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Introduction

Welcome to the 2009 Conference on Empirical Methods in Natural Language Processing!

The conference is organized under the auspices of SIGDAT, the ACL Special Interest Group for linguistic
data and corpus-based approaches to natural language processing. It is co-located this year with ACL-
IJCNLP 2009 in Singapore.

EMNLP received 475 submissions, a new record. We were able to accept 163 papers in total (an
acceptance rate of 34%). Of these, 96 (20%) were accepted for oral presentation, and 67 (14%) for
poster presentation. The papers were selected by a program committee of 15 area chairs, from Asia,
Europe, and North America, assisted by a panel of 389 reviewers. This year EMNLP again held an
author response period. Authors were able to read and respond to the reviews of their paper before
the program committee made a final decision. They were asked to correct factual errors in the reviews
and answer questions raised in the reviewer comments.The intention was to help produce more accurate
reviews. In some cases, reviewers changed their scores in view of the authors response and the area
chairs read all responses carefully prior to making recommendations for acceptance.

First and foremost, we would like to thank the authors who submitted their work to EMNLP. The sheer
number of submissions reflects how broad and active our field is. We are deeply indebted to the area
chairs and the reviewers for their hard work. They enabled us to select an exciting program and to
provide valuable feedback to the authors. Additional thanks to the Publications Chair, David Chiang,
who put this volume together. Jason Eisner helped us immensely by compiling a web site on “How
to Serve as Program Chair of a Conference.”1 Special thanks to David Yarowsky and Ken Church of
SIGDAT who provided much valuable advice and assistance over the past months. We are akso grateful
for the financial support from Microsoft.

We are most grateful to Haizhou Li who helped us with various logistic and organizational aspects of the
conference. Rich Gerber and the START team responded to our questions quickly, and helped us manage
the large number of submissions smoothly. Finally, thanks are due to our predecessors, Mirella Lapata
and Hwee Tou Ng, whose experience and example we shamelessly exploited.

Philipp Koehn
Rada Mihalcea

1http://www.cs.jhu.edu/jason/advice/how-to-chair-a-conference.html
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Thorsten Brants
Eric Breck
Sam Brody
Susan Brown
Paul Buitelaar
Razvan Bunescu
Aljoscha Burchardt
Jill Burstein
Bill Byrne
Chris Callison-Burch
Nicola Cancedda
Yunbo Cao
Guiseppe Carenini
Marine Carpuat
Xavier Carreras
John Carroll
Vitor Carvalho
Francisco Casacuberta
Mauro Cettolo
Nate Chambers
Yee Seng Chan
Pi-Chuan Chang
Harr Chen

Hsin-Hsi Chen
Pu-Jen Cheng
Xueqi Cheng
Colin Cherry
David Chiang
Yejin Choi
Jennifer Chu-Carroll
Ken Church
Massimiliano

Ciaramita
James Clarke
Paul Cook
Bonaventura Coppola
Marta R. Costa-Jussa
Mathias Creutz
Montse Cuadros Oller
Silviu Cucerzan
Hang Cui
James Curran
Walter Daelemans
Hercules Dalianis
Dipanjan Das
Dmitry Davidov
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Abstract

We present the first unsupervised approach
to the problem of learning a semantic
parser, using Markov logic. Our USP
system transforms dependency trees into
quasi-logical forms, recursively induces
lambda forms from these, and clusters
them to abstract away syntactic variations
of the same meaning. The MAP semantic
parse of a sentence is obtained by recur-
sively assigning its parts to lambda-form
clusters and composing them. We evalu-
ate our approach by using it to extract a
knowledge base from biomedical abstracts
and answer questions. USP substantially
outperforms TextRunner, DIRT and an in-
formed baseline on both precision and re-
call on this task.

1 Introduction

Semantic parsing maps text to formal meaning
representations. This contrasts with semantic role
labeling (Carreras and Marquez, 2004) and other
forms of shallow semantic processing, which do
not aim to produce complete formal meanings.
Traditionally, semantic parsers were constructed
manually, but this is too costly and brittle. Re-
cently, a number of machine learning approaches
have been proposed (Zettlemoyer and Collins,
2005; Mooney, 2007). However, they are super-
vised, and providing the target logical form for
each sentence is costly and difficult to do consis-
tently and with high quality. Unsupervised ap-
proaches have been applied to shallow semantic
tasks (e.g., paraphrasing (Lin and Pantel, 2001),
information extraction (Banko et al., 2007)), but
not to semantic parsing.

In this paper we develop the first unsupervised
approach to semantic parsing, using Markov logic
(Richardson and Domingos, 2006). Our USP sys-
tem starts by clustering tokens of the same type,
and then recursively clusters expressions whose
subexpressions belong to the same clusters. Ex-
periments on a biomedical corpus show that this
approach is able to successfully translate syntac-
tic variations into a logical representation of their
common meaning (e.g., USP learns to map active
and passive voice to the same logical form, etc.).
This in turn allows it to correctly answer many
more questions than systems based on TextRun-
ner (Banko et al., 2007) and DIRT (Lin and Pantel,
2001).

We begin by reviewing the necessary back-
ground on semantic parsing and Markov logic. We
then describe our Markov logic network for un-
supervised semantic parsing, and the learning and
inference algorithms we used. Finally, we present
our experiments and results.

2 Background

2.1 Semantic Parsing

The standard language for formal meaning repre-
sentation is first-order logic. A term is any ex-
pression representing an object in the domain. An
atomic formula or atom is a predicate symbol ap-
plied to a tuple of terms. Formulas are recursively
constructed from atomic formulas using logical
connectives and quantifiers. Alexical entryde-
fines the logical form for a lexical item (e.g., a
word). The semantic parse of a sentence is de-
rived by starting with logical forms in the lexi-
cal entries and recursively composing the mean-
ing of larger fragments from their parts. In tradi-
tional approaches, the lexical entries and meaning-
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composition rules are both manually constructed.
Below are sample rules in a definite clause gram-
mar (DCG) for parsing the sentence: “Utah bor-
ders Idaho”.

V erb[λyλx.borders(x, y)]→ borders
NP [Utah]→ Utah
NP [Idaho]→ Idaho
V P [rel(obj)]→ V erb[rel] NP [obj]
S[rel(obj)]→ NP [obj] V P [rel]

The first three lines are lexical entries. They are
fired upon seeing the individual words. For exam-
ple, the first rule applies to the word “borders” and
generates syntactic categoryVerb with the mean-
ing λyλx.borders(x, y) that represents the next-
to relation. Here, we use the standard lambda-
calculus notation, whereλyλx.borders(x, y)
represents a function that is true for any (x, y)-
pair such thatborders(x, y) holds. The last two
rules compose the meanings of sub-parts into that
of the larger part. For example, after the first
and third rules are fired, the fourth rule fires and
generatesV P [λyλx.borders(x, y)(Idaho)]; this
meaning simplifies toλx.borders(x, Idaho) by
the λ-reduction rule, which substitutes the argu-
ment for a variable in a functional application.

A major challenge to semantic parsing is syn-
tactic variations of the same meaning, which
abound in natural languages. For example, the
aforementioned sentence can be rephrased as
“Utah is next to Idaho,”“Utah shares a border with
Idaho,” etc. Manually encoding all these varia-
tions into the grammar is tedious and error-prone.
Supervised semantic parsing addresses this issue
by learning to construct the grammar automati-
cally from sample meaning annotations (Mooney,
2007). Existing approaches differ in the meaning
representation languages they use and the amount
of annotation required. In the approach of Zettle-
moyer and Collins (2005), the training data con-
sists of sentences paired with their meanings in
lambda form. A probabilistic combinatory cate-
gorial grammar (PCCG) is learned using a log-
linear model, where the probability of the final
logical form L and meaning-derivation treeT
conditioned on the sentenceS is P (L, T |S) =
1
Z exp (

∑
i wifi(L, T, S)). HereZ is the normal-

ization constant andfi are the feature functions
with weightswi. Candidate lexical entries are gen-
erated by a domain-specific procedure based on
the target logical forms.

The major limitation of supervised approaches
is that they require meaning annotations for ex-
ample sentences. Even in a restricted domain,
doing this consistently and with high quality re-
quires nontrivial effort. For unrestricted text, the
complexity and subjectivity of annotation render it
essentially infeasible; even pre-specifying the tar-
get predicates and objects is very difficult. There-
fore, to apply semantic parsing beyond limited do-
mains, it is crucial to develop unsupervised meth-
ods that do not rely on labeled meanings.

In the past, unsupervised approaches have been
applied to some semantic tasks, but not to seman-
tic parsing. For example, DIRT (Lin and Pan-
tel, 2001) learns paraphrases of binary relations
based on distributional similarity of their argu-
ments; TextRunner (Banko et al., 2007) automati-
cally extracts relational triples in open domains us-
ing a self-trained extractor; SNE applies relational
clustering to generate a semantic network from
TextRunner triples (Kok and Domingos, 2008).
While these systems illustrate the promise of un-
supervised methods, the semantic content they ex-
tract is nonetheless shallow and does not constitute
the complete formal meaning that can be obtained
by a semantic parser.

Another issue is that existing approaches to se-
mantic parsing learn to parse syntax and semantics
together.1 The drawback is that the complexity
in syntactic processing is coupled with semantic
parsing and makes the latter even harder. For ex-
ample, when applying their approach to a different
domain with somewhat less rigid syntax, Zettle-
moyer and Collins (2007) need to introduce new
combinators and new forms of candidate lexical
entries. Ideally, we should leverage the enormous
progress made in syntactic parsing and generate
semantic parses directly from syntactic analysis.

2.2 Markov Logic

In many NLP applications, there exist rich rela-
tions among objects, and recent work in statisti-
cal relational learning (Getoor and Taskar, 2007)
and structured prediction (Bakir et al., 2007) has
shown that leveraging these can greatly improve
accuracy. One of the most powerful representa-
tions for this is Markov logic, which is a proba-
bilistic extension of first-order logic (Richardson
and Domingos, 2006). Markov logic makes it

1The only exception that we are aware of is Ge and
Mooney (2009).
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possible to compactly specify probability distri-
butions over complex relational domains, and has
been successfully applied to unsupervised corefer-
ence resolution (Poon and Domingos, 2008) and
other tasks. AMarkov logic network (MLN)is
a set of weighted first-order clauses. Together
with a set of constants, it defines a Markov net-
work with one node per ground atom and one fea-
ture per ground clause. The weight of a feature
is the weight of the first-order clause that origi-
nated it. The probability of a statex in such a
network is given by the log-linear modelP (x) =
1
Z exp (

∑
i wini(x)), whereZ is a normalization

constant,wi is the weight of theith formula, and
ni is the number of satisfied groundings.

3 Unsupervised Semantic Parsing with
Markov Logic

Unsupervised semantic parsing (USP) rests on
three key ideas. First, the target predicate and ob-
ject constants, which are pre-specified in super-
vised semantic parsing, can be viewed as clusters
of syntactic variations of the same meaning, and
can be learned from data. For example,borders
represents the next-to relation, and can be viewed
as the cluster of different forms for expressing this
relation, such as “borders”, “is next to”, “share the
border with”; Utah represents the state of Utah,
and can be viewed as the cluster of “Utah”, “the
beehive state”, etc.

Second, the identification and clustering of can-
didate forms are integrated with the learning for
meaning composition, where forms that are used
in composition with the same forms are encour-
aged to cluster together, and so are forms that are
composed of the same sub-forms. This amounts to
a novel form of relational clustering, where clus-
tering is done not just on fixed elements in rela-
tional tuples, but on arbitrary forms that are built
up recursively.

Third, while most existing approaches (manual
or supervised learning) learn to parse both syn-
tax and semantics, unsupervised semantic pars-
ing starts directly from syntactic analyses and fo-
cuses solely on translating them to semantic con-
tent. This enables us to leverage advanced syn-
tactic parsers and (indirectly) the available rich re-
sources for them. More importantly, it separates
the complexity in syntactic analysis from the se-
mantic one, and makes the latter much easier to
perform. In particular, meaning composition does

not require domain-specific procedures for gener-
ating candidate lexicons, as is often needed by su-
pervised methods.

The input to our USP system consists of de-
pendency trees of training sentences. Compared
to phrase-structure syntax, dependency trees are
the more appropriate starting point for semantic
processing, as they already exhibit much of the
relation-argument structure at the lexical level.

USP first uses a deterministic procedure to con-
vert dependency trees into quasi-logical forms
(QLFs). The QLFs and their sub-formulas have
natural lambda forms, as will be described later.
Starting with clusters of lambda forms at the atom
level, USP recursively builds up clusters of larger
lambda forms. The final output is a probability
distribution over lambda-form clusters and their
compositions, as well as the MAP semantic parses
of training sentences.

In the remainder of the section, we describe
the details of USP. We first present the procedure
for generating QLFs from dependency trees. We
then introduce their lambda forms and clusters,
and show how semantic parsing works in this set-
ting. Finally, we present the Markov logic net-
work (MLN) used by USP. In the next sections, we
present efficient algorithms for learning and infer-
ence with this MLN.

3.1 Derivation of Quasi-Logical Forms

A dependency treeis a tree where nodes are words
and edges are dependency labels. To derive the
QLF, we convert each node to an unary atom with
the predicate being the lemma plus POS tag (be-
low, we still use the word for simplicity), and each
edge to a binary atom with the predicate being
the dependency label. For example, the node for
Utah becomesUtah(n1) and the subject depen-
dency becomesnsubj(n1, n2). Here, theni are
Skolem constants indexed by the nodes. The QLF
for a sentence is the conjunction of the atoms for
the nodes and edges, e.g., the sentence above will
becomeborders(n1) ∧ Utah(n2) ∧ Idaho(n3) ∧
nsubj(n1, n2) ∧ dobj(n1, n3).
3.2 Lambda-Form Clusters and Semantic

Parsing in USP

Given a QLF, a relation or an object is repre-
sented by the conjunction of a subset of the atoms.
For example, the next-to relation is represented
by borders(n1)∧ nsubj(n1, n2)∧ dobj(n1, n3),
and the states of Utah and Idaho are represented
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by Utah(n2) andIdaho(n3). The meaning com-
position of two sub-formulas is simply their con-
junction. This allows the maximum flexibility in
learning. In particular, lexical entries are no longer
limited to be adjacent words as in Zettlemoyer and
Collins (2005), but can be arbitrary fragments in a
dependency tree.

For every sub-formulaF , we define a corre-
sponding lambda form that can be derived by re-
placing every Skolem constantni that does not
appear in any unary atom inF with a unique
lambda variablexi. Intuitively, such constants
represent objects introduced somewhere else (by
the unary atoms containing them), and corre-
spond to the arguments of the relation repre-
sented byF . For example, the lambda form
for borders(n1) ∧ nsubj(n1, n2) ∧ dobj(n1, n3)
is λx2λx3. borders(n1) ∧ nsubj(n1, x2) ∧
dobj(n1, x3).

Conceptually, a lambda-form cluster is a set of
semantically interchangeable lambda forms. For
example, to express the meaning that Utah bor-
ders Idaho, we can use any form in the cluster
representing the next-to relation (e.g., “borders”,
“shares a border with”), any form in the cluster
representing the state of Utah (e.g., “the beehive
state”), and any form in the cluster representing
the state of Idaho (e.g., “Idaho”). Conditioned
on the clusters, the choices of individual lambda
forms are independent of each other.

To handle variable number of arguments, we
follow Davidsonian semantics and further de-
compose a lambda form into thecore form,
which does not contain any lambda variable
(e.g., borders(n1)), and the argument forms,
which contain a single lambda variable (e.g.,
λx2.nsubj(n1, x2) andλx3.dobj(n1, x3)). Each
lambda-form cluster may contain some number of
argument types, which cluster distinct forms of the
same argument in a relation. For example, in Stan-
ford dependencies, the object of a verb uses the de-
pendencydobj in the active voice, butnsubjpass
in passive.

Lambda-form clusters abstract away syntactic
variations of the same meaning. Given an in-
stance of clusterT with arguments of argument
typesA1, · · · , Ak, its abstract lambda formis given
by λx1 · · ·λxk.T(n) ∧∧k

i=1 Ai(n, xi).
Given a sentence and its QLF, semantic pars-

ing amounts to partitioning the atoms in the QLF,
dividing each part into core form and argument

forms, and then assigning each form to a cluster
or an argument type. The final logical form is de-
rived by composing the abstract lambda forms of
the parts using theλ-reduction rule.2

3.3 The USP MLN

Formally, for a QLFQ, a semantic parseL par-
titions Q into partsp1, p2, · · · , pn; each partp is
assigned to some lambda-form clusterc, and is
further partitioned into core formf and argument
formsf1, · · · , fk; each argument form is assigned
to an argument typea in c. The USP MLN de-
fines a joint probability distribution overQ andL
by modeling the distributions over forms and ar-
guments given the cluster or argument type.

Before presenting the predicates and formu-
las in our MLN, we should emphasize that they
should not be confused with the atoms and formu-
las in the QLFs, which are represented by reified
constants and variables.

To model distributions over lambda forms,
we introduce the predicatesForm(p, f!) and
ArgForm(p, i, f!), wherep is a part,i is the in-
dex of an argument, andf is a QLF subformula.
Form(p, f) is true iff partp has core formf, and
ArgForm(p, i, f) is true iff theith argument inp
has formf.3 The “f!” notation signifies that each
part or argument can have only one form.

To model distributions over arguments, we in-
troduce three more predicates:ArgType(p, i, a!)
signifies that theith argument ofp is assigned to
argument typea; Arg(p, i, p′) signifies that the
ith argument ofp is p′; Number(p, a, n) signifies
that there aren arguments ofp that are assigned
to typea. The truth value ofNumber(p, a, n) is
determined by theArgType atoms.

Unsupervised semantic parsing can be captured
by four formulas:

p ∈ +c ∧ Form(p,+f)
ArgType(p, i,+a) ∧ ArgForm(p, i,+f)

Arg(p, i, p′) ∧ ArgType(p, i,+a) ∧ p′ ∈ +c′

Number(p,+a,+n)

All free variables are implicitly universally quan-
tified. The “+” notation signifies that the MLN
contains an instance of the formula, with a sep-
arate weight, for each value combination of the

2Currently, we do not handle quantifier scoping or se-
mantics for specific closed-class words such as determiners.
These will be pursued in future work.

3There are hard constraints to guarantee that these assign-
ments form a legal partition. We omit them for simplicity.
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variables with a plus sign. The first formula mod-
els the mixture of core forms given the cluster, and
the others model the mixtures of argument forms,
argument types, and argument numbers, respec-
tively, given the argument type.

To encourage clustering and avoid overfitting,
we impose an exponential prior with weightα on
the number of parameters.4

The MLN above has one problem: it often
clusters expressions that are semantically oppo-
site. For example, it clusters antonyms like “el-
derly/young”, “mature/immature”. This issue also
occurs in other semantic-processing systems (e.g.,
DIRT). In general, this is a difficult open problem
that only recently has started to receive some at-
tention (Mohammad et al., 2008). Resolving this
is not the focus of this paper, but we describe a
general heuristic for fixing this problem. We ob-
serve that the problem stems from the lack of nega-
tive features for discovering meanings in contrast.
In natural languages, parallel structures like con-
junctions are one such feature.5 We thus introduce
an exponential prior with weightβ on the number
of conjunctions where the two conjunctive parts
are assigned to the same cluster. To detect con-
junction, we simply used the Stanford dependen-
cies that begin with “conj”. This proves very ef-
fective, fixing the majority of the errors in our ex-
periments.

4 Inference

Given a sentence and the quasi-logical formQ
derived from its dependency tree, the conditional
probability for a semantic parseL is given by
Pr(L|Q) ∝ exp (

∑
i wini(L,Q)). The MAP se-

mantic parse is simplyarg maxL
∑

i wini(L,Q).
Enumerating allL’s is intractable. It is also un-
necessary, since most partitions will result in parts
whose lambda forms have no cluster they can be
assigned to. Instead, USP uses a greedy algorithm
to search for the MAP parse. First we introduce
some definitions: a partition is calledλ-reducible
fromp if it can be obtained from the current parti-
tion by recursivelyλ-reducing the part containing
p with one of its arguments; such a partition is

4Excluding weights of∞ or−∞, which signify hard con-
straints.

5For example, in the sentence “IL-2 inhibits X in A and
induces Y in B”, the conjunction between “inhibits” and “in-
duces” suggests that they are different. If “inhibits” and “in-
duces” are indeed synonyms, such a sentence will sound awk-
ward and would probably be rephrased as “IL-2 inhibits X in
A and Y in B”.

Algorithm 1 USP-Parse(MLN, QLF)
Form parts for individual atoms inQLF and as-
sign each to its most probable cluster
repeat

for all partsp in the current partitiondo
for all partitions that areλ-reducible from
p and feasibledo

Find the most probable cluster and argu-
ment type assignments for the new part
and its arguments

end for
end for
Change to the new partition and assignments
with the highest gain in probability

until none of these improve the probability
return current partition and assignments

called feasibleif the core form of the new part is
contained in some cluster. For example, consider
the QLF of “Utah borders Idaho” and assume
that the current partition isλx2x3.borders(n1) ∧
nsubj(n1, x2) ∧ dobj(n1, x3), Utah(n2),
Idaho(n3). Then the following partition is
λ-reducible from the first part in the above
partition: λx3.borders(n1) ∧ nsubj(n1, n2) ∧
Utah(n2) ∧ dobj(n1, x3), Idaho(n3). Whether
this new partition is feasible depends on whether
the core form of the new partλx3.borders(n1) ∧
nsubj(n1, n2) ∧ Utah(n2) ∧ dobj(n1, x3) (i.e.
borders(n1) ∧ nsubj(n1, n2) ∧ Utah(n2)) is
contained in some lambda-form cluster.

Algorithm 1 gives pseudo-code for our algo-
rithm. Given partp, finding partitions that areλ-
reducible fromp and feasible can be done in time
O(ST ), whereS is the size of the clustering in
the number of core forms andT is the maximum
number of atoms in a core form. We omit the proof
here but point out that it is related to the unordered
subtree matching problem which can be solved in
linear time (Kilpelainen, 1992). Inverted indexes
(e.g., fromp to eligible core forms) are used to fur-
ther improve the efficiency. For a new partp and
a cluster that containsp’s core form, there arekm

ways of assigningp’s m arguments to thek argu-
ment types of the cluster. For largerk andm, this
is very expensive. We therefore approximate it by
assigning each argument to the best type, indepen-
dent of other arguments.

This algorithm is very efficient, and is used re-
peatedly in learning.
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5 Learning

The learning problem in USP is to maximize the
log-likelihood of observing the QLFs obtained
from the dependency trees, denoted byQ, sum-
ming out the unobserved semantic parses:

Lθ(Q) = log Pθ(Q)
= log

∑
L Pθ(Q,L)

Here,L are the semantic parses,θ are the MLN pa-
rameters, andPθ(Q,L) are the completion likeli-
hoods. A serious challenge in unsupervised learn-
ing is the identifiability problem (i.e., the opti-
mal parameters are not unique) (Liang and Klein,
2008). This problem is particularly severe for
log-linear models with hard constraints, which are
common in MLNs. For example, in our USP
MLN, conditioned on the fact thatp ∈ c, there is
exactly one value off that can satisfy the formula
p ∈ c ∧ Form(p, f), and if we add some constant
number to the weights ofp ∈ c ∧ Form(p, f) for
all f, the probability distribution stays the same.6

The learner can be easily confused by the infinitely
many optima, especially in the early stages. To
address this problem, we impose local normaliza-
tion constraints on specific groups of formulas that
are mutually exclusive and exhaustive, i.e., in each
group, we require that

∑k
i=1 ewi = 1, wherewi

are the weights of formulas in the group. Group-
ing is done in such a way as to encourage the
intended mixture behaviors. Specifically, for the
rule p ∈ +c ∧ Form(p,+f), all instances given
a fixedc form a group; for each of the remain-
ing three rules, all instances given a fixeda form a
group. Notice that with these constraints the com-
pletion likelihood P (Q,L) can be computed in
closed form for anyL. In particular, each formula
group contributes a term equal to the weight of the
currently satisfied formula. In addition, the opti-
mal weights that maximize the completion likeli-
hoodP (Q,L) can be derived in closed form us-
ing empirical relative frequencies. E.g., the opti-
mal weight ofp ∈ c∧ Form(p, f) is log(nc,f/nc),
wherenc,f is the number of partsp that satisfy
bothp ∈ c andForm(p, f), andnc is the number
of partsp that satisfyp ∈ c.7 We leverage this fact
for efficient learning in USP.

6Regularizations, e.g., Gaussian priors on weights, allevi-
ate this problem by penalizing large weights, but it remains
true that weights within a short range are roughly equivalent.

7To see this, notice that for a givenc, the total contribu-
tion to the completion likelihood from all groundings in its
formula group is

∑
f
wc,fnc,f. In addition,

∑
f
nc,f = nc

Algorithm 2 USP-Learn(MLN, QLFs)
Create initial clusters and semantic parses
Merge clusters with the same core form
Agenda← ∅
repeat

for all candidate operationsO do
ScoreO by log-likelihood improvement
if score is above a thresholdthen

Add O to agenda
end if

end for
Execute the highest scoring operationO∗ in
the agenda
Regenerate MAP parses for affected QLFs
and update agenda and candidate operations

until agenda is empty
return the MLN with learned weights and the
semantic parses

Another major challenge in USP learning is the
summation in the likelihood, which is over all pos-
sible semantic parses for a given dependency tree.
Even an efficient sampler like MC-SAT (Poon and
Domingos, 2006), as used in Poon & Domingos
(2008), would have a hard time generating accu-
rate estimates within a reasonable amount of time.
On the other hand, as already noted in the previous
section, the lambda-form distribution is generally
sparse. Large lambda-forms are rare, as they cor-
respond to complex expressions that are often de-
composable into smaller ones. Moreover, while
ambiguities are present at the lexical level, they
quickly diminish when more words are present.
Therefore, a lambda form can usually only belong
to a small number of clusters, if not a unique one.
We thus simplify the problem by approximating
the sum with the mode, and search instead for the
L andθ that maximizelog Pθ(Q,L). Since the op-
timal weights and log-likelihood can be derived in
closed form given the semantic parsesL, we sim-
ply search over semantic parses, evaluating them
using log-likelihood.

Algorithm 2 gives pseudo-code for our algo-
rithm. The input consists of an MLN without
weights and the QLFs for the training sentences.
Two operators are used for updating semantic
parses. The first is to merge two clusters, denoted
by MERGE(C1, C2) for clustersC1, C2, which does
the following:

and there is the local normalization constraint
∑

f
ewc,f = 1.

The optimal weightswc,f are easily derived by solving this
constrained optimization problem.
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1. Create a new clusterC and add all core forms
in C1, C2 to C;

2. Create new argument types forC by merg-
ing those inC1, C2 so as to maximize the log-
likelihood;

3. RemoveC1, C2.

Here, merging two argument types refers to pool-
ing their argument forms to create a new argument
type. Enumerating all possible ways of creating
new argument types is intractable. USP approxi-
mates it by considering one type at a time and ei-
ther creating a new type for it or merging it to types
already considered, whichever maximizes the log-
likelihood. The types are considered in decreasing
order of their numbers of occurrences so that more
information is available for each decision.MERGE
clusters syntactically different expressions whose
meanings appear to be the same according to the
model.

The second operator is to create a new clus-
ter by composing two existing ones, denoted by
COMPOSE(CR, CA), which does the following:

1. Create a new clusterC;

2. Find all partsr ∈ CR, a ∈ CA such thata is
an argument ofr, compose them tor(a) by
λ-reduction and add the new part toC;

3. Create new argument types forC from the ar-
gument forms ofr(a) so as to maximize the
log-likelihood.

COMPOSE creates clusters of large lambda-forms
if they tend to be composed of the same sub-
forms (e.g., the lambda form for “is next to”).
These lambda-forms may later be merged with
other clusters (e.g.,borders).

At learning time, USP maintains anagendathat
contains operations that have been evaluated and
are pending execution. During initialization, USP
forms a part and creates a new cluster for each
unary atomu(n). It also assigns binary atoms of
the form b(n, n′) to the part as argument forms
and creates a new argument type for each. This
forms the initial clustering and semantic parses.
USP then merges clusters with the same core form
(i.e., the same unary predicate) usingMERGE.8 At
each step, USP evaluates the candidate operations
and adds them to the agenda if the improvement is

8Word-sense disambiguation can be handled by including
a new kind of operator that splits a cluster into subclusters.
We leave this to future work.

above a threshold.9 The operation with the highest
score is executed, and the parameters are updated
with the new optimal values. The QLFs which
contain an affected part are reparsed, and opera-
tions in the agenda whose score might be affected
are re-evaluated. These changes are done very ef-
ficiently using inverted indexes. We omit the de-
tails here due to space limitations. USP terminates
when the agenda is empty, and outputs the current
MLN parameters and semantic parses.

USP learning uses the same optimization objec-
tive as hard EM, and is also guaranteed to find a
local optimum since at each step it improves the
log-likelihood. It differs from EM in directly opti-
mizing the likelihood instead of a lower bound.

6 Experiments

6.1 Task

Evaluating unsupervised semantic parsers is dif-
ficult, because there is no predefined formal lan-
guage or gold logical forms for the input sen-
tences. Thus the best way to test them is by using
them for the ultimate goal: answering questions
based on the input corpus. In this paper, we ap-
plied USP to extracting knowledge from biomedi-
cal abstracts and evaluated its performance in an-
swering a set of questions that simulate the in-
formation needs of biomedical researchers. We
used the GENIA dataset (Kim et al., 2003) as
the source for knowledge extraction. It contains
1999 PubMed abstracts and marks all mentions
of biomedical entities according to the GENIA
ontology, such as cell, protein, and DNA. As a
first approximation to the questions a biomedi-
cal researcher might ask, we generated a set of
two thousand questions on relations between enti-
ties. Sample questions are: “What regulates MIP-
1alpha?”, “What does anti-STAT 1 inhibit?”. To
simulate the real information need, we sample the
relations from the 100 most frequently used verbs
(excluding the auxiliary verbsbe, have, anddo),
and sample the entities from those annotated in
GENIA, both according to their numbers of occur-
rences. We evaluated USP by the number of an-
swers it provided and the accuracy as determined
by manual labeling.10

9We currently set it to 10 to favor precision and guard
against errors due to inexact estimates.

10The labels and questions are available at
http://alchemy.cs.washington.edu/papers/poon09.
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6.2 Systems

Since USP is the first unsupervised semantic
parser, conducting a meaningful comparison of it
with other systems is not straightforward. Stan-
dard question-answering (QA) benchmarks do not
provide the most appropriate comparison, be-
cause they tend to simultaneously emphasize other
aspects not directly related to semantic pars-
ing. Moreover, most state-of-the-art QA sys-
tems use supervised learning in their key compo-
nents and/or require domain-specific engineering
efforts. The closest available system to USP in
aims and capabilities is TextRunner (Banko et al.,
2007), and we compare with it. TextRunner is the
state-of-the-art system for open-domain informa-
tion extraction; its goal is to extract knowledge
from text without using supervised labels. Given
that a central challenge to semantic parsing is re-
solving syntactic variations of the same meaning,
we also compare with RESOLVER (Yates and Et-
zioni, 2009), a state-of-the-art unsupervised sys-
tem based on TextRunner for jointly resolving en-
tities and relations, and DIRT (Lin and Pantel,
2001), which resolves paraphrases of binary rela-
tions. Finally, we also compared to an informed
baseline based on keyword matching.
Keyword: We consider a baseline system based
on keyword matching. The question substring
containing the verb and the available argument is
directly matched with the input text, ignoring case
and morphology. We consider two ways to derive
the answer given a match. The first one (KW) sim-
ply returns the rest of sentence on the other side of
the verb. The second one (KW-SYN) is informed
by syntax: the answer is extracted from the subject
or object of the verb, depending on the question. If
the verb does not contain the expected argument,
the sentence is ignored.
TextRunner: TextRunner inputs text and outputs
relational triples in the form(R,A1, A2), where
R is the relation string, andA1, A2 the argument
strings. Given a triple and a question, we first
match their relation strings, and then match the
strings for the argument that is present in the ques-
tion. If both match, we return the other argument
string in the triple as an answer. We report results
when exact match is used (TR-EXACT), or when
the triple string can contain the question one as a
substring (TR-SUB).
RESOLVER: RESOLVER (Yates and Etzioni,
2009) inputs TextRunner triples and collectively

resolves coreferent relation and argument strings.
On the GENIA data, using the default parameters,
RESOLVER produces only a few trivial relation
clusters and no argument clusters. This is not sur-
prising, since RESOLVER assumes high redun-
dancy in the data, and will discard any strings with
fewer than 25 extractions. For a fair compari-
son, we also ran RESOLVER using all extractions,
and manually tuned the parameters based on eye-
balling of clustering quality. The best result was
obtained with 25 rounds of execution and with the
entity multiple set to 200 (the default is 30). To an-
swer questions, the only difference from TextRun-
ner is that a question string can match any string
in its cluster. As in TextRunner, we report results
for both exact match (RS-EXACT) and substring
(RS-SUB).
DIRT: The DIRT system inputs a path and returns
a set of similar paths. To use DIRT in question
answering, we queried it to obtain similar paths
for the relation of the question, and used these
paths while matching sentences. We first used
MINIPAR (Lin, 1998) to parse input text using
the same dependencies as DIRT. To determine a
match, we first check if the sentence contains the
question path or one of its DIRT paths. If so, and if
the available argument slot in the question is con-
tained in the one in the sentence, it is a match, and
we return the other argument slot from the sen-
tence if it is present. Ideally, a fair comparison will
require running DIRT on the GENIA text, but we
were not able to obtain the source code. We thus
resorted to using the latest DIRT database released
by the author, which contains paths extracted from
a large corpus with more than 1GB of text. This
puts DIRT in a very advantageous position com-
pared with other systems. In our experiments, we
used the top three similar paths, as including more
results in very low precision.
USP: We built a system for knowledge extrac-
tion and question answering on top of USP. It
generated Stanford dependencies (de Marneffe et
al., 2006) from the input text using the Stan-
ford parser, and then fed these to USP-Learn11,
which produced an MLN with learned weights
and the MAP semantic parses of the input sen-
tences. These MAP parses formed our knowledge
base (KB). To answer questions, the system first
parses the questions12 using USP-Parse with the

11α andβ are set to−5 and−10.
12The question slot is replaced by a dummy word.
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Table 1: Comparison of question answering re-
sults on the GENIA dataset.

# Total # Correct Accuracy
KW 150 67 45%
KW-SYN 87 67 77%
TR-EXACT 29 23 79%
TR-SUB 152 81 53%
RS-EXACT 53 24 45%
RS-SUB 196 81 41%
DIRT 159 94 59%
USP 334 295 88%

learned MLN, and then matches the question parse
to parses in the KB by testing subsumption (i.e., a
question parse matches a KB one iff the former is
subsumed by the latter). When a match occurs, our
system then looks for arguments of type in accor-
dance with the question. For example, if the ques-
tion is “What regulates MIP-1alpha?”, it searches
for the argument type of the relation that contains
the argument form “nsubj” for subject. If such an
argument exists for the relation part, it will be re-
turned as the answer.

6.3 Results

Table 1 shows the results for all systems. USP
extracted the highest number of answers, almost
doubling that of the second highest (RS-SUB).
It obtained the highest accuracy at 88%, and
the number of correct answers it extracted is
three times that of the second highest system.
The informed baseline (KW-SYN) did surpris-
ingly well compared to systems other than USP, in
terms of accuracy and number of correct answers.
TextRunner achieved good accuracy when exact
match is used (TR-EXACT), but only obtained a
fraction of the answers compared to USP. With
substring match, its recall substantially improved,
but precision dropped more than 20 points. RE-
SOLVER improved the number of extracted an-
swers by sanctioning more matches based on the
clusters it generated. However, most of those ad-
ditional answers are incorrect due to wrong clus-
tering. DIRT obtained the second highest number
of correct answers, but its precision is quite low
because the similar paths contain many errors.

6.4 Qualitative Analysis

Manual inspection shows that USP is able to re-
solve many nontrivial syntactic variations with-
out user supervision. It consistently resolves the

syntactic difference between active and passive
voices. It successfully identifies many distinct ar-
gument forms that mean the same (e.g., “X stimu-
lates Y”≈ “Y is stimulated with X”, “expression
of X” ≈ “X expression”). It also resolves many
nouns correctly and forms meaningful groups of
relations. Here are some sample clusters in core
forms:
{investigate, examine, evaluate, analyze, study,

assay}
{diminish, reduce, decrease, attenuate}
{synthesis, production, secretion, release}
{dramatically, substantially, significantly}

An example question-answer pair, together with
the source sentence, is shown below:

Q: What does IL-13 enhance?
A: The 12-lipoxygenase activity of murine

macrophages.
Sentence: The data presented here indicate

that (1) the 12-lipoxygenase activity of murine
macrophages is upregulated in vitro and in vivo
by IL-4 and/or IL-13, . . .

7 Conclusion

This paper introduces the first unsupervised ap-
proach to learning semantic parsers. Our USP
system is based on Markov logic, and recursively
clusters expressions to abstract away syntactic
variations of the same meaning. We have suc-
cessfully applied USP to extracting a knowledge
base from biomedical text and answering ques-
tions based on it.

Directions for future work include: better han-
dling of antonyms, subsumption relations among
expressions, quantifier scoping, more complex
lambda forms, etc.; use of context and discourse
to aid expression clustering and semantic parsing;
more efficient learning and inference; application
to larger corpora; etc.
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Abstract
Unknown lexical items present a major
obstacle to the development of broad-
coverage semantic role labeling systems.
We address this problem with a semi-
supervised learning approach which ac-
quires training instances for unseen verbs
from an unlabeled corpus. Our method re-
lies on the hypothesis that unknown lexical
items will be structurally and semantically
similar to known items for which annota-
tions are available. Accordingly, we rep-
resent known and unknown sentences as
graphs, formalize the search for the most
similar verb as a graph alignment prob-
lem and solve the optimization using inte-
ger linear programming. Experimental re-
sults show that role labeling performance
for unknown lexical items improves with
training data produced automatically by
our method.

1 Introduction

Semantic role labeling, the task of automatically
identifying the semantic roles conveyed by sen-
tential constituents, has recently attracted much at-
tention in the literature. The ability to express the
relations between predicates and their arguments
while abstracting over surface syntactic configu-
rations holds promise for many applications that
require broad coverage semantic processing. Ex-
amples include information extraction (Surdeanu
et al., 2003), question answering (Narayanan
and Harabagiu, 2004), machine translation (Boas,
2005), and summarization (Melli et al., 2005).

Much progress in the area of semantic role la-
beling is due to the creation of resources like
FrameNet (Fillmore et al., 2003), which document
the surface realization of semantic roles in real
world corpora. Such data is paramount for de-
veloping semantic role labelers which are usually

based on supervised learning techniques and thus
require training on role-annotated data. Examples
of the training instances provided in FrameNet are
given below:

(1) a. If [you]Agent [carelessly]Manner

chance going back there, you
deserve what you get.

b. Only [one winner]Buyer purchased
[the paintings]Goods

c. [Rachel]Agent injured [her
friend]Victim [by closing the car
door on his left hand]Means.

Each verb in the example sentences evokes a frame
which is situation-specific. For instance, chance
evokes the Daring frame, purchased the Com-
merce buy frame, and injured the Cause harm
frame. In addition, frames are associated with
semantic roles corresponding to salient entities
present in the situation evoked by the predicate.
The semantic roles for the frame Daring are Agent
and Manner, whereas for Commerce buy these are
Buyer and Goods. A system trained on large
amounts of such hand-annotated sentences typi-
cally learns to identify the boundaries of the argu-
ments of the verb predicate (argument identifica-
tion) and label them with semantic roles (argument
classification).

A variety of methods have been developed for
semantic role labeling with reasonably good per-
formance (F1 measures in the low 80s on standard
test collections for English; we refer the interested
reader to the proceedings of the SemEval-2007
shared task (Baker et al., 2007) for an overview
of the state-of-the-art). Unfortunately, the reliance
on training data, which is both difficult and highly
expensive to produce, presents a major obstacle
to the widespread application of semantic role la-
beling across different languages and text gen-
res. The English FrameNet (version 1.3) is not
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a small resource — it contains 502 frames cov-
ering 5,866 lexical entries and 135,000 annotated
sentences. Nevertheless, by virtue of being un-
der development it is incomplete. Lexical items
(i.e., predicates evoking existing frames) are miss-
ing as well as frames and annotated sentences
(their number varies greatly across lexical items).
Considering how the performance of supervised
systems degrades on out-of-domain data (Baker
et al., 2007), not to mention unseen events, semi-
supervised or unsupervised methods seem to offer
the primary near-term hope for broad coverage se-
mantic role labeling.

In this work, we develop a semi-supervised
method for enhancing FrameNet with additional
annotations which could then be used for clas-
sifier training. We assume that an initial set of
labeled examples is available. Then, faced with
an unknown predicate, i.e., a predicate that does
not evoke any frame according to the FrameNet
database, we must decide (a) which frames it be-
longs to and (b) how to automatically annotate
example sentences containing the predicate. We
solve both problems jointly, using a graph align-
ment algorithm. Specifically, we view the task
of inferring annotations for new verbs as an in-
stance of a structural matching problem and fol-
low a graph-based formulation for pairwise global
network alignment (Klau, 2009). Labeled and un-
labeled sentences are represented as dependency-
graphs; we formulate the search for an optimal
alignment as an integer linear program where dif-
ferent graph alignments are scored using a func-
tion based on semantic and structural similarity.
We evaluate our algorithm in two ways. We assess
how accurate it is in predicting the frame for an
unknown verb and also evaluate whether the an-
notations we produce are useful for semantic role
labeling.

In the following section we provide an overview
of related work. Next, we describe our graph-
alignment model in more detail (Section 3) and
present the resources and evaluation methodology
used in our experiments (Section 4). We conclude
the paper by presenting and discussing our results.

2 Related Work

Much previous work has focused on creating
FrameNet-style annotations for languages other
than English. A common strategy is to exploit
parallel corpora and transfer annotations from

English sentences onto their translations (Padó
and Lapata, 2006; Johansson and Nugues, 2006).
Other work attempts to automatically augment the
English FrameNet in a monolingual setting either
by extending its coverage or by creating additional
training data.

There has been growing interest recently in
determining the frame membership for unknown
predicates. This is a challenging task, FrameNet
currently lists 502 frames with example sentences
which are simply too many (potentially related)
classes to consider for a hypothetical system.
Moreover, predicates may have to be assigned to
multiple frames, on account of lexical ambiguity.
Previous work has mainly used WordNet (Fell-
baum, 1998) to extend FrameNet. For example,
Burchardt et al. (2005) apply a word sense dis-
ambiguation system to annotate predicates with
a WordNet sense and hyponyms of these predi-
cates are then assumed to evoke the same frame.
Johansson and Nugues (2007) treat this problem
as an instance of supervised classification. Using
a feature representation based also on WordNet,
they learn a classifier for each frame which decides
whether an unseen word belongs to the frame or
not. Pennacchiotti et al. (2008) create “distribu-
tional profiles” for frames. Each frame is repre-
sented as a vector, the (weighted) centroid of the
vectors representing the meaning of the predicates
it evokes. Unknown predicates are then assigned
to the most similar frame. They also propose a
WordNet-based model that computes the similar-
ity between the synsets representing an unknown
predicate and those activated by the predicates of
a frame.

All the approaches described above are type-
based. They place more emphasis on extending
the lexicon rather than the annotations that come
with it. In our earlier work (Fürstenau and Lapata,
2009) we acquire new training instances, by pro-
jecting annotations from existing FrameNet sen-
tences to new unseen ones. The proposed method
is token-based, however, it only produces annota-
tions for known verbs, i.e., verbs that FrameNet
lists as evoking a given frame.

In this paper we generalize the proposals of
Pennacchiotti et al. (2008) and Fürstenau and Lap-
ata (2009) in a unified framework. We create train-
ing data for semantic role labeling of unknown
predicates by projection of annotations from la-
beled onto unlabeled data. This projection is con-
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ceptualized as a graph alignment problem where
we seek to find a globally optimal alignment sub-
ject to semantic and structural constraints. Instead
of predicting the same frame for each occurence of
an unknown predicate, we consider a set of candi-
date frames and allow projection from any labeled
predicate that can evoke one of these frames. This
allows us to make instance-based decisions and
thus account for predicate ambiguity.

3 Graph Alignment Method

Our approach acquires annotations for an un-
known frame evoking verb by selecting sen-
tences featuring this verb from a large unlabeled
corpus (the expansion corpus). The choice is
based upon a measure of similarity between the
predicate-argument structure of the unknown verb
and those of similar verbs in a manually labeled
corpus (the seed corpus). We formulate the prob-
lem of finding the most similar verbs as the search
for an optimal graph alignment (we represent
labeled and unlabeled sentences as dependency
graphs). Conveniently, this allows us to create la-
beled training instances for the unknown verb by
projecting role labels from the most similar seed
instance. The annotations can be subsequently
used for training a semantic role labeler.

Given an unknown verb, the first step is to nar-
row down the number of frames it could poten-
tially evoke. FrameNet provides definitions for
more than 500 frames, of which we entertain only
a small number. This is done using a method sim-
ilar to Pennacchiotti et al. (2008). Each frame
is represented in a semantic space as the cen-
troid of the vectors of all its known frame evoking
verbs. For an unknown verb we then consider as
frame candidates the k closest frames according to
a measure of distributional similarity (which we
compute between the unknown verb’s vector and
the frame centroid vector). We provide details of
the semantic space we used in our experiments in
Section 4.

Next, we compare each sentence featuring the
unknown verb in question to labeled sentences fea-
turing known verbs which according to FrameNet
evoke any of the k candidate frames. If sufficiently
similar seeds exist, the unlabeled sentence is anno-
tated by projecting role labels from the most sim-
ilar one. The similarity score of this best match is
recorded as a measure of the quality (or reliability)
of the new instance. After carrying out this pro-
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Figure 1: Annotated dependency graph for the
sentence Old Herkimer blinked his eye and nodded
wisely. The alignment domain is indicated in bold
face. Labels in italics denote frame roles, whereas
grammatical roles are rendered in small capitals.
The verb blink evokes the frame Body Movement.

cedure for all sentences in the expansion corpus
featuring an unknown verb, we collect the highest
scoring new instances and add them back to our
seed corpus as new training items. In the follow-
ing we discuss in more detail how the similarity of
predicate-argument structures is assessed.

3.1 Alignment Scoring

Let s be a semantically labeled dependency graph
in which node nFEE represents the frame evoking
verb. Here, we use the term “labeled” to indi-
cate that the graph contains semantic role labels
in addition to grammatical role labels (e.g., sub-
ject or object). Let g be an unlabeled graph
and ntarget a verbal node in it. The “unlabeled”
graph contains grammatical roles but no semantic
roles. We wish to find an alignment between the
predicate-argument structures of nFEE and ntarget ,
respectively. Such an alignment takes the form of
a function σ from a set M of nodes of s (the align-
ment domain) to a set N of nodes of g (the align-
ment range). These two sets represent the rele-
vant predicate-argument structures within the two
graphs; nodes that are not members of these sets
are excluded from any further computations.

If there were no mismatches between (frame)
semantic arguments and syntactic arguments, we
would expect all roles in s to be instantiated by
syntactic dependents in nFEE . This is usually the
case but not always. We cannot therefore sim-
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ply define M as the set of direct dependents of
the predicate, but also have to consider complex
paths between nFEE and role bearing nodes. An
example is given in Figure 1, where the role Agent
is filled by a node which is not dominated by the
frame evoking verb blink ; instead, it is connected
to blink by the complex path (CONJ−1, SUBJ). For
a given seed s we build a list of all such complex
paths and also include all nodes of s connected
to nFEE by one of these paths. We thus define the
alignment domain M as:

1. the predicate node nFEE

2. all direct dependents of nFEE , except auxil-
iaries

3. all nodes on complex paths originating
in nFEE

4. single direct dependents of any preposition or
conjunction node which is in (2) or end-point
of a complex path covered in (3)

The last rule ensures that the semantic heads
of prepositional phrases and conjunctions are in-
cluded in the alignment domain.

The alignment range N is defined in a similar
way. However, we cannot extract complex paths
from the unlabeled graph g, as it does not con-
tain semantic role information. Therefore, we use
the same list of complex paths extracted from s.
Note that this introduces an unavoidable asymme-
try into our similarity computation.

An alignment is a function σ : M→ N∪{ε}
which is injective for all values except ε,
i.e., σ(n1) = σ(n2) 6= ε⇒ n1 = n2. We score the
similarity of two subgraphs expressed by an align-
ment function σ by the following term:

∑
n∈M

σ(n)6=ε

sem(n,σ(n))+α ·∑
(n1,n2)∈E(M)

(σ(n1),σ(n2))∈E(N)

syn
(

rn1
n2
,rσ(n1)

σ(n2)

)
(2)

Here, sem represents a semantic similarity mea-
sure between graph nodes and syn a syntactic sim-
ilarity measure between the grammatical role la-
bels of graph edges. E(M) and E(N) are the sets
of all graph edges between nodes of M and nodes
of N, respectively, and rn1

n2
denotes the grammati-

cal relation between nodes n1 and n2.
Equation (2) expresses the similarity between

two predicate-argument structures in terms of the
sum of semantic similarity scores of aligned graph

nodes and the sum of syntactic similarity scores of
aligned graph edges. The relative weight of these
two sums is determined by the parameter α. Fig-
ure 2 shows an example of an alignment between
two dependency graphs. Here, the aligned node
pairs thud and thump, back and rest, against and
against, as well as wall and front contribute se-
mantic similarity scores, while the three edge pairs
SUBJ and SUBJ, IOBJ and IOBJ, as well as DOBJ

and DOBJ contribute syntactic similarity scores.
We normalize the resulting score so that it al-

ways falls within the interval [0,1]. To take into
account unaligned nodes in both the alignment do-
main and the alignment range, we divide Equa-
tion (2) by:√

|M| · |N|+α
√
|E(M)| · |E(N)| (3)

A trivial alignment of a seed with itself where all
semantic and syntactic scores are 1 will thus re-
ceive a score of:

|M| ·1+α · |E(M)| ·1√
|M|2 +α

√
E(M)2

= 1 (4)

which is the largest possible similarity score. The
lowest possible score is obviously 0, assuming that
the semantic and syntactic scores cannot be nega-
tive.

Considerable latitude is available in selecting
the semantic and syntactic similarity measures.
With regard to semantic similarity, WordNet is a
prime contender and indeed has been previously
used to acquire new predicates in FrameNet (Pen-
nacchiotti et al., 2008; Burchardt et al., 2005; Jo-
hansson and Nugues, 2007). Syntactic similarity
may be operationalized in many ways, for exam-
ple by taking account a hierarchy of grammatical
relations (Keenan and Comrie, 1977). Our experi-
ments employed relatively simple instantiations of
these measures. We did not make use of Word-
Net, as we were interested in exploring the set-
ting where WordNet is not available or has limited
coverage. Therefore, we approximate the seman-
tic similarity between two nodes via distributional
similarity. We present the details of the semantic
space model we used in Section 4.

If n and n′ are both nouns, verbs or adjectives,
we set:

sem(n,n′) := cos(~vn,~vn′) (5)

where ~vn and ~vn′ are the vectors representing the
lemmas of n and n′ respectively. If n and n′
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are identical prepositions or conjunctions we set
sem(n,n′) := 1. In all other cases sem(n,n′) := 0.
As far as syntactic similarity is concerned, we
chose the simplest metric possible and set:

syn
(
r,r′
)

:=
{

1 if r = r′

0 otherwise
(6)

3.2 Alignment Search

The problem of finding the best alignment ac-
cording to the scoring function presented in Equa-
tion (2) can be formulated as an integer linear pro-
gram. Let the binary variables xik indicate whether
node ni of graph s is aligned to node nk of graph g.
Since it is not only nodes but also graph edges
that must be aligned we further introduce binary
variables yi jkl , where yi jkl = 1 indicates that the
edge between nodes ni and n j of graph s is aligned
to the edge between nodes nk and nl of graph g.
This follows a general formulation of the graph
alignment problem based on maximum structural
matching (Klau, 2009). In order for the xik and
yi jkl variables to represent a valid alignment, the
following constraints must hold:

1. Each node of s is aligned to at most one node
of g: ∑k xik ≤ 1

2. Each node of g is aligned to at most one node
of s: ∑i xik ≤ 1

3. Two edges may only be aligned if their
adjacent nodes are aligned: yi jkl ≤ xik and
yi jkl ≤ x jl

The scoring function then becomes:

∑
i,k

sem(ni,nk)xik +α · ∑
i, j,k,l

syn
(

rni
n j
,rnk

nl

)
yi jkl (7)

We solve this optimization problem with a ver-
sion of the branch-and-bound algorithm (Land
and Doig, 1960). In general, this graph align-
ment problem is NP-hard (Klau, 2009) and usually
solved approximately following a procedure simi-
lar to beam search. However, the special structure
of constraints 1 to 3, originating from the required
injectivity of the alignment function, allows us to
solve the optimization exactly. Our implementa-
tion of the branch-and-bound algorithm does not
generally run in polynomial time, however, we
found that in practice we could efficiently com-
pute optimal alignments in almost all cases (less
than 0.1% of alignment pairs in our data could not
be solved in reasonable time). This relatively be-
nign behavior depends crucially on the fact that
we do not have to consider alignments between
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full graphs, and the number of nodes in the aligned
subgraphs is limited.

4 Experimental Design

In this section we present our experimental set-up
for assessing the performance of our method. We
give details on the data sets we used, describe the
baselines we adopted for comparison with our ap-
proach, and explain how our system output was
evaluated.

Data Our experiments used annotated sentences
from FrameNet as a seed corpus. These were
augmented with automatically labeled sentences
from the BNC which we used as our expan-
sion corpus. FrameNet sentences were parsed
with RASP (Briscoe et al., 2006). In addi-
tion to phrase structure trees, RASP delivers a
dependency-based representation of the sentence
which we used in our experiments. FrameNet role
annotations were mapped onto those dependency
graph nodes that corresponded most closely to the
annotated substring (see Fürstenau (2008) for a de-
tailed description of the mapping algorithm). BNC
sentences were also parsed with RASP (Andersen
et al., 2008).

We randomly split the FrameNet corpus1

into 80% training set, 10% test set, and 10% de-
velopment set. Next, all frame evoking verbs in
the training set were ordered by their number of
occurrence and split into two groups, seen and un-
seen. Every other verb from the ordered list was
considered unseen. This quasi-random split covers
a broad range of predicates with a varying number
of annotations. Accordingly, the FrameNet sen-
tences in the training and test sets were divided
into the sets train seen, train unseen, test seen,
and test unseen. As we explain below, this was
necessary for evaluation purposes.

The train seen dataset consisted of 24,220 sen-
tences, with 1,238 distinct frame evoking verbs,
whereas train unseen contained 24,315 sentences
with the same number of frame evoking verbs.
Analogously, test seen had 2,990 sentences and
817 unique frame evoking verbs; the number
of sentences in test unseen was 3,064 (with
847 unique frame evoking verbs).

Model Parameters The alignment model pre-
sented in Section 3 crucially relies on the similar-

1Here, we consider only FrameNet example sentences
featuring verbal predicates.

ity function that scores potential alignments (see
Equation (2)). This function has a free parameter,
the weight α for determining the relative contri-
bution of semantic and syntactic similarity. We
tuned α using leave-one-out cross-validation on
the development set. For each annotated sentence
in this set we found its most similar other sentence
and determined the best alignment between the
two dependency graphs representing them. Since
the true annotations for each sentence were avail-
able, it was possible to evaluate the accuracy of our
method for any α value. We did this by compar-
ing the true annotation of a sentence to the anno-
tation its nearest neighbor would have induced by
projection. Following this procedure, we obtained
best results with α = 0.2.

The semantic similarity measure relies on a se-
mantic space model which we built on a lemma-
tized version of the BNC. Our implementation fol-
lowed closely the model presented in Fürstenau
and Lapata (2009) as it was used in a similar
task and obtained good results. Specifically, we
used a context window of five words on either
side of the target word, and 2,000 vector dimen-
sions. These were the common context words in
the BNC. Their values were set to the ratio of the
probability of the context word given the target
word to the probability of the context word over-
all. Semantic similarity was measured using the
cosine of the angle between the vectors represent-
ing any two words. The same semantic space was
used to create the distributional profile of a frame
(which is the centroid of the vectors of its verbs).
For each unknown verb, we consider the k most
similar frame candidates (again similarity is mea-
sured via cosine). Our experiments explored dif-
ferent values of k ranging from 1 to 10.

Evaluation Our evaluation assessed the perfor-
mance of a semantic frame and role labeler with
and without the annotations produced by our
method. The labeler followed closely the im-
plementation described in Johansson and Nugues
(2008). We extracted features from dependency
parses corresponding to those routinely used in
the semantic role labeling literature (see Baker
et al. (2007) for an overview). SVM classifiers
were trained2 with the LIBLINEAR library (Fan
et al., 2008) and learned to predict the frame
name, role spans, and role labels. We followed

2The regularization parameter C was set to 0.1.
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Figure 3: Frame labeling accuracy on high,
medium and low frequency verbs, before and af-
ter applying our expansion method; the labeler de-
cides among k = 1, . . . ,10 candidate frames.

the one-versus-one strategy for multi-class classi-
fication (Friedman, 1996).

Specifically, the labeler was trained on the
train seen data set without any access to training
instances representative of the “unknown” verbs in
test unseen. We then trained the labeler on a larger
set containing train seen and new training exam-
ples obtained with our method. To do this, we used
train seen as the seed corpus and the BNC as the
expansion corpus. For each “unknown” verb in
train unseen we obtained BNC sentences with an-
notations projected from their most similar seeds.
The quality of these sentences as training instances
varies depending on their similarity to the seed.
In our experiments we added to the training set
the 20 highest scoring BNC sentences per verb
(adding less or more instances led to worse per-
formance).

The average number of frames which can be
evoked by a verb token in the set test unseen
was 1.96. About half of them (1,522 instances)
can evoke only one frame, 22% can evoke two
frames, and 14 instances can evoke up to 11 differ-
ent frames. Finally, there are 120 instances (4%)
in test unseen for which the correct frame is not
annotated on any sentence in train seen.

Figure 4: Role labeling F1 for high, medium, and
low frequency verbs (roles of mislabeled frames
are counted as wrong); the labeler decides among
k = 1, . . . ,10 candidate frames.

5 Results

We first examine how well our method performs
at frame labeling. We partitioned the frame evok-
ing verbs in our data set into three bands (High,
Medium, and Low) based on an equal division
of the range of their occurrence frequency in the
BNC. As frequency is strongly correlated with
polysemy, the division allows us to assess how
well our method is performing at different degrees
of ambiguity. Figure 3 summarizes our results for
High, Medium, and Low frequency verbs. The
number of verbs in each band are 282, 282, and
283, respectively. We compare the frame accuracy
of a labeler trained solely on the annotations avail-
able in FrameNet (Without expansion) against a
labeler that also uses annotations created with our
method (After expansion). Both classifiers were
employed in a setting where they had to decide
among k candidate frames. These were the k most
similar frames to the unknown verb in question.
We also show the accuracy of a simple baseline
labeler, which randomly chooses one of the k can-
didate frames.

The graphs in Figure 3 show that for verbs in the
Medium and Low frequency bands, both classi-
fiers (with and without expansion) outperform the
baseline of randomly choosing among k candidate
frames. Interestingly, rather than defaulting to the
most similar frame (k = 1), we observe that ac-
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Figure 5: Hybrid frame labeling accuracy (k = 1
for High frequency verbs).

curacy improves when frame selection is viewed
as a classification task. The classifier trained on
the expanded training set consistently outperforms
the one trained on the original training set. While
this is also true for the verbs in the High frequency
band, labeling accuracy peaks at k = 1 and does
not improve when more candidate frames are con-
sidered. This is presumably due to the skewed
sense distributions of high frequency verbs, and
defaulting to the most likely sense achieves rela-
tively good performance.

Next, we evaluated our method on role label-
ing, again by comparing the performance of our
role labeler on the expanded and original train-
ing set. Since role and frame labeling are inter-
dependent, we count all predicted roles of an in-
correctly predicted frame as wrong. This unavoid-
ably results in low role labeling scores, but allows
us to directly compare performance across differ-
ent settings (e.g., different number of candidate
frames, with or without expansion). Figure 4 re-
ports labeled F1 for verbs in the High, Medium
and Low frequency bands. The results are simi-
lar to those obtained for frame labeling; the role
labeler trained on the the expanded training set
consistently outperforms the labeler trained on the
unexpanded one. (There is no obvious baseline
for role labeling, which is a complex task involv-
ing the prediction of frame labels, identification of
the role bearing elements, and assignment of role
labels.) Again, for High frequency verbs simply
defaulting to k = 1 performs best.

Taken together, our results on frame and role
labeling indicate that our method is not very effec-
tive for High frequency verbs (which in practice
should be still annotated manually). We there-

Figure 6: Hybrid role labeling F1 (k = 1 for High
frequency verbs).

fore also experimented with a hybrid approach
that lets the classifier choose among k candi-
dates for Medium and Low frequency verbs and
defaults to the most similar candidate for High
frequency verbs. Results for this approach are
shown in Figures 5 and 6. All differences be-
tween the expanded and the unexpanded classi-
fier when choosing between the same k > 1 can-
didates are significant according to McNemar’s
test (p < .05). The best frame labeling accu-
racy (26.3%) is achieved by the expanded classi-
fier when deciding among k = 6 candidate frames.
This is significantly better (p< .01) than the best
performance of the unexpanded classifier (25.0%),
which is achieved at k = 2. Role labeling results
follow a similar pattern. The best expanded classi-
fier (F1=14.9% at k = 6) outperforms the best un-
expanded one (F1=14.1% at k = 2). The difference
in performance as significant at p < 0.05, using
stratified shuffling (Noreen, 1989).

6 Conclusions

This paper presents a novel semi-supervised ap-
proach for reducing the annotation effort involved
in creating resources for semantic role labeling.
Our method acquires training instances for un-
known verbs (i.e., verbs that are not evoked by
existing FrameNet frames) from an unlabeled cor-
pus. A key assumption underlying our work is
that verbs with similar meanings will have sim-
ilar argument structures. Our task then amounts
to finding the seen instances that resemble the un-
seen instances most, and projecting their annota-
tions. We represent this task as a graph alignment
problem, and formalize the search for an optimal
alignment as an integer linear program under an
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objective function that takes semantic and struc-
tural similarity into account.

Experimental results show that our method im-
proves frame and role labeling accuracy, espe-
cially for Medium and Low frequency verbs. The
overall frame labeling accuracy may seem low.
There are at least two reasons for this. Firstly, the
unknown verb might have a frame for which no
manual annotation exists. And secondly, many er-
rors are due to near-misses, i.e., we assign the un-
known verb a wrong frame which is nevertheless
very similar to the right one. In this case, accuracy
will not give us any credit.

An obvious direction for future work concerns
improving our scoring function. Pennacchiotti
et al. (2008) show that WordNet-based similarity
measures outperform their simpler distributional
alternatives. An interesting question is whether the
incorporation of WordNet-based similarity would
lead to similar improvements in our case. Also
note that currently our method assigns unknown
lexical items to existing frames. A better alterna-
tive would be to decide first whether the unknown
item can be classified at all (because it evokes a
known frame) or whether it represents a genuinely
novel frame for which manual annotation must be
provided.
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Abstract

Semantic Role Labeling (SRL) has proved
to be a valuable tool for performing auto-
matic analysis of natural language texts.
Currently however, most systems rely on
a large training set, which is manually an-
notated, an effort that needs to be repeated
whenever different languages or a differ-
ent set of semantic roles is used in a cer-
tain application. A possible solution for
this problem is semi-supervised learning,
where a small set of training examples
is automatically expanded using unlabeled
texts. We present the Latent Words Lan-
guage Model, which is a language model
that learns word similarities from unla-
beled texts. We use these similarities for
different semi-supervised SRL methods as
additional features or to automatically ex-
pand a small training set. We evaluate the
methods on the PropBank dataset and find
that for small training sizes our best per-
forming system achieves an error reduc-
tion of 33.27% F1-measure compared to
a state-of-the-art supervised baseline.

1 Introduction

Automatic analysis of natural language is still a
very hard task to perform for a computer. Al-
though some successful applications have been de-
veloped (see for instance (Chinchor, 1998)), im-
plementing an automatic text analysis system is
still a labour and time intensive task. Many ap-
plications would benefit from an intermediate rep-
resentation of texts, where an automatic analysis
is already performed which is sufficiently general
to be useful in a wide range of applications.

Syntactic analysis of texts (such as Part-Of-
Speech tagging and syntactic parsing) is an ex-
ample of such a generic analysis, and has proved

useful in applications ranging from machine trans-
lation (Marcu et al., 2006) to text mining in the
bio-medical domain (Cohen and Hersh, 2005). A
syntactic parse is however a representation that is
very closely tied with the surface-form of natural
language, in contrast to Semantic Role Labeling
(SRL) which adds a layer of predicate-argument
information that generalizes across different syn-
tactic alternations (Palmer et al., 2005). SRL has
received a lot of attention in the research commu-
nity, and many systems have been developed (see
section 2). Most of these systems rely on a large
dataset for training that is manually annotated. In
this paper we investigate whether we can develop a
system that achieves state-of-the-art semantic role
labeling without relying on a large number of la-
beled examples. We aim to do so by employing the
Latent Words Language Model that learnslatent
wordsfrom a large unlabeled corpus. Latent words
are words that (unlike observed words) did not oc-
cur at a particular position in a text, but given se-
mantic and syntactic constraints from the context
could have occurred at that particular position.

In section 2 we revise existing work on SRL and
on semi-supervised learning. Section 3 outlines
our supervised classifier for SRL and section 4 dis-
cusses the Latent Words Language Model. In sec-
tion 5 we will combine the two models for semi-
supervised role labeling. We will test the model
on the standard PropBank dataset and compare it
with state-of-the-art semi-supervised SRL systems
in section 6 and finally in section 7 we draw con-
clusions and outline future work.

2 Related work

Gildea and Jurafsky (2002) were the first to de-
scribe a statistical system trained on the data from
the FrameNet project to automatically assign se-
mantic roles. This approach was soon followed
by other researchers (Surdeanu et al., 2003; Prad-
han et al., 2004; Xue and Palmer, 2004), focus-
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ing on improved sets of features, improved ma-
chine learning methods or both, and SRL became
a shared task at the CoNLL 2004, 2005 and 2008
conferences1. The best system (Johansson and
Nugues, 2008) in CoNLL 2008 achieved an F1-
measure of 81.65% on the workshop’s evaluation
corpus.

Semi-supervised learning has been suggested
by many researchers as a solution to the annota-
tion bottleneck (see (Chapelle et al., 2006; Zhu,
2005) for an overview), and has been applied suc-
cessfully on a number of natural language pro-
cessing tasks. Mann and McCallum (2007) ap-
ply Expectation Regularization to Named Entity
Recognition and Part-Of-Speech tagging, achiev-
ing improved performance when compared to su-
pervised methods, especially on small numbers of
training data. Koo et al. (2008) present an algo-
rithm for dependency parsing that uses clusters of
semantically related words, which were learned
in an unsupervised manner. There has been lit-
tle research on semi-supervised learning for SRL.
We refer to He and Gildea (2006) who tested ac-
tive learning and co-training methods, but found
little or no gain from semi-supervised learning,
and to Swier and Stevenson (2004), who achieved
good results using semi-supervised methods, but
tested their methods on a small number of Verb-
Net roles, which have not been used by other SRL
systems. To the best of our knowledge no sys-
tem was able to reproduce the successful results
of (Swier and Stevenson, 2004) on the PropBank
roleset. Our approach most closely resembles the
work of Fürstenau and Lapata (2009) who auto-
matically expand a small training set using an au-
tomatic dependency alignment of unlabeled sen-
tences. This method was tested on the FrameNet
corpus and improved results when compared to a
fully-supervised classifier. We will discuss their
method in detail in section 5.

3 Semantic role labeling

Fillmore (1968) introduced semantic structures
called semantic frames, describing abstract ac-
tions or common situations (frames) with common
roles and themes (semantic roles). Inspired by this
idea different resources were constructed, includ-
ing FrameNet (Baker et al., 1998) and PropBank
(Palmer et al., 2005). An alternative approach to
semantic role labeling is the framework developed

1See http://www.cnts.ua.ac.be/conll/ for an overview.

by Halliday (1994) and implemented by Mehay
et al. (2005). PropBank has thus far received the
most attention of the research community, and is
used in our work.

3.1 PropBank

The goal of the PropBank project is to add seman-
tic information to the syntactic nodes in the En-
glish Penn Treebank. The main motivation for this
annotation is the preservation of semantic roles
across different syntactic realizations. Take for in-
stance the sentences

1. The window broke.

2. John broke the window.

In both sentences the constituent “the window” is
broken, although it occurs at different syntactic
positions. The PropBank project defines for a
large collection of verbs (excluding auxiliary
verbs such as “will”, “can”, ...) a set of senses,
that reflect the different meanings and syntactic
alternations of this verb. Every sense has a
number of expected roles, numbered from Arg0
to Arg5. A small number of arguments are shared
among all senses of all verbs, such as temporals
(Arg-TMP), locatives (Arg-LOC) and directionals
(Arg-DIR). Additional to the frame definitions,
PropBank has annotated a large training corpus
containing approximately 113.000 annotated
verbs. An example of an annotated sentence is

[JohnArg0][brokeBREAK.01] [the windowArg1].

Here BREAK.01 is the first sense of the “break”
verb. Note that (1) although roles are defined for
every frame separately, in reality roles with iden-
tical names are identical or very similar for all
frames, a fact that is exploited to train accurate role
classifiers and (2) semantic role labeling systems
typically assume that a frame is fully expressed in
a single sentence and thus do not try to instanti-
ate roles across sentence boundaries. Although the
original PropBank corpus assigned semantic roles
to syntactic phrases (such as noun phrases), we use
the CoNLL dataset, where the PropBank corpus
was converted to a dependency representation, as-
signing semantic roles to single (head) words.

3.2 Features

In this section we discuss the features used in the
semantic role labeling system. All features but the
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Split path featureare taken from existing seman-
tic role labeling systems, see for example (Gildea
and Jurafsky, 2002; Lim et al., 2004; Thompson
et al., 2006). The number in brackets denotes the
number of unique features for that type.

Word We split every sentence in (unigram) word
tokens, including punctuation. (37079)

Stem We reduce the word tokens to their stem,
e.g. “walks” -> “walk”. (28690)

POS The part-of-speech tag for every word, e.g.
“NNP” (for a singular proper noun). (77)

Neighbor POS’s The concatenated part-of-
speech tags of the word before and the word
just after the current word, e.g. “RBS_JJR”.
(1787)

Path This important feature describes the path
through the dependency tree from the current
word to the position of the predicate, e.g.
“coord↑obj↑adv↑root↓dep↓nmod↓pmod”,
where ‘↑’ indicates going up a constituent
and ‘↓’ going down one constituent.
(829642)

Split Path Because of the nature of the path fea-
ture, an explosion of unique features is found
in a given data set. We reduce this by split-
ting the path in different parts and using every
part as a distinct feature. We split, for exam-
ple, the previous path in 6 different features:
“coord”, “↑obj”, “↑adv”, “↑root”, “↓dep”,
“↓nmod”, “↓pmod”. Note that the split path
feature includes the POS feature, since the
first component of the path is the POS tag for
the current word. This feature has not been
used previously for semantic role detection.
(155)

For every wordwi in the training and test set we
construct the feature vectorf(wi), where at every
position in this vector 1 indicates the presence for
the corresponding feature and 0 the absence of that
feature.

3.3 Discriminative model

Discriminative models have been found to outper-
form generative models for many different tasks
including SRL (Lim et al., 2004). For this reason
we also employ discriminative models here. The
structure of the model was inspired by a similar

Figure 1: Discriminative model for SRL. Grey
circles represent observed variables, white circles
hidden variables and arrows directed dependen-
cies.s ranges over all sentences in the corpus and
j over then words in the sentence.

(although generative) model in (Thompson et al.,
2006) where it was used for semantic frame clas-
sification. The model (fig. 1) assumes that the role
label r i j for the wordwi is conditioned on the fea-
turesf i and on the role labelr i−1 j of the previous
word and that the predicate labelp j for wordw j is
conditioned on the role labelsR j and on the fea-
turesf j . This model can be seen as an extension
of the standard Maximum Entropy Markov Model
(MEMM, see (Ratnaparkhi, 1996)) with an extra
dependency on the predicate label, we will hence-
forth refer to this model asMEMM+pred.

To estimate the parameters of theMEMM+pred
model we turn to the successful Maximum En-
tropy (Berger et al., 1996) parameter estimation
method. The Maximum Entropy principle states
that the best model given the training data is the
model such that the conditional distribution de-
fined by the model has maximum entropy subject
to the constraints represented by the training ex-
amples. There is no closed form solution to find
this maximum and we thus turn to an iterative
method. In this work we use Generalized Itera-
tive Scaling2, but other methods such as (quasi-)
Newton optimization could also have been used.

4 Latent Words Language Model

4.1 Rationale

As discussed in sections 1 and 3 most SRL sys-
tems are trained today on a large set of manually
annotated examples. PropBank for example con-
tains approximately 50000 sentences. This man-
ual annotation is both time and labour-intensive,
and needs to be repeated for new languages or

2We use the maxent package available on
http://maxent.sourceforge.net/
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for new domains requiring a different set of roles.
One approach that can help to solve this problem
is semi-supervised learning, where a small set of
annotated examples is used together with a large
set of unlabeled examples when training a SRL
model.

Manual inspection of the results of the super-
vised model discussed in the previous section
showed that the main source of errors was in-
correct labeling of a word because the word to-
ken did not occur, or occurred only a small num-
ber of times in the training set. We hypothesize
that knowledge of semantic similar words could
overcome this problem by associating words that
occurred infrequently in the training set to sim-
ilar words that occurred more frequently. Fur-
thermore, we would like to learn these similar-
ities automatically, to be independent of knowl-
edge sources that might not be available for all
languages or domains.

The Distributional Hypothesis, supported by
theoretical linguists such as Harris (1954), states
that words that occur in the same contexts tend
to have similar meanings. This suggests that one
can learn the similarity between two words auto-
matically by comparing their relative contexts in
a large unlabeled corpus, which was confirmed by
different researchers (e.g. (Lin, 1998; McDonald
and Ramscar, 2001; Grefenstette, 1994)). Differ-
ent methods for computing word similarities have
been proposed, differing between methods to rep-
resent the context (using dependency relationship
or a window of words) and between methods that,
given a set of contexts, compute the similarity be-
tween different words (ranging from cosine simi-
larity to more complex metrics such as the Jaccard
index). We refer to (Lin, 1998) for a comparison
of the different similarity metrics.

In the next section we propose a novel method
to learn word similarities, the Latent Words Lan-
guage Model (LWLM) (Deschacht and Moens,
2009). This model learns similar words and learns
the a distribution over the contexts in which cer-
tain types of words occur typically.

4.2 Definition

The LWLM introduces for a textT = w1...wN of
lengthN for every observed wordwi at positioni
a hidden variablehi . The model is a generative
model for natural language, in which the latent
variablehi is generated by its contextC(hi) and the

observed wordwi is generated by the latent vari-
ablehi . In the current model we assume that the
context isC(hi) = hi−1

i−2hi+2
i+1 wherehi−1

i−2 = hi−2hi−1

is the two previous words andhi+2
i+1 = hi+1hi+2 is

the two next words. The observedwi has a value
from the vocabularyV, while the hidden variable
hi is unknown, and is modeled as a probability
distribution over all words ofV. We will see in
the next section how this distribution is estimated
from a large unlabeled training corpus. The aim
of this model is to estimate, at every positioni,
a distribution forhi , assigning high probabilities
to words that are similar towi, given the context
of this wordC(hi), and low probabilities to words
that are not similar towi in this context.

A possible interpretation of this model states
that every hidden variablehi models the “mean-
ing” for a particular word in a particular context.
In this probabilistic model, when generating a sen-
tence, we generate the meaning of a word (which
is an unobserved representation) with a certain
probability, and then we generate a certain obser-
vation by writing down one of the possible words
that express this meaning.

Creating a representation that models the mean-
ing of a word is an interesting (and controversial)
topic in its own right, but in this work we make
the assumption that the meaning of a particular
word can be modeled using other words. Model-
ing the meaning of a word with other words is not
an unreasonable one, since it is already employed
in practice by humans (e.g. by using dictionar-
ies and thesauri) and machines (e.g. relying on a
lexical resource such as WordNet) in word sense
disambiguation tasks.

4.3 Parameter estimation

As we will further see the LWLM model has three
probability distributions:P(wi|hi), the probability
of the observed wordw j given the latent variable
h j , P(hi |hi−1

i−2), the probability of the hidden word
h j given the previous variablesh j−2 andh j−1, and
P(hi |hi+2

i+1), the probability of the hidden wordh j

given the next variablesh j+1 andh j+2. These dis-
tributions need to be learned from a training text
Ttrain =< w0...wz > of lengthZ.

4.3.1 The Baum-Welch algorithm

The attentive reader will have noticed the sim-
ilarity between the proposed model and a stan-
dard second-order Hidden Markov Model (HMM)
where the hidden state is dependent on the two
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previous states. However, we are not able to use
the standard Baum-Welch (or forward-backward)
algorithm, because the hidden variablehi is mod-
eled as a probability distribution over all words
in the vocabularyV. The Baum-Welch algorithm
would result in an execution time ofO(|V|3NG)
where |V| is the size of the vocabulary,N is the
length of the training text andG is the number of
iterations needed to converge. Since in our dataset
the vocabulary size is more than 30K words (see
section 3.2), using this algorithm is not possible.
Instead we use techniques of approximate infer-
ence, i.e. Gibbs sampling.

4.3.2 Initialization

Gibbs sampling starts from a random initializa-
tion for the hidden variables and then improves
the estimates in subsequent iterations. In prelimi-
nary experiments it was found that a pure random
initialization results in a very long burn-in-period
and a poor performance of the final model. For
this reason we initially set the distributions for the
hidden words equal to the distribution of words as
given by a standard language model3.

4.3.3 Gibbs sampling

We store the initial estimate of the hidden vari-
ables inM0

train =< h0...hZ >, wherehi generates
wi at every positioni. Gibbs sampling is a Markov
Chain Monte Carlo method that updates the esti-
mates of the hidden variables in a number of it-
erations. M τ

train denotes the estimate of the hid-
den variables in iterationτ . In every iteration a
new estimateM τ+1

train is generated from the previ-
ous estimateM τ

train by selecting a random posi-
tion j and updating the value of the hidden vari-
able at that position. The probability distributions
Pτ(w j |h j), Pτ(h j |h j−1

j−2) andPτ(h j |h j+2
j+1) are con-

structed by collecting the counts from all positions
i 6= j. The hidden variableh j is dependent onh j−2,
h j−1, h j+1, h j+2 andw j and we can compute the
distribution of possible values for the variableh j

as

Pτ(h j |w j ,h
j−1
0 ,hZ

j+1) =

Pτ(w j |h j)Pτ(h j |h j−1
j−2h

j+2
j+1)

∑hi
Pτ(wi|hi)Pτ(h j |h j−1

j−2h j+2
j+1)

We setP(h j |h j−1
j−2h

j+2
j+1) = P(h j |h j−1

j−2) ·P(h j |h j+2
j+1)

which can be easily computed given the above dis-

3We used the interpolated Kneser-Ney model as described
in (Goodman, 2001).

tributions. We select a new value for the hidden
variable according toPτ(h j |w j ,h

j−1
0 ,hZ

j+1) and

place it at positionj in M τ+1
train. The current esti-

mate for all other unobserved words remains the
same. After performing this iteration a large num-
ber of times (|V| ∗10 in this experiment), the dis-
tribution approaches the true maximum likelihood
distribution. Gibbs sampling however samples this
distribution, and thus will never reach it exactly. A
number of iterations (|V| ∗100) is then performed
in which Gibbs sampling oscillates around the cor-
rect distribution. We collect independent samples
of this distribution every|V| ∗10 iterations, which
are then used to construct the final model.

4.4 Evaluation of the Language Model

A first evaluation of the quality of the automat-
ically learned latent words is by translation of
this model into a sequential language model and
by measuring its perplexity on previously unseen
texts. In (Deschacht and Moens, 2009) we per-
form a number of experiments, comparing differ-
ent corpora (news texts from Reuters and from
Associated Press, and articles from Wikipedia)
and n-gram sizes (3-gram and 4-gram). We also
compared the proposed model with two state-of-
the-art language models, Interpolated Kneser-Ney
smoothing andfullibmpredict (Goodman, 2001),
and found that LWLM outperformed both models
on all corpora, with a perplexity reduction ranging
between 12.40% and 5.87%. These results show
that the estimated distributions over latent words
are of a high quality and lead us to believe they
could be used to improve automatic text analysis,
like SRL.

5 Role labeling using latent words

The previous section discussed how the LWLM
learns similar words and how these similarities im-
proved the perplexity on an unseen text of the lan-
guage model derived from this model. In this sec-
tion we will see how we integrate the latent words
model in two novel semi-supervised SRL models
and compare these with two state-of-the-art semi-
supervised models for SRL and dependency pars-
ing.

Latent words as additional features

In a first approach we estimate the distribution of
latent words for every word for both the training
and test set. We then use the latent words at every
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position as additional probabilistic features for the
discriminative model. More specifically, we ap-
pend|V| extra values to the feature vectorf(w j),
containing the probability distribution over the|V|
possible words for the hidden variablehi

4. We call
this theLWFeaturesmethod.

This method has the advantage that it is simple
to implement and that many existing SRL systems
can be easily extended by adding additional fea-
tures. We also expect that this method can be em-
ployed almost effortless in other information ex-
traction tasks, such as Named Entity Recognition
or Part-Of-Speech labeling.

We compare this approach to the semi-
supervised method in Koo et al. (2008) who em-
ploy clusters of related words constructed by the
Brown clustering algorithm (Brown et al., 1992)
for syntactic processing of texts. Interestingly,
this clustering algorithm has a similar objective as
LWLM since it tries to optimize a class-based lan-
guage model in terms of perplexity on an unseen
test text. We employ a slightly different clustering
method here, thefullibmpredictmethod discussed
in (Goodman, 2001). This method was shown
to outperform the class based model proposed in
(Brown et al., 1992) and can thus be expected to
discover better clusters of words. We append the
feature vectorf(w j) with c extra values (wherec is
the number of clusters), respectively set to 1 if the
wordwi belongs to the corresponding cluster or to
0 otherwise. We call this method theClusterFea-
turesmethod.

Automatic expansion of the training set using
predicate argument alignment

We compare our approach with a method proposed
by Fürstenau and Lapata (2009). This approach is
more tailored to the specific case of SRL and is
summarized here.

Given a set of labeled seed verbs with annotated
semantic roles, for every annotated verb a number
of occurrences of this verb is found in unlabeled
texts where the context is similar to the context of
the annotated example. The context is defined here
as all words in the sentence that are direct depen-
dents of this verb, given the syntactic dependency
tree. The similarity between two occurrences of a
particular verb is measured by finding all different
alignmentsσ : Mσ → {1...n} (Mσ ⊂ {1, ...,m})

4Probabilities smaller than 1e10−4 were set to 0 for effi-
ciency reasons.

between them dependents of the first occurrence
and then dependents of the second occurrence.
Every alignmentσ is assigned a score given by

∑
i∈Mσ

(
A ·syn(gi ,gσ(i))+sem(wi,wσ(i))−B

)
where syn(gi ,gσ(i)) denotes the syntactic simi-
larity between grammatical role5 gi of word wi

and grammatical rolegσ(i) of word wσ(i), and
sem(wi ,wσ(i)) measures the semantic similarity
between wordswi and wσ(i). A is a constant
weighting the importance of the syntactic simi-
larity compared to semantic similarity, andB can
be interpreted as the lowest similarity value for
which an alignment between two arguments is
possible. The syntactic similaritysyn(gi ,gσ(i)) is
defined as 1 if the dependency relations are iden-
tical, 0 < a < 1 if the relations are of the same
type but of a different subtype6 and 0 otherwise.
The semantic similaritysem(wi ,wσ(i)) is automat-
ically estimated as the cosine similarity between
the contexts ofwi and wσ(i) in a large text cor-
pus. For details we refer to (Fürstenau and Lapata,
2009).

For every verb in the annotated training set we
find thek occurrences of that verb in the unlabeled
texts where the contexts are most similar given the
best alignment. We then expand the training set
with these examples, automatically generating an
annotation using the discovered alignments. The
variable k controls the trade-off between anno-
tation confidence and expansion size. The final
model is then learned by running the supervised
training method on the expanded training set. We
call this methodAutomaticExpansionCOS7. The
values fork, a, A andB are optimized automati-
cally in every experiment on a held-out set (dis-
joint from both training and test set).
We adapt this approach by employing a different
method for measuring semantic similarity. Given
two words wi and wσ(i) we estimate the distri-
bution of latent words, respectivelyL(hi) and

5Note that this is a syntactic role, not a semantic role as
the ones discussed in this article.

6Subtypes are fine-grained distinctions made by the parser
such as the underlying grammatical roles in passive construc-
tions.

7The only major differences with (Fürstenau and Lap-
ata, 2009) are the dependency parser which was used (the
MALT parser (Nivre et al., 2006) instead of the RASP parser
(Briscoe et al., 2006)) and the corpus employed to learn se-
mantic similarities (the Reuters corpus instead of the British
National Corpus). We expect that these differences will only
influence the results minimally.
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5% 20% 50% 100%

Supervised 40.49% 67.23% 74.93% 78.65%
LWFeatures 60.29% 72.88% 76.42% 80.98%

ClusterFeatures 59.51% 66.70% 70.15% 72.62%
AutomaticExpansionCOS 47.05% 53.72% 64.51% 70.52%
AutomaticExpansionLW 45.40% 53.82% 65.39% 72.66%

Table 1: Results (in F1-measure) on the CoNLL 2008 test set for the different methods, comparing
the supervised method (Supervised) with the semi-supervised methodsLWFeatures, ClusterFeatures,
AutomaticExpansionCOSandAutomaticExpansionLW.See section 5 for details on the different methods.
Best results are in bold.

L(hσ(i)). We then compute the semantic similarity
measure as the Jensen-Shannon (Lin, 1997) diver-
gence

JS(L(hi)||L(hσ(i))) =
1
2

[
D(L(hi)||avg)+D

(
L(hσ(i))||avg

)]
whereavg= (L(hi) + L(hσ(i)))/2 is the average
between the two distributions andD(L(hi)||avg)
is the Kullback–Leiber divergence (Cover and
Thomas, 2006).
Although this change might appear only a slight
deviation from the original model discussed in
(Fürstenau and Lapata, 2009) it is potentially an
important one, since an accurate semantic similar-
ity measure will greatly influence the accuracy of
the alignments, and thus of the accuracy of the au-
tomatic expansion. We call this methodAutomat-
icExpansionLW.

6 Experiments

We perform a number of experiments where we
compare the fully supervised model with the semi-
supervised models proposed in the previous sec-
tion. We first train the LWLM model on an unla-
beled 5 million wordReuterscorpus8.

We perform different experiments for the super-
vised and the four different semi-supervised meth-
ods (see previous section). Table 1 shows the re-
sults of the different methods on the test set of the
CoNLL 2008 shared task. We experimented with
different sizes for the training set, ranging from
5% to 100%. When using a subset of the full train-
ing set, we run 10 different experiments with ran-
dom subsets and average the results.

We see that theLWFeaturesmethod performs
better than the other methods across all train-
ing sizes. Furthermore, these improvements are

8See http://www.daviddlewis.com/resources

larger for smaller training sets, showing that the
approach can be applied successfully in a setting
where only a small number of training examples
is available.

When comparing theLWFeaturesmethod with
theClusterFeaturesmethod we see that, although
the ClusterFeaturesmethod has a similar perfor-
mance for small training sizes, this performance
drops for larger training sizes. A possible expla-
nation for this result is the use of the clusters em-
ployed in theClusterFeaturesmethod. By defini-
tion the clusters merge many words into one clus-
ter, which might lead to good generalization (more
important for small training sizes) but can poten-
tially hurt precision (more important for larger
training sizes).

A third observation that can be made from table
1 is that, although both automatic expansion meth-
ods (AutomaticExpansionCOSand AutomaticEx-
pansionCOS) outperform the supervised method
for the smallest training size, for other sizes of the
training set they perform relatively poorly. An in-
formal inspection showed that for some examples
in the training set, little or no correct similar occur-
rences were found in the unlabeled text. The algo-
rithm described in section 5 adds the most similar
k occurrences to the training set for every anno-
tated example, also for these examples where lit-
tle or no similar occurrences were found. Often
the automatic alignment fails to generate correct
labels for these occurrences and introduces errors
in the training set. In the future we would like to
perform experiments that determine dynamically
(for instance based on the similarity measure be-
tween occurrences) for every annotated example
how many training examples to add.
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7 Conclusions and future work

We have presented the Latent Words Language
Model and showed how it learns, from unla-
beled texts, latent words that capture the mean-
ing of a certain word, depending on the con-
text. We then experimented with different meth-
ods to incorporate the latent words for Semantic
Role Labeling, and tested different methods on the
PropBank dataset. Our best performing method
showed a significant improvement over the su-
pervised model and over methods previously pro-
posed in the literature. On the full training set
the best method performed 2.33% better than the
fully supervised model, which is a 10.91% error
reduction. Using only 5% of the training data the
best semi-supervised model still achieved 60.29%,
compared to 40.49% by the supervised model,
which is an error reduction of 33.27%. These re-
sults demonstrate that the latent words learned by
the LWLM help for this complex information ex-
traction task. Furthermore we have shown that the
latent words are simple to incorporate in an ex-
isting classifier by adding additional features. We
would like to perform experiments on employing
this model in other information extraction tasks,
such as Word Sense Disambiguation or Named
Entity Recognition. The current model uses the
context in a very straightforward way, i.e. the two
words left and right of the current word, but in
the future we would like to explore more advanced
methods to improve the similarity estimates. Lin
(1998) for example discusses a method where a
syntactic parse of the text is performed and the
context of a word is modeled using dependency
triples.

The other semi-supervised methods proposed
here were less successful, although all improved
on the supervised model for small training sizes.
In the future we would like to improve the de-
scribed automatic expansion methods, since we
feel that their full potential has not yet been
reached. More specifically we plan to experiment
with more advanced methods to decide whether
some automatically generated examples should be
added to the training set.
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Abstract

We present an integrated dependency-
based semantic role labeling system for
English from both NomBank and Prop-
Bank. By introducing assistant argument
labels and considering much more fea-
ture templates, two optimal feature tem-
plate sets are obtained through an effec-
tive feature selection procedure and help
construct a high performance single SRL
system. From the evaluations on the date
set of CoNLL-2008 shared task, the per-
formance of our system is quite close to
the state of the art. As to our knowl-
edge, this is the first integrated SRL sys-
tem that achieves a competitive perfor-
mance against previous pipeline systems.

1 Introduction

We investigate the possibility to construct an effec-
tive integrated system for dependency-based se-
mantic role labeling (SRL) task. This means in
this work that a single system handles all these
sub-tasks, predicate identification/disambiguation
and argument identification/classification, regard-
less of whether the predicate is verbal or nominal.

Traditionally, a SRL task, either dependency
or constituent based, is implemented as two sub-
tasks, namely, argument identification and clas-
sification. If the predicate is unknown, then a
predicate identification or disambiguation subtask
should be additionally considered. A pipeline
framework is usually adopted to handle all these
sub-tasks. The reason to divide the whole task

∗This study is partially supported by CERG grant
9040861 (CityU 1318/03H), CityU Strategic Research Grant
7002037.

into multiple stages is two-fold, one is each sub-
task asks for its favorable features, the other is
at the consideration of computational efficiency.
Generally speaking, a joint system is slower than
a pipeline system in training. (Xue and Palmer,
2004) fount out that different features suited for
different sub-tasks of SRL, i.e. argument identifi-
cation and classification. The results from CoNLL
shared tasks in 2005 and 2008 (Carreras and Mar-
quez, 2005; Koomen et al., 2005; Surdeanu et al.,
2008; Johansson and Nugues, 2008), further show
that SRL pipeline may be one of the standard to
achieve a state-of-the-art performance in practice.

In the recent years, most works on SRL, includ-
ing two CoNLL shared task in 2004 and 2005,
focus on verbal predicates with the availability
of PropBank (Palmer et al., 2005). As a com-
plement to PropBank, NomBank (Meyers et al.,
2004) annotates nominal predicates and their cor-
responding semantic roles using similar semantic
framework as PropBank. Though SRL for nomi-
nal predicates offers more challenge, it draws rel-
atively little attention (Jiang and Ng, 2006).

(Pustejovsky et al., 2005) discussed the issue of
merging various treebanks, including PropBank,
NomBank, and others. The idea of merging these
two different treebanks was implemented in the
CoNLL-2008 shared task (Surdeanu et al., 2008).
However, few empirical studies support the ne-
cessity of an integrated learning strategy from
NomBank and PropBank. Though aiming at Chi-
nese SRL, (Xue, 2006) reported that their exper-
iments show that simply adding the verb data to
the training set of NomBank and extracting the
same features from the verb and noun instances
will hurt the overall performance. From the re-
sults of CoNLL-2008 shared task, the top system
by (Johansson and Nugues, 2008) also used two
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different subsystems to handle verbal and nominal
predicates, respectively.

Despite all the above facts, an integrated SRL
system still holds some sort of merits, being eas-
ier to implement, a single-stage feature selection
benefiting the whole system, an all-in-one model
outputting all required semantic role information
and so on.

The shared tasks at the CoNLL 2008 and 2009
are devoted to the joint learning of syntactic and
semantic dependencies, which show that SRL can
be well performed using only dependency syn-
tax input. Using data and evaluation settings
of the CoNLL-2008 shared task, this work will
only focus on semantic dependency parsing and
compares the best-performing SRL system in the
CoNLL-2009 shared Task (Zhao et al., 2009b)
with those in the CoNLL-2008 shared task (Sur-
deanu et al., 2008; Hajič et al., 2009)1.

Aiming at main drawbacks of an integrated ap-
proach, two key techniques will be applied. 1)
Assistant argument labels are introduced for the
further improvement of argument pruning. This
helps the development of a fast and lightweight
SRL system. 2) Using a greedy feature selec-
tion algorithm, a large-scale feature engineering is
performed on a much larger feature template set
than that in previous work. This helps us find fea-
tures that may be of benefit to all SRL sub-tasks as
long as possible. As two optimal feature template
sets have been proven available, for the first time
we report that an integrated SRL system may pro-
vide a result close to the state-of-the-art achieved
by those SRL pipelines or individual systems for
some specific predicates.

2 Adaptive Argument Pruning

A word-pair classification is used to formulate se-
mantic dependency parsing as in (Zhao and Kit,
2008). As for predicate identification or disam-
biguation, the first word is set as a virtual root
(which is virtually set before the beginning of the
sentence.) and the second as a predicate candi-
date. As for argument identification/classification,
the first word in a word pair is specified as a predi-

1CoNLL-2008 is an English-only task, while CoNLL-
2009 is a multilingual one. Though the English corpus in
CoNLL-2009 is almost identical to the corpus in the CoNLL-
2008 shared task evaluation, the latter holds more sophisti-
cated input structure as in (Surdeanu et al., 2008). The most
difference for these two tasks is that the identification of se-
mantic predicates is required in the task of CoNLL-2008 but
not in CoNLL-2009.

cate candidate and the second as an argument can-
didate. In either of case, the first word is called a
semantic head, and noted as p in our feature rep-
resentation, the second is called a semantic depen-
dent and noted as a.

Word pairs are collected for the classifier in
such order. The first word of the pair is set to the
virtual root at first, the second word is then spec-
ified as a predicate candidate. According to the
result that the predicate candidate is classified or
proven to be non-predicate, 1) the second word is
reset to next predicate candidate if the answer is
non-predicate, otherwise, 2) the first word of the
pair is reset to the predicate that is just determined,
and the second is set to every argument candidates
one by one. The classifier will scan the input sen-
tence from left to right to check if each word is a
true predicate.

Without any constraint, all word pairs in an in-
put sequence must be considered by the classifier,
leading to poor computational efficiency and un-
necessary performance loss. Thus, the training
sample for SRL task needs to be pruned properly.

We use a simple strategy to prune predicate can-
didates, namely, only verbs and nouns are chosen
in this case.

There are two paths to collect argument candi-
dates over the sequence. One is based on an input
syntactic dependency tree, the other is based on
a linear path of the sentence. As for the former
(hereafter it is referred to synPth), we continue to
use a dependency version of the pruning algorithm
of (Xue and Palmer, 2004). The pruning algorithm
is readdressed as the following.

Initialization: Set the given predicate as the
current node;

(1) The current node and all of its syntactic
children are selected as argument candidates
(children are traversed from left to right.).

(2) Reset the current node to its syntactic head
and repeat step (1) until the root is reached.

Note that this pruning algorithm is slightly dif-
ferent from that of (Xue and Palmer, 2004), the
predicate itself is also included in the argument
candidate list as the nominal predicate sometimes
takes itself as its argument.

The above pruning algorithm has been shown
effective. However, it is still inefficient for a SRL
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system that needs to tackle argument identifica-
tion/classification in a single stage. Assuming that
arguments trend to surround their predicate, an as-
sistant argument label ‘ NoMoreArgument’ is in-
troduced for further pruning. If an argument can-
didate in the above algorithm is assigned to such
a label, then the pruning algorithm will end im-
mediately. In training, this assistant label means
no more samples will be generated for the current
predicate, while in test, the decoder will not search
arguments any more. It will be seen that this adap-
tive technique more effectively prunes argument
candidates without missing more true arguments.

Along the linear path (hereafter referred to
linPth), the classifier will search all words before
and after the predicate. Similar to the pruning
algorithm for synPth, we also introduce two as-
sistant argument labels ‘ noLeft’ and ‘ noRight’
to adaptively prune words too far away from the
predicate.

To show how assistant argument labels actually
work, we give an example for linP th. Suppose an
input sequence with argument labels for a predi-
cate is

a b c d e f g h .

A1 A0

Note that c and g are two boundary words as no
more arguments appear before or after them. After
two assistant argument labels are added, it will be

a b c d e f g h .

noLeft A1 A0 noRight

Training samples will generated from c to g ac-
cording to the above sequence.

We use a Maximum Entropy classifier with a
tunable Gaussian prior as usual. Our implemen-
tation of the model adopts L-BFGS algorithm for
parameter optimization.

