syn-mantic parsing learn to parse syntax and semantics
tactic variations of the same meaning, WhiChtogetheﬁ The drawback is that the complexity
abound in natural languages. For example, thé, syntactic processing is coupled with semantic
aforementioned sentence can be rephrased dgrsing and makes the latter even harder. For ex-
“Utah is next to Idaho,”Utah shares a border with ample, when applying their approach to a different
Idaho,” etc. Manually encoding all these varia- gomain with somewhat less rigid syntax, Zettle-
tions into the grammar is tedious and error-pronemoyer and Collins (2007) need to introduce new
Supervised semantic parsing addresses this isSygmpinators and new forms of candidate lexical
by learning to construct the grammar automati-gnyies, Ideally, we should leverage the enormous
cally from sample meaning annotations (Mooneysrogress made in syntactic parsing and generate

2007). Existing approaches differ in the meaningsemantic parses directly from syntactic analysis.
representation languages they use and the amount

of annotation required. In the approach of Zettle-22 Markov L ogic
moyer and Collins (2005), the training data con- NLP licati th ist rich rel
sists of sentences paired with their meanings pn many appiications, there existrich refa-

lambda form. A probabilistic combinatory cate- tlolns Iarpongl (I)bjec_t S agd trecent c\j/v_(la_rk l'(n stgg;g-
gorial grammar (PCCQG) is learned using a Iog-Ca relational learning (Getoor and Taskar, )

linear model, where the probability of the final and structured pred_iction (Bakir et al, 2097) has
logical form I and meaning-derivation tre@ shown that leveraging these can greatly improve
conditioned on the sentencg is P(L,T|S) — accuracy. One of the most powerful representa-
Lexp (X, wi f3(L,T, S)). HereZ is th’e normal- tions for this is Markov logic, which is a proba-
iiation cénstant :';1n7(f~ are the feature functions °Wistic extension of first-order logic (Richardson

7 . . .
with weightsw;. Candidate lexical entries are gen-and Domingos, 2006). Markov logic makes it
erated by a QOmaln-speC|f|c procedure based on The only exception that we are aware of is Ge and
the target logical forms. Mooney (2009).



possible to compactly specify probability distri- not require domain-specific procedures for gener-
butions over complex relational domains, and hasting candidate lexicons, as is often needed by su-
been successfully applied to unsupervised corefepervised methods.

ence resolution (Poon and Domingos, 2008) and The input to our USP system consists of de-
other tasks. AMarkov logic network (MLN)s pendency trees of training sentences. Compared
a set of weighted first-order clauses. Togetheto phrase-structure syntax, dependency trees are
with a set of constants, it defines a Markov net-the more appropriate starting point for semantic
work with one node per ground atom and one feaprocessing, as they already exhibit much of the
ture per ground clause. The weight of a featureaelation-argument structure at the lexical level.

is the weight of the first-order clause that origi- USP first uses a deterministic procedure to con-
nated it. The probability of a state in such a vert dependency trees into quasi-logical forms
network is given by the log-linear modél(x) = (QLFs). The QLFs and their sub-formulas have
£ exp (3°; win;(z)), whereZ is a normalization natural lambda forms, as will be described later.
constantuw; is the weight of theth formula, and  Starting with clusters of lambda forms at the atom

n; is the number of satisfied groundings. level, USP recursively builds up clusters of larger
lambda forms. The final output is a probability
3 Unsupervised Semantic Parsing with distribution over lambda-form clusters and their
Markov Logic compositions, as well as the MAP semantic parses
of training sentences.
Unsupervised semantic parsing§P) rests on In the remainder of the section, we describe

three key ideas. First, the target predicate and oline details of USP. We first present the procedure
ject constants, which are pre-specified in supertor generating QLFs from dependency trees. We
vised semantic parsing, can be viewed as clusteigien introduce their lambda forms and clusters,
of syntactic variations of the same meaning, antyng show how semantic parsing works in this set-
can be learned from data. For examplerders  ting. Finally, we present the Markov logic net-
represents the next-to relation, and can be viewegork (MLN) used by USP. In the next sections, we
as the cluster of different forms for expressing thispresent efficient algorithms for learning and infer-

relation, such as “borders”, “is next to”, “share the ance with this MLN.

border with”; Utah represents the state of Utah,

and can be viewed as the cluster of “Utah”, “the3.1 Derivation of Quasi-Logical Forms

beehive state”, etc. A dependency treis a tree where nodes are words
Second, the identification and clustering of cangnd edges are dependency labels. To derive the

didate forms are integrated with the learning fOI‘QLF, we convert each node to an unary atom with

meaning composition, where forms that are useghe predicate being the lemma plus POS tag (be-

in composition with the same forms are encour{ow, we still use the word for simplicity), and each

aged to cluster together, and so are forms that argdge to a binary atom with the predicate being

composed of the same sub-forms. This amounts tthe dependency label. For example, the node for

a novel form of relational clustering, where clus- Utah becomes/tah(n;) and the subject depen-

tering is done not just on fixed elements in rela-dency becomesasubj(n1,n2). Here, then; are

tional tuples, but on arbitrary forms that are built Skolem constants indexed by the nodes. The QLF

up recursively. for a sentence is the conjunction of the atoms for
Third, while most existing approaches (manualthe nodes and edges, e.g., the sentence above will

or supervised learning) learn to parse both synbecomeborders(n;) A Utah(ny) A Idaho(ns) A

tax and semantics, unsupervised semantic pargsubj(ni,n,) A dobj(ny,ns).

ing starts directly from syntactic analyses and fo- .

cuses solely on translating them to semantic con3-2 Lambda-Form Clustersand Semantic

tent. This enables us to leverage advanced syn-  Parsingin USP

tactic parsers and (indirectly) the available rich re-Given a QLF, a relation or an object is repre-

sources for them. More importantly, it separatessented by the conjunction of a subset of the atoms.

the complexity in syntactic analysis from the se-For example, the next-to relation is represented

mantic one, and makes the latter much easier tby borders(n;) Ansubj(ni,ny) Adobj(ny,ns),

perform. In particular, meaning composition doesand the states of Utah and Idaho are represented



by Utah(n,) andIdaho(ns). The meaning com- forms, and then assigning each form to a cluster
position of two sub-formulas is simply their con- or an argument type. The final logical form is de-

junction. This allows the maximum flexibility in rived by composing the abstract lambda forms of
learning. In particular, lexical entries are no longerthe parts using th&-reduction rulé

limited to be adjacent words as in Zettlemoyer and

Collins (2005), but can be arbitrary fragments in a33 TheUSPMLN

dependency tree. Formally, for a QLFQ, a semantic parsé par-

For every sub-formulaF, we define a corre- Utions @ into partsps, ps, - -, pn; €ach parp is
sponding lambda form that can be derived by re2ssigned to some lambda-form clustgrand is
placing every Skolem constamt that does not further partitioned into core form and argument
appear in any unary atom i with a unique formsfy, .-, fy; each_argument form is assigned
lambda variablex;. Intuitively, such constants (0 an argument type in c. _The_ USP MLN de-
represent objects introduced somewhere else (H§€S @ joint probability distribution ovep and L
the unary atoms containing them), and correy modeling the distributions over forms and ar-
spond to the arguments of the relation repregUments given the cluster or argument type.
sented byF. For example, the lambda form Before presenting the predicates and formu-

for borders(n;) A nsubj(ny,ny) Adobj(ns,ng) @S in our MLN, we should emphasize that they
should not be confused with the atoms and formu-

las in the QLFs, which are represented by reified

Conceptually, a lambda-form cluster is a set Ofco_rl1_stantsdar|1dd\(ar|%ble_s. lambda. f
semantically interchangeable lambda forms. For o mode 'sr:” utlor:; over lam 'a or(rjns,
example, to express the meaning that Utah borV® ntroduce the pre icategorm(p, £!) an

ders Idaho, we can use any form in the clusteﬁrgFofrm(p’l’f')’ Wherﬁg_ls a pl"jr:t’l 'Efthe IT
representing the next-to relation (e.g., “borders”, exoran r_;lrgume.nt, antlis a QLF subformula.
Form(p, ) is true iff partp has core fornmg, and

“shares a border with”), any form in the cluster ’ _ ) ’ .
rgForm(p, i, f) is true iff theith argument irp

representing the state of Utah (e.g., “the beehiv ; 3 The “¢I” notation signifies that each
state”), and any form in the cluster representin as forms. e £ notation signifies that eac
part or argument can have only one form.

the state of Idaho (e.g., “Idaho”). Conditioned T del distributi .
on the clusters, the choices of individual lambda do mo he Istri utlonz_over arguments, vv'e In-
forms are independent of each other. troduce three more predicatesrgType(p; 1,a!)

To handle variable number of arguments Wesignifies that theith argument ob is assigned to
. . ) ' Targument typea; A ,i,p’) signifies that the
follow Davidsonian semantics and further de- g P re(p,1,p') Sig

lambda f into th ‘ ith argument ob is p’; Number(p, a,n) signifies
compose a fambda form Into theore [1orm a1 there are arguments ob that are assigned
which does not contain any lambda variable

bord d th ‘ot to typea. The truth value ofNumber(p,a,n) is
(eﬁg.’h or ter.s(nl))’. a? | es(;gumer_] blorm,s determined by th@rgType atoms.
whic co.n ain a singie iam . a variable (e.g., Unsupervised semantic parsing can be captured
Axy.nsubj(ni, xo) and Axz.dobj(ni, x3)). Each .
: y four formulas:
lambda-form cluster may contain some number OP
argument typeswvhich cluster distinct forms of the p € +c A Form(p, +£)
same argument in arelation. For example, in Stan-  ArgType(p, i, +a) A ArgForm(p, i, +£)
ford dependen_cies, the pbjecF ofaverbuses the de-prg(p, i,p’) A ArgType(p, i, +a) Ap’ € +¢
pendencylobj in the active voice, buisubjpass Number(p, +a, +n)
in passive.
Lambda-form clusters abstract away syntactichll free variables are implicitly universally quan-

stance of clustel with arguments of argument contains an instance of the formula, with a sep-
typeshy, - - -, Ay, its abstract lambda fornis given ~ @rate weight, for each value combination of the

by Ax - - Axp.T(n) A /\11{:1 Ai(n,x;). 2Currently, we do not handle quantifier scoping or se-
Given a sentence and its QLF, semantic parsr_nantics for specific closed-class words such as determiners

. L ' . These will be pursued in future work.

ing amounts to partitioning the atoms in the QLF, 3There are hard constraints to guarantee that these assign-

dividing each part into core form and argumentments form a legal partition. We omit them for simplicity.

IS AxpAx3. borders(nj) A nsubj(ni,xz) A
dObj(l’ll,Xg,).



variables with a plus sign. The first formula mod- Algorithm 1 USP-Parse(MLN, QLF)

els the mixture of core forms given the cluster, and Form parts for individual atoms iQ L F’ and as-
the others model the mixtures of argument forms, sign each to its most probable cluster
argument types, and argument numbers, respec- repeat

tively, given the argument type. for all partsp in the current partitiordo
To encourage clustering and avoid overfitting, for all partitions that are\-reducible from
we impose an exponential prior with weighiton p and feasiblado
the number of parametets. Find the most probable cluster and argu-
The MLN above has one problem: it often ment type assignments for the new part
clusters expressions that are semantically oppo- and its arguments
site. For example, it clusters antonyms like “el- end for

derly/young”, “mature/immature”. This issue also end for

occurs in other semantic-processing systems (e.g., Change to the new partition and assignments
DIRT). In general, this is a difficult open problem with the highest gain in probability

that only recently has started to receive some at- until none of these improve the probability
tention (Mohammad et al., 2008). Resolving this return current partition and assignments

is not the focus of this paper, but we describe a
general heuristic for fixing this problem. We ob- calledfeasibleif the core form of the new part is
serve that the problem stems from the lack of negacontained in some cluster. For example, consider
tive features for discovering meanings in contrastthe QLF of “Utah borders Idaho” and assume
In natural languages, parallel structures like conthat the current partition isx,x3.borders(ns) A
junctions are one such featutaVe thus introduce nsubj(ni,x2) A dobj(ni,x3),  Utah(np),

an exponential prior with weight on the number Idaho(ns). Then the following partition is

of conjunctions where the two conjunctive partsA-reducible from the first part in the above
are assigned to the same cluster. To detect corpartition: Axz.borders(ni) A nsubj(ni,na) A
junction, we simply used the Stanford dependenUtah(nz) A dobj(ni,x3), Idaho(ns). Whether
cies that begin with “conj”. This proves very ef- this new partition is feasible depends on whether
fective, fixing the majority of the errors in our ex- the core form of the new pahtxz.borders(ns) A

periments. nsubj(ni,n2) A Utah(ny) A dobj(ni,x3) (i.e.
borders(n;) A nsubj(nji,np) A Utah(ny)) IS
4 Inference contained in some lambda-form cluster.

Given a sentence and the quasi-logical fo€m

derived from its dependency tree, the conditional . :\Igogt.hm ! give? pz:eudo-cggle fo[] our glgo-
probability for a semantic parsé is given by fithm. Given parfp, finding partitions that are-

Pr(L|Q) x exp (X wini(L, Q). The MAP se- g}d;;lble 1;:ompsa_nd I]eas!ble c]:';lnhbe (Illone in time
mantic parse is simplyrg maxz, Y, win;(L, Q). h( ), \tl)v er? IS tf € S'Zeﬁ% _t ic uste_rlng n
Enumerating allL’s is intractable. It is also un- the number of core forms anflis the maximum

necessary, since most partitions will result in part umber of a_ltoms inacore form. We omit the proof
whose lambda forms have no cluster they can b ere but point out that it is related to the unordered

assigned to. Instead, USP uses a greedy algorithﬁ’rf:btree matching problem which can be solved in

to search for the MAP parse. First we introduce "€ time (Kilpelainen, 1992). Inverted indexes
some definitions: a partition is calledreducible  (&-9- fromp to eligible core forms) are used to fur-

fromp if it can be obtained from the current parti- ther improve the efficiency. For a new parand

e m
tion by recursivelyA-reducing the part containing a cIustefr thgt cpntz,;urlss core forrtn,tthfrzz aré

p with one of its arguments; such a partition jg\Ways ot assignings m arguments 1o argu-
- ment types of the cluster. For largeandm, this

t 4_E;<C'Udi”9 weights obo or —oo, which signify hard con- 5 very expensive. We therefore approximate it by
straints.

SFor example, in the sentence “IL-2 inhibits X in A and aSSigning each argument to the best type, indepen-
induces Y in B”, the conjunction between “inhibits” and “in- dent of other arguments.
duces” suggests that they are different. If “inhibits” arat“

duces” are indeed synonyms, such a sentence will sound awk- This al ithm i ffici di d
ward and would probably be rephrased as “IL-2 inhibits X in Is algorithm Is very efficient, and Is used re-

AandYinB". peatedly in learning.



5 Learning Algorithm 2 USP-Learn(MLN, QLF9g
Create initial clusters and semantic parses
Merge clusters with the same core form

The learning problem in USP is to maximize the
log-likelihood of observing the QLFs obtained

from the dependency trees, denoted By sum- lrb\e?:)eeg?aH 0
ming out the unobserved semantic parses: for all candidate operatior® do

Ly(Q) = logPy(Q) ScoreO py log-likelihood improvement

= log>; Py(Q, L) if score is above a threshdiden
Add O to agenda

Here,L are the semantic parsésare the MLN pa- end if
rameters, and(Q, L) are the completion likeli- end for
hoods. A serious challenge in unsupervised learn-  Execute the highest scoring operatio in
ing is the identifiability problem (i.e., the opti- the agenda

mal parameters are not unique) (Liang and Klein, Regenerate MAP parses for affected QLFs
2008). This problem is particularly severe for  anq update agenda and candidate operations
log-linear models with hard constraints, which are  yntj| agenda is empty
common in MLNs. For example, in our USP  yetyrn the MLN with learned weights and the
MLN, conditioned on the fact that € c, there is semantic parses
exactly one value of that can satisfy the formula
p € c AForm(p, f), and if we add some constant  Another major challenge in USP learning is the
number to the weights gf € c A Form(p, f) for ~ summation in the likelihood, which is over all pos-
all £, the probability distribution stays the safe. sible semantic parses for a given dependency tree.
The learner can be easily confused by the infinitelyeven an efficient sampler like MC-SAT (Poon and
many optima, especially in the early stages. Tdomingos, 2006), as used in Poon & Domingos
address this problem, we impose local normaliza{2008), would have a hard time generating accu-
tion constraints on specific groups of formulas thatate estimates within a reasonable amount of time.
are mutually exclusive and exhaustive, i.e., in eactbn the other hand, as already noted in the previous
group, we require thab¥_; e = 1, wherew;  section, the lambda-form distribution is generally
are the weights of formulas in the group. Group-sparse. Large lambda-forms are rare, as they cor-
ing is done in such a way as to encourage theespond to complex expressions that are often de-
intended mixture behaviors. Specifically, for thecomposable into smaller ones. Moreover, while
rulep € +c A Form(p, +f£), all instances given ambiguities are present at the lexical level, they
a fixed c form a group; for each of the remain- quickly diminish when more words are present.
ing three rules, all instances given a fixetbrm a  Therefore, a lambda form can usually only belong
group. Notice that with these constraints the com+to a small number of clusters, if not a unique one.
pletion likelihood P(Q, L) can be computed in We thus simplify the problem by approximating
closed form for any. In particular, each formula the sum with the mode, and search instead for the
group contributes a term equal to the weight of the, andd that maximizdog P, (Q, L). Since the op-
currently satisfied formula. In addition, the opti- timal weights and log-likelihood can be derived in
mal weights that maximize the completion likeli- closed form given the semantic pardeswe sim-
hood P(Q, L) can be derived in closed form us- ply search over semantic parses, evaluating them
ing empirical relative frequencies. E.g., the opti-using log-likelihood.
mal weight ofp € ¢ AForm(p, £) is log(ne,¢/nc), Algorithm 2 gives pseudo-code for our algo-
wherenc ¢ is the number of partp that satisfy rithm. The input consists of an MLN without
bothp € c andForm(p, ), andn. is the number \eights and the QLFs for the training sentences.
of partsp that satisfyp € c.” We leverage this fact Two operators are used for updating semantic
for efficient learning in USP. parses. The first is to merge two clusters, denoted

SRegularizations, e.g., Gaussian priors on weights, alleviPy MERGE(Cy, Co) for clustersCy, C, which does
ate this problem by penalizing large weights, but it remainsthe following:
true that weights within a short range are roughly equivalen

"To see this, notice that for a giver) the total contribu-  and there is the local normalization constraEtf evet =1,

tion to the completion likelihood from all groundings in its The optimal weightsu. : are easily derived by solving this
formula group is) . we snc¢. In addition,d " ncs = ne constrained optimization problem.




1. Create a new clusterand add all core forms above a threshold.The operation with the highest
inCy,Cy tOC; score is executed, and the parameters are updated

2. Create new argument types forby merg- with the new optimal values. The QLFs which

ing those iy, C, S0 as to maximize the log- contain an affected part are reparsed, and opera-
likelihood: ’ tions in the agenda whose score might be affected

are re-evaluated. These changes are done very ef-
ficiently using inverted indexes. We omit the de-
Here, merging two argument types refers to pooI-ta”S here due to space limitations. USP terminates
ing their argument forms to create a new argumeny/Nen the agenda is empty, and outputs the current
type. Enumerating all possible ways of creatingMLN parameters and semantic parses.

new argument types is intractable. USP approxi- USP learning uses the same optimization objec-
mates it by considering one type at a time and eiIiVG as hard EM, and is also guaranteed to find a
ther creating a new type for it or merging it to typeslocal optimum since at each step it improves the
already considered, whichever maximizes the loglog-likelihood. It differs from EM in directly opti-
likelihood. The types are considered in decreasingnizing the likelihood instead of a lower bound.
order of their numbers of occurrences so that more

information is available for each decisioMERGE 6 Experiments

clusters syntactically different expressions whose

meanings appear to be the same according to tHel Task

model.

3. RemoveC,, C,.

, Evaluating unsupervised semantic parsers is dif-
The second operator is to create a new clusge i pecause there is no predefined formal lan-

ter by composing two existing ones, denoted by, ,aqe or gold logical forms for the input sen-

COMPOSE(Cr, Ca), which does the following: tences. Thus the best way to test them is by using
1. Create a new cluster, them for the ultimate goal: answering questions

2. Find all partsr € Cg,a € C, such thata is  a@sed on the input corpus. In this paper, we ap-

an argument of, compose them te(a) by ~ Plied USP to extracting knowledge from biomedi-
A-reduction and add the new partap cal abstracts and evaluated its performance in an-

swering a set of questions that simulate the in-
0 f . ¢ imize th formation needs of biomedical researchers. We
Igun?_(le(nl_horrrés ok(a) 50 as to maximize the used the GENIA dataset (Kim et al., 2003) as
0g-likelihood. the source for knowledge extraction. It contains
COMPOSE creates clusters of large lambda-forms1999 PubMed abstracts and marks all mentions

if they tend to be composed of the same subOf biomedical entities according to the GENIA
forms (e.g., the lambda form for “is next to”). ontology, such as cell, protein, and DNA. As a
These lambda-forms may later be merged witHirst approximation to the questions a biomedi-
other clusters (e.ghorders). cal researcher might ask, we generated a set of
At learning time, USP maintains agendathat WO thousand questions on relations between enti-
contains operations that have been evaluated arf§S- Sample questions are: “What regulates MIP-
are pending execution. During initialization, Usp1alpha?”, “What does anti-STAT 1 inhibit?". To
forms a part and creates a new cluster for eacfimulate the real information need, we sample the
unary atomu(n). It also assigns binary atoms of relations from the 100 most frequently used verbs
the formb(n, ') to the part as argument forms (excluding the auxiliary verbbe have anddo),
and creates a new argument type for each. Thigand sample the entities from those annotated in
forms the initial clustering and semantic parsesGENIA, both according to their numbers of occur-

USP then merges clusters with the same core forfEnces. We evaluated USP by the number of an-
(i.e., the same unary predicate) usiMeRGe.8 At~ SWers it provided and the accuracy as determined

: . 30
each step, USP evaluates the candidate operatioR¥ manual labeling!
and adds them to the agenda if the improvement i

3. Create new argument types fofrom the ar-

- ®We currently set it to 10 to favor precision and guard
8Wword-sense disambiguation can be handled by includinggainst errors due to inexact estimates.

a new kind of operator that splits a cluster into subclusters °The labels and questions are available at

We leave this to future work. http://alchemy.cs.washington.edu/papers/poon09.



6.2 Systems resolves coreferent relation and argument strings.
On the GENIA data, using the default parameters,
Since USP is the first unsupervised semantiRESOLVER produces only a few trivial relation
parser, conducting a meaningful comparison of itclusters and no argument clusters. This is not sur-
with other systems is not straightforward. Stan-prising, since RESOLVER assumes high redun-
dard question-answering (QA) benchmarks do nogiancy in the data, and will discard any strings with
provide the most appropriate comparison, befewer than 25 extractions. For a fair compari-
cause they tend to simultaneously emphasize othebn, we also ran RESOLVER using all extractions,
aspects not directly related to semantic parsand manually tuned the parameters based on eye-
ing. Moreover, most state-of-the-art QA sys-palling of clustering quality. The best result was
tems use supervised learning in their key compoobtained with 25 rounds of execution and with the
nents and/or require domain-specific engineeringntity multiple set to 200 (the default is 30). To an-
efforts. The closest available system to USP irswer questions, the only difference from TextRun-
aims and capabilities is TextRunner (Banko et al.ner is that a question string can maich any string
2007), and we compare with it. TextRunner is thein its cluster. As in TextRunner, we report results
state-of-the-art system for open-domain informa<or both exact matchRS-EXACT) and substring
tion extraction; its goal is to extract knowledge (RS-SUB).
from text without using supervised labels. Givenp|RT: The DIRT system inputs a path and returns
that a central challenge to semantic parsing is rea set of similar paths. To use DIRT in question
solving syntactic variations of the same meaninganswering, we queried it to obtain similar paths
we also compare with RESOLVER (Yates and Et-for the relation of the question, and used these
zioni, 2009), a state-of-the-art unsupervised syspaths while matching sentences. We first used
tem based on TextRunner for jointly resolving en-MINIPAR (Lin, 1998) to parse input text using
tities and relations, and DIRT (Lin and Pantel,the same dependencies as DIRT. To determine a
2001), which resolves paraphrases of binary relamatch, we first check if the sentence contains the
tions. Finally, we also compared to an informedquestion path or one of its DIRT paths. If so, and if
baseline based on keyword matching. the available argument slot in the question is con-
Keyword: We consider a baseline system basedained in the one in the sentence, it is a match, and
on keyword matching. The question substringwe return the other argument slot from the sen-
containing the verb and the available argument isence if it is present. Ideally, a fair comparison will
directly matched with the input text, ignoring caserequire running DIRT on the GENIA text, but we
and morphology. We consider two ways to derivewere not able to obtain the source code. We thus
the answer given a match. The first oR&/) sim-  resorted to using the latest DIRT database released
ply returns the rest of sentence on the other side djy the author, which contains paths extracted from
the verb. The second onE\W-SYN) is informed  a large corpus with more than 1GB of text. This
by syntax: the answer is extracted from the subjecputs DIRT in a very advantageous position com-
or object of the verb, depending on the question. Ihared with other systems. In our experiments, we
the verb does not contain the expected argumengised the top three similar paths, as including more
the sentence is ignored. results in very low precision.
TextRunner: TextRunner inputs text and outputs USP: We built a system for knowledge extrac-
relational triples in the form{R, A1, A2), where  tion and question answering on top of USP. It
R is the relation string, andl;, A> the argument generated Stanford dependencies (de Marneffe et
strings. Given a triple and a question, we firstal,, 2006) from the input text using the Stan-
match their relation strings, and then match theord parser, and then fed these to USP-L&5rn
strings for the argument that is present in the quesyhich produced an MLN with learned weights
tion. If both match, we return the other argumentand the MAP semantic parses of the input sen-
string in the triple as an answer. We report resultsences. These MAP parses formed our knowledge
when exact match is useR-EXACT), or when  pase (KB). To answer questions, the system first

the triple string can contain the question one as @arses the questiotfsusing USP-Parse with the
substring TR-SUB).

RESOLVER: RESOLVER (Yates and Etzioni, 11, andg are set to-5 and—10.
2009) inputs TextRunner triples and collectively *?The question slot is replaced by a dummy word.



] . . . syntactic difference between active and passive
Table 1. Comparison of question answering re-\/oices It successfully identifies many distinct ar
sults on the GENIA dataset. ' y y

gument forms that mean the same (e.g., “X stimu-

# Total | # Correct| Accuracy |  lates Y~ “Y is stimulated with X”, “expression
KW 150 67 45% of X" ~ “X expression”). It also resolves many
KW-SYN 87 67 771% nouns correctly and forms meaningful groups of
TR-EXACT 29 23 79% relations. Here are some sample clusters in core
TR-SUB 152 81 53% forms:
RS-EXACT 53 24 45% {investigate, examine, evaluate, analyze, study,
RS-SUB 196 81 41% assay
DIRT 159 94 59% {diminish, reduce, decrease, attenyate
USP 334 295 88% {synthesis, production, secretion, relgase

{dramatically, substantially, significan}ly
learned MLN, and then matches the question parse An example question-answer pair, together with
to parses in the KB by testing subsumption (i.e., dhe source sentence, is shown below:
guestion parse matches a KB one iff the former is Q: What does IL-13 enhance?
subsumed by the latter). When a match occurs, our A: The 12-lipoxygenase activity of murine
system then looks for arguments of type in accorimacrophages.
dance with the question. For example, if the ques- Sentence: The data presented here indicate
tion is “What regulates MIP-1alpha?”, it searchesthat (1) the 12-lipoxygenase activity of murine
for the argument type of the relation that containsmacrophages is upregulated in vitro and in vivo
the argument form “nsubj” for subject. If such an by IL-4 and/or IL-13, . . .
argument exists for the relation part, it will be re- )
turned as the answer. 7 Conclusion

6.3 Results This paper introduces the first unsupervised ap-
I:proach to learning semantic parsers. Our USP

Table 1 shows the results for all systems. US . . .
. system is based on Markov logic, and recursively
extracted the highest number of answers, almost

doubling that of the second highest (RS-SUB).CIUSterS expressions to abstract away syntactic

. . ariations of the same lneaning. We have suc-
0,
It obtained the hlghest accuracy at 88%, ano}é sfully lied USP t xtractin knowled

the number of correct answers it extracted i . . :
) : ase from biomedical text and answering ques-
three times that of the second highest systen}. )
jons based on it.

The informed baseline (KW-SYN) did surpris- Directions for future work include: better han-

ingly well compared to systems other than USP, indIing of antonyms, subsumption relations among
terms of accuracy and number of correct answers, . o .

. gxpressions, quantifier scoping, more complex
TextRunner achieved good accuracy when exaq

match is used (TR-EXACT), but only obtained a aml_oda forms,- ete. use.of context and_dlscou-rse.
to aid expression clustering and semantic parsing;

fraction of the answers compared to USP. With - . . ) S
. . . . more efficient learning and inference; application
substring match, its recall substantially improved, _
to larger corpora,; etc.

but precision dropped more than 20 points. RE-
SOLVER improved the number of extracted an-g Acknowledgements
swers by sanctioning more matches based on the
clusters it generated_ However, most of those adWe thank the anonymous reviewers for their comments. This
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tering. DIRT obtained the second highest numbep242, DARPA contracts FA8750-05-2-0283, FA8750-07-D-
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Abstract

Unknown lexical items present a major
obstacle to the development of broad-
coverage semantic role labeling systems.
We address this problem with a semi-
supervised learning approach which ac-
quires training instances for unseen verbs
from an unlabeled corpus. Our method re-
lies on the hypothesis that unknown lexical
items will be structurally and semantically
similar to known items for which annota-
tions are available. Accordingly, we rep-
resent known and unknown sentences as
graphs, formalize the search for the most
similar verb as a graph alignment prob-
lem and solve the optimization using inte-
ger linear programming. Experimental re-
sults show that role labeling performance
for unknown lexical items improves with
training data produced automatically by
our method.

1 Introduction

Semantic role labeling, the task of automatically
identifying the semantic roles conveyed by sen-
tential constituents, has recently attracted much at-
tention in the literature. The ability to express the
relations between predicates and their arguments
while abstracting over surface syntactic configu-
rations holds promise for many applications that
require broad coverage semantic processing. Ex-
amples include information extraction (Surdeanu
et al.,, 2003), question answering (Narayanan
and Harabagiu, 2004), machine translation (Boas,
2005), and summarization (Melli et al., 2005).
Much progress in the area of semantic role la-
beling is due to the creation of resources like
FrameNet (Fillmore et al., 2003), which document
the surface realization of semantic roles in real
world corpora. Such data is paramount for de-
veloping semantic role labelers which are usually
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based on supervised learning techniques and thus
require training on role-annotated data. Examples
of the training instances provided in FrameNet are
given below:

( 1 ) a. If [you]Agent [CareleSSIY]Manner
chance going back there, you
deserve what you get.

b.  Only [one winner]p,y,. purchased
[the paintings]Goods
c.  [Rachel]ggens injured [her

friend]y;eim  [by closing the car
door on his left hand]/eqns-

Each verb in the example sentences evokes a frame
which is situation-specific. For instance, chance
evokes the Daring frame, purchased the Com-
merce_buy frame, and injured the Cause_harm
frame. In addition, frames are associated with
semantic roles corresponding to salient entities
present in the situation evoked by the predicate.
The semantic roles for the frame Daring are Agent
and Manner, whereas for Commerce_buy these are
Buyer and Goods. A system trained on large
amounts of such hand-annotated sentences typi-
cally learns to identify the boundaries of the argu-
ments of the verb predicate (argument identifica-
tion) and label them with semantic roles (argument
classification).

A variety of methods have been developed for
semantic role labeling with reasonably good per-
formance (F; measures in the low 80s on standard
test collections for English; we refer the interested
reader to the proceedings of the SemEval-2007
shared task (Baker et al., 2007) for an overview
of the state-of-the-art). Unfortunately, the reliance
on training data, which is both difficult and highly
expensive to produce, presents a major obstacle
to the widespread application of semantic role la-
beling across different languages and text gen-
res. The English FrameNet (version 1.3) is not

Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 11-20,
Singapore, 6-7 August 2009. (©2009 ACL and AFNLP



a small resource — it contains 502 frames cov-
ering 5,866 lexical entries and 135,000 annotated
sentences. Nevertheless, by virtue of being un-
der development it is incomplete. Lexical items
(i.e., predicates evoking existing frames) are miss-
ing as well as frames and annotated sentences
(their number varies greatly across lexical items).
Considering how the performance of supervised
systems degrades on out-of-domain data (Baker
et al., 2007), not to mention unseen events, semi-
supervised or unsupervised methods seem to offer
the primary near-term hope for broad coverage se-
mantic role labeling.

In this work, we develop a semi-supervised
method for enhancing FrameNet with additional
annotations which could then be used for clas-
sifier training. We assume that an initial set of
labeled examples is available. Then, faced with
an unknown predicate, i.e., a predicate that does
not evoke any frame according to the FrameNet
database, we must decide (a) which frames it be-
longs to and (b) how to automatically annotate
example sentences containing the predicate. We
solve both problems jointly, using a graph align-
ment algorithm. Specifically, we view the task
of inferring annotations for new verbs as an in-
stance of a structural matching problem and fol-
low a graph-based formulation for pairwise global
network alignment (Klau, 2009). Labeled and un-
labeled sentences are represented as dependency-
graphs; we formulate the search for an optimal
alignment as an integer linear program where dif-
ferent graph alignments are scored using a func-
tion based on semantic and structural similarity.
We evaluate our algorithm in two ways. We assess
how accurate it is in predicting the frame for an
unknown verb and also evaluate whether the an-
notations we produce are useful for semantic role
labeling.

In the following section we provide an overview
of related work. Next, we describe our graph-
alignment model in more detail (Section 3) and
present the resources and evaluation methodology
used in our experiments (Section 4). We conclude
the paper by presenting and discussing our results.

2 Related Work

Much previous work has focused on creating
FrameNet-style annotations for languages other
than English. A common strategy is to exploit
parallel corpora and transfer annotations from
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English sentences onto their translations (Pad6
and Lapata, 2006; Johansson and Nugues, 2006).
Other work attempts to automatically augment the
English FrameNet in a monolingual setting either
by extending its coverage or by creating additional
training data.

There has been growing interest recently in
determining the frame membership for unknown
predicates. This is a challenging task, FrameNet
currently lists 502 frames with example sentences
which are simply too many (potentially related)
classes to consider for a hypothetical system.
Moreover, predicates may have to be assigned to
multiple frames, on account of lexical ambiguity.
Previous work has mainly used WordNet (Fell-
baum, 1998) to extend FrameNet. For example,
Burchardt et al. (2005) apply a word sense dis-
ambiguation system to annotate predicates with
a WordNet sense and hyponyms of these predi-
cates are then assumed to evoke the same frame.
Johansson and Nugues (2007) treat this problem
as an instance of supervised classification. Using
a feature representation based also on WordNet,
they learn a classifier for each frame which decides
whether an unseen word belongs to the frame or
not. Pennacchiotti et al. (2008) create “distribu-
tional profiles” for frames. Each frame is repre-
sented as a vector, the (weighted) centroid of the
vectors representing the meaning of the predicates
it evokes. Unknown predicates are then assigned
to the most similar frame. They also propose a
WordNet-based model that computes the similar-
ity between the synsets representing an unknown
predicate and those activated by the predicates of
a frame.

All the approaches described above are type-
based. They place more emphasis on extending
the lexicon rather than the annotations that come
with it. In our earlier work (Fiirstenau and Lapata,
2009) we acquire new training instances, by pro-
jecting annotations from existing FrameNet sen-
tences to new unseen ones. The proposed method
is token-based, however, it only produces annota-
tions for known verbs, i.e., verbs that FrameNet
lists as evoking a given frame.

In this paper we generalize the proposals of
Pennacchiotti et al. (2008) and Fiirstenau and Lap-
ata (2009) in a unified framework. We create train-
ing data for semantic role labeling of unknown
predicates by projection of annotations from la-
beled onto unlabeled data. This projection is con-



ceptualized as a graph alignment problem where
we seek to find a globally optimal alignment sub-
ject to semantic and structural constraints. Instead
of predicting the same frame for each occurence of
an unknown predicate, we consider a set of candi-
date frames and allow projection from any labeled
predicate that can evoke one of these frames. This
allows us to make instance-based decisions and
thus account for predicate ambiguity.

3 Graph Alignment Method

Our approach acquires annotations for an un-
known frame evoking verb by selecting sen-
tences featuring this verb from a large unlabeled
corpus (the expansion corpus). The choice is
based upon a measure of similarity between the
predicate-argument structure of the unknown verb
and those of similar verbs in a manually labeled
corpus (the seed corpus). We formulate the prob-
lem of finding the most similar verbs as the search
for an optimal graph alignment (we represent
labeled and unlabeled sentences as dependency
graphs). Conveniently, this allows us to create la-
beled training instances for the unknown verb by
projecting role labels from the most similar seed
instance. The annotations can be subsequently
used for training a semantic role labeler.

Given an unknown verb, the first step is to nar-
row down the number of frames it could poten-
tially evoke. FrameNet provides definitions for
more than 500 frames, of which we entertain only
a small number. This is done using a method sim-
ilar to Pennacchiotti et al. (2008). Each frame
is represented in a semantic space as the cen-
troid of the vectors of all its known frame evoking
verbs. For an unknown verb we then consider as
frame candidates the k closest frames according to
a measure of distributional similarity (which we
compute between the unknown verb’s vector and
the frame centroid vector). We provide details of
the semantic space we used in our experiments in
Section 4.

Next, we compare each sentence featuring the
unknown verb in question to labeled sentences fea-
turing known verbs which according to FrameNet
evoke any of the k candidate frames. If sufficiently
similar seeds exist, the unlabeled sentence is anno-
tated by projecting role labels from the most sim-
ilar one. The similarity score of this best match is
recorded as a measure of the quality (or reliability)
of the new instance. After carrying out this pro-
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Figure 1: Annotated dependency graph for the
sentence Old Herkimer blinked his eye and nodded
wisely. The alignment domain is indicated in bold
face. Labels in italics denote frame roles, whereas
grammatical roles are rendered in small capitals.
The verb blink evokes the frame Body_Movement.

cedure for all sentences in the expansion corpus
featuring an unknown verb, we collect the highest
scoring new instances and add them back to our
seed corpus as new training items. In the follow-
ing we discuss in more detail how the similarity of
predicate-argument structures is assessed.

3.1 Alignment Scoring

Let s be a semantically labeled dependency graph
in which node nrgg represents the frame evoking
verb. Here, we use the term “labeled” to indi-
cate that the graph contains semantic role labels
in addition to grammatical role labels (e.g., sub-
ject or object). Let g be an unlabeled graph
and 7n;q.ge; @ verbal node in it. The “unlabeled”
graph contains grammatical roles but no semantic
roles. We wish to find an alignment between the
predicate-argument structures of nrgg and nyargers
respectively. Such an alignment takes the form of
a function ¢ from a set M of nodes of s (the align-
ment domain) to a set N of nodes of g (the align-
ment range). These two sets represent the rele-
vant predicate-argument structures within the two
graphs; nodes that are not members of these sets
are excluded from any further computations.

If there were no mismatches between (frame)
semantic arguments and syntactic arguments, we
would expect all roles in s to be instantiated by
syntactic dependents in nggg. This is usually the
case but not always. We cannot therefore sim-



ply define M as the set of direct dependents of
the predicate, but also have to consider complex
paths between npgp and role bearing nodes. An
example is given in Figure 1, where the role Agent
is filled by a node which is not dominated by the
frame evoking verb blink; instead, it is connected
to blink by the complex path (CONJ~!, SUBJ). For
a given seed s we build a list of all such complex
paths and also include all nodes of s connected
to npge by one of these paths. We thus define the
alignment domain M as:

1. the predicate node nrgg

2. all direct dependents of npgg, except auxil-

iaries
. all nodes on complex paths originating
in NFEE

single direct dependents of any preposition or
conjunction node which is in (2) or end-point
of a complex path covered in (3)

The last rule ensures that the semantic heads
of prepositional phrases and conjunctions are in-
cluded in the alignment domain.

The alignment range N is defined in a similar
way. However, we cannot extract complex paths
from the unlabeled graph g, as it does not con-
tain semantic role information. Therefore, we use
the same list of complex paths extracted from s.
Note that this introduces an unavoidable asymme-
try into our similarity computation.

An alignment is a function 6: M — NU{e}
which is injective for all values except e,
i.e., o(n;) = o(nm) # € = n; = ny. We score the
similarity of two subgraphs expressed by an align-
ment function ¢ by the following term:

) sem(n,o(n))+ o) syn (

neM ny.ny)€E(M)
o(n)#¢ (o(n.( )1.,cfn2§)ZE(N)

S rc(m)) (2)

n27 " o(ny)

Here, sem represents a semantic similarity mea-
sure between graph nodes and syn a syntactic sim-
ilarity measure between the grammatical role la-
bels of graph edges. E(M) and E(N) are the sets
of all graph edges between nodes of M and nodes
of N, respectively, and r;! denotes the grammati-
cal relation between nodes n; and n,.

Equation (2) expresses the similarity between
two predicate-argument structures in terms of the
sum of semantic similarity scores of aligned graph
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nodes and the sum of syntactic similarity scores of
aligned graph edges. The relative weight of these
two sums is determined by the parameter o. Fig-
ure 2 shows an example of an alignment between
two dependency graphs. Here, the aligned node
pairs thud and thump, back and rest, against and
against, as well as wall and front contribute se-
mantic similarity scores, while the three edge pairs
SUBJ and SUBJ, IOBJ and IOBJ, as well as DOBJ
and DOBJ contribute syntactic similarity scores.

We normalize the resulting score so that it al-
ways falls within the interval [0,1]. To take into
account unaligned nodes in both the alignment do-
main and the alignment range, we divide Equa-
tion (2) by:

VIMI-IN[+a/[EM)]-[EN)]  ©)
A trivial alignment of a seed with itself where all
semantic and syntactic scores are 1 will thus re-
ceive a score of:

M| 1+o-[EM)[1_
VIME+a/EM)?

which is the largest possible similarity score. The
lowest possible score is obviously 0, assuming that
the semantic and syntactic scores cannot be nega-
tive.

Considerable latitude is available in selecting
the semantic and syntactic similarity measures.
With regard to semantic similarity, WordNet is a
prime contender and indeed has been previously
used to acquire new predicates in FrameNet (Pen-
nacchiotti et al., 2008; Burchardt et al., 2005; Jo-
hansson and Nugues, 2007). Syntactic similarity
may be operationalized in many ways, for exam-
ple by taking account a hierarchy of grammatical
relations (Keenan and Comrie, 1977). Our experi-
ments employed relatively simple instantiations of
these measures. We did not make use of Word-
Net, as we were interested in exploring the set-
ting where WordNet is not available or has limited
coverage. Therefore, we approximate the seman-
tic similarity between two nodes via distributional
similarity. We present the details of the semantic
space model we used in Section 4.

If n and n’ are both nouns, verbs or adjectives,
we set:

“)

)

where Vv, and V,; are the vectors representing the
lemmas of n and n’ respectively. If n and n’

sem(n,n’) := cos (V,, V)
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Figure 2: The dotted arrows show aligned nodes in the graphs for the two sentences His back thudded
against the wall. and The rest of his body thumped against the front of the cage. (Graph edges are also
aligned to each other.) The alignment domain and alignment range are indicated in bold face. The verb

thud evokes the frame Impact.

are identical prepositions or conjunctions we set
sem(n,n’) := 1. In all other cases sem(n,n’) := 0.
As far as syntactic similarity is concerned, we
chose the simplest metric possible and set:

1 ifr=+

0 otherwise

syn (1) = { ©)

3.2 Alignment Search

The problem of finding the best alignment ac-
cording to the scoring function presented in Equa-
tion (2) can be formulated as an integer linear pro-
gram. Let the binary variables x; indicate whether
node n; of graph s is aligned to node ny of graph g.
Since it is not only nodes but also graph edges
that must be aligned we further introduce binary
variables y;jy, where y;j; = 1 indicates that the
edge between nodes n; and n; of graph s is aligned
to the edge between nodes n; and n; of graph g.
This follows a general formulation of the graph
alignment problem based on maximum structural
matching (Klau, 2009). In order for the x; and
yijki variables to represent a valid alignment, the
following constraints must hold:

1. Each node of s is aligned to at most one node
of g: Yyxixk < 1
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2. Each node of g is aligned to at most one node
of s: Y, x <1

3. Two edges may only be aligned if their
adjacent nodes are aligned: ;i < xj and

Vijkl < X1

The scoring function then becomes:

Zsem(n,-,nk)x,-k +a- Z syn (rZ;, ”Z,k) vijrr (7)
ik i,jk,l

We solve this optimization problem with a ver-
sion of the branch-and-bound algorithm (Land
and Doig, 1960). In general, this graph align-
ment problem is NP-hard (Klau, 2009) and usually
solved approximately following a procedure simi-
lar to beam search. However, the special structure
of constraints 1 to 3, originating from the required
injectivity of the alignment function, allows us to
solve the optimization exactly. Our implementa-
tion of the branch-and-bound algorithm does not
generally run in polynomial time, however, we
found that in practice we could efficiently com-
pute optimal alignments in almost all cases (less
than 0.1% of alignment pairs in our data could not
be solved in reasonable time). This relatively be-
nign behavior depends crucially on the fact that
we do not have to consider alignments between



full graphs, and the number of nodes in the aligned
subgraphs is limited.

4 Experimental Design

In this section we present our experimental set-up
for assessing the performance of our method. We
give details on the data sets we used, describe the
baselines we adopted for comparison with our ap-
proach, and explain how our system output was
evaluated.

Data Our experiments used annotated sentences
from FrameNet as a seed corpus. These were
augmented with automatically labeled sentences
from the BNC which we used as our expan-
sion corpus. FrameNet sentences were parsed
with RASP (Briscoe et al., 2006). In addi-
tion to phrase structure trees, RASP delivers a
dependency-based representation of the sentence
which we used in our experiments. FrameNet role
annotations were mapped onto those dependency
graph nodes that corresponded most closely to the
annotated substring (see Fiirstenau (2008) for a de-
tailed description of the mapping algorithm). BNC
sentences were also parsed with RASP (Andersen
et al., 2008).

We randomly split the FrameNet corpus!
into 80% training set, 10% test set, and 10% de-
velopment set. Next, all frame evoking verbs in
the training set were ordered by their number of
occurrence and split into two groups, seen and un-
seen. Every other verb from the ordered list was
considered unseen. This quasi-random split covers
a broad range of predicates with a varying number
of annotations. Accordingly, the FrameNet sen-
tences in the training and test sets were divided
into the sets train_seen, train_unseen, test_seen,
and test_unseen. As we explain below, this was
necessary for evaluation purposes.

The train_seen dataset consisted of 24,220 sen-
tences, with 1,238 distinct frame evoking verbs,
whereas train_unseen contained 24,315 sentences
with the same number of frame evoking verbs.
Analogously, test_seen had 2,990 sentences and
817 unique frame evoking verbs; the number
of sentences in test_unseen was 3,064 (with
847 unique frame evoking verbs).

Model Parameters The alignment model pre-
sented in Section 3 crucially relies on the similar-

'Here, we consider only FrameNet example sentences
featuring verbal predicates.
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ity function that scores potential alignments (see
Equation (2)). This function has a free parameter,
the weight o for determining the relative contri-
bution of semantic and syntactic similarity. We
tuned o using leave-one-out cross-validation on
the development set. For each annotated sentence
in this set we found its most similar other sentence
and determined the best alignment between the
two dependency graphs representing them. Since
the true annotations for each sentence were avail-
able, it was possible to evaluate the accuracy of our
method for any o value. We did this by compar-
ing the true annotation of a sentence to the anno-
tation its nearest neighbor would have induced by
projection. Following this procedure, we obtained
best results with oo = 0.2.

The semantic similarity measure relies on a se-
mantic space model which we built on a lemma-
tized version of the BNC. Our implementation fol-
lowed closely the model presented in Fiirstenau
and Lapata (2009) as it was used in a similar
task and obtained good results. Specifically, we
used a context window of five words on either
side of the target word, and 2,000 vector dimen-
sions. These were the common context words in
the BNC. Their values were set to the ratio of the
probability of the context word given the target
word to the probability of the context word over-
all. Semantic similarity was measured using the
cosine of the angle between the vectors represent-
ing any two words. The same semantic space was
used to create the distributional profile of a frame
(which is the centroid of the vectors of its verbs).
For each unknown verb, we consider the k£ most
similar frame candidates (again similarity is mea-
sured via cosine). Our experiments explored dif-
ferent values of k ranging from 1 to 10.

Evaluation Our evaluation assessed the perfor-
mance of a semantic frame and role labeler with
and without the annotations produced by our
method. The labeler followed closely the im-
plementation described in Johansson and Nugues
(2008). We extracted features from dependency
parses corresponding to those routinely used in
the semantic role labeling literature (see Baker
et al. (2007) for an overview). SVM classifiers
were trained” with the LIBLINEAR library (Fan
et al,, 2008) and learned to predict the frame
name, role spans, and role labels. We followed

2The regularization parameter C was set to 0.1.
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Figure 3: Frame labeling accuracy on high,

medium and low frequency verbs, before and af-
ter applying our expansion method; the labeler de-
cides among k = 1,...,10 candidate frames.

the one-versus-one strategy for multi-class classi-
fication (Friedman, 1996).

Specifically, the labeler was trained on the
train_seen data set without any access to training
instances representative of the “unknown’ verbs in
test_unseen. We then trained the labeler on a larger
set containing train_seen and new training exam-
ples obtained with our method. To do this, we used
train_seen as the seed corpus and the BNC as the
expansion corpus. For each “unknown” verb in
train_unseen we obtained BNC sentences with an-
notations projected from their most similar seeds.
The quality of these sentences as training instances
varies depending on their similarity to the seed.
In our experiments we added to the training set
the 20 highest scoring BNC sentences per verb
(adding less or more instances led to worse per-
formance).

The average number of frames which can be
evoked by a verb token in the set test_unseen
was 1.96. About half of them (1,522 instances)
can evoke only one frame, 22% can evoke two
frames, and 14 instances can evoke up to 11 differ-
ent frames. Finally, there are 120 instances (4%)
in test_unseen for which the correct frame is not
annotated on any sentence in train_seen.
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Figure 4: Role labeling F; for high, medium, and
low frequency verbs (roles of mislabeled frames
are counted as wrong); the labeler decides among
k=1,...,10 candidate frames.

5 Results

We first examine how well our method performs
at frame labeling. We partitioned the frame evok-
ing verbs in our data set into three bands (High,
Medium, and Low) based on an equal division
of the range of their occurrence frequency in the
BNC. As frequency is strongly correlated with
polysemy, the division allows us to assess how
well our method is performing at different degrees
of ambiguity. Figure 3 summarizes our results for
High, Medium, and Low frequency verbs. The
number of verbs in each band are 282, 282, and
283, respectively. We compare the frame accuracy
of a labeler trained solely on the annotations avail-
able in FrameNet (Without expansion) against a
labeler that also uses annotations created with our
method (After expansion). Both classifiers were
employed in a setting where they had to decide
among k candidate frames. These were the k£ most
similar frames to the unknown verb in question.
We also show the accuracy of a simple baseline
labeler, which randomly chooses one of the k can-
didate frames.

The graphs in Figure 3 show that for verbs in the
Medium and Low frequency bands, both classi-
fiers (with and without expansion) outperform the
baseline of randomly choosing among k candidate
frames. Interestingly, rather than defaulting to the
most similar frame (k = 1), we observe that ac-
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Figure 5: Hybrid frame labeling accuracy (k = 1
for High frequency verbs).

curacy improves when frame selection is viewed
as a classification task. The classifier trained on
the expanded training set consistently outperforms
the one trained on the original training set. While
this is also true for the verbs in the High frequency
band, labeling accuracy peaks at k = 1 and does
not improve when more candidate frames are con-
sidered. This is presumably due to the skewed
sense distributions of high frequency verbs, and
defaulting to the most likely sense achieves rela-
tively good performance.

Next, we evaluated our method on role label-
ing, again by comparing the performance of our
role labeler on the expanded and original train-
ing set. Since role and frame labeling are inter-
dependent, we count all predicted roles of an in-
correctly predicted frame as wrong. This unavoid-
ably results in low role labeling scores, but allows
us to directly compare performance across differ-
ent settings (e.g., different number of candidate
frames, with or without expansion). Figure 4 re-
ports labeled F; for verbs in the High, Medium
and Low frequency bands. The results are simi-
lar to those obtained for frame labeling; the role
labeler trained on the the expanded training set
consistently outperforms the labeler trained on the
unexpanded one. (There is no obvious baseline
for role labeling, which is a complex task involv-
ing the prediction of frame labels, identification of
the role bearing elements, and assignment of role
labels.) Again, for High frequency verbs simply
defaulting to k = 1 performs best.

Taken together, our results on frame and role
labeling indicate that our method is not very effec-
tive for High frequency verbs (which in practice
should be still annotated manually). We there-
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fore also experimented with a hybrid approach
that lets the classifier choose among k candi-
dates for Medium and Low frequency verbs and
defaults to the most similar candidate for High
frequency verbs. Results for this approach are
shown in Figures 5 and 6. All differences be-
tween the expanded and the unexpanded classi-
fier when choosing between the same k£ > 1 can-
didates are significant according to McNemar’s
test (p < .05). The best frame labeling accu-
racy (26.3%) is achieved by the expanded classi-
fier when deciding among k = 6 candidate frames.
This is significantly better (p < .01) than the best
performance of the unexpanded classifier (25.0%),
which is achieved at kK = 2. Role labeling results
follow a similar pattern. The best expanded classi-
fier (F1=14.9% at k = 6) outperforms the best un-
expanded one (F1=14.1% at k = 2). The difference
in performance as significant at p < 0.05, using
stratified shuffling (Noreen, 1989).

6 Conclusions

This paper presents a novel semi-supervised ap-
proach for reducing the annotation effort involved
in creating resources for semantic role labeling.
Our method acquires training instances for un-
known verbs (i.e., verbs that are not evoked by
existing FrameNet frames) from an unlabeled cor-
pus. A key assumption underlying our work is
that verbs with similar meanings will have sim-
ilar argument structures. Our task then amounts
to finding the seen instances that resemble the un-
seen instances most, and projecting their annota-
tions. We represent this task as a graph alignment
problem, and formalize the search for an optimal
alignment as an integer linear program under an



objective function that takes semantic and struc-
tural similarity into account.

Experimental results show that our method im-
proves frame and role labeling accuracy, espe-
cially for Medium and Low frequency verbs. The
overall frame labeling accuracy may seem low.
There are at least two reasons for this. Firstly, the
unknown verb might have a frame for which no
manual annotation exists. And secondly, many er-
rors are due to near-misses, i.e., we assign the un-
known verb a wrong frame which is nevertheless
very similar to the right one. In this case, accuracy
will not give us any credit.

An obvious direction for future work concerns
improving our scoring function. Pennacchiotti
et al. (2008) show that WordNet-based similarity
measures outperform their simpler distributional
alternatives. An interesting question is whether the
incorporation of WordNet-based similarity would
lead to similar improvements in our case. Also
note that currently our method assigns unknown
lexical items to existing frames. A better alterna-
tive would be to decide first whether the unknown
item can be classified at all (because it evokes a
known frame) or whether it represents a genuinely
novel frame for which manual annotation must be
provided.
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Semi-supervised Semantic Role Labeling
Using the Latent Words Language Model
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Abstract

Semantic Role Labeling (SRL) has proved
to be a valuable tool for performing auto-
matic analysis of natural language texts.
Currently however, most systems rely on
a large training set, which is manually an-
notated, an effort that needs to be repeated
whenever different languages or a differ-
ent set of semantic roles is used in a cer-
tain application. A possible solution for
this problem is semi-supervised learning,
where a small set of training examples
is automatically expanded using unlabeled
texts. We present the Latent Words Lan-
guage Model, which is a language model
that learns word similarities from unla-
beled texts. We use these similarities for
different semi-supervised SRL methods as
additional features or to automatically ex-
pand a small training set. We evaluate the
methods on the PropBank dataset and find
that for small training sizes our best per-
forming system achieves an error reduc-
tion of 33.27% F1l-measure compared to
a state-of-the-art supervised baseline.

Introduction

Marie-Francine Moens
Department of computer science
K.U.Leuven, Belgium
sien.moens@cs.kuleuven.be

useful in applications ranging from machine trans-
lation (Marcu et al., 2006) to text mining in the
bio-medical domain (Cohen and Hersh, 2005). A
syntactic parse is however a representation that is
very closely tied with the surface-form of natural
language, in contrast to Semantic Role Labeling
(SRL) which adds a layer of predicate-argument
information that generalizes across different syn-
tactic alternations (Palmer et al., 2005). SRL has
received a lot of attention in the research commu-
nity, and many systems have been developed (see
section 2). Most of these systems rely on a large
dataset for training that is manually annotated. In
this paper we investigate whether we can develop a
system that achieves state-of-the-art semantic role
labeling without relying on a large number of la-
beled examples. We aim to do so by employing the
Latent Words Language Model that leafasent
wordsfrom a large unlabeled corpus. Latent words
are words that (unlike observed words) did not oc-
cur at a particular position in a text, but given se-
mantic and syntactic constraints from the context
could have occurred at that particular position.