3 Feature Templates

3.1 Elements for Feature Generation
Motivated by previous works, we carefully con-
sider those factors from a wide range of features
that can help semantic role labeling for both predi-
cate disambiguation, argument’s identification and
classification as the predicate is either verbal or
nominal. These works include (Gildea and Juraf-
sky, 2002; Carreras and Marquez, 2005; Koomen

et al., 2005; Marquez et al., 2005; Dang and
Palmer, 2005; Pradhan et al., 2005; Toutanova et
al., 2005; Jiang and Ng, 2006; Liu and Ng, 2007;
Surdeanu et al., 2007; Johansson and Nugues,
2008; Che et al., 2008). Most feature templates
that we will adopt for this work will come from
various combinations or integrations of the follow-
ing basic elements.

Word Property. This type of elements include
word form (form and its split form, spForm)2,
lemma (lemma,spLemma), and part-of-speech tag
(pos, spPos), syntactic dependency label (dprel),
and semantic dependency label (semdprel)3.

Syntactic Connection. This includes syn-
tactic head (h), left(right) farthest(nearest) child
(lm, ln, rm, and rn), and high(low) support
verb or noun. We explain the last item, sup-
port verb(noun). From a given word to the
syntactic root along the syntactic tree, the first
verb/noun/preposition that is met is called as its
low support verb/noun/preposition, and the near-
est one to the root is called as its high support
verb/noun/preposition. The concept of support
verb was broadly used (Toutanova et al., 2005;
Xue, 2006; Jiang and Ng, 2006)4, we here extend
it to nouns and prepositions. In addition, we intro-
duce a slightly modified syntactic head, pphead,
it returns the left most sibling of a given word if
the word is headed by a preposition, otherwise it
returns the original head.

Path. There are two basic types of path between
the predicate and the argument candidates. One
is the linear path (linePath) in the sequence, the
other is the path in the syntactic parsing tree (dp-
Path). For the latter, we further divide it into four
sub-types with respect to the syntactic root, dp-
Path is the full path in the syntactic tree. Leading
two paths to the root from the predicate and the
argument, respectively, the common part of these
two paths will be dpPathShare. Assume that dp-
PathShare starts from a node r′, then dpPathPred
is from the predicate to r′, and dpPathArgu is from
the argument to r′.

Family. Two types of children sets for the pred-
icate or argument candidate are considered, the

2In CoNLL-2008, Treebank tokens are split at the position
that a hyphen (-) or a forward slash (/) occurs. This leads to
two types of feature columns, non-split and split.

3Lemma and pos for either training or test are from auto-
matically pre-analyzed columns in the input files.

4Note that the meaning of support verb is slightly different
between (Toutanova et al., 2005) and (Xue, 2006; Jiang and
Ng, 2006)
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first includes all syntactic children (children), the
second also includes all but excludes the left most
and the right most children (noFarChildren).

Concatenation of Elements. For all collected
elements according to linePath, children and so
on, we use three strategies to concatenate all those
strings to produce the feature value. The first is
seq, which concatenates all collected strings with-
out doing anything. The second is bag, which
removes all duplicated strings and sort the rest.
The third is noDup, which removes all duplicated
neighbored strings.

We address some other elements that are not in-
cluded by the above description as the following.

dpTreeRelation. It returns the relationship of a
and p in the input syntactic tree. The possible val-
ues for this feature include parent, sibling
etc.

isCurPred. It judges if a given word is the cur-
rent predicate. If the word is the predicate, then it
returns the predicate itself, otherwise it returns a
default value.

existCross. It judges if a forthcoming depen-
dency relation that is between a given word pair
may cause any cross with all existing dependency
relations.

distance. It counts the number of words along a
given path, either dpPath or linePath.

existSemdprel. It checks if the given argument
label for other predicates has been assigned to a
given word.

voice. This feature returns Active or Passive for
verbs, and a default value for nouns.

baseline. Two types of semantic role baseline
outputs are used for features from (Carreras and
Marquez, 2005)5. baseline Ax tags the head of
the first NP before the predicate as A0 and the
head of the first NP after the predicate as A1.
baseline Mod tags the dependant of the predicate
as AM-MOD as it is a modal verb.

We show some feature template examples de-
rived from the above mentioned items.

a.lm.lemma The lemma of the left most child of
the argument candidate.

p.h.dprel The dependant label of the syntactic
head of the predicate candidate.

p−1.pos+p.pos pos of the previous word of the
predicate and PoS of the predicate itself.

a:p|dpPath.lemma.bag Collect all lemmas

5These baseline rules were developed by Erik Tjong Kim
Sang, from the University of Antwerp, Belgium.

along the syntactic tree path from the argument
to the predicate, then removed all duplicated
ones and sort the rest, finally concatenate all as a
feature string.

a:p.highSupportNoun|linePath.dprel.seq Col-
lect all dependant labels along with the line path
from the argument to the high support noun of the
predicate, then concatenate all as a feature string.

3.2 Feature Template Selection

Based on the above mentioned elements, 781 fea-
ture templates (hereafter the set of these templates
is referred to FT )6 are initially considered. Fea-
ture templates in this initial set are constructed in
a generalized way. For example, if we find that
a feature template a.lm.lemma was once used in
some existing work, then such three templates,
a.rm.lemma, a.rn.lemma, a.ln.lemma will be also
added into the set.

As an optimal feature template subset cannot be
expected to be extracted from so large a set by
hand, a greedy feature selection similar to that in
(Jiang and Ng, 2006; Ding and Chang, 2008) is ap-
plied. The detailed algorithm is described in Algo-
rithm 1. Assuming that the number of feature tem-
plates in a given set is n, the algorithm of (Ding
and Chang, 2008) requires O(n2) times of train-
ing/test routines, it cannot handle a set that con-
sists of hundreds of templates. As the time com-
plexity of Algorithm 1 is only O(n), it permits a
large scale feature selection accomplished by pay-
ing a reasonable time cost. Though the time com-
plexity of the algorithm given by (Jiang and Ng,
2006) is also linear, it should assume all feature
templates in the initial selected set ‘good’ enough
and handles other feature template candidates in a
strict incremental way. However, these two con-
straints are not easily satisfied in our case, while
Algorithm 1 may release these two constraints.

Choosing the first 1/10 templates in FT as
the initial selected set S, the feature selection is
performed for two argument candidate traverse
schemes, synPth and linP th, respectively. 4686
machine learning routines run for the former,
while 6248 routines for the latter. Two feature
template sets, FTsyn and FTlin, are obtained at
last. These two sets are given in Table 1-3. We see
that two sets share 30 identical feature templates
as in Table 1. FTsyn holds 51 different templates

6This set with detailed explanation will be available at our
website.
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p.lm.dprel
p.rm.dprel
p.spForm
p−1.spLemma
p.spLemma
p−1.spLemma+p.spLemma
p.spLemma + p1.spLemma
p.spLemma + p.h.spForm
p.spLemma + p.currentSense
p.lemma
p.lemma + p1.lemma
p−1.pos+p.pos
a.isCurPred.lemma
a−2.isCurPred.lemma + a−1.isCurPred.lemma
a.isCurPred.spLemma
a−1.isCurPred.spLemma + a.isCurPred.spLemma
a.isCurPred.spLemma + a1.isCurPred.spLemma
a.children.dprel.bag
a−1.spLemma + a.spLemma
a−1.spLemma + a.dprel
a−1.spLemma + a.dprel + a.h.spLemma
a.lm−1.spLemma
a.rm−1.dprel + a.spPos
a−1.lemma + a.dprel + a.h.lemma
a.lemma + p.lemma
a.pos + p.pos
a.spLemma + p.spLemma
a:p|dpPath.dprel
a:p|dpPathArgu.dprel
a:p|dpPathPred.spPos

Table 1: Feature templates for both synPth and
linP th

as in Table 2 and FTlin holds 57 different tem-
plates as in Table 3. In these tables, the subscripts -
2(or -1) and 1(or 2) stand for the previous and next
words, respectively. For example, a.lm−1.lemma
returns the lemma of the previous word of the ar-
gument’s left most child.

4 Decoding

After the predicate sense is disambiguated, an op-
timal argument structure for each predicate is de-
termined by the following maximal probability.

Sp = argmax
∏

i

P (ai|ai−1, ai−2, ...), (1)

where Sp is the argument structure, P (ai|ai−1...)
is the conditional probability to determine the la-
bel of the i-th argument candidate label. A beam
search algorithm is used to find the optimal argu-
ment structure.

5 Evaluation Results

Our evaluation is performed on the standard
training/development/test corpus of CoNLL-2008
shared task. The data is derived by merging a de-
pendency version of the Penn Treebank with Prop-
Bank and NomBank. More details on the data are

Algorithm 1 Greedy Feature Selection
Input:
The set of all feature templates: FT
The set of selected feature templates: S0

Output:
The set of selected feature templates: S

Procedure:
Let the counter i = 1
Let Si = S0 and C = FT − Si

while do
Train a model with features according to Si,
test on development set and the result is pi.
Let Cr = null.
for each feature template fj in set Si do

Let S′ = Si − fj .
Train a model with features according to
S′, test on development set and the result
is p′.
if p′ > pi then
Cr = Cr + fj .

end if
end for
C = C + Cr

Si = Si − Cr

Let S′i = Si

Train a model with features according to S′i,
test on development set and the result is qi.
Let Cr = null
for each feature template fj in set C do

Let C ′ = S′i + fj .
Train a model with features according to
C ′, test on development set and the result
is p′.
if p′ > qi then
Cr = Cr + fj .

end if
end for
C = C − Cr

S′i = S′i + Cr

if Si = Si−1(No feature templates are added
or removed) or, neither pi nor qi is larger than
pi−1 and qi−1 then

Output S = argmaxpi,qi{Si, S
′
i} and the

algorithm ends.
else

Let i = i+ 1, Si=Si−1 and C = FT − Si

end if
end while
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p−1.lemma + p.lemma
p−2.pos
p.pos
p−2.spForm + p−1.spForm
p1.spForm
p.spForm + p.children.dprel.noDup
p.lm.spPos
p.spForm + p.lm.spPos
+ p.noFarChildren.spPos.bag + p.rm.spPos
p.dprel
p.children.dprel.bag
p.children.pos.seq
p.dprel = OBJ ? a

a.dprel
a−1.lemma + a1.lemma
a1.lemma
a−1.pos
a1.spPos
a.h.lemma
a.h.spLemma
a.pphead.lemma
a.pphead.spLemma
a.lm.dprel + a.spPos
a.rm−1.pos
a.spLemma + a.h.spPos
a.existSemdprel A1
a.dprel = OBJ ?
a.form + a.children.pos.seq
a.children.adv.bagb

a:p|linePath.distance
a:p|dpPath.distance
a:p|existCross
a:p|dpPath.dprel.bag
a:p|dpPathPred.dprel.bag
a:p|dpPath.spForm.seq
a:p|dpPathArgu.spForm.seq
a:p|dpPathPred.spForm.bag
a:p|dpPath.spLemma.seq
a:p|dpPathArgu.spLemma.seq
a:p|dpPathArgu.spLemma.bag
a:p|dpPathPred.spLemma.bag
a:p|dpPath.spPos.bag
a:p|dpPathPred.spPos.bag
(a:p|dpPath.dprel.seq) + p.spPos
(a:p|dpTreeRelation) + a.spPos
(a:p|dpTreeRelation) + p.spPos
(a.highSupportVerb:p|dpTreeRelation) + a.spPos
a.highSupportNoun:p|dpPath.dprel.seq
a.lowSupportVerb:p|dpPath.dprel.seq
a:p|linePath.spForm.bag
a:p|linePath.spLemma.bag
a:p|linePath.spLemma.seq

aThis feature checks if the dependant type is OBJ.
badv means all adverbs.

Table 2: Feature templates only for synPth

p.currentSense + a.spLemma
p.currentSense + a.spPos
p.voice + (a:p|direction)
p.rm.dprel
p.children.dprel.noDup
p.rm.form
p.lowSupportNoun.spForm
p.lowSupportProp:p|dpTreeRelation
p−2.form + p−1.form
p.voice
p.form + p.children.dprel.noDup
p.pos + p.dprel
p.spForm + p.children.dprel.bag
a.voice + (a:p|direction)
a−1.isCurPred.lemma
a1.isCurPred.lemma
a−1.isCurPred.lemma + a.isCurPred.lemma
a.isCurPred.lemma + a1.isCurPred.lemma
a1.isCurPred.spLemma
a−2.isCurPred.spLemma + a−1.isCurPred.spLemma
a.baseline Ax + a.voice + (a:p|direction)
a.baseline Mod
a.h.children.dprel.bag
a.lm.dprel + a.dprel
a.lm.dprel + a.pos
a.lm−1.lemma
a.lm.lemma
a.lm1.lemma
a.lm.pos + a.pos
a.lm.spForm
a.lm−1.spPos
a.lm.spPos
a.ln.dprel + a.pos
a.noFarChildren.spPos.bag + a.rm.spPos
a.children.spPos.seq + p.children.spPos.seq
a.rm.dprel + a.pos
a.rm−1.spPos
a.rm.spPos
a.rm1.spPos
a.rn.dprel + a.spPos
a.form
a.form + a1.form
a.form + a.pos
a−1.lemma
a−1.lemma + a.lemma
a−2.pos
a.spForm + a1.spForm
a.spForm + a.spPos
a.spLemma + a1.spLemma
a.spForm + a.children.spPos.seq
a.spForm + a.children.spPos.bag
a.spLemma + a.h.spForm
a.spLemma + a.pphead.spForm
a.existSemdprel A2
a:p|dpPathArgu.pos.seq
a:p|dpPathPred.dprel.seq
a:p|dpTreeRelation

Table 3: Feature templates only for linPth
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in (Surdeanu et al., 2008). Note that CoNLL-2008
shared task is essentially a joint learning task for
both syntactic and semantic dependencies, how-
ever, we will focus on semantic part of this task.
The main semantic measure that we adopt is se-
mantic labeled F1 score (Sem-F1). In addition, the
macro labeled F1 scores (Macro-F1), which was
used for the ranking of the participating systems of
CoNLL-2008, the ratio between labeled F1 score
for semantic dependencies and the LAS for syn-
tactic dependencies (Sem-F1/LAS), are also given
for reference.

5.1 Syntactic Dependency Parsers

We consider three types of syntactic information
to feed the SRL task. One is gold-standard syn-
tactic input, and other two are based on automati-
cally parsing results of two parsers, the state-of-
the-art syntactic parser described in (Johansson
and Nugues, 2008)7(it is referred to Johansson)
and an integrated parser described as the follow-
ing (referred to MSTME).

The parser is basically based on the MSTParser8

using all the features presented by (McDonald et
al., 2006) with projective parsing. Moreover, we
exploit three types of additional features to im-
prove the parser. 1) Chen et al. (2008) used fea-
tures derived from short dependency pairs based
on large-scale auto-parsed data to enhance depen-
dency parsing. Here, the same features are used,
though all dependency pairs rather than short de-
pendency pairs are extracted along with the de-
pendency direction from training data rather than
auto-parsed data. 2) Koo et al. (2008) presented
new features based on word clusters obtained from
large-scale unlabeled data and achieved large im-
provement for English and Czech. Here, the same
features are also used as word clusters are gen-
erated only from the training data. 3) Nivre and
McDonald (2008) presented an integrating method
to provide additional information for graph-based
and transition-based parsers. Here, we represent
features based on dependency relations predicted
by transition-based parsers for the MSTParer. For
the sake of efficiency, we use a fast transition-

7It is a 2-order maximum spanning tree parser with
pseudo-projective techniques. A syntactic-semantic rerank-
ing was performed to output the final results according to (Jo-
hansson and Nugues, 2008). However, only 1-best outputs of
the parser before reranking are used for our evaluation. Note
that the reranking may slightly improve the syntactic perfor-
mance according to (Johansson and Nugues, 2008).

8It’s freely available at http://mstparser.sourceforge.net.

Parser Path Adaptive Pruning Coverage
/wo /w Rate

Gold synPth 2.13M 1.05M 98.4%
(49.30%)

linP th 5.29M 1.57M 100.0%
(29.68%)

Johansson synPth 2.15M 1.06M 95.4%
(49.30%)

linP th 5.28M 1.57M 100.0%
(29.73%)

MSTME synPth 2.15M 1.06M 95.0%
(49.30%)

linP th 5.29M 1.57M 100.0%
(29.68%)

Table 4: The number of training samples on argu-
ment candidates

synPth+FTsyn linPth+FTlin
Syn-Parser LAS Sem Sem-F1 Sem Sem-F1

F1 /LAS F1 /LAS
MSTME 88.39 80.53 91.10 79.83 90.31

Johansson 89.28 80.94 90.66 79.84 89.43
Gold 100.00 84.57 84.57 83.34 83.34

Table 5: Semantic Labeled F1

based parser based on maximum entropy as in
Zhao and Kit (2008). We still use the similar fea-
ture notations of that work.

5.2 The Results

At first, we report the effectiveness of the proposed
adaptive argument pruning. The numbers of argu-
ment candidates are in Table 4. The statistics is
conducted on three different syntactic inputs. The
coverage rate in the table means the ratio of how
many true arguments are covered by the selected
pruning scheme. Note that the adaptive pruning
of argument candidates using assistant labels does
not change this rate. This ratio only depends on
which path, either synPth or linP th, is chosen,
and how good the syntactic input is (if synPth
is the case). From the results, we see that more
than a half of argument candidates can be effec-
tively pruned for synPth and even 2/3 for linP th.
As mentioned by (Pradhan et al., 2004), argument
identification plays a bottleneck role in improving
the performance of a SRL system. The effective-
ness of the proposed additional pruning techniques
may be seen as a significant improvement over the
original algorithm of (Xue and Palmer, 2004). The
results also indicate that such an assumption holds
that arguments trend to close with their predicate,
at either type of distance, syntactic or linear.

Based on different syntactic inputs, we obtain
different results on semantic dependency parsing
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as shown in Table 5. These results on differ-
ent syntactic inputs also give us a chance to ob-
serve how semantic performance varies according
to syntactic performance. The fact from the re-
sults is that the ratio Sem-F1/LAS becomes rela-
tively smaller as the syntactic input becomes bet-
ter. Though not so surprised, the results do show
that the argument traverse scheme synPth always
outperforms the other linP th. The result of this
comparison partially shows that an integrated se-
mantic role labeler is sensitive to the order of how
argument candidates are traversed to some extent.

The performance given by synPth is com-
pared to some other systems that participated in
the CoNLL-2008 shared task. They were cho-
sen among the 20 participating systems either be-
cause they held better results (the first four partic-
ipants) or because they used some joint learning
techniques (Henderson et al., 2008). The results of
(Titov et al., 2009) that use the similar joint learn-
ing technique as (Henderson et al., 2008) are also
included9. Results of these evaluations on the test
set are in Table 6. Top three systems of CoNLL-
2008, (Johansson and Nugues, 2008; Ciaramita et
al., 2008; Che et al., 2008), used SRL pipelines.

In this work, we partially use the similar
techniques (synPth) for our participation in the
shared tasks of CoNLL-2008 and 2009 (Zhao and
Kit, 2008; Zhao et al., 2009b; Zhao et al., 2009a).
Here we report that all SRL sub-tasks are tackled
in one integrated model, while the predicate dis-
ambiguation sub-task was performed individually
in both of our previous systems. Therefore, this is
our first attempt at a full integrated SRL system.

(Titov et al., 2009) reported the best result by
using joint learning technique up to now. The
comparison indicates that our integrated system
outputs a result quite close to the state-of-the-art
by the pipeline system of (Johansson and Nugues,
2008) as the same syntactic structure input is
adopted. It is worth noting that our system actu-
ally competes with two independent sub-systems
of (Johansson and Nugues, 2008), one for verbal
predicates, the other for nominal predicates. In ad-
dition, the results of our system is obtained with-
out using additional joint learning technique like
syntactic-semantic reranking. It indicates that our
system is expected to obtain some further perfor-
mance improvement by using such techniques.

9In addition, the work of (Henderson et al., 2008) and
(Titov et al., 2009) jointly considered syntactic and semantic
dependencies, that is significantly different from the others.

6 Conclusion

We have described a dependency-based semantic
role labeling system for English from NomBank
and PropBank. From the evaluations, the result of
our system is quite close to the state of the art. As
to our knowledge, it is the first integrated SRL sys-
tem that achieves such a competitive performance
against previous pipeline systems.

According to the path that the word-pair classi-
fier traverses argument candidates, two integration
schemes are presented. Argument candidate prun-
ing and feature selection are performed on them,
respectively. These two schemes are more than
providing a trivial comparison. As assistant la-
beled are introduced to help further argument can-
didate pruning, and this techniques work well for
both schemes, it support the assumption that argu-
ments trend to surround their predicate. The pro-
posed feature selection procedure also work for
both schemes and output quite different two fea-
ture template sets, and either of the sets helps the
system obtain a competitive performance, this fact
suggests that the feature selection procedure is ro-
bust and effective, too.

Either of the presented integrated systems can
provide a competitive performance. This conclu-
sion about basic learning scheme for SRL is some
different from previous literatures. However, ac-
cording to our results, there does exist a ‘harmony’
feature template set that is helpful to both predi-
cate and argument identification/classification, or
SRL for both verbal and nominal predicates. We
attribute this different conclusion to two main fac-
tors, 1) much more feature templates (for example,
ten times more than those used by Xue et al.) than
previous that are considered for a successful fea-
ture engineering, 2) a maximum entropy classifier
makes it possible to accept so many various fea-
tures in one model. Note that maximum entropy is
not so sensitive to those (partially) overlapped fea-
tures, while SVM and other margin-based learners
are not so.
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Systemsa LAS Sem-F1 Macro Sem-F1 pred-F1
b argu-F1

c Verb-F1
d Nomi-F1

e

F1 /LAS
Johansson:2008*f 89.32 81.65 85.49 91.41 87.22 79.04 84.78 77.12
Ours:Johansson 89.28 80.94 85.12 90.66 86.57 78.30 83.66 76.93
Ours:MSTME 88.39 80.53 84.93 91.10 86.80 77.60 82.77 77.23
Johansson:2008 89.32 80.37 84.86 89.98 85.40 78.02 84.45 74.32
Ciaramita:2008* 87.37 78.00 82.69 89.28 83.46 75.35 80.93 73.80
Che:2008 86.75 78.52 82.66 90.51 85.31 75.27 80.46 75.18
Zhao:2008* 87.68 76.75 82.24 87.53 78.52 75.93 78.81 73.59
Ciaramita:2008 86.60 77.50 82.06 89.49 83.46 74.56 80.15 73.17
Titov:2009 87.50 76.10 81.80 86.97 – – – –
Zhao:2008 86.66 76.16 81.44 87.88 78.26 75.18 77.67 73.28
Henderson:2008* 87.64 73.09 80.48 83.40 81.42 69.10 75.84 68.90
Henderson:2008 86.91 70.97 79.11 81.66 79.60 66.83 73.80 66.26
Ours:Gold 100.0 84.57 92.20 84.57 87.67 83.15 88.71 78.39

aRanking according to Sem-F1
bLabeled F1 for predicate identification and classification
cLabeled F1 for argument identification and classification
dLabeled F1 for verbal predicates
eLabeled F1 for nominal predicates
f* means post-evaluation results, which are available at the official website of CoNLL-2008 shared task,

http://www.yr-bcn.es/dokuwiki/doku.php?id=conll2008:start.

Table 6: Comparison of the best existing systems
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Abstract

Many statistical translation models can be
regarded as weighted logical deduction.
Under this paradigm, we use weights from
the expectation semiring (Eisner, 2002), to
compute first-order statistics (e.g., the ex-
pected hypothesis length or feature counts)
over packed forests of translations (lat-
tices or hypergraphs). We then introduce
a novel second-order expectation semir-
ing, which computes second-order statis-
tics (e.g., the variance of the hypothe-
sis length or the gradient of entropy).
This second-order semiring is essential for
many interesting training paradigms such
as minimum risk, deterministic anneal-
ing, active learning, and semi-supervised
learning, where gradient descent optimiza-
tion requires computing the gradient of en-
tropy or risk. We use these semirings in an
open-source machine translation toolkit,
Joshua, enabling minimum-risk training
for a benefit of up to 1.0 BLEU point.

1 Introduction

A hypergraph or “packed forest” (Gallo et al.,
1993; Klein and Manning, 2004; Huang and Chi-
ang, 2005) is a compact data structure that uses
structure-sharing to represent exponentially many
trees in polynomial space. A weighted hypergraph
also defines a probability or other weight for each
tree, and can be used to represent the hypothesis
space considered (for a given input) by a mono-
lingual parser or a tree-based translation system,
e.g., tree to string (Quirk et al., 2005; Liu et al.,
2006), string to tree (Galley et al., 2006), tree to
tree (Eisner, 2003), or string to string with latent
tree structures (Chiang, 2007).

∗This research was partially supported by the Defense
Advanced Research Projects Agency’s GALE program via
Contract No HR0011-06-2-0001. We are grateful to Sanjeev
Khudanpur for early guidance and regular discussions.

Given a hypergraph, we are often interested in
computing some quantities over it using dynamic
programming algorithms. For example, we may
want to run the Viterbi algorithm to find the most
probable derivation tree in the hypergraph, or the k
most probable trees. Semiring-weighted logic pro-
gramming is a general framework to specify these
algorithms (Pereira and Warren, 1983; Shieber et
al., 1994; Goodman, 1999; Eisner et al., 2005;
Lopez, 2009). Goodman (1999) describes many
useful semirings (e.g., Viterbi, inside, and Viterbi-
n-best). While most of these semirings are used in
“testing” (i.e., decoding), we are mainly interested
in the semirings that are useful for “training” (i.e.,
parameter estimation). The expectation semiring
(Eisner, 2002), originally proposed for finite-state
machines, is one such “training” semiring, and can
be used to compute feature expectations for the E-
step of the EM algorithm, or gradients of the like-
lihood function for gradient descent.

In this paper, we apply the expectation semir-
ing (Eisner, 2002) to a hypergraph (or packed for-
est) rather than just a lattice. We then propose
a novel second-order expectation semiring, nick-
named the “variance semiring.”

The original first-order expectation semiring al-
lows us to efficiently compute a vector of first-
order statistics (expectations; first derivatives) on
the set of paths in a lattice or the set of trees in a
hypergraph. The second-order expectation semir-
ing additionally computes a matrix of second-
order statistics (expectations of products; second
derivatives (Hessian); derivatives of expectations).

We present details on how to compute many in-
teresting quantities over the hypergraph using the
expectation and variance semirings. These quan-
tities include expected hypothesis length, feature
expectation, entropy, cross-entropy, Kullback-
Leibler divergence, Bayes risk, variance of hy-
pothesis length, gradient of entropy and Bayes
risk, covariance and Hessian matrix, and so on.
The variance semiring is essential for many in-
teresting training paradigms such as deterministic
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annealing (Rose, 1998), minimum risk (Smith and
Eisner, 2006), active and semi-supervised learning
(Grandvalet and Bengio, 2004; Jiao et al., 2006).
In these settings, we must compute the gradient of
entropy or risk. The semirings can also be used for
second-order gradient optimization algorithms.

We implement the expectation and variance
semirings in Joshua (Li et al., 2009a), and demon-
strate their practical benefit by using minimum-
risk training to improve Hiero (Chiang, 2007).

2 Semiring Parsing on Hypergraphs

We use a specific tree-based system called Hiero
(Chiang, 2007) as an example, although the dis-
cussion is general for any systems that use a hy-
pergraph to represent the hypothesis space.

2.1 Hierarchical Machine Translation
In Hiero, a synchronous context-free grammar
(SCFG) is extracted from automatically word-
aligned corpora. An illustrative grammar rule for
Chinese-to-English translation is

X → 〈X0{ X1 , X1 of X0 〉 ,

where the Chinese word { means of, and the
alignment, encoded via subscripts on the nonter-
minals, causes the two phrases around { to be
reordered around of in the translation. Given
a source sentence, Hiero uses a CKY parser to
generate a hypergraph, encoding many derivation
trees along with the translation strings.

2.2 Hypergraphs
Formally, a hypergraph is a pair 〈V,E〉, where V
is a set of nodes (vertices) and E is a set of hy-
peredges, with each hyperedge connecting a set of
antecedent nodes to a single consequent node.1 In
parsing parlance, a node corresponds to an item
in the chart (which specifies aligned spans of in-
put and output together with a nonterminal label).
The root node corresponds to the goal item. A
hyperedge represents an SCFG rule that has been
“instantiated” at a particular position, so that the
nonterminals on the right and left sides have been
replaced by particular antecedent and consequent
items; this corresponds to storage of backpointers
in the chart.

We write T (e) to denote the set of antecedent
nodes of a hyperedge e. We write I(v) for the

1Strictly speaking, making each hyperedge designate a
single consequent defines a B-hypergraph (Gallo et al., 1993).

X 0,2 the mat NA X 3,4 a cat NA

X 0,4 a cat the matX 0,4 the mat a cat

goal item

!"0 #1                   $2               %3

on the mat                of              a cat

X→〈X0的X1,X1 on X0〉
X→〈X0的X1,X1 of X0〉X→〈X0的X1,X0 ’s X1〉

X→〈X0的X1,X0 X1〉

X→〈垫子上, the mat〉

S→〈X0,X0〉 S→〈X0,X0〉

X→〈猫, a cat〉

Figure 1: A toy hypergraph in Hiero. When generating the
hypergraph, a trigram language model is integrated. Rect-
angles represent items, where each item is identified by the
non-terminal symbol, source span, and left- and right-side
language model states. An item has one or more incoming
hyperedges. A hyperedge consists of a rule, and a pointer to
an antecedent item for each non-terminal symbol in the rule.

set of incoming hyperedges of node v (i.e., hyper-
edges of which v is the consequent), which repre-
sent different ways of deriving v. Figure 1 shows
a simple Hiero-style hypergraph. The hypergraph
encodes four different derivation trees that share
some of the same items. By exploiting this shar-
ing, a hypergraph can compactly represent expo-
nentially many trees.

We observe that any finite-state automaton can
also be encoded as a hypergraph (in which every
hyperedge is an ordinary edge that connects a sin-
gle antecedent to a consequent). Thus, the meth-
ods of this paper apply directly to the simpler case
of hypothesis lattices as well.

2.3 Semiring Parsing

We assume a hypergraph HG, which compactly
encodes many derivation trees d ∈ D. Given HG,
we wish to extract the best derivations—or other
aggregate properties of the forest of derivations.
Semiring parsing (Goodman, 1999) is a general
framework to describe such algorithms. To define
a particular algorithm, we choose a semiring K
and specify a “weight” ke ∈ K for each hyper-
edge e. The desired aggregate result then emerges
as the total weight of all derivations in the hyper-
graph. For example, to simply count derivations,
one can assign every hyperedge weight 1 in the
semiring of ordinary integers; then each deriva-
tion also has weight 1, and their total weight is the
number of derivations.

We write K = 〈K,⊕,⊗, 0, 1〉 for a semiring
with elements K, additive operation ⊕, multi-
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plicative operation⊗, additive identity 0, and mul-
tiplicative identity 1. The ⊗ operation is used to
obtain the weight of each derivation d by multi-
plying the weights of its component hyperedges e,
that is, kd =

⊗
e∈d ke. The ⊕ operation is used

to sum over all derivations d in the hypergraph
to obtain the total weight of the hypergraph HG,
which is

⊕
d∈D

⊗
e∈d ke.2 Figure 2 shows how to

compute the total weight of an acyclic hypergraph
HG.3 In general, the total weight is a sum over
exponentially many derivations d. But Figure 2
sums over these derivations in time only linear on
the size of the hypergraph. Its correctness relies
on axiomatic properties of the semiring: namely,
⊕ is associative and commutative with identity 0,
⊗ is associative with two-sided identity 1, and
⊗ distributes over ⊕ from both sides. The dis-
tributive property is what makes Figure 2 work.
The other properties are necessary to ensure that⊕

d∈D
⊗

e∈d ke is well-defined.4

The algorithm in Figure 2 is general and can be
applied with any semiring (e.g., Viterbi). Below,
we present our novel semirings.

3 Finding Expectations on Hypergraphs

We now introduce the computational problems of
this paper and the semirings we use to solve them.

3.1 Problem Definitions

We are given a function p : D → R≥0, which
decomposes multiplicatively over component hy-
peredges e of a derivation d ∈ D: that is, p(d) def=∏

e∈d pe. In practice, p(d) will specify a probabil-
ity distribution over the derivations in the hyper-

2Eisner (2002) uses closed semirings that are also
equipped with a Kleene closure operator ∗. For example, in
the real semiring 〈R,+,×, 0, 1〉, we define p∗ = (1 − p)−1

(= 1 + p + p2 + . . .) for |p| < 1 and is undefined other-
wise. The closure operator enables exact summation over the
infinitely many paths in a cyclic FSM, or trees in a hyper-
graph with non-branching cycles, without the need to iterate
around cycles to numerical convergence. For completeness,
we specify the closure operator for our semirings, satisfying
the axioms k∗ = 1 ⊕ k ⊗ k∗ = 1 ⊕ k∗ ⊗ k, but we do not
use it in our experiments since our hypergraphs are acyclic.

3We assume that HG has already been built by deductive
inference (Shieber et al., 1994). But in practice, the nodes’ in-
side weights β(v) are usually accumulated as the hypergraph
is being built, so that pruning heuristics can consult them.

4Actually, the notation
⊗

e∈d ke assumes that ⊗ is com-
mutative as well, as does the notation “for u ∈ T (e)” in our
algorithms; neither specifies a loop order. One could how-
ever use a non-commutative semiring by ordering each hyper-
edge’s antecedents and specifying that a derivation’s weight
is the product of the weights of its hyperedges when visited in
prefix order. Tables 1–2 will not assume any commutativity.

INSIDE(HG,K)
1 for v in topological order on HG � each node

2 � find β(v)←⊕
e∈I(v)(ke ⊗ (

⊗
u∈T (e) β(u)))

3 β(v)← 0
4 for e ∈ I(v) � each incoming hyperedge

5 k ← ke � hyperedge weight

6 for u ∈ T (e) � each antecedent node

7 k ← k ⊗ β(u)
8 β(v)← β(v)⊕ k
9 return β(root)

Figure 2: Inside algorithm for an acyclic hypergraph HG,
which provides hyperedge weights ke ∈ K. This computes
all “inside weights” β(v) ∈ K, and returns β(root), which is
total weight of the hypergraph, i.e.,

⊕
d∈D

⊗
e∈d ke.

OUTSIDE(HG,K)
1 for v in HG
2 α(v)← 0
3 α(root)← 1
4 for v in reverse topological order on HG
5 for e ∈ I(v) � each incoming hyperedge

6 for u ∈ T (e) � each antecedent node

7 α(u)← α(u)⊕ (α(v)⊗ ke⊗
8

⊗
w∈T (e),w 6=u β(w))

Figure 3: Computes the “outside weights” α(v). Can only be
run after INSIDE(HG) of Figure 2 has already computed the
inside weights β(v).

graph. It is often convenient to permit this prob-
ability distribution to be unnormalized, i.e., one
may have to divide it through by some Z to get a
proper distribution that sums to 1.

We are also given two functions of interest r, s :
D → R, each of which decomposes additively
over its component hyperedges e: that is, r(d) def=∑

e∈d re, and s(d) def=
∑

e∈d se.
We are now interested in computing the follow-

ing quantities on the hypergraph HG:

Z
def=

∑
d∈D

p(d) (1)

r
def=

∑
d∈D

p(d)r(d) (2)

s
def=

∑
d∈D

p(d)s(d) (3)

t
def=

∑
d∈D

p(d)r(d)s(d) (4)

Note that r/Z, s/Z, and t/Z are expectations un-
der p of r(d), s(d), and r(d)s(d), respectively.

More formally, the probabilistic interpretation
is that D is a discrete sample space (consisting
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INSIDE-OUTSIDE(HG,K,X )
1 � Run inside and outside on HG with only ke weights

2 k̂ ← INSIDE(HG,K) � see Figure 2

3 OUTSIDE(HG,K) � see Figure 3

4 � Do a single linear combination to get x̂

5 x̂← 0
6 for v in HG � each node

7 for e ∈ I(v) � each incoming hyperedge

8 ke ← α(v)
9 for u ∈ T (e) � each antecedent node

10 ke ← ke β(u)
11 x̂← x̂+ (ke xe)
12 return 〈k̂, x̂〉
Figure 4: If every hyperedge specifies a weight 〈ke, xe〉 in
some expectation semiring EK,X , then this inside-outside al-
gorithm is a more efficient alternative to Figure 2 for comput-
ing the total weight 〈k̂, x̂〉 of the hypergraph, especially if the
xe are vectors. First, at lines 2–3, the inside and outside al-
gorithms are run using only the ke weights, obtaining only k̂
(without x̂) but also obtaining all inside and outside weights
β, α ∈ K as a side effect. Then the second component x̂ of
the total weight is accumulated in lines 5–11 as a linear com-
bination of all the xe values, namely x̂ =

∑
e kexe, where

ke is computed at lines 8–10 using α and β weights. The lin-
ear coefficient ke is the “exclusive weight” for hyperedge e,
meaning that the product keke is the total weight in K of all
derivations d ∈ D that include e.

of all derivations in the hypergraph), p is a mea-
sure over this space, and r, s : D → R are ran-
dom variables. Then r/Z and s/Z give the expec-
tations of these random variables, and t/Z gives
the expectation of their product t = rs, so that
t/Z − (r/Z)(s/Z) gives their covariance.

Example 1: r(d) is the length of the translation
corresponding to derivation d (arranged by setting
re to the number of target-side terminal words in
the SCFG rule associated with e). Then r/Z is
the expected hypothesis length. Example 2: r(d)
evaluates the loss of d compared to a reference
translation, using some additively decomposable
loss function. Then r/Z is the risk (expected loss),
which is useful in minimum-risk training. Exam-
ple 3: r(d) is the number of times that a certain
feature fires on d. Then r/Z is the expected fea-
ture count, which is useful in maximum-likelihood
training. We will generalize later in Section 4 to
allow r(d) to be a vector of features. Example 4:
Suppose r(d) and s(d) are identical and both com-
pute hypothesis length. Then the second-order
statistic t/Z is the second moment of the length
distribution, so the variance of hypothesis length
can be found as t/Z − (r/Z)2.

3.2 Computing the Quantities

We will use the semiring parsing framework to
compute the quantities (1)–(4). Although each is a
sum over exponentially many derivations, we will
compute it in O(|HG|) time using Figure 2.

In the simplest case, let K = 〈R,+,×, 0, 1〉,
and define ke = pe for each hyperedge e. Then
the algorithm of Figure 2 reduces to the classical
inside algorithm (Baker, 1979) and computes Z.

Next suppose K is the expectation semiring
(Eisner, 2002), shown in Table 1. Define ke =
〈pe, pere〉. Then Figure 2 will return 〈Z, r〉.

Finally, suppose K is our novel second-order
expectation semiring, which we introduce in Ta-
ble 2. Define ke = 〈pe, pere, pese, perese〉.
Then the algorithm of Figure 2 returns 〈Z, r, s, t〉.
Note that, to compute t, one cannot simply con-
struct a first-order expectation semiring by defin-
ing t(d) def= r(d)s(d) because t(d), unlike r(d)
and s(d), is not additively decomposable over the
hyperedges in d.5 Also, when r(d) and s(d) are
identical, the second-order expectation semiring
allows us to compute variance as t/Z − (r/Z)2,
which is why we may call our second-order ex-
pectation semiring the variance semiring.

3.3 Correctness of the Algorithms

To prove our claim about the first-order expecta-
tion semiring, we first observe that the definitions
in Table 1 satisfy the semiring axioms. The
reader can easily check these axioms (as well
as the closure axioms in footnote 2). With a
valid semiring, we then simply observe that Fig-
ure 2 returns the total weight

⊕
d∈D

⊗
e∈d ke =⊕

d∈D 〈p(d), p(d)r(d)〉 = 〈Z, r〉. It is easy to
verify the second equality from the definitions
of ⊕, Z, and r. The first equality requires
proving that

⊗
e∈d ke = 〈p(d), p(d)r(d)〉

from the definitions of ⊗, ke, p(d), and r(d).
The main intuition is that ⊗ can be used to
build up 〈p(d), p(d)r(d)〉 inductively from the
ke: if d decomposes into two disjoint sub-
derivations d1, d2, then 〈p(d), p(d)r(d)〉 =
〈p(d1)p(d2), p(d1)p(d2)(r(d1) + r(d2))〉 =
〈p(d1), p(d1)r(d1)〉 ⊗ 〈p(d2), p(d2)r(d2)〉. The
base cases are where d is a single hyperedge e, in
which case 〈p(d), p(d)r(d)〉 = ke (thanks to our
choice of ke), and where d is empty, in which case

5However, in a more tricky way, the second-order expec-
tation semiring can be constructed using the first-order ex-
pectation semiring, as will be seen in Section 4.3.
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Element 〈p, r〉
〈p1, r1〉⊗ 〈p2, r2〉 〈p1p2, p1r2 + p2r1〉
〈p1, r1〉⊕ 〈p2, r2〉 〈p1 + p2, r1 + r2〉

〈p, r〉∗ 〈p∗, p∗p∗r〉
0 〈0, 0〉
1 〈1, 0〉

Table 1: Expectation semiring: Each element in the semir-
ing is a pair 〈p, r〉. The second and third rows define the
operations between two elements 〈p1, r1〉 and 〈p2, r2〉, and
the last two rows define the identities. Note that the multi-
plicative identity 1 has an r component of 0.

sa sb
a+ b a · b

sa+b `a+b sa·b `a·b
+ + + `a + log(1 + e`b−`a) + `a + `b
+ - + `a + log(1− e`b−`a) - `a + `b
- + - `a + log(1− e`b−`a) - `a + `b
- - - `a + log(1 + e`b−`a) + `a + `b

Table 3: Storing signed values in log domain: each value a
(= sae

`a) is stored as a pair 〈sa, `a〉 where sa and `a are the
sign bit of a and natural logarithm of |a|, respectively. This
table shows the operations between two values a = sa2

`a

and b = sb2
`b , assuming `a ≥ `b. Note: log(1 + x) (where

|x| < 1) should be computed by the Mercator series x −
x2/2+x3/3−· · · , e.g., using the math library function log1p.

〈p(d), p(d)r(d)〉 = 1. It follows by induction that
〈p(d), p(d)r(d)〉 =

⊗
e∈d ke.

The proof for the second-order expec-
tation semiring is similar. In particular,
one mainly needs to show that

⊗
e∈d ke =

〈p(d), p(d)r(d), p(d)s(d), p(d)r(d)s(d)〉.

3.4 Preventing Underflow/Overflow

In Tables 1–2, we do not discuss how to store p, r,
s, and t. If p is a probability, it often suffers from
the underflow problem. r, s, and tmay suffer from
both underflow and overflow problems, depending
on their scales.

To address these, we could represent p in the
log domain as usual. However, r, s, and t can be
positive or negative, and we cannot directly take
the log of a negative number. Therefore, we repre-
sent real numbers as ordered pairs. Specifically, to
represent a = sae

`a , we store 〈sa, `a〉, where the
sa ∈ {+,−} is the sign bit of a and the floating-
point number `a is the natural logarithm of |a|.6
Table 3 shows the “·” and “+”operations.

6An alternative that avoids log and exp is to store a =
fa2

ea as 〈fa, ea〉, where fa is a floating-point number and
ea is a sufficiently wide integer. E.g., combining a 32-bit
fa with a 32-bit ea will in effect extend fa’s 8-bit internal
exponent to 32 bits by adding ea to it. This gives much more
dynamic range than the 11-bit exponent of a 64-bit double-
precision floating-point number, if vastly less than in Table 3.

4 Generalizations and Speedups

In this section, we generalize beyond the above
case where p, r, s are R-valued. In general, p may
be an element of some other semiring, and r and s
may be vectors or other algebraic objects.

When r and s are vectors, especially high-
dimensional vectors, the basic “inside algorithm”
of Figure 2 will be slow. We will show how to
speed it up with an “inside-outside algorithm.”

4.1 Allowing Feature Vectors and More
In general, for P,R, S, T , we can define the
first-order expectation semiring EP,R = 〈P ×
R,⊕,⊗, 0, 1〉 and the second-order expectation
semiring EP,R,S,T = 〈P ×R×S×T,⊕,⊗, 0, 1〉,
using the definitions from Tables 1–2. But do
those definitions remain meaningful, and do they
continue to satisfy the semiring axioms?

Indeed they do when P = R, R = Rn, S =
Rm, T = Rn×m, with rs defined as the outer
product rsT (a matrix) where sT is the trans-
pose of s. In this way, the second-order semiring
EP,R,S,T lets us take expectations of vectors and
outer products of vectors. So we can find means
and covariances of any number of linearly decom-
posable quantities (e.g., feature counts) defined on
the hypergraph.

We will consider some other choices in Sec-
tions 4.3–4.4 below. Thus, for generality, we con-
clude this section by stating the precise technical
conditions needed to construct EP,R and EP,R,S,T :

• P is a semiring
• R is a P -module (e.g, a vector space), mean-

ing that it comes equipped with an associative
and commutative addition operation with an
identity element 0, and also a multiplication
operation P×R→ R, such that p(r1+r2) =
pr1+pr2, (p1+p2)r = p1r+p2r, p1(p2r) =
(p1p2)r
• S and T are also P -modules
• there is a multiplication operation R × S →
T that is bilinear, i.e., (r1 + r2)s = r1s +
r2s, r(s1 + s2) = rs1 + rs2, (pr)s = p(rs),
r(ps) = p(rs)

As a matter of notation, note that above and in
Tables 1–2, we overload “+” to denote any of
the addition operations within P,R, S, T ; over-
load “0” to denote their respective additive iden-
tities; and overload concatenation to denote any
of the multiplication operations within or between
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Element 〈p, r, s, t〉
〈p1, r1, s1, t1〉⊗ 〈p2, r2, s2, t2〉 〈p1p2, p1r2 + p2r1, p1s2 + p2s1,

p1t2 + p2t1 + r1s2 + r2s1〉
〈p1, r1, s1, t1〉⊕ 〈p2, r2, s2, t2〉 〈p1 + p2, r1 + r2, s1 + s2, t1 + t2〉

〈p, r, s, t〉∗ 〈p∗, p∗p∗r, p∗p∗s, p∗p∗(p∗rs+ p∗rs+ t)〉
0 〈0, 0, 0, 0〉
1 〈1, 0, 0, 0〉

Table 2: Second-order expectation semiring (variance semiring): Each element in the semiring is a 4-tuple 〈p, r, s, t〉. The
second and third rows define the operations between two elements 〈p1, r1, s1, t1〉 and 〈p2, r2, s2, t2〉, while the last two rows
define the identities. Note that the multiplicative identity 1 has r,s and t components of 0.

P,R, S, T . “1” refers to the multiplicative identity
of P . We continue to use distinguished symbols
⊕,⊗, 0, 1 for the operations and identities in our
“main semiring of interest,” EP,R or EP,R,S,T .

To compute equations (1)–(4) in this more gen-
eral setting, we must still require multiplicative
or additive decomposability, defining p(d) def=∏

e∈d pe, r(d) def=
∑

e∈d re, s(d) def=
∑

e∈d se as be-
fore. But the

∏
and

∑
operators here now denote

appropriate operations within P , R, and S respec-
tively (rather than the usual operations within R).

4.2 Inside-Outside Speedup for First-Order
Expectation Semirings

Under the first-order expectation semiring ER,Rn ,
the inside algorithm of Figure 2 will return 〈Z, r〉
where r is a vector of n feature expectations.

However, Eisner (2002, section 5) observes that
this is inefficient when n is large. Why? The
inside algorithm takes the trouble to compute an
inside weight β(v) ∈ R × Rn for each node v
in the hypergraph (or lattice). The second com-
ponent of β(v) is a presumably dense vector of
all features that fire in all subderivations rooted at
node v. Moreover, as β(v) is computed in lines
3–8, that vector is built up (via the ⊗ and ⊕ oper-
ations of Table 1) as a linear combination of other
dense vectors (the second components of the vari-
ous β(u)). These vector operations can be slow.

A much more efficient approach (usually) is
the traditional inside-outside algorithm (Baker,
1979).7 Figure 4 generalizes the inside-outside
algorithm to work with any expectation semiring
EK,X .8 We are given a hypergraph HG whose
edges have weights 〈ke, xe〉 in this semiring (so

7Note, however, that the expectation semiring requires
only the forward/inside pass to compute expectations, and
thus it is more efficient than the traditional inside-outside al-
gorithm (which requires two passes) if we are interested in
computing only a small number of quantities.

8This follows Eisner (2002), who similarly generalized
the forward-backward algorithm.

now ke ∈ K denotes only part of the edge weight,
not all of it). INSIDE-OUTSIDE(HG,K, X) finds⊕

d∈D
⊗

e∈d 〈ke, xe〉, which has the form 〈k̂, x̂〉.
But, INSIDE(HG,EK,X) could accomplish the

same thing. So what makes the inside-outside al-
gorithm more efficient? It turns out that x̂ can
be found quickly as a single linear combination∑

e kexe of just the feature vectors xe that ap-
pear on individual hyperedges—typically a sum
of very sparse vectors! And the linear coefficients
ke, as well as k̂, are computed entirely within the
cheap semiring K. They are based on β and α val-
ues obtained by first running INSIDE(HG,K) and
OUTSIDE(HG,K), which use only the ke part of
the weights and ignore the more expensive xe.

It is noteworthy that the expectation semiring is
not used at all by Figure 4. Although the return
value 〈k̂, x̂〉 is in the expectation semiring, it is
built up not by ⊕ and ⊗ but rather by computing
k̂ and x̂ separately. One might therefore wonder
why the expectation semiring and its operations
are still needed. One reason is that the input to
Figure 4 consists of hyperedge weights 〈ke, xe〉 in
the expectation semiring—and these weights may
well have been constructed using ⊗ and ⊕. For
example, Eisner (2002) uses finite-state operations
such as composition, which do combine weights
entirely within the expectation semiring before
their result is passed to the forward-backward al-
gorithm. A second reason is that when we work
with a second-order expectation semiring in Sec-
tion 4.4 below, the k̂, β, and α values in Figure 4
will turn out to be elements of a first-order expec-
tation semiring, and they must still be constructed
by first-order ⊗ and ⊕, via calls to Figures 2–3.

Why does inside-outside work? Whereas the
inside algorithm computes

⊕
d∈D

⊗
e∈d in any

semiring, the inside-outside algorithm exploits
the special structure of an expectation semir-
ing. By that semiring’s definitions of ⊕ and ⊗
(Table 1),

⊕
d∈D

⊗
e∈d 〈ke, xe〉 can be found as
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〈
∑

d∈D
∏

e∈d ke,
∑

d∈D
∑

e∈d(
∏

e′∈d,e′ 6=e ke′)xe〉.
The first component (giving k̂) is found
by calling the inside algorithm on just the
ke part of the weights. The second com-
ponent (giving x̂) can be rearranged into∑

e

∑
d: e∈d(

∏
e′∈d,e′ 6=e ke′)xe =

∑
e kexe, where

ke
def=
∑

d: e∈d(
∏

e′∈d,e′ 6=e ke′) is found from β, α.
The application described at the start of this

subsection is the classical inside-outside algo-
rithm. Here 〈ke, xe〉 def= 〈pe, pere〉, and the al-
gorithm returns 〈k̂, x̂〉 = 〈Z, r〉. In fact, that
x̂ = r can be seen directly: r =

∑
d p(d)r(d) =∑

d p(d)(
∑

e∈d re) =
∑

e

∑
d: e∈d p(d)re =∑

e(keke)re =
∑

e kexe = x̂. This uses the fact
that keke =

∑
d: e∈d p(d).

4.3 Lifting Trick for Second-Order Semirings
We now observe that the second-order expectation
semiring EP,R,S,T can be obtained indirectly by
nesting one first-order expectation semiring inside
another! First “lift” P to obtain the first-order ex-
pectation semiring K def= EP,R. Then lift this a sec-
ond time to obtain the “nested” first-order expec-
tation semiring EK,X = E(EP,R),(S×T ), where we

equip X def= S × T with the operations 〈s1, t1〉 +
〈s2, t2〉 def= 〈s1 + s2, t1 + t2〉 and 〈p, r〉〈s, t〉 def=
〈ps, pt+ rs〉. The resulting first-order expectation
semiring has elements of the form 〈〈p, r〉, 〈s, t〉〉.
Table 4 shows that it is indeed isomorphic to
EP,R,S,T , with corresponding elements 〈p, r, s, t〉.

This construction of the second-order semiring
as a first-order semiring is a useful bit of abstract
algebra, because it means that known properties
of first-order semirings will also apply to second-
order ones. First of all, we are immediately guar-
anteed that the second-order semiring satisfies the
semiring axioms. Second, we can directly apply
the inside-outside algorithm there, as we now see.

4.4 Inside-Outside Speedup for
Second-Order Expectation Semirings

Given a hypergraph weighted by a second-order
expectation semiring EP,R,S,T . By recasting this
as the first-order expectation semiring EK,X where
K = EP,R and X = (S × T ), we can again ap-
ply INSIDE-OUTSIDE(HG,K, X) to find the total
weight of all derivations.

For example, to speed up Section 3.2, we
may define 〈ke, xe〉 = 〈〈pe, pere〉, 〈pese, perese〉〉
for each hyperedge e. Then the inside-outside
algorithm of Figure 4 will compute 〈k̂, x̂〉 =

〈〈Z, r〉, 〈s, t〉〉, more quickly than the inside algo-
rithm of Figure 2 computed 〈Z, r, s, t〉.

Figure 4 in this case will run the inside and
outside algorithms in the semiring EP,R, so that
ke, k̂, α, β, and ke will now be elements of P ×R
(not just elements of P as in the first-order case).
Finally it finds x̂ =

∑
e kexe, where xe ∈ S×T .9

This is a particularly effective speedup over
the inside algorithm when R consists of scalars
(or small vectors) whereas S, T are sparse high-
dimensional vectors. We will see exactly this case
in our experiments, where our weights 〈p, r, s, t〉
denote (probability, risk, gradient of probability,
gradient of risk), or (probability, entropy, gradient
of probability, gradient of entropy).

5 Finding Gradients on Hypergraphs

In Sections 3.2 and 4.1, we saw how our semirings
helped find the sum Z of all p(d), and compute
expectations r, s, t of r(d), s(d), and r(d)s(d).

It turns out that these semirings can also com-
pute first- and second-order partial derivatives of
all the above results, with respect to a parameter
vector θ ∈ Rm. That is, we ask how they are
affected when θ changes slightly from its current
value. The elementary values pe, re, se are now
assumed to implicitly be functions of θ.

Case 1: Recall that Z def=
∑

d p(d) is com-
puted by INSIDE(HG,R) if each hyperedge e has
weight pe. “Lift” this weight to 〈pe,∇pe〉, where
∇pe ∈ Rm is a gradient vector. Now 〈Z,∇Z〉 will
be returned by INSIDE(HG,ER,Rm)— or, more
efficiently, by INSIDE-OUTSIDE(HG,R,Rm).

Case 2: To differentiate a second
time, “lift” the above weights again
to obtain 〈〈pe,∇pe〉,∇〈pe,∇pe〉〉 =
〈〈pe,∇pe〉, 〈∇pe,∇2pe〉〉, where ∇2pe ∈ Rm×m

is the Hessian matrix of second-order mixed
partial derivatives. These weights are in a
second-order expectation semiring.10 Now

9Figure 4 was already proved generally correct in Sec-
tion 4.2. To understand more specifically how 〈s, t〉 gets
computed, observe in analogy to the end of Section 4.2 that
〈s, t〉 =

∑
d 〈p(d)s(d), p(d)r(d)s(d)〉

=
∑
d 〈p(d), p(d)r(d)〉〈s(d), 0〉

=
∑
d 〈p(d), p(d)r(d)〉∑e∈d 〈se, 0〉

=
∑
e

∑
d: e∈d 〈p(d), p(d)r(d)〉〈se, 0〉

=
∑
e(keke)〈se, 0〉 =

∑
e ke〈pe, pere〉〈se, 0〉

=
∑
e ke〈pese, perese〉 =

∑
e kexe = x̂.

10Modulo the trivial isomorphism from 〈〈p, r〉, 〈s, t〉〉 to
〈p, r, s, t〉 (see Section 4.3), the intended semiring both here
and in Case 3 is the one that was defined at the start of Sec-
tion 4.1, in which r, s are vectors and their product is defined
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〈〈p1, r1〉, 〈s1, t1〉〉⊕ 〈〈p2, r2〉, 〈s2, t2〉〉 = 〈〈p1, r1〉 + 〈p2, r2〉, 〈s1, t1〉 + 〈s2, t2〉〉
= 〈〈p1 + p2, r1 + r2〉, 〈s1 + s2, t1 + t2〉〉

〈〈p1, r1〉, 〈s1, t1〉〉⊗ 〈〈p2, r2〉, 〈s2, t2〉〉 = 〈〈p1, r1〉〈p2, r2〉, 〈p1, r1〉〈s2, t2〉 + 〈p2, r2〉〈s1, t1〉〉
= 〈〈p1p2, p1r2 + p2r1〉, 〈p1s2 + p2s1, p1t2 + p2t1 + r1s2 + r2s1〉〉

Table 4: Constructing second-order expectation semiring as first-order. Here we show that the operations in EK,X are
isomorphic to Table 2’s operations in EP,R,S,T , provided that K def

= EP,R and X def
= S × T is a K-module, in which addition is

defined by〈s1, t1〉 + 〈s2, t2〉 def
= 〈s1 + s2, t1 + t2〉, and left-multiplication by K is defined by 〈p, r〉〈s, t〉 def

= 〈ps, pt+ rs〉.

〈Z,∇Z,∇Z,∇2Z〉 will be returned by
INSIDE(HG,ER,Rm,Rm,Rm×m), or more effi-
ciently by INSIDE-OUTSIDE(HG,ER,Rm ,Rm ×
Rm×m).

Case 3: Our experiments will need to find ex-
pectations and their partial derivatives. Recall that
〈Z, r〉 is computed by INSIDE(HG,ER,Rn) when
the edge weights are 〈pe, pere〉 with re ∈ Rn. Lift
these weights to 〈〈pe, pere〉,∇〈pe, pere〉〉 =
〈〈pe, pere〉, 〈∇pe, (∇pe)re + pe(∇re)〉〉.
Now 〈Z, r,∇Z,∇r〉 will be returned
by INSIDE(HG,ER,Rn,Rm,Rn×m) or by
INSIDE-OUTSIDE(HG,ER,Rn ,Rm × Rn×m).11

5.1 What Connects Gradients to Expectations?
In Case 1, we claimed that the same algorithm
will compute either gradients 〈Z,∇Z〉 or expec-
tations 〈Z, r〉, if the hyperedge weights are set to
〈pe,∇pe〉 or 〈pe, pere〉 respectively.12 This may
seem wonderful and mysterious. We now show in
two distinct ways why this follows from our setup
of Section 3.1. At the end, we derive as a special
case the well-known relationship between gradi-
ents and expectations in log-linear models.

From Expectations to Gradients One perspec-
tive is that our semiring fundamentally finds ex-
pectations. Thus, we must be finding ∇Z by for-
mulating it as a certain expectation r. Specif-
ically, ∇Z = ∇∑d p(d) =

∑
d∇p(d) =

to be rsT, a matrix. However, when using this semiring to
compute second derivatives (Case 2) or covariances, one may
exploit the invariant that r = s, e.g., to avoid storing s and to
compute r1s2 + s1r2 in multiplication simply as 2 · r1r2.

11Or, if n > m, it is faster to instead use
INSIDE-OUTSIDE(HG,ER,Rm ,Rn × Rm×n), swapping the
second and third components of the 4-tuple and trans-
posing the matrix in the fourth component. Alge-
braically, this changes nothing because ER,Rn,Rm×Rn×m and
ER,Rm,Rn×Rm×n are isomorphic, thanks to symmetries in Ta-
ble 2. This method computes the expectation of the gradient
rather than the gradient of the expectation—they are equal.

12Cases 2–3 relied on the fact that this relationship still
holds even when the scalars Z, pe ∈ R are replaced by more
complex objects that we wish to differentiate. Our discus-
sion below sticks to the scalar case for simplicity, but would
generalize fairly straightforwardly. Pearlmutter and Siskind
(2007) give the relevant generalizations of dual numbers.

∑
d p(d)r(d) = r, provided that r(d) =

(∇p(d))/p(d). That can be arranged by defining
re

def= (∇pe)/pe.13 So that is why the input weights
〈pe, pere〉 take the form 〈pe,∇pe〉.

From Gradients to Expectations An alterna-
tive perspective is that our semiring fundamen-
tally finds gradients. Indeed, pairs like 〈p,∇p〉
have long been used for this purpose (Clifford,
1873) under the name “dual numbers.” Oper-
ations on dual numbers, including those in Ta-
ble 1, compute a result in R along with its gradi-
ent. For example, our ⊗ multiplies dual numbers,
since 〈p1,∇p1〉 ⊗ 〈p2,∇p2〉 = 〈p1p2, p1(∇p2) +
(∇p1)p2〉 = 〈p1p2,∇(p1p2)〉. The inside algo-
rithm thus computes both Z and ∇Z in a single
“forward” or “inside” pass—known as automatic
differentiation in the forward mode. The inside-
outside algorithm instead uses the reverse mode
(a.k.a. back-propagation), where a separate “back-
ward” or “outside” pass is used to compute∇Z.

How can we modify this machinery to pro-
duce expectations r̄ given some arbitrary re
of interest? Automatic differentiation may
be used on any function (e.g., a neural net),
but for our simple sum-of-products function
Z, it happens that ∇Z = ∇(

∑
d

∏
e pe) =∑

d

∑
e∈d(

∏
e′∈d,e′ 6=e pe′)∇pe. Our trick is to

surreptitiously replace the ∇pe in the input
weights 〈pe,∇pe〉 with pere. Then the output
changes similarly: the algorithms will instead
find

∑
d

∑
e∈d(

∏
e′∈d,e′ 6=e pe′)pere, which re-

duces to
∑

d

∑
e∈d p(d)re =

∑
d p(d)

∑
e∈d re =∑

d p(d)r(d) = r̄.

Log-linear Models as a Special Case Replac-
ing ∇pe with pere is unnecessary if ∇pe already
equals pere. That is the case in log-linear models,
where pe

def= exp(re · θ) for some feature vector re
associated with e. So there, ∇Z already equals
r̄—yielding a key useful property of log-linear

13Proof: r(d) =
∑
e∈d re =

∑
e∈d(∇pe)/pe =∑

e∈d∇ log pe = ∇∑e∈d log pe = ∇ log
∏
e∈d pe =

∇ log p(d) = (∇p(d))/p(d).
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models, that ∇ logZ = (∇Z)/Z = r̄/Z, the vec-
tor of feature expectations (Lau et al., 1993).

6 Practical Applications

Given a hypergraph HG whose hyperedges e are
annotated with values pe. Recall from Section 3.1
that this defines a probability distribution over all
derivations d in the hypergraph, namely p(d)/Z
where p(d) def=

∏
e∈d pe.

6.1 First-Order Expectation Semiring ER,R

In Section 3, we show how to compute the ex-
pected hypothesis length or expected feature
counts, using the algorithm of Figure 2 with a
first-order expectation semiring ER,R. In general,
given hyperedge weights 〈pe, pere〉, the algorithm
computes 〈Z, r〉 and thus r/Z, the expectation of
r(d) def=

∑
e∈d re. We now show how to compute a

few other quantities by choosing re appropriately.

Entropy on a Hypergraph The entropy of the
distribution of derivations in a hypergraph14 is

H(p) = −
∑
d∈D

(p(d)/Z) log(p(d)/Z) (5)

= logZ − 1
Z

∑
d∈D

p(d) log p(d)

= logZ − 1
Z

∑
d∈D

p(d)r(d) = logZ − r

Z

provided that we define re
def= log pe (so that

r(d) =
∑

e∈d re = log p(d)). Of course, we can
compute 〈Z, r〉 as explained in Section 3.2.

Cross-Entropy and KL Divergence We may
be interested in computing the cross-entropy or
KL divergence between two distributions p and q.
For example, in variational decoding for machine
translation (Li et al., 2009b), p is a distribution
represented by a hypergraph, while q, represented
by a finite state automaton, is an approximation to
p. The cross entropy between p and q is defined as

H(p, q) = −
∑
d∈D

(p(d)/Zp) log(q(d)/Zq) (6)

= logZq − 1
Zp

∑
d∈D

p(d) log q(d)

= logZq − 1
Zp

∑
d∈D

p(d)r(d) = logZq − r

Zp

14Unfortunately, it is intractable to compute the entropy of
the distribution over strings (each string’s probability is a sum
over several derivations). But Li et al. (2009b, section 5.4) do
estimate the gap between derivational and string entropies.

where the first term Zq can be computed using
the inside algorithm with hyperedge weights qe,
and the numerator and denominator of the sec-
ond term using an expectation semiring with hy-
peredge weights 〈pe, pere〉 with re

def= log qe.
The KL divergence to p from q can be computed

as KL(p ‖ q) = H(p, q)− H(p).

Expected Loss (Risk) Given a reference sen-
tence y∗, the expected loss (i.e., Bayes risk) of the
hypotheses in the hypergraph is defined as,

R(p) =
∑
d∈D

(p(d)/Z)L(Y(d), y∗) (7)

where Y(d) is the target yield of d and L(y, y∗) is
the loss of the hypothesis y with respect to the ref-
erence y∗. The popular machine translation met-
ric, BLEU (Papineni et al., 2001), is not additively
decomposable, and thus we are not able to com-
pute the expected loss for it. Tromble et al. (2008)
develop the following loss function, of which a lin-
ear approximation to BLEU is a special case,

L(y, y∗) = −(θ0|y|+
∑
w∈N

θw#w(y)δw(y∗)) (8)

where w is an n-gram type, N is a set of n-gram
types with n ∈ [1, 4], #w(y) is the number of oc-
currence of the n-gramw in y, δw(y∗) is an indica-
tor to check if y∗ contains at least one occurrence
of w, and θn is the weight indicating the relative
importance of an n-gram match. If the hypergraph
is already annotated with n-gram (n ≥ 4) lan-
guage model states, this loss function is additively
decomposable. Using re

def= Le where Le is the
loss for a hyperedge e, we compute the expected
loss,

R(p) =
∑

d∈D p(d)L(Y(d), y∗)
Z

=
r

Z
(9)

6.2 Second-Order Expectation Semirings
With second-order expectation semirings, we can
compute from a hypergraph the expectation and
variance of hypothesis length; the feature expec-
tation vector and covariance matrix; the Hessian
(matrix of second derivatives) of Z; and the gradi-
ents of entropy and expected loss. The computa-
tions should be clear from earlier discussion. Be-
low we compute gradient of entropy or Bayes risk.

Gradient of Entropy or Risk It is easy to see
that the gradient of entropy (5) is

∇H(p) =
∇Z
Z
− Z∇r − r∇Z

Z2
(10)
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We may compute 〈Z, r,∇Z,∇r〉 as ex-
plained in Case 3 of Section 5 by using
ke

def= 〈pe, pere,∇pe, (∇pe)re + pe∇re〉 def=
〈pe, pe log pe,∇pe, (1 + log pe)∇pe〉, where ∇pe

depends on the particular parameterization of the
model (see Section 7.1 for an example).

Similarly, the gradient of risk of (9) is

∇R(p) =
Z∇r − r∇Z

Z2
(11)

We may compute 〈Z, r,∇Z,∇r〉 using ke
def=

〈pe, peLe,∇pe, Le∇pe〉.

7 Minimum-Risk Training for MT

We now show how we improve the training of a
Hiero MT model by optimizing an objective func-
tion that includes entropy and risk. Our objective
function could be computed with a first-order ex-
pectation semiring, but computing it along with its
gradient requires a second-order one.

7.1 The Model p
We assume a globally normalized linear model
for its simplicity. Each derivation d is scored by

score(d) def= Φ(d) · θ =
∑

i

Φi(d) θi (12)

where Φ(d) ∈ Rm is a vector of features of d. We
then define the unnormalized distribution p(d) as

p(d) = exp(γ · score(d)) (13)

where the scale factor γ adjusts how sharply the
distribution favors the highest-scoring hypotheses.

7.2 Minimum-Risk Training
Adjusting θ or γ changes the distribution p. Mini-
mum error rate training (MERT) (Och, 2003) tries
to tune θ to minimize the BLEU loss of a decoder
that chooses the most probable output according
to p. (γ has no effect.) MERT’s specialized line-
search addresses the problem that this objective
function is piecewise constant, but it does not scale
to a large number of parameters.

Smith and Eisner (2006) instead propose a dif-
ferentiable objective that can be optimized by gra-
dient descent: the Bayes risk R(p) of (7). This is
the expected loss if one were (hypothetically) to
use a randomized decoder, which chooses a hy-
pothesis d in proportion to its probability p(d). If
entropy H(p) is large (e.g., small γ), the Bayes risk

is smooth and has few local minima. Thus, Smith
and Eisner (2006) try to avoid local minima by
starting with large H(p) and decreasing it gradu-
ally during optimization. This is called determin-
istic annealing (Rose, 1998). As H(p) → 0 (e.g.,
large γ), the Bayes risk does approach the MERT
objective (i.e. minimizing 1-best error).The objec-
tive is

minimize R(p)− T · H(p) (14)

where the “temperature” T starts high and is ex-
plicitly decreased as optimization proceeds.

7.3 Gradient Descent Optimization
Solving (14) for a given T requires computing the
entropy H(p) and risk R(p) and their gradients
with respect to θ and γ. Smith and Eisner (2006)
followed MERT in constraining their decoder to
only an n-best list, so for them, computing these
quantities did not involve dynamic programming.
We compare those methods to training on a hy-
pergraph containing exponentially many hypothe-
ses. In this condition, we need our new second-
order semiring methods and must also approxi-
mate BLEU (during training only) by an additively
decomposable loss (Tromble et al., 2008).15

Our algorithms require that p(d) of (13) is mul-
tiplicatively decomposable. It suffices to define
Φ(d) def=

∑
e∈d Φe, so that all features are local

to individual hyperedges; the vector Φe indicates
which features fire on hyperedge e. Then score(d)
of (12) is additively decomposable:

score(d) =
∑
e∈d

scoree =
∑
e∈d

Φe · θ (15)

We can then set pe = exp(γ · scoree), and ∇pe =
γpeΦ(e), and use the algorithms described in Sec-
tion 6 to compute H(p) and R(p) and their gradi-
ents with respect to θ and γ.16

15Pauls et al. (2009) concurrently developed a method to
maximize the expected n-gram counts on a hypergraph using
gradient descent. Their objective is similar to the minimum
risk objective (though without annealing), and their gradient
descent optimization involves in algorithms in computing ex-
pected feature/n-gram counts as well as expected products of
features and n-gram counts, which can be viewed as instances
of our general algorithms with first- and second-order semir-
ings. They focused on tuning only a small number (i.e. nine)
of features as in a regular MERT setting, while our experi-
ments involve both a small and a large number of features.

16It is easy to verify that the gradient of a function f (e.g.
entropy or risk) with respect to γ can be written as a weighted
sum of gradients with respect to the feature weights θi, i.e.

∂f
∂γ

=
1

γ

∑
i

θi × ∂f
∂θi

(16)
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7.4 Experimental Results

7.4.1 Experimental Setup
We built a translation model on a corpus for
IWSLT 2005 Chinese-to-English translation task
(Eck and Hori, 2005), which consists of 40k pairs
of sentences. We used a 5-gram language model
with modified Kneser-Ney smoothing, trained on
the bitext’s English using SRILM (Stolcke, 2002).

7.4.2 Tuning a Small Number of Features
We first investigate how minimum-risk training
(MR), with and without deterministic annealing
(DA), performs compared to regular MERT. MR
without DA just fixes T = 0 and γ = 1 in (14).
All MR or MR+DA uses an approximated BLEU

(Tromble et al., 2008) (for training only), while
MERT uses the exact corpus BLEU in training.

The first five rows in Table 5 present the results
by tuning the weights of five features (θ ∈ R5). We
observe that MR or MR+DA performs worse than
MERT on the dev set. This may be mainly because
MR or MR+DA uses an approximated BLEU while
MERT doesn’t. On the test set, MR or MR+DA
on an n-best list is comparable to MERT. But our
new approach, MR or MR+DA on a hypergraph,
does consistently better (statistically significant)
than MERT, despite approximating BLEU.17

Did DA help? For both n-best and hypergraph,
MR+DA did obtain a better BLEU score than plain
MR on the dev set.18 This shows that DA helps
with the local minimum problem, as hoped. How-
ever, DA’s improvement on the dev set did not
transfer to the test set.

7.4.3 Tuning a Large Number of Features
MR (with or without DA) is scalable to tune a
large number of features, while MERT is not. To
achieve competitive performance, we adopt a for-
est reranking approach (Li and Khudanpur, 2009;
Huang, 2008). Specifically, our training has two
stages. In the first stage, we train a baseline system
as usual. We also find the optimal feature weights
for the five features mentioned before, using the
method of MR+DA operating on a hypergraph. In
the second stage, we generate a hypergraph for
each sentence in the training data (which consists
of about 40k sentence pairs), using the baseline

17Pauls et al. (2009) concurrently observed a similar pat-
tern (i.e., MR performs worse than MERT on the dev set, but
performs better on a test set).

18We also verified that MR+DA found a better objective
value (i.e., expected loss on the dev set) than MR.

Training scheme dev test
MERT (Nbest, small) 42.6 47.7
MR (Nbest, small) 40.8 47.7
MR+DA (Nbest, small) 41.6 47.8

NEW! MR (hypergraph, small) 41.3 48.4
NEW! MR+DA (hypergraph, small) 41.9 48.3
NEW! MR (hypergraph, large) 42.3 48.7

Table 5: BLEU scores on the Dev and test sets under different
training scenarios. In the “small” model, five features (i.e.,
one for the language model, three for the translation model,
and one for word penalty) are tuned. In the “large” model,
21k additional unigram and bigram features are used.

system. In this stage, we add 21k additional uni-
gram and bigram target-side language model fea-
tures (cf. Li and Khudanpur (2008)). For example,
a specific bigram “the cat” can be a feature. Note
that the total score by the baseline system is also
a feature in the second-stage model. With these
features and the 40k hypergraphs, we run the MR
training to obtain the optimal weights.

During test time, a similar procedure is fol-
lowed. For a given test sentence, the baseline sys-
tem first generates a hypergraph, and then the hy-
pergraph is reranked by the second-stage model.
The last row in Table 5 reports the BLEU scores.
Clearly, adding more features improves (statisti-
cally significant) the case with only five features.
We plan to incorporate more informative features
described by Chiang et al. (2009).19

8 Conclusions

We presented first-order expectation semirings
and inside-outside computation in more detail
than (Eisner, 2002), and developed extensions to
higher-order expectation semirings. This enables
efficient computation of many interesting quanti-
ties over the exponentially many derivations en-
coded in a hypergraph: second derivatives (Hes-
sians), expectations of products (covariances), and
expectations such as risk and entropy along with
their derivatives. To our knowledge, algorithms
for these problems have not been presented before.

Our approach is theoretically elegant, like other
work in this vein (Goodman, 1999; Lopez, 2009;
Gimpel and Smith, 2009). We used it practically to
enable a new form of minimum-risk training that
improved Chinese-English MT by 1.0 BLEU point.
Our implementation will be released within the
open-source MT toolkit Joshua (Li et al., 2009a).

19Their MIRA training tries to favor a specific oracle
translation—indeed a specific tree—from the (pruned) hyper-
graph. MR does not commit to such an arbitrary choice.
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Abstract
Minimum error rate training (MERT) in-
volves choosing parameter values for a
machine translation (MT) system that
maximize performance on a tuning set as
measured by an automatic evaluation met-
ric, such as BLEU. The method is best
when the system will eventually be eval-
uated using the same metric, but in reality,
most MT evaluations have a human-based
component. Although performing MERT
with a human-based metric seems like a
daunting task, we describe a new metric,
RYPT, which takes human judgments into
account, but only requires human input to
build a database that can be reused over
and over again, hence eliminating the need
for human input at tuning time. In this
investigative study, we analyze the diver-
sity (or lack thereof) of the candidates pro-
duced during MERT, we describe how this
redundancy can be used to our advantage,
and show that RYPT is a better predictor of
translation quality than BLEU.

1 Introduction

Many state-of-the-art machine translation (MT)
systems over the past few years (Och and Ney,
2002; Koehn et al., 2003; Chiang, 2007; Koehn
et al., 2007; Li et al., 2009) rely on several mod-
els to evaluate the “goodness” of a given candidate
translation in the target language. The MT system
proceeds by searching for the highest-scoring can-
didate translation, as scored by the different model
components, and returns that candidate as the hy-
pothesis translation. Each of these models need
not be a probabilistic model, and instead corre-
sponds to a feature that is a function of a (can-
didate translation,foreign sentence) pair.

Treated as a log-linear model, we need to as-
sign a weight for each of the features. Och (2003)

shows that setting those weights should take into
account the evaluation metric by which the MT
system will eventually be judged. This is achieved
by choosing the weights so as to maximize the per-
formance of the MT system on a development set,
as measured by that evaluation metric. The other
insight of Och’s work is that there exists an ef-
ficient algorithm to find such weights. This pro-
cess has come to be known as the MERT phase
(for Minimum Error Rate Training) in training
pipelines of MT systems.

A problem arises if the performance of the sys-
tem is not judged by an automatic evaluation met-
ric such as BLEU or TER, but instead through
an evaluation process involving a human. The
GALE evaluation, for instance, judges the quality
of systems as measured by human-targeted TER
(HTER), which computes the edit distance be-
tween the system’s output and a version of the
output post-edited by a human. The IWSLT and
WMT workshops also have a manual evaluation
component, as does the NIST Evaluation, in the
form of adequacy and fluency (LDC, 2005).

In theory, one could imagine trying to optimize
a metric like HTER during the MERT phase, but
that would require the availability of an HTER au-
tomatic scorer, which, by definition, does not ex-
ist. If done manually, the scoring of thousands of
candidates produced during MERT would literally
take weeks, and cost a large sum of money. For
these reasons, researchers resort to optimizing an
automatic metric (almost always BLEU) as a proxy
for human judgment.

As daunting as such a task seems for any
human-based metric, we describe a new metric,
RYPT, that takes human judgment into accout
when scoring candidates, but takes advantage of
the redundancy in the candidates produced dur-
ing MERT. In this investigative study, we describe
how this redundancy can be used to our advantage
to eliminate the need to involve a human at any
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time except when building a database of reusable
judgments, and furthermore show that RYPT is a
better predictor of translation quality than BLEU,
making it an excellent candidate for MERT tun-
ing.

The paper is organized as follows. We start by
describing the core idea of MERT before intro-
ducing our new metric, RYPT, and describing the
data collection effort we undertook to collect the
needed human judgments. We analyze a MERT
run optimizing BLEU to quantify the level of re-
dundancy in the candidate set, and also provide
an extensive analysis of the collected judgments,
before describing a set of experiments showing
RYPT is a better predictor of translation quality
than BLEU. Following a discussion of our findings,
we briefly review related work, before pointing out
future directions and summarizing.

2 Och’s Line Search Method

A common approach to translating a source sen-
tence f in a foreign language is to select the can-
didate translation e that maximizes the posterior
probability:

Pr(e | f) def=
exp(sΛ(e, f))∑
e′ exp(sΛ(e′, f))

.

This defines Pr(e | f) using a log-linear model
that associates a sentence pair (e, f) with a fea-
ture vector Φ(e, f) = {φ1(e, f), ..., φM (e, f)},
and assigns a score

sΛ(e, f) def= Λ · Φ(e, f) =
M∑

m=1

λmφm(e, f)

for that sentence pair, with the feature weights
Λ = {λ1, ..., λM} being the parameters of the
model. Therefore, the system selects the transla-
tion ê:

ê = argmax
e

Pr(e | f) = argmax
e

sΛ(e, f). (1)

Och (2003) provides evidence that Λ should be
chosen by optimizing an objective function basd
on the evaluation metric of interest, rather than
likelihood. Since the error surface is not smooth,
and a grid search is too expensive, Och suggests an
alternative, efficient, line optimization approach.

Assume we are performing a line optimiza-
tion along the dth dimension. Consider a for-
eign sentence f , and let the candidate set for f

be {e1, ..., eK}. Recall from (1) that the 1-best
candidate at a given Λ is the one with maxi-
mum

∑M
m=1 λmφm(ek, f). We can rewrite the

sum as λdφd(ek, f) +
∑

m 6=d λmφm(ek, f). The
second term is constant with respect to λd, and
so is φd(ek, f). Renaming those two quantities
offestΛ(ek) and slope(ek), we get

sΛ(ek, f) = slope(ek)λd + offsetΛ(ek).

Therefore, if we plot the score for a candidate
translation vs. λd, that candidate will be repre-
sented by a line. If we plot the lines for all candi-
dates (Figure 1), then the upper envelope of these
lines indicates the best candidate at any value for
λd.

Therefore, the objective function is piece-wise
linear across any of the M dimensions1, mean-
ing we only need to evaluate it at the “critical”
points corresponding to line intersection points.
Furthermore, we only need to calculate the suffi-
cient statistics once, at the smallest critical point,
and then simply adjust the sufficient statistics to
reflect changes in the set of 1-best candidates.

2.1 The BLEU Metric

The metric most often used with MERT is BLEU

(Papineni et al., 2002), where the score of a candi-
date c against a reference translation r is:

BLEU = BP (len(c), len(r))·exp(
4∑

n=1

1
4

log pn),

where pn is the n-gram precision2 and BP is a
brevity penalty meant to penalize short outputs, to
discourage improving precision at the expense of
recall.

There are several compelling reasons to opti-
mize to BLEU. It is the most widely reported met-
ric in MT research, and has been shown to cor-
relate well with human judgment (Papineni et al.,
2002; Coughlin, 2003). But BLEU is also partic-
ularly suitable for MERT, because it can be com-
puted quite efficiently, and its sufficient statistics
are decomposable, as required by MERT.3,4

1Or, in fact, along any linear combination of the M di-
mensions.

2Modifed precision, to be precise, based on clipped n-
gram counts.

3Note that for the sufficient statistics to be decomposable,
the metric itself need not be – this is in fact the case with
BLEU.

4Strictly speaking, the sufficient statistics need not be de-
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Figure 1: Och’s method applied to a set of two foreign sentences. This figure is essentially a visualization
of equation (1). We show here sufficient statistics for TER for simplicity, since there are only 2 of them,
but the metric optimized in MERT is usually BLEU.

In spite of these advantages, recent work has
pointed out a number of problematic aspects of
BLEU that should cause one to pause and recon-
sider the reliance on it. Chiang et al. (2008) in-
vestigate several weaknesses in BLEU and show
there are realistic scenraios where the BLEU score
should not be trusted, and in fact behaves in a
counter-intuitive manner. Furthermore, Callison-
Burch et al. (2006) point out that it is not always
appropriate to use BLEU to compare systems to
each other. In particular, the quality of rule-based
systems is usually underestimated by BLEU.

All this raises doubts regarding BLEU’s ade-
quacy as a proxy for human judgment, which is
a particularly important issue in the context of set-
ting parameters during the MERT phase. But what
is the alternative?

2.2 (Non-)Applicability of Och’s Method to
Human Metrics

In principle, MERT is applicable to any evalua-
tion metric, including HTER, as long as its suffi-
cient statistics are decomposable.4 In practice, of
course, the method requires the evaluation of thou-
sands of candidate translations. Whereas this is

composable in MERT, as they can be recalculated at each crit-
ical point. However, this would slow down the optimization
process quite a bit, since one cannot traverse the dimension
by simply adjusting the sufficient statistics to reflect changes
in 1-best candidates.

not a problem with a metric like BLEU, for which
automatic (and fast) scorers are available, such an
evaluation with a human metric would require a
large amount of effort and money, meaning that
a single MERT run would take weeks to com-
plete, and would cost thousands of dollars. As-
sume a single candidate string takes 10 seconds
to post-edit, at a cost of $0.10. Even with such
an (overly) optimistic estimate, scoring 100 candi-
dates for each of 1000 sentences would take 35 8-
hour work days and cost $10,000. The cost would
further grow linearly with the number of MERT it-
erations and the n-best list size. On the other hand,
optimizing for BLEU takes on the order of minutes
per iteration, and costs nothing.

2.3 The RYPT Metric

We suggest here a new metric that combines the
best of both worlds, in that it is based on human
judgment, but that is a viable metric to be used in
the MERT phase. The key to the feasiblity is the
reliance on a database of human judgment rather
than immendiate feedback for each candidate, and
so human feedback is only needed once, and the
collected human judgments can be reused over and
over again by an automatic scorer.

The basic idea is to reward syntactic con-
stituents in the source sentence that get aligned
to “acceptable” translations in the candidate sen-
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Figure 2: The source parse tree (top) and the can-
didate derivation tree (bottom). Nodes in the parse
tree with a thick border correspond to the frontier
node set with maxLen = 4. The human annota-
tor only sees the portion surrounded by the dashed
rectangle, including the highlighting (though ex-
cluding the word alignment links).

tence, and penalize constituents that do not. For
instance, consider the source-candidate sentence
pair of Figure 2. To evaluate the candidate transla-
tion, the source parse tree is first obtained (Dubey,
2005), and each subtree is matched with a sub-
string in the candidate string. If the source sub-
string covered by this subtree is translated into an
acceptable substring in the candidate, that node
gets a YES label. Otherwise, the node gets a NO
label.

The metric we propose is taken to be the ratio of
YES nodes in the parse tree (or RYPT). The candi-
date in Figure 2, for instance, would get a RYPT

score of 13/18 = 0.72.
To justify its use as a proxy for HTER-like met-

rics, we need to demonstrate that this metric corre-
lates well with human judgment. But it is also im-
portant to show that we can obtain the YES/NO la-
bel assignments in an efficient and affordable man-
ner. At first glance, this seems to require a human
to provide judgments for each candidate, much
like with HTER. But we describe in the next sec-
tion strategies that minimize the number of judg-
ments we need to actually collect.

3 Collecting Human Judgments

The first assumption we make to minimize the
number of human judgments, is that once we
have a judgment for a source-candidate substring
pair, that same judgment can be used across all
candidates for this source sentence. In other
words, we build a database for each source sen-
tence, which consists of <source substring,target
substring,judgment> entries. For a given source
substring, multiple entries exist, each with a dif-
ferent target candidate substring. The judgment
field is one of YES, NO, and NOT SURE.

Note that the entries do not store the full can-
didate string, since we reuse a judgment across
all the candidates of that source sentence. For in-
stance, if we collect the judgment:

<der patient,the patient,YES>

from the sentence pair:

der patient wurde isoliert .
the patient was isolated .

then this would apply to any candidate translation
of this source sentence. And so all of the following
substrings are labeled YES as well:

the patient isolated .
the patient was in isolation .
the patient has been isolated .

Similarly, if we collect the judgment:

<der patient,of the patient,NO>

from the sentence pair:

der patient wurde isoliert .
of the patient was isolated .

then this would apply to any candidate translation
of the source, and the following substrings are la-
beled NO as well:

of the patient isolated .
of the patient was in isolation .
of the patient has been isolated .

The strategy of using judgments across candi-
dates reduces the amount of labels we need to col-
lect, but evaluating a candidate translation for the
source sentence of Figure 2 would still require ob-
taining 18 labels, one for each node in the parse
tree. Instead of querying a human for each one
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of those nodes, it is quite reasonable to percolate
existing labels up and down the parse tree: if a
node is labeled NO, this likely means that all its
ancestors would also be labeled NO, and if a node
is labeled YES, this likely means that all its de-
scendents whould also be labeled YES.

While those two strategies (using judgments
across candidates, and percolating labels up and
down the tree) are only approximations for the true
labels, employing them considerably reduces the
amount of data we need to collect.

3.1 Obtaining Source-to-Candidate
Alignments

How do we determine which segment of the can-
didate sentence aligns to a given source segment?
Given a word alignment between the source and
the candidate, we take the target substring to con-
tain any word aligned with at least one word in
the source segment. One could run an aligner (e.g.
GIZA++) on the two sentences to obtain the word
alignment, but we take a different approach.

We use Joshua (Li et al., 2009), in our experi-
ments. Joshua is a hierarchical parsing-based MT
system, and it can be instructed to produce deriva-
tion trees instead of the candidate sentence string
itself. Furthermore, each node in the derivation
tree is associated with the two indices in the source
sentence that indicate the segment corresponding
to this derivation subtree (the numbers indicated
in curly brackets in Figure 2).

Using this information, we are able to recover
most of the phrasal alignments. There are other
phrasal alignments that can be deduced from
the structure of the tree indirectly, by system-
atically discarding source words that are part
of another phrasal alignment. For instance,
in Figure 2, one can observe the alignment
(offizielle,prognosen,sind)–(official,forecasts,are)
and the alignment (prognosen)–(forecasts) to
deduce (offizielle,sind)–(official,are).

Although some of the phrasal alignment are
one-to-one mappings, many of them are many-
to-many. By construction, any deduced many-to-
many mapping has occurred in the training paral-
lel corpus at least once. And so we recover the
individual word alignments by consulting the par-
allel corpus from which the grammar rules were
extracted (which requires maintaining the word
alignments obtained prior to rule extraction).5

5We incorporated our implementation of the source-

We emphasize here that our recovery of word
alignment from phrasal alignment is independent
from the hierarchical and parsing-based nature of
the Joshua system. And so the alignment approach
we suggest here can be applied to a different MT
system as well, as long as that system provides
phrasal alignment along with the output. In partic-
ular, a phrase-based system such as Moses can be
modified in a straightforward manner to provide
phrasal alignments, and then apply our method.

4 Data Collection

We chose the WMT08 German-English news
dataset to work with, and since this is an investiga-
tive study of a novel approach, we collected judg-
ments for a subset of 250 source sentences from
the development set for the set of candidate sen-
tences produced in the last iteration of a MERT
run optimizing BLEU on the full 2051-sentence de-
velopment set. The MT system we used is Joshua
(Li et al., 2009), a software package that comes
complete with a grammar extraction module and a
MERT module, in addition to the decoder itself.

What segments of the source should be chosen
to be judged? We already indicated that we limit
ourselves, by definition of RYPT, to segments that
are covered exactly by a subtree in the source parse
tree. This has a couple of nice advantages: it al-
lows us to present an annotator with a high num-
ber of alternatives judged simulataneously (since
the annotator is shown a source segment and sev-
eral candidates, not just one), and this probably
also makes judging them easier – it is reasonable
to assume that strings corresponding to syntactic
constituents are easier to process by a human.

Our query selection strategy attempts to max-
imize the amount of YES/NO percolation that
would take place. We therefore ensure that for any
2 queries, the corresponding source segments do
not overlap: such overlap indicates that one sub-
tree is completely contained within the other. Hav-
ing both queries (in the same batch) might be re-
dundant if we use the above percolation procedure.

The idea is to select source segments so that
they fully cover the entire source sentence, but
have no overlap amongst them. In one extreme,
each query would correspond to an entire parse
tree. This is not ideal since the overwhelming ma-
jority of the judgments will most likely be NO,

candidate aligner into the Joshua software as a new
aligner package.
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which does not help identify where the problem
is. In the other extreme, each query would corre-
spond to a subtree rooted at a preterminal. This is
also not ideal, since it would place too much em-
phasis on translations of unigrams.

So we need a middle ground. We select a
maximum-source-length maxLen to indicate how
long we’re willing to let source segments be. Then
we start at the root of the parse tree, and prop-
agate a “frontier” node set down the parse tree,
to end up with a set of nodes that fully cover the
source sentence, have no overlap amongst them,
and with each covering no more than maxLen
source words. For instance, with maxLen set to
4, the frontier set of Figure 2 are the nodes with
a thick border. An algorithmic description is pro-
vided in Algorithm 1.

Algorithm 1 Constructing the frontier node set for
a parse tree.
Input: A source parse tree T rooted at ROOT, and

a maximum source length maxLen.
Return: A nonempty set frontierSet, con-

taining a subset of the nodes in T .
1. Initialize frontierSet to the empty set.
2. Initialize currNodes to {ROOT}.
3. while currNodes is not empty do
4. Initialize newNodes to the empty set.
5. for each node N in currNodes do
6. if N covers ≤ maxLen source words

then
7. Add N to frontierSet.
8. else
9. Add children of N to newNodes.

10. end if
11. end for
12. Set currNodes = newNodes
13. end while
14. Return frontierSet.

This would ensure that our queries cover be-
tween 1 and maxLen source words, and ensures
they do not overlap, which would allow us to take
full advantage of the downward-YES and upward-
NO percolation. We set maxLen = 4 based on a
pilot study of 10 source sentences and their candi-
dates, having observed that longer segments tend
to always be labeled as NO, and shorter segments
tend to be so deep down the parse tree.

4.1 Amazon Mechanical Turk

We use the infrastructure of Amazon’s Mechan-
ical Turk (AMT)6 to collect the labels. AMT is
a virtual marketplace that allows “requesters” to
create and post tasks to be completed by “work-
ers” around the world. To create the tasks (called
Human Intelligence Tasks, or HITs), a requester
supplies an HTML template along with a comma-
separated-values database, and AMT automati-
cally creates the HITs and makes them available to
workers. The queries are displayed as an HTML
page (based on the provided HTML template),
with the user indicating the label (YES, NO, or NOT
SURE) by selecting the appropriate radio button.
The instructions read, in part:7

You are shown a “source” German
sentence with a highlighted segment,
followed by several candidate trans-
lations with corresponding highlighted
segments. Your task is to decide if each
highlighted English segment is an ac-
ceptable translation of the highlighted
German segment.

In each HIT, the worker is shown up to 10 al-
ternative translations of a highlighted source seg-
ment, with each itself highlighted within a full
candidate string in which it appears. To aid the
worker in the task, they are also shown the ref-
erence translation, with a highlighted portion that
corresponds to the source segment, deduced using
word alignments obtained with GIZA++.8

4.2 Cost of Data Collection

The total number of HITs created was 3873,
with the reward for completing a HIT depend-
ing on how many alternative translations are being
judged. On average, each HIT cost 2.1 cents and
involved judging 3.39 alternatives. 115 distinct
workers put in a total of 30.82 hours over a pe-
riod of about 4 days. On average, a label required
8.4 seconds to determine (i.e. at a rate of 426 la-
bels per hour). The total cost was $81.44: $21.43
for Amazon’s commission, $53.47 for wages, and

6AMT’s website: http://www.mturk.com.
7Template and full instructions can be viewed at http:

//cs.jhu.edu/˜ozaidan/hmert.
8These alignments are not always precise, and we do note

that fact in the instructions. We also deliberately highlight the
reference substring in a different color to make it clear that
workers should judge a candidate substring primarily based
on the source substring, not the reference substring.
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$6.54 for bonuses9, for a cost per label of 0.62
cents (i.e. at a rate of 161.32 labels per dol-
lar). Excluding Amazon’s commission, the effec-
tive hourly ‘wage’ was $1.95.

5 Experimental Results and Analysis

By limiting our queries to source segments corre-
sponding to frontier nodes with maxLen = 4, we
obtain a total of 3601 subtrees across the 250 sen-
tences, for an average of 14.4 per sentence. On
average, each subtree has 3.65 alternative trans-
lations. Only about 4.8% of the judgments were
returned as NOT SURE (or, occasionally, blank),
with the rest split into 35.1% YES judgments and
60.1% NO judgments.

The coverage we get before percolating labels
up and down the trees is 39.4% of the nodes, in-
creasing to a coverage of 72.9% after percolation.
This is quite good, considering we only do a sin-
gle data collection pass, and considering that about
10% of the subtrees do not align to candidate sub-
strings to begin with (e.g. single source words that
lack a word alignment into the candidate string).

The main question, of course, is whether or not
those labels allow us to calculate a RYPT score
that is reliably correlated with human judgment.
We designed an experiment to compare the predic-
tive power of RYPT vs. BLEU. Given the candidate
set of a source sentence, we rerank the candidate
set according to RYPT and extract the top-1 can-
didate, and we rerank the candidate set according
to BLEU, and extract the top-1 candidate. We then
present the two candidates to human judges, and
ask them to choose the one that is a more adequate
translation. For reliability, we collect 3 judgments
per sentence pair comparison, instead of just 1.

The results show that RYPT significantly outper-
forms BLEU when it comes to predicting human
preference, with its choice prevailing in 46.1%
of judgments vs. 36.0% for BLEU, with 17.9%
judged to be of equal quality (left half of Ta-
ble 1). This advantage is especially true when the
judgments are grouped by sentence, and we ex-
amine cases of strong agreement among the three
annotators (Table 2): whereas BLEU’s candidate
is strongly preferred in 32 of the candidate pairs
(bottom 2 rows), RYPT’s candidate is strongly pre-
ferred in about double that number: 60 candidate

9We would review the collected labels and give a 20%
reward for good workers to encourage them to come back
and complete more HITs.

pairs (top 2 rows).
This is quite a remarkable result, given that

BLEU, by definition, selects a candidate that has
significant overlap with the reference shown to the
annotators to aid in their decision-making. This
means that BLEU has an inherent advantage in
comparisons where both candidates are more or
less of equal quality, since annotators are encour-
aged (in the instructions) to make a choice even if
the two candidates seem of be of equal quality at
first glance. Pressed to make such a choice, the
annotator is likely to select the candidate that su-
perficially ‘looks’ more like the reference to be the
‘better’ of the two candidates. That candidate will
most likely be the BLEU-selected one.

To test this hypothesis, we repeated the experi-
ment without showing the annotators the reference
translations, and limited data collection to work-
ers living in Germany, making judgments based
only on the source sentences. (We only collected
one judgment per source sentence, since German
workers on AMT are in short supply.)

As expected, the difference is even more pro-
nounced: human judges prefer the RYPT-selected
candidate 45.2% of the time, while BLEU’s can-
didate is preferred only 29.2% of the time, with
25.6% judged to be of equal quality (right half
of Table 1). Our hypothesis is further supported
by the fact that most of the gain of the “equal-
quality” category comes from BLEU, which loses
6.8 percentage points, whereas RYPT’s share re-
mains largely intact, losing less than a single per-
centage point.

5.1 Analysis of Data Collection

Recall that we minimize data collection by per-
forming label percolation and by employing a
frontier node set selection strategy. While the re-
sults just presented indicate those strategies pro-
vide a good approximation of some ‘true’ RYPT

score, label percolation was a strategy based pri-
marily on intuition, and choosing maxLen = 4
for frontier set construction was based on examin-
ing a limited amount of preliminary data.

Therefore, and in addition to encouraging em-
pricial results, we felt a more rigorous quantitative
analysis was in order, especially with future, more
ambitious annotation projects on the horizon. To
this end, we collected a complete set of judgments
for 50 source sentences and their candidates. That
is, we generated a query for each and every node
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References shown; References not shown;
unrestricted restricted to DE workers

Preferred candidate # judgments % judgments # judgments % judgments
Top-1 by RYPT 346 46.1 113 45.2
Top-1 by BLEU 270 36.0 73 29.2

Neither 134 17.9 64 25.6
Total 750 100.0 250 100.0

Table 1: Ranking comparison results. The left half corresponds to the experiment (open to all workers)
where the English reference was shown, whereas the right half corresponds to the experiment (open only
to workers living in Germany) where the English reference was not shown.

Aggregate # sentences % sentences Aggregate # sentences % sentences
RYPT +3 45 18.0
RYPT +2 15 6.0 RYPT +any 120 48.0
RYPT +1 60 24.0
± 0 42 16.8 ± 0 42 16.8

BLEU +1 55 22.0
BLEU +2 5 2.0 BLEU +any 88 35.2
BLEU +3 28 11.2

Total 250 100.0 Total 250 100.0

Table 2: Ranking comparison results, grouped by sentence. This table corresponds to the left half of
Table 1. 3 judgments were collected for each comparison, with the “aggregate” for a comparison calcu-
lated from these 3 judgments. For instance, an aggregate of “RYPT +3” means all 3 judgments favored
RYPT’s choice, and “RYPT +1” means one more judgment favored RYPT than did BLEU.

in the source parse tree, instead of limiting our-
selves to a frontier node set. (Though we did limit
the length of a source segment to be ≤ 7 words.)
This would allow us to judge the validity of label
percolation, and under different maxLen values.

Furthermore, we collected multiple judgments
for each query in order to minimize the effet of
bad/random annotations. For each of 5580 gen-
erated queries, we collected five judgments, for a
total of 27,900 judgments.10 As before, the anno-
tator would pick one of YES, NO, and NOT SURE.

First, collecting multiple judgments allowed us
to investigate inter-annotator agreement. In 68.9%
of the queries, at least 4 of the 5 annotators chose
the same label, signifying a high degree of inter-
annotator agreement. This is especially encourag-
ing considering that we identified about 15% of
the HITs as being of poor quality, and blocked the
respective annotators from doing further HITs.11

We then examine the applicability and validity

10For a given query, the five collected judgments are from
five different annotators, since AMT ensures an annotator is
never shown the same HIT twice.

11It is especially easy to identify (and then block) such an-
notators when they submit a relatively large number of HITs,
since inspecting some of their annotations would indicate
they are answering randomly and/or inconsistently.

of label percolation. For each of 7 different values
for Algorithm 1’s maxLen, we ignore all but la-
bels that would be requested under that maxLen
value, and percolate the labels up and down the
tree. In Figure 3 we plot the coverage before and
after percolation (middle two curves), and observe
expansion in coverage across different values of
maxLen, peaking at about +33% for maxLen= 4
and 5, with most of the benefit coming from YES
percolation (bottom two curves).
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Figure 3: Label percolation under different
maxLen values. The bottom two curves are the
breakdown of the difference between the middle
two. Accuracy is measured against majority votes.
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We also measure the accuracy of labels deduced
from percolation (top curve of Figure 3). We de-
fine a percolated label to be correct if it matches
the label given by a majority vote over the col-
lected labels for that particular node. We find that
accuracy at low maxLen values is significantly
lower than at higer values (e.g. 72.6% vs. 84.1%
for 1 vs. 4). This means a middle value such as 3
or 4 is optimal. Higher values could be suitable if
we wish to emphasize translation fluency.

6 Related Work

Nießen et al. (2000) is an early work that also con-
structs a database of translations and judgments.
There, a source sentence is stored along with all
the translations that have already been manually
judged, along with their scores. They utilize this
database to carry out “semi-automatic” evaluation
in a fast and convenient fashion thanks to tool they
developed with a user-friendly GUI.

In their annual evaluation, the WMT work-
shop has effectively conducted manual evaluation
of submitted systems over the past few years by
distributing the work across tens of volunteers,
though they relied on a self-designed online por-
tal. On the other hand, Snow et al. (2008) illus-
trate how AMT can be used to collect data in a
“fast and cheap” fashion, for a number of NLP
tasks, such as word sense disambiguation. They
go a step further and model the behavior of their
annotators to reduce annotator bias. This was pos-
sible as they collect multiple judgments for each
query from multiple annotators.

The question of how to design an automatic
metric that best approximates human judgment
has received a lot of attention lately. NIST started
organizing the Metrics for Machine Translation
Challenge (MetricsMATR) in 2008, with the aim
of developing automatic evaluation metrics that
correlate highly with human judgment of transla-
tion quality. The latest WMT workshop (Callison-
Burch et al., 2009) also conducted a full assess-
ment of how well a suite of automatic metrics cor-
relate with human judgment.

7 Future Work

This pilot study has demonstrated the feasibility
of collecting a large number of human judgments,
and has shown that the RYPT metric is better than
BLEU at picking out the best translation. The
next step is to run a complete MERT run. This

will involve collecting data for thousands of al-
ternative translations for several hundreds source
sentences. Based on our analysis, this it should
be cost-effective to solicit these judgments using
AMT. After training MERT using RYPT as an ob-
jective function the, the next logical step would be
to compare two outputs of a system. One output
would have parameters optimized to BLEU and the
other to RYPT. The hope is that the RYPT-trained
system would be better under the final HTER eval-
uation than the BLEU-trained system.

We are also investigating a probabilistic ap-
proach to percolating the labels up and down the
tree, whereby the label of a node is treated as a
random variable, and inference is performed based
on values of the other observed nodes, as well as
properties of the source/candidate segment. Cast
this way, a probabilistic approach is actually quite
appealing, and one could use collected data to
train a prediction model (such as a Markov ran-
dom field).

8 Summary

We propose a human-based metric, RYPT, that is
quite feasible to optimize using MERT, relying on
the redundancy in the candidate set, and collect-
ing judgments using Amazon’s Mechanical Turk
infrastructure. We show this could be done in a
quite cost-effective manner, and produces data of
good quality. We show the effectiveness of the
metric by illustrating that it is a better predictor of
human judgment of translation quality than BLEU,
the most commonly used metric in MT. We show
this is the case even with a modest amount of data
that does not cover the entirety of all parse trees,
on which the metric is dependent. The collected
data represents a database that can be reused over
and over again, hence limiting human feedback to
the initial phase only.
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Abstract

Cube pruning is a fast inexact method for
generating the items of a beam decoder.
In this paper, we show that cube pruning
is essentially equivalent to A* search on a
specific search space with specific heuris-
tics. We use this insight to develop faster
and exact variants of cube pruning.

1 Introduction

In recent years, an intense research focus on ma-
chine translation (MT) has raised the quality of
MT systems to the degree that they are now viable
for a variety of real-world applications. Because
of this, the research community has turned its at-
tention to a major drawback of such systems: they
are still quite slow. Recent years have seen a flurry
of innovative techniques designed to tackle this
problem. These include cube pruning (Chiang,
2007), cube growing (Huang and Chiang, 2007),
early pruning (Moore and Quirk, 2007), clos-
ing spans (Roark and Hollingshead, 2008; Roark
and Hollingshead, 2009), coarse-to-fine methods
(Petrov et al., 2008), pervasive laziness (Pust and
Knight, 2009), and many more.

This massive interest in speed is bringing rapid
progress to the field, but it comes with a certain
amount of baggage. Each technique brings its own
terminology (from thecubesof (Chiang, 2007)
to the lazy listsof (Pust and Knight, 2009)) into
the mix. Often, it is not entirely clear why they
work. Many apply only to specialized MT situ-
ations. Without a deeper understanding of these
methods, it is difficult for the practitioner to com-
bine them and adapt them to new use cases.

In this paper, we attempt to bring some clarity
to the situation by taking a closer look at one of
these existing methods. Specifically, we cast the
popular technique ofcube pruning(Chiang, 2007)
in the well-understood terms of heuristic search

(Pearl, 1984). We show that cube pruning is essen-
tially equivalent to A* search on a specific search
space with specific heuristics. This simple obser-
vation affords a deeper insight into how and why
cube pruning works. We show how this insight en-
ables us to easily develop faster and exact variants
of cube pruning for tree-to-string transducer-based
MT (Galley et al., 2004; Galley et al., 2006; DeN-
ero et al., 2009).

2 Motivating Example

We begin by describing the problem that cube
pruning addresses. Consider a synchronous
context-free grammar (SCFG) that includes the
following rules:

A → 〈A 0 B 1 , A 0 B 1 〉 (1)

B → 〈A 0 B 1 , B 1 A 0 〉 (2)

A → 〈B 0 A 1 , c B 0 b A 1 〉 (3)

B → 〈B 0 A 1 , B 0 A 1 〉 (4)

Figure 1 shows CKY decoding in progress. CKY
is a bottom-up algorithm that works by building
objects known asitems, over increasingly larger
spansof an input sentence (in the context of SCFG
decoding, the items represent partial translations
of the input sentence). To limit running time, it is
common practice to keep only then “best” items
per span (this is known asbeam decoding). At
this point in Figure 1, every span of size 2 or less
has already been filled, and now we want to fill
span[2, 5] with then items of lowest cost. Cube
pruning addresses the problem of how to compute
then-best items efficiently.

We can be more precise if we introduce some
terminology. An SCFGrule has the form X→
〈σ, ϕ,∼〉, whereX is a nonterminal (called the
postcondition), σ, ϕ are strings that may contain
terminals and nonterminals, and∼ is a 1-1 corre-
spondence between equivalent nonterminals ofσ
andϕ.
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Figure 1: CKY decoding in progress. We want to
fill span [2,5] with the lowest cost items.

Usually SCFG rules are represented like the ex-
ample rules (1)-(4). The subscripts indicate cor-
responding nonterminals (according to∼). Define
thepreconditionsof a rule as the ordered sequence
of its nonterminals. For clarity of presentation, we
will henceforth restrict our focus to binary rules,
i.e. rules of the form: Z→ 〈X 0 Y 1 , ϕ〉. Observe
that all the rules of our example are binary rules.

An item is a triple that contains a span and two
strings. We refer to these strings as thepostcon-
dition and thecarry, respectively. Thepostcon-
dition tells us which rules may be applied to the
item. Thecarry gives us extra information re-
quired to correctly score the item (in SCFG decod-
ing, typically it consists of boundary words for an
n-gram language model).1 To flatten the notation,
we will generally represent items as a 4-tuple, e.g.
[2, 4, X, a⋄ b].

In CKY, new items are created by applying rules
to existing items:

r : Z → 〈X 0 Y 1 , ϕ〉 [α, δ, X, κ1] [δ, β, Y, κ2]
[α, β, Z, carry(r, κ1, κ2)]

(5)
In other words, we are allowed to apply a
rule r to a pair of items ι1, ι2 if the item
spans are complementary andpreconditions(r) =
〈postcondition(ι1), postcondition(ι2)〉. The new
item has the same postcondition as the applied
rule. We form the carry for the new item through
an application-dependent functioncarry that com-
bines the carries of its subitems (e.g. if the carry is
n-gram boundary words, thencarry computes the

1Note that the carry is a generic concept that can store any
kind of non-local scoring information.

new boundary words). As a shorthand, we intro-
duce the notationι1 ⋗ r ⋖ ι2 to describe an item
created by applying formula (5) to ruler and items
ι1, ι2.

When we create a new item, it is scored using
the following formula:2

cost(ι1 ⋗ r ⋖ ι2) , cost(r)
+ cost(ι1)
+ cost(ι2)
+ interaction(r, κ1, κ2)

(6)

We assume that each grammar ruler has an
associated cost, denotedcost(r). The interac-
tion cost, denotedinteraction(r, κ1, κ2), uses the
carry information to compute cost components
that cannot be incorporated offline into the rule
costs (again, for our purposes, this is a language
model score).

Cube pruning addresses the problem of effi-
ciently computing then items of lowest cost for
a given span.

3 Item Generation as Heuristic Search

Refer again to the example in Figure 1. We want to
fill span [2,5]. There are 26 distinct ways to apply
formula (5), which result in 10 unique items. One
approach to finding the lowest-costn items: per-
form all 26 distinct inferences, compute the cost of
the 10 unique items created, then choose the low-
estn.

The 26 different ways to form the items can be
structured as a search tree. See Figure 2. First
we choose the subspans, then the rule precondi-
tions, then the rule, and finally the subitems. No-
tice that this search space is already quite large,
even for such a simple example. In a realistic situ-
ation, we are likely to have a search tree with thou-
sands (possibly millions) of nodes, and we may
only want to find the best 100 or so goal nodes.
To explore this entire search space seems waste-
ful. Can we do better?

Why not perform heuristic search directly on
this search space to find the lowest-costn items?
In order to do this, we just need to add heuristics
to the internal nodes of the space.

Before doing so, it will help to elaborate on
some of the details of the search tree. Let
rules(X, Y) be the subset of rules with precondi-
tions〈X, Y〉, sorted by increasing cost. Similarly,

2Without loss of generality, we assume an additive cost
function.
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Figure 2: Item creation, structured as a search
space. rule(X, Y, k) denotes thekth lowest-cost
rule with preconditions〈X, Y〉. item(α, β, X, k)
denotes thekth lowest-cost item of span[α, β]
with postcondition X.

let items(α, β, X) be the subset of items with span
[α, β] and postcondition X, also sorted by increas-
ing cost. Finally, letrule(X, Y, k) denote thekth

rule of rules(X, Y) and letitem(α, β, X, k) denote
thekth item of items(α, β, X).

A path through the search tree consists of the
following sequence of decisions:

1. Seti, j, k to 1.

2. Choose the subspans:[α, δ], [δ, β].

3. Choose the first preconditionX of the rule.

4. Choose the second preconditionY of the
rule.

5. While rule not yet accepted andi <
|rules(X, Y)|:
(a) Choose to accept/rejectrule(X, Y, i). If

reject, then incrementi.

6. While item not yet accepted for subspan
[α, δ] andj < |items(α, δ, X)|:
(a) Choose to accept/rejectitem(α, δ, X, j).

If reject, then incrementj.

7. While item not yet accepted for subspan[δ, β]
andk < |items(δ, β, Y)|:
(a) Choose to accept/rejectitem(δ, β, Y, k).

If reject, then incrementk.

Figure 3: The lookahead heuristic. We set the
heuristics for rule and item nodes by looking
ahead at the cost of the greedy solution from that
point in the search space.

Figure 2 shows two complete search paths for
our example, terminated bygoal nodes(in black).
Notice that the internal nodes of the search space
can be classified by the type of decision they
govern. To distinguish between these nodes, we
will refer to them assubspan nodes, precondition
nodes, rule nodes, anditem nodes.

We can now proceed to attach heuristics to the
nodes and run a heuristic search protocol, say A*,
on this search space. For subspan and precondition
nodes, we attach trivial uninformative heuristics,
i.e. h = −∞. For goal nodes, the heuristic is the
actual cost of the item they represent. For rule and
item nodes, we will use a simple type of heuristic,
often referred to in the literature as alookahead
heuristic. Since the rule nodes and item nodes are
ordered, respectively, by rule and item cost, it is
possible to “look ahead” at a greedy solution from
any of those nodes. See Figure 3. This greedy so-
lution is reached by choosing to accept every de-
cision presented until we hit a goal node.

If these heuristics were admissible (i.e. lower
bounds on the cost of the best reachable goal
node), this would enable us to exactly generate the
n-best items without exhausting the search space
(assuming the heuristics are strong enough for A*
to do some pruning). Here, the lookahead heuris-
tics are clearly not admissible, however the hope
is that A* will generaten “good” items, and that
the time savings will be worth sacrificing exact-
ness for.
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4 Cube Pruning as Heuristic Search

In this section, we will compare cube pruning with
our A* search protocol, by tracing through their
respective behaviors on the simple example of Fig-
ure 1.

4.1 Phase 1: Initialization

To fill span [α, β], cube pruning (CP) begins by
constructing acubefor each tuple of the form:

〈[α, δ], [δ, β], X , Y〉
where X and Y are nonterminals. A cube consists
of three axes:rules(X, Y) and items(α, δ, X) and
items(δ, β, Y). Figure 4(left) shows the nontrivial
cubes for our example scenario.

Contrast this with A*, which begins by adding
the root node of our search space to an empty heap
(ordered by heuristic cost). It proceeds to repeat-
edly pop the lowest-cost node from the heap, then
add its children to the heap (we refer to this op-
eration asvisiting the node). Note that before A*
ever visits a rule node, it will have visited every
subspan and precondition node (because they all
have costh = −∞). Figure 4(right) shows the
state of A* at this point in the search. We assume
that we do not generate dead-end nodes (a simple
matter of checking that there exist applicable rules
and items for the chosen subspans and precondi-
tions). Observe the correspondence between the
cubes and the heap contents at this point in the A*
search.

4.2 Phase 2: Seeding the Heap

Cube pruning proceeds by computing the “best”
item of each cube〈[α, δ], [δ, β], X , Y〉, i.e.

item(α, δ, X, 1) ⋗ rule(X, Y, 1) ⋖ item(δ, β, Y, 1)

Because of the interaction cost, there is no guaran-
tee that this will really be the best item of the cube,
however it is likely to be a good item because the
costs of the individual components are low. These
items are added to a heap (to avoid confusion, we
will henceforth refer to the two heaps as theCP
heapand theA* heap), and prioritized by their
costs.

Consider again the example. CP seeds its heap
with the “best” items of the 4 cubes. There is now
a direct correspondence between the CP heap and
the A* heap. Moreover, the costs associated with
the heap elements also correspond. See Figure 5.

4.3 Phase 3: Finding the First Item

Cube pruning now pops the lowest-cost item from
the CP heap. This means that CP has decided to
keep the item. After doing so, it forms the “one-
off” items and pushes those onto the CP heap. See
Figure 5(left). The popped item is:

item (viii) ⋗ rule (1)⋖ item (xii)

CP then pushes the following one-off successors
onto the CP heap:

item (viii) ⋗ rule (2)⋖ item (xii)

item (ix) ⋗ rule (1)⋖ item (xii)

item (viii) ⋗ rule (1)⋖ item (xiii)

Contrast this with A*, which pops the lowest-
costsearch nodefrom the A* heap. Here we need
to assume that our A* protocol differs slightly
from standard A*. Specifically, it will practice
node-tying, meaning that when it visits a rule node
or an item node, then it also (atomically) visits all
nodes on the path to its lookahead goal node. See
Figure 5(right). Observe that all of these nodes
have the same heuristic cost, thus standard A* is
likely to visit these nodes in succession without
the need to enforce node-tying, but it would not
be guaranteed (because the heuristics are not ad-
missible). A* keeps the goal node it finds and adds
the successors to the heap, scored with their looka-
head heuristics. Again, note the direct correspon-
dence between what CP and A* keep, and what
they add to their respective heaps.

4.4 Phase 4: Finding Subsequent Items

Cube pruning and A* continue to repeat Phase
3 until k unique items have been kept. While
we could continue to trace through the example,
by now it should be clear: cube pruning and our
A* protocol with node-tying are doing the same
thing at each step. In fact, they areexactly the
same algorithm. We do not present a formal proof
here; this statement should be regarded as confi-
dent conjecture.

The node-tying turns out to be an unnecessary
artifact. In our early experiments, we discovered
that node-tying has no impact on speed or qual-
ity. Hence, for the remainder of the paper, we
view cube pruning in very simple terms: as noth-
ing more than standard A* search on the search
space of Section 3.
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Figure 4: (left) Cube formation for our example. (right) The A* protocol, after all subspan and precon-
dition nodes have been visited. Notice the correspondence between the cubes and the A* heap contents.

Figure 5: (left) One step of cube pruning. (right) One step of the A* protocol. In this figure,
cost(r, ι1, ι2) , cost(ι1 ⋗ r ⋖ ι2).
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5 Augmented Cube Pruning

Viewed in this light, the idiosyncracies of cube
pruning begin to reveal themselves. On the one
hand, rule and item nodes are associated with
strong but inadmissible heuristics (the short expla-
nation for why cube pruning is an inexact algo-
rithm). On the other hand, subspan and precondi-
tion nodes are associated with weak trivial heuris-
tics. This should be regarded neither as a surprise
nor a criticism, considering cube pruning’s origins
in hierarchical phrase-based MT models (Chiang,
2007), which have only a small number of distinct
nonterminals.

But the situation is much different in tree-
to-string transducer-based MT (Galley et al.,
2004; Galley et al., 2006; DeNero et al., 2009).
Transducer-based MT relies on SCFGs with large
nonterminal sets. Binarizing the grammars (Zhang
et al., 2006) further increases the size of these sets,
due to the introduction of virtual nonterminals.

A key benefit of the heuristic search viewpoint
is that it is well positioned to take advantage of
such insights into the structure of a particular de-
coding problem. In the case of transducer-based
MT, the large set of preconditions encourages us
to introduce a nontrivial heuristic for the precon-
dition nodes. The inclusion of these heuristics into
the CP search will enable A* to eliminate cer-
tain preconditions from consideration, giving us a
speedup. For this reason we call this strategyaug-
mented cube pruning.

5.1 Heuristics on preconditions

Recall that the total cost of a goal node is given by
Equation (6), which has four terms. We will form
the heuristic for a precondition node by creating
a separate heuristic for each of the four terms and
using the sum as the overall heuristic.

To describe these heuristics, we will make intu-
itive use of the wildcard operator∗ to extend our
existing notation. For instance,items(α, β, *) will
denote the union ofitems(α, β, X) over all possi-
ble X, sorted by cost.

We associate the heuristich(δ, X, Y) with the
search node reached by choosing subspans[α, δ],
[δ, β], precondition X (for span[α, δ]), and precon-
dition Y (for span[δ, β]). The heuristic is the sum
of four terms, mirroring Equation (6):

h(δ, X, Y) = cost(rule(X, Y, 1))
+ cost(item(α, δ, X, 1))
+ cost(item(δ, β, Y, 1))
+ ih(δ, X, Y)

The first three terms are admissible because
each is simply the minimum possible cost of
some choice remaining to be made. To con-
struct the interaction heuristicih(δ, X, Y), con-
sider that in a translation model with an inte-
grated n-gram language model, the interaction
cost interaction(r, κ1, κ2) is computed by adding
the language model costs of any new completen-
grams that are created by combining the carries
(boundary words) with each other and with the
lexical items on the rule’s target side, taking into
account any reordering that the rule may perform.
We construct a backoff-style estimate of these
new n-grams by looking atitem(α, δ, X, 1) =
[α, δ, X, κ1], item(δ, β, Y, 1) = [δ, β, Y, κ2], and
rule(X, Y, 1). We setih(δ, X, Y) to be a linear
combination of the backoffn-grams of the carries
κ1 andκ2, as well as anyn-grams introduced by
the rule. For instance, if

κ1 = a b ⋄ c d

κ2 = e f ⋄ g h

rule(X, Y, 1) = Z → 〈X 0 Y 1 , X 0 g h i Y 1 〉
then

ih(δ, X, Y) = γ1 · LM(a) + γ2 · LM(a b)
+ γ1 · LM(e) + γ2 · LM(e f)
+ γ1 · LM(g) + γ2 · LM(g h)
+ γ3 · LM(g h i)

The coefficients of the combination are free pa-
rameters that we can tune to trade off between
more pruning and more admissability. Setting the
coefficients to zero gives perfect admissibility but
is also weak.

The heuristic for the first precondition node is
computed similarly:

h(δ, X, ∗) = cost(rule(X, ∗, 1))
+ cost(item(α, δ, X, 1))
+ cost(item(δ, β, ∗, 1))
+ ih(δ, X, ∗)
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Standard CP Augmented CP
nodes (k)BLEU time nodes (k)BLEU time
80 34.9 2.5 52 34.7 1.9
148 36.1 3.9 92 35.9 2.4
345 37.2 7.9 200 37.3 5.4
520 37.7 13.4 302 37.7 8.5
725 38.2 17.1 407 38.0 10.7
1092 38.3 27.1 619 38.2 16.3
1812 38.6 45.9 1064 38.5 27.7

Table 1: Results of standard and augmented cube
pruning. The number of (thousands of) search
nodes visited is given along with BLEU and av-
erage time to decode one sentence, in seconds.

0 500000 1x106 1.5x106 2x106Search nodes visited3536
3738BLEU Standard CPAugmented CP

Figure 6: Nodes visited by standard and aug-
mented cube pruning.

We also apply analogous heuristics to the subspan
nodes.

5.2 Experimental setup

We evaluated all of the algorithms in this paper on
a syntax-based Arabic-English translation system
based on (Galley et al., 2006), with rules extracted
from 200 million words of parallel data from NIST
2008 and GALE data collections, and with a 4-
gram language model trained on 1 billion words
of monolingual English data from the LDC Giga-
word corpus. We evaluated the system’s perfor-
mance on the NIST 2008 test corpus, which con-
sists of 1357 Arabic sentences from a mixture of
newswire and web domains, with four English ref-
erence translations. We report BLEU scores (Pa-
pineni et al., 2002) on untokenized, recapitalized
output.

5.3 Results for Augmented Cube Pruning

The results for augmented cube pruning are com-
pared against cube pruning in Table 1. The data

0 10 20 30 40 50Average time per sentence (s)3536
3738BLEU Standard CPAugmented CP

Figure 7: Time spent by standard and augmented
cube pruning, average seconds per sentence.

Standard CPAugmented CP
subspan 12936 12792
precondition851458 379954
rule 33734 33331
item 119703 118889
goal 74618 74159
TOTAL 1092449 619125
BLEU 38.33 38.22

Table 2: Breakdown of visited search nodes by
type (for a fixed beam size).

from that table are also plotted in Figure 6 and
Figure 7. Each line gives the number of nodes
visited by the heuristic search, the average time
to decode one sentence, and the BLEU of the out-
put. The number of items kept by each span (the
beam) is increased in each subsequent line of the
table to indicate how the two algorithms differ at
various beam sizes. This also gives a more com-
plete picture of the speed/BLEU tradeoff offered
by each algorithm. Because the two algorithms
make the same sorts of lookahead computations
with the same implementation, they can be most
directly compared by examining the number of
visited nodes. Augmenting cube pruning with ad-
missible heuristics on the precondition nodes leads
to a substantial decrease in visited nodes, by 35-
44%. The reduction in nodes converges to a con-
sistent 40% as the beam increases. The BLEU
with augmented cube pruning drops by an average
of 0.1 compared to standard cube pruning. This is
due to the additional inadmissibility of the interac-
tion heuristic.

To see in more detail how the heuristics affect
the search, we give in Table 2 the number of nodes
of each type visited by both variants for one beam
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size. The precondition heuristic enables A* to
prune more than half the precondition nodes.

6 Exact Cube Pruning

Common wisdom is that the speed of cube prun-
ing more than compensates for its inexactness (re-
call that this inexactness is due to the fact that it
uses A* search with inadmissible heuristics). Es-
pecially when we move into transducer-based MT,
the search space becomes so large that brute-force
item generation is much too slow to be practi-
cal. Still, within the heuristic search framework
we may ask the question: is it possible to apply
strictly admissible heuristics to the cube pruning
search space, and in so doing, create a version of
cube pruning that is both fastand exact, one that
finds then best items for each span and not just
n good items? One might not expect such a tech-
nique to outperform cube pruning in practice, but
for a given use case, it would give us a relatively
fast way of assessing the BLEU drop incurred by
the inexactness of cube pruning.

Recall again that the total cost of a goal node
is given by Equation (6), which has four terms. It
is easy enough to devise strong lower bounds for
the first three of these terms by extending the rea-
soning of Section 5. Table 3 shows these heuris-
tics. The major challenge is to devise an effective
lower bound on the fourth term of the cost func-
tion, the interaction heuristic, which in our case is
the incremental language model cost.

We take advantage of the following observa-
tions:

1. In a given span, many boundary word pat-
terns are repeated.In other words, for a par-
ticular span[α, β] and carryκ, we often see
many items of the form[α, β, X, κ], where
the only difference is the postcondition X.

2. Most rules do not introduce lexical items.In
other words, most of the grammar rules have
the form Z → 〈X0 Y1, X0 Y1〉 (concatena-
tion rules) or Z→ 〈X0 Y1, Y1 X0〉 (inver-
sion rules).

The idea is simple. We split the search into three
searches: one for concatenation rules, one for in-
version rules, and one for lexical rules. Each
search finds then–best items that can be created
using its respective set of rules. We then take these
3n items and keep the bestn.

10 20 30 40 50 60 70Average time per sentence (s)3536
3738BLEU Standard CPExact CP

Figure 8: Time spent by standard and exact cube
pruning, average seconds per sentence.

Doing this split enables us to precompute a
strong and admissible heuristic on the interaction
cost. Namely, for a given span[α, β], we pre-
compute ihadm(δ, X, Y), which is the best LM
cost of combining carries fromitems(α, δ, X)
and items(δ, β, Y). Notice that this statistic is
only straightforward to compute once we can as-
sume that the rules are concatenation rules or
inversion rules. For the lexical rules, we set
ihadm(δ, X, Y) = 0, an admissible but weak
heuristic that we can fortunately get away with be-
cause of the small number of lexical rules.

6.1 Results for Exact Cube Pruning

Computing the ihadm(δ, X, Y) heuristic is not
cheap. To be fair, we first compare exact CP to
standard CP in terms of overall running time, in-
cluding the computational cost of this overhead.
We plot this comparison in Figure 8. Surprisingly,
the time/quality tradeoff of exact CP is extremely
similar to standard CP, suggesting that exact cube
pruning is actually a practical alternative to stan-
dard CP, and not just of theoretical value. We
found that the BLEU loss of standard cube prun-
ing at moderate beam sizes was between 0.4 and
0.6.

Another surprise comes when we contrast the
number of visited search nodes of exact CP and
standard CP. See Figure 9. While we initially ex-
pected that exact CP must visit fewer nodes to
make up for the computational overhead of its ex-
pensive heuristics, this did not turn out to be the
case, suggesting that the computational cost of
standard CP’s lookahead heuristics is just as ex-
pensive as the precomputation ofihadm(δ, X, Y).
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heuristic components
subspan precondition1 precondition2 rule item1 item2

h(δ) h(δ, X) h(δ, X, Y) h(δ, X, Y, i) h(δ, X, Y, i, j) h(δ, X, Y, i, j, k)
r rule(∗, ∗, 1) rule(X, ∗, 1) rule(X, Y, 1) rule(X, Y, i) rule(X, Y, i) rule(X, Y, i)
ι1 item(α, δ, ∗, 1) item(α, δ, X, 1) item(α, δ, X, 1) item(α, δ, X, 1) item(α, δ, X, j) item(α, δ, X, j)
ι2 item(δ, β, ∗, 1) item(δ, β, ∗, 1) item(δ, β, Y, 1) item(δ, β, Y, 1) item(δ, β, Y, 1) item(δ, β, Y, k)
ih ihadm(δ, ∗, ∗) ihadm(δ, X, ∗) ihadm(δ, X, Y) ihadm(δ, X, Y) ihadm(δ, X, Y) ihadm(δ, X, Y)

Table 3: Admissible heuristics for exact CP. We attach heuristich(δ, X, Y, i, j, k) to the search node
reached by choosing subspans[α, δ], [δ, β], preconditions X and Y, theith rule of rules(X, Y), the jth

item of item(α, δ, X), and thekth item of item(δ, β, Y). To form the heuristic for a particular type of
search node (column), compute the following:cost(r) + cost(ι1) + cost(ι2) + ih

500000 1x106 1.5x106 2x106Search nodes visited3536
3738BLEU Standard CPExact CP

Figure 9: Nodes visited by standard and exact
cube pruning.

7 Implications

This paper’s core idea is the utility of framing
CKY item generation as a heuristic search prob-
lem. Once we recognize cube pruning as noth-
ing more than A* on a particular search space
with particular heuristics, this deeper understand-
ing makes it easy to create faster and exact vari-
ants for other use cases (in this paper, we focus
on tree-to-string transducer-based MT). Depend-
ing on one’s own particular use case, a variety of
possibilities may present themselves:

1. What if we try different heuristics?In this pa-
per, we do some preliminary inquiry into this
question, but it should be clear that our minor
changes are just the tip of the iceberg. One
can easily imagine clever and creative heuris-
tics that outperform the simple ones we have
proposed here.

2. What if we try a different search space?Why
are we using this particular search space?
Perhaps a different one, one that makes de-

cisions in a different order, would be more
effective.

3. What if we try a different search algorithm?
A* has nice guarantees (Dechter and Pearl,
1985), but it is space-consumptive and it is
not anytime. For a use case where we would
like a finer-grained speed/quality tradeoff, it
might be useful to consider an anytime search
algorithm, like depth-first branch-and-bound
(Zhang and Korf, 1995).

By working towards a deeper and unifying under-
standing of the smorgasbord of current MT speed-
up techniques, our hope is to facilitate the task of
implementing such methods, combining them ef-
fectively, and adapting them to new use cases.
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Abstract

Current methods of using lexical features
in machine translation have difficulty in
scaling up to realistic MT tasks due to
a prohibitively large number of parame-
ters involved. In this paper, we propose
methods of using new linguistic and con-
textual features that do not suffer from
this problem and apply them in a state-of-
the-art hierarchical MT system. The fea-
tures used in this work are non-terminal
labels, non-terminal length distribution,
source string context and source depen-
dency LM scores. The effectiveness of
our techniques is demonstrated by signif-
icant improvements over a strong base-
line. On Arabic-to-English translation,
improvements in lower-cased BLEU are
2.0 on NIST MT06 and 1.7 on MT08
newswire data on decoding output. On
Chinese-to-English translation, the im-
provements are 1.0 on MT06 and 0.8 on
MT08 newswire data.

1 Introduction

Linguistic and context features, especially sparse
lexical features, have been widely used in re-
cent machine translation (MT) research. Unfor-
tunately, existing methods of using such features
are not ideal for large-scale, practical translation
tasks.

In this paper, we will propose several prob-
abilistic models to effectively exploit linguistic
and contextual information for MT decoding, and
these new features do not suffer from the scalabil-
ity problem. Our new models are tested on NIST
MT06 and MT08 data, and they provide signifi-
cant improvement over a strong baseline system.

1.1 Previous Work

The ideas of using labels, length preference and
source side context in MT decoding were explored
previously. Broadly speaking, two approaches
were commonly used in existing work.

One is to use a stochastic gradient descent
(SGD) or Perceptron like online learning algo-
rithm to optimize the weights of these features
directly for MT (Shen et al., 2004; Liang et al.,
2006; Tillmann and Zhang, 2006). This method is
very attractive, since it opens the door to rich lex-
ical features. However, in order to robustly opti-
mize the feature weights, one has to use a substan-
tially large development set, which results in sig-
nificantly slower tuning. Alternatively, one needs
to carefully select a development set that simulates
the test set to reduce the risk of over-fitting, which
however is not always realistic for practical use.

A remedy is to aggressively limit the feature
space, e.g. to syntactic labels or a small fraction
of the bi-lingual features available, as in (Chiang
et al., 2008; Chiang et al., 2009), but that reduces
the benefit of lexical features. A possible generic
solution is to cluster the lexical features in some
way. However, how to make it work on such a
large space of bi-lingual features is still an open
question.

The other approach is to estimate a single score
or likelihood of a translation with rich features,
for example, with the maximum entropy (Max-
Ent) method as in (Carpuat and Wu, 2007; Itty-
cheriah and Roukos, 2007; He et al., 2008). This
method avoids the over-fitting problem, at the ex-
pense of losing the benefit of discriminative train-
ing of rich features directly for MT. However, the
feature space problem still exists in these pub-
lished models.

He et al. (2008) extended the WSD-like ap-
proached proposed in (Carpuat and Wu, 2007) to
hierarchical decoders. In (He et al., 2008), lexical
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features were limited on each single side due to the
feature space problem. In order to further reduce
the complexity of MaxEnt training, they “trained
a MaxEnt model for each ambiguous hierarchical
LHS” (left-hand side or source side) of translation
rules. Different target sides were treated as possi-
ble labels. Therefore, the sample sets of each indi-
vidual MaxEnt model were very small, while the
number of features could easily exceed the number
of samples. Furthermore, optimizing individual
MaxEnt models in this way does not lead to global
maximum. In addition, MaxEnt models trained on
small sets are unstable.

The MaxEnt model in (Ittycheriah and Roukos,
2007) was optimized globally, so that it could bet-
ter employ the distribution of the training data.
However, one has to filter the training data ac-
cording to the test data to get competitive perfor-
mance with this model1. In addition, the filtering
method causes some practical issues. First, such
methods are not suitable for real MT tasks, espe-
cially for applications with streamed input, since
the model has to be retrained with each new input
sentence or document and training is slow. Fur-
thermore, the model is ill-posed. The translation
of a source sentence depends on other source sen-
tences in the same batch with which the MaxEnt
model is trained. If we add one more sentence to
the batch, translations of other sentences may be-
come different due to the change of the MaxEnt
model.

To sum up, the existing models of employing
rich bi-lingual lexical information in MT are im-
perfect. Many of them are not ideal for practical
translation tasks.

1.2 Our Approach

As for our approach, we mainly use simple proba-
bilistic models, i.e. Gaussian and n-gram models,
which are more robust and suitable for large-scale
training of real data, as manifested in state-of-the-
art systems of speech recognition. The unique
contribution of our work is to design effective and
efficient statistical models to capture useful lin-
guistic and context information for MT decoding.
Feature functions defined in this way are robust
and ideal for practical translation tasks.

1According to footnote 2 of (Ittycheriah and Roukos,
2007), test set adaptation by test set sampling of the train-
ing corpus showed an advantage of more than 2 BLEU points
over a general system trained on all data.

1.2.1 Features

In this paper, we will introduce four new linguistic
and contextual feature functions. Here, we first
provide a high-level description of these features.
Details of the features are discussed in Section 2.

The first feature is based on non-terminal labels,
i.e. POS tags of the head words of target non-
terminals in transfer rules. This feature reduces
the ambiguity of translation rules. The other bene-
fit is that POS tags help to weed out bad target side
tree structures, as an enhancement to the target de-
pendency language model.

The second feature is based on the length dis-
tribution of non-terminals. In English as well as
in other languages, the same deep structure can
be represented in different syntactic structures de-
pending on the complexity of its constituents. We
model such preferences by associating each non-
terminal of a transfer rule with a probability distri-
bution over its length. Similar ideas were explored
in (He et al., 2008). However their length features
only provided insignificant improvement of 0.1
BLEU point. A crucial difference of our approach
is how the length preference is modeled. We ap-
proximate the length distribution of non-terminals
with a smoothed Gaussian, which is more robust
and gives rise to much larger improvement consis-
tently.

The third feature utilizes source side context in-
formation, i.e. the neighboring words of an input
span, to influence the selection of the target trans-
lation for a span. While the use of context infor-
mation has been explored in MT, e.g. (Carpuat
and Wu, 2007) and (He et al., 2008), the specific
technique we used by means of a context language
model is rather different. Our model is trained on
the whole training data, and it is not limited by the
constraint of MaxEnt training.

The fourth feature exploits structural informa-
tion on the source side. Specifically, the decoder
simultaneously generates both the source and tar-
get side dependency trees, and employs two de-
pendency LMs, one for the source and the other
for the target, for scoring translation hypotheses.
Our intuition is that the likelihood of source struc-
tures provides another piece of evidence about the
plausibility of a translation hypothesis and as such
would help weed out bad ones.
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1.2.2 Baseline System and Experimental
Setup

We take BBN’sHierDec, a string-to-dependency
decoder as described in (Shen et al., 2008), as our
baseline for the following two reasons:

• It provides a strong baseline, which ensures
the validity of the improvement we would ob-
tain. The baseline model used in this paper
showed state-of-the-art performance at NIST
2008 MT evaluation.

• The baseline algorithm can be easily ex-
tended to incorporate the features proposed
in this paper. The use of source dependency
structures is a natural extension of the string-
to-tree model to a tree-to-tree model.

To ensure the generality of our results, we tested
the features on two rather different language pairs,
Arabic-to-English and Chinese-to-English, using
two metrics, IBM BLEU (Papineni et al., 2001)
and TER (Snover et al., 2006). Our experiments
show that each of the first three features: non-
terminal labels, length distribution and source side
context, improves MT performance. Surprisingly,
the source dependency feature does not produce
an improvement.

2 Linguistic and Context Features

2.1 Non-terminal Labels

In the original string-to-dependency model (Shen
et al., 2008), a translation rule is composed of a
string of words and non-terminals on the source
side and a well-formed dependency structure on
the target side. A well-formed dependency struc-
ture could be either a single-rooted dependency
tree or a set of sibling trees. As in the Hiero system
(Chiang, 2007), there is only one non-terminalX
in the string-to-dependency model. Any sub de-
pendency structure can be used to replace a non-
terminal in a rule.

For example, we have a source sentence in Chi-
nese as follows.

• jiantao zhuyao baohan liang fangmian

The literal translation for individual words is

• ’review’ ’mainly’ ’to consist of’ ’two’ ’part’

The reference translation is

• the review mainly consists of two parts

A single source word can be translated into
many English words. For example,jiantao can
be translated intoa review, the review, reviews,
the reviews, reviewing, reviewed, etc. Suppose
we have source-string-to-target-dependency trans-
lation rules as shown in Figure 1. Since there is
no constraint on substitution, any translation for
jiantao could replace the X-1 slot.

One way to alleviate this problem is to limit the
search space by using a label system. We could
assign a label to each non-terminal on the target
side of the rules. Furthermore, we could assign a
label to the whole target dependency structure, as
shown in Figure 2. In decoding, each target de-
pendency sub-structure would be associated with
a label. Whenever substitution happens, we would
check whether the label of the sub-structure and
the label of the slot are the same. Substitutions
with unmatched labels would be prohibited.

In practice, we use a soft constraint by penaliz-
ing substitutions with unmatched labels. We intro-
duce a new feature: the number of times substitu-
tions with unmatched labels appear in the deriva-
tion of a translation hypothesis.

Obviously, to implement this feature we need to
associate a label with each non-terminal in the tar-
get side of a translation rule. The labels are gen-
erated during rule extraction. When we create a
rule from a training example, we replace a sub-
tree or dependency structure with a non-terminal
and associate it with the POS tag of the head word
if the non-terminal corresponds to a single-rooted
tree on the target side. Otherwise, it is assigned
the generic labelX. (In decoding, all substitutions
of X are considered unmatched ones and incur a
penalty.)

2.2 Length Distribution

In English, the length of a phrase may determine
the syntactic structure of a sentence. For example,
possessive relations can be represented either as
“A’s B” or “B of A”. The former is preferred if A
is a short phrase (e.g. “the boy’s mother”) while
the latter is preferred if A is a complex structure
(e.g. “the mother of the boy who is sick”).

Our solution is to build a model of length prefer-
ence for each non-terminal in each translation rule.
To address data sparseness, we assume the length
distribution of each non-terminal in a transfer rule
is a Gaussian, whose mean and variance can be
estimated from the training data. In rule extrac-
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tion, each time a translation rule is generated from
a training example, we can record the length of the
source span corresponding to a non-terminal. In
the end, we have a frequency histogram for each
non-terminal in each translation rule. From the
histogram, a Gaussian distribution can be easily
computed.

In practice, we do not need to collect the fre-
quency histogram. Since all we need to know are
the mean and the variance, it is sufficient to col-
lect the sum of the length and the sum of squared
length.

Let r be a translation rule that occursNr times
in training. Letx be a specific non-terminal in that
rule. Let l(r, x, i) denote the length of the source
span corresponding to non-terminalx in the i-th
occurrence of ruler in training. Then, we can
compute the following quantities.

mr,x =
1

Nr

Nr∑
i=1

l(r, x, i) (1)

sr,x =
1

Nr

Nr∑
i=1

l(r, x, i)2, (2)

which can be subsequently used to estimate the
meanµr,x and varianceσ2

r,x of x’s length distri-
bution in ruler as follows.

µr,x = mr,x (3)

σ2
r,x = sr,x −m2

r,x (4)

Since many of the translation rules have few oc-
currences in training, smoothing of the above esti-
mates is necessary. A common smoothing method

is based on maximum a posteriori (MAP) estima-
tion as in (Gauvain and Lee, 1994).

m̂r,x =
Nr

Nr + τ
mr,x +

τ

Nr + τ
m̃r,x

ŝr,x =
Nr

Nr + τ
sr,x +

τ

Nr + τ
s̃r,x,

wherê stands for an MAP distribution and̃rep-
resents a prior distribution.m̃r,x and s̃r,x can
be obtained from a prior Gaussian distribution
N (µ̃r,x, σ̃r,x) via equations (3) and (4), andτ is
a weight of smoothing.

There are many ways to approximate the prior
distribution. For example, we can have one prior
for all the non-terminals or one for individual non-
terminal type. In practice, we assumeµ̃r,x = µr,x,

and approximatẽσr,x as(σ2
r,x + sr,x)

1
2 .

In this way, we do not change the mean, but
relax the variance withsr,x. We tried differ-
ent smoothing methods, but the performance did
not change much, therefore we kept this simplest
setup. We also tried the Poisson distribution, and
the performance is similar to Gaussian distribu-
tion, which is about 0.1 point lower in BLEU.

When a ruler is applied during decoding, we
compute a penalty for each non-terminalx in r
according to

P (l | r, x) =
1

σr,x

√
2π

e
− (l−µr,x)2

2σ2
r,x ,

wherel is length of source span corresponding to
x.

Our method to address the problem of length
bias in rule selection is very different from the
maximum entropy method used in existing stud-
ies, e.g. (He et al., 2008).
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2.3 Context Language Model

In the baseline string-to-dependency system, the
probability a translation rule is selected in decod-
ing does not depend on the sentence context. In
reality, translation is highly context dependent. To
address this defect, we introduce a new feature,
calledcontext language model. The motivation of
this feature is to exploit surrounding words to in-
fluence the selection of the desired transfer rule for
a given input span.

To illustrate the problem, we use the same ex-
ample mentioned in Section 2.1. Suppose the
source span for rule selection iszhuyao baohan,
whose literal translation ismainly and to consist
of. There are many candidate translations for this
phrase, for example,mainly consist of, mainly
consists of, mainly including, mainly includes, etc.
The surrounding words can help to decide which
translation is more appropriate forzhuyao bao-
han. We compare the following two context-based
probabilities:

• P ( jiantao| mainly consist)

• P ( jiantao| mainly consists)

Here, jiantao is the source word preceding the
source spanzhuyao baohan.

In the training data,jiantao is usually trans-
lated into the review, third-person singular, then
the probabilityP ( jiantao| mainly consists) will
be higher thanP ( jiantao| mainly consist), since
we have seen more context events like the former
in the training data.

Now we introduce context LM formally. Let the
source words bef1f2..fi..fj ..fn. Suppose source
sub-stringfi..fj is translated intoep..eq. We can
define tri-gram probabilities on the left and right
sides of the source span:

• left : PL(fi−1|ep, ep+1)

• right : PR(fj+1|eq, eq−1)

In our implementation, the left and right context
LMs are estimated from the training data as part
of the rule extraction procedure. When we exact a
rule, we collect two 3-gram events, one for the left
side and the other for the right side.

In decoding, whenever a partial hypothesis is
generated, we calculate the context LM scores
based on the leftmost two words and the rightmost
two words of the hypothesis as well as the source
context. The product of the left and right context

LM scores is used as a new feature in the scoring
function.

Please note that our approach is very different
from other approaches to context dependent rule
selection such as (Ittycheriah and Roukos, 2007)
and (He et al., 2008). Instead of using a large num-
ber of fine grained features with weights optimized
using the maximum entropy method, we treat con-
text dependency as an ngram LM problem, and it
is smoothed with Witten-Bell discounting. The es-
timation of the context LMs is very efficient and
robust.

The benefit is two fold. The estimation of the
context LMs is very efficient. It adds only one new
weight to the scoring function.

2.4 Source Dependency Language Model

The context LM proposed in the previous sec-
tion only employs source words immediately be-
fore and after the current source span in decod-
ing. To exploit more source context, we use a
source side dependency language model as an-
other feature. The motivation is to take advantage
of the long distance dependency relations between
source words in scoring a translation theory.

We extended string-to-dependency rules in
the baseline system to dependency-to-dependency
rules. In each dependency-to-dependency rule, we
keep record of the source string as well as the
source dependency structure. Figure 3 shows ex-
amples of dependency-to-dependency rules.

We extended the string-to-dependency decod-
ing algorithm in the baseline to accommodate
dependency-to-dependency theories. In decoding,
we build both the source and the target depen-
dency structures simultaneously in chart parsing
over the source string. Thus, we can compute the
source dependency LM score in the same way we
compute the target side score, using a procedure
described in (Shen et al., 2008).

We introduce two new features for the source
side dependency LM as follows, in a way similar
to the target side.

• Source dependency LM score

• Discount on ill-formed source dependency
structures

The source dependency LM is trained on the
source side of the bi-lingual training data with
Witten-Bell smoothing. The source dependency
LM score represents the likelihood of the source
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Figure 3: Dependency-to-dependency translation rules

dependency tree generated by the decoder. The
source dependency tree with the highest score is
the one that is most likely to be generated by the
dependency model that created the source side of
the training data.

Source dependency trees are composed of frag-
ments embedded in the translation rules. There-
fore, a source dependency LM score can be
viewed as a measure whether the translation rules
are put together in a way similar to the training
data. Therefore, a source dependency LM score
serves as a feature to represent structural con-
text information that is capable of modeling long-
distance relations.

However, unlike source context LMs, the struc-
tural context information is used only when two
partial dependency structures are combined, while
source context LMs work as a look-ahead feature.

3 Experiments

We designed our experiments to show the impact
of each feature separately as well as their cumula-
tive impact:

• BASE: baseline string-to-dependency system

• SLM: baseline + source dependency LM

• CLM: baseline + context LM

• LEN: baseline + length distribution

• LBL: baseline + syntactic labels

• LBL+LEN: baseline + syntactic labels +
length distribution

• LBL+LEN+CLM: baseline + syntactic labels
+ length distribution + context LM

All the models were optimized on lower-cased
IBM BLEU with Powell’s method (Powell, 1964;
Brent, 1973) on n-best translations (Ostendorf et
al., 1991), but evaluated on both IBM BLEU and

TER. The motivation is to detect if an improve-
ment is artificial, i.e., specific to the tuning met-
ric. For both Arabic-to-English and Chinese-to-
English MT, we tuned on NIST MT02-05 and
tested on MT06 and MT08 newswire sets.

The training data are different from what was
usd at MT06 or MT08. Our Arabic-to-English
data contain 29M Arabic words and 38M En-
glish words from 11 corpora: LDC2004T17,
LDC2004T18, LDC2005E46, LDC2006E25,
LDC2006G05, LDC2005E85, LDC2006E36,
LDC2006E82, LDC2006E95, Sakhr-A2E and
Sakhr-E2A. The Chinese-to-English data contain
107M Chinese words and 132M English words
from eight corpora: LDC2002E18, LDC2005T06,
LDC2005T10, LDC2006E26, LDC2006G05,
LDC2002L27, LDC2005T34 and LDC2003E07.
They are available under the DARPA GALE
program. Traditional 3-gram and 5-gram string
LMs were trained on the English side of the
parallel data plus the English Gigaword corpus
V3.0 in a way described in (Bulyko et al., 2007).

The target dependency LMs were trained on the
English side of the parallel training data. For that
purpose, we parsed the English side of the parallel
data. Two separate models were trained: one for
Arabic from the Arabic training data and the other
for Chinese from the Chinese training data.

To compute the source dependency LM for
Chinese-to-English MT, we parsed the Chinese
side of the Chinese-to-English parallel data. Due
to the lack of a good Arabic parser compatible
with the Sakhr tokenization that we used on the
source side, we did not test the source dependency
LM for Arabic-to-English MT.

When extracting rules with source dependency
structures, we applied the samewell-formedness
constraint on the source side as we did on the tar-
get side, using a procedure described by (Shen
et al., 2008). Some candidate rules were thrown
away due to the source side constraint. On the
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Model
MT06 MT08

BLEU TER BLEU TER
lower mixed lower mixed lower mixed lower mixed

Decoding (3-gram LM)
BASE 48.75 46.74 43.43 45.79 49.58 47.46 42.80 45.08
CLM 49.44 47.36 42.96 45.22 49.73 47.53 42.64 44.92
LEN 49.37 47.28 43.01 45.35 50.29 48.19 42.32 44.45
LBL 49.33 47.07 43.09 45.53 50.46 48.19 42.27 44.57
LBL+LEN 49.91 47.70 42.59 45.17 51.10 48.85 41.88 44.16
LBL+LEN+CLM 50.75 48.51 42.13 44.50 51.24 49.10 41.63 43.80

Rescoring (5-gram LM)
BASE 51.24 49.23 42.08 44.42 51.23 49.11 42.01 44.15
CLM 51.57 49.54 41.74 43.88 51.44 49.37 41.63 43.74
LEN 52.05 50.01 41.50 43.72 51.88 49.89 41.51 43.47
LBL 51.80 49.69 41.54 43.76 51.93 49.86 41.27 43.33
LBL+LEN 51.90 49.76 41.41 43.70 52.42 50.29 40.93 43.00
LBL+LEN+CLM 52.61 50.51 40.77 43.03 52.60 50.56 40.69 42.81

Table 1: BLEU and TER percentage scores on MT06 and MT08 Arabic-to-English newswire sets.

other hand, one string-to-dependency rule may
split into several dependency-to-dependency rules
due to different source dependency structures. The
size of the dependency-to-dependency rule set is
slightly smaller than the size of the string-to-
dependency rule set.

Tables 1 and 2 show the BLEU and TER per-
centage scores on MT06 and MT08 for Arabic-
to-English and Chinese-to-English translation re-
spectively. The context LM feature, the length
feature and the syntax label feature all produce
a small improvement for most of the conditions.
When we combined the three features, we ob-
served significant improvements over the baseline.
For Arabic-to-English MT, the LBL+LEN+CLM
system improved lower-cased BLEU by 2.0 on
MT06 and 1.7 on MT08 on decoding output.
For Chinese-to-English MT, the improvements in
lower-cased BLEU were 1.0 on MT06 and 0.8 on
MT08. After re-scoring, the improvements be-
came smaller, but still noticeable, ranging from 0.7
to 1.4. TER scores were also improved noticeably
for all conditions, suggesting there was no metric
specific over-tuning.

Surprisingly, source dependency LM did not
provide any improvement over the baseline. There
are two possible reasons for this. One is that
the source and target parse trees were generated
by two stand-alone parsers, which may cause in-
compatible structures on the source and target
sides. By applying thewell-formed constraints

on both sides, a lot of useful transfer rules are
discarded. A bi-lingual parser, trained on paral-
lel treebanks recently made available to the NLP
community, may overcome this problem. The
other is that the search space of dependency-to-
dependency decoding is much larger, since we
need to add source dependency information into
the chart parsing states. We will explore tech-
niques to address these problems in the future.

4 Discussion

Linguistic information has been widely used in
SMT. For example, in (Wang et al., 2007), syntac-
tic structures were employed to reorder the source
language as a pre-processing step for phrase-based
decoding. In (Koehn and Hoang, 2007), shallow
syntactic analysis such as POS tagging and mor-
phological analysis were incorporated in a phrasal
decoder.

In ISI’s syntax-based system (Galley et al.,
2006) and CMU’s Hiero extension (Venugopal et
al., 2007), non-terminals in translation rules have
labels, which must be respected by substitutions
during decoding. In (Post and Gildea, 2008; Shen
et al., 2008), target trees were employed to im-
prove the scoring of translation theories. Mar-
ton and Resnik (2008) introduced features defined
on constituent labels to improve the Hiero system
(Chiang, 2005). However, due to the limitation of
MER training, only part of the feature space could
used in the system. This problem was fixed by
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Model
MT06 MT08

BLEU TER BLEU TER
lower mixed lower mixed lower mixed lower mixed

Decoding (3-gram LM)
BASE 37.44 35.62 54.64 56.47 33.05 31.26 56.79 58.69
SLM 37.30 35.48 54.24 55.90 33.03 31.00 56.59 58.46
CLM 37.66 35.81 53.45 55.19 32.97 31.01 55.99 57.77
LEN 38.09 36.26 53.98 55.81 33.23 31.34 56.51 58.41
LBL 38.37 36.53 54.14 55.99 33.25 31.34 56.60 58.49
LBL+LEN 38.36 36.59 53.95 55.60 33.72 31.83 56.79 58.65
LBL+LEN+CLM 38.41 36.57 53.83 55.70 33.83 31.79 56.55 58.51

Rescoring (5-gram LM)
BASE 38.91 37.04 53.65 55.45 34.34 32.32 55.60 57.60
SLM 38.27 36.38 53.64 55.29 34.25 32.28 55.35 57.21
CLM 38.79 36.88 53.09 54.80 35.01 32.98 55.39 57.28
LEN 39.22 37.30 53.34 55.06 34.65 32.70 55.61 57.51
LBL 39.11 37.30 53.61 55.29 35.02 33.00 55.39 57.48
LBL+LEN 38.91 37.17 53.56 55.27 35.03 33.08 55.47 57.46
LBL+LEN+CLM 39.58 37.62 53.21 54.94 35.72 33.63 54.88 56.98

Table 2: BLEU and TER percentage scores on MT06 and MT08 Chinese-to-English newswire sets.

Chiang et al. (2008), which used an online learn-
ing method (Crammer and Singer, 2003) to handle
a large set of features.

Most SMT systems assume that translation
rules can be applied without paying attention to
the sentence context. A few studies (Carpuat and
Wu, 2007; Ittycheriah and Roukos, 2007; He et
al., 2008; Hasan et al., 2008) addressed this de-
fect by selecting the appropriate translation rules
for an input span based on its context in the in-
put sentence. The direct translation model in (It-
tycheriah and Roukos, 2007) employed syntactic
(POS tags) and context information (neighboring
words) within a maximum entropy model to pre-
dict the correct transfer rules. A similar technique
was applied by He et al. (2008) to improve the Hi-
ero system.

Our model differs from previous work on the
way in which linguistic and contextual informa-
tion is used.

5 Conclusions and Future Work

In this paper, we proposed four new linguistic
and contextual features for hierarchical decoding.
The use of non-terminal labels, length distribution
and context LM features gave rise to significant
improvement on Arabic-to-English and Chinese-
to-English translation on NIST MT06 and MT08
newswire data over a state-of-the-art string-to-

dependency baseline. Unlike previous work, we
employed robust probabilistic models to capture
useful linguistic and contextual information. Our
methods are more suitable for practical translation
tasks.

In future, we will continue this work in two
directions. We will employ a Gaussian model
to unify various linguistic and contextual fea-
tures. We will also improve the dependency-to-
dependency method with a better bi-lingual parser.
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Abstract

Methods that learn from prior informa-
tion about input features such as general-
ized expectation (GE) have been used to
train accurate models with very little ef-
fort. In this paper, we propose an ac-
tive learning approach in which the ma-
chine solicits “labels” on features rather
than instances. In both simulated and real
user experiments on two sequence label-
ing tasks we show that our active learning
method outperforms passive learning with
features as well as traditional active learn-
ing with instances. Preliminary experi-
ments suggest that novel interfaces which
intelligently solicit labels on multiple fea-
tures facilitate more efficient annotation.

1 Introduction

The application of machine learning to new prob-
lems is slowed by the need for labeled training
data. When output variables are structured, an-
notation can be particularly difficult and time-
consuming. For example, when training a condi-
tional random field (Lafferty et al., 2001) to ex-
tract fields such as rent, contact, features, and utilities
from apartment classifieds, labeling 22 instances
(2,540 tokens) provides only 66.1% accuracy.1

Recent work has used unlabeled data and lim-
ited prior information about input features to boot-
strap accurate structured output models. For ex-
ample, both Haghighi and Klein (2006) and Mann
and McCallum (2008) have demonstrated results
better than 66.1% on the apartments task de-
scribed above using only a list of 33 highly dis-
criminative features and the labels they indicate.
However, these methods have only been applied
in scenarios in which the user supplies such prior
knowledge before learning begins.

1Averaged over 10 randomly selected sets of 22 instances.

In traditional active learning (Settles, 2009), the
machine queries the user for only the labels of in-
stances that would be most helpful to the machine.
This paper proposes an active learning approach in
which the user provides “labels” for input features,
rather than instances. A labeled input feature de-
notes that a particular input feature, for example
the word call, is highly indicative of a particular
label, such as contact. Table 1 provides an excerpt
of a feature active learning session.

In this paper, we advocate using generalized
expectation (GE) criteria (Mann and McCallum,
2008) for learning with labeled features. We pro-
vide an alternate treatment of the GE objective
function used by Mann and McCallum (2008) and
a novel speedup to the gradient computation. We
then provide a pool-based feature active learning
algorithm that includes an option to skip queries,
for cases in which a feature has no clear label.
We propose and evaluate feature query selection
algorithms that aim to reduce model uncertainty,
and compare to several baselines. We evaluate
our method using both real and simulated user ex-
periments on two sequence labeling tasks. Com-
pared to previous approaches (Raghavan and Al-
lan, 2007), our method can be used for both classi-
fication and structured tasks, and the feature query
selection methods we propose perform better.

We use experiments with simulated labelers on
real data to extensively compare feature query se-
lection algorithms and evaluate on multiple ran-
dom splits. To make these simulations more re-
alistic, the effort required to perform different la-
beling actions is estimated from additional exper-
iments with real users. The results show that ac-
tive learning with features outperforms both pas-
sive learning with features and traditional active
learning with instances.

In the user experiments, each annotator actively
labels instances, actively labels features one at a
time, and actively labels batches of features orga-

81



accuracy 46.5→ 60.5
feature label

PHONE* contact
call contact

deposit rent
month rent
pets restrict.
lease rent

appointment contact
parking features
EMAIL* contact

information contact

accuracy 60.5→ 67.1
feature label
water utilities
close neighbor.

garbage utilities
included utilities

features
shopping neighbor.

bart neighbor.
downtown neighbor.

TIME* contact
bath size

Table 1: Two iterations of feature active learning.
Each table shows the features labeled, and the re-
sulting change in accuracy. Note that the word in-
cluded was labeled as both utilities and features, and
that ∗ denotes a regular expression feature.

nized using a “grid” interface. The results support
the findings of the simulated experiments and pro-
vide evidence that the “grid” interface can facili-
tate more efficient annotation.

2 Conditional Random Fields

In this section we describe the underlying proba-
bilistic model for all methods in this paper. We
focus on sequence labeling, though the described
methods could be applied to other structured out-
put or classification tasks. We model the proba-
bility of the label sequence y ∈ Yn conditioned
on the input sequence x ∈ X n, p(y|x; θ) using
first-order linear-chain conditional random fields
(CRFs) (Lafferty et al., 2001). This probability is

p(y|x; θ) =
1
Zx

exp
(∑

i

∑
j

θjfj(yi, yi+1,x, i)
)
,

where Zx is the partition function and feature
functions fj consider the entire input sequence
and at most two consecutive output variables.
The most probable output sequence and transition
marginal distributions can be computed using vari-
ants of Viterbi and forward-backward.

Provided a training data distribution p̃, we es-
timate CRF parameters by maximizing the condi-
tional log likelihood of the training data.

L(θ) = Ep̃(x,y)[log p(y|x; θ)]

We use numerical optimization to maximize L(θ),
which requires the gradient of L(θ) with respect
to the parameters. It can be shown that the par-
tial derivative with respect to parameter j is equal

to the difference between the empirical expecta-
tion of Fj and the model expectation of Fj , where
Fj(y,x) =

∑
i fj(yi, yi+1,x, i).

∂

∂θj
L(θ) = Ep̃(x,y)[Fj(y,x)]

− Ep̃(x)[Ep(y|x;θ)[Fj(y,x)]].

We also include a zero-mean variance σ2 = 10
Gaussian prior on parameters in all experiments.2

2.1 Learning with missing labels
The training set may contain partially labeled se-
quences. Let z denote missing labels. We esti-
mate parameters with this data by maximizing the
marginal log-likelihood of the observed labels.

LMML(θ) = Ep̃(x,y)[log
∑
z

p(y, z|x; θ)]

We refer to this training method as maximum
marginal likelihood (MML); it has also been ex-
plored by Quattoni et al. (2007).

The gradient of LMML(θ) can also be written
as the difference of two expectations. The first is
an expectation over the empirical distribution of x
and y, and the model distribution of z. The second
is a double expectation over the empirical distribu-
tion of x and the model distribution of y and z.

∂

∂θj
LMML(θ) = Ep̃(x,y)[Ep(z|y,x;θ)[Fj(y, z,x)]]

− Ep̃(x)[Ep(y,z|x;θ)[Fj(y, z,x)]].

We train models using LMML(θ) with expected
gradient (Salakhutdinov et al., 2003).

To additionally leverage unlabeled data, we
compare with entropy regularization (ER). ER
adds a term to the objective function that en-
courages confident predictions on unlabeled data.
Training of linear-chain CRFs with ER is de-
scribed by Jiao et al. (2006).

3 Generalized Expectation Criteria

In this section, we give a brief overview of gen-
eralized expectation criteria (GE) (Mann and Mc-
Callum, 2008; Druck et al., 2008) and explain how
we can use GE to learn CRF parameters with esti-
mates of feature expectations and unlabeled data.

GE criteria are terms in a parameter estimation
objective function that express preferences on the

210 is a default value that works well in many settings.
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value of a model expectation of some function.
Given a score function S, an empirical distribution
p̃(x), a model distribution p(y|x; θ), and a con-
straint function Gk(x,y), the value of a GE crite-
rion is G(θ) = S(Ep̃(x)[Ep(y|x;θ)[Gk(x,y)]]).

GE provides a flexible framework for parameter
estimation because each of these elements can take
an arbitrary form. The most important difference
between GE and other parameter estimation meth-
ods is that it does not require a one-to-one cor-
respondence between constraint functions Gk and
model feature functions. We leverage this flexi-
bility to estimate parameters of feature-rich CRFs
with a very small set of expectation constraints.

Constraint functions Gk can be normalized so
that the sum of the expectations of a set of func-
tions is 1. In this case, S may measure the di-
vergence between the expectation of the constraint
function and a target expectation Ĝk.

G(θ) = Ĝk log(E[Gk(x,y)]), (1)

where E[Gk(x,y)] = Ep̃(x)[Ep(y|x;θ)[Gk(x,y)]].
It can be shown that the partial derivative of
G(θ) with respect to parameter j is proportional to
the predicted covariance between the model fea-
ture function Fj and the constraint function Gk.3

∂

∂θj
G(θ) =

Ĝk
E[Gk(x,y)]

× (2)(
Ep̃(x)

[
Ep(y|x;θ)[Fj(x,y)Gk(x,y)]

− Ep(y|x;θ)[Fj(x,y)]Ep(y|x;θ)[Gk(x,y)]
])

The partial derivative shows that GE learns pa-
rameter values for model feature functions based
on their predicted covariance with the constraint
functions. GE can thus be interpreted as a boot-
strapping method that uses the limited training sig-
nal to learn about parameters for related model
feature functions.

3.1 Learning with feature-label distributions
Mann and McCallum (2008) apply GE to a linear-
chain, first-order CRF. In this section we provide
an alternate treatment that arrives at the same ob-
jective function from the general form described
in the previous section.

Often, feature functions in a first-order linear-
chain CRF f are binary, and are the conjunction

3If we use squared error for S, the partial derivative is the
covariance multiplied by 2(Ĝk − E[Gk(x,y)]).

of an observational test q(x, i) and a label pair test
1{yi=y′,yi+1=y′′}.4

f(yi, yi+1,x, i) = 1{yi=y′,yi+1=y′′}q(x, i)

The constraint functions Gk we use here decom-
pose and operate similarly, except that they only
include a test for a single label. Single label con-
straints are easier for users to estimate and make
GE training more efficient. Label transition struc-
ture can be learned automatically from single la-
bel constraints through the covariance-based pa-
rameter update of Equation 2. For convenience,
we can write Gyk to denote the constraint func-
tion that combines observation test k with a test
for label y. We also add a normalization constant
Ck = Ep̃(x)[

∑
i qk(x, i)],

Gyk(x,y) =
∑
i

1
Ck

1{yi=y}qk(x, i)

Under this construction the expectation of Gyk is
the predicted conditional probability that the label
at some arbitrary position i is y when the observa-
tional test at i succeeds, p̃(yi=y|qk(x, i)=1; θ).

If we have a set of constraint functions {Gyk :
y ∈ Y}, and we use the score function in Equa-
tion 1, then the GE objective function specifies the
minimization of the KL divergence between the
model and target distributions over labels condi-
tioned on the success of the observational test. In
general the objective function will consist of many
such KL divergence penalties.

Computing the first term of the covariance in
Equation 2 requires a marginal distribution over
three labels, two of which will be consecutive, but
the other of which could appear anywhere in the
sequence. We can compute this marginal using
the algorithm of Mann and McCallum (2008). As
previously described, this algorithm is O(n|Y|3)
for a sequence of length n. However, we make
the following novel observation: we do not need
to compute the extra lattices for feature label pairs
with Ĝyk = 0, since this makes Equation 2 equal
to zero. In Mann and McCallum (2008), probabil-
ities were smoothed so that ∀y Ĝyk > 0. If we
assume that only a small number of labels m have
non-zero probability, then the time complexity of
the gradient computation is O(nm|Y|2). In this
paper typically 1 ≤m≤ 4, while |Y| is 11 or 13.

4We this notation for an indicator function that returns 1
if the condition in braces is satisfied, and 0 otherwise.
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In experiments in this paper, using this optimiza-
tion does not significantly affect final accuracy.

We use numerical optimization to estimate
model parameters. In general GE objective func-
tions are not convex. Consequently, we initial-
ize 0th-order CRF parameters using a sliding win-
dow logistic regression model trained with GE.
We also include a Gaussian prior on parameters
with σ2 = 10 in the objective function.

3.2 Learning with labeled features
The training procedure described above requires
a set of observational tests or input features with
target distributions over labels. Estimating a dis-
tribution could be a difficult task for an annotator.
Consequently, we abstract away from specifying
a distribution by allowing the user to assign labels
to features (c.f. Haghighi and Klein (2006) , Druck
et al. (2008)). For example, we say that the word
feature call has label contact. A label for a feature
simply indicates that the feature is a good indicator
of the label. Note that features can have multiple
labels, as does included in the active learning ses-
sion shown in Table 1. We convert an input feature
with a set of labels L into a distribution by assign-
ing probability 1/|L| for each l ∈ L and probabil-
ity 0 for each l /∈ L. By assigning 0 probability to
labels l /∈ L, we can use the speed-up described in
the previous section.

3.3 Related Work
Other proposed learning methods use labeled fea-
tures to label unlabeled data. The resulting
partially-labeled corpus can be used to train a CRF
by maximizing MML. Similarly, prototype-driven
learning (PDL) (Haghighi and Klein, 2006) opti-
mizes the joint marginal likelihood of data labeled
with prototype input features for each label. Ad-
ditional features that indicate similarity to the pro-
totypes help the model to generalize. In a previ-
ous comparison between GE and PDL (Mann and
McCallum, 2008), GE outperformed PDL without
the extra similarity features, whose construction
may be problem-specific. GE also performed bet-
ter when supplied accurate label distributions.

Additionally, both MML and PDL do not natu-
rally generalize to learning with features that have
multiple labels or distributions over labels, as in
these scenarios labeling the unlabeled data is not
straightforward. In this paper, we attempt to ad-
dress this problem using a simple heuristic: when
there are multiple choices for a token’s label, sam-

ple a label. In Section 5 we use this heuristic with
MML, but in general obtain poor results.

Raghavan and Allan (2007) also propose sev-
eral methods for learning with labeled features,
but in a previous comparison GE gave better re-
sults (Druck et al., 2008). Additionally, the gen-
eralization of these methods to structured output
spaces is not straightforward. Chang et al. (2007)
present an algorithm for learning with constraints,
but this method requires users to set weights by
hand. We plan to explore the use of the recently
developed related methods of Bellare et al. (2009),
Graça et al. (2008), and Liang et al. (2009) in fu-
ture work. Druck et al. (2008) provide a survey
of other related methods for learning with labeled
input features.

4 Active Learning by Labeling Features

Feature active learning, presented in Algorithm 1,
is a pool-based active learning algorithm (Lewis
and Gale, 1994) (with a pool of features rather
than instances). The novel components of the
algorithm are an option to skip a query and the
notion that skipping and labeling have different
costs. The option to skip is important when us-
ing feature queries because a user may not know
how to label some features. In each iteration the
model is retrained using the train procedure, which
takes as input a set of labeled features C and un-
labeled data distribution p̃. For the reasons de-
scribed in Section 3.3, we advocate using GE for
the train procedure. Then, while the iteration cost
c is less than the maximum cost cmax, the feature
query q that maximizes the query selection met-
ric φ is selected. The accept function determines
whether the labeler will label q. If q is labeled, it
is added to the set of labeled features C, and the
label cost clabel is added to c. Otherwise, the skip
cost cskip is added to c. This process continues for
N iterations.

4.1 Feature query selection methods

In this section we propose feature query selection
methods φ. Queries with a higher scores are con-
sidered better candidates. Note again that by fea-
tures we mean observational tests qk(x, i). It is
also important to note these are not feature selec-
tion methods since we are determining the features
for which supervisory feedback will be most help-
ful to the model, rather than determining which
features will be part of the model.
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Algorithm 1 Feature Active Learning
Input: empirical distribution p̃, initial feature constraints
C, label cost clabel, skip cost cskip, max cost per iteration
cmax, max iterations N
Output: model parameters θ
for i = 1 to N do
θ = train(p̃, C)
c = 0
while c < cmax do
q = argmaxqk

φ(qk)

if accept(q) then
C = C ∪ label(q)
c = c+ clabel

else
c = c+ cskip

end if
end while

end for
θ = train(p̃, C)

We propose to select queries that provide the
largest reduction in model uncertainty. We notate
possible responses to a query qk as ĝ. The Ex-
pected Information Gain (EIG) of a query is the
expectation of the reduction in model uncertainty
over all possible responses. Mathematically, IG is

φEIG(qk) = Ep(ĝ|qk;θ)[Ep̃(x)[H(p(y|x; θ)−
H(p(y|x; θĝ)]],

where θĝ are the new model parameters if the re-
sponse to qk is ĝ. Unfortunately, this method is
computationally intractable. Re-estimating θĝ will
typically involve retraining the model, and do-
ing this for each possible query-response pair is
prohibitively expensive for structured output mod-
els. Computing the expectation over possible re-
sponses is also difficult, as in this paper users may
provide a set of labels for a query, and more gen-
erally ĝ could be a distribution over labels.

Instead, we propose a tractable strategy for re-
ducing model uncertainty, motivated by traditional
uncertainty sampling (Lewis and Gale, 1994). We
assume that when a user responds to a query, the
reduction in uncertainty will be equal to the To-
tal Uncertainty (TU), the sum of the marginal en-
tropies at the positions where the feature occurs.

φTU (qk) =
∑
i

∑
j

qk(xi, j)H(p(yj |xi; θ))

Total uncertainty, however, is highly biased to-
wards selecting frequent features. A mean un-
certainty variant, normalized by the feature’s
count, would tend to choose very infrequent fea-
tures. Consequently we propose a tradeoff be-

tween the two extremes, called weighted uncer-
tainty (WU), that scales the mean uncertainty by
the log count of the feature in the corpus.

φWU (qk) = log(Ck)
φTU (qk)
Ck

.

Finally, we also suggest an uncertainty-based met-
ric called diverse uncertainty (DU) that encour-
ages diversity among queries by multiplying TU
by the mean dissimilarity between the feature and
previously labeled features. For sequence labeling
tasks, we can measure the relatedness of features
using distributional similarity.5

φDU (qk) = φTU (qk)
1
|C|
∑
j∈C

1−sim(qk, qj)

We contrast the notion of uncertainty described
above with another type of uncertainty: the en-
tropy of the predicted label distribution for the fea-
ture, or expectation uncertainty (EU). As above
we also multiply by the log feature count.

φEU (qk) = log(Ck)H(p̃(yi = y|qk(x, i)=1; θ))

EU is flawed because it will have a large value for
non-discriminative features.

The methods described above require the model
to be retrained between iterations. To verify that
this is necessary, we compare against query selec-
tion methods that only consider the previously la-
beled features. First, we consider a feature query
selection method called coverage (cov) that aims
to select features that are dissimilar from existing
labeled features, increasing the labeled features’
“coverage” of the feature space. In order to com-
pensate for choosing very infrequent features, we
multiply by the log count of the feature.

φcov(qk) = log(Ck)
1
|C|
∑
j∈C

1− sim(qk, qj)

Motivated by the feature query selection method
of Tandem Learning (Raghavan and Allan, 2007)
(see Section 4.2 for further discussion), we con-
sider a feature selection metric similarity (sim)
that is the maximum similarity to a labeled fea-
ture, weighted by the log count of the feature.

φsim(qk) = log(Ck) max
j∈C

sim(qk, qj)

5sim(qk, qj) returns the cosine similarity between context
vectors of words occurring in a window of ±3.
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Features similar to those already labeled are likely
to be discriminative, and therefore likely to be la-
beled (rather than skipped). However, insufficient
diversity may also result in an inaccurate model,
suggesting that coverage should select more use-
ful queries than similarity.

Finally, we compare with several passive base-
lines. Random (rand) assigns scores to features
randomly. Frequency (freq) scores input features
using their frequency in the training data.

φfreq(qk) =
∑
i

∑
j

qk(xi, j)

Top LDA (LDA) selects the top words from 50
topics learned from the unlabeled data using la-
tent Dirichlet allocation (LDA) (Blei et al., 2003).
More specifically, the words w generated by each
topic t are ranked using the conditional probability
p(w|t). The word feature is assigned its maximum
rank across all topics.

φLDA(qk) = max
t

rankLDA(qk, t)

This method will select useful features if the top-
ics discovered are relevant to the task. A similar
heuristic was used by Druck et al. (2008).

4.2 Related Work

Tandem Learning (Raghavan and Allan, 2007) is
an algorithm that combines feature and instance
active learning for classification. The algorithm it-
eratively queries the user first for instance labels,
then for feature labels. Feature queries are selected
according to their co-occurrence with important
model features and previously labeled features. As
noted in Section 3.3, GE is preferable to the meth-
ods Tandem Learning uses to learn with labeled
features. We address the mixing of feature and in-
stance queries in Section 4.3.

In order to better understand differences in fea-
ture query selection methodology, we proposed a
feature query selection method motivated6 by the
method used in Tandem Learning in Section 4.1.
However, this method performs poorly in the ex-
periments in Section 5.

Liang et al. (2009) simultaneously developed
a method for learning with and actively selecting

6The query selection method of Raghavan and Allan
(2007) requires a stack that is modified between queries
within each iteration. Here query scores are only updated
after each iteration of labeling.

measurements, or target expectations with associ-
ated noise. The measurement selection method
proposed by Liang et al. (2009) is based on
Bayesian experimental design and is similar to
the expected information gain method described
above. Consequently this method is likely to be
intractable for real applications. Note that Liang
et al. (2009) only use this method in synthetic ex-
periments, and instead use a method similar to to-
tal uncertainty for experiments in part-of-speech
tagging. Unlike the experiments presented in this
paper, Liang et al. (2009) conduct only simulated
active learning experiments and do not consider
skipping queries.

Sindhwani (Sindhwani et al., 2009) simultane-
ously developed an active learning method that
queries for both instance and feature labels that
are then used in a graph-based learning algorithm.
They find that querying certain features outper-
forms querying uncertain features, but this is likely
because their query selection method is similar
to the expectation uncertainty method described
above, and consequently non-discriminative fea-
tures may be queried often (see also the discus-
sion in Section 4.1). It is also not clear how this
graph-based training method would generalize to
structured output spaces.

4.3 Expectation Constraint Active Learning

Throughout this paper, we have focussed on label-
ing input features. However, the proposed meth-
ods generalize to queries for expectation estimates
of arbitrary functions, for example queries for the
label distributions for input features, labels for in-
stances (using a function that is non-zero only for
a particular instance), partial labels for instances,
and class priors. The uncertainty-based query se-
lection methods described in Section 4.1 apply
naturally to these new query types. Importantly
this framework would allow principled mixing of
different query types, instead of alternating be-
tween them as in Tandem Learning (Raghavan and
Allan, 2007). When mixing queries, it will be
important to use different costs for different an-
notation types (Vijayanarasimhan and Grauman,
2008), and estimate the probability of obtaining a
useful response to a query. We plan to pursue these
directions in future work. This idea was also pro-
posed by Liang et al. (2009), but no experiments
with mixed active learning were presented.
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5 Simulated User Experiments

In this section we experiment with an automated
oracle labeler. When presented an instance query,
the oracle simply provides the true labels. When
presented a feature query, the oracle first decides
whether to skip the query. We have found that
users are more likely to label features that are rel-
evant for only a few labels. Therefore, the oracle
labels a feature if the entropy of its per occurrence
label expectation, H(p̃(yi = y|qk(x, i) = 1; θ)) ≤
0.7. The oracle then labels the feature using a
heuristic: label the feature with the label whose
expectation is highest, as well as any label whose
expectation is at least half as large.

We estimate the effort of different labeling ac-
tions with preliminary experiments in which we
observe users labeling data for ten minutes. Users
took an average of 4 seconds to label a feature, 2
seconds to skip a feature, and 0.7 seconds to la-
bel a token. We setup experiments such that each
iteration simulates one minute of labeling by set-
ting cmax = 60, cskip = 2 and clabel = 4. For
instance active learning, we use Algorithm 1 but
without the skip option, and set clabel = 0.7. We
use N = 10 iterations, so the entire experiment
simulates 10 minutes of annotation time. For ef-
ficiency, we consider the 500 most frequent unla-
beled features in each iteration. To start, ten ran-
domly selected seed labeled features are provided.

We use random (rand) selection, uncertainty
sampling (US) (using sequence entropy, normal-
ized by sequence length) and information den-
sity (ID) (Settles and Craven, 2008) to select in-
stance queries. We use Entropy Regularization
(ER) (Jiao et al., 2006) to leverage unlabeled in-
stances.7 We weight the ER term by choosing the
best8 weight in {10−3, 10−2, 10−1, 1, 10} multi-
plied by #labeled

#unlabeled for each data set and query se-
lection method. Seed instances are provided such
that the simulated labeling time is equivalent to la-
beling 10 features.

We evaluate on two sequence labeling tasks.
The apartments task involves segmenting 300
apartment classified ads into 11 fields including
features, rent, neighborhood, and contact. We use
the same feature processing as Haghighi and Klein
(2006), with the addition of context features in a
window of ±3. The cora references task is to ex-
tract 13 BibTeX fields such as author and booktitle

7Results using self-training instead of ER are similar.
8As measured by test accuracy, giving ER an advantage.

method apartments cora
mean final mean final

ER rand 48.1 53.6 75.9 81.1
ER US 51.7 57.9 76.0 83.2
ER ID 51.4 56.9 75.9 83.1
MML rand 47.7 51.2 58.6 64.6
MML WU 57.6 60.8 61.0 66.2
GE rand 59.0 64.8∗ 77.6 83.7
GE freq 66.5∗ 71.6∗ 68.6 79.8
GE LDA 65.7∗ 71.4∗ 74.9 85.0
GE cov 68.2∗† 72.6∗ 73.5 83.3
GE sim 57.8 65.9∗ 67.1 79.2
GE EU 66.5∗ 71.6∗ 68.6 79.8
GE TU 70.1∗† 73.6∗† 76.9 88.2∗†
GE WU 71.6∗† 74.6∗† 80.3∗† 88.1∗†
GE DU 70.5∗† 74.4∗† 78.4∗ 87.5∗†

Table 2: Mean and final token accuracy results.
A ∗ or † denotes that a GE method significantly
outperforms all non-GE or passive GE methods,
respectively. Bold entries significantly outperform
all others. Methods in italics are passive.

from 500 research paper references. We use a stan-
dard set of word, regular expressions, and lexicon
features, as well as context features in a window
of ±3. All results are averaged over ten random
80:20 splits of the data.

5.1 Results
Table 2 presents mean (across all iterations) and
final token accuracy results. On the apartments
task, GE methods greatly outperform MML9 and
ER methods. Each uncertainty-based GE method
also outperforms all passive GE methods. On the
cora task, only GE with weighted uncertainty sig-
nificantly outperforms ER and passive GE meth-
ods in terms of mean accuracy, but all uncertainty-
based GE methods provide higher final accuracy.
This suggests that on the cora task, active GE
methods are performing better in later iterations.
Figure 1, which compares the learning curves of
the best performing methods of each type, shows
this phenomenon. Further analysis reveals that the
uncertainty-based methods are choosing frequent
features that are more likely to be skipped than
those selected randomly in early iterations.

We next compare with the results of related
methods published elsewhere. We cannot make
claims about statistical significance, but the results

9Only the best MML results are shown.
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illustrate the competitiveness of our method. The
74.6% final accuracy on apartments is higher than
any result obtained by Haghighi and Klein (2006)
(the highest is 74.1%), higher than the supervised
HMM results reported by Grenager et al. (2005)
(74.4%), and matches the results of Mann and Mc-
Callum (2008) with GE with more accurate sam-
pled label distributions and 10 labeled examples.
Chang et al. (2007) only obtain better results than
88.2% on cora when using 300 labeled examples
(two hours of estimated annotation time), 5000 ad-
ditional unlabeled examples, and extra test time in-
ference constraints. Note that obtaining these re-
sults required only 10 simulated minutes of anno-
tation time, and that GE methods are provided no
information about the label transition matrix.

6 User Experiments

Another advantage of feature queries is that fea-
ture names are concise enough to be browsed,
rather than considered individually. This allows
the design of improved interfaces that can further
increase the speed of feature active learning. We
built a prototype interface that allows the user to
quickly browse many candidate features. The fea-
tures are split into groups of five features each.
Each group contains features that are related, as
measured by distributional similarity. The features
within each group are sorted according to the ac-
tive learning metric. This interface, displayed in
Figure 3, may be useful because features in the
same group are likely to have the same label.

We conduct three types of experiments. First, a
user labels instances selected by information den-
sity, and models are trained using ER. The in-
stance labeling interface allows the user to label
tokens quickly by extending the current selection
one token at a time and only requiring a single
keystroke to label an entire segment. Second,
the user labels features presented one-at-a-time by
weighted uncertainty, and models are trained us-
ing GE. To aid the user in understanding the func-
tion of the feature quickly, we provide several ex-
amples of the feature occurring in context and the
model’s current predicted label distribution for the
feature. Finally, the user labels features organized
using the grid interface described in the previous
paragraph. Weighted uncertainty is used to sort
feature queries within each group, and GE is used
to train models. Each iteration of labeling lasts
two minutes, and there are five iterations. Retrain-

ing with ER between iterations takes an average
of 5 minutes on cora and 3 minutes on apart-
ments. With GE, the retraining times are on av-
erage 6 minutes on cora and 4 minutes on apart-
ments. Consequently, even when viewed with to-
tal time, rather than annotation time, feature active
learning is beneficial. While waiting for models to
retrain, users can perform other tasks.

Figure 2 displays the results. User 1 labeled
apartments data, while Users 2 and 3 labeled cora
data. User 1 was able to obtain much better results
with feature labeling than with instance labeling,
but performed slightly worse with the grid inter-
face than with the serial interface. User 1 com-
mented that they found the label definitions for
apartments to be imprecise, so the other experi-
ments were conducted on the cora data. User 2
obtained better results with feature labeling than
instance labeling, and obtained higher mean ac-
curacy with the grid interface. User 3 was much
better at labeling features than instances, and per-
formed especially well using the grid interface.

7 Conclusion

We proposed an active learning approach in which
features, rather than instances, are labeled. We
presented an algorithm for active learning with
features and several feature query selection meth-
ods that approximate the expected reduction in
model uncertainty of a feature query. In simu-
lated experiments, active learning with features
outperformed passive learning with features, and
uncertainty-based feature query selection outper-
formed other baseline methods. In both simulated
and real user experiments, active learning with
features outperformed passive and active learning
with instances. Finally, we proposed a new label-
ing interface that leverages the conciseness of fea-
ture queries. User experiments suggested that this
grid interface can improve labeling efficiency.
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Figure 1: Token accuracy vs. time for best performing ER, MML, passive GE, and active GE methods.
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Figure 2: User experiments with instance labeling and feature labeling with the serial and grid interfaces.

Figure 3: Grid feature labeling interface. Boxes on the left contain groups of features that appear in
similar contexts. Features in the same group often receive the same label. On the right, the model’s
current expectation and occurrences of the selected feature in context are displayed.
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Abstract

In this paper, we propose a novel class
of graphs, the tripartite directed acyclic
graphs (tDAGs), to model first-order rule
feature spaces for sentence pair classifi-
cation. We introduce a novel algorithm
for computing the similarity in first-order
rewrite rule feature spaces. Our algorithm
is extremely efficient and, as it computes
the similarity of instances that can be rep-
resented in explicit feature spaces, it is a
valid kernel function.

1 Introduction

Natural language processing models are generally
positive combinations between linguistic models
and automatically learnt classifiers. As trees are
extremely important in many linguistic theories, a
large amount of works exploiting machine learn-
ing algorithms for NLP tasks has been developed
for this class of data structures (Collins and Duffy,
2002; Moschitti, 2004). These works propose ef-
ficient algorithms for determining the similarity
among two trees in tree fragment feature spaces.

Yet, some NLP tasks such as textual entail-
ment recognition (Dagan and Glickman, 2004;
Dagan et al., 2006) and some linguistic theories
such as HPSG (Pollard and Sag, 1994) require
more general graphs and, then, more general al-
gorithms for computing similarity among graphs.
Unfortunately, algorithms for computing similar-
ity among two general graphs in term of com-
mon subgraphs are still exponential (Ramon and
Gärtner, 2003). In these cases, approximated al-
gorithms have been proposed. For example, the
one proposed in (Gärtner, 2003) counts the num-
ber of subpaths in common. The same happens for
the one proposed in (Suzuki et al., 2003) that is
applicable to a particular class of graphs, i.e. the
hierarchical directed acyclic graphs. These algo-
rithms do not compute the number of subgraphs

in common between two graphs. Then, these al-
gorithms approximate the feature spaces we need
in these NLP tasks. For computing similarities in
these feature spaces, we have to investigate if we
can define a particular class of graphs for the class
of tasks we want to solve. Once we focused the
class of graph, we can explore efficient similarity
algorithms.

A very important class of graphs can be de-
fined for tasks involving sentence pairs. In these
cases, an important class of feature spaces is the
one that represents first-order rewrite rules. For
example, in textual entailment recognition (Da-
gan et al., 2006), we need to determine whether
a textT implies a hypothesisH, e.g., whether or
not “Farmers feed cows animal extracts” entails
“Cows eat animal extracts” (T1,H1). If we want
to learn textual entailment classifiers, we need
to exploit first-order rules hidden in training in-
stances. To positively exploit the training instance
“Pediatricians suggest women to feed newborns
breast milk” entails “Pediatricians suggest that
newborns eat breast milk” (T2,H2) for classify-
ing the above example, learning algorithms should
learn that the two instances hide the first-order rule
ρ = feedY Z → Y eat Z . The first-order
rule feature space, introduced by (Zanzotto and
Moschitti, 2006), gives high performances in term
of accuracy for textual entailment recognition with
respect to other features spaces.

In this paper, we propose a novel class of
graphs, the tripartite directed acyclic graphs
(tDAGs), that model first-order rule feature spaces
and, using this class of graphs, we introduce a
novel algorithm for computing the similarity in
first-order rewrite rule feature spaces. The possi-
bility of explicitly representing the first-order fea-
ture space as subgraphs of tDAGs makes the de-
rived similarity function a valid kernel. With re-
spect to the algorithm proposed in (Moschitti and
Zanzotto, 2007), our algorithm is more efficient
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and it is a valid kernel function.
The paper is organized as follows. In Sec. 2,

we firstly describe tripartite directed acyclic
graphs (tDAGs) to model first-order feature (FOR)
spaces. In Sec. 3, we then present the related
work. In Sec. 4, we introduce the similarity func-
tion for these FOR spaces. This can be used as ker-
nel function in kernel-based machines (e.g., sup-
port vector machines (Cortes and Vapnik, 1995)).
We then introduce our efficient algorithm for com-
puting the similarity among tDAGs. In Sec. 5,
we analyze the computational efficiency of our
algorithm showing that it is extremely more ef-
ficient than the algorithm proposed in (Moschitti
and Zanzotto, 2007). Finally, in Sec. 6, we draw
conclusions and plan the future work.

2 Representing first-order rules and
sentence pairs as tripartite directed
acyclic graphs

As first step, we want to define thetripartite di-
rected acyclic graphs(tDAGs). This is an ex-
tremely important class of graphs for the first-
order rule feature spaces we want to model. We
want here to intuitively show that, if we model
first-order rules and sentence pairs astDAGs, de-
termining whether or not a sentence pair can be
unified with a first-order rewrite rule is a graph
matching problem. This intuitive idea helps in
determining our efficient algorithm for exploiting
first-order rules in learning examples.

To illustrate the above idea we will use an ex-
ample based on the above ruleρ= feedY Z →

Y eat Z and the above sentence pair(T1,H1).
The ruleρ encodes the entailment relation of the
verb to feedand the verbto eat. If represented
over a syntactic interpretation, the rule has the fol-
lowing aspect:

ρ1 =
VP

VB

feed

NP Y NP Z →

S

NP Y VP

VB

eat

NP Z

As in the case of feature structures (Carpenter,
1992), we can observe this rule as a graph. As
we are not interested in the variable names but we
need to know the relation between the right hand
side and the left hand side of the rule, we can
substitute each variable with an unlabelled node.
We then connect tree nodes having variables with

VP

VB

feed

NP NP ·

·

S

NP VP

VB

eat

NP

Figure 1:A simple rewrite rule seen as a graph
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Figure 2:A sample pair seen as a graph

the corresponding unlabelled node. The result is a
graph as the one in Fig. 1. The variablesY and Z
are represented by the unlabelled nodes between
the trees.

In the same way we can represent the sentence
pair (T1,H1) using graph with explicit links be-
tween related words and nodes (see Fig. 2). We
can link words using anchoring methods as in
(Raina et al., 2005). These links can then be prop-
agated in the syntactic tree using semantic heads
of the constituents (Pollard and Sag, 1994). The
ruleρ1 matches over the pair(T1,H1) if the graph
ρ1 is among the subgraphs of the graph in Fig. 2.

Both rules and sentence pairs are graphs of the
same type. These graphs are basically two trees
connected through an intermediate set of nodes
representing variables in the rules and relations be-
tween nodes in the sentence pairs. We will here-
after call these graphstripartite directed acyclic
graphs(tDAGs). The formal definition follows.

Definition tDAG: A tripartite directed acyclic
graph is a graphG = (N,E) where

• the set of nodesN is partitioned in three sets
Nt, Ng, andA

• the set of edges is partitioned in four setsEt,
Eg, EAt , andEAg

such thatt = (Nt, Et) andg = (Ng, Eg) are two
trees andEAt = {(x, y)|x ∈ Nt andy ∈ A} and
EAg = {(x, y)|x ∈ Ng andy ∈ A} are the edges
connecting the two trees.

A tDAG is a partially labeled graph. The label-
ing functionL only applies to the subsets of nodes
related to the two trees, i.e.,L : Nt ∪ Ng → L.
Nodes in the setA are not labeled.
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The explicit representation of the tDAG in Fig. 2
has been useful to show that the unification of a
rule and a sentence pair is a graph matching prob-
lem. Yet, it is complex to follow. We will then de-
scribe a tDAG with an alternative and more con-
venient representation. A tDAGG = (N,E)
can be seen as pairG = (τ, γ) of extended trees
τ and γ where τ = (Nt ∪ A,Et ∪ EAt) and
γ = (Ng ∪ A,Eg ∪ EAg ). These are extended
trees as each tree contains the relations with the
other tree.

As for the feature structures, we will graphically
represent a(x, y) ∈ EAt and a(z, y) ∈ EAg as
boxes y respectively on the nodex and on the
nodez. These nodes will then appear asL(x) y

andL(z) y , e.g., NP1. The namey is not a label
but a placeholder representing an unlabelled node.
This representation is used for rules and for sen-
tence pairs. The sentence pair in Fig. 2 is then
represented as reported in Fig. 3.

3 Related work

Automatically learning classifiers for sentence
pairs is extremely important for applications like
textual entailment recognition, question answer-
ing, and machine translation.

In textual entailment recognition, it is not hard
to see graphs similar to tripartite directed acyclic
graphs as ways of extracting features from exam-
ples to feed automatic classifiers. Yet, these graphs
are generally not tripartite in the sense described
in the previous section and they are not used to ex-
tract features representing first-order rewrite rules.
In (Raina et al., 2005; Haghighi et al., 2005; Hickl
et al., 2006), two connected graphs representing
the two sentencess1 ands2 are used to compute
distance features, i.e., features representing the
distance betweens1 ands2. The underlying idea
is that lexical, syntactic, and semantic similarities
between sentences in a pair are relevant features
to classify sentence pairs in classes such asentail
andnot-entail.

In (de Marneffe et al., 2006), first-order rewrite
rule feature spaces have been explored. Yet, these
spaces are extremely small. Only some features
representing first-order rules have been explored.
Pairs of graphs are used here to determine if a fea-
ture is active or not, i.e., the rule fires or not. A
larger feature space of rewrite rules has been im-
plicitly explored in (Wang and Neumann, 2007)
but this work considers only ground rewrite rules.

In (Zanzotto and Moschitti, 2006), tripartite di-
rected acyclic graphs are implicitly introduced and
exploited to build first-order rule feature spaces.
Yet, both in (Zanzotto and Moschitti, 2006) and
in (Moschitti and Zanzotto, 2007), the model pro-
posed has two major limitations: it can represent
rules with less than 7 variables and the proposed
kernel is not a completely valid kernel as it uses
the max function.

In machine translation, some methods such as
(Eisner, 2003) learn graph based rewrite rules for
generative purposes. Yet, the method presented in
(Eisner, 2003) can model first-order rewrite rules
only with a very small amount of variables, i.e.,
two or three variables.

4 An efficient algorithm for computing
the first-order rule space kernel

In this section, we present our idea for an effi-
cient algorithm for exploiting first-order rule fea-
ture spaces. In Sec. 4.1, we firstly define the simi-
larity function, i.e., the kernelK(G1, G2), that we
need to determine for correctly using first-order
rules feature spaces. This kernel is strongly based
on the isomorphism between graphs. A relevant
idea of this paper is the observation that we can
define an efficient way to detect the isomorphism
between the tDAGs (Sec. 4.2). This algorithm ex-
ploits the efficient algorithms of tree isomorphism
as the one implicitly used in (Collins and Duffy,
2002). After describing the isomorphism between
tDAGs, We can present the idea of our efficient al-
gorithm for computingK(G1, G2) (Sec. 4.3). We
introduce the algorithms to make it a viable solu-
tion (Sec. 4.4). Finally, in Sec. 4.5, we report the
kernel computation we compare against presented
by (Zanzotto and Moschitti, 2006; Moschitti and
Zanzotto, 2007).

4.1 Kernel functions over first-order rule
feature spaces

The first-order rule feature space we want to model
is huge. If we use kernel-based machine learning
models such as SVM (Cortes and Vapnik, 1995),
we can implicitly define the space by defining its
similarity functions, i.e., its kernel functions. We
firstly introduce the first-order rule feature space
and we then define the prototypical kernel function
over this space.