In section 2 we revise existing work on SRL and
on semi-supervised learning. Section 3 outlines
our supervised classifier for SRL and section 4 dis-
cusses the Latent Words Language Model. In sec-
tion 5 we will combine the two models for semi-

Automatic analysis of natural language is still asupervised role labeling. We will test the model
very hard task to perform for a computer. Al- On the standard PropBank dataset and compare it
though some successful applications have been d¥th state-of-the-art semi-supervised SRL systems
veloped (see for instance (Chinchor, 1998)), imIn sgctlon 6 and flnally in section 7 we draw con-
plementing an automatic text analysis system i§lusions and outline future work.

illha | r and time intensiv k. Man -
st' a abour and t e tens e_tas any ap-,  npajated work
plications would benefit from an intermediate rep-

resentation of texts, where an automatic analysi§ildea and Jurafsky (2002) were the first to de-
is already performed which is sufficiently generalscribe a statistical system trained on the data from
to be useful in a wide range of applications. the FrameNet project to automatically assign se-
Syntactic analysis of texts (such as Part-Of-mantic roles. This approach was soon followed
Speech tagging and syntactic parsing) is an expby other researchers (Surdeanu et al., 2003; Prad-
ample of such a generic analysis, and has proveldan et al., 2004; Xue and Palmer, 2004), focus-

21

Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 21-29,
Singapore, 6-7 August 2009. (©2009 ACL and AFNLP



ing on improved sets of features, improved ma-by Halliday (1994) and implemented by Mehay
chine learning methods or both, and SRL becamet al. (2005). PropBank has thus far received the
a shared task at the CoNLL 2004, 2005 and 2008nost attention of the research community, and is
conference's The best system (Johansson andused in our work.
Nugues, 2008) in CoNLL 2008 achieved an F1-
measure of 855% on the workshop's evaluation -1 PropBank
Corpus. The goal of the PropBank project is to add seman-
Semi-supervised learning has been suggestdét information to the syntactic nodes in the En-
by many researchers as a solution to the annotalish Penn Treebank. The main motivation for this
tion bottleneck (see (Chapelle et al., 2006; Zhuannotation is the preservation of semantic roles
2005) for an overview), and has been applied sucacross different syntactic realizations. Take for in-
cessfully on a number of natural language pro-stance the sentences
cessing tasks. Mann and McCallum (2007) ap-
ply Expectation Regularization to Named Entity
Recognition and Part-Of-Speech tagging, achiev- 2  john broke the window.
ing improved performance when compared to su-
pervised methods, especially on small numbers ol both sentences the constituent “the window” is
training data. Koo et al. (2008) present an algo-broken, although it occurs at different syntactic
rithm for dependency parsing that uses clusters apositions. The PropBank project defines for a
semantically related words, which were learnedarge collection of verbs (excluding auxiliary
in an unsupervised manner. There has been livverbs such as “will", “can”, ...) a set of senses,
tle research on semi-supervised learning for SRLthat reflect the different meanings and syntactic
We refer to He and Gildea (2006) who tested acalternations of this verb. Every sense has a
tive learning and co-training methods, but foundnumber of expected roles, numbered from Arg0
little or no gain from semi-supervised learning, to Arg5. A small number of arguments are shared
and to Swier and Stevenson (2004), who achievedmong all senses of all verbs, such as temporals
good results using semi-supervised methods, buArg-TMP), locatives (Arg-LOC) and directionals
tested their methods on a small number of Verb{Arg-DIR). Additional to the frame definitions,
Net roles, which have not been used by other SRIPropBank has annotated a large training corpus
systems. To the best of our knowledge no syscontaining approximately 113.000 annotated
tem was able to reproduce the successful result¢erbs. An example of an annotated sentence is
of (Swier and Stevenson, 2004) on the PropBank
roleset. Our approach most closely resembles the [Johnarg] [brokegreakoi] [the windowarg].
work of Firstenau and Lapata (2009) who auto-
matically expand a small training set using an auHere BREAKOL is the first sense of the “break”
tomatic dependency alignment of unlabeled senverb. Note that (1) although roles are defined for
tences. This method was tested on the FrameNe&very frame separately, in reality roles with iden-
corpus and improved results when compared to &cal names are identical or very similar for all
fully-supervised classifier. We will discuss their frames, a fact that is exploited to train accurate role

1. The window broke.

method in detail in section 5. classifiers and (2) semantic role labeling systems
_ _ typically assume that a frame is fully expressed in
3 Semantic role labeling a single sentence and thus do not try to instanti-

Fillmore (1968) introduced semantic structurest® roles across sentence boundaries. Although the

: - original PropBank corpus assigned semantic roles
called semantic frames, describing abstract ac- 9 P P 9

. o . to syntactic phrases (such as noun phrases), we use
tions or common situations (frames) with common y P ( P )

roles and themes (semantic roles). Inspired by thiE’%he CONLLtd:t;':lSEt(,j wher;: the PropBanIt< f[:_orpus
idea different resources were constructed, includ\_/\{as_conver € .0 adepen _ency representation, as-
ing FrameNet (Baker et al., 1998) and PropBankS'gnmg semantic roles to single (head) words.

(Palmer et al., 2005). An alternative approach t03.2 Features

semantic role labeling is the framework developedm this section we discuss the features used in the

1See http://www.cnts.ua.ac.be/conll/ for an overview.  semantic role labeling system. All features but the
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Split path featureare taken from existing seman-
tic role labeling systems, see for example (Gildea
and Jurafsky, 2002; Lim et al., 2004; Thompson
et al., 2006). The number in brackets denotes the
number of unique features for that type.

Word We split every sentence in (unigram) word _ ) n
tokens, including punctuation. (37079) s

Stem We reduce the word tokens to their stem

'Figure 1: Discriminative model for SRL. Grey
e.g. “walks” -> “walk”. (28690)

circles represent observed variables, white circles
POS The part-of-speech tag for every word, e_g_h_idden variables and arrows dir_ected dependen-
“NNP” (for a singular proper noun). (77) cies.sranges over all sentences in the corpus and
j over then words in the sentence.
Neighbor POS’'s The concatenated part-of-

_speech tags of the word before ?nd the Wo,,r(talthough generative) model in (Thompson et al.,
just after the current word, e.g. “RBS_JJR 2006) where it was used for semantic frame clas-
(1787) sification. The model (fig. 1) assumes that the role

Path This important feature describes the pathl@Pelrij for the wordw; is conditioned on the fea-
through the dependency tree from the currenturesfi and on the role labei_1; of the previous
word to the position of the predicate, e.g_word and that the predicate labglfor wordw; is

“coord]objadviroot|dep|nmod, pmod” conditioned on the role labeR! and on the fea-
where 1’ indicates going up a constituent Uresfj. This model can be seen as an extension

and ‘|’ going down one constituent. of the standard Maximum I_Entropy Ma_rkov Model
(829642) (MEMM, see (Ratnaparkhi, 1996)) with an extra
dependency on the predicate label, we will hence-
Split Path Because of the nature of the path fea-forth refer to this model asSiIEMM-+pred.
ture, an explosion of unique features is found To estimate the parameters of thi&EMM-+pred
in a given data set. We reduce this by split-model we turn to the successful Maximum En-
ting the path in different parts and using everytropy (Berger et al., 1996) parameter estimation
part as a distinct feature. We split, for exam-method. The Maximum Entropy principle states
ple, the previous path in 6 different features:that the best model given the training data is the
“coord”, “Tobj”, “tadv”, “Troot”, “|dep”, model such that the conditional distribution de-
“Inmod”, “|pmod”. Note that the split path fined by the model has maximum entropy subject
feature includes the POS feature, since theo the constraints represented by the training ex-
first component of the path is the POS tag foramples. There is no closed form solution to find
the current word. This feature has not beernthis maximum and we thus turn to an iterative
used previously for semantic role detection.method. In this work we use Generalized ltera-
(155) tive Scalindg, but other methods such as (quasi-)

_ o Newton optimization could also have been used.
For every wordw; in the training and test set we

construct the feature vectdfw;), where at every 4 Latent Words Language Model
position in this vector 1 indicates the presence for

the corresponding feature and 0 the absence of thét"tl Rationale

feature. As discussed in sections 1 and 3 most SRL sys-
S tems are trained today on a large set of manually
3.3 Discriminative model annotated examples. PropBank for example con-

Discriminative models have been found to outpertains approximately 50000 sentences. This man-
form generative models for many different tasksual annotation is both time and labour-intensive,
including SRL (Lim et al., 2004). For this reason and needs to be repeated for new languages or
we also employ discriminati\{e mpdels here: The 2We use the maxent package available on
structure of the model was inspired by a similarhttp://maxent.sourceforge.net/
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for new domains requiring a different set of roles.observed wordv; is generated by the latent vari-
One approach that can help to solve this problemableh;. In the current model we assume that the
is semi-supervised learning, where a small set ofontext isC(hy) = hi~3h{"2 whereh! 3 = h_5h_,
annotated examples is used together with a largig the two previous words amjﬁ = hiy1hiio is
set of unlabeled examples when training a SRlthe two next words. The observed has a value
model. from the vocabulary/, while the hidden variable
Manual inspection of the results of the super-h; is unknown, and is modeled as a probability
vised model discussed in the previous sectiordistribution over all words oV/. We will see in
showed that the main source of errors was inthe next section how this distribution is estimated
correct labeling of a word because the word tofrom a large unlabeled training corpus. The aim
ken did not occur, or occurred only a small num-of this model is to estimate, at every position
ber of times in the training set. We hypothesizea distribution forh;, assigning high probabilities
that knowledge of semantic similar words couldto words that are similar tey;, given the context
overcome this problem by associating words thaof this wordC(h;), and low probabilities to words
occurred infrequently in the training set to sim-that are not similar tev; in this context.
ilar words that occurred more frequently. Fur- A possible interpretation of this model states
thermore, we would like to learn these similar-that every hidden variabll; models the “mean-
ities automatically, to be independent of knowl-ing” for a particular word in a particular context.
edge sources that might not be available for alln this probabilistic model, when generating a sen-
languages or domains. tence, we generate the meaning of a word (which
The Distributional Hypothesis, supported byis an unobserved representation) with a certain
theoretical linguists such as Harris (1954), stateprobability, and then we generate a certain obser-
that words that occur in the same contexts tendation by writing down one of the possible words
to have similar meanings. This suggests that onéhat express this meaning.
can learn the similarity between two words auto- Creating a representation that models the mean-
matically by comparing their relative contexts ining of a word is an interesting (and controversial)
a large unlabeled corpus, which was confirmed byopic in its own right, but in this work we make
different researchers (e.g. (Lin, 1998; McDonaldthe assumption that the meaning of a particular
and Ramscar, 2001; Grefenstette, 1994)). Differword can be modeled using other words. Model-
ent methods for computing word similarities haveing the meaning of a word with other words is not
been proposed, differing between methods to repan unreasonable one, since it is already employed
resent the context (using dependency relationshifi practice by humans (e.g. by using dictionar-
or a window of words) and between methods thatjes and thesauri) and machines (e.g. relying on a
given a set of contexts, compute the similarity belexical resource such as WordNet) in word sense
tween different words (ranging from cosine simi- disambiguation tasks.
larity to more complex metrics such as the Jaccargl 3 Pparameter estimation
index). We refer to (Lin, 1998) for a comparison ™
of the different similarity metrics. As we will further see the LWLM model has three
In the next section we propose a novel methodProbability distributions:P(w;|h), the probability
to learn word similarities, the Latent Words Lan- Of the observed word; given the latent variable
guage Model (LWLM) (Deschacht and Moens, Ni» P(hi[hi~3), the probability of the hidden word
2009). This model learns similar words and learnd)j 9iven the previous variabldg > andh; 1, and

the a distribution over the contexts in which cer-P(hi[hi ), the probability of the hidden wortj
tain types of words occur typically. given the next variablels; ; andhj,,. These dis-

tributions need to be learned from a training text
4.2 Definition Ttrain =< Wo...W; > of lengthZ.

The LWLM introduces for a texT = wy..wy of 4.3.1 The Baum-Welch algorithm

lengthN for every observed word; at positioni  The attentive reader will have noticed the sim-
a hidden variabldy. The model is a generative ilarity between the proposed model and a stan-
model for natural language, in which the latentdard second-order Hidden Markov Model (HMM)
variableh; is generated by its conteR{h;) and the where the hidden state is dependent on the two
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previous states. However, we are not able to ustibutions. We select a new value for the hidden
the standard Baum-Welch (or forward-backward)variable according thT(hj\wj,h(‘)_l,hjZH) and
algorithm, because the hidden variabjgs mod-  place it at positionj in M{ 1. The current esti-
eled as a probability distribution over all words mate for all other unobserved words remains the
in the vocabulary/. The Baum-Welch algorithm same. After performing this iteration a large num-
would result in an execution time @(IV|*NG)  per of times [V|+ 10 in this experiment), the dis-
where V| is the size of the vocabularyy is the  tribution approaches the true maximum likelihood
length of the training text an@ is the number of  distribution. Gibbs sampling however samples this
iterations needed to converge. Since in our datasefistribution, and thus will never reach it exactly. A
the vocabulary size is more thank3@vords (see number of iterations|y | + 100) is then performed
section 3.2), using this algorithm is not possible.in which Gibbs sampling oscillates around the cor-
Instead we use techniques of approximate inferrect distribution. We collect independent samples
ence, i.e. Gibbs sampling. of this distribution everyV | x 10 iterations, which

432 Initialization are then used to construct the final model.
Gibbs sampling starts from a random initializa-4 4 Evaluation of the Language Model

tion for the hidden variables and then improvesA first luati f th litv of th ¢ i
the estimates in subsequent iterations. In prelimi: Irst evaluation ol the quatly of the automat-
cally learned latent words is by translation of

nary experiments it was found that a pure randon{:h, del int tial | del and
initialization results in a very long burn-in-period 'S model into a sequential language modet an

and a poor performance of the final model. Fmby measuring its perplexity on previously unseen
this reason we initially set the distributions for the (SXIS- In (Deschacht and Moens, 2009) we per-

hidden words equal to the distribution of words asl;onrtmcirgngz:e(\)/z:)ig)e(gn}?;ts’ sglﬂgzlg%g'gizq
iven by a standard language matel . ) L
g y guag Associated Press, and articles from Wikipedia)

4.3.3 Gibbs sampling and n-gram sizes (3-gram and 4-gram). We also

We store the initial estimate of the hidden vari-compared the proposed model with two state-of-
ables inMQ,, =< ho...hz >, whereh; generates the-art language models, Interpolated Kneser-Ney
w; at every position. Gibbs sampling is a Markov smoothing andullibmpredict (Goodman, 2001),
Chain Monte Carlo method that updates the estiand found that LWLM outperformed both models
mates of the hidden variables in a number of it-on all corpora, with a perplexity reduction ranging
erations. M . denotes the estimate of the hid- between 1200% and 37%. These results show

train
den variables in iteratiom. In every iteration a that the estimated distributions over latent words

new estimateM [/l is generated from the previ- are of a high quality and lead us to believe they

ous estimateM [, by selecting a random posi- could be used to improve automatic text analysis,

tion j and updating the value of the hidden vari-like SRL.

able at that position. The probability distributions ] )

PT(w;|h;), PT(h; |h}:%) and pr(hj‘h}ii) are con- 2 Role labeling using latent words

structed by collecting the counts from all positions,o previous section discussed how the LWLM
| 7 ]. The hidden variabl; is dependent ohj—,  |gans similar words and how these similarities im-
hj—1, Nj+1, hj+2 andw;j and we can compute the ., 64 the perplexity on an unseen text of the lan-
distribution of possible values for the varialdie guage model derived from this model. In this sec-

as tion we will see how we integrate the latent words
Pr(hj|wj’h(j)—1’hjz+1) = moddel in two nr?vel se_rrt:i-supervised]c ShRL models_
11 T 122 and compare these with two state-of-the-art semi-
PT(wjlhj)P*(hjlh;5hiL7) supervised models for SRL and dependency pars-
Z :
Sh PT(wi[)PT(hy|h) Zhit) ing.

We setP(h; \h‘:_éhjﬁ) — P(h; Ihi=hy. P(h; \h‘:ﬁ) Latent words as additional features
. 1=2") I j ]

which can be easily computed given the above distn a first approach we estimate the distribution of
3We used the interpolated Kneser-Ney model as describehatent words for every word for both the training

in (Goodman, 2001). and test set. We then use the latent words at every

25



position as additional probabilistic features for thebetween then dependents of the first occurrence
discriminative model. More specifically, we ap- and then dependents of the second occurrence.
pend|V| extra values to the feature vectidw;), Every alignment is assigned a score given by
containing the probability distribution over ti\é|
possible words for the hidden variathi¢. We call _ % (A-syn(gi,9q(i)) + semwi, o)) — B)
this theLWFeaturesnethod. 1Mo

This method has the advantage that it is simplavhere syn(gi,g,()) denotes the syntactic simi-
to implement and that many existing SRL systemsarity between grammatical roleg; of word w;
can be easily extended by adding additional feaand grammatical rolegy) of word wy(), and
tures. We also expect that this method can be eMseniw;,Wy()) measures the semantic similarity
ployed almost effortless in other information ex- petween wordsw; and Woi). A is a constant
traction tasks, such as Named Entity Recognitiorweighting the importance of the syntactic simi-
or Part-Of-Speech labeling. larity compared to semantic similarity, adcan

We compare this approach to the semi-pe interpreted as the lowest similarity value for
supervised method in Koo et al. (2008) who em-which an alignment between two arguments is
ploy clusters of related words constructed by thepossible. The syntactic similarityyr(gi, 9o (i)) is
Brown clustering algorithm (Brown et al., 1992) defined as 1 if the dependency relations are iden-
for syntactic processing of texts. Interestingly,tical, 0 < a < 1 if the relations are of the same
this clustering algorithm has a similar objective astype but of a different subtySeand 0 otherwise.
LWLM since it tries to optimize a class-based lan-The semantic similaritgentw;, w ) is automat-
guage model in terms of perplexity on an unseerically estimated as the cosine similarity between
test text. We employ a slightly different clustering the contexts ofa; and Wg() in a large text cor-
method here, th&ullibmpredictmethod discussed pus. For details we refer to (Fiirstenau and Lapata,
in (Goodman, 2001). This method was shown2009).
to outperform the class based model proposed in For every verb in the annotated training set we
(Brown et al., 1992) and can thus be expected téind thek occurrences of that verb in the unlabeled
discover better clusters of words. We append theexts where the contexts are most similar given the
feature vectof(w;) with c extra values (whereis  best alignment. We then expand the training set
the number of clusters), respectively set to 1 if thewith these examples, automatically generating an
wordw; belongs to the corresponding cluster or toannotation using the discovered alignments. The
0 otherwise. We call this method ti@usterFea- variable k controls the trade-off between anno-
turesmethod. tation confidence and expansion size. The final

model is then learned by running the supervised

Automatic expansion of the training set using  training method on the expanded training set. We
predicate argument alignment call this methodAutomaticExpansionC3S The

We compare our approach with a method proposealues fork, a, A andB are optimized automati-

by Fiirstenau and Lapata (2009). This approach igally in every experiment on a held-out set (dis-

more tailored to the specific case of SRL and idoint from both training and test set).

summarized here. We adapt this approach by employing a different
Given a set of labeled seed verbs with annotate@€thod for measuring semantic similarity. Given

semantic roles, for every annotated verb a numbeo wordsw; and w(, we estimate the distri-

of occurrences of this verb is found in unlabeledoution of latent words, respectively(h;) and

texts where the context is similar to the context of  Snote that this is a syntactic role, not a semantic role as

the annotated example. The context is defined hetrtbe ones discussed in this article.

as a” Words In the Sentence that are dlrect depen_ GSubtypes are fine-gl’ained distinctions made by the parser

. . . such as the underlying grammatical roles in passive canstru
dents of this verb, given the syntactic dependencyqs.
tree. The similarity between two occurrences of a “The only major differences with (Firstenau and Lap-

particular verb is measured by finding all differentata, 2009) are the dependency parser which was used (the
. . MALT parser (Nivre et al., 2006) instead of the RASP parser
alignmentso : Mg — {1..n} (Mg C {1,...,m}) (Briscoe et al., 2006)) and the corpus employed to learn se-
- mantic similarities (the Reuters corpus instead of theigrit
4Probabilities smaller thanel0~—* were set to O for effi-  National Corpus). We expect that these differences wilyonl
ciency reasons. influence the results minimally.
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\ | 5% | 20% | 50% | 100% |
Supervised 40.49% | 67.23% | 74.93% | 78.65%
LWFeatures 60.29% | 72.88% | 76.42% | 80.98%

ClusterFeatures 59.51% | 66.70% | 70.15% | 72.62%

AutomaticExpansionCO$ 47.05% | 53.72% | 64.51% | 70.52%

AutomaticExpansionLW| 45.40% | 53.82% | 65.39% | 72.66%

Table 1: Results (in F1-measure) on the CoNLL 2008 test sethi® different methods, comparing
the supervised method&pervised with the semi-supervised method8VFeatures, ClusterFeatures,
AutomaticExpansionCO&hdAutomaticExpansionLV&ee section 5 for details on the different methods.
Best results are in bold.

L(hg(y). We then compute the semantic similarity larger for smaller training sets, showing that the
measure as the Jensen-Shannon (Lin, 1997) diveapproach can be applied successfully in a setting
gence where only a small number of training examples

is available.
JSL(h)|[L(hg(i))) = is available
1
5 [D(L()|[avg) +D (L(heg))llavg)] When comparing theWFeaturesmethod wit

whereavg = (L(h) + L(hy)))/2 is the average the ClusterFeaturesnethod we see that, although

between the two distributions aril(L(hy)||avg) the ClusterFeaturesmethod has a similar perfor-
is the Kullback—Leiber divergence (Cover andMance for small training sizes, this performance
Thomas, 2006). drops for larger training sizes. A possible expla-
Although this change might appear only a s”ghtnation for this result is the use of the clusters em-
deviation from the original model discussed inPloyed in theClusterFeaturesnethod. By defini-
(Firstenau and Lapata, 2009) it is potentially arf'on the clusters merge many words into one clus-
important one, since an accurate semantic similaer, Which might lead to good generalization (more
ity measure will greatly influence the accuracy ofimportant for small training sizes) but can poten-
the alignments, and thus of the accuracy of the afally hurt precision (more important for larger
tomatic expansion. We call this methéditomat- ~ training sizes).

icExpansionLW.

6 Experiments A third observation that can be made from table
_ 1is that, although both automatic expansion meth-
We perform a number of experiments where We, s ntomaticExpansionCOSNnd AutomaticEx-

compare the fully supervised model with the Semi'pansionCO)S outperform the supervised method

supervised models proposed in the previous Seggy the smallest training size, for other sizes of the
tion. We first train the LWLM model on an unla- 5ining set they perform relatively poorly. An in-

beled 5 million \{vord:aeuterszgrpué. formal inspection showed that for some examples
We perform different experiments for the SUper-j, e training set, little or no correct similar occur-

vised and the four different semi-supervised methye,caq were found in the unlabeled text. The algo-

ods (see previous section). Table 1 shows the re;nm described in section 5 adds the most similar
sults of the different methods on the test set of thg . ,rrences to the training set for every anno-

CONLL 2008 shared task. We experimented with,ie example, also for these examples where lit-
different sizes for the training set, ranging foMye o g similar occurrences were found. Often
5% to 100%. When using a subset of the full train-y, o 5 tomatic alignment fails to generate correct
ing set, we run 10 different experiments with ran-,pe|s for these occurrences and introduces errors
dom subsets and average the results. in the training set. In the future we would like to
We see that thé WFeaturesmethod performs o tom experiments that determine dynamically
better than the other methods across all raingyr instance based on the similarity measure be-

ing sizes. Furthermore, these improvements argeen occurrences) for every annotated example
8See http://www.daviddlewis.com/resources how many training examples to add.
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7 Conclusions and future work (IWT-SBO-060051). We thank the anonymous re-

We h ted the Latent Words L viewers for their helpful comments and Dennis N.
Med ?ve greshen ed he ieln or fs angulagﬁ/lehay for his help on clarifying the linguistic mo-
odel and showed how it learns, from unla- . . o o o Cdele

beled texts, latent words that capture the mean-
ing of a certain word, depending on the con-
text. We then experimented with different meth- References
ods to incorporate the latent words for SemantiG, ¢ .o ¢ 3. Fillmore, and J.8. Lowe. 1998. The
Role Labeling, and tested different methods on the gerkeley FrameNet project. IRroceedings of the
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Abstract

We present an integrated dependency-
based semantic role labeling system for
English from both NomBank and Prop-
Bank. By introducing assistant argument
labels and considering much more fea-
ture templates, two optimal feature tem-
plate sets are obtained through an effec-
tive feature selection procedure and help
construct a high performance single SRL
system. From the evaluations on the date
set of CoNLL-2008 shared task, the per-
formance of our system is quite close to
the state of the art. As to our knowl-
edge, this is the first integrated SRL sys-
tem that achieves a competitive perfor-
mance against previous pipeline systems.

1 Introduction

We investigate the possibility to construct an effec-
tive integrated system for dependency-based se-
mantic role labeling (SRL) task. This means in
this work that a single system handles all these
sub-tasks, predicate identification/disambiguation
and argument identification/classification, regard-
less of whether the predicate is verbal or nominal.

Traditionally, a SRL task, either dependency
or constituent based, is implemented as two sub-
tasks, namely, argument identification and clas-
sification. If the predicate is unknown, then a
predicate identification or disambiguation subtask
should be additionally considered. A pipeline
framework is usually adopted to handle all these
sub-tasks. The reason to divide the whole task

This study is partially supported by CERG grant

9040861 (CityU 1318/03H), CityU Strategic Research Grant
7002037.

30

chenwl@nict.go.jp

into multiple stages is two-fold, one is each sub-
task asks for its favorable features, the other is
at the consideration of computational efficiency.
Generally speaking, a joint system is slower than
a pipeline system in training. (Xue and Palmer,
2004) fount out that different features suited for
different sub-tasks of SRL, i.e. argument identifi-
cation and classification. The results from CoNLL
shared tasks in 2005 and 2008 (Carreras and Mar-
quez, 2005; Koomen et al., 2005; Surdeanu et al.,
2008; Johansson and Nugues, 2008), further show
that SRL pipeline may be one of the standard to
achieve a state-of-the-art performance in practice.

In the recent years, most works on SRL, includ-
ing two CoNLL shared task in 2004 and 2005,
focus on verbal predicates with the availability
of PropBank (Palmer et al., 2005). As a com-
plement to PropBank, NomBank (Meyers et al.,
2004) annotates nominal predicates and their cor-
responding semantic roles using similar semantic
framework as PropBank. Though SRL for nomi-
nal predicates offers more challenge, it draws rel-
atively little attention (Jiang and Ng, 2000).

(Pustejovsky et al., 2005) discussed the issue of
merging various treebanks, including PropBank,
NomBank, and others. The idea of merging these
two different treebanks was implemented in the
CoNLL-2008 shared task (Surdeanu et al., 2008).
However, few empirical studies support the ne-
cessity of an integrated learning strategy from
NomBank and PropBank. Though aiming at Chi-
nese SRL, (Xue, 2006) reported that their exper-
iments show that simply adding the verb data to
the training set of NomBank and extracting the
same features from the verb and noun instances
will hurt the overall performance. From the re-
sults of CoNLL-2008 shared task, the top system
by (Johansson and Nugues, 2008) also used two

Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 30-39,
Singapore, 6-7 August 2009. (©2009 ACL and AFNLP



different subsystems to handle verbal and nominal
predicates, respectively.

Despite all the above facts, an integrated SRL
system still holds some sort of merits, being eas-
ier to implement, a single-stage feature selection
benefiting the whole system, an all-in-one model
outputting all required semantic role information
and so on.

The shared tasks at the CoNLL 2008 and 2009
are devoted to the joint learning of syntactic and
semantic dependencies, which show that SRL can
be well performed using only dependency syn-
tax input. Using data and evaluation settings
of the CoNLL-2008 shared task, this work will
only focus on semantic dependency parsing and
compares the best-performing SRL system in the
CoNLL-2009 shared Task (Zhao et al., 2009b)
with those in the CoNLL-2008 shared task (Sur-
deanu et al., 2008; Hajic et al., 2009)1.

Aiming at main drawbacks of an integrated ap-
proach, two key techniques will be applied. 1)
Assistant argument labels are introduced for the
further improvement of argument pruning. This
helps the development of a fast and lightweight
SRL system. 2) Using a greedy feature selec-
tion algorithm, a large-scale feature engineering is
performed on a much larger feature template set
than that in previous work. This helps us find fea-
tures that may be of benefit to all SRL sub-tasks as
long as possible. As two optimal feature template
sets have been proven available, for the first time
we report that an integrated SRL system may pro-
vide a result close to the state-of-the-art achieved
by those SRL pipelines or individual systems for
some specific predicates.

2 Adaptive Argument Pruning

A word-pair classification is used to formulate se-
mantic dependency parsing as in (Zhao and Kit,
2008). As for predicate identification or disam-
biguation, the first word is set as a virtual root
(which is virtually set before the beginning of the
sentence.) and the second as a predicate candi-
date. As for argument identification/classification,
the first word in a word pair is specified as a predi-

!CoNLL-2008 is an English-only task, while CoNLL-
2009 is a multilingual one. Though the English corpus in
CoNLL-2009 is almost identical to the corpus in the CoNLL-
2008 shared task evaluation, the latter holds more sophisti-
cated input structure as in (Surdeanu et al., 2008). The most
difference for these two tasks is that the identification of se-
mantic predicates is required in the task of CoNLL-2008 but
not in CoNLL-2009.
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cate candidate and the second as an argument can-
didate. In either of case, the first word is called a
semantic head, and noted as p in our feature rep-
resentation, the second is called a semantic depen-
dent and noted as a.

Word pairs are collected for the classifier in
such order. The first word of the pair is set to the
virtual root at first, the second word is then spec-
ified as a predicate candidate. According to the
result that the predicate candidate is classified or
proven to be non-predicate, 1) the second word is
reset to next predicate candidate if the answer is
non-predicate, otherwise, 2) the first word of the
pair is reset to the predicate that is just determined,
and the second is set to every argument candidates
one by one. The classifier will scan the input sen-
tence from left to right to check if each word is a
true predicate.

Without any constraint, all word pairs in an in-
put sequence must be considered by the classifier,
leading to poor computational efficiency and un-
necessary performance loss. Thus, the training
sample for SRL task needs to be pruned properly.

We use a simple strategy to prune predicate can-
didates, namely, only verbs and nouns are chosen
in this case.

There are two paths to collect argument candi-
dates over the sequence. One is based on an input
syntactic dependency tree, the other is based on
a linear path of the sentence. As for the former
(hereafter it is referred to synPth), we continue to
use a dependency version of the pruning algorithm
of (Xue and Palmer, 2004). The pruning algorithm
is readdressed as the following.

Initialization: Set the given predicate as the
current node;

(1) The current node and all of its syntactic
children are selected as argument candidates
(children are traversed from left to right.).

(2) Reset the current node to its syntactic head
and repeat step (1) until the root is reached.

Note that this pruning algorithm is slightly dif-
ferent from that of (Xue and Palmer, 2004), the
predicate itself is also included in the argument
candidate list as the nominal predicate sometimes
takes itself as its argument.

The above pruning algorithm has been shown
effective. However, it is still inefficient for a SRL



system that needs to tackle argument identifica-
tion/classification in a single stage. Assuming that
arguments trend to surround their predicate, an as-
sistant argument label ‘ NoMoreArgument’ is in-
troduced for further pruning. If an argument can-
didate in the above algorithm is assigned to such
a label, then the pruning algorithm will end im-
mediately. In training, this assistant label means
no more samples will be generated for the current
predicate, while in test, the decoder will not search
arguments any more. It will be seen that this adap-
tive technique more effectively prunes argument
candidates without missing more true arguments.

Along the linear path (hereafter referred to
linPth), the classifier will search all words before
and after the predicate. Similar to the pruning
algorithm for synPth, we also introduce two as-
sistant argument labels ‘_noLeft’ and ‘_noRight’
to adaptively prune words too far away from the
predicate.

To show how assistant argument labels actually
work, we give an example for lin Pth. Suppose an
input sequence with argument labels for a predi-
cate is

abcd e

g h

- - _ Al _ A0

Note that c and g are two boundary words as no
more arguments appear before or after them. After
two assistant argument labels are added, it will be

f
_ AO _noRight _ _

a b ¢ d e h

g
_ _noLeft Al

Training samples will generated from c to g ac-
cording to the above sequence.

We use a Maximum Entropy classifier with a
tunable Gaussian prior as usual. Our implemen-
tation of the model adopts L-BFGS algorithm for
parameter optimization.

3 Feature Templates

3.1 Elements for Feature Generation

Motivated by previous works, we carefully con-
sider those factors from a wide range of features
that can help semantic role labeling for both predi-
cate disambiguation, argument’s identification and
classification as the predicate is either verbal or
nominal. These works include (Gildea and Juraf-
sky, 2002; Carreras and Marquez, 2005; Koomen
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et al., 2005; Marquez et al., 2005; Dang and
Palmer, 2005; Pradhan et al., 2005; Toutanova et
al., 2005; Jiang and Ng, 2006; Liu and Ng, 2007,
Surdeanu et al., 2007; Johansson and Nugues,
2008; Che et al., 2008). Most feature templates
that we will adopt for this work will come from
various combinations or integrations of the follow-
ing basic elements.

Word Property. This type of elements include
word form (form and its split form, spForm)?,
lemma (lemma,spLemma), and part-of-speech tag
(pos, spPos), syntactic dependency label (dprel),
and semantic dependency label (semdprel)’.

Syntactic Connection. This includes syn-
tactic head (h), left(right) farthest(nearest) child
(Im, In, rm, and rn), and high(low) support
verb or noun. We explain the last item, sup-
port verb(noun). From a given word to the
syntactic root along the syntactic tree, the first
verb/noun/preposition that is met is called as its
low support verb/noun/preposition, and the near-
est one to the root is called as its high support
verb/noun/preposition. The concept of support
verb was broadly used (Toutanova et al., 2005;
Xue, 2006; Jiang and Ng, 2006)4, we here extend
it to nouns and prepositions. In addition, we intro-
duce a slightly modified syntactic head, pphead,
it returns the left most sibling of a given word if
the word is headed by a preposition, otherwise it
returns the original head.

Path. There are two basic types of path between
the predicate and the argument candidates. One
is the linear path (linePath) in the sequence, the
other is the path in the syntactic parsing tree (dp-
Path). For the latter, we further divide it into four
sub-types with respect to the syntactic root, dp-
Path is the full path in the syntactic tree. Leading
two paths to the root from the predicate and the
argument, respectively, the common part of these
two paths will be dpPathShare. Assume that dp-
PathShare starts from a node 7', then dpPathPred
is from the predicate to 7/, and dpPathArgu is from
the argument to 7.

Family. Two types of children sets for the pred-
icate or argument candidate are considered, the

*In CoNLL-2008, Treebank tokens are split at the position
that a hyphen (-) or a forward slash (/) occurs. This leads to
two types of feature columns, non-split and split.

3Lemma and pos for either training or test are from auto-
matically pre-analyzed columns in the input files.

*Note that the meaning of support verb is slightly different
between (Toutanova et al., 2005) and (Xue, 2006; Jiang and
Ng, 2006)



first includes all syntactic children (children), the
second also includes all but excludes the left most
and the right most children (noFarChildren).

Concatenation of Elements. For all collected
elements according to linePath, children and so
on, we use three strategies to concatenate all those
strings to produce the feature value. The first is
seq, which concatenates all collected strings with-
out doing anything. The second is bag, which
removes all duplicated strings and sort the rest.
The third is noDup, which removes all duplicated
neighbored strings.

We address some other elements that are not in-
cluded by the above description as the following.

dpTreeRelation. It returns the relationship of a
and p in the input syntactic tree. The possible val-
ues for this feature include parent, sibling
etc.

isCurPred. It judges if a given word is the cur-
rent predicate. If the word is the predicate, then it
returns the predicate itself, otherwise it returns a
default value.

existCross. It judges if a forthcoming depen-
dency relation that is between a given word pair
may cause any cross with all existing dependency
relations.

distance. It counts the number of words along a
given path, either dpPath or line Path.

existSemdprel. It checks if the given argument
label for other predicates has been assigned to a
given word.

voice. This feature returns Active or Passive for
verbs, and a default value for nouns.

baseline. Two types of semantic role baseline
outputs are used for features from (Carreras and
Marquez, 2005)°. baseline_Ax tags the head of
the first NP before the predicate as A0 and the
head of the first NP after the predicate as Al.
baseline_M od tags the dependant of the predicate
as AM-MOD as it is a modal verb.

We show some feature template examples de-
rived from the above mentioned items.

a.lm.lemma The lemma of the left most child of
the argument candidate.

p.h.dprel The dependant label of the syntactic
head of the predicate candidate.

p—1.pos+p.pos pos of the previous word of the
predicate and PoS of the predicate itself.

a:pldpPath.lemma.bag Collect all lemmas

SThese baseline rules were developed by Erik Tjong Kim
Sang, from the University of Antwerp, Belgium.
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along the syntactic tree path from the argument
to the predicate, then removed all duplicated
ones and sort the rest, finally concatenate all as a
feature string.
a:p.highSupportNoun|linePath.dprel.seq  Col-
lect all dependant labels along with the line path
from the argument to the high support noun of the
predicate, then concatenate all as a feature string.

3.2 Feature Template Selection

Based on the above mentioned elements, 781 fea-
ture templates (hereafter the set of these templates
is referred to F'T)° are initially considered. Fea-
ture templates in this initial set are constructed in
a generalized way. For example, if we find that
a feature template a.lm.lemma was once used in
some existing work, then such three templates,
a.rm.lemma, a.rn.lemma, a.ln.lemma will be also
added into the set.

As an optimal feature template subset cannot be
expected to be extracted from so large a set by
hand, a greedy feature selection similar to that in
(Jiang and Ng, 2006; Ding and Chang, 2008) is ap-
plied. The detailed algorithm is described in Algo-
rithm 1. Assuming that the number of feature tem-
plates in a given set is n, the algorithm of (Ding
and Chang, 2008) requires O(n?) times of train-
ing/test routines, it cannot handle a set that con-
sists of hundreds of templates. As the time com-
plexity of Algorithm 1 is only O(n), it permits a
large scale feature selection accomplished by pay-
ing a reasonable time cost. Though the time com-
plexity of the algorithm given by (Jiang and Ng,
2006) is also linear, it should assume all feature
templates in the initial selected set ‘good’ enough
and handles other feature template candidates in a
strict incremental way. However, these two con-
straints are not easily satisfied in our case, while
Algorithm 1 may release these two constraints.

Choosing the first 1/10 templates in F'I' as
the initial selected set S, the feature selection is
performed for two argument candidate traverse
schemes, synPth and lin Pth, respectively. 4686
machine learning routines run for the former,
while 6248 routines for the latter. Two feature
template sets, F'Is,, and F'1};,, are obtained at
last. These two sets are given in Table 1-3. We see
that two sets share 30 identical feature templates
as in Table 1. F'T,,, holds 51 different templates

®This set with detailed explanation will be available at our
website.



_ | p.lm.dprel

_ | p.rm.dprel

_ | p.spForm

_ | p=1.spLemma

_ | p.spLemma

_ | p—1.spLemma+p.spLemma

_ | p.spLemma + p1.spLemma

_ | p.spLemma + p.h.spForm

_ | p.spLemma + p.currentSense

_ | p.lemma

_ | p.lemma + p1.lemma

_ | p—1.pos+p.pos

_ | a.isCurPred.lemma

_ | a_s.isCurPred.lemma + a_1.isCurPred.lemma
_ | a.isCurPred.spLemma

_ | a—1.isCurPred.spLemma + a.isCurPred.spLemma
_ | a.isCurPred.spLemma + ai.isCurPred.spLemma
_ | a.children.dprel.bag

_ | a—1.spLemma + a.spLemma

_ | a—1.spLemma + a.dprel

_ | a—1.spLemma + a.dprel + a.h.spLemma

_ | a.lm_i.spLemma

_ | a.rm_y.dprel + a.spPos

_ | a=1.lemma + a.dprel + a.h.lemma

_ | a.lemma + p.lemma

_ | a.pos + p.pos

_ | a.spLemma + p.spLemma

_ | a:p|dpPath.dprel

_ | a:p|dpPathArgu.dprel

a:pldpPathPred.spPos

Table 1: Feature templates for both synPth and
linPth

as in Table 2 and F'T};, holds 57 different tem-
plates as in Table 3. In these tables, the subscripts -
2(or -1) and 1(or 2) stand for the previous and next
words, respectively. For example, a.lm_1.lemma
returns the lemma of the previous word of the ar-
gument’s left most child.

4 Decoding

After the predicate sense is disambiguated, an op-
timal argument structure for each predicate is de-
termined by the following maximal probability.

Sp = argmax HP(ai\ai_l,ai_g, ), (1)

7

where S, is the argument structure, P(a;|a;—1...)
is the conditional probability to determine the la-
bel of the i-th argument candidate label. A beam
search algorithm is used to find the optimal argu-
ment structure.

5 Evaluation Results

Our evaluation is performed on the standard
training/development/test corpus of CoNLL-2008
shared task. The data is derived by merging a de-
pendency version of the Penn Treebank with Prop-
Bank and NomBank. More details on the data are

Algorithm 1 Greedy Feature Selection
Input:

The set of all feature templates: F'T’
The set of selected feature templates: Sy

Output:
The set of selected feature templates: S

Procedure:

Let the counter 7 = 1

LetS; = Spand C = FT — S;

while do
Train a model with features according to S;,
test on development set and the result is p;.

Let C, = null.
for each feature template f; in set S; do
LetS = S; — fj'

Train a model with features according to
S’, test on development set and the result

isp.
if p’ > p; then
Cr =Cr + fj.
end if
end for
CcC=C+¢0C,
S; =85; —C,
Let Sz/ =5;

Train a model with features according to S,
test on development set and the result is g;.
Let C, = null
for each feature template f; in set C' do
Let C' = S; + fj.
Train a model with features according to
(', test on development set and the result

isp.
if p’ > ¢; then
Cr =Cr + fj.
end if
end for
CcC=C-0C,
Si=8+C,

if 5; = S;_1(No feature templates are added
or removed) or, neither p; nor g; is larger than
Pi—1 and qi—1 then
Output S = argmax,, ,.{S;,5;} and the
algorithm ends.
else
Leti=i+1,5=5;,_1and C = FT — S;
end if
end while




p—1i.lemma + p.lemma
P—2.pos
p.pos
p—o2.spForm + p_1.spForm
p1.spForm
p.spForm + p.children.dprel.noDup
p.lm.spPos
p.spForm + p.lm.spPos

+ p.noFarChildren.spPos.bag + p.rm.spPos
p.dprel
p.children.dprel.bag
p.children.pos.seq
p.dprel = OBJ ? ¢

a.dprel

a_1.lemma + ai.lemma
ai.lemma

a—i.pos

ai.spPos

a.h.lemma
a.h.spLemma
a.pphead.lemma
a.pphead.spLemma
a.lm.dprel + a.spPos
a.rm—_1.pos

a.spLemma + a.h.spPos
a.existSemdprel Al
a.dprel = OBJ ?

a.form + a.children.pos.seq
a.children.adv.bag’

a:p|linePath.distance
a:p|dpPath.distance

a:plexistCross

a:p|dpPath.dprel.bag
a:p|dpPathPred.dprel.bag
a:p|dpPath.spForm.seq
a:p|dpPathArgu.spForm.seq
a:p|dpPathPred.spForm.bag
a:p|dpPath.spLemma.seq
a:p|dpPathArgu.spLemma.seq
a:p|dpPathArgu.spLemma.bag
a:p|dpPathPred.spLemma.bag
a:p|dpPath.spPos.bag
a:p|dpPathPred.spPos.bag
(a:pldpPath.dprel.seq) + p.spPos
(a:pldpTreeRelation) + a.spPos
(a:pldpTreeRelation) + p.spPos
(a.highSupportVerb:p|dpTreeRelation) + a.spPos
a.highSupportNoun:p|dpPath.dprel.seq
a.lowSupportVerb:p|dpPath.dprel.seq
a:pllinePath.spForm.bag
a:p|linePath.spLemma.bag
a:p|linePath.spLemma.seq

“This feature checks if the dependant type is OBJ.
bady means all adverbs.

Table 2: Feature templates only for synPth
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p.currentSense + a.spLemma
p.currentSense + a.spPos
p.voice + (a:p|direction)
p.rm.dprel
p.children.dprel.noDup
p.rm.form
p.lowSupportNoun.spForm
p.lowSupportProp:p|dpTreeRelation
p—a.form + p_1.form

p.voice

p.form + p.children.dprel.noDup
p.pos + p.dprel

p.spForm + p.children.dprel.bag

a.voice + (a:pldirection)
a_1.isCurPred.lemma
a1.isCurPred.lemma
a_1.isCurPred.lemma + a.isCurPred.lemma
a.isCurPred.lemma + a1.isCurPred.lemma
ai.isCurPred.spLemma
a_s.isCurPred.spLemma + a_1.isCurPred.spLemma
a.baseline Ax + a.voice + (a:p|direction)
a.baseline_Mod

a.h.children.dprel.bag

a.lm.dprel + a.dprel

a.lm.dprel + a.pos

a.lm_1.lemma

a.lm.lemma

a.lm1.lemma

a.lm.pos + a.pos

a.lm.spForm

a.lm_1.spPos

a.lm.spPos

a.ln.dprel + a.pos
a.noFarChildren.spPos.bag + a.rm.spPos
a.children.spPos.seq + p.children.spPos.seq
a.rm.dprel + a.pos

a.rm_1.spPos

a.rm.spPos

a.rmy.spPos

a.rn.dprel + a.spPos

a.form

a.form + ai.form

a.form + a.pos

a_1.lemma

a_i.lemma + a.lemma

a—s.pos

a.spForm + ai.spForm

a.spForm + a.spPos

a.spLemma + ai.spLemma

a.spForm + a.children.spPos.seq
a.spForm + a.children.spPos.bag
a.spLemma + a.h.spForm

a.spLemma + a.pphead.spForm
a.existSemdprel A2

a:p|dpPathArgu.pos.seq
a:p|dpPathPred.dprel.seq
a:p|dpTreeRelation

Table 3: Feature templates only for linPth



in (Surdeanu et al., 2008). Note that CoONLL-2008 Parser Path Adaptive Pruning | Coverage

shared task is essentially a joint learning task for fwo Iw Rate

: yalj g Gold | synPth | 213M  1.05SM 98.4%
both syntactic and semantic dependencies, how- (49.30%)

ever, we will focus on semantic part of this task. linPth | 529M (219-56751\(’[7) 100.0%
. . . . 0

The maln semantic measure that we adqpt is se- Johansson | synPth | 2.15M  T.06M 95 4%
mantic labeled Fj score (Sem-F7). In addition, the (49.30%)

macro labeled F; scores (Macro-F1), which was linPth | 5.28M (219‘57731\(47) 100.0%
. . . . . 0

used for the ranking of the participating systems of MSTos | synPith | 215M  1.06M 95.0%
CoNLL-2008, the ratio between labeled F} score (49.30%)

for semantic dependencies and the LAS for syn- inPth | 5.29M ( 2195672?‘47) 100.0%
. 0

tactic dependencies (Sem-F}/LAS), are also given

for reference. Table 4: The number of training samples on argu-

5.1 Syntactic Dependency Parsers ment candidates

We consider three types of syntactic information synPth+F'Tsyn linPth+FTiin,

. Syn-Parser LAS Sem Sem-Fi Sem Sem-Fi
to f‘ee(.i the SRL task. One is gold-standard syn- ) 1LAS = LAS
tactic input, and other two are based on automati- MSToie 8839 | 80.53 91.10 | 79.83 90.31
cally parsing results of two parsers, the state-of- Johansson | 89.28 | 80.94  90.66 | 79.84  89.43

Gold 100.00 | 84.57 84.57 | 83.34 83.34

the-art syntactic parser described in (Johansson
and Nugues, 2008)7(it is referred to Johansson)
and an integrated parser described as the follow-
ing (referred to MSTa/ k).

The parser is basically based on the MSTParser®
using all the features presented by (McDonald et
al., 2006) with projective parsing. Moreover, we
exploit three types of additional features to im-
prove the parser. 1) Chen et al. (2008) used fea-
tures derived from short dependency pairs based
on large-scale auto-parsed data to enhance depen-
dency parsing. Here, the same features are used,
though all dependency pairs rather than short de-
pendency pairs are extracted along with the de-
pendency direction from training data rather than
auto-parsed data. 2) Koo et al. (2008) presented
new features based on word clusters obtained from
large-scale unlabeled data and achieved large im-
provement for English and Czech. Here, the same
features are also used as word clusters are gen-
erated only from the training data. 3) Nivre and
McDonald (2008) presented an integrating method
to provide additional information for graph-based
and transition-based parsers. Here, we represent
features based on dependency relations predicted
by transition-based parsers for the MSTParer. For
the sake of efficiency, we use a fast transition-

"It is a 2-order maximum spanning tree parser with
pseudo-projective techniques. A syntactic-semantic rerank-
ing was performed to output the final results according to (Jo-
hansson and Nugues, 2008). However, only 1-best outputs of
the parser before reranking are used for our evaluation. Note
that the reranking may slightly improve the syntactic perfor-
mance according to (Johansson and Nugues, 2008).

81t’s freely available at http://mstparser.sourceforge.net.
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Table 5: Semantic Labeled F}

based parser based on maximum entropy as in
Zhao and Kit (2008). We still use the similar fea-
ture notations of that work.

5.2 The Results

At first, we report the effectiveness of the proposed
adaptive argument pruning. The numbers of argu-
ment candidates are in Table 4. The statistics is
conducted on three different syntactic inputs. The
coverage rate in the table means the ratio of how
many true arguments are covered by the selected
pruning scheme. Note that the adaptive pruning
of argument candidates using assistant labels does
not change this rate. This ratio only depends on
which path, either synPth or linPth, is chosen,
and how good the syntactic input is (if synPth
is the case). From the results, we see that more
than a half of argument candidates can be effec-
tively pruned for syn Pth and even 2/3 for lin Pth.
As mentioned by (Pradhan et al., 2004), argument
identification plays a bottleneck role in improving
the performance of a SRL system. The effective-
ness of the proposed additional pruning techniques
may be seen as a significant improvement over the
original algorithm of (Xue and Palmer, 2004). The
results also indicate that such an assumption holds
that arguments trend to close with their predicate,
at either type of distance, syntactic or linear.
Based on different syntactic inputs, we obtain
different results on semantic dependency parsing



as shown in Table 5. These results on differ-
ent syntactic inputs also give us a chance to ob-
serve how semantic performance varies according
to syntactic performance. The fact from the re-
sults is that the ratio Sem-F3/LAS becomes rela-
tively smaller as the syntactic input becomes bet-
ter. Though not so surprised, the results do show
that the argument traverse scheme syn Pth always
outperforms the other linPth. The result of this
comparison partially shows that an integrated se-
mantic role labeler is sensitive to the order of how
argument candidates are traversed to some extent.
The performance given by synPth is com-
pared to some other systems that participated in
the CoNLL-2008 shared task. They were cho-
sen among the 20 participating systems either be-
cause they held better results (the first four partic-
ipants) or because they used some joint learning
techniques (Henderson et al., 2008). The results of
(Titov et al., 2009) that use the similar joint learn-
ing technique as (Henderson et al., 2008) are also
included’. Results of these evaluations on the test
set are in Table 6. Top three systems of CoNLL-
2008, (Johansson and Nugues, 2008; Ciaramita et
al., 2008; Che et al., 2008), used SRL pipelines.
In this work, we partially use the similar
techniques (synPth) for our participation in the
shared tasks of CoNLL-2008 and 2009 (Zhao and
Kit, 2008; Zhao et al., 2009b; Zhao et al., 2009a).
Here we report that all SRL sub-tasks are tackled
in one integrated model, while the predicate dis-
ambiguation sub-task was performed individually
in both of our previous systems. Therefore, this is
our first attempt at a full integrated SRL system.
(Titov et al., 2009) reported the best result by
using joint learning technique up to now. The
comparison indicates that our integrated system
outputs a result quite close to the state-of-the-art
by the pipeline system of (Johansson and Nugues,
2008) as the same syntactic structure input is
adopted. It is worth noting that our system actu-
ally competes with two independent sub-systems
of (Johansson and Nugues, 2008), one for verbal
predicates, the other for nominal predicates. In ad-
dition, the results of our system is obtained with-
out using additional joint learning technique like
syntactic-semantic reranking. It indicates that our
system is expected to obtain some further perfor-
mance improvement by using such techniques.

°In addition, the work of (Henderson et al., 2008) and
(Titov et al., 2009) jointly considered syntactic and semantic
dependencies, that is significantly different from the others.
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6 Conclusion

We have described a dependency-based semantic
role labeling system for English from NomBank
and PropBank. From the evaluations, the result of
our system is quite close to the state of the art. As
to our knowledge, it is the first integrated SRL sys-
tem that achieves such a competitive performance
against previous pipeline systems.

According to the path that the word-pair classi-
fier traverses argument candidates, two integration
schemes are presented. Argument candidate prun-
ing and feature selection are performed on them,
respectively. These two schemes are more than
providing a trivial comparison. As assistant la-
beled are introduced to help further argument can-
didate pruning, and this techniques work well for
both schemes, it support the assumption that argu-
ments trend to surround their predicate. The pro-
posed feature selection procedure also work for
both schemes and output quite different two fea-
ture template sets, and either of the sets helps the
system obtain a competitive performance, this fact
suggests that the feature selection procedure is ro-
bust and effective, too.

Either of the presented integrated systems can
provide a competitive performance. This conclu-
sion about basic learning scheme for SRL is some
different from previous literatures. However, ac-
cording to our results, there does exist a ‘harmony’
feature template set that is helpful to both predi-
cate and argument identification/classification, or
SRL for both verbal and nominal predicates. We
attribute this different conclusion to two main fac-
tors, 1) much more feature templates (for example,
ten times more than those used by Xue et al.) than
previous that are considered for a successful fea-
ture engineering, 2) a maximum entropy classifier
makes it possible to accept so many various fea-
tures in one model. Note that maximum entropy is
not so sensitive to those (partially) overlapped fea-
tures, while SVM and other margin-based learners
are not so.
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Systems* LAS | Sem-Fi Macro | Sem-Fy | pred-Fi° argu-Fi° | Verb-Fi¢ Nomi-F}°
Fi /LAS

Johansson:2008% | 89.32 81.65 8549 91.41 87.22 79.04 84.78 77.12
Ours:Johansson 89.28 80.94  85.12 90.66 86.57 78.30 83.66 76.93
Ours:MST e 88.39 80.53  84.93 91.10 86.80 77.60 82.77 77.23
Johansson:2008 89.32 80.37  84.86 89.98 85.40 78.02 84.45 74.32
Ciaramita:2008* | 87.37 78.00  82.69 89.28 83.46 75.35 80.93 73.80
Che:2008 86.75 78.52  82.66 90.51 85.31 75.27 80.46 75.18
Zhao:2008* 87.68 76.75  82.24 87.53 78.52 75.93 78.81 73.59
Ciaramita:2008 86.60 77.50  82.06 89.49 83.46 74.56 80.15 73.17
Titov:2009 87.50 76.10  81.80 86.97 - - - -
Zhao:2008 86.66 76.16  81.44 87.88 78.26 75.18 77.67 73.28
Henderson:2008* | 87.64 73.09 80.48 83.40 81.42 69.10 75.84 68.90
Henderson:2008 | 86.91 7097  79.11 81.66 79.60 66.83 73.80 66.26
Ours:Gold 100.0 84.57 92.20 84.57 87.67 83.15 88.71 78.39

“Ranking according to Sem-F}

Labeled F; for predicate identification and classification
“Labeled F for argument identification and classification
4Labeled F for verbal predicates

“Labeled F; for nominal predicates

f% means post-evaluation results, which are available at the official website of CoNLL-2008 shared task,

http://www.yr-ben.es/dokuwiki/doku.php?id=conll2008:start.

Table 6: Comparison of the best existing systems

References

Xavier Carreras and Lluis Marquez. 2005. Introduc-
tion to the conll-2005 shared task: Semantic role la-
beling. In Proceedings of CONLL-2005, pages 152—
164, Ann Arbor, Michigan, USA.

Wanxiang Che, Zhenghua Li, Yuxuan Hu, Yongqiang
Li, Bing Qin, Ting Liu, and Sheng Li. 2008. A
cascaded syntactic and semantic dependency pars-
ing system. In Proceedings of CoNLL-2008, pages
238-242, Manchester, England, August.

Wenliang Chen, Daisuke Kawahara, Kiyotaka Uchi-
moto, Yujie Zhang, and Hitoshi Isahara. 2008. De-
pendency parsing with short dependency relations
in unlabeled data. In Proceedings of IJCNLP-2008,
Hyderabad, India, January 8-10.

Massimiliano Ciaramita, Giuseppe Attardi, Felice
Dell’Orletta, and Mihai Surdeanu. 2008. Desrl: A
linear-time semantic role labeling system. In Pro-
ceedings of CoNLL-2008, pages 258-262, Manch-
ester, England, August.

Hoa Trang Dang and Martha Palmer. 2005. The role
of semantic roles in disambiguating verb senses. In
Proceedings of ACL-2005, pages 42—49, Ann Arbor,
USA.

Weiwei Ding and Baobao Chang. 2008. Improving
chinese semantic role classification with hierarchi-
cal feature selection strategy. In Proceedings of
EMNLP-2008, pages 324-323, Honolulu, USA.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational Linguis-
tics, 28(3):245-288.

Jan Haji¢, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antonia Marti, Lluis

38

Marquez, Adam Meyers, Joakim Nivre, Sebastian
Padé, Jan gtépz’mek, Pavel Stranak, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic depen-
dencies in multiple languages. In Proceedings of
the 13th Conference on Computational Natural Lan-
guage Learning (CoNLL-2009), June 4-5, pages 1—
18, Boulder, Colorado, USA.

James Henderson, Paola Merlo, Gabriele Musillo, and
Ivan Titov. 2008. A latent variable model of syn-
chronous parsing for syntactic and semantic depen-
dencies. In Proceedings of CoNLL-2008, pages
178-182, Manchester, England, August.

Zheng Ping Jiang and Hwee Tou Ng. 2006. Seman-
tic role labeling of nombank: A maximum entropy
approach. In Proceedings of EMNLP-2006, pages
138-145, Sydney, Australia.

Richard Johansson and Pierre Nugues. 2008.
Dependency-based syntactic - semantic analysis
with propbank and nombank. In Proceedings of
CoNLL-2008, page 183 - 187, Manchester, UK.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple semi-supervised dependency parsing.
In Proceedings of ACL-08: HLT, pages 595-603,
Columbus, Ohio, USA, June.

Peter Koomen, Vasin Punyakanok, Dan Roth, and Wen
tau Yih. 2005. Generalized inference with multi-
ple semantic role labeling systems. In Proceedings
of CoNLL-2005, pages 181-184, Ann Arbor, Michi-
gan, USA.

Chang Liu and Hwee Tou Ng. 2007. Learning pre-
dictive structures for semantic role labeling of nom-
bank. In Proceedings of ACL-2007, pages 208-215,
Prague, Czech.



Lluis Marquez, Mihai Surdeanu, Pere Comas, and
Jordi Turmo. 2005. A robust combination strat-
egy for semantic role labeling. In Proceedings
of HLT/EMNLP-2005, page 644 - 651, Vancouver,
Canada.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a
two-stage discriminative parser. In Proceedings of
CoNLL-X, New York City, June.

Adam Meyers, Ruth Reeves, Catherine Macleod,
Rachel Szekely, Veronika Zielinska, Brian Young,
and Ralph Grishman. 2004. The nombank project:
An interim report. In Proceedings of HLT/NAACL
Workshop on Frontiers in Corpus Annotation, pages
24-31, Boston, Massachusetts, USA, May 6.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proceedings of ACL-08: HLT, pages
950958, Columbus, Ohio, June.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71-106.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu,
James H. Martin, and Dan Jurafsky. 2004. Shallow
semantic parsing using support vector machines. In
Proceedings of HLT/NAACL-2004, pages 233-240,
Boston, Massachusetts, USA.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu,
James H. Martin, and Daniel Jurafsky. 2005. Se-
mantic role labeling using different syntactic views.
In Proceedings of ACL-2005, pages 581-588, Ann
Arbor, USA.

James Pustejovsky, Adam Meyers, Martha Palmer, and
Massimo Poesio. 2005. Merging propbank, nom-
bank, timebank, penn discourse treebank and coref-
erence. In Proceedings of the Workshop on Frontiers
in Corpus Annotations II: Pie in the Sky, pages 5—12,
Ann Arbor, USA.