The first-order rule feature space (FOR) is in
general the space of all the possible first-order
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P1 = 〈

S

NP

NNS

Farmers

VP

VB

feed

NP 1

NNS 1

cows

NP 3

NN 2
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NNS 3

extracts

,

S

NP 1
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VP
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NP 3

NN 2
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NNS 3

extracts

〉

P2 = 〈

S 2

NP 1

NNS 1
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VP 2

VB 2
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S

NP

NNS
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VP
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VP

VB

feed

NP 3

NNS 3
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NN 5
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NN 4
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,
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NN 4
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〉

Figure 3: Two tripartite DAGs

rules defined as tDAGs. Within this space it is pos-
sible to define the functionS(G) that determines
all the possible active features of the tDAGG in
FOR. The functionS(G) determines all the pos-
sible and meaningful subgraphs ofG. We want
that these subgraphs represent first-order rules that
can be matched with the pairG. Then, meaningful
subgraphs ofG = (τ, γ) are graphs as(t, g) where
t andg are subtrees ofτ andγ. For example, the
subgraphs ofP1 andP2 in Fig. 3 are hereafter par-
tially represented:

S(P1) = { 〈
S

NP VP
,

S

NP 1 VP

〉 , 〈
NP 1

NNS 1

,

NP 1

NNS 1

〉 ,

〈

S

NP VP

VB

feed

NP 1 NP 3
,

S

NP 1 VP

VB

eat

NP 3

〉 ,

〈

VP

VB

feed

NP 1 NP 3 ,

S

NP 1 VP

VB

eat

NP 3

〉 , ... }

and

S(P2) = { 〈
S 2

NP 1 VP 2

,

S 2

NP 1 VP 2

〉 , 〈
NP 1

NNS 1

,

NP 1

NNS 1

〉 ,

〈

VP

VB

feed

NP 3 NP 4 ,

S

NP 3 VP

VB

eat

NP 4

〉 , ... }

In the FOR space, the kernel functionK should
then compute the number of subgraphs in com-
mon. The trivial way to describe the former kernel

function is using the intersection operator, i.e., the
kernelK(G1, G2) is the following:

K(G1, G2) = |S(G1) ∩ S(G2)| (1)

This is very simple to write and it is in principle
correct. A graphg in the intersectionS(G1) ∩
S(G2) is a graph that belongs to bothS(G1) and
S(G2). Yet, this hides a very important fact: de-
termining whether two graphs,g1 andg2, are the
samegraphg1 = g2 is not trivial. For example,
it is not sufficient to superficially compare graphs
to determine thatρ1 belongs both toS1 andS2.
We need to use the correct property forg1 = g2,
i.e., theisomorphismbetween two graphs. We can
call the operatorIso(g1, g2). When two graphs
verify the propertyIso(g1, g2), both g1 and g2

can be taken as the graphg representing the two
graphs. DetectingIso(g1, g2) has an exponential
complexity (Köbler et al., 1993).

This complexity of the intersection operator be-
tween sets of graphs deserves a different way to
represent the operation. We will use the same sym-
bol but we will use the prefix notation. The opera-
tor is hereafter re-defined:

∩ (S(G1),S(G2)) =
= {g1|g1 ∈ S(G1),∃g2 ∈ S(G2), Iso(g1, g2)}

4.2 Isomorphism between tDAGs

As isomorphism between graphs is an essential ac-
tivity for learning from structured data, we here
review its definition and we adapt it to tDAGs.
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We then observe that isomorphism between two
tDAGs can be divided in two sub-problems:

• finding the isomorphism between two pairs
of extended trees

• checking whether the partial isomorphism
found between the two pairs ofextended trees
are compatible.

In general, two tDAGs,G1 = (N1, E1) and
G2 = (N2, E2) are isomorphic (or match) if
|N1| = |N2|, |E1| = |E2|, and a bijective func-
tion f : N1 → N2 exists such that these properties
hold:

• for each noden ∈ N1, L(f(n)) = L(n)
• for each edge(n1, n2) ∈ E1 an edge

(f(n1), f(n2)) is in E2

The bijective functionf is a member of the combi-
natorial setF of all the possible bijective functions
between the two setsN1 andN2.

The trivial algorithm for detecting if two graphs
are isomorphic is exponential (Köbler et al.,
1993). It explores all the setF . It is still unde-
termined if the general graph isomorphism prob-
lem is NP-complete. Yet, we can use the fact that
tDAGs are two extended trees for building a bet-
ter algorithm. There is an efficient algorithm for
computing isomorphism between trees (as the one
implicitly used in (Collins and Duffy, 2002)).

Given two tDAGsG1 = (τ1, γ1) and G2 =
(τ2, γ2) the isomorphism problem can be divided
in detecting two properties:

1. Partial isomorphism. Two tDAGsG1 andG2

arepartially isomorphic, if τ1 andτ2 are iso-
morphic and ifγ1 andγ2 are isomorphic. The
partial isomorphism produces two bijective
functionsfτ andfγ .

2. Constraint compatibility. Two bijective func-
tionsfτ andfγ are compatible on the sets of
nodesA1 andA2, if for eachn ∈ A1, it hap-
pens thatfτ (n) = fγ(n).

We can rephrase the second property, i.e., the
constraint compatibility, as follows. We de-
fine two constraintsc(τ1, τ2) and c(γ1, γ2) rep-
resenting the functionsfτ and fγ on the sets
A1 and A2. The two constraints are defined as
c(τ1, τ2) = {(n, fτ (n))|n ∈ A1} andc(γ1, γ2) =
{(n, fγ(n))|n ∈ A1}. Two partially isomorphic
tDAGs are isomorphic if the constraints match,
i.e.,c(τ1, τ2) = c(γ1, γ2).

Pa = (τa, γa) = 〈

A 1

B 1

B 1 B 2

C 1

C 1 C 2

,

I 1

M 1

M 2 M 1

N 1

N 2 N 1

〉

Pb = (τb, γb) = 〈

A 1

B 1

B 1 B 2

C 1

C 1 C 3

,

I 1

M 1

M 3 M 1

N 1

N 2 N 1

〉

Figure 5: Simple non-linguistic tDAGs

For example, the third pair ofS(P1) and the
second pair ofS(P2) are isomorphic as: (1) these
are partially isomorphic, i.e., the right hand sides
τ and the left hand sidesγ are isomorphic; (2)
both pairs of extended trees generate the constraint
c1 = {(1 , 3), (3 , 4)}. In the same way, the
fourth pair ofS(P1) and the third pair ofS(P2)
generatec2 = {(1 , 1)}
4.3 General idea for an efficient kernel

function

As above discussed, two tDAGs are isomorphic if
the two properties, thepartial isomorphismand
theconstraint compatibility, hold. To compute the
kernel functionK(G1, G2) defined in Sec. 4.1, we
can exploit these properties in the reverse order.
Given a constraintc, we can select all the graphs
that meet the constraintc (constraint compatibil-
ity). Having the two set of all the tDAGs meeting
the constraint, we can detect thepartial isomor-
phism. We split each pair of tDAGs in the four
extended trees and we determine if these extended
trees are compatible.

We introduce this innovative method to com-
pute the kernelK(G1, G2) in the FOR space in
two steps. Firstly, we give an intuitive explanation
and, secondly, we formally define the kernel.

4.3.1 Intuitive explanation

To give an intuition of the kernel computation,
without loss of generality and for sake of simplic-
ity, we use two non-linguistic tDAGs,Pa andPb

(see Fig. 5), and the subgraph functionS̃(θ). This
latter is an approximated version ofS(θ) that gen-
erates tDAGs with subtrees rooted in the root of
the initial trees ofθ.

To exploit the constraint compatibility
property, we defineC as the set of all the
relevant alternative constraints, i.e., the con-
straints c that are likely to be generated
when detecting the partial isomorphism.
For Pa and Pb, this set isC = {c1, c2} =
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∩(S̃(Pa), S̃(Pb))|c1 = { 〈
A 1

B 1 C 1

,

I 1

M 1 N 1

〉 , 〈

A 1

B 1

B 1 B 2

C 1 ,

I 1

M 1 N 1

〉 , 〈

A 1

B 1

B 1 B 2

C 1 ,

I 1

M 1 N 1

N 2 N 1

〉 ,

〈
A 1

B 1 C 1

,

I 1

M 1 N 1

N 2 N 1

〉 } = {
A 1

B 1 C 1

,

A 1

B 1

B 1 B 2

C 1 } × {
I 1

M 1 N 1

,

I 1

M 1 N 1

N 2 N 1

} =

= ∩(S̃(τa), S̃(τb))|c1 ×∩(S̃(γa), S̃(γb))|c1

∩(S̃(Pa), S̃(Pb))|c2 = { 〈
A 1

B 1 C 1

,

I 1

M 1 N 1

〉 , 〈

A 1

B 1 C 1

C 1 C 2

,

I 1

M 1 N 1

〉 , 〈

A 1

B 1 C 1

C 1 C 2

,

I 1

M 1

M 2 M 1

N 1 〉 ,

〈
A 1

B 1 C 1

,

I 1

M 1

M 2 M 1

N 1 〉 } = {
A 1

B 1 C 1

,

A 1

B 1 C 1

C 1 C 2

} × {
I 1

M 1 N 1

,

I 1

M 1

M 2 M 1

N 1 }=

= ∩(S̃(τa), S̃(τb))|c2 ×∩(S̃(γa), S̃(γb))|c2

Figure 4: Intuitive idea for the kernel computation

{{(1 , 1), (2 , 2)}, {(1 , 1), (2 , 3)}}. We can
then determine the kernelK(Pa, Pb) as:

K(Pa,Pb)= |∩(S̃(Pa),S̃(Pb))|=
= |∩(S̃(Pa),S̃(Pb))|c1

⋃ ∩(S̃(Pa),S̃(Pb))|c2 |

where∩(S̃(Pa), S̃(Pb))|c are the common sub-
graphs that meet the constraintc. A tDAG g′ =
(τ ′, γ′) in S̃(Pa) is in ∩(S̃(Pa), S̃(Pb))|c if g′′ =
(τ ′′, γ′′) in S̃(Pb) exists,g′ is partially isomorphic
to g′′, andc′ = c(τ ′, τ ′′) = c(γ′, γ′′) is coveredby
andcompatiblewith the constraintc, i.e., c′ ⊆ c.
For example in Fig. 4, the first tDAG of the set
∩(S̃(Pa), S̃(Pb))|c1 belongs to the set as its con-
straintc′ = {(1 , 1)} is a subset ofc1.

Observing the kernel computation in this way
is important. Elements in∩(S̃(Pa), S̃(Pb))|c
already satisfy the property ofconstraint com-
patibility. We only need to determine if the
partially isomorphicproperties hold for elements
in ∩(S̃(Pa), S̃(Pb))|c. Then, we can write the
following equivalence:

∩(S̃(Pa),S̃(Pb))|c=
=∩(S̃(τa),S̃(τb))|c×∩(S̃(γa),S̃(γb))|c

(2)

Figure 4 reports this equivalence for the two
sets derived using the constraintsc1 and c2.
Note that this equivalence is not valid if a con-
straint is not applied, i.e.,∩(S̃(Pa), S̃(Pb))
6= ∩(S̃(τa), S̃(τb)) × ∩(S̃(γa), S̃(γb)).
The pair Pa itself does not belong to

∩(S̃(Pa), S̃(Pb)) but it does belong to
∩(S̃(τa), S̃(τb))× ∩(S̃(γa), S̃(γb)).

The equivalence (2) allows to compute the car-
dinality of ∩(S̃(Pa), S̃(Pb))|c using the cardinal-
ities of ∩(S̃(τa), S̃(τb))|c and∩(S̃(γa), S̃(γb))|c.
These latter sets contain only extended trees where
the equivalences between unlabelled nodes are
given by c. We can then compute the cardinali-
ties of these two sets using methods developed for
trees (e.g., the kernel functionKS(θ1, θ2) intro-
duced in (Collins and Duffy, 2002)).

4.3.2 Formal definition

Given the idea of the previous section, it is easy
to demonstrate that the kernelK(G1, G2) can be
written as follows:

K(G1,G2)=|⋃c∈C ∩(S(τ1),S(τ2))|c×∩(S(γ1),S(γ2))|c|
where C is set of alternative constraints and
∩(S(θ1),S(θ2))|c are all the common extended
trees compatible with the constraintc.

We can compute the above kernel using the
inclusion-exclusion property, i.e.,

|A1 ∪ · · · ∪An| =
∑

J∈2{1,...,n}
(−1)|J |−1|AJ | (3)

where 2{1,...,n} is the set of all the subsets of
{1, . . . , n} andAJ =

⋂
i∈J Ai.

To describe the application of the inclusion-
exclusion model in our case, let firstly define:

KS(θ1, θ2, c) = |∩(S(θ1),S(θ2))|c| (4)
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whereθ1 can be bothτ1 andγ1 andθ2 can be both
τ2 andγ2. Trivially, we can demonstrate that:

K(G1, G2) =
=

∑
J∈2{1,...,|C|}(−1)|J|−1KS(τ1,τ2,c(J))KS(γ1,γ2,c(J))

(5)

wherec(J) =
⋂

i∈J ci.
Given the nature of the constraint setC, we

can compute efficiently the previous equation as
it often happens that two differentJ1 and J2 in
2{1,...,|C|} generate the samec, i.e.

c =
⋂
i∈J1

ci =
⋂
i∈J2

ci (6)

Then, we can defineC∗ as the set of all intersec-
tions of constraints inC, i.e. C∗ = {c(J)|J ∈
2{1,...,|C|}}. We can rewrite the equation as:

K(G1, G2) =

=
∑
c∈C∗

KS(τ1, τ2, c)KS(γ1, γ2, c)N(c) (7)

where

N(c) =
∑

J∈2{1,...,|C|}
c=c(J)

(−1)|J |−1 (8)

The complexity of the above kernel strongly de-
pends on the cardinality ofC and the related cardi-
nality of C∗. The worst-case computational com-
plexity is still exponential with respect to the size
of A1 andA2. Yet, the average case complexity
(Wang, 1997) is promising.

The set C is generally very small with re-
spect to the worst case. IfF(A1,A2) are all the
possible correspondences between the nodes
A1 and A2, it happens that|C| << |F(A1,A2)|
where|F(A1,A2)| is the worst case. For example,
in the case ofP1 and P2, the cardinality of
C =

{{(1 , 1)}, {(1 , 3), (3 , 4), (2 , 5)}}
is extremely smaller than the one of
F(A1,A2) = {{( 1,1),(2,2),(3,3)},
{( 1,2),(2,1),(3,3)}, {( 1,2),(2,3),(3,1)},
..., {( 1,3),(2,4),(3,5)}}. In Sec. 4.5 we argue
that the algorithm presented in (Moschitti and
Zanzotto, 2007) has the worst-case complexity.

Moreover, the setC∗ is extremely smaller than
2{1,...,|C|} due to the above property (6).

We will analyze the average-case complex-
ity with respect to the worst-case complexity in
Sec. 5.

4.4 Enabling the efficient kernel function

The above idea for computing the kernel function
is extremely interesting. Yet, we need to make it
viable by describing the way we can determine ef-
ficiently the three main parts of the equation (7):
1) the set of alternative constraintsC (Sec. 4.4.1);
2) the setC∗ of all the possible intersections of
constraints inC (Sec. 4.4.2); and, finally, 3) the
numbersN(c) (Sec. 4.4.3).

4.4.1 Determining the set of alternative
constraints

The first step of equation (7) is to determine the
alternative constraintsC. We can here strongly
use the possibility of dividing tDAGs in two trees.
We build C as Cτ ∪ Cγ where: 1)Cτ are the
constraints obtained from pairs of isomorphic ex-
tended treest1 ∈ S(τ1) andt2 ∈ S(τ2); 2) Cγ are
the constraints obtained from pairs of isomorphic
extended treest1 ∈ S(γ1) andt2 ∈ S(γ2).

The idea for an efficient algorithm is that we
can compute theC without explicitly looking
at all the subgraphs involved. We instead use
and combine the constraints derived comparing
the productions of the extended trees. We can
compute thenCτ with the productions ofτ1 and
τ2 and Cγ with the productions ofγ1 and γ2.
For example (see Fig. 3), focusing on theτ , the
rule NP 3 → NN 2NNS 3 of G1 and
NP 4 → NN 5NNS 4 of G2 generates the

constraintc = {(3 , 4), (2 , 5)}.
Using the above intuition it is possible to define

an algorithm that builds an alternative constraint
setC with the following two properties:

1. for each common subtree according to a set
of constraintsc, ∃c′ ∈ C such thatc ⊆ c′;

2. @c′, c′′ ∈ C such thatc′ ⊂ c′′ andc′ 6= ∅.
4.4.2 Determining the setC∗

The setC∗ is defined as the set of all possible in-
tersections of alternative constraints inC. Figure
6 presents the algorithm determiningC∗. Due to
the property (6) discussed in Sec. 4.3, we can em-
pirically demonstrate that the average complexity
of the algorithm is not bigger thanO(|C|2). Yet,
again, the worst case complexity is exponential.

4.4.3 Determining the values ofN(c)
The multiplier N(c) (Eq. 8) represents the num-
ber of times the constraintc is considered in the
sum of equation 5, keeping into account the sign of
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Algorithm Build the setC∗ from the setC
C+ ← C ; C1 ← C ; C2 ← ∅
WHILE |C1| > 1

FORALL c′ ∈ C1

FORALL c′′ ∈ C1 such thatc′ 6= c′′

c← c′ ∩ c′′

IF c /∈ C+ addc to C2

C+ ← C+ ∪ C2 ; C1 ← C2; C2 ← ∅
C∗ ← C ∪ C+ ∪ {∅}

Figure 6:Algorithm for computingC∗

the corresponding addend. It is possible to demon-
strate that:

N(c) = 1−
∑

c′∈C∗
c′⊃c

Nc′ (9)

This recursive formulation of the equation allows
us to easily determine the value ofN(c) for every
c belonging toC∗. It is possible to prove this prop-
erty using set properties and the binomial theorem.
The proof is omitted for lack of space.

4.5 Reviewing the strictly related work

To understand if ours is an efficient algorithm, we
compare it with the algorithm presented by (Mos-
chitti and Zanzotto, 2007). We will hereafter call
this algorithmKmax. The Kmax algorithm and
kernel is an approximation of what is a kernel
needed for a FOR space as it is not difficult to
demonstrate thatKmax(G1, G2) ≤ K(G1, G2).
The Kmax approximation is based on maximiza-
tion over the set of possible correspondences of
the placeholders. Following our formulation, this
kernel appears as:

Kmax(G1, G2) =
= max

c∈F(A1,A2)

KS(τ1, τ2, c)KS(γ1, γ2, c) (10)

where F(A1,A2) are all the possible correspon-
dences between the nodesA1 andA2 of the two
tDAGs as the one presented in Sec. 4.3. This for-
mulation of the kernel has the worst case complex-
ity of our formulation, i.e., Eq. 7.

For computing the basic kernel for the extended
trees, i.e. KS(θ1, θ2, c) we use the model algo-
rithm presented by (Zanzotto and Moschitti, 2006)
and refined by (Moschitti and Zanzotto, 2007)
based on the algorithm for tree fragment feature
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K(G1, G2)
Kmax(G1, G2)

Figure 7: Mean execution time in milliseconds
(ms) of the two algorithms wrt.n × m wheren
andm are the number of placeholders of the two
tDAGs

spaces (Collins and Duffy, 2002). As we are using
the same basic kernel, we can empirically compare
the two methods.

5 Experimental evaluation

In this section we want to empirically estimate the
benefits on the computational cost of our novel al-
gorithm with respect to the algorithm proposed by
(Moschitti and Zanzotto, 2007). Our algorithm is
in principle exponential with respect to the set of
alternative constraintsC. Yet, due to what pre-
sented in Sec. 4.4 and as the setC∗ is usually
very small, the average complexity is extremely
low. Following the theory on the average-cost
computational complexity (Wang, 1997), we es-
timated the behavior of the algorithms on a large
distribution of cases. We then compared the com-
puting times of the two algorithms. Finally, as
K and Kmax compute slightly different kernels,
we compare the accuracy of the two methods.
We implemented both algorithmsK(G1, G2) and
Kmax(G1, G2) in support vector machine classi-
fier (Joachims, 1999) and we experimented with
both implementations on the same machine. We
hereafter analyze the results in term of execution
time (Sec. 5.1) and in term of accuracy (Sec. 5.2).

5.1 Average computing time analysis

For this first set of experiments, the source of ex-
amples is the one of the recognizing textual en-
tailment challenge, i.e., RTE2 (Bar-Haim et al.,
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Figure 8: Total execution time in seconds (s) of
the training phase on RTE2 wrt. different numbers
of allowed placeholders

2006). The dataset of the challenge has 1,600 sen-
tence pairs.

The computational cost of bothK(G1, G2) and
Kmax(G1, G2) depends on the number of place-
holdersn = |A1| of G1 and onm = |A2| the
number of placeholders ofG2. Then, in the first
experiment we want to determine the relation be-
tween the computational time and the factorn×m.
Results are reported in Fig. 7 where the computa-
tion times are plotted with respect ton×m. Each
point in the curve represents the average execu-
tion time for the pairs of instances havingn ×m
placeholders. As expected, the computation of the
functionK is more efficient than the computation
Kmax. The difference between the two execution
times increases withn×m.

We then performed a second experiment that
wants to determine the relation of the total exe-
cution with the maximum number of placeholders
in the examples. This is useful to estimate the be-
havior of the algorithm with respect to its applica-
tion in learning models. Using the RTE2 data, we
artificially build different versions with increasing
number of placeholders. We then have RTE2 with
1 placeholder at most in each pair, RTE2 with 2
placeholders, etc. The number of pairs in each set
is the same. What changes is the maximal num-
ber of placeholders. Results are reported in Fig. 8
where the execution time of the training phase in
seconds (s) is plotted for each different set. We
see that the computation ofKmax is exponential
with respect to the number of placeholders and

Kernel Accuracy Used training Support
examples Vectors

Kmax 59.32 4223 4206
K 60.04 4567 4544

Table 1:Comparative performances ofKmax andK

it becomes intractable after 7 placeholders. The
computation ofK is instead more flat. This can
be explained as the computation ofK is related
to the real alternative constraints that appears in
the dataset. The computation of the kernelK then
outperforms the computation of the kernelKmax.

5.2 Accuracy analysis

As Kmax that has been demonstrated very effec-
tive in term of accuracy for RTE andK compute
a slightly different similarity function, we want to
show that the performance of our more computa-
tionally efficientK is comparable, and even better,
to the performances ofKmax. We then performed
an experiment taking as training all the data de-
rived from RTE1, RTE2, and RTE3, (i.e., 4567
training examples) and taking as testing RTE-4
(i.e., 1000 testing examples). The results are re-
ported in Tab. 1. As the table shows, the accuracy
of K is higher than the accuracy ofKmax. There
are two main reasons. The first is thatKmax is
an approximation ofK. The second is that we
can now consider sentence pairs with more than
7 placeholders. Then, we can use the complete
training set as the third column of the table shows.

6 Conclusions and future work

We presented an interpretation of first order rule
feature spaces astripartite directed acyclic graphs
(tDAGs). This view on the problem gave us the
possibility of defining a novel and efficient algo-
rithm for computing the kernel function for first
order rule feature spaces. Moreover, the resulting
algorithm is a valid kernel as it can be written as
dot product in the explicit space of the tDAG frag-
ments. We demonstrated that our algorithm out-
performs in term of average complexity the previ-
ous algorithm and it yields to better accuracies for
the final task. We are investigating if this is a valid
algorithm for two general directed acyclic graphs.
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Abstract
We study graphical modeling in the case of string-
valued random variables. Whereas a weighted
finite-state transducer can model the probabilis-
tic relationship between two strings, we are inter-
ested in building up joint models of three or more
strings. This is needed for inflectional paradigms
in morphology, cognate modeling or language re-
construction, and multiple-string alignment. We
propose a Markov Random Field in which each
factor (potential function) is a weighted finite-state
machine, typically a transducer that evaluates the
relationship between just two of the strings. The
full joint distribution is then a product of these fac-
tors. Though decoding is actually undecidable in
general, we can still do efficient joint inference
using approximate belief propagation; the nec-
essary computations and messages are all finite-
state. We demonstrate the methods by jointly pre-
dicting morphological forms.

1 Overview
This paper considers what happens if a graphical
model’s variables can range over strings of un-
bounded length, rather than over the typical finite
domains such as booleans, words, or tags. Vari-
ables that are connected in the graphical model are
related by some weighted finite-state transduction.

Graphical models have become popular in ma-
chine learning as a principled way to work with
collections of interrelated random variables. Most
often they are used as follows:

1. Build: Manually specify the n variables of
interest; their domains; and the possible di-
rect interactions among them.

2. Train: Train this model’s parameters θ to
obtain a specific joint probability distribution
p(V1, . . . , Vn) over the n variables.

3. Infer: Use this joint distribution to predict
the values of various unobserved variables
from observed ones.
∗Supported by the Human Language Technology Center

of Excellence at Johns Hopkins University, and by National
Science Foundation grant No. 0347822 to the second author.

Note that 1. requires intuitions about the domain;
2. requires some choice of training procedure; and
3. requires a choice of exact or approximate infer-
ence algorithm.

Our graphical models over strings are natural
objects to investigate. We motivate them with
some natural applications in computational lin-
guistics (section 2). We then give our formalism:
a Markov Random Field whose potential functions
are rational weighted languages and relations (sec-
tion 3). Next, we point out that inference is in gen-
eral undecidable, and explain how to do approxi-
mate inference using message-passing algorithms
such as belief propagation (section 4). The mes-
sages are represented as weighted finite-state ma-
chines.

Finally, we report on some initial experiments
using these methods (section 7). We use incom-
plete data to train a joint model of morphological
paradigms, then use the trained model to complete
the data by predicting unseen forms.

2 Motivation

The problem of mapping between different forms
and representations of strings is ubiquitous in nat-
ural language processing and computational lin-
guistics. This is typically done between string
pairs, where a pronunciation is mapped to its
spelling, an inflected form to its lemma, a spelling
variant to its canonical spelling, or a name is
transliterated from one alphabet into another.
However, many problems involve more than just
two strings:

• in morphology, the inflected forms of a (possi-
bly irregular) verb are naturally considered to-
gether as a whole morphological paradigm in
which different forms reinforce one another;
• mapping an English word to its foreign translit-

eration may be easier when one considers the
orthographic and phonological forms of both
words;
• similar cognates in multiple languages are nat-

urally described together, in orthographic or
phonological representations, or both;
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• modern and ancestral word forms form a phylo-
genetic tree in historical linguistics;

• in bioinformatics and in system combination,
multiple sequences need to be aligned in order
to identify regions of similarity.

We propose a unified model for multiple strings
that is suitable for all the problems mentioned
above. It is robust and configurable and can
make use of task-specific overlapping features. It
learns from observed and unobserved, or latent, in-
formation, making it useful in supervised, semi-
supervised, and unsupervised settings.

3 Formal Modeling Approach

3.1 Variables

A Markov Random Field (MRF) is a joint model
of a set of random variables, V = {V1, . . . , Vn}.
We assume that all variables are string-valued, i.e.
the value of Vi may be any string ∈ Σ∗i , where Σi

is some finite alphabet.
We may use meaningful names for the integers

i, such as V2SA for the 2nd singular past form of a
verb.

The assumption that all variables are string-
valued is not crucial; it merely simplifies our
presentation. It is, however, sufficient for many
practical purposes, since most other discrete ob-
jects can be easily encoded as strings. For exam-
ple, if V1 is a part of speech tag, it may be en-
coded as a length-1 string over the finite alphabet
Σ1

def= {Noun,Verb, . . .}.

3.2 Factors

A Markov Random Field defines a probability for
each assignment A of values to the variables in V:

p(A) def=
1
Z

m∏
j=1

Fj(A) (1)

This distribution over assignments is specified by
the collection of factors Fj : A 7→ R≥0. Each
factor (or potential function) is a function that de-
pends on only a subset of A.

Fig. 1 displays an undirected factor graph, in
which each factor is connected to the variables
that it depends on. F1, F3, F5 in this example are
unary factors because each one scores the value
of a single variable, while F2, F4, F6 are binary
factors.

F2 F6

F5F3

F1

F4

Vinf

V2SA V3SE

Figure 1: Example of a factor graph. Black boxes represent
factors, circles represent variables (infinitive, 2nd past, and
3rd present-tense forms of the same verb; different samples
from the MRF correspond to different verbs). Binary factors
evaluate how well one string can be transduced into another,
summing over all transducer paths (i.e., alignments, which
are not observed in training).

In our setting, we will assume that each unary
factor is specified by a weighted finite-state au-
tomaton (WFSA) whose weights fall in the semir-
ing (R≥0,+,×). Thus the score F3(. . . , V2SA =
x, . . .) is the total weight of all paths in the F3’s
WFSA that accept the string x ∈ Σ∗2SA. Each
path’s weight is the product of its component arcs’
weights, which are non-negative.

Similarly, we assume that each binary factor is
specified by a weighted finite-state transducer
(WFST). Such a model is essentially a generaliza-
tion of stochastic edit distance (Ristad and Yian-
ilos, 1996) in which the edit probabilities can be
made sensitive to a finite summary of context.

Formally, a WFST is an automaton that resem-
bles a weighted FSA, but it nondeterministically
reads two strings x, y in parallel from left to right.
The score of (x, y) is given by the total weight of
all accepting paths in the WFST that map x to y.
For example, different paths may consider various
monotonic alignments of x with y, and we sum
over these mutually exclusive possibilities.1

A factor might depend on k > 2 variables. This
requires a k-tape weighted finite-state machine
(WFSM), an obvious generalization where each
path reads k strings in some alignment.2

To ensure that Z is finite in equation (1), we can
require each factor to be a “proper” WFSM, i.e.,
its accepting paths have finite total weight (even if
the WFSM is cyclic, with infinitely many paths).

1Each string is said to be on a different “tape,” which has
its own “read head,” allowing the WFSM to maintain a sep-
arate position in each string. Thus, a path in a WFST may
consume any number of characters from x before consuming
the next character from y.

2Weighted acceptors and transducers are the cases k = 1
and k = 2, which are said to define rational languages and
rational relations.
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3.3 Parameters

Our probability model has trainable parameters: a
vector of feature weights θ ∈ R. Each arc in each
WFSM has a real-valued weight that depends on θ.
Thus, tuning θ during training will change the arc
weights, hence the path weights, the factor func-
tions, and the whole probability distribution p(A).

Designing the probability model includes spec-
ifying the topology and weights of each WFSM.
Eisner (2002) explains how to specify and train
such parameterized WFSMs. Typically, the
weight of an arc is a simple sum like θ12 + θ55 +
θ72, where θ12 is included on all arcs that share
feature 12. However, more interesting parameter-
izations arise if the WFSM is constructed by op-
erations such as transducer composition, or from a
weighted regular expression.

3.4 Power of the formalism

Factored finite-state string models (1) were orig-
inally suggested by the second author, in Kempe
et al. (2004). That paper showed that even in the
unweighted case, such models could be used to en-
code relations that could not be recognized by any
k-tape FSM. We offer a more linguistic example
as a small puzzle. We invite the reader to spec-
ify a factored model (consisting of three FSTs as
in Fig. 1) that assigns positive probability to just
those triples of character strings (x, y, z) that have
the form (red ball, ball red, red), (white house,
house white, white), etc. This uses the auxiliary
variable Z to help encode a relation between X
and Y that swaps words of unbounded length. By
contrast, no FSM can accomplish such unbounded
swapping, even with 3 or more tapes.

Such extra power might be linguistically useful.
Troublingly, however, Kempe et al. (2004) also
observed that the framework is powerful enough to
express computationally undecidable problems.3

This implies that to work with arbitrary models,
we will need approximate methods.4 Fortunately,
the graphical models community has already de-

3Consider a simple model with two variables and two bi-
nary factors: p(V1, V2)

def
= 1

Z
· F1(V1, V2) · F2(V1, V2). Sup-

pose F1 is 1 or 0 according to whether its arguments are
equal. Under this model, p(ε) < 1 iff there exists a string
x 6= ε that can be transduced to itself by the unweighted
transducer F2. This question can be used to encode any in-
stance of Post’s Correspondence Problem, so is undecidable.

4Notice that the simplest approximation to cure undecid-
ability would be to impose an arbitrary maximum on string
length, so that the random variables have a finite domain, just
as in most discrete graphical models.

V

F

U

µV→F µF→U

Figure 2: Illustration of messages being passed from variable
to factor and factor to variable. Each message is represented
by a finite-state acceptor.

veloped many such methods, to deal with the com-
putational intractability (if not undecidability) of
exact inference.

4 Approximate Inference

In this paper, we focus on how belief propagation
(BP)—a simple well-known method for approxi-
mate inference in MRFs (Bishop, 2006)—can be
used in our setting. BP in its general form has
not yet been widely used in the NLP community.5

However, it is just a generalization to arbitrary
factor graphs of the familiar forward-backward al-
gorithm (which operates only on chain-structured
factor graphs). The algorithm becomes approxi-
mate (and may not even converge) when the factor
graphs have cycles. (In that case it is more prop-
erly called “loopy belief propagation.”)

4.1 Belief propagation
We first sketch how BP works in general. Each
variable V in the graphical model maintains a be-
lief about its value, in the form of a marginal dis-
tribution p̃V over the possible values of V . The
final beliefs are the output of the algorithm.

Beliefs arise from messages that are sent be-
tween the variables and factors along the edges of
the factor graph. Variable V sends factor F a mes-
sage µV→F , which is an (unnormalized) probabil-
ity distribution over V ’s values v, computed by

µV→F (v) :=
∏

F ′∈N (V ),F ′ 6=F

µF ′→V (v) (2)

whereN is the set of neighbors of V in the graph-
ical model. This message represents a consensus
of V ’s other neighboring factors concerning V ’s
value. It is how V tells F what its belief p̃V would
be if F were absent. Informally, it communicates
to F : Here is what my value would be if it were up
to my other neighboring factors F ′ to determine.

5Notable exceptions are Sutton et al. (2004) for chunking
and tagging, Sutton and McCallum (2004) for information
extraction, Smith and Eisner (2008) for dependency parsing,
and Cromierès and Kurohashi (2009) for alignment.
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The factor F can then collect such incoming
messages from neighboring variables and send its
own message on to another neighbor U . Such a
message µF→U suggests good values for U , in the
form of an (unnormalized) distribution over U ’s
values u, computed by

µF→U (u) :=
∑

A s.t.A[U ]=u

F (A)
∏

U ′∈N (F ),U ′ 6=U

µU ′→F (A[U ′])

(3)
where A is an assignment to all variables, and
A[U ] is the value of variable U in that assign-
ment. This message represents F ’s prediction of
U ’s value based on its other neighboring variables
U ′. Informally, via this message, F tells U : Here
is what I would like your value to be, based on
the messages that my other neighboring variables
have sent me about their values, and how I would
prefer you to relate to them.

Thus, each edge of the factor graph maintains
two messages µV→F , µF→V . All messages are
updated repeatedly, in some order, using the two
equations above, until some stopping criterion is
reached.6 The beliefs are then computed:

p̃V (v) def=
∏

F∈N (V )

µF→V (v) (4)

If variable V is observed, then the right-hand
sides of equations (2) and (4) are modified to tell
V that it must have the observed value v. This is
done by multiplying in an extra message µobs→V

that puts probability 1 on v7 and 0 on other val-
ues. That affects other messages and beliefs. The
final belief at each variable estimates its posterior
marginal under the MRF (1), given all observa-
tions.

4.2 Finite-state messages in BP

Both µV→F and µF→V are unnormalized distribu-
tions over the possible values of V—in our case,
strings. A distribution over strings is naturally
represented by a WFSA. Thus, belief propagation
translates to our setting as follows:

• Each message is a WFSA.

• Messages are typically initialized to a one-state
WFSA that accepts all strings in Σ∗, each with

6Preferably when the beliefs converge to some fixed point
(a local minimum of the Bethe free energy). However, con-
vergence is not guaranteed.

7More generally, on all possible observed variables.

weight 1.8

• Taking a pointwise product of messages to V in
equation (2) corresponds to WFSA intersection.
• If F in equation (3) is binary,9 then there is only

one U ′. Then the outgoing message µF→U , a
WFSA, is computed as domain(F ◦ µU ′→F ).

Here ◦ composes the factor WFST with the in-
coming message WFSA, yielding a WFST that
gives a joint distribution over (U,U ′). The
domain operator projects this WFST onto the U
side to obtain a WFSA, which corresponds to
marginalizing to obtain a distribution over U .
• In general, F is a k-tape WFSM. Equation (3)

“composes” k − 1 of its tapes with k − 1 in-
coming messages µU ′→F , to construct a joint
distribution over the k variables in N (F ), then
projects onto the kth tape to marginalize over the
k−1 U ′ variables and get a distribution over U .
All this can be accomplished by the WFSM gen-
eralized composition operator � (Kempe et al.,
2004).

After projecting, it is desirable to determinize
the WFSA. Otherwise, the summation in (3) is
only implicit—the summands remain as distinct
paths in the WFSA10—and thus the WFSAs would
get larger and larger as BP proceeds. Unfortu-
nately, determinizing a WFSA still does not guar-
antee a small result. In fact it can lead to expo-
nential blowup, or even infinite blowup.11 Thus,
in practice we recommend against determinizing
the messages, which may be inherently complex.
To shrink a message, it is safer to approximate it
with a small deterministic WFSA, as discussed in
the next section.

4.3 Approximation of messages
In our domain, it is possible for the finite-state
messages to grow unboundedly in size as they flow
around a cycle. After all, our messages are not
just multinomial distributions over a fixed finite

8This is an (improper) uniform distribution over Σ∗. Al-
though is not a proper WFSA (see section 3.2), there is an
upper bound on the weights it assigns to strings. That guar-
antees that all the messages and beliefs computed by (2)–(4)
will be proper FSMs, provided that all the factors are proper
WFSMs.

9If it is unary, (3) trivially reduces to µF→U = F .
10The usual implementation of projection does not change

the topology of the WFST, but only deletes the U ′ part of its
arc labels. Thus, multiple paths that accept the same value of
U remain distinct according to the distinct values of U ′ that
they were paired with before projection.

11If there is no deterministic equivalent (Mohri, 1997).
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set. They are distributions over the infinite set Σ∗.
A WFSA represents this in finite space, but more
complex distributions require bigger WFSAs, with
more distinct states and arc weights.

Facing the same problem for distributions over
the infinite set R, Sudderth et al. (2002) simplified
each message µV→F , approximating a complex
Gaussian mixture by using fewer components.

We could act similarly, variationally approxi-
mating a large WFSA P with a smaller one Q.
Choose a family of message approximations (such
as bigram models) by specifying the topology for
a (small) deterministic WFSA Q. Then choose
Q’s edge weights to minimize the KL divergence
KL(P ‖Q). This can be done in closed form.12

Another possible procedure—used in the ex-
periments of this paper—approximates µV→F by
pruning it back to a finite set of most plausible
strings.13 Equation (2) requests an intersection
of several WFSAs, e.g., µF1→V ∩ µF2→V ∩ · · · .
List all strings that appear on any of the 1000-
best paths in any of these WFSAs, removing du-
plicates. Let Q̄ be a uniform distribution over this
combined list of plausible strings, represented as
a determinized, minimized, acyclic WFSA. Now
approximate the intersection of equation (2) as
((Q̄ ∩ µF1→V ) ∩ µF2→V ) ∩ · · · . This is efficient
to compute and has the same topology as Q̄.

5 Training the Model Parameters

Any standard training method for MRFs will
transfer naturally to our setting. In all cases we
draw on Eisner (2002), who showed how to train
the parameters θ of a single WFST, F , to (locally)
maximize the joint or conditional probability of
fully or partially observed training data. This in-
volves computing the gradient of that likelihood
function with respect to θ.14

12See Li et al. (2009, footnote 9) for a sketch of the con-
struction, which finds locally normalized edge weights. Or
if Q is large but parameterized by some compact parameter
vector φ, so we are only allowed to control its edge weights
via φ, then Li and Eisner (2009, section 6) explain how to
minimize KL(P ‖Q) by gradient descent. In both cases Q
must be deterministic.

We remark that if a factor F were specified by a syn-
chronous grammar rather than a WFSM, then its outgoing
messages would be weighted context-free languages. Exact
intersection of these is undecidable, but they too can be ap-
proximated variationally by WFSAs, with the same methods.

13We are also considering other ways of adaptively choos-
ing the topology of WFSA approximations at runtime, partic-
ularly in conjunction with expectation propagation.

14The likelihood is usually non-convex; even when the
two strings are observed (supervised training), their accepting

We must generalize this to train a product of
WFSMs. Typically, training data for an MRF (1)
consists of some fully or partially observed IID
samples of the joint distribution p(V1, . . . Vn). It
is well-known how to tune an MRF’s parameters θ
by stochastic gradient descent to locally maximize
the probability of this training set, even though
both the probability and its gradient are in general
intractable to compute in an MRF. The gradient is
a sum of quantities, one for each factor Fj . While
the summand for Fj cannot be computed exactly,
it can be estimated using the BP messages to Fj .
Roughly speaking, the gradient for Fj is computed
much as in supervised training (see above), but
treating any message µVi→Fj as an uncertain ob-
servation of Vi—a form of noisy supervision.15

Our concerns about training are the same as
for any MRF. First of all, BP is approximate.
Kulesza and Pereira (2008) warn that its estimates
of the gradient can be misleading. Second, semi-
supervised training (which we will attempt below)
is always difficult and prone to local optima. As
in EM, a small number of supervised examples for
some variable may be drowned out by many nois-
ily reconstructed examples.

Faster and potentially more stable approaches
include the piecewise training methods of Sut-
ton and McCallum (2008), which train the factors
independently or in small groups. In the semi-
supervised case, each factor can be trained on only
the supervised forms available for it. It might be
useful to reweight the trained factors (cf. Smith et
al. (2005)), or train the factors consecutively (cf.
Fahlman and Lebiere (1990)), in a way that mini-
mizes the loss of BP decoding on held-out data.

6 Comparison With Other Approaches

6.1 Multi-tape WFSMs

In principle, one could use a 100-tape WFSM to
jointly model the 100 distinct forms of a typical
Polish verb. In other words, the WFSM would de-
scribe the distribution of a random variable ~V =
〈V1, . . . , V100〉, where each Vi is a string. One
would train the parameters of the WFSM on a
sample of ~V , each sample being a fully or partially
observed paradigm for some Polish verb. The re-
sulting distribution could be used to infer missing
forms for these or other verbs.

path through the WFST may be ambiguous and unobserved.
15See Bishop (2006), or consult Smith and Eisner (2008)

for notation close to that of this paper.
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As a simple example, either a morphological
generator or a morphological analyzer might need
the probability that krzyczałoby is the neuter third-
person singular conditional imperfective of krzy-
czeć, despite never having observed it in training.
The model determines this probability based on
other observed and hypothesized forms of krzy-
czeć, using its knowledge of how neuter third-
person singular conditional imperfectives are re-
lated to these other forms in other verbs.

Unfortunately, such a 100-tape WFSM would
be huge, with an astronomical number of arcs
(each representing a possible 100-way edit opera-
tion). Our approach is to factor the problem into a
number of (e.g.) pairwise relationships among the
verb forms. Using a factored distribution has sev-
eral benefits over the k-tape WFSM: (1) a smaller
representation in memory, (2) a small number
of parameters to learn, (3) efficient approximate
computation that takes advantage of the factored
structure, (4) the ability to reuse WFSAs and WF-
STs previously developed for smaller problems,
(5) additional modeling power.

6.2 Simpler graphical models on strings

Some previous researchers have used factored
joint models of several strings. To our knowledge,
they have all chosen acyclic, directed graphical
models. The acyclicity meant that exact inference
was at least possible for them, if not necessarily ef-
ficient. The factors in these past models have been
WFSTs (though typically simpler than the ones we
will use).

Many papers have used cascades of probabilis-
tic finite-state transducers. Such a cascade may
be regarded as a directed graphical model with a
linear-chain structure. Pereira and Riley (1997)
built a speech recognizer in this way, relating
acoustic to phonetic to lexical strings. Simi-
larly, Knight and Graehl (1997) presented a gen-
erative cascade using 4 variables and 5 factors:
p(w, e, j, k, o) def= p(w) ·p(e | w) ·p(j | e) ·p(k | j)
·p(o | k) where e is an English word sequence, w
its pronunciation, j a Japanese version of the pro-
nunciation, k a katakana rendering of the Japanese
pronunciation, and o an OCR-corrupted version of
the katakana. Knight and Graehl used finite-state
operations to perform inference at test time, ob-
serving o and recovering the most likely w, while
marginalizing out e, j, and k.

Bouchard-Côté et al. (2009) reconstructed an-

cient word forms given modern equivalents. They
used a directed graphical model, whose tree struc-
ture reflected the evolutionary development of the
modern languages, and which included latent vari-
ables for historical intermediate forms that were
never observed in training data. They used Gibbs
sampling rather than an exact solution (possible on
trees) or a variational approximation (like our BP).

Our work seeks to be general in terms of the
graphical model structures used, as well as effi-
cient through the use of BP with approximate mes-
sages. We also seek to avoid local normalization,
using a globally normalized model.16

6.3 Unbounded objects in graphical models

We distinguish our work from “dynamic” graph-
ical models such as Dynamic Bayesian Networks
and Conditional Random Fields, where the string
brechen would be represented by creating 7 letter-
valued variables. Those methods can represent
strings (or paths) of any length—but the length for
each training or test string must be specified in ad-
vance, not inferred. Furthermore, it is awkward
and costly to model unknown alignments, since
the variables are position-specific, and any posi-
tion in brechen could in principle align with any
position in brichst. WFSTs are a much more natu-
ral and flexible model of string pairs.

We also distinguish our work from current non-
parametric Bayesian models, which sometimes
generate unbounded strings, trees, or grammars. If
they generate two unbounded objects, they model
their relationship by a single synchronous genera-
tion process (akin to Section 6.1), rather than by
a globally normalized product of overlapping fac-
tors.

7 Experiments

To study our approach, we conducted initial ex-
periments that reconstruct missing word forms in
morphological paradigms. In inflectional mor-
phology, each uninflected verb form (lemma) is
associated with a vector of forms that are inflected
for tense, person, number, etc. Some inflected
forms may be observed frequently in natural text,
others rarely. Two variables that are usually pre-
dictable from each other may or may not keep this
relationship in the case of an irregular verb.

16Although we do normalize locally during piecewise
training (see section 7.3).
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(a) # paradigms 9,393

(b) # finite forms per paradigm 9

(c) # hidden finite forms per paradigm (avg.) 8.3

(d) # paradigms with some finite form(s) observed 2,176

(e) In (d), # of finite forms observed (avg.) 3.4

Table 1: Statistics of our training data.

Our task is to reconstruct (generate) specific un-
observed morphological forms in a paradigm by
learning from observed ones. This is a particu-
larly interesting semisupervised scenario, because
different subsets of the variables are observed on
different examples.

7.1 Experimental data

We used orthographic rather than phonological
forms. We extracted morphological paradigms for
all 9393 German verbs in the CELEX morpholog-
ical database. Each paradigm lists 5 present-tense
and 4 past-tense indicative forms, as well as the
verb’s lemma, for a total of 10 string-valued vari-
ables.17 In each paradigm, we removed, or hid,
verb forms that occur only rarely in natural text,
i.e, verb forms with a small frequency figure pro-
vided by CELEX.18 All paradigms other than sein
(’to be’) were now incompletely observed. Table 1
gives some statistics.

7.2 Model factors and parameters

Our current MRF uses only binary factors. Each
factor is a WFST that is trained to relate 2 of the 10
variables (morphological forms). Each WFST can
score an aligned pair using a log-linear model that
counts features in a sliding 3-character window.
To score an unaligned pair, it sums over all pos-
sible alignments. Specifically, our WFST topol-
ogy and parameterization follow the state-of-the-
art approach to supervised morphology in Dreyer
et al. (2008), although we dropped some of their
features to speed up these early experiments.19 We

17Some pairs of forms are always identical in German,
hence are treated as a single form by CELEX. We likewise
use a single variable—these are the “1,3” variables in Fig. 3.

Occasionally a form is listed as UNKNOWN. We neither
train nor evaluate on such forms, although the model will still
predict them.

18The frequency figure for each word form is based on
counts in the Mannheim News corpus. We hide forms with
frequency < 10.

19We dropped their latent classes and regions as well as
features that detected which characters were orthographic
vowels. Also, we retained their “target language model fea-
tures” only in the baseline “U” model, since elsewhere they

implemented and manipulated all WFSMs using
the OpenFST library (Allauzen et al., 2007).

7.3 Training in the experiments

We trained θ on the incompletely observed
paradigms. As suggested in section 5, we used
a variant of piecewise pseudolikelihood training
(Sutton and McCallum, 2008). Suppose there is
a binary factor F attached to forms U and V . For
any value of θ, we can define pUV (U | V ) from
the tiny MRF consisting only of U , V , and F .
We can therefore compute the goodness LUV

def=
log pUV (ui | vi)+logV U (vi | ui),20 summed over
all observed (U, V ) pairs in training data. We at-
tempted to tune θ to maximize the total LUV over
all U, V pairs,21 regularized by subtracting ||θ||2.
Note that different factors thus enjoyed different
amounts of observed training data, but training
was fully supervised (except for the unobserved
alignments between ui and vi).

7.4 Inference in the experiments

At test time, we are given each lemma (e.g.
brechen) and all its observed (frequent) inflected
forms (e.g., brachen, bricht,. . . ), and are asked to
predict the remaining (rarer) forms (e.g., breche,
brichst, . . . ).

We run approximate joint inference using be-
lief propagation.22 We extract our output from the
final beliefs: for each unseen variable V , we pre-

seemed to hurt in our current training setup.
We followed Dreyer et al. (2008) in slightly pruning the

space of possible alignments. We compensated by replacing
their WFST, F , with the union F ∪ 10−12(0.999Σ × Σ)∗.
This ensured that the factor could still map any string to any
other string (though perhaps with very low weight), guaran-
teeing that the intersection at the end of section 4.3 would be
non-empty.

20The second term is omitted if V is the lemma. We do
not train the model to predict the lemma since it is always
observed in test data.

21Unfortunately, just before press time we discovered that
this was not quite what we had done. A shortcut in our im-
plementation trained pUV (U | V ) and pV U (V | U) sepa-
rately. This let them make different use of the (unobserved)
alignments—so that even if each individually liked the pair
(u, v), they might not have been able to agree on the same
accepting path for it at test time. This could have slightly
harmed our joint inference results, though not our baselines.

22To derive the update order for message passing, we take
an arbitrary spanning tree over the factor graph, and let O be
a list of all factors and variables that is topologically sorted
according to the spanning tree, with the leaves of the tree
coming first. We then discard the spanning tree. A single it-
eration visits all factors and variables in order of O, updating
each one’s messages to later variables and factors, and then
visits all factors and variables in reverse order, updating each
one’s messages to earlier variables and factors.
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dict its value to be argmaxv p̃V (v). This predic-
tion considers the values of all other unseen vari-
ables but sums over their possibilities. This is the
Bayes-optimal decoder for our scoring function,
since that function reports the fraction of individ-
ual forms that were predicted perfectly.23

7.5 Model selection of MRF topology
It is hard to know a priori what the causal relation-
ships might be in a morphological paradigm. In
principle, one would like to automatically choose
which factors to have in the MRF. Or one could
start with many factors, but use methods such as
those suggested in section 5 to learn that certain
less useful factors should be left weak to avoid
confusing loopy BP.

For our present experiments, we simply com-
pared several fixed model topologies (Fig. 3).
These were variously unconnected (U), chain
graphs (C1,. . . , C4), trees (T1, T2), or loopy
graphs (L1,. . . , L4). We used several factor graphs
that differ only by one or two added factors and
compared the results. The graphs were designed
by hand; they connect some forms with similar
morphological properties more or less densely.

We trained different models using the observed
forms in the 9393 paradigms as training data. The
first 100 paradigms were then used as develop-
ment data for model selection:24 we were given
the answers to their hidden forms, enabling us to
compare the models. The best model was then
evaluated on the 9293 remaining paradigms.

7.6 Development data results
The models are compared on development data
in Table 2. Among the factor graphs we evalu-
ated, we find that L4 (see Fig. 3) performs best
overall (whole-word accuracy 82.1). Note that the
unconnected graph U does not perform very well
(69.0), but using factor graphs with more connect-
ing factors generally helps overall accuracy (see
C1–C3). Note, however, that in some cases the ad-
ditional structure hurts: The chain model C4 and
the loopy model L1 perform relatively badly. The

23If we instead wished to maximize the fraction of entire
paradigms that were predicted perfectly, then we would have
approximated full MAP decoding over the paradigm (Viterbi
decoding) by using max-product BP. Other loss functions
(e.g., edit distance) would motivate other decoding methods.

24Using these paradigms was simply a quick way to avoid
model selection by cross-validation. If data were really as
sparse as our training setup pretends (see Table 2), then 100
complete paradigms would be too valuable to squander as
mere development data.
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Figure 3: The graphs that we evaluate on development data.
The nodes represent morphological forms, e.g. the first node
in the left of each graph represents the first person singular
present. Each variable is also connected to the lemma (not
shown). See results in Table 2.

reason for such a performance degradation is that
undertrained factors were used: The factors relat-
ing second-person to second-person forms, for ex-
ample, are trained from only 8 available examples.

Non-loopy models always converge (exactly) in
one iteration (see footnote 22). But even our loopy
models appeared to converge in accuracy within
two iterations. Only L3 and L4 required the sec-
ond iteration, which made tiny improvements.

7.7 Test data results

Based on the development results, we selected
model L4 and tested on the remaining 9293
paradigms.

We regard the unconnected model U as a base-
line to improve upon. We also tried a rather differ-
ent baseline as in (Dreyer et al., 2008). We trained
the machine translation toolkit Moses (Koehn et
al., 2007) to translate groups of letters rather than
groups of words (“phrases”). For each form f
to be predicted, we trained a Moses model on
all supervised form pairs (l, f) available in the
data, to learn a prediction for the form given the
lemma l. The M,3 condition restricted Moses use
“phrases” no longer than 3 letters, comparable to
our own trigram-based factors (see section 7.2).
M,15 could use up to 15 letters.

Again, our novel L4 model far outperformed
the others overall. Breaking the results down by
form, we find that this advantage mainly comes
from the 3 forms with the fewest observed train-
ing examples (Table 3, first 3 rows). The M and
U models are barely able to predict these forms at
all from the lemma, but L4 can predict them bet-
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Unconn. Chains Trees Loops
U C1 C2 C3 C4 T1 T2 L1 L2 L3 L4

69.0 72.9 73.4 74.8 65.2 78.1 78.7 62.3 79.6 78.9 82.1

Table 2: Whole-word accuracies of the different models in reconstructing the missing forms in morphological paradigms, here
on 100 verbs (development data). The names refer to the graphs in Fig. 3. We selected L4 as final model (Table 3).

Form # obs. M,3 M,15 U L4
2.Sg.Pa. 4 0.0 0.2 0.8 69.7
2.Pl.Pa. 9 0.9 1.1 1.4 45.6
2.Sg.Pr. 166 49.4 62.6 74.7 90.5
1.Sg.Pr. 285 99.6 98.8 99.3 97.2

1,3.Pl.Pa. 673 46.5 78.3 75.0 75.6
1,3.Sg.Pa. 1124 65.0 88.8 84.0 74.8

2.Pl.Pr. 1274 98.3 99.2 99.0 96.4
3.Sg.Pr. 1410 91.0 95.9 95.2 88.2

1,3.Pl.Pr. 1688 99.8 98.9 99.8 98.0
All 6633 59.2 67.3 68.0 81.2

Table 3: Whole-word accuracies on the missing forms from
9293 test paradigms. The Moses baselines and our un-
connected model (U) predict each form separately from the
lemma, which is always observed. L4 uses all observations
jointly, running belief propagation for decoding. Moses,15
memorizes phrases of length up to 15, all other models use
max length 3. The table is sorted by the column “# obs.”,
which reports the numbers of observations for a given form.

ter by exploiting other observed or latent forms.
By contrast, well-trained forms were already easy
enough for the M and U models that L4 had little
new to offer and in fact suffered from its approxi-
mate training and/or inference.

Leaving aside the comparisons, it was useful to
confirm that loopy BP could be used in this set-
ting at all. 8014 of the 9293 test paradigms had
≤ 2 observed forms (in addition to the lemma)
but ≥ 7 missing forms. One might have expected
that loopy BP would have failed to converge, or
converged to the wrong thing. Nonetheless, it
achieved quite respectable success at exactly pre-
dicting various inflected forms.

For the curious, Table 4 shows accuracies
grouped by different categories of paradigms,
where the category is determined by the number
of missing forms to predict. Most paradigms fall
in the category where 7 to 9 forms are missing, so
the accuracies in that line are similar to the overall
accuracies in Table 3.

8 Conclusions

We have proposed that one can jointly model sev-
eral multiple strings by using Markov Random
Fields. We described this formally as an undi-

# missing # paradig. M,3 M,15 U L4

1–3 205 20.3 20.8 26.8 74.4
4–6 1037 44.2 50.5 52.7 82.8
7–9 8014 60.6 68.8 69.4 81.1

Table 4: Accuracy on test data, reported separately for
paradigms in which 1–3, 4–6, or 7–9 forms are missing.
Missing words have CELEX frequency count < 10; these are
the ones to predict. (The numbers in col. 2 add up to 9256,
not 9293, since some paradigms are incomplete in CELEX to
begin with, with no forms to be removed or evaluated.)

rected graphical model with string-valued vari-
ables and whose factors (potential functions) are
defined by weighted finite-state transducers. Each
factor evaluates some subset of the strings.

Approximate inference can be done by loopy
belief propagation. The messages take the form
of weighted finite-state acceptors, and are con-
structed by standard operations. We explained
why the messages might become large, and gave
methods for approximating them with smaller
messages. We also discussed training methods.

We presented some pilot experiments on the
task of jointly predicting multiple missing verb
forms in morphological paradigms. The factors
were simplified versions of statistical finite-state
models for supervised morphology. Our MRF
for this task might be used not only to conjugate
verbs (e.g., in MT), but to guide further learning
of morphology—either active learning from a hu-
man or semi-supervised learning from the distri-
butional properties of a raw text corpus.

Our modeling approach is potentially applicable
to a wide range of other tasks, including translit-
eration, phonology, cognate modeling, multiple-
sequence alignment and system combination.

Our work ties into a broader vision of using al-
gorithms like belief propagation to coordinate the
work of several NLP models and algorithms. Each
individual factor considers some portion of a joint
problem, using classical statistical NLP methods
(weighted grammars, transducers, dynamic pro-
gramming). The factors coordinate their work by
passing marginal probabilities. Smith and Eisner
(2008) reported complementary work in this vein.
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Abstract

We present a framework to extract the
most important features (tree fragments)
from a Tree Kernel (TK) space according
to their importance in the target kernel-
based machine, e.g. Support Vector Ma-
chines (SVMs). In particular, our min-
ing algorithm selects the most relevant fea-
tures based on SVM estimated weights
and uses this information to automatically
infer an explicit representation of the in-
put data. The explicit features (a) improve
our knowledge on the target problem do-
main and (b) make large-scale learning
practical, improving training and test time,
while yielding accuracy in line with tradi-
tional TK classifiers. Experiments on se-
mantic role labeling and question classifi-
cation illustrate the above claims.

1 Introduction

The last decade has seen a massive use of Support
Vector Machines (SVMs) for carrying out NLP
tasks. Indeed, their appealing properties such as
1) solid theoretical foundations, 2) robustness to
irrelevant features and 3) outperforming accuracy
have been exploited to design state-of-the-art lan-
guage applications.

More recently, kernel functions, which im-
plicitly represent data in some high dimensional
space, have been employed to study and fur-
ther improve many natural language systems, e.g.
(Collins and Duffy, 2002), (Kudo and Matsumoto,
2003), (Cumby and Roth, 2003), (Cancedda et al.,
2003), (Culotta and Sorensen, 2004), (Toutanova
et al., 2004), (Kazama and Torisawa, 2005), (Shen
et al., 2003), (Gliozzo et al., 2005), (Kudo et al.,
2005), (Moschitti et al., 2008), (Diab et al., 2008).
Unfortunately, the benefit to easily and effectively
model the target linguistic phenomena is reduced

by the the implicit nature of the kernel space,
which prevents to directly observe the most rele-
vant features. As a consequence, even very accu-
rate models generally fail in providing useful feed-
back for improving our understanding of the prob-
lems at study. Moreover, the computational bur-
den induced by high dimensional kernels makes
the application of SVMs to large corpora still more
problematic.

In (Pighin and Moschitti, 2009), we proposed a
feature extraction algorithm for Tree Kernel (TK)
spaces, which selects the most relevant features
(tree fragments) according to the gradient compo-
nents (weight vector) of the hyperplane learnt by
an SVM, in line with current research, e.g. (Rako-
tomamonjy, 2003; Weston et al., 2003; Kudo and
Matsumoto, 2003). In particular, we provided al-
gorithmic solutions to deal with the huge dimen-
sionality and, consequently, high computational
complexity of the fragment space. Our experimen-
tal results showed that our approach reduces learn-
ing and classification processing time leaving the
accuracy unchanged.

In this paper, we present a new version of such
algorithm which, under the same parameteriza-
tion, is almost three times as fast while produc-
ing the same results. Most importantly, we ex-
plored tree fragment spaces for two interesting
natural language tasks: Semantic Role Labeling
(SRL) and Question Classification (QC). The re-
sults show that: (a) on large data sets, our ap-
proach can improve training and test time while
yielding almost unaffected classification accuracy,
and (b) our framework can effectively exploit the
ability of TKs and SVMs to, respectively, gener-
ate and recognize relevant structured features. In
particular, we (i) study in more detail the relevant
fragments identfied for the boundary classification
task of SRL, (ii) closely observe the most relevant
fragments for each QC class and (iii) look at the di-
verse syntactic patterns characterizing each ques-
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tion category.
The rest of the paper is structured as follows:

Section 2 will briefly review SVMs and TK func-
tions; Section 3 will detail our proposal for the lin-
earization of a TK feature space; Section 4 will
review previous work on related subjects; Section
5 will detail the outcome of our experiments, and
Section 6 will discuss some relevant aspects of the
evaluation; finally, in Section 7 we will draw our
conclusions.

2 Tree Kernel Functions

The decision function of an SVM is:

f(~x) = ~w · ~x + b =
n∑

i=1

αiyi ~xi · ~x + b (1)

where~x is a classifying example and~w andb are
the separating hyperplane’sgradientand itsbias,
respectively. The gradient is a linear combination
of the training points~xi, their labelsyi and their
weightsαi. Applying the so-calledkernel trick it
is possible to replace the scalar product with aker-
nel functiondefined over pairs ofobjects:

f(o) =
n∑

i=1

αiyik(oi, o) + b

with the advantage that we do not need to provide
an explicit mappingφ(·) of our examples in a vec-
tor space.

A Tree Kernel function is a convolution ker-
nel (Haussler, 1999) defined over pairs of trees.
Practically speaking, the kernel between two trees
evaluates the number of substructures (orfrag-
ments) they have in common, i.e. it is a measure
of their overlap. The function can be computed re-
cursively in closed form, and quite efficient imple-
mentations are available (Moschitti, 2006). Dif-
ferent TK functions are characterized by alterna-
tive fragment definitions, e.g. (Collins and Duffy,
2002) and (Kashima and Koyanagi, 2002). In the
context of this paper we will be focusing on the
SubSet Tree (SST) kernel described in (Collins
and Duffy, 2002), which relies on a fragment defi-
nition that does not allow to break production rules
(i.e. if any child of a node is included in a frag-
ment, then also all the other children have to). As
such, it is especially indicated for tasks involving
constituency parsed texts.

Implicitly, a TK function establishes a corre-
spondence between distinct fragments and dimen-
sions in somefragment space, i.e. the space of all
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Figure 1: Esemplification of a fragment space and
the kernel product between two trees.

the possible fragments. To simplify, a treet can
be represented as a vector whose attributes count
the occurrences of each fragment within the tree.
The kernel between two trees is then equivalent to
the scalar product between pairs of such vectors,
as exemplified in Figure 1.

3 Linearization of a TK function

Our objective is to efficiently mine the most rele-
vant fragments from the huge fragment space, so
that we can explicitly represent our input trees in
terms of these fragments and learn fast and accu-
rate linear classifiers.

The framework defines five distinct activities,
detailed in the following paragraphs.

3.1 Kernel Space Learning (KSL)

The first step involves the generation of an approx-
imation of the whole fragment space, i.e. we can
consider only the trees that encode the most rele-
vant fragments. To this end, we can partition our
training data intoS smaller sets, and use the SVM
and the SST kernel to learnS models. We will
only consider the fragments encoded by the sup-
port vectors of theS models. In the next stage, we
will use the SVM estimated weights to drive our
feature selection process.

Since time complexity of SVM training is ap-
proximately quadratic in the number of examples,
by breaking training data into smaller sets we
can considerably accelerate the process of filtering
trees and estimating support vector weights. Ac-
cording to statistical learning theory, being trained
on smaller subsets of the available data these mod-
els will be less robust with respect to the min-
imization of the empirical risk (Vapnik, 1998).
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Algorithm 3.1: MINE MODEL(M, L, λ)

global maxexp
prev← ∅ ; CLEAR INDEX()
for each 〈αy, t〉 ∈M

do


Ti ← α · y/‖t‖
for eachn ∈ Nt

do

{
f ← FRAG(n) ; rel = λ · Ti

prev← prev ∪ {f, rel}
PUT(f, rel)

best pr← BEST(L) ;
while true

do



next← ∅
for each 〈f, rel〉 ∈ prev if f ∈ best pr

do


X = EXPAND(f, maxexp)
rel exp← λ · rel
for eachfrag ∈ X

do

{
temp = {frag, rel exp}
next← next ∪ temp
PUT(frag, rel exp)

best← BEST(L)
if not CHANGED()

then break
best pr ← best
prev← next

FL ← best pr
return (FL)

Nonetheless, since we do not need to employ them
for classification (but just to direct our feature se-
lection process, as we will describe shortly), we
can accept to rely on sub-optimal weights. Fur-
thermore, research results in the field of SVM par-
allelization using cascades of SVMs (Graf et al.,
2004) suggest that support vectors collected from
locally learnt models can encode many of the rel-
evant features retained by models learnt globally.
Henceforth, letMs be the model associated with
thes-th split, andFs the fragment space that can
describe all the trees inMs.

3.2 Fragment Mining and Indexing (FMI)

In Equation 1 it is possible to isolate the gradient
~w =

∑n
i=1 αiyi ~xi, with ~xi = [x(1)

i , . . . , x
(N)
i ], N

being the dimensionality of the feature space. For
a tree kernel function, we can rewritex(j)

i as:

x
(j)
i =

ti,jλ
ℓ(fj)

‖ti‖ =
ti,jλ

ℓ(fj)√∑N
k=1(ti,kλℓ(fk))2

(2)

where: ti,j is the number of occurrences of the
fragmentfj, associated with thej-th dimension of
the feature space, in the treeti; λ is the kernel de-
cay factor; andℓ(fj) is the depth of the fragment.

The relevance|w(j)| of the fragmentfj can be

measured as:

|w(j)| =
∣∣∣∣∣

n∑
i=1

αiyix
(j)
i

∣∣∣∣∣ =

∣∣∣∑n
i=1 αiyiti,jλ

ℓ(fj)
∣∣∣

‖ti‖ .

(3)
We fix a thresholdL and from each modelMs

(learnt during KSL) we select theL most relevant
fragments, i.e. we build the setFs,L = ∪k{fk} so
that:

|Fs,L| = L and|w(k)| ≥ |w(i)|∀fi ∈ F \ Fs,L .

To generate all the fragments encoded in a
model, we adopt the greedy strategy described in
Algorithm 3.1. Its arguments are: an SVM model
M represented as〈αy, t〉 pairs, wheret is a tree
structure; the threshold valueL; and the kernel de-
cay factorλ.

The function FRAG(n) generates the smallest
fragment rooted in noden (i.e. for an SST kernel,
the fragment consisting ofn and its direct chil-
dren). We call such fragment abasefragment. The
function EXPAND(f,maxexp) generates all the
fragments that can be derived from the fragment
f by expanding, i.e. including in the fragment the
direct children of some of its nodes. These frag-
ments arederivedfrom f . The parametermaxexp
limits fragment proliferation by setting the maxi-
mum number of nodes which can be expanded in
a fragment expansion operation. For example, if
there are 10 nodes which can be expanded in frag-
mentf , then only the fragments where at most 3
of the 10 nodes are expanded will be generated by
a call toEXPAND(f, 3).

Every time we generate a fragmentf , the func-
tion PUT(f, rel) saves the fragment along with its
relevancerel in an index. The index keeps track
of the cumulative relevance of a fragment, and its
implementation has been optimized for fast inser-
tions and spatial compactness.

A whole cycle of expansions is considered as
an iteration of the mining process: we take into
account all the fragments that have undergonek
expansions and produce all the fragments that re-
sult from a further expansion, i.e. all the fragments
expandedk + 1 times.

We keep iterating until we reach a stop crite-
rion, which we base on the threshold valueL, i.e.
the limit on the number of fragments that we are
interested in mining from a model. During each it-
erationk+1, we only expand the bestL fragments
identified during the previous iterationk. When
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the iteration is complete we re-evaluate the set of
L best fragments in the index, and we stop only if
the worst of them, i.e. theL-th ranked fragment
at the stepk + 1, and its score are the same as at
the end of the previous iteration. That is, we as-
sume that if none of the fragments mined during
the(k + 1)-th iteration managed to affect the bot-
tom of the pool of theL most relevant fragments,
then none of their expansions is likely to succeed.
In the algorithm,Nt is the set of nodes of the tree
t; BEST(L) returns theL highest ranked fragments
in the index;CHANGED() verifies whether the bot-
tom of theL-best set has been affected by the last
iteration or not.

We call MINE MODEL(·) on each of the mod-
elsMs that we learnt from theS initial splits. For
each model, the function returns the set ofL-best
fragments in the model. The union of all the frag-
ments harvested from each model is then saved
into a dictionaryDL which will be used by the next
stage.

3.2.1 Discussion on FMI algorithm

With respect to the algorithm presented in (Pighin
and Moschitti, 2009), the one presented here has
the following advantages:

• the process of building fragments is strictly
small-to-large: fragments that spann+1 lev-
els of the tree may be generated only after all
those spanningn levels;

• the threshold valueL is a parameter of the
mining process, and it is used to prevent the
algorithm from generating more fragments
than necessary, thus making it more efficient;

• it has one less parameter (maxdepth) which
was used to force fragments to span at-most
a given number of levels. The new algorithm
does not need it since the maximum number
of iterations is implicitly set viaL.

These differences result in improved efficiency for
the FMI stage. For example, on the data for the
boundary classification task (see Section 5), using
comparable parameters the old algorithm required
85 minutes to mine the most relevant fragments,
whereas the new one only takes 31, i.e. it is 2.74
times as fast.

3.3 Tree Fragment Extraction (TFX)

During this phase we actually linearize our data:
a file encoding label-tree pairs〈yi, ti〉 is trans-

formed to encode label-vector pairs〈yi, ~vi〉. To
do so, we generate the fragment space ofti, us-
ing a variant of the mining algorithm described in
Algorithm 3.1, and encode in~vi all and only the
fragmentsti,j so thatti,j ∈ DL. The algorithm
exploits labels and production rules found in the
fragments listed in the dictionary to generate only
the fragments thatmay bein the dictionary. For
example, if the dictionary does not contain a frag-
ment whose root is labeledN , then if a nodeN is
encountered during TFX neither its base fragment
nor its expansions are generated. The process is
applied to the whole training(TFX-train) and test
(TFX-test) sets. The fragment space is nowex-
plicit, as there is a mapping between the input vec-
tors and the fragments they encode.

3.4 Explicit Space Learning (ESL)

Linearized training data is used to learn a very fast
model by using all the available data and a linear
kernel.

3.5 Explicit Space Classification (ESC)

The linear model is used to classify linearized test
data and evaluate the accuracy of the resulting
classifier.

4 Previous work

A rather comprehensive overview of feature se-
lection techniques is carried out in (Guyon and
Elisseeff, 2003). Non-filter approaches for SVMs
and kernel machines are often concerned with
polynomial and Gaussian kernels, e.g. (Weston et
al., 2001) and (Neumann et al., 2005). Weston
et al. (2003) use theℓ0 norm in the SVM opti-
mizer to stress the feature selection capabilities
of the learning algorithm. In (Kudo and Mat-
sumoto, 2003), an extension of the PrefixSpan al-
gorithm (Pei et al., 2001) is used to efficiently
mine the features in a low degree polynomial ker-
nel space. The authors discuss an approximation
of their method that allows them to handle high
degree polynomial kernels.

Suzuki and Isozaki (2005) present an embed-
ded approach to feature selection for convolution
kernels based onχ2-driven relevance assessment.
To our knowledge, this is the only published work
clearly focusing on feature selection for tree ker-
nel functions, and indeed has been one of the
major sources of inspiration for our methodol-
ogy. With respect to their work, the difference
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in our approach is that we want to exploit the
SVM optimizer to select the most relevant fea-
tures instead of a relevance assessment measure
that moves from different statistical assumptions
than the learning algorithm.

In (Graf et al., 2004), an approach to SVM
parallelization is presented which is based on a
divide-et-impera strategy to reduce optimization
time. The idea of using a compact graph rep-
resentation to represent the support vectors of a
TK function is explored in (Aiolli et al., 2006),
where a Direct Acyclic Graph (DAG) is employed.
In (Moschitti, 2006; Bloehdorn and Moschitti,
2007a; Bloehdorn and Moschitti, 2007b; Mos-
chitti et al., 2007), the SST kernel along with other
tree and combined kernels are employed for ques-
tion classification and semantic role labeling with
interesting results.

5 Experiments

We evaluated the capability of our model to ex-
tract relevant features on two data sets: the
CoNLL 2005 shared task on Semantic Role Label-
ing (SRL) (Carreras and Màrquez, 2005), and the
Question Classification (QC) task based on data
from the TREC 10 QA competition (Voorhees,
2001). The next sections will detail the setup and
outcome of the two sets of experiments.

All the experiments were run on a machine
equipped with 4 IntelR© XeonR© CPUs clocked at
1.6 GHz and 4 GB of RAM. As a supervised learn-
ing framework we used SVM-Light-TK1, which
extends the SVM-Light optimizer (Joachims,
2000) with tree kernel support. For each classi-
fication task, we compare the accuracy of a vanilla
SST classifier against the corresponding linearized
SST classifier (SSTℓ). For KSL and SST training
we used the default decay factorλ = 0.4. For
ESL, we use a non-normalized, linear kernel. No
further parametrization of the learning algorithms
is carried out. Indeed, our focus is on showing
that, under the same conditions, our linearized tree
kernel can be as accurate as the original kernel,
and choosing of parameters may just bias such
test.

5.1 Semantic Role Labeling

For our experiments on semantic role labeling we
used PropBank annotations (Palmer et al., 2005)

1http://disi.unitn.it/ ˜ moschitt/
Tree-Kernel.htm
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Figure 2: Examples of ASTm structured features.

and automatic Charniak parse trees (Charniak,
2000) as provided for the CoNLL 2005 evaluation
campaign (Carreras and Màrquez, 2005). SRL can
be decomposed into two tasks:boundary detec-
tion, where the word sequences that are arguments
of a predicate wordw are identified, androle clas-
sification, where each argument is assigned the
proper role. The former task requires a binary
Boundary Classifier(BC), whereas the second in-
volves aRole Multi-class Classifier(RM).

5.1.1 Setup

If the constituency parse treet of a sentences
is available, we can look at all the pairs〈p, ni〉,
whereni is any node in the tree andp is the node
dominatingw, and decide whetherni is anargu-
ment nodeor not, i.e. whether it exactly dominates
all and only the words encoding any ofw’s argu-
ments. The objects that we classify are subsets
of the input parse tree that encompass bothp and
ni. Namely, we use the ASTm structure defined
in (Moschitti et al., 2008), which is the minimal
tree that covers all and only the words ofp andni.
In the ASTm, p andni are marked so that they can
be distinguished from the other nodes. An ASTm

is regarded as a positive example for BC ifni is an
argument node, otherwise it is considered a nega-
tive example. Positive BC examples can be used to
train an efficient RM: for each roler we can train
a classifier whose positive examples are argument
nodes whose label is exactlyr, whereas negative
examples are argument nodes labeledr′ 6= r. Two
ASTms extracted from an example parse tree are
shown in Figure 2: the first structure is a negative
example for BC and is not part of the data set of
RM, whereas the second is a positive instance for
BC and A1.

To train BC we used PropBank sections 1
through 6, extracting ASTm structures out of the
first 1 million 〈p, ni〉 pairs from the corresponding
parse trees. As a test set we used the 149,140 in-
stance collected from the annotations in Section
24. There are 61,062 positive examples in the
training set (i.e. 6.1%) and 8,515 in the test set
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(i.e. 5.7%).
For RM we considered all the argument nodes

of any of the six PropBank core roles (i.e. A0,
. . . , A5) from all the available training sections,
i.e. 2 through 21, for a total of 179,091 train-
ing instances. Similarly, we collected 5,928 test
instances from the annotations of Section 24.
ColumnsTr+ andTe+ of Table 1 show the num-
ber of positive training and test examples, respec-
tively, for BC and the role classifiers.

For all the linearized classifiers, we used 50
splits for the FMI stage and we set the threshold
valueL = 50k andmaxexp = 1 during FMI and
TFX. We did not validate these parameters, which
we know to be sub-optimal. These values were
selected during the development of the software
because, on a very small test bed, they resulted in
a responsive and accurate system.

We should point out that other experiments have
shown that linearization is very robust with re-
spect to parametrization: due to the huge num-
ber and variety of fragments in the TK space, dif-
ferent choices of the parameters result in differ-
ent explicit spaces and more or less efficient solu-
tions, but in most cases the final accuracy of the
linearized classifiers is affected only marginally.
For example, it could be expected that reducing
the number of splits during KSL would improve
the final accuracy of a linearized classifier, as the
weights used for FMI would then converge to the
global optimum. Instead, we have observed that
increasing the number of splits does not necessar-
ily decrease the accuracy of the linearized classi-
fier.

The evaluation on the whole SRL task using
the official CoNLL’05 evaluator was not carried
out because producing complete annotations re-
quires several steps (e.g. overlap resolution, OvA
or Pairwise combination of individual role classi-
fiers) that would shade off the actual impact of the
methodology on classification.

5.1.2 Results

The left side of Table 1 shows the distribution of
positive data points in the training and test sets of
each classifier. ColumnsSSTandSSTℓ compare
side by side the F1 measure of the non-linearized
and linearized classifier for each class. The accu-
racy of the RM classifier is the percentage of cor-
rect class assignments.

We can see that the accuracy of linearized clas-
sifiers is always in line with vanilla SST, even

Data set Accuracy
Class Tr+ Te+ SST SSTℓ

BC 61,062 8,515 81.8 81.3
A0 60,900 2,014 91.6 91.1
A1 90,636 3,041 89.0 89.4
A2 21,291 697 73.1 73.0
A3 3,481 105 56.8 53.0
A4 2,713 69 69.1 67.9
A5 69 2 66.7 0.0
RM 87.8 87.8

Table 1: Number of positive training (Tr+) and test
(Te+) examples in the SRL dataset. Accuracy of
the non-linearized (SST) and linearized (SSTℓ) bi-
nary classifiers (i.e. BC, A0, . . . A5) is F1 measure.
Accuracy of RM is the percentage of correct class
assignments.

if the selected linearization parameters generate
a very rough approximation of the original frag-
ment space, generally consisting of billions of
fragments. BCℓ (i.e. the linearized BC) has an
F1 of 81.3, just 0.5% less than BC, i.e. 81.8. Con-
cerning RMℓ, its accuracy is the same as the non
linearized classifier, i.e. 87.8.

We should consider that the linearization frame-
work can drastically improve the efficiency of
learning and classification when dealing with large
amounts of data. For a linearized classifier, we
considertraining time to be the overall time re-
quired to carry out the following activities: KSL,
FMI, TFX on training data and ESL. Similarly,
we consider test time the time necessary to per-
form TFX on test data and ESC. Training BC took
more than two days of CPU time and testing about
4 hours, while training and testing the linearized
boundary classifier required only 381 and 25 min-
utes, respectively. That is, on the same amount
of data we can train a linearized classifier about
8 times as fast, and test it in about 1 tenth of the
time. Concerning RM, sequential training of the
6 models took 2,596 minutes, while testing took
27 minutes. The linearized role multi classifier re-
quired 448 and 24 minutes for training and test-
ing, respectively, i.e. training is about 5 times as
fast while testing time is about the same. If com-
pared with the boundary classifier, the improve-
ment in efficiency is less evident: indeed, the rel-
atively small size of the role classifiers data sets
limits the positive effect of splitting training data
into smaller chunks.

SRL fragment space. Table 3 lists the best frag-
ments identified for the Boundary Classifier. We
should remember that we are using ASTm struc-
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tures as input to our classifiers: nodes whose la-
bel end with “-P” are predicate nodes, while nodes
whose label ends with “-B” are candidate argu-
ment nodes.

All the most relevant fragments encode the min-
imum sub-tree encompassing the predicate and the
argument node. This kind of structured feature
subsumes several features traditionally employed
for explicit SRL models: the Path (i.e. the se-
quence of nodes connecting the predicate and the
candidate argument node), Phrase Type (i.e. the
label of the candidate argument node), Predicate
POS (i.e. the POS of the predicate word), Posi-
tion (i.e. whether the argument is to the left or to
the right of the predicate) and Governing Category
(i.e. the label of the common ancestor) defined
in (Gildea and Jurafsky, 2002).

The linearized model for BC contains about 160
thousand fragments. Of these, about 70 and 33
thousand encompass the candidate argument or the
predicate node, respectively. About 16 thousand
fragments contain both.

5.2 Question Classification

For question classification we used the data set
from the TREC 10 QA evaluation campaign2, con-
sisting of 5,500 training and 500 test questions.

5.2.1 Setup

Given a question, the QC task consists in selecting
the most appropriate expected answer type from a
given set of possibilities. We adopted the question
taxonomy known ascoarse grained, which has
been described in (Zhang and Lee, 2003) and (Li
and Roth, 2006), consisting of six non overlap-
ping classes: Abbreviations (ABBR), Descrip-
tions (DESC, e.g. definitions or explanations), En-
tity (ENTY, e.g. animal, body or color), Human
(HUM, e.g. group or individual), Location (LOC,
e.g. cities or countries) and Numeric (NUM, e.g.
amounts or dates).

For each question, we generate the full parse
of the sentence and use it to train SST and (lin-
earized) SSTℓ models. The automatic parses are
obtained with the Stanford parser3 (Klein and
Manning, 2003). We actually have only 5,483 sen-
tences in our training set, due to parsing issues
with a few of them.

2http://l2r.cs.uiuc.edu/cogcomp/Data/
QA/QC/

3http://nlp.stanford.edu/software/
lex-parser.shtml

Data set Accuracy
Class Tr+ Te+ SST SSTℓ

ABBR 89 9 80.0 87.5
DESC 1,164 138 96.0 94.5
ENTY 1,269 94 63.9 63.5
HUM 1,231 65 88.1 87.2
LOC 834 81 77.6 77.9
NUM 896 113 80.4 80.8
Overall 86.2 86.6

Table 2: Number of positive training (Tr+) and test
(Te+) examples in the QA dataset. Accuracy of
the non-linearized (SST) and linearized (SSTℓ) bi-
nary classifiers is F1 measure. Overall accuracy is
the percentage of correct class assignments.

The classifiers are arranged in a one-vs.-all
(OvA) configuration, where each sentence is a
positive example for one of the six classes, and
negative for the other five. Given the very small
size of the data set, we usedS = 1 during KSL
for the linearized classifier (i.e. we didn’t parti-
tion training data). We carried out no validation of
the parameters, and we usedmaxexp = 4 and
L = 50k in order to generate a rich fragment
space.

5.2.2 Results

Table 2 shows the number of positive examples
in the training and test set of each individual bi-
nary classifiers. Columns SST and SSTℓ compare
the F1 measure of the vanilla and linearized classi-
fiers on the individual classes, and the accuracy of
the complete QC task (RowOverall) in terms of
percentage of correct class assignments. Also in
this case, we can notice that the accuracy of the
linearized classifiers is always in line with non-
linearized ones, e.g. 86.6 vs. 86.2 for the multi-
classifiers. These results are lower than those de-
rived in (Moschitti, 2006; Moschitti et al., 2007),
i.e. 88.2 and 90.4, respectively, where the param-
eters for each classifier were carefully optimized.

QC Fragment space. Tables from 4 to 9 list the
top fragments identified for each class4.

As expected, for all the categories the domain
lexical information is very relevant. For example,
film, color, book, novel and sport for ENTY or
city, country, stateandcapital for LOC. Of the six
classes, ENTY (Table 6) is mostly characterized
by lexical features. Interestingly, function words,
which would have been eliminated by a pure In-
formation Retrieval approach (i.e. by means of

4Some categories show meaningful syntactic fragments
after the first 10, so for them we report more subtrees.
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standard stop-list), are in the top positions, e.g.:
whyandhow for DESC,what for ENTY, who for
HUM, wherefor LOC andwhenfor NUM. For the
latter, alsohow seems to be important suggesting
that features may strongly characterize more than
one given class.

Characteristic syntactic features appear in the
top positions for each class, for example:(VP (VB
(stand)) (PP)), which suggests thatstandshould
be followed by a prepositional phrase to character-
ize ABBR; or(NP (NP (DT) (NN (abbreviation)))
(PP)), which suggests that, to be in a relevant pat-
tern,abbreviationshould be preceded by an article
and followed by a PP. Also, the syntactic struc-
ture is useful to differentiate the use of the same
important words, e.g.(SBARQ (WHADVP (WRB
(How))) (SQ) (.)) for DESC better characterizes
the use ofhow with respect to NUM, in which a
relevant use is(WHADJP (WRB (How)) (JJ)).

In (Moschitti et al., 2007) it was shown that the
use of TK improves QC of 1.2 percent points, i.e.
from 90.6 to 91.8: further analysis of these frag-
ments may help us to device compact, less sparse
syntactic features and design more accurate mod-
els for the task.

6 Discussion

The fact that our model doesn’t always improve
the accuracy of a standard SST model might be
related to the process of splitting training data and
employing locally estimated weights during FMI.

Concerning the experiments presented in this
paper, this objection might apply to the results on
SRL, where we used 50 splits to identify the most
relevant fragments, but not to those on QC, where
given the limited size of the data set we decided
not to split training data at all as explained in Sec-
tion 5.2. Furthermore, as we already discussed,
we have evidence that there is no direct correlation
between the number of splits used for KSL and
the accuracy of the resulting classifier. After all,
the optimization carried out during ESL is global,
and we can assume that, if we mined enough frag-
ments during FMI, than those actually retained by
the global linear model would be by and large the
same, regardless of the split configuration.

More in general, feature selection may give an
improvement to some learning algorithm but if it
can help SVMs is debatable, since its related the-
ory show that they are robust to irrelevant fea-
tures. In our specific case, we remove features

(ADJP(RB-B)(VBN-P))
(NP(VBN-P)(NNS-B))
(S(NP-B)(VP))
(VP(VBD-P(said))(SBAR))
(VP(VB-P)(NP-B))
(NP(VBG-P)(NNS-B))
(VP(VBD-P)(NP-B))
(VP(VBG-P)(NP-B))
(VP(VBZ-P)(NP-B))
(VP(VBN-P)(NP-B))
(VP(VBP-P)(NP-B))
(NP(NP-B)(VP))
(NP(VBG-P)(NN-B))
(S(S(VP(VBG-P)))(NP-B))

Table 3: Best fragments for SRL BC.

(NN(abbreviation))
(NP(DT)(NN(abbreviation)))
(NP(DT(the))(NN(abbreviation)))
(IN(for))
(VB(stand))
(VBZ(does))
(PP(IN))
(VP(VB(stand))(PP))
(NP(NP(DT)(NN(abbreviation)))(PP))
(SQ(VBZ)(NP)(VP(VB(stand))(PP)))
(SBARQ(WHNP)(SQ(VBZ)(NP)(VP(VB(stand))(PP)))(.))
(SQ(VBZ(does))(NP)(VP(VB(stand))(PP)))
(VP(VBZ)(NP(NP(DT)(NN(abbreviation)))(PP)))

Table 4: Best fragments for the ABBR class.

(WRB(Why))
(WHADVP(WRB(Why)))
(WHADVP(WRB(How)))
(WHADVP(WRB))
(VB(mean))
(VBZ(causes))
(VB(do))
(ROOT(SBARQ(WHADVP(WRB(How)))(SQ)(.)))
(ROOT(SBARQ(WHADVP(WRB(How)))(SQ)(.(?))))
(SBARQ(WHADVP(WRB(How)))(SQ))
(WRB(How))
(SBARQ(WHADVP(WRB(How)))(SQ)(.))
(SBARQ(WHADVP(WRB(How)))(SQ)(.(?)))
(SBARQ(WHADVP(WRB(Why)))(SQ))
(ROOT(SBARQ(WHADVP(WRB(Why)))(SQ)))
(SBARQ(WHADVP(WRB))(SQ))

Table 5: Best fragments for the DESC class.

(NN(film))
(NN(color))
(NN(book))
(NN(novel))
(NN(sport))
(WP(What))
(NN(fear))
(NN(movie))
(NN(word))
(VP(VBN(called)))
(NN(game))
(NP(DT)(NN(fear)))
(NP(NP(DT)(NN(fear)))(PP))

Table 6: Best fragments for the ENTY class.
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(NN(company))
(WP(Who))
(WHNP(WP(Who)))
(NN(name))
(NN(team))
(NN(baseball))
(WHNP(WP))
(NN(character))
(NNP(President))
(NN(leader))
(NN(actor))
(NN(president))
(JJ(Whose))
(VP(VBD)(NP))
(NP(NP)(JJ)(NN(name)))
(VP(VBD)(VP))
(NN(organization))
(VP(VBD)(NP)(PP(IN)(NP)))
(SBARQ(WHNP(WP(Who)))(SQ)(.))
(ROOT(SBARQ(WHNP(WP(Who)))(SQ)(.)))
(ROOT(SBARQ(WHNP(WP(Who)))(SQ)(.(?))))
(SBARQ(WHNP(WP(Who)))(SQ)(.(?)))

Table 7: Best fragments for the HUM class.

(NN(city))
(NN(country))
(WRB(Where))
(NN(state))
(WHADVP(WRB(Where)))
(NN(capital))
(NP(NN(city)))
(NNS(countries))
(NP(NN(state)))
(PP(IN(in)))
(SBARQ(WHADVP(WRB(Where)))(SQ)(.(?)))
(SBARQ(WHADVP(WRB(Where)))(SQ)(.))
(ROOT(SBARQ(WHADVP(WRB(Where)))(SQ)(.)))
(ROOT(SBARQ(WHADVP(WRB(Where)))(SQ)(.(?))))
(NN(island))
(NN(address))
(NN(river))
(NN(mountain))
(ROOT(SBARQ(WHADVP(WRB(Where)))(SQ)))
(SBARQ(WHADVP(WRB(Where)))(SQ))

Table 8: Best fragments for the LOC class.

(WRB(How))
(WHADVP(WRB(When)))
(WRB(When))
(JJ(many))
(NN(year))
(WHADJP(WRB)(JJ))
(NP(NN(year)))
(WHADJP(WRB(How))(JJ))
(NN(date))
(SBARQ(WHADVP(WRB(When)))(SQ)(.(?)))
(SBARQ(WHADVP(WRB(When)))(SQ)(.))
(NN(day))
(NN(population))
(ROOT(SBARQ(WHADVP(WRB(When)))(SQ)(.)))
(ROOT(SBARQ(WHADVP(WRB(When)))(SQ)(.(?))))
(JJ(average))
(NN(number))

Table 9: Best fragments for the NUM class.

whose SVM weights are the lowest, i.e. those
that are (almost) irrelevant for the SVM. There-
fore, the chance of this resulting in an improve-
ment is rather low.

With respect to cases where our model is less
accurate than a standard SST, we should consider
that our choice of parameters is sub-optimal and
we adopt averyaggressive feature selection strat-
egy, that only retains a few thousand features from
a space where there are hundreds of millions of
different features.

7 Conclusions

We introduced a novel framework for support vec-
tor classification that combines advantages of con-
volution kernels, i.e. the generation of a very high
dimensional structure space, with the efficiency
and clarity of explicit representations in a linear
space.

For this paper, we focused on the SubSet Tree
kernel and verified the potential of the proposed
solution on two NLP tasks, i.e. semantic role
labeling and question classification. The exper-
iments show that our framework drastically re-
duces processing time, e.g. boundary classifica-
tion for SRL, while preserving the accuracy.

We presented a selection of the most relevant
fragments identified for the SRL boundary classi-
fier as well as for each class of the coarse grained
QC task. Our analysis shows that our frame-
work can discover state-of-the-art features, e.g.
the Path feature for SRL. We believe that shar-
ing these fragments with the NLP community and
studying them in more depth will be useful to
identify new, relevant features for the character-
ization of several learning problems. For this
purpose, we made available the fragment spaces
at http://danielepighin.net and we will keep
them updated with new set of experiments on new
tasks, e.g. SRL based on FrameNet and VerbNet,
e.g. (Giuglea and Moschitti, 2004).

In our future work, we plan to widen the list
of covered tasks and to extend our algorithm to
cope with different kernel families, such as the
partial tree kernel and kernels defined over pairs
of trees, e.g. the ones used for textual entailment
in (Moschitti and Zanzotto, 2007). We also plan to
move from mining fragments to mining classes of
fragments, i.e. to identify prototypical fragments
in the fragment space that generalize topological
sub-classes of the most relevant fragments.
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Abstract

Because of the importance of protein-
protein interaction (PPI) extraction from
text, many corpora have been proposed
with slightly differing definitions of pro-
teins and PPI. Since no single corpus is
large enough to saturate a machine learn-
ing system, it is necessary to learn from
multiple different corpora. In this paper,
we propose a solution to this challenge.
We designed a rich feature vector, and we
applied a support vector machine modi-
fied for corpus weighting (SVM-CW) to
complete the task of multiple corpora PPI
extraction. The rich feature vector, made
from multiple useful kernels, is used to
express the important information for PPI
extraction, and the system with our fea-
ture vector was shown to be both faster
and more accurate than the original kernel-
based system, even when using just a sin-
gle corpus. SVM-CW learns from one cor-
pus, while using other corpora for support.
SVM-CW is simple, but it is more effec-
tive than other methods that have been suc-
cessfully applied to other NLP tasks ear-
lier. With the feature vector and SVM-
CW, our system achieved the best perfor-
mance among all state-of-the-art PPI ex-
traction systems reported so far.

1 Introduction

The performance of an information extraction pro-
gram is highly dependent on various factors, in-
cluding text types (abstracts, complete articles, re-
ports, etc.), exact definitions of the information to
be extracted, shared sub-topics of the text collec-
tions from which information is to be extracted.

Even if two corpora are annotated in terms of the
same type of information by two groups, the per-
formance of a program trained by one corpus is
unlikely to be reproduced in the other corpus. On
the other hand, from a practical point of view, it is
worth while to effectively use multiple existing an-
notated corpora together, because it is very costly
to make new annotations.

One problem with several different corpora is
protein-protein interaction (PPI) extraction from
text. While PPIs play a critical role in un-
derstanding the working of cells in diverse bio-
logical contexts, the manual construction of PPI
databases such as BIND, DIP, HPRD, IntAct, and
MINT (Mathivanan et al., 2006) is known to be
very time-consuming and labor-intensive. The au-
tomatic extraction of PPI from published papers
has therefore been a major research topic in Natu-
ral Language Processing for Biology (BioNLP).

Among several PPI extraction task settings, the
most common is sentence-based, pair-wise PPI ex-
traction. At least four annotated corpora have been
provided for this setting: AIMed (Bunescu et al.,
2005), HPRD50 (Fundel et al., 2006), IEPA (Ding
et al., 2002), and LLL (Ńedellec, 2005). Each of
these corpora have been used as the standard cor-
pus for training and testing PPI programs. More-
over, several corpora are annotated for more types
of events than just for PPI. Such examples include
BioInfer (Pyysalo et al., 2007), and GENIA (Kim
et al., 2008a), and they can be reorganized into PPI
corpora. Even though all of these corpora were
made for PPI extraction, they were constructed
based on different definitions of proteins and PPI,
which reflect different biological research inter-
ests (Pyysalo et al., 2008).

Research on PPI extraction so far has revealed
that the performance on each of the corpora could
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benefit from additional examples (Airola et al.,
2008). Learning from multiple annotated cor-
pora could lead to better PPI extraction perfor-
mance. Various research paradigms such as induc-
tive transfer learning (ITL) and domain adaptation
(DA) have mainly focused on how to effectively
use corpora annotated by other groups, by reduc-
ing the incompatibilities (Pan and Yang, 2008).

In this paper, we propose the extraction of PPIs
from multiple different corpora. We design a rich
feature vector, and as an ITL method, we ap-
ply a support vector machine (SVM) modified for
corpus weighting (SVM-CW) (Schweikert et al.,
2008), in order to evaluate the use of multiple cor-
pora for the PPI extraction task. Our rich feature
vector is made from multiple useful kernels, each
of which is based on multiple parser inputs, pro-
posed by Miwa et al. (2008). The system with our
feature vector was better than or at least compa-
rable to the state-of-the-art PPI extraction systems
on every corpus. The system is a good starting
point to use the multiple corpora. Using one of the
corpora as the target corpus, SVM-CW weights
the remaining corpora (we call them the source
corpora) with “goodness” for training on the tar-
get corpus. While SVM-CW is simple, we show
that SVM-CW can improve the performance of the
system more effectively and more efficiently than
other methods proven to be successful in other
NLP tasks earlier. As a result, SVM-CW with our
feature vector is comprised of a PPI system with
five different models, of which each model is su-
perior to the best model in the original PPI extrac-
tion task, which used only the single corpus.

2 Related Works

While sentence-based, pair-wise PPI extraction
was initially tackled by using simple methods
based on co-occurrences, lately, more sophisti-
cated machine learning systems augmented by
NLP techniques have been applied (Bunescu et al.,
2005). The task has been tackled as a classifica-
tion problem. To pull out useful information from
NLP tools including taggers and parsers, several
kernels have been applied to calculate the similar-
ity between PPI pairs. Miwa et al. (2008) recently
proposed the use of multiple kernels using multi-
ple parsers. This outperformed other systems on
the AIMed, which is the most frequently used cor-
pus for the PPI extraction task, by a wide margin.

To improve the performance using external

ClassificationResult

TrainingData
Feature vectorRaw Texts Parsers Classifier

Test Data
Raw Texts

ModelPair Information

Pair Information

Label

Figure 1: Overview of our PPI extraction system

training data, many ITL and DA methods have
been proposed. Most of ITL methods assume that
the feature space is same, and that the labels may
be different in only some examples, while most of
DA methods assume that the labels are the same,
and that the feature space is different. Among the
methods, we use adaptive SVM (aSVM) (Yang et
al., 2007), singular value decomposition (SVD)
based alternating structure optimization (SVD-
ASO) (Ando et al., 2005), and transfer AdaBoost
(TrAdaBoost) (Dai et al., 2007) to compare with
SVM-CW. We do not use semi-supervised learn-
ing (SSL) methods, because it would be consid-
erably costly to generate enough clean unlabeled
data needed for SSL (Erkan et al., 2007). aSVM
is seen as a promising DA method among sev-
eral modifications of SVM including SVM-CW.
aSVM tries to find a model that is close to the one
made from other classification problems. SVD-
ASO is one of the most successful SSL, DA, or
multi-task learning methods in NLP. The method
tries to find an additional useful feature space by
solving auxiliary problems that are close to the tar-
get problem. With well-designed auxiliary prob-
lems, the method has been applied to text clas-
sification, text chunking, and word sense disam-
biguation (Ando, 2006). The method was reported
to perform better than or comparable to the best
state-of-the-art systems in all of these tasks. TrAd-
aBoost was proposed as an ITL method. In train-
ing, the method reduces the effect of incompatible
examples by decreasing their weights, and thereby
tries to use useful examples from source corpora.
The method has been applied to text classifica-
tion, and the reported performance was better than
SVM and transductive SVM (Dai et al., 2007).

3 PPI Extraction System

The target task of our system is a sentence-based,
pair-wise PPI extraction. It is formulated as a clas-
sification problem that judges whether a given pair
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XPGp1 protein interacts with multiple subunits of
TFIIH prot and withCSBp2 protein.

Figure 2: A sentence including an interacting pro-
tein pair (p1, p2). (AIMed PMID 8652557, 9th
sentence, 3rd pair)

BOW v-walkse-walks Graph BOW v-walkse-walks GraphNormalization
Parsers KSDEPEnju a sentence including a pair

feature vectorBOW Graph BOW v-walkse-walks Graphv-walkse-walks

Figure 3: Extraction of a feature vector from the
target sentence

of proteins in a sentence is interacting or not. Fig-
ure 2 shows an example of a sentence in which the
given pair (p1 and p2) actually interacts.

Figure 1 shows the overview of the proposed
PPI extraction system. As a classifier using a sin-
gle corpus, we use the 2-norm soft-margin lin-
ear SVM (L2-SVM) classifier, with the dual co-
ordinate decent (DCD) method, by Hsieh et al.
(2008). In this section, we explain the two main
features: the feature vector, and the corpus weight-
ing method for multiple corpora.

3.1 Feature Vector

We propose a feature vector with three types of
features, corresponding to the three different ker-
nels, which were each combined with the two
parsers: the Enju 2.3.0, and KSDEP beta 1 (Miyao
et al., 2008); this feature vector is used because the
kernels with these parsers were shown to be effec-
tive for PPI extraction by Miwa et al. (2008), and
because it is important to start from a good per-
formance single corpus system. Both parsers were
retrained using the GENIA Treebank corpus pro-
vided by Kim et al. (2003). By using our linear
feature vector, we can perform calculations faster
by using fast linear classifiers like L2-SVM, and
we also obtain a more accurate extraction, than by
using the original kernel method.

Figure 3 summarizes the way in which the fea-
ture vector is constructed. The system extracts
Bag-of-Words (BOW), shortest path (SP), and
graph features from the output of two parsers. The

PROT M:1, andM:1, interactM:1, multiple M:1,
of M:1, proteinM:1, subunitM:1, with M:2, pro-
tein A:1

Figure 4: Bag-of-Words features of the pair in Fig-
ure 2 with their positions (B:Before, M:in the Mid-
dle of, A:After) and frequencies.

NMOD SBJ rNMODENTITY1 protein interact ENTITY2protein protein
ENTITY1 protein interacts with multiple and with ENTITY2 protein .NMOD SBJ

COOD COORD
NMOD

PMOD

NMOD SBJ rNMODprotein interact proteinSBJ rCOOD rPMOD
V-walks  
E-walks ・・・

・・・
・・・

Figure 5: Vertex walks, edge walks in the upper
shortest path between the proteins in the parse tree
by KSDEP. The walks and their subsets are used
as the shortest path features of the pair in Figure 2.

output is grouped according to the feature-type
and parser, and each group of features is separately
normalized by the L2-norm1. Finally, all values
are put into a single feature vector, and the whole
feature vector is then also normalized by the L2-
norm. The features are constructed by using pred-
icate argument structures (PAS) from Enju, and by
using the dependency trees from KSDEP.

3.1.1 Bag-of-Words (BOW) Features

The BOW feature includes the lemma form of a
word, its relative position to the target pair of pro-
teins (Before, Middle, After), and its frequency in
the target sentence. BOW features form the BOW
kernel in the original kernel method. BOW fea-
tures for the pair in Figure 2 are shown in Figure 4.

3.1.2 Shortest Path (SP) Features

SP features include vertex walks (v-walks), edge
walks (e-walks), and their subsets (Kim et al.,
2008b) on the target pair in a parse structure, and
represent the connection between the pair. The
features are the subsets of the tree kernels on the
shortest path (Sætre et al., 2007). Figure 5 illus-
trates the shortest path between the pair in Fig-
ure 2, and its v-walks and e-walks extracted from
the shortest path in the parse tree by KSDEP. A
v-walk includes two lemmas and their link, while

1The vector normalized by the L2-norm is also called a
unit vector.

123



an e-walk includes a lemma and its two links. The
links indicates the predicate argument relations for
PAS, and the dependencies for dependency trees.

3.1.3 Graph Features

Graph features are made from the all-paths graph
kernel proposed by Airola et al. (2008). The ker-
nel represents the target pair using graph matrices
based on two subgraphs, and the graph features are
all the non-zero elements in the graph matrices.

The two subgraphs are a parse structure sub-
graph (PSS) and a linear order subgraph (LOS).
Figure 6 describes the subgraphs of the sentence
parsed by KSDEP in Figure 2. PSS represents the
parse structure of a sentence. PSS has word ver-
tices or link vertices. A word vertex contains its
lemma and its part-of-speech (POS), while a link
vertex contains its link. Additionally, both types
of vertices contain their positions relative to the
shortest path. The “IP”s in the vertices on the
shortest path represent the positions, and the ver-
tices are differentiated from the other vertices like
“P”, “CC”, and “and:CC” in Figure 6. LOS repre-
sents the word sequence in the sentence. LOS has
word vertices, each of which contains its lemma,
its relative position to the target pair, and its POS.

Each subgraph is represented by a graph matrix
G as follows:

G = LT
∞∑
n=1

AnL, (1)

whereL is aN×L label matrix,A is anN×N
edge matrix,N represents the number of vertices,
andL represents the number of labels. The la-
bel of a vertex includes all information described
above (e.g. “ENTITY1:NN:IP” in Figure 6). If
two vertices have exactly same information, the
labels will be same.G can be calculated effi-
ciently by using the Neumann Series (Airola et al.,
2008). The label matrix represents the correspon-
dence between labels and vertices.Lij is 1 if the
i-th vertex corresponds to thej-th label, and 0 oth-
erwise. The edge matrix represents the connection
between the pairs of vertices.Aij is a weightwij
(0.9 or 0.3 in Figure 6 (Airola et al., 2008)) if the
i-th vertex is connected to thej-th vertex, and 0
otherwise. By this calculation,Gij represent the
sum of the weights of all paths between thei-th
label and thej-th label.

A B H I L
positive 1,000 2,534 163 335 164
all 5,834 9,653 433 817 330

Table 1: The sizes of used PPI corpora. A:AIMed,
B:BioInfer, H:HPRD50, I:IEPA, and L:LLL.

5060708090100

0 20 40 60 80 100% examples

AImed (F)BioInfer (F)AImed (AUC)BioInfer (AUC)

Figure 7: Learning curves on two large corpora.
The x-axis is related to the percentage of the ex-
amples in a corpus. The curves are obtained by a
10-fold CV with a random split.

3.2 Corpus Weighting for Mixing Corpora

Table 1 shows the sizes of the PPI corpora that we
used. Their widely-ranged differences including
the sizes were manually analyzed by Pyysalo et
al. (2008). While AIMed, HPRD50, IEPA, and
LLL were all annotated as PPI corpora, BioInfer in
its original form contains much more fine-grained
information than does just the PPI. BioInfer was
transformed into a PPI corpus by a program, so
making it the largest of the five. Among them,
AIMed alone was created by annotating whole ab-
stracts, while the other corpora were made by an-
notating single sentences selected from abstracts.

Figure 7 shows the learning curves on two large
corpora: AIMed and BioInfer. The curves are
obtained by performing a 10-fold cross valida-
tion (CV) on each corpus, with random splits, us-
ing our system. The curves show that the perfor-
mances can benefit from the additional examples.
To get a better PPI extraction system for a chosen
target, we need to draw useful shared information
from external source corpora. We refer to exam-
ples in the source corpora as “source examples”,
and examples in a target corpus as “target exam-
ples”. Among the corpora, we assume that the la-
bels in some examples are incompatible, and that
their distributions are also different, but that the
feature space is shared.

In order to draw useful information from the
source corpora to get a better model for the target

124



ENTITY1NNIP proteinNNIP interactVBZIP withINIP multipleJJ subunitNNS ofIN PROTNN andCC withINIP ENTITY2NNIP proteinNNIP ..NMODIP
SBJIP

COODIP PMOD
NMOD NMOD

PMOD
CCCOORDIP

NMODIP
PMODIPPENTITY1NN proteinNNM interactVBZM withINM multipleJJM subunitNNSM ofINM PROTNNM andCCM withINM ENTITY2NN proteinNNA ..

0.9,            0.3IP: In shortest Path, B:Before, M:in the Middle of, A:After

Figure 6: Parse structure subgraph and linear order subgraph to extract graph features of the pair in
Figure 2. The parse structure subgraph is from the parse tree by KSDEP.

corpus, we use SVM-CW, which has been used
as a DA method. Given a set of instance-label
pairs (xi, yi), i = 1, . . ., ls + lt, xi∈Rn, and
yi∈{−1,+1}, we solve the following problem:

minw
1
2
wTw + Cs

ls∑
i=1

`i + Ct

ls+lt∑
i=ls+1

`i, (2)

wherew is a weight vector,̀ is a loss function,
andls andlt are the numbers of source and target
examples respectively.Cs ≥ 0 andCt ≥ 0 are
penalty parameters. We use a squared hinge loss
`i = max(0, 1− yiwTxi)2. Here, the source cor-
pora are treated as one corpus. The problem, ex-
cluding the second term, is equal to L2-SVM. The
problem can be solved using the DCD method.

As an ITL method, SVM-CW weights each cor-
pus, and tries to benefit from the source corpora,
by adjusting the effect of their compatibility and
incompatibility. For the adjustment, these penalty
parameters should be set properly. Since we are
unaware of the widely ranged differences among
the corpora, we empirically estimated them by
performing 10-fold CV on the training data.

4 Evaluation

4.1 Evaluation Settings

We used five corpora for evaluation: AIMed,
BioInfer, HPRD50, IEPA, and LLL. For the com-
parison with other methods, we report the F-
score (%), and the area under the receiver op-
erating characteristic (ROC) curve (AUC) (%)

using (abstract-wise) a 10-fold CV and a one-
answer-per-occurrence criterion. These measures
are commonly used for the PPI extraction tasks.
The F-score is a harmonic mean of Precision and
Recall. The ROC curve is a plot of a true posi-
tive rate (TPR) vs a false positive rate (FPR) for
different thresholds. We tuned the regularization
parameters of all classifiers by performing a 10-
fold CV on the training data using a random split.
The other parameters were fixed, and we report the
highest of the macro-averaged F-scores as our fi-
nal F-score. For 10-fold CV, we split the corpora
as recommended by Airola et al. (2008).

4.2 PPI Extraction on a Single Corpus

In this section, we evaluate our system on a single
corpus, in order to evaluate our feature vector and
to justify the use of the following modules: nor-
malization methods and classification methods.

First, we compare our preprocessing method
with other preprocessing methods to confirm how
our preprocessing method improves the perfor-
mance. Our method produced 64.2% in F-score
using L2-SVM on AIMed. Scaling all features in-
dividually to have a maximal absolute value of 1,
produced only 44.2% in the F-score, while nor-
malizing the feature vector by L2-norm produced
61.5% in the F-score. Both methods were inferior
to our method, because the values of features in
the same group should be treated together, and be-
cause the values of features in the different groups
should not have a big discrepancy. Weighting each
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L2 L1 LR AP CW
F 64.2 64.0 64.2 62.7 63.0
AUC 89.1 88.8 89.0 88.5 87.8

Table 2: Classification performance on AIMed us-
ing five different linear classifiers. The F-score (F)
and Area Under the ROC curve (AUC) are shown.
L2 is L2-SVM, L1 is L1-SVM, LR is logistic re-
gression, AP is averaged perceptron, and CW is
confidence weighted linear classification.

group with different values can produce better re-
sults, as will be explored in our future work.

Next, using our feature vector, we applied
five different linear classifiers to extract PPI
from AIMed: L2-SVM, 1-norm soft-margin
SVM (L1-SVM), logistic regression (LR) (Fan
et al., 2008), averaged perceptron (AP) (Collins,
2002), and confidence weighted linear classifica-
tion (CW) (Dredze et al., 2008). Table 2 indicates
the performance of these classifiers on AIMed.
We employed better settings for the task than did
the original methods for AP and CW. We used a
Widrow-Hoff learning rule (Bishop, 1995) for AP,
and we performed one iteration for CW. L2-SVM
is as good as, if not better, than other classifiers (F-
score and AUC). In the least, L2-SVM is as fast as
these classifiers. AP and CW are worse than the
other three methods, because they require a large
number of examples, and are un-suitable for the
current task. This result indicates that all linear
classifiers, with the exception of AP and CW, per-
form almost equally, when using our feature vec-
tor.

Finally, we implemented the kernel method by
Miwa et al. (2008). For a 10-fold CV on AIMed,
the running time was 9,507 seconds, and the per-
formance was 61.5% F-score and 87.1% AUC.
Our system used 4,702 seconds, and the perfor-
mance was 64.2% F-score and 89.1% AUC. This
result displayed that our system, with L2-SVM,
and our new feature vector, is better, and faster,
than the kernel-based system.

4.3 Evaluation of Corpus Weighting

In this section, we first apply each model from a
source corpus to a target corpus, to show how dif-
ferent the corpora are. We then evaluate SVM-CW
by comparing it with three other methods (see Sec-
tion 2) with limited features, and apply it to every
corpus.

01020
304050
607080
90

AIMed BioInfer HPRD50 IEPA LLL

F

Target corpus

AIMedBioInferHPRD50IEPALLLco-occ

Model

Figure 8: F-score on a target corpus using a model
on a source corpus. For the comparison, we show
the 10-fold CV result on each target corpus and
co-occurrences. The regularization parameter was
fixed to 1.

First, we apply the model from a source corpus
to a target corpus. Figure 8 shows how the model
from a source corpus performs on the target cor-
pus. Interestingly, the model from IEPA performs
better on LLL than the model from LLL itself. All
the results showed that using different corpora (ex-
cept IEPA) is worse than just using the same cor-
pora. However, the cross-corpora scores are still
better than the co-occurrences base-line, which in-
dicates that the corpora share some information,
even though they are not fully compatible.

Next, we compare SVM-CW with three other
methods: aSVM, SVD-ASO, and TrAdaBoost.
For this comparison, we used our feature vec-
tor without including the graph features, because
SVD-ASO and TrAdaBoost require large compu-
tational resources. We applied SVD-ASO and
TrAdaBoost in the following way. As for SVD-
ASO, we made 400 auxiliary problems from the
labels of each corpus by splitting features ran-
domly, and extracted 50 additional features each
for 4 feature groups. In total, we made new 200
additional features from 2,000 auxiliary problems.
As recommended by Ando et al. (2005), we re-
moved negative weights, performed SVD to each
feature group, and iterated ASO once. Since Ad-
aBoost easily overfitted with our rich feature vec-
tor, we applied soft margins (Ratsch et al., 2001)
to TrAdaBoost. The update parameter for source
examples was calculated using the update param-
eter on the training data in AdaBoost and the orig-
inal parameter in TrAdaBoost. This ensures that
the parameter would be the same as the original
parameter, when the C value in the soft margin ap-
proaches infinity.
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aSVM SVD-ASO TrAdaBoost SVM-CW L2-SVM
F AUC F AUC F AUC F AUC F AUC

AIMed 63.6 88.4 62.9 88.3 63.4 88.4 64.0 88.6 63.2 88.4
BioInfer 66.5 85.2 65.7 85.1 66.1 85.2 66.7 85.4 66.2 85.1
HPRD50 71.2 84.3 68.7 80.8 72.6 85.3 72.7 86.4 67.2 80.7
IEPA 73.8 85.4 72.3 83.8 74.3 86.3 75.2 85.9 73.0 84.7
LLL 85.9 89.2 79.3 85.5 86.5 88.8 86.9 90.3 80.3 86.3

Table 3: Comparison of methods on multiple corpora. Our feature vector without graph features is used.
The source corpora with the best F-scores are reported for aSVM, TrAdaBoost, and SVM-CW.

F-score AUC
A B H I L all A B H I L all

A (64.2) 64.0 64.7 65.2 63.7 64.2 (89.1) 89.5 89.2 89.3 89.0 89.4
B 67.9 (67.6) 67.9 67.9 67.7 68.3 86.2 (86.1) 86.2 86.3 86.2 86.4
H 71.3 71.2 (69.7) 74.1 70.8 74.9 84.7 85.0 (82.8) 85.0 83.4 87.9
I 74.4 75.6 73.7 (74.4) 74.4 76.6 86.7 87.1 85.4 (85.6) 86.9 87.8
L 83.2 85.9 82.0 86.7 (80.5) 84.1 86.3 87.1 87.4 90.8 (86.0) 86.2

Table 4: F-score and AUC by SVM-CW. Rows correspond to a target corpus, and columns a source
corpus. A:AIMed, B:BioInfer, H:HPRD50, I:IEPA, and L:LLL corpora. “all” signifies that all source
corpora are used as one source corpus, ignoring the differences among the corpora. For the comparison,
we show the 10-fold CV result on each target corpus.

In Table 3, we demonstrate the results of the
comparison. SVM-CW improved the classifica-
tion performance at least as much as all the other
methods. The improvement is mainly attributed to
the aggressive use of source examples while learn-
ing the model. Some source examples can be used
as training data, as indicated in Figure 8. SVM-
CW does not set the restriction betweenCs and
Ct in Equation (2), so it can use source exam-
ples aggressively while learning the model. Since
aSVM transfers a model, and SVD-ASO transfers
an additional feature space, aSVM and SVD-ASO
do not use the source examples while learning the
model. In addition to the difference in the data us-
age, the settings of aSVM and SVD-ASO do not
match the current task. As for aSVM, the DA as-
sumption (that the labels are the same) does not
match the task. In SVD-ASO, the numbers of both
source examples and auxiliary problems are much
smaller than those reported by Ando et al. (2005).
TrAdaBoost uses the source examples while learn-
ing the model, but never increases the weight of
the examples, and it attempts to reduce their ef-
fects.

Finally, we apply SVM-CW to all corpora using
all features. Table 4 summarizes the F-score and
AUC by SVM-CW with all features. SVM-CW

is especially effective for small corpora, show-
ing that SVM-CW can adapt source corpora to a
small annotated target corpus. The improvement
on AIMed is small compared to the improvement
on BioInfer, even though these corpora are sim-
ilar in size. One of the reasons for this is that
whole abstracts are annotated in AIMed, therefore
making the examples biased. The difference be-
tween L2-SVM and SVM-CW + IEPA on AIMed
is small, but statistically, it is significant (McNe-
mar test (McNemar, 1947), P = 0.0081). In the
cases of HPRD50 + IEPA, LLL + IEPA, and two
folds in BioInfer + IEPA,Cs is larger thanCt in
Equation (2). This is worth noting, because the
source corpus is more weighted than the target cor-
pus, and the prediction performance on the tar-
get corpus is improved. Most methods put more
trust in the target corpus than in the source cor-
pus, and our results show that this setting is not al-
ways effective for mixing corpora. The results also
indicate that IEPA contains more useful informa-
tion for extracting PPI than other corpora, and that
using source examples aggressively is important
for these combinations. We compared the results
of L2-SVM and SVM-CW + IEPA on AIMed,
and found that 38 pairs were described as “inter-
action” or “binding” in the sentences among 61
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SVM-CW L2-SVM Airola et al.
F AUC F AUC F AUC

A 65.2 89.3 64.2 89.1 56.4 84.8
B 68.3 86.4 67.6 86.1 61.3 81.9
H 74.9 87.9 69.7 82.8 63.4 79.7
I 76.6 87.8 74.4 85.6 75.1 85.1
L 86.7 90.8 80.5 86.0 76.8 83.4

Table 6: Comparison with the results by Airola
et al. (2008). A:AIMed, B:BioInfer, H:HPRD50,
I:IEPA, and L:LLL corpora. The results with the
highest F-score from Table 4 are reported as the
results for SVM-CW.

newly found pairs. This analysis is evidence that
IEPA contains instances to help find such inter-
actions, and that SVM-CW helps to collect gold
pairs that lack enough supporting instances in a
single corpus, by adding instances from other cor-
pora. SVM-CW missed coreferential relations that
were also missed by L2-SVM. This can be at-
tributed to the fact that the coreferential informa-
tion is not stored in our current feature vector; so
we need an even more expressive feature space.
This is left as future work.

SVM-CW is effective on most corpus combi-
nations, and all the models from single corpora
can be improved by adding other source corpora.
This result is impressive, because the baselines by
L2-SVM on just single corpora are already better
than or at least comparable to other state-of-the-art
PPI extraction systems, and also because the vari-
ety of the differences among different corpora is
quite wide depending on various factors including
annotation policies of the corpora (Pyysalo et al.,
2008). The results suggest that SVM-CW is useful
as an ITL method.

4.4 Comparison with Other PPI Systems

We compare our system with other previously
published PPI extraction systems. Tables 5 and
6 summarize the comparison. Table 5 summa-
rizes the comparison of several PPI extraction sys-
tems evaluated on the AIMed corpus. As indi-
cated, the performance of the heavy kernel method
is lower than our fast rich feature-vector method.
Our system is, to the extent of our knowledge, the
best performing PPI extraction system evaluated
on the AIMed corpus, both in terms of AUC and
F-scores. Airola et al. (2008) first reported results
using all five corpora. We cannot directly com-

pare our result with the F-score results, because
they tuned the threshold, but our system still out-
performs the system by Airola et al. (2008) on ev-
ery corpus in AUC values. The results also indi-
cate that our system outperforms other systems on
all PPI corpora, and that both the rich feature vec-
tor and the corpus weighting are effective for the
PPI extraction task.

5 Conclusion

In this paper, we proposed a PPI extraction system
with a rich feature vector, using a corpus weight-
ing method (SVM-CW) for combining the mul-
tiple PPI corpora. The feature vector extracts as
much information as possible from the main train-
ing corpus, and SVM-CW incorporate other exter-
nal source corpora in order to improve the perfor-
mance of the classifier on the main target corpus.
To the extent of our knowledge, this is the first ap-
plication of ITL and DA methods to PPI extrac-
tion. As a result, the system, with SVM-CW and
the feature vector, outperformed all other PPI ex-
traction systems on all of the corpora. The PPI
corpora share some information, and it is shown
to be effective to add other source corpora when
working with a specific target corpus.

The main contributions of this paper are: 1)
conducting experiments in extracting PPI using
multiple corpora, 2) suggesting a rich feature
vector using several previously proposed features
and normalization methods, 3) the combination of
SVM with corpus weighting and the new feature
vector improved results on this task compared with
prior work.

There are many differences among the corpora
that we used, and some of the differences are still
unresolved. For further improvement, it would be
necessary to investigate what is shared and what
is different among the corpora. The SVM-CW
method, and the PPI extraction system, can be ap-
plied generally to other classification tasks, and
to other binary relation extraction tasks, without
the need for modification. There are several other
tasks in which many different corpora, which at
first glance seem compatible, exist. By apply-
ing SVM-CW to such corpora, we will analyze
which differences can be resolved by SVM-CW,
and what differences require a manual resolution.

For the PPI extraction system, we found many
false negatives that need to be resolved. For fur-
ther improvement, we need to analyze the cause
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positive all P R F AUC
SVM-CW 1,000 5,834 60.0 71.9 65.2 89.3
L2-SVM 1,000 5,834 62.7 66.6 64.2 89.1
(Miwa et al., 2008) 1,005 5,648 60.4 69.3 64.2 (61.5) 87.9 (87.1)
(Miyao et al., 2008) 1,059 5,648 54.9 65.5 59.5
(Airola et al., 2008) 1,000 5,834 52.9 61.8 56.4 84.8
(Sætre et al., 2007) 1,068 5,631 64.3 44.1 52.0
(Erkan et al., 2007) 951 4,020 59.6 60.7 60.0
(Bunescu and Mooney, 2005) 65.0 46.4 54.2

Table 5: Comparison with previous PPI extraction results on the AIMed corpus. The numbers of positive
and all examples, precision (P), recall (R), F-score (F), and AUC are shown. The result with the highest
F-score from Table 4 is reported as the result for SVM-CW. The scores in the parentheses of Miwa et al.
(2008) indicate the result using the same 10-fold splits as our result, as indicated in Section 4.2.

of these false negatives more deeply, and design a
more discriminative feature space. This is left as a
future direction of our work.
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Abstract

Traditionally, machine learning ap-
proaches for information extraction
require human annotated data that can be
costly and time-consuming to produce.
However, in many cases, there already
exists a database (DB) with schema
related to the desired output, and records
related to the expected input text. We
present a conditional random field (CRF)
that aligns tokens of a given DB record
and its realization in text. The CRF model
is trained using only the available DB and
unlabeled text with generalized expecta-
tion criteria. An annotation of the text
induced from inferred alignments is used
to train an information extractor. We eval-
uate our method on a citation extraction
task in which alignments between DBLP
database records and citation texts are
used to train an extractor. Experimental
results demonstrate an error reduction
of 35% over a previous state-of-the-art
method that uses heuristic alignments.

1 Introduction

A substantial portion of information on the Web
consists of unstructured and semi-structured text.
Information extraction (IE) systems segment and
label such text to populate a structured database
that can then be queried and mined efficiently.

In this paper, we mainly deal with information
extraction from text fragments that closely resem-
ble structured records. Examples of such texts
include citation strings in research papers, con-
tact addresses on person homepages and apart-
ment listings in classified ads. Pattern match-
ing and rule-based approaches for IE (Brin, 1998;
Agichtein and Gravano, 2000; Etzioni et al., 2005)
that only use specific patterns, and delimiter and

font-based cues for segmentation are prone to fail-
ure on such data because these cues are gen-
erally not broadly reliable. Statistical machine
learning methods such as hidden Markov models
(HMMs) (Rabiner, 1989; Seymore et al., 1999;
Freitag and McCallum, 1999) and conditional ran-
dom fields (CRFs) (Lafferty et al., 2001; Peng
and McCallum, 2004; Sarawagi and Cohen, 2005)
have become popular approaches to address the
text extraction problem. However, these methods
require labeled training data, such as annotated
text, which is often scarce and expensive to pro-
duce.

In many cases, however, there already exists a
database with schema related to the desired out-
put, and records that are imperfectly rendered in
the available unlabeled text. This database can
serve as a source of significant supervised guid-
ance to machine learning methods. Previous work
on using databases to train information extrac-
tors has taken one of three simpler approaches.
In the first, a separate language model is trained
on each column of the database and these mod-
els are then used to segment and label a given
text sequence (Agichtein and Ganti, 2004; Can-
isius and Sporleder, 2007). However, this ap-
proach does not model context, errors or differ-
ent formats of fields in text, and requires large
number of database entries to learn an accurate
language model. The second approach (Sarawagi
and Cohen, 2004; Michelson and Knoblock, 2005;
Mansuri and Sarawagi, 2006) uses database or
dictionary lookups in combination with similarity
measures to add features to the text sequence. Al-
though these features are very informative, learn-
ing algorithms still require annotated data to make
use of them. The final approach heuristically
labels texts using matching records and learns
extractors from these annotations (Ramakrishnan
and Mukherjee, 2004; Bellare and McCallum,
2007; Michelson and Knoblock, 2008). Heuris-
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tic labeling decisions, however, are made indepen-
dently without regard for the Markov dependen-
cies among labels in text and are sensitive to subtle
changes in text.

Here we propose a method that automatically
induces a labeling of an input text sequence us-
ing a word alignment with a matching database
record. This induced labeling is then used to train
a text extractor. Our approach has several advan-
tages over previous methods. First, we are able
to model field ordering and context around fields
by learning an extractor from annotations of the
text itself. Second, a probabilistic model for word
alignment can exploit dependencies among align-
ments, and is also robust to errors, formatting dif-
ferences, and missing fields in text and the record.

Our word alignment model is a conditional ran-
dom field (CRF) (Lafferty et al., 2001) that gen-
erates alignments between tokens of a text se-
quence and a matching database record. The
structure of the graphical model resembles IBM
Model 1 (Brown et al., 1993) in which each tar-
get (record) word is assigned one or more source
(text) words. The alignment is generated con-
ditioned on both the record and text sequence,
and therefore supports large sets of rich and non-
independent features of the sequence pairs. Our
model is trained without the need for labeled word
alignments by using generalized expectation (GE)
criteria (Mann and McCallum, 2008) that penal-
ize the divergence of specific model expectations
from target expectations. Model parameters are
estimated by minimizing this divergence. To limit
over-fitting we include a L2-regularization term in
the objective. The model expectations in GE cri-
teria are taken with respect to a set of alignment
latent variables that are either specific to each se-
quence pair (local) or summarizing the entire data
set (global). This set is constructed by including
all alignment variables a that satisfy a certain bi-
nary feature (e.g., f(a,x1,y1,x2) = 1, for la-
beled record (x1,y1), and text sequence x2). One
example global criterion is that “an alignment ex-
ists between two orthographically similar1 words
95% of the time.” Here the criterion has a target
expectation of 95% and is defined over alignments
{a = 〈i, j〉 | x1[i] ∼ x2[j],∀x1,x2}. Another cri-
terion for extraction can be “the word ‘EMNLP’
is always aligned with the record label booktitle”.

1Two words are orthographically similar if they have low
edit distance.

This criterion has a target of 100% and defined
for {a = 〈i, j〉 | y1[i] = booktitle ∧ x2[j] =
‘EMNLP’,∀y1,x2}. One-to-one correspondence
between words in the sequence pair can be speci-
fied as collection of local expectation constraints.
Since we directly encode prior knowledge of how
alignments behave in our criteria, we obtain suffi-
ciently accurate alignments with little supervision.

We apply our method to the task of citation
extraction. The input to our training algorithm
is a set of matching DBLP2-record/citation-text
pairs and global GE criteria3 of the following two
types: (1) alignment criteria that consider fea-
tures of mapping between record and text words,
and, (2) extraction criteria that consider features
of the schema label assigned to a text word. In
our experiments, the parallel record-text pairs are
collected manually but this process can be auto-
mated using systems that match text sequences
to records in the DB (Michelson and Knoblock,
2005; Michelson and Knoblock, 2008). Such sys-
tems achieve very high accuracy close to 90% F1
on semi-structured domains similar to ours.4 Our
trained alignment model can be used to directly
align new record-text pairs to create a labeling of
the texts. Empirical results demonstrate a 20.6%
error reduction in token labeling accuracy com-
pared to a strong baseline method that employs a
set of high-precision alignments. Furthermore, we
provide a 63.8% error reduction compared to IBM
Model 4 (Brown et al., 1993). Alignments learned
by our model are used to train a linear-chain CRF
extractor. We obtain an error reduction of 35.1%
over a previous state-of-the-art extraction method
that uses heuristically generated alignments.

2 Record-Text Alignment

Here we provide a brief description of the record-
text alignment task. For the sake of clarity and
space, we describe our approach on a fictional
restaurant address data set. The input to our sys-
tem is a database (DB) consisting of records (pos-
sibly containing errors) and corresponding texts
that are realizations of these DB records. An ex-
ample of a matching record-text pair is shown in

2http://www.informatik.uni-trier.de/∼ley/db/
3Expectation criteria used in our experiments are listed at

http://www.cs.umass.edu/∼kedarb/dbie expts.txt.
4To obtain more accurate record-text pairs, matching

methods can be tuned for high precision at the expense
of recall. Alternatively, humans can cheaply provide
match/mismatch labels on automatically matched pairs.
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Record
name address city state phone

restaurant katsu n. hillhurst avenue los angeles 665-1891

Text
katzu, 1972 hillhurst ave., los feliz, california

Table 1: An example of a matching record-text pair for restaurant addresses.

Table 1. This example displays the differences
between the record and text: (1) spelling errors:
katsu → katzu, (2) word insertions (restaurant),
deletions (1972), substitutions (angeles → feliz),
(3) abbreviations (avenue → ave.), (4) missing
fields in text (phone=665-1891), and (5) extra
fields in text (state=california). These discrep-
ancies plus the unknown ordering of fields within
text can be addressed through word alignment.

restaurant [name] � � � � � � �
katsu [name] � � � � � � �
*null* [name] � � � � � � �
n. [address] � � � � � � �
hillhurst [address] � � � � � � �
avenue [address] � � � � � � �
*null* [address] � � � � � � �
los [city] � � � � � � �
angeles [city] � � � � � � �
*null* [city] � � � � � � �
*null* [state] � � � � � � �
665-1891 [phone] � � � � � � �
*null* [phone] � � � � � � �

ka
tz

u,

19
72

hi
llh

ur
st

av
e.

,

lo
s

fe
liz

,

ca
lif

or
ni

a

Table 2: Example of a word alignment. � repre-
sents aligned tokens. Vertical text at the bottom
are the text tokens. Horizontal text on the left are
tokens from the DB record with labels shown in
braces.

An example word alignment between the record
and text is shown in Table 2. Tokenization of
record/text string is based on whitespace charac-
ters. We add a special *null* token at the field
boundaries for each label in the schema to model
word insertions. The record sequence is obtained
by concatenating individual fields according to the
DB schema order. As in statistical word align-
ment, we assume the DB record to be our source
and the text to be our target. The induced labeling
of the text is given by (name, address, address,

address, city, city, state) which can be used to
train an information extractor. In the next section,
we present our approach to address this task.

3 Approach

We first define notation that will be used
throughout this section. Let (x1,y1) be a
database record with token sequence x1 =
〈x1[1], x1[2], . . . , x1[m]〉 and label sequence y1 =
〈y1[1], y1[2], . . . , y1[m]〉 with y1[∗] ∈ Y where
Y is the database schema. Let x2 =
〈x2[1], x2[2], . . . , x2[n]〉 be the text sequence. Let
a = 〈a1, a2, . . . , an〉 be an alignment sequence
of same length as the target text sequence. The
alignment ai = j assigns the DB token-label pair
(x1[j], y1[j]) to the text token x2[i].

3.1 Conditional Random Field for Alignment
Our conditional random field (CRF) for alignment
has a graphical model structure that resembles that
of IBM Model 1 (Brown et al., 1993). The CRF
is an undirected graphical model that defines a
probability distribution over alignment sequences
a conditioned on the inputs (x1,y1,x2) as:

pΘ(a|x1,y1,x2) =
exp(

Pn
t=1 Θ> ~f(at,x1,y1,x2,t))

ZΘ(x1,y1,x2) , (1)

where ~f(at,x1,y1,x2, t) are feature functions
defined over the alignments and inputs, Θ are
the model parameters and ZΘ(x1,y1,x2) =∑

a′ exp(
∑n

t=1 Θ> ~f(a′t,x1,y1,x2, t)) is the par-
tition function.

The feature vector ~f(at,x1,y1,x2, t) is the
concatenation of two types of feature functions:
(1) alignment features falign(at,x1,x2, t) defined
on source-target tokens, and, (2) extraction fea-
tures fextr(at,y1,x2, t) defined on source labels
and target text. To obtain the probability of an
alignment in a particular position t we marginal-
ize out the alignments over the rest of the positions
{1, . . . , n}\{t},
pΘ(at|x1,y1,x2) =

∑
{a[1...n]}\{at}

pΘ(a|x1,y1,x2)
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=
exp(Θ> ~f(at,x1,y1,x2, t))

exp(
∑

a′ Θ> ~f(a′,x1,y1,x2, t))
(2)

Furthermore, the marginal over label yt assigned
to the text token x2[t] at time step t during align-
ment is given by

pΘ(yt|x2) =
∑

{at|y1[at]=yt}
pΘ(at|x1,y1,x2),

(3)
where {at | y1[at] = yt} is the set of alignments
that result in a labeling yt for token x2[t]. Hence-
forth, we abbreviate pΘ(at|x1,y1,x2) to pΘ(at).
The gradient of pΘ(at) with respect to parameters
Θ is given by

∂pΘ(at)
∂Θ

= pΘ(at)
[
~f(at,x1,y1,x2, t)

−EpΘ(a)

(
~f(a,x1,y1,x2, t)

)]
,(4)

where the expectation term in the above equation
sums over all alignments a at position t. We use
the Baum-Welch and Viterbi algorithms to com-
pute marginal probabilities and best alignment se-
quences respectively.

3.2 Expectation Criteria and Parameter
Estimation

LetD = 〈(x(1)
1 ,y(1)

1 ,x(1)
2 ), . . . , (x(K)

1 ,y(K)
1 ,x(K)

2 )〉
be a data set of K record-text pairs gathered man-
ually or automatically through matching (Michel-
son and Knoblock, 2005; Michelson and
Knoblock, 2008). A global expectation criterion
is defined on the set of alignment latent variables
Af = {a|f(a,x(i)

1 ,y(i)
1 ,x(i)

2 ) = 1,∀i = 1 . . .K}
on the entire data set that satisfy a given bi-
nary feature f(a,x1,y1,x2). Similarly a local
expectation criterion is defined only for a
specific instance (x(i)

1 ,y(i)
1 ,x(i)

2 ) with the set
Af = {a|f(a,x(i)

1 ,y(i)
1 ,x(i)

2 ) = 1}. For a feature
function f , a target expectation p, and, a weight
w, our criterion minimizes the squared divergence

∆(f, p, w,Θ) = w

(
EpΘ(Af )
|Af | − p

)2

, (5)

where EpΘ(Af ) =
∑

a∈Af
pΘ(a) is the sum of

marginal probabilities given by Equation (2) and
|Af | is the size of the variable set. The weight
w influences the importance of satisfying a given
expectation criterion. Equation (5) is an instance
of generalized expectation criteria (Mann and Mc-
Callum, 2008) that penalizes the divergence of

a specific model expectation from a given target
value. The gradient of the divergence with respect
to Θ is given by,

∂∆(f, p, w,Θ)
∂Θ

= 2w
(
EpΘ(Af )
|Af | − p

)

×
 1
|Af |

∑
a∈Af

∂pΘ(a)
∂Θ

− p
 , (6)

where the gradient ∂pΘ(a)
∂Θ is given by Eq. (4).

Given expectation criteria C = 〈F,P,W〉 with
a set of binary feature functions F = 〈f1, . . . , fl〉,
target expectations P = 〈p1, . . . , pl〉 and weights
W = 〈w1, . . . , wl〉, we maximize the objective

O(θ;D, C) = max
Θ
−

l∑
i=1

∆(fi, pi, wi,Θ)−||Θ||
2

2
,

(7)
where ||Θ||2/2 is the regularization term added to
limit over-fitting. Hence the gradient of the objec-
tive is

∂O(θ;D, C)
∂Θ

= −
l∑

i=1

∂∆(fi, pi, wi,Θ)
∂Θ

−Θ.

We maximize our objective (Equation 7) using the
L-BFGS algorithm. It is sometimes necessary to
restart maximization after resetting the Hessian
calculation in L-BFGS due to non-convexity of
our objective.5 Also, non-convexity may lead to
a local instead of a global maximum. Our experi-
ments show that local maxima do not adversely af-
fect performance since our accuracy is within 4%
of a model trained with gold-standard labels.

3.3 Linear-chain CRF for Extraction
The alignment CRF (AlignCRF) model described
in Section 3.1 is able to predict labels for a text
sequence given a matching DB record. However,
without corresponding records for texts the model
does not perform well as an extractor because it
has learned to rely on the DB record and alignment
features (Sutton et al., 2006). Hence, we train
a separate linear-chain CRF on the alignment-
induced labels for evaluation as an extractor.

The extraction CRF (ExtrCRF) employs a
fully-connected state machine with a unique state

5Our L-BFGS optimization procedure checks whether the
approximate Hessian computed from cached gradient vectors
is positive semi-definite. The optimization is restarted if this
check fails.
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per label y ∈ Y in the database schema. The CRF
induces a conditional probability distribution over
label sequences y = 〈y1, . . . , yn〉 and input text
sequences x = 〈x1, . . . , xn〉 as

pΛ(y|x) =
exp

(∑n
t=1 Λ>~g(yt−1, yt,x, t)

)
ZΛ(x)

.

(8)
In comparison to our earlier zero-order AlignCRF
model, our ExtrCRF is a first-order model. All
the feature functions in this model g(yt−1, yt,x, t)
are a conjunction of the label pair (yt−1, yt) and
input observational features. ZΛ(x) in the equa-
tion above is the partition function. Inference in
the model is performed using the Viterbi algo-
rithm.

Given expectation criteria C and data set
D = 〈(x(1)

1 ,y(1)
1 ,x(1)

2 ), . . . , (x(K)
1 ,y(K)

1 ,x(K)
2 )〉,

we first estimate the parameters Θ of AlignCRF
model as described in Section 3.2. Next, for all
text sequences x(i)

2 , i = 1 . . .K we compute the
marginal probabilities of the labels pΘ(yt|x(i)

2 ),∀t
using Equation (3). To estimate parameters Λ we
minimize the KL-divergence between pΘ(y|x) =∏n

t=1 pΘ(yt|x) and pΛ(y|x) for all sequences x,

KL(pΘ‖pΛ) =
∑
y

pΘ(y|x) log(
pΘ(y|x)
pΛ(y|x)

)

= H(pΘ(y|x))

−
∑

t,yt−1,yt

EpΘ(yt−1,yt)[Λ
>~g(yt−1, yt,x, t)]

+ log(ZΛ(x)). (9)

The gradient of the above equation is given by

∂KL

∂Λ
=

∑
t,yt−1,yt

EpΛ(yt−1,yt|x)[~g(yt−1, yt,x, t)]

−EpΘ(yt−1,yt|x)[~g(yt−1, yt,x, t)]. (10)

Both the expectations can be computed using the
Baum-Welch algorithm. The parameters Λ are es-
timated for a given data set D and learned param-
eters Θ by optimizing the objective

O(Λ;D,Θ) = min
Λ

K∑
i=1

KL(pΘ(y|x(i)
2 )‖pΛ(y|x(i)

2 )

+‖Λ‖2/2.

The objective is minimized using L-BFGS. Since
the objective is convex we are guaranteed to obtain
a global minima.

4 Experiments

In this section, we present details about the appli-
cation of our method to citation extraction task.

Data set. We collected a set of 260 random
records from the DBLP bibliographic database.
The schema of DBLP has the following labels
{author, editor, address, title, booktitle, pages,
year, journal, volume, number, month, url, ee,
cdrom, school, publisher, note, isbn, chapter, se-
ries}. The complexity of our alignment model de-
pends on the number of schema labels and number
of tokens in the DB record. We reduced the num-
ber of schema labels by: (1) mapping the labels
address, booktitle, journal and school to venue, (2)
mapping month and year to date, and (3) dropping
the fields url, ee, cdrom, note, isbn and chapter,
since they never appeared in citation texts. We
also added the other label O for fields in text that
are not represented in the database. Therefore, our
final DB schema is {author, title, date, venue, vol-
ume, number, pages, editor, publisher, series, O}.

For each DBLP record we searched on the web
for matching citation texts using the first author’s
last name and words in the title. Each citation text
found is manually labeled for evaluation purposes.
An example of a matching DBLP record-citation
text pair is shown in Table 3. Our data set6 con-
tains 522 record-text pairs for 260 DBLP entries.

Features and Constraints. We use a variety of
rich, non-independent features in our models to
optimize system performance. The input features
in our models are of the following two types:

(a) Extraction features in the AlignCRF
model (f(at,y1,x2, t)) and ExtrCRF model
(g(yt−1, yt,x, t)) are conjunctions of assigned la-
bels and observational tests on text sequence at
time step t. The following observational tests
are used: (1) regular expressions to detect to-
kens containing all characters (ALLCHAR), all dig-
its (ALLDIGITS) or both digits and characters (AL-
PHADIGITS), (2) number of characters or digits
in the token (NUMCHAR=3, NUMDIGITS=1), (3)
domain-specific patterns for date and pages, (4)
token identity, suffixes, prefixes and character n-
grams, (5) presence of a token in lexicons such as
“last names,” “publisher names,” “cities,” (6) lex-
icon features within a window of 10, (7) regular

6The data set can be found at
http://www.cs.umass.edu/∼kedarb/dbie cite data.sgml.
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DBLP record Citation text
[Chengzhi Li]author [Edward W. Knightly]author [Coordinated Net-

work Scheduling: A Framework for End-to-End Services.]title [69-]pages

[2000]date [ICNP]venue

[C. Li]author [and]O [E. Knightly.]author [Coordinated network schedul-

ing: A framework for end-to-end services.]title [In Proceedings of IEEE

ICNP]venue [’00,]date [Osaka, Japan,]venue [November 2000.]date

Table 3: Example of matching record-text pair found on the web.

expression features within a window of 10, and (8)
token identity features within a window of 3.

(b) Alignment features in the AlignCRF model
(f(at,x1,x2, t)) that operate on the aligned
source token x1[at] and target token x2[t]. Again
the observational tests used for alignment are: (1)
exact token match tests whether the source-target
tokens are string identical, (2) approximate token
match produces a binary feature after binning the
Jaro-Winkler edit distance (Cohen et al., 2003) be-
tween the tokens, (3) substring token match tests
whether one token is a substring of the other,
(4) prefix token match returns true if the pre-
fixes match for lengths {1, 2, 3, 4}, (5) suffix to-
ken match returns true if the prefixes match for
lengths {1, 2, 3, 4}, and (6) exact and approximate
token matches at offsets {−1,−1} and {+1,+1}
around the alignment.

Thus, a conditional model lets us use these ar-
bitrary helpful features that cannot be exploited
tractably in a generative model.

As is common practice (Haghighi and Klein,
2006; Mann and McCallum, 2008), we simulate
user-specified expectation criteria through statis-
tics on manually labeled citation texts. For ex-
traction criteria, we select for each label, the top
N extraction features ordered by mutual informa-
tion (MI) with that label. Also, we aggregate the
alignment features of record tokens whose align-
ment with a target text token results in a correct
label assignment. The top N alignment features
that have maximum MI with this correct label-
ing are selected as alignment criteria. We bin tar-
get expectations of these criteria into 11 bins as
[0.05, 0.1, 0.2, 0.3, . . . , 0.9, 0.95].7 In our exper-
iments, we set N = 10 and use a fixed weight
w = 10.0 for all expectation criteria (no tuning
of parameters was performed). Table 4 shows a
sample of GE criteria used in our experiments.8

7Mann and McCallum (2008) note that GE criteria are ro-
bust to deviation of specified targets from actual expectations.

8A complete list of expectation criteria is available at
http://www.cs.umass.edu/∼kedarb/dbie expts.txt.

Label Feature Prior
alignment PREFIX MATCH4 0.95
author LEXICON LASTNAME 0.6
title WINDOW WORD=Maintenance 0.95
venue WINDOW WORD=Conference 0.95
date YEAR PATTERN 0.95
volume NUMDIGITS=2 0.6
number NUMDIGITS=1 0.6
pages PAGES PATTERN 0.95
editor WORD PREFIX[2]=ed 0.95
publisher WORD=Press 0.95
series WORD=Notes 0.95
O WORD=and 0.7

Table 4: Sample of expectation criteria used by
our model.

Experimental Setup. Our experiments use a 3:1
split of the data for training and testing. We re-
peat the experiment 20 times with different ran-
dom splits of the data. We train the AlignCRF
model using the training data and the automati-
cally created expectation criteria (Section 3.2). We
evaluate our alignment model indirectly in terms
of token labeling accuracy (i.e., percentage of cor-
rectly labeled tokens in test citation data) since we
do not have annotated alignments. The alignment
model is then used to train a ExtrCRF model as
described in Section 3.3. Again, we use token la-
beling accuracy for evaluation. We also measure
F1 performance as the harmonic mean of precision
and recall for each label.

4.1 Alternate approaches

We compare our method against alternate ap-
proaches that either learn alignment or extraction
models from training data.

Alignment approaches. We use GIZA++ (Och
and Ney, 2003) to train generative directed align-
ment models: HMM and IBM Model4 (Brown et
al., 1993) from training record-text pairs. These
models are currently being used in state-of-the-art
machine translation systems. Alignments between
matching DB records and text sequences are then
used for labeling at test time.
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Extraction approaches. The first alternative
(DB-CRF) trains a linear-chain CRF for extrac-
tion on fields of the database entries only. Each
field of the record is treated as a separate labeled
text sequence. Given an unlabeled text sequence,
it is segmented and labeled using the Viterbi algo-
rithm. This method is an enhanced representative
for (Agichtein and Ganti, 2004) in which a lan-
guage model is trained for each column of the DB.

Another alternative technique constructs par-
tially annotated text data using the matching
records and a labeling function. The labeling func-
tion employs high-precision alignment rules to as-
sign labels to text tokens using labeled record to-
kens. We use exact and approximate token match-
ing rules to create a partially labeled sequence,
skipping tokens that cannot be unambiguously la-
beled. In our experiments, we achieve a pre-
cision of 97% and a recall of 70% using these
rules. Given a partially annotated citation text,
we train a linear-chain CRF by maximizing the
marginal likelihood of the observed labels. This
marginal CRF training method (Bellare and Mc-
Callum, 2007) (M-CRF) was the previous state-
of-the-art on this data set. Additionally, if a match-
ing record is available for a test citation text,
we can partially label tokens and use constrained
Viterbi decoding with labeled positions fixed at
their observed values (M+R-CRF approach).

Our third approach is similar to (Mann and Mc-
Callum, 2008). We create extraction expectation
criteria from labeled text sequences in the training
data and uses these criteria to learn a linear-chain
CRF for extraction (MM08). The performance
achieved by this approach is an upper bound on
methods that: (1) use labeled training records to
create extraction criteria, and, (2) only use extrac-
tion criteria without any alignment criteria.

Finally, we train a supervised linear-chain CRF
(GS-CRF) using the labeled text sequences from
the training set. This represents an upper bound on
the performance that can be achieved on our task.
All the extraction methods have access to the same
features as the ExtrCRF model.

4.2 Results

Table 5 shows the results of various alignment
algorithms applied to the record-text data set.
Alignment methods use the matching record to
perform labeling of a test citation text. The Align-
CRF model outperforms the best generative align-

HMM Model4 AlignCRF
accuracy 78.5% 79.8% 92.7%
author 92.7 94.9 99.0
title 93.3 95.1 97.3
date 69.5 66.3 81.9
venue 73.3 73.1 91.2
volume 50.0 49.2 78.5
number 53.5 66.3 68.0
pages 38.2 44.1 88.2
editor 22.8 21.5 78.1
publisher 29.7 31.0 72.6
series 77.4 77.3 74.6
O 49.6 58.8 85.7

Table 5: Token-labeling accuracy and per-label F1
for different alignment methods. These methods
all use matching DB records at test time. Bold-
faced numbers indicate the best performing model.
HMM, Model4: generative alignment models
from GIZA++, AlignCRF: alignment model from
this paper.

ment model Model4 (IBM Model 4) with an er-
ror reduction of 63.8%. Our conjecture is that
Model4 is getting stuck in sub-optimal local max-
ima during EM training since our training set only
contains hundreds of parallel record-text pairs.
This problem may be alleviated by training on a
large parallel corpus. Additionally, our alignment
model is superior to Model4 since it leverages rich
non-independent features of input sequence pairs.

Table 6 shows the performance of various ex-
traction methods. Except M+R-CRF, all extrac-
tion approaches, do not use any record information
at test time. In comparison to the previous state-
of-the-art M-CRF, the ExtrCRF method provides
an error reduction of 35.1%. ExtrCRF also pro-
duces an error reduction of 21.7% compared to
M+R-CRF without the use of matching records.
These reductions are significant at level p = 0.005
using the two-tailed t-test. Training only on DB
records is not helpful for extraction as we do not
learn the transition structure9 and additional con-
text information10 in text. This explains the low
accuracy of the DB-CRF method. Furthermore,
the MM08 approach (Mann and McCallum, 2008)
achieves low accuracy since it does not use any

9In general, the editor field follows the title field while the
author field precedes it.

10The token “Vol.” generally precedes the volume field in
text. Similarly, tokens “pp” and “pages” occur before the
pages field.
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DB-CRF M-CRF M+R-CRF† MM08 ExtrCRF GS-CRF
accuracy 70.4% 88.9% 90.8% 73.5% 92.8% 96.5%
author 72.4 93.7 94.1 85.4 98.5 99.0
title 79.4 96.7 98.4 83.1 94.6 98.1
date 60.1 74.5 76.2 57.8 81.7 93.5
venue 67.3 89.4 91.5 73.2 89.8 95.9
volume 20.3 69.4 74.2 27.7 78.9 90.5
number 30.1 72.8 80.8 47.8 75.1 91.4
pages 41.4 80.9 84.5 49.6 92.1 94.1
editor 7.1 71.1 79.3 75.3 73.3 93.7
publisher 62.1 67.5 77.2 40.2 58.5 82.2
series 65.2 74.9 76.3 65.9 73.8 85.8
O 54.1 7.0 8.3 57.7 91.9 94.5

Table 6: Token-labeling accuracy and per-label F1 for different extraction methods. Except M+R-CRF†,
all other approaches do not use any records at test time. Bold-faced numbers indicate the best performing
model. DB-CRF: CRF trained on DB fields. M+R-CRF, M-CRF: CRFs trained from heuristic align-
ments. ExtrCRF: Extraction model presented in this paper. GS-CRF: CRF trained on human annotated
citation texts.

alignment criteria during training. Hence, align-
ment information is crucial for obtaining high ac-
curacy.

Note that we do not observe a decrease in per-
formance of ExtrCRF over AlignCRF although
we are not using the test records during decoding.
This is because: (1) a first-order model in Extr-
CRF improves performance compared to a zero-
order model in AlignCRF and (2) the use of noisy
DB records in the test set for alignment often in-
creases extraction error.

Both our models have a high F1 value for the
other label O because we provide our algorithm
with constraints for the label O. In contrast, since
there is no realization of the O field in the DB
records, both M-CRF and M+R-CRF methods
fail to label such tokens correctly. Our alignment
model trained using expectation criteria achieves
a performance of 92.7% close to gold-standard
training (GS-CRF) (96.5%). Furthermore, Ex-
trCRF obtains an accuracy of 92.8% similar to
AlignCRF without access to DB records due to
better modeling of transition structure and context.

5 Related Work

Recent research in information extraction (IE) has
focused on reducing the labeling effort needed
to train supervised IE systems. For instance,
Grenager et al. (2005) perform unsupervised
HMM learning for field segmentation, and bias
the model to prefer self-transitions and transi-

tions on boundary tokens. Unfortunately, such
unsupervised IE approaches do not attain perfor-
mance close to state-of-the-art supervised meth-
ods. Semi-supervised approaches that learn a
model with only a few constraints specifying
prior knowledge have generated much interest.
Haghighi and Klein (2006) assign each label in
the model certain prototypical features and train a
Markov random field for sequence tagging from
these labeled features. In contrast, our method
uses GE criteria (Mann and McCallum, 2008) –
allowing soft-labeling of features with target ex-
pectation values – to train conditional models with
complex and non-independent input features. Ad-
ditionally, in comparison to previous methods, an
information extractor trained from our record-text
alignments achieves accuracy of 93% making it
useful for real-world applications. Chang et al.
(2007) use beam search for decoding unlabeled
text with soft and hard constraints, and train a
model with top-K decoded label sequences. How-
ever, this model requires large number of labeled
examples (e.g., 300 annotated citations) to boot-
strap itself. Active learning is another popular ap-
proach for reducing annotation effort. Settles and
Craven (2008) provide a comparison of various ac-
tive learning strategies for sequence labeling tasks.
We have shown, however, that in domains where a
database can provide significant supervision, one
can bootstrap accurate extractors with very little
human effort.
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Another area of research, related to the task
described in our paper, is learning extractors
from database records. These records are also
known as field books and reference sets in liter-
ature (Canisius and Sporleder, 2007; Michelson
and Knoblock, 2008). Both Agichtein and Ganti
(2004) and Canisius and Sporleder (2007) train a
language model for each database column. The
language modeling approach is sensitive to word
re-orderings in text and other variability present
in real-world text (e.g., abbreviation). We allow
for word and field re-orderings through alignments
and model complex transformations through fea-
ture functions. Michelson and Knoblock (2008)
extract information from unstructured texts using a
rule-based approach to align segments of text with
fields in a DB record. Our probabilistic alignment
approach is more robust and uses rich features of
the alignment to obtain high performance.

Recently, Snyder and Barzilay (2007) and Liang
et al. (2009) have explored record-text matching in
domains with unstructured texts. Unlike a semi-
structured text sequence obtained by noisily con-
catenating fields from a single record, an unstruc-
tured sequence may contain fields from multiple
records embedded in large amounts of extraneous
text. Hence, the problems of record-text matching
and word alignment are significantly harder in un-
structured domains. Snyder and Barzilay (2007)
achieve a state-of-the-art performance of 80% F1
on matching multiple NFL database records to
sentences in the news summary of a football game.
Their algorithm is trained using supervised ma-
chine learning and learns alignments at the level of
sentences and DB records. In contrast, this paper
presents a semi-supervised learning algorithm for
learning token-level alignments between records
and texts. Liang et al. (2009) describe a model that
simultaneously performs record-text matching and
word alignment in unstructured domains. Their
model is trained in an unsupervised fashion using
EM. It may be possible to further improve their
model performance by incorporating prior knowl-
edge in the form of expectation criteria.

Traditionally, generative word alignment mod-
els have been trained on massive parallel cor-
pora (Brown et al., 1993). Recently, discrim-
inative alignment methods trained using anno-
tated alignments on small parallel corpora have
achieved superior performance. Taskar et al.
(2005) train a discriminative alignment model

from annotated alignments using a large-margin
method. Labeled alignments are also used by
Blunsom and Cohn (2006) to train a CRF word
alignment model. Our method is trained using a
small number of easily specified expectation cri-
teria thus avoiding tedious and expensive human
labeling of alignments. An alternate method of
learning alignment models is proposed by McCal-
lum et al. (2005) in which the training set consists
of sequence pairs classified as match or mismatch.
Alignments are learned to identify the class of a
given sequence pair. However, this method relies
on carefully selected negative examples to pro-
duce high-accuracy alignments. Our method pro-
duces good alignments as we directly encode prior
knowledge about alignments.

6 Conclusion and Future Work

Information extraction is an important first step in
data mining applications. Earlier approaches for
learning reliable extractors have relied on manu-
ally annotated text corpora. This paper presents a
novel approach for training extractors using align-
ments between texts and existing database records.
Our approach achieves performance close to su-
pervised training with very little supervision.

In the future, we plan to surpass supervised ac-
curacy by applying our method to millions of par-
allel record-text pairs collected automatically us-
ing matching. We also want to explore the addi-
tion of Markov dependencies into our alignment
model and other constraints such as monotonicity
and one-to-one correspondence.
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Abstract

Many named entities contain other named
entities inside them. Despite this fact, the
field of named entity recognition has al-
most entirely ignored nested named en-
tity recognition, but due to technological,
rather than ideological reasons. In this pa-
per, we present a new technique for rec-
ognizing nested named entities, by using
a discriminative constituency parser. To
train the model, we transform each sen-
tence into a tree, with constituents for each
named entity (and no other syntactic struc-
ture). We present results on both news-
paper and biomedical corpora which con-
tain nested named entities. In three out
of four sets of experiments, our model
outperforms a standard semi-CRF on the
more traditional top-level entities. At the
same time, we improve the overall F-score
by up to 30% over the flat model, which is
unable to recover any nested entities.

1 Introduction

Named entity recognition is the task of finding en-
tities, such as people and organizations, in text.
Frequently, entities are nested within each other,
such asBank of China and University of Wash-
ington, both organizations with nestedlocations.
Nested entities are also common in biomedical
data, where different biological entities of inter-
est are often composed of one another. In the
GENIA corpus (Ohta et al., 2002), which is la-
beled with entity types such asprotein andDNA,
roughly 17% of entities are embedded within an-
other entity. In the AnCora corpus of Spanish and
Catalan newspaper text (Martı́ et al., 2007), nearly
half of the entities are embedded. However, work
on named entity recognition (NER) has almost en-
tirely ignored nested entities and instead chosen to
focus on the outermost entities.

We believe this has largely been for practical,
not ideological, reasons. Most corpus designers
have chosen to skirt the issue entirely, and have
annotated only the topmost entities. The widely
used CoNLL (Sang and Meulder, 2003), MUC-6,
and MUC-7 NER corpora, composed of American
and British newswire, are all flatly annotated. The
GENIA corpus contains nested entities, but the
JNLPBA 2004 shared task (Collier et al., 2004),
which utilized the corpus, removed all embedded
entities for the evaluation. To our knowledge, the
only shared task which has included nested enti-
ties is the SemEval 2007 Task 9 (Márquez et al.,
2007b), which used a subset of the AnCora corpus.
However, in that task all entities corresponded to
particular parts of speech or noun phrases in the
provided syntactic structure, and no participant di-
rectly addressed the nested nature of the data.

Another reason for the lack of focus on nested
NER is technological. The NER task arose in the
context of the MUC workshops, as small chunks
which could be identified by finite state models
or gazetteers. This then led to the widespread
use of sequence models, first hidden Markov mod-
els, then conditional Markov models (Borthwick,
1999), and, more recently, linear chain conditional
random fields (CRFs) (Lafferty et al., 2001). All
of these models suffer from an inability to model
nested entities.

In this paper we present a novel solution to the
problem of nested named entity recognition. Our
model explicitly represents the nested structure,
allowing entities to be influenced not just by the
labels of the words surrounding them, as in a CRF,
but also by the entities contained in them, and in
which they are contained. We represent each sen-
tence as a parse tree, with the words as leaves, and
with phrases corresponding to each entity (and a
node which joins the entire sentence). Our trees
look just like syntactic constituency trees, such as
those in the Penn TreeBank (Marcus et al., 1993),
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Figure 1: An example of our tree representation over nested named entities. The sentence is from the
GENIA corpus.PROT is short forPROTEIN.

but they tend to be much flatter. This model allows
us to include parts of speech in the tree, and there-
fore to jointly model the named entities and the
part of speech tags. Once we have converted our
sentences into parse trees, we train a discrimina-
tive constituency parser similar to that of (Finkel
et al., 2008). We found that on top-level enti-
ties, our model does just as well as more conven-
tional methods. When evaluating onall entities
our model does well, with F-scores ranging from
slightly worse than performance on top-level only,
to substantially better than top-level only.

2 Related Work

There is a large body of work on named en-
tity recognition, but very little of it addresses
nested entities. Early work on the GENIA cor-
pus (Kazama et al., 2002; Tsuruoka and Tsujii,
2003) only worked on the innermost entities. This
was soon followed by several attempts at nested
NER in GENIA (Shen et al., 2003; Zhang et
al., 2004; Zhou et al., 2004) which built hidden
Markov models over the innermost named enti-
ties, and then used a rule-based post-processing
step to identify the named entities containing the
innermost entities. Zhou (2006) used a more elab-
orate model for the innermost entities, but then
used the same rule-based post-processing method
on the output to identify non-innermost entities.
Gu (2006) focused only on proteins and DNA, by
building separate binary SVM classifiers for inner-
most and outermost entities for those two classes.

Several techniques for nested NER in GENIA
where presented in (Alex et al., 2007). Their first
approach was to layer CRFs, using the output of
one as the input to the next. For inside-out lay-
ering, the first CRF would identify the innermost
entities, the next layer would be over the words
and the innermost entities to identify second-level

entities, etc. For outside-in layering the first CRF
would identify outermost entities, and then succes-
sive CRFs would identify increasingly nested en-
tities. They also tried a cascaded approach, with
separate CRFs for each entity type. The CRFs
would be applied in a specified order, and then
each CRF could utilize features derived from the
output of previously applied CRFs. This technique
has the problem that it cannot identify nested en-
tities of the same type; this happens frequently in
the data, such as the nestedproteins at the begin-
ning of the sentence in Figure 1. They also tried a
joint labeling approach, where they trained a sin-
gle CRF, but the label set was significantly ex-
panded so that a single label would include all of
the entities for a particular word. Their best results
where from the cascaded approach.

Byrne (2007) took a different approach, on his-
torical archive text. She modified the data by con-
catenating adjacent tokens (up to length six) into
potential entities, and then labeled each concate-
nated string using the C&C tagger (Curran and
Clark, 1999). When labeling a string, the “previ-
ous” string was the one-token-shorter string con-
taining all but the last token of the current string.
For single tokens the “previous” token was the
longest concatenation starting one token earlier.

SemEval 2007 Task 9 (Márquez et al., 2007b)
included a nested NER component, as well as
noun sense disambiguation and semantic role la-
beling. However, the parts of speech and syn-
tactic tree were given as part of the input, and
named entities were specified as corresponding to
noun phrases in the tree, or particular parts of
speech. This restriction substantially changes the
task. Two groups participated in the shared task,
but only one (Márquez et al., 2007a) worked on
the named entity component. They used a multi-
label AdaBoost.MH algorithm, over phrases in the
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Figure 2: An example of a subtree after it has been annotated and binarized. Features are computed over
this representation. An @ indicates a chart parser active state (incomplete constituent).

parse tree which, based on their labels, could po-
tentially be entities.

Finally, McDonald et al. (2005) presented a
technique for labeling potentially overlapping seg-
ments of text, based on a large margin, multilabel
classification algorithm. Their method could be
used for nested named entity recognition, but the
experiments they performed were on joint (flat)
NER and noun phrase chunking.

3 Nested Named Entity Recognition as
Parsing

Our model is quite simple – we represent each sen-
tence as a constituency tree, with each named en-
tity corresponding to a phrase in the tree, along
with a root node which connects the entire sen-
tence. No additional syntactic structure is rep-
resented. We also model the parts of speech as
preterminals, and the words themselves as the
leaves. See Figure 1 for an example of a named
entity tree. Each node is then annotated with both
its parent and grandparent labels, which allows
the model to learn how entities nest. We bina-
rize our trees in a right-branching manner, and
then build features over the labels, unary rules,
and binary rules. We also use first-order horizon-
tal Markovization, which allows us to retain some
information about the previous node in the bina-
rized rule. See Figure 2 for an example of an an-
notated and binarized subtree. Once each sentence
has been converted into a tree, we train a discrimi-
native constituency parser, based on (Finkel et al.,
2008).

It is worth noting that if you use our model on
data which does not have any nested entities, then
it is precisely equivalent to a semi-CRF (Sarawagi

and Cohen, 2004; Andrew, 2006), but with no
length restriction on entities. Like a semi-CRF, we
are able to define features over entire entities of
arbitrary length, instead of just over a small, fixed
window of words like a regular linear chain CRF.

We model part of speech tags jointly with the
named entities, though the model also works with-
out them. We determine the possible part of
speech tags based on distributional similarity clus-
ters. We used Alexander Clarke’s software,1 based
on (Clark, 2003), to cluster the words, and then
allow each word to be labeled with any part of
speech tag seen in the data with any other word
in the same cluster. Because the parts of speech
are annotated with the parent (and grandparent)
labels, they determine what, if any, entity types
a word can be labeled with. Many words, such as
verbs, cannot be labeled with any entities. We also
limit our grammar based on the rules observed in
the data. The rules whose children include part of
speech tags restrict the possible pairs of adjacent
tags. Interestingly, the restrictions imposed by this
joint modeling (both observed word/tag pairs and
observed rules) actually result in much faster infer-
ence (and therefore faster train and test times) than
a model over named entities alone. This is differ-
ent from most work on joint modeling of multiple
levels of annotation, which usually results in sig-
nificantly slower inference.

3.1 Discriminative Constituency Parsing

We train our nested NER model using the same
technique as the discriminatively trained, condi-
tional random field-based, CRF-CFG parser of
(Finkel et al., 2008). The parser is similar to a

1http://www.cs.rhul.ac.uk/home/alexc/RHUL/Downloads.html

143



Local Features Pairwise Features

labeli distsimi + distsimi−1 + labeli labeli−1 + labeli
wordi + labeli shapei + shapei+1 + labeli wordi + labeli−1 + labeli
wordi−1 + labeli shapei−1 + shapei + labeli wordi−1 + labeli−1 + labeli
wordi+1 + labeli wordi−1 + shapei + labeli wordi+1 + labeli−1 + labeli
distsimi + labeli shapei + wordi+1 + labeli distsimi + labeli−1 + labeli
distsimi−1 + labeli words in a 5 word window distsimi−1 + labeli−1 + labeli
distsimi+1 + labeli prefixes up to length 6 distsimi+1 + labeli−1 + labeli
shapei + labeli suffixes up to length 6 distsimi−1 + distsimi + labeli−1 + labeli
shapei−1 + labeli shapei + labeli−1 + labeli
shapei+1 + labeli shapei−1 + labeli−1 + labeli

shapei+1 + labeli−1 + labeli
shapei−1 + shapei + labeli−1 + labeli
shapei−1 + shapei+1 + labeli−1 + labeli

Table 1: The local and pairwise NER features used in all of ourexperiments. Consult the text for a full
description of all features, which includes feature classes not in this table.

chart-based PCFG parser, except that instead of
putting probabilities over rules, it putsclique po-
tentials over local subtrees. These unnormalized
potentials know what span (and split) the rule is
over, and arbitrary features can be defined over the
local subtree, the span/split and the words of the
sentence. The inside-outside algorithm is run over
the clique potentials to produce the partial deriva-
tives and normalizing constant which are neces-
sary for optimizing the log likelihood. Optimiza-
tion is done by stochastic gradient descent.

The only real drawback to our model is run-
time. The algorithm isO(n3) in sentence length.
Training on all of GENIA took approximately 23
hours for the nested model and 16 hours for the
semi-CRF. A semi-CRFwith an entity length re-
striction, or a regular CRF, would both have been
faster. At runtime, the nested model for GENIA
tagged about 38 words per second, while the semi-
CRF tagged 45 words per second. For compar-
ison, a first-order linear chain CRF trained with
similar features on the same data can tag about
4,000 words per second.

4 Features

When designing features, we first made ones sim-
ilar to the features typically designed for a first-
order CRF, and then added features which are not
possible in a CRF, but are possible in our enhanced
representation. This includes features over entire
entities, features which directly model nested en-
tities, and joint features over entities and parts of
speech. When features are computed over each
label, unary rule, and binary rule, the feature func-
tion is aware of the rule span and split.

Each word is labeled with its distributional sim-

ilarity cluster (distsim), and a string indicating
orthographic information (shape) (Finkel et al.,
2005). Subscripts represent word position in the
sentence. In addition to those below, we include
features for each fully annotated label and rule.

Local named entity features. Local named en-
tity features are over the label for a single word.
They are equivalent to the local features in a linear
chain CRF. However, unlike in a linear chain CRF,
if a word belongs to multiple entities then the local
features are computed for each entity. Local fea-
tures are also computed for words not contained in
any entity. Local features are in Table 1.

Pairwise named entity features. Pairwise fea-
tures are over the labels for adjacent words, and
are equivalent to the edge features in a linear chain
CRF. They can occur when pairs of words have
the same label, or over entity boundaries where
the words have different labels. Like with the lo-
cal features, if a pair of words are contained in, or
straddle the border of, multiple entities, then the
features are repeated for each. The pairwise fea-
tures we use are shown in Table 1.

Embedded named entity features. Embedded
named entity features occur in binary rules where
one entity is the child of another entity. For our
embedded features, we replicated the pairwise fea-
tures, except that the embedded named entity was
treated as one of the words, where the “word”
(and other annotations) were indicative of the type
of entity, and not the actual string that is the en-
tity. For instance, in the subtree in Figure 2, we
would computewordi+labeli−1+labeli as PROT-
DNA-DNA for i = 18 (the index of the wordGM-
CSF). The normal pairwise feature at the same po-
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GENIA – Testing on All Entities

Nested NER Model Semi-CRF Model
# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Protein 3034 79.04 69.22 73.80 78.63 64.04 70.59
DNA 1222 69.61 61.29 65.19 71.62 57.61 63.85
RNA 103 86.08 66.02 74.73 79.27 63.11 70.27
Cell Line 444 73.82 56.53 64.03 76.59 59.68 67.09
Cell Type 599 68.77 65.44 67.07 72.12 59.60 65.27
Overall 5402 75.39 65.90 70.33 76.17 61.72 68.19

Table 2: Named entity results on GENIA, evaluating on all entities.

GENIA – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model
# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Protein 2592 78.24 72.42 75.22 76.16 72.61 74.34
DNA 1129 70.40 64.66 67.41 71.21 62.00 66.29
RNA 103 86.08 66.02 74.73 79.27 63.11 70.27
Cell Line 420 75.54 58.81 66.13 76.59 63.10 69.19
Cell Type 537 69.36 70.39 69.87 71.11 65.55 68.22
Overall 4781 75.22 69.02 71.99 74.57 68.27 71.28

Table 3: Named entity results on GENIA, evaluating on only top-level entities.

sition would beGM-CSF-DNA-DNA.

Whole entity features. We had four whole en-
tity features: the entire phrase; the preceding and
following word; the preceding and following dis-
tributional similarity tags; and the preceding dis-
tributional similarity tag with the following word.

Local part of speech features. We used the
same POS features as (Finkel et al., 2008).

Joint named entity and part of speech features.
For the joint features we replicated the POS fea-
tures, but included the parent of the POS, which
either is the innermost entity type, or would indi-
cate that the word is not in any entities.

5 Experiments

We performed two sets of experiments, the first set
over biomedical data, and the second over Spanish
and Catalan newspaper text. We designed our ex-
periments to show that our model works just as
well on outermost entities, the typical NER task,
and also works well on nested entities.

5.1 GENIA Experiments

5.1.1 Data

We performed experiments on the GENIA v.3.02
corpus (Ohta et al., 2002). This corpus contains
2000 Medline abstracts (≈500k words), annotated

with 36 different kinds of biological entities, and
with parts of speech. Previous NER work using
this corpus has employed 10-fold cross-validation
for evaluation. We wanted to explore different
model variations (e.g., level of Markovization, and
different sets of distributional similarity cluster-
ings) and feature sets, so we needed to set aside
a development set. We split the data by putting
the first 90% of sentences into the training set, and
the remaining 10% into the test set. This is the
exact same split used to evaluate part of speech
tagging in (Tsuruoka et al., 2005). For develop-
ment we used the first half of the data to train, and
the next quarter of the data to test.2 We made the
same modifications to the label set as the organiz-
ers of the JNLPBA 2004 shared task (Collier et
al., 2004). They collapsed allDNA subtypes into
DNA; all RNA subtypes intoRNA; all protein sub-
types intoprotein; keptcell line andcell type; and
removed all other entities. However, they also re-
moved all embedded entities, while we kept them.

As discussed in Section 3, we annotated each
word with a distributional similarity cluster. We
used 200 clusters, trained using 200 million words
from PubMed abstracts. During development, we
found that fewer clusters resulted in slower infer-

2This split may seem strange: we had originally intended
a 50/25/25 train/dev/test split, until we found the previously
used 90/10 split.
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JNLPBA 2004 – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model Zhou & Su (2004)
# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1 Precision Recall F1
Protein 4944 66.98 74.58 70.57 68.15 62.68 65.30 69.01 79.2473.77
DNA 1030 62.96 66.50 64.68 65.45 52.23 58.10 66.84 73.11 69.83
RNA 115 63.06 60.87 61.95 64.55 61.74 63.11 64.66 63.56 64.10
Cell line 487 49.92 60.78 54.81 49.61 52.16 50.85 53.85 65.8059.23
Cell type 1858 75.12 65.34 69.89 73.29 55.81 63.37 78.06 72.41 75.13
Overall 8434 66.78 70.57 68.62 67.50 59.27 63.12 69.42 75.99 72.55

Table 4: Named entity results on the JNLPBA 2004 shared task data. Zhou and Su (2004) was the best
system at the shared task, and is still state-of-the-art on the dataset.
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Figure 3: An example sentence from the AnCora corpus, along with its English translation.

ence with no improvement in performance.

5.1.2 Experimental Setup

We ran several sets of experiments, varying be-
tween all entities, or just top-level entities, for
training and testing. As discussed in Section 3, if
we train on just top-level entities then the model is
equivalent to a semi-CRF. Semi-CRFs are state-
of-the-art and provide a good baseline for per-
formance on just the top-level entities. Semi-
CRFs are strictly better than regular, linear chain
CRFs, because they can use all of the features and
strucutre of a linear chain CRF, but also utilize
whole-entity features (Andrew, 2006). We also
evaluated the semi-CRF model on all entities. This
may seem like an unfair evaluation, because the
semi-CRF has no way of recovering the nested en-
tities, but we wanted to illustrate just how much
information is lost when using a flat representa-
tion.

5.1.3 Results

Our named entity results when evaluating on all
entities are shown in Table 2 and when evaluat-
ing on only top-level entities are shown in Table 3.
Our nested model outperforms the flat semi-CRF

on both top-level entities and all entities.
While not our main focus, we also evaluated

our models on parts of speech. The model trained
on just top level entities achieved POS accuracy
of 97.37%, and the one trained on all entities
achieved 97.25% accuracy. The GENIA tagger
(Tsuruoka et al., 2005) achieves 98.49% accuracy
using the same train/test split.

5.1.4 Additional JNLPBA 2004 Experiments

Because we could not compare our results on the
NER portion of the GENIA corpus with any other
work, we also evaluated on the JNLPBA corpus.
This corpus was used in a shared task for the
BioNLP workshop at Coling in 2004 (Collier et
al., 2004). They used the entire GENIA corpus for
training, and modified the label set as discussed in
Section 5.1.1. They also removed all embedded
entities, and kept only the top-level ones. They
then annotated new data for the test set. This
dataset has no nested entities, but because the
training data is GENIA we can still train our model
on the data annotated with nested entities, and then
evaluate on their test data by ignoring all embed-
ded entities found by our named entity recognizer.
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AnCora Spanish – Testing on All Entities

Nested NER Model Semi-CRF Model
# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Person 1778 65.29 78.91 71.45 75.10 32.73 45.59
Organization 2137 86.43 56.90 68.62 47.02 26.20 33.65
Location 1050 78.66 46.00 58.05 84.94 13.43 23.19
Date 568 87.13 83.45 85.25 79.43 29.23 42.73
Number 991 81.51 80.52 81.02 66.27 28.15 39.52
Other 512 17.90 64.65 28.04 10.77 16.60 13.07
Overall 7036 62.38 66.87 64.55 51.06 25.77 34.25

Table 5: Named entity results on the Spanish portion of AnCora, evaluating on all entities.

AnCora Spanish – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model
# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Person 1050 57.42 66.67 61.70 71.23 52.57 60.49
Organization 1060 77.38 40.66 53.31 44.33 49.81 46.91
Location 279 72.49 36.04 48.15 79.52 24.40 37.34
Date 290 72.29 57.59 64.11 71.77 51.72 60.12
Number 519 57.17 49.90 53.29 54.87 44.51 49.15
Other 541 11.30 38.35 17.46 9.51 26.88 14.04
Overall 3739 50.57 49.72 50.14 46.07 44.61 45.76

Table 6: Named entity results on the Spanish portion of AnCora, evaluating on only top-level entities.

This experiment allows us to show that our named
entity recognizer works well on top-level entities,
by comparing it with prior work. Our model also
produces part of speech tags, but the test data is
not annotated with POS tags, so we cannot show
POS tagging results on this dataset.

One difficulty we had with the JNLPBA exper-
iments was with tokenization. The version of GE-
NIA distributed for the shared task is tokenized
differently from the original GENIA corpus, but
we needed to train on the original corpus as it is
the only version with nested entities. We tried our
best to retokenize the original corpus to match the
distributed data, but did not have complete suc-
cess. It is worth noting that the data is actually to-
kenized in a manner which allows a small amount
of “cheating.” Normally, hyphenated words, such
asLPS-induced, are tokenized as one word. How-
ever, if the portion of the word before the hyphen
is in an entity, and the part after is not, such as
BCR-induced, then the word is split into two to-
kens:BCR and-induced. Therefore, when a word
starts with a hyphen it is a strong indicator that the
prior word and it span the right boundary of an en-
tity. Because the train and test data for the shared
task do not contain nested entities, fewer words
are split in this manner than in the original data.
We did not intentionally exploit this fact in our

feature design, but it is probable that some of our
orthographic features “learned” this fact anyway.
This probably harmed our results overall, because
some hyphenated words, which straddled bound-
aries in nested entities and would have been split
in the original corpus (and were split in our train-
ing data), were not split in the test data, prohibiting
our model from properly identifying them.

For this experiment, we retrained our model on
the entire, retokenized, GENIA corpus. We also
retrained the distributional similarity model on the
retokenized data. Once again, we trained one
model on the nested data, and one on just the top-
level entities, so that we can compare performance
of both models on the top-level entities. Our full
results are shown in Table 4, along with the cur-
rent state-of-the-art (Zhou and Su, 2004). Besides
the tokenization issues harming our performance,
Zhou and Su (2004) also employed clever post-
processing to improve their results.

5.2 AnCora Experiments

5.2.1 Data

We performed experiments on the NER portion
of AnCora (Martı́ et al., 2007). This corpus has
Spanish and Catalan portions, and we evaluated
on both. The data is also annotated with parts
of speech, parse trees, semantic roles and word
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AnCora Catalan – Testing on All Entities

Nested NER Model Semi-CRF Model
# Test (train all entities) (train top-level entities only)

Entities Precision Recall F1 Precision Recall F1
Person 1303 89.01 50.35 64.31 70.08 46.20 55.69
Organization 1781 68.95 83.77 75.64 65.32 41.77 50.96
Location 1282 76.78 72.46 74.56 75.49 36.04 48.79
Date 606 84.27 81.35 82.79 70.87 38.94 50.27
Number 1128 86.55 83.87 85.19 75.74 38.74 51.26
Other 596 85.48 8.89 16.11 64.91 6.21 11.33
Overall 6696 78.09 68.23 72.83 70.39 37.60 49.02

Table 7: Named entity results on the Catalan portion of AnCora, evaluating on all entities.

AnCora Catalan – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model
# Test (train all entities) (train top-level entities only)

Entities Precision Recall F1 Precision Recall F1
Person 801 67.44 47.32 55.61 62.63 67.17 64.82
Organization 899 52.21 74.86 61.52 57.68 73.08 64.47
Location 659 54.86 67.68 60.60 62.42 57.97 60.11
Date 296 62.54 66.55 64.48 59.46 66.89 62.96
Number 528 62.35 70.27 66.07 63.08 68.94 65.88
Other 342 49.12 8.19 14.04 45.61 7.60 13.03
Overall 3525 57.67 59.40 58.52 60.53 61.42 60.97

Table 8: Named entity results on the Catalan portion of AnCora, evaluating on only top-level entities.

senses. The corpus annotators made a distinction
betweenstrong and weak entities. They define
strong named entities as “a word, a number, a date,
or a string of words that refer to a single individual
entity in the real world.” If a strong NE contains
multiple words, it is collapsed into a single token.
Weak named entities, “consist of a noun phrase,
being it simple or complex” and must contain a
strong entity. Figure 3 shows an example from the
corpus with both strong and weak entities. The
entity types present areperson, location, organi-
zation, date, number, andother. Weak entities are
very prevalent; 47.1% of entities are embedded.

For Spanish, files starting with 7–9 were the test
set, 5–6 were the development test set, and the re-
mainder were the development train set. For Cata-
lan, files starting with 8–9 were the test set, 6–7
were the development test set, and the remainder
were the development train set. For both, the de-
velopment train and test sets were combined to
form the final train set. We removed sentences
longer than 80 words. Spanish has 15,591 train-
ing sentences, and Catalan has 14,906.

5.2.2 Experimental Setup

The parts of speech provided in the data include
detailed morphological information, using a sim-
ilar annotation scheme to the Prague TreeBank

(Hana and Hanová, 2002). There are around 250
possible tags, and experiments on the development
data with the full tagset where unsuccessful. We
removed all but the first two characters of each
POS tag, resulting in a set of 57 tags which more
closely resembles that of the Penn TreeBank (Mar-
cus et al., 1993). All reported results use our mod-
ified version of the POS tag set.

We took only the words as input, none of the
extra annotations. For both languages we trained a
200 cluster distributional similarity model over the
words in the corpus. We performed the same set
of experiments on AnCora as we did on GENIA.

5.2.3 Results and Discussion

The full results for Spanish when testing on all en-
tities are shown in Table 5, and for only top-level
entities are shown in Table 6. For part of speech
tagging, the nested model achieved 95.93% accu-
racy, compared with 95.60% for the flatly trained
model. The full results for Catalan when testing on
all entities are shown in Table 7, and for only top-
level entities are shown in Table 8. POS tagging
results were even closer on Catalan: 96.62% for
the nested model, and 96.59% for the flat model.

It is not surprising that the models trained on
all entities do significantly better than the flatly
trained models when testing on all entities. The
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story is a little less clear when testing on just top-
level entities. In this case, the nested model does
4.38% better than the flat model on the Spanish
data, but 2.45% worse on the Catalan data. The
overall picture is the same as for GENIA: model-
ing the nested entities does not, on average, reduce
performance on the top-level entities, but a nested
entity model does substantially better when evalu-
ated on all entities.

6 Conclusions

We presented a discriminative parsing-based
method for nested named entity recognition,
which does well on both top-level and nested enti-
ties. The only real drawback to our method is that
it is slower than common flat techniques. While
most NER corpus designers have defenestrated
embedded entities, we hope that in the future this
will not continue, as large amounts of information
are lost due to this design decision.
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Abstract

Information Extraction (IE) systems that

extract role fillers for events typically look

at the local context surrounding a phrase

when deciding whether to extract it. Of-

ten, however, role fillers occur in clauses

that are not directly linked to an event

word. We present a new model for event

extraction that jointly considers both the

local context around a phrase along with

the wider sentential context in a proba-

bilistic framework. Our approach uses a

sentential event recognizer and a plausible

role-filler recognizer that is conditioned on

event sentences. We evaluate our system

on two IE data sets and show that our

model performs well in comparison to ex-

isting IE systems that rely on local phrasal

context.

1 Introduction

Information Extraction (IE) systems typically use

extraction patterns (e.g., Soderland et al. (1995),

Riloff (1996), Yangarber et al. (2000), Califf

and Mooney (2003)) or classifiers (e.g., Freitag

(1998), Freitag and McCallum (2000), Chieu et al.

(2003), Bunescu and Mooney (2004)) to extract

role fillers for events. Most IE systems consider

only the immediate context surrounding a phrase

when deciding whether to extract it. For tasks such

as named entity recognition, immediate context is

usually sufficient. But for more complex tasks,

such as event extraction, a larger field of view is

often needed to understand how facts tie together.

Most IE systems are designed to identify role

fillers that appear as arguments to event verbs

or nouns, either explicitly via syntactic relations

or implicitly via proximity (e.g., John murdered

Tom or the murder of Tom by John). But many

facts are presented in clauses that do not contain

event words, requiring discourse relations or deep

structural analysis to associate the facts with event

roles. For example, consider the sentences below:

Seven people have died

. . . and 30 were injured in India after terror-

ists launched an attack on the Taj Hotel.

. . . in Mexico City and its surrounding sub-

urbs in a Swine Flu outbreak.

. . . after a tractor-trailer collided with a bus

in Arkansas.

Two bridges were destroyed

. . . in Baghdad last night in a resurgence of

bomb attacks in the capital city.

. . . and $50 million in damage was caused by

a hurricane that hit Miami on Friday.

. . . to make way for modern, safer bridges

that will be constructed early next year.

These examples illustrate a common phenomenon

in text where information is not explicitly stated

as filling an event role, but readers have no trou-

ble making this inference. The role fillers above

(seven people, two bridges) occur as arguments to

verbs that reveal state information (death, destruc-

tion) but are not event-specific (i.e., death and de-

struction can result from a wide variety of incident

types). IE systems often fail to extract these role

fillers because these systems do not recognize the

immediate context as being relevant to the specific

type of event that they are looking for.

We propose a new model for information ex-

traction that incorporates both phrasal and senten-

tial evidence in a unified framework. Our uni-

fied probabilistic model, called GLACIER, consists

of two components: a model for sentential event

recognition and a model for recognizing plausi-

ble role fillers. The Sentential Event Recognizer

offers a probabilistic assessment of whether a sen-

tence is discussing a domain-relevant event. The
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Plausible Role-Filler Recognizer is then condi-

tioned to identify phrases as role fillers based upon

the assumption that the surrounding context is dis-

cussing a relevant event. This unified probabilistic

model allows the two components to jointly make

decisions based upon both the local evidence sur-

rounding each phrase and the “peripheral vision”

afforded by the sentential event recognizer.

This paper is organized as follows. Section

2 positions our research with respect to related

work. Section 3 presents our unified probabilistic

model for information extraction. Section 4 shows

experimental results on two IE data sets, and Sec-

tion 5 discusses directions for future work.

2 Related Work

Many event extraction systems rely heavily on the

local context around words or phrases that are can-

didates for extraction. Some systems use extrac-

tion patterns (Soderland et al., 1995; Riloff, 1996;

Yangarber et al., 2000; Califf and Mooney, 2003),

which represent the immediate contexts surround-

ing candidate extractions. Similarly, classifier-

based approaches (Freitag, 1998; Freitag and Mc-

Callum, 2000; Chieu et al., 2003; Bunescu and

Mooney, 2004) rely on features in the immedi-

ate context of the candidate extractions. Our work

seeks to incorporate additional context into IE.

Indeed, several recent approaches have shown

the need for global information to improve IE per-

formance. Maslennikov and Chua (2007) use dis-

course trees and local syntactic dependencies in

a pattern-based framework to incorporate wider

context. Finkel et al. (2005) and Ji and Grish-

man (2008) incorporate global information by en-

forcing event role or label consistency over a doc-

ument or across related documents. In contrast,

our approach simply creates a richer IE model for

individual extractions by expanding the “field of

view” to include the surrounding sentence.

The two components of the unified model pre-

sented in this paper are somewhat similar to our

previous work (Patwardhan and Riloff, 2007),

where we employ a relevant region identification

phase prior to pattern-based extraction. In that

work we adopted a pipeline paradigm, where a

classifier identifies relevant sentences and only

those sentences are fed to the extraction module.

Our unified probabilistic model described in this

paper does not draw a hard line between rele-

vant and irrelevant sentences, but gently balances

the influence of both local and sentential contexts

through probability estimates.

3 A Unified IE Model that Combines

Phrasal and Sentential Evidence

We introduce a probabilistic model for event-

based IE that balances the influence of two kinds

of contextual information. Our goal is to create

a model that has the flexibility to make extraction

decisions based upon strong evidence from the lo-

cal context, or strong evidence from the wider con-

text coupled with a more general local context. For

example, some phrases explicitly refer to an event,

so they almost certainly warrant extraction regard-

less of the wider context (e.g., terrorists launched

an attack).1 In contrast, some phrases are poten-

tially relevant but too general to warrant extrac-

tion on their own (e.g., people died could be the

result of different incident types). If we are confi-

dent that the sentence discusses an event of inter-

est, however, then such phrases could be reliably

extracted.

Our unified model for IE (GLACIER) combines

two types of contextual information by incorpo-

rating it into a probabilistic framework. To deter-

mine whether a noun phrase instance NPi should

be extracted as a filler for an event role, GLACIER

computes the joint probability that NPi :

(1) appears in an event sentence, and

(2) is a legitimate filler for the event role.

Thus, GLACIER is designed for noun phrase ex-

traction and, mathematically, its decisions are

based on the following joint probability:

P (EvSent(SNPi ),PlausFillr(NPi))

where SNPi is the sentence containing noun phrase

NPi . This probability estimate is based on con-

textual features F appearing within SNPi and in

the local context of NPi . Including F in the joint

probability, and applying the product rule, we can

split our probability into two components:

P (EvSent(SNPi ),PlausFillr(NPi)|F ) =
P (EvSent(SNPi )|F )

∗ P (PlausFillr(NPi)|EvSent(SNPi ), F )

These two probability components, in the expres-

sion above, form the basis of the two modules in

1There are always exceptions of course, such as hypothet-
ical statements, but they are relatively uncommon.
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our IE system – the sentential event recognizer and

the plausible role-filler recognizer. In arriving at

a decision to extract a noun phrase, our unified

model for IE uses these modules to estimate the

two probabilities based on the set of contextual

features F . Note that having these two probability

components allows the system to gently balance

the influence from the sentential and phrasal con-

texts, without having to make hard decisions about

sentence relevance or phrases in isolation.

In this system, the sentential event recog-

nizer is embodied in the probability compo-

nent P (EvSent(SNPi )|F ). This is essentially

the probability of a sentence describing a rel-

evant event. Similarly, the plausible role-

filler recognizer is embodied by the probabil-

ity P (PlausFillr(NPi)|EvSent(SNPi ), F ). This

component, therefore, estimates the probability

that a noun phrase fills a specific event role, as-

suming that the noun phrase occurs in an event

sentence. Many different techniques could be used

to produce these probability estimates. In the rest

of this section, we present the specific models that

we used for each of these components.

3.1 Plausible Role-Filler Recognizer

The plausible role-filler recognizer is similar to

most traditional IE systems, where the goal is to

determine whether a noun phrase can be a legiti-

mate filler for a specific type of event role based on

its local context. Pattern-based approaches match

the context surrounding a phrase using lexico-

syntactic patterns or rules. However, most of these

approaches do not produce probability estimates

for the extractions. Classifier-based approaches

use machine learning classifiers to make extrac-

tion decisions, based on features associated with

the local context. Any classifier that can generate

probability estimates, or similar confidence val-

ues, could be plugged into our model.

In our work, we use a Naı̈ve Bayes classifier as

our plausible role-filler recognizer. The probabili-

ties are computed using a generative Naı̈ve Bayes

framework, based on local contextual features sur-

rounding a noun phrase. These clues include lexi-

cal matches, semantic features, and syntactic rela-

tions, and will be described in more detail in Sec-

tion 3.3. The Naı̈ve Bayes (NB) plausible role-

filler recognizer is defined as follows:

P (PlausFillr(NPi)|EvSent(SNPi ), F ) =

1
Z

P (PlausFillr(NPi )|EvSent(SNPi )) ∗∏
fi∈F

P (fi|PlausFillr(NPi),EvSent(SNPi ))

where F is the set of local contextual features

and Z is the normalizing constant. The prior

P (PlausFillr(NPi)|EvSent(SNPi )) is estimated

from the fraction of role fillers in the training data.

The product term in the equation is the likelihood,

which makes the simplifying assumption that all

of the features in F are independent of one an-

other. It is important to note that these probabil-

ities are conditioned on the noun phrase NPi ap-

pearing in an event sentence.

Most IE systems need to extract several differ-

ent types of role fillers for each event. For in-

stance, to extract information about terrorist inci-

dents a system may extract the names of perpetra-

tors, victims, targets, and weapons. We create a

separate IE model for each type of event role. To

construct a unified IE model for an event role, we

must specifically create a plausible role-filler rec-

ognizer for that event role, but we can use a single

sentential event recognizer for all of the role filler

types.

3.2 Sentential Event Recognizer

The task at hand for the sentential event recognizer

is to analyze features in a sentence and estimate

the probability that the sentence is discussing a

relevant event. This is very similar to the task per-

formed by text classification systems, with some

minor differences. Firstly, we are dealing with

the classification of sentences, as opposed to en-

tire documents. Secondly, we need to generate a

probability estimate of the “class”, and not just

a class label. Like the plausible role-filler recog-

nizer, here too we employ machine learning clas-

sifiers to estimate the desired probabilities.

3.2.1 Naı̈ve Bayes Event Recognizer

Since Naı̈ve Bayes classifiers estimate class prob-

abilities, we employ such a classifier to create a

sentential event recognizer:

P (EvSent(SNPi )|F ) =
1
Z

P (EvSent(SNPi ))

∗
∏

fi∈F

P (fi|EvSent(SNPi ))

where Z is the normalizing constant and F is the

set of contextual features in the sentence. The
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prior P (EvSentS(NPi )) is obtained from the ra-

tio of event and non-event sentences in the train-

ing data. The product term in the equation is the

likelihood, which makes the simplifying assump-

tion that the features in F are independent of one

another. The features used by the model will be

described in Section 3.3.

A known issue with Naı̈ve Bayes classifiers is

that, even though their classification accuracy is

often quite reasonable, their probability estimates

are often poor (Domingos and Pazzani, 1996;

Zadrozny and Elkan, 2001; Manning et al., 2008).

The problem is that these classifiers tend to overes-

timate the probability of the predicted class, result-

ing in a situation where most probability estimates

from the classifier tend to be either extremely close

to 0.0 or extremely close to 1.0. We observed this

problem in our classifier too, so we decided to ex-

plore an additional model to estimate probabilities

for the sentential event recognizer. This second

model, based on SVMs, is described next.

3.2.2 SVM Event Recognizer

Given the all-or-nothing nature of the probability

estimates that we observed from the Naı̈ve Bayes

model, we decided to try using a Support Vector

Machine (SVM) (Vapnik, 1995; Joachims, 1998)

classifier as an alternative to Naı̈ve Bayes. One

of the issues with doing this is that SVMs are not

probabilistic classifiers. SVMs make classification

decisions using on a decision boundary defined by

support vectors identified during training. A deci-

sion function is applied to unseen test examples

to determine which side of the decision bound-

ary those examples lie. While the values obtained

from the decision function only indicate class as-

signments for the examples, we used these val-

ues to produce confidence scores for our sentential

event recognizer.

To produce a confidence score from the SVM

classifier, we take the values generated by the deci-

sion function for each test instance and normalize

them based on the minimum and maximum values

produced across all of the test instances. This nor-

malization process produces values between 0 and

1 that we use as a rough indicator of the confidence

in the SVM’s classification. We observed that we

could effect a consistent recall/precision trade-off

by using these values as thresholds for classifica-

tion decisions, which suggests that this approach

worked reasonably well for our task.