Mihai Surdeanu, Lluis Marquez, Xavier Carreras, and
Pere R. Comas. 2007. Combination strategies for
semantic role labeling. Journal of Artificial Intelli-
gence Research, 29:105-151.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluis Marquez, and Joakim Nivre. 2008. The
CoNLL-2008 shared task on joint parsing of syntac-
tic and semantic dependencies. In Proceedings of
CoNLL-2008, pages 159—-177, Manchester, UK.

Ivan Titov, James Henderson, Paola Merlo, and
Gabriele Musillo. 2009. Online graph planarisation
for synchronous parsing of semantic and syntactic
dependencies. In IJCAI-2009, Pasadena, California,
USA.

39

Kristina Toutanova, Aria Haghighi, and Christopher D.
Manning. 2005. Joint learning improves semantic
role labeling. In Proceedings of ACL-2005, pages
589-596, Ann Arbor, USA.

Nianwen Xue and Martha Palmer. 2004. Calibrating
features for semantic role labeling. In Proceedings
of EMNLP-2004, pages 88-94, Barcelona, Spain,
July 25-26.

Nianwen Xue. 2006. Semantic role labeling of nom-
inalized predicates in chinese. In Proceedings of
NAACL-2006, pages 431-438, New York City, USA,
June.

Hai Zhao and Chunyu Kit. 2008. Parsing syntactic and
semantic dependencies with two single-stage max-
imum entropy models. In Proceeding of CoNLL-
2008, pages 203—-207, Manchester, UK.

Hai Zhao, Wenliang Chen, Jun’ichi Kazama, Kiyotaka
Uchimoto, and Kentaro Torisawa. 2009a. Multilin-
gual dependency learning: Exploiting rich features
for tagging syntactic and semantic dependencies. In
Proceedings of the 13th Conference on Computa-
tional Natural Language Learning (CoNLL-2009),
June 4-5, pages 61-66, Boulder, Colorado, USA.

Hai Zhao, Wenliang Chen, Chunyu Kit, and Guodong
Zhou. 2009b. Multilingual dependency learning:
A huge feature engineering method to semantic de-
pendency parsing. In Proceedings of CoNLL-2009,
pages 55-60, Boulder, Colorado, USA.



First- and Second-Order Expectation Semirings
with Applications to Minimum-Risk Training on Translation Forests*

Zhifei Li and Jason Eisner
Department of Computer Science and Center for Language and Speech Processing
Johns Hopkins University, Baltimore, MD 21218, USA

zhifei.work@gmail.com,

Abstract

Many statistical translation models can be
regarded as weighted logical deduction.
Under this paradigm, we use weights from
the expectation semiring (Eisner, 2002), to
compute first-order statistics (e.g., the ex-
pected hypothesis length or feature counts)
over packed forests of translations (lat-
tices or hypergraphs). We then introduce
a novel second-order expectation semir-
ing, which computes second-order statis-
tics (e.g., the variance of the hypothe-
sis length or the gradient of entropy).
This second-order semiring is essential for
many interesting training paradigms such
as minimum risk, deterministic anneal-
ing, active learning, and semi-supervised
learning, where gradient descent optimiza-
tion requires computing the gradient of en-
tropy or risk. We use these semirings in an
open-source machine translation toolkit,
Joshua, enabling minimum-risk training
for a benefit of up to 1.0 BLEU point.

1 Introduction

A hypergraph or “packed forest” (Gallo et al.,
1993; Klein and Manning, 2004; Huang and Chi-
ang, 2005) is a compact data structure that uses
structure-sharing to represent exponentially many
trees in polynomial space. A weighted hypergraph
also defines a probability or other weight for each
tree, and can be used to represent the hypothesis
space considered (for a given input) by a mono-
lingual parser or a tree-based translation system,
e.g., tree to string (Quirk et al., 2005; Liu et al.,
20006), string to tree (Galley et al., 2006), tree to
tree (Eisner, 2003), or string to string with latent
tree structures (Chiang, 2007).

*This research was partially supported by the Defense
Advanced Research Projects Agency’s GALE program via
Contract No HR0011-06-2-0001. We are grateful to Sanjeev
Khudanpur for early guidance and regular discussions.
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Given a hypergraph, we are often interested in
computing some quantities over it using dynamic
programming algorithms. For example, we may
want to run the Viterbi algorithm to find the most
probable derivation tree in the hypergraph, or the k
most probable trees. Semiring-weighted logic pro-
gramming is a general framework to specify these
algorithms (Pereira and Warren, 1983; Shieber et
al., 1994; Goodman, 1999; Eisner et al., 2005;
Lopez, 2009). Goodman (1999) describes many
useful semirings (e.g., Viterbi, inside, and Viterbi-
n-best). While most of these semirings are used in
“testing” (i.e., decoding), we are mainly interested
in the semirings that are useful for “training” (i.e.,
parameter estimation). The expectation semiring
(Eisner, 2002), originally proposed for finite-state
machines, is one such “training” semiring, and can
be used to compute feature expectations for the E-
step of the EM algorithm, or gradients of the like-
lihood function for gradient descent.

In this paper, we apply the expectation semir-
ing (Eisner, 2002) to a hypergraph (or packed for-
est) rather than just a lattice. We then propose
a novel second-order expectation semiring, nick-
named the “variance semiring.”

The original first-order expectation semiring al-
lows us to efficiently compute a vector of first-
order statistics (expectations; first derivatives) on
the set of paths in a lattice or the set of trees in a
hypergraph. The second-order expectation semir-
ing additionally computes a matrix of second-
order statistics (expectations of products; second
derivatives (Hessian); derivatives of expectations).

We present details on how to compute many in-
teresting quantities over the hypergraph using the
expectation and variance semirings. These quan-
tities include expected hypothesis length, feature
expectation, entropy, cross-entropy, Kullback-
Leibler divergence, Bayes risk, variance of hy-
pothesis length, gradient of entropy and Bayes
risk, covariance and Hessian matrix, and so on.
The variance semiring is essential for many in-
teresting training paradigms such as deterministic

Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 40-51,
Singapore, 6-7 August 2009. (©2009 ACL and AFNLP



annealing (Rose, 1998), minimum risk (Smith and
Eisner, 2006), active and semi-supervised learning
(Grandvalet and Bengio, 2004; Jiao et al., 2006).
In these settings, we must compute the gradient of
entropy or risk. The semirings can also be used for
second-order gradient optimization algorithms.
We implement the expectation and variance
semirings in Joshua (Li et al., 2009a), and demon-
strate their practical benefit by using minimum-
risk training to improve Hiero (Chiang, 2007).

2 Semiring Parsing on Hypergraphs

We use a specific tree-based system called Hiero
(Chiang, 2007) as an example, although the dis-
cussion is general for any systems that use a hy-
pergraph to represent the hypothesis space.

2.1 Hierarchical Machine Translation

In Hiero, a synchronous context-free grammar
(SCFG) is extracted from automatically word-
aligned corpora. An illustrative grammar rule for
Chinese-to-English translation is

X — (XoH Xy, X;of Xg),

where the Chinese word HYJ means of, and the
alignment, encoded via subscripts on the nonter-
minals, causes the two phrases around FY to be
reordered around of in the translation.  Given
a source sentence, Hiero uses a CKY parser to
generate a hypergraph, encoding many derivation
trees along with the translation strings.

2.2 Hypergraphs

Formally, a hypergraph is a pair (V, E), where V'
is a set of nodes (vertices) and F is a set of hy-
peredges, with each hyperedge connecting a set of
antecedent nodes to a single consequent node.' In
parsing parlance, a node corresponds to an item
in the chart (which specifies aligned spans of in-
put and output together with a nonterminal label).
The root node corresponds to the goal item. A
hyperedge represents an SCFG rule that has been
“instantiated” at a particular position, so that the
nonterminals on the right and left sides have been
replaced by particular antecedent and consequent
items; this corresponds to storage of backpointers
in the chart.

We write T'(e) to denote the set of antecedent
nodes of a hyperedge e. We write I(v) for the

IStrictly speaking, making each hyperedge designate a
single consequent defines a B-hypergraph (Gallo et al., 1993).
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Figure 1: A toy hypergraph in Hiero. When generating the
hypergraph, a trigram language model is integrated. Rect-
angles represent items, where each item is identified by the
non-terminal symbol, source span, and left- and right-side
language model states. An item has one or more incoming
hyperedges. A hyperedge consists of a rule, and a pointer to
an antecedent item for each non-terminal symbol in the rule.

set of incoming hyperedges of node v (i.e., hyper-
edges of which v is the consequent), which repre-
sent different ways of deriving v. Figure 1 shows
a simple Hiero-style hypergraph. The hypergraph
encodes four different derivation trees that share
some of the same items. By exploiting this shar-
ing, a hypergraph can compactly represent expo-
nentially many trees.

We observe that any finite-state automaton can
also be encoded as a hypergraph (in which every
hyperedge is an ordinary edge that connects a sin-
gle antecedent to a consequent). Thus, the meth-
ods of this paper apply directly to the simpler case
of hypothesis lattices as well.

2.3 Semiring Parsing

We assume a hypergraph HG, which compactly
encodes many derivation trees d € D. Given HG,
we wish to extract the best derivations—or other
aggregate properties of the forest of derivations.
Semiring parsing (Goodman, 1999) is a general
framework to describe such algorithms. To define
a particular algorithm, we choose a semiring K
and specify a “weight” k. € K for each hyper-
edge e. The desired aggregate result then emerges
as the fotal weight of all derivations in the hyper-
graph. For example, to simply count derivations,
one can assign every hyperedge weight 1 in the
semiring of ordinary integers; then each deriva-
tion also has weight 1, and their total weight is the
number of derivations.

We write K = (K, ®,®,0,1) for a semiring
with elements K, additive operation &, multi-



plicative operation ®, additive identity 0, and mul-
tiplicative identity 1. The ® operation is used to
obtain the weight of each derivation d by multi-
plying the weights of its component hyperedges e,
that is, kg = &),y ke. The @ operation is used
to sum over all derivations d in the hypergraph
to obtain the fotal weight of the hypergraph HG,
which is @ cp &, ke-> Figure 2 shows how to
compute the total weight of an acyclic hypergraph
HG.? In general, the total weight is a sum over
exponentially many derivations d. But Figure 2
sums over these derivations in time only linear on
the size of the hypergraph. Its correctness relies
on axiomatic properties of the semiring: namely,
@ is associative and commutative with identity 0,
® 1is associative with two-sided identity 1, and
® distributes over @ from both sides. The dis-
tributive property is what makes Figure 2 work.
The other properties are necessary to ensure that
Bucp R.cq ke is well-defined.*

The algorithm in Figure 2 is general and can be
applied with any semiring (e.g., Viterbi). Below,
we present our novel semirings.

3 Finding Expectations on Hypergraphs

We now introduce the computational problems of
this paper and the semirings we use to solve them.

3.1 Problem Definitions

We are given a function p : D — Ry, which

decomposes multiplicatively over component hy-
def

peredges e of a derivation d € D: that is, p(d) =
[I.cqPe- In practice, p(d) will specify a probabil-
ity distribution over the derivations in the hyper-

Eisner (2002) uses closed semirings that are also
equipped with a Kleene closure operator *. For example, in
the real semiring (R, +, x, 0, 1), we define p* = (1 — p)™*
(=14 p+p?+..)for [p| < 1 and is undefined other-
wise. The closure operator enables exact summation over the
infinitely many paths in a cyclic FSM, or trees in a hyper-
graph with non-branching cycles, without the need to iterate
around cycles to numerical convergence. For completeness,
we specify the closure operator for our semirings, satisfying
the axioms k* =10k Q k™ = 1@ k™ ® k, but we do not
use it in our experiments since our hypergraphs are acyclic.

3We assume that HG has already been built by deductive
inference (Shieber et al., 1994). But in practice, the nodes’ in-
side weights 3(v) are usually accumulated as the hypergraph
is being built, so that pruning heuristics can consult them.

4Actually, the notation ®E cd ke assumes that ® is com-
mutative as well, as does the notation “for v € T'(e)” in our
algorithms; neither specifies a loop order. One could how-
ever use a non-commutative semiring by ordering each hyper-
edge’s antecedents and specifying that a derivation’s weight
is the product of the weights of its hyperedges when visited in
prefix order. Tables 1-2 will not assume any commutativity.

INSIDE(HG, K)

1 for v in topological order on HG > each node
2 D find B(0) — Der(be ® (@ uere A1)
3 B(v) — 0

4 foreec I (U) B> each incoming hyperedge
5 k — ke
6 for u € T(e) > each antecedent node
7 k—k® p[(u)

8 B) — A @k

9 return [3(root)

B> hyperedge weight

Figure 2: Inside algorithm for an acyclic hypergraph HG,
which provides hyperedge weights k. € K. This computes
all “inside weights” 3(v) € K, and returns §(root), which is
total weight of the hypergraph, i.e., @ ;cp & .4 Fe-

OUuTSIDE(HG, K)

1 forvin HG

2 a(v) —0

3 afroot) «— 1

4 for v in reverse topological order on HG
5 fore € I (v) B> each incoming hyperedge
6

7

8

e€d

for u € T'(e) > each antecedent node
a(w) = a(w) & (a(v) ® ke

®weT(e),w7Au B(w))

Figure 3: Computes the “outside weights” a(v). Can only be

run after INSIDE(HG) of Figure 2 has already computed the
inside weights 3(v).

graph. It is often convenient to permit this prob-
ability distribution to be unnormalized, i.e., one
may have to divide it through by some Z to get a
proper distribution that sums to 1.

We are also given two functions of interest r, s :
D — R, each of which decomposes additively

over its component hyperedges e: that is, 7(d) “

Zeed Te, and S(d) g Zeed Se-
We are now interested in computing the follow-
ing quantities on the hypergraph HG:

Z 25 p(d) (1)
deD

=) pd)r(d) )
deD

5 2 ) p(d)s(d) 3)
deD

i3 pldyr(d)s(d) @
deD

Note that 7/Z, 5/Z, and t/Z are expectations un-

der p of 7(d), s(d), and (d)s(d), respectively.
More formally, the probabilistic interpretation

is that D is a discrete sample space (consisting



INSIDE-OUTSIDE(HG, K, X)

1 > Runinside and outside on HG with only k. weights

2k« INSIDE(HG,K) 0> see Figure 2
3 OuTsSIDE(HG, K) > see Figure 3
4 > Do asingle linear combination to get &
5 20
6 forvin HG > eachnode
7 fore e [ (U) B> each incoming hyperedge
8 ke « a(v)
9 forueT 6) > each antecedent node
10 ke < ke B(u)
11 & 2+ (ke ze)
12 return (l%, T)

Figure 4: If every hyperedge specifies a weight (k.,z.) in
some expectation semiring Ek, x, then this inside-outside al-
gorithm is a more efficient alternative to Figure 2 for comput-
ing the total weight (k, ) of the hypergraph, especially if the
2z are vectors. First, at lines 2-3, the inside and outside al-
gorithms are run using only the k. weights, obtaining only &
(without Z) but also obtaining all inside and outside weights
B,a € K as a side effect. Then the second component & of
the total weight is accumulated in lines 5-11 as a linear com-
bination of all the x. values, namely & = ) . Eexe, where
ke is computed at lines 8—10 using « and 3 weights. The lin-
ear coefficient k. is the “exclusive weight” for hyperedge e,
meaning that the product kck. is the total weight in K of all
derivations d € D that include e.

of all derivations in the hypergraph), p is a mea-
sure over this space, and r,s : D — R are ran-
dom variables. Then 7/Z and 5/Z give the expec-
tations of these random variables, and ¢/Z gives
the expectation of their product ¢ = rs, so that
t/Z — (F/Z)(5/Z) gives their covariance.

Example 1: r(d) is the length of the translation
corresponding to derivation d (arranged by setting
Te to the number of target-side terminal words in
the SCFG rule associated with e). Then 7/Z is
the expected hypothesis length. Example 2: r(d)
evaluates the loss of d compared to a reference
translation, using some additively decomposable
loss function. Then 7/Z is the risk (expected loss),
which is useful in minimum-risk training. Exam-
ple 3: r(d) is the number of times that a certain
feature fires on d. Then 7/Z is the expected fea-
ture count, which is useful in maximum-likelihood
training. We will generalize later in Section 4 to
allow r(d) to be a vector of features. Example 4:
Suppose 7(d) and s(d) are identical and both com-
pute hypothesis length. Then the second-order
statistic t/Z is the second moment of the length
distribution, so the variance of hypothesis length
can be found as t/Z — (7/Z)2.
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3.2 Computing the Quantities

We will use the semiring parsing framework to
compute the quantities (1)—(4). Although each is a
sum over exponentially many derivations, we will
compute it in O(|HG|) time using Figure 2.

In the simplest case, let K = (R, +, x,0,1),
and define k. = p. for each hyperedge e. Then
the algorithm of Figure 2 reduces to the classical
inside algorithm (Baker, 1979) and computes Z.

Next suppose K is the expectation semiring
(Eisner, 2002), shown in Table 1. Define k. =
(Pe, PeTe). Then Figure 2 will return (Z, 7).

Finally, suppose K is our novel second-order
expectation semiring, which we introduce in Ta-
ble 2. Define k. (Pes PeTes PeSe, PeleSe)-
Then the algorithm of Figure 2 returns (Z,7,s, t).
Note that, to compute ¢, one cannot simply con-
struct a first-order expectation semiring by defin-
ing t(d) £ r(d)s(d) because t(d), unlike r(d)
and s(d), is not additively decomposable over the
hyperedges in d.°> Also, when r(d) and s(d) are
identical, the second-order expectation semiring
allows us to compute variance as t/Z — (7/Z)2,
which is why we may call our second-order ex-
pectation semiring the variance semiring.

3.3 Correctness of the Algorithms

To prove our claim about the first-order expecta-
tion semiring, we first observe that the definitions
in Table 1 satisfy the semiring axioms. The
reader can easily check these axioms (as well
as the closure axioms in footnote 2). With a
valid semiring, we then simply observe that Fig-
ure 2 returns the total weight @ ;.p @ c ke =
Dacp (p(d), p(d)r(d)) (Z,7). It is easy to
verify the second equality from the definitions
of @, Z, and 7. The first equality requires
proving that @ . ke (p(d), p(d)r(d))
from the definitions of ®, k., p(d), and r(d).
The main intuition is that ® can be used to
build up (p(d),p(d)r(d)) inductively from the
ke: if d decomposes into two disjoint sub-
derivations dj,ds, then (p(d),p(d)r(d))
(p(d1)p(da), p(d1)p(ds)(r(dy) + 7(d2)))
(p(d1), p(d1)r(d1)) ® (p(da),p(d2)r(dz)). The
base cases are where d is a single hyperedge e, in
which case (p(d), p(d)r(d)y = ke (thanks to our
choice of k.), and where d is empty, in which case

SHowever, in a more tricky way, the second-order expec-
tation semiring can be constructed using the first-order ex-
pectation semiring, as will be seen in Section 4.3.



Element

(P1,71) @ (P2, 72)
(p1,71) D (D2, 72)

(p,7)
(p1p2, P12 + P211)
(p1 +p2, 71 +712)

(p, )" (p*,p*p*r)
0 (0,0)
1 (1,0)

Table 1: Expectation semiring: Each element in the semir-
ing is a pair (p,r). The second and third rows define the
operations between two elements (p1,71) and (p2,r2), and
the last two rows define the identities. Note that the multi-
plicative identity 1 has an r component of 0.

S0 51 a+b a-b

“ Sa+b £a+b Sa-b ga-b
++ | + Ly+log(l+e%be) | + £,+14,
+ - |+ Ly+log(l—elela) | -l 40
-+ | - Ly +log(l —efeta) | ol 44y
- - | -ty +log(l +efbf) + U, + 0

Table 3: Storing signed values in log domain: each value a
(= sq€’@) is stored as a pair (s, £, ) where s, and £, are the
sign bit of a and natural logarithm of |a|, respectively. This
table shows the operations between two values a = 5,2%
and b = 5,2%, assuming £, > £,. Note: log(1 + x) (where
lz] < 1) should be computed by the Mercator series x —

x?/24x3/3— - -, e.g., using the math library function log1p.

(p(d), p(d)r(d))y =
(p(d), p(d)r(d)) =

The proof for the second—order expec-
tation semiring is similar. In particular,
one mainly needs to show that @, ke

(p(d), p(d)r(d), p(d)s(d), p(d)r(d)s(d))-

3.4 Preventing Underflow/Overflow

1. It follows by induction that

®e€d

In Tables 1-2, we do not discuss how to store p, r,
s, and t. If p is a probability, it often suffers from
the underflow problem. r, s, and £ may suffer from
both underflow and overflow problems, depending
on their scales.

To address these, we could represent p in the
log domain as usual. However, r, s, and t can be
positive or negative, and we cannot directly take
the log of a negative number. Therefore, we repre-
sent real numbers as ordered pairs. Specifically, to
represent a = sqe’e, we store (s,, {q), Where the
Sq € {+,—} is the sign bit of a and the floating-
point number /, is the natural logarithm of |a|.5
Table 3 shows the ““-”” and “+4operations.

®An alternative that avoids log and exp is to store a
fa2%@ as (fa,€ea), where f, is a floating-point number and
eq is a sufficiently wide integer. E.g., combining a 32-bit
fa with a 32-bit e, will in effect extend f,’s 8-bit internal
exponent to 32 bits by adding e, to it. This gives much more
dynamic range than the 11-bit exponent of a 64-bit double-
precision floating-point number, if vastly less than in Table 3.
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4 Generalizations and Speedups

In this section, we generalize beyond the above
case where p, r, s are R-valued. In general, p may
be an element of some other semiring, and r and s
may be vectors or other algebraic objects.

When r and s are vectors, especially high-
dimensional vectors, the basic “inside algorithm”
of Figure 2 will be slow. We will show how to
speed it up with an “inside-outside algorithm.”

4.1 Allowing Feature Vectors and More

In general, for P,R,S,T, we can define the
first-order expectation semiring Epr = (P X
R,®,®,0,1) and the second-order expectation
semiring Epp s = (PXxRxSxT,®,®,0,1),
using the definitions from Tables 1-2. But do
those definitions remain meaningful, and do they
continue to satisfy the semiring axioms?

Indeed they do when P = R, R = R", S =
R™ T = R™™ with rs defined as the outer
product rsT (a matrix) where sT is the trans-
pose of s. In this way, the second-order semiring
Ep r,sr lets us take expectations of vectors and
outer products of vectors. So we can find means
and covariances of any number of linearly decom-
posable quantities (e.g., feature counts) defined on
the hypergraph.

We will consider some other choices in Sec-
tions 4.3—4.4 below. Thus, for generality, we con-
clude this section by stating the precise technical
conditions needed to construct Ep g and Ep g 5 7

e P is asemiring

e Risa P-module (e.g, a vector space), mean-
ing that it comes equipped with an associative
and commutative addition operation with an
identity element 0, and also a multiplication
operation P x R — R, such that p(r;+r2) =
pri+pra, (p1+p2)r = pir+par, p1(par) =
(p1p2)r

S and T are also P-modules

there is a multiplication operation R x S —
T that is bilinear, i.e., (r1 + 72)s = r1s +
ros, r(s1 + s2) = rs1 + rs2, (pr)s = p(rs),
r(ps) = p(rs)

As a matter of notation, note that above and in
Tables 1-2, we overload “+” to denote any of
the addition operations within P, R, S,T; over-
load “0” to denote their respective additive iden-
tities; and overload concatenation to denote any
of the multiplication operations within or between



Element

<p’/r7 S?t>

(P1,71, 81, 1) ® (pP2,72, S2,12)

(p1p2, P12 + P2r1, P1S2 + P2si,

p1ta + pot1 + 1182 + ros1)

(p1,71, 51, t1) D (P2, 12, S2,12)

(p1

+p2, 71+ T2, 81+ 82, t1 + t2)

(p,,8,t)" (p*, p*p*r, p*p*s, p*p*(p*rs + p'rs 4 t))
0 <07 07 07 O>
1 (1,0,0,0)

Table 2: Second-order expectation semiring (variance semiring): Each element in the semiring is a 4-tuple (p, 7, s,t). The
second and third rows define the operations between two elements (p1, 1, s1,¢1) and (p2, r2, $2,t2), while the last two rows
define the identities. Note that the multiplicative identity 1 has r,s and ¢ components of 0.

P, R,S,T. “1” refers to the multiplicative identity
of P. We continue to use distinguished symbols
@, ®,0,1 for the operations and identities in our
“main semiring of interest,” Ep g or Ep g g 7.

To compute equations (1)—(4) in this more gen-

eral setting, we must still require multiplicative
def

or additive decomposability, defining p(d)
Heedp& ’l"(d) = Eeed Te, S(d) = Zeed Se as be-
fore. But the [ [ and ) operators here now denote
appropriate operations within P, R, and S respec-
tively (rather than the usual operations within R).

4.2 Inside-Outside Speedup for First-Order
Expectation Semirings

Under the first-order expectation semiring Eg g»,
the inside algorithm of Figure 2 will return (Z, 7)
where 7 is a vector of n feature expectations.
However, Eisner (2002, section 5) observes that
this is inefficient when n is large. Why? The
inside algorithm takes the trouble to compute an
inside weight 5(v) € R x R"™ for each node v
in the hypergraph (or lattice). The second com-
ponent of 3(v) is a presumably dense vector of
all features that fire in all subderivations rooted at
node v. Moreover, as ((v) is computed in lines
3-8, that vector is built up (via the ® and & oper-
ations of Table 1) as a linear combination of other
dense vectors (the second components of the vari-
ous 3(u)). These vector operations can be slow.
A much more efficient approach (usually) is
the traditional inside-outside algorithm (Baker,
1979).7 Figure 4 generalizes the inside-outside
algorithm to work with any expectation semiring
Ek, x.2 We are given a hypergraph HG whose
edges have weights (k., x.) in this semiring (so

"Note, however, that the expectation semiring requires
only the forward/inside pass to compute expectations, and
thus it is more efficient than the traditional inside-outside al-
gorithm (which requires two passes) if we are interested in
computing only a small number of quantities.

8This follows Eisner (2002), who similarly generalized
the forward-backward algorithm.
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now k. € K denotes only part of the edge weight,
not all of it). INSIDE-OUTSIDE(HG, K, X) finds
D icp Xecq (ke, ze), which has the form (k, 7).

But, INSIDE(HG, Eg x) could accomplish the
same thing. So what makes the inside-outside al-
gorithm more efficient? It turns out that Z can
be found quickly as a single linear combination
Ze kexe of just the feature vectors x. that ap-
pear on individual hyperedges—typically a sum
of very sparse vectors! And the linear coefficients
ke, as well as k, are computed entirely within the
cheap semiring K. They are based on § and « val-
ues obtained by first running INSIDE(HG, K) and
OUTSIDE(HG, K), which use only the k. part of
the weights and ignore the more expensive .

It is noteworthy that the expectation semiring is
not used at all by Figure 4. Although the return
value (/%,:%) is in the expectation semiring, it is
built up not by & and ® but rather by computing
k and separately. One might therefore wonder
why the expectation semiring and its operations
are still needed. One reason is that the input to
Figure 4 consists of hyperedge weights (k., x.) in
the expectation semiring—and these weights may
well have been constructed using ® and &¢. For
example, Eisner (2002) uses finite-state operations
such as composition, which do combine weights
entirely within the expectation semiring before
their result is passed to the forward-backward al-
gorithm. A second reason is that when we work
with a second-order expectation semiring in Sec-
tion 4.4 below, the l%, £, and « values in Figure 4
will turn out to be elements of a first-order expec-
tation semiring, and they must still be constructed
by first-order ® and @, via calls to Figures 2-3.

Why does inside-outside work? Whereas the
inside algorithm computes @ .p Q. in any
semiring, the inside-outside algorithm exploits
the special structure of an expectation semir-
ing. By that semiring’s definitions of ¢ and ®
(Table 1), @ ycp ey (ke, Te) can be found as



( ZdeD Heed kw ZdeD Zeed(nefgd,e’;ée ke’)x6>-

The first component (giving k) is found
by calling the inside algorithm on just the
ke part of the weights. The second com-
ponent (giving ) can be rearranged into

Ze Zd: eEd(He’Ed,e’ie k?e/)ﬂfe = Ze kem@’ where
ke =3, cedIlercd e e Fer) is found from 3, av.

The application described at the start of this
subsection is the classical inside-outside algo-
rithm. Here (ke, x¢) “ {Pe, PeTe), and the al-
gorithm returns (l%,i') = (Z,7). In fact, that
& = T can be seen directly: 7 = Y, p(d)r(d) =
b @) (Cecare) = Yo Yaecap(dyre
Y olkeke)re = >, kexe = 2. This uses the fact
that keke = D5 cqp(d).

4.3 Lifting Trick for Second-Order Semirings

We now observe that the second-order expectation
semiring Ep g 57 can be obtained indirectly by
nesting one first-order expectation semiring inside
another! First “lift” P to obtain the first-order ex-
pectation semiring K “E p,r- Then lift this a sec-
ond time to obtain the “nested” first-order expec-
tation semiring Ex x = Eg,, ;) (sx7), Where we
equip X € S x T with the operations (s1,%1) +
(s2,82) = (s1 4 52,11 + to) and (p,r)(s, 1) &
(ps, pt + rs). The resulting first-order expectation
semiring has elements of the form ({(p, ), (s, t)).
Table 4 shows that it is indeed isomorphic to
Ep r,s 1, with corresponding elements (p, 7, s, t).

This construction of the second-order semiring
as a first-order semiring is a useful bit of abstract
algebra, because it means that known properties
of first-order semirings will also apply to second-
order ones. First of all, we are immediately guar-
anteed that the second-order semiring satisfies the
semiring axioms. Second, we can directly apply
the inside-outside algorithm there, as we now see.

4.4 Inside-Outside Speedup for
Second-Order Expectation Semirings

Given a hypergraph weighted by a second-order
expectation semiring Ep r 5 7. By recasting this
as the first-order expectation semiring Ex x where
K =Eprand X = (S x T'), we can again ap-
ply INSIDE-OUTSIDE(HG, K, X) to find the total
weight of all derivations.

For example, to speed up Section 3.2, we
may define (ke,Ze) = ((De, PeTe)s (PeSes DeTeSe))
for each hyperedge e. Then the inside-outside
algorithm of Figure 4 will compute (]2:,:%)
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((Z,T), (3,t)), more quickly than the inside algo-
rithm of Figure 2 computed (Z, T, 5, t).

Figure 4 in this case will run the inside and
outside algorithms in the semiring Ep g, so that
ke, l;:, a, 3, and k. will now be elements of P x R
(not just elements of P as in the first-order case).
Finally it finds & = >__ kex., where z. € S x T

This is a particularly effective speedup over
the inside algorithm when R consists of scalars
(or small vectors) whereas S,7T" are sparse high-
dimensional vectors. We will see exactly this case
in our experiments, where our weights (p, r, s, t)
denote (probability, risk, gradient of probability,
gradient of risk), or (probability, entropy, gradient
of probability, gradient of entropy).

5 Finding Gradients on Hypergraphs

In Sections 3.2 and 4.1, we saw how our semirings
helped find the sum Z of all p(d), and compute
expectations 7,3, t of r(d), s(d), and r(d)s(d).

It turns out that these semirings can also com-
pute first- and second-order partial derivatives of
all the above results, with respect to a parameter
vector § € R™. That is, we ask how they are
affected when 6 changes slightly from its current
value. The elementary values pe, 7, Se are now

assumed to implicitly be functions of 6.
def

Case 1: Recall that Z = ) p(d) is com-
puted by INSIDE(HG, R) if each hyperedge e has
weight p.. “Lift” this weight to (pe, Vp.), where
Vpe € R™ is a gradient vector. Now (Z, V Z) will
be returned by INSIDE(HG, Eg gm)— or, more
efficiently, by INSIDE-OUTSIDE(HG, R, R™).

Case 2: To differentiate a second
time,  “lift” the above weights again
to  obtain  ((pe, Vpe), V(pe, Vpe)) =

{(De> VD), (Vpe, Vpe)), where VZp, € R™*™
is the Hessian matrix of second-order mixed
partial derivatives. = These weights are in a
second-order expectation semiring.'” Now

°Figure 4 was already proved generally correct in Sec-

tion 4.2. To understand more specifically how (5,t) gets
computed, observe in analogy to the end of Section 4.2 that
(5:8) = 22a (p(d)s(d), p(d)r(d)s(d))

= 22a (p(d), p(d)r(d))(s(d), 0)
> (p(d), p(d)r(d)) D> .y (se, 0)
Ze Zd: ecd <p(d),p(d)7"(d)> (567 0)

= 3, (Reke){5e,0) = X, e (pey pere) (se, 0)

= Ee ke <pese7pe7”ese> = Ze kexe = 2.

""Modulo the trivial isomorphism from ({p, ), (s,t)) to
(p,r,s,t) (see Section 4.3), the intended semiring both here
and in Case 3 is the one that was defined at the start of Sec-
tion 4.1, in which r, s are vectors and their product is defined



((p1,71), (51, 11)) D ((P2,72), (S2,12))

((P1,71), (81, 11)) ® ({D2,72), (S2,12))

((p1,71) + (P2, 72), (S1,t1) + (s2,12))

((p1 +Dp2, T1+712), (S1+ 82, t1 +12))
((p1,m1)(P2,T2), (P1,7T1)(S2,t2) + (P2, 72)(S1,%1))
({p1p2, p1r2 + p2r1), (P1S2 + p2s1, pita + pat1 + r1s2 + r2s1))

Table 4: Constructing second-order expectation semiring as first-order. Here we show that the operations in Ex x are

isomorphic to Table 2’s operations in Ep g s 7, provided that K ) p,r and X & S x T is a K-module, in which addition is
defined by (s1,t1) + (s2,2) = (s1 + s2,t1 + t2), and left-multiplication by K is defined by (p,r) (s, t) & (ps, pt + rs).

(Z,NZ,NZ N*Z)y will be returned by
INSIDE(HG, Eg gm gm gmxm), or more effi-
ciently by INSIDE-OUTSIDE(HG, Eg gm, R™ X
Rme).

Case 3: Our experiments will need to find ex-
pectations and their partial derivatives. Recall that
(Z,7) is computed by INSIDE(HG, Eg g») when
the edge weights are (pe, pere) with r. € R™. Lift
these weights to  ((pe,pere); V{(De; PeTe))

((Pes PeTe), (VPe, (vPe)Te + pe(v're)»-
Now (Z,7,VZ,Vr) will be returned
by INSIDE(H(}7 ER,R",R"",R"X’”) or by

INSIDE-OUTSIDE(HG, Eg gn, R™ x R?*™) 11

5.1 What Connects Gradients to Expectations?

In Case 1, we claimed that the same algorithm
will compute either gradients (Z, VZ) or expec-
tations (Z,7), if the hyperedge weights are set to
(De, VDe) OF (De, Pere) respectively.'? This may
seem wonderful and mysterious. We now show in
two distinct ways why this follows from our setup
of Section 3.1. At the end, we derive as a special
case the well-known relationship between gradi-
ents and expectations in log-linear models.

From Expectations to Gradients One perspec-
tive is that our semiring fundamentally finds ex-
pectations. Thus, we must be finding VZ by for-
mulating it as a certain expectation 7. Specif-

ically, VZ = V3 ;pd) = >;Vp(d)

to be rs™, a matrix. However, when using this semiring to
compute second derivatives (Case 2) or covariances, one may
exploit the invariant that » = s, e.g., to avoid storing s and to
compute 7152 + S172 in multiplication simply as 2 - r172.
"Or, if n > m, it is faster to instead use
INSIDE-OUTSIDE(HG, Eg gm , R™ x R™*"™), swapping the
second and third components of the 4-tuple and trans-
posing the matrix in the fourth component. Alge-
braically, this changes nothing because Eg gn gm ygnxm and
Eg gm gn xgmxn are isomorphic, thanks to symmetries in Ta-
ble 2. This method computes the expectation of the gradient
rather than the gradient of the expectation—they are equal.
2Cases 2-3 relied on the fact that this relationship still
holds even when the scalars Z, p. € R are replaced by more
complex objects that we wish to differentiate. Our discus-
sion below sticks to the scalar case for simplicity, but would
generalize fairly straightforwardly. Pearlmutter and Siskind
(2007) give the relevant generalizations of dual numbers.
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> qp(d)r(d) 7, provided that 7(d)
(Vp(d))/p(d). That can be arranged by defining

def

Te = (Vpe)/pe.? So that is why the input weights
(Des Pere) take the form (pe, Vpe).

From Gradients to Expectations An alterna-
tive perspective is that our semiring fundamen-
tally finds gradients. Indeed, pairs like (p, Vp)
have long been used for this purpose (Clifford,
1873) under the name “dual numbers.” Oper-
ations on dual numbers, including those in Ta-
ble 1, compute a result in R along with its gradi-
ent. For example, our ® multiplies dual numbers,
since (p1, Vp1) ® (p2, Vp2) = (p1p2, p1(Vpe) +
(Vp1)p2) = (p1p2, V(p1p2)). The inside algo-
rithm thus computes both Z and VZ in a single
“forward” or “inside” pass—known as automatic
differentiation in the forward mode. The inside-
outside algorithm instead uses the reverse mode
(a.k.a. back-propagation), where a separate “back-
ward” or “outside” pass is used to compute VZ.
How can we modify this machinery to pro-
duce expectations 7 given some arbitrary T,
of interest? Automatic differentiation may
be used on any function (e.g., a neural net),
but for our simple sum-of-products function
Z, it happens that VZ = V(3 ,[[.p.) =
Zd ZeEd(He/Ed,e/;ﬁep@’)vPe' Our trick is to
surreptitiously replace the Vp. in the input
weights (pe, Vpe) with pere. Then the output
changes similarly: the algorithms will instead

find Zd Zeed(ne,ed76,¢6pe/)pere, which re-
duces to Y ;> cqP(d)re = 34 p(d) Y pcqTe =
>_ap(d)r(d) =T

Log-linear Models as a Special Case Replac-
ing Vp, with p.re is unnecessary if Vp, already
equals per.. That is the case in log-linear models,
def

where p. = exp(r, - 0) for some feature vector 7,
associated with e. So there, VZ already equals
r—yielding a key useful property of log-linear

PProof: r(d) = > ,c47e Y eca(VDe)/Pe =

ZengInge = Vzeedlogpe = VIOgHeedpe =
Vlogp(d) = (Vp(d))/p(d).



models, that Vlog Z = (VZ)/Z = 7/Z, the vec-
tor of feature expectations (Lau et al., 1993).

6 Practical Applications

Given a hypergraph HG whose hyperedges e are
annotated with values p.. Recall from Section 3.1
that this defines a probability distribution over all
derivations d in the hypergraph, namely p(d)/Z

def
= Heed Pe-
6.1 First-Order Expectation Semiring Er r

where p(d)

In Section 3, we show how to compute the ex-
pected hypothesis length or expected feature
counts, using the algorithm of Figure 2 with a
first-order expectation semiring Er . In general,
given hyperedge weights (pe, peTe), the algorithm
computes (Z,7) and thus 7/Z, the expectation of
r(d) £ > ecq Te- We now show how to compute a
few other quantities by choosing r. appropriately.

Entropy on a Hypergraph The entropy of the
distribution of derivations in a hypergraph!# is

H(p) = = _(p(d)/2)log(p(d)/Z) 5)
deD
= logZ——Zp )log p(d
deD
log Z 1Z(d)(d) log 7 — —
= (0] _— — — R —
g 7 pla)r 0g 7
deD
provided that we define 7. = logp. (so that

r(d) = Y .cqre = logp(d)). Of course, we can
compute (Z,7) as explained in Section 3.2.

Cross-Entropy and KL Divergence We may
be interested in computing the cross-entropy or
KL divergence between two distributions p and q.
For example, in variational decoding for machine
translation (Li et al., 2009b), p is a distribution
represented by a hypergraph, while ¢, represented
by a finite state automaton, is an approximation to
p. The cross entropy between p and g is defined as

H(p,q) = =Y (0(d)/Z,)10g(a(d)/Zg) ~ (6)
deD
= logZ, ——Zp )log q(d
Zp deD
= logZ, — Zp long—ZL
pdeD P

“Unfortunately, it is intractable to compute the entropy of
the distribution over strings (each string’s probability is a sum
over several derivations). But Li et al. (2009b, section 5.4) do
estimate the gap between derivational and string entropies.
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where the first term Z, can be computed using
the inside algorithm with hyperedge weights g,
and the numerator and denominator of the sec-
ond term using an expectation semiring with hy-
. . def

peredge weights (pe, pere) With 7o = log ge.

The KL divergence to p from g can be computed
as KL(p || ¢) = H(p, q) — H(p).

Expected Loss (Risk) Given a reference sen-
tence y*, the expected loss (i.e., Bayes risk) of the
hypotheses in the hypergraph is defined as,

R(p) = Y (p(d)/Z)L(Y(d),y")
deD

where Y(d) is the target yield of d and L(y, y*) is
the loss of the hypothesis y with respect to the ref-
erence y*. The popular machine translation met-
ric, BLEU (Papineni et al., 2001), is not additively
decomposable, and thus we are not able to com-
pute the expected loss for it. Tromble et al. (2008)
develop the following loss function, of which a lin-
ear approximation to BLEU is a special case,

Ly.y") = —(Oolyl + 3 uttu(®)0uly®) ®)

weN

(N

where w is an n-gram type, N is a set of n-gram
types with n € [1,4], #(y) is the number of oc-
currence of the n-gram w in y, d,,(y*) is an indica-
tor to check if y* contains at least one occurrence
of w, and 6, is the weight indicating the relative
importance of an n-gram match. If the hypergraph
is already annotated with n-gram (n > 4) lan-
guage model states, this loss function is additively
decomposable. Using 7. e L. where L. is the
loss for a hyperedge e, we compute the expected
loss,

R(p) — 2=d<D p(d)ZL(Y(dM*) ) %

6.2 Second-Order Expectation Semirings

(&)

With second-order expectation semirings, we can
compute from a hypergraph the expectation and
variance of hypothesis length; the feature expec-
tation vector and covariance matrix; the Hessian
(matrix of second derivatives) of Z; and the gradi-
ents of entropy and expected loss. The computa-
tions should be clear from earlier discussion. Be-
low we compute gradient of entropy or Bayes risk.

Gradient of Entropy or Risk It is easy to see

that the gradient of entropy (5) is

vZ ZVr -
Z A

r™VZ

VH(p) = (10)



We may compute (Z,7,VZ, V7)) as ex-
plained in Case 3 of Section 5 by using
ke = (PesPeTes Ve, (vPe>re + peVre) =
(Pes Pe 10g pe, Vpe, (1 + log pe) Vpe), where Vi,
depends on the particular parameterization of the
model (see Section 7.1 for an example).
Similarly, the gradient of risk of (9) is

_ ZNF-TVZ

VR(p) 73

(1)

We may compute (Z,7,VZ,VF) using k.
(Des PeLie; Ve, LeVpe).

7 Minimum-Risk Training for MT

We now show how we improve the training of a
Hiero MT model by optimizing an objective func-
tion that includes entropy and risk. Our objective
function could be computed with a first-order ex-
pectation semiring, but computing it along with its
gradient requires a second-order one.

7.1 The Model p

We assume a globally normalized linear model
for its simplicity. Each derivation d is scored by

score(d) =

O(d)-0=> 0i(d)6; (12)

where ®(d) € R™ is a vector of features of d. We
then define the unnormalized distribution p(d) as
p(d) = exp(y - score(d)) (13)
where the scale factor v adjusts how sharply the
distribution favors the highest-scoring hypotheses.

7.2 Minimum-Risk Training

Adjusting 0 or ~y changes the distribution p. Mini-
mum error rate training (MERT) (Och, 2003) tries
to tune # to minimize the BLEU loss of a decoder
that chooses the most probable output according
to p. (7 has no effect.) MERT’s specialized line-
search addresses the problem that this objective
function is piecewise constant, but it does not scale
to a large number of parameters.

Smith and Eisner (2006) instead propose a dif-
ferentiable objective that can be optimized by gra-
dient descent: the Bayes risk R(p) of (7). This is
the expected loss if one were (hypothetically) to
use a randomized decoder, which chooses a hy-
pothesis d in proportion to its probability p(d). If
entropy H(p) is large (e.g., small 7), the Bayes risk
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is smooth and has few local minima. Thus, Smith
and Eisner (2006) try to avoid local minima by
starting with large H(p) and decreasing it gradu-
ally during optimization. This is called determin-
istic annealing (Rose, 1998). As H(p) — 0 (e.g.,
large ), the Bayes risk does approach the MERT
objective (i.e. minimizing 1-best error).The objec-
tive is

minimize R(p) — T - H(p) (14)

where the “temperature” 7" starts high and is ex-
plicitly decreased as optimization proceeds.

7.3 Gradient Descent Optimization

Solving (14) for a given 7" requires computing the
entropy H(p) and risk R(p) and their gradients
with respect to € and ~. Smith and Eisner (2006)
followed MERT in constraining their decoder to
only an n-best list, so for them, computing these
quantities did not involve dynamic programming.
We compare those methods to training on a hy-
pergraph containing exponentially many hypothe-
ses. In this condition, we need our new second-
order semiring methods and must also approxi-
mate BLEU (during training only) by an additively
decomposable loss (Tromble et al., 2008).1°

Our algorithms require that p(d) of (13) is mul-
tiplicatively decomposable. It suffices to define
(d) = Y ecq Pe, so that all features are local
to individual hyperedges; the vector ®. indicates
which features fire on hyperedge e. Then score(d)
of (12) is additively decomposable:

score(d) = Z score, = Z o, -0

e€d ecd

(15)
We can then set p. = exp(+y - score. ), and Vp, =
vp.®(e), and use the algorithms described in Sec-
tion 6 to compute H(p) and R(p) and their gradi-
ents with respect to 6 and ~.'6

'SPauls et al. (2009) concurrently developed a method to
maximize the expected n-gram counts on a hypergraph using
gradient descent. Their objective is similar to the minimum
risk objective (though without annealing), and their gradient
descent optimization involves in algorithms in computing ex-
pected feature/n-gram counts as well as expected products of
features and n-gram counts, which can be viewed as instances
of our general algorithms with first- and second-order semir-
ings. They focused on tuning only a small number (i.e. nine)
of features as in a regular MERT setting, while our experi-
ments involve both a small and a large number of features.

1]t is easy to verify that the gradient of a function f (e.g.
entropy or risk) with respect to v can be written as a weighted
sum of gradients with respect to the feature weights 6;, i.e.

6,:_1 _
af;;&x

9y (16)
0;

0



7.4 Experimental Results

7.4.1 Experimental Setup

We built a translation model on a corpus for
IWSLT 2005 Chinese-to-English translation task
(Eck and Hori, 2005), which consists of 40k pairs
of sentences. We used a 5-gram language model
with modified Kneser-Ney smoothing, trained on
the bitext’s English using SRILM (Stolcke, 2002).

7.4.2 Tuning a Small Number of Features

We first investigate how minimum-risk training
(MR), with and without deterministic annealing
(DA), performs compared to regular MERT. MR
without DA just fixes 7' = 0 and v = 1 in (14).
All MR or MR+DA uses an approximated BLEU
(Tromble et al., 2008) (for training only), while
MERT uses the exact corpus BLEU in training.

The first five rows in Table 5 present the results
by tuning the weights of five features (6 € R®). We
observe that MR or MR+DA performs worse than
MERT on the dev set. This may be mainly because
MR or MR+DA uses an approximated BLEU while
MERT doesn’t. On the test set, MR or MR+DA
on an n-best list is comparable to MERT. But our
new approach, MR or MR+DA on a hypergraph,
does consistently better (statistically significant)
than MERT, despite approximating BLEU.!’

Did DA help? For both n-best and hypergraph,
MR+DA did obtain a better BLEU score than plain
MR on the dev set.'® This shows that DA helps
with the local minimum problem, as hoped. How-
ever, DA’s improvement on the dev set did not
transfer to the test set.

7.4.3 Tuning a Large Number of Features

MR (with or without DA) is scalable to tune a
large number of features, while MERT is not. To
achieve competitive performance, we adopt a for-
est reranking approach (Li and Khudanpur, 2009;
Huang, 2008). Specifically, our training has two
stages. In the first stage, we train a baseline system
as usual. We also find the optimal feature weights
for the five features mentioned before, using the
method of MR+DA operating on a hypergraph. In
the second stage, we generate a hypergraph for
each sentence in the training data (which consists
of about 40k sentence pairs), using the baseline

7Pauls et al. (2009) concurrently observed a similar pat-
tern (i.e., MR performs worse than MERT on the dev set, but
performs better on a test set).

8We also verified that MR+DA found a better objective
value (i.e., expected loss on the dev set) than MR.
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Training scheme dev  test
MERT (Nbest, small) 42.6 47.7
MR (Nbest, small) 40.8 47.7
MR+DA (Nbest, small) 41.6 478
new! MR (hypergraph, small) 413 484
xew! MR+DA (hypergraph, small) | 41.9 48.3
xew! MR (hypergraph, large) 423 48.7

Table 5: BLEU scores on the Dev and test sets under different
training scenarios. In the “small” model, five features (i.e.,
one for the language model, three for the translation model,
and one for word penalty) are tuned. In the “large” model,
21k additional unigram and bigram features are used.

system. In this stage, we add 21k additional uni-
gram and bigram target-side language model fea-
tures (cf. Li and Khudanpur (2008)). For example,
a specific bigram “the cat” can be a feature. Note
that the total score by the baseline system is also
a feature in the second-stage model. With these
features and the 40k hypergraphs, we run the MR
training to obtain the optimal weights.

During test time, a similar procedure is fol-
lowed. For a given test sentence, the baseline sys-
tem first generates a hypergraph, and then the hy-
pergraph is reranked by the second-stage model.
The last row in Table 5 reports the BLEU scores.
Clearly, adding more features improves (statisti-
cally significant) the case with only five features.
We plan to incorporate more informative features
described by Chiang et al. (2009).!°

8 Conclusions

We presented first-order expectation semirings
and inside-outside computation in more detail
than (Eisner, 2002), and developed extensions to
higher-order expectation semirings. This enables
efficient computation of many interesting quanti-
ties over the exponentially many derivations en-
coded in a hypergraph: second derivatives (Hes-
sians), expectations of products (covariances), and
expectations such as risk and entropy along with
their derivatives. To our knowledge, algorithms
for these problems have not been presented before.

Our approach is theoretically elegant, like other
work in this vein (Goodman, 1999; Lopez, 2009;
Gimpel and Smith, 2009). We used it practically to
enable a new form of minimum-risk training that
improved Chinese-English MT by 1.0 BLEU point.
Our implementation will be released within the
open-source MT toolkit Joshua (Li et al., 2009a).

PTheir MIRA training tries to favor a specific oracle
translation—indeed a specific tree—from the (pruned) hyper-
graph. MR does not commit to such an arbitrary choice.
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Abstract

Minimum error rate training (MERT) in-
volves choosing parameter values for a
machine translation (MT) system that
maximize performance on a tuning set as
measured by an automatic evaluation met-
ric, such as BLEU. The method is best
when the system will eventually be eval-
uated using the same metric, but in reality,
most MT evaluations have a human-based
component. Although performing MERT
with a human-based metric seems like a
daunting task, we describe a new metric,
RYPT, which takes human judgments into
account, but only requires human input to
build a database that can be reused over
and over again, hence eliminating the need
for human input at tuning time. In this
investigative study, we analyze the diver-
sity (or lack thereof) of the candidates pro-
duced during MERT, we describe how this
redundancy can be used to our advantage,
and show that RYPT is a better predictor of
translation quality than BLEU.

1 Introduction

Many state-of-the-art machine translation (MT)
systems over the past few years (Och and Ney,
2002; Koehn et al., 2003; Chiang, 2007; Koehn
et al., 2007; Li et al., 2009) rely on several mod-
els to evaluate the “goodness” of a given candidate
translation in the target language. The MT system
proceeds by searching for the highest-scoring can-
didate translation, as scored by the different model
components, and returns that candidate as the hy-
pothesis translation. Each of these models need
not be a probabilistic model, and instead corre-
sponds to a feature that is a function of a (can-
didate translation,foreign sentence) pair.

Treated as a log-linear model, we need to as-
sign a weight for each of the features. Och (2003)
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shows that setting those weights should take into
account the evaluation metric by which the MT
system will eventually be judged. This is achieved
by choosing the weights so as to maximize the per-
formance of the MT system on a development set,
as measured by that evaluation metric. The other
insight of Och’s work is that there exists an ef-
ficient algorithm to find such weights. This pro-
cess has come to be known as the MERT phase
(for Minimum Error Rate Training) in training
pipelines of MT systems.

A problem arises if the performance of the sys-
tem is not judged by an automatic evaluation met-
ric such as BLEU or TER, but instead through
an evaluation process involving a human. The
GALE evaluation, for instance, judges the quality
of systems as measured by human-targeted TER
(HTER), which computes the edit distance be-
tween the system’s output and a version of the
output post-edited by a human. The IWSLT and
WMT workshops also have a manual evaluation
component, as does the NIST Evaluation, in the
form of adequacy and fluency (LDC, 2005).

In theory, one could imagine trying to optimize
a metric like HTER during the MERT phase, but
that would require the availability of an HTER au-
tomatic scorer, which, by definition, does not ex-
ist. If done manually, the scoring of thousands of
candidates produced during MERT would literally
take weeks, and cost a large sum of money. For
these reasons, researchers resort to optimizing an
automatic metric (almost always BLEU) as a proxy
for human judgment.

As daunting as such a task seems for any
human-based metric, we describe a new metric,
RYPT, that takes human judgment into accout
when scoring candidates, but takes advantage of
the redundancy in the candidates produced dur-
ing MERT. In this investigative study, we describe
how this redundancy can be used to our advantage
to eliminate the need to involve a human at any
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time except when building a database of reusable
judgments, and furthermore show that RYPT is a
better predictor of translation quality than BLEU,
making it an excellent candidate for MERT tun-
ing.

The paper is organized as follows. We start by
describing the core idea of MERT before intro-
ducing our new metric, RYPT, and describing the
data collection effort we undertook to collect the
needed human judgments. We analyze a MERT
run optimizing BLEU to quantify the level of re-
dundancy in the candidate set, and also provide
an extensive analysis of the collected judgments,
before describing a set of experiments showing
RYPT is a better predictor of translation quality
than BLEU. Following a discussion of our findings,
we briefly review related work, before pointing out
future directions and summarizing.

2 Och’s Line Search Method

A common approach to translating a source sen-
tence f in a foreign language is to select the can-
didate translation e that maximizes the posterior
probability:

exp(sa(e, f))
2erexp(sale’s f))

This defines Pr(e | f) using a log-linear model
that associates a sentence pair (e, f) with a fea-

ture vector ®(e, f) = {oi(e, f),....,onm(e, f)},

and assigns a score

Prie| f) =

M
SA(€7 f) déf A ’ (I)(ea f) = Z )\m¢m(€7f)
m=1

for that sentence pair, with the feature weights
A = {A1,...,\p} being the parameters of the
model. Therefore, the system selects the transla-
tion é:

é = argmax Pr(e | f) = argmax sy (e, f). (1)

Och (2003) provides evidence that A should be
chosen by optimizing an objective function basd
on the evaluation metric of interest, rather than
likelihood. Since the error surface is not smooth,
and a grid search is too expensive, Och suggests an
alternative, efficient, line optimization approach.

Assume we are performing a line optimiza-
tion along the d*" dimension. Consider a for-
eign sentence f, and let the candidate set for f
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be {e1,...,ex}. Recall from (1) that the 1-best
candidate at a given A is the one with maxi-
mum M\, dm(er, f). We can rewrite the
sum as Aq@a(€k, ) + X 2a Am&ml(er, f). The
second term is constant with respect to )y, and
so is ¢4(ek, f). Renaming those two quantities
offestp(ex) and slope(ey), we get

sa(ek, f) = slope(er)\g + of fsetp(ex).

Therefore, if we plot the score for a candidate
translation vs. A4, that candidate will be repre-
sented by a line. If we plot the lines for all candi-
dates (Figure 1), then the upper envelope of these
lines indicates the best candidate at any value for
Ad-

Therefore, the objective function is piece-wise
linear across any of the M dimensions', mean-
ing we only need to evaluate it at the “critical”
points corresponding to line intersection points.
Furthermore, we only need to calculate the suffi-
cient statistics once, at the smallest critical point,
and then simply adjust the sufficient statistics to
reflect changes in the set of 1-best candidates.

2.1 The BLEU Metric

The metric most often used with MERT is BLEU
(Papineni et al., 2002), where the score of a candi-
date c against a reference translation r is:

4
1
BLEU = BP(len(c), len(r))-exp(z 1 log pn),

n=1

where p,, is the n-gram precision® and BP is a
brevity penalty meant to penalize short outputs, to
discourage improving precision at the expense of
recall.

There are several compelling reasons to opti-
mize to BLEU. It is the most widely reported met-
ric in MT research, and has been shown to cor-
relate well with human judgment (Papineni et al.,
2002; Coughlin, 2003). But BLEU is also partic-
ularly suitable for MERT, because it can be com-
puted quite efficiently, and its sufficient statistics
are decomposable, as required by MERT.3*

'Or, in fact, along any linear combination of the M di-
mensions.

>Modifed precision, to be precise, based on clipped n-
gram counts.

3Note that for the sufficient statistics to be decomposable,
the metric itself need not be — this is in fact the case with
BLEU.

4Strictly speaking, the sufficient statistics need not be de-
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Figure 1: Och’s method applied to a set of two foreign sentences. This figure is essentially a visualization
of equation (1). We show here sufficient statistics for TER for simplicity, since there are only 2 of them,

but the metric optimized in MERT is usually BLEU.

In spite of these advantages, recent work has
pointed out a number of problematic aspects of
BLEU that should cause one to pause and recon-
sider the reliance on it. Chiang et al. (2008) in-
vestigate several weaknesses in BLEU and show
there are realistic scenraios where the BLEU score
should not be trusted, and in fact behaves in a
counter-intuitive manner. Furthermore, Callison-
Burch et al. (2006) point out that it is not always
appropriate to use BLEU to compare systems to
each other. In particular, the quality of rule-based
systems is usually underestimated by BLEU.

All this raises doubts regarding BLEU’s ade-
quacy as a proxy for human judgment, which is
a particularly important issue in the context of set-
ting parameters during the MERT phase. But what
is the alternative?

2.2 (Non-)Applicability of Och’s Method to
Human Metrics

In principle, MERT is applicable to any evalua-
tion metric, including HTER, as long as its suffi-
cient statistics are decomposable.* In practice, of
course, the method requires the evaluation of thou-
sands of candidate translations. Whereas this is
composable in MERT, as they can be recalculated at each crit-
ical point. However, this would slow down the optimization
process quite a bit, since one cannot traverse the dimension
by simply adjusting the sufficient statistics to reflect changes
in 1-best candidates.

not a problem with a metric like BLEU, for which
automatic (and fast) scorers are available, such an
evaluation with a human metric would require a
large amount of effort and money, meaning that
a single MERT run would take weeks to com-
plete, and would cost thousands of dollars. As-
sume a single candidate string takes 10 seconds
to post-edit, at a cost of $0.10. Even with such
an (overly) optimistic estimate, scoring 100 candi-
dates for each of 1000 sentences would take 35 8-
hour work days and cost $10,000. The cost would
further grow linearly with the number of MERT it-
erations and the n-best list size. On the other hand,
optimizing for BLEU takes on the order of minutes
per iteration, and costs nothing.

2.3 The RYPT Metric

We suggest here a new metric that combines the
best of both worlds, in that it is based on human
judgment, but that is a viable metric to be used in
the MERT phase. The key to the feasiblity is the
reliance on a database of human judgment rather
than immendiate feedback for each candidate, and
so human feedback is only needed once, and the
collected human judgments can be reused over and
over again by an automatic scorer.

The basic idea is to reward syntactic con-
stituents in the source sentence that get aligned
to “acceptable” translations in the candidate sen-
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Figure 2: The source parse tree (top) and the can-
didate derivation tree (bottom). Nodes in the parse
tree with a thick border correspond to the frontier
node set with maxLen = 4. The human annota-
tor only sees the portion surrounded by the dashed
rectangle, including the highlighting (though ex-
cluding the word alignment links).

tence, and penalize constituents that do not. For
instance, consider the source-candidate sentence
pair of Figure 2. To evaluate the candidate transla-
tion, the source parse tree is first obtained (Dubey,
2005), and each subtree is matched with a sub-
string in the candidate string. If the source sub-
string covered by this subtree is translated into an
acceptable substring in the candidate, that node
gets a YES label. Otherwise, the node gets a NO
label.

The metric we propose is taken to be the ratio of
YES nodes in the parse tree (or RYPT). The candi-
date in Figure 2, for instance, would get a RYPT
score of 13/18 = 0.72.

To justify its use as a proxy for HTER-like met-
rics, we need to demonstrate that this metric corre-
lates well with human judgment. But it is also im-
portant to show that we can obtain the YES/NO la-
bel assignments in an efficient and affordable man-
ner. At first glance, this seems to require a human
to provide judgments for each candidate, much
like with HTER. But we describe in the next sec-
tion strategies that minimize the number of judg-
ments we need to actually collect.
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3 Collecting Human Judgments

The first assumption we make to minimize the
number of human judgments, is that once we
have a judgment for a source-candidate substring
pair, that same judgment can be used across all
candidates for this source sentence. In other
words, we build a database for each source sen-
tence, which consists of <source substring,target
substring,judgment> entries. For a given source
substring, multiple entries exist, each with a dif-
ferent target candidate substring. The judgment
field is one of YES, NO, and NOT SURE.

Note that the entries do not store the full can-
didate string, since we reuse a judgment across
all the candidates of that source sentence. For in-
stance, if we collect the judgment:

<der patient,the patient,YES>
from the sentence pair:

der patient wurde isoliert .
the patient was isolated .

then this would apply to any candidate translation
of this source sentence. And so all of the following
substrings are labeled YES as well:

the patient isolated .
the patient was in isolation .
the patient has been isolated .

Similarly, if we collect the judgment:
<der patient,of the patient,NO>
from the sentence pair:

der patient wurde isoliert .
of the patient was isolated .

then this would apply to any candidate translation
of the source, and the following substrings are la-
beled NO as well:

of the patient isolated .
of the patient was in isolation .
of the patient has been isolated .

The strategy of using judgments across candi-
dates reduces the amount of labels we need to col-
lect, but evaluating a candidate translation for the
source sentence of Figure 2 would still require ob-
taining 18 labels, one for each node in the parse
tree. Instead of querying a human for each one



of those nodes, it is quite reasonable to percolate
existing labels up and down the parse tree: if a
node is labeled NO, this likely means that all its
ancestors would also be labeled NO, and if a node
is labeled YES, this likely means that all its de-
scendents whould also be labeled YES.

While those two strategies (using judgments
across candidates, and percolating labels up and
down the tree) are only approximations for the true
labels, employing them considerably reduces the
amount of data we need to collect.

3.1 Obtaining Source-to-Candidate
Alignments

How do we determine which segment of the can-
didate sentence aligns to a given source segment?
Given a word alignment between the source and
the candidate, we take the target substring to con-
tain any word aligned with at least one word in
the source segment. One could run an aligner (e.g.
GIZA++) on the two sentences to obtain the word
alignment, but we take a different approach.

We use Joshua (Li et al., 2009), in our experi-
ments. Joshua is a hierarchical parsing-based MT
system, and it can be instructed to produce deriva-
tion trees instead of the candidate sentence string
itself. Furthermore, each node in the derivation
tree is associated with the two indices in the source
sentence that indicate the segment corresponding
to this derivation subtree (the numbers indicated
in curly brackets in Figure 2).

Using this information, we are able to recover
most of the phrasal alignments. There are other
phrasal alignments that can be deduced from
the structure of the tree indirectly, by system-
atically discarding source words that are part
of another phrasal alignment. For instance,
in Figure 2, one can observe the alignment
(offizielle,prognosen,sind)—(official,forecasts,are)
and the alignment (prognosen)—(forecasts) to
deduce (offizielle,sind)—(official,are).

Although some of the phrasal alignment are
one-to-one mappings, many of them are many-
to-many. By construction, any deduced many-to-
many mapping has occurred in the training paral-
lel corpus at least once. And so we recover the
individual word alignments by consulting the par-
allel corpus from which the grammar rules were
extracted (which requires maintaining the word
alignments obtained prior to rule extraction).’

>We incorporated our implementation of the source-

56

We emphasize here that our recovery of word
alignment from phrasal alignment is independent
from the hierarchical and parsing-based nature of
the Joshua system. And so the alignment approach
we suggest here can be applied to a different MT
system as well, as long as that system provides
phrasal alignment along with the output. In partic-
ular, a phrase-based system such as Moses can be
modified in a straightforward manner to provide
phrasal alignments, and then apply our method.

4 Data Collection

We chose the WMTO8 German-English news
dataset to work with, and since this is an investiga-
tive study of a novel approach, we collected judg-
ments for a subset of 250 source sentences from
the development set for the set of candidate sen-
tences produced in the last iteration of a MERT
run optimizing BLEU on the full 2051-sentence de-
velopment set. The MT system we used is Joshua
(Li et al., 2009), a software package that comes
complete with a grammar extraction module and a
MERT module, in addition to the decoder itself.
What segments of the source should be chosen
to be judged? We already indicated that we limit
ourselves, by definition of RYPT, to segments that
are covered exactly by a subtree in the source parse
tree. This has a couple of nice advantages: it al-
lows us to present an annotator with a high num-
ber of alternatives judged simulataneously (since
the annotator is shown a source segment and sev-
eral candidates, not just one), and this probably
also makes judging them easier — it is reasonable
to assume that strings corresponding to syntactic
constituents are easier to process by a human.
Our query selection strategy attempts to max-
imize the amount of YES/NO percolation that
would take place. We therefore ensure that for any
2 queries, the corresponding source segments do
not overlap: such overlap indicates that one sub-
tree is completely contained within the other. Hav-
ing both queries (in the same batch) might be re-
dundant if we use the above percolation procedure.
The idea is to select source segments so that
they fully cover the entire source sentence, but
have no overlap amongst them. In one extreme,
each query would correspond to an entire parse
tree. This is not ideal since the overwhelming ma-
jority of the judgments will most likely be NO,

candidate aligner into the Joshua software as a new
aligner package.



which does not help identify where the problem
is. In the other extreme, each query would corre-
spond to a subtree rooted at a preterminal. This is
also not ideal, since it would place too much em-
phasis on translations of unigrams.

So we need a middle ground. We select a
maximum-source-length maxLen to indicate how
long we’re willing to let source segments be. Then
we start at the root of the parse tree, and prop-
agate a “frontier” node set down the parse tree,
to end up with a set of nodes that fully cover the
source sentence, have no overlap amongst them,
and with each covering no more than maxLen
source words. For instance, with maxLen set to
4, the frontier set of Figure 2 are the nodes with
a thick border. An algorithmic description is pro-
vided in Algorithm 1.

Algorithm 1 Constructing the frontier node set for

a parse tree.

Input: A source parse tree 1" rooted at ROOT, and
a maximum source length maxLen.

Return: A nonempty set frontierSet, con-
taining a subset of the nodes in 7.

1. Initialize frontierSet to the empty set.

2. Initialize currNodes to {ROOT}.

3. while currNodes is not empty do

4. Initialize newNodes to the empty set.

5. for each node N in currNodes do

6. if N covers < maxLen source words

then

7. Add N to frontierSet.

8. else

9. Add children of N to newNodes.
10. end if
11. end for
12. Set currNodes = newNodes
13. end while

14. Return frontierSet.

This would ensure that our queries cover be-
tween 1 and maxLen source words, and ensures
they do not overlap, which would allow us to take
full advantage of the downward-YES and upward-
NO percolation. We set maxLen = 4 based on a
pilot study of 10 source sentences and their candi-
dates, having observed that longer segments tend
to always be labeled as NO, and shorter segments
tend to be so deep down the parse tree.
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4.1 Amazon Mechanical Turk

We use the infrastructure of Amazon’s Mechan-
ical Turk (AMT)® to collect the labels. AMT is
a virtual marketplace that allows “requesters” to
create and post tasks to be completed by “work-
ers” around the world. To create the tasks (called
Human Intelligence Tasks, or HITs), a requester
supplies an HTML template along with a comma-
separated-values database, and AMT automati-
cally creates the HITs and makes them available to
workers. The queries are displayed as an HTML
page (based on the provided HTML template),
with the user indicating the label (YES, NO, or NOT
SURE) by selecting the appropriate radio button.
The instructions read, in part:’

You are shown a “source” German
sentence with a highlighted segment,
followed by several candidate trans-
lations with corresponding highlighted
segments. Your task is to decide if each
highlighted English segment is an ac-
ceptable translation of the highlighted
German segment.

In each HIT, the worker is shown up to 10 al-
ternative translations of a highlighted source seg-
ment, with each itself highlighted within a full
candidate string in which it appears. To aid the
worker in the task, they are also shown the ref-
erence translation, with a highlighted portion that
corresponds to the source segment, deduced using
word alignments obtained with GIZA++.3

4.2 Cost of Data Collection

The total number of HITs created was 3873,
with the reward for completing a HIT depend-
ing on how many alternative translations are being
judged. On average, each HIT cost 2.1 cents and
involved judging 3.39 alternatives. 115 distinct
workers put in a total of 30.82 hours over a pe-
riod of about 4 days. On average, a label required
8.4 seconds to determine (i.e. at a rate of 426 la-
bels per hour). The total cost was $81.44: $21.43
for Amazon’s commission, $53.47 for wages, and

S AMT’s website: http://www.mturk.com.

"Template and full instructions can be viewed at http:
//cs.jhu.edu/~ozaidan/hmert.

8These alignments are not always precise, and we do note
that fact in the instructions. We also deliberately highlight the
reference substring in a different color to make it clear that
workers should judge a candidate substring primarily based
on the source substring, not the reference substring.



$6.54 for bonuses’, for a cost per label of 0.62
cents (i.e. at a rate of 161.32 labels per dol-
lar). Excluding Amazon’s commission, the effec-
tive hourly ‘wage’ was $1.95.

5 Experimental Results and Analysis

By limiting our queries to source segments corre-
sponding to frontier nodes with maxLen = 4, we
obtain a total of 3601 subtrees across the 250 sen-
tences, for an average of 14.4 per sentence. On
average, each subtree has 3.65 alternative trans-
lations. Only about 4.8% of the judgments were
returned as NOT SURE (or, occasionally, blank),
with the rest split into 35.1% YES judgments and
60.1% NO judgments.

The coverage we get before percolating labels
up and down the trees is 39.4% of the nodes, in-
creasing to a coverage of 72.9% after percolation.
This is quite good, considering we only do a sin-
gle data collection pass, and considering that about
10% of the subtrees do not align to candidate sub-
strings to begin with (e.g. single source words that
lack a word alignment into the candidate string).

The main question, of course, is whether or not
those labels allow us to calculate a RYPT score
that is reliably correlated with human judgment.
We designed an experiment to compare the predic-
tive power of RYPT vs. BLEU. Given the candidate
set of a source sentence, we rerank the candidate
set according to RYPT and extract the top-1 can-
didate, and we rerank the candidate set according
to BLEU, and extract the top-1 candidate. We then
present the two candidates to human judges, and
ask them to choose the one that is a more adequate
translation. For reliability, we collect 3 judgments
per sentence pair comparison, instead of just 1.

The results show that RYPT significantly outper-
forms BLEU when it comes to predicting human
preference, with its choice prevailing in 46.1%
of judgments vs. 36.0% for BLEU, with 17.9%
judged to be of equal quality (left half of Ta-
ble 1). This advantage is especially true when the
judgments are grouped by sentence, and we ex-
amine cases of strong agreement among the three
annotators (Table 2): whereas BLEU’s candidate
is strongly preferred in 32 of the candidate pairs
(bottom 2 rows), RYPT’s candidate is strongly pre-
ferred in about double that number: 60 candidate

“We would review the collected labels and give a 20%
reward for good workers to encourage them to come back
and complete more HITs.

58

pairs (top 2 rows).

This is quite a remarkable result, given that
BLEU, by definition, selects a candidate that has
significant overlap with the reference shown to the
annotators to aid in their decision-making. This
means that BLEU has an inherent advantage in
comparisons where both candidates are more or
less of equal quality, since annotators are encour-
aged (in the instructions) to make a choice even if
the two candidates seem of be of equal quality at
first glance. Pressed to make such a choice, the
annotator is likely to select the candidate that su-
perficially ‘looks” more like the reference to be the
‘better’ of the two candidates. That candidate will
most likely be the BLEU-selected one.

To test this hypothesis, we repeated the experi-
ment without showing the annotators the reference
translations, and limited data collection to work-
ers living in Germany, making judgments based
only on the source sentences. (We only collected
one judgment per source sentence, since German
workers on AMT are in short supply.)

As expected, the difference is even more pro-
nounced: human judges prefer the RYPT-selected
candidate 45.2% of the time, while BLEU’s can-
didate is preferred only 29.2% of the time, with
25.6% judged to be of equal quality (right half
of Table 1). Our hypothesis is further supported
by the fact that most of the gain of the “equal-
quality” category comes from BLEU, which loses
6.8 percentage points, whereas RYPT’s share re-
mains largely intact, losing less than a single per-
centage point.

5.1 Analysis of Data Collection

Recall that we minimize data collection by per-
forming label percolation and by employing a
frontier node set selection strategy. While the re-
sults just presented indicate those strategies pro-
vide a good approximation of some ‘true’ RYPT
score, label percolation was a strategy based pri-
marily on intuition, and choosing maxLen = 4
for frontier set construction was based on examin-
ing a limited amount of preliminary data.
Therefore, and in addition to encouraging em-
pricial results, we felt a more rigorous quantitative
analysis was in order, especially with future, more
ambitious annotation projects on the horizon. To
this end, we collected a complete set of judgments
for 50 source sentences and their candidates. That
is, we generated a query for each and every node



References shown; References not shown;
unrestricted restricted to DE workers
Preferred candidate | # judgments | % judgments | # judgments | % judgments
Top-1 by RYPT 346 46.1 113 45.2
Top-1 by BLEU 270 36.0 73 29.2
Neither 134 17.9 64 25.6
Total 750 100.0 250 100.0

Table 1: Ranking comparison results. The left half corresponds to the experiment (open to all workers)
where the English reference was shown, whereas the right half corresponds to the experiment (open only
to workers living in Germany) where the English reference was not shown.

Aggregate | # sentences | % sentences || Aggregate | # sentences | % sentences
RYPT +3 45 18.0
RYPT +2 15 6.0 RYPT +any 120 48.0
RYPT +1 60 24.0

+0 42 16.8 +0 42 16.8
BLEU +1 55 22.0
BLEU +2 5 2.0 BLEU +any 88 35.2
BLEU +3 28 11.2

Total 250 100.0 Total 250 100.0

Table 2: Ranking comparison results, grouped by sentence. This table corresponds to the left half of
Table 1. 3 judgments were collected for each comparison, with the “aggregate” for a comparison calcu-
lated from these 3 judgments. For instance, an aggregate of “RYPT +3” means all 3 judgments favored
RYPT’s choice, and “RYPT +1” means one more judgment favored RYPT than did BLEU.

in the source parse tree, instead of limiting our-
selves to a frontier node set. (Though we did limit
the length of a source segment to be < 7 words.)
This would allow us to judge the validity of label
percolation, and under different maxLen values.
Furthermore, we collected multiple judgments
for each query in order to minimize the effet of
bad/random annotations. For each of 5580 gen-
erated queries, we collected five judgments, for a
total of 27,900 judgments.'® As before, the anno-
tator would pick one of YES, NO, and NOT SURE.
First, collecting multiple judgments allowed us
to investigate inter-annotator agreement. In 68.9%
of the queries, at least 4 of the 5 annotators chose
the same label, signifying a high degree of inter-
annotator agreement. This is especially encourag-
ing considering that we identified about 15% of
the HIT's as being of poor quality, and blocked the
respective annotators from doing further HITs.!!

We then examine the applicability and validity

!%For a given query, the five collected judgments are from
five different annotators, since AMT ensures an annotator is
never shown the same HIT twice.

Tt is especially easy to identify (and then block) such an-
notators when they submit a relatively large number of HITs,
since inspecting some of their annotations would indicate
they are answering randomly and/or inconsistently.

of label percolation. For each of 7 different values
for Algorithm 1’s maxLen, we ignore all but la-
bels that would be requested under that maxLen
value, and percolate the labels up and down the
tree. In Figure 3 we plot the coverage before and
after percolation (middle two curves), and observe
expansion in coverage across different values of
maxLen, peaking at about +33% for maxLen= 4
and 5, with most of the benefit coming from YES
percolation (bottom two curves).

Percolation accuracy

Co r
a
60% +Coyg 9¢ after pe,
"3ge Olation
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40% 1 DM
tioy,
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20% - *~— _ o ‘u? 0 perc. o
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Figure 3: Label percolation under different

maxLen values. The bottom two curves are the
breakdown of the difference between the middle
two. Accuracy is measured against majority votes.
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We also measure the accuracy of labels deduced
from percolation (top curve of Figure 3). We de-
fine a percolated label to be correct if it matches
the label given by a majority vote over the col-
lected labels for that particular node. We find that
accuracy at low maxLen values is significantly
lower than at higer values (e.g. 72.6% vs. 84.1%
for 1 vs. 4). This means a middle value such as 3
or 4 is optimal. Higher values could be suitable if
we wish to emphasize translation fluency.

6 Related Work

NieBen et al. (2000) is an early work that also con-
structs a database of translations and judgments.
There, a source sentence is stored along with all
the translations that have already been manually
judged, along with their scores. They utilize this
database to carry out “semi-automatic” evaluation
in a fast and convenient fashion thanks to tool they
developed with a user-friendly GUI.

In their annual evaluation, the WMT work-
shop has effectively conducted manual evaluation
of submitted systems over the past few years by
distributing the work across tens of volunteers,
though they relied on a self-designed online por-
tal. On the other hand, Snow et al. (2008) illus-
trate how AMT can be used to collect data in a
“fast and cheap” fashion, for a number of NLP
tasks, such as word sense disambiguation. They
go a step further and model the behavior of their
annotators to reduce annotator bias. This was pos-
sible as they collect multiple judgments for each
query from multiple annotators.

The question of how to design an automatic
metric that best approximates human judgment
has received a lot of attention lately. NIST started
organizing the Metrics for Machine Translation
Challenge (MetricsMATR) in 2008, with the aim
of developing automatic evaluation metrics that
correlate highly with human judgment of transla-
tion quality. The latest WMT workshop (Callison-
Burch et al., 2009) also conducted a full assess-
ment of how well a suite of automatic metrics cor-
relate with human judgment.

7 Future Work

This pilot study has demonstrated the feasibility
of collecting a large number of human judgments,
and has shown that the RYPT metric is better than
BLEU at picking out the best translation. The
next step is to run a complete MERT run. This
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will involve collecting data for thousands of al-
ternative translations for several hundreds source
sentences. Based on our analysis, this it should
be cost-effective to solicit these judgments using
AMT. After training MERT using RYPT as an ob-
jective function the, the next logical step would be
to compare two outputs of a system. One output
would have parameters optimized to BLEU and the
other to RYPT. The hope is that the RYPT-trained
system would be better under the final HTER eval-
uation than the BLEU-trained system.

We are also investigating a probabilistic ap-
proach to percolating the labels up and down the
tree, whereby the label of a node is treated as a
random variable, and inference is performed based
on values of the other observed nodes, as well as
properties of the source/candidate segment. Cast
this way, a probabilistic approach is actually quite
appealing, and one could use collected data to
train a prediction model (such as a Markov ran-
dom field).

8 Summary

We propose a human-based metric, RYPT, that is
quite feasible to optimize using MERT, relying on
the redundancy in the candidate set, and collect-
ing judgments using Amazon’s Mechanical Turk
infrastructure. We show this could be done in a
quite cost-effective manner, and produces data of
good quality. We show the effectiveness of the
metric by illustrating that it is a better predictor of
human judgment of translation quality than BLEU,
the most commonly used metric in MT. We show
this is the case even with a modest amount of data
that does not cover the entirety of all parse trees,
on which the metric is dependent. The collected
data represents a database that can be reused over
and over again, hence limiting human feedback to
the initial phase only.
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Cube Pruning as Heuristic Search

Mark Hopkinsand Greg L angmead
Language Weaver, Inc.
4640 Admiralty Way, Suite 1210
Marina del Rey, CA 90292
{mhopki ns, gl angmead}@ anguageweaver. com

Abstract (Pearl, 1984). We show that cube pruning is essen-
tially equivalent to A* search on a specific search
Cube pruning is a fast inexact method for  space with specific heuristics. This simple obser-
generating the items of a beam decoder.  vation affords a deeper insight into how and why
In this paper, we show that cube pruning  cybe pruning works. We show how this insight en-
is essentially equivalent to A* searchona  aples us to easily develop faster and exact variants
specific search space with specific heuris-  of cube pruning for tree-to-string transducer-based

tics. We use this insight to develop faster MT (Galley et al., 2004; Galley et al., 2006; DeN-
and exact variants of cube pruning. ero et al., 2009).

1 Introduction 2 Motivating Example

In recent years, an intense research focus on m&e begin by describing the problem that cube
chine translation (MT) has raised the quality ofpruning addresses.  Consider a synchronous
MT systems to the degree that they are now viablgontext-free grammar (SCFG) that includes the
for a variety of real-world applications. Becausefollowing rules:

of this, the research community has turned its at-

tention to a major drawback of such systems: they A — (Ag Bg, Ag Ba) (1)
are still quite slow. Recent years have seen a flurry B — (Ag Bg, Bg Am) 2
of innovative techniques designed to tackle this A — (Bg Ag, ¢ Bgb Ag) (3)
problem. These include cube pruning (Chiang, B — (Bg Ag, Bg Ag) 4)

2007), cube growing (Huang and Chiang, 2007),

early pruning (Moore and Quirk, 2007), clos- Figure 1 shows CKY decoding in progress. CKY
ing spans (Roark and Hollingshead, 2008; Roarks a bottom-up algorithm that works by building
and Hollingshead, 2009), coarse-to-fine methodsbjects known astems over increasingly larger
(Petrov et al., 2008), pervasive laziness (Pust angpansof an input sentence (in the context of SCFG
Knight, 2009), and many more. decoding, the items represent partial translations

This massive interest in speed is bringing rapidof the input sentence). To limit running time, it is
progress to the field, but it comes with a certaincommon practice to keep only the“best” items
amount of baggage. Each technique brings its owper span (this is known aseam decoding At
terminology (from thecubesof (Chiang, 2007) this point in Figure 1, every span of size 2 or less
to thelazy listsof (Pust and Knight, 2009)) into has already been filled, and now we want to fill
the mix. Often, it is not entirely clear why they span|2, 5] with the n items of lowest cost. Cube
work. Many apply only to specialized MT situ- pruning addresses the problem of how to compute
ations. Without a deeper understanding of theséhen-best items efficiently.
methods, it is difficult for the practitioner to com-  We can be more precise if we introduce some
bine them and adapt them to new use cases. terminology. An SCFQule has the form X—

In this paper, we attempt to bring some clarity (o, ¢, ~), where X is a nonterminal (called the
to the situation by taking a closer look at one ofpostconditiol), o, ¢ are strings that may contain
these existing methods. Specifically, we cast théerminals and nonterminals, ardis a 1-1 corre-
popular technique afube pruningChiang, 2007) spondence between equivalent nonterminals of
in the well-understood terms of heuristic searchandp.
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new boundary words). As a shorthand, we intro-

T 2?27 duce the notatiom; > r < 15 to describe an item
created by applying formula (5) to ruteand items
SPAN [2,4] 0 SPAN [4,5] [/1, L2.
(i) © When we create a new item, it is scored using
(i - the following formula:
(iv) __[2,4,B,b0b] it
A
o — cost(ty > 7 << 19) = cost(r)
(viii) - + COSt(Ll) (6)
(ix) - + COSt(LQ)
® (xiv) + interaction(r, k1, k2)

2 3 4

We assume that each grammar ruldas an
associated cost, denotedst(r). The interac-
tion cost denotedinteraction(r, k1, k2), uses the
carry information to compute cost components
that cannot be incorporated offline into the rule
costs (again, for our purposes, this is a language

Usually SCFG rules are represented like the exq,qqel score).

ample rules (1)-(4). The subscripts indicate cor- ¢ pe pruning addresses the problem of effi-

responding nonterminals (according9. Define  cjently computing the: items of lowest cost for
thepreconditionf a rule as the ordered sequence, given span.

of its nonterminals. For clarity of presentation, we
will henceforth restrict our focus to binary rules, 3 Item Generation asHeuristic Search
i.e. rules of the form: Z— (X Y, ). Observe
that all the rules of our example are binary rules.
An itemis a triple that contains a span and two
strings. We refer to these strings as fhastcon-
dition and thecarry, respectively. Theostcon-

Figure 1: CKY decoding in progress. We want to
fill span [2,5] with the lowest cost items.

Refer again to the example in Figure 1. We want to
fill span [2,5]. There are 26 distinct ways to apply
formula (5), which result in 10 unigue items. One
approach to finding the lowest-castitems: per-

form all 26 distinct inferences, compute the cost of

_dltlon tells us Whlc.h rules may b.e applleq o thethe 10 unique items created, then choose the low-
item. Thecarry gives us extra information re- estn

guwed tp corr_ectly score the item (in SCFG decod- The 26 different ways to form the items can be

ing, typically it consists of boundary words for an . .

. structured as a search tree. See Figure 2. First

n-gram language modef).To flatten the notation, .

) ; we choose the subspans, then the rule precondi-

we will generally represent items as a 4-tuple, e.g,. . .

2,4, X, a0 b] tions, then the rule, and finally the subitems. No-
RO o : tice that this search space is already quite large,
In CKY, new items are created by applying rules ) .

o ] even for such a simple example. In a realistic situ-
to existing items: : . :
ation, we are likely to have a search tree with thou-
r:Z— Xg Ym,¢) lo,0,X,k51] [6,8,Y,k2] sands (possibly millions) of nodes, and we may
[, B,Z, carry(r, k1, K2)] only want to find the best 100 or so goal nodes.
(5) To explore this entire search space seems waste-

In other words, we are allowed to apply aful. Can we do better?

rule » to a pair of itemsiy,o if the item Why not perform heuristic search directly on

spans are complementary amdconditions(r) =  this search space to find the lowest-costems?

(postcondition(¢1 ), postcondition(t2)). The new In order to do this, we just need to add heuristics

item has the same postcondition as the applietb the internal nodes of the space.

rule. We form the carry for the new item through Before doing so, it will help to elaborate on

an application-dependent functioarry that com- some of the details of the search tree. Let

bines the carries of its subitems (e.g. if the carry igules(X, Y) be the subset of rules with precondi-
n-gram boundary words, thesarry computes the tions (X, Y), sorted by increasing cost. Similarly,

INote that the carry is a generic concept that can store any 2Without loss of generality, we assume an additive cost
kind of non-local scoring information. function.
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choose subspans

[2,5A,b ¢ b]
cost =7.48

accept item(3,5,B,1)?

[2,5A,a ¢ b]
cost = 12.26

[25Ab¢a] [25Ab+b]

Figure 2: Item creation, structured as a searclrigure 3: The lookahead heuristic. We set the
space. rule(X, Y, k) denotes theé: lowest-cost heuristics for rule and item nodes by looking

rule with preconditiongX,Y). item(«,3,X,k) ahead at the cost of the greedy solution from that
denotes thek!” lowest-cost item of spafi, 3]  point in the search space.

with postcondition X.

letitems(a, 3, X) be the subset of items with span  Figure 2 shows two complete search paths for
[, 3] and postcondition X, also sorted by increas-Ur €xample, terminated tgoal nodeg(in black).
ing cost. Finally, letule(X, Y, k) denote thek!" Notice that the internal nodes of the search space

rule of rules(X, Y) and letitem(a, 3, X, k) denote  €an be classified by the type of decision they
the k' item ofitems(a, 3, X). govern. To distinguish between these nodes, we

A path through the search tree consists of thdVill refer to them assubspan nodegprecondition
following sequence of decisions: nodesrule nodesanditem nodes

We can now proceed to attach heuristics to the
1. Set;,j,ktol. nodes and run a heuristic search protocol, say A*,
on this search space. For subspan and precondition
nodes, we attach trivial uninformative heuristics,
i.e. h = —oco. For goal nodes, the heuristic is the
actual cost of the item they represent. For rule and
4. Choose the second preconditidh of the item nodes, we will use a simple type of heuristic,
rule. often referred to in the literature asl@okahead
heuristic Since the rule nodes and item nodes are
5. While rule not yet accepted and <  ordered, respectively, by rule and item cost, it is
[rules(X,Y)|: possible to “look ahead” at a greedy solution from
any of those nodes. See Figure 3. This greedy so-
lution is reached by choosing to accept every de-
cision presented until we hit a goal node.

6. While item not yet accepted for subspan |f these heuristics were admissible (i.e. lower
[, 8] andy < |items(a, §, X)|: bounds on the cost of the best reachable goal

node), this would enable us to exactly generate the

n-best items without exhausting the search space

(assuming the heuristics are strong enough for A*

7. While item not yet accepted for subsgjans] 0 do some pruning). Here, the lookahead heuris-
andk < |items(3, 3, Y)|: tics are clearly not admissible, however the hope

is that A* will generaten “good” items, and that

(@) Choose to accept/rejetdm(d, 3,Y, k).  the time savings will be worth sacrificing exact-
If reject, then increment. ness for.

2. Choose the subsparjs; 9], [9, 5].

3. Choose the first preconditio¥ of the rule.

(a) Choose to accept/rejeatie(X,Y, ). If
reject, then incremerit

(a) Choose to accept/rejaegm(a, 4, X, 7).
If reject, then increment.
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4 CubePruning asHeuristic Search 4.3 Phase3: FindingtheFirst Item

In this section, we will compare cube pruning with CUP€ pruning now pops the lowest-cost item from
our A* search protocol, by tracing through their the CP heap. This means that CP has decided to

respective behaviors on the simple example of Figk€ep the item. After doing so, it forms the “one-

ure 1. off” items and pushes those onto the CP heap. See
Figure 5(left). The popped item is:

4.1 Phasel: Initialization

To fill span[a, 3], cube pruning (CP) begins by item (viii) > rule (1)< item (xii)

constructing @ubefor each tuple of the form: CP then pushes the following one-off successors

onto the CP heap:
([, 0], [6,8], X, Y)

where X and Y are nonterminals. A cube consists
of three axesrules(X, Y) anditems(c, 6, X) and . _ . N
items(d, 3,Y). Figure 4(left) shows the nontrivial item (ix) > rule (1) < item (xii)
cubes for our example scenario. item (viii) > rule (1) < item (xiii)

Contrast this with A*, which begins by adding
the root node of our search space to an empty heap Contrast this with A*, which pops the lowest-
(ordered by heuristic cost). It proceeds to repeatc0Stsearch nodérom the A* heap. Here we need
edly pop the lowest-cost node from the heap, thet® assume that our A* protocol differs slightly
add its children to the heap (we refer to this Op_from standard A*. Specifically, it will practice
eration awisiting the node). Note that before A* node-tying meaning that when it visits a rule node
ever visits a rule node, it will have visited every Of an item node, then it also (atomically) visits all
subspan and precondition node (because they 4iodes on the path to its lookahead goal node. See
have costh = —oo). Figure 4(right) shows the Figure 5(right). Observe that all of these nodes
state of A* at this point in the search. We assumdlave the same heuristic cost, thus standard A* is
that we do not generate dead-end nodes (a Simpugely to visit these nodes in succession without
matter of checking that there exist applicable rulegh€ need to enforce node-tying, but it would not
and items for the chosen subspans and precond?—e guaranteed (because the heuristics are not ad-
tions). Observe the correspondence between tHoissible). A* keeps the goal node it finds and adds
cubes and the heap contents at this point in the athe successors to the heap, scored with their looka-

item (viii) > rule (2)< item (xii)

search. head heuristics. Again, note the direct correspon-
dence between what CP and A* keep, and what
4.2 Phase2: Seedingthe Heap they add to their respective heaps.

Cube pruning proceeds by computing the “best"44 Phase 4: Findina Subsequent Items
item of each cubé€[c, 4], [6, 4], X, Y),i.e. ' ' g =tbs

Cube pruning and A* continue to repeat Phase
item (v, 8, X, 1) > rule(X,Y,1) < item(d, 3,Y,1) 3 until & unique items have been kept. While

we could continue to trace through the example,
Because of the interaction cost, there is no guararby now it should be clear: cube pruning and our
tee that this will really be the best item of the cube A* protocol with node-tying are doing the same
however it is likely to be a good item because thething at each step. In fact, they aesactly the
costs of the individual components are low. Thesesame algorithmWe do not present a formal proof
items are added to a heap (to avoid confusion, waere; this statement should be regarded as confi-
will henceforth refer to the two heaps as G®  dent conjecture.
heapand theA* heap, and prioritized by their The node-tying turns out to be an unnecessary
costs. artifact. In our early experiments, we discovered

Consider again the example. CP seeds its heabat node-tying has no impact on speed or qual-

with the “best” items of the 4 cubes. There is nowity. Hence, for the remainder of the paper, we
a direct correspondence between the CP heap aniew cube pruning in very simple terms: as noth-
the A* heap. Moreover, the costs associated witling more than standard A* search on the search
the heap elements also correspond. See Figure Space of Section 3.
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cube: [2,3],[3,5],A,B

B i) [ ) | [2,4] [4,5]

@]
- -
rules(A,B) (xii)

items(2,3,A)
(xiii)

(xiv)

items(3,5,B)

cube: [2,3],[3,5],B,A

@] @ (x) |
- (xi) )
rules(B,A) items(2,3,B)
items(3,5,A)

cube: [2,4],[4,5],A,B

@ ol o o] HEAP
- B
esaB) |V items(2,4,A) | [23L1351A8 |
Vi) |y items(4,5,8) | [23L351BA |
cube: [2,4],[4,5],B,A | [24][45]BA |
I2HE) Gii) | (i | | 1241451AB |
(v) -
rules(B,A) items(2,4,B)
items(4,5,A)

Figure 4: (left) Cube formation for our example. (right) The A* protocélernall subspan and precon-
dition nodes have been visited. Notice the correspondence betweerbteeand the A* heap contents.

CP HEAP A
1. A* visits T T
1.CP pops [2!332::;?}53;1%17 1151 the tOp node
the top item i) [2,3],[3,5],A,B

[2,3][3,5] cost(1, viii, xii)

[2,3],[3,5],B,A,1,1,1

[2,31,[3,51,A,8,1,1,1 -
cost(1,vii xii cost(3xx) [2,3],E%5],3,A
[2,41,14,51,A,,1,1,1 cost(3,xx)
COSt(1,I’,VD [2,4],[4,5],A,B
[2,41,14,51,B,A,1,1,1 cost(1,,vi)
2. CP generates cost(3.ikv) [2,41,14,5],B,A
one-offs from cost(3,iii,v)
the same cube
2. ...and all nodes on
[2,31,[3,51,A,B,2,1,1 3. CP pushes the path to the
cost(2, viii,Xii these onto the lookahead (equal cost) 3. A* pushes
heap .

successors on
[2,31,[3,51,A,8,1,2,1 1 vili i the hea
cost(1,ix, i) cost(1, viii,xij p

[2,3],[3,5]1,A,B,2

[2,3],[3,5].A,B,1,1,2 cost(1, viii, xii ) cost(2, viii, xii

[2,3],[3,5],A,B,1,2
cost(1,ix,xii)

[2,3],[3,5],A,B,1,1,2

Figure 5: (left) One step of cube pruning. (right) One step of the A* mmito In this figure,
cost(r, 11, 12) = cost(t] > 1 < 13).
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5 Augmented Cube Pruning

_ o . _ h(6,X,Y) = cost(rule(X,Y,1))
Viewed in this light, the idiosyncracies of cube .
pruning begin to reveal themselves. On the one +  cost(item(a, 5, X, 1))
hand, rule and item nodes are associated with + cost(item(d, 3,Y,1))
strong but inadmissible heuristics (the short expla- + ih(4,X,Y)
nation for why cube pruning is an inexact algo- ) o
rithm). On the other hand, subspan and precondiln€ first three terms are admissible because
tion nodes are associated with weak trivial heuris®ach is simply the minimum possible cost of
tics. This should be regarded neither as a surprisg®Me choice remaining to be made. To con-
nor a criticism, considering cube pruning’s originsStUct theinteraction: heuristicih(d, X, Y), con-
in hierarchical phrase-based MT models (ChiangSider that in a translation model with an inte-

2007), which have only a small number of distinct9rateéd n-gram language model, the interaction
nenterminals. costinteraction(r, K1, K2) iS computed by adding

the language model costs of any new complete
grams that are created by combining the carries

t20-s‘;rr.|ng Itlransduc]er-zbase_dDMl\'ll' (Galle?/ ;t aLI"(boundary words) with each other and with the
004; Galley et al., 2006; DeNero et al., 009)'Iexical items on the rule’s target side, taking into

Transducer-based MT relies on SCFGs with Iarg(?’alccount any reordering that the rule may perform.

nonterminal sets. Binarizing the grammars (Zhanqu construct a backoff-style estimate of these
et al., 2006) further increases the size of these SEtﬁew n-grams by looking atitem(a, 6,X,1) =

due to the introduction of virtual nonterminals. 0,8, X, r1], item(8, 3,Y, 1) = [6,5,Y, ], and

A key benefit of the heuristic search viewpointryle(X,Y,1). We setih(6,X,Y) to be a linear
is that it is well positioned to take advantage ofcombination of the backoff-grams of the carries

such insights into the structure of a particular de+,; andx,, as well as any:-grams introduced by
coding problem. In the case of transducer-baseghe rule. For instance, if

MT, the large set of preconditions encourages us
to introduce a nontrivial heuristic for the precon-

But the situation is much different in tree-

dition nodes. The inclusion of these heuristics into k1 = abocd
the CP search will enable A* to eliminate cer- ke = efogh
tain preconditions from consideration, giving us aryle(X,Y,1) = Z — Xg Ym, Xgghi Yg)
speedup. For this reason we call this strategy-
mented cube pruning then
5.1 Heuristicson preconditions ih(6,X,Y) = 7 -LM(a) +72-LM(ab)
Recall that th I f I node is given b T LME 4o LM(e D
ecall that the total cost of a goal node is given by LM LM(ah
Equation (6), which has four terms. We will form e 9 + 72 (gh)
the heuristic for a precondition node by creating + 73 LM(g hi)
a separate heuristic for each of the four terms angne coefficients of the combination are free pa-
using the sum as the overall heuristic. rameters that we can tune to trade off between

To describe these heuristics, we will make intu-more pruning and more admissability. Setting the
itive use of the wildcard operaterto extend our coefficients to zero gives perfect admissibility but

existing notation. For instanceems(c, 3, *) will is also weak.
denote the union atems(«, 3, X) over all possi- The heuristic for the first precondition node is
ble X, sorted by cost. computed similarly:

We associate the heuristig(d, X, Y) with the h(8,X,%) = cost(rule(X,*,1))

search node reached by choosing subspang,
[0, 8], precondition X (for spafw, d]), and precon-
dition Y (for span[d, 5]). The heuristic is the sum
of four terms, mirroring Equation (6):

cost(item(c, 6, X, 1))
cost(item(d, 3, %, 1))
ih(0, X, *)

+ o+ +
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Standard CP Augmented CP

nodes (k) BLEU |time|nodes (k) BLEU |time

80 349 [25 |52 347 1.9

148 36.1 [3.9 |92 359 (2.4

345 37.2 |7.9 [200 37.3 |54 2l

520 37.7 [13.4/302 37.7 |85 B

725 38.2 [17.1/407 38.0 [10.7

1092 38.3 [27.1/619 38.2 [16.3 o momemeace
1812 38.6 [45.9/1064 [38.5 [27.7

Table 1. Results of standard and augmented cube

pruning. The number of (thousands of) search _
nodes visited is given along with BLEU and av- Figure 7: Time spent by standard and augmented

erage time to decode one sentence, in seconds. CUP€ pruning, average seconds per sentence.

20 30

40 50

Average time per sentence (s)

Standard CPAugmented CP
7 subspan 12936 12792
®r precondition 851458 379954
i rule 33734 33331
S¥L item 119703 118889
5 i goal 74618 74159
o TOTAL 1092449 |619125
; T amech BLEU 38.33 38.22
e, Table 2: Breakdown of visited search nodes by

1x10° 1.5x10° 2x10°

Search nodes visited

0 500000

type (for a fixed beam size).

Figure 6: NOdeS.V'S'ted by standard and aug_from that table are also plotted in Figure 6 and
mented cube pruning.

Figure 7. Each line gives the number of nodes
visited by the heuristic search, the average time
We also apply analogous heuristics to the subspatw decode one sentence, and the BLEU of the out-
nodes. put. The number of items kept by each span (the
beam) is increased in each subsequent line of the
table to indicate how the two algorithms differ at
We evaluated all of the algorithms in this paper onvarious beam sizes. This also gives a more com-
a syntax-based Arabic-English translation systenplete picture of the speed/BLEU tradeoff offered
based on (Galley et al., 2006), with rules extractedy each algorithm. Because the two algorithms
from 200 million words of parallel data from NIST make the same sorts of lookahead computations
2008 and GALE data collections, and with a 4-with the same implementation, they can be most
gram language model trained on 1 billion wordsdirectly compared by examining the number of
of monolingual English data from the LDC Giga- visited nodes. Augmenting cube pruning with ad-
word corpus. We evaluated the system’s performissible heuristics on the precondition nodes leads
mance on the NIST 2008 test corpus, which conto a substantial decrease in visited nodes, by 35-
sists of 1357 Arabic sentences from a mixture 0#44%. The reduction in nodes converges to a con-
newswire and web domains, with four English ref-sistent 40% as the beam increases. The BLEU
erence translations. We report BLEU scores (Pawith augmented cube pruning drops by an average
pineni et al., 2002) on untokenized, recapitalizecbf 0.1 compared to standard cube pruning. This is
output. due to the additional inadmissibility of the interac-
tion heuristic.

To see in more detail how the heuristics affect
The results for augmented cube pruning are comthe search, we give in Table 2 the number of nodes
pared against cube pruning in Table 1. The dataf each type visited by both variants for one beam

5.2 Experimental setup

5.3 Resultsfor Augmented Cube Pruning
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size. The precondition heuristic enables A* to
prune more than half the precondition nodes.

6 Exact Cube Pruning

37~

Common wisdom is that the speed of cube prun- § i

ing more than compensates for its inexactness (re-

call that this inexactness is due to the fact that it *[ o s

uses A* search with inadmissible heuristics). Es- | T e

pecially when we move into transducer-based MT, =

the search space becomes so large that brute-force O™ peragetime per sentence (4 © °

item generation is much too slow to be practi-

cal. Still, within the heuristic search framework Figure 8: Time spent by standard and exact cube

we may ask the question: is it possible to applypruning, average seconds per sentence.

strictly admissible heuristics to the cube pruning

search space, and in so doing, create a version of

cube pruning that is both fasnd exact, one that Doing this split enables us to precompute a

finds then bestitems for each span and not just strong and admissible heuristic on the interaction

n gooditems? One might not expect such a techcost. Namely, for a given spaj, 3], we pre-

nique to outperform cube pruning in practice, butcomputeih,g, (3, X,Y), which is the best LM

for a given use case, it would give us a relativelycost of combining carries fromtems(a,d, X)

fast way of assessing the BLEU drop incurred byand items(d, 3,Y). Notice that this statistic is

the inexactness of cube pruning. only straightforward to compute once we can as-
Recall again that the total cost of a goal nodesume that the rules are concatenation rules or

is given by Equation (6), which has four terms. Itinversion rules. For the lexical rules, we set

is easy enough to devise strong lower bounds foih,4,,,(5,X,Y) = 0, an admissible but weak

the first three of these terms by extending the reaheuristic that we can fortunately get away with be-

soning of Section 5. Table 3 shows these heuriseause of the small number of lexical rules.

tics. The major challenge is to devise an effective

lower bound on the fourth term of the cost func-

tion, the interaction heuristic, which in our case is

6.1 Resultsfor Exact Cube Pruning

the incremental language model cost. Computing theihegm (5, X,Y) heuristic is not
~ We take advantage of the following observa-cheap. To be fair, we first compare exact CP to
tions: standard CP in terms of overall running time, in-

_ cluding the computational cost of this overhead.

1. In a given span, many boundary word pat-yye p|at this comparison in Figure 8. Surprisingly,

terns are repeatedn other words, for a par- e time/quality tradeoff of exact CP is extremely
ticular span(a, 5] and carry, we often see  gjmijar to standard CP, suggesting that exact cube

many |tems of the.fornja,ﬁ, X, ”]’_ yvhere pruning is actually a practical alternative to stan-

the only difference is the postcondition X. 4414 cp, and not just of theoretical value. We

2. Most rules do not introduce lexical itemin found that the BLEU IOS_S of standard cube prun-
other words, most of the grammar rules haveng at moderate beam sizes was between 0.4 and

the form Z — (Xo Y1, X0 Y1) (concatena-
tion rules) or Z— (X Y1, Y1 Xo) (inver- Another surprise comes when we contrast the

sion rules). number of visited search nodes of exact CP and
standard CP. See Figure 9. While we initially ex-

The idea is simple. We split the search into thregected that exact CP must visit fewer nodes to
searches: one for concatenation rules, one for immake up for the computational overhead of its ex-
version rules, and one for lexical rules. Eachpensive heuristics, this did not turn out to be the
search finds the—best items that can be createdcase, suggesting that the computational cost of
using its respective set of rules. We then take thesstandard CP’s lookahead heuristics is just as ex-
3n items and keep the best pensive as the precomputationiof,, (J, X, Y).
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heuristic components
subspan | preconditionl| precondition2 rule iteml item2
h(9) h(d,X) h(d,X,Y) h(6,X,Y, i) | h(6,X,Y,4,5) |h(6,X,Y,4,7,k)
r | rule(k,x, 1) rule(X,*,1) | rule(X,Y,1) | rule(X,Y,1) rule(X,Y,1) rule(X,Y, 1)
11 |item(a, 0, %, 1) |item(cv, 0, X, 1) | item(c, 6, X, 1) |item(a, 8, X, 1) |item(av, 0, X, j) | item(ax, 3, X, j)
Lo |item(d, B, %, 1) | item(6, B, *,1) |item(d, B,Y, 1) |item(6, 5,Y,1)|item(d, B,Y,1) | item(d, 5,Y, k)
ih| hagm (9, %, %) | theam (0, X, %) | ihagm (6, X, Y) | ihaam (0, X, Y) | ihagm (6, X,Y) | ihggm (5, X,Y)

Table 3: Admissible heuristics for exact CP. We attach heurigiicX, Y, i, j, k) to the search node
reached by choosing subspdnsd], [6, 3], preconditions X and Y, thé" rule of rules(X,Y), the j*
item of item(a, 6, X), and thek?” item of item (4, 3, Y). To form the heuristic for a particular type of
search node (column), compute the followirgst(r) + cost(t1) + cost(t2) + ih

cisions in a different order, would be more

effective.

3. What if we try a different search algorithm?
A* has nice guarantees (Dechter and Pearl,
1985), but it is space-consumptive and it is
not anytime. For a use case where we would

——O— suncanace like a finer-grained speed/quality tradeoff, it

might be useful to consider an anytime search

N T T algorithm, like depth-first branch-and-bound

500000 1x108 1.5010° 2108

36 —

——— ExactCP

35—

Search nodes visited (Zhang and Korf, 1995)
Figure 9: . Nodes visited by standard and exaCBy working towards a deeper and unifying under-
cube pruning. standing of the smorgasbord of current MT speed-
up techniques, our hope is to facilitate the task of
7 Implications implementing such methods, combining them ef-

fectively, and adapting them to new use cases.
This paper’s core idea is the utility of framing
CKY item generation as a heuristic search probAcknowledgments

lem. Once we recognize cube pruning as nothy, .\ 14 jike to thank Abdessamad Echihabi,

ing more than A* on a particular search SpaceKevin Knight, Daniel Marcu, Dragos Munteanu

ywth partlcu_lar heuristics, this deeper understandjOn Muslea, Radu Soricut, Wei Wang, and the
ing makes it easy to create faster and exact vari- .

. : anonymous reviewers for helpful comments and
ants for other use cases (in this paper, we fOCugldvice Thanks also to David Chiang for the use
on tree-to-string transducer-based MT). Depend- ' g

ing on one’s own particular use case, a variet on his LaTeX macros. This work was supported in
g on on P k Y Ohart by CCS grant 2008-1245117-000.
possibilities may present themselves:

1. What if we try different heuristicsIP this pa-
per, we do some preliminary inquiry into this
guestion, but it should be clear that our minorPavid Chiang. 2007. Hierarchical phrase-based trans-
changes are just the tip of the iceberg. One lation. Computational Linguistics33(2):201-228.
can easily imagine clever and creative heurisRina Dechter and Judea Pearl. 1985. Generalized best-

tics that outperform the simple ones we have first search strategies and the optimality of asur-
proposed here. nal of the ACM 32(3):505-536.
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Abstract 1.1 PreviousWork

The ideas of using labels, length preference and
Current methods of using lexical features  source side context in MT decoding were explored
in machine translation have difficulty in previously. Broadly speaking, two approaches
scaling up to realistic MT tasks due to were commonly used in existing work.

a prohibitively large number of parame- One is to use a stochastic gradient descent
ters involved. In this paper, we propose  (SGD) or Perceptron like online learning algo-
methods of using new linguistic and con-  ithm to optimize the weights of these features
textual features that do not suffer from  gjrectly for MT (Shen et al., 2004; Liang et al.,
this problem and apply them in a state-of-  2006; Tillmann and Zhang, 2006). This method is
the-art hierarchical MT system. The fea-  yery attractive, since it opens the door to rich lex-
tures used in this work are non-terminal jca| features. However, in order to robustly opti-
labels, non-terminal length distribution,  mjze the feature weights, one has to use a substan-
source string context and source depen- tjally large development set, which results in sig-
dency LM scores. The effectiveness of pjficantly slower tuning. Alternatively, one needs
our techniques is demonstrated by signif- g carefully select a development set that simulates
icant improvements over a strong base-  the test set to reduce the risk of over-fitting, which
line.  On Arabic-to-English translation,  however is not always realistic for practical use.
improvements in lower-cased BLEU are A remedy is to aggressively limit the feature
2.0 on NIST MTO06 and_ 1.7 on MTO8 space, e.g. to syntactic labels or a small fraction
newswire data on decodmg output. 'On of the bi-lingual features available, as in (Chiang
Chinese-to-English translation, the im- ., al., 2008; Chiang et al., 2009), but that reduces
provements are 1.0 on MT06 and 0.8 on the benefit of lexical features. A possible generic
MTO8 newswire data. solution is to cluster the lexical features in some
way. However, how to make it work on such a
1 Introduction large space of bi-lingual features is still an open
question.
Linguistic and context features, especially sparse The other approach is to estimate a single score
lexical features, have been widely used in re-or likelihood of a translation with rich features,
cent machine translation (MT) research. Unfor-for example, with the maximum entropy (Max-
tunately, existing methods of using such feature€nt) method as in (Carpuat and Wu, 2007; Itty-
are not ideal for large-scale, practical translationcheriah and Roukos, 2007; He et al., 2008). This
tasks. method avoids the over-fitting problem, at the ex-
In this paper, we will propose several prob-pense of losing the benefit of discriminative train-
abilistic models to effectively exploit linguistic ing of rich features directly for MT. However, the
and contextual information for MT decoding, and feature space problem still exists in these pub-
these new features do not suffer from the scalabillished models.
ity problem. Our new models are tested on NIST He et al. (2008) extended the WSD-like ap-
MTO06 and MTO08 data, and they provide signifi- proached proposed in (Carpuat and Wu, 2007) to
cant improvement over a strong baseline system.hierarchical decoders. In (He et al., 2008), lexical
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features were limited on each single side due to th&.2.1 Features
feature space problem. In order to further reduce

the complexity of MaxEnt traln'lng, they tralngd In this paper, we will introduce four new linguistic
a MaxEnt model for each ambiguous hierarchical

LHS" (lefi-hand sid ide) of lat and contextual feature functions. Here, we first
(left-hand side or source side) of trans a'['OnErovide a high-level description of these features.

rules. Different target sides were treated as POSSKetails of the features are discussed in Section 2.
ble labels. Therefore, the sample sets of each indi-

vidual MaxEnt model were very small, while the  The first feature is based on non-terminal labels,

number of features could easily exceed the numbdre. POS tags of the head words of target non-

of samples. Furthermore, optimizing individual terminals in transfer rules. This feature reduces

MaxEnt models in this way does not lead to globalthe ambiguity of translation rules. The other bene-

maximum. In addition, MaxEnt models trained onfit is that POS tags help to weed out bad target side

small sets are unstable. tree structures, as an enhancement to the target de-
The MaxEnt model in (Ittycheriah and Roukos, pendency language model.

2007) was optimized globally, so that it could bet- The second feature is based on the length dis-

ter employ the distribution of the training data. ., . . .
. o tribution of non-terminals. In English as well as
However, one has to filter the training data ac-

. It in other languages, the same deep structure can
cording to the test data to get competitive perfor-be represented in different syntactic structures de-
mance with this model. In addition, the filtering P y

method causes some practical issues. First, su ending on the complexity of its constituents. We

methods are not suitable for real MT tasks, espe[nOdeI such preferences by associating each non-

. . . . . “terminal of a transfer rule with a probability distri-
cially for applications with streamed input, since

the model has to be retrained with each new inpuPunon over its length. Similar ideas were explored

L in (He et al., 2008). However their length features
sentence or document and training is slow. Fur-

thermore, the model is ill-posed. The translationOnly proylded |nS|g_n|f|c_ant improvement of 0.1
BLEU point. A crucial difference of our approach
of a source sentence depends on other source sen-

tences in the same batch with which the MaxEntIS how the length preference is modeled. We ap-

model is trained. If we add one more sentence t(ngOX|mate the length distribution of non-terminals

) with a smoothed Gaussian, which is more robust
the batch, translations of other sentences may b(—:é—n d qives rise to much larger imorovement Consis-
come different due to the change of the MaxEnttentls 9 P

model.
To sum up, the existing models of employing The third feature utilizes source side context in-

rich bi-lingual lexical information in MT are im- formation, i.e. the neighboring words of an input

perfect. Many of them are not ideal for practical span, to influence the selection of the target trans-

translation tasks. lation for a span. While the use of context infor-
mation has been explored in MT, e.g. (Carpuat
1.2 Our Approach and Wu, 2007) and (He et al., 2008), the specific

. . technique we used by means of a context language
As for our approach, we mainly use simple proba- . . . .
bilistic models. i.e. Gaussian and n-aram moolelsmodel is rather different. Our model is trained on
hich are mor;e -ro.b <t and suitable f%r large scalethe whole training data, and it is not limited by the
whic u Ul . 9 constraint of MaxEnt training.
training of real data, as manifested in state-of-the-
art systems of speech recognition. The unique The fourth feature exploits structural informa-
contribution of our work is to design effective and tion on the source side. Specifically, the decoder
efficient statistical models to capture useful lin-simultaneously generates both the source and tar-
guistic and context information for MT decoding. get side dependency trees, and employs two de-
Feature functions defined in this way are robuspendency LMs, one for the source and the other
and ideal for practical translation tasks. for the target, for scoring translation hypotheses.
- Our intuition is that the likelihood of source struc-
20017A)CC0fdi”9 tOdfOOm_Ote bZ of ('ttVCheriahl_a”d ngUKOS; tures provides another piece of evidence about the
, test set adaptation by test set sampling of the train- T . .
ing corpus showed an advantage of more than 2 BLEU point@laUSIbIIIty of a translation hypothesis and as such
over a general system trained on all data. would help weed out bad ones.
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1.2.2 Basdine System and Experimental A single source word can be translated into
Setup many English words. For exampl@antao can

We take BBN'sHierDec, a string-to-dependency Pe translated int@ review, the review, reviews,
decoder as described in (Shen et al., 2008), as odfie reviews, reviewing, reviewed, etc. Suppose

baseline for the following two reasons: we have source-string-to-target-dependency trans-
lation rules as shown in Figure 1. Since there is

e It provides a strong baseline, which ensuresho constraint on substitution, any translation for
the validity of the improvement we would ob- jiantao could replace the X-1 slot.
tain. The baseline model used in this paper one way to alleviate this problem is to limit the
showed state-of-the-art performance at NISTgegrch space by using a label system. We could
2008 MT evaluation. assign a label to each non-terminal on the target
side of the rules. Furthermore, we could assign a

tended to incorporate the features propose bel to the whole target dependency structure, as

in this paper. The use of source dependencﬁhogn n Flggretz. tln decooll(ljn%, each tgr:ge; di'h
structures is a natural extension of the stringJoen ency sub-structure would be associated wi

to-tree model to a tree-to-tree model. a label. Whenever substitution happens, we would
check whether the label of the sub-structure and
To ensure the generality of our results, we testedhe label of the slot are the same. Substitutions
the features on two rather different language pairsyith unmatched labels would be prohibited.
Arabic-to-English and Chinese-to-English, using In practice, we use a soft constraint by penaliz-
two metrics, IBM BLEU (Papineni et al., 2001) ing substitutions with unmatched labels. We intro-
and TER (Snover et al., 2006). Our experimentguce a new feature: the number of times substitu-
show that each of the first three features: nontions with unmatched labels appear in the deriva-
terminal labels, length distribution and source siddion of a translation hypothesis.
context, improves MT performance. Surprisingly, Obviously, to implement this feature we need to
the source dependency feature does not producgssociate a label with each non-terminal in the tar-
an improvement. get side of a translation rule. The labels are gen-
erated during rule extraction. When we create a
rule from a training example, we replace a sub-
21 Non-terminal Labes tree or dependency structure with a non-terminal

In the original string-to-dependency model (Shenand associate it with the POS tag of the head word

et al., 2008), a translation rule is composed of If the non-terminal corresponds to a single-rooted

. . E%ree on the target side. Otherwise, it is assigned
string of words and non-terminals on the source . . .
. the generic labekX . (In decoding, all substitutions
side and a well-formed dependency structure on . :
. of X are considered unmatched ones and incur a
the target side. A well-formed dependency struc- enalty.)
ture could be either a single-rooted dependencyIO y
tree or a set of sibling trees. As in the Hiero syste T
(Chiang, 2007), there is only one non-termidal nb'z Length Distribution
in the string-to-dependency model. Any sub dedn English, the length of a phrase may determine

pendency structure can be used to replace a nothe syntactic structure of a sentence. For example,

e The baseline algorithm can be easily ex-

2 Linguistic and Context Features

terminal in a rule. possessive relations can be represented either as
For example, we have a source sentence in ChiA's B” or “B of A’. The former is preferred if A
nese as follows. is a short phrase (e.g. “the boy’s mother”) while

the latter is preferred if A is a complex structure

* Jiantao zhuyao baohan liang fangmian (e.g. “the mother of the boy who is sick”).