3.3 Contextual Features

We used a variety of contextual features in both

components of our system. The plausible role-

filler recognizer uses the following types of fea-

tures for each candidate noun phrase NPi : lexical

head of NPi , semantic class of NPi ’s lexical head,

named entity tags associated with NPi and lexico-

syntactic patterns that represent the local context

surrounding NPi . The feature set is automatically

generated from the texts. Each feature is assigned

a binary value for each instance, indicating either

the presence or absence of the feature.

The named-entity features are generated by the

freely available Stanford NER tagger (Finkel et

al., 2005). We use the pre-trained NER model

that comes with the software to identify person,

organization and location names. The syntac-

tic and semantic features are generated by the

Sundance/AutoSlog system (Riloff and Phillips,

2004). We use the Sundance shallow parser to

identify lexical heads, and use its semantic dictio-

naries to assign semantic features to words. The

AutoSlog pattern generator (Riloff, 1996) is used

to create the lexico-syntactic pattern features that

capture local context around each noun phrase.

Our training sets produce a very large number

of features, which initially bogged down our clas-

sifiers. Consequently, we reduced the size of the

feature set by discarding all features that appeared

four times or less in the training set.

Our sentential event recognizer uses the same

contextual features as the plausible role-filler rec-

ognizer, except that features are generated for

every NP in the sentence. In addition, it uses

three types of sentence-level features: sentence

length, bag of words, and verb tense, which are

also binary features. We have two binary sentence

length features indicating that the sentence is long

(greater than 35 words) or is short (shorter than 5

words). Additionally, all of the words in each sen-

tence in the training data are generated as bag of

words features for the sentential model. Finally,

we generate verb tense features from all verbs ap-

pearing in each sentence. Here too we apply a fre-

quency cutoff and eliminate all features that ap-

pear four times or less in the training data.

4 IE Evaluation

4.1 Data Sets

We evaluated the performance of our IE system on

two data sets: the MUC-4 terrorism corpus (Sund-
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heim, 1992), and a ProMed disease outbreaks cor-

pus (Phillips and Riloff, 2007; Patwardhan and

Riloff, 2007). The MUC-4 data set is a standard

IE benchmark collection of news stories about ter-

rorist events. It contains 1700 documents divided

into 1300 development (DEV) texts, and four test

sets of 100 texts each (TST1, TST2, TST3, and

TST4). Unless otherwise stated, our experiments

adopted the same training/test split used in pre-

vious research: the 1300 DEV texts for training,

200 texts (TST1+TST2) for tuning, and 200 texts

(TST3+TST4) as the blind test set. We evaluated

our system on five MUC-4 string roles: perpetra-

tor individuals, perpetrator organizations, physi-

cal targets, victims, and weapons.

The ProMed corpus consists of 120 documents

obtained from ProMed-mail2, a freely accessible

global electronic reporting system for outbreaks

of diseases. These 120 documents are paired with

corresponding answer key templates. Unless oth-

erwise noted, all of our experiments on this data

set used 5-fold cross validation. We extracted two

types of event roles: diseases and victims3.

Unlike some other IE data sets, many of the

texts in these collections do not describe a rele-

vant event. Only about half of the MUC-4 arti-

cles describe a specific terrorist incident4, and only

about 80% of the ProMed articles describe a dis-

ease outbreak. The answer keys for the irrelevant

documents are therefore empty. IE systems are es-

pecially susceptible to false hits when they can be

given texts that contain no relevant events.

The complete IE task involves the creation of

answer key templates, one template per incident

(many documents in our data sets describe multi-

ple events). Our work focuses on accurately ex-

tracting the facts from the text and not on tem-

plate generation per se (e.g., we are not concerned

with coreference resolution or which extraction

belongs in which template). Consequently, our ex-

periments evaluate the accuracy of the extractions

individually. We used head noun scoring, where

an extraction is considered to be correct if its head

noun matches the head noun in the answer key.5

2http://www.promedmail.org
3The “victims” can be people, animals, or plants.
4With respect to the definition of terrorist incidents in the

MUC-4 guidelines (Sundheim, 1992).
5Pronouns were discarded from both the system responses

and the answer keys since we do not perform coreference res-
olution. Duplicate extractions (e.g., the same string extracted
multiple times from the same document) were conflated be-
fore being scored, so they count as just one hit or one miss.

4.2 Baselines

We generated three baselines to use as compar-

isons with our IE system. As our first baseline,

we used AutoSlog-TS (Riloff, 1996), which is a

weakly-supervised, pattern-based IE system avail-

able as part of the Sundance/AutoSlog software

package (Riloff and Phillips, 2004). Our previous

work in event-based IE (Patwardhan and Riloff,

2007) also used a pattern-based approach that ap-

plied semantic affinity patterns to relevant regions

in text. We use this system as our second base-

line. As a third baseline, we trained a Naı̈ve Bayes

IE classifier that is analogous to the plausible role-

filler recognizer in our unified IE model, except

that this baseline system is not conditioned on the

assumption of having an event sentence. Conse-

quently, this baseline NB classifier is akin to a tra-

ditional supervised learning-based IE system that

uses only local contextual features to make extrac-

tion decisions. Formally, the baseline NB classi-

fier uses the formula:

P (PlausFillr(NPi)|F ) =
1
Z

P (PlausFillr(NPi))

∗
∏

fi∈F

P (fi|PlausFillr(NPi))

where F is the set of local features,

P (PlausFillr(NPi)) is the prior probability,

and Z is the normalizing constant. We used the

Weka (Witten and Frank, 2005) implementation

of Naı̈ve Bayes for this baseline NB system.

New Jersey, February, 26. An outbreak of Ebola has
been confirmed in Mercer County, New Jersey. Five teenage
boys appear to have contracted the deadly virus from an
unknown source. The CDC is investigating the cases and is
taking measures to prevent the spread. . .

Disease: Ebola
Victims: Five teenage boys

Location: Mercer County, New Jersey
Date: February 26

Figure 1: A Disease Outbreak Event Template

Both the MUC-4 and ProMed data sets have

separate answer keys rather than annotated source

documents. Figure 1 shows an example of a doc-

ument and its corresponding answer key template.

To train the baseline NB system, we identify all

instances of each answer key string in the source

document and consider every instance a positive

training example. This produces noisy training

data, however, because some instances occur in
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PerpInd PerpOrg Target Victim Weapon
P R F P R F P R F P R F P R F

AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .49 .54 .51 .38 .44 .41
Sem Affinity .48 .39 .43 .36 .58 .45 .56 .46 .50 .46 .44 .45 .53 .46 .50
NB .50 .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
NB .70 .41 .25 .31 .43 .31 .36 .58 .42 .48 .58 .37 .45 1.00 .04 .07
NB .90 .51 .17 .25 .56 .15 .24 .67 .30 .41 .75 .23 .36 1.00 .02 .04

Table 1: Baseline Results on MUC-4

Disease Victim
P R F P R F

AutoSlog-TS .33 .60 .43 .36 .49 .41
Sem Affinity .31 .49 .38 .41 .47 .44
NB .50 .20 .73 .31 .29 .56 .39
NB .70 .23 .67 .34 .37 .52 .44
NB .90 .34 .59 .43 .47 .39 .43

Table 2: Baseline Results on ProMed

undesirable contexts. For example, if the string

“man” appears in an answer key as a victim, one

instance of “man” may refer to the actual vic-

tim in an event sentence, while another instance

of “man” may occur in a non-event context (e.g.,

background information) or may refer to a com-

pletely different person.

We report three evaluation metrics in our exper-

iments: precision (P), recall (R), and F-score (F),

where recall and precision are equally weighted.

For the Naı̈ve Bayes classifier, the natural thresh-

old for distinguishing between positive and nega-

tive classes is 0.5, but we also evaluated this clas-

sifier with thresholds of 0.7 and 0.9 to see if we

could effect a recall/precision trade-off. Tables 1

and 2 present the results of our three baseline sys-

tems. The NB classifier performs comparably to

AutoSlog-TS and Semantic Affinity on most event

roles, although a threshold of 0.90 is needed to

reach comparable performance on ProMed. The

relatively low numbers across the board indicate

that these corpora are challenging, but these re-

sults suggest that our plausible role-filler recog-

nizer is competitive with other existing IE sys-

tems. In Section 4.4 we will show how our unified

IE model compares to these baselines. But before

that (in the next section) we evaluate the quality of

the second component of our IE system: the sen-

tential event recognizer.

4.3 Sentential Event Recognizer Models

The sentential event recognizer is one of the core

contributions of this research, so in this section we

evaluate it by itself, before we employ it within the

unified framework. The purpose of the sentential

event recognizer is to determine whether a sen-

tence is discussing a domain-relevant event. For

our data sets, the classifier must decide whether a

sentence is discussing a terrorist incident (MUC-

4) or a disease outbreak (ProMed). Ideally, we

want such a classifier to operate independently

from the answer keys and the extraction task per

se. For example, a terrorism IE system could be

designed to extract only perpetrators and victims

of terrorist events, or it could be designed to ex-

tract only targets and locations. The job of the sen-

tential event recognizer remains the same: to iden-

tify sentences that discuss a terrorist event. How to

train and evaluate such a system is a difficult ques-

tion. In this section, we present two approaches

that we explored to generate the training data: (a)

using the IE answer keys, and (b) using human

judgements.

4.3.1 Sentence Annotation via Answer Keys

We have argued that the event relevance of a sen-

tence should not be tied to a specific set of event

roles. However, the IE answer keys can be used

to identify some sentences that describe an event,

because they contain an answer string. So we can

map the answer strings back to sentences in the

source documents to automatically generate event

sentence annotations.6 These annotations will be

noisy, though, because an answer string can appear

in a non-event sentence, and some event sentences

may not contain any answer strings. The alterna-

tive, however, is sentence annotations by humans,

which (as we will discuss in Section 4.3.2) is chal-

lenging.

4.3.2 Sentence Annotation via Human

Judgements

For many sentences there is a clear consensus

among people that an event is being discussed. For

example, most readers would agree that sentence

(1) below is describing a terrorist event, while sen-

6A similar strategy was used in previous work (Patward-
han and Riloff, 2007) to generate a test set for the evaluation
of a relevant region classifier.
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Evaluation on Answer Keys Evaluation on Human Annotations
Event Non-Event Event Non-Event

Acc Pr Rec F Pr Rec F Acc Pr Rec F Pr Rec F
MUC-4 (Terrorism)

A
n
s NB .80 .57 .55 .56 .86 .87 .87 .81 .46 .60 .52 .91 .85 .88

SVM .80 .68 .42 .52 .84 .93 .88 .83 .55 .44 .49 .88 .91 .90
H

u
m NB .82 .64 .48 .55 .85 .92 .88 .85 .56 .57 .57 .91 .91 .91

SVM .79 .64 .41 .50 .83 .91 .87 .84 .62 .51 .56 .90 .91 .91

ProMed (Disease Outbreaks)

A
n
s NB .75 .62 .61 .61 .81 .82 .82 .72 .43 .58 .50 .86 .77 .81

SVM .74 .78 .31 .44 .74 .95 .83 .76 .51 .26 .35 .80 .92 .86

H
u
m NB .73 .61 .46 .52 .77 .86 .81 .79 .56 .57 .56 .87 .86 .86

SVM .70 .62 .32 .42 .73 .89 .81 .79 .62 .42 .50 .84 .90 .87

Table 3: Sentential Event Recognizers Results (5-fold Cross-Validation)

Evaluation on Human Annotations
Event Non-Event

Acc Pr Rec F Pr Rec F
NB .83 .50 .70 .58 .94 .86 .90
SVM .89 .83 .39 .53 .89 .98 .94

Table 4: Sentential Event Recognizer Results for

MUC-4 using 1300 Documents for Training

tence (2) is not. However it is difficult to draw a

clear line. Sentence (3), for example, describes an

action taken in response to a terrorist event. Is this

a terrorist event sentence? Precisely how to define

an event sentence is not obvious.

(1) Al Qaeda operatives launched an at-

tack on the Madrid subway system.

(2) Madrid has a population of about

3.2 million people.

(3) City officials stepped up security in

response to the attacks.

We tackled this issue by creating detailed an-

notation guidelines to define the notion of an

event sentence, and conducting a human annota-

tion study. The guidelines delineated a general

time frame for the beginning and end of an event,

and constrained the task to focus on specific inci-

dents that were reported in the IE answer key. We

gave the annotators a brief description (e.g., mur-

der in Peru) of each event that had a filled answer

key in the data set. They only labeled sentences

that discussed those particular events.

We employed two human judges, who anno-

tated 120 documents from the ProMed test set,

and 100 documents from the MUC-4 test set. We

asked both judges to label 30 of the same docu-

ments from each data set so that we could compute

inter-annotator agreement. The annotators had an

agreement of 0.72 Cohen’s κ on the ProMed data,

and 0.77 Cohen’s κ on the MUC-4 data. Given

the difficulty of this task, we were satisfied that

this task is reasonably well-defined and the anno-

tations are of good quality.

4.3.3 Event Recognizer Results

We evaluated the two sentential event recognizer

models described in Section 3.2 in two ways:

(1) using the answer key sentence annotations for

training/testing, and (2) using the human annota-

tions for training/testing. Table 3 shows the re-

sults for all combinations of training/testing data.

Since we only have human annotations for 100

MUC-4 texts and 120 ProMed texts, we performed

5-fold cross-validation on these documents. For

our classifiers, we used the Weka (Witten and

Frank, 2005) implementation of Naı̈ve Bayes and

the SVMLight (Joachims, 1998) implementation

of the SVM. For each classifier we report overall

accuracy, and precision, recall and F-scores with

respect to both the positive and negative classes

(event vs. non-event sentences).

The rows labeled Ans show the results for mod-

els trained via answer keys, and the rows labeled

Hum show the results for the models trained with

human annotations. The left side of the table

shows the results using the answer key annotations

for evaluation, and the right side of the table shows

the results using the human annotations for evalua-

tion. One expects classifiers to perform best when

they are trained and tested on the same type of

data, and our results bear this out – the classifiers

that were trained and tested on the same kind of

annotations do best. The boldfaced numbers rep-

resent the best accuracies achieved for each do-

main. As we would expect, the classifiers that are

both trained and tested with human annotations

(Hum) show the best performance, with the Naı̈ve

Bayes achieving the best accuracy of 85% on the
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PerpInd PerpOrg Target Victim Weapon
P R F P R F P R F P R F P R F

AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .49 .54 .51 .38 .44 .41
Sem Affinity .48 .39 .43 .36 .58 .45 .56 .46 .50 .46 .44 .45 .53 .46 .50
NB (baseline) .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
GLACIER

NB/NB .90 .39 .59 .47 .33 .51 .40 .39 .72 .51 .52 .54 .53 .47 .55 .51
NB/SVM .40 .51 .58 .54 .34 .45 .38 .42 .72 .53 .55 .58 .56 .57 .53 .55
NB/SVM .50 .66 .47 .55 .41 .26 .32 .50 .62 .55 .62 .36 .45 .64 .43 .52

Table 5: Unified IE Model on MUC-4

MUC-4 texts, and the SVM achieving the best ac-

curacy of 79% on the ProMed texts.

The recall and precision for non-event sentences

is much higher than for event sentences. This clas-

sifier is forced to draw a hard line between the

event and non-event sentences, which is a difficult

task even for people. One of the advantages of our

unified IE model, which will be described in the

next section, is that it does not require hard deci-

sions but instead uses a probabilistic estimate of

how “event-ish” a sentence is.

Table 3 showed that models trained on human

annotations outperform models trained on answer

key annotations. But with the MUC-4 data, we

have the luxury of 1300 training documents with

answer keys, while we only have 100 documents

with human annotations. Even though the answer

key annotations are noisier, we have 13 times as

much training data.

So we trained another sentential event recog-

nizer using the entire MUC-4 training set. These

results are shown in Table 4. Observe that using

this larger (albeit noisy) training data does not ap-

pear to affect the Naı̈ve Bayes model very much.

Compared with the model trained on 100 manu-

ally annotated documents, its accuracy decreases

by 2% from 85% to 83%. The SVM model, on

the other hand, achieves an 89% accuracy when

trained with the larger MUC-4 training data, com-

pared to 84% accuracy for the model trained from

the 100 manually labeled documents. Conse-

quently, the sentential event recognizer models

used in our unified IE framework (described in

Section 4.4) are trained with this 1300 document

training set.

4.4 Evaluation of the Unified IE Model

We now evaluate the performance of our unified IE

model, GLACIER, which allows a plausible role-

filler recognizer and a sentential event recognizer

to make joint decisions about phrase extractions.

Tables 5 and 6 present the results of the unified

Disease Victim
P R F P R F

AutoSlog-TS .33 .60 .43 .36 .49 .41
Sem Affinity .31 .49 .38 .41 .47 .44
NB (baseline) .34 .59 .43 .47 .39 .43
GLACIER

NB/NB .90 .41 .61 .49 .38 .52 .44
NB/SVM .40 .31 .66 .42 .32 .55 .41
NB/SVM .50 .38 .54 .44 .42 .47 .44

Table 6: Unified IE Model on ProMed

IE model on the MUC-4 and ProMed data sets.

The NB/NB systems use Naı̈ve Bayes models for

both components, while the NB/SVM systems use

a Naı̈ve Bayes model for the plausible role-filler

recognizer and an SVM for the sentential event

recognizer. As with our baseline system, we ob-

tain good results using a threshold of 0.90 for our

NB/NB model (i.e., only NPs with probability ≥
0.90 are extracted). For our NB/SVM models, we

evaluated using the default threshold (0.50) but ob-

served that recall was sometimes low. So we also

use a threshold of 0.40, which produces superior

results. Here too, we used the Weka (Witten and

Frank, 2005) implementation of the Naı̈ve Bayes

model and the SVMLight (Joachims, 1998) imple-

mentation of the SVM.

For the MUC-4 data, our unified IE model us-

ing the SVM (0.40) outperforms all 3 baselines

on three roles (PerpInd, Victim, Weapon) and

outperforms 2 of the 3 baselines on the Target

role. When GLACIER outperforms the other sys-

tems it is often by a wide margin: the F-score

for PerpInd jumped from 0.43 for the best base-

line (Sem Affinity) to 0.54 for GLACIER, and the

F-scores for Victim and Weapon each improved

by 5% over the best baseline. These gains came

from both increased recall and increased precision,

demonstrating that GLACIER extracts some infor-

mation that was missed by the other systems and

is also less prone to false hits.

Only the PerpOrg role shows inferior per-

formance. Organizations perpetrating a terrorist
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event are often discussed later in a document, far

removed from the main event description. For ex-

ample, a statement that Al Qaeda is believed to

be responsible for an attack would typically ap-

pear after the event description. As a result, the

sentential event recognizer tends to generate low

probabilities for such sentences. We believe that

addressing this issue would require the use of dis-

course relations or the use of even larger context

sizes. We intend to explore these avenues of re-

search in future work.

On the ProMed data, GLACIER produces results

that are similar to the baselines for the Victim role,

but it outperforms the baselines for the Disease

role. We find that for this domain, the unified IE

model with the Naı̈ve Bayes sentential event rec-

ognizer is superior to the unified IE model with

the SVM classifier. For the Disease role, the F-

score jumped 6%, from 0.43 for the best base-

line systems (AutoSlog-TS and the NB baseline)

to 0.49 for GLACIERNB/NB. In contrast to the

MUC-4 data, this improvement was mostly due

to an increase in precision (up to 0.41), indicating

that our unified IE model was effective at elimi-

nating many false hits. For the Victim role, the

performance of the unified model is comparable

to the baselines. On this event role, the F-score

of GLACIERNB/NB (0.44) matches that of the best

baseline system (Sem Affinity, with 0.44). How-

ever, note that GLACIERNB/NB can achieve a 5%

gain in recall over this baseline, at the cost of a 3%

precision loss.

4.5 Specific Examples

Figure 2 presents some specific examples of ex-

tractions that are failed to be extracted by the

baseline models, but are correctly identified by

GLACIER because of its use of sentential evidence.

Observe that in each of these examples, GLACIER

correctly extracts the underlined phrases, in spite

of the inconclusive evidence in the local contexts

around them. In the last sentence in Figure 2, for

example, GLACIER correctly makes the inference

that the policemen in the bus (which was traveling

on the bridge) are likely the victims of the terrorist

event. Thus, we see that our system manages to

balance the influence of the two probability com-

ponents to make extraction decisions that would

be impossible to make by relying only on the local

phrasal context. In addition, the sentential event

recognizer can also help improve precision by pre-

THE MNR REPORTED ON 12 JANUARY THAT HEAVILY
ARMED MEN IN CIVILIAN CLOTHES HAD INTERCEPTED
A VEHICLE WITH OQUELI AND FLORES ENROUTE FOR
LA AURORA AIRPORT AND THAT THE TWO POLITICAL
LEADERS HAD BEEN KIDNAPPED AND WERE REPORTED
MISSING.

PerpInd: HEAVILY ARMED MEN

THE SCANT POLICE INFORMATION SAID THAT THE
DEVICES WERE APPARENTLY LEFT IN FRONT OF THE TWO
BANK BRANCHES MINUTES BEFORE THE CURFEW BEGAN
FOR THE 6TH CONSECUTIVE DAY – PRECISELY TO
COUNTER THE WAVE OF TERRORISM CAUSED BY DRUG
TRAFFICKERS.

Weapon: THE DEVICES

THOSE WOUNDED INCLUDE THREE EMPLOYEES OF THE
GAS STATION WHERE THE CAR BOMB WENT OFF AND
TWO PEOPLE WHO WERE WALKING BY THE GAS STATION
AT THE MOMENT OF THE EXPLOSION.

Victim: THREE EMPLOYEES OF THE GAS STATION

Victim: TWO PEOPLE

MEMBERS OF THE BOMB SQUAD HAVE DEACTIVATED
A POWERFUL BOMB PLANTED AT THE ANDRES AVELINO
CACERES PARK, WHERE PRESIDENT ALAN GARCIA WAS
DUE TO PARTICIPATE IN THE COMMEMORATION OF THE
BATTLE OF TARAPACA.

Victim: PRESIDENT ALAN GARCIA

EPL [POPULAR LIBERATION ARMY] GUERRILLAS BLEW
UP A BRIDGE AS A PUBLIC BUS, IN WHICH SEVERAL
POLICEMEN WERE TRAVELING, WAS CROSSING IT.

Victim: SEVERAL POLICEMEN

Figure 2: Examples of GLACIER Extractions

venting extractions from non-event sentences.

5 Conclusions

We presented a unified model for IE that balances

the influence of sentential context with local con-

textual evidence to improve the performance of

event-based IE. Our experimental results showed

that using sentential contexts indeed produced bet-

ter results on two IE data sets. Our current model

uses supervised learning, so one direction for fu-

ture work is to adapt the model for weakly super-

vised learning. We also plan to incorporate dis-

course features and investigate even wider con-

texts to capture broader discourse effects.
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Abstract 

 

This paper presents a parse-and-paraphrase pa-

radigm to assess the degrees of sentiment for 

product reviews. Sentiment identification has 

been well studied; however, most previous 

work provides binary polarities only (positive 

and negative), and the polarity of sentiment is 

simply reversed when a negation is detected. 

The extraction of lexical features such as uni-

gram/bigram also complicates the sentiment 

classification task, as linguistic structure such 

as implicit long-distance dependency is often 

disregarded. In this paper, we propose an ap-

proach to extracting adverb-adjective-noun 

phrases based on clause structure obtained by 

parsing sentences into a hierarchical represen-

tation. We also propose a robust general solu-

tion for modeling the contribution of adver-

bials and negation to the score for degree of 

sentiment. In an application involving extract-

ing aspect-based pros and cons from restaurant 

reviews, we obtained a 45% relative improve-

ment in recall through the use of parsing me-

thods, while also improving precision. 

 

1 Introduction 

Online product reviews have provided an exten-

sive collection of free-style texts as well as prod-

uct ratings prepared by general users, which in 

return provide grassroots contributions to users 

interested in a particular product or service as 

assistance. Yet, valuable as they are, free-style 

reviews contain much noisy data and are tedious 

to read through in order to reach an overall con-

clusion. Thus, we conducted this study to auto-

matically process and evaluate product reviews 

in order to generate both numerical evaluation 

and textual summaries of users’ opinions, with 

the ultimate goal of adding value to real systems 

such as a restaurant-guide dialogue system. 

Sentiment summarization has been well stu-

died in the past decade (Turney, 2002; Pang et al., 

2002; Dave et al., 2003; Hu and Liu, 2004a, 

2004b; Carenini et al., 2006; Liu et al., 2007). 

The polarity of users’ sentiments in each seg-

ment of review texts is extracted, and the polari-

ties of individual sentiments are aggregated 

among all the sentences/segments of texts to give 

a numerical scaling on sentiment orientation.  

 Most of the work done for sentiment analysis 

so far has employed shallow parsing features 

such as part-of-speech tagging. Frequent adjec-

tives and nouns/noun phrases are extracted as 

opinion words and representative product fea-

tures. However, the linguistic structure of the 

sentence is usually not taken into consideration. 

High level linguistic features, if well utilized and 

accurately extracted, can provide much insight 

into the semantic meaning of user opinions and 

contribute to the task of sentiment identification. 

Furthermore, in addition to adjectives and 

nouns, adverbials and negation also play an im-

portant role in determining the degree of the 

orientation level. For example, “very good” and 

“good” certainly express different degrees of 

positive sentiment. Also, in previous studies, 

when negative expressions are identified, the 

polarity of sentiment in the associated segment 

of text is simply reversed. However, semantic 

expressions are quite different from the absolute 

opposite values in mathematics. For example, 

“not bad” does not express the opposite meaning 

of “bad”, which would be highly positive. Simp-

ly reversing the polarity of sentiment on the ap-

pearance of negations may result in inaccurate 

interpretation of sentiment expressions. Thus, a 

system which attempts to quantify sentiment 

while ignoring adverbials is missing a significant 

component of the sentiment score, especially if 

the adverbial is a negative word. 

161



Another challenging aspect of negation is 

proper scoping of the negative reference over the 

right constituent, which we argue, can be han-

dled quite well with careful linguistic analysis. 

Take the sentence “I don’t think the place is very 

clean” as example. A linguistic approach asso-

ciating long-distance elements with semantic 

relations can identify that the negation “not” 

scopes over the complement clause, thus extract-

ing “not very clean” instead of “very clean”.  

Our goal in modeling adverbials is to investi-

gate whether a simple linear correction model 

can capture the polarity contribution of all ad-

verbials. Furthermore, is it also appropriate to 

adjust for multiple adverbs, including negation, 

via a linear additive model? I.e., can “not very 

good” be modeled as not(very(good))? The fact 

that “not very good” seems to be less negative 

than “not good” suggests that such an algorithm 

might work well. From these derivations we have 

developed a model which treats negations in the 

exact same way as modifying adverbs, via an 

accumulative linear offset model. This yields a 

very generic and straightforward solution to 

modeling the strength of sentiment expression. 

In this paper we utilize a parse-and-paraphrase 

paradigm to identify semantically related phrases 

in review texts, taking quantifiers (e.g., modify-

ing adverbs) and qualifiers (e.g., negations) into 

special consideration. The approach makes use 

of a lexicalized probabilistic syntactic grammar 

to identify and extract sets of adverb-adjective-

noun phrases that match review-related patterns. 

Such patterns are constructed based on well-

formed linguistic structure; thus, relevant phrases 

can be extracted reliably. 

We also propose a cumulative linear offset 

model to calculate the degree of sentiment for 

joint adjectives and quantifiers/qualifiers. The 

proposed sentiment prediction model takes mod-

ifying adverbs and negations as universal scales 

on strength of sentiment, and conducts cumula-

tive calculation on the degree of sentiment for 

the associated adjective. With this model, we can 

provide not only qualitative textual summariza-

tion such as “good food” and “bad service”, but 

also a numerical scoring of sentiment, i.e., “how 

good the food is” and “how bad the service is.” 

2 Related Work  

There have been many studies on sentiment 

classification and opinion summarization (Pang 

and Lee, 2004, 2005; Gamon et al., 2005; Popes-

cu and Etzioni, 2005; Liu et al., 2005; Zhuang et 

al., 2006; Kim and Hovy, 2006). Specifically, 

aspect rating as an interesting topic has also been 

widely studied (Titov and McDonald, 2008a; 

Snyder and Barzilay, 2007; Goldberg and Zhu, 

2006). Recently, Baccianella et. al. (2009) 

conducted a study on multi-facet rating of 

product reviews with special emphasis on how to 

generate vectorial representations of the text by 

means of POS tagging, sentiment analysis, and 

feature selection for ordinal regression learning. 

Titov and McDonald (2008b) proposed a joint 

model of text and aspect ratings which utilizes a 

modified LDA topic model to build topics that 

are representative of ratable aspects, and builds a 

set of sentiment predictors. Branavan et al. (2008) 

proposed a method for leveraging unstructured 

annotations in product reviews to infer semantic 

document properties, by clustering user 

annotations into semantic properties and tying 

the induced clusters to hidden topics in the text.  

3 System Overview 

Our review summarization task is to extract sets 

of descriptor-topic pairs (e.g., “excellent service”) 

from a set of reviews (e.g., for a particular res-

taurant), and to cluster the extracted phrases into 

representative aspects on a set of dimensions 

(e.g., “food”, “service” and “atmosphere”). Dri-

ven by this motivation, we propose a three-stage 

system that automatically processes reviews. A 

block diagram is given in Figure 1.  

 

 
Figure 1.  Framework of review processing. 

 

The first stage is sentence-level data filtering. 

Review data published by general users is often 

in free-style, and a large fraction of the data is 

either ill-formed or not relevant to the task. We 

classify these as out of domain sentences. To fil-

ter out such noisy data, we collect unigram statis-

tics on all the relevant words in the corpus, and 

select high frequency adjectives and nouns. Any 

sentence that contains none of the high-

frequency nouns or adjectives is rejected from 

further analysis. The remaining in-domain sen-

tences are subjected to the second stage, parse 
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analysis and semantic understanding, for topic 

extraction.  

From the parsable sentences we extract de-

scriptor-topic phrase patterns based on a careful-

ly-designed generation grammar. We then apply 

LM (language model) based topic clustering to 

group the extracted phrases into representative 

aspects. The third stage scores the degree of sen-

timent for adjectives, as well as the strength of 

sentiment for modifying adverbs and negations, 

which further refine the degree of sentiment of 

the associated adjectives. We then run a linear 

additive model to assign a combined sentiment 

score for each extracted phrase. 

The rest of the paper is structured as follows: 

In Section 4, we explain the linguistic analysis. 

In Section 5, we describe the cumulative model 

for assessing the degree of sentiment. Section 6 

provides a systematic evaluation, conducted on 

real data in the restaurant review domain har-

vested from the Web. Section 7 provides a dis-

cussion analyzing the results. Section 8 summa-

rizes the paper as well as pointing to future work. 

4 Linguistic Analysis 

4.1 Parse-and-Paraphrase 

Our linguistic analysis is based on a parse-and-

paraphrase paradigm. Instead of the flat structure 

of a surface string, the parser provides a hierar-

chical representation, which we call a linguistic 

frame (Xu et al., 2008). It preserves linguistic 

structure by encoding different layers of seman-

tic dependencies. The grammar captures syntac-

tic structure through a set of carefully con-

structed context free grammar rules, and employs 

a feature-passing mechanism to enforce long dis-

tance constraints. The grammar is lexicalized, 

and uses a statistical model to rank order compet-

ing hypotheses. It knows explicitly about 9,000 

words, with all unknown words being interpreted 

as nouns. The grammar probability model was 

trained automatically on the corpus of review 

sentences. 

To produce the phrases, a set of generation 

rules is carefully constructed to only extract sets 

of related adverbs, adjectives and nouns. The 

adjective-noun relationships are captured from 

the following linguistic patterns: (1) all adjec-

tives attached directly to a noun in a noun phrase, 

(2) adjectives embedded in a relative clause 

modifying a noun, and (3) adjectives related to 

nouns in a subject-predicate relationship in a 

clause. These patterns are compatible, i.e., if a 

clause contains both a modifying adjective and a 

predicate adjective related to the same noun, two 

adjective-noun pairs are generated by different 

patterns. As in, “The efficient waitress was none-

theless very courteous.” It is a “parse-and-

paraphrase-like” paradigm: the paraphrase tries 

to preserve the original words intact, while reor-

dering them and/or duplicating them into mul-

tiple NP units. Since they are based on syntactic 

structure, the generation rules can also be applied 

in any other domain involving opinion mining. 

An example linguistic frame is shown in Fig-

ure 2, which encodes the sentence “The caesar 

with salmon or chicken is really quite good.” In 

this example, for the adjective “good”, the near-

by noun “chicken” would be associated with it if 

only proximity is considered. From the linguistic 

frame, however, we can easily associate “caesar” 

with “good” by extracting the head of the topic 

sub-frame and the head of the predicate sub-

frame, which are encoded in the same layer (root 

layer) of the linguistic frame. Also, we can tell 

from the predicate sub-frame that there is an ad-

verb “quite” modifying the head word “good”. 

The linguistic frame also encodes an adverb “re-

ally” in the upstairs layer. A well-constructed 

generation grammar can create customized ad-

verb-adjective-noun phrases such as “quite good 

caesar” or “really quite good caesar”. 

{c cstatement 

  :topic {q caesar 
             :quantifier "def" 

             :pred {p with :topic {q salmon 

                                         :pred {p conjunction 

                                           :or {q chicken  }}}} 

  :adv "really" 

   :pred {p adj_complement 
            :pred {p adjective 

                    :adv "quite" 

                :pred {p quality :topic "good" }}}} 

Figure 2.  Linguistic frame for “The caesar with 

salmon or chicken is really quite good.” 

Interpreting negation in English is not 

straightforward, and it is often impossible to do 

correctly without a deep linguistic analysis. Xu-

ehui Wu (2005) wrote: “The scope of negation is 

a complex linguistic phenomenon. It is easy to 

perceive but hard to be defined from a syntactic 

point of view. Misunderstanding or ambiguity 

may occur when the negative scope is not un-

derstood clearly and correctly.” The majority 

rule for negation is that it scopes over the re-

mainder of its containing clause, and this works 

well for most cases. For example, Figure 3 shows 
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the linguistic frame for the sentence “Their menu 

was a good one that didn’t try to do too much.”  

{c cstatement   

:topic {q menu   :poss "their" } } 

   :complement {q pronoun   :name “one” 

             :adj_clause {c cstatement 

                           :conjn "that" 

                           :negate "not" 
                           :pred {p try :to_clause  {p do 

                                           :topic {q object 

                                           :adv "too" 

                                           :quant "much" }}}} 

   :pred {p adjective 

                :pred {p quality :topic "good" }}} 

Figure 3.  Linguistic frame for “Their menu was a 

good one that didn’t try to do too much.” 

Traditional approaches which do not consider 

the linguistic structure would treat the appear-

ance of “not” as a negation and simply reverse 

the sentiment of the sentence to negative polarity, 

which is wrong as the sentence actually ex-

presses positive opinion for the topic “menu”. In 

our approach, the negation “not” is identified as 

under the sub-frame of the complement clause, 

instead of in the same or higher layer of the ad-

jective sub-frame; thus it is considered as unre-

lated to the adjective “good”. In this way we can 

successfully predict the scope of the reference of 

the negation over the correct constituent of a sen-

tence and create proper association between ne-

gation and its modified words. 

4.2 LM-based Topic Clustering 

To categorize the extracted phrases into repre-

sentative aspects, we automatically group the 

identified topics into a set of clusters based on 

LM probabilities. The LM-based algorithm as-

sumes that topics which are semantically related 

have high probability of co-occurring with simi-

lar descriptive words. For example, “delicious” 

might co-occur frequently with both “pizza” and 

“dessert”. By examining the distribution of bi-

gram probability of these topics with correspond-

ing descriptive words, we can group “pizza” and 

“dessert” into the same cluster of “food”. 

We select a small set of the most common top-

ics, i.e., topics with the highest frequency counts, 

and put them into an initial set I. Then, for each 

candidate topic �� outside set I, we calculate its 

probability given each topic �� within the initial 

set I, given by:  

       ����| �	
 � ∑ ����|

 · ��
|�	
���  

                      �  ∑ ���,��

���
 · ���,��


����
���   

                   �  �
����
 ∑ �

���
 · ��
, ��
 · ��
, �	
���        (1) 

where A represents the set of all the adjectives in 

the corpus. For each candidate topic �� , we 

choose the cluster of the initial topic ��  with 

which it has the highest probability score.  

There are also cases where a meaningful ad-

jective occurs in the absence of an associated 

topic, e.g., “It is quite expensive.” We call such 

cases the “widow-adjective” case. Without hard-

coded ontology matching, it is difficult to identi-

fy “expensive” as a price-related expression. To 

discover such cases and associate them with re-

lated topics, we propose a “surrogate topic” 

matching approach based on bigram probability.  

As aforementioned, the linguistic frame orga-

nizes all adjectives into separate clauses. Thus, 

we create a “surrogate topic” category in the lin-

guistic frames for widow-adjective cases, which 

makes it easy to detect descriptors that are affi-

liated with uninformative topics like the pronoun 

“it”. We then have it generate phrases such as 

“expensive surrogate_topic” and use bigram 

probability statistics to automatically map each 

sufficiently strongly associated adjective to its 

most common topic among our major classes, 

e.g., mapping “expensive” with its surrogate top-

ic “price”. Therefore, we can generate sets of 

additional phrases in which the topic is “halluci-

nated” from the widow-adjective.  

5 Assessment of Sentiment Strength 

5.1 Problem Formulation 

Given the sets of adverb-adjective-noun phrases 

extracted by linguistic analysis, our goal is to 

assign a score for the degree of sentiment to each 

phrase and calculate an average rating for each 

aspect. An example summary is given in Table 1. 

Table 1. Example of review summary. 

Aspect Extracted phrases Rating 

Atmosphere 
very nice ambiance, 

outdoor patio 
4.8 

Food 
not bad meal, 

quite authentic food 
4.1 

Place 
not great place, 

very smoky restaurant 
2.8 

Price 
so high bill, high cost, 

not cheap price 
2.2 

To calculate the numerical degree of sentiment, 

there are three major problems to solve: 1) how 

to associate numerical scores with textual senti-

ment; 2) whether to calculate sentiment scores 

for adjectives and adverbs jointly or separately; 3) 
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whether to treat negations as special cases or in 

the same way as modifying adverbs.  

There have been studies on building sentiment 

lexicons to define the strength of sentiment of 

words. Esuli and Sebastiani (2006) constructed a 

lexical resource, SentiWordNet, a WordNet-like 

lexicon emphasizing sentiment orientation of 

words and providing numerical scores of how 

objective, positive and negative these words are. 

However, lexicon-based methods can be tedious 

and inefficient and may not be accurate due to 

the complex cross-relations in dictionaries like 

WordNet. Instead, our primary approach to sen-

timent scoring is to make use of collective data 

such as user ratings. In product reviews collected 

from online forums, the format of a review entry 

often consists of three parts: pros/cons, free-style 

text and user rating. We assume that user rating 

is normally consistent with the tone of the review 

text published by the same user. By associating 

user ratings with each phrase extracted from re-

view texts, we can easily associate numerical 

scores with textual sentiment.  

A simple strategy of rating assignment is to 

take each extracted adverb-adjective pair as a 

composite unit. However, this method is likely to 

lead to a large number of rare combinations, thus 

suffering from sparse data problems. Therefore, 

an interesting question to ask is whether it is 

feasible to assign to each adverb a perturbation 

score, which adjusts the score of the associated 

adjective up or down by a fixed scalar value. 

This approach thus hypothesizes that “very ex-

pensive” is as much worse than “expensive” as 

“very romantic” is better than “romantic”. This 

allows us to pool all instances of a given adverb 

regardless of which adjective it is associated with, 

in order to compute the absolute value of the per-

turbation score for that adverb. Therefore, we 

consider adverbs and adjectives separately when 

calculating the sentiment score, treating each 

modifying adverb as a universal quantifier which 

consistently scales up/down the strength of sen-

timent for the adjectives it modifies. 

Furthermore, instead of treating negation as a 

special case, the universal model works for all 

adverbials. The model hypothesizes that “not bad” 

is as much better than “bad” as “not good” is 

worse than “good”, i.e., negations push posi-

tive/negative adjectives to the other side of sen-

timent polarity by a universal scale. This again, 

allows us to pool all instances of a given nega-

tion and compute the absolute value of the per-

turbation score for that negation, in the same way 

as dealing with modifying adverbs.  

5.2 Linear Additive Model 

For each adjective, we average all its ratings giv-

en by: 

������
��
 �  
∑  �

� �
 · !���"

∑  �
� �

 � 
            (2) 

where � represents the set of appearances of ad-

jective 
��, �	 represents the associated user rat-

ing in each appearance of 
��, # represents the 

number of entities (e.g., restaurants) in the entire 

data set, and $!�  represents the number of entities 

with rating �	. The score is averaged over all the 

appearances, weighted by the frequency count of 

each category of rating to remove bias towards 

any category.  

As for adverbs, using a slightly modified ver-

sion of equation (2), we can get a rating table for 

all adverb-adjective pairs. For each adverb adv, 

we get a list of all its possible combinations with 

adjectives. Then, for each adj in the list, we cal-

culate the distance between the rating of adv-adj 

and the rating of the adj alone. We then aggre-

gate the distances among all the pairs of adv-adj 

and adj in the list, weighted by the frequency 

count of each adv-adj pair: 

������
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          (3) 

where ��3$��
�%, 
���
 represents the count of 

the combination 
�% 2 
���, 4 represents the set 

of adjectives that co-occur with 
�% , 

��
�%, 
���
 represents the sentiment rating of 

the combination 
�% 2 
��� , and ��
���
 

represents the sentiment rating of the adjective 


���  alone. ��1�
���
 represents the polarity of 


���, assigned as 1 if 
��� is positive, and -1 if 

negative.  

Specifically, negations are well handled by the 

same scoring strategy, treated exactly the same 

as modifying adverbs, except that they get such 

strong negative scores that the sentiment of the 

associated adjectives is pushed to the other side 

of the polarity scale.  

After obtaining the strength rating for adverbs 

and the sentiment rating for adjectives, the next 

step is to assign the strength of sentiment to each 

phrase (negation-adverb-adjective-noun) ex-

tracted by linguistic analysis, as given by: 

����� 5$�6-
�%�
��
/7 � ��
��
 8
��1�
��
 · ��
�%
 8 ��1�
��
 · ��$�6
       (4) 

165



where ��
��
 represents the rating of adjective 


��, ��
�%
 represents the rating of adverb 
�%, 

and ��$�6
 represents the rating of negation $�6. 

��1�
��
 represents the polarity of 
��, assigned 

as 1 if 
�� is positive, and -1 if negative. Thus, if 


��  is positive, we assign a combined rating 

��
��
 8 ��
�%
 to this phrase. If it is negative, 

we assign ��
��
 2 ��
�%
. Specifically, if it is 

a negation case, we further assign a linear offset 

��$�6
  if 
��  is positive or 2��$�6
  if 
��  is 

negative. For example, given the ratings <good: 

4.5>, <bad: 1.5>, <very: 0.5> and <not: -3.0>, 

we would assign “5.0” to “very good” 

(score(very(good))=4.5+0.5), “1.0” to “very bad” 

(score(very(bad))=1.5-0.5), and “2.0” to “not 

very good” (score(not(very(good)))= 4.5+0.5-

3.0). The corresponding sequence of different 

degrees of sentiment is: “very good: 5.0” > 

“good: 4.5” > “not very good: 2.0” > “bad: 1.5” > 

“very bad: 1.0”. 

6 Experiments 

In this section we present a systematic evaluation 

of the proposed approaches conducted on real 

data. We crawled a data collection of 137,569 

reviews on 24,043 restaurants in 9 cities in the 

U.S. from an online restaurant evaluation web-

site1. Most of the reviews have both pros/cons 

and free-style text. For the purpose of evaluation, 

we take those reviews containing pros/cons as 

the experimental set, which is 72.7% (99,147 re-

views) of the original set.  

6.1 Topic Extraction 

Based on the experimental set, we first filtered 

out-of-domain sentences based on frequency 

count, leaving a set of 857,466 in-domain sen-

tences (67.5%). This set was then subjected to 

parse analysis; 78.6% of them are parsable.  

Given the parsing results in the format of lin-

guistic frame, we used a set of language genera-

tion rules to extract relevant adverb-adjective-

noun phrases. We then selected the most frequent 

6 topics that represented appropriate dimensions 

for the restaurant domain (“place”, “food”, “ser-

vice”, “price”, “atmosphere” and “portion”) as 

the initial set, and clustered the extracted topic 

mentions into different aspect categories by 

creating a set of topic mappings with the LM-

based clustering method. Phrases not belonging 

to any category are filtered out. 

                                                
1
  http://www.citysearch.com 

To evaluate the performance of the proposed 

approach (LING) to topic extraction, we com-

pare it with a baseline method similar to (Hu and 

Liu, 2004a, 2004b; Liu et al., 2005). We per-

formed part-of-speech tagging on both parsable 

and unparsable sentences, extracted each pair of 

noun and adjective that has the smallest proximi-

ty, and filtered out those with low frequency 

counts. Adverbs and negation words that are ad-

jacent to the identified adjectives were also ex-

tracted along with the adjective-noun pairs. We 

call this the “neighbor baseline” (NB).  

The proposed method is unable to make use of 

the non-parsable sentences, which make up over 

20% of the data. Hence, it seems plausible to 

utilize a back-off mechanism for these sentences 

via a combined system (COMB) incorporating 

NB only for the sentences that fail to parse.  

In considering how to construct the “ground 

truth” set of pros and cons for particular aspects, 

our goal was to minimize error as much as possi-

ble without requiring exorbitant amounts of ma-

nual labeling. We also wanted to assure that the 

methods were equally fair to both systems 

(LING and NB). To these ends, we decided to 

pool together all of the topic mappings and sur-

rogate topic hallucinations obtained automatical-

ly from both systems, and then to manually edit 

the resulting list to eliminate any that were 

deemed unreasonable. We then applied these 

edited mappings in an automatic procedure to the 

adjective-noun pairs in the user-provided pros 

and cons of all the restaurant reviews. The result-

ing aspect-categorized phrase lists are taken as 

the ground truth. Each system then used its own 

(unedited) set of mappings in processing the as-

sociated review texts. 

We also needed an algorithm to decide on a 

particular set of reviews for consideration, again, 

with the goal of omitting bias towards either of 

the two systems. We decided to retain as the 

evaluation set all reviews which obtained at least 

one topic extraction from both systems. Thus the 

two systems processed exactly the same data 

with exactly the same definitions of “ground 

truth”. Performance was evaluated on this set of 

62,588 reviews in terms of recall (percentage of 

topics in the ground truth that are also identified 

from the review body) and precision (percentage 

of extracted topics that are also in the ground 

truth). These measures are computed separately 

for each review, and then averaged over all re-

views. 

As shown in Table 2, without clustering, the 

LING approach gets 4.6% higher recall than the 
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NB baseline. And the recall from the COMB ap-

proach is 3.9% higher than that from the LING 

approach and 8.5% higher than that from the NB 

baseline. With topic clustering, the COMB ap-

proach also gets the highest recall, with a 4.9% 

and 17.5% increase from the LING approach and 

the NB baseline respectively. The precision is 

quite close among the different approaches, 

around 60%. Table 2 also shows that the topic 

clustering approach increases the recall by 4.8% 

for the NB baseline, 12.8% for the LING ap-

proach, and 13.8% for the COMB approach.  

Table 2. Experimental results of topic extraction by 

the NB baseline, the proposed LING approach and 

a combined system (COMB). 

 No Clustering 

NB LING COMB 

Recall 39.6% 44.2% 48.1% 

Precision 60.2% 60.0% 59.8% 

 With Clustering 

NB LING COMB 

Recall 44.4% 57.0% 61.9% 

Precision 56.8% 61.1% 60.8% 

6.2 Sentiment Scoring 

To score the degree of sentiment for each ex-

tracted phrase, we built a table of sentiment score 

(<adjective: score>) for adjectives and a table of 

strength score (<adverb: score>) for adverbs. 

The pros/cons often contain short and well-

structured phrases, and have better parsing quali-

ty than the long and complex sentences in free-

style texts; pros/cons also have clear sentiment 

orientations. Thus, we use pros/cons to score the 

sentiment of adjectives, which requires strong 

polarity association. To obtain reliable ratings, 

we associate the adjectives in the “pros” of re-

view entries which have a user rating 4 or 5, and 

associate the adjectives in the “cons” of review 

entries with user ratings 1 or 2 (the scale of user 

rating is 1 to 5). Reviews with rating 3 are on the 

boundary of sentiment, so we associate both 

sides with the overall rating. On the other hand, 

the frequencies of adverbs in free-style texts are 

much higher than those in pros/cons, as 

pros/cons mostly contain adjective-noun patterns. 

Thus, we use free-style texts instead of pros/cons 

to score the strength of adverbs.  

Partial results of the sentiment scoring are 

shown in Tables 3 and 4. As shown in Table 3, 

the polarity of sentiment as well as the degree of 

polarity of an adjective can be distinguished by 

its score. The higher the sentiment score is, the 

more positive the adjective is.  

Table 3. Sentiment scoring for selected adjectives. 

Adjective Rating Adjective Rating 

Excellent  5.0 Awesome  4.8 

Easy  4.1 Great  4.4 

Good  3.9 Limited  3.4 

Inattentive  2.75 Overpriced  2.3 

Rude  1.69 Horrible  1.3 

Table 4 gives the scores of strength for most 

common adverbs. The higher the strength score 

is, the more the adverb scales up/down the de-

gree of sentiment of the adjective it modifies. 

While “not” gets a strong negative score, some 

adverbs such as “a little” (-0.65) and “a bit” (-

0.83) also get negative scores, indicating slightly 

less sentiment for the associated adjectives.  

Table 4. Strength scoring for selected adverbs. 

Adverb Rating Adverb Rating 

Super  0.58 Fairly  0.13 

Extremely  0.54 Pretty 0.07 

Incredibly  0.49 A little  -0.65 

Very 0.44 A bit -0.83 

Really  0.39 Not -3.10 

To evaluate the performance of sentiment 

scoring, we randomly selected a subset of 1,000 

adjective-noun phrases and asked two annotators 

to independently rate the sentiment of each 

phrase on a scale of 1 to 5. We compared the 

sentiment scoring between our system and the 

annotations in a measurement of mean distance: 

��9�
$�� �  �
|:| ∑ |�	;;<: 2 ��;|      (5) 

where �  represents the set of phrases, = 

represents each phrase in the set �, �	; represents 

the rating on phrase = from our sentiment scor-

ing system, and ��; represents the annotated rat-

ing on phrase =. As shown in Table 5, the ob-

tained mean distance between the scoring from 

our approach and that from each annotation set is 

0.46 and 0.43 respectively, based on the absolute 

rating scale from 1 to 5. This shows that the scor-

ing of sentiment from our system is quite close to 

human annotation. The kappa agreement be-

tween the two annotation sets is 0.68, indicating 

high consistency between the annotators. The 

reliability of these results gives us sufficient con-

fidence to make use of the scores of sentiments 

for summarization.  

To examine the prediction of sentiment polari-

ty, for each annotation set, we pooled the phrases 

with rating 4/5 into “positive”, rating 1/2 into 

“negative”, and rating 3 into “neutral”. Then we 

rounded up the sentiment scores from our system 

to integers and pooled the scores into three polar-
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ity sets (“positive”, “negative” and “neutral”) in 

the same way. As shown in Table 5, the obtained 

kappa agreement between the result from our 

system and that from each annotation set is 0.55 

and 0.60 respectively. This shows reasonably 

high agreement on the polarity of sentiment be-

tween our system and human evaluation.  

Table 5. Comparison of sentiment scoring between 

the proposed approach and two annotation sets. 

 Annotation 1 Annotation 2 

Mean distance 0.46 0.43 

Kappa agreement 0.55 0.60 

Table 6. Experimental results of topic extraction 

based on sentiment polarity matching. 

 
No Clustering 

NB LING COMB 

Recall 34.5% 38.9% 42.2% 

Precision 53.8% 54.0% 53.3% 

 
With Clustering 

NB LING COMB 

Recall 37.4% 49.7% 54.1% 

Precision 48.5% 52.9% 51.4% 

To evaluate the combination of topic extrac-

tion and sentiment identification, we repeated the 

topic extraction experiments presented in Table 2, 

but this time requiring as well a correct polarity 

assignment to obtain a match with the pros/cons 

ground truth. As shown in Table 6, the COMB 

approach gets the highest recall both with and 

without topic clustering, and the recall from the 

LING approach is higher than that from the NB 

baseline in both cases as well, indicating the su-

periority of the proposed approach. The precision 

is stable among the different approaches, consis-

tent with the case without the consideration of 

sentiment polarity.  

7 Discussion 

It is surprising that the parse-and-paraphrase me-

thod performs so well, despite the fact that it uti-

lizes less than 80% of the data (parsable set). In 

this section, we will discuss two experiments that 

were done to tease apart the contributions of dif-

ferent variables. In both experiments, we com-

pared the change in relative improvement in re-

call between NB and LING, relative to the values 

in Table 6, in the with-clustering condition. In 

the table, LING obtains a score of 49.7% for re-

call, which is a 33% relative increase from the 

score for NB (37.4%). Three distinct factors 

could play a role in the improvement: the widow-

adjective topic hallucinations, the topic mapping 

for clustering, and the extracted phrases them-

selves. An experiment involving omitting topic 

hallucinations from widow adjectives determined 

that these account for 12% of the relative in-

crease. To evaluate the contribution of clustering, 

we replaced the mapping tables used by both sys-

tems with the edited one used by the ground truth 

computation. Thus, both systems made use of the 

same mapping table, removing this variable from 

consideration. This improved the performance of 

both systems (NB and LING), but resulted in a 

decrease of LING’s relative improvement by 

17%. This implies that LING’s mapping table is 

superior. Since both systems use the same senti-

ment scores for adjectives and adverbs, the re-

mainder of the difference (71%) must be due 

simply to higher quality extracted phrases. 

We suspected that over-generated phrases (the 

40% of phrases that find no mappings in the 

pros/cons) might not really be a problem.  To test 

this hypothesis, we selected 100 reviews for their 

high density of extracted phrases, and manually 

evaluated all the over-generated phrases. We 

found that over 80% were well formed, correct, 

and informative. Therefore, a lower precision 

here does not necessarily mean poor performance, 

but instead shows that the pros/cons provided by 

users are often incomplete. By extracting sum-

maries from review texts we can recover addi-

tional valuable information. 

8 Conclusions & Future Work 

This paper presents a parse-and-paraphrase ap-

proach to assessing the degree of sentiment for 

product reviews. A general purpose context free 

grammar is employed to parse review sentences, 

and semantic understanding methods are devel-

oped to extract representative negation-adverb-

adjective-noun phrases based on well-defined 

semantic rules. A language modeling-based me-

thod is proposed to cluster topics into respective 

categories. We also introduced in this paper a 

cumulative linear offset model for supporting the 

assessment of the strength of sentiment in adjec-

tives and quantifiers/qualifiers (including nega-

tions) on a numerical scale. We demonstrated 

that the parse-and-paraphrase method can per-

form substantially better than a neighbor baseline 

on topic extraction from reviews even with less 

data. The future work focuses in two directions: 

(1) building a relational database from the sum-

maries and ratings and using it to enhance users’ 

experiences in a multimodal spoken dialogue 

system; and (2) applying our techniques to other 

domains to demonstrate generality. 
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Abstract

This work investigates design choices in
modeling a discourse scheme for im-
proving opinion polarity classification.
For this, two diverse global inference
paradigms are used: a supervised collec-
tive classification framework and an un-
supervised optimization framework. Both
approaches perform substantially better
than baseline approaches, establishing the
efficacy of the methods and the underlying
discourse scheme. We also present quan-
titative and qualitative analyses showing
how the improvements are achieved.

1 Introduction

The importance of discourse in opinion analy-
sis is being increasingly recognized (Polanyi and
Zaenen, 2006). Motivated by the need to en-
able discourse-based opinion analysis, previous
research (Asher et al., 2008; Somasundaran et al.,
2008) developed discourse schemes and created
manually annotated corpora. However, it was not
known whether and how well these linguistic ideas
and schemes can be translated into effective com-
putational implementations.

In this paper, we first investigate ways in which
an opinion discourse scheme can be computation-
ally modeled, and then how it can be utilized to
improve polarity classification. Specifically, the
discourse scheme we use is from Somasundaran
et al. (2008), which was developed to support a
global, interdependent polarity interpretation. To
achieve discourse-based global inference, we ex-
plore two different frameworks. The first is a
supervised framework that learns interdependent
opinion interpretations from training data. The
second is an unsupervised optimization frame-
work which uses constraints to express the ideas
of coherent opinion interpretation embodied in the

scheme. For the supervised framework, we use It-
erative Collective Classification (ICA), which fa-
cilitates machine learning using relational infor-
mation. The unsupervised optimization is imple-
mented as an Integer Linear Programming (ILP)
problem. Via our implementations, we aim to
empirically test if discourse-based approaches to
opinion analysis are useful.

Our results show that both of our implemen-
tations achieve significantly better accuracies in
polarity classification than classifiers using local
information alone. This confirms the hypothesis
that the discourse-based scheme is useful, and also
shows that both of our design choices are effective.
We also find that there is a difference in the way
ICA and ILP achieve improvements, and a simple
hybrid approach, which incorporates the strengths
of both, is able to achieve significant overall im-
provements over both. Our analyses show that
even when our discourse-based methods bootstrap
from noisy classifications, they can achieve good
improvements.

The rest of this paper is organized as follows:
we discuss related work in Section 2 and the
discourse scheme in Section 3. We present our
discourse-based implementations in Section 4, ex-
periments in Section 5, discussions in Section 6
and conclusions in Section 7.

2 Related Work

Previous work on polarity disambiguation has
used contextual clues and reversal words (Wil-
son et al., 2005; Kennedy and Inkpen, 2006;
Kanayama and Nasukawa, 2006; Devitt and Ah-
mad, 2007; Sadamitsu et al., 2008). However,
these do not capture discourse-level relations.

Researchers, such as (Polanyi and Zaenen,
2006), have discussed how the discourse struc-
ture can influence opinion interpretation; and pre-
vious work, such as (Asher et al., 2008; Soma-
sundaran et al., 2008), have developed annota-
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tion schemes for interpreting opinions with dis-
course relations. However, they do not empiri-
cally demonstrate how automatic methods can use
their ideas to improve polarity classification. In
this work, we demonstrate concrete ways in which
a discourse-based scheme can be modeled using
global inference paradigms.

Joint models have been previously explored for
other NLP problems (Haghighi et al., 2005; Mos-
chitti et al., 2006; Moschitti, 2009). Our global in-
ference model focuses on opinion polarity recog-
nition task.

The biggest difference between this work and
previous work in opinion analysis that use global
inference methods is in the type of linguistic
relations used to achieve the global inference.
Some of the work is not related to discourse
at all (e.g., lexical similarities (Takamura et al.,
2007), morphosyntactic similarities (Popescu and
Etzioni, 2005) and word-based measures like TF-
IDF (Goldberg and Zhu, 2006)). Others use
sentence cohesion (Pang and Lee, 2004), agree-
ment/disagreement between speakers (Thomas et
al., 2006; Bansal et al., 2008), or structural adja-
cency. In contrast, our work focuses on discourse-
based relations for global inference. Another dif-
ference from the above work is that our work is
over multi-party conversations.

Previous work on emotion and subjectivity
detection in multi-party conversations has ex-
plored using prosodic information (Neiberg et al.,
2006), combining linguistic and acoustic infor-
mation (Raaijmakers et al., 2008) and combining
lexical and dialog information (Somasundaran et
al., 2007). Our work is focused on harnessing
discourse-based knowledge and on interdependent
inference.

There are several collective classification
frameworks, including (Neville and Jensen, 2000;
Lu and Getoor, 2003; Taskar et al., 2004; Richard-
son and Domingos, 2006; Bilgic et al., 2007). In
this paper, we use an approach by (Lu and Getoor,
2003) which iteratively predicts class values using
local and relational features. ILP has been used
on other NLP tasks, e.g., (Denis and Baldridge,
2007; Choi et al., 2006; Roth and Yih, 2004). In
this work, we employ ILP for modeling discourse
constraints for polarity classification.

3 Discourse Scheme and Data

The scheme in Somasundaran et al. (2008) has
been developed and annotated over the AMI meet-
ing corpus (Carletta et al., 2005).1 This scheme
annotates opinions, their polarities (positive, neg-
ative, neutral) and their targets (a target is what
the opinion is about). The targets of opinions are
related via two types of relations: the same rela-
tion, which relates targets referring to the same
entity or proposition, and the alternative relation,
which relates targets referring to mutually exclu-
sive options in the context of the discourse. Ad-
ditionally, the scheme relates opinions via two
types of frame relations: the reinforcing and non-
reinforcing relations. The frame relations repre-
sent discourse scenarios: reinforcing relations ex-
ist between opinions when they contribute to the
same overall stance, while non-reinforcing rela-
tions exist between opinions that show ambiva-
lence.

The opinion annotations are text-span based,
while in this work, we use Dialog Act (DA) based
segmentation of meetings.2 As the DAs are our
units of classification, we map opinion annotations
to the DA units as follows. If a DA unit contains
an opinion annotation, the label is transferred up-
wards to the containing DA. When a DA contains
multiple opinion annotations, each with a differ-
ent polarity, one of them is randomly chosen as
the label for the DA. The discourse relations exist-
ing between opinions are also transferred upwards,
between the DAs containing each of these anno-
tations. We recreate an example from Somasun-
daran et al. (2008) using DA segmentation in Ex-
ample 1. Here, the speaker has a positive opinion
towards the rubbery material for the TV remote.

(1) DA-1: ... this kind of rubbery material,
DA-2: it’s a bit more bouncy,
DA-3: like you said they get chucked around a lot.
DA-4: A bit more durable and that can also be er-
gonomic and
DA-5: it kind of feels a bit different from all the
other remote controls.

In the example, the individual opinion expressions
(shown in bold) are essentially regarding the same
thing – the rubbery material. Thus, the explicit
targets (shown in italics), it’s, that, and it, and the
implicit target of a bit more durable are all linked

1The AMI corpus contains a set of scenario-based meet-
ings where participants have to design a new TV remote pro-
totype.

2DA segmentation is provided with the AMI corpus.
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Figure 1: Discourse Relations between DA seg-
ments for Example 1.

with same target relations. Also, notice that the
opinions reinforce a particular stance, i.e., a pro-
rubbery-material stance. Thus, the scheme links
the opinions via reinforcing relations. Figure 1 il-
lustrates the corresponding discourse relations be-
tween the containing DA units.

4 Implementing the Discourse Model

The hypothesis in using discourse information for
polarity classification is that the global discourse
view will improve upon a classification with only
a local view. Thus, we implement a local clas-
sifier to bootstrap the classification process, and
then implement classifiers that use discourse in-
formation from the scheme annotations, over it.
We explore two approaches for implementing our
discourse-based classifier. The first is ICA, where
discourse relations and the neighborhood informa-
tion brought in by these relations are incorporated
as features into the learner. The second approach
is ILP optimization, which tries to maximize the
class distributions predicted by the local classifier,
subject to constraints imposed by discourse rela-
tions. Both classifiers thus accommodate prefer-
ences of the local classifier and for coherence with
discourse neighbors.

4.1 Local Classifier

A supervised local classifier, Local, is used to pro-
vide the classifications to bootstrap the discourse-
based classifiers.3 It is important to make Local as
reliable as possible; otherwise, the discourse rela-
tions will propagate misclassifications. Thus, we
build Local using a variety of knowledge sources
that have been shown to be useful for opinion anal-
ysis in previous work. Specifically, we construct
features using polarity lexicons (used by (Wilson
et al., 2005)), DA tags (used by (Somasundaran

3Local is supervised, as previous work has shown that
supervised methods are effective in opinion analysis. Even
though this makes the final end-to-end system with the ILP
implementation semi-supervised, note that the discourse-
based ILP part is itself unsupervised.

et al., 2007)) and unigrams (used by many re-
searchers, e.g., (Pang and Lee, 2004)).

Note that, as our discourse-based classifiers at-
tempt to improve upon the local classifications,
Local is also a baseline for our experiments.

4.2 Iterative Collective Classification
We use a variant of ICA (Lu and Getoor, 2003;
Neville and Jensen, 2000), which is a collective
classification algorithm shown to perform consis-
tently well over a wide variety of relational data.

Algorithm 1 ICA Algorithm
for each instance i do {bootstrapping}

Compute polarity for i using local attributes
end for
repeat {iterative}

Generate ordering I over all instances
for each i in I do

Compute polarity for i using local and re-
lational attributes

end for
until Stopping criterion is met

ICA uses two classifiers: a local classifier and a
relational classifier. The local classifier is trained
to predict the DA labels using only the local fea-
tures. We use Local, described in Section 4.1, for
this purpose. The relational classifier is trained us-
ing the local features, and an additional set of fea-
tures commonly referred to as relational features.
The value of a relational feature, for a given DA,
depends on the polarity of the discourse neighbors
of that DA. Thus, the relational features incorpo-
rate discourse and neighbor information; that is,
they incorporate the information about the frame
and target relations in conjunction with the polar-
ity of the discourse neighbors. Intuitively, our mo-
tivation for this approach can be explained using
Example 1. Here, in interpreting the ambiguous
opinion a bit different as being positive, we use
the knowledge that it participates in a reinforc-
ing discourse, and that all its neighbors (e.g., er-
gonomic, durable) are positive opinions regard-
ing the same thing. On the other hand, if it had
been a non-reinforcing discourse, then the polar-
ity of a bit different, when viewed with respect to
the other opinions, could have been interpreted as
negative.

Table 1 lists the relational features we defined
for our experiments where each row represents a
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Percent of neighbors with polarity type a related via frame relation f ′

Percent of neighbors with polarity type a related via target relation t′

Percent of neighbors with polarity type a related via frame relation f and target relation t
Percent of neighbors with polarity type a and same speaker related via frame relation f ′

Percent of neighbors with polarity type a and same speaker related via target relation t′

Percent of neighbors with polarity type a related via a frame relation or target relation
Percent of neighbors with polarity type a related via a reinforcing frame relation or same target relation
Percent of neighbors with polarity type a related via a non-reinforcing frame relation or alt target relation
Most common polarity type of neighbors related via a same target relation
Most common polarity type of neighbors related via a reinforcing frame relation and same target relation

Table 1: Relational features: a ∈ {non-neutral (i.e., positive or negative), positive, negative}, t ∈ {same, alt},
f ∈ {reinforcing, non-reinforcing}, t′ ∈ {same or alt, same, alt}, f ′ ∈ {reinforcing or non-reinforcing, reinforcing, non-
reinforcing}

set of features. Features are generated for all com-
binations of a, t, t′, f and f ′ for each row. For
example, one of the features in the first row is Per-
cent of neighbors with polarity type positive, that
are related via a reinforcing frame relation. Thus,
each feature for the relational classifier identifies
neighbors for a given instance via a specific rela-
tion (f , t, f ′ or t′, obtained from the scheme an-
notations) and factors in their polarity values (a,
obtained from the classifier predictions from the
previous round). This adds a total of 59 relational
features to the already existing local features.

ICA has two main phases: the bootstrapping
and iterative phases. In the bootstrapping phase,
the polarity of each instance is initialized to the
most likely value given only the local classifier
and its features. In the iterative phase, we cre-
ate a random ordering of all the instances and,
in turn, apply the relational classifier to each in-
stance where the relational features, for a given
instance, are computed using the most recent po-
larity assignments of its neighbors. We repeat this
until some stopping criterion is met. For our ex-
periments, we use a fixed number of 30 iterations,
which has been found to be sufficient in most data
sets for ICA to converge to a solution.

The pseudocode for the algorithm is shown in
Algorithm 1.

4.3 Integer Linear Programming

First, we explain the intuition behind viewing dis-
course relations as enforcing constraints on polar-
ity interpretation. Then, we explain how the con-
straints are encoded in the optimization problem.

4.3.1 Discourse Constraints on Polarity
The discourse relations between opinions can pro-
vide coherence constraints on the way their polar-
ity is interpreted. Consider a discourse scenario
in which a speaker expresses multiple opinions

regarding the same thing, and is reinforcing his
stance in the process (as in Example 1). The set
of individual polarity assignments that is most co-
herent with this global scenario is the one where
all the opinions have the same (equal) polarity. On
the other hand, a pair of individual polarity assign-
ments most consistent with a discourse scenario
where a speaker reinforces his stance via opinions
towards alternative options, is one with opinions
having mutually opposite polarity. For instance,
in the utterance “Shapes should be curved, noth-
ing square-like”, the speaker reinforces his pro-
curved stance via his opinions about the alternative
shapes: curved and square-like. And, we see that
the first opinion is positive and the second is neg-
ative. Table 2 lists the discourse relations (target
and frame relation combinations) found in the cor-
pus, and the likely polarity interpretation for the
related instances.

Target relation + Frame relation Polarity
same+reinforcing equal (e)
same+non-reinforcing opposite (o)
alternative+reinforcing opposite (o)
alternative+non-reinforcing equal (e)

Table 2: Discourse relations and their polarity con-
straints on the related instances.

4.3.2 Optimization Problem
For each DA instance i in a dataset, the local
classifier provides a class distribution [pi, qi, ri],
where pi, qi and ri correspond to the probabilities
that i belongs to positive, negative and neutral cat-
egories, respectively. The optimization problem is
formulated as an ILP minimization of the objec-
tive function in Equation 1.

−1×
∑

i

(pixi+qiyi+rizi)+
∑
i,j

εij +
∑
i,j

δij (1)
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where the xi, yi and zi are binary class vari-
ables corresponding to positive, negative and neu-
tral classes, respectively. When a class variable
is 1, the corresponding class is chosen. Variables
εij and δij are binary slack variables that corre-
spond to the discourse constraints between two
distinct DA instances i and j. When a given slack
variable is 1, the corresponding discourse con-
straint is violated. Note that the objective func-
tion tries to achieve two goals. The first part
(
∑

i pixi + qiyi + rizi) is a maximization that tries
to choose a classification for the instances that
maximizes the probabilities provided by the local
classifier. The second part (

∑
i,j εij +

∑
i,j δij) is a

minimization that tries to minimize the number of
slack variables used, that is, minimize the number
of discourse constraints violated.

Constraints in Equations 2 and 3 listed below
impose binary constraints on the variables. The
constraint in Equation 4 ensures that, for each in-
stance i, only one class variable is set to 1.

xi ∈ {0, 1}, yi ∈ {0, 1}, zi ∈ {0, 1} , ∀i (2)

εij ∈ {0, 1}, δij ∈ {0, 1} , ∀i 6= j (3)

xi + yi + zi = 1 , ∀i (4)

We pair distinct DA instances i and j as ij,
and if there exists a discourse relation between
them, they can be subject to the corresponding po-
larity constraints listed in Table 2. For this, we
define two binary discourse-constraint constants:
the equal-polarity constant, eij and the opposite-
polarity constant, oij . If a given DA pair ij is
related by either a same+reinforcing relation or
an alternative+non-reinforcing relation (rows 1, 4
of Table 2), then eij = 1; otherwise it is zero.
Similarly, if it is related by either a same+non-
reinforcing relation or an alternative+reinforcing
relation (rows 2, 3 of Table 2), then oij = 1. Both
eij and oij are zero if the instance pair is unrelated
in the discourse.

For each DA instance pair ij, equal-polarity
constraints are applied to the polarity variables of i
(xi, yi) and j (xj , yj) via the following equations:

|xi − xj | ≤ 1− eij + εij , ∀i 6= j (5)

|yi − yj | ≤ 1− eij + εij , ∀i 6= j (6)

−(xi + yi) ≤ −li , ∀i (7)

When eij = 1, the Equation 5 constrains xi and
xj to be of the same value (both zero or both one).
Similarly, Equation 6 constrains yi and yj to be

of the same value. Via these equations, we ensure
that the instances i and j do not have the oppo-
site polarity when eij = 1. However, notice that,
if we use just Equations 5 and 6, the optimization
can converge to the same, non-polar (neutral) cat-
egory. To guide the convergence to the same polar
(positive or negative) category, we use Equation 7.
Here li = 1 if the instance i participates in one or
more discourse relations. When eij = 0, xi and xj

(and yi and yj), can take on assignments indepen-
dently of one another. Notice that both constraints
5 and 6 are relaxed when εij = 1; thus, xi and xj

(or yi and yj) can take on values independently of
one another, even if eij = 1.

Next, the opposite-polarity constraints are ap-
plied via the following equations:

|xi + xj − 1| ≤ 1− oij + δij , ∀i 6= j (8)

|yi + yj − 1| ≤ 1− oij + δij , ∀i 6= j (9)

In the above equations, when oij = 1, xi and xj

(and yi and yj) take on opposite values; for exam-
ple, if xi = 1 then xj = 0 and vice versa. When
oij = 0, the variable assignments are independent
of one another. This set of constraints is relaxed
when δij = 1.

In general, in our ILP formulation, notice that
if an instance does not have a discourse relation to
any other instance in the data, its classification is
unaffected by the optimization. Also, as the un-
derlying discourse scheme poses constraints only
on the interpretation of the polarity of the related
instances, discourse constraints are applied only to
the polarity variables x and y, and not to the neu-
tral class variable, z. Finally, even though slack
variables are used, we discourage the ILP system
from indiscriminately setting the slack variables to
1 by making them a part of the objective function
that is minimized.

5 Experiments

In this work, we are particularly interested in
improvements due to discourse-based methods.
Thus, we report performance under three con-
ditions: over only those instances that are re-
lated via discourse relations (Connected), over in-
stances not related via discourse relations (Single-
tons), and over all instances (All).

The annotated data consists of 7 scenario-based,
multi-party meetings from the AMI meeting cor-
pus. We filter out very small DAs (DAs with fewer
than 3 tokens, punctuation included). This gives
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us a total of 4606 DA instances, of which 1935
(42%) have opinion annotations. For our exper-
iments, the DAs with no opinion annotations as
well as those with neutral opinions are considered
as neutral. Table 3 shows the class distributions in
the data for the three conditions.

Pos Neg Neutral Total
Connected 643 343 81 1067
Singleton 553 233 2753 3539
All 1196 576 2834 4606

Table 3: Class distribution over connected, single
and all instances.

5.1 Classifiers
Our first baseline, Base, is a simple distribution-
based classifier that classifies the test data based
on the overall distribution of the classes in the
training data. However, in Table 3, the class distri-
bution is different for the Connected and Single-
ton conditions. We incorporate this in a smarter
baseline, Base-2, which constructs separate dis-
tributions for connected instances and singletons.
Thus, given a test instance, depending on whether
it is connected, Base-2 uses the corresponding dis-
tribution to make its prediction.

The third baseline is the supervised classifier,
Local, described in Section 4.1. It is imple-
mented using the SVM classifiers from the Weka
toolkit (Witten and Frank, 2002).4 Our super-
vised discourse-based classifier, ICA from Sec-
tion 4.2, also uses a similar SVM implemen-
tation for its relational classifier. We imple-
ment our ILP approach from Section 4.3 us-
ing the optimization toolbox from Mathworks
(http://www.mathworks.com) and GNU Linear
Programming Kit.

We observed that the ILP system performs bet-
ter than the ICA system on instances that are con-
nected, while ICA performs better on singletons.
Thus, we also implemented a simple hybrid clas-
sifier (HYB), which selects the ICA prediction for
classification of singletons and the ILP prediction
for classification of connected instances.

5.2 Results
We performed 7-fold cross validation experi-
ments, where six meetings are used for training

4We use the SMO implementation, which, when used
with the logistic regression, has an output that can be viewed
as a posterior probability distribution.

and the seventh is used for testing the supervised
classifiers (Base, Base-2, Local and ICA). In the
case of ILP, the optimization is applied to the out-
put of Local for each test fold. Table 4 reports the
accuracies of the classifiers, averaged over 7 folds.

First, we observe that Base performs poorly
over connected instances, but performs consider-
ably better over singletons. This is expected as the
overall majority class is neutral and the singletons
are more likely to be neutral. Base-2, which incor-
porates the differentiated distributions, performs
substantially better than Base. Local achieves an
overall performance improvement over Base and
Base-2 by 23 percentage points and 9 percent-
age points, respectively. In general, Local outper-
forms Base for all three conditions (p < 0.001),
and Base-2 for the Singleton and All conditions
(p < 0.001). This overall improvement in Local’s
accuracy corroborates the utility of the lexical, un-
igram and DA based features for polarity detection
in this corpus.

Turning to the discourse-based classifiers, ICA,
ILP and HYB, all of these perform better than
Base and Base-2 for all conditions. ICA improves
over Local by 9 percentage points for Connected,
3 points for Singleton and 4 points for All. ILP’s
improvement over Local for Connected and All is
even more substantial: 28 percentage points and
6 points, respectively. Notice that ILP has the
same performance as Local for Singletons, as the
discourse constraints are not applied over uncon-
nected instances. Finally, HYB significantly out-
performs Local under all conditions. The signif-
icance levels of the improvements over Local are
highlighted in Table 4. These improvements also
signify that the underlying discourse scheme is
effective, and adaptable to different implementa-
tions.

Interestingly, ICA and ILP improve over Local
in different ways. While ILP sharply improves the
performance over the connected instances, ICA
shows relatively modest improvements over both
connected and singletons. ICA’s improvement
over singletons is interesting because it indicates
that, even though the features in Table 1 are fo-
cused on discourse relations, ICA utilizes them to
learn the classification of singletons too.

Comparing our discourse-based approaches,
ILP does significantly better than ICA over con-
nected instances (p < 0.001), while ICA does
significantly better than ILP over singletons (p <

175



Base Base-2 Local ICA ILP HYB
Connected 24.4 47.56 46.66 55.64 75.07 75.07
Singleton 51.72 63.23 75.73 78.72 75.73 78.72
All 45.34 59.46 68.72 73.31 75.35 77.72

Table 4: Accuracies of the classifiers measured over Connected, Singleton and All instances. Perfor-
mance significantly better than Local are indicated in bold for p < 0.001 and underline for p < 0.01.

0.01). However, there is no significant difference
between ICA and ILP for the All condition. The
HYB classifier outperforms ILP for the Singleton
condition (p < 0.01) and ICA for the Connected
condition (p < 0.001). Interestingly, over all in-
stances (the All condition), HYB also performs
significantly better than both ICA (p < 0.001) and
ILP (p < 0.01).

5.3 Analysis

Amongst our two approaches, ILP performs bet-
ter, and hence we further analyze its behavior to
understand how the improvements are achieved.
Table 5 reports the performance of ILP and Local
for the precision, recall and f-measure metrics (av-
eraged over 7 test folds), measured separately for
each of the opinion categories. The most promi-
nent improvement by ILP is observed for the re-
call of the polar categories under the Connected
condition: 40 percentage points for the positive
class, and 29 percentage points for the negative
class. The gain in recall is not accompanied by
a significant loss in precision. This results in an
improvement in f-measure for the polar categories
(24 points for positive and 16 points for negative).
Also note that, by virtue of the constraint in Equa-
tion 7, ILP does not classify any connected in-
stance as neutral; thus the precision is NaN, recall
is 0 and the f-meaure is NaN. This is indicated as
* in the Table.

The improvement of ILP for the All condition,
for the polar classes, follows a similar trend for re-
call (18 to 21 point improvement) and f-measure
(9 to 13 point improvement). In addition to this,
the ILP has an overall improvement in precision
over Local. This may seem counterintuitive, as
in Table 5, ILP’s precision for connected nodes is
similar to, or lower than, that of Local. This is
explained by the fact that, while going from con-
nected to overall conditions, Local’s polar predic-
tions increase by threefold (565 to 1482), but its
correct polar predictions increase by only twofold
(430 to 801). Thus, the ratio of change in the total

Gold Local
Pos Neg Neut Total

Pos 551 113 532 1196
Neg 121 250 205 576
Neut 312 135 2387 2834
Total 984 498 3124 4606
Gold ILP

Pos Neg Neut Total
Pos 817 157 222 1196
Neg 147 358 71 576
Neut 358 147 2329 2834
Total 1322 662 2622 4606

Table 6: Contingency table over all instances.

polar predictions to the correct polar predictions is
3 : 2. On the other hand, while polar predictions
by ILP increase by only twofold (1067 to 1984),
its correct polar predictions increase by 1.5 times
(804 to 1175). Here, the ratio of change in the total
polar predictions to the correct polar predictions is
4 : 3, a smaller ratio.

The contingency table (Table 6) shows how Lo-
cal and ILP compare against the gold standard
annotations. Notice here, that even though ILP
makes more polar guesses as compared to Local, a
greater proportion of the ILP guesses are correct.
The number of non-diagonal elements are much
smaller for ILP, resulting in the accuracy improve-
ments seen in Table 4.

6 Examples and Discussion

The results in Table 4 show that Local, which pro-
vides the classifications for bootstrapping ICA and
ILP, predicts an incorrect class for more than 50%
of the connected instances. Methods starting with
noisy starting points are in danger of propagating
the errors and hence worsening the performance.
Interestingly, in spite of starting with so many bad
classifications, ILP is able to achieve a large per-
formance improvement. We discovered that, given
a set of connected instances, even when Local has
only one correct guess, ILP is able to use this to
rectify the related instances. We illustrate this situ-
ation in Figure 2, which reproduces the connected
DAs for Example 1. It shows the classifications
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Positive Negative Neutral
Local ILP Local ILP Local ILP

Connected-Prec 78.1 78.2 71.9 69.8 12.1
Connected-Recall 45.3 86.3 44.1 73.4 62.8 *
Connected-F1 56.8 81.5 54.0 70.7 18.5
All-Prec 56.2 61.3 52.3 54.6 76.3 88.3
All-Recall 46.6 67.7 44.3 62.5 83.9 81.5
All-F1 50.4 64.0 46.0 57.1 79.6 84.6

Table 5: Precision, Recall, Fmeasure for each Polarity category. Performance significantly better than
Local are indicated in bold (p < 0.001), underline (p < 0.01) and italics (p < 0.05). The * denotes that
ILP does not retrieve any connected node as neutral.

Figure 2: Discourse Relations and Classifications
for Example 1.

for each DA from the gold standard (G), the Local
classifier (L) and the ILP classifier (ILP). Observe
that Local predicts the correct positive class (+) for
only DA-4 (the DA containing bit more durable
and ergonomic). Notice that these are clear cases
of positive evaluation. It incorrectly predicts the
polarity of DA-2 (containing bit more bouncy)
as neutral (*), and DA-5 (containing a bit dif-
ferent from all the other remote controls) as
negative (-). DA-2 and DA-5 exemplify the fact
that polarity classification is a complex and diffi-
cult problem: being bouncy is a positive evalua-
tion in this particular discourse context, and may
not be so elsewhere. Thus, naturally, lexicons and
unigram-based learning would fail to capture this
positive evaluation. Similarly, “being different”
could be deemed negative in other discourse con-
texts. However, ILP is able to arrive at the correct
predictions for all the instances. As the DA-4 is
connected to both DA-2 and DA-5 via a discourse
relation that enforces an equal-polarity constraint
(same+reinforcing relation of row 1, Table 2), both
of the misclassifications are rectified. Presumably,
the incorrect predictions made by Local are low
confidence estimates, while the predictions of the
correct cases have high confidence, which makes
it possible for ILP to make the corrections.

We also observed the propagation of the correct
classification for other types of discourse relations,

for more complex types of connectivity, and also
for conditions where an instance is not directly
connected to the correctly predicted instance. The
meeting snippet below (Example 2) and its cor-
responding DA relations (Figure 3) illustrate this.
This example is a reinforcing discourse where the
speaker is arguing for the number keypad, which is
an alternative to the scrolling option. Thus, he ar-
gues against the scrolling, and argues for entering
the number (which is a capability of the number
keypad).

(2) D-1: I reckon you’re gonna have to have a num-
ber keypad anyway for the amount of channels these
days,
D-2: You wouldn’t want to just have to scroll
through all the channels to get to the one you want
D-3: You wanna enter just the number of it , if you
know it
D-4: I reckon we’re gonna have to have a number
keypad anyway

In Figure 3, we see that, DA-2 is connected via an
alternative+reinforcing discourse relation to each
of its neighbors DA-1 and DA-3, which encour-
ages the optimization to choose a class for it that
is opposite to DA-1 and DA-3. Notice also, that
even though Local predicts only DA-4 correctly,
this correct classification finally influences the cor-
rect choice for all the instances, including the re-
motely connected DA-2.

7 Conclusions and Future Work

This work focuses on the first step to ascertain
whether discourse relations are useful for improv-
ing opinion polarity classification, whether they
can be modeled and what modeling choices can
be used. To this end, we explored two distinct
paradigms: the supervised ICA and the unsuper-
vised ILP. We showed that both of our approaches
are effective in exploiting discourse relations to
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Figure 3: Discourse Relations and Classifications for Example 2.

significantly improve polarity classification. We
found that there is a difference in how ICA and
ILP achieve improvements, and that combining
the two in a hybrid approach can lead to further
overall improvement. Quantitatively, we showed
that our approach is able to achieve a large in-
crease in recall of the polar categories without
harming the precision, which results in the perfor-
mance improvements. Qualitatively, we illustrated
how, even if the bootstrapping process is noisy,
the optimization and discourse constraints effec-
tively rectify the misclassifications. The improve-
ments of our diverse global inference approaches
indicate that discourse information can be adapted
in different ways to augment and improve existing
opinion analysis techniques.

The automation of the discourse-relation recog-
nition is the next step in this research. The be-
havior of ICA and ILP can change, depending on
the automation of discourse level recognition. The
implementation and comparison of the two meth-
ods under full automation is the focus of our future
work.
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Abstract 

This paper studies sentiment analysis of condi-
tional sentences. The aim is to determine 
whether opinions expressed on different topics 
in a conditional sentence are positive, negative 
or neutral. Conditional sentences are one of the 
commonly used language constructs in text. In 
a typical document, there are around 8% of 
such sentences. Due to the condition clause, 
sentiments expressed in a conditional sentence 
can be hard to determine. For example, in the 
sentence, if your Nokia phone is not good, buy 
this great Samsung phone, the author is posi-
tive about “Samsung phone” but does not ex-
press an opinion on “Nokia phone” (although 
the owner of the “Nokia phone” may be nega-
tive about it). However, if the sentence does 
not have “if”, the first clause is clearly nega-
tive. Although “if” commonly signifies a con-
ditional sentence, there are many other words 
and constructs that can express conditions. 
This paper first presents a linguistic analysis of 
such sentences, and then builds some super-
vised learning models to determine if senti-
ments expressed on different topics in a condi-
tional sentence are positive, negative or neu-
tral. Experimental results on conditional sen-
tences from 5 diverse domains are given to 
demonstrate the effectiveness of the proposed 
approach. 

1 Introduction  

Sentiment analysis (also called opinion mining) 
has been an active research area in recent years. 
There are many research directions, e.g., senti-
ment classification (classifying an opinion doc-
ument as positive or negative) (e.g., Pang, Lee 
and Vaithyanathan, 2002; Turney, 2002), subjec-
tivity classification (determining whether a sen-
tence is subjective or objective, and its associated 
opinion) (Wiebe and Wilson, 2002; Yu and Hat-
zivassiloglou, 2003; Wilson et al, 2004; Kim and 

Hovy, 2004; Riloff and Wiebe, 2005), fea-
ture/topic-based sentiment analysis (assigning 
positive or negative sentiments to topics or prod-
uct features) (Hu and Liu 2004; Popescu and Et-
zioni, 2005; Carenini et al., 2005; Ku et al., 
2006; Kobayashi, Inui and Matsumoto, 2007; 
Titov and McDonald. 2008). Formal definitions 
of different aspects of the sentiment analysis 
problem and discussions of major research direc-
tions and algorithms can be found in (Liu, 2006; 
Liu, 2009). A comprehensive survey of the field 
can be found in (Pang and Lee, 2008).  

Our work is in the area of topic/feature-based 
sentiment analysis or opinion mining (Hu and 
Liu, 2004). The existing research focuses on 
solving the general problem. However, we argue 
that it is unlikely to have a one-technique-fit-all 
solution because different types of sentences ex-
press sentiments/opinions in different ways. A 
divide-and-conquer approach is needed, e.g., fo-
cused studies on different types of sentences. 
This paper focuses on one type of sentences, i.e., 
conditional sentences, which have some unique 
characteristics that make it hard to determine the 
orientation of sentiments on topics/features in 
such sentences. By sentiment orientation, we 
mean positive, negative or neutral opinions. By 
topic, we mean the target on which an opinion 
has been expressed. In the product domain, a top-
ic is usually a product feature (i.e., a component 
or attribute). For example, in the sentence, I do 
not like the sound quality, but love the design of 
this MP3 player, the product features (topics) are 
“sound quality” and “design” of the MP3 player 
as opinions have been expressed on them. The 
sentiment is positive on “design” but negative on 
“sound quality”.  

Conditional sentences are sentences that de-
scribe implications or hypothetical situations and 
their consequences. In the English language, a 
variety of conditional connectives can be used to 
form these sentences. A conditional sentence 
contains two clauses: the condition clause and 

*  This work was done when Bing Liu was on sabbatical 
leave at Northwestern University. 
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the consequent clause, that are dependent on 
each other. Their relationship has significant im-
plications on whether the sentence describes an 
opinion. One simple observation is that senti-
ment words (also known as opinion words) (e.g., 
great, beautiful, bad) alone cannot distinguish an 
opinion sentence from a non-opinion one. A 
conditional sentence may contain many senti-
ment words or phrases, but express no opinion.  

Example 1: If someone makes a beautiful and 
reliable car, I will buy it expresses no sentiment 
towards any particular car, although “beautiful” 
and “reliable” are positive sentiment words.  

This, however, does not mean that a condition-
al sentence cannot express opinions/sentiments.  

Example 2: If your Nokia phone is not good, 
buy this great Samsung phone is positive about 
the “Samsung phone” but does not express an 
opinion on the “Nokia phone” (although the 
owner of the “Nokia phone” may be negative 
about it). Clearly, if the sentence does not have 
“if”, the first clause is negative. Hence, a method 
for determining sentiments in normal sentences 
will not work for conditional sentences. The ex-
amples below further illustrate the point.  

In many cases, both the condition and conse-
quent together determine the opinion. 

Example 3: If you are looking for a phone 
with good voice quality, don’t buy this Nokia 
phone is negative about the “voice quality” of the 
“Nokia phone”, although there is a positive sen-
timent word “good” in the conditional clause 
modifying “voice quality”. However, in the fol-
lowing example, the opinion is just the opposite.    

Example 4: If you want a phone with good 
voice quality, buy this Nokia phone is positive 
about the “voice quality” of the “Nokia phone”.  

As we can see, sentiment analysis of condi-
tional sentences is a challenging problem.  

One may ask whether there is a large percen-
tage of conditional sentences to warrant a fo-
cused study. Indeed, there is a fairly large pro-
portion of such sentences in evaluative text. They 
can have a major impact on the sentiment analy-
sis accuracy. Table 1 shows the percentage of 
conditional sentences (sentences containing the 
words if, unless, assuming, etc) and also the total 

number of sentences from which we computed 
the percentage in several user-forums. The fig-
ures definitely suggest that there is considerable 
benefit to be gained by developing techniques 
that can analyze conditional sentences. 

To the best of our knowledge, there is no fo-
cused study on conditional sentences. This paper 
makes such an attempt. Specifically, we deter-
mine whether a conditional sentence (which is 
also called a conditional in the linguistic litera-
ture) expresses positive, negative or neutral opi-
nions on some topics/features. Since our focus is 
on studying how conditions and consequents af-
fect sentiments, we assume that topics are given, 
which are product attributes since our data sets 
are user comments on different products.  

Our study is conducted from two perspectives. 
We start with the linguistic angle to gain a good 
understanding of existing work on different types 
of conditionals. As conditionals can be expressed 
with other words or phrases than if, we will study 
how they behave compared to if. We will also 
show that the distribution of these conditionals 
based on our data sets.  

With the linguistic knowledge, we perform a 
computational study using machine learning. A 
set of features for learning is designed to capture 
the essential determining information. Note that 
the features here are data attributes used in learn-
ing rather than product attributes or features. 
Three classification strategies are designed to 
study how to best perform the classification task 
due to the complex situation of two clauses and 
their interactions in conditional sentences. These 
three classification strategies are clause-based, 
consequent-based and whole-sentence-based. 
Clause-based classification classifies each clause 
separately and then combines their results. Con-
sequent-based classification only uses conse-
quents for classification as it is observed that in 
conditional sentences, it is often the consequents 
that decide the opinion. Whole-sentence-based 
classification treats the entire sentence as a whole 
in classification. Experimental results on condi-
tional sentences from diverse domains demon-
strate the effectiveness of these classification 
models. The results indicate that the whole-
sentence-based classifier performs the best.  

Since this paper only studies conditional sen-
tences, a natural question is whether the pro-
posed technique can be easily integrated into an 
overall sentiment analysis or opinion mining sys-
tem. The answer is yes because a large propor-
tion of conditional sentences can be detected us-
ing conditional connectives. Keyword search is 

Table 1: Percent of conditional sentences  

Source % of cond. (total #. of sent.)  
Cellphone 8.6 (47711) 
Automobile 5.0 (8113) 
LCD TV 9.92 (258078) 
Audio Systems 8.1 (5702) 
Medicine 8.29 (160259) 
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thus sufficient to identify such sentences for spe-
cial handling using the proposed approach. There 
are, however, some subtle conditionals which do 
not use normal conditional connectives and will 
need an additional module to identify them, but 
such sentences are very rare as Table 2 indicates. 

2 The Problem Statement  

The paper follows the feature-based sentiment 
analysis model in (Hu and Liu 2004; Popescu 
and Etzioni, 2005). We are particularly interested 
in sentiments on products and services, which are 
called objects or entities. Each object is de-
scribed by its parts and attributes, which are col-
lectively called features in (Hu and Liu, 2004; 
Liu, 2006). For example, in the sentence, If this 
camera has great picture quality, I will buy it, 
“picture quality” is a feature of the camera. For 
formal definitions of objects and features, please 
refer to (Liu, 2006; Liu, 2009). In this paper, we 
use the term topic to mean feature as the feature 
here can confuse with the feature used in ma-
chine learning. The term topic has also been used 
by some researchers (e.g., Kim and Hovy, 2004; 
Stoyanov and Cardie, 2008).  

Our objective is to predict the sentiment 
orientation (positive, negative or neutral) on each 
topic that has been commented on in a sentence.  

The problem of automatically identifying fea-
tures or topics being spoken about in a sentence 
has been studied in (Hu and Liu, 2004; Popescu 
and Etzioni, 2005; Stoyanov and Cardie, 2008). 
In this work, we do not attempt to identify such 
topics automatically. Instead, we assume that 
they are given because our objective is to study 
how the interaction of the condition and conse-
quent clauses affects sentiments. For this pur-
pose, we manually identify all the topics.    

3 Conditional Sentences  

This section presents the linguistic perspective of 
conditional sentences.  

3.1 Conditional Connectives  

A large majority of conditional sentences are 
introduced by the subordinating conjunction If. 
However, there are also many other conditional 
connectives, e.g., even if, unless, in case, assum-
ing/supposing, as long as, etc. Table 2 shows the 
distribution of conditional sentences with various 
connectives in our data. Detailed linguistic dis-
cussions of them are beyond the scope of this 
paper. Interested readers, please refer to (Dec-
lerck and Reed, 2001). Below, we briefly discuss 
some important ones and their interpretations.  

If: This is the most commonly used conditional 
connective. In addition to its own usage, it can 
also be used to replace other conditional connec-
tives, except some semantically richer connec-
tives (Declerck and Reed, 2001). Most (but not 
all) conditional sentences can be logically ex-
pressed in the form ‘If P then Q’, where P is the 
condition clause and Q is the consequent clause. 
For practical purposes, we can automatically 
segment the condition and consequent clauses 
using simple rules generated by observing 
grammatical and linguistic patterns. 

Unless: Most conditional sentences containing 
unless can be replaced with equivalent sentences 
with an if and a not. For example, the sentence 
Unless you need clarity, buy the cheaper model 
can be expressed with If you don’t need clarity, 
buy the cheaper model.  

Even if: Linguistic theories claim that even if is 
a special case of a conditional which may not 
always imply an if-then relationship (Gauker 
2005). However, in our datasets, we have ob-
served that the usage of even if almost always 
translates into a conditional. Replacing even if by 
if will yield a sentence that is semantically simi-
lar enough for the purpose of sentiment analysis. 

Only if, provided/providing that, on condition 
that: Conditionals involving these phrases typi-
cally express a necessary condition, e.g., I will 
buy this camera only if they can reduce the price. 
In such sentences, only usually does not affect 
whether the sentence is opinionated or not.  

In case: Conditional sentences containing in 
case usually describe a precaution (I will close 
the window in case it rains), prevention (I wore 
sunglasses in case I was recognized), or a relev-
ance conditional (In case you need a car, you can 
rent one). Identifying the conditional and conse-
quent clauses is not straightforward in many cas-
es. Further, in these instances, replacing in case 
with if may not convey the intended meaning of 
the conditional. We have ignored these cases in 

Table 2: Percentage of sentences with some main 
conditional connectives 

Conditional Connective % of sentences 
If 6.42 
Unless 0.32 
Even if 0.17 
Until 0.10 
As (so) long as 0.09 
Assuming/supposing 0.04 
In case 0.04 
Only if 0.03 
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our analysis as we believe that they need a sepa-
rate study, and also such sentences are rare.  

As (so) long as: Sentences with these connec-
tives behave similarly to if and can usually be 
replaced with if.  

Assuming/Supposing: These are a category of 
conditionals that behave quite differently. The 
participles supposing and assuming create condi-
tional sentences where the conditional clause and 
the consequent clause can be syntactically inde-
pendent. It is quite difficult to distinguish those 
conditional sentences which contain an explicit 
consequent clause and fit within our analysis 
framework. In our data, most of such sentences 
have no consequent, thus representing assump-
tions rather than opinions. We omit these sen-
tences in our study (they are also rare). 

3.2 Types of Conditionals  

There are extensive studies of conditional sen-
tences (also known as conditionals) in linguis-
tics. Various theories have led to a number of 
classification systems. Popular types of condi-
tionals include actualization conditionals, infe-
rential conditionals, implicative conditionals, etc 
(Declerck and Reed, 2001). However, these clas-
sifications are mainly based on semantic mean-
ings which are difficult to recognize by a com-
puter program. To build classification models, 
we instead exploit canonical tense patterns of 
conditionals, which are often used in pedagogic 
grammar books. They are defined based on tense 
and are associated with general meanings. How-
ever, as described in (Declerck and Reed, 2001), 
their meanings are much more complex and nu-
merous than their associated general meanings. 
However, the advantage of this classification is 
that different types can be detected easily be-
cause they depend on tense which can be pro-
duced by a part-of-speech tagger. As we will see 
in Section 5, canonical tense patterns help senti-
ment classification significantly. Below, we in-
troduce the four canonical tense patterns.  