The literal translation for individual words is Our solution is to build a model of length prefer-
_ _ . ence for each non-terminal in each translation rule.
e ‘review’ ‘mainly’ 'to consist of’ 'two’ part To address data sparseness, we assume the length

distribution of each non-terminal in a transfer rule
is a Gaussian, whose mean and variance can be
e the review mainly consists of two parts estimated from the training data. In rule extrac-

The reference translation is
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review reviews consists
X— 7 X— 7 X —>
the the X-1 mainly of  X-2
X —> jiantao X —> jiantao X —> X-1 zhuyaobaochanX-2
Figure 1: Translation rules with one lah¥I
review reviews consists
NN—> / NNS —> / VBZ —>
the the NN-1 mainly of NNS-2
X —> jiantao X —> jiantao X —> X-1 zhuyaobaohanX-2

Figure 2: Translation rules with multiple labels

tion, each time a translation rule is generated froms based on maximum a posteriori (MAP) estima-
a training example, we can record the length of thdion as in (Gauvain and Lee, 1994).

source span corresponding to a non-terminal. In

the end, we have a frequency histogram for each Mz
non-terminal in each translation rule. From the
histogram, a Gaussian distribution can be easily
computed.

In practice, we do not need to collect the fre-

N
Sr.x

where” stands for an MAP distribution arnidep-
resents a prior distribution.m,, and s, , can

the mean and the variance, it is sufficient to colfabe obtained from a prior Gaussian distribution

lect the sum of the length and the sum of squareé\/(ﬂf’x’@"’x) via equations (3) and (4), andis
length. a weight of smoothing.

. . There are many ways to approximate the prior
Let r be a translation rule that occuié. times y way PP P

. - - O distribution. For example, we can have one prior
in training. Letz be a specific non-terminal in that ) o

ule. Letl \ denote the lenath of th ; for all the non-terminals or one for individual non-
ule. Leti(r, z,) denote the fengh of the S_OU € terminal type. In practice, we assume, = ty 4,
span corresponding to non-terminalin the i-th ’ ’

. . 9 1
occurrence of rule- in training. Then, we can and apprommater,x as(am +5r0)2.
compute the following quantities. In this way, we do not change the mean, but

relax the variance withs, ,. We tried differ-
ent smoothing methods, but the performance did
not change much, therefore we kept this simplest

1 &
F’r Z l(’l”, x, Z)
=1

Mra = 1) : . D IS |
setup. We also tried the Poisson distribution, and
1N the performance is similar to Gaussian distribu-
Sre = = l(r i), (2) tion, which is about 0.1 point lower in BLEU.
Ny i=1 When a ruler is applied during decoding, we

_ _ compute a penalty for each non-terminalin »
which can be subsequently used to estimate thgccording to

meany, , and variancerfym of x’s length distri-

. . U= M‘,m)2
bution in ruler as follows. 1 eyt
P(l|rz)=——=— .
Or gV 2T
u;,g; = Mpg , (3) wherel is length of source span corresponding to
Orgy — Srz—M (4) xX.

r,x

Our method to address the problem of length

Since many of the translation rules have few oc-bias in rule selection is very different from the

currences in training, smoothing of the above estimaximum entropy method used in existing stud-
mates is necessary. A common smoothing methois, e.g. (He et al., 2008).
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2.3 Context Language M odel LM scores is used as a new feature in the scoring

In the baseline string-to-dependency system, th&nction. _ _
probability a translation rule is selected in decod- Pleéase note that our approach is very different

ing does not depend on the sentence context. Iffom other approaches to context dependent rule
reality, translation is highly context dependent. ToS€léction such as (lttycheriah and Roukos, 2007)
address this defect, we introduce a new feature2nd (He etal., 2008). Instead of using a large num-
called context language model. The motivation of ber of fine grained features with weights optimized
this feature is to exploit surrounding words to in- USing the maximum entropy method, we treat con-

fluence the selection of the desired transfer rule fofeXt dependency as an ngram LM problem, and it
a given input span. is smoothed with Witten-Bell discounting. The es-

To illustrate the problem, we use the same exlimation of the context LMs is very efficient and

ample mentioned in Section 2.1. Suppose théoPust. - o

source span for rule selection duyao bachan, The benefit is two fold. The estimation of the
whose literal translation igainly andto consist cor_ltext LMsis very efficien_t. It adds only one new
of. There are many candidate translations for thigVeight to the scoring function.

phrase, for examplemainly consist of, mainly
consists of, mainly including, mainly includes, etc.
The surrounding words can help to decide whic
translation is more appropriate fahuyao bao-
han. We compare the following two context-base
probabilities:

2.4 Source Dependency Language M odel

hThe context LM proposed in the previous sec-
tion only employs source words immediately be-
dfore and after the current source span in decod-
ing. To exploit more source context, we use a
source side dependency language model as an-
e P(jiantao| mainly consist) other feature. The motivation is to take advantage
of the long distance dependency relations between
source words in scoring a translation theory.
Here, jiantao is the source word preceding the We extended string-to-dependency rules in
source spaghuyao baohan. the baseline system to dependency-to-dependency
In the training datajiantao is usually trans- rules. In each dependency-to-dependency rule, we
lated intothe review, third-person singular, then keep record of the source string as well as the
the probability P( jiantao| mainly consistg will ~ source dependency structure. Figure 3 shows ex-
be higher tharP( jiantao| mainly consist), since amples of dependency-to-dependency rules.
we have seen more context events like the former We extended the string-to-dependency decod-
in the training data. ing algorithm in the baseline to accommodate
Now we introduce context LM formally. Letthe dependency-to-dependency theories. In decoding,
source words bé fa.. fi.. ;.. f». Suppose source We build both the source and the target depen-
sub-stringf;..f; is translated inte,..c,. We can dency structures simultaneously in chart parsing
define tri-gram probabilities on the left and right over the source string. Thus, we can compute the

e P(jiantao| mainly consistg

sides of the source span: source dependency LM score in the same way we
compute the target side score, using a procedure
o left: Pr(fi—1lep, eps1) described in (Shen et al., 2008).

We introduce two new features for the source
side dependency LM as follows, in a way similar

In our implementation, the left and right context to the target side.

LMs are estimated from the training data as part

of the rule extraction procedure. When we exact a ® Source dependency LM score

rule, we collect two 3-gram events, one for the left
side and the other for the right side.

In decoding, whenever a partial hypothesis is
generated, we calculate the context LM scores The source dependency LM is trained on the
based on the leftmost two words and the rightmossource side of the bi-lingual training data with
two words of the hypothesis as well as the sourcéVitten-Bell smoothing. The source dependency
context. The product of the left and right contextLM score represents the likelihood of the source

o right: Pr(fj+1leq eq—1)

e Discount on ill-formed source dependency
structures
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consists

review| reviews
X— 7 X— 7 X — x4 mainly of  X-2
the the
baohan
X —> jiantao X —> jiantao X —>
X-1 zhuyao X-2

Figure 3: Dependency-to-dependency translation rules

dependency tree generated by the decoder. THEER. The motivation is to detect if an improve-
source dependency tree with the highest score iment is artificial, i.e., specific to the tuning met-
the one that is most likely to be generated by theic. For both Arabic-to-English and Chinese-to-
dependency model that created the source side &nglish MT, we tuned on NIST MT02-05 and
the training data. tested on MT06 and MT08 newswire sets.

Source dependency trees are composed of frag- The training data are different from what was
ments embedded in the translation rules. Thereysd at MT06 or MT08. Our Arabic-to-English
fore, a source dependency LM score can bejata contain 29M Arabic words and 38M En-
viewed as a measure whether the translation ruleglish words from 11 corpora: LDC2004T17,
are put together in a way similar to the training | DC2004T18, LDC2005E46, LDC2006E25,
data. Therefore, a source dependency LM scoreDC2006G05, LDC2005E85, LDC2006E36,
serves as a feature to represent structural con-DC2006E82, LDC2006E95, Sakhr-A2E and
text information that is capable of modeling long- Sakhr-E2A. The Chinese-to-English data contain
distance relations. 107M Chinese words and 132M English words

However, unlike source context LMs, the struc-from eight corpora: LDC2002E18, LDC2005T08,
tural context information is used only when two | DC2005T10, LDC2006E26, LDC2006G05,
partial dependency structures are combined, whilepC2002L27, LDC2005T34 and LDC2003E07.
source context LMs work as a look-ahead featureThey are available under the DARPA GALE
program. Traditional 3-gram and 5-gram string
LMs were trained on the English side of the

We designed our experiments to show the impacparallel data plus the English Gigaword corpus
of each feature separately as well as their cumula¥3.0 in a way described in (Bulyko et al., 2007).
tive impact: The target dependency LMs were trained on the
_ , English side of the parallel training data. For that

o BASE: baseline string-to-dependency systen, ryqse, we parsed the English side of the parallel
data. Two separate models were trained: one for
Arabic from the Arabic training data and the other
e CLM: baseline + context LM for Chinese from the Chinese training data.

To compute the source dependency LM for
Chinese-to-English MT, we parsed the Chinese
e LBL: baseline + syntactic labels side of the Chinese-to-English parallel data. Due

to the lack of a good Arabic parser compatible
e LBL+LEN: baseline + syntactic labels + with the Sakhr tokenization that we used on the
length distribution source side, we did not test the source dependency
LM for Arabic-to-English MT.

When extracting rules with source dependency
structures, we applied the samell-formedness

All the models were optimized on lower-casedconstraint on the source side as we did on the tar-
IBM BLEU with Powell's method (Powell, 1964; get side, using a procedure described by (Shen
Brent, 1973) on n-best translations (Ostendorf eet al., 2008). Some candidate rules were thrown
al., 1991), but evaluated on both IBM BLEU and away due to the source side constraint. On the

3 Experiments

e SLM: baseline + source dependency LM

e LEN: baseline + length distribution

e LBL+LEN+CLM: baseline + syntactic labels
+ length distribution + context LM
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MTO06 MTO08

Mode BLEU TER BLEU TER

lower mixed | lower mixed | lower mixed | lower mixed
Decoding (3-gram LM)

BASE 48.75 46.74| 43.43 45.79| 4958 47.46| 42.80 45.08
CLM 40.44 A47.36| 42.96 45.22| 49.73 47.53| 42.64 44.92
LEN 49.37 47.28| 43.01 45.35| 50.29 48.19| 42.32 44.45
LBL 49.33 47.07| 43.09 45.53| 50.46 48.19| 42.27 44.57
LBL+LEN 4991 47.70| 4259 45.17| 51.10 48.85| 41.88 44.16

LBL+LEN+CLM | 50.75 48.51| 42.13 44.50| 51.24 49.10| 41.63 43.80
Rescoring (5-gram LM)

BASE 51.24 49.23| 42.08 44.42| 51.23 49.11| 42.01 44.15
CLM 51.57 49.54| 41.74 43.88| 51.44 49.37| 41.63 43.74
LEN 52.05 50.01| 41.50 43.72| 51.88 49.89| 41.51 43.47
LBL 51.80 49.69| 41.54 43.76| 51.93 49.86| 41.27 43.33
LBL+LEN 51.90 49.76| 41.41 43.70| 52.42 50.29| 40.93 43.00

LBL+LEN+CLM | 52.61 50.51| 40.77 43.03| 52.60 50.56| 40.69 42.81

Table 1: BLEU and TER percentage scores on MT06 and MT08 AsabEnglish newswire sets.

other hand, one string-to-dependency rule maypn both sides, a lot of useful transfer rules are
split into several dependency-to-dependency rulediscarded. A bi-lingual parser, trained on paral-
due to different source dependency structures. Thiel treebanks recently made available to the NLP
size of the dependency-to-dependency rule set isommunity, may overcome this problem. The
slightly smaller than the size of the string-to- other is that the search space of dependency-to-
dependency rule set. dependency decoding is much larger, since we

Tables 1 and 2 show the BLEU and TER Ioer_need to add source dependency information into

centage scores on MT06 and MTO8 for Arabic-the chart parsing states. We wiII_ explore tech-
to-English and Chinese-to-English translation reNiques to address these problems in the future.
spectively. The context LM feature, the length : :

4 Discussion

feature and the syntax label feature all produce
a small improvement for most of the conditions. Linguistic information has been widely used in
When we combined the three features, we obgyT, For example, in (Wang et al., 2007), syntac-
served significant improvements over the baseling;¢ structures were employed to reorder the source
For Arabic-to-English MT, the LBL+LEN+CLM  |anguage as a pre-processing step for phrase-based
system improved lower-cased BLEU by 2.0 0Ngecoding. In (Koehn and Hoang, 2007), shallow
MT06 and 1.7 on MT08 on decoding output. gyniactic analysis such as POS tagging and mor-

For Chinese-to-English MT, the improvements inpological analysis were incorporated in a phrasal
lower-cased BLEU were 1.0 on MTO06 and 0.8 ongecoder.

MTO08. After re-scoring, the improvements be- |, |gys syntax-based system (Galley et al.,

came smaller, but still noticeable, ranging from 0'72006) and CMU’s Hiero extension (Venugopal et
to 1.4. TER scores were also improved noticeably, 5007), non-terminals in translation rules have
for all conditions, suggesting there was no metriqape|s \which must be respected by substitutions
specific over-tuning. during decoding. In (Post and Gildea, 2008; Shen
Surprisingly, source dependency LM did notet al., 2008), target trees were employed to im-
provide any improvement over the baseline. Therg@rove the scoring of translation theories. Mar-
are two possible reasons for this. One is thaton and Resnik (2008) introduced features defined
the source and target parse trees were generated constituent labels to improve the Hiero system
by two stand-alone parsers, which may cause infChiang, 2005). However, due to the limitation of
compatible structures on the source and targeMER training, only part of the feature space could
sides. By applying thevell-formed constraints used in the system. This problem was fixed by
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MTO06 MTO08

Mode BLEU TER BLEU TER

lower mixed | lower mixed | lower mixed | lower mixed
Decoding (3-gram LM)

BASE 3744 35.62| 54.64 56.47| 33.05 31.26| 56.79 58.69
SLM 37.30 35.48| 54.24 55.90| 33.03 31.00| 56.59 58.46
CLM 37.66 35.81| 53.45 55.19| 32.97 31.01| 55.99 57.77
LEN 38.09 36.26| 53.98 55.81| 33.23 31.34| 56.51 58.41
LBL 38.37 36.53| 54.14 55.99| 33.25 31.34| 56.60 58.49
LBL+LEN 38.36 36.59| 53.95 55.60| 33.72 31.83| 56.79 58.65

LBL+LEN+CLM | 38.41 36.57| 53.83 55.70| 33.83 31.79| 56.55 58.51
Rescoring (5-gram LM)

BASE 38.91 37.04| 53.65 55.45| 34.34 32.32| 55.60 57.60
SLM 38.27 36.38| 53.64 55.29| 34.25 32.28| 55.35 57.21
CLM 38.79 36.88| 53.09 54.80| 35.01 32.98| 55.39 57.28
LEN 39.22 37.30| 53.34 55.06| 34.65 32.70| 55.61 57.51
LBL 39.11 37.30| 53.61 55.29| 35.02 33.00| 55.39 57.48
LBL+LEN 38.91 37.17| 53.56 55.27| 35.03 33.08| 55.47 57.46

LBL+LEN+CLM | 39.58 37.62| 53.21 54.94| 35.72 33.63| 54.88 56.98

Table 2: BLEU and TER percentage scores on MT06 and MT08 Ghit®English newswire sets.

Chiang et al. (2008), which used an online learn-dependency baseline. Unlike previous work, we
ing method (Crammer and Singer, 2003) to handl@employed robust probabilistic models to capture
a large set of features. useful linguistic and contextual information. Our
Most SMT systems assume that translationrmethods are more suitable for practical translation
rules can be applied without paying attention totasks.
the sentence context. A few studies (Carpuat and In future, we will continue this work in two
Wu, 2007; Ittycheriah and Roukos, 2007; He etdirections. We will employ a Gaussian model
al., 2008; Hasan et al., 2008) addressed this dege unify various linguistic and contextual fea-
fect by selecting the appropriate translation rulegures. We will also improve the dependency-to-
for an input span based on its context in the in-dependency method with a better bi-lingual parser.
put sentence. The direct translation model in (It-
tycheriah and Roukos, 2007) employed syntactiddcknowledgments
(POS tags) and context information (neighboring
words) within a maximum entropy model to pre-
dict the correct transfer rules. A similar technique
was applied by He et al. (2008) to improve the Hi-
ero system.
Our model differs from previous work on the

way in which linguistic and contextual informa-
tion is used. R. P. Brent. 1973 Algorithms for Minimization With-
out Derivatives. Prentice-Hall.

This work was supported by DARPA/IPTO Con-
tract No. HR0011-06-C-0022 under the GALE
program.
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Abstract

Methods that learn from prior informa-
tion about input features such as general-
ized expectation (GE) have been used to
train accurate models with very little ef-
fort. In this paper, we propose an ac-
tive learning approach in which the ma-
chine solicits “labels” on features rather
than instances. In both simulated and real
user experiments on two sequence label-
ing tasks we show that our active learning
method outperforms passive learning with
features as well as traditional active learn-
ing with instances. Preliminary experi-
ments suggest that novel interfaces which
intelligently solicit labels on multiple fea-
tures facilitate more efficient annotation.

1 Introduction

The application of machine learning to new prob-
lems is slowed by the need for labeled training
data. When output variables are structured, an-
notation can be particularly difficult and time-
consuming. For example, when training a condi-
tional random field (Lafferty et al., 2001) to ex-
tract fields such as rent, contact, features, and utilities
from apartment classifieds, labeling 22 instances
(2,540 tokens) provides only 66.1% accuracy.'

Recent work has used unlabeled data and lim-
ited prior information about input features to boot-
strap accurate structured output models. For ex-
ample, both Haghighi and Klein (2006) and Mann
and McCallum (2008) have demonstrated results
better than 66.1% on the apartments task de-
scribed above using only a list of 33 highly dis-
criminative features and the labels they indicate.
However, these methods have only been applied
in scenarios in which the user supplies such prior
knowledge before learning begins.

! Averaged over 10 randomly selected sets of 22 instances.
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In traditional active learning (Settles, 2009), the
machine queries the user for only the labels of in-
stances that would be most helpful to the machine.
This paper proposes an active learning approach in
which the user provides “labels” for input features,
rather than instances. A labeled input feature de-
notes that a particular input feature, for example
the word call, is highly indicative of a particular
label, such as contact. Table 1 provides an excerpt
of a feature active learning session.

In this paper, we advocate using generalized
expectation (GE) criteria (Mann and McCallum,
2008) for learning with labeled features. We pro-
vide an alternate treatment of the GE objective
function used by Mann and McCallum (2008) and
a novel speedup to the gradient computation. We
then provide a pool-based feature active learning
algorithm that includes an option to skip queries,
for cases in which a feature has no clear label.
We propose and evaluate feature query selection
algorithms that aim to reduce model uncertainty,
and compare to several baselines. We evaluate
our method using both real and simulated user ex-
periments on two sequence labeling tasks. Com-
pared to previous approaches (Raghavan and Al-
lan, 2007), our method can be used for both classi-
fication and structured tasks, and the feature query
selection methods we propose perform better.

We use experiments with simulated labelers on
real data to extensively compare feature query se-
lection algorithms and evaluate on multiple ran-
dom splits. To make these simulations more re-
alistic, the effort required to perform different la-
beling actions is estimated from additional exper-
iments with real users. The results show that ac-
tive learning with features outperforms both pas-
sive learning with features and traditional active
learning with instances.

In the user experiments, each annotator actively
labels instances, actively labels features one at a
time, and actively labels batches of features orga-

Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 81-90,
Singapore, 6-7 August 2009. (©2009 ACL and AFNLP



accuracy 46.5 — 60.5 accuracy 60.5 — 67.1
feature label feature label
PHONE* contact water utilities

call contact close neighbor.
deposit rent garbage utilities
month rent included utilities
pets restrict. features
lease rent shopping | neighbor.
appointment | contact bart neighbor.
parking features downtown | neighbor.
EMAIL* contact TIME* contact
information | contact bath size

Table 1: Two iterations of feature active learning.
Each table shows the features labeled, and the re-
sulting change in accuracy. Note that the word in-
cluded was labeled as both utilities and features, and
that * denotes a regular expression feature.

nized using a “grid” interface. The results support
the findings of the simulated experiments and pro-
vide evidence that the “grid” interface can facili-
tate more efficient annotation.

2 Conditional Random Fields

In this section we describe the underlying proba-
bilistic model for all methods in this paper. We
focus on sequence labeling, though the described
methods could be applied to other structured out-
put or classification tasks. We model the proba-
bility of the label sequence y € )" conditioned
on the input sequence x € X", p(y|x;6) using
first-order linear-chain conditional random fields
(CRFs) (Lafferty et al., 2001). This probability is

1
pylxi0) = S-exp (DY 0if(uivirn,x4),
X i ]

where Zx is the partition function and feature
functions f; consider the entire input sequence
and at most two consecutive output variables.
The most probable output sequence and transition
marginal distributions can be computed using vari-
ants of Viterbi and forward-backward.

Provided a training data distribution p, we es-
timate CRF parameters by maximizing the condi-
tional log likelihood of the training data.

L(0) = Ej(x,y)llog p(y|x; 0)]

We use numerical optimization to maximize £(6),
which requires the gradient of £(#) with respect
to the parameters. It can be shown that the par-
tial derivative with respect to parameter j is equal
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to the difference between the empirical expecta-
tion of F); and the model expectation of F;, where

Fj(Y7 X) = Ez fj(yia Yit1,X, Z)

0
879]-/:(9) = Ejx,y)[F(y,x)]
— Ejx) [Epyx0) [F5 (¥, X)]]-
We also include a zero-mean variance o2 = 10

Gaussian prior on parameters in all experiments.”

2.1 Learning with missing labels

The training set may contain partially labeled se-
quences. Let z denote missing labels. We esti-
mate parameters with this data by maximizing the
marginal log-likelihood of the observed labels.

Lymr(0) = Epxy) [logZp(y, z|x; 0)]

We refer to this training method as maximum
marginal likelihood (MML); it has also been ex-
plored by Quattoni et al. (2007).

The gradient of Lsps7(60) can also be written
as the difference of two expectations. The first is
an expectation over the empirical distribution of x
and y, and the model distribution of z. The second
is a double expectation over the empirical distribu-
tion of x and the model distribution of y and z.

0
%»CMML (9) = Eﬁ(x,y) [Ep(z|y,x;9) [FJ (y7 z, X)H
J

- Eﬁ(x) [Ep(y,z|x;9) [F] (Y7 z, X)H :

We train models using Lysarz(0) with expected
gradient (Salakhutdinov et al., 2003).

To additionally leverage unlabeled data, we
compare with entropy regularization (ER). ER
adds a term to the objective function that en-
courages confident predictions on unlabeled data.
Training of linear-chain CRFs with ER is de-
scribed by Jiao et al. (2006).

3 Generalized Expectation Criteria

In this section, we give a brief overview of gen-
eralized expectation criteria (GE) (Mann and Mc-
Callum, 2008; Druck et al., 2008) and explain how
we can use GE to learn CRF parameters with esti-
mates of feature expectations and unlabeled data.
GE criteria are terms in a parameter estimation
objective function that express preferences on the

210 is a default value that works well in many settings.



value of a model expectation of some function.
Given a score function S, an empirical distribution
p(x), a model distribution p(y|x; ), and a con-
straint function G (x, y), the value of a GE crite-
rion is G(0) = S(Ejx)[Ep(yx:0)[Gr (%, ¥)]])-

GE provides a flexible framework for parameter
estimation because each of these elements can take
an arbitrary form. The most important difference
between GE and other parameter estimation meth-
ods is that it does not require a one-to-one cor-
respondence between constraint functions G, and
model feature functions. We leverage this flexi-
bility to estimate parameters of feature-rich CRFs
with a very small set of expectation constraints.

Constraint functions GG, can be normalized so
that the sum of the expectations of a set of func-
tions is 1. In this case, S may measure the di-
vergence between the expectation of the constraint
function and a target expectation Gr.

)

where E[G1(X,Y)] = Ejx) [Epiy|x:0)[Gr(X,¥)]]-
It can be shown that the partial derivative of
G(6) with respect to parameter j is proportional to
the predicted covariance between the model fea-
ture function F; and the constraint function G 3

G(0) = Gilog(E[Gr(x,¥)]),

R C/ S
(me) [Epyxi0) [F5(%,¥)Gr(x,y)]

- EP(Y‘X§9) [F‘J (X7 y)]Ep(y|x;6) [Gk (Xa Y)H )

HOE 2)

The partial derivative shows that GE learns pa-
rameter values for model feature functions based
on their predicted covariance with the constraint
functions. GE can thus be interpreted as a boot-
strapping method that uses the limited training sig-
nal to learn about parameters for related model
feature functions.

3.1 Learning with feature-label distributions

Mann and McCallum (2008) apply GE to a linear-
chain, first-order CRF. In this section we provide
an alternate treatment that arrives at the same ob-
jective function from the general form described
in the previous section.

Often, feature functions in a first-order linear-
chain CRF f are binary, and are the conjunction

3If we use squared error for S, the partial derivative is the
covariance multiplied by 2(G — E[Gk(x,y)]).
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of an observational test ¢(x, i) and a label pair test

4
1{y¢=y’7y¢+1:y”}'
f(yia Yi+1, X, Z) = 1{yi:y/,yi+1:y”}Q(X7 Z)

The constraint functions G, we use here decom-
pose and operate similarly, except that they only
include a test for a single label. Single label con-
straints are easier for users to estimate and make
GE training more efficient. Label transition struc-
ture can be learned automatically from single la-
bel constraints through the covariance-based pa-
rameter update of Equation 2. For convenience,
we can write G, to denote the constraint func-
tion that combines observation test k£ with a test
for label y. We also add a normalization constant

Cr = Ejx[>2; au(x,9)],
1 .
Gyk (X7 Y) = Z Fkl{yi:y}Qk(xa 7/)

Under this construction the expectation of G, is
the predicted conditional probability that the label
at some arbitrary position 7 is ¥ when the observa-
tional test at ¢ succeeds, p(y; =y|qr(x,1)=1;6).

If we have a set of constraint functions {Gy, :
y € YV}, and we use the score function in Equa-
tion 1, then the GE objective function specifies the
minimization of the KL divergence between the
model and target distributions over labels condi-
tioned on the success of the observational test. In
general the objective function will consist of many
such KL divergence penalties.

Computing the first term of the covariance in
Equation 2 requires a marginal distribution over
three labels, two of which will be consecutive, but
the other of which could appear anywhere in the
sequence. We can compute this marginal using
the algorithm of Mann and McCallum (2008). As
previously described, this algorithm is O(n|Y|?)
for a sequence of length n. However, we make
the following novel observation: we do not need
to compute the extra lattices for feature label pairs
with Gyk = 0, since this makes Equation 2 equal
to zero. In Mann and McCallum (2008), probabil-
ities were smoothed so that V,, C‘yk > 0. If we
assume that only a small number of labels m have
non-zero probability, then the time complexity of
the gradient computation is O(nm|Y|?). In this
paper typically 1 <m< 4, while |)| is 11 or 13.

“We this notation for an indicator function that returns 1
if the condition in braces is satisfied, and 0 otherwise.



In experiments in this paper, using this optimiza-
tion does not significantly affect final accuracy.

We use numerical optimization to estimate
model parameters. In general GE objective func-
tions are not convex. Consequently, we initial-
ize Oth-order CRF parameters using a sliding win-
dow logistic regression model trained with GE.
We also include a Gaussian prior on parameters
with o2 = 10 in the objective function.

3.2 Learning with labeled features

The training procedure described above requires
a set of observational tests or input features with
target distributions over labels. Estimating a dis-
tribution could be a difficult task for an annotator.
Consequently, we abstract away from specifying
a distribution by allowing the user to assign labels
to features (c.f. Haghighi and Klein (2006) , Druck
et al. (2008)). For example, we say that the word
feature call has label contact. A label for a feature
simply indicates that the feature is a good indicator
of the label. Note that features can have multiple
labels, as does included in the active learning ses-
sion shown in Table 1. We convert an input feature
with a set of labels L into a distribution by assign-
ing probability 1/|L| for each [ € L and probabil-
ity 0 for each [ ¢ L. By assigning 0 probability to
labels | ¢ L, we can use the speed-up described in
the previous section.

3.3 Related Work

Other proposed learning methods use labeled fea-
tures to label unlabeled data. The resulting
partially-labeled corpus can be used to train a CRF
by maximizing MML. Similarly, prototype-driven
learning (PDL) (Haghighi and Klein, 2006) opti-
mizes the joint marginal likelihood of data labeled
with prototype input features for each label. Ad-
ditional features that indicate similarity to the pro-
totypes help the model to generalize. In a previ-
ous comparison between GE and PDL (Mann and
McCallum, 2008), GE outperformed PDL without
the extra similarity features, whose construction
may be problem-specific. GE also performed bet-
ter when supplied accurate label distributions.
Additionally, both MML and PDL do not natu-
rally generalize to learning with features that have
multiple labels or distributions over labels, as in
these scenarios labeling the unlabeled data is not
straightforward. In this paper, we attempt to ad-
dress this problem using a simple heuristic: when
there are multiple choices for a token’s label, sam-
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ple a label. In Section 5 we use this heuristic with
MML, but in general obtain poor results.

Raghavan and Allan (2007) also propose sev-
eral methods for learning with labeled features,
but in a previous comparison GE gave better re-
sults (Druck et al., 2008). Additionally, the gen-
eralization of these methods to structured output
spaces is not straightforward. Chang et al. (2007)
present an algorithm for learning with constraints,
but this method requires users to set weights by
hand. We plan to explore the use of the recently
developed related methods of Bellare et al. (2009),
Gragca et al. (2008), and Liang et al. (2009) in fu-
ture work. Druck et al. (2008) provide a survey
of other related methods for learning with labeled
input features.

4 Active Learning by Labeling Features

Feature active learning, presented in Algorithm 1,
is a pool-based active learning algorithm (Lewis
and Gale, 1994) (with a pool of features rather
than instances). The novel components of the
algorithm are an option to skip a query and the
notion that skipping and labeling have different
costs. The option to skip is important when us-
ing feature queries because a user may not know
how to label some features. In each iteration the
model is retrained using the train procedure, which
takes as input a set of labeled features C and un-
labeled data distribution p. For the reasons de-
scribed in Section 3.3, we advocate using GE for
the train procedure. Then, while the iteration cost
c is less than the maximum cost ¢, the feature
query ¢ that maximizes the query selection met-
ric ¢ is selected. The accept function determines
whether the labeler will label q. If q is labeled, it
is added to the set of labeled features C, and the
label cost cjgpe; is added to c. Otherwise, the skip
Cost Cgkip 18 added to c. This process continues for
N iterations.

4.1 Feature query selection methods

In this section we propose feature query selection
methods ¢. Queries with a higher scores are con-
sidered better candidates. Note again that by fea-
tures we mean observational tests gx(x,4). It is
also important to note these are not feature selec-
tion methods since we are determining the features
for which supervisory feedback will be most help-
ful to the model, rather than determining which
features will be part of the model.



Algorithm 1 Feature Active Learning

Input: empirical distribution p, initial feature constraints
C, label cost Ciqaper, skip cost cskip, Mmax cost per iteration
Cmaz, Max iterations N
Output: model parameters
fori=1to N do
0 = train(p,C)
c=0
while ¢ < ¢maa do
q = argmax,, B(qx)
if accept(q) then
C =C U label(q)
¢ = C+ Ciabel
else
c=c+ Cskip
end if
end while
end for
6 = train(p,C)

We propose to select queries that provide the
largest reduction in model uncertainty. We notate
possible responses to a query qi as g. The Ex-
pected Information Gain (EIG) of a query is the
expectation of the reduction in model uncertainty
over all possible responses. Mathematically, IG is

P16 (qK) = Ep(slqe:0) [ Epx) [H (p(¥]%;0)—
H(p(y|x;05)]],

where 6 are the new model parameters if the re-
sponse to g is g. Unfortunately, this method is
computationally intractable. Re-estimating 65 will
typically involve retraining the model, and do-
ing this for each possible query-response pair is
prohibitively expensive for structured output mod-
els. Computing the expectation over possible re-
sponses is also difficult, as in this paper users may
provide a set of labels for a query, and more gen-
erally g could be a distribution over labels.
Instead, we propose a tractable strategy for re-
ducing model uncertainty, motivated by traditional
uncertainty sampling (Lewis and Gale, 1994). We
assume that when a user responds to a query, the
reduction in uncertainty will be equal to the To-
tal Uncertainty (TU), the sum of the marginal en-
tropies at the positions where the feature occurs.

orular) = Z Z ar(xi, 7)H (p(y;]xi; 0))

Total uncertainty, however, is highly biased to-
wards selecting frequent features. A mean un-
certainty variant, normalized by the feature’s
count, would tend to choose very infrequent fea-
tures. Consequently we propose a tradeoff be-

85

tween the two extremes, called weighted uncer-
tainty (WU), that scales the mean uncertainty by
the log count of the feature in the corpus.

oru(qr)

owu(qr) = log(Cr) C,

Finally, we also suggest an uncertainty-based met-
ric called diverse uncertainty (DU) that encour-
ages diversity among queries by multiplying TU
by the mean dissimilarity between the feature and
previously labeled features. For sequence labeling
tasks, we can measure the relatedness of features
using distributional similarity.’

¢pu(qr) = ¢TU(Qk)|Cl| > 1—sim(qr, gj)
jec
We contrast the notion of uncertainty described
above with another type of uncertainty: the en-
tropy of the predicted label distribution for the fea-
ture, or expectation uncertainty (EU). As above
we also multiply by the log feature count.

¢rpu(qr) = log(Cr)H (p(ys = ylar(x,i)=1;0))

EU is flawed because it will have a large value for
non-discriminative features.

The methods described above require the model
to be retrained between iterations. To verify that
this is necessary, we compare against query selec-
tion methods that only consider the previously la-
beled features. First, we consider a feature query
selection method called coverage (cov) that aims
to select features that are dissimilar from existing
labeled features, increasing the labeled features’
“coverage” of the feature space. In order to com-
pensate for choosing very infrequent features, we
multiply by the log count of the feature.

oo () = 108(Ch) 5 D 1 = sim(a, )
Cl <=
Motivated by the feature query selection method
of Tandem Learning (Raghavan and Allan, 2007)
(see Section 4.2 for further discussion), we con-
sider a feature selection metric similarity (sim)
that is the maximum similarity to a labeled fea-
ture, weighted by the log count of the feature.

Gsim(qr) = log(Ck) max sim(qx, ¢;)

3sim(qs, q; ) returns the cosine similarity between context
vectors of words occurring in a window of £3.



Features similar to those already labeled are likely
to be discriminative, and therefore likely to be la-
beled (rather than skipped). However, insufficient
diversity may also result in an inaccurate model,
suggesting that coverage should select more use-
ful queries than similarity.

Finally, we compare with several passive base-
lines. Random (rand) assigns scores to features
randomly. Frequency (freq) scores input features
using their frequency in the training data.

Prreq(qr) = Z ZQk(Xiaj)

Top LDA (LDA) selects the top words from 50
topics learned from the unlabeled data using la-
tent Dirichlet allocation (LDA) (Blei et al., 2003).
More specifically, the words w generated by each
topic ¢ are ranked using the conditional probability
p(w|t). The word feature is assigned its maximum
rank across all topics.

drpalqr) = max ranky,pa (g, t)

This method will select useful features if the top-
ics discovered are relevant to the task. A similar
heuristic was used by Druck et al. (2008).

4.2 Related Work

Tandem Learning (Raghavan and Allan, 2007) is
an algorithm that combines feature and instance
active learning for classification. The algorithm it-
eratively queries the user first for instance labels,
then for feature labels. Feature queries are selected
according to their co-occurrence with important
model features and previously labeled features. As
noted in Section 3.3, GE is preferable to the meth-
ods Tandem Learning uses to learn with labeled
features. We address the mixing of feature and in-
stance queries in Section 4.3.

In order to better understand differences in fea-
ture query selection methodology, we proposed a
feature query selection method motivated® by the
method used in Tandem Learning in Section 4.1.
However, this method performs poorly in the ex-
periments in Section 5.

Liang et al. (2009) simultaneously developed
a method for learning with and actively selecting

The query selection method of Raghavan and Allan
(2007) requires a stack that is modified between queries
within each iteration. Here query scores are only updated
after each iteration of labeling.
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measurements, or target expectations with associ-
ated noise. The measurement selection method
proposed by Liang et al. (2009) is based on
Bayesian experimental design and is similar to
the expected information gain method described
above. Consequently this method is likely to be
intractable for real applications. Note that Liang
et al. (2009) only use this method in synthetic ex-
periments, and instead use a method similar to to-
tal uncertainty for experiments in part-of-speech
tagging. Unlike the experiments presented in this
paper, Liang et al. (2009) conduct only simulated
active learning experiments and do not consider
skipping queries.

Sindhwani (Sindhwani et al., 2009) simultane-
ously developed an active learning method that
queries for both instance and feature labels that
are then used in a graph-based learning algorithm.
They find that querying certain features outper-
forms querying uncertain features, but this is likely
because their query selection method is similar
to the expectation uncertainty method described
above, and consequently non-discriminative fea-
tures may be queried often (see also the discus-
sion in Section 4.1). It is also not clear how this
graph-based training method would generalize to
structured output spaces.

4.3 Expectation Constraint Active Learning

Throughout this paper, we have focussed on label-
ing input features. However, the proposed meth-
ods generalize to queries for expectation estimates
of arbitrary functions, for example queries for the
label distributions for input features, labels for in-
stances (using a function that is non-zero only for
a particular instance), partial labels for instances,
and class priors. The uncertainty-based query se-
lection methods described in Section 4.1 apply
naturally to these new query types. Importantly
this framework would allow principled mixing of
different query types, instead of alternating be-
tween them as in Tandem Learning (Raghavan and
Allan, 2007). When mixing queries, it will be
important to use different costs for different an-
notation types (Vijayanarasimhan and Grauman,
2008), and estimate the probability of obtaining a
useful response to a query. We plan to pursue these
directions in future work. This idea was also pro-
posed by Liang et al. (2009), but no experiments
with mixed active learning were presented.



S Simulated User Experiments

In this section we experiment with an automated
oracle labeler. When presented an instance query,
the oracle simply provides the true labels. When
presented a feature query, the oracle first decides
whether to skip the query. We have found that
users are more likely to label features that are rel-
evant for only a few labels. Therefore, the oracle
labels a feature if the entropy of its per occurrence
label expectation, H(p(y; = y|qx(x,7) = 1;0)) <
0.7. The oracle then labels the feature using a
heuristic: label the feature with the label whose
expectation is highest, as well as any label whose
expectation is at least half as large.

We estimate the effort of different labeling ac-
tions with preliminary experiments in which we
observe users labeling data for ten minutes. Users
took an average of 4 seconds to label a feature, 2
seconds to skip a feature, and 0.7 seconds to la-
bel a token. We setup experiments such that each
iteration simulates one minute of labeling by set-
ting cpazr = 60, Copip = 2 and ¢gpe; = 4. For
instance active learning, we use Algorithm 1 but
without the skip option, and set ¢jgpe; = 0.7. We
use N = 10 iterations, so the entire experiment
simulates 10 minutes of annotation time. For ef-
ficiency, we consider the 500 most frequent unla-
beled features in each iteration. To start, ten ran-
domly selected seed labeled features are provided.

We use random (rand) selection, uncertainty
sampling (US) (using sequence entropy, normal-
ized by sequence length) and information den-
sity (ID) (Settles and Craven, 2008) to select in-
stance queries. We use Entropy Regularization
(ER) (Jiao et al., 2006) to leverage unlabeled in-
stances.” We weight the ER term by choosing the
best® weight in {1073,1072,107%, 1,10} multi-
plied by % for each data set and query se-
lection method. Seed instances are provided such
that the simulated labeling time is equivalent to la-
beling 10 features.

We evaluate on two sequence labeling tasks.
The apartments task involves segmenting 300
apartment classified ads into 11 fields including
features, rent, neighborhood, and contact. We use
the same feature processing as Haghighi and Klein
(2006), with the addition of context features in a
window of +£3. The cora references task is to ex-
tract 13 BibTeX fields such as author and booktitle

"Results using self-training instead of ER are similar.
8 As measured by test accuracy, giving ER an advantage.
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method apartments cora
mean | final | mean | final
ER rand 48.1 | 536 | 759 | 8l1.1
ER US 517 | 579 | 76.0 | 832
ER ID 514 | 569 | 759 | 83.1
MMLrand | 477 | 512 | 58,6 | 64.6
MML WU | 576 | 608 | 61.0 | 662
GE rand 590 | 64.8 | 77.6 | 83.7
GE freq 66.5* | 71.6* | 68.6 | 79.8
GE LDA 65.7¢ | 71.4* | 749 | 85.0
GE cov 68.2°T | 726 | 735 | 833
GE sim 57.8 | 65.9* | 67.1 | 79.2
GE EU 66.5* | 71.6* | 68.6 | 79.8
GE TU 70.1*F | 73.6*T | 76.9 | 88.2*
GE WU 71.6* | 74.6*" | 80.3*T | 88.1*1
GE DU 70.5*1 | 74.4*T | 78.4* | 87.5*

Table 2: Mean and final token accuracy results.
A * or T denotes that a GE method significantly
outperforms all non-GE or passive GE methods,
respectively. Bold entries significantly outperform
all others. Methods in italics are passive.

from 500 research paper references. We use a stan-
dard set of word, regular expressions, and lexicon
features, as well as context features in a window
of +3. All results are averaged over ten random
80:20 splits of the data.

5.1 Results

Table 2 presents mean (across all iterations) and
final token accuracy results. On the apartments
task, GE methods greatly outperform MML® and
ER methods. Each uncertainty-based GE method
also outperforms all passive GE methods. On the
cora task, only GE with weighted uncertainty sig-
nificantly outperforms ER and passive GE meth-
ods in terms of mean accuracy, but all uncertainty-
based GE methods provide higher final accuracy.
This suggests that on the cora task, active GE
methods are performing better in later iterations.
Figure 1, which compares the learning curves of
the best performing methods of each type, shows
this phenomenon. Further analysis reveals that the
uncertainty-based methods are choosing frequent
features that are more likely to be skipped than
those selected randomly in early iterations.

We next compare with the results of related
methods published elsewhere. We cannot make
claims about statistical significance, but the results

°Only the best MML results are shown.



illustrate the competitiveness of our method. The
74.6% final accuracy on apartments is higher than
any result obtained by Haghighi and Klein (2006)
(the highest is 74.1%), higher than the supervised
HMM results reported by Grenager et al. (2005)
(74.4%), and matches the results of Mann and Mc-
Callum (2008) with GE with more accurate sam-
pled label distributions and 10 labeled examples.
Chang et al. (2007) only obtain better results than
88.2% on cora when using 300 labeled examples
(two hours of estimated annotation time), 5000 ad-
ditional unlabeled examples, and extra test time in-
ference constraints. Note that obtaining these re-
sults required only 10 simulated minutes of anno-
tation time, and that GE methods are provided no
information about the label transition matrix.

6 User Experiments

Another advantage of feature queries is that fea-
ture names are concise enough to be browsed,
rather than considered individually. This allows
the design of improved interfaces that can further
increase the speed of feature active learning. We
built a prototype interface that allows the user to
quickly browse many candidate features. The fea-
tures are split into groups of five features each.
Each group contains features that are related, as
measured by distributional similarity. The features
within each group are sorted according to the ac-
tive learning metric. This interface, displayed in
Figure 3, may be useful because features in the
same group are likely to have the same label.

We conduct three types of experiments. First, a
user labels instances selected by information den-
sity, and models are trained using ER. The in-
stance labeling interface allows the user to label
tokens quickly by extending the current selection
one token at a time and only requiring a single
keystroke to label an entire segment. Second,
the user labels features presented one-at-a-time by
weighted uncertainty, and models are trained us-
ing GE. To aid the user in understanding the func-
tion of the feature quickly, we provide several ex-
amples of the feature occurring in context and the
model’s current predicted label distribution for the
feature. Finally, the user labels features organized
using the grid interface described in the previous
paragraph. Weighted uncertainty is used to sort
feature queries within each group, and GE is used
to train models. Each iteration of labeling lasts
two minutes, and there are five iterations. Retrain-
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ing with ER between iterations takes an average
of 5 minutes on cora and 3 minutes on apart-
ments. With GE, the retraining times are on av-
erage 6 minutes on cora and 4 minutes on apart-
ments. Consequently, even when viewed with fo-
tal time, rather than annotation time, feature active
learning is beneficial. While waiting for models to
retrain, users can perform other tasks.

Figure 2 displays the results. User 1 labeled
apartments data, while Users 2 and 3 labeled cora
data. User 1 was able to obtain much better results
with feature labeling than with instance labeling,
but performed slightly worse with the grid inter-
face than with the serial interface. User 1 com-
mented that they found the label definitions for
apartments to be imprecise, so the other experi-
ments were conducted on the cora data. User 2
obtained better results with feature labeling than
instance labeling, and obtained higher mean ac-
curacy with the grid interface. User 3 was much
better at labeling features than instances, and per-
formed especially well using the grid interface.

7 Conclusion

We proposed an active learning approach in which
features, rather than instances, are labeled. We
presented an algorithm for active learning with
features and several feature query selection meth-
ods that approximate the expected reduction in
model uncertainty of a feature query. In simu-
lated experiments, active learning with features
outperformed passive learning with features, and
uncertainty-based feature query selection outper-
formed other baseline methods. In both simulated
and real user experiments, active learning with
features outperformed passive and active learning
with instances. Finally, we proposed a new label-
ing interface that leverages the conciseness of fea-
ture queries. User experiments suggested that this
grid interface can improve labeling efficiency.
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Abstract in common between two graphs. Then, these al-
gorithms approximate the feature spaces we need
in these NLP tasks. For computing similarities in

these feature spaces, we have to investigate if we
can define a particular class of graphs for the class
of tasks we want to solve. Once we focused the

for computing the similarity in first-order class of graph, we can explore efficient similarity

rewrite rule feature spaces. Our algorithm ~ &/gorithms.

is extremely efficient and, as it computes A very important class of graphs can be de-
the similarity of instances that can be rep-  fined for tasks involving sentence pairs. In these
resented in explicit feature spaces, it is a  Cases, an important class of feature spaces is the

valid kernel function. one that represents first-order rewrite rules. For
example, in textual entailment recognition (Da-
gan et al., 2006), we need to determine whether
Natural language processing models are generall§ textT" implies a hypothesig¢i, e.g., whether or
positive combinations between linguistic modelsnot “Farmers feed cows animal extrattsntails
and automatically learnt classifiers. As trees aré Cows eat animal extractg7, Hy). If we want
extremely important in many linguistic theories, ato learn textual entailment classifiers, we need
large amount of works exploiting machine learn-to exploit first-order rules hidden in training in-
ing algorithms for NLP tasks has been developedtances. To positively exploit the training instance
for this class of data structures (Collins and Duffy,“Pediatricians suggest women to feed newborns
2002; Moschitti, 2004). These works propose efbreast milk entails “Pediatricians suggest that
ficient algorithms for determining the similarity newborns eat breast milk(7», H») for classify-
among two trees in tree fragment feature spaces.ing the above example, learning algorithms should
Yet, some NLP tasks such as textual entaildearn that the two instances hide the first-order rule
ment recognition (Dagan and Glickman, 2004;p = feedYIZ] — [Yleat[Z] . The first-order
Dagan et al., 2006) and some linguistic theoriegule feature space, introduced by (Zanzotto and
such as HPSG (Pollard and Sag, 1994) requirdoschitti, 2006), gives high performances in term
more general graphs and, then, more general apfaccuracy for textual entailment recognition with
gorithms for computing similarity among graphs. respect to other features spaces.
Unfortunately, algorithms for computing similar-  In this paper, we propose a novel class of
ity among two general graphs in term of com-graphs, the tripartite directed acyclic graphs
mon subgraphs are still exponential (Ramon andtDAGS), that model first-order rule feature spaces
Gartner, 2003). In these cases, approximated aknd, using this class of graphs, we introduce a
gorithms have been proposed. For example, theovel algorithm for computing the similarity in
one proposed in (Gartner, 2003) counts the numfirst-order rewrite rule feature spaces. The possi-
ber of subpaths in common. The same happens fdaility of explicitly representing the first-order fea-
the one proposed in (Suzuki et al., 2003) that igure space as subgraphs of tDAGs makes the de-
applicable to a particular class of graphs, i.e. theived similarity function a valid kernel. With re-
hierarchical directed acyclic graphs. These algospect to the algorithm proposed in (Moschitti and
rithms do not compute the number of subgraphganzotto, 2007), our algorithm is more efficient

In this paper, we propose a novel class
of graphs, the tripartite directed acyclic
graphs (tDAGs), to model first-order rule
feature spaces for sentence pair classifi-
cation. We introduce a novel algorithm

1 Introduction
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and it is a valid kernel function. VP s

The paper is organized as follows. In Sec. 2, e _Qﬁp
we firstly describe tripartite directed acyclic | \ A\
. feed . VB NP

graphs (tDAGs) to model first-order feature (FOR) \u

eat

spaces. In Sec. 3, we then present the related
work. In Sec. 4, we introduce the similarity func-

: . Figure 1:A simple rewrite rule seen as a graph
tion for these FOR spaces. This can be used as ker- g P grap

nel function in kernel-based machines (e.g., sup- /S\
port vector machines (Cortes and Vapnik, 1995)). NP VP
We then introduce our efficient algorithm forcom- 73 s v

puting the similarity among tDAGs. In Sec. 5, T g
we analyze the computational efficiency of our

algorithm showing that it is extremely more ef-
ficient than the algorithm proposed in (Moschitti
and Zanzotto, 2007). Finally, in Sec. 6, we draw
conclusions and plan the future work.

cowsanimal extracts animal extracts

Figure 2:A sample pair seen as a graph

the corresponding unlabelled node. The result is a

2 Representing first-order rules and graph as the one in Fig. 1. The variatésand(Z]
sentence pairs as tripartite directed are represented by the unlabelled nodes between
acyclic graphs the trees.

In the same way we can represent the sentence

As first step, we want to define thapartite di- pair (11, H,) using graph with explicit links be-
rected acyclic graphtDAGs). This is an ex-  tween related words and nodes (see Fig. 2). We
tremely important class of graphs for the first-can |ink words using anchoring methods as in
order rule feature spaces we want to model. WRRaina et al., 2005). These links can then be prop-
want here to intuitively show that, if we model agated in the syntactic tree using semantic heads
first-order rules and sentence pairs 854G's, de-  of the constituents (Pollard and Sag, 1994). The
termining whether or not a sentence pair can bspu|ep1 matches over the paifl}, H,) if the graph
unified with a first-order rewrite rule is a graph ,, is among the subgraphs of the graph in Fig. 2.
matching problem. This intuitive idea helps in  Both rules and sentence pairs are graphs of the
determining our efficient algorithm for exploiting sgme type. These graphs are basically two trees
first-order rules in learning examples. connected through an intermediate set of nodes

To illustrate the above idea we will use an ex-representing variables in the rules and relations be-
ample based on the above ryge feed —  tween nodes in the sentence pairs. We will here-
[YleatlZ] and the above sentence péilf;, H1).  after call these graphsipartite directed acyclic
The rulep encodes the entailment relation of thegraphs(tDAGs). The formal definition follows.
verbto feedand the verdo eat If represented pefinition tDAG: A tripartite directed acyclic
over a syntactic interpretation, the rule has the fo"graphis a graphG = (N, E) where

lowing aspect:
e the set of nodeV is partitioned in three sets

s Ni, Ny, and A
VP /\
N VP . . .
o1 = V R . e the set of edges is partitioned in four séis
| vB NHZ] Egl EAti andEAg
feed |
eat such that = (N, E;) andg = (N, E,) are two

As in the case of feature structures (Carpentef’®es ands, = {(z,y)lz € N;andy € A} and
1992), we can observe this rule as a graph. A4, = {(z,y)[z € Ny andy € A} are the edges
we are not interested in the variable names but wgOnnecting the two trees.

need to know the relation between the right hand A tDAG is a partially labeled graph. The label-
side and the left hand side of the rule, we caring functionL only applies to the subsets of nodes
substitute each variable with an unlabelled noderelated to the two trees, i.el, : N; U N, — L.
We then connect tree nodes having variables wittNodes in the sefl are not labeled.
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The explicit representation of the tDAG in Fig. 2  In (Zanzotto and Moschitti, 2006), tripartite di-
has been useful to show that the unification of aected acyclic graphs are implicitly introduced and
rule and a sentence pair is a graph matching prokexploited to build first-order rule feature spaces.
lem. Yet, it is complex to follow. We will then de- Yet, both in (Zanzotto and Moschitti, 2006) and
scribe a tDAG with an alternative and more con-in (Moschitti and Zanzotto, 2007), the model pro-
venient representation. A tDAG = (N,E) posed has two major limitations: it can represent
can be seen as pait = (7,) of extended trees rules with less than 7 variables and the proposed
7 andy wherer = (N, U A,E, U E4,) and kernel is not a completely valid kernel as it uses
v = (NgUAE;UE,,). These are extended the max function.
trees as each tree contains the relations with the In machine translation, some methods such as
other tree. (Eisner, 2003) learn graph based rewrite rules for

As for the feature structures, we will graphically generative purposes. Yet, the method presented in
represent dx,y) € Ea, and a(z,y) € E4, as  (Eisner, 2003) can model first-order rewrite rules
boxes[Y] respectively on the node and on the only with a very small amount of variables, i.e.,
nodez. These nodes will then appear Aéx)Y] two or three variables.
andL(2)Y], e.g., NIl The namey is not a label
but a placeholder representing an unlabelled nodét  An efficient algorithm for computing
This representation is used for rules and for sen-  the first-order rule space kernel

tence pairs. The sentence pair in Fig. 2 is ther; thi i N idea f -
represented as reported in Fig. 3. n this section, we present our idea for an effi-

cient algorithm for exploiting first-order rule fea-
3 Related work ture spaces. In Sec. 4.1, we firstly define the simi-
larity function, i.e., the kernek' (G, G5), that we
Automatically learning classifiers for sentenceneed to determine for correctly using first-order
pairs is extremely important for applications like rules feature spaces. This kernel is strongly based
textual entailment recognition, question answeron the isomorphism between graphs. A relevant
ing, and machine translation. idea of this paper is the observation that we can
In textual entailment recognition, it is not hard define an efficient way to detect the isomorphism

to see graphs similar to tripartite directed acyclicbetween the tDAGs (Sec. 4.2). This algorithm ex-
graphs as ways of extracting features from examp|0its the efficient algorithms of tree isomorphism
ples to feed automatic classifiers. Yet, these graphas the one implicitly used in (Collins and Duffy,
are generally not tripartite in the sense describe@002). After describing the isomorphism between
in the previous section and they are not used to eXDAGs, We can present the idea of our efficient al-
tract features representing first-order rewrite rulesgorithm for computingk' (G, Go) (Sec. 4.3). We
In (Raina et al., 2005; Haghighi et al., 2005; Hickl introduce the algorithms to make it a viable solu-
et al., 2006), two connected graphs representin§on (Sec. 4.4). Finally, in Sec. 4.5, we report the
the two sentences; and s, are used to compute kernel computation we compare against presented
distance features, i.e., features representing they (Zanzotto and Moschitti, 2006; Moschitti and
distance betwees; ands,. The underlying idea Zanzotto, 2007).
is that lexical, syntactic, and semantic similarities
between sentences in a pair are relevant featurds!
to classify sentence pairs in classes sucbkrdail
andnot-entalil The first-order rule feature space we want to model
In (de Marneffe et al., 2006), first-order rewrite is huge. If we use kernel-based machine learning
rule feature spaces have been explored. Yet, thesgodels such as SVM (Cortes and Vapnik, 1995),
spaces are extremely small. Only some featurewe can implicitly define the space by defining its
representing first-order rules have been exploredsimilarity functions, i.e., its kernel functions. We
Pairs of graphs are used here to determine if a fedirstly introduce the first-order rule feature space
ture is active or not, i.e., the rule fires or not. A and we then define the prototypical kernel function
larger feature space of rewrite rules has been imever this space.
plicitly explored in (Wang and Neumann, 2007) The first-order rule feature spac€@R) is in
but this work considers only ground rewrite rules. general the space of all the possible first-order

Kernel functions over first-order rule
feature spaces
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Figure 3: Two tripartite DAGs

rules defined as tDAGs. Within this space it is posfunction is using the intersection operator, i.e., the

sible to define the functio(G) that determines
all the possible active features of the tDAGINn
FOR. The functionS(G) determines all the pos-
sible and meaningful subgraphs 6f We want

that these subgraphs represent first-order rules tha

can be matched with the pait. Then, meaningful

subgraphs ofr = (7, ) are graphs a&, g) where

t andg are subtrees of and~. For example, the
subgraphs oP; and P; in Fig. 3 are hereafter par-
tially represented:

s s NEHY NCH|
S(P={( A, N\ ). ¢ | , | )
NP VP NA ve NNl el
s s
T~ /\
NP VP NALl P
, )
v VB/N\
fe‘ed eLn
s
VP PN
T~ NAL  vp
( v nelZ] nA3T N )}
| vB NP3
feed |
eat
and
2] 42] NCH| NCH|
SP)={ ¢ ™~ , " ). | ) | Y
nAl ve2l  nAE] ve2] NNl el
s
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feed |
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kernel K (G, G2) is the following:

K(G1,Gz2) =[8(G1) N S(Ga) 1)

Tpis is very simple to write and it is in principle
correct. A graphg in the intersectionS(G1) N
S(G2) is a graph that belongs to bo8(G,) and
S(G2). Yet, this hides a very important fact: de-
termining whether two graphg; andgs, are the
samegraphg; = g is not trivial. For example,
it is not sufficient to superficially compare graphs
to determine thap; belongs both taS; and Ss.
We need to use the correct property far= go,
i.e., theisomorphisnbetween two graphs. We can
call the operatorZso(gi, g2). When two graphs
verify the propertylso(g1,g2), both g; and go
can be taken as the grapghrepresenting the two
graphs. Detectindso(g1,¢92) has an exponential
complexity (Kobler et al., 1993).

This complexity of the intersection operator be-
tween sets of graphs deserves a different way to
represent the operation. We will use the same sym-
bol but we will use the prefix notation. The opera-
tor is hereafter re-defined:

N(S(G1),S8(G2)) =
= {g1lg1 € S(G1),3g2 € S(G2),Is0(g1,92)}

4.2 Isomorphism between tDAGs

In the FOR space, the kernel functidéhshould  As isomorphism between graphs is an essential ac-
then compute the number of subgraphs in comtivity for learning from structured data, we here
mon. The trivial way to describe the former kernelreview its definition and we adapt it to tDAGSs.
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We then observe that isomorphism between two Al il

tDAGs can be divided in two sub-problems: Po=(rava)=( 8@ dd ., w@d NI )
NN NN
e finding the isomorphism between two pairs e[l B 2l MN N
Al |
of extended trees o~ o~
Py = (m,w) = 8l di L] Nzl )

e checking whether the partial isomorphism
found between the two pairs ektended trees
are compatible.

PN PN PN PN
el s2] di] 3]  mB] Ml n2] NI

Figure 5: Simple non-linguistic tDAGs
In general, two tDAGsG1 = (Ny, Ep) and
Gz = (N2, L) are isomorphic (or match) if For example, the third pair o§(P;) and the

[N = [Naf, [E1| = |E»|, and a bijective func- go00nqg pair o5 (P,) are isomorphic as: (1) these
tion f : N1 — N exists such that these properties e partially isomorphic, i.e., the right hand sides

hold: r and the left hand sides are isomorphic; (2)
o for each node: € Ny, L(f(n)) = L(n) both pairs of extended trees generate the constraint
o for each edge(ni,ns) € E; an edge o = {(@.3),(3.14)}. Inthe same way, the
(f(n1), f(ng)) isin Ey fourth pair of S(P;) and the third pair ofS(P)

generate:, = {((1],[1])}

The bijective functionf is a member of the combi-
natorial setF of all the possible bijective functions 4.3 General idea for an efficient kernel
between the two set§; and N,. function

The trivial algorithm for detecting if two graphs as apove discussed, two tDAGs are isomorphic if
are isomorphic is exponential (Kobler et al., he two properties, theartial isomorphismand
1993). It explores all the sek. Itis still unde-  heconstraint compatibilityhold. To compute the
term_lned if the general graph isomorphism probygrnel functionk (G, G») defined in Sec. 4.1, we
lem is NP-complete. Yet, we can use the fact thatan exploit these properties in the reverse order.
tDAGs are two extended trees for building a bet-gjyen a constraint, we can select all the graphs
ter algorithm. There is an efficient algorithm for that meet the constraint (constraint compatibil-
computing isomorphism between trees (as the ONRy). Having the two set of all the tDAGs meeting

impljcitly used in (Collins and Duffy, 2002)). the constraint, we can detect tpartial isomor-
Given two tDAGSGy = (71,71) and G2 = phism We split each pair of tDAGs in the four
(72,72) the isomorphism problem can be divided gyiended trees and we determine if these extended
in detecting two properties: trees are compatible.
1. Partial isomorphism Two tDAGs(G; andGs We introduce this innovative method to com-

arepartially isomorphic if 7; andr; are iso-  pute the kernelK (G1, G2) in the FOR space in
morphic and ify; and~, are isomorphic. The two steps. Firstly, we give an intuitive explanation
partial isomorphism produces two bijective and, secondly, we formally define the kernel.
functions f- and f,.

2. Constraint compatibility Two bijective func-
tions f- and f, are compatible on the sets of

4.3.1 Intuitive explanation

To give an intuition of the kernel computation,
nodesA; and As, if for eachn € A,, it hap- yvithout loss of generglity .an.d for sake of simplic-
- ity, we use two non-linguistic tDAGsP, and P,
pens thatf,(n) = f(n). _ = .
(see Fig. 5), and the subgraph functi®(?). This
We can rephrase the second property, i.e., thiatter is an approximated version8t6) that gen-
constraint compatibility, as follows. We de- erates tDAGs with subtrees rooted in the root of
fine two constraints:(71,72) and c¢(y1,72) rep-  theinitial trees of.
resenting the functiongf; and f, on the sets To exploit the constraint compatibility
Ay and As. The two constraints are defined asproperty, we defineC' as the set of all the
c(t,m2) = {(n, fr(n))|n € A1} ande(y1,v2) =  relevant alternative constraintsi.e., the con-
{(n, fy(n))|n € A;}. Two partially isomorphic straints ¢ that are likely to be generated
tDAGs are isomorphic if the constraints match,when detecting the partial isomorphism
ie.,c(m,m2) = c(71,72)- For P, and P, this set isC = {cj,c0} =
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Figure 4: Intuitive idea for the kernel computation

{({(0@), @ 2)}, {@ @), 2.B8)}}. Wecan N(S(P.),S(P)) but it does belong to

then determine the kern&l (P,, P,) as: N(S(72),S(1)) X N(S(Va), S(M))-
The equivalence (2) allows to compute the car-
K(Pa,P)= |N(S(Pa),S(Py))|= dinality ofﬂ(S( ) S(Pb))\C using the cardinal-
= NG SE)le UNE(P). Sy | ities of N(S(7a), S(7))|e and (S (7a), S ()]

_ These latter sets contain only extended trees where
where N(S(P,),S(Py))|. are the common sub- the equivalences between unlabelled nodes are
graphs that meet the constraint A tDAG ¢’ =  given byc. We can then compute the cardinali-
(',7) in S(P,) is in N(S(Py), S(By))] if g" = ties of these two sets using methods developed for
(T "77") in S(P,) exists,g is partially isomorphic  trees (e.g., the kerel functioR 5 (61, 05) intro-
tog”, andc’ = c(7', 7") = c(v',~") iscoveredby  duced in (Collins and Duffy, 2002)).
and compatiblewith the constraint;, i.e.,¢’ C c. L
For example in Fig. 4, the first tDAG of the set 4.3.2 Formal definition
m(s(P ), 5(pb))‘61 belongs to the set as its con- Given the idea of the previous section, it is easy
straintc’ = {([d],[2)} is a subset of; . to demonstrate that the kerngl(G1, G2) can be

Observing the kernel computation in this way Written as follows:
is important.  Elements imM(S(Fy),S(P))|c
already satisfy the property afonstraint com-  K(G1.G2)=|Uccc N(S(11):S(m2))lexN(S (1), (1)) |
patibility. We only need to determine if the where C' is set of alternative constraints and
partially isomorphicproperties hold for elements N(S(0;),S(A2))|. are all the common extended
in N(S(P,),S(P,))|.. Then, we can write the trees compatible with the constraint

following equivalence: We can compute the above kernel using the
inclusion-exclusion property, i.e.,
N(S(Pa),S(Py))]e=
2 - _)lJI-1
(S S @S D AU U A {Z }( DAL @)
Jeoil,., n

Figure 4 reports this equivalence for the two
sets derived using the constraints and cs.
Note that this equivalence is not valid if a con-
straint is_not applied, i.e.,N(S(F.),S(H))
£ 0812, 8m) % N(S(a),S(w)).
The pair P, itself does not belong to Kgs(01,602,¢) =|N(S(01),S5(02))lc] (4)

where 2{1} is the set of all the subsets of
{1,... ,TL} andA; = ﬂiGJAi'

To describe the application of the inclusion-
exclusion model in our case, let firstly define:
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wheref, can be both; andv; andf, can be both 4.4 Enabling the efficient kernel function

72 andr,. Trivially, we can demonstrate that: The above idea for computing the kernel function
is extremely interesting. Yet, we need to make it
K(G1,G2) = viable by describing the way we can determine ef-
=32 s eattlopy GOV K s (11,72,6(0) Ks (172,¢()) ficiently the three main parts of the equation (7):
(5) 1) the set of alternative constrain@s(Sec. 4.4.1);
2) the setC™* of all the possible intersections of

Whg.rec(‘] )h: e Ci- o e constraints inC' (Sec. 4.4.2); and, finally, 3) the
iven the nature of the constraint { we numbersN(c) (Sec. 4_4.3).

can compute efficiently the previous equation as
it often happens that two differenf; and ., in  4.4.1 Determining the set of alternative

2{L.--|C1} generate the samei.e. constraints
The first step of equation (7) is to determine the
€= ﬂ G = ﬂ Ci (6)  alternative constraint§’. We can here strongly
1€Jq 1€J2

use the possibility of dividing tDAGs in two trees.
Then, we can defin€* as the set of all intersec- We build C as C- U C, where: 1)C; are the
tions of constraints irC, i.e. C* = {c¢(J)|J € constraints obtained from pairs of isomorphic ex-

2{1--IC1}1 We can rewrite the equation as: tended trees; € S(71) andit; € S(2); 2) C, are

the constraints obtained from pairs of isomorphic
K(G1,G9) = extended trees, € S(1) andts € S(2).
The idea for an efficient algorithm is that we
= K K N 7 . . .

CGZC* s(71,72, ) Ks (1,72, )N (e) - (7) can compute theC' without explicitly looking
at all the subgraphs involved. We instead use
where and combine the constraints derived comparing
the productions of the extended trees. We can

_ -1
N(e) = lz: . (1) (8) compute thernC'. with the productions of; and
J Ei{zcu‘) . 7o and C,, with the productions ofy; and ~».

For example (see Fig. 3), focusing on thethe
The complexity of the above kernel strongly de-ryie  nvpPE — NN2WNNSB  of G, and
pends on the cardinality @f and the related cardi- NPA — NNBNNSE of G, generates the

Blexty s st exponentil with respect o e size COnSvANE = (E.8), (B B))
plexity P P Using the above intuition it is possible to define

of 4; andA,. Yet, the average case complexity an algorithm that builds an alternative constraint

(Wang, 1997) is promising. . ) o
The setC is generally very small with re- SetC’ with the following two properties:

spect to the worst case. JF4, 4,) are all the 1. for each common subtree according to a set
possible correspondences between the nodes of constraints;, 3¢’ € C such that C ¢/;

Ay and Ay, it happens thatC| << |Fa, a,)
where|F (4, 4,)| is the worst case. For example, 2. 3, ¢" € C'such that’ C " andd’ # 0.
in the case ofP; and P, the cardinality of 442 petermining the seC*

¢ = ((@D)(EB) GM@).@5))
is extremely smaller than the one

o) . . . .
tersections of alternative constraints@h Figure
F(ay,40) - {WL).(212),E13)}, 6 presents the algorithm determinigyf. Due to

{(,,,,,}, {(IT|.|7|),(17|.|§|),(I§I.IT|)}, the property (6) discussed in Sec. 4.3, we can em-
{(’)””}}- In Sec. 4.5 we argue irically demonstrate that the average complexity
that the algorithm presented in (Moschlttl_andof the algorithm is not bigger thaf(|C[2). Yet,
Zanzotto, 2007) has the worst-case complexity. a4ain, the worst case complexity is exponential.
Moreover, the se€* is extremely smaller than
2{L.--I€1} due to the above property (6). 4.4.3 Determining the values ofV(c)
We will analyze the average-case complex-The multiplier N(c¢) (Eqg. 8) represents the num-
ity with respect to the worst-case complexity inber of times the constraint is considered in the
Sec. 5. sum of equation 5, keeping into account the sign of

The setC* is defined as the set of all possible in-
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Algorithm Build the seC* from the set’

50

C+<—C;Cl<—0;02<—® | KEGJhGQ;l— ;
WHILE |Cy] > 1 10 L Kmaa(Gr, G2) - -
FORALL ¢ € C; '
FORALL ¢ € C} such that/ # ¢” a0 | |
c—dcdnd ms
IFc¢ C*T addcto Cy 90 |
C+<—C+UCQ;01<—CQ;CQ<—®
C*—CuCtu{n} 10 -
Figure 6:Algorithm for computingC* 0 ' NN e—

0 10 20 30 40 50

. , ) n x m placeholders
the corresponding addend. Itis possible to demon-

strate that: Figure 7: Mean execution time in milliseconds
B (ms) of the two algorithms wrtn x m wheren
N(e)=1- Z Ne ©) andm are the number of placeholders of the two
ol tDAGS

This recursive formulation of the equation allows ) )
us to easily determine the value bf(c) for every ~ SPaces (Collins and Duffy, 2002). As we are using

¢ belonging taC*. Itis possible to prove this prop- the same basic kernel, we can empirically compare

erty using set properties and the binomial theoremth® two methods.

The proof is omitted for lack of space. . .
5 Experimental evaluation

4.5 Reviewing the strictly related work _ _ . _
In this section we want to empirically estimate the

To understand if ours is an efficient algorithm, Wepenefits on the computational cost of our novel al-
compare it with the algorithm presented by (MOS-qrithm with respect to the algorithm proposed by
chlttl and.Zanzotto, 2007). We will he.reafter call (Moschitti and Zanzotto, 2007). Our algorithm is
this algorithm Knqz.  The King, algorithm and - n yrinciple exponential with respect to the set of
kernel is an approximation of what is a Kemel ernative constraints’. Yet, due to what pre-
needed for a FOR space as it is not difficult Ogented in Sec. 4.4 and as the €&t is usually

demonstrate thak . (G1,G2) < K(G1,G2)- yery small, the average complexity is extremely
The K, approximation is based on maximiza- 1o, Following the theory on the average-cost
tion over the set of possible correspondences Oéomputational complexity (Wang, 1997), we es-
the placeholders. Following our formulation, this i\ 5ted the behavior of the algorithms on a large
kernel appears as: distribution of cases. We then compared the com-
puting times of the two algorithms. Finally, as
Kinaz(G1,G2) = K and K,,,... compute slightly different kernels,
= cej{_l(leA )KS(7'177'270)KS(’717’7270) (10)  we compare the accuracy of the two methods.
1 We implemented both algorithms (G, G2) and
where F(4, 4, are all the possible correspon- Kmaz(G1, G2) in support vector machine classi-
dences between the nodﬂ$ and A2 of the two fier (JoaChlmS, 1999) and we eXperlmentEd with
tDAGs as the one presented in Sec. 4.3. This forboth implementations on the same machine. We
mulation of the kernel has the worst case complexhereafter analyze the results in term of execution
ity of our formulation, i.e., Eq. 7. time (Sec. 5.1) and in term of accuracy (Sec. 5.2).
For computing the basic kernel for the extended ] ] ]
trees, i.e. Kg(01,602,c) we use the model algo- 5.1 Average computing time analysis
rithm presented by (Zanzotto and Moschitti, 2006)For this first set of experiments, the source of ex-
and refined by (Moschitti and Zanzotto, 2007)amples is the one of the recognizing textual en-
based on the algorithm for tree fragment featurdailment challenge, i.e., RTE2 (Bar-Haim et al.,
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Kernel Accuracy Used training Support

T ' - ' B examples Vectors
1600 K Kggl" 22; o Komar 59.32 4223 4206
1400 + mag =L B2 - K 60.04 4567 4544
1200 - '
: Table 1:Comparative performances #f,,,.. and K
1000 |- : N
S 800 - : - : :
it becomes intractable after 7 placeholders. The
600 - . - computation ofK is instead more flat. This can
400 - - be explained as the computation &f is related
200 |- ] to the real alternative constraints that appears in
o L the dataset. The computation of the kerfethen
o /

0 2 4 6 8 10 12 14 outperforms the computation of the kerd€},...

#ofplaceholders 5.2 Accuracy analysis

. ] . . . As K., that has been demonstrated very effec-
Figure 8: Total execution time in seconds (s) of.” ~.
. . tive in term of accuracy for RTE an#” compute
the training phase on RTE2 wrt. different numbers_ " . . LT .
a slightly different similarity function, we want to
of allowed placeholders
show that the performance of our more computa-
tionally efficientK is comparable, and even better,

2006). The dataset of the challenge has 1,600 seff the performances dt’,,.. We then performed
tence pairs. an experiment taking as training all the data de-

The computational cost of bothi (G1, G») and rived from RTE1l, RTE2, and RTE3, (i.e., 4567

Knas(G1, Ga) depends on the number of place_training examples) and taking as testing RTE-4
hOngrSn’: 14,] of Gy and onm. — |As| the (i.e., 1000 testing examples). The results are re-

number of placeholders a®,. Then, in the first ported in Tab. 1. As the table shows, the accuracy

experiment we want to determine the relation be-Of K is higher than the accuracy éfyq.. There

tween the computational time and the factorm. are two main reasons. The first is thilt,. is

Results are reported in Fig. 7 where the computa<§ln approximation of. The second is that we

tion times are plotted with respectiox m. Each can now consider sentence pairs with more than

point in the curve represents the average execu7- placeholders. ‘Then, we can use the complete

L . . . training set as the third column of the table shows.
tion time for the pairs of instances havingx m

placeholders. As expected, the computation of thgy  conclusions and future work

function K is more efficient than the computation

K,mae. The difference between the two executionWe presented an interpretation of first order rule
times increases with x m. feature spaces agpartite directed acyclic graphs

We then performed a second experiment thaf!?AGS). This view on the problem gave us the

wants to determine the relation of the total exeP0SSibility of defining a novel and efficient algo-

cution with the maximum number of placeholdersrithm for computing the kernel function for firs_t
in the examples. This is useful to estimate the be@rder rule feature spaces. Moreover, the resulting

havior of the algorithm with respect to its applica- 2/90rithm is a valid kernel as it can be written as
tion in learning models. Using the RTE2 data, wedOt Product in the explicit space of the tDAG frag-
artificially build different versions with increasing MenNts. We demonstrated that our algorithm out-

number of placeholders. We then have RTE2 witHP€"forms in term of average complexity the previ-
1 placeholder at most in each pair, RTE2 with 20US algorithm and it yields to better accuracies for

placeholders, etc. The number of pairs in each sdf€ final task. We are investigating if this is a valid
is the same. What changes is the maximal num&lgorithm for two general directed acyclic graphs.

ber of placeholders. Results are reported in Fig. 8
where the execution time of the training phase in
seconds (s) is plotted for each different set. We
see that the computation &f ... is exponential

with respect to the number of placeholders and
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Abstract

We study graphical modeling in the case of string-
valued random variables. Whereas a weighted
finite-state transducer can model the probabilis-
tic relationship between fwo strings, we are inter-
ested in building up joint models of three or more
strings. This is needed for inflectional paradigms
in morphology, cognate modeling or language re-
construction, and multiple-string alignment. We
propose a Markov Random Field in which each
factor (potential function) is a weighted finite-state
machine, typically a transducer that evaluates the
relationship between just two of the strings. The
full joint distribution is then a product of these fac-
tors. Though decoding is actually undecidable in
general, we can still do efficient joint inference
using approximate belief propagation; the nec-
essary computations and messages are all finite-
state. We demonstrate the methods by jointly pre-
dicting morphological forms.

1 Overview

This paper considers what happens if a graphical
model’s variables can range over strings of un-
bounded length, rather than over the typical finite
domains such as booleans, words, or tags. Vari-
ables that are connected in the graphical model are
related by some weighted finite-state transduction.

Graphical models have become popular in ma-
chine learning as a principled way to work with
collections of interrelated random variables. Most
often they are used as follows:

1. Build: Manually specify the n variables of
interest; their domains; and the possible di-
rect interactions among them.

Train: Train this model’s parameters 6 to
obtain a specific joint probability distribution
p(Vi,...,V,) over the n variables.

. Infer: Use this joint distribution to predict
the values of various unobserved variables
from observed ones.

*Supported by the Human Language Technology Center
of Excellence at Johns Hopkins University, and by National
Science Foundation grant No. 0347822 to the second author.
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Note that 1. requires intuitions about the domain;
2. requires some choice of training procedure; and
3. requires a choice of exact or approximate infer-
ence algorithm.

Our graphical models over strings are natural
objects to investigate. We motivate them with
some natural applications in computational lin-
guistics (section 2). We then give our formalism:
a Markov Random Field whose potential functions
are rational weighted languages and relations (sec-
tion 3). Next, we point out that inference is in gen-
eral undecidable, and explain how to do approxi-
mate inference using message-passing algorithms
such as belief propagation (section 4). The mes-
sages are represented as weighted finite-state ma-
chines.

Finally, we report on some initial experiments
using these methods (section 7). We use incom-
plete data to train a joint model of morphological
paradigms, then use the trained model to complete
the data by predicting unseen forms.

2 Motivation

The problem of mapping between different forms
and representations of strings is ubiquitous in nat-
ural language processing and computational lin-
guistics. This is typically done between string
pairs, where a pronunciation is mapped to its
spelling, an inflected form to its lemma, a spelling
variant to its canonical spelling, or a name is
transliterated from one alphabet into another.
However, many problems involve more than just
two strings:

e in morphology, the inflected forms of a (possi-
bly irregular) verb are naturally considered to-
gether as a whole morphological paradigm in
which different forms reinforce one another;

mapping an English word to its foreign translit-
eration may be easier when one considers the
orthographic and phonological forms of both
words;

similar cognates in multiple languages are nat-
urally described together, in orthographic or
phonological representations, or both;

Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 101-110,
Singapore, 6-7 August 2009. (©2009 ACL and AFNLP



modern and ancestral word forms form a phylo-
genetic tree in historical linguistics;

in bioinformatics and in system combination,
multiple sequences need to be aligned in order
to identify regions of similarity.

We propose a unified model for multiple strings
that is suitable for all the problems mentioned
above. It is robust and configurable and can
make use of task-specific overlapping features. It
learns from observed and unobserved, or latent, in-
formation, making it useful in supervised, semi-
supervised, and unsupervised settings.

3 Formal Modeling Approach

3.1 Variables

A Markov Random Field (MRF) is a joint model
of a set of random variables, V = {Vi,...,V,,}.
We assume that all variables are string-valued, i.e.
the value of V; may be any string € X7, where ¥;
is some finite alphabet.

We may use meaningful names for the integers
1, such as Vaga for the 2nd singular past form of a
verb.

The assumption that all variables are string-
valued is not crucial; it merely simplifies our
presentation. It is, however, sufficient for many
practical purposes, since most other discrete ob-
jects can be easily encoded as strings. For exam-
ple, if V7 is a part of speech tag, it may be en-
coded as a length-1 string over the finite alphabet
»1 = {Noun, Verb, .. .}.

3.2 Factors

A Markov Random Field defines a probability for
each assignment A of values to the variables in V:

a1
pA) = S [TEW (1)
7j=1
This distribution over assignments is specified by
the collection of factors F; : A — R>o. Each
factor (or potential function) is a function that de-
pends on only a subset of A.

Fig. 1 displays an undirected factor graph, in
which each factor is connected to the variables
that it depends on. F1, F3, F5 in this example are
unary factors because each one scores the value
of a single variable, while F», Fy, F are binary
factors.
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Figure 1: Example of a factor graph. Black boxes represent
factors, circles represent variables (infinitive, 2nd past, and
3rd present-tense forms of the same verb; different samples
from the MRF correspond to different verbs). Binary factors
evaluate how well one string can be transduced into another,
summing over all transducer paths (i.e., alignments, which
are not observed in training).

In our setting, we will assume that each unary
factor is specified by a weighted finite-state au-
tomaton (WFSA) whose weights fall in the semir-
ing (R>0, +, x). Thus the score F5(...,Vaga =
x,...) is the total weight of all paths in the F3’s
WEFSA that accept the string x € X5¢,. Each
path’s weight is the product of its component arcs’
weights, which are non-negative.

Similarly, we assume that each binary factor is
specified by a weighted finite-state transducer
(WFST). Such a model is essentially a generaliza-
tion of stochastic edit distance (Ristad and Yian-
ilos, 1996) in which the edit probabilities can be
made sensitive to a finite summary of context.

Formally, a WFST is an automaton that resem-
bles a weighted FSA, but it nondeterministically
reads two strings x, y in parallel from left to right.
The score of (x,y) is given by the total weight of
all accepting paths in the WFST that map z to y.
For example, different paths may consider various
monotonic alignments of z with y, and we sum
over these mutually exclusive possibilities.!

A factor might depend on £ > 2 variables. This
requires a k-tape weighted finite-state machine
(WFSM), an obvious generalization where each
path reads k strings in some alignment.”

To ensure that 7 is finite in equation (1), we can
require each factor to be a “proper” WFSM, i.e.,
its accepting paths have finite total weight (even if
the WFSM is cyclic, with infinitely many paths).

"Each string is said to be on a different “tape,” which has
its own “read head,” allowing the WFSM to maintain a sep-
arate position in each string. Thus, a path in a WFST may
consume any number of characters from x before consuming
the next character from y.

2Weighted acceptors and transducers are the cases k = 1
and k = 2, which are said to define rational languages and
rational relations.



3.3 Parameters

Our probability model has trainable parameters: a
vector of feature weights 0 € R. Each arc in each
WFSM has a real-valued weight that depends on 6.
Thus, tuning 6 during training will change the arc
weights, hence the path weights, the factor func-
tions, and the whole probability distribution p(.A).

Designing the probability model includes spec-
ifying the topology and weights of each WFSM.
Eisner (2002) explains how to specify and train
such parameterized WFSMs. Typically, the
weight of an arc is a simple sum like 615 + 055 +
072, where 615 is included on all arcs that share
feature 12. However, more interesting parameter-
izations arise if the WFSM is constructed by op-
erations such as transducer composition, or from a
weighted regular expression.

3.4 Power of the formalism

Factored finite-state string models (1) were orig-
inally suggested by the second author, in Kempe
et al. (2004). That paper showed that even in the
unweighted case, such models could be used to en-
code relations that could not be recognized by any
k-tape FSM. We offer a more linguistic example
as a small puzzle. We invite the reader to spec-
ify a factored model (consisting of three FSTs as
in Fig. 1) that assigns positive probability to just
those triples of character strings (x, y, z) that have
the form (red_ball, ball_red, red), (white_house,
house_white, white), etc. This uses the auxiliary
variable Z to help encode a relation between X
and Y that swaps words of unbounded length. By
contrast, no FSM can accomplish such unbounded
swapping, even with 3 or more tapes.

Such extra power might be linguistically useful.
Troublingly, however, Kempe et al. (2004) also
observed that the framework is powerful enough to
express computationally undecidable problems.’
This implies that to work with arbitrary models,
we will need approximate methods.* Fortunately,
the graphical models community has already de-

3Consider a simple model with two variables and two bi-

nary factors: p(Vi, Vz) & L. (4, Va) - Fa(Vi, Va). Sup-
pose F1 is 1 or 0 according to whether its arguments are
equal. Under this model, p(e) < 1 iff there exists a string
x # e that can be transduced to itself by the unweighted
transducer F5». This question can be used to encode any in-
stance of Post’s Correspondence Problem, so is undecidable.

“Notice that the simplest approximation to cure undecid-
ability would be to impose an arbitrary maximum on string
length, so that the random variables have a finite domain, just
as in most discrete graphical models.
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Figure 2: Illustration of messages being passed from variable
to factor and factor to variable. Each message is represented
by a finite-state acceptor.

veloped many such methods, to deal with the com-
putational intractability (if not undecidability) of
exact inference.

4 Approximate Inference

In this paper, we focus on how belief propagation
(BP)—a simple well-known method for approxi-
mate inference in MRFs (Bishop, 2006)—can be
used in our setting. BP in its general form has
not yet been widely used in the NLP community.’
However, it is just a generalization to arbitrary
factor graphs of the familiar forward-backward al-
gorithm (which operates only on chain-structured
factor graphs). The algorithm becomes approxi-
mate (and may not even converge) when the factor
graphs have cycles. (In that case it is more prop-
erly called “loopy belief propagation.”)

4.1 Belief propagation

We first sketch how BP works in general. Each
variable V' in the graphical model maintains a be-
lief about its value, in the form of a marginal dis-
tribution py over the possible values of V. The
final beliefs are the output of the algorithm.
Beliefs arise from messages that are sent be-
tween the variables and factors along the edges of
the factor graph. Variable V' sends factor F' a mes-
sage uy— r, which is an (unnormalized) probabil-
ity distribution over V’s values v, computed by

H prr—v (v)

F'eN(V),F'#£F

2

v —r(v)

where N is the set of neighbors of V' in the graph-
ical model. This message represents a consensus
of V’s other neighboring factors concerning V’s
value. Itis how V tells F' what its belief py would
be if ' were absent. Informally, it communicates
to F': Here is what my value would be if it were up
to my other neighboring factors F' to determine.
Notable exceptions are Sutton et al. (2004) for chunking
and tagging, Sutton and McCallum (2004) for information

extraction, Smith and Eisner (2008) for dependency parsing,
and Cromieres and Kurohashi (2009) for alignment.



The factor F' can then collect such incoming
messages from neighboring variables and send its
own message on to another neighbor U. Such a
message [ r_p suggests good values for U, in the
form of an (unnormalized) distribution over U’s
values u, computed by

prou(u) ==

A s.t.AlU]=u

H pr—r(A[U")

U’EN (F),U'£U
(3)

where A is an assignment to all variables, and
A[U] is the value of variable U in that assign-
ment. This message represents F’s prediction of
U’s value based on its other neighboring variables
U’. Informally, via this message, F' tells U: Here
is what I would like your value to be, based on
the messages that my other neighboring variables
have sent me about their values, and how I would
prefer you to relate to them.

Thus, each edge of the factor graph maintains
two messages uy_r, ur—y. All messages are
updated repeatedly, in some order, using the two
equations above, until some stopping criterion is
reached.® The beliefs are then computed:

T wrv (4)
FeN (V)

If variable V' is observed, then the right-hand
sides of equations (2) and (4) are modified to tell
V' that it must have the observed value v. This is
done by multiplying in an extra message fiobs—
that puts probability 1 on v’ and 0 on other val-
ues. That affects other messages and beliefs. The
final belief at each variable estimates its posterior
marginal under the MRF (1), given all observa-
tions.

4.2 Finite-state messages in BP

Both vy and pp_,y are unnormalized distribu-
tions over the possible values of V—in our case,
strings. A distribution over strings is naturally
represented by a WFSA. Thus, belief propagation
translates to our setting as follows:

e Each message is a WFSA.

e Messages are typically initialized to a one-state
WEFSA that accepts all strings in >*, each with

SPreferably when the beliefs converge to some fixed point
(a local minimum of the Bethe free energy). However, con-
vergence is not guaranteed.

"More generally, on all possible observed variables.

weight 1.8

e Taking a pointwise product of messages to V' in
equation (2) corresponds to WEFSA intersection.

e If Fin equation (3) is binary,’ then there is only
one U’. Then the outgoing message pp_.y7, a
WEFSA, is computed as domain(F o py/_ p).

Here o composes the factor WFST with the in-
coming message WFSA, yielding a WEFST that
gives a joint distribution over (U,U’). The
domain operator projects this WEST onto the U
side to obtain a WFSA, which corresponds to
marginalizing to obtain a distribution over U.

e In general, F'is a k-tape WFSM. Equation (3)
“composes” k — 1 of its tapes with & — 1 in-
coming messages Ly, to construct a joint
distribution over the k variables in N'(F), then
projects onto the &kt tape to marginalize over the
k —1 U’ variables and get a distribution over U.
All this can be accomplished by the WFSM gen-
eralized composition operator X (Kempe et al.,
2004).

After projecting, it is desirable to determinize
the WFSA. Otherwise, the summation in (3) is
only implicit—the summands remain as distinct
paths in the WFSA!°—and thus the WFESAs would
get larger and larger as BP proceeds. Unfortu-
nately, determinizing a WFSA still does not guar-
antee a small result. In fact it can lead to expo-
nential blowup, or even infinite blowup.'! Thus,
in practice we recommend against determinizing
the messages, which may be inherently complex.
To shrink a message, it is safer to approximate it
with a small deterministic WFSA, as discussed in
the next section.

4.3 Approximation of messages

In our domain, it is possible for the finite-state
messages to grow unboundedly in size as they flow
around a cycle. After all, our messages are not
just multinomial distributions over a fixed finite

8This is an (improper) uniform distribution over ©*. Al-
though is not a proper WEFSA (see section 3.2), there is an
upper bound on the weights it assigns to strings. That guar-
antees that all the messages and beliefs computed by (2)—(4)
will be proper FSMs, provided that all the factors are proper
WESMs.

°If it is unary, (3) trivially reduces to pr_y = F.

19The usual implementation of projection does not change
the topology of the WFST, but only deletes the U’ part of its
arc labels. Thus, multiple paths that accept the same value of
U remain distinct according to the distinct values of U’ that
they were paired with before projection.

"If there is no deterministic equivalent (Mohri, 1997).
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set. They are distributions over the infinite set >*.
A WEFSA represents this in finite space, but more
complex distributions require bigger WESAs, with
more distinct states and arc weights.

Facing the same problem for distributions over
the infinite set R, Sudderth et al. (2002) simplified
each message py_.p, approximating a complex
Gaussian mixture by using fewer components.

We could act similarly, variationally approxi-
mating a large WFSA P with a smaller one Q).
Choose a family of message approximations (such
as bigram models) by specifying the topology for
a (small) deterministic WFSA (). Then choose
Q’s edge weights to minimize the KL divergence
KL(P|| Q). This can be done in closed form.!?

Another possible procedure—used in the ex-
periments of this paper—approximates py . by
pruning it back to a finite set of most plausible
strings.!3  Equation (2) requests an intersection
of several WESAs, e.g., pup, v N pup—y N---.
List all strings that appear on any of the 1000-
best paths in any of these WFSAs, removing du-
plicates. Let ) be a uniform distribution over this
combined list of plausible strings, represented as
a determinized, minimized, acyclic WFSA. Now
approximate the intersection of equation (2) as
((Q N pp—v) N g —y) N ---. This is efficient
to compute and has the same topology as Q.

5 Training the Model Parameters

Any standard training method for MRFs will
transfer naturally to our setting. In all cases we
draw on Eisner (2002), who showed how to train
the parameters 0 of a single WFST, F, to (locally)
maximize the joint or conditional probability of
fully or partially observed training data. This in-
volves computing the gradient of that likelihood
function with respect to 6.4

12See Li et al. (2009, footnote 9) for a sketch of the con-
struction, which finds locally normalized edge weights. Or
if @ is large but parameterized by some compact parameter
vector ¢, so we are only allowed to control its edge weights
via ¢, then Li and Eisner (2009, section 6) explain how to
minimize KL(P || Q) by gradient descent. In both cases @
must be deterministic.

We remark that if a factor F' were specified by a syn-
chronous grammar rather than a WFSM, then its outgoing
messages would be weighted context-free languages. Exact
intersection of these is undecidable, but they too can be ap-
proximated variationally by WESAs, with the same methods.

3We are also considering other ways of adaptively choos-
ing the topology of WESA approximations at runtime, partic-
ularly in conjunction with expectation propagation.

“The likelihood is usually non-convex; even when the
two strings are observed (supervised training), their accepting
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We must generalize this to train a product of
WESMs. Typically, training data for an MRF (1)
consists of some fully or partially observed 11D
samples of the joint distribution p(Vy,...V,). It
is well-known how to tune an MRF’s parameters 6
by stochastic gradient descent to locally maximize
the probability of this training set, even though
both the probability and its gradient are in general
intractable to compute in an MRF. The gradient is
a sum of quantities, one for each factor F;. While
the summand for F); cannot be computed exactly,
it can be estimated using the BP messages to F};.
Roughly speaking, the gradient for F; is computed
much as in supervised training (see above), but
treating any message /iy, p; as an uncertain ob-
servation of V;—a form of noisy supervision.!

Our concerns about training are the same as
for any MRF. First of all, BP is approximate.
Kulesza and Pereira (2008) warn that its estimates
of the gradient can be misleading. Second, semi-
supervised training (which we will attempt below)
is always difficult and prone to local optima. As
in EM, a small number of supervised examples for
some variable may be drowned out by many nois-
ily reconstructed examples.

Faster and potentially more stable approaches
include the piecewise training methods of Sut-
ton and McCallum (2008), which train the factors
independently or in small groups. In the semi-
supervised case, each factor can be trained on only
the supervised forms available for it. It might be
useful to reweight the trained factors (cf. Smith et
al. (2005)), or train the factors consecutively (cf.
Fahlman and Lebiere (1990)), in a way that mini-
mizes the loss of BP decoding on held-out data.

6 Comparison With Other Approaches

6.1 Multi-tape WFSMs

In principle, one could use a 100-tape WFSM to
jointly model the 100 distinct forms of a typical
Polish verb. In other words, the WFSM would de-
scribe the distribution of a random variable V =
(V1,...,Vigo), where each V; is a string. One
would train the parameters of the WFSM on a
sample of V, each sample being a fully or partially
observed paradigm for some Polish verb. The re-
sulting distribution could be used to infer missing
forms for these or other verbs.

path through the WFST may be ambiguous and unobserved.
5See Bishop (2006), or consult Smith and Eisner (2008)
for notation close to that of this paper.



As a simple example, either a morphological
generator or a morphological analyzer might need
the probability that krzyczatoby is the neuter third-
person singular conditional imperfective of krzy-
czed, despite never having observed it in training.
The model determines this probability based on
other observed and hypothesized forms of krzy-
czed, using its knowledge of how neuter third-
person singular conditional imperfectives are re-
lated to these other forms in other verbs.

Unfortunately, such a 100-tape WFSM would
be huge, with an astronomical number of arcs
(each representing a possible 100-way edit opera-
tion). Our approach is to factor the problem into a
number of (e.g.) pairwise relationships among the
verb forms. Using a factored distribution has sev-
eral benefits over the k-tape WFSM: (1) a smaller
representation in memory, (2) a small number
of parameters to learn, (3) efficient approximate
computation that takes advantage of the factored
structure, (4) the ability to reuse WFSAs and WEF-
STs previously developed for smaller problems,
(5) additional modeling power.

6.2 Simpler graphical models on strings

Some previous researchers have used factored
joint models of several strings. To our knowledge,
they have all chosen acyclic, directed graphical
models. The acyclicity meant that exact inference
was at least possible for them, if not necessarily ef-
ficient. The factors in these past models have been
WESTs (though typically simpler than the ones we
will use).

Many papers have used cascades of probabilis-
tic finite-state transducers. Such a cascade may
be regarded as a directed graphical model with a
linear-chain structure. Pereira and Riley (1997)
built a speech recognizer in this way, relating
acoustic to phonetic to lexical strings. Simi-
larly, Knight and Graehl (1997) presented a gen-

erative cascade using 4 variables and 5 factors:
def

p(w, €7j7 kv 0) = p(w) 'p(e ’ 'LU) p(] ’ 6) p(k ‘ .7)
-p(o | k) where e is an English word sequence, w
its pronunciation, j a Japanese version of the pro-
nunciation, k a katakana rendering of the Japanese
pronunciation, and o an OCR-corrupted version of
the katakana. Knight and Graehl used finite-state
operations to perform inference at test time, ob-
serving o and recovering the most likely w, while
marginalizing out e, j, and k.

Bouchard-Coété et al. (2009) reconstructed an-

cient word forms given modern equivalents. They
used a directed graphical model, whose tree struc-
ture reflected the evolutionary development of the
modern languages, and which included latent vari-
ables for historical intermediate forms that were
never observed in training data. They used Gibbs
sampling rather than an exact solution (possible on
trees) or a variational approximation (like our BP).

Our work seeks to be general in terms of the
graphical model structures used, as well as effi-
cient through the use of BP with approximate mes-
sages. We also seek to avoid local normalization,
using a globally normalized model.'®

6.3 Unbounded objects in graphical models

We distinguish our work from “dynamic” graph-
ical models such as Dynamic Bayesian Networks
and Conditional Random Fields, where the string
brechen would be represented by creating 7 letter-
valued variables. Those methods can represent
strings (or paths) of any length—but the length for
each training or test string must be specified in ad-
vance, not inferred. Furthermore, it is awkward
and costly to model unknown alignments, since
the variables are position-specific, and any posi-
tion in brechen could in principle align with any
position in brichst. WFSTs are a much more natu-
ral and flexible model of string pairs.

We also distinguish our work from current non-
parametric Bayesian models, which sometimes
generate unbounded strings, trees, or grammars. If
they generate two unbounded objects, they model
their relationship by a single synchronous genera-
tion process (akin to Section 6.1), rather than by
a globally normalized product of overlapping fac-
tors.

7 Experiments

To study our approach, we conducted initial ex-
periments that reconstruct missing word forms in
morphological paradigms. In inflectional mor-
phology, each uninflected verb form (lemma) is
associated with a vector of forms that are inflected
for tense, person, number, etc. Some inflected
forms may be observed frequently in natural text,
others rarely. Two variables that are usually pre-
dictable from each other may or may not keep this
relationship in the case of an irregular verb.

16 Although we do normalize locally during piecewise
training (see section 7.3).
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(a) # paradigms 9,393
(b) # finite forms per paradigm 9
(c) # hidden finite forms per paradigm (avg.) 8.3
(d) # paradigms with some finite form(s) observed | 2,176
(e) In (d), # of finite forms observed (avg.) 34

Table 1: Statistics of our training data.

Our task is to reconstruct (generate) specific un-
observed morphological forms in a paradigm by
learning from observed ones. This is a particu-
larly interesting semisupervised scenario, because
different subsets of the variables are observed on
different examples.

7.1 Experimental data

We used orthographic rather than phonological
forms. We extracted morphological paradigms for
all 9393 German verbs in the CELEX morpholog-
ical database. Each paradigm lists 5 present-tense
and 4 past-tense indicative forms, as well as the
verb’s lemma, for a total of 10 string-valued vari-
ables.!” In each paradigm, we removed, or hid,
verb forms that occur only rarely in natural text,
i.e, verb forms with a small frequency figure pro-
vided by CELEX.'® All paradigms other than sein
(’to be’) were now incompletely observed. Table 1
gives some statistics.

7.2 Model factors and parameters

Our current MRF uses only binary factors. Each
factor is a WEST that is trained to relate 2 of the 10
variables (morphological forms). Each WFST can
score an aligned pair using a log-linear model that
counts features in a sliding 3-character window.
To score an unaligned pair, it sums over all pos-
sible alignments. Specifically, our WEST topol-
ogy and parameterization follow the state-of-the-
art approach to supervised morphology in Dreyer
et al. (2008), although we dropped some of their
features to speed up these early experiments.'® We

7Some pairs of forms are always identical in German,
hence are treated as a single form by CELEX. We likewise
use a single variable—these are the “1,3” variables in Fig. 3.

Occasionally a form is listed as UNKNOWN. We neither
train nor evaluate on such forms, although the model will still
predict them.

"8The frequency figure for each word form is based on
counts in the Mannheim News corpus. We hide forms with
frequency < 10.

We dropped their latent classes and regions as well as
features that detected which characters were orthographic
vowels. Also, we retained their “target language model fea-
tures” only in the baseline “U” model, since elsewhere they
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implemented and manipulated all WFSMs using
the OpenFST library (Allauzen et al., 2007).

7.3 Training in the experiments

We trained 6 on the incompletely observed
paradigms. As suggested in section 5, we used
a variant of piecewise pseudolikelihood training
(Sutton and McCallum, 2008). Suppose there is
a binary factor I’ attached to forms U and V. For
any value of 0, we can define pyy (U | V) from
the tiny MRF consisting only of U, V, and F.

We can therefore compute the goodness Ly e

log puv (ui | vi) +logyy (vi | u;),2° summed over
all observed (U, V') pairs in training data. We at-
tempted to tune # to maximize the total Ly over
all U,V pairs,?! regularized by subtracting ||0]|?.
Note that different factors thus enjoyed different
amounts of observed training data, but training
was fully supervised (except for the unobserved
alignments between u; and v;).

7.4 Inference in the experiments

At test time, we are given each lemma (e.g.
brechen) and all its observed (frequent) inflected
forms (e.g., brachen, bricht,...), and are asked to
predict the remaining (rarer) forms (e.g., breche,
brichst, ...).

We run approximate joint inference using be-
lief propagation.”? We extract our output from the
final beliefs: for each unseen variable V', we pre-

seemed to hurt in our current training setup.

We followed Dreyer et al. (2008) in slightly pruning the
space of possible alignments. We compensated by replacing
their WEST, F, with the union F' U 1072(0.999% x X)*.
This ensured that the factor could still map any string to any
other string (though perhaps with very low weight), guaran-
teeing that the intersection at the end of section 4.3 would be
non-empty.

*The second term is omitted if V' is the lemma. We do
not train the model to predict the lemma since it is always
observed in test data.

! Unfortunately, just before press time we discovered that
this was not quite what we had done. A shortcut in our im-
plementation trained pyv (U | V) and pyu(V | U) sepa-
rately. This let them make different use of the (unobserved)
alignments—so that even if each individually liked the pair
(u,v), they might not have been able to agree on the same
accepting path for it at test time. This could have slightly
harmed our joint inference results, though not our baselines.

2To derive the update order for message passing, we take
an arbitrary spanning tree over the factor graph, and let O be
a list of all factors and variables that is topologically sorted
according to the spanning tree, with the leaves of the tree
coming first. We then discard the spanning tree. A single it-
eration visits all factors and variables in order of O, updating
each one’s messages to later variables and factors, and then
visits all factors and variables in reverse order, updating each
one’s messages to earlier variables and factors.



dict its value to be argmax, py (v). This predic-
tion considers the values of all other unseen vari-
ables but sums over their possibilities. This is the
Bayes-optimal decoder for our scoring function,
since that function reports the fraction of individ-
ual forms that were predicted perfectly.?

7.5 Model selection of MRF topology

It is hard to know a priori what the causal relation-
ships might be in a morphological paradigm. In
principle, one would like to automatically choose
which factors to have in the MRF. Or one could
start with many factors, but use methods such as
those suggested in section 5 to learn that certain
less useful factors should be left weak to avoid
confusing loopy BP.

For our present experiments, we simply com-
pared several fixed model topologies (Fig. 3).
These were variously unconnected (U), chain
graphs (Cl,..., C4), trees (T1, T2), or loopy
graphs (L1,..., L4). We used several factor graphs
that differ only by one or two added factors and
compared the results. The graphs were designed
by hand; they connect some forms with similar
morphological properties more or less densely.

We trained different models using the observed
forms in the 9393 paradigms as training data. The
first 100 paradigms were then used as develop-
ment data for model selection:** we were given
the answers to their hidden forms, enabling us to
compare the models. The best model was then
evaluated on the 9293 remaining paradigms.

7.6 Development data results

The models are compared on development data
in Table 2. Among the factor graphs we evalu-
ated, we find that L4 (see Fig. 3) performs best
overall (whole-word accuracy 82.1). Note that the
unconnected graph U does not perform very well
(69.0), but using factor graphs with more connect-
ing factors generally helps overall accuracy (see
C1-C3). Note, howeyver, that in some cases the ad-
ditional structure hurts: The chain model C4 and
the loopy model L1 perform relatively badly. The

21f we instead wished to maximize the fraction of entire
paradigms that were predicted perfectly, then we would have
approximated full MAP decoding over the paradigm (Viterbi
decoding) by using max-product BP. Other loss functions
(e.g., edit distance) would motivate other decoding methods.

**Using these paradigms was simply a quick way to avoid
model selection by cross-validation. If data were really as
sparse as our training setup pretends (see Table 2), then 100
complete paradigms would be too valuable to squander as
mere development data.
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Figure 3: The graphs that we evaluate on development data.
The nodes represent morphological forms, e.g. the first node
in the left of each graph represents the first person singular
present. Each variable is also connected to the lemma (not
shown). See results in Table 2.

reason for such a performance degradation is that
undertrained factors were used: The factors relat-
ing second-person to second-person forms, for ex-
ample, are trained from only 8 available examples.
Non-loopy models always converge (exactly) in
one iteration (see footnote 22). But even our loopy
models appeared to converge in accuracy within
two iterations. Only L3 and L4 required the sec-
ond iteration, which made tiny improvements.

7.7 Test data results

Based on the development results, we selected
model L4 and tested on the remaining 9293
paradigms.

We regard the unconnected model U as a base-
line to improve upon. We also tried a rather differ-
ent baseline as in (Dreyer et al., 2008). We trained
the machine translation toolkit Moses (Koehn et
al., 2007) to translate groups of letters rather than
groups of words (“phrases”). For each form f
to be predicted, we trained a Moses model on
all supervised form pairs ([, f) available in the
data, to learn a prediction for the form given the
lemma [. The M,3 condition restricted Moses use
“phrases” no longer than 3 letters, comparable to
our own trigram-based factors (see section 7.2).
M, 15 could use up to 15 letters.

Again, our novel L4 model far outperformed
the others overall. Breaking the results down by
form, we find that this advantage mainly comes
from the 3 forms with the fewest observed train-
ing examples (Table 3, first 3 rows). The M and
U models are barely able to predict these forms at
all from the lemma, but L4 can predict them bet-



Unconn. Chains Trees Loops
U Clc2[c3|c4 || Tt [T2]Ll|L2]L3]|L4
69.0 [ 7297347486521 781787 623]796] 789|821 |

Table 2: Whole-word accuracies of the different models in reconstructing the missing forms in morphological paradigms, here
on 100 verbs (development data). The names refer to the graphs in Fig. 3. We selected L4 as final model (Table 3).

Form ‘ # obs. H M,3 ‘ M,15 H U H L4 ‘ ’ # missing | # paradig. ‘ M,3 ‘ M,15 ‘ U ‘ L4 ‘
2.Sg.Pa. 41 0.0 | 02 0.8 | 69.7 1-3 205 20.3 | 20.8 | 26.8 | 744
2.P1.Pa. 91 0.9 1.1 1.4 | 45.6 4-6 1037 | 44.2 | 50.5 | 52.7 | 82.8
2.Sg.Pr. 166 || 494 | 62.6 || 74.7 || 90.5 7-9 8014 60.6 | 68.8 | 694 | 81.1
1.Sg.Pr. 28511 99.6 | 98.8 || 99.3 || 97.2 ble 4 . . -
Table 4: Accuracy on test data, reported separately for
1,3.PLPa. 673 | 46.5 | 78.3 75.0 || 75.6 paradigms in which 1-3, 4-6, or 7-9 forms are missing.
1,3.8gPa. | 1124 || 65.0 | 88.8 || 84.0 || 74.8 Missing words have CELEX frequency count < 10; these are
2 PLPr. 1274 11 98.3 | 99.2 990 || 96.4 the ones to predict. (The numbers in col. 2 add up to 9256,
not 9293, since some paradigms are incomplete in CELEX to
3.5g.Pr. 1410 || 91.0 | 95.9 95.2 || 88.2 begin with, with no forms to be removed or evaluated.)
1,3.PLPr. | 1688 || 99.8 | 98.9 || 99.8 || 98.0
All \ 6633 H 59.2 \ 67.3 H 68.0 H 81.2 ‘ rected graphical model with string-valued vari-

Table 3: Whole-word accuracies on the missing forms from
9293 test paradigms. The Moses baselines and our un-
connected model (U) predict each form separately from the
lemma, which is always observed. L4 uses all observations
jointly, running belief propagation for decoding. Moses,15
memorizes phrases of length up to 15, all other models use
max length 3. The table is sorted by the column “# obs.”,
which reports the numbers of observations for a given form.

ter by exploiting other observed or latent forms.
By contrast, well-trained forms were already easy
enough for the M and U models that L4 had little
new to offer and in fact suffered from its approxi-
mate training and/or inference.

Leaving aside the comparisons, it was useful to
confirm that loopy BP could be used in this set-
ting at all. 8014 of the 9293 test paradigms had
< 2 observed forms (in addition to the lemma)
but > 7 missing forms. One might have expected
that loopy BP would have failed to converge, or
converged to the wrong thing. Nonetheless, it
achieved quite respectable success at exactly pre-
dicting various inflected forms.

For the curious, Table 4 shows accuracies
grouped by different categories of paradigms,
where the category is determined by the number
of missing forms to predict. Most paradigms fall
in the category where 7 to 9 forms are missing, so
the accuracies in that line are similar to the overall
accuracies in Table 3.

8 Conclusions

We have proposed that one can jointly model sev-
eral multiple strings by using Markov Random
Fields. We described this formally as an undi-

ables and whose factors (potential functions) are
defined by weighted finite-state transducers. Each
factor evaluates some subset of the strings.

Approximate inference can be done by loopy
belief propagation. The messages take the form
of weighted finite-state acceptors, and are con-
structed by standard operations. We explained
why the messages might become large, and gave
methods for approximating them with smaller
messages. We also discussed training methods.

We presented some pilot experiments on the
task of jointly predicting multiple missing verb
forms in morphological paradigms. The factors
were simplified versions of statistical finite-state
models for supervised morphology. Our MRF
for this task might be used not only to conjugate
verbs (e.g., in MT), but to guide further learning
of morphology—either active learning from a hu-
man or semi-supervised learning from the distri-
butional properties of a raw text corpus.

Our modeling approach is potentially applicable
to a wide range of other tasks, including translit-
eration, phonology, cognate modeling, multiple-
sequence alignment and system combination.

Our work ties into a broader vision of using al-
gorithms like belief propagation to coordinate the
work of several NLP models and algorithms. Each
individual factor considers some portion of a joint
problem, using classical statistical NLP methods
(weighted grammars, transducers, dynamic pro-
gramming). The factors coordinate their work by
passing marginal probabilities. Smith and Eisner
(2008) reported complementary work in this vein.
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Abstract

We present a framework to extract the
most important features (tree fragments)
from a Tree Kernel (TK) space according
to their importance in the target kernel-
based machine, e.g. Support Vector Ma-
chines (SVMs). In particular, our min-
ing algorithm selects the most relevant fea-
tures based on SVM estimated weights
and uses this information to automatically
infer an explicit representation of the in-
put data. The explicit features (a) improve
our knowledge on the target problem do-
main and (b) make large-scale learning
practical, improving training and test time,
while yielding accuracy in line with tradi-
tional TK classifiers. Experiments on se-
mantic role labeling and question classifi-
cation illustrate the above claims.

Introduction

Alessandro Moschitti
University of Trento, DISI
Via di Sommarive, 14 1-38100 Povo (TN) Italy
moschitti@disi.unitn.it

by the the implicit nature of the kernel space,
which prevents to directly observe the most rele-
vant features. As a consequence, even very accu-
rate models generally fail in providing useful feed-
back for improving our understanding of the prob-
lems at study. Moreover, the computational bur-
den induced by high dimensional kernels makes
the application of SVMs to large corpora still more
problematic.

In (Pighin and Moschitti, 2009), we proposed a
feature extraction algorithm for Tree Kernel (TK)
spaces, which selects the most relevant features
(tree fragments) according to the gradient compo-
nents (weight vector) of the hyperplane learnt by
an SVM, in line with current research, e.g. (Rako-
tomamonjy, 2003; Weston et al., 2003; Kudo and
Matsumoto, 2003). In particular, we provided al-
gorithmic solutions to deal with the huge dimen-
sionality and, consequently, high computational
complexity of the fragment space. Our experimen-
tal results showed that our approach reduces learn-
ing and classification processing time leaving the

The last decade has seen a massive use of Suppagcuracy unchanged.

Vector Machines (SVMs) for carrying out NLP  In this paper, we present a new version of such
tasks. Indeed, their appealing properties such asgorithm which, under the same parameteriza-
1) solid theoretical foundations, 2) robustness tdion, is almost three times as fast while produc-
irrelevant features and 3) outperforming accuracyng the same results. Most importantly, we ex-
have been exploited to design state-of-the-art lanplored tree fragment spaces for two interesting
guage applications. natural language tasks: Semantic Role Labeling
More recently, kernel functions, which im- (SRL) and Question Classification (QC). The re-
plicitly represent data in some high dimensionalsults show that: (a) on large data sets, our ap-
space, have been employed to study and fumproach can improve training and test time while
ther improve many natural language systems, e.gielding almost unaffected classification accuracy,
(Collins and Duffy, 2002), (Kudo and Matsumoto, and (b) our framework can effectively exploit the
2003), (Cumby and Roth, 2003), (Cancedda et alability of TKs and SVMs to, respectively, gener-
2003), (Culotta and Sorensen, 2004), (Toutanovate and recognize relevant structured features. In
et al., 2004), (Kazama and Torisawa, 2005), (Shepatrticular, we (i) study in more detail the relevant
et al., 2003), (Gliozzo et al., 2005), (Kudo et al.,fragments identfied for the boundary classification
2005), (Moschitti et al., 2008), (Diab et al., 2008). task of SRL, (ii) closely observe the most relevant
Unfortunately, the benefit to easily and effectively fragments for each QC class and (iii) look at the di-
model the target linguistic phenomena is reducederse syntactic patterns characterizing each ques-
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tion category. /A\ Fragment space
The rest of the paper is structured as follows: A A B A )
Section 2 will briefly review SVMs and TK func- O S
tions; Section 3 will detail our proposal for the lin- T B . £ e o5 % :
earization of a TK feature space; Section 4 will @% @ /@ /@\ @ g)
review previous work on related subjects; Section U )
5 will detail the outcome of our experiments, and
Section 6 will discuss some relevant aspects of the o
evaluation; finally, in Section 7 we will draw our ./ \, T =[1111,00 7\
conclusions. /\ $(T2) =10,0,0,0,1, 1, 1] ‘
Bl k@) = (e, 6(12)) = 1 c
2 Tree Kernel Functions E
The decision function of an SVM is: Figure 1: Esemplification of a fragment space and

n the kernel product between two trees.
f(f):w'-f—i-b:Zaiyifi-f—i—b 1)

i=1 the possible fragments. To simplify, a treean

be represented as a vector whose attributes count

whered' s a classifying example and andb are the occurrences of each fragment within the tree
the separating hyperplanegadientand itsbia . . )
P g hyperplanegs S The kernel between two trees is then equivalent to

respectively. The gradient is a linear combination h | duct b irs of h
of the training pointsz;, their labelsy; and their the sca ar pro .UCt. etween palrs of such vectors,
weightsca;. Applying the so-calledkernel trickit as exemplified in Figure 1.
is possib_le to r(_eplace the sc_alar pr_oduct witea 3 Linearization of a TK function
nel functiondefined over pairs afbjects
n Our objective is to efficiently mine the most rele-
flo) =" aiyik(os,0) +b vant fragments from the huge fragment space, so
i=1 that we can explicitly represent our input trees in

with the advantage that we do not need to providéerms of these fragments and learn fast and accu-

an explicit mappings(-) of our examples in a vec- rate linear classifiers.
tor space. The framework defines five distinct activities,
A Tree Kernel function is a convolution ker- detailed in the following paragraphs.
nel (Haussler, 1999) defined over pairs of trees, .
Praétically speaking,) the kernel betv[v)een two treeg -1 Kemel Space Leaming KSL)
evaluates the number of substructures ffag-  The first step involves the generation of an approx-
ment$ they have in common, i.e. it is a measureimation of the whole fragment space, i.e. we can
of their overlap. The function can be computed re-consider only the trees that encode the most rele-
cursively in closed form, and quite efficient imple- vant fragments. To this end, we can partition our
mentations are available (Moschitti, 2006). Dif- training data intaS smaller sets, and use the SVM
ferent TK functions are characterized by alterna-and the SST kernel to learsi models. We will
tive fragment definitions, e.g. (Collins and Duffy, only consider the fragments encoded by the sup-
2002) and (Kashima and Koyanagi, 2002). In theport vectors of theés' models. In the next stage, we
context of this paper we will be focusing on the will use the SVM estimated weights to drive our
SubSet Tree (SST) kernel described in (Collinsfeature selection process.
and Duffy, 2002), which relies on a fragment defi- Since time complexity of SVM training is ap-
nition that does not allow to break production rulesproximately quadratic in the number of examples,
(i.e. if any child of a node is included in a frag- by breaking training data into smaller sets we
ment, then also all the other children have to). Ascan considerably accelerate the process of filtering
such, it is especially indicated for tasks involving trees and estimating support vector weights. Ac-
constituency parsed texts. cording to statistical learning theory, being trained
Implicitly, a TK function establishes a corre- on smaller subsets of the available data these mod-
spondence between distinct fragments and dimerels will be less robust with respect to the min-
sions in somdragment space.e. the space of all imization of the empirical risk (Vapnik, 1998).
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Algorithm 3.1: MINE_MODEL(M, L, \)

global maxexp
prev «— () ; CLEARINDEX()
for each (ay,t) € M

do

T oyl
for eachn € \;
f—FRAG(n) ; rel =X-T;
do < prev — prev U {f,rel}
PUT(f, rel)

best_pr «— BEST(L) ;

while

do

true
next < ()
for each (f,rel) € previf f € best_pr
X = EXPAND(f, mazexp)
rel_exp «— X\ - rel
do for each frag € X
temp = {frag,rel_exp}
do { next «— next U temp
PUT(frag, rel_exp)
best «— BEST(L)
if not CHANGED()
then break

measured as:

‘2?21 ayiti jAUT)
B 1]

\w(j)\ -

Z aiyixz(‘j)
i=1
3)

We fix a thresholdL and from each model,
(learnt during KSL) we select the most relevant
fragments, i.e. we build the sé%, ;, = Uy {fx} so
that:

\For] = Landjw®| > wD|Vf; € F\ Fop .