Zero Conditional:  This conditional form is 
used to describe universal statements like facts, 
rules and certainties. In a zero conditional, both 
the condition and consequent clauses are in the 
simple present tense. An example of such sen-
tences is: If you heat water, it boils. 

First Conditional: Conditional sentences of 
this type are also called potential or indicative 
conditionals. They are used to express a hypo-
thetical situation that is probably true, but the 
truth of which is unverified. In the first condi-

tional, the condition is in the simple present 
tense, and the consequent can be either in past 
tense or present tense, usually with a modal aux-
iliary verb preceding the main verb, e.g., If the 
acceleration is good, I will buy it. 

Second Conditional: This is usually used to 
describe less probable situations, for stating pre-
ferences and imaginary events. The condition 
clause of a second conditional sentence is in the 
past subjunctive (past tense), and the consequent 
clause contains a conditional verb modifier (like 
would, should, might), in addition to the main 
verb, e.g., If the cell phone was robust, I would 
consider buying it. 

Third conditional: This is usually used to de-
scribe contrary-to-fact (impossible) past events. 
The past perfect tense is used in the condition 
clause, and the consequent clause is in the 
present perfect tense, e.g., If I had bought the 
a767, I would have hated it. 

Based on the above definitions, we have devel-
oped approximate part-of-speech (POS) tags 1 for 
the condition and the consequent of each pattern 
(Table 3), which do not cover all sentences, but 
overall they cover a majority of the sentences. 
For those not covered cases, the problem is 
mainly due to incomplete sentences and wrong 
grammars, which are typical for informal writ-
ings in forum postings and blogs. For example, 
the sentence, Great car if you need powerful ac-
celeration, does not fall into any category, but it 
actually means It is a great car if you need po-
werful acceleration, which is a zero conditional. 
To handle such sentences, we designed a set of 
rules to assign them some default types: 
 If condition contains VB/VBP/VBZ → 0 conditional 
 If consequent contains VB/VBP/VBS → 0 conditional 
 If condition contains VBG → 1st conditional 
 If condition contains VBD → 2nd conditional 
 If conditional contains VBN → 3rd conditional.  

                                                 
1 The list of Part-Of-Speech (POS) tags can be found at: 

http://www.ling.upenn.edu/courses/Fall_2003/ling001/ 
penn_treebank_pos.html 

Table 3: Tenses for identifying conditional types 

Type Linguistic Rule Condition  
POS tags 

Consequent
POS tags

0 If + simple present
→ simple present 

VB/VBP/VBZ VB/VBP/
VBZ 

1 If + simple present
→ will + bare infinitive

VB/VBP/VBZ
/VBG 

MD + VB

2 If + past tense
→ would + infinitive

VBD MD + VB

3 If + past perfect
→ present perfect

VBD+VBN MD + VBD
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By using these rules, we can increase the sen-
tence coverage from 73% to 95%.  

4 Sentiment Analysis of Conditionals 

We now describe our computational study. We 
take a machine learning approach to predict sen-
timent orientations. Below, we first describe fea-
tures used and then classification strategies.  

4.1 Feature construction  

I.  Sentiment words/phrases and their locations: 
Sentiment words are words used to express 
positive or negative opinions, which are in-
strumental for sentiment classification for ob-
vious reasons. We obtained a list of over 6500 
sentiment words gathered from various 
sources. The bulk of it is from 
http://www.cs.pitt.edu/mpqa. We also added 
some of our own. Our list is mainly from the 
work in (Hu and Liu, 2004; Ding, Liu and Yu, 
2008). In addition to words, there are phrases 
that describe opinions. We have identified a 
set of such phrases. Although obtaining these 
phrases was time-consuming, it was only a 
one-time effort. We will make this list availa-
ble as a community resource. It is possible 
that there is a better automated method for 
finding such phrases, such as the methods in 
(Kanayama and Nasukawa, 2006; Breck, Choi  
and Cardie, 2007). However, automatically 
generating sentiment phrases has not been the 
focus of this work as our objective is to study 
how the two clauses interact to determine 
opinions given the sentiment words and 
phrases are known. Our list of phrases is by 
no means complete and we will continue to 
expand it in the future.  

For each sentence, we also identify wheth-
er it contains sentiment words/phrases in its 
condition or consequent clause. It was ob-
served that the presence of a sentiment 
word/phrase in the consequent clause has 
more effect on the sentiment of a sentence.  

II.  POS tags of sentiment words: Sentiment 
words may be used in several contexts, not all 
of which may correspond to an opinion. For 
example, I trust Motorola and He has a trust 
fund both contain the word trust. But only the 
former contains an opinion. In such cases, the 
POS tags can provide useful information. 

III. Words indicating no opinion: Similar to how 
sentiment words are related to opinions, there 
are also a number of words which imply the 
opposite. Words like wondering, thinking, de-

bating are used when the user is posing a 
question or expressing doubts. Thus such 
phrases usually do not contribute an opinion, 
especially if they are in the vicinity of the if 
connective. We search a window of 3 words 
on either side of if to determine if there is any 
such word. We have compiled a list of these 
words as well and use it in our experiments.  

IV. Tense patterns: These are the canonical tense 
patterns in Section 3.2. They are used to gen-
erate a set of features. We identify the first 
verb in both the condition and consequent 
clauses by searching for the relevant POS tags 
in Table 3. We also search for the words pre-
ceding the main verb to find modal auxiliary 
verbs, which are also used as features.  

V. Special characters: The presence or absence 
of ‘?’ and ‘!’. 

VI. Conditional connectives: The conditional 
connective used in the sentence (if, even if, 
unless, only if, etc) is also taken as a feature. 

VII. Length of condition and consequent clauses: 
Using simple linguistic and punctuation rules, 
we automatically segment a sentence into 
condition and consequent clauses. The num-
bers of words in the condition and consequent 
clauses are then used as features. We ob-
served that when the condition clause is short, 
it usually has no impact on whether the sen-
tence expresses an opinion.   

VIII. Negation words: The use of negation words 
like not, don’t, never, etc, often alter the sen-
timent orientation of a sentence. For example, 
the addition of not before a sentiment word 
can change the orientation of a sentence from 
positive to negative. We consider a window of 
3-6 words before an opinion word, and search 
for these kinds of words. 

The following two features are singled out for 
easy reference later. They are only used in one 
classification strategy. The first feature is an in-
dicator, and the second feature has a parameter 
(which will be evaluated separately). 
(1). Topic location: This feature indicates wheth-

er the topic is in the conditional clause or the 
consequent clause.  

(2). Opinion weight: This feature considers only 
sentiment words in the vicinity of the topic, 
since they are more likely to influence the 
opinion on the topic. A window size is used 
to control what we mean by vicinity. The fol-
lowing formula is used to assign a weight to 
each sentiment word, which is inversely pro-
portional to the distance (Dop) of the senti-
ment word to the topic mention. Sentiment 
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value is +1 for a positive word and -1 for a 
negative word. Sentwords are the set of 
known sentiment words and phrases.  
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4.2 Classification Strategies 

Since we are interested in topic-based sentiment 
analysis, how to perform classification becomes 
an interesting issue. Due to the two clauses, it 
may not be sufficient to classify the whole sen-
tence as positive or negative as in the same sen-
tence, some topics may be positive and some 
may be negative. We propose three strategies.  

Clause-based classification: Since there are two 
clauses in a conditional sentence, in this case 
we build two classifiers, one for the condition 
and one for the consequent.  
Condition classifier: This method classifies the 
condition clause as expressing positive, nega-
tive or neutral opinion.  

Training data: Each training sentence is 
represented as a feature vector. Its class is posi-
tive, negative or neutral depending on whether 
the conditional clause is positive, negative or 
neutral while considering both clauses.  

Testing: For each test sentence, the resulting 
classifier predicts the opinion of the condition 
clause.  

Topic class prediction: To predict the opi-
nion on a topic, if the topic is in the condition 
clause, it takes the predicted class of the 
clause.  
Consequent classifier: This classifier classi-
fies the consequent clause as expressing posi-
tive, negative or neutral opinion. 

Training data: Each training sentence is 
represented as a feature vector. Its class is posi-
tive, negative or neutral depending on whether 
the consequent clause is positive, negative or 
neutral while considering both clauses.  

Testing: For each test sentence, the resulting 
classifier predicts the opinion of the conse-
quent clause.  

Topic class prediction: To predict the opi-
nion on a topic, if the topic is in the consequent 
clause, it takes the predicted class of the 
clause.  

The combination of these two classifiers is 
called the clause-based classifier. It works as 
follows: If a topic is in the conditional clause, 
the condition classifier is used, and if a topic is 
in the consequent clause, the consequent clas-
sifier is used.  

Consequent-based classification: It is observed 
that in most cases, the condition clause con-
tains no opinion whereas the consequent clause 
reflects the sentiment of the entire sentence. 
Thus, this method uses (in a different way) on-
ly the above consequent classifier. If it classi-
fies the consequent of a testing conditional 
sentence as positive, all the topics in the whole 
sentence are assigned the positive orientation, 
and likewise for negative and neutral.  

Whole-sentence-based classification: In this 
case, a single classifier is built to predict the 
opinion on each topic in a sentence.  

Training data: In addition to the normal fea-
tures, the two features (1) and (2) in Section 
4.1 are used for this classifier. If a sentence 
contains multiple topics, multiple training in-
stances of the same sentence are created in the 
training data. Each instance represents one 
specific topic. The class of the instance de-
pends on whether the opinion on the topic is 
positive, negative or neutral.  

Testing: For each topic in each test sentence, 
the resulting classifier predicts its opinion.  

Topic class prediction: This is not needed as 
the prediction has been done in testing.  

5 Results and Discussions 

5.1 Data sets 

Our data consists of conditional sentences from 5 
different user forums: Cellphone, Automobile, 
LCD TV, Audio systems and Medicine. We ob-
tained user postings from these forums and ex-
tracted the conditional sentences. We then ma-
nually annotated 1378 sentences from this cor-
pus. We also annotated the conditional and con-
sequent clauses and identified the topics (or 
product features) being commented upon, and 
their sentiment orientations. In our annotation, 
we observed that sentences with no sentiment 
words or phrases almost never express opinions, 
i.e., only around 3% of them express opinions. 
There are around 26% sentences containing no 
sentiment words or phrases in our data. To make 
the problem challenging, we restrict our attention 
to only those sentences that contain at least one 
sentiment word or phrase. We have annotated 
topics from around 900 such sentences. Table 4 
shows the class distributions of this data. At the 
clause level (topics are not considered), we ob-
serve that conditional clauses contain few opi-
nions. At the topic-level, 43.5% of the topics 
have positive opinions, 26.4% of the topics have 
negative opinions, and the rest have no opinions.  
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Table 4: Distribution of classes  

For the annotation of data, we assume that 
topics are known. One student annotated the top-
ics first. Then two students annotated the senti-
ments on the topics. If a student found that a top-
ic annotation is wrong, he will let us know. Some 
mistakes and missing topics were found but there 
were mainly due to oversights rather than disa-
greements. The agreement on sentiment annota-
tions were computed using the Kappa score. We 
achieved the Kappa score of 0.63, which indi-
cates strong agreements. The conflicting cases 
were then solved through discussion to reach 
consensus. We did not find anything that the an-
notators absolutely disagree with each other.   

5.2 Experimental results 

We now present the results for different combi-
nations of features and classification strategies. 
For model building, we used Support Vector 
Machines (SVM), and the LIBSVM implementa-
tion (Chang and Lin, 2001) with a Gaussian ker-
nel, which produces the best results. All the re-
sults are obtained via 10-fold cross validation.  

Two-class classification: We first discuss the 
results for a simpler version of the problem that 
involves only sentences with positive or negative 
orientations on some topics (at least one of the 
clauses must have a positive/negative opinion on 
a topic). Neutral sentences are not used (~28% of 
the total). The results of all three classifiers are 
given in Table 5. The feature sets have been de-
scribed in Section 4.1. For all the experiments 
below, features (1) and (2) are only used by the 
whole-sentence-based classifier, but not used by 
the other two classifiers for obvious reasons.   

{I+II}: This setting uses sentiment words and 
phrases, their positions and POS tags as features 
(we used Brill’s POS tagger). This can be seen as 
the baseline. We observe that both the conse-
quent-based and whole-sentence-based classifiers 
perform dramatically better than the clause-based 
classifier. The consequent-based classifier and 
the whole-sentence-based classifier perform si-
milarly (with the latter being slightly better). The 
precision, recall, and F-score are computed as the 
average of the two classes.  

{I+II+III}: In this setting, the list of special 
non-sentiment related words is added to the fea-

ture set. All three classifiers improve slightly.  
{I+II+III+IV}: This setting includes all the ca-

nonical tense based features. We see marked im-
provements for the consequent-based and whole-
sentence-based classifiers both in term of accura-
cy and F-score, which are statistically significant 
compared to those of {I+II+III} at the 95% con-
fidence level based on paired t-test.  

All: When all the features are used, the results 
of all the classifiers improve further.  

Two main observations worth mentioning: 
1. Both the consequent-based and whole-

sentence-based classifiers outperform the 
clause-based classifier dramatically. This con-
firms our observation that the consequent 
usually plays the key role in determining the 
sentiment of the sentence. This is further rein-
forced by the fact that the consequent-based 
classifier actually performs similarly to the 
whole-sentence-based classifier. The condi-
tion clause seems to give no help.  

2. The second observation is that the linguistic 
knowledge of canonical tense patterns helps 
significantly. This shows that the linguistic 
knowledge is very useful.  

We also noticed that many misclassifications are 
caused by grammatical errors, use of slang 
phrases and improper punctuations, which are 
typical of postings on the Web. Due to language 
irregularities (e.g., wrong grammar, missing 
punctuations, sarcasm, exclamations), the POS 
tagger makes many mistakes as well causing 
some errors in the tense based features.  

Three-class classification: We now move to the 
more difficult and realistic case of three classes: 
positive, negative and neutral (no-opinion). Ta-
ble 6 shows the results. The trend is similar ex-
cept that the whole-sentence-based classifier now 
performs markedly better than the consequent-
based classifier. We believe that this is because 
the neutral class needs information from both the 
condition and consequent clauses. This is evident 
from the fact that there is little or no improve-
ment after {I+II} for the consequent-based clas-
sifier. We also observe that the accuracies and F-
scores for the three-class classification are lower 
than those for the two-class classification. This is 
understandable due to the difficulty of determin-
ing whether a sentence has opinion or not. Again, 
statistical test shows that the canonical tense-
based features help significantly.  

As mentioned in Section 4.1, the whole-
sentence-based classifier only considers those 
sentiment words in the vicinity of the topic under 

 Positive Negative Neutral 
Condition 6.9% 6.7% 86.4% 
Consequent 49.3% 16.5% 34% 
Topic-level 43.5% 26.4% 29.9% 
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investigation. For this, we search a window of n 
words on either side of the topic mention. To 
study the effect of varying n, we performed an 
experiment with various values of the window 
size and measured the overall accuracy for each 
case. Table 7 shows how the accuracy changes as 
we increase the window size. We found that a 
window size of 6-10 yielded good accuracies. 
This is because lower values of n lead to loss of 
information regarding sentiment words as some 
sentiment words could be far from the topic. We 
finally used 8, which gave the best results.  

We also investigated ways of using the nega-
tion word in the sentence to correctly predict the 
sentiment. One method is to use the negation 
word as a feature, as described in Section 4.1. 
Another technique is to reverse the orientation of 
the prediction for those sentences which contain 
negation words. We found that the former tech-
nique yielded better results. The results reported 
so far are based on the former approach.  

6 Related Work  

There are several research directions in sentiment 
analysis (or opinion mining). One of the main 
directions is sentiment classification, which clas-
sifies the whole opinion document (e.g., a prod-
uct review) as positive or negative (e.g., Pang et 
al, 2002; Turney, 2002; Dave et al, 2003; Ng et 
al. 2006; McDonald et al, 2007). It is clearly dif-

ferent from our work as we are interested in con-
ditional sentences. 

Another important direction is classifying 
sentences as subjective or objective, and classify-
ing subjective sentences or clauses as positive or 
negative (Wiebe et al, 1999; Wiebe and Wilson, 
2002, Yu and Hatzivassiloglou, 2003; Wilson et 
al, 2004; Kim and Hovy, 2004; Riloff and 
Wiebe, 2005; Gamon et al 2005; McDonald et al, 
2007). Although these works deal with sen-
tences, they aim to solve the general problem. 
This paper argues that there is unlikely a one-
technique-fit-all solution, and advocates dealing 
with specific types of sentences differently by 
exploiting their unique characteristics. Condi-
tional sentences are the focus of this paper. To 
the best of our knowledge, there is no focused 
study on them.  

Several researchers also studied feature/topic-
based sentiment analysis (e.g., Hu and Liu, 2004; 
Popescu and Etzioni, 2005; Ku et al, 2006; Care-
nini et al, 2006; Mei et al, 2007; Ding, Liu and 
Yu, 2008; Titov and R. McDonald, 2008; Stoya-
nov and Cardie, 2008; Lu and Zhai, 2008). Their 
objective is to extract topics or product features 
in sentences and determine whether the senti-
ments expressed on them are positive or nega-
tive. Again, no focused study has been made to 
handle conditional sentences. Effectively han-
dling of conditional sentences can help their ef-
fort significantly.  

Table 5: Two-class classification – positive and negative 

 Clause-based  
classifier

Consequent-based  
classifier 

Whole-sentence-based 
classifier 

Acc. Prec. Rec. F Acc. Prec. Rec. F Acc. Prec. Rec. F 
I+II (senti. words+POS) 39.9 42.8 34.0 37.9 69.1 72.9 67.1 69.8 68.9 73.7 68.13 70.8

I+II+III (+ non-senti. words)  41.5 44.9 37.1 40.6 69.3 73.9 66.3   69.9 69.2 73.7 63.5 71.0
I+II+III+IV (+ tenses) 42.7 45.2 38.5 41.6 72.7 76.4 72.0 74.1   71.1 77.9 72.2 74.9

All 43.2 46.1 38.9 42.2 73.3 77.0 72.7 74.8 72.3 77.8 73.6 75.6

Table 6: Three-class classification – positive, negative and neutral (no opinion) 

 Clause-based  
classifier

Consequent-based  
classifier 

Whole-sentence-based 
classifier 

Acc. Prec. Rec. F Acc. Prec. Rec. F Acc. Prec. Rec. F 
I+II (senti. words+POS) 45.2 41.3 35.1 37.9 54.6 57.7 52.9 55.2 59.1 58.1 56.4 57.2

I+II+III (+ non-senti. words)  46.9 42.8 37.8 40.1 55.3 60.0 51.3 55.3 61.4 60.1 60.8 60.4
I+II+III+IV (+ tenses) 50.3 48.7 40.9 44.5 57.3 64.0 50.0 56.1 64.6 63.3 63.9 63.6

All 53.3 49.8 44.1 46.8 58.7 64.5 50.1 56.4 67.8 66.9 65.1 66.0

Table 7: Accuracy of the whole-sentence-based classifier with varying window sizes (n) 

Window size 1 2 3 4 5 6 7 8 9 10 
Accuracy 66.1 62.6 64.1 64.8 65.3 65.7 66.3 67.3 66.9 66.8 
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In this work, we used many sentiment words 
and phrases. These words and phrases are usually 
compiled using different approaches (Hatzivassi-
loglou and McKeown, 1997; Kaji and Kitsure-
gawa, 2006; Kanayama and Nasukawa, 2006; 
Esuli and Sebastiani, 2006; Breck et al, 2007; 
Ding, Liu and Yu. 2008; Qiu et al, 2009). There 
are several existing lists produced by researchers. 
We used the one from the MPQA corpus 
(http://www.cs.pitt.edu/mpqa) with added phras-
es of our own from (Ding, Liu and Yu. 2008). In 
our work, we also assume that the topics are 
known. (Hu and Liu, 2004; Popescu and Etzioni, 
2005; Kobayashi, Inui and Matsumoto, 2007; 
Stoyanov and Cardie, 2008) have studied top-
ic/feature extraction. 

One existing focused study is on comparative 
and superlative sentences (Jindal and Liu, 2006; 
Bos and Nissim, 2006; Fiszman et al, 2007; Ga-
napathibhotla and Liu, 2008). Their work identi-
fies comparative sentences, extracts comparative 
relations in the sentences and analyzes compara-
tive opinions (Ganapathibhotla and Liu, 2008). 
An example comparative sentence is “Honda 
looks better than Toyota”. As we can see, com-
parative sentences are entirely different from 
conditional sentences. Thus, their methods can-
not be directly applied to conditional sentences.  

7 Conclusion  
To perform sentiment analysis accurately, we 
argue that a divide-and-conquer approach is 
needed, i.e., focused study on each type of sen-
tences. It is unlikely that there is a one-size-fit-all 
solution. This paper studied one type, i.e., condi-
tional sentences, which have some unique cha-
racteristics that need special handling. Our study 
was carried out from both the linguistic and 
computational perspectives. In the linguistic 
study, we focused on canonical tense patterns, 
which have been showed useful in classification. 
In the computational study, we built SVM mod-
els to automatically predict whether opinions on 
topics are positive, negative or neutral. Experi-
mental results have shown the effectiveness of 
the models.  

In our future work, we will further improve 
the classification accuracy and study related 
problems, e.g., identifying topics/features. Al-
though there are some special conditional sen-
tences that do not use easily recognizable condi-
tional connectives and identifying them are use-
ful, such sentences are very rare and spending 
time and effort on them may not be cost-effective 
at the moment.  
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Abstract

This paper investigates a new task,subjec-
tivity word sense disambiguation (SWSD),
which is to automatically determine which
word instances in a corpus are being used
with subjective senses, and which are be-
ing used with objective senses. We pro-
vide empirical evidence that SWSD is
more feasible than full word sense dis-
ambiguation, and that it can be exploited
to improve the performance of contextual
subjectivity and sentiment analysis sys-
tems.

1 Introduction

The automatic extraction of opinions, emotions,
and sentiments in text (subjectivity analysis) to
support applications such as product review min-
ing, summarization, question answering, and in-
formation extraction is an active area of research
in NLP.

Many approaches to opinion, sentiment, and
subjectivity analysis rely on lexicons of words that
may be used to express subjectivity. Examples of
such words are the following (in bold):

(1) He is adiseaseto every team he has gone to.
Converting to SMF is aheadache.
The concert left mecold.
That guy is such apain.

Knowing the meaning (and thus subjectivity) of
these words would help a system recognize the
negative sentiments in these sentences.

Most subjectivity lexicons are compiled as lists
of keywords, rather than word meanings (senses).
However, many keywords have both subjective
and objective senses. False hits – subjectivity
clues used with objective senses – are a signifi-
cant source of error in subjectivity and sentiment
analysis. For example, even though the follow-
ing sentence contains all of the negative keywords

above, it is nevertheless objective, as they are all
false hits:

(2) Early symptoms of thedisease include severe
headaches, red eyes, fevers andcold chills, body
pain, and vomiting.

To tackle this source of error, we define a
new task, subjectivity word sense disambigua-
tion (SWSD), which is to automatically determine
which word instances in a corpus are being used
with subjective senses, and which are being used
with objective senses. We hypothesize that SWSD
is more feasible than full word sense disambigua-
tion, because it is more coarse grained – often, the
exact sense need not be pinpointed. We also hy-
pothesize that SWSD can be exploited to improve
the performance of contextual subjectivity analy-
sis systems via sense-aware classification.

The paper consists of two parts. In the first
part, we build and evaluate a targeted supervised
SWSD system that aims to disambiguate members
of a subjectivity lexicon. It labels clue instances as
having a subjective sense or an objective sense in
context. The system relies on common machine
learning features for word sense disambiguation
(WSD). The performance is substantially above
both baseline and the performance of full WSD
on the same data, suggesting that the task is feasi-
ble, and that subjectivity provides a natural coarse-
grained grouping of senses.

The second part demonstrates the promise of
SWSD for contextual subjectivity analysis. First,
we show that subjectivity sense ambiguity is
highly prevalent in the MPQA opinion-annotated
corpus (Wiebe et al., 2005; Wilson, 2008), thus
establishing the potential benefit of performing
SWSD. Then, we exploit SWSD to improve per-
formance on several subjectivity analysis tasks,
from subjective/objective sentence-level classi-
fication to positive/negative/neutral expression-
level classification. To our knowledge, this is the
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first attempt to explicitly use sense-level subjec-
tivity tags in contextual subjectivity and sentiment
analysis.

2 Background

We adopt the definitions ofsubjectiveandobjec-
tive from (Wiebe et al., 2005; Wiebe and Mi-
halcea, 2006; Wilson, 2008). Subjective expres-
sions are words and phrases being used to ex-
press mental and emotional states, such as spec-
ulations, evaluations, sentiments, and beliefs. A
general covering term for such states isprivate
state (Quirk et al., 1985), an internal state that
cannot be directly observed or verified by others.
(Wiebe and Mihalcea, 2006) give the following
examples:

(3) Hisalarm grew.
Heabsorbedthe information quickly.
UCC/Disciples leadersroundly condemned the
Iranian President’sverbal assaulton Israel.
What’s the catch?

Polarity (also calledsemantic orientation) is
also important to NLP applications. In review
mining, for example, we want to know whether
an opinion about a product is positive or negative.
Nonetheless, as argued by (Wiebe and Mihalcea,
2006; Su and Markert, 2008), there are also mo-
tivations for a separate subjective/objective (S/O)
classification.

First, expressions may be subjective but not
have any particular polarity. An example given by
(Wilson et al., 2005a) isJerome says the hospi-
tal feelsno different than a hospital in the states.
An NLP application system may want to find a
wide range of private states attributed to a person,
such as their motivations, thoughts, and specula-
tions, in addition to their positive and negative sen-
timents. Second, benefits for sentiment analysis
can be realized by decomposing the problem into
S/O (or neutral versus polar) and polarity classifi-
cation (Yu and Hatzivassiloglou, 2003; Pang and
Lee, 2004; Wilson et al., 2005a; Kim and Hovy,
2006). We will see further evidence of this in Sec-
tion 4.2.3 in this paper.

The contextual subjectivity analysis experi-
ments in Section 4 include bothS/O and polarity
classifications. The data used in those experiments
is from the MPQA Corpus (Wiebe et al., 2005;
Wilson, 2008),1 which consists of texts from the
world press annotated for subjective expressions.

1Available at http://www.cs.pitt.edu/mpqa

In the MPQA Corpus, subjective expressions of
varying lengths are marked, from single words to
long phrases. In addition, other properties are an-
notated, including polarity.

For SWSD, we need the notions of subjective
and objectivesensesof words in a dictionary. We
adopt the definitions from (Wiebe and Mihalcea,
2006), who describe the annotation scheme as fol-
lows. Classifying a sense asS means that, when
the sense is used in a text or conversation, one ex-
pects it to express subjectivity, and also that the
phrase or sentence containing it expresses subjec-
tivity. As noted in (Wiebe and Mihalcea, 2006),
sentences containing objective senses may not be
objective. Thus, objective senses are defined as
follows: Classifying a sense asO means that,
when the sense is used in a text or conversation,
one does not expect it to express subjectivity and,
if the phrase or sentence containing it is subjective,
the subjectivity is due to something else. Finally,
classifying a sense asB means it covers both sub-
jective and objective usages.

The following subjective examples are given in
(Wiebe and Mihalcea, 2006):

His alarm grew.
alarm, dismay, consternation – (fear resulting from the aware-
ness of danger)

=> fear, fearfulness, fright – (an emotion experienced in
anticipation of some specific pain or danger (usually ac-
companied by a desire to flee or fight))

What’s thecatch?
catch – (a hidden drawback; “it sounds good but what’s the
catch?”)

=> drawback – (the quality of being a hindrance; “he
pointed out all the drawbacks to my plan”)

They give the following objective examples:

Thealarm went off.
alarm, warning device, alarm system – (a device that signals
the occurrence of some undesirable event)

=> device – (an instrumentality invented for a particu-
lar purpose; “the device is small enough to wear on your
wrist”; “a device intended to conserve water”)

He sold hiscatchat the market.
catch, haul – (the quantity that was caught; “the catch was
only 10 fish”)

=> indefinite quantity – (an estimated quantity)

Wiebe and Mihalcea performed an agreement
study and report that good agreement (κ=0.74) can
be achieved between human annotators labeling
the subjectivity of senses. For a similar task, (Su
and Markert, 2008) also report good agreement
(κ=0.79).
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3 Subjectivity Word Sense
Disambiguation

3.1 Task Definition and Method

We now turn to SWSD, and our method for per-
forming it.

Note that SWSD is midway between pure dic-
tionary classification and pure contextual interpre-
tation. For SWSD, the context of the word is con-
sidered in order toperform the task, but the sub-
jectivity is determined solely by the dictionary. In
contrast, full contextual interpretation can deviate
from a sense’s subjectivity label in the dictionary.
As noted above, words used with objective senses
may appear in subjective expressions. For exam-
ple, an SWSD system would label the following
examples of alarm asS, O andO, respectively. On
the other hand, a sentence-level subjectivity clas-
sifier would label the sentences asS, S, andO, re-
spectively.

(4) Hisalarm grew.
Will someone shut that darnalarm off?
Thealarm went off.

We use a supervised approach to SWSD. We
train a different classifier for each lexicon entry
for which we have training data. Thus, our ap-
proach is like targeted WSD (in contrast to all-
words WSD), with two labels:SandO.

We borrow machine learning features which
have been successfully used in WSD. Specifically,
given an ambiguous target word, we use the fol-
lowing features from (Mihalcea, 2002):

CW : the target word itself
CP : POS of the target word
CF : surrounding context of 3 words and their POS
HNP : the head of the noun phrase to which the
target word belongs
NB : the first noun before the target word
VB : the first verb before the target word
NA : the first noun after the target word
VA : the first verb after the target word
SK : at most 10 context words occurring at least 5
times; determined for each sense

3.2 Lexicon and Data

Our target words are members of a subjectivity
lexicon, because, since they are in such a lexicon,
we know they have subjective usages. Specifically,
we use the lexicon of (Wilson et al., 2005b; Wil-
son, 2008).2 The entries have been divided into

2Available at http://www.cs.pitt.edu/mpqa

those that are strongly subjective (strongsubj) and
those that are weakly subjective (weaksubj), re-
flecting their reliability as subjectivity clues. The
sources of the entries in the lexicon are identified
in (Wilson, 2008). In the second part of this pa-
per, we evaluate systems against the MPQA cor-
pus. Wilson also uses this corpus for her eval-
uations. To enable this, entries were added to
the lexicon independently from the MPQA corpus
(that is, none of the entries were derived using the
MPQA corpus).

The training and test data for SWSD consists of
word instances in a corpus labeled asSor O, indi-
cating whether they are used with a subjective or
objective sense. Because we do not have data la-
beled with theS/O coarse-grained senses and we
did not want to undertake the annotation effort at
this stage, we created an annotated corpus by com-
bining two types of sense annotations: (1) labels
of senses within a dictionary asS or O (i.e., sub-
jectivity sense labels), and (2) sense tags of word
instances in a corpus (i.e., sense-tagged data). The
subjectivity sense labels are used to collapse the
sense labels in the sense-tagged data into the two
new senses,SandO.

Our sense-tagged data are the lexical sample
corpora (training and test data) from SENSEVAL1
(Kilgarriff and Palmer, 2000), SENSEVAL2 (Preiss
and Yarowsky, 2001), and SENSEVAL3 (Mihal-
cea and Edmonds, 2004). We selected all of the
SENSEVAL words that are also in the subjectivity
lexicon, and labeled their dictionary senses asS,
O, or B according to the annotation scheme de-
scribed above in Section 2. We did this subjectiv-
ity sense labeling according to the sense inventory
of the underlying corpus (Hector for SENSEVAL1;
WordNet1.7 for SENSEVAL2; and WordNet1.7.1
for SENSEVAL3).

Among the words, we found that 11 are not
ambiguous - either they have onlyS or only O
senses (in the corresponding sense inventory), or
the senses of their instances in the SENSEVAL data
are allSor all O. So as not to inflate our results, we
removed those 11 from the data, leaving 39 words.
In addition, we excluded the senses labeledB (a to-
tal of 10 senses). This leaves a total of 372 senses:
9 words (64 senses) from SENSEVAL1, 18 words
(201 senses) from SENSEVAL2, and 12 words (107
senses) from SENSEVAL3.

192



Base Acc SP SR SF OP OR OF IB EB(%)
All 79.9 88.3 89.3 89.1 89.2 87.1 87.4 87.2 8.4 41.8
S1 57.9 80.7 81.1 78.3 79.7 80.2 82.9 81.5 22.8 54.2
S2 81.1 87.3 86.5 85.2 85.8 87.9 89.0 88.4 6.2 32.8
S3 95.0 96.4 96.5 99.0 97.7 96.3 87.8 91.8 1.4 28.0

Table 1: Overall SWSD results (micro averages).Baseis majority-class baseline;Acc is accuracy;SP,
SR, andSFare subjective precision, recall and F-measure; similarly forOP, OR, andOF. IB is absolute
improvement in Acc over Base;EB is percent error reduction in Acc.

3.3 SWSD Experiments

In this section, we evaluate our SWSD system, and
compare its performance to an WSD system on the
same data.

Note that, although generally in the SENSEVAL

datasets, training and test data are provided sep-
arately, a few target words from SENSEVAL1 do
not have both training and testing data. Thus, we
opted to combine the training and test data into one
dataset, and then perform 10-fold cross validation
experiments.

For our classifier, we use the SVM classifier
from the Weka package (Witten and Frank., 2005)
with its default settings.

We were interested in how well the system
would perform on more and less ambiguous
words. Thus, we split the words into three sub-
sets according to their majority-class baselines,
and report separate results:S1 (9 words),S2 (18
words), andS3 (12 words) have majority-class
baselines in the intervals [50%,70%) , [70%,90%),
and [90%,100%), respectively.

Table 1 contains the results, giving the overall
results (micro averages), as well as results for the
subsetsS1, S2, andS3.

The improvement for SWSD over baseline is
especially high for the less skewed set,S1. This
is very encouraging because these words are the
more ambiguous words, and thus are the ones that
most need SWSD (assuming the SENSEVAL pri-
ors are similar to the priors in the corpus). The
average error reduction over baseline forS1words
is 54.2%. Even for the more skewed setsS2and
S3, reductions are 32.8% and 28.0%, respectively,
with an overall reduction of 41.8%.

To compare SWSD with WSD, we re-ran the
10-fold cross validation experiments, but this time
using the original sense labels, rather thanS
andO. The (micro-averaged) accuracy is 67.9%,
much lower than the overall accuracy for SWSD
(88.3%).

The positive results provide evidence that
SWSD is a feasible variant of WSD, and that the
S/O sense groupings are natural ones, since the
system is able to learn to distinguish between them
with high accuracy. There is also potential for im-
provement by using a richer feature set, including
subjectivity features.

4 Opinion Analysis with Subjectivity
Word Sense Disambiguation

In this section, we explore the promise of SWSD
for contextual subjectivity analysis. First, we pro-
vide evidence that a subjectivity lexicon can have
substantial coverage of the subjective expressions
in a corpus, yet still be responsible for significant
subjectivity sense ambiguity in that corpus. Then,
we exploit SWSD in several contextual opinion
analysis systems, comparing the performance of
sense-aware and non-sense-aware versions. They
are all variations of components of the Opinion-
Finder opinion recognition system.3

4.1 Coverage and Ambiguity of Lexicon
Entries in the MPQA Corpus

In this section, we consider the distribution of lex-
icon entries in the MPQA corpus.

The lexicon covers a substantial subset of the
subjective expressions in the corpus: 67.1% of the
subjective expressions contain one or more lexi-
con entries.

On the other hand, fully 42.9% of the instances
of the lexicon entries in the MPQA corpus are
not in subjective expressions. An instance that
is not in a subjective expression is, by definition,
being used with an objective sense. Thus, these
instances are false hits of subjectivity clues. As
mentioned above, the entries in the lexicon have
been pre-classified as either more (strongsubj) or
less (weaksubj) reliable. We see this difference re-
flected in their degree of ambiguity – 53% of the

3Available at http://www.cs.pitt.edu/opin
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weaksubjinstances are false hits, while only 22%
of thestrongsubjinstances are.

The high coverage of the lexicon demonstrates
its potential usefulness for opinion analysis sys-
tems, while its degree of ambiguity, in the form of
false hits in a subjectivity annotated corpus, shows
the potential benefit to opinion analysis of per-
forming SWSD.

As mentioned above, our experiments involve
only lexicon entries that are covered by the SEN-
SEVAL data, as we did not perform manual sense
tagging for this work. We have hope to expand
the system’s coverage in the future, as more word-
sense tagged data is produced (e.g., ONTONOTES

(Hovy et al., 2006)). We also have evidence that a
moderate amount of manual annotation would be
worth the effort. For example, let us order the lexi-
con entries from highest to lowest by frequency in
the MPQA corpus. The top 20 are responsible for
25% of all false hits in the corpus; the top 40 are
responsible for 34%; and the top 80 are responsi-
ble for 44%. If the SWSD system could be trained
for these words, the potential impact on reducing
false hits could be substantial, especially consid-
ering the good performance of the SWSD system
on the more ambiguous words. Note that we do
not want to simply discard these clues. The top 20
cover 9.4% of all subjective expressions; the top
40 cover 15.4%; and the top 80 cover 29.5%. Note
that SWSD only needs the data annotated with the
coarse-grained binary labels, which should be less
time consuming to produce than full word sense
tags.

4.2 Contextual Classification

We found in Section 3.3 that SWSD is a feasible
task and then in Section 4.1 that there is a great
deal of subjectivity sense ambiguity in a standard
subjectivity-annotated corpus (MPQA). We now
turn to exploiting the results of SWSD to automat-
ically recognize subjectivity and sentiment in the
MPQA corpus.

A motivation for using the MPQA data is that
many types of classifiers have been evaluated on
it, and we can directly test the effect of SWSD on
these classifiers.

Note that, for the SWSD experiments, the num-
ber of words does not limit the amount of data,
as SENSEVAL provides data for each word. How-
ever, the only parts of the MPQA corpus for which
SWSD could affect performance is the subset con-

taining instances of the words in the SWSD sys-
tem’s coverage. Thus, for the classifiers in this
section, the data used is theSenMPQAdataset,
which consists of the sentences in the MPQA Cor-
pus that contain at least one instance of the 39 key-
words. There are 689 such sentences (containing,
in total, 723 instances of the 39 keywords).

Even though this dataset is smaller than the one
used above, it gives us enough data to draw con-
clusions according to McNemar’s test for statisti-
cal significance.

4.2.1 Rule-based Classifier

We first apply SWSD to the rule-based classifier
from (Riloff and Wiebe, 2003). The classifier,
which is a sentence-levelS/O classifier, has low
subjective and objective recall but high subjective
and objective precision. It is useful for creating
training data for subsequent processing by apply-
ing it to large amounts of unannotated data.

The classifier is a good candidate for directly
measuring the effects of SWSD on contextual sub-
jectivity analysis, because it classifies sentences
only by looking for the presence of subjectivity
keywords. Performance will improve if false hits
can be ignored.

The classifier labels a sentence asSif it contains
two or morestrongsubjclues. On the other hand,
it considers three conditions to classify a sentence
asO: there are nostrongsubjclues in the current
sentence, there are together at most onestrongsubj
clue in the previous and next sentence, and there
are together at most 2weaksubjclues in the cur-
rent, previous, and next sentence. A sentence that
is not labeledSor O is labeledunknown.

The rule-based classifier is made sense aware
by making it blind to the target word instances la-
beledO by the SWSD system, as these represent
false hits of subjectivity keywords. We compare
this sense-aware method (SE), with the original
classifier (ORB), in order to see if SWSD would
improve performance. We also built another modi-
fied rule-based classifierREto demonstrate the ef-
fect of randomly ignoring subjectivity keywords.
RE ignores a keyword instance randomly with a
probability of 0.429, the expected value of false
hits in the MPQA corpus. The results are listed in
Table 2.

The rule-based classifier looks for the presence
of the keywords to find subjective sentences and
for the absence of the keywords to find objective
sentences. It is obvious that a variant working on

194



Acc OP OR OF SP SR SF
ORB 27.0 50.0 4.1 7.6 92.7 36.0 51.8
SE 28.3 62.1 9.3 16.1 92.7 35.8 51.6
RE 27.6 48.4 7.7 13.3 92.6 35.4 51.2

Table 2: Effect of SWSD on the rule-based classi-
fiers.

fewer keyword instances thanORB will always
have the same or higher objective recall and the
same or lower subjective recall thanORB. That is
the case for bothSEandRE. The real benefit we
see is in objective precision, which is substantially
higher forSEthanORB. For our experiments,OP
gives a better idea of the impact of SWSD, be-
cause most of the keyword instances SWSD dis-
ambiguates areweaksubjclues, andweaksubjkey-
words figure more prominently in objective classi-
fication. On the other hand,REhas both lowerOP
andSPthanORB. Note that accuracy for all three
systems is low, because allunknownpredictions
are counted as incorrect.

These findings suggest that SWSD performs
well on disambiguating keyword instances in the
MPQA corpus,4 and demonstrates a positive im-
pact of SWSD on sentence-level subjectivity clas-
sification.

4.2.2 Subjective/Objective Classifier

We now move to more fine-grained expression-
level subjectivity classification. Since sentences
often contain multiple subjective expressions,
expression-level classification is more informative
than sentence-level classification.

The classifier in this section is an implementa-
tion of the neutral/polar supervised classifier of
(Wilson et al., 2005a) (using the same features),
except that the classes areS/O rather thanneu-
tral/polar. These classifiers label instances of lex-
icon entries. The gold standard is defined on the
MPQA Corpus as follows: If an instance is in a
subjective expression, it is contextuallyS. If the
instance is in an objective expression, it is contex-
tually O. We evaluate the system on the 723 clue
instances in the SenMPQA dataset.

We incorporate SWSD information into the
contextual subjectivity classifier in a straight-
forward fashion: outputs are modified according
to simple, intuitive rules.

4which we cannot evaluate directly, as the MPQA corpus
is not sense tagged.

Our strategy is defined by the relation between
sense subjectivity and contextual subjectivity and
involves two rules,R1andR2.

We know that a keyword instance used with a
S sense must be in a subjective expression.R1 is
to simply trust SWSD: If the contextual classifier
labels an instance asO, but SWSD determines that
it has anSsense, thenR1flips the contextual clas-
sifier’s label toS.

Things are not as simple in the case ofO senses,
since they may appear in both subjective and ob-
jective expressions. We will stateR2, and then ex-
plain it: If the contextual classifier labels an in-
stance asS, but (1) SWSD determines that it has
an O sense, (2) the contextual classifier’s confi-
dence is low, and (3) there is no other subjective
keyword in the same expression, thenR2flips the
contextual classifier’s label toO. First, consider
confidence: though a keyword with anO sense
may appear in either subjective or objective ex-
pressions, it is more likely to appear in an objec-
tive expression. We assume that this is reflected
to some extent in the contextual classifier’s confi-
dence. Second, if a keyword with anO sense ap-
pears in a subjective expression, then the subjec-
tivity is not due to that keyword but rather due to
something else. Thus, the presence of another lex-
icon entry “explains away” the presence of theO
sense in the subjective expression, and we do not
want SWSD to overrule the contextual classifier.
Only when the contextual classifier isn’t certain
and only when there isn’t another keyword does
R2flip the label toO.

Our definition of low confidence is in terms
of the label weights assigned by BoosTexter
(Schapire and Singer, 2000), which is the under-
lying machine learning algorithm of the classifier.
We use the difference between the largest label
weight and the second largest label weight as a
measure of confidence, as suggested in the Boos-
Texter documentation. The threshold we use is
0.0008.5

We apply the contextual classifier and the
SWSD system to the data, and compare the per-
formance of the original system (OS/O) and three
sense-aware variants: one using onlyR1, one us-

5As will be noted below, we experimented with three
thresholds for the classifier in Section 4.2.3, with no signif-
icant difference in accuracy. Here, we simply adopt 0.0008,
without further experimentation. In addition, we did not ex-
periment with other conditions than those incorporated in the
two rules in this section and the two rules in Section 4.2.3
below.
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Acc OP OR OF SP SR SF
OS/O 75.4 68.0 62.9 65.4 79.2 82.7 80.9
R1 77.7 75.5 58.8 66.1 78.6 88.8 83.4
R2 79.0 67.3 83.9 74.7 89.0 76.1 82.0
R1R2 81.3 72.5 79.8 75.9 87.4 82.2 84.8

Table 3: Effect of SWSD on the subjec-
tive/objective classifier

ing only R2, and one using both (R1R2). The re-
sults are in Table 3. TheR1variant shows an im-
provement of 2.3 points in accuracy (a 9.4% error
reduction). TheR2variant shows an improvement
of 3.6 points in accuracy (a 14.6% error reduc-
tion). Applying both rules (R1R2) gives an im-
provement of 5.9 percentage points in accuracy (a
24% error reduction).

In our case, a paired t-test is not appropriate
to measure statistical significance, as we are not
doing multiple runs. Thus, we apply McNemar’s
test, which is a non-parametric method for algo-
rithms that can be executed only once, meaning
training once and testing once (Dietterich, 1998).
For R1, the improvement in accuracy is statisti-
cally significant at the p< .05 level. ForR2 and
R1R2, the improvement in accuracy is statistically
significant at the p< .01 level. Moreover, in all
cases, we see improvement in both objective and
subjective F-measure.

4.2.3 Contextual Polarity Classifier

We now apply SWSD to contextual polarity clas-
sification (positive/negative/neutral), in the hope
that avoiding false hits of subjectivity keywords
will also lead to performance improvement in con-
textual sentiment analysis.

We use an implementation of the classifier of
(Wilson et al., 2005a). This classifier labels in-
stances of lexicon entries. The gold standard is
defined on the MPQA Corpus as follows: If an
instance is in a positive subjective expression, it
is contextually positive (Ps); if in a negative sub-
jective expression, it is contextually negative (Ng);
and if it is in an objective expression or a neu-
tral subjective expression, then it is contextually
N(eutral). As above, we evaluate the system on
the keyword instances in the SenMPQA dataset.

Wilson et al. use a two step approach. The first
step classifies keyword instances as being in a po-
lar (positive or negative) or a neutral context. The
first step is performed by the neutral/polar classi-

fier mentioned above in Section 4.2.2. The sec-
ond step decides the contextual polarity (positive
or negative) of the instances classified as polar in
the first step, and is performed by a separate clas-
sifier.

To make a sense-aware version of the system,
we use rules to change some of the answers of the
neutral/polar classifier.

Unfortunately, we cannot simply trust SWSD
when it labels a keyword as anSsense, because an
S sense might be in aN(eutral) expression (since
there are neutral subjective expressions). But, an
S sense is more likely to appear in aP(olar) ex-
pression. Thus, we consider confidence (ruleR3):
If the contextual classifier labels an instance asN,
but SWSD determines it has anS sense and the
contextual classifier’s confidence is low,6 thenR3
flips the contextual classifier’s label toP.

RuleR4 is analogous toR2 in the previous sec-
tion: If the contextual classifier labels an instance
as P, but (1) SWSD determines that it has anO
sense, (2) the contextual classifier’s confidence is
low, and (3) there is no other subjective keyword in
the same expression, thenR2 flips the contextual
classifier’s label toN.

We compare the performance of the original
neutral/polar classifier (ON/P ) and sense-aware
variants usingR3andR4. The results are in Table
4. This time, the table does not include a combined
method, because onlyR4 improves performance.
This is consistent with the finding in (Wilson et
al., 2005a) that most errors are caused by subjec-
tivity keywords with non-neutral prior polarity ap-
pearing in phrases with neutral contextual polarity.
R4 targets these cases. It is promising to see that
SWSD provides enough information to fix some of
them. There is a 2.6 point improvement in accu-
racy (a 12.4% error reduction). The improvement
in accuracy is statistically significant at the p<
.01 level with McNemar’s test. The improvement
in accuracy is accompanied by improvements in
both neutral and polar F-measure.

We wanted to see if the improvements in the

6As in the previous section, low confidence is defined
in terms of the difference between the largest label weight
and the second largest label weight assigned by BoosTexter.
We tried three thresholds, 0.0007, 0.0008, and 0.0009, re-
sulting in only a slight difference in accuracy: 0.0007 and
0.0009 both give 81.5 accuracy compared to 81.6 accuracy
for 0.0008. We report results using 0.0008, though the ac-
curacy using the other thresholds is statistically significantly
better than the accuracy of the original classifier at the same
level.
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Acc NP NR NF NgP NgR NgF PsP PsR PsF
OPs/Ng/N 77.6 80.9 94.6 87.2 60.4 29.4 39.5 52.2 32.4 40.0
R4 80.6 81.2 98.7 89.1 82.1 29.4 43.2 68.6 32.4 44.0

Table 5: Effect of SWSD on the contextual polarity classifier

Acc NP NR NF PP PR PF
ON/P 79.0 81.5 92.5 86.765.8 40.7 50.3
R3 70.0 83.7 73.8 78.444.4 59.3 50.8
R4 81.6 81.7 96.8 88.681.1 38.6 52.3

Table 4: Effect of SWSD on the neutral/polar clas-
sifier

first step of Wilson et al’s system can be propa-
gated to their second step, yielding an overall im-
provement in positive /negative/neutral (Ps/Ng/N)
classification.

The sense-aware variant of the overall two-part
system is the same as the original except that we
apply R4 to the output of the first step (flipping
some of the neutral/polar classifier’sP labels to
N). Thus, since the second step in Wilson et al.’s
classifier processes only those instances labeledP
in the first step, in the sense-aware system, fewer
instances are passed from the first to the second
step.

Table 5 reports results for the original sys-
tem (OPs/Ng/N ) and the sense-aware variant (R4).
These results are for the entire SenMPQA dataset,
not just those labeledP in the first step.

The accuracy improves 3 percentage points (a
13.4% error reduction). The improvement in accu-
racy is statistically significant at the p< .01 level
with McNemar’s test. We see the real benefit when
we look at the precision of the positive and neg-
ative classes. Negative precision goes from 60.4
to 82.1 and positive precision goes from 52.2 to
68.6, with no loss in recall. This is evidence that
the SWSD system is doing a good job of removing
some false hits of subjectivity clues that harm the
original version of the system.

5 Comparisons to Previous Work

Several researchers exploit lexical resources for
contextual subjectivity and sentiment analysis.
These systems typically look for the presence of
subjective or sentiment-bearing words in the text.
They may rely only on this information (e.g.,
(Turney, 2002; Whitelaw et al., 2005; Riloff and
Wiebe, 2003)), or they may combine it with addi-

tional information as well (e.g., (Yu and Hatzivas-
siloglou, 2003; Kim and Hovy, 2004; Bloom et al.,
2007; Wilson et al., 2005a)). We apply SWSD to
some of those systems to show the effect of SWSD
on contextual subjectivity and sentiment analysis.

Another set of related work is on subjectivity
and polarity labeling of word senses (e.g. (Esuli
and Sebastiani, 2006; Andreevskaia and Bergler,
2006; Wiebe and Mihalcea, 2006; Su and Markert,
2008)). They label senses of words in a dictionary.
In comparison, we label senses of word instances
in a corpus.

Moreover, our work extends findings in (Wiebe
and Mihalcea, 2006) and (Su and Markert, 2008).
(Wiebe and Mihalcea, 2006) demonstrates that
subjectivity is a property that can be associated
with word senses. We show that it is a natural
grouping of word senses and that it provides a
principled way for clustering senses. They also
demonstrate that subjectivity helps with WSD. We
show that a coarse-grained WSD variant (SWSD)
helps with subjectivity and sentiment analysis.
Both (Wiebe and Mihalcea, 2006) and (Su and
Markert, 2008) show that even reliable subjectiv-
ity clues have objective senses. We demonstrate
that this ambiguity is also prevalent in a corpus.

Several researchers (e.g., (Palmer et al., 2004;
Navigli, 2006; Snow et al., 2007; Hovy et al.,
2006)) work on reducing the granularity of sense
inventories for WSD. They aim for a more coarse-
grained sense inventory to overcome performance
shortcomings related to fine-grained sense distinc-
tions. Our work is similar in the sense that we
reduce all senses of a word to two senses (S/O).
The difference is the criterion driving the group-
ing. Related work concentrates on syntactic and
semantic similarity between senses to group them.
In contrast, our grouping is driven by subjectivity
with a specific application area in mind, namely
subjectivity and sentiment analysis.

6 Conclusions and Future Work

We introduced the task of subjectivity word sense
disambiguation (SWSD), and evaluated a super-
vised method inspired by research in WSD. The
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system achieves high accuracy, especially on
highly ambiguous words, and substantially outper-
forms WSD on the same data. The positive results
provide evidence that SWSD is a feasible variant
of WSD, and that theS/O sense groupings are nat-
ural ones.

We also explored the promise of SWSD for con-
textual subjectivity analysis. We showed that a
subjectivity lexicon can have substantial coverage
of the subjective expressions in the corpus, yet
still be responsible for significant sense ambiguity.
This demonstrates the potential benefit to opin-
ion analysis of performing SWSD. We then ex-
ploit SWSD in several contextual opinion analysis
systems, including positive/negative/neutral senti-
ment classification. Improvements in performance
were realized for all of the systems.

We plan several future directions which promise
to further increase the impact of SWSD on sub-
jectivity and sentiment analysis. We will manu-
ally annotate a moderate number of strategically
chosen words, namely frequent ones which are
highly ambiguous. In addition, we will add fea-
tures to the SWSD system reflecting the subjec-
tivity of the surrounding context. Finally, there
are more sophisticated strategies to explore for
improving subjectivity and sentiment analysis via
SWSD than the simple, intuitive rules we began
with in this paper.
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Abstract

We describe a novel approach for syntax-
based statistical MT, which builds on a
variant of tree adjoining grammar (TAG).
Inspired by work in discriminative depen-
dency parsing, the key idea in our ap-
proach is to allow highly flexible reorder-
ing operations during parsing, in combina-
tion with a discriminative model that can
condition on rich features of the source-
language string. Experiments on trans-
lation from German to English show im-
provements over phrase-based systems,
both in terms of BLEU scores and in hu-
man evaluations.

1 Introduction

Syntax-based models for statistical machine trans-
lation (SMT) have recently shown impressive re-
sults; many such approaches are based on ei-
ther synchronous grammars (e.g., (Chiang, 2005)),
or tree transducers (e.g., (Marcu et al., 2006)).
This paper describes an alternative approach for
syntax-based SMT, which directly leverages meth-
ods from non-projective dependency parsing. The
key idea in our approach is to allow highly flexible
reordering operations, in combination with a dis-
criminative model that can condition on rich fea-
tures of the source-language input string.

Our approach builds on a variant of tree adjoin-
ing grammar (TAG; (Joshi and Schabes, 1997))
(specifically, the formalism of (Carreras et al.,
2008)). The models we describe make use of
phrasal entries augmented with subtrees that pro-
vide syntactic information in the target language.
As one example, when translating the sentence
wir müssen auch diese kritik ernst nehmenfrom
German into English, the following sequence of
syntactic phrasal entries might be used (we show
each English syntactic fragment above its associ-
ated German sub-string):

S

NP

we

VP

must ADVP

also

NP

these criticisms

ADVP

seriously

VP

take

wir müssen auch diese kritik ernst nehmen

TAG parsing operations are then used to combine
these fragments into a full parse tree, giving the
final English translationwe must also take these
criticisms seriously.

Some key aspects of our approach are as fol-
lows:
• We impose no constraints on entries in the

phrasal lexicon. The method thereby retains the
full set of lexical entries of phrase-based systems
(e.g., (Koehn et al., 2003)).1

• The model allows a straightforward integra-
tion of lexicalized syntactic language models—for
example the models of (Charniak, 2001)—in addi-
tion to a surface language model.
• The operations used to combine tree frag-

ments into a complete parse tree are signifi-
cant generalizations of standard parsing operations
found in TAG; specifically, they are modified to be
highly flexible, potentially allowing any possible
permutation (reordering) of the initial fragments.

As one example of the type of parsing opera-
tions that we will consider, we might allow the
tree fragments shown above forthese criticisms
and take to be combined to form a new structure
with the sub-stringtake these criticisms. This step
in the derivation is necessary to achieve the correct
English word order, and is novel in a couple of re-
spects: first,these criticismsis initially seen to the
left of take, but after the adjunction this order is
reversed; second, and more unusually, the treelet
for seriouslyhas been skipped over, with the re-
sult that the German words translated at this point
(diese, kritik, andnehmen) form a non-contiguous
sequence. More generally, we will allow any two

1Note that in the above example each English phrase con-
sists of a completely connected syntactic structure; this is not,
however, a required constraint, see section 3.2 for discussion.
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tree fragments to be combined during the transla-
tion process, irrespective of the reorderings which
are introduced, or the non-projectivity of the pars-
ing operations that are required.

The use of flexible parsing operations raises two
challenges that will be a major focus of this paper.
First, these operations will allow the model to cap-
ture complex reordering phenomena, but will in
addition introduce many spurious possibilities. In-
spired by work in discriminative dependency pars-
ing (e.g., (McDonald et al., 2005)), we add proba-
bilistic constraints to the model through a discrim-
inative model that links lexical dependencies in the
target language to features of the source language
string. We also investigate hard constraints on the
dependency structures that are created during pars-
ing. Second, there is a need to develop efficient
decoding algorithms for the models. We describe
approximate search methods that involve a signif-
icant extension of decoding algorithms originally
developed for phrase-based translation systems.

Experiments on translation from German to En-
glish show a 0.5% improvement in BLEU score
over a phrase-based system. Human evaluations
show that the syntax-based system gives a sig-
nificant improvement over the phrase-based sys-
tem. The discriminative dependency model gives
a 1.5% BLEU point improvement over a basic
model that does not condition on the source lan-
guage string; the hard constraints on dependency
structures give a 0.8% BLEU improvement.

2 Relationship to Previous Work

A number of syntax-based translation systems
have framed translation as a parsing problem,
where search for the most probable translation is
achieved using algorithms that are generalizations
of conventional parsing methods. Early examples
of this work include (Alshawi, 1996; Wu, 1997);
more recent models include (Yamada and Knight,
2001; Eisner, 2003; Melamed, 2004; Zhang and
Gildea, 2005; Chiang, 2005; Quirk et al., 2005;
Marcu et al., 2006; Zollmann and Venugopal,
2006; Nesson et al., 2006; Cherry, 2008; Mi et
al., 2008; Shen et al., 2008). The majority of
these methods make use of synchronous gram-
mars, or tree transducers, which operate over parse
trees in the source and/or target languages. Re-
ordering rules are typically specified through rota-
tions or transductions stated at the level of context-
free rules, or larger fragments, within parse trees.
These rules can be learned automatically from cor-

pora.
A critical difference in our work is to allow

arbitrary reorderings of the source language sen-
tence (as in phrase-based systems), through the
use of flexible parsing operations. Rather than
stating reordering rules at the level of source or
target language parse trees, we capture reorder-
ing phenomena using a discriminative dependency
model. Other factors that distinguish us from pre-
vious work are the use of all phrases proposed by a
phrase-based system, and the use of a dependency
language model that also incorporates constituent
information (although see (Charniak et al., 2003;
Shen et al., 2008) for related approaches).

3 A Syntactic Translation Model
3.1 Background

Our work builds on the variant of tree adjoin-
ing grammar (TAG) introduced by (Carreras et
al., 2008). In this formalism the basic units
in the grammar are spines, which associate tree
fragments with lexical items. These spines can
be combined using asister-adjunctionoperation
(Rambow et al., 1995), to form larger pieces of
structure.2 For example, we might have the fol-
lowing operation:

NP

there

S

VP

is

⇒ S

NP

there

VP

is

In this case the spine fortherehas sister-adjoined
into the S node in the spine foris; we re-
fer to the spine forthere as being the modifier
spine, and the spine foris being the head spine.
There are close connections to dependency for-
malisms: in particular in this operation we see
a lexical dependency between the modifier word
there and the head wordis. It is possible to de-
fine syntactic language models, similar to (Char-
niak, 2001), which associate probabilities with
these dependencies, roughly speaking of the form
P (wm, sm|wh, sh, pos, σ), wherewm andsm are
the identities of the modifier word and spine,wh

and sh are the identities of the head word and
spine,pos is the position in the head spine that is
being adjoined into, andσ is some additional state
(e.g., state that tracks previous modifiers that have
adjoined into the same spine).

2We also make use of the r-adjunction operation defined in
(Carreras et al., 2008), which, together with sister-adjunction,
allows us to model the full range of structures found in the
Penn treebank.
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S

NP

there

VP

is NP

NPB

no hierarchy

PP

of NP

discrimination

es gibt keine hierarchie der diskriminierung

Figure 1:A training example consisting of an English (tar-
get language) tree and a German (source language) sentence.

In this paper we will also considertreelets,
which are a generalization of spines, and which
allow lexical entries that include more than one
word. These treelets can again be combined us-
ing a sister-adjunction operation. As an example,
consider the following operation:

VP

be ADJP

able

SG

to VP

respond

⇒ VP

be ADJP

able SG

to VP

respond

In this case the treelet forto respondsister-adjoins
into the treelet forbe able. This operation intro-
duces a bi-lexical dependency between the modi-
fier word to and the head wordable.

3.2 S-phrases
This section describes how phrase entries from
phrase-based translation systems can be modified
to include associated English syntactic structures.
These syntactic phrase-entries (from here on re-
ferred to as “s-phrases”) will form the basis of the
translation models that we describe.

We extract s-phrases from training examples
consisting of a source-language string paired with
a target-language parse tree. For example, con-
sider the training example in figure 1. We as-
sume some method that enumerates a set of pos-
sible phrase entriesfor each training example:
each phrase entry is a pair〈(i, j), (k, l)〉 speci-
fying that source-language wordsfi . . . fj corre-
spond to target-language wordsek . . . el in the ex-
ample. For example, one phrase entry for the ex-
ample might be〈(1, 2), (1, 2)〉, representing the
pair 〈es gibt⇒ there is〉. In our experiments
we use standard methods in phrase-based systems
(Koehn et al., 2003) to define the set of phrase en-
tries for each sentence in training data.

es gibt keine hierarchie der

S

NP

there

VP

is

DT

no

NP

NPB

hierarchy

PP

of

Figure 2:Example syntactic phrase entries. We show Ger-
man sub-strings above their associated sequence of treelets.4

For each phrase entry, we add syntactic infor-
mation to the English string. To continue our ex-
ample, the resulting entry would be as follows:

es gibt ⇒ S

NP

there

VP

is

To give a more formal description of how syn-
tactic structures are derived for phrases, first note
that each parse treet is mapped to a TAG deriva-
tion using the method described in (Carreras et al.,
2008). This procedure uses the head finding rules
of (Collins, 1997). The resulting derivation con-
sists of a TAG spine for each word seen in the sen-
tence, together with a set of adjunction operations
which each involve a modifier spine and a head
spine. Given an English stringe = e1 . . . en, with
an associated parse treet, the syntactic structure
associated with a substringek . . . el (e.g.,there is)
is then defined as follows:

• For each word in the English sub-string, in-
clude its associated TAG spine int.
• In addition, include any adjunction operations

in t where both the head and modifier word are in
the sub-stringej . . . ek.

In the above example, the resulting structure
(i.e., the structure forthere is) is a single treelet.
In other cases, however, we may get a sequence of
treelets, which are disconnected from each other.
For example, another likely phrase-entry for this
training example is〈es gibt keine⇒ there is no〉
resulting in the first lexical entry in figure 2, which
has two treelets. Allowing s-phrases with multiple
treelets ensures that all phrases used by phrase-
based systems can be used within our approach.

As a final step, we add additionalalign-
ment information to each s-phrase. Con-
sider an s-phrase which contains source-language
wordsf1 . . . fn paired with target-language words
e1 . . . em. The alignment information is a vec-
tor 〈(a1, b1) . . . (am, bm)〉 that specifies for each
word ei its alignment to wordsfai . . . fbi

in the
source language. For example, for the phrase en-
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try 〈es gibt⇒ there is〉 a correct alignment would
be 〈(1, 1), (2, 2)〉, specifying thatthere is aligned
to es, andis is aligned togibt (note that in many,
but not all, casesai = bi, i.e., a target language
word is aligned to a single source language word).

The alignment information in s-phrases will
be useful in tying syntactic dependencies cre-
ated in the target language to positions in the
source language string. In particular, we will con-
sider discriminative models (analogous to models
for dependency parsing, e.g., see (McDonald et
al., 2005)) that estimate the probability of target-
language dependencies conditioned on properties
of the source-language string. Alignments may be
derived in a number of ways; in our method we
directly use phrase entries proposed by a phrase-
based system. Specifically, for each target wordei

in a phrase entry〈f1 . . . fn, e1 . . . em〉 for a train-
ing example, we find the smallest5 phrase entry
in the same training example that includesei on
the target side, and is a subset off1 . . . fn on the
source side; the wordei is then aligned to the sub-
set of source language words in this “minimal”
phrase.

In conclusion, s-phrases are defined as follows:

Definition 1 An s-phrase is a 4-tuple〈f, e, t, a〉
where: f is a sequence of foreign words;e is
a sequence of English words;t is a sequence of
treelets specifying a TAG spine for each English
word, and potentially some adjunctions between
these spines; anda is an alignment. For an s-
phraseq we will sometimes refer to the 4 elements
of q asf(q), e(q), t(q) anda(q).

3.3 The Model
We now introduce a model that makes use of s-
phrases, and which is flexible in the reorderings
that it allows. To provide some intuition, and some
motivation for the use of reordering operations,
figure 3 gives several examples of German strings
which have different word orders from English.

The crucial idea will be to use TAG adjunction
operations to combine treelets to form a complete
parse tree, but with a complete relaxation on the
order in which the treelets are combined. For ex-
ample, consider again the example given in the
introduction to this paper. In the first step of a
derivation that builds on these treelets, the treelet

5The “size” of a phrase entry is defined to bens + nt

where ns is the number of source language words in the
phrase,nt is the number of target language words.

1(a) [die verwaltung] [muss] [künftig] [schneller] [reagieren]
[können] 1(b) the administration must be able to respond
more quickly in future

1(c) NP

the
admin. . .

S

VP

must

PP

in future

ADVP

more
quickly

SG

to VP

respond

VP

be ADJP

able

2(a) [meiner ansicht nach] [darf] [der erweiterungsprozess]
[nicht] [unnötig] [verzögert] [werden] 2(b) in my opinion the
expansion process should not be delayed unnecessarily

2(c) PP

in my
opinion

S

VP

should

NP

the. . . process

RB

not

ADVP

unnecessarily

VP

delayed

VP

be

Figure 3: Examples of translations. In each example (a)
is the original German string, with a possible segmentation
marked with “[“ and “]”; (b) is a translation for (a); and (c)
is a sequence of phrase entries, including syntactic structures,
for the segmentation given in (a).

for these criticismsmight adjoin into the treelet for
take, giving the following new sequence:

S

NP

we

VP

must ADVP

also

ADVP

seriously

VP

V

take

NP

these criticisms

In the next derivation stepseriouslyis adjoined to
the right oftake, giving the following treelets:

S

NP

we

VP

must ADVP

also

VP

V

take

NP

these criticisms

ADVP

seriously

In the final step the second treelet adjoins into the
VP abovemust, giving a parse tree for the string
we must also take these criticisms seriously, and
completing the translation.

Formally, given an input sentencef , a derivation
d is a pair〈q, π〉 where:

• q = q1 . . . qn is a sequence of s-phrases such
thatf = f(q1)⊕f(q2)⊕ . . .⊕f(qn) (whereu⊕v
denotes the concatenation of stringsu andv).
• π is a set of adjunction operations that

connects the sequence of treelets contained in
〈t(q1), t(q2), . . . , t(qn)〉 into a parse tree in the
target language. The operations allow a com-
plete relaxation of word order, potentially allow-
ing any of then! possible orderings of then s-
phrases. We make use of both sister-adjunction
and r-adjunction operations, as defined in (Car-
reras et al., 2008).6

6In principle we allow any treelet to adjoin into any other
treelet—for example there are no hard, grammar-based con-
straints ruling out the combination of certain pairs of non-
terminals. Note however that in some cases operations will
have probability0 under the syntactic language model intro-
duced later in this section.
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DT

no

NP

NPB

hierarchy

PP

of

NP

discrimination

⇒ NP

NPB

hierarchy

PP

of

NP

DT

no

discrimination

Figure 4: A spurious derivation step. The treelets arise
from [keine] [hierarchie der] [diskriminierung].

Given a derivationd = 〈q, π〉, we definee(d)
to be the target-language string defined by the
derivation, andt(d) to be the complete target-
language parse tree created by the derivation. The
most likely derivation for a foreign sentencef
is arg maxd∈G(f) score(d), whereG(f) is the set
of possible derivations forf , and the score for a
derivation is defined as7

score(d) = scoreLM (e(d)) + scoreSY N (t(d))

+ scoreR(d) +
n∑

j=1

scoreP (qj) (1)

The components of the model are as follows:
• scoreLM (e(d)) is the log probability of the

English string under a trigram language model.
• scoreSY N (t(d)) is the log probability of the

English parse tree under a syntactic language
model, similar to (Charniak, 2001), that associates
probabilities with lexical dependencies.
• scoreR(d) will be used to score the pars-

ing operations inπ, based on the source-language
string and the alignments in the s-phrases. This
part of the model is described extensively in sec-
tion 4.1 of this paper.
• scoreP (q) is the score for an s-phraseq.

This score is a log-linear combination of var-
ious features, including features that are com-
monly found in phrase-based systems: for exam-
ple log P (f(q)|e(q)), log P (e(q)|f(q)), and lex-
ical translation probabilities. In addition, we in-
clude a featurelog P (t(q)|f(q), e(q)), which cap-
tures the probability of the phrase in question hav-
ing the syntactic structuret(q).

Note that a model that includes the terms
scoreLM (e(d)) and

∑n
j=1 scoreP (qj) alone

would essentially be a basic phrase-based
model (with no distortion terms). The terms
scoreSY N (t(d)) and scoreR(d) add syntactic
information to this basic model.

A key motivation for this model is the flexibility
of the reordering operations that it allows. How-
ever, the approach raises two major challenges:

7In practice, MERT training (Och, 2003) will be used to
train relative weights for the different model components.

Constraints on reorderings. Relaxing the op-
erations in the parsing model will allow complex
reorderings to be captured, but will also introduce
many spurious possibilities. As one example, con-
sider the derivation step shown in figure 4. This
step may receive a high probability from a syntac-
tic or surface language model—no discrimination
is a quite plausibleNP in English—but it should
be ruled out for other reasons, for example be-
cause it does not respect the dependencies in the
original German (i.e.,keine/no is not a modifier
to diskriminierung/discrimination in the German
string). The challenge will be to develop either
hard constraints which rule out spurious derivation
steps such as these, or soft constraints, encapsu-
lated inscoreR(d), which penalize them.

Efficient search. Exact search for the derivation
which maximizes the score in Eq. 1 cannot be
accomplished efficiently using dynamic program-
ming (as in phrase-based systems, it is easy to
show that the decoding problem is NP-complete).
Approximate search methods will be needed.

The next two sections of this paper describe so-
lutions to these two challenges.

4 Constraints on Reorderings
4.1 A Discriminative Dependency Model

We now describe the modelscoreR introduced in
the previous section. Recall thatπ specifiesk ad-
junction operations that are used to build a full
parse tree, wherek ≥ n is the number of treelets
within the sequence of s-phrasesq = 〈q1 . . . qn〉.

Each of thek adjunction operations creates a
dependency between a modifier wordwm within
a phraseqm, and a head wordwh within a phrase
qh. For example, in the example in section 3.3
where these criticismswas combined withtake,
the modifier word iscriticismsand the head word
is take. The modifier and head words have TAG
spinessm andsh respectively. In addition we can
define(am, bm) to be the start and end indices of
the words in the foreign string to which the word
wm is aligned; this information can be recovered
because the s-phraseqm contains alignment infor-
mation for all target words in the phrase, includ-
ing wm. Similarly, we can define(ah, bh) to be
alignment information for the head wordwh. Fi-
nally, we can defineρ to be a binary flag speci-
fying whether or not the adjunction operation in-
volves reordering (in thetake criticismexample,
this flag is set totrue, because the order in En-
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VP

DT N

NP

N

criticismsthese take

nehmenernstwir müssen auch diese kritik

Figure 5: An adjunction operation that involves the mod-
ifier criticismsand the headtake. The phrases involved are
underlined; the dotted lines show alignments within s-phrases
between English words and positions in the German string.
TheΓ-dependency in this case includes the head and modi-
fier words, together with their spines, and their alignmentsto
positions in the German string (kritik andnehmen).

glish is reversed from that in German). This leads
to the following definition:

Definition 2 Given a derivationd = 〈q, π〉, we
define Γ(d) to be the set ofΓ-dependencies
in d. Each Γ-dependency is a tuple
〈wm, sm, am, bm, wh, sh, ah, bh, ρ〉 of elements as
described above.

Figure 5 gives an illustration of how an adjunction
creates one suchΓ-dependency.

The model is then defined as

scoreR(d) =
∑

γ∈Γ(d)

scorer(γ, f)

wherescorer(γ, f) is a score associated with the
Γ-dependencyγ. This score can potentially be
sensitive to any information inγ or the source-
language stringf ; in particular, note that the align-
ment indices(am, bm) and (ah, bh) essentially
anchor the target-language dependency to posi-
tions in the source-language string, allowing the
score for the dependency to be based on features
that have been widely used in discriminative de-
pendency parsing, for example features based on
the proximity of the two positions in the source-
language string, the part-of-speech tags in the sur-
rounding context, and so on. These features have
been shown to be powerful in the context of regu-
lar dependency parsing, and our intent is to lever-
age them in the translation problem.

In our model, we definescorer as follows. We
estimate a modelP (y|γ, f) wherey ∈ {−1,+1},
andy = +1 indicates that a dependency does exist
betweenwm andwh, andy = −1 indicates that a
dependency does not exist. We then define

scorer(γ, f) = log P (+1|γ, f)

To estimateP (y|γ, f), we first extract a set of la-
beled training examples of the form〈yi, γi, fi〉 for

i = 1 . . . N from our training data as follows:
for each pair of target-language words(wm, wh)
seen in the training data, we can extract associ-
ated spines(sm, sh) from the relevant parse tree,
and also extract a labely indicating whether or not
a head-modifier dependency is seen between the
two words in the parse tree. Given an s-phrase in
the training example that includeswm, we can ex-
tract alignment information(am, bm) from the s-
phrase; we can extract similar information(ah, bh)
for wh. The end result is a training example of the
form 〈y, γ, f〉.8 We then estimateP (y|γ, f) using
a simple backed-off model that takes into account
the identity of the two spines, the value for the flag
r, the distance between(am, bm) and(ah, bh), and
part-of-speech information in the source language.

4.2 Contiguity of π-Constituents
We now describe a second type of constraint,
which limits the amount of non-projectivity in
derivations. Consider again thek adjunction op-
erations inπ, which are used to connect treelets
into a full parse tree. Each adjunction operation
involves a head treelet thatdominatesa modifier
treelet. Thus for any treelett, we can consider its
descendants, that is, the entire set of treelets that
are directly or indirectly dominated byt. We de-
fine aπ-constituentfor treelett to be the subset
of source-language words dominated byt and its
descendants. We then introduce the following con-
straint onπ-constituents:

Definition 3 (π-constituent constraint.) Aπ-
constituent iscontiguousiff it consists of a con-
tiguous sequence of words in the source language.
A derivation π satisfies theπ-constituent con-
straint iff all π-constituents that it contains are
contiguous.

In this paper we constrain all derivations to sat-
isfy theπ-constituent constraint (future work may
consider probabilistic versions of the constraint).

The intuition behind the constraint deserves
more discussion. The constraint specifies that the
modifiers to each treelet can appear in any or-
der around the treelet, with arbitrary reorderings
or non-projective operations. However, once a
treelet has taken all its modifiers, the resultingπ-
constituent must form a contiguous sub-sequence

8To be precise, there may be multiple (or even zero) s-
phrases which includewm or wh, and these s-phrases may
include conflicting alignment information. Givennm differ-
ent alignments seen forwm, andnh different alignments seen
for wh, we createnm×nh training examples, which include
all possible combinations of alignments.
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of the source-language string. As one set of exam-
ples, consider the translations in figure 3, and the
example given in the introduction. These exam-
ples involve reordering of arguments and adjuncts
within clauses, a very common case of reordering
in translation from German to English. The re-
orderings in these translations are quite flexible,
but in all cases satisfy theπ-constituent constraint.

As an illustration of a derivation that violates
the constraint, consider again the derivation step
shown in figure 4. This step has formed a par-
tial hypothesis,no discrimination, which corre-
sponds to the German wordskeineand diskrim-
inierung, which do not form a contiguous sub-
string in the German. Consider now a complete
derivation, which derives the stringthere is hier-
archy of no discrimination, and which includes the
π-constituentno discriminationshown in the fig-
ure (i.e., where the treeletdiscriminationtakesno
as its only modifier). This derivation will violate
theπ-constituent constraint.9

5 Decoding
We now describe decoding algorithms for the syn-
tactic models: we first describe inference rules
that are used to combine pieces of structure, and
then describe heuristic search algorithms that use
these inference rules. Throughout this section,
for brevity and simplicity, we describe algorithms
that apply under the assumption that each s-phrase
has a single associated treelet. The generalization
to the case where an s-phrase may have multiple
treelets is discussed in section 5.3.

5.1 Inference Rules
Parsing operations for the TAG grammars de-
scribed in (Carreras et al., 2008) are based on
the dynamic programming algorithms in (Eisner,
2000). A critical idea in dynamic programming al-
gorithms such as these is to associate constituents
in a chart withspansof the input sentence, and
to introduce inference rules that combine con-
stituents into larger pieces of structure. The crucial
step in generalizing these algorithms to the non-
projective case, and to translation, will be to make
use ofbit-stringsthat keep track of which words in
the German have already been translated in a chart
entry. To return to the example from the intro-
duction, again assume that the selected s-phrases

9Note, however, that the derivation step show in figure 4
will be considered in the search, because ifdiscrimination
takes additional modifiers, and thereby forms aπ-constituent
that dominates a contiguous sub-string in the German, then
the resulting derivation will be valid.

0. Data structures:Qi for i = 1 . . . n is a set of hypotheses
for each lengthi, S is a set of chart entries

1. S ← ∅
2. InitializeQ1 . . .Qn with basic chart entries derived

from phrase entries
3. For i = 1 . . . n
4. For anyA ∈ BEAM(Qi)
5. If S contains a chart entry with the same signature

asA, and which has a higher inside score,
6. continue
7. Else
8. AddA to S
9. For any chart entryC that can be derived from

A together with another chart entryB ∈ S ,
addC to the setQj wherej = length(C)

10. Return Qn, a set of items of lengthn

Figure 6: A beam search algorithm. A dynamic-
programmingsignature consists of the regular dynamic-
programming state for the parsing algorithm, together with
the span (bit-string) associated with a constituent.

segment the German input into[wir müssen auch]
[diese kritik] [ernst] [nehmen], and the treelets are
as shown in the introduction. Each of these treelets
will form a basic entry in the chart, and will have
an associated bit-string indicating which German
words have been translated by that entry.

These basic chart entries can then be combined
to form larger pieces of structure. For example,
the following inferential step is possible:

NP/0001100

these criticisms

VP/0000001

V

take

⇒ VP/0001101

V

take

NP

these criticisms

We have shown the bit-string representation for
each consituent: for example, the new constituent
has the bit-string0001101 representing the fact
that the non-contiguous sub-stringsdiese kritik
andnehmenhave been translated at this point. Any
two constituents can be combined, providing that
the logicalAND of their bit-strings is all0’s.

Inference steps such as that shown above will
have an associated score corresponding to the
TAG adjunction that is involved: in our mod-
els, bothscoreSY N andscoreR will contribute to
this score. In addition, we add state—specifically,
word bigrams at the start and end of constituents—
that allows trigram language model scores to be
calculated as constituents are combined.

5.2 Approximate Search
There are2n possible bit-strings for a sentence of
length n, hence the search space is of exponen-
tial size; approximate algorithms are therefore re-
quired in search for the highest scoring derivation.
Figure 6 shows a beam search algorithm which
makes use of the inference rules described in the
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previous section. The algorithm stores setsQi

for i = 1 . . . n, wheren is the source-language
sentence length; each setQi stores hypotheses of
length i (i.e., hypotheses with an associated bit-
string with i ones). These sets are initialized with
basic entries derived from s-phrases.

The function BEAM(Qi) returns all items
within Qi that have a high enough score to fall
within a beam (more details for BEAM are given
below). At each iteration (step 4), each item in
turn is taken from BEAM(Qi) and added to a
chart; the inference rules described in the previ-
ous section are used to derive new items which are
added to the appropriate setQj, wherej > i.

We have found the definition of BEAM(Qi) to
be critical to the success of the method. As a first
step, each item inQi receives a score that is a sum
of an inside score (the cost of all derivation steps
used to create the item) and a future score (an esti-
mate of the cost to complete the translation). The
future score is based on the source-language words
that are still to be translated—this can be directly
inferred from the item’s bit-string—this is similar
to the use of future scores in Pharoah (Koehn et al.,
2003), and in fact we use Pharoah’s future scores
in our model. We then give the following defini-
tion, whereN is a parameter (the beam size):

Definition 4 (BEAM) GivenQi, defineQi,j for
j = 1 . . . n to be the subset of items inQi which
have theirj’th bit equal to one (i.e., have thej’th
source language word translated). DefineQ′

i,j to
be theN highest scoring elements inQi,j . Then
BEAM(Qi) = ∪n

j=1Q′
i,j.

To motivate this definition, note that a naive
method would simply define BEAM(Qi) to be
the N highest scoring elements ofQi. This def-
inition, however, assumes that constituents which
form translations of different parts of a sentence
have scores that can be compared—an assumption
that would be true if the future scores were highly
accurate, but which quickly breaks down when fu-
ture scores are inaccurate. In contrast, the defi-
nition above ensures that the topN analyses for
each of then source language words are stored at
each stage, and hence that all parts of the source
sentence are well represented. In experiments, the
naive approach was essentially a failure, with pars-
ing of some sentences either failing or being hope-
lessly inefficient, depending on the choice ofN .
In contrast, definition 4 gives good results.

System BLEU score
Syntax-based 25.2
Syntax (noScoreR) 23.7 (-1.5)
Syntax (noπ-c constraint) 24.4 (-0.8)

Table 1:Development set results showing the effect of re-
movingScoreR or theπ-constituent constraint.

5.3 Allowing Multiple Treelets per s-Phrase

The decoding algorithms that we have described
apply in the case where each s-phrase has a sin-
gle treelet. The extension of these algorithms
to the case where a phrase may have multiple
treelets (e.g., see figure 2) is straightforward, but
for brevity the details are omitted. The basic idea
is to extend bit-string representations with a record
of “pending” treelets which have not yet been in-
cluded in a derivation. It is also possible to enforce
the π-constituent constraint during decoding, as
well as a constraint that ensures that reordering op-
erations do not “break apart” English sub-strings
within s-phrases that have multiple treelets (for ex-
ample, for the s-phrase in figure 2, we ensure that
there is noremains as a contiguous sequence of
words in any translation using this s-phrase).

6 Experiments

We trained the syntax-based system on 751,088
German-English translations from the Europarl
corpus (Koehn, 2005). A syntactic language
model was also trained on the English sentences
in the training data. We used Pharoah (Koehn et
al., 2003) as a baseline system for comparison; the
s-phrases used in our system include all phrases,
with the same scores, as those used by Pharoah,
allowing a direct comparison. For efficiency rea-
sons we report results on sentences of length 30
words or less.10 The syntax-based method gives
a BLEU (Papineni et al., 2002) score of 25.04,
a 0.46 BLEU point gain over Pharoah. This re-
sult was found to be significant (p = 0.021) under
the paired bootstrap resampling method of Koehn
(2004), and is close to significant (p = 0.058) un-
der the sign test of Collins et al. (2005).

Table 1 shows results for the full syntax-based
system, and also results for the system with the
discriminative dependency scores (see section 4.1)
and theπ-contituent constraint removed from the
system. In both cases we see a clear impact of
these components of the model, with 1.5 and 0.8
BLEU point decrements respectively.

10Both Pharoah and our system have weights trained using
MERT (Och, 2003) on sentences of length 30 words or less,
to ensure that training and test conditions are matched.
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R: in our eyes , the opportunity created by this directive of introducing longer buses on international routes is efficient .
S: the opportunity now presented by this directive is effective in our opinion , to use long buses on international routes.
P: the need for this directive now possibility of longer buses on international routes to is in our opinion , efficiently .
R: europe and asia must work together to intensify the battleagainst drug trafficking , money laundering , international
crime , terrorism and the sexual exploitation of minors .
S: europe and asia must work together in order to strengthen the fight against drug trafficking , money laundering , against
international crime , terrorism and the sexual exploitation of minors .
P: europe and asia must cooperate in the fight against drug trafficking , money laundering , against international crime ,
terrorism and the sexual exploitation of minors strengthened .
R: equally important for the future of europe - at biarritz and later at nice - will be the debate on the charter of fundamental
rights .
S: it is equally important for the future of europe to speak onthe charter of fundamental rights in biarritz , and then in nice .
P: just as important for the future of europe , it will be in biarritz and then in nice on the charter of fundamental rights to
speak .
R: the convention was thus a muddled system , generating irresponsibility , and not particularly favourable to well-ordered
democracy .
S: therefore , the convention has led to a system of a promoterof irresponsibility of the lack of clarity and hardly coincided
with the rules of a proper democracy .
P: the convention therefore led to a system of full of lack of clarity and hardly a promoter of the irresponsibility of the rules
of orderly was a democracy .

Figure 7: Examples where both annotators judged the syntactic systemto give an improved translation when compared to
the baseline system. 51 out of 200 translations fall into this category. These examples were chosen at random from these 51
examples.R is the human (reference) translation;S is the translation from the syntax-based system;P is the output from the
baseline (phrase-based) system.

Syntax PB = Total
Syntax 51 3 7 61

PB 1 25 11 37
= 21 14 67 102

Total 73 42 85 200

Table 2: Human annotator judgements. Rows show re-
sults for annotator 1, and columns for annotator 2.Syntax
and PB show the number of cases where an annotator re-
spectively preferred/dispreferred the syntax-based system.=
gives counts of translations judged to be equal in quality.

In addition, we obtained human evaluations on
200 sentences chosen at random from the test data,
using two annotators. For each example, the ref-
erence translation was presented to the annota-
tor, followed by translations from the syntax-based
and phrase-based systems (in a random order). For
each example, each annotator could either decide
that the two translations were of equal quality, or
that one translation was better than the other. Ta-
ble 2 shows results of this evaluation. Both an-
notators show a clear preference for the syntax-
based system: for annotator 1, 73 translations are
judged to be better for the syntax-based system,
with 42 translations being worse; for annotator 2,
61 translations are improved with 37 being worse;
both annotators’ results are statistically significant
with p < 0.05 under the sign test. Figure 7 shows
some translation examples where the syntax-based
system was judged to give an improvement.

7 Conclusions and Future Work
We have described a translation model that makes
use of flexible parsing operations, critical ideas
being the definition of s-phrases,Γ-dependencies,

the π-constituent constraint, and an approximate
search algorithm. A key area for future work
will be further development of the discriminative
dependency model (section 4.1). The model of
scorer(γ, f) that we have described in this paper is
relatively simple; in general, however, there is the
potential forscorer to link target language depen-
dencies to arbitrary properties of the source lan-
guage stringf (recall thatγ contains a head and
modifier spine in the target language, along with
positions in the source-language string to which
these spines are aligned). For example, we might
introduce features that: a) condition dependencies
created in the target language on dependency re-
lations between their aligned words in the source
language; b) condition target-language dependen-
cies on whether they are aligned to words that
are in the same clause or segment in the source
language string; or, c) condition the grammatical
roles of nouns in the target language on grammat-
ical roles of aligned words in the source language.
These features should improve translation qual-
ity by giving a tighter link between syntax in the
source and target languages, and would be easily
incorporated in the approach we have described.
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Abstract

In this work, we propose two extensions of
standard word lexicons in statistical ma-
chine translation: A discriminative word
lexicon that uses sentence-level source in-
formation to predict the target words and
a trigger-based lexicon model that extends
IBM model 1 with a second trigger, allow-
ing for a more fine-grained lexical choice
of target words. The models capture de-
pendencies that go beyond the scope of
conventional SMT models such as phrase-
and language models. We show that the
models improve translation quality by 1%
in BLEU over a competitive baseline on a
large-scale task.

1 Introduction

Lexical dependencies modeled in standard phrase-
based SMT are rather local. Even though the deci-
sion about the best translation is made on sentence
level, phrase models and word lexicons usually do
not take context beyond the phrase boundaries into
account. This is especially problematic since the
average source phrase length used during decod-
ing is small. When translating Chinese to English,
e.g., it is typically close to only two words.

The target language model is the only model
that uses lexical context across phrase boundaries.
It is a very important feature in the log-linear setup
of today’s phrase-based decoders. However, its
context is typically limited to three to six words
and it is not informed about the source sentence.
In the presented models, we explicitly take advan-
tage of sentence-level dependencies including the

source side and make non-local predictions for the
target words. This is an important aspect when
translating from languages like German and Chi-
nese where long-distance dependencies are com-
mon. In Chinese, for example, tenses are often en-
coded by indicator words and particles whose po-
sition is relatively free in the sentence. In German,
prefixes of verbs can be moved over long distances
towards the end of the sentence.

In this work, we propose two models that can
be categorized as extensions of standard word lex-
icons: A discriminative word lexicon that uses
global, i.e. sentence-level source information to
predict the target words using a statistical classi-
fier and a trigger-based lexicon model that extends
the well-known IBM model 1 (Brown et al., 1993)
with a second trigger, allowing for a more fine-
grained lexical choice of target words. The log-
linear framework of the discriminative word lexi-
con offers a high degree of flexibility in the selec-
tion of features. Other sources of information such
as syntax or morphology can be easily integrated.

The trigger-based lexicon model, or simply
triplet model since it is based on word triplets,
is not trained discriminatively but uses the classi-
cal maximum likelihood approach (MLE) instead.
We train the triplets iteratively on a training cor-
pus using the Expectation-Maximization (EM) al-
gorithm. We will present how both models al-
low for a representation of topic-related sentence-
level information which puts them close to word
sense disambiguation (WSD) approaches. As will
be shown later, the experiments indicate that these
models help to ensure translation of content words
that are often omitted by the baseline system. This
is a common problem in Chinese-English transla-
tion. Furthermore, the models are often capable to
produce a better lexical choice of content words.
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The structure of the paper is as follows: In Sec-
tion 2, we will address related work and briefly
pin down how our models differentiate from pre-
vious work. Section 3 will describe the discrimi-
native lexical selection model and the triplet model
in more detail, explain the training procedures and
show how the models are integrated into the de-
coder. The experimental setup and results will be
given in Section 4. A more detailed discussion
will be presented in Section 5. In the end, we con-
clude our findings and give an outlook for further
research in Section 6.

2 Related Work

Several word lexicon models have emerged in the
context of multilingual natural language process-
ing. Some of them were used as a machine transla-
tion system or as a part of one such system. There
are three major types of models: Heuristic models
as in (Melamed, 2000), generative models as the
IBM models (Brown et al., 1993) and discrimina-
tive models (Varea et al., 2001; Bangalore et al.,
2006).

Similar to this work, the authors of (Varea et
al., 2001) try to incorporate a maximum entropy
lexicon model into an SMT system. They use
the words and word classes from the local con-
text as features and show improvements with n-
best rescoring.

The models in this paper are also related to
word sense disambiguation (WSD). For example,
(Chan et al., 2007) trained a discriminative model
for WSD using local but also across-sentence un-
igram collocations of words in order to refine
phrase pair selection dynamically by incorporat-
ing scores from the WSD classifier. They showed
improvements in translation quality in a hierar-
chical phrase-based translation system. Another
WSD approach incorporating context-dependent
phrasal translation lexicons is given in (Carpuat
and Wu, 2007) and has been evaluated on sev-
eral translation tasks. Our model differs from the
latter in three ways. First, our approach mod-
els word selection of the target sentence based on
global sentence-level features of the source sen-
tence. Second, instead of disambiguating phrase
senses as in (Carpuat and Wu, 2007), we model
word selection independently of the phrases used
in the MT models. Finally, the training is done in a
different way as will be presented in Sections 3.1.1
and 3.2.1.

Recently, full translation models using discrim-
inative training criteria emerged as well. They
are designed to generate a translation for a given
source sentence and not only score or disam-
biguate hypotheses given by a translation system.
In (Ittycheriah and Roukos, 2007), the model can
predict 1-to-many translations with gaps and uses
words, morphologic and syntactic features from
the local context.

The authors of (Venkatapathy and Bangalore,
2007) propose three different models. The first
one is a global lexical selection model which in-
cludes all words of the source sentence as features,
regardless of their position. Using these features,
the system predicts the words that should be in-
cluded in the target sentence. Sentence structure is
then reconstructed using permutations of the gen-
erated bag of target words. We will also use this
type of features in our model.

One of the simplest models in the context of
lexical triggers is the IBM model 1 (Brown et
al., 1993) which captures lexical dependencies be-
tween source and target words. It can be seen
as a lexicon containing correspondents of transla-
tions of source and target words in a very broad
sense since the pairs are trained on the full sen-
tence level. The trigger-based lexicon model used
in this work follows the training procedure intro-
duced in (Hasan et al., 2008) and is integrated di-
rectly in the decoder instead of being applied in
n-best list reranking. The model is very close to
the IBM model 1 and can be seen as an extension
of it by taking another word into the condition-
ing part, i.e. the triggering items. Thus, instead
of p(f |e), it models p(f |e, e′). Furthermore, since
the second trigger can come from any part of the
sentence, there is a link to long-range monolin-
gual triggers as presented in (Tillmann and Ney,
1997) where a trigger language model was trained
using the EM algorithm and helped to reduce per-
plexities and word error rates in a speech recog-
nition experiment. In (Rosenfeld, 1996), another
approach was chosen to model monolingual trig-
gers using a maximum-entropy based framework.
Again, this adapted LM could improve speech
recognition performance significantly.

A comparison of a variant of the trigger-based
lexicon model applied in decoding and n-best list
reranking can be found in (Hasan and Ney, 2009).
In order to reduce the number of overall triplets,
the authors use the word alignments for fixing the
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first trigger to the aligned target word. In general,
this constraint performs slightly worse than the un-
constrained variant used in this work, but allows
for faster training and decoding.

3 Extended Lexicon Models

In this section, we present the extended lexicon
models, how they are trained and integrated into
the phrase-based decoder.

3.1 Discriminative Lexicon Model
Discriminative models have been shown to outper-
form generative models on many natural language
processing tasks. For machine translation, how-
ever, the adaptation of these methods is difficult
due to the large space of possible translations and
the size of the training data that has to be used to
achieve significant improvements.

In this section, we propose a discriminative
word lexicon model that follows (Bangalore et al.,
2007) and integrate it into the standard phrase-
based machine translation approach.

The core of our model is a classifier that pre-
dicts target words, given the words of the source
sentence. The structure of source as well as tar-
get sentence is neglected in this model. We do
not make any assumptions about the location of
the words in the sentence. This is useful in many
cases, as words and morphology can depend on in-
formation given at other positions in the sentence.
An example would be the character了 in Chinese
that indicates a completed or past action and does
not need to appear close to the verb.

We model the probability of the set of target
words in a sentence e given the set of source words
f . For each word in the target vocabulary, we can
calculate a probability for being or not being in-
cluded in the set. The probability of the whole set
then is the product over the entire target vocabu-
lary VE:

P (e|f) =
∏
e∈e

P (e+|f) ·
∏

e∈VE\e
P (e−|f) (1)

For notational simplicity, we use the event e+

when the target word e is included in the target
sentence and e− if not. We model the individual
factors p(e|f) of the probability in Eq. 1 as a log-
linear model using the source words from f as bi-
nary features

φ(f, f) =
{

1 if f ∈ f
0 else

(2)

and feature weights λf,·:

P (e+|f) =
exp

(∑
f∈f λf,e+ φ(f, f)

)
∑

e∈{e+,e−} exp
(∑

f∈f λf,e φ(f, f)
)

(3)
Subsequently, we will call this model discrimina-
tive word lexicon (DWL).

Modeling the lexicon on sets and not on se-
quences has two reasons. Phrase-based MT along
with n-gram language models is strong at predict-
ing sequences but only uses information from a lo-
cal context. By using global features and predict-
ing words in a non-local fashion, we can augment
the strong local decisions from the phrase-based
systems with sentence-level information.

For practical reasons, translating from a set to
a set simplifies the parallelization of the training
procedure. The classifiers for the target words can
be trained separately as explained in the following
section.

3.1.1 Training
Common classification tasks have a relatively
small number of classes. In our case, the num-
ber of classes is the size of the target vocabulary.
For large translation tasks, this is in the range of a
hundred thousand classes. It is far from what con-
ventional out-of-the-box classifiers can handle.

The discriminative word lexicon model has the
convenient property that we can train a separate
model for each target word making paralleliza-
tion straightforward. Discussions about possible
classifiers and the choice of regularization can
be found in (Bangalore et al., 2007). We used
the freely available MegaM Toolkit1 for training,
which implements the L-BFGS method (Byrd et
al., 1995). Regularization is done using Gaussian
priors. We performed 100 iterations of the train-
ing algorithm for each word in the target vocabu-
lary. This results in a large number of classifiers to
be trained. For the Arabic-English data (cf. Sec-
tion 4), the training took an average of 38 seconds
per word. No feature cutoff was used.

3.1.2 Decoding
In search, we compute the model probabilities as
an additional model in the log-linear model com-
bination of the phrase-based translation approach.
To reduce the memory footprint and startup time
of the decoding process, we reduced the number of

1http://www.cs.utah.edu/˜hal/megam/
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parameters by keeping only large values λf,e since
smaller values tend to have less effect on the over-
all probability. In experiments we determined that
we could safely reduce the size of the final model
by a factor of ten without losing predictive power.
In search, we compute the model probabilities as
an additional model in the log-linear combination.
When scoring hypotheses from the phrase-based
system, we see the translation hypothesis as the
set of target words that are predicted. Words from
the target vocabulary which are not included in
the hypothesis are not part of the set. During the
search process, however, we also have to score in-
complete hypotheses where we do not know which
words will not be included. This problem is cir-
cumvented by rewriting Eq. 1 as

P (e|f) =
∏

e∈VE

P (e−|f) ·
∏
e∈e

P (e+|f)
P (e−|f)

.