To generate all the fragments encoded in a
model, we adopt the greedy strategy described in
Algorithm 3.1. Its arguments are: an SVM model
M represented a&vy,t) pairs, wheret is a tree
structure; the threshold valdg and the kernel de-

cay factor)\.

The function FRAG(n) generates the smallest
fragment rooted in node (i.e. for an SST kernel,
the fragment consisting af and its direct chil-
dren). We call such fragmentasefragment. The
Nonetheless, since we do not need to employ them,yction EXPAND( f, mazexp) generates all the
for classification (but just to direct our feature Se-fragments that can be derived from the fragment
lection process, as we will describe shortly), Wer hy expanding, i.e. including in the fragment the
can accept to rely on sub-optimal weights. Fur-gjrect children of some of its nodes. These frag-
thermore, research results in the field of SVM parnents arelerivedfrom . The parametenazexp
allelization using cascades of SVMs (Graf et al. jimits fragment proliferation by setting the maxi-
2004) suggest that support vectors collected fromy,um number of nodes which can be expanded in
locally learnt models can encode many of the rel— fragment expansion operation. For example, if
evant features retained by models learnt globallyihere are 10 nodes which can be expanded in frag-
Henceforth, letM; be the model associated with ment , then only the fragments where at most 3
the s-th split, and¥; the fragment space that can f the 10 nodes are expanded will be generated by
describe all the trees if/;. a call toEXPAND(f,3).

Every time we generate a fragmefhtthe func-
tion PUT(f, rel) saves the fragment along with its
relevancerel in anindex The index keeps track
In Equation 1 it is possible to isolate the gradientof the cumulative relevance of a fragment, and its
@ = S oy, with £ = [551(1)7 o ,xZ(N)], N  implementation has been optimized for fast inser-
being the dimensionality of the feature space. Fotions and spatial compactness.

a tree kernel function, we can rewritéj) as: A whole cycle of expansions is considered as
an iteration of the mining process: we take into
account all the fragments that have undergéne
expansions and produce all the fragments that re-
sult from a further expansion, i.e. all the fragments
expanded: + 1 times.

We keep iterating until we reach a stop crite-
where: ¢; ; is the number of occurrences of the rion which we base on the threshold valligi.e.
fragment;, associated with th¢-th dimension of  {ne |imit on the number of fragments that we are
the feature space, in the treée A is the kernel de-  jnterested in mining from a model. During each it-
cay factor; and/(f;) is the depth of the fragment. grationk + 1, we only expand the begtfragments

The relevancéw!)| of the fragmentf; can be identified during the previous iteration When

best_pr «— best
prev «— next
Fr < best_pr

return (Fr)

3.2 Fragment Mining and Indexing (FMI)

) _ ti’j)\ﬁ(fj)

(2

t; N9
- @

1] _\/Z{{V:l(ti’k/\f(fk)p

X
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the iteration is complete we re-evaluate the set oformed to encode label-vector paifg;, v;). To
L best fragments in the index, and we stop only ifdo so, we generate the fragment space; pfis-
the worst of them, i.e. thé-th ranked fragment ing a variant of the mining algorithm described in
at the stepk + 1, and its score are the same as afAlgorithm 3.1, and encode if; all and only the
the end of the previous iteration. That is, we as{fragmentst; ; so thatt; ; € Dy. The algorithm
sume that if none of the fragments mined duringexploits labels and production rules found in the
the (k + 1)-th iteration managed to affect the bot- fragments listed in the dictionary to generate only
tom of the pool of thel. most relevant fragments, the fragments thathay bein the dictionary. For
then none of their expansions is likely to succeedexample, if the dictionary does not contain a frag-
In the algorithm,\; is the set of nodes of the tree ment whose root is labelel, then if a nodeV is
t; BEST(L) returns thel highest ranked fragments encountered during TFX neither its base fragment
in the index;,CHANGED() verifies whether the bot- nor its expansions are generated. The process is
tom of the L-best set has been affected by the lasapplied to the whole trainingT FX-train) and test
iteration or not. (TFX-tes} sets. The fragment space is n@x-
We call MINE_MODEL(-) on each of the mod- plicit, as there is a mapping between the input vec-
els M, that we learnt from thé initial splits. For  tors and the fragments they encode.
each model, the function returns the setLebest
fragments in the model. The union of all the frag-3-4 Explicit Space Learning ESL)

ments harvested from each model is then saveinearized training data is used to learn a very fast
into a dictionaryDy, which will be used by the next model by using all the available data and a linear
stage. kernel.

32.1  Discussion on FMI algorithm 3.5 Explicit Space Classification ESC)
With respect to the algorithm presented in (Pighin

and Moschitti, 2009), the one presented here ha-éhe Ilnegr mo?el IS u;.ed to classify ]Iclnﬁarlzed T?St
the following advantages: ata and evaluate the accuracy of the resulting

classifier.
e the process of building fragments is strictly
small-to-large: fragments that span-1lev- 4 Previous work

els of the tree may be generated only after aIIA h hensi , £ 1
those spanning levels: rather comprehensive overview of feature se-

lection techniques is carried out in (Guyon and
e the threshold valud. is a parameter of the Elisseeff, 2003). Non-filter approaches for SVMs
mining process, and it is used to prevent theand kernel machines are often concerned with
algorithm from generating more fragments polynomial and Gaussian kernels, e.g. (Weston et
than necessary, thus making it more efficiental., 2001) and (Neumann et al., 2005). Weston
i i et al. (2003) use thé;, norm in the SVM opti-
o ithas one less parametengadepth) Which ;o 1 stress the feature selection capabilities
was used to force fragments to span at-mosks the learning algorithm. In (Kudo and Mat-

agven number_ of_IeveIs. The new algorithm sumoto, 2003), an extension of the PrefixSpan al-
dqes ”9t negd_lt since the maximum rlumbergorithm (Pei et al., 2001) is used to efficiently
of iterations is implicitly set vial.. mine the features in a low degree polynomial ker-
These differences result in improved efficiency fornel space. The authors discuss an approximation
the FMI stage. For example, on the data for theof their method that allows them to handle high
boundary classification task (see Section 5), usinglegree polynomial kernels.
comparable parameters the old algorithm required Suzuki and Isozaki (2005) present an embed-
85 minutes to mine the most relevant fragmentsged approach to feature selection for convolution
whereas the new one only takes 31, i.e. it is 2.74&ernels based og?-driven relevance assessment.
times as fast. To our knowledge, this is the only published work

_ clearly focusing on feature selection for tree ker-
3.3 Tree Fragment Extraction (TFX) nel functions, and indeed has been one of the
During this phase we actually linearize our data:major sources of inspiration for our methodol-
a file encoding label-tree pair§;,¢;) is trans- ogy. With respect to their work, the difference
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in our approach is that we want to exploit the (g, °~_ VP VP

SVM optimizer to select the most relevant fea- ¥ " 4 ver Ve PR
tures instead of a relevance assessment measutéy “° /NF’\:‘ bought D{B bought ? N‘N
that moves from different statistical assumptionsMay bought ? N‘N a a cat
than the learning algorithm. a cat -1:8C +1: BCAL

-1: A0,A2,A3,A4,A5

In (Graf et al., 2004), an approach to SVM
parallelization is presented which is based on aigure 2: Examples of AS] structured features.
divide-et-impera strategy to reduce optimization
time. The idea of using a compact graph repand automatic Charniak parse trees (Charniak,
resentation to represent the support vectors of 4000) as provided for the CoNLL 2005 evaluation
TK function is explored in (Aiolli et al., 2006), campaign (Carreras and Marquez, 2005). SRL can
where a Direct Acyclic Graph (DAG) is employed. be decomposed into two taskboundary detec-
In (Moschitti, 2006; Bloehdorn and Moschitti, tion, where the word sequences that are arguments
2007a; Bloehdorn and Moschitti, 2007b; Mos-Of @ predicate worav are identified, andble clas-
chitti et al., 2007), the SST kernel along with othersification where each argument is assigned the
tree and combined kernels are employed for quedkroper role. The former task requires a binary

tion classification and semantic role labeling withBoundary Classifie(BC), whereas the second in-
interesting results. volves aRole Multi-class ClassifiefRM).

5.1.1 Setup

- If the constituency parse treeof a sentences
We evaluated the capability of our model to €X-is available, we can look at all the paits, n;),

tract relevant features on two data sets: th‘?/vheren is any node in the tree anglis the node
CoNLL 2005 shared task on Semantic Role Labe"dominatingw and decide whethet; is anargu-
3 T

ing (SRL) (Carreras and Marquez, 2005), and thgnent noder not, i.e. whether it exactly dominates
Question Classification (QC) task based on datg; 5ng only the words encoding any afs argu-
from the TREC 10 QA competition (Voorhees, nants  The objects that we classify are subsets
2001). The next sections will detail the setup andy¢ 1o input parse tree that encompass hotind
outcome of the two sets of experiments. ~n;. Namely, we use the AST structure defined
All the experiments were run on a machinej, (\oschitti et al., 2008), which is the minimal
equipped with 4 Intét Xeon® CPUs clocked at  {ree that covers all and only the wordsyofnd;.
'1.6 GHz and 4 GB of RAM. As a §uperV|sed .Iearn-m the AST,,, p andn; are marked so that they can
ing framework we used SVM_"—'_ght'TK which  pe gistinguished from the other nodes. An AST
extends the SVM-Light optimizer (Joachims, js regarded as a positive example for B@jfis an
2000) with tree kernel support. For each CIaSSi'argument node, otherwise it is considered a nega-

fication task, we compare the accuracy of a vanillg;ye example. Positive BC examples can be used to
SST classifier against the corresponding linearizeg5in an efficient RM: for each role we can train

SST classifier (SSJ. For KSL and SST training 4 ¢|assifier whose positive examples are argument
we used the default decay factdr= 0.4. FOr poges whose label is exactly whereas negative
ESL, we use a non-normalized, linear kernel. Noexamples are argument nodes labeleg 7. Two
further parametrization of the learning algorithms AST,,s extracted from an example parse tree are
is carried out. Indeed, our focus is on showingghown in Figure 2: the first structure is a negative
that, under the same conditions, our linearized tregyample for BC and is not part of the data set of

kernel can be as accurate as the original kemeRy \whereas the second is a positive instance for
and choosing of parameters may just bias suCBc gng A1

test.

5 Experiments

To train BC we used PropBank sections 1
through 6, extracting AS]] structures out of the
first 1 million (p, n;) pairs from the corresponding
For our experiments on semantic role labeling Wéarse trees. As a test set we used the 149,140 in-
used PropBank annotations (Palmer et al., 2008ance collected from the annotations in Section
" hup://disi.unitn.it/ ~ moschitt/ 24. There are 61,062 positive examples in the
Tree-Kernel.htm training set (i.e. 6.1%) and 8,515 in the test set

5.1 Semantic Role Labeling
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(i.e. 5.7%). Data set Accuracy

For RM we considered all the argument nodes Class ~ T¢ Te" SST SST
of any of the six PropBank core roles (i.e. AO, BC 61,062 8515 818 813
..., A5) from all the available training sections, " gg:ggg g:g}é gé:g gé:i
i.e. 2 through 21, for a total of 179,091 train- A2 21,291 697 731 73.0
ing instances. Similarly, we collected 5,928 test A3 3,481 105 56.8 53.0
instances from the annotations of Section 24. ﬁg 2'7£ 63 gg'% 607 'dg
ColumnsTrt and Tet of Table 1 show the num- RM 878 878

per of positive training and test_ (_axamples, r€SPE€Crable 1: Number of positive training (T) and test

tively, for BC apd th? role classlflers. (Te™) examples in the SRL dataset. Accuracy of
For all the linearized classifiers, we used 50 he non-linearized (SST) and linearized (S)5i-

splits for the FMI stage and we set the threshol ary classifiers (i.e. BC, A0, . .. A5) is Fneasure

value L = 50k andmazexp = 1 during FMland — »cc\\ a0y of RM is the percentage of correct class
TFX. We did not validate these parameters, Wh'chassignments

we know to be sub-optimal. These values were
selected during the development of the softwargf the selected linearization parameters generate
because, on a very small test bed, they resulted ig very rough approximation of the original frag-
aresponsive and accurate system. ment space, generally consisting of billions of
We should point out that other experiments haveragments. B (i.e. the linearized BC) has an
shown that linearization is very robust with re- F, of 81.3, just 0.5% less than BC, i.e. 81.8. Con-
spect to parametrization: due to the huge numcerning RM, its accuracy is the same as the non
ber and variety of fragments in the TK space, dif-|inearized classifier, i.e. 87.8.
ferent choices of the parameters result in differ- e should consider that the linearization frame-
ent explicit spaces and more or less efficient soluwork can drastically improve the efficiency of
tions, but in most cases the final accuracy of thgearning and classification when dealing with large
linearized classifiers is affected only marginally.amounts of data. For a linearized classifier, we
For example, it could be expected that reducingonsidertraining timeto be the overall time re-
the number of splits during KSL would improve quired to carry out the following activities: KSL,
the final accuracy of a linearized classifier, as the=m|, TFX on training data and ESL. Similarly,
weights used for FMI would then converge to thewe consider test time the time necessary to per-
global optimum. Instead, we have observed thajorm TFX on test data and ESC. Training BC took
increasing the number of splits does not necessamore than two days of CPU time and testing about
ily decrease the accuracy of the linearized classig hours, while training and testing the linearized
fier. boundary classifier required only 381 and 25 min-
The evaluation on the whole SRL task usingutes, respectively. That is, on the same amount
the official CONLL'05 evaluator was not carried of data we can train a linearized classifier about
out because producing complete annotations reg times as fast, and test it in about 1 tenth of the
quires several steps (e.g. overlap resolution, OvAime. Concerning RM, sequential training of the
or Pairwise combination of individual role classi- § models took 2,596 minutes, while testing took
fiers) that would shade off the actual impact of thep7 minutes. The linearized role multi classifier re-
methodology on classification. quired 448 and 24 minutes for training and test-
512 Results ing, respectively, i.e. training is about 5 times as

] o fast while testing time is about the same. If com-
The left side of Table 1 shows the distribution of . .4 \vith the boundary classifier, the improve-

pos;':lvelz da?? pomtslln the tralnlgg and test sets °E1ent in efficiency is less evident: indeed, the rel-
each classifier. ColumrSSTandSS§ compare 4 ey small size of the role classifiers data sets

side _by S"?'e the Fm_egsure of the non-linearized limits the positive effect of splitting training data
and linearized classifier for each class. The acClz o smaller chunks

racy of the RM classifier is the percentage of cor-

rect class assignments. SRL fragment space. Table 3 lists the best frag-
We can see that the accuracy of linearized clasments identified for the Boundary Classifier. We

sifiers is always in line with vanilla SST, even should remember that we are using AS$truc-
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tures as input to our classifiers: nodes whose la- Data set Accuracy

bel end with “-P” are predicate nodes, while nodes Class TF  Te" SST SST
whose label ends with “-B” are candidate argu- ABBR 89 9 800 875
DESC 1,164 138 96.0 945
MENENOGES: _ ENTY 1269 94 639 635
All'the most relevant fragments encode the min- HUM 1,231 65 881 87.2
imum sub-tree encompassing the predicate and the LOC 834 81 776 779

NUM 896 113 804 80.8

argument node. This kind of structured feature Overall 862  86.6

subsumes several features traditionally employed . — —
for explicit SRL models: the Path (i.e. the se- 1able 2: Number of positive training (Ty and test

quence of nodes connecting the predicate and tHd€') examples in the QA dataset. Accuracy of
candidate argument node), Phrase Type (i.e. th&€ non-linearized (SST) and linearized (SHI-
label of the candidate argument node), Predicat8’Y classifiers is Fmeasure. Overall accuracy is
POS (i.e. the POS of the predicate word), Posi:[he percentage of correct class assignments.

tion (i.e. whether the argument is to the leftorto o |assifiers are arranged in a one-vs.-all

the right of the predicate) and Governing CategoryOVA) configuration, where each sentence is a
(i.e. the label of the common ancestor) defineoL

_ _ ositive example for one of the six classes, and
in (Gildea and Jurafsky, 2002).

) ) ) negative for the other five. Given the very small
The linearized model for BC contains about 160

size of the data set, we uséd= 1 during KSL
thousand fragments. Of these, about 70 and 38, the jinearized classifier (i.e. we didn't parti-

thousand encompass the candidate argument or th§, yraining data). We carried out no validation of

predicate node, respectively. About 16 thousang},, parameters, and we ussthzerp = 4 and
fragments contain both. I ’

= 50k in order to generate a rich fragment

5.2 Question Classification space.

For question classification we used the data set-2-2 Results
from the TREC 10 QA evaluation campafgeon-  Table 2 shows the number of positive examples
sisting of 5,500 training and 500 test questions. in the training and test set of each individual bi-
nary classifiers. Columns SST and S®bdmpare
5.2.1 Setup the R measure of the vanilla and linearized classi-
Given a question, the QC task consists in selectinders on the individual classes, and the accuracy of
the most appropriate expected answer type from the complete QC task (Ro®verall) in terms of
given set of possibilities. We adopted the questiorpercentage of correct class assignments. Also in
taxonomy known asoarse grained which has this case, we can notice that the accuracy of the
been described in (Zhang and Lee, 2003) and (Liinearized classifiers is always in line with non-
and Roth, 2006), consisting of six non overlap-linearized ones, e.g. 86.6 vs. 86.2 for the multi-
ping classes: Abbreviations (ABBR), Descrip- classifiers. These results are lower than those de-
tions (DESC, e.g. definitions or explanations), En—ived in (Moschitti, 2006; Moschitti et al., 2007),
tity (ENTY, e.g. animal, body or color), Human i.e. 88.2 and 90.4, respectively, where the param-
(HUM, e.g. group or individual), Location (LOC, eters for each classifier were carefully optimized.

e.g. cities or countries) and Numeric (NUM, e.g. .
g ) ( g QC Fragment space. Tables from 4 to 9 list the
amounts or dates). ) .
top fragments identified for each cldss

For each question, we generate the full parse . .
of the sentence and use it to train SST and (lin- As expected, for all the categories the domain

. . lexical information is very relevant. For example,
earlz_ed) SS.J models. The autorgatlc parses arefilm, color, book novel and sport for ENTY or
ﬁﬂb;ﬁlr:}ig ;V(I)?g)t.h\?\/es;i‘:\:glrs hp;\/re i(nf)l/eén 4gg Zen_city, country, stateandcapitgl for LOC. Of the si>'<
tences ir; our training set, due to parsi1ng issuedasse.s’ ENTY (Table 6) 'S mosly chgracterlzed
with a few of them. ’ %y lexical features. Interestingly, function words,

which would have been eliminated by a pure In-

jhttp/://IZr.CS-uiUC-edulcogcomp/Data/ formation Retrieval approach (i.e. by means of
QA/QC -

Shttp://nlp.stanford.edu/software/ 4Some categories show meaningful syntactic fragments
lex-parser.shtml after the first 10, so for them we report more subtrees.
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standard stop-list), are in the top positions, e.g.:
whyandhowfor DESC,whatfor ENTY, who for Eﬁgg&éﬁ%?ﬁ%ﬁ'g)»
HUM, wherefor LOC andwhenfor NUM. Forthe  (s(NP-B)(vP))

latter, alsohow seems to be important suggesting(VP(VBD-P(said))(SBAR))

that features may strongly characterize more tha VE&Y/EQS;I(PN_S%)-B))

one given class. (VP(VBD-P)(NP-B))
iati i i VP(VBG-P)(NP-B))
Charg_cterlstlc syntactic features appear in th VP(VBZ PJ(NP-B))
top positions for each class, for examp(€P (VB (yp(vBN-P)(NP-B))
(stand)) (PP)) which suggests thattandshould  (VP(VBP-P)(NP-B))
e (NP(NP-B)(VP))
pe followed by a prepositional phrase to _ch_aracter (NP(VBG-P)(NN-B))
ize ABBR; or (NP (NP (DT) (NN (gbbrewatlon))) (S(S(VP(VBG-P)))(NP-B))
(PP)), Whlch s_uggests that, to be in a reIevant_pat— Table 3: Best fragments for SRL BC.
tern,abbreviationshould be preceded by an article
and followed by a PP. Also, the syntactic struc- b 5
; ; ; NN(abbreviation
f[ure is useful to differentiate the use of the sam NP(DT)(NN(abbreviation)))
important words, e.g(SBARQ (WHADVP (WRB (NP(DT(the))(NN(abbreviation)))
(How))) (SQ) (.)) for DESC better characterizes (IN(for))
the use ofhow with respect to NUM, in which a %E(zs(tc?gfg)
relevant use iSWHADJP (WRB (How)) (3J)) (PP(IN))

i . (VP(VB(stand))(PP))
In (Moschitti et al., 2007) it was shown that the (NP(NP(DT)(NN(abbreviation)))(PP))

use of TK improves QC of 1.2 percent points, i-e-(SQ(VBZ)(NP)(VP(VB(stand))(PP)))
from 90.6 to 91.8: further analysis of these frag-(SBARQ(WHNP)(SQ(VBZ)(NP)(VP(VB(stand))(PP)))(.))
ments may help us to device compact, less spari@Q(VBZ(does))(NP)(VP(VB(Stand))(PP)))

_ ) P(VBZ)(NP(NP(DT)(NN(abbreviation)))(PP)))
syntactic features and design more accurate mod
els for the task. Table 4: Best fragments for the ABBR class.

6 Discussion (WRB(Why))
(WHADVP(WRB(Why)))
The fact that our model doesn't always improve(WHADVP(WRB(How)))

the accuracy of a standard SST model might b W;ﬁ]zgﬁ)()WRB))

related to the process of splitting training data andVvBZ(causes))

. . . . (VB(dO))
employing locally estimated weights during FMI. (ROOT(SBARQ(WHADVP(WRB(How)))(SQ)()

Concerning the experiments presented in thi$RoOT(SBARQ(WHADVP(WRB(How)))(SQ)(.(?))))
paper, this objection might apply to the results on(SBARQ(WHADVP(WRB(How)))(SQ))
SRL, where we used 50 splits to identify the most?évE?ABng?\‘;vv)& ADVP(WRB(HOW))(SQ)())
relevant fragments, but not to those on QC, wheresBaRQ(WHADVP(WRB(How)))(SQ)(.(?)))

given the limited size of the data set we decidec{gg%i%\év:é*&\xé\gg\%mé)%)((vsvﬁ)%))(SQ)))
not to split training data at all as explained in Sec{spARQWHADVP(WRB))(SQ)) y

tion 5.2. Furthermore, as we already discussed,
we have evidence that there is no direct correlation
between the number of splits used for KSL and
the accuracy of the resulting classifier. After all,gmgg'orro)z))
the optimization carried out during ESL is global, (\book))
and we can assume that, if we mined enough fragiNN(novel))

ments during FMI, than those actually retained by(NN(spor)

Table 5: Best fragments for the DESC class.

. h
the global linear model would be by and large the?,(,vﬁ((f\é\gr%t»
same, regardless of the split configuration. (NN(movie))

' More in general, feature §e|ection'may givg gn&f}ﬁ,‘&’,"é’ﬁ@au ed)))
improvement to some learning algorithm but if it (NN(game))

can help SVMs is debatable, since its related theﬂ&lg(ﬁg)([')\lTN(mrl)()) op
ory show that they are robust to irrelevant fea-"NF (NP(OTI(NN(fean))(PP))

tures. In our specific case, we remove features Table 6: Best fragments for the ENTY class.
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(NN(company))

(WP(Who))

(WHNP(WP(Who)))

(NN(name))

(NN(team))

(NN(baseball))

(WHNP(WP))

(NN(character))

(NNP(President))

(NN(leader))

(NN(actor))

(NN(president))

(JI(Whose))

(VP(VBD)(NP))
(NP(NP)(JJ)(NN(name)))
(VP(VBD)(VP))

(NN(organization))
(VP(VBD)(NP)(PP(IN)(NP)))
(SBARQ(WHNP(WP(Who)))(SQ)(.))
(ROOT(SBARQ(WHNP(WP(Wh0)))(SQ)(.)))
(ROOT(SBARQ(WHNP(WP(Wh0)))(SQ)(-(?))))
(SBARQ(WHNP(WP(Who)))(SQ)(-(?)))

Table 7: Best fragments for the HUM class.

(NN(city))

(NN(country))

(WRB(Where))

(NN(state))

(WHADVP(WRB(Where)))

(NN(capital))

(NP(NN(city)))

(NNS(countries))

(NP(NN(state)))

(PP(IN(in)))
(SBARQ(WHADVP(WRB(Where)))(SQ)(.(?)))
(SBARQ(WHADVP(WRB(Where)))(SQ)(.))
(ROOT(SBARQ(WHADVP(WRB(Where)))(SQ)(.)))
(ROOT(SBARQ(WHADVP(WRB(Where)))(SQ)(.(?))))
(NN(island))

(NN(address))

(NN(river))

(NN(mountain))
(ROOT(SBARQ(WHADVP(WRB(Where)))(SQ)))
(SBARQ(WHADVP(WRB(Where)))(SQ))

Table 8: Best fragments for the LOC class.

(WRB(How))

(WHADVP(WRB(When)))

(WRB(When))

(JI(many))

(NN(year))

(WHADJP(WRB)(JJ))

(NP(NN(year)))

(WHADJP(WRB(How))(3J))

(NN(date))
(SBARQ(WHADVP(WRB(When)))(SQ)(.(?)))
(SBARQ(WHADVP(WRB(When)))(SQ)(.))
(NN(day))

(NN(population))
(ROOT(SBARQ(WHADVP(WRB(When)))(SQ)(.)))
(ROOT(SBARQ(WHADVP(WRB(When)))(SQ)(.(?7))))
(JJ(average))

(NN(number))

Table 9: Best fragments for the NUM class.

119

whose SVM weights are the lowest, i.e. those
that are (almost) irrelevant for the SVM. There-
fore, the chance of this resulting in an improve-
ment is rather low.

With respect to cases where our model is less
accurate than a standard SST, we should consider
that our choice of parameters is sub-optimal and
we adopt avery aggressive feature selection strat-
egy, that only retains a few thousand features from
a space where there are hundreds of millions of
different features.

7 Conclusions

We introduced a novel framework for support vec-
tor classification that combines advantages of con-
volution kernels, i.e. the generation of a very high
dimensional structure space, with the efficiency
and clarity of explicit representations in a linear
space.

For this paper, we focused on the SubSet Tree
kernel and verified the potential of the proposed
solution on two NLP tasks, i.e. semantic role
labeling and question classification. The exper-
iments show that our framework drastically re-
duces processing time, e.g. boundary classifica-
tion for SRL, while preserving the accuracy.

We presented a selection of the most relevant
fragments identified for the SRL boundary classi-
fier as well as for each class of the coarse grained
QC task. Our analysis shows that our frame-
work can discover state-of-the-art features, e.g.
the Path feature for SRL. We believe that shar-
ing these fragments with the NLP community and
studying them in more depth will be useful to
identify new, relevant features for the character-
ization of several learning problems. For this
purpose, we made available the fragment spaces
at http://danielepighin.net and we will keep
them updated with new set of experiments on new
tasks, e.g. SRL based on FrameNet and VerbNet,
e.g. (Giuglea and Moschitti, 2004).

In our future work, we plan to widen the list
of covered tasks and to extend our algorithm to
cope with different kernel families, such as the
partial tree kernel and kernels defined over pairs
of trees, e.g. the ones used for textual entailment
in (Moschitti and Zanzotto, 2007). We also plan to
move from mining fragments to mining classes of
fragments, i.e. to identify prototypical fragments
in the fragment space that generalize topological
sub-classes of the most relevant fragments.
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Abstract

Because of the importance of protein-
protein interaction (PPI) extraction from
text, many corpora have been proposed
with slightly differing definitions of pro-
teins and PPI. Since no single corpus is
large enough to saturate a machine learn-
ing system, it is necessary to learn from
multiple different corpora. In this paper,
we propose a solution to this challenge.
We designed a rich feature vector, and we
applied a support vector machine modi-
fied for corpus weighting (SVM-CW) to
complete the task of multiple corpora PPI
extraction. The rich feature vector, made
from multiple useful kernels, is used to
express the important information for PPI
extraction, and the system with our fea-
ture vector was shown to be both faster
and more accurate than the original kernel-
based system, even when using just a sin-
gle corpus. SVM-CW learns from one cor-
pus, while using other corpora for support.
SVM-CW is simple, but it is more effec-
tive than other methods that have been suc-
cessfully applied to other NLP tasks ear-
lier. With the feature vector and SVM-
CW, our system achieved the best perfor-
mance among all state-of-the-art PPI ex-
traction systems reported so far.

Introduction

}@is.s.u-tokyo.ac.jp

Even if two corpora are annotated in terms of the
same type of information by two groups, the per-
formance of a program trained by one corpus is
unlikely to be reproduced in the other corpus. On
the other hand, from a practical point of view, it is
worth while to effectively use multiple existing an-
notated corpora together, because it is very costly
to make new annotations.

One problem with several different corpora is
protein-protein interaction (PPI) extraction from
text. While PPIs play a critical role in un-
derstanding the working of cells in diverse bio-
logical contexts, the manual construction of PPI
databases such as BIND, DIP, HPRD, IntAct, and
MINT (Mathivanan et al., 2006) is known to be
very time-consuming and labor-intensive. The au-
tomatic extraction of PPI from published papers
has therefore been a major research topic in Natu-
ral Language Processing for Biology (BioNLP).

Among several PPI extraction task settings, the
most common is sentence-based, pair-wise PPI ex-
traction. At least four annotated corpora have been
provided for this setting: AlMed (Bunescu et al.,
2005), HPRD50 (Fundel et al., 2006), IEPA (Ding
et al., 2002), and LLL (Kdellec, 2005). Each of
these corpora have been used as the standard cor-
pus for training and testing PPl programs. More-
over, several corpora are annotated for more types
of events than just for PPI. Such examples include
Biolnfer (Pyysalo et al., 2007), and GENIA (Kim
etal., 2008a), and they can be reorganized into PPI
corpora. Even though all of these corpora were

The performance of an information extraction pro-made for PPI extraction, they were constructed
gram is highly dependent on various factors, in-based on different definitions of proteins and PPI,
cluding text types (abstracts, complete articles, rewhich reflect different biological research inter-
ports, etc.), exact definitions of the information toests (Pyysalo et al., 2008).

be extracted, shared sub-topics of the text collec- Research on PPI extraction so far has revealed
tions from which information is to be extracted. that the performance on each of the corpora could
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benefit from additional examples (Airola et al.,
2008). Learning from multiple annotated cor-
pora could lead to better PPI extraction perfor-

mance. Various research paradigms such as induc-

tive transfer learning (ITL) and domain adaptation “

(DA) have mainly focused on how to effectively
use corpora annotated by other groups, by redu¢—"*
ing the incompatibilities (Pan and Yang, 2008).

In this paper, we propose the extraction of PPIsFigure 1. Overview of our PPI extraction system
from multiple different corpora. We design a rich

feature vector, and as an ITL method,. we ap'training data, many ITL and DA methods have
ply a suppgrt v_ector machine (SVM) mod|f|ed for been proposed. Most of ITL methods assume that
corpus'we|ght|ng (SVM-CW) (Schwe|ker'F etal, the feature space is same, and that the labels may
2008), in order to evaluate the use of multiple COlpe different in only some examples, while most of
pora for the PPI extraction task. Our rich featureDA methods assume that the labels are the same
vector Is made from muItipIe useful ke_‘rnels, eaLChand that the feature space is different. Among the
of which is pased on multiple parser |nput§, PrO-ethods, we use adaptive SVM (aSVM) (Yang et
]E’OSEd by Miwa et al. (2008)h' The systlem with oural., 2007), singular value decomposition (SVD)
eature vector was beter than or at gast COMPF555ed alternating structure optimization (SVD-
rable to the state-of-the-art PPl extraction systemgso) (Ando et al., 2005), and transfer AdaBoost
on every corpus. The system Is a.good Start'nQTrAdaBoost) (Dai et al., 2007) to compare with
point to use the multiple corpora. Using one qf theSVM-CW. We do not use semi-supervised learn-
cr:)rpora "’_‘S_the target corpus, "S\IQM'CV%/ We'ghtﬁng (SSL) methods, because it would be consid-
the remaining corpora (we call them the Sourceerably costly to generate enough clean unlabeled

corpora) with “gpodness” for_trai_ning on the tar- data needed for SSL (Erkan et al., 2007). aSVM
get corpus. While SVM-CW is simple, we show is seen as a promising DA method among sev-

that SVM-CW can improve the performa_mce of theeral modifications of SVM including SVM-CW.
system more effectively and more efficiently thanaSVM tries to find a model that is close to the one

other methods proven to be successful in Othefnade from other classification problems. SVD-
NLP tasks earlier. As a result, SVM-CW with our ASO is one of the most successful SSL. DA. or
feature vector is comprised of a PPI system Wm}nulti—task learning methods in NLP. The method

five different models, of which each model is SUtries to find an additional useful feature space by

perior to the _best model in the o_rlglnal PPI eXtr"’lc'solving auxiliary problems that are close to the tar-
tion task, which used only the single corpus.

get problem. With well-designed auxiliary prob-

lems, the method has been applied to text clas-
sification, text chunking, and word sense disam-
While sentence-based, pair-wise PPl extractiofiguation (Ando, 2006). The method was reported
was initially tackled by using simple methods to perform better than or comparable to the best
based on co-occurrences, lately, more SOphistﬁtate-of-the-art systems in all of these tasks. TrAd-
cated machine learning systems augmented bi\,Boost was proposed as an ITL method. In train-

NLP techniques have been applied (Bunescu et aln9: the method reduces the effect of incompatible
2005). The task has been tackled as a classific€x@mPples by decreasing their weights, and thereby

tion problem. To pull out useful information from {1i€s o use useful examples from source corpora.
NLP tools including taggers and parsers, severaThe method has been applied to text classifica-
kernels have been applied to calculate the simila/ion: @nd the reported performance was better than
ity between PPI pairs. Miwa et al. (2008) recentlyS VM and transductive SVM (Dai et al., 2007).
proposed the use of multiple kernels using multi-
ple parsers. This outperformed other systems on
the AIMed, which is the most frequently used cor-The target task of our system is a sentence-based,
pus for the PPI extraction task, by a wide margin. pair-wise PPI extraction. It is formulated as a clas-
To improve the performance using externalsification problem that judges whether a given pair

Training |I

Data

Pair Information II

Feature

vector Classifier

Parsers
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PPI Extraction System
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XPGpl protein interacts with multiple subunits of PROTM:1, andM:1, interactM:1, multipleM:1,

TENH and withCS rotein. of M:1, proteinM:1, subunitM:1, with.M:2, pro-
prot Pp2P teinA:1

Figure 2: A sentence including an interacting pro-rigure 4: Bag-of-Words features of the pair in Fig-
tein pair (p1, p2). (AlMed PMID 8652557, 9th yre 2 with their positions (B:Before, M:in the Mid-
sentence, 3rd pair) dle of, A:After) and frequencies.

feature vector coop COORD PMIOD

ENTITY1 protein interacts with multiple :-- and with ENTITY2 protein .

v-walks [
BOW e-walks Graph
d L | NMOD  SBJ NMoD
" n V-walks
( Normalization ] NMOD 561 ] rNMOD
v-walks
ENTITY1 ]| protein protein || interact protein || ENTITY2
e-walks |] -
|E-walks |I NMOD I= 1{ rCOOD | | PMOD H rNMOD |]

Figure 3. Extraction of a feature vector from the Figure 5: Vertex walks, edge walks in the upper
target sentence shortest path between the proteins in the parse tree
by KSDEP. The walks and their subsets are used

of proteins in a sentence is interacting or not. Fig—aS the shortest path features of the pair in Figure 2.

ure 2 shows an example of a sentence in which the

given pair (p1 and p2) actually interacts. output is grouped according to the feature-type
Figure 1 shows the overview of the proposedand parser, and each group of features is separately

PPI extraction system. As a classifier using a sinnormalized by the L2-norfa Finally, all values

gle corpus, we use the 2-norm soft-margin lin-are put into a single feature vector, and the whole

ear SVM (L2-SVM) classifier, with the dual co- feature vector is then also normalized by the L2-

ordinate decent (DCD) method, by Hsieh et al.norm. The features are constructed by using pred-

(2008). In this section, we explain the two mainicate argument structures (PAS) from Enju, and by

features: the feature vector, and the corpus weightising the dependency trees from KSDEP.

ing method for multiple corpora.

Parsers

Enju

a sentence including a pair

3.1.1 Bag-of-Words (BOW) Features

3.1 Feature Vector The BOW feature includes the lemma form of a

We propose a feature vector with three types ofvord, its relative position to the target pair of pro-
features, corresponding to the three different kerteins (Before, Middle, After), and its frequency in
nels, which were each combined with the twothe target sentence. BOW features form the BOW
parsers: the Enju 2.3.0, and KSDEP beta 1 (Miyadernel in the original kernel method. BOW fea-
etal., 2008); this feature vector is used because tHeres for the pair in Figure 2 are shown in Figure 4.
kernels with these parsers were shown to be effec:
tive for PPI extracti?)n by Miwa et al. (2008), and%'l'2 Shortest Path (SP) Features
because it is important to start from a good perSP features include vertex walks (v-walks), edge
formance single corpus system. Both parsers werwalks (e-walks), and their subsets (Kim et al.,
retrained using the GENIA Treebank corpus pro-2008b) on the target pair in a parse structure, and
vided by Kim et al. (2003). By using our linear represent the connection between the pair. The
feature vector, we can perform calculations fastefeatures are the subsets of the tree kernels on the
by using fast linear classifiers like L2-SVM, and shortest path (Seetre et al., 2007). Figure 5 illus-
we also obtain a more accurate extraction, than bifates the shortest path between the pair in Fig-
using the original kernel method. ure 2, and its v-walks and e-walks extracted from
Figure 3 summarizes the way in which the fea-the shortest path in the parse tree by KSDEP. A
ture vector is constructed. The system extracty-Walk includes two lemmas and their link, while
Bag-of-Words (BOW), shortest path (SP), and™ ine vector normalized by the L2-norm is also called a
graph features from the output of two parsers. Thanit vector.
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an e-walk includes a lemma and its two links. The A B H | L
links indicates the predicate argument relations for positive | 1,000 2,534 163 335 164
PAS, and the dependencies for dependency trees. all 5,834 9,653 433 817 330

313 GraphE Table 1: The sizes of used PPI corpora. A:AlMed,
1.3 Graph Features B:Biolnfer, H:HPRD50, I:IEPA, and L:LLL.

Graph features are made from the all-paths graph

kernel proposed by Airola et al. (2008). The ker- 100

nel represents the target pair using graph matricesso — % & 2 = 2

based on two subgraphs, and the graph features areo PP S S . M

all the non-zero elements in the graph matrices.  ,, .~ :Q.'ZT?FLY?XS’C)
The two subgraphs are a parse structure sub-e t o = B

graph (PSS) and a linear order subgraph (LOS). ., ° *

Figure 6 describes the subgraphs of the sentence o 0 w0 e 0 10
parsed by KSDEP in Figure 2. PSS represents the % examples

arse structure of a sentence. PSS has word ver- )
P elglgure 7: Learning curves on two large corpora.

tices or link vertices. A word vertex contains its The x-axis is related to the percentage of the e
lemma and its part-of-speech (POS), while a link P 9 x

vertex contains its link. Additionally, both types amples in a corpus. The curves are obtained by a
of vertices contain their positions relative to thelo-fOId CV with a random split.

shortest path. The “IP”s in the vertices on the
shortest path represent the positions, and the ver , Corpus Weighting for Mixing Corpora
tices are differentiated from the other vertices like

“p” “CC”, and “and:CC” in Figure 6. LOS repre- Table 1 shows the sizes of the PPI corpora that we
sents the word sequence in the sentence. LOS hi§ed. Their widely-ranged differences including
word vertices, each of which contains its lemma(he sizes were manually analyzed by Pyysalo et
its relative position to the target pair, and its POS.al- (2008). While AlMed, HPRD50, IEPA, and

Each subgraph is represented by a graph matrikLL were all annotated as PPI corpora, Biolnfer in
G as follows: its original form contains much more fine-grained

information than does just the PPI. Biolnfer was
o transformed into a PPI corpus by a program, so
G=L"> A"L, (1) making it the largest of the five. Among them,
n=1 AlMed alone was created by annotating whole ab-
stracts, while the other corpora were made by an-
where L is a N x L label matrix, A is an Nx N  notating single sentences selected from abstracts.
edge matrix,N represents the number of vertices, Figure 7 shows the learning curves on two large
and L represents the number of labels. The lacorpora: AlMed and Biolnfer. The curves are
bel of a vertex includes all information describedobtained by performing a 10-fold cross valida-
above (e.g. “ENTITY1:NN:IP” in Figure 6). If tion (CV) on each corpus, with random splits, us-
two vertices have exactly same information, theng our system. The curves show that the perfor-
labels will be same. G can be calculated effi- mances can benefit from the additional examples.
ciently by using the Neumann Series (Airola et al.,To get a better PPI extraction system for a chosen
2008). The label matrix represents the corresportarget, we need to draw useful shared information
dence between labels and verticds; is 1 if the  from external source corpora. We refer to exam-
i-th vertex corresponds to theth label, and 0 oth- ples in the source corpora as “source examples”,
erwise. The edge matrix represents the connectioand examples in a target corpus as “target exam-
between the pairs of verticesl;; is a weightw;; ~ ples”. Among the corpora, we assume that the la-
(0.9 or 0.3 in Figure 6 (Airola et al., 2008)) if the bels in some examples are incompatible, and that
i-th vertex is connected to theth vertex, and 0 their distributions are also different, but that the
otherwise. By this calculatior7;; represent the feature space is shared.
sum of the weights of all paths between thth In order to draw useful information from the
label and thei-th label. source corpora to get a better model for the target
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Figure 6: Parse structure subgraph and linear order subgraph to extract graph features of the pair in
Figure 2. The parse structure subgraph is from the parse tree by KSDEP.

corpus, we use SVM-CW, which has been usedising (abstract-wise) a 10-fold CV and a one-
as a DA method. Given a set of instance-labebhnswer-per-occurrence criterion. These measures
pairs €;, v;), ¢ = 1,...,ls + It, x;€R"™, and are commonly used for the PPI extraction tasks.
y;€{—1,+1}, we solve the following problem: The F-score is a harmonic mean of Precision and
Recall. The ROC curve is a plot of a true posi-
tive rate (TPR) vs a false positive rate (FPR) for
different thresholds. We tuned the regularization
parameters of all classifiers by performing a 10-
wherew is a weight vector/ is a loss function, fold CV on the training data using a random split.
andls andlt are the numbers of source and targeflThe other parameters were fixed, and we report the
examples respectivelyCs > 0 andC; > 0 are highest of the macro-averaged F-scores as our fi-
penalty parameters. We use a squared hinge losgl F-score. For 10-fold CV, we split the corpora
¢; = maz(0,1 — y;w! z;)%. Here, the source cor- as recommended by Airola et al. (2008).

pora are treated as one corpus. The problem, ex-

cluding the second term, is equal to L2-SVM. The4.2 PPI Extraction on a Single Corpus

roblem can be solved using the DCD method. . . .
P As an ITL method SVM—(?W weiahts each cor- In this section, we evaluate our system on a single
: L 9 corpus, in order to evaluate our feature vector and
pus, and tries to benefit from the source corpora, justify the use of the following modules: nor-
by adjusting the effect of their compatibility and o o ’
: L . malization methods and classification methods.
incompatibility. For the adjustment, these penalty First, we compare our preprocessing method

parameters should be set properly. Since we are, . .
unaware of the widely ranged differences amond‘”th other preprocessing methods to confirm how

the corpora, we empirically estimated them byPU’ Preprocessing method improves the perfor-
performing 10-fold CV on the training data. mance. Our method produced 64.2% in F-score

using L2-SVM on AlMed. Scaling all features in-
4 Evaluation dividually to have a maximal absolute value of 1,
produced only 44.2% in the F-score, while nor-
malizing the feature vector by L2-norm produced
We used five corpora for evaluation: AlMed, 61.5% in the F-score. Both methods were inferior
Biolnfer, HPRD50, IEPA, and LLL. For the com- to our method, because the values of features in
parison with other methods, we report the F-the same group should be treated together, and be-
score (%), and the area under the receiver opcause the values of features in the different groups
erating characteristic (ROC) curve (AUC) (%) should not have a big discrepancy. Weighting each

1 s Is+It
ming in'w +C, Z& + C; | Z 4G, (2)
1=1 i=ls+1

4.1 Evaluation Settings
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L2 L1 LR AP CW %0
F 64.2 64.0 64.2 62.7 63.0 80
AUC | 89.1 888 890 885 878 60 -

50 ~
Table 2: Classification performance on AlMed us- 50
ing five different linear classifiers. The F-score (F) 20 -
and Area Under the ROC curve (AUC) are shown. g - | |
L2 is L2-SVM, L1 is L1-SVM, LR is logistic re- AMed Biolnfer HPRDSO  IEPA  LLL
gression, AP is averaged perceptron, and CW is Target corpus

confidence weighted linear classification.

Model
OAIMed
O Biolnfer
O HPRD50
o [EPA
WLLL

M co-ocC

Figure 8: F-score on a target corpus using a model
o on a source corpus. For the comparison, we show

sults, as will be explored in our future work.  ¢o.occurrences. The regularization parameter was
Next, using our feature vector, we appliedfixed to 1.

five different linear classifiers to extract PPI
from AlMed: L2-SVM, 1-norm soft-margin

SVM (L1-SVM), logistic regression (LR) (Fan  First, we apply the model from a source corpus
et al., 2008), averaged perceptron (AP) (Collinsto a target corpus. Figure 8 shows how the model
2002), and confidence weighted linear classificafrom a source corpus performs on the target cor-
tion (CW) (Dredze et al., 2008). Table 2 indicatespus. Interestingly, the model from IEPA performs
the performance of these classifiers on AlMedpetter on LLL than the model from LLL itself. All
We employed better settings for the task than didhe results showed that using different corpora (ex-
the original methods for AP and CW. We used acept IEPA) is worse than just using the same cor-
Widrow-Hoff learning rule (Bishop, 1995) for AP, pora. However, the cross-corpora scores are still
and we performed one iteration for CW. L2-SVM petter than the co-occurrences base-line, which in-

is as good as, if not better, than other c!assifiers (Fdicates that the corpora share some information,
score and AUC). In the least, L2-SVM is as fast aseven though they are not fully compatible.

these classifiers. AP and CW are worse than the Next we compare SVM-CW with three other

other three methods, because they require a larggethods: aSVM. SVD-ASO, and TrAdaBoost.
number of examples, and are un-suitable for thgo this comparison, we used our feature vec-
current task. This result indicates that all linearyq, \without including the graph features, because
classifiers, with the exception of AP and CW, Per-s\D-ASO and TrAdaBoost require large compu-
form almost equally, when using our feature veCaiional resources. We applied SVD-ASO and
tor. TrAdaBoost in the following way. As for SVD-
Finally, we implemented the kernel method by SO, we made 400 auxiliary problems from the

Miwa et al. (2008). For a 10-fold CV on AlMed, |gpels of each corpus by splitting features ran-
the running time was 9,507 seconds, and the petiomly, and extracted 50 additional features each
formance was 61.5% F-score and 87.1% AUCtor 4 feature groups. In total, we made new 200

Our system used 4,702 seconds, and the perfogqgitional features from 2,000 auxiliary problems.
mance was 64.2% F-score and 89.1% AUC. This\g recommended by Ando et al. (2005), we re-
result displayed that our system, with L2-SVM, moved negative weights, performed SVD to each
and our new feature vector, is better, and fastefegtyre group, and iterated ASO once. Since Ad-
than the kernel-based system. aBoost easily overfitted with our rich feature vec-
tor, we applied soft margins (Ratsch et al., 2001)
to TrAdaBoost. The update parameter for source
In this section, we first apply each model from aexamples was calculated using the update param-
source corpus to a target corpus, to show how difeter on the training data in AdaBoost and the orig-
ferent the corpora are. We then evaluate SVM-CWhnal parameter in TrAdaBoost. This ensures that
by comparing it with three other methods (see Secthe parameter would be the same as the original
tion 2) with limited features, and apply it to every parameter, when the C value in the soft margin ap-
corpus. proaches infinity.

4.3 Evaluation of Corpus Weighting
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aSvM SVD-ASO | TrAdaBoost| SVM-CW L2-SVM
F AUC| F AUC| F AUC| F AUC| F AUC
AlMed 63.6 884|629 883|634 884|640 886|632 884
Biolnfer | 66.5 85.2| 65.7 85.1| 66.1 85.2| 66.7 85.4|66.2 85.1
HPRD50| 71.2 84.3| 68.7 80.8| 726 853|727 86.4|67.2 80.7
IEPA 738 854|723 838|743 863|752 859 |73.0 847
LLL 859 89.2|79.3 855|865 888|869 903|803 86.3

Table 3: Comparison of methods on multiple corpora. Our feature vector without graph features is used.
The source corpora with the best F-scores are reported for aSVM, TrAdaBoost, and SVM-CW.

F-score AUC
A B H | L all A B H I L all
(64.2) 64.0 64.7 65.2 63.7 64.2|(89.1) 895 89.2 89.3 89.0 894
679 (67.6) 67.9 67.9 67.7 68.3| 86.2 (86.1) 86.2 86.3 86.2 86.4
71.3 71.2 (69.7) 741 70.8 749 | 84.7 85.0 (82.8) 85.0 83.4 87.9
74.4 75.6 73.7 (74.4) 744 76.6| 86.7 87.1 85.4 (85.6) 86.9 87.8
83.2 85.9 82.0 86.7 (80.5) 84.1| 86.3 87.1 87.4 90.8 (86.0) 86.2

—|—|I|® >

Table 4: F-score and AUC by SVM-CW. Rows correspond to a target corpus, and columns a source
corpus. A:AlMed, B:Biolnfer, H:HPRD50, I:IEPA, and L:LLL corpora. “all” signifies that all source
corpora are used as one source corpus, ignoring the differences among the corpora. For the comparison,
we show the 10-fold CV result on each target corpus.

In Table 3, we demonstrate the results of theés especially effective for small corpora, show-
comparison. SVM-CW improved the classifica-ing that SVM-CW can adapt source corpora to a
tion performance at least as much as all the othesmall annotated target corpus. The improvement
methods. The improvement is mainly attributed toon AlMed is small compared to the improvement
the aggressive use of source examples while learron Biolnfer, even though these corpora are sim-
ing the model. Some source examples can be useéldr in size. One of the reasons for this is that
as training data, as indicated in Figure 8. SVM-whole abstracts are annotated in AlMed, therefore
CW does not set the restriction betwe€pn and making the examples biased. The difference be-
Cy in Equation (2), so it can use source examiween L2-SVM and SVM-CW + IEPA on AlMed
ples aggressively while learning the model. Sincas small, but statistically, it is significant (McNe-
aSVM transfers a model, and SVD-ASO transferanar test (McNemar, 1947), P = 0.0081). In the
an additional feature space, aSVM and SVD-ASCcases of HPRD50 + IEPA, LLL + IEPA, and two
do not use the source examples while learning thélds in Biolnfer + IEPA,C is larger thanC; in
model. In addition to the difference in the data us-Equation (2). This is worth noting, because the
age, the settings of aSVM and SVD-ASO do notsource corpus is more weighted than the target cor-
match the current task. As for aSVM, the DA as-pus, and the prediction performance on the tar-
sumption (that the labels are the same) does naet corpus is improved. Most methods put more
match the task. In SVD-ASO, the numbers of bothtrust in the target corpus than in the source cor-
source examples and auxiliary problems are mucpus, and our results show that this setting is not al-
smaller than those reported by Ando et al. (2005)ways effective for mixing corpora. The results also
TrAdaBoost uses the source examples while learrindicate that IEPA contains more useful informa-
ing the model, but never increases the weight ofion for extracting PPI than other corpora, and that
the examples, and it attempts to reduce their efusing source examples aggressively is important
fects. for these combinations. We compared the results

Finally, we apply SVM-CW to all corpora using ©f L2-SVM and SVM-CW + IEPA on AlMed,

all features. Table 4 summarizes the F-score an@nd found that 38 pairs were described as “inter-
AUC by SVM-CW with all features. SVM-CW action” or “binding” in the sentences among 61
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SVM-CW | L2-SVM | Airola etal. pare our result with the F-score results, because
F AUC F AUC F AUC they tuned the threshold, but our system still out-

65.2 89.3] 64.2 89.1| 56.4 84.8 performs the system by Airola et al. (2008) on ev-

68.3 86.4| 67.6 86.1 61.3 81.9 ery corpus in AUC values. The results also indi-

749 87.9| 69.7 828|634 79.7 cate that our system outperforms other systems on

76.6 87.8/ 74.4 85.6| 75.1 85.1 all PPI corpora, and that both the rich feature vec-

86.7 90.8/ 80.5 86.0| 76.8 83.4 tor and the corpus weighting are effective for the

PPI extraction task.

—|—|I|® >

Table 6: Comparison with the results by Airola _
et al. (2008). A:AlMed, B:Biolnfer, H:HPRD50, 5 Conclusion

I:IEPA, and L:LLL corpora. The results with the

highest F-score from Table 4 are reported as thjsn this paper, we proposed a PPl extraction system
results for SYM-CW with a rich feature vector, using a corpus weight-

ing method (SVM-CW) for combining the mul-

_ ' o _ tiple PPI corpora. The feature vector extracts as
newly found pairs. This analysis is evidence thaimych information as possible from the main train-
IEPA contains instances to help find such inter'ing corpus, and SVM-CW incorporate other exter-
actions, and that SVM-CW helps to collect gold nal source corpora in order to improve the perfor-
pairs that lack enough supporting instances in @nance of the classifier on the main target corpus.
single corpus, by adding instances from other cor{g the extent of our knowledge, this is the first ap-
pora. SVM-CW missed coreferential relations thatplication of ITL and DA methods to PPI extrac-
were also missed by L2-SVM. This can be at-tion. As a result, the system, with SVM-CW and
tributed to the fact that the coreferential informa-the feature vector, Outperformed all other PPI ex-
tion is not stored in our current feature vector; sotraction systems on all of the corpora. The PPI
we need an even more expressive feature spacgerpora share some information, and it is shown
This is left as future work. to be effective to add other source corpora when

SVM-CW is effective on most corpus combi- working with a specific target corpus.

natlons,' and all the moqlels from single corpora The main contributions of this paper are: 1)
can be improved by adding other source corporagonducting experiments in extracting PPI using
This result is impressive, because the baselines l}y]u|t|p|e corpora, 2) Suggesting a rich feature
L2-SVM on just single corpora are already betteryector using several previously proposed features
than or at least comparable to other state-of-the-agind normalization methods, 3) the combination of
PPI extraction systems, and also because the vams\/\ with corpus weighting and the new feature
ety of the differences among different corpora isyector improved results on this task compared with
quite wide depending on various factors includingprior work.

annotation policies of the corpora (Pyysalo et al., There are many differences among the corpora
2008). The results suggest that SVM-CW is usefulnat we used, and some of the differences are still
as an ITL method. unresolved. For further improvement, it would be
necessary to investigate what is shared and what
is different among the corpora. The SVM-CW
We compare our system with other previouslymethod, and the PPI extraction system, can be ap-
published PPI extraction systems. Tables 5 angllied generally to other classification tasks, and
6 summarize the comparison. Table 5 summato other binary relation extraction tasks, without
rizes the comparison of several PPI extraction systhe need for modification. There are several other
tems evaluated on the AlMed corpus. As indi-tasks in which many different corpora, which at
cated, the performance of the heavy kernel methotirst glance seem compatible, exist. By apply-
is lower than our fast rich feature-vector method.ing SVM-CW to such corpora, we will analyze
Our system is, to the extent of our knowledge, thewvhich differences can be resolved by SVM-CW,
best performing PPI extraction system evaluate@nd what differences require a manual resolution.
on the AlMed corpus, both in terms of AUC and For the PPI extraction system, we found many
F-scores. Airola et al. (2008) first reported resultdalse negatives that need to be resolved. For fur-
using all five corpora. We cannot directly com-ther improvement, we need to analyze the cause

4.4 Comparison with Other PPI Systems
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positive  all P R F AUC
SVM-CW 1,000 5,834/ 60.0 71.9 65.2 89.3
L2-SVM 1,000 5,834 62.7 66.6 64.2 89.1
(Miwa et al., 2008) 1,005 5,648 60.4 69.3 64.2(61.5) 87.9(87.1)
(Miyao et al., 2008) 1,059 5,648 54.9 65.5 59.5
(Airola et al., 2008) 1,000 5,834/ 529 61.8 56.4 84.8
(Seetre et al., 2007) 1,068 5,631 64.3 44.1 52.0
(Erkan et al., 2007) 951 4,020| 59.6 60.7 60.0
(Bunescu and Mooney, 200%) 65.0 46.4 54.2

Table 5: Comparison with previous PPI extraction results on the AIMed corpus. The numbers of positive
and all examples, precision (P), recall (R), F-score (F), and AUC are shown. The result with the highest
F-score from Table 4 is reported as the result for SVM-CW. The scores in the parentheses of Miwa et al.
(2008) indicate the result using the same 10-fold splits as our result, as indicated in Section 4.2.

of these false negatives more deeply, and designiichael Collins. 2002. Discriminative training meth-

more discriminative feature space. This is left as a 0ds for hidden markov models: theory and experi-
future direction of our work ments with perceptron algorithms. BMNLP 2002
' pages 1-8.
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Generalized Expectation Criteria for
Bootstrapping Extractors using Record-Text Alignment
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Abstract
Traditionally, machine learning ap-
proaches for information extraction

require human annotated data that can be
costly and time-consuming to produce.
However, in many cases, there already
exists a database (DB) with schema
related to the desired output, and records
related to the expected input text. We
present a conditional random field (CRF)
that aligns tokens of a given DB record
and its realization in text. The CRF model
is trained using only the available DB and
unlabeled text with generalized expecta-
tion criteria. An annotation of the text
induced from inferred alignments is used
to train an information extractor. We eval-
uate our method on a citation extraction
task in which alignments between DBLP
database records and citation texts are
used to train an extractor. Experimental
results demonstrate an error reduction
of 35% over a previous state-of-the-art
method that uses heuristic alignments.

1 Introduction

A substantial portion of information on the Web
consists of unstructured and semi-structured text.
Information extraction (IE) systems segment and
label such text to populate a structured database
that can then be queried and mined efficiently.

In this paper, we mainly deal with information
extraction from text fragments that closely resem-
ble structured records. Examples of such texts
include citation strings in research papers, con-
tact addresses on person homepages and apart-
ment listings in classified ads. Pattern match-
ing and rule-based approaches for IE (Brin, 1998;
Agichtein and Gravano, 2000; Etzioni et al., 2005)
that only use specific patterns, and delimiter and
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font-based cues for segmentation are prone to fail-
ure on such data because these cues are gen-
erally not broadly reliable. Statistical machine
learning methods such as hidden Markov models
(HMMs) (Rabiner, 1989; Seymore et al., 1999;
Freitag and McCallum, 1999) and conditional ran-
dom fields (CRFs) (Lafferty et al., 2001; Peng
and McCallum, 2004; Sarawagi and Cohen, 2005)
have become popular approaches to address the
text extraction problem. However, these methods
require labeled training data, such as annotated
text, which is often scarce and expensive to pro-
duce.

In many cases, however, there already exists a
database with schema related to the desired out-
put, and records that are imperfectly rendered in
the available unlabeled text. This database can
serve as a source of significant supervised guid-
ance to machine learning methods. Previous work
on using databases to train information extrac-
tors has taken one of three simpler approaches.
In the first, a separate language model is trained
on each column of the database and these mod-
els are then used to segment and label a given
text sequence (Agichtein and Ganti, 2004; Can-
isius and Sporleder, 2007). However, this ap-
proach does not model context, errors or differ-
ent formats of fields in text, and requires large
number of database entries to learn an accurate
language model. The second approach (Sarawagi
and Cohen, 2004; Michelson and Knoblock, 2005;
Mansuri and Sarawagi, 2006) uses database or
dictionary lookups in combination with similarity
measures to add features to the text sequence. Al-
though these features are very informative, learn-
ing algorithms still require annotated data to make
use of them. The final approach heuristically
labels texts using matching records and learns
extractors from these annotations (Ramakrishnan
and Mukherjee, 2004; Bellare and McCallum,
2007; Michelson and Knoblock, 2008). Heuris-
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tic labeling decisions, however, are made indepen-
dently without regard for the Markov dependen-
cies among labels in text and are sensitive to subtle
changes in text.

Here we propose a method that automatically
induces a labeling of an input text sequence us-
ing a word alignment with a matching database
record. This induced labeling is then used to train
a text extractor. Our approach has several advan-
tages over previous methods. First, we are able
to model field ordering and context around fields
by learning an extractor from annotations of the
text itself. Second, a probabilistic model for word
alignment can exploit dependencies among align-
ments, and is also robust to errors, formatting dif-
ferences, and missing fields in text and the record.

Our word alignment model is a conditional ran-
dom field (CRF) (Lafferty et al., 2001) that gen-
erates alignments between tokens of a text se-
quence and a matching database record. The
structure of the graphical model resembles IBM
Model 1 (Brown et al., 1993) in which each tar-
get (record) word is assigned one or more source
(text) words. The alignment is generated con-
ditioned on both the record and text sequence,
and therefore supports large sets of rich and non-
independent features of the sequence pairs. Our
model is trained without the need for labeled word
alignments by using generalized expectation (GE)
criteria (Mann and McCallum, 2008) that penal-
ize the divergence of specific model expectations
from target expectations. Model parameters are
estimated by minimizing this divergence. To limit
over-fitting we include a Lo-regularization term in
the objective. The model expectations in GE cri-
teria are taken with respect to a set of alignment
latent variables that are either specific to each se-
quence pair (local) or summarizing the entire data
set (global). This set is constructed by including
all alignment variables « that satisfy a certain bi-
nary feature (e.g., f(a,x1,y1,%x2) = 1, for la-
beled record (x1,y1), and text sequence x3). One
example global criterion is that “an alignment ex-
ists between two orthographically similar! words
95% of the time.” Here the criterion has a rarget
expectation of 95% and is defined over alignments
{a = (i,7) | x1[i] ~ x2[j], VX1, X2}. Another cri-
terion for extraction can be “the word ‘EMNLP’
is always aligned with the record label booktitle”.

"Two words are orthographically similar if they have low
edit distance.
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This criterion has a target of 100% and defined
for {a = (i,j) | y1[i] = booktitle N x3[j]
‘EMNLP’, Yy, x2}. One-to-one correspondence
between words in the sequence pair can be speci-
fied as collection of local expectation constraints.
Since we directly encode prior knowledge of how
alignments behave in our criteria, we obtain suffi-
ciently accurate alignments with little supervision.

We apply our method to the task of citation
extraction. The input to our training algorithm
is a set of matching DBLP?-record/citation-text
pairs and global GE criteria® of the following two
types: (1) alignment criteria that consider fea-
tures of mapping between record and text words,
and, (2) extraction criteria that consider features
of the schema label assigned to a text word. In
our experiments, the parallel record-text pairs are
collected manually but this process can be auto-
mated using systems that match text sequences
to records in the DB (Michelson and Knoblock,
2005; Michelson and Knoblock, 2008). Such sys-
tems achieve very high accuracy close to 90% F1
on semi-structured domains similar to ours.* Our
trained alignment model can be used to directly
align new record-text pairs to create a labeling of
the texts. Empirical results demonstrate a 20.6%
error reduction in token labeling accuracy com-
pared to a strong baseline method that employs a
set of high-precision alignments. Furthermore, we
provide a 63.8% error reduction compared to IBM
Model 4 (Brown et al., 1993). Alignments learned
by our model are used to train a linear-chain CRF
extractor. We obtain an error reduction of 35.1%
over a previous state-of-the-art extraction method
that uses heuristically generated alignments.

2 Record-Text Alignment

Here we provide a brief description of the record-
text alignment task. For the sake of clarity and
space, we describe our approach on a fictional
restaurant address data set. The input to our sys-
tem is a database (DB) consisting of records (pos-
sibly containing errors) and corresponding texts
that are realizations of these DB records. An ex-
ample of a matching record-text pair is shown in

“http://www.informatik.uni-trier.de/~ley/db/

3Expectation criteria used in our experiments are listed at
http://www.cs.umass.edu/~kedarb/dbie_expts.txt.

“To obtain more accurate record-text pairs, matching
methods can be tuned for high precision at the expense
of recall.  Alternatively, humans can cheaply provide
match/mismatch labels on automatically matched pairs.



Record

name address

city state phone

restaurant katsu

n. hillhurst avenue

los angeles 665-1891

Text

katzu, 1972 hillhurst ave., los feliz, california

Table 1: An example of a matching record-text pair for restaurant addresses.

Table 1. This example displays the differences
between the record and text: (1) spelling errors:
katsu — katzu, (2) word insertions (restaurant),
deletions (1972), substitutions (angeles — feliz),
(3) abbreviations (avenue — ave.), (4) missing
fields in text (phone=665-1891), and (5) extra
fields in text (state=california). These discrep-
ancies plus the unknown ordering of fields within
text can be addressed through word alignment.

restaurant [name]
katsu [name]
*null* [name]

n. [address]
hillhurst [address]
avenue [address]
*null* [address]
los [city]

angeles [city]
*null* [city]
*null* [state]
665-1891 [phone]
*null* [phone]

katzu,
1972
hillhurst
ave.,

los

feliz,
california

Table 2: Example of a word alignment. W repre-
sents aligned tokens. Vertical text at the bottom
are the text tokens. Horizontal text on the left are
tokens from the DB record with labels shown in
braces.

An example word alignment between the record
and text is shown in Table 2. Tokenization of
record/text string is based on whitespace charac-
ters. We add a special *null* token at the field
boundaries for each label in the schema to model
word insertions. The record sequence is obtained
by concatenating individual fields according to the
DB schema order. As in statistical word align-
ment, we assume the DB record to be our source
and the text to be our target. The induced labeling
of the text is given by (name, address, address,

133

address, city, city, state) which can be used to
train an information extractor. In the next section,
we present our approach to address this task.

3 Approach

We first define notation that will be used
throughout this section. Let (xi,y1) be a
database record with token sequence xi
(x1[1],21[2], ..., z1[m]) and label sequence y; =
(], f2],. .., 5alm]) with yi[+] € Y where
Y is the database schema. Let xo
(x2[1], x2[2], ..., x2[n]) be the text sequence. Let
a = (ai,as,...,a,) be an alignment sequence
of same length as the target text sequence. The
alignment a; = j assigns the DB token-label pair
(z1[4], y1[7]) to the text token zd].

3.1 Conditional Random Field for Alignment

Our conditional random field (CRF) for alignment
has a graphical model structure that resembles that
of IBM Model 1 (Brown et al., 1993). The CRF
is an undirected graphical model that defines a
probability distribution over alignment sequences
a conditioned on the inputs (x1,y1,X2) as:

p@(a\xb}’l,xﬁ =

exp(3oi g o7 flat,x1,y1,%2,t))
Zo(x1,y1,%2)

ey

9

—

where f(a¢,x1,y1,X2,t) are feature functions
defined over the alignments and inputs, © are
the model parameters and Zg(X1,y1,X2)
Yarexp(doi,y @Tf(ag, X1,¥1,X2,1)) is the par-
tition function.

The feature vector f(at,xl,yl,xQ,t) is the
concatenation of two types of feature functions:
(1) alignment features fq1ign (at, X1,X2,t) defined
on source-target tokens, and, (2) extraction fea-
tures fertr(at, y1,X2,t) defined on source labels
and target text. To obtain the probability of an
alignment in a particular position ¢ we marginal-
ize out the alignments over the rest of the positions

{1,...,n}\{t},
2

po(atx1,y1,%x2) =
{a[l..n]}\{as}

pe(alx1,y1,X2)



_ exp(07 flar, x1,y1,%2,))
eXp(Za’ @Tf<a/7 X1,¥Y1,X2, t))
Furthermore, the marginal over label y; assigned

to the text token x[t] at time step ¢ during align-
ment is given by

2)

2.

{atly1]at]=y:}

pe(at|x1,y1,X2),

3)
where {a; | y1[a:] = y:} is the set of alignments
that result in a labeling y; for token x3|[t]. Hence-
forth, we abbreviate peo(a:|x1,y1,X2) to pe(a).
The gradient of pg(a;) with respect to parameters
O is given by

p@(yt’XQ) =

8 —
pa@g”) = pe(ar) [f(at7xlvyl7x2,t)
~Epog) (flaxi,y1,%2,6)) | @)

where the expectation term in the above equation
sums over all alignments a at position ¢t. We use
the Baum-Welch and Viterbi algorithms to com-
pute marginal probabilities and best alignment se-
quences respectively.

3.2 Expectation Criteria and Parameter
Estimation

LetD = <(x§1), yg ), gl)), ce (XgK ng) X;K)

be a data set of K record-text pairs gathered man-
ually or automatically through matching (Michel-
son and Knoblock, 2005; Michelson and
Knoblock, 2008). A global expectation criterion
is defined on the set of alignment latent variables

= {al|f(a, xl),yp, (z)) =1,vVi=1...K}
on the entire data set that satisfy a given bi-
nary feature f(a,Xi,y1,%2). Similarly a local
expectation criterion is defined only for a

specific instance (xg),yg),xé)) with the set

A; = {a|f(a, x1 ,yg ),xg)) = 1}. For a feature
function f, a target expectation p, and, a weight

w, our criterion minimizes the squared divergence

)

) I

where Ep, (Af) = EaeAf pe(a) is the sum of
marginal probabilities given by Equation (2) and
|Af| is the size of the variable set. The weight
w influences the importance of satisfying a given
expectation criterion. Equation (5) is an instance
of generalized expectation criteria (Mann and Mc-
Callum, 2008) that penalizes the divergence of

))
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a specific model expectation from a given target
value. The gradient of the divergence with respect
to O is given by,

aA(fvpawae) =9 Epe(Af) —p
00 Al
1 Ope(a)

> -pl, (6

’Af‘ aGAf 89
where the gradient 8’%@7@@ is given by Eq. (4).
Given expectation criteria C = (F,P, W) with
a set of binary feature functions F = (f1,..., f;),

target expectations P = ,p1) and weights

<p1,...

W = (wy,...,w;), we maximize the objective
l ISl
0;D = - iy Piy Wi -
0(6;D,C) max ;1 A(fi,pi, w;, ©) 5
@)

where ||©[|?/2 is the regularization term added to
limit over-fitting. Hence the gradient of the objec-
tive is

00(6;D,C)
00 B

OA(fi, pi, wi, O)
00

- 0.
i=1

We maximize our objective (Equation 7) using the
L-BFGS algorithm. It is sometimes necessary to
restart maximization after resetting the Hessian
calculation in L-BFGS due to non-convexity of
our objective.> Also, non-convexity may lead to
a local instead of a global maximum. Our experi-
ments show that local maxima do not adversely af-
fect performance since our accuracy is within 4%
of a model trained with gold-standard labels.

3.3 Linear-chain CRF for Extraction

The alignment CRF (AlignCRF) model described
in Section 3.1 is able to predict labels for a text
sequence given a matching DB record. However,
without corresponding records for texts the model
does not perform well as an extractor because it
has learned to rely on the DB record and alignment
features (Sutton et al., 2006). Hence, we train
a separate linear-chain CRF on the alignment-
induced labels for evaluation as an extractor.

The extraction CRF (ExtrCRF) employs a
fully-connected state machine with a unique state

>Our L-BFGS optimization procedure checks whether the
approximate Hessian computed from cached gradient vectors
is positive semi-definite. The optimization is restarted if this
check fails.



per label y € ) in the database schema. The CRF
induces a conditional probability distribution over
label sequences y = (y1,...,Yyn) and input text
sequences X = (X1,...,Zy) as

exXp (Z?:l ATg(yt—17 Yt, X, t))
Z(x) '

palylx) =
8)
In comparison to our earlier zero-order AlignCRF
model, our ExtrCRF is a first-order model. All
the feature functions in this model g(y;—1, y:, X, t)
are a conjunction of the label pair (y;—1,y:) and
input observational features. Z,(x) in the equa-
tion above is the partition function. Inference in
the model is performed using the Viterbi algo-
rithm.

Given expectation criteria C and data set

K
D = (", yM <V, Ly (),

we first estimate the parameters © of AlignCRF
model as described in Section 3.2. Next, for all
text sequences xgz),i = 1...K we compute the

P

marginal probabilities of the labels pg (y: \xg) ), Vit
using Equation (3). To estimate parameters A we
minimize the KL-divergence between pg(y|x) =
[T/~ pre(y:|x) and py (y|x) for all sequences x,

KL(pellpa) = ZP@(Y|X) log(p@§y|x))

y ylx)

= H(po(y|x))

Z E o (Yt— 1,yt)[A g(t 1,Yt, X ,t)]
o +1log(Za(x)). (9)

The gradient of the above equation is given by

OKL

oA - Z E A (Y- 17yt|x)[ (yt 1, Yt, X, t)]

tyYt—1,yt
_E o (Yt — 1,yt|x)[ (yt 1, Yt, X, t)] (10)

Both the expectations can be computed using the
Baum-Welch algorithm. The parameters A are es-
timated for a given data set D and learned param-
eters O by optimizing the objective

K

o (i) (1)
—H}\ID;KL(P@(Y|X2 )||pA(Y|X2 )

O(A;D,0)

+HIA]?/2.

The objective is minimized using L-BFGS. Since
the objective is convex we are guaranteed to obtain
a global minima.
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4 Experiments

In this section, we present details about the appli-
cation of our method to citation extraction task.

Data set. We collected a set of 260 random
records from the DBLP bibliographic database.
The schema of DBLP has the following labels
{author, editor, address, title, booktitle, pages,
vear, journal, volume, number, month, url, ee,
cdrom, school, publisher, note, isbn, chapter, se-
ries}. The complexity of our alignment model de-
pends on the number of schema labels and number
of tokens in the DB record. We reduced the num-
ber of schema labels by: (1) mapping the labels
address, booktitle, journal and school to venue, (2)
mapping month and year to date, and (3) dropping
the fields url, ee, cdrom, note, isbn and chapter,
since they never appeared in citation texts. We
also added the other label O for fields in text that
are not represented in the database. Therefore, our
final DB schema is {author, title, date, venue, vol-
ume, number, pages, editor, publisher, series, O}.
For each DBLP record we searched on the web
for matching citation texts using the first author’s
last name and words in the title. Each citation text
found is manually labeled for evaluation purposes.
An example of a matching DBLP record-citation
text pair is shown in Table 3. Our data set® con-
tains 522 record-text pairs for 260 DBLP entries.

Features and Constraints. We use a variety of
rich, non-independent features in our models to
optimize system performance. The input features
in our models are of the following two types:

(a) Extraction features in the AlignCRF
model (f(a¢,y1,%2,t)) and ExtrCRF model
(9(yt—1,y¢,x,t)) are conjunctions of assigned la-
bels and observational tests on text sequence at
time step t. The following observational tests
are used: (1) regular expressions to detect to-
kens containing all characters (ALLCHAR), all dig-
its (ALLDIGITS) or both digits and characters (AL-
PHADIGITS), (2) number of characters or digits
in the token (NUMCHAR=3, NUMDIGITS=1), (3)
domain-specific patterns for date and pages, (4)
token identity, suffixes, prefixes and character n-
grams, (5) presence of a token in lexicons such as
“last names,” “publisher names,” “cities,” (6) lex-
icon features within a window of 10, (7) regular

EE T

The data set can be found at
http://www.cs.umass.edu/~kedarb/dbie_cite_data.sgml.



DBLP record

Citation text

[Chengzhi Li]guthor [Edward W. Knightly]qythor [Coordinated Net-
work Scheduling: A Framework for End-to-End Services.titie [69-]pages

[2000]4ate ICNPlyenue

[C.Li]guthor [and]o [E. Knightly.] ¢ thor [Coordinated network schedul-
ing: A framework for end-to-end services.];;¢;e [In Proceedings of IEEE

ICNP] yenue [100,)date [Osaka, Japan,]yepnue [November 2000.] gote

Table 3: Example of matching record-text pair found on the web.

expression features within a window of 10, and (8)
token identity features within a window of 3.

(b) Alignment features in the AlignCRF model
(f(at,x1,%x2,t)) that operate on the aligned
source token x[a;| and target token Xo[t]. Again
the observational tests used for alignment are: (1)
exact token match tests whether the source-target
tokens are string identical, (2) approximate token
match produces a binary feature after binning the
Jaro-Winkler edit distance (Cohen et al., 2003) be-
tween the tokens, (3) substring token match tests
whether one token is a substring of the other,
(4) prefix token match returns true if the pre-
fixes match for lengths {1,2,3,4}, (5) suffix to-
ken match returns true if the prefixes match for
lengths {1, 2, 3,4}, and (6) exact and approximate
token matches at offsets {—1, —1} and {+1,+1}
around the alignment.

Thus, a conditional model lets us use these ar-
bitrary helpful features that cannot be exploited
tractably in a generative model.

As is common practice (Haghighi and Klein,
2006; Mann and McCallum, 2008), we simulate
user-specified expectation criteria through statis-
tics on manually labeled citation texts. For ex-
traction criteria, we select for each label, the top
N extraction features ordered by mutual informa-
tion (MI) with that label. Also, we aggregate the
alignment features of record tokens whose align-
ment with a target text token results in a correct
label assignment. The top /N alignment features
that have maximum MI with this correct label-
ing are selected as alignment criteria. We bin tar-
get expectations of these criteria into 11 bins as
[0.05,0.1,0.2,0.3,...,0.9,0.95].7 In our exper-
iments, we set N = 10 and use a fixed weight
w = 10.0 for all expectation criteria (no tuning
of parameters was performed). Table 4 shows a
sample of GE criteria used in our experiments.”

"Mann and McCallum (2008) note that GE criteria are ro-
bust to deviation of specified targets from actual expectations.

8A complete list of expectation criteria is available at
http://www.cs.umass.edu/~kedarb/dbie_expts.txt.

Label Feature Prior
alignment | PREFIX_.MATCH4 0.95
author LEXICON_LASTNAME 0.6
title WINDOW_WORD=Maintenance | 0.95
venue WINDOW _WORD=Conference 0.95
date YEAR_PATTERN 0.95
volume NUMDIGITS=2 0.6
number NUMDIGITS=1 0.6
pages PAGES_PATTERN 0.95
editor WORD_PREFIX[2]=ed 0.95
publisher | WORD=Press 0.95
series WORD=Notes 0.95
0 WORD=and 0.7

Table 4: Sample of expectation criteria used by
our model.

Experimental Setup. Our experiments use a 3:1
split of the data for training and testing. We re-
peat the experiment 20 times with different ran-
dom splits of the data. We train the AlignCRF
model using the training data and the automati-
cally created expectation criteria (Section 3.2). We
evaluate our alignment model indirectly in terms
of token labeling accuracy (i.e., percentage of cor-
rectly labeled tokens in test citation data) since we
do not have annotated alignments. The alignment
model is then used to train a ExtrCRF model as
described in Section 3.3. Again, we use token la-
beling accuracy for evaluation. We also measure
F1 performance as the harmonic mean of precision
and recall for each label.

4.1 Alternate approaches

We compare our method against alternate ap-
proaches that either learn alignment or extraction
models from training data.

Alignment approaches. We use GIZA++ (Och
and Ney, 2003) to train generative directed align-
ment models: HMM and IBM Model4 (Brown et
al., 1993) from training record-text pairs. These
models are currently being used in state-of-the-art
machine translation systems. Alignments between
matching DB records and text sequences are then
used for labeling at test time.
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Extraction approaches. The first alternative
(DB-CREF) trains a linear-chain CRF for extrac-
tion on fields of the database entries only. Each
field of the record is treated as a separate labeled
text sequence. Given an unlabeled text sequence,
it is segmented and labeled using the Viterbi algo-
rithm. This method is an enhanced representative
for (Agichtein and Ganti, 2004) in which a lan-
guage model is trained for each column of the DB.

Another alternative technique constructs par-
tially annotated text data using the matching
records and a labeling function. The labeling func-
tion employs high-precision alignment rules to as-
sign labels to text tokens using labeled record to-
kens. We use exact and approximate token match-
ing rules to create a partially labeled sequence,
skipping tokens that cannot be unambiguously la-
beled. In our experiments, we achieve a pre-
cision of 97% and a recall of 70% using these
rules. Given a partially annotated citation text,
we train a linear-chain CRF by maximizing the
marginal likelihood of the observed labels. This
marginal CRF training method (Bellare and Mc-
Callum, 2007) (M-CRF) was the previous state-
of-the-art on this data set. Additionally, if a match-
ing record is available for a test citation text,
we can partially label tokens and use constrained
Viterbi decoding with labeled positions fixed at
their observed values (M+R-CRF approach).

Our third approach is similar to (Mann and Mc-
Callum, 2008). We create extraction expectation
criteria from labeled text sequences in the training
data and uses these criteria to learn a linear-chain
CRF for extraction (MMO08). The performance
achieved by this approach is an upper bound on
methods that: (1) use labeled training records to
create extraction criteria, and, (2) only use extrac-
tion criteria without any alignment criteria.

Finally, we train a supervised linear-chain CRF
(GS-CREF) using the labeled text sequences from
the training set. This represents an upper bound on
the performance that can be achieved on our task.
All the extraction methods have access to the same
features as the ExtrCRF model.

4.2 Results

Table 5 shows the results of various alignment
algorithms applied to the record-text data set.
Alignment methods use the matching record to
perform labeling of a test citation text. The Align-
CRF model outperforms the best generative align-
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HMM | Model4 | AlignCRF
accuracy | 78.5% | 79.8% 92.7%
author 92.7 94.9 99.0
title 93.3 95.1 97.3
date 69.5 66.3 81.9
venue 73.3 73.1 91.2
volume 50.0 49.2 78.5
number 53.5 66.3 68.0
pages 38.2 44.1 88.2
editor 22.8 21.5 78.1
publisher | 29.7 31.0 72.6
series 77.4 71.3 74.6
0 49.6 58.8 85.7

Table 5: Token-labeling accuracy and per-label F1
for different alignment methods. These methods
all use matching DB records at test time. Bold-
faced numbers indicate the best performing model.
HMM, Model4: generative alignment models
from GIZA++, AlignCRF: alignment model from
this paper.

ment model Model4d (IBM Model 4) with an er-
ror reduction of 63.8%. Our conjecture is that
Model4 is getting stuck in sub-optimal local max-
ima during EM training since our training set only
contains hundreds of parallel record-text pairs.
This problem may be alleviated by training on a
large parallel corpus. Additionally, our alignment
model is superior to Model4 since it leverages rich
non-independent features of input sequence pairs.

Table 6 shows the performance of various ex-
traction methods. Except M+R-CREF, all extrac-
tion approaches, do not use any record information
at test time. In comparison to the previous state-
of-the-art M-CREF, the ExtrCRF method provides
an error reduction of 35.1%. ExtrCRF also pro-
duces an error reduction of 21.7% compared to
M+R-CRF without the use of matching records.
These reductions are significant at level p = 0.005
using the two-tailed t-test. Training only on DB
records is not helpful for extraction as we do not
learn the transition structure’ and additional con-
text information'® in text. This explains the low
accuracy of the DB-CRF method. Furthermore,
the MMO8 approach (Mann and McCallum, 2008)
achieves low accuracy since it does not use any

°In general, the editor field follows the fitle field while the
author field precedes it.

1%The token “Vol.” generally precedes the volume field in
text. Similarly, tokens “pp” and “pages” occur before the
pages field.



DB-CRF | M-CRF | M+R-CRF' | MMOS8 | ExtrCRF || GS-CRF
accuracy | 70.4% 88.9% 90.8% 73.5% 92.8% 96.5%
author 72.4 93.7 94.1 85.4 98.5 99.0
title 79.4 96.7 98.4 83.1 94.6 98.1
date 60.1 74.5 76.2 57.8 81.7 93.5
venue 67.3 89.4 91.5 73.2 89.8 95.9
volume 20.3 69.4 74.2 27.7 78.9 90.5
number 30.1 72.8 80.8 47.8 75.1 91.4
pages 414 80.9 84.5 49.6 92.1 94.1
editor 7.1 71.1 79.3 75.3 73.3 93.7
publisher 62.1 67.5 77.2 40.2 58.5 82.2
series 65.2 74.9 76.3 65.9 73.8 85.8
o 54.1 7.0 8.3 57.7 91.9 94.5

Table 6: Token-labeling accuracy and per-label F1 for different extraction methods. Except M+R-CRFT,
all other approaches do not use any records at test time. Bold-faced numbers indicate the best performing
model. DB-CRF: CRF trained on DB fields. M+R-CRF, M-CRF: CRFs trained from heuristic align-
ments. ExtrCRF: Extraction model presented in this paper. GS-CRF: CRF trained on human annotated

citation texts.

alignment criteria during training. Hence, align-
ment information is crucial for obtaining high ac-
curacy.

Note that we do not observe a decrease in per-
formance of ExtrCRF over AlignCRF although
we are not using the test records during decoding.
This is because: (1) a first-order model in Extr-
CRF improves performance compared to a zero-
order model in AlignCRF and (2) the use of noisy
DB records in the test set for alignment often in-
creases extraction error.

Both our models have a high F1 value for the
other label O because we provide our algorithm
with constraints for the label O. In contrast, since
there is no realization of the O field in the DB
records, both M-CRF and M+R-CRF methods
fail to label such tokens correctly. Our alignment
model trained using expectation criteria achieves
a performance of 92.7% close to gold-standard
training (GS-CRF) (96.5%). Furthermore, Ex-
trCRF obtains an accuracy of 92.8% similar to
AlignCRF without access to DB records due to
better modeling of transition structure and context.

5 Related Work

Recent research in information extraction (IE) has
focused on reducing the labeling effort needed
to train supervised IE systems. For instance,
Grenager et al. (2005) perform unsupervised
HMM learning for field segmentation, and bias
the model to prefer self-transitions and transi-
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tions on boundary tokens. Unfortunately, such
unsupervised IE approaches do not attain perfor-
mance close to state-of-the-art supervised meth-
ods. Semi-supervised approaches that learn a
model with only a few constraints specifying
prior knowledge have generated much interest.
Haghighi and Klein (2006) assign each label in
the model certain prototypical features and train a
Markov random field for sequence tagging from
these labeled features. In contrast, our method
uses GE criteria (Mann and McCallum, 2008) —
allowing soft-labeling of features with target ex-
pectation values — to train conditional models with
complex and non-independent input features. Ad-
ditionally, in comparison to previous methods, an
information extractor trained from our record-text
alignments achieves accuracy of 93% making it
useful for real-world applications. Chang et al.
(2007) use beam search for decoding unlabeled
text with soft and hard constraints, and train a
model with top-K decoded label sequences. How-
ever, this model requires large number of labeled
examples (e.g., 300 annotated citations) to boot-
strap itself. Active learning is another popular ap-
proach for reducing annotation effort. Settles and
Craven (2008) provide a comparison of various ac-
tive learning strategies for sequence labeling tasks.
We have shown, however, that in domains where a
database can provide significant supervision, one
can bootstrap accurate extractors with very little
human effort.



Another area of research, related to the task
described in our paper, is learning extractors
from database records. These records are also
known as field books and reference sets in liter-
ature (Canisius and Sporleder, 2007; Michelson
and Knoblock, 2008). Both Agichtein and Ganti
(2004) and Canisius and Sporleder (2007) train a
language model for each database column. The
language modeling approach is sensitive to word
re-orderings in text and other variability present
in real-world text (e.g., abbreviation). We allow
for word and field re-orderings through alignments
and model complex transformations through fea-
ture functions. Michelson and Knoblock (2008)
extract information from unstructured texts using a
rule-based approach to align segments of text with
fields in a DB record. Our probabilistic alignment
approach is more robust and uses rich features of
the alignment to obtain high performance.

Recently, Snyder and Barzilay (2007) and Liang
et al. (2009) have explored record-text matching in
domains with unstructured texts. Unlike a semi-
structured text sequence obtained by noisily con-
catenating fields from a single record, an unstruc-
tured sequence may contain fields from multiple
records embedded in large amounts of extraneous
text. Hence, the problems of record-text matching
and word alignment are significantly harder in un-
structured domains. Snyder and Barzilay (2007)
achieve a state-of-the-art performance of 80% F1
on matching multiple NFL database records to
sentences in the news summary of a football game.
Their algorithm is trained using supervised ma-
chine learning and learns alignments at the level of
sentences and DB records. In contrast, this paper
presents a semi-supervised learning algorithm for
learning token-level alignments between records
and texts. Liang et al. (2009) describe a model that
simultaneously performs record-text matching and
word alignment in unstructured domains. Their
model is trained in an unsupervised fashion using
EM. It may be possible to further improve their
model performance by incorporating prior knowl-
edge in the form of expectation criteria.

Traditionally, generative word alignment mod-
els have been trained on massive parallel cor-
pora (Brown et al., 1993). Recently, discrim-
inative alignment methods trained using anno-
tated alignments on small parallel corpora have
achieved superior performance. Taskar et al.
(2005) train a discriminative alignment model
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from annotated alignments using a large-margin
method. Labeled alignments are also used by
Blunsom and Cohn (2006) to train a CRF word
alignment model. Our method is trained using a
small number of easily specified expectation cri-
teria thus avoiding tedious and expensive human
labeling of alignments. An alternate method of
learning alignment models is proposed by McCal-
Ium et al. (2005) in which the training set consists
of sequence pairs classified as match or mismatch.
Alignments are learned to identify the class of a
given sequence pair. However, this method relies
on carefully selected negative examples to pro-
duce high-accuracy alignments. Our method pro-
duces good alignments as we directly encode prior
knowledge about alignments.

6 Conclusion and Future Work

Information extraction is an important first step in
data mining applications. Earlier approaches for
learning reliable extractors have relied on manu-
ally annotated text corpora. This paper presents a
novel approach for training extractors using align-
ments between texts and existing database records.
Our approach achieves performance close to su-
pervised training with very little supervision.

In the future, we plan to surpass supervised ac-
curacy by applying our method to millions of par-
allel record-text pairs collected automatically us-
ing matching. We also want to explore the addi-
tion of Markov dependencies into our alignment
model and other constraints such as monotonicity
and one-to-one correspondence.
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Abstract

Many named entities contain other named
entities inside them. Despite this fact, the
field of named entity recognition has al-

most entirely ignored nested named en-
tity recognition, but due to technological,

rather than ideological reasons. In this pa-
per, we present a new technique for rec-
ognizing nested named entities, by using
a discriminative constituency parser. To
train the model, we transform each sen-
tence into a tree, with constituents for each
named entity (and no other syntactic struc-
ture). We present results on both news-
paper and biomedical corpora which con-
tain nested named entities. In three out
of four sets of experiments, our model

outperforms a standard semi-CRF on the
more traditional top-level entities. At the

same time, we improve the overall F-score
by up to 30% over the flat model, which is

unable to recover any nested entities.

Introduction

We believe this has largely been for practical,
not ideological, reasons. Most corpus designers
have chosen to skirt the issue entirely, and have
annotated only the topmost entities. The widely
used CoNLL (Sang and Meulder, 2003), MUC-6,
and MUC-7 NER corpora, composed of American
and British newswire, are all flatly annotated. The
GENIA corpus contains nested entities, but the
JNLPBA 2004 shared task (Collier et al., 2004),
which utilized the corpus, removed all embedded
entities for the evaluation. To our knowledge, the
only shared task which has included nested enti-
ties is the SemEval 2007 Task 9 (Marquez et al.,
2007b), which used a subset of the AnCora corpus.
However, in that task all entities corresponded to
particular parts of speech or noun phrases in the
provided syntactic structure, and no participant di-
rectly addressed the nested nature of the data.

Another reason for the lack of focus on nested
NER is technological. The NER task arose in the
context of the MUC workshops, as small chunks
which could be identified by finite state models
or gazetteers. This then led to the widespread
use of sequence models, first hidden Markov mod-

Named entity recognition is the task of finding en-€ls, then conditional Markov models (Borthwick,
tities, such as people and organizations, in text1999), and, more recently, linear chain conditional
Frequently, entities are nested within each otherfandom fields (CRFs) (Lafferty et al., 2001). All
such asBank of China and University of Wash-
ington, both organizations with nested ocations.

of these models suffer from an inability to model
nested entities.

Nested entities are also common in biomedical In this paper we present a novel solution to the
data, where different biological entities of inter- problem of nested named entity recognition. Our
est are often composed of one another. In thenodel explicitly represents the nested structure,
GENIA corpus (Ohta et al., 2002), which is la- allowing entities to be influenced not just by the
beled with entity types such gsotein andDNA,  labels of the words surrounding them, as in a CRF,
roughly 17% of entities are embedded within an-but also by the entities contained in them, and in
other entity. In the AnCora corpus of Spanish andwhich they are contained. We represent each sen-
Catalan newspaper text (Marti et al., 2007), nearlyence as a parse tree, with the words as leaves, and
half of the entities are embedded. However, workwith phrases corresponding to each entity (and a
on named entity recognition (NER) has almost ennode which joins the entire sentence). Our trees
tirely ignored nested entities and instead chosen twok just like syntactic constituency trees, such as
focus on the outermost entities. those in the Penn TreeBank (Marcus et al., 1993),
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ROOT

PROT , PROT , CC PROT VBD DT DNA IN DT DNA
T RS 7T PN 7 T
PROT PROT NN NN NN NN NNS PROT NN NN  PROT NN

[ S [ [
NN NN NN NN NN
\ [ [ \ [

PEBP2alpha Al , alpha B1 , and alpha B2 proteinsbound the PEBP2site within the mouse GM-CSF promoter .

Figure 1. An example of our tree representation over neséeden entities. The sentence is from the
GENIA corpus.PROT is short forPROTEIN.

but they tend to be much flatter. This model allowsentities, etc. For outside-in layering the first CRF

us to include parts of speech in the tree, and therewould identify outermost entities, and then succes-
fore to jointly model the named entities and thesive CRFs would identify increasingly nested en-

part of speech tags. Once we have converted odities. They also tried a cascaded approach, with
sentences into parse trees, we train a discriminaseparate CRFs for each entity type. The CRFs
tive constituency parser similar to that of (Finkel would be applied in a specified order, and then
et al., 2008). We found that on top-level enti- each CRF could utilize features derived from the

ties, our model does just as well as more conveneutput of previously applied CRFs. This technique

tional methods. When evaluating @l entities has the problem that it cannot identify nested en-
our model does well, with F-scores ranging fromtities of the same type; this happens frequently in
slightly worse than performance on top-level only,the data, such as the nesfatteins at the begin-

to substantially better than top-level only. ning of the sentence in Figure 1. They also tried a
joint labeling approach, where they trained a sin-
2 Related Work gle CRF, but the label set was significantly ex-

panded so that a single label would include all of
the entities for a particular word. Their best results
where from the cascaded approach.

There is a large body of work on named en-
tity recognition, but very little of it addresses
nested entities. Early work on the GENIA cor-
pus (Kazama et al., 2002; Tsuruoka and Tsuijii, BYyrme (2007) took a different approach, on his-
2003) only worked on the innermost entities. Thistorical archive text. She modified the data by con-
was soon followed by several attempts at neste§atenating adjacent tokens (up to length six) into
NER in GENIA (Shen et al., 2003; Zhang et potential entities, and then labeled each concate-
al., 2004; Zhou et al., 2004) which built hidden nated string using the C&C tagger (Curran and
Markov models over the innermost named enti-Clark, 1999). When labeling a string, the “previ-
ties, and then used a rule-based post-processir@}!S” String was the one-token-shorter string con-
step to identify the named entities containing thdaining all but the last token of the current string.
innermost entities. Zhou (2006) used a more elabFor single tokens the “previous” token was the
orate model for the innermost entities, but thenlongest concatenation starting one token earlier.
used the same rule-based post-processing methodSemEval 2007 Task 9 (Marquez et al., 2007b)
on the output to identify non-innermost entities.included a nested NER component, as well as
Gu (2006) focused only on proteins and DNA, bynoun sense disambiguation and semantic role la-
building separate binary SVM classifiers for inner-beling. However, the parts of speech and syn-
most and outermost entities for those two classestactic tree were given as part of the input, and
Several techniques for nested NER in GENIAnamed entities were specified as corresponding to
where presented in (Alex et al., 2007). Their firsthoun phrases in the tree, or particular parts of
approach was to layer CRFs, using the output oépeech. This restriction substantially changes the
one as the input to the next. For inside-out lay-task. Two groups participated in the shared task,
ering, the first CRF would identify the innermost but only one (Marquez et al., 2007a) worked on
entities, the next layer would be over the wordsthe named entity component. They used a multi-
and the innermost entities to identify second-levelabel AdaBoost.MH algorithm, over phrases in the
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DNAparent:ROOT

/\

NN parent=DNA,grandparent=ROOT @D NAparentzROOT,prevaN first=PROT

A

P ROTparentzDNA,grandparentzROOT NN parent=DNA,grandparent=ROOT
\

NN parent=PROT,grandparent=DNA
[

mouse GM-CSF promoter

Figure 2: An example of a subtree after it has been annotaigdhiaarized. Features are computed over
this representation. An @ indicates a chart parser actate §ihcomplete constituent).

parse tree which, based on their labels, could poand Cohen, 2004; Andrew, 2006), but with no
tentially be entities. length restriction on entities. Like a semi-CRF, we
Finally, McDonald et al. (2005) presented aare able to define features over entire entities of
technique for labeling potentially overlapping seg-arbitrary length, instead of just over a small, fixed
ments of text, based on a large margin, multilabewindow of words like a regular linear chain CRF.
classification algorithm. Their method could be We model part of speech tags jointly with the
used for nested named entity recognition, but thexamed entities, though the model also works with-
experiments they performed were on joint (flat)out them. We determine the possible part of
NER and noun phrase chunking. speech tags based on distributional similarity clus-
ters. We used Alexander Clarke’s softwareased
3 Nested Named Entity Recognition as on (Clark, 2003), to cluster the words, and then
Parsing allow each word to be labeled with any part of

speech tag seen in the data with any other word

Our model is quite simple —we rgEreserr:t each dsth the same cluster. Because the parts of speech
tence as a constituency tree, with each named efio 5nnotated with the parent (and grandparent)
tity corresponding to a phrase in the tree, alonQabeIs, they determine what, if any, entity types

with a root node which connects the entire S€N—, \word can be labeled with Many words, such as
tence. No additional syntactic structure is "€P~erbs, cannot be labeled with any entities. We also

resented. We also model the parts of speech Aftnit our grammar based on the rules observed in

preterminals, gnd the words themselves as thg,q yata “The rules whose children include part of

Ieayes. See Figure 1 for an example of a namegpeech tags restrict the possible pairs of adjacent
entity tree. Each node s then annotated with both, s terestingly, the restrictions imposed by this

its parent and grandparent _Igbels, which a”,OWS]oint modeling (both observed word/tag pairs and

the model to Igarn hOW entltles_ nest. We IOIna’observed rules) actually result in much faster infer-

rize our trees in a right-branching manner, andy,. (and therefore faster train and test times) than
then build features over the labels, unary rules, n,qqe| over named entities alone. This is differ-

and blnary_ rulgs. We_also use flrst-order'horlzon-em from most work on joint modeling of multiple
f[al MaerV|zat|on, which allpws us to rgtam SOMEavels of annotation, which usually results in sig-
information about the previous node in the bma’nificantly slower inference.

rized rule. See Figure 2 for an example of an an-

notated and binarized subtree. Once each sentengel  Discriminative Constituency Parsing

has been converted into a tree, we train a discrimi:

: . : We train our nested NER model using the same
native constituency parser, based on (Finkel et al., . S ) .
2008) technique as the discriminatively trained, condi-

. . . tional random field-based, CRF-CFG parser of
It is worth noting that if you use our model on

: " Finkel et al., 2008). The parser is similar to a
data which does not have any nested entities, the ) P
it is precisely equivalent to a semi-CRF (Sarawagi  http:/iwww.cs.rhul.ac.uk/home/alexc/RHUL/Downloads.html
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Local Features

label

word + labe|
word;_1 + labe|
word 1 + labe|

distsim + distsim_; + labe|
shape+ shape, 1 + label|
shape 1 + shape+ labe|
word;_1 + shape+ labe|

Pairwise Features

label_4 + label|

word, + labe|_; + labe|
word_; + labe|_1 + labe|
word 1 + labe|_; + labe|

distsim + labe|
distsim_4 + labe|
distsim,1 + labe|
shape+ labe|
shape 1 + label|
shape, 1 + label|

shape+ word ;1 + labe|
words in a 5 word window
prefixes up to length 6
suffixes up to length 6

distsim + labe|_; + labe|

distsim; + labe|_1 + labe|

distsjmy, + label_1 + labe|

distsimy + distsim + labe|_1 + labe|
shape+ labe|_1 + labe|
shape_1 + labe|_; + labe|
shape, 1 + labe|_1 + labe|
shape_ 1 + shape+ labe|_1 + labe|
shape_1 + shape,1 + label_; + label|

Table 1: The local and pairwise NER features used in all ofeyperiments. Consult the text for a full
description of all features, which includes feature classa in this table.

chart-based PCFG parser, except that instead dfrity cluster @istsim), and a string indicating
putting probabilities over rules, it puddique po-  orthographic information shape) (Finkel et al.,
tentials over local subtrees. These unnormalized2005). Subscripts represent word position in the
potentials know what span (and split) the rule issentence. In addition to those below, we include
over, and arbitrary features can be defined over théatures for each fully annotated label and rule.
local subtree, the span/split and the words of the )

sentence. The inside-outside algorithm is run ovel-0Cal named entity features. Local named en-

the clique potentials to produce the partial deriva.litly features are over the label for a single word.

tives and normalizing constant which are neces:rhe_y are equivalent to thg IO_CaI fgatures in.a linear
sary for optimizing the log likelihood. Optimiza- chain CRF. However, unlike in a linear chain CRF,
tion is done by stochastic gradient descent. if a word belongs to multiple entities then the local

The only real drawback to our model is run- Ieatures arle computF:l\d df?r eacr:jentlts/. chcgl fga'
time. The algorithm i<O(n%) in sentence length. ures are also computed torwords not contained in

Training on all of GENIA took approximately 23 any entity. Local features are in Table 1.
hours for the nested model and 16 hours for the5inwise named entity features. Pairwise fea-

semi-CRF. A semi-CRMith an entity length re- tyres are over the labels for adjacent words, and
striction, or a regular CRF, would both have beenyre equivalent to the edge features in a linear chain
faster. At runtime, the nested model for GENIA cRrE. They can occur when pairs of words have
tagged about 38 words per second, while the semine same label, or over entity boundaries where
CRF tagged 45 words per second. For comparthe words have different labels. Like with the lo-
ison, a first-order linear chain CRF trained with o5 features, if a pair of words are contained in, or
similar features on the same data can tag abouraddle the border of, multiple entities, then the
4,000 words per second. features are repeated for each. The pairwise fea-

tures we use are shown in Table 1.
4 Features

Embedded named entity features. Embedded

When designing features, we first made ones simmnamed entity features occur in binary rules where
ilar to the features typically designed for a first- one entity is the child of another entity. For our
order CRF, and then added features which are nambedded features, we replicated the pairwise fea-
possible in a CRF, but are possible in our enhancetlres, except that the embedded named entity was
representation. This includes features over entirgreated as one of the words, where the “word”
entities, features which directly model nested en{and other annotations) were indicative of the type
tities, and joint features over entities and parts obf entity, and not the actual string that is the en-
speech. When features are computed over eadlty. For instance, in the subtree in Figure 2, we
label, unary rule, and binary rule, the feature func-would computeword;+label;_;+label; as PROT-
tion is aware of the rule span and split. DNA-DNA for i = 18 (the index of the wor@GM-

Each word is labeled with its distributional sim- CSF). The normal pairwise feature at the same po-
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GENIA — Testing on All Entities

Nested NER Model Semi-CRF Model

# Test (train on all entities) (train on top-level entities)

Entities  Precision Recall F Precision Recall F
Protein 3034 79.04 69.22 73.80 78.63 64.04 70.59
DNA 1222 69.61 61.29 65.19 71.62 57.61 63.85
RNA 103 86.08 66.02 74.73 79.27 63.11 70.27
Cell Line 444 73.82 56.53 64.03 76.59 59.68 67.09
Cell Type 599 68.77 65.44 67.07 72.12 59.60 65.27
Overall 5402 75.39 65.90 70.33 76.17 61.72 68.19

Table 2: Named entity results on GENIA, evaluating on alit&st

GENIA — Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model

# Test (train on all entities) (train on top-level entities)

Entities  Precision Recall Precision Recall F
Protein 2592 78.24 7242 75.22 76.16 72.61 7434
DNA 1129 70.40 64.66 67.41 71.21 62.00 66.29
RNA 103 86.08 66.02 74.73 79.27 63.11 70.27
Cell Line 420 75.54 58.81 66.13 76.59 63.10 69.19
Cell Type 537 69.36 70.39 69.87 71.11 65.55 68.22
Overall 4781 75.22 69.02 71.99 74.57 68.27 71.28

Table 3: Named entity results on GENIA, evaluating on only-evel entities.

sition would beGM-CS--DNA-DNA. with 36 different kinds of biological entities, and

hol ity had f hol with parts of speech. Previous NER work using
W ole entity eaturgs. We had four w ole en- e corpus has employed 10-fold cross-validation
tity features: the entire phrase; the preceding angl,. o\ qjuation. We wanted to explore different

fqllovylng WO'I’d'; the precgdlng and foIIowmg d'?" model variations (e.g., level of Markovization, and
tributional similarity tags; and the preceding dis- jitterent sets of distributional similarity cluster-

tributional similarity tag with the following word. ings) and feature sets, so we needed to set aside

Local part of speech features. We used the @ development set. We split the data by putting
same POS features as (Finkel et al., 2008). the first 90% of sentences into the training set, and

the remaining 10% into the test set. This is the
Joint named entity and part of speech features. exact same split used to evaluate part of speech
For the joint features we replicated the POS featagging in (Tsuruoka et al., 2005). For develop-
tures, but included the parent of the POS, whichment we used the first half of the data to train, and
either is the innermost entity type, or would indi- the next quarter of the data to téstVe made the
cate that the word is not in any entities. same maodifications to the label set as the organiz-
ers of the JINLPBA 2004 shared task (Collier et
al., 2004). They collapsed dNA subtypes into

We performed two sets of experiments, the first sePNA all RNA subtypes intdRNA; all protein sub-
over biomedical data, and the second over SpanishfP€s intoprotein; keptcell line andcell type; and
and Catalan newspaper text. We designed our exémoved all other entities. However, they also re-
periments to show that our model works just agnoved all embedded entities, while we kept them.
well on outermost entities, the typical NER task, As discussed in Section 3, we annotated each

5 Experiments

and also works well on nested entities. word with a distributional similarity cluster. We
used 200 clusters, trained using 200 million words

5.1 GENIA Experiments from PubMed abstracts. During development, we

5.1.1 Data found that fewer clusters resulted in slower infer-

We performed experiments on the GENIA v.3.02———— o _
2This split may seem strange: we had originally intended

corpus (Ohta et al., 2002). This corpus contain% 50/25/25 train/devi/test split, until we found the previously
2000 Medline abstracts{5600k words), annotated used 9910 split.
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JNLPBA 2004 — Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model Zhou & Su (2004)

# Test (train on all entities) (train on top-level entities)

Entities  Precision Recall F Precision Recall F Precision Recall F
Protein 4944 66.98 7458 70.57 68.15 62.68 65.30 69.01 79.28.77
DNA 1030 62.96 66.50 64.68 65.45 52.23 58.10 66.84 73.11 369.8
RNA 115 63.06 60.87 61.95 64.55 61.74 63.11 64.66 63.56 64.10
Cell line 487 49.92 60.78 54.81 49.61 52.16 50.85 53.85 65.889.23
Cell type 1858 75.12 65.34 69.89 73.29 55.81 63.37 78.06 172.45.13
Overall 8434 66.78 70.57 68.62 67.50 59.27 63.12 69.42 7599 72.55

Table 4: Named entity results on the JINLPBA 2004 shared task &hou and Su (2004) was the best
system at the shared task, and is still state-of-the-ahelataset.

ROOT
SP AQ NC FCORGANIZATION VSDA AQ FEFC VM PERSON FP
/\ /\
DA ORGANIZATION PERSON PERSON
I \ _——— N
NP NP FC NC SPORGANIZATION
I
NP
\
A doble partido , el Barca es el favorito ” , afirma Makaay , delanteradel Deportivo
At doublematch , the Barca is thefavorite ” , states Makaay , attacker of Deportivo

Figure 3: An example sentence from the AnCora corpus, aldtigite English translation.

ence with no improvement in performance. on both top-level entities and all entities.

51.2 Experimental Setup While not our main focus, we also evaluaFed
W | sets of . i ina b our models on parts of speech. The model trained
€ fan several Sets of experiments, varying beg, , just top level entities achieved POS accuracy

t\N(_ae_n al entltle_s, or Jus_t top—Ieve_I entltlgs, for_ of 97.37%, and the one trained on all entities
training and testing. As discussed in Section 3, if

_ _ " . achieved 925% accuracy. The GENIA tagger
we train on just top-level entities then the model 'S(Tsuruoka et al., 2005) achieves.88% accuracy
equivalent to a semi-CRF. Semi-CRFs are Stateﬂsing the same.’train/test split '
of-the-art and provide a good baseline for per- '

formance on just the top-level entities. Semi-5 1 4 Additional INLPBA 2004 Experiments
CREFs are strictly better than regular, linear chain

CRFs, because they can use all of the features arffcause we could not compare our results on the
strucutre of a linear chain CRF, but also utilize NER portion of the GENIA corpus with any other

whole-entity features (Andrew, 2006). We alsoWork, we also evaluated on the JNLPBA corpus.

evaluated the semi-CRF model on all entities. This! NS corpus was used in a shared task for the

may seem like an unfair evaluation, because th8/ONLP workshop at Coling in 2004 (Collier et

semi-CRF has no way of recovering the nested er!-» 2004). They used the entire GENIA corpus for
tities, but we wanted to illustrate just how much raining, and modified the label set as discussed in

information is lost when using a flat representa-S€ction 5.1.1. They also removed all embedded

tion. entities, and kept only the top-level ones. They
then annotated new data for the test set. This
5.1.3 Results dataset has no nested entities, but because the

Our named entity results when evaluating on alltraining data is GENIA we can still train our model
entities are shown in Table 2 and when evaluaton the data annotated with nested entities, and then
ing on only top-level entities are shown in Table 3.evaluate on their test data by ignoring all embed-
Our nested model outperforms the flat semi-CRFded entities found by our named entity recognizer.
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AnCora Spanish — Testing on All Entities

Nested NER Model Semi-CRF Model

# Test (train on all entities) (train on top-level entities)

Entities  Precision Recall qF Precision Recall F
Person 1778 65.29 7891 71.45 75.10 32.73 45.59
Organization 2137 86.43 56.90 68.62 47.02 26.20 33.65
Location 1050 78.66 46.00 58.05 84.94 13.43 23.19
Date 568 87.13 83.45 85.25 79.43 29.23 42.73
Number 991 8151 80.52 81.02 66.27 28.15 39.52
Other 512 17.90 64.65 28.04 10.77 16.60 13.07
Overall 7036 62.38 66.87 64.55 51.06 25.77 34.25

Table 5: Named entity results on the Spanish portion of AaCevaluating on all entities.

AnCora Spanish — Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model

# Test (train on all entities) (train on top-level entities)

Entities  Precision Recall F Precision Recall F
Person 1050 57.42 66.67 61.70 71.23 52.57 60.49
Organization 1060 77.38 40.66 53.31 44.33 49.81 46.91
Location 279 72.49 36.04 48.15 79.52 24.40 37.34
Date 290 72.29 57.59 64.11 7177 51.72 60.12
Number 519 57.17 49.90 53.29 54.87 4451 49.15
Other 541 11.30 38.35 17.46 9.51 26.88 14.04
Overall 3739 50.57 49.72 50.14 46.07 4461 45.76

Table 6: Named entity results on the Spanish portion of AeCevaluating on only top-level entities.

This experiment allows us to show that our namedeature design, but it is probable that some of our
entity recognizer works well on top-level entities, orthographic features “learned” this fact anyway.
by comparing it with prior work. Our model also This probably harmed our results overall, because
produces part of speech tags, but the test data some hyphenated words, which straddled bound-
not annotated with POS tags, so we cannot showries in nested entities and would have been split
POS tagging results on this dataset. in the original corpus (and were split in our train-
One difficulty we had with the INLPBA exper- ing data), were not split in the test data, prohibiting
iments was with tokenization. The version of GE-our model from properly identifying them.
NIA distributed for the shared task is tokenized For this experiment, we retrained our model on
differently from the original GENIA corpus, but the entire, retokenized, GENIA corpus. We also
we needed to train on the original corpus as it igetrained the distributional similarity model on the
the only version with nested entities. We tried ourretokenized data. Once again, we trained one
best to retokenize the original corpus to match thénodel on the nested data, and one on just the top-
distributed data, but did not have complete suclevel entities, so that we can compare performance
cess. It is worth noting that the data is actually to-0f both models on the top-level entities. Our full
kenized in a manner which allows a small amountesults are shown in Table 4, along with the cur-
of “Cheating.” Norma”y, hyphenated words, such rent state-of-the-art (ZhOU and Su, 2004) Besides
asLPS-induced, are tokenized as one word. How- the tokenization issues harming our performance,
ever, if the portion of the word before the hyphenZhou and Su (2004) also employed clever post-
is in an entity, and the part after is not, such agrocessing to improve their results.
BCR-induced, then the word is split into two to-
kens:BCR and-induced. Therefore, when a word
starts with a hyphen it is a strong indicator that thed.2.1 Data
prior word and it span the right boundary of an en-We performed experiments on the NER portion
tity. Because the train and test data for the sharedf AnCora (Marti et al., 2007). This corpus has
task do not contain nested entities, fewer wordsSpanish and Catalan portions, and we evaluated
are split in this manner than in the original data.on both. The data is also annotated with parts
We did not intentionally exploit this fact in our of speech, parse trees, semantic roles and word

5.2 AnCora Experiments
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AnCora Catalan — Testing on All Entities

Nested NER Model Semi-CRF Model

# Test (train all entities) (train top-level entities only)

Entities  Precision Recall qF Precision Recall F
Person 1303 89.01 50.35 64.31 70.08 46.20 55.69
Organization 1781 68.95 83.77 75.64 65.32 41.77 50.96
Location 1282 76.78 72.46 74.56 75.49 36.04 48.79
Date 606 84.27 8135 82.79 70.87 38.94 50.27
Number 1128 86.55 83.87 85.19 75.74 38.74 51.26
Other 596 85.48 8.89 16.11 64.91 6.21 11.33
Overall 6696 78.09 68.23 72.83 70.39 37.60 49.02

Table 7: Named entity results on the Catalan portion of ARCevaluating on all entities.

AnCora Catalan — Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model

# Test (train all entities) (train top-level entities only)

Entities  Precision Recall qF Precision Recall F
Person 801 67.44 47.32 5561 62.63 67.17 64.82
Organization 899 52.21 74.86 61.52 57.68 73.08 64.47
Location 659 54.86 67.68 60.60 62.42 57.97 60.11
Date 296 62.54 66.55 64.48 59.46 66.89 62.96
Number 528 62.35 70.27 66.07 63.08 68.94 65.88
Other 342 49.12 8.19 14.04 45.61 7.60 13.03
Overall 3525 57.67 59.40 58.52 60.53 61.42 60.97

Table 8: Named entity results on the Catalan portion of ACevaluating on only top-level entities.

senses. The corpus annotators made a distinctidifana and Hanova, 2002). There are around 250
betweenstrong and weak entities. They define possible tags, and experiments on the development
strong named entities as “a word, a number, a datedata with the full tagset where unsuccessful. We
or a string of words that refer to a single individual removed all but the first two characters of each
entity in the real world.” If a strong NE contains POS tag, resulting in a set of 57 tags which more
multiple words, it is collapsed into a single token. closely resembles that of the Penn TreeBank (Mar-
Weak named entities, “consist of a noun phrasecus et al., 1993). All reported results use our mod-
being it simple or complex” and must contain aified version of the POS tag set.
strong entity. Figure 3 shows an example from the We took only the words as input, none of the
corpus with both strong and weak entities. Theextra annotations. For both languages we trained a
entity types present angerson, location, organi- 200 cluster distributional similarity model over the
zation, date, number, andother. Weak entities are words in the corpus. We performed the same set
very prevalent; 471% of entities are embedded. of experiments on AnCora as we did on GENI