The first product is constant given a source sen-
tence and therefore does not affect the search. Us-
ing the model assumption from Eq. 3, we can fur-
ther simplify the computation and compute the
model score entirely in log-space which is numer-
ically stable even for large vocabularies. Exper-
iments showed that using only the first factor of
Eq. 1 is sufficient to obtain good results.

In comparison with the translation model from
(Bangalore et al., 2007) where a threshold on the
probability is used to determine which words are
included in the target sentence, our approach relies
on the phrase model to generate translation candi-
dates. This has several advantages: The length of
the translation is determined by the phrase model.
Words occurring multiple times in the translation
do not have to be explicitly modeled. In (Banga-
lore et al., 2007), repeated target words are treated
as distinct classes.

The main advantage of the integration being
done in a way as presented here is that the phrase
model and the discriminative word lexicon model
are complementary in the way they model the
translation. While the phrase model is good in
predicting translations in a local context, the dis-
criminative word lexicon model is able to predict
global aspects of the sentence like tense or vocabu-
lary changes in questions. While the phrase model
is closely tied to the structure of word and phrase
alignments, the discriminative word lexicon model
completely disregards the structure in source and
target sentences.

3.2 Trigger-based Lexicon Model

The triplets of the trigger-based lexicon model,
i.e. p(e|f, f ′), are composed of two words in the
source language triggering one target language
word. We chose this inverse direction since it
can be integrated directly into the decoder and,
thus, does not rely on a two-pass approach us-
ing reranking, as it is the case for (Hasan et al.,
2008). The triggers can originate from words of
the whole source sentence, also crossing phrase
boundaries of the conventional bilingual phrase
pairs. The model is symmetric though, mean-
ing that the order of the triggers is not relevant,
i.e. (f, f ′ → e) = (f ′, f → e). Nevertheless,
the model is able to capture long-distance effects
such as verb splits or adjustments to lexical choice
of the target word given the topic-triggers of the
source sentence. In training, we determine the
probability of a target sentence eI1 given the source
sentence fJ

1 within the model by

p(eI1|fJ
1 ) =

I∏
i=1

p(ei|fJ
1 )

=
I∏

i=1

2
J(J + 1)

J∑
j=0

J∑
j′=j+1

p(ei|fj , fj′), (4)

where f0 denotes the empty word and, thus, for
fj = ε, allows for modeling the conventional (in-
verse) IBM model 1 lexical probabilities as well.
Since the second trigger fj′ always starts right of
the current first trigger, the model is symmetric
and does not need to look at all trigger pairs. Eq. 4
is used in the iterative EM training on all sentence
pairs of the training data which is described in
more detail in the following.

3.2.1 Training
For training the trigger-based lexicon model, we
apply the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977). The goal is to max-
imize the log-likelihood Ftrip of this model for
a given bilingual training corpus {(fJn

1 , eIn1 )}N1
consisting of N sentence pairs:

Ftrip :=
N∑

n=1

log p(eIn1 |fJn
1 ),

where In and Jn are the lengths of the n-th tar-
get and source sentence, respectively. An aux-
iliary function Q(µ; µ̄) is defined based on Ftrip
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where µ̄ is the updated estimate within an itera-
tion which is to be derived from the current esti-
mate µ. Here, µ stands for the entire set of model
parameters, i.e. the set of all {α(e|f, f ′)} with the
constraint

∑
e α(e|f, f ′) = 1. The accumulators

α(·) are therefore iteratively trained on the train-
ing data by using the current estimate, i.e. deriv-
ing the expected value (E-step), and maximizing
their likelihood afterwards to reestimate the distri-
bution. Thus, the perplexity of the training data is
reduced in each iteration.

3.2.2 Decoding
In search, we can apply this model directly when
scoring bilingual phrase pairs. Given a trained
model for p(e|f, f ′), we compute the feature score
htrip(·) of a phrase pair (ẽ, f̃) as

htrip(ẽ, f̃ , fJ
0 ) = (5)

−
∑

i

log
( 2
J · (J + 1)

∑
j

∑
j′>j

p(ẽi|fj , fj′)
)
,

where i moves over all target words in the phrase
ẽ, the second sum selects all source sentence
words fJ

0 including the empty word, and j′ > j
incorporates the rest of the source sentence right of
the first trigger. We take negative log-probabilities
and normalize to obtain the final score (represent-
ing costs) for the given phrase pair. Note that in
search, we can only use this direction, p(e|f, f ′),
since the whole source sentence is available for
triggering effects whereas not all target words
have been generated so far, as it would be neces-
sary for the standard direction, p(f |e, e′).

Due to the enormous number of triplets, we
trained the model on a subset of the overall train-
ing data. The subcorpus, mainly consisting of
newswire articles, contained 1.4M sentence pairs
with 32.3M running words on the English side.
We trained two versions of the triplet lexicon, one
using 4 EM iterations and another one that was
trained for 10 EM iterations. Due to trimming
of triplets with small probabilities after each it-
eration, the version based on 10 iterations was
slightly smaller, having 164 million triplets but
also performed slightly worse. Thus, for the ex-
periments, we used the version based on 4 itera-
tions which contained 291 million triplets.

Note that decoding with this model can be quite
efficient if caching is applied. Since the given
source sentence does not change, we have to cal-
culate p(e|f, f ′) for each e only once and can re-

train (C/E) test08 (NW/WT)
Sent. pairs 9.1M 480 490
Run. words 259M/300M 14.8K 12.3K
Vocabulary 357K/627K 3.6K 3.2K

Table 1: GALE Chinese-English corpus statistics
including two test sets: newswire and web text.

train C/E — A/E nist08 C/A
Sent. pairs 7.3M 4.6M 1357
Words (M) 185/196 142/139 36K/46K
Vocab. (K) 163/265 351/361 6.4K/9.6K

Table 2: NIST Chinese-English and Arabic-
English corpus statistics including the official
2008 test sets.

trieve the probabilities from the cache for consec-
utive scorings of the same target word e. This sig-
nificantly speeds up the decoding process.

4 Experimental Evaluation

In this section we evaluate our lexicon models on
the GALE Chinese-English task for newswire and
web text translation and additionally on the of-
ficial NIST 2008 task for both Chinese-English
and Arabic-English. The baseline system was
built using a state-of-the art phrase-based MT sys-
tem (Zens and Ney, 2008). We use the standard
set of models with phrase translation probabilities
for source-to-target and target-to-source direction,
smoothing with lexical weights, a word and phrase
penalty, distance-based and lexicalized reordering
and a 5-gram (GALE) or 6-gram (NIST) target
language model.

We used training data provided by the Linguis-
tic Data Consortium (LDC) consisting of 9.1M
parallel Chinese-English sentence pairs of vari-
ous domains for GALE (cf. Table 1) and smaller
amounts of data for the NIST systems (cf. Ta-
ble 2). The DWL and Triplet models were inte-
grated into the decoder as presented in Section 3.

For the GALE development and test set, we sep-
arated the newswire and web text parts and did
separate parameter tuning for each genre using
the corresponding development set which consists
of 485 sentences for newswire texts and 533 sen-
tences of web text. The test set has 480 sentences
for newswire and 490 sentences for web text. For
NIST, we tuned on the official 2006 eval set and
used the 2008 evaluation set as a blind test set.
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GALE NW WT
test08 BLEU TER BLEU TER

[%] [%] [%] [%]
Baseline 32.3 59.38 25.3 64.40
DWL 33.1 58.90 26.2 63.75
Triplet 32.9 58.59 26.2 64.20
DWL+Trip. 33.3 58.23 26.3 63.87

Table 3: Results on the GALE Chinese-English
test set for the newswire and web text setting
(case-insensitive evaluation).

4.1 Translation Results

The translation results on the two GALE test
sets are shown in Table 3 for newswire and web
text. Both the discriminative word lexicon and the
triplet lexicon can individually improve the base-
line by approximately +0.6–0.9% BLEU and -0.5–
0.8% TER. For the combination of both lexicons
on the newswire setting, we observe only a slight
improvement on BLEU but also an additional
boost in TER reduction, arriving at +1% BLEU
and -1.2% TER. For web text, the findings are sim-
ilar: The combination of the discriminative and
trigger-based lexicons yields +1% BLEU and de-
creases TER by -0.5%.

We compared these results against an inverse
IBM model 1 but the results were inconclusive
which is consistent with the results presented in
(Och et al., 2004) where no improvements were
achieved using p(e|f). In our case, inverse IBM1
improves results by 0.2–0.4% BLEU on the devel-
opment set but does not show the same trend on
the test sets. Furthermore, combining IBM1 with
DWL or Triplets often even degraded the transla-
tion results, e.g. only 32.8% BLEU was achieved
on newswire for a combination of the IBM1, DWL
and Triplet model. In contrast, combinations of
the DWL and Triplet model did not degrade per-
formance and could benefit from each other.

In addition to the automatic scoring, we also
did a randomized subjective evaluation where the
hypotheses of the baseline was compared against
the hypotheses generated using the discrimina-
tive word lexicon and triplet models. We evalu-
ated 200 sentences from newswire and web text.
In 80% of the evaluated sentences, the improved
models were judged equal or better than the base-
line.

We tested the presented lexicon models also on
another large-scale system, i.e. NIST, for two lan-

NIST Chinese-Eng. Arabic-Eng.
nist08 BLEU TER BLEU TER

[%] [%] [%] [%]
Baseline 26.8 65.11 42.0 50.55
DWL 27.6 63.56 42.4 50.01
Triplet 27.7 63.60 42.9 49.76
DWL+Trip. 27.9 63.56 43.0 49.15

Table 4: Results on the test sets for the NIST 2008
Chinese-English and Arabic-English task (case-
insensitive evaluation).

guage pairs, namely Chinese-English and Arabic-
English. Interestingly, the results obtained for
Arabic-English are similar to the findings for
Chinese-English, as can be seen in Table 4. The
overall improvements for this language pair are
+1% BLEU and -1.4% TER. In contrast to the
GALE Chinese-English task, the triplet lexicon
model for the Arabic-English language pair per-
forms slightly better than the discriminative word
lexicon.

These results strengthen the claim that the pre-
sented models are capable of improving lexical
choice of the MT system. In the next section, we
discuss the observed effects and analyze our re-
sults in more detail.

5 Discussion

In terms of automatic evaluation measures, the re-
sults indicate that it is helpful to incorporate the
extended lexicon models into the search process.
In this section, we will analyze some more details
of the models and take a look at the lexical choice
they make and what differentiates them from the
baseline models. In Table 5, we picked an ex-
ample sentence from the GALE newswire test set
and show the different hypotheses produced by our
system. As can be seen, the baseline does not
produce the present participle of the verb restore
which makes the sentence somewhat hard to un-
derstand. Both the discriminative and the trigger-
based lexicon approach are capable of generating
this missing information, i.e. the correct use of
restoring. Figure 1 gives an example how discon-
tinuous triggers affect the word choice on the tar-
get side. Two cases are depicted where high proba-
bilities of triplets including emergency and restor-
ing on the target side influence the overall hypoth-
esis selection. The non-local modeling advantages
of the triplet model can be observed as well: The
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目前 , 事故 抢险 组 正在 紧急 恢复 通风 系统 .source

target [...] the emergency rescue group is [...] restoring  the ventilation system.

p(restoring | 正在, 恢复) = 0.1572p(emergency | 紧急, 抢险) = 0.3445

Figure 1: Triggering effect for the example sentence using the triplet lexicon model. The Chinese source
sentence is shown in its segmented form. Two triplets are highlighted that have high probability and
favor the target words emergency and restoring.

Figure 2: Ranking of words for the example sentence for IBM1, Triplet and DWL model. Ranks are
sorted at IBM1, darker colors indicate higher probabilities within the model.

triggering events do not need to be located next
to each other or within a given phrase pair. They
move across the whole source sentence, thus al-
lowing for capturing of long-range dependencies.

Table 6 shows the top ten content words that are
predicted by the two models, discriminative word
lexicon and triplet lexicon model. IBM model 1
ranks are indicated by subscripts in the column
of the triplet model. Although the triplet model
is similar to IBM1, we observe differences in the
word lists. Comparing this to the visualization of
the probability distribution for the example sen-
tence, cf. Figure 2, we argue that, although the
IBM1 and Triplet distributions look similar, the
triplet model is sharper and favors words such as
the ones in Table 6, resulting in different word
choice in the translation process. In contrast, the
DWL approach gives more distinct probabilities,
selecting content words that are not chosen by the
other models.

Table 7 shows an example from the web text
test set. Here, the baseline hypothesis contains
an incorrect word, anna, which might have been
mistaken for the name ying. Interestingly, the hy-
potheses of the DWL lexicon and the combina-
tion of DWL and Triplet contain the correct con-
tent word remarks. The triplet model makes an er-
ror by selecting music, an artifact that might come
from words that co-occur frequently with the cor-

responding Chinese verb to listen, i.e. 听 , in the
data. Although the TER score of the baseline is
better than the one for the alternative models for
this particular example, we still think that the ob-
served effects show how our models help produc-
ing different hypotheses that might lead to subjec-
tively better translations.

An Arabic-English translation example is
shown in Table 8. Here, the term incidents of mur-
der in apartments was chosen over the baseline’s
killings inside the flats. Both translations are un-
derstandable and the difference in the wording is
only based on synonyms. The translation using
the discriminative and trigger-based lexicons bet-
ter matches the reference translation and, thus, re-
flects a better lexical choice of the content words.

6 Conclusion

We have presented two lexicon models that use
global source sentence context and are capable
of predicting context-specific target words. The
models have been directly integrated into the de-
coder and have shown to improve the translation
quality of a state-of-the-art phrase-based machine
translation system. The first model was a dis-
criminative word lexicon that uses sentence-level
features to predict if a word from the target vo-
cabulary should be included in the translation or
not. The second model was a trigger-based lexi-

216



Source 目前 , 事故 抢险 组 正在 紧急
恢复通风系统 .

Baseline at present, the accident and rescue
teams are currently emergency re-
covery ventilation systems.

DWL at present, the emergency rescue
teams are currently restoring the
ventilation system.

Triplet at present, the emergency rescue
group is in the process of restoring
the ventilation system.

DWL
+Triplet

at present, the accident emergency
rescue teams are currently restor-
ing the ventilation system.

Reference right now, the accident emergency
rescue team is making emergency
repair on the ventilation system.

Table 5: Translation example from the GALE
newswire test set, comparing the baseline and the
extended lexicon models given a reference trans-
lation. The Chinese source sentence is presented
in its segmented form.

con that uses triplets to model long-range depen-
dencies in the data. The source word triggers can
move across the whole sentence and capture the
topic of the sentence and incorporate more fine-
grained lexical choice of the target words within
the decoder.

Overall improvements are up to +1% in BLEU
and -1.5% in TER on large-scale systems for
Chinese-English and Arabic-English. Compared
to the inverse IBM model 1 which did not yield
consistent improvements, the presented models
are valuable additional features in a phrase-based
statistical machine translation system. We will test
this setup for other language pairs and expect that
languages like German where long-distance ef-
fects are common can benefit from these extended
lexicon models.

In future work, we plan to extend the discrimi-
native word lexicon model in two directions: ex-
tending context to the document level and feature
engineering. For the trigger-based model, we plan
to investigate more model variants. It might be
interesting to look at cross-lingual trigger mod-
els such as p(f |e, f ′) or constrained variants like
p(f |e, e′) with pos(e′) < pos(e), i.e. the second
trigger coming from the left context within a sen-
tence which has already been generated. These

DWL Triplet
emergency 0.894 emergency1 0.048
currently 0.330 system2 0.032
current 0.175 rescue8 0.027
emergencies 0.133 accident3 0.022
present 0.133 ventilation7 0.021
accident 0.119 work33 0.021
recovery 0.053 present5 0.011
group 0.046 currently9 0.010
dealing 0.042 rush60 0.010
ventilation 0.034 restoration31 0.009

Table 6: The top 10 content words predicted by
each model for the GALE newswire example sen-
tence. Original ranks for the related IBM model 1
are given as subscripts for the triplet model.

Source 我听 了莹的话 ,乐得哈哈大
笑 .

Baseline i have listened to anna, happy and
laugh.

DWL i have listened to the remarks,
happy and laugh.

Triplet i have listened to the music, a roar
of laughter.

DWL
+Triplet

i have listened to the remarks,
happy and laugh.

Reference hearing ying’s remark, i laughed
aloud happily.

Table 7: Translation example from the GALE web
text test set. In this case, the baseline has a bet-
ter TER but we can observe a corrected content
word (remark) for the extended lexicon models.
The Chinese source sentence is shown in its seg-
mented form.

extensions could be integrated directly in search
as well and would enable the system to combine
both directions (standard and inverse) to some ex-
tent which was previously shown to help when ap-
plying the standard direction p(f |e, e′) as an addi-
tional reranking step, cf. (Hasan and Ney, 2009).

Acknowledgments

This material is partly based upon work supported
by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-
06-C-0023, and was partly realized as part of
the Quaero Programme, funded by OSEO, French
State agency for innovation.

The authors would like to thank Christian Buck

217



Source 	áj. �Ë@ È �I 	�Qª�K ú

�æË @ �HBAmÌ'@ 	áÓ @XY« �HQå�� 	� Y�̄ �éK
Xñª�Ë@ 	­j�Ë@ 	�ªK. �I	KA¿ ð

. Aë Q�
 	« ð ���® ��Ë@ É 	g@X É�J�®Ë @ �HX@ñk 	�ªK. ½Ë 	Y» ð PQ�.Ó 	àðX
Baseline some saudi newspapers have published a number of cases that had been subjected to

imprisonment without justification, as well as some killings inside the flats and others.
DWL
+Triplet

some of the saudi newspapers have published a number of cases which were subjected
to imprisonment without justification, as well as some incidents of murder in apartments
and others.

Reference some saudi newspapers have published a number of cases in which people were unjusti-
fiably imprisoned, as well as some incidents of murder in apartments and elsewhere.

Table 8: Translation example from the NIST Arabic-English test set. The DWL and Triplet models
improve lexical word choice by favoring incidents of murder in apartments instead of killings inside the
flats. The Arabic source is shown in its segmented form.
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Abstract

We present a machine translation frame-
work that can incorporate arbitrary fea-
tures of both input and output sentences.
The core of the approach is a novel de-
coder based on lattice parsing with quasi-
synchronous grammar (Smith and Eis-
ner, 2006), a syntactic formalism that
does not require source and target trees
to be isomorphic. Using generic approx-
imate dynamic programming techniques,
this decoder can handle “non-local” fea-
tures. Similar approximate inference tech-
niques support efficient parameter esti-
mation with hidden variables. We use
the decoder to conduct controlled exper-
iments on a German-to-English transla-
tion task, to compare lexical phrase, syn-
tax, and combined models, and to mea-
sure effects of various restrictions on non-
isomorphism.

1 Introduction

We have seen rapid recent progress in machine
translation through the use of rich features and the
development of improved decoding algorithms,
often based on grammatical formalisms.1 If we
view MT as a machine learning problem, features
and formalisms imply structural independence as-
sumptions, which are in turn exploited by efficient
inference algorithms, including decoders (Koehn
et al., 2003; Yamada and Knight, 2001). Hence a
tension is visible in the many recent research ef-
forts aiming to decode with “non-local” features
(Chiang, 2007; Huang and Chiang, 2007).

Lopez (2009) recently argued for a separation
between features/formalisms (and the indepen-

1Informally, features are “parts” of a parallel sentence pair
and/or their mutual derivation structure (trees, alignments,
etc.). Features are often implied by a choice of formalism.

dence assumptions they imply) from inference al-
gorithms in MT; this separation is widely appreci-
ated in machine learning. Here we take first steps
toward such a “universal” decoder, making the fol-
lowing contributions:

Arbitrary feature model (§2): We define a sin-
gle, direct log-linear translation model (Papineni
et al., 1997; Och and Ney, 2002) that encodes most
popular MT features and can be used to encode
any features on source and target sentences, de-
pendency trees, and alignments. The trees are op-
tional and can be easily removed, allowing sim-
ulation of “string-to-tree,” “tree-to-string,” “tree-
to-tree,” and “phrase-based” models, among many
others. We follow the widespread use of log-linear
modeling for direct translation modeling; the nov-
elty is in the use of richer feature sets than have
been previously used in a single model.

Decoding as QG parsing (§3–4): We present a
novel decoder based on lattice parsing with quasi-
synchronous grammar (QG; Smith and Eisner,
2006).2 Further, we exploit generic approximate
inference techniques to incorporate arbitrary “non-
local” features in the dynamic programming algo-
rithm (Chiang, 2007; Gimpel and Smith, 2009).

Parameter estimation (§5): We exploit simi-
lar approximate inference methods in regularized
pseudolikelihood estimation (Besag, 1975) with
hidden variables to discriminatively and efficiently
train our model. Because we start with inference
(the key subroutine in training), many other learn-
ing algorithms are possible.

Experimental platform (§6): The flexibility
of our model/decoder permits carefully controlled
experiments. We compare lexical phrase and de-
pendency syntax features, as well as a novel com-

2To date, QG has been used for word alignment (Smith
and Eisner, 2006), adaptation and projection in parsing
(Smith and Eisner, 2009), and various monolingual recog-
nition and scoring tasks (Wang et al., 2007; Das and Smith,
2009); this paper represents its first application to MT.
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Σ, T source and target language vocabularies, respectively
Trans : Σ ∪ {NULL} → 2T function mapping each source word to target words to which it may translate
s = 〈s0, . . . , sn〉 ∈ Σn source language sentence (s0 is the NULL word)
t = 〈t1, . . . , tm〉 ∈ Tm target language sentence, translation of s
τs : {1, . . . , n} → {0, . . . , n} dependency tree of s, where τs(i) is the index of the parent of si (0 is the root, $)
τt : {1, . . . , m} → {0, . . . , m} dependency tree of t, where τt(i) is the index of the parent of ti (0 is the root, $)
a : {1, . . . , m} → 2{1,...,n} alignments from words in t to words in s; ∅ denotes alignment to NULL
θ parameters of the model
gtrans(s, a, t) lexical translation features (§2.1):

f lex (s, t) word-to-word translation features for translating s as t
fphr (s

j
i , t

`
k) phrase-to-phrase translation features for translating sji as t`k

glm(t) language model features (§2.2):
fN (tjj−N+1) N -gram probabilities

gsyn(t, τt) target syntactic features (§2.3):
fatt(t, j, t

′, k) syntactic features for attaching target word t′ at position k to target word t at position j
f val(t, j, I) syntactic valence features with word t at position j having children I ⊆ {1, . . . , m}

greor (s, τs, a, t, τt) reordering features (§2.4):
fdist(i, j) distortion features for a source word at position i aligned to a target word at position j

gtree2(τs, a, τt) tree-to-tree syntactic features (§3):
f qg(i, i

′, j, k) configuration features for source pair si/si′ being aligned to target pair tj /tk
gcov (a) coverage features (§4.2)

fscov (a), fzth(a), fsunc(a) counters for “covering” each s word each time, the zth time, and leaving it “uncovered”
Table 1: Key notation. Feature factorings are elaborated in Tab. 2.

bination of the two. We quantify the effects
of our approximate inference. We explore the
effects of various ways of restricting syntactic
non-isomorphism between source and target trees
through the QG. We do not report state-of-the-art
performance, but these experiments reveal inter-
esting trends that will inform continued research.

2 Model

(Table 1 explains notation.) Given a sentence s
and its parse tree τs, we formulate the translation
problem as finding the target sentence t∗ (along
with its parse tree τ∗t and alignment a∗ to the
source tree) such that3

〈t∗, τ∗t ,a∗〉 = argmax
〈t,τt,a〉

p(t, τt,a | s, τs) (1)

In order to include overlapping features and permit
hidden variables during training, we use a single
globally-normalized conditional log-linear model.
That is, p(t, τt,a | s, τs) =

exp{θ>g(s, τs,a, t, τt)}∑
a′,t′,τ ′t

exp{θ>g(s, τs,a′, t′, τ ′t)}
(2)

where the g are arbitrary feature functions and the
θ are feature weights. If one or both parse trees or
the word alignments are unavailable, they can be
ignored or marginalized out as hidden variables.

In a log-linear model over structured objects,
the choice of feature functions g has a huge effect

3We assume in this work that s is parsed. In principle, we
might include source-side parsing as part of decoding.

on the feasibility of inference, including decoding.
Typically these feature functions are chosen to fac-
tor into local parts of the overall structure. We
next define some key features used in current MT
systems, explaining how they factor. We will use
subscripts on g to denote different groups of fea-
tures, which may depend on subsets of the struc-
tures t, τt, a, s, and τs. When these features fac-
tor into parts, we will use f to denote the factored
vectors, so that if x is an object that breaks into
parts {xi}i, then g(x) =

∑
i f(xi).4

2.1 Lexical Translations

Classical lexical translation features depend on s
and t and the alignment a between them. The sim-
plest are word-to-word features, estimated as the
conditional probabilities p(t | s) and p(s | t) for
s ∈ Σ and t ∈ T. Phrase-to-phrase features gen-
eralize these, estimated as p(t′ | s′) and p(s′ | t′)
where s′ (respectively, t′) is a substring of s (t).

A major difference between the phrase features
used in this work and those used elsewhere is
that we do not assume that phrases segment into
disjoint parts of the source and target sentences

4There are two conventional definitions of feature func-
tions. One is to let the range of these functions be conditional
probability estimates (Och and Ney, 2002). These estimates
are usually heuristic and inconsistent (Koehn et al., 2003).
An alternative is to instantiate features for different structural
patterns (Liang et al., 2006; Blunsom et al., 2008). This offers
more expressive power but may require much more training
data to avoid overfitting. For this reason, and to keep training
fast, we opt for the former convention, though our decoder
can handle both, and the factorings we describe are agnostic
about this choice.
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(Koehn et al., 2003); they can overlap.5 Addi-
tionally, since phrase features can be any func-
tion of words and alignments, we permit features
that consider phrase pairs in which a target word
outside the target phrase aligns to a source word
inside the source phrase, as well as phrase pairs
with gaps (Chiang, 2005; Ittycheriah and Roukos,
2007).

Lexical translation features factor as in Eq. 3
(Tab. 2). We score all phrase pairs in a sentence
pair that pair a target phrase with the smallest
source phrase that contains all of the alignments in
the target phrase; if

⋃
k:i≤k≤j a(k) = ∅, no phrase

feature fires for tj
i .

2.2 N -gram Language Model

N -gram language models have become standard
in machine translation systems. For bigrams and
trigrams (used in this paper), the factoring is in
Eq. 4 (Tab. 2).

2.3 Target Syntax

There have been many features proposed that con-
sider source- and target-language syntax during
translation. Syntax-based MT systems often use
features on grammar rules, frequently maximum
likelihood estimates of conditional probabilities in
a probabilistic grammar, but other syntactic fea-
tures are possible. For example, Quirk et al.
(2005) use features involving phrases and source-
side dependency trees and Mi et al. (2008) use
features from a forest of parses of the source sen-
tence. There is also substantial work in the use
of target-side syntax (Galley et al., 2006; Marcu
et al., 2006; Shen et al., 2008). In addition, re-
searchers have recently added syntactic features to
phrase-based and hierarchical phrase-based mod-
els (Gimpel and Smith, 2008; Haque et al., 2009;
Chiang et al., 2008).

In this work, we focus on syntactic features of
target-side dependency trees, τt, along with the
words t. These include attachment features that
relate a word to its syntactic parent, and valence
features. They factor as in Eq. 5 (Tab. 2). Features
that consider only target-side syntax and words
without considering s can be seen as “syntactic
language model” features (Shen et al., 2008).

5Segmentation might be modeled as a hidden variable in
future work.

gtrans(s, a, t) =
Pm
j=1

P
i∈a(j) f lex (si, tj) (3)

+
P
i,j:1≤i<j≤m fphr (s

last(i,j)

first(i,j), t
j
i )

glm(t) =
P
N∈{2,3}

Pm+1
j=1 fN (tjj−N+1) (4)

gsyn(t, τt) =
Pm
j=1 fatt(tj , j, tτt(j), τt(j))

+f val(tj , j, τ
−1
t (j)) (5)

greor (s, τs, a, t, τt) =
Pm
j=1

P
i∈a(j) fdist(i, j) (6)

gtree2(τs, a, τt) =

mX
j=1

f qg(a(j), a(τt(j)), j, τt(j)) (7)

Table 2: Factoring of global feature collections g into
f . xji denotes 〈xi, . . . xj〉 in sequence x = 〈x1, . . .〉.
first(i, j) = mink:i≤k≤j (min(a(k))) and last(i, j) =
maxk:i≤k≤j (max(a(k))).

2.4 Reordering

Reordering features take many forms in MT. In
phrase-based systems, reordering is accomplished
both within phrase pairs (local reordering) as
well as through distance-based distortion mod-
els (Koehn et al., 2003) and lexicalized reorder-
ing models (Koehn et al., 2007). In syntax-based
systems, reordering is typically parameterized by
grammar rules. For generality we permit these
features to “see” all structures and denote them
greor (s, τs,a, t, τt). Eq. 6 (Tab. 2) shows a factor-
ing of reordering features based on absolute posi-
tions of aligned words.

We turn next to the “backbone” model for our
decoder; the formalism and the properties of its
decoding algorithm will inspire two additional sets
of features.

3 Quasi-Synchronous Grammars

A quasi-synchronous dependency grammar
(QDG; Smith and Eisner, 2006) specifies a
conditional model p(t, τt,a | s, τs). Given a
source sentence s and its parse τs, a QDG induces
a probabilistic monolingual dependency grammar
over sentences “inspired” by the source sentence
and tree. We denote this grammar by Gs,τs ; its
(weighted) language is the set of translations of s.
Each word generated by Gs,τs is annotated with
a “sense,” which consists of zero or more words
from s. The senses imply an alignment (a) be-
tween words in t and words in s, or equivalently,
between nodes in τt and nodes in τs. In principle,
any portion of τt may align to any portion of τs,
but in practice we often make restrictions on the
alignments to simplify computation. Smith and
Eisner, for example, restricted |a(j)| for all words
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tj to be at most one, so that each target word
aligned to at most one source word, which we also
do here.6

Which translations are possible depends heav-
ily on the configurations that the QDG permits.
Formally, for a parent-child pair 〈tτt(j), tj〉 in τt,
we consider the relationship between a(τt(j)) and
a(j), the source-side words to which tτt(j) and
tj align. If, for example, we require that, for
all j, a(τt(j)) = τs(a(j)) or a(j) = 0, and
that the root of τt must align to the root of τs
or to NULL, then strict isomorphism must hold
between τs and τt, and we have implemented a
synchronous CF dependency grammar (Alshawi
et al., 2000; Ding and Palmer, 2005). Smith and
Eisner (2006) grouped all possible configurations
into eight classes and explored the effects of per-
mitting different sets of classes in word align-
ment. (“a(τt(j)) = τs(a(j))” corresponds to
their “parent-child” configuration; see Fig. 3 in
Smith and Eisner (2006) for illustrations of the
rest.) More generally, we can define features on
tree pairs that factor into these local configura-
tions, as shown in Eq. 7 (Tab. 2).

Note that the QDG instantiates the model in
Eq. 2. Of the features discussed in §2, f lex , fatt ,
f val , and fdist can be easily incorporated into the
QDG as described while respecting the indepen-
dence assumptions implied by the configuration
features. The others (fphr , f2, and f3) are non-
local, or involve parts of the structure that, from
the QDG’s perspective, are conditionally indepen-
dent given intervening material. Note that “non-
locality” is relative to a choice of formalism; in §2
we did not commit to any formalism, so it is only
now that we can describe phrase and N -gram fea-
tures as non-local. Non-local features will present
a challenge for decoding and training (§4.3).

4 Decoding

Given a sentence s and its parse τs, at decoding
time we seek the target sentence t∗, the target tree
τ∗t , and the alignments a∗ that are most probable,
as defined in Eq. 1.7 (In §5 we will consider k-
best and all-translations variations on this prob-

6I.e., from here on, a : {1, . . . , m} → {0, . . . , n} where
0 denotes alignment to NULL.

7Arguably, we seek argmaxt p(t | s), marginalizing out
everything else. Approximate solutions have been proposed
for that problem in several settings (Blunsom and Osborne,
2008; Sun and Tsujii, 2009); we leave their combination with
our approach to future work.

lem.) As usual, the normalization constant is not
required for decoding; it suffices to solve:

〈t∗, τ∗t ,a∗〉 = argmax
〈t,τt,a〉

θ>g(s, τs,a, t, τt) (8)

For a QDG model, the decoding problem has
not been addressed before. It equates to finding the
most probable derivation under the s/τs-specific
grammar Gs,τs . We solve this by lattice parsing,
assuming that an upper bound on m (the length
of t) is known. The advantage offered by this
approach (like most other grammar-based trans-
lation approaches) is that decoding becomes dy-
namic programming (DP), a technique that is both
widely understood in NLP and for which practical,
efficient, generic techniques exist. A major advan-
tage of DP is that, with small modifications, sum-
ming over structures is also possible with “inside”
DP algorithms. We will exploit this in training
(§5). Efficient summing opens up many possibili-
ties for training θ, such as likelihood and pseudo-
likelihood, and provides principled ways to handle
hidden variables during learning.

4.1 Translation as Monolingual Parsing

We decode by performing lattice parsing on a lat-
tice encoding the set of possible translations. The
lattice is a weighted “sausage” lattice that permits
sentences up to some maximum length `; ` is de-
rived from the source sentence length. Let the
states be numbered 0 to `; states from bρ`c to `
are final states (for some ρ ∈ (0, 1)). For every
position between consecutive states j − 1 and j
(0 < j ≤ `), and for every word si in s, and
for every word t ∈ Trans(si), we instantiate an
arc annotated with t and i. The weight of such an
arc is exp{θ>f}, where f is the sum of feature
functions that fire when si translates as t in target
position j (e.g., f lex (si, t) and fdist(i, j)).

Given the lattice and Gs,τs , lattice parsing
is a straightforward generalization of standard
context-free dependency parsing DP algorithms
(Eisner, 1997). This decoder accounts for f lex ,
fatt , f val , fdist , and f qg as local features.

Figure 1 gives an example, showing a German
sentence and dependency tree from an automatic
parser, an English reference, and a lattice repre-
senting possible translations. In each bundle, the
arcs are listed in decreasing order according to
weight and for clarity only the first five are shown.
The output of the decoder consists of lattice arcs
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können:can

können:may

sie:you

es:it

...

vorbei:by

$   können   sie   es  vorbei    leifern    morgen  früh  ?

can you deliver it by tomorrow morning ?

can     you     deliver  it    by     tomorrow morning ?

CAN     YOU  IT      BY     DELIVER  TOMORROW-MORNING  ?

... ... ...

...

...

können:can

liefern:deliver

sie:you

sie:it

es:it können:can

können:canliefern:deliver
sie:you

es:it

vorbei:by

morgen:tomorrow
morgen:tomorrow

liefern:deliver

es:it

vorbei:by

früh:morning

...

es:it

morgen:tomorrow

liefern:deliver

vorbei:by

früh:morning

früh:early

?:?

morgen:morning

konnten:could konnten:could

es:it

sie:you

konnten:might

...

konnten:couldn

... ... ... ...

sie:let

sie:you

sie:them

es:it sie:you

konnten:couldübersetzen:
translate

übersetzen:
translate
übersetzen:
translated

übersetzen:
translate
übersetzen:
translated

?:?

konnten:could

es:it

es:it

?:?

es:it

?:?

NULL:to

können:can

können:may

sie:you

es:it

...

vorbei:by

... ... ...

...

...

können:can

liefern:deliver

sie:you

sie:it

es:it können:can

können:canliefern:deliver
sie:you

es:it

vorbei:by

morgen:tomorrow
morgen:tomorrow

liefern:deliver

es:it

vorbei:by

früh:morning

früh:early

?:?

morgen:morning

...

früh:morning

morgen:tomorrow

morgen:morning

liefern:deliver

vorbei:by

$

$   können   sie   es  vorbei    leifern    morgen  früh  ?

can     you     deliver  it    by     tomorrow morning ?

$   können   sie   es  vorbei    leifern    morgen  früh  ?

can     you     deliver  it    by     tomorrow morning ?

Source:          $  konnten  sie  es  übersetzen  ?

Reference:         could  you  translate  it  ?

Decoder output:

Figure 1: Decoding as lattice parsing, with the highest-scoring translation denoted by black lattice arcs (others are grayed out)
and thicker blue arcs forming a dependency tree over them.

selected at each position and a dependency tree
over them.

4.2 Source-Side Coverage Features

Most MT decoders enforce a notion of “coverage”
of the source sentence during translation: all parts
of s should be aligned to some part of t (alignment
to NULL incurs an explicit cost). Phrase-based sys-
tems such as Moses (Koehn et al., 2007) explic-
itly search for the highest-scoring string in which
all source words are translated. Systems based
on synchronous grammars proceed by parsing the
source sentence with the synchronous grammar,
ensuring that every phrase and word has an ana-
logue in τt (or a deliberate choice is made by the
decoder to translate it to NULL). In such sys-
tems, we do not need to use features to implement
source-side coverage, as it is assumed as a hard
constraint always respected by the decoder.

Our QDG decoder has no way to enforce cov-
erage; it does not track any kind of state in τs
apart from a single recently aligned word. This
is a problem with other direct translation models,
such as IBM model 1 used as a direct model rather
than a channel model (Brown et al., 1993). This
sacrifice is the result of our choice to use a condi-
tional model (§2).

The solution is to introduce a set of coverage
features gcov (a). Here, these include:

• A counter for the number of times each source
word is covered: fscov (a) =

∑n
i=1 |a−1(i)|.

• Features that fire once when a source word is

covered the zth time (z ∈ {2, 3, 4}) and fire
again all subsequent times it is covered; these
are denoted f2nd, f3rd, and f4th.

• A counter of uncovered source words:
fsunc(a) =

∑n
i=1 δ(|a−1(i)|, 0).

Of these, only fscov is local.

4.3 Non-Local Features

The lattice QDG parsing decoder incorporates
many of the features we have discussed, but not
all of them. Phrase lexicon features fphr , lan-
guage model features fN for N > 1, and most
coverage features are non-local with respect to our
QDG. Recently Chiang (2007) introduced “cube
pruning” as an approximate decoding method that
extends a DP decoder with the ability to incorpo-
rate features that break the Markovian indepen-
dence assumptions DP exploits. Techniques like
cube pruning can be used to include the non-local
features in our decoder.8

5 Training

Training requires us to learn values for the param-
eters θ in Eq. 2. Given T training examples of the
form 〈t(i), τ

(i)
t , s(i), τ

(i)
s 〉, for i = 1, ..., T , max-

imum likelihood estimation for this model con-
sists of solving Eq. 9 (Tab. 3).9 Note that the

8A full discussion is omitted for space, but in fact we use
“cube decoding,” a slightly less approximate, slightly more
expensive method that is more closely related to the approxi-
mate inference methods we use for training, discussed in §5.

9In practice, we regularize by including a term −c‖θ‖22.
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LL(θ) =

TX
i=1

log p(t(i), τ
(i)
t | s(i), τ (i)

s ) =

TX
i=1

log

P
a exp{θ>g(s(i), τ

(i)
s , a, t(i), τ

(i)
t )}P

t,τt,a
exp{θ>g(s(i), τ

(i)
s , a, t, τt)}

=

TX
i=1

log
“numerator”

“denominator”
(9)

PL(θ) =

TX
i=1

log

„X
a

p(t(i), a | τ (i)
t , s(i), τ (i)

s )

«
+

TX
i=1

log

„X
a

p(τ
(i)
t , a | t(i), s(i), τ (i)

s )

«
(10)

“denominator” of
term 1 in Eq. 10 =

nX
i=0

X
t′∈Trans(si)

S(τ−1
t (0), i, t′)× exp

n
θ>

`
f lex (si, t

′) + fatt($, 0, t′, k) + f qg(0, i, 0, k)
´o

(11)

S(j, i, t) =
Y

k∈τ−1
t (j)

nX
i′=0

X
t′∈Trans(si′ )

S(k, i′, t′)× exp


θ>

„
f lex (si′ , t

′) + fatt(t, j, t
′, k)+

f val(t, j, τ
−1
t (j)) + f qg(i, i

′, j, k)

«ff
(12)

S(j, i, t) = exp
n

θ>
`
f val(t, j, τ

−1
t (j))

´o
if τ−1

t (j) = ∅ (13)

Table 3: Eq. 9: Log-likelihood. Eq. 10: Pseudolikelihood. In both cases we maximize w.r.t. θ. Eqs. 11–13: Recursive DP
equations for summing over t and a.

alignments are treated as a hidden variable to be
marginalized out.10 Optimization problems of this
form are by now widely known in NLP (Koo and
Collins, 2005), and have recently been used for
machine translation as well (Blunsom et al., 2008).
Such problems are typically solved using varia-
tions of gradient ascent; in our experiments, we
will use an online method called stochastic gra-
dient ascent (SGA). This requires us to calculate
the function’s gradient (vector of first derivatives)
with respect to θ.11

Computing the numerator in Eq. 9 involves
summing over all possible alignments; with QDG
and a hard bound of 1 on |a(j)| for all j, a fast
“inside” DP solution is known (Smith and Eisner,
2006; Wang et al., 2007). It runs in O(mn2) time
and O(mn) space.

Computing the denominator in Eq. 9 requires
summing over all word sequences and depen-
dency trees for the target language sentence and
all word alignments between the sentences. With
a maximum length imposed, this is tractable us-
ing the “inside” version of the maximizing DP al-
gorithm of Sec. 4, but it is prohibitively expen-
sive. We therefore optimize pseudo-likelihood in-
stead, making the following approximation (Be-

10Alignments could be supplied by automatic word align-
ment algorithms. We chose to leave them hidden so that we
could make the best use of our parsed training data when con-
figuration constraints are imposed, since it is not always pos-
sible to reconcile automatic word alignments with automatic
parses.

11When the function’s value is computed by “inside” DP,
the corresponding “outside” algorithm can be used to obtain
the gradient. Because outside algorithms can be automati-
cally derived from inside ones, we discuss only inside algo-
rithms in this paper; see Eisner et al. (2005).

sag, 1975):

p(t, τt | s, τs) ≈ p(t | τt, s, τs)× p(τt | t, s, τs)

Plugging this into Eq. 9, we arrive at Eq. 10
(Tab. 3). The two parenthesized terms in Eq. 10
each have their own numerators and denomina-
tors (not shown). The numerators are identical to
each other and to that in Eq. 9. The denominators
are much more manageable than in Eq. 9, never
requiring summation over more than two struc-
tures at a time. We must sum over target word se-
quences and word alignments (with fixed τt), and
separately over target trees and word alignments
(with fixed t).

5.1 Summing over t and a

The summation over target word sequences and
alignments given fixed τt bears a resemblance to
the inside algorithm, except that the tree structure
is fixed (Pereira and Schabes, 1992). Let S(j, i, t)
denote the sum of all translations rooted at posi-
tion j in τt such that a(j) = i and tj = t.

Tab. 3 gives the equations for this DP: Eq. 11
is the quantity of interest, Eq. 12 is the recursion,
and Eq. 13 shows the base cases for leaves of τt.

Letting q = max0≤i≤n |Trans(si)|, this algo-
rithm runs in O(mn2q2) time and O(mnq) space.
For efficiency we place a hard upper bound on q
during training (details in §6).

5.2 Summing over τt and a

For the summation over dependency trees and
alignments given fixed t, required for p(τt |
t, s, τs), we perform “inside” lattice parsing with
Gs,τs . The technique is the summing variant of
the decoding method in §4, except for each state j,
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the sausage lattice only includes arcs from j−1 to
j that are labeled with the known target word tj .
If a is the number of arcs in the lattice, which is
O(mn), this algorithm runs in O(a3) time and re-
quires O(a2) space. Because we use a hard upper
bound on |Trans(s)| for all s ∈ Σ, this summation
is much faster in practice than the one over words
and alignments.

5.3 Handling Non-Local Features

So far, all of our algorithms have exploited DP,
disallowing any non-local features (e.g., fphr , fN

for N > 1, f zth, fsunc). We recently proposed
“cube summing,” an approximate technique that
permits the use of non-local features for inside DP
algorithms (Gimpel and Smith, 2009). Cube sum-
ming is based on a slightly less greedy variation of
cube pruning (Chiang, 2007) that maintains k-best
lists of derivations for each DP chart item. Cube
summing augments the k-best list with a residual
term that sums over remaining structures not in
the k-best list, albeit without their non-local fea-
tures. Using the machinery of cube summing, it
is straightforward to include the desired non-local
features in the summations required for pseudo-
likelihood, as well as to compute their approxi-
mate gradients.

Our approach permits an alternative to mini-
mum error-rate training (MERT; Och, 2003); it is
discriminative but handles latent structure and reg-
ularization in more principled ways. The pseudo-
likelihood calculations for a sentence pair, taken
together, are faster than (k-best) decoding, making
SGA’s inner loop faster than MERT’s inner loop.

6 Experiments

Our decoding framework allows us to perform
many experiments with the same feature rep-
resentation and inference algorithms, includ-
ing combining and comparing phrase-based and
syntax-based features and examining how isomor-
phism constraints of synchronous formalisms af-
fect translation output.

6.1 Data and Evaluation

We use the German-English portion of the Ba-
sic Travel Expression Corpus (BTEC). The cor-
pus has approximately 100K sentence pairs. We
filter sentences of length more than 15 words,
which only removes 6% of the data. We end up
with a training set of 82,299 sentences, a develop-

ment set of 934 sentences, and a test set of 500
sentences. We evaluate translation output using
case-insensitive BLEU (Papineni et al., 2001), as
provided by NIST, and METEOR (Banerjee and
Lavie, 2005), version 0.6, with Porter stemming
and WordNet synonym matching.

6.2 Features

Our base system uses features as discussed
in §2. To obtain lexical translation features
gtrans(s,a, t), we use the Moses pipeline (Koehn
et al., 2007). We perform word alignment us-
ing GIZA++ (Och and Ney, 2003), symmetrize
the alignments using the “grow-diag-final-and”
heuristic, and extract phrases up to length 3. We
define f lex by the lexical probabilities p(t | s) and
p(s | t) estimated from the symmetrized align-
ments. After discarding phrase pairs with only
one target-side word (since we only allow a tar-
get word to align to at most one source word), we
define fphr by 8 features: {2, 3} target words ×
phrase conditional and “lexical smoothing” prob-
abilities × two conditional directions.

Bigram and trigam language model features, f2

and f3, are estimated using the SRI toolkit (Stol-
cke, 2002) with modified Kneser-Ney smoothing
(Chen and Goodman, 1998).

For our target-language syntactic features gsyn ,
we use features similar to lexicalized CFG events
(Collins, 1999), specifically following the de-
pendency model of Klein and Manning (2004).
These include probabilities associated with in-
dividual attachments (fatt ) and child-generation
valence probabilities (f val ). These probabilities
are estimated on the training corpus parsed using
the Stanford factored parser (Klein and Manning,
2003). The same probabilities are also included
using 50 hard word classes derived from the paral-
lel corpus using the GIZA++ mkcls utility (Och
and Ney, 2003). In total, there are 7 lexical and 7
word-class syntax features.

For reordering, we use a single absolute distor-
tion feature fdist(i, j) that returns |i−j|whenever
a(j) = i and i, j > 0. (Unlike the other feature
functions, which returned probabilities, this fea-
ture function returns a nonnegative integer.)

The tree-to-tree syntactic features gtree2 in our
model are binary features f qg that fire for particu-
lar QG configurations. We use one feature for each
of the configurations in (Smith and Eisner, 2006),
adding 7 additional features that score configura-
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Phrase Syntactic Features:
features: +fatt ∪ f val +f qg

(base) (target) (tree-to-tree)
(base) 0.3727 0.4458 0.4424
+fphr 0.4682 0.4971 0.5142

Table 4: Feature set comparison (BLEU).

tions involving root words and NULL-alignments
more finely. There are 14 features in this category.

Coverage features gcov are as described in §4.2.
In all, 46 feature weights are learned.

6.3 Experimental Procedure

Our model permits training the system on the full
set of parallel data, but we instead use the parallel
data to estimate feature functions and learn θ on
the development set.12 We trained using three it-
erations of SGA over the development data with a
batch size of 1 and a fixed step size of 0.01. We
used `2 regularization with a fixed, untuned coef-
ficient of 0.1. Cube summing used a 10-best list
for training and a 7-best list for decoding unless
otherwise specified.

To obtain the translation lexicon (Trans) we
first included the top three target words t for each
s using p(s | t) × p(t | s) to score target words.
For any training sentence 〈s, t〉 and tj for which
tj 6∈

⋃n
i=1 Trans(si), we added tj to Trans(si)

for i = argmaxi′∈I p(si′ |tj) × p(tj |si′), where
I = {i : 0 ≤ i ≤ n ∧ |Trans(si)| < qi}.
We used q0 = 10 and q>0 = 5, restricting
|Trans(NULL)| ≤ 10 and |Trans(s)| ≤ 5 for any
s ∈ Σ. This made 191 of the development sen-
tences unreachable by the model, leaving 743 sen-
tences for learning θ.

During decoding, we generated lattices with all
t ∈ Trans(si) for 0 ≤ i ≤ n, for every position.
We used ρ = 0.9, causing states within 90% of the
source sentence length to be final states. Between
each pair of consecutive states, we pruned edges
that fell outside a beam of 70% of the sum of edge
weights (see §4.1; edge weights use f lex , fdist ,
and fscov ) of all edges between those two states.

6.4 Feature Set Comparison

Our first set of experiments compares feature sets
commonly used in phrase- and syntax-based trans-
lation. In particular, we compare the effects of
combining phrase features and syntactic features.
The base model contains f lex , glm , greor , and

12We made this choice both for similarity to standard MT
systems and a more rapid experiment cycle.

gcov . The results are shown in Table 4. The sec-
ond row contains scores when adding in the eight
fphr features. The second column shows scores
when adding the 14 target syntax features (fatt

and f val ), and the third column adds to them the
14 additional tree-to-tree features (f qg ). We find
large gains in BLEU by adding more features, and
find that gains obtained through phrase features
and syntactic features are partially additive, sug-
gesting that these feature sets are making comple-
mentary contributions to translation quality.

6.5 Varying k During Decoding

For models without syntactic features, we con-
strained the decoder to produce dependency trees
in which every word’s parent is immediately to its
right and ignored syntactic features while scoring
structures. This causes decoding to proceed left-
to-right in the lattice, the way phrase-based de-
coders operate. Since these models do not search
over trees, they are substantially faster during de-
coding than those that use syntactic features and
do not require any pruning of the lattice. There-
fore, we explored varying the value of k used dur-
ing k-best cube decoding; results are shown in
Fig. 2. Scores improve when we increase k up
to 10, but not much beyond, and there is still a
substantial gap (2.5 BLEU) between using phrase
features with k = 20 and using all features with
k = 5. Models without syntax perform poorly
when using a very small k, due to their reliance on
non-local language model and phrase features. By
contrast, models with syntactic features, which are
local in our decoder, perform relatively well even
with k = 1.

6.6 QG Configuration Comparison

We next compare different constraints on isomor-
phism between the source and target dependency
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Figure 2: Comparison of size of k-best list for cube decoding
with various feature sets.
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QDG Configurations BLEU METEOR
synchronous 0.4008 0.6949
+ nulls, root-any 0.4108 0.6931
+ child-parent, same node 0.4337 0.6815
+ sibling 0.4881 0.7216
+ grandparent/child 0.5015 0.7365
+ c-command 0.5156 0.7441
+ other 0.5142 0.7472

Table 5: QG configuration comparison. The name of each
configuration, following Smith and Eisner (2006), refers to
the relationship between a(τt(j)) and a(j) in τs.

trees. To do this, we impose harsh penalties on
some QDG configurations (§3) by fixing their fea-
ture weights to −1000. Hence they are permit-
ted only when absolutely necessary in training
and rarely in decoding.13 Each model uses all
phrase and syntactic features; they differ only in
the sets of configurations which have fixed nega-
tive weights.

Tab. 5 shows experimental results. The
base “synchronous” model permits parent-child
(a(τt(j)) = τs(a(j))), any configuration where
a(j) = 0, including both words being linked to
NULL, and requires the root word in τt to be linked
to the root word in τs or to NULL(5 of our 14
configurations). The second row allows any con-
figuration involving NULL, including those where
tj aligns to a non-NULL word in s and its par-
ent aligns to NULL, and allows the root in τt to
be linked to any word in τs. Each subsequent
row adds additional configurations (i.e., trains its
θ rather than fixing it to −1000). In general, we
see large improvements as we permit more con-
figurations, and the largest jump occurs when we
add the “sibling” configuration (τs(a(τt(j))) =
τs(a(j))). The BLEU score does not increase,
however, when we permit all configurations in the
final row of the table, and the METEOR score in-
creases only slightly. While allowing certain cate-
gories of non-isomorphism clearly seems helpful,
permitting arbitrary violations does not appear to
be necessary for this dataset.

6.7 Discussion

We note that these results are not state-of-the-
art on this dataset (on this task, Moses/MERT
achieves 0.6838 BLEU and 0.8523 METEOR with
maximum phrase length 3).14 Our aim has been to

13In fact, the strictest “synchronous” model used the
almost-forbidden configurations in 2% of test sentences; this
behavior disappears as configurations are legalized.

14We believe one cause for this performance gap is the gen-
eration of the lattice and plan to address this in future work
by allowing the phrase table to inform lattice generation.

illustrate how a single model can provide a con-
trolled experimental framework for comparisons
of features, of inference methods, and of con-
straints. Our findings show that phrase features
and dependency syntax produce complementary
improvements to translation quality, that tree-to-
tree configurations (a new feature in MT) are help-
ful for translation, and that substantial gains can
be obtained by permitting certain types of non-
isomorphism. We have validated cube summing
and decoding as practical methods for approxi-
mate inference.

Our framework permits exploration of alter-
native objectives, alternative approximate infer-
ence techniques, additional hidden variables (e.g.,
Moses’ phrase segmentation variable), and, of
course, additional feature representations. The
system is publicly available at www.ark.cs.
cmu.edu/Quipu.

7 Conclusion

We presented feature-rich MT using a princi-
pled probabilistic framework that separates fea-
tures from inference. Our novel decoder is based
on efficient DP-based QG lattice parsing extended
to handle “non-local” features using generic tech-
niques that also support efficient parameter esti-
mation. Controlled experiments permitted with
this system show interesting trends in the use of
syntactic features and constraints.
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Abstract

We present a method to align words in
a bitext that combines elements of a tra-
ditional statistical approach with linguis-
tic knowledge. We demonstrate this ap-
proach for Arabic-English, using an align-
ment lexicon produced by a statistical
word aligner, as well as linguistic re-
sources ranging from an English parser
to heuristic alignment rules for function
words. These linguistic heuristics have
been generalized from a development cor-
pus of 100 parallel sentences. Our aligner,
UALIGN, outperforms both the commonly
used GIZA++ aligner and the state-of-the-
art LEAF aligner on F-measure and pro-
duces superior scores in end-to-end sta-
tistical machine translation, +1.3 BLEU

points over GIZA++, and +0.7 over LEAF.

1 Introduction

Word alignment is a critical component in training
statistical machine translation systems and has re-
ceived a significant amount of research, for exam-
ple, (Brown et al., 1993; Ittycheriah and Roukos,
2005; Fraser and Marcu, 2007), including work
leveraging syntactic parse trees, e.g., (Cherry and
Lin, 2006; DeNero and Klein, 2007; Fossum et
al., 2008). Word alignment is also a required
first step in other algorithms such as for learning
sub-sentential phrase pairs (Lavie et al., 2008) or
the generation of parallel treebanks (Zhechev and
Way, 2002).

Yet word alignment precision remains surpris-
ingly low, under 80% for state-of-the-art aligners
on not closely related language pairs.

Consider the following Arabic/English sen-
tence pair with alignments built by the statistical

word aligner LEAF:

Bitext Arabic: 	àA 	̄ A �� K
Q � 	àPðX@PA K. øY 	KA Ê K
A �J Ë @ 	P A 	̄ð
ùºJ
 ���JË @ð , 6 - 4 ð 6 - 4

	̈ Q J. 	J�JËñ�J� 	àñ�K
Ak. ùË@Q�J�AË @ ùÊ«
6 - 4ð 6 - 4QËñÒ� 	«PñK. ��PAË ù 	KAÒË AË@ ùÊ« ½J
 	KA

	̄ øQJ
K

Gloss: Won(1) Thai Paradorn Srichaphan(1)

on/to(2) Australian Jason(2) Stoltenberg(3) 6(4) -
4(5) and(3) 6(4) - 4(5), and Czech Jiˇrı́(7) Vaněk(7)

on/to German(6) Lars Burgsm¨uller 6(4) - 4 and(3)

6(4) - 4

Bitext English: Thailand ’s(1) Baradorn Srich-
fan(1) beat(2) AustralianGayson(1) Stultenberg(3)

6(4) - 6(4) 6(4) - 4(5) , Czech player(1) Pierre(1)

Vanic(7) beat(6) Germany(6) ’s Lars Burgsmuller 6
- 4 6 - 4

In the example above, words with the same index
in the gloss for Arabic and the English are aligned
to each other, alignment errors are underlined,
translation errors are initalics. For example, the
Arabic words forwonandSrichaphanare aligned
with the English words’s, Srichfan, Gayson,
playerandPierre.

As reflected in the example above, typical align-
ment problems include

� words that change sentence position between
languages, such as verbs, which in Arabic
are often sentence-initial (e.g.won/beatin the
example above)

� function words without a clear and explicit
equivalent in the other language (e.g. the Ara-
bicð/andin the example above)

� lack of robustness with respect to poor trans-
lations (e.g.Gayson Stultenberginstead of
Jason Stoltenberg) or bad sentence align-
ment.

We believe we can overcome such problems
with the increased use of linguistically based
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heuristics. We can model typical word order dif-
ferences between English and Arabic using En-
glish parse trees and a few Arabic-specific phrase
reordering heuristics. We can narrow the space of
possible alignment candidates for function words
using English parse trees and a few heuristics for
each type of function word.

These heuristics have been developed using a
development corpus of 100 parallel sentences. The
heuristics are generalizations based on patterns
of misaligned words, misaligned with respect to
a Gold Standard alignment for that development
corpus.

The following sections describe how our word
aligner works, first how relatively reliable content
words are aligned, and then how function words
and any remaining content words are aligned, with
a brief discussion of an interesting issue relating
to the Gold Standard we used. Finally we present
evaluations on word alignment accuracy as well
as the impact on end-to-end machine translation
quality.

2 Phase I: Content Words

We divide the alignment process into two phases:
first, we align relatively reliable content words,
which in phase II we then use as a skeleton to align
function words and remaining content words.

Function words such as Englisha, ah, all, am,
an, and, any, are, as, at, ...are common words
that often do not have an explicit equivalent word
or words in the other side of the bitext. In our
system, we use a list of 96 English and 110 Ara-
bic function words with those characteristics. For
the purposes of our algorithm, a word is a function
word if and only if it is on the function word list
for its language. A content word then is defined as
a word that is neither a function word nor punctu-
ation.

The approach for aligning content words in
phase I is as follows: First, we score each com-
bination of an Arabic content word and English
content word in an aligned sentence and align
those pairs that pass a threshold, typically gener-
ating too many alignments. Second, we compute
a more comprehensive score that also takes into
consideration matching alignments in the context
around each alignment. Third, we eliminate infe-
rior alignments that are incompatible with higher-
scoring alignments.

The score in the first step ispointwise mutual

information(PMI). The key resource to compute
this PMI is an alignment lexicon generated be-
forehand by a statistical word alignment system
from a large bitext. An alignment lexicon is a
list of triples, each consisting of an English word,
an Arabic word, and how often they have been
aligned for a given bitext. Additional counts on
how often each English and Arabic word occurs
allow us use this alignment lexicon to compute
PMI(e,f) = log p(e;f)

p(e)�p(f). We align those Arabic
and English content words that have a PMI> 0

and a minimum alignment lexicon count (� 10

initially). Using the alignment lexicon generated
by a statistical word aligner to compute PMIs is
the principal statistical component in our system.
We explored alternative metrics such as the dice-
coefficient that was used by other researchers in
earlier alignment work, but found PMI to work
better for our system.

In a second step, we lay a window of size 5
around each aligned pair of Arabic and English
words (counting only content words) and then add
to the PMI score of the link itself the PMI scores
of other links within that window, with a distance
weight of 1

distance+1 . This yields a new score that
takes into account whether a link is supported by
context.

In the third step, we check for overgenerated
links, comparing links that share an Arabic or an
English word. If a word on one side of the bitext
is linked to multipleadjacentwords on the other,
we leave them alone, as one word in one language
often corresponds to multiple words in the other.
However, if a word on one side is linked to non-
adjacent words on the other side, this flags an in-
compatibility, and we remove those links that have
inferior context-sensitive scores. This removal is
done one link at a time, with the lowest relative
scores first.

We boost the process we just described in a few
ways. In the first alignment step, we also include
as alignment candidates any content words that are
string-identical on each side, such as ASCII num-
bers and ASCII words. We finally also include
as alignment candidates those word pairs that are
transliterations ofeach other to cover rare proper
names (Hermjakob et al., 2008), which is impor-
tant for language pairs that don’t share the same
alphabet such as Arabic and English.
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2.1 Reordering Using an English Parser

We use a refined notion of context window that
models word order differences between Arabic
and English. Traversing a parse tree for English,
we identify sub-trees for which the order in Ara-
bic can be substantially different. In Arabic, for
example, the verb is often sentence-initial. So for
trees or subtrees identified by the parser as sen-
tences, we generate an alternative reordering of
its subtrees where the verb has been moved to the
front. Similarly, in a noun phrase, we generate an
alternative order where adjectives are moved to the
right of the noun they modify.

For example, consider the sentenceJohn bought
a new car . We can reorder its parse tree both at
the sentence level:(bought) (John) (a new car) (.)
as well as at its object NP level:(a) (car) (new).
If fully enumerated, this would yield these four
reordering alternatives:

1. John bought a new car .
2. John bought a car new .
3. bought John a new car .
4. bought John a car new .

We don’t actually explicitly enumerate all variants
but keep all reordering alternatives in a reorder-
ing forest, since the number of fully expanded re-
orderings grows exponentially with the number of
phrases with reordering(s). At the beginning of
Phase I, we compute from this reordering forest a
minimum distance matrix, which, for specific in-
stances of the wordsJohnandcar would record
a minimum distance of 1 (based on reordering 4,
skipping the function worda).

For the example sentence at the beginning of the
paper we would get reorderings including the fol-
lowing:
Engl. orig.: thailand ’s baradorn srichfan beat ...
Areordering: beat thailand ’s baradorn srichfan ...
Arabic (gloss): won thai paradorn srichaphan ...

In the above reordered English alternative,beat
and thailandare next to each other, so their min-
imum distance is 1, which means that a link
between Englishthailand and Arabic thai now
strongly boosts the context-sensitive score be-
tween Englishbeatand Arabicwon.

2.2 Morphological Variation

Another challenge to content word alignment is
morphological variation which can create data
sparsity in the alignment lexicon. For example,
in a given bitext sentence, the Arabic wordAlAw-
DAE might be translated assituational, for which

there might be no support in the alignment lex-
icon. However the PMI betweenAlAwDAEand
situationmight be sufficiently high. Additionally,
there is another Arabic word,AlHAlAt, which of-
ten translates as bothsituationandsituational.

To take advantage of such constellations, we
built morphological variation lists for both Arabic
and English, lists that for a given head word such
assituationallists variants such assituation, and
situations.

We built these lists in a one-time process by
identifying superficially similar words, i.e. those
that vary only with respect to an ending or a prefix,
and then semantically validating such candidates
using a pivot word in the other language such as
AlHAlAt that has sufficiently strong alignment lex-
icon co-alignment counts with bothsituationand
situational. The alignment lexicon co-alignment
count of an Arabic wordwar and an English word
wen is considered strong enough, if it is at least
2.0 and at least 0.001 times as high as the high-
est co-alignment count ofwar with any English
word; words shorter than four letters are excluded
from consideration. So becausesituationandsitu-
ationalare superficially similarand they are both
have a strong alignment count withAlHAlAt in the
alignment lexicon,situation is added to the En-
glish morphological variation list as a variant of
situationaland vice versa.

Exploring whether we can alignsituationaland
AlAwDAE in the bitext, we find thatsituational
is a morphological variant ofsituation(based on
our morphological variation list for English); next
we find that based on the alignment lexicon, there
is a positive PMI betweensituation and AlAw-
DAE, which completes the chain betweensitu-
ational and AlAwDAE, so we include them as
an alignment candidate after all. The PMI of
such a morphological-variation-based candidate is
weighted by a ‘penalty’ factor of 0.5 when com-
pared with the PMI of any competing alignment
candidate without such morphological-variation
step.

Similarly, the English pivot wordsituationscan
be used to semantically validate the similarity
between ArabicAlAwDAE and AwDAE for our
Arabic morphological variation list. The resulting
Arabic morphological variation list has entries
for 193,263 Arabic words with an average of
4.2 variants each; our English morphological
variation list has 57,846 entries with 2.8 variants
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each.

At the end of phase I, most content words will
be aligned with relatively high precision. Since
function words often do not have an explicit equiv-
alent word or words in the other side of a bi-
text, they can not be aligned as reliably as con-
tent words based on bilingual PMI.1 Note that
due to data sparsity, some content words will re-
mained unaligned in phase I and will subsequently
be aligned in phase II as explained in section 3.3.

3 Phase II: Function Words

In Phase II, we align function words, punctua-
tion, and some remaining content words. Func-
tion words can be classified into three categories:
monovalent, divalent and independent. Monova-
lent function words modify one head; they in-
clude articles (which modify nouns), possessive
pronouns, demonstrative adjectives and auxiliary
verbs. Divalent function words connect two words
or phrases; they include conjunctions and prepo-
sitions. Independent function words include non-
possessive pronouns and copula (e.g.is as a main
verb). Each of these types of function words is
aligned according to its own heuristics.

In this section we present three representative
examples, one for articles (monovalent), one for
prepositions (divalent), as well as a structural
heuristic.

3.1 Example: Articles

Monovalent function words have the simplest
heuristics. Recall that Arabic does not have ar-
ticles (only a definite prefixAl- added to one or
more words in a definite noun phrase), so there is
usually no explicit equivalent of the English article
on the Arabic side.

For an English article, our system identifies the
English head word that it modifies based on the
English parse tree, and then aligns it with the same
Arabic word(s) which that head word is aligned
with.

3.2 Example: Prepositions

Divalent function words are much more interest-
ing. In many cases, an English preposition corre-
sponds to an explicit Arabic preposition in basi-

1It is this lack of reliability that is the defining charac-
teristic of our function words, differentiating them from the
concept of marker words used in EBMT chunking (Way and
Gough, 2002).

cally the same position. Alignment in that case is
straightforward. However, some Arabic preposi-
tions and even more English prepositions do not
have an explicit counterpart on the other side. We
call such prepositionsorphan prepositions. The
English prepositionof is almost always orphaned
in this way.

The decision how to align such an orphan
preposition is not trivial. Consider the bitextis-
land of Basilan/jzyrp bAsylAn, a typical (NP1 (P
NP2)) construction on the English side. Should
we co-align the prepositionof with the head of
NP1 or the head of NP2? In English syntax, the
preposition is grouped with NP2, but a preposition
is often better “motivated” by NP1. We therefore
decided to use the English parse tree to identify
the heads of both NP1 and NP2, identify the Ara-
bic words aligned to these heads as candidates, and
then align the preposition to the Arabic candidate
word with which it has the highest bilingual PMI.
It turns out that in most cases this will be the can-
didate on the “left”. For the example at the top of
this paragraph,of will be aligned withjzyrp (“is-
land”), which is actually desirable for MT, as it fa-
cilitates subsequent rule extraction of type “island
of X/jzyrp X”. We refer to this orphan preposition
alignment style asMT-style.

According to the gold standard alignment
guidelines used for the LDC Gold Standard how-
ever, an orphan preposition should always be
aligned to the “right”, tobAsylAnin the example
above. We therefore implemented an alternative
GS-style(for “Gold Standard”) to be able to later
evaluate the impact of these alternatives alignment
styles.

The question whether GIZA or LEAF align-
ments will indeed give meaningful scores to sup-
port theMT-styleattachments will be answered by
the MT experiments described in section 4.3.

Here is a more complex example with Arabic
(A), its gloss (G) and English (E):

Arabic: P@ñk.
�é�®¢ 	JÓ ùÊ« �éJ
»QJ
ÓAË@ �H@Q
KA¢Ë@ �HPA 	«@ YkAË@

Gloss: sunday attacked aircraft american on/to area jiwar

Engl.: on sunday american aircraft attacked the area of jiwar

For the Arabic orphan prepositionùÊ«/ElY
(“on/to”), our system identifies two candidates
based on the English parse tree:attackedandarea.
Based on a higher mutual information, our system
then aligns ArabicElY (“on/to”) with Englishat-
tacked, which results in the English wordattacked
now being aligned to both Arabicattackedand the
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Arabic on/to, even though they are not adjacent.
In the Gold Standard, Arabicon/tois aligned with
Englisharea, and LEAF aligns it with Englishon
(yes, the one preceding Sunday). This is appar-
ently very tempting as Arabicon/to is often trans-
lated as Englishon, but here it is incorrect, and our
system avoids this tempting alignment because it
is ruled out linguistically.

Note that in some cases, such as sentence-initial
prepositional phrases, there is only one candidate;
occasionally, when relevant content words remain
unaligned, no candidate can be identified, in which
case the orphan preposition remains unaligned as
well.

3.3 Example: Adjectives

It is not uncommon that content words that we
would like to be aligned are not supported by the
alignment lexicon, due to general data sparsity
or maybe a somewhat unorthodox translation. In
those cases we can use structure and word order
knowledge to make reasonable alignments any-
way.

Consider an English noun phase ADJ-E
NOUN-E and the corresponding Arabic NOUN-
A ADJ-A. If the nouns are already aligned, but the
adjectives are not yet aligned, we can use the En-
glish parse tree to identify ADJ-E as a modifier
to NOUN-E, and, aware that adjectives in Arabic
post-modify their nouns, identify the correspond-
ing Arabic word based on structure and word order
alone. This can be done the other way around as
well (link nouns based on already aligned adjec-
tives) and other elements of other phrases as well.

As more and more function words and re-
maining content words get aligned, heuristics that
weren’t applicable before may now apply to the
remaining unaligned words, so we perform four
passes through a sentence pair to align unaligned
words using heuristics. We found that an addi-
tional fifth pass did not yield any further improve-
ments.

4 Experiments

We evaluated our word aligner in terms of both
alignment accuracy and its impact on an end-to-
end machine translation system.

4.1 Alignment Experiments

We evaluated our word aligner against a Gold
Standard distributed by LDC. The human align-

ments of the sentences in this Gold Standard are
based on the 2006 GALE Guidelines for Arabic
Word Alignment Annotation.

Both the 100-sentence development set and the
separate 837-sentence test set are Arabic newswire
sentences from LDC2006E86. The test set in-
cludes only sentences for which our English parser
(Soricut and Marcu, 2003) could produce a parse
tree, which effectively excluded a few very long
sentences.

In the first set of experiments, we compare
two settings of our UALIGN system with other
aligners, GIZA++ (Union) (Och and Ney, 2003)
and LEAF (with 2 iterations) (Fraser and Marcu,
2007). The GIZA++ aligner is based on IBM
Model 4 (Brown et al., 1993). We chose GIZA
Union for our comparison, because it led to a
higher BLEU score for our overall MT system than
other GIZA variants such as GIZA Intersect and
Grow-Diag. The two settings of our system vary in
the style on how to align orphan prepositions. Be-
sides precision, recall and (balanced) F-measure,
we also include an F-measure variant strongly bi-
ased towards recall (�=0.1), which (Fraser and
Marcu, 2007) found to be best to tune their LEAF
aligner for maximum MT accuracy. GIZA++ and
LEAF alignments are based on a parallel train-
ing corpus of 6.6 million sentence pairs, incl. the
LDC2006E86 set mentioned above.

Aligner Prec. Recall F-0.5 F-0.1
GIZA 26.9 84.3 40.8 69.5
LEAF 73.3 79.7 76.4 79.0
UALIGN MT-style 82.5 80.0 81.2 80.2
UALIGN GS-style 84.0 82.9 83.5 83.0

Table 1: Alignment precision, recall, F-measure
(�=0.5), F-measure(�=0.1) for different aligners;
with UALIGN using LEAF alignment lexicon.

Our aligner outperforms both GIZA and LEAF
on all metrics. Not surprisingly, the GS-style
alignments, which align “orphan” prepositions ac-
cording to Gold Standard guidelines, yield higher
scores than MT-style alignments. And interest-
ingly by a remarkably high margin.

In a second set of experiments, we measure the
impact of using different input alignment lexicon
used by our aligner on alignment accuracy. In one
case UALIGN uses as input the alignment lexicon
produced by LEAF, in the other the alignment lex-
icon produced by GIZA. All experiments in table 2
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are for UALIGN.

Style A-Lexicon Prec. Recall F-0.5 F-0.1

MT from LEAF 82.5 80.0 81.2 80.2
MT from GIZA 80.8 79.2 80.0 79.4
GS from LEAF 84.0 82.9 83.5 83.0
GS from GIZA 82.1 81.8 82.0 81.9

Table 2: Alignment precision, recall, F-measure
(�=0.5), F-measure(�=0.1), all of UALIGN, for
different alignment styles, different input align-
ment lexicons.

As LEAF clearly outperforms GIZA on F-0.1
(79.0 vs. 69.5, see table 1), the alignment lexicon
based on LEAF is better, so it is not surprising
that when we use an alignment lexicon based on
GIZA, all metrics degrade, and consistently so for
both alignment styles. However the drop in F-0.1
of about 1 point (80.2! 79.4 and 83.0! 81.9)
is much smaller than the differences between the
underlying aligners themselves. Our aligner there-
fore degrades quite gracefully for a worse align-
ment lexicon.

Aligner Arabic aligned Engl. aligned
GIZA Union 100% 100%
LEAF 99.99% 97.25%
UALIGN 92.10% 91.55%
Gold Standard 95.37% 95.86%

Table 3: Percentages of Arabic and English words
aligned

Table 3 shows how much LEAF and UALIGN

differ in the percentage of Arabic and English
words aligned (correctly or incorrectly). LEAF
is much more aggressive in making alignments,
aligning almost every Arabic word. Our aligner
still leaves some 8% of all words in a sentence un-
aligned (an opportunity for further improvements).
For comparison, in the Gold Standard, 4-5% of all
words in our test corpus are left unaligned.

4.2 Impact of Sub-Components

To better understand the impact of several align-
ment system sub-components, we ran a number of
experiments disabling individual sub-components
and then comparing the resulting alignment scores
with those of the full system. We also measured
alignment scores running Phase II with 0 to 5
passes. The test set was the same as in section
4.1.

System Prec. Recall F-0.1
Full system (FS) 84.0 82.9 83.0
FS w/o morph.variation 84.0 82.4 82.5
FS w/o Engl. tree reord. 83.8 82.7 82.8
FS w/o string identity 84.0 82.8 82.9
FS w/o name translit. 84.0 82.8 82.9
System after Phase I 90.6 44.5 46.8
+ Phase II w/ 1 pass 87.6 77.1 78.0
+ Phase II w/ 2 passes 85.8 80.3 80.8
+ Phase II w/ 3 passes 84.2 82.7 82.8
+ Phase II w/ 4 passes 84.0 82.9 83.0
+ Phase II w/ 5 passes 84.0 82.9 83.0

Table 4: Impact of sub-components on alignment
precision, recall, F-measure, with GS-style attach-
ments, based on the LEAF alignment lexicon.

Special sub-components of Phase I include
adding link candidates for ASCII-string-identical
words and transliterated names (see last paragraph
before section 2.1), reordering using an English
parser (section 2.1) and morphological variation
(section 2.2). Each of these sub-components pro-
vides a small boost to F-0.1, ranging from +0.1 to
+0.5. The second part of the table shows align-
ment scores before and after each pass of Phase II.
Our full system includes 4 passes; an additional
5th pass did not yield any further improvements.
Note that during Phase II, precision drops. This is
a reflection of (1) our strategy to first align rela-
tively reliable content words in Phase I, followed
by less reliable function words and remaining con-
tent words, and (2) the challenges of building reli-
able Gold Standard alignments for function words
and non-literal translations.

4.3 MT Experiments

The ultimate test for a word aligner is to mea-
sure its impact on an end-to-end machine trans-
lation system. For this we aligned 170,863 pairs
of Arabic/English newswire sentences from LDC,
trained a state-of-the-art syntax-based statistical
machine translation system (Galley et al., 2006)
on these sentences and alignments, and measured
BLEU scores (Papineni et al., 2002) on a sepa-
rate set of 1298 newswire test sentences. Besides
swapping in a new set of alignments for the same
set of training sentences, and automatically retun-
ing the parameters of the translation system for
each set of alignments, no other changes or ad-
justments were made to the existing MT system.
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In the first set of experiments, we compare two
settings of our UALIGN system with other align-
ers, again GIZA++ (Union) and LEAF (with 2 it-
erations). The two settings vary in the alignment
lexicon that the UALIGN aligner uses as input.

Aligner BLEU

GIZA 47.4
LEAF 48.0
UALIGN using GIZA alignment-lexicon 48.4
UALIGN using LEAF alignment-lexicon 48.7

Table 5: BLEU scores in end-to-end statistical MT
system based on different aligners. Both UALIGN

variants use MT-style alignments.

With a BLEU score of 48.7, UALIGN using
a LEAF alignment-lexicon is significantly bet-
ter than both GIZA (+1.3) and LEAF (+0.7).
This and other significance assertions in this pa-
per are based on paired bootstrap resampling
tests with 95% confidence. UALIGN using
a GIZA alignment-lexicon significantly outper-
forms GIZA itself (+1.0).

In a second experiment, we measured the im-
pact of the two alignment styles on BLEU. Re-
call that for GS-style alignments, orphan preposi-
tions are always co-aligned to the right, following
Gold Standard annotation guidelines, whereas for
MT-style alignments, mutual information is used
to decide whether to align orphan prepositions to
the left or to the right.

Aligner BLEU

LEAF 48.0
UALIGN with GS-style alignments 48.0
UALIGN with MT-style alignments 48.7

Table 6: BLEU scores in end-to-end statistical MT
system based on different alignment styles for or-
phan prepositions. Both UALIGN variants use a
LEAF alignment lexicon.

While the GS-style alignments yielded a 2.8
point higher F-0.1 score (83.0 vs. 80.2), the MT-
style alignments result in a significantly better
BLEU score (48.7 vs. 48.0). This shows that
(1) a seemingly small difference in alignment
styles can have a remarkably high impact on both
BLEU scores and alignment accuracy as measured
against a Gold Standard, and that (2) optimiz-
ing alignment accuracy against an alignment Gold
Standard doesnot necessarily optimize BLEU in

end-to-end MT. The latter has been observed by
other researchers before, but these results addi-
tionally suggest that the gold-standard annotation
style might itself have to shoulder part of the
blame.

4.4 Corpus Noise Robustness

In a small random “sanity check” sample from
the 170,863 training sentences for the MT exper-
iment, we found cases where the sentence in one
language contained much more material than the
sentence in the other language. Consider, for ex-
ample the following sentence pair (with spurious
material underlined):
Arabic:

, ��Y 	J 	®Ë @ A ��	JK
 ÑË @ 	X@ é 	K@ ùÊ« �	JK
 Q 	k@ Y 	JK. ¼A 	Jë A 	�K
 @ 	áºË

Gloss: but also there-is clause another stipulates
on/to that if not established the-hotel ,
English: but , also there is another clause that
stipulates that if the hotel is not established ,
then the government shall be compensated .

Both LEAF and UALIGN correctly align the En-
glish “but , also ... not established ,” with the
Arabic side. LEAF further aligns all words in the
spurious English “then the government shall be
compensated .” with seemingly random material
on the Arabic side, whereas UALIGN leaves these
spurious words completely unaligned. It would
be reasonable to speculate that this behavior, ob-
served in several cases, may be contributing to the
good BLEU scores.

5 Discussion

Building on existing statistical aligners, our new
word aligner significantly outperforms the best
word aligner to date in both alignment error rate
and BLEU score.

We have developed an approach to word align-
ment that combines a statistical component with
linguistic heuristics. It is novel in that it goes
beyond generic resources such as parsers, adding
heuristics to explicitly model word order differ-
ences and function word alignment.

The approach has numerous benefits. Our sys-
tem produces superior results both on alignment
accuracy and end-to-end machine translation qual-
ity. Alignments have a high precision. The system
is fast (about 0.7 seconds per sentence), and sen-
tences are aligned individually so that a large cor-
pus can easily be aligned on several computers in
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parallel. All alignment links are tagged with ad-
ditional information, such as which phase and/or
heuristic created them, yielding extensive explana-
tory power to the developer for easy understanding
on how the system arrived at a given alignment.
Our approach needs and uses a parser for only one
side (English) and not for the other (Arabic).

On the other hand, some of the components
of this aligner are language-specific, such as
word order heuristics, the list of specific function
words, and morphological variation lists. While
these parts of the system need to be adapted for
new languages, the overall architecture and types
of heuristics and function words are language-
independent. Chinese for example has different
specific types of function words such as aspect
markers and measure words. But these fall into the
existing category of monovalent function words
and will be treated according the same principles
as other monovalent function words (section 3.1).
Similarly, Japanese postpositions would be treated
like other divalent function words (such as Arabic
or English prepositions). The author and devel-
oper has a basic knowledge of Arabic in general,
and an intermediate knowledge of Arabic gram-
mar, which means that no intimate knowledge
of Arabic was required to develop the language-
specific components. This same author and devel-
oper recently started to adapt UALIGN to Chinese-
English word alignment.

The alignment rate is still somewhat low. We
plan to increase it by enlarging our develop-
ment set beyond 100 sentences and adding further
heuristics, as well as generalizing the output word
alignment structure to allow alignments of words
to larger constituents in a tree, and to explicitly as-
sert that some words are not covered by the other
side of a bitext to model poor translations and poor
sentence alignments.
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Abstract
Combining information extraction sys-
tems yields significantly higher quality re-
sources than each system in isolation. In
this paper, we generalize such a mixing of
sources and features in a framework called
Ensemble Semantics. We show very large
gains in entity extraction by combining
state-of-the-art distributional and pattern-
based systems with a large set of fea-
tures from a webcrawl, query logs, and
Wikipedia. Experimental results on a web-
scale extraction of actors, athletes and mu-
sicians show significantly higher mean av-
erage precision scores (29% gain) com-
pared with the current state of the art.

1 Introduction

Mounting evidence shows that combining infor-
mation sources and information extraction algo-
rithms leads to improvements in several tasks
such as fact extraction (Paşca et al., 2006), open-
domain IE (Talukdar et al., 2008), and entailment
rule acquisition (Mirkin et al., 2006). In this paper,
we show large gains in entity extraction by com-
bining state-of-the-art distributional and pattern-
based systems with a large set of features from
a 600 million document webcrawl, one year of
query logs, and a snapshot of Wikipedia. Further,
we generalize such a mixing of sources and fea-
tures in a framework called Ensemble Semantics.

Distributional and pattern-based extraction al-
gorithms capture aspects of paradigmatic and syn-
tagmatic dimensions of semantics, respectively,
and are believed to be quite complementary. Paşca
et al. (2006) showed that filtering facts, extracted
by a pattern-based system, according to their ar-
guments’ distributional similarity with seed facts
yielded large precision gains. Mirkin et al. (2006)
showed similar gains on the task of acquiring lex-
ical entailment rules by exploring a supervised

combination of distributional and pattern-based al-
gorithms using an ML-based SVM classifier.

This paper builds on the above work, by study-
ing the impact of various sources of features exter-
nal to distributional and pattern-based algorithms,
on the task of entity extraction. Mirkin et al.’s re-
sults are corroborated on this task and large and
significant gains over this baseline are obtained
by incorporating 402 features from a webcrawl,
query logs and Wikipedia. We extracted candidate
entities for the classes Actors, Athletes and Mu-
sicians from a webcrawl using a variant of Paşca
et al.’s (2006) pattern-based engine and Pantel et
al.’s (2009) distributional extraction system. A
gradient boosted decision tree is used to learn a re-
gression function over the feature space for rank-
ing the candidate entities. Experimental results
show 29% gains (19% nominal) in mean average
precision over Mirkin et al.’s method and 34%
gains (22% nominal) in mean average precision
over an unsupervised baseline similar to Paşca et
al.’s method. Below we summarize the contribu-
tions of this paper:

• We explore the hypothesis that although dis-
tributional and pattern-based algorithms are
complementary, they do not exhaust the se-
mantic space; other sources of evidence can
be leveraged to better combine them;

• We model the mixing of knowledge sources
and features in a novel and general informa-
tion extraction framework called Ensemble
Semantics; and

• Experiments over an entity extraction task
show that our model achieves large and sig-
nificant gains over state-of-the-art extractors.
A detailed analysis of feature correlations
and interactions shows that query log and we-
bcrawl features yield the highest gains, but
easily accessible Wikipedia features also im-
prove over current state-of-the-art systems.
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Figure 1: The Ensemble Semantics framework for information extraction.

The remainder of this paper is organized as fol-
lows. In the next section, we present our Ensemble
Semantics framework and outline how various in-
formation extraction systems can be cast into the
framework. Section 3 then presents our entity ex-
traction system as an instance of Ensemble Se-
mantics, comparing and contrasting it with previ-
ous information extraction systems. Our experi-
mental methodology and analysis is described in
Section 4 and shows empirical evidence that our
extractor significantly outperforms prior art. Fi-
nally, Section 5 concludes with a discussion and
future work.

2 Ensemble Semantics

Ensemble Semantics (ES) is a general framework
for modeling information extraction algorithms
that combine multiple sources of information and
multiple extractors. The ES framework allows to:

• Represent multiple sources of knowledge and
multiple extractors of that knowledge;
• Represent multiple sources of features;
• Integrate both rule-based and ML-based

knowledge ranking algorithms; and
• Model previous information extraction sys-

tems (i.e., backwards compatibility).

2.1 ES Framework
ES can be instantiated to extract various types of
knowledge such as entities, facts, and lexical en-
tailment rules. It can also be used to better under-
stand the commonalities and differences between
existing information extraction systems.

After presenting the framework in the next sec-
tion, Section 2.2 shows how previous information
extraction algorithms can be cast into ES. In Sec-
tion 3 we describe our novel entity extraction al-
gorithm based on ES.

The ES framework is illustrated in Figure 1. It
decomposes the process of information extraction
into the following components:

Sources (S): textual repositories of information,
either structured (e.g., a database such as DBpe-
dia), semi-structured (e.g., Wikipedia Infoboxes or
HTML tables) or unstructured (e.g., news articles
or a webcrawl).

Knowledge Extractors (KE): algorithms re-
sponsible for extracting candidate instances such
as entities or facts. Examples include fact extrac-
tion systems such as (Cafarella et al., 2005) and
entity extraction systems such as (Paşca, 2007).

Feature Generators (FG): methods that extract
evidence (features) of knowledge in order to de-
cide which candidate instances extracted from
KEs are correct. Examples include capitalization
features for named entity extractors, and the dis-
tributional similarity matrix used in (Paşca et al.,
2006) for filtering facts.

Aggregator (A). A module collecting and as-
sembling the instances coming from the different
extractors. This module keeps the footprint of
each instance, i.e. the number and the type of the
KEs that extracted the instance. This information
can be used by the Ranker module to build a rank-
ing strategy, as described below.

Ranker (R): a module for ranking the knowl-
edge instances returned from KEs using the fea-
tures generated by FGs. Ranking algorithms may
be rule-based (e.g., the one using a threshold on
distributional similarity in (Paşca et al., 2006)) or
ML-based (e.g., the SVM model in (Mirkin et al.,
2006) for combining pattern-based and distribu-
tional features).
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The Ranker is composed of two sub-modules:
the Modeler and the Decoder. The Modeler is re-
sponsible for creating the model which ranks the
candidate instances. The Decoder collects the can-
didate instances from the Aggregator, and applies
the model to produce the final ranking.

In rule-based systems, the Modeler corresponds
to a set of manually crafted or automatically in-
duced rules operating on the features (e.g. a com-
bination of thresholds). In ML-based systems, it is
an actual machine learning algorithm, that takes as
input a set of labeled training instances, and builds
the model according to their features. Training in-
stances can be obtained as a subset of those col-
lected by the Aggregator, or from some exter-
nal resource. In many cases, training instances
are manually labeled by human experts, through
a long and costly editorial process.

Information sources (S) serve as inputs to the
system. Some sources will serve as sources for
knowledge extractors to generate candidate in-
stances, some will serve as sources for feature gen-
erators to generate features or evidence of knowl-
edge, and some will serve as both.

2.2 Related Work

To date, most information extraction systems rely
on a model composed of a single source S, a single
extractor KE and a single feature generator FG.
For example, many classic relation extraction sys-
tems (Hearst, 1992; Riloff and Jones, 1999; Pan-
tel and Pennacchiotti, 2006; Paşca et al., 2006)
are based on a single pattern-based extractor KE,
which is seeded with a set of patterns or instances
for a given relation (e.g. the pattern ‘X starred in
Y’ for the act-in relation). The extractor then itera-
tively extracts new instances until a stop condition
is met. The resulting extractor scores are proposed
by FG as a feature. The Ranker simply consists
of a sorting function on the feature from FG.

Systems such as the above that do not consist
of multiple sources, knowledge extractors or fea-
ture generators are not considered Ensemble Se-
mantics models, even though they can be cast into
the framework. Recently, some researchers have
explored more complex systems, having multiple
sources, extractors and feature generators. Below
we show examples and describe how they map as
Ensemble Semantics systems. We use this charac-
terization to clearly outline how our proposed en-
tity extraction system, proposed in Section 3, dif-

fers from previous work.
Talukdar et al. (2008) present a weakly-

supervised system for extracting large sets of
class-instance pairs using two knowledge extrac-
tors: a pattern-based extractor supported by distri-
butional evidence, which harvests candidate pairs
from a Web corpus; and a table extractor that har-
vests candidates from Web tables. The Ranker
uses graph random walks to combine the informa-
tion of the two extractors and output the final list.
The authors show large improvements in coverage
with little precision loss.

Mirkin et al. (2006) introduce a machine learn-
ing system for extracting lists of lexical entail-
ments (e.g. ‘government’→ ‘organization’). They
rely on two knowledge extractors, operating on a
same large textual source: a pattern-based extrac-
tor, leveraging the Hearst (1992) is-a patterns; and
a distributional extractor applied to a set of entail-
ment seeds. Candidate instances are passed to an
SVM Ranker, which uses features stemming from
the two extractors, to decide which instances are
output in the final list. The authors report a +9%
increase in F-measure over a rule-based system
that takes the union of the instances extracted by
the two modules.

Other examples include the system for
taxonomic-relation extraction by Cimiano et
al. (2005), using a pool of feature genera-
tors based on pattern-based, distributional
and WordNet techniques; and Paşca and Van
Durme’s (2008) system that uses a Web corpus
and query logs to extract semantic classes and
their attributes.

Similarly to these methods, our proposed entity
extractor (Section 3) utilizes multiple sources and
extractors. A key difference of our method lies in
the Feature Generator module. We propose sev-
eral generators resulting in 402 features extracted
from Web pages, query logs and Wikipedia arti-
cles. The use of these features results in dramatic
performance improvements, reported in Section 4.

3 ES for Entity Extraction

Entity extraction is a fundamental task in NLP
responsible for extracting instances of semantic
classes (e.g., ‘Brad Pitt’ and ‘Tom Hanks’ are in-
stances of the class Actors). It forms a build-
ing block for various NLP tasks such as on-
tology learning (Cimiano and Staab, 2004) and
co-reference resolution (Mc Carthy and Lehn-
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Family Type Features
Web (w) Frequency (wF ) term frequency; document frequency; term frequency as noun phrase

Pattern (wP ) confidence score returned by KEpat; pmi with the 100 most reliable patterns
used by KEpat

Distributional (wD) distributional similarity with the centroid in KEdis; distributional similarities
with each seed in S

Termness (wT ) ratio between term frequency as noun phrase and term frequency; pmi between
internal tokens of the instance; capitalization ratio

Query log (q) Frequency (qF ) number of queries matching the instance; number of queries containing the in-
stance

Co-occurrence (qC) query log pmi with any seed in S
Pattern (qP ) pmi with a set of trigger words T (i.e., the 10 words in the query logs with

highest pmi with S)
Distributional (qD) distributional similarity with S (vector coordinates consist of the instance’s pmi

with the words in T )
Termness (qT ) ratio between the two frequency features F

Web table (t) Frequency (tF ) table frequency
Co-occurrence (tC) table pmi with S; table pmi with any seed in S

Wikipedia (k) Frequency (kF ) term frequency
Co-occurrence (kC) pmi with any seed in S
Distributional (kD) distributional similarity with S

Table 1: Feature space describing each candidate instance (S indicates the set of seeds for a given class).

ert, 2005). Search engines such as Yahoo, Live,
and Google collect large sets of entities (Paşca,
2007; Chaudhuri et al., 2009) to better interpret
queries (Tan and Peng, 2006), to improve query
suggestions (Cao et al., 2008) and to understand
query intents (Hu et al., 2009). Entity extraction
differs from the similar task of named entity ex-
traction, in that classes are more fine-grained and
possibly overlapping.

Below, we propose a new method for entity ex-
traction built on the ES framework (Section 3.1).
Then, we comment on related work in entity ex-
traction (Section 3.2).

3.1 ES Entity Extraction Model
In this section, we propose a novel entity ex-
traction model following the Ensemble Semantics
framework presented in Section 2. The sources of
our systems can come from any textual corpus. In
our experiments (described in Section 4.1), we ex-
tracted entities from a large crawl of the Web, and
generated features from this crawl as well as query
logs and Wikipedia.

3.1.1 Knowledge extractors
Our system relies on two knowledge extractors:
one pattern-based and the other distributional.

Pattern-based extractor (KEpat). We reimple-
mented Paşca et al.’s (2006) state-of-the-art web-
scale fact extractor, which, given seed instances of
a binary relation, finds instances of that relation.
We extract entities of a class, such as Actors, by
instantiating typical relations involving that class

such as act-in(Actor, Movie). We instantiate such
relations instead of the classical is-a patterns since
these have been shown to bring in too many false
positives, see (Pantel and Pennacchiotti, 2006) for
a discussion of such generic patterns. The extrac-
tor’s confidence score for each instance is used by
the Ranker to score the entities being extracted.
Section 4.1 lists the system parameters we used in
our experiments.

Distributional extractor (KEdis). We use Pan-
tel et al.’s (2009) distributional entity extractor.
For each noun in our source corpus, we build a
context vector consisting of the noun chunks pre-
ceding and following the target noun, scored us-
ing pointwise mutual information (pmi). Given
a small set of seed entities S of a class, the ex-
tractor computes the centroid of the seeds’ context
vectors as a geometric mean, and then returns all
nouns whose similarity with the centroid exceeds a
threshold τ (using the cosine measure between the
context vectors). Full algorithmic details are pre-
sented in (Pantel et al., 2009). Section 4.1 lists the
threshold and text preprocessing algorithms used
in our experiments.

The Aggregator simply takes a union of the en-
tities discovered by the two extractors.

3.1.2 Feature generators
Our model includes four feature generators,
which compute a total of 402 features (full set
described in Table 1). Each generator extracts
from a specific source a feature family, as follows:
• Web (w): a body of 600 million documents
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crawled from the Web at Yahoo! in 2008;

• Query logs (q): one year of web search
queries issued to the Yahoo! search engine;

• Web tables: all HTML inner tables extracted
from the above Web source; and

• Wikipedia: an official Wikipedia dump from
February 2008, consisting of about 2 million
articles.

Feature families are further subclassified into
five types: frequency (F) (frequency-based fea-
tures); co-occurrence (C) (features capturing first
order co-occurrences between an instance and
class seeds); distributional (D) (features based on
the distributional similarity between an instance
and class seeds); pattern (P) (features indicat-
ing class-specific lexical pattern matches); and
termness (T) (features used to distinguish well-
formed terms such as ‘Brad Pitt’ from ill-formed
ones such as ‘with Brad Pitt’). The seeds S used
in many of the feature families are the same seeds
used by the KEpat extractor, described in Sec-
tion 3.1.1.

The different seed families are designed to cap-
ture different semantic aspects: paradigmatic (D),
syntagmatic (C and P), popularity (F), and term
cohesiveness (T).

3.1.3 ML-based Ranker
Our Modeler adopts a supervised ML regression
model. Specifically, we use a Gradient Boosted
Decision Tree regression model - GBDT (Fried-
man, 2001), which consists of an ensemble of de-
cision trees, fitted in a forward step-wise manner
to current residuals. Friedman (2001) shows that
by drastically easing the problem of overfitting on
training data (which is common in boosting al-
gorithms), GDBT competes with state-of-the-art
machine learning algorithms such as SVM (Fried-
man, 2006) with much smaller resulting models
and faster decoding time. The model is trained
on a manually annotated random sample of enti-
ties taken from the Aggregator, using the features
generated by the four generators presented in Sec-
tion 3.1.2. The Decoder then ranks each entity ac-
cording to the trained model.

3.2 Related Work
Entity extraction systems follow two main ap-
proaches: pattern-based and distributional. The
pattern-based approach leverages lexico-syntactic
patterns to extract instances of a given class. Most

commonly used are is-a pattern families such as
those first proposed by Hearst (1992) (e.g., ‘Y such
as X’ for matching ‘actors such as Brad Pitt’).
Minimal supervision is used in the form of small
sets of manually provided seed patterns or seed in-
stances. This approach is very common in both
the NLP and Semantic Web communities (Cimi-
ano and Staab, 2004; Cafarella et al., 2005; Pantel
and Pennacchiotti, 2006; Paşca et al., 2006).

The distributional approach uses contextual ev-
idence to model the instances of a given class,
following the distributional hypothesis (Harris,
1964). Weakly supervised, these methods take a
small set of seed instances (or the class label) and
extract new instances from noun phrases that are
most similar to the seeds (i.e., that share similar
contexts). Following Lin (1998), example sys-
tems include Fleischman and Hovy (2002), Cimi-
ano and Volker (2005), Tanev and Magnini (2006),
and Pantel et al. (2009).

4 Experimental Evaluation

This section reports our experiments, showing the
effectiveness of our entity extraction system and
the importance of our different feature families.

4.1 Experimental Setup

Evaluated classes. We evaluate our system over
three classes: Actors (movie, tv and stage ac-
tors); Athletes (professional and amateur); Musi-
cians (singers, musicians, composers, bands, and
orchestras)

System setup. We instantiated our knowledge
extractors, KEpat and KEdis from Section 3.1.1,
over our Web crawl of 600 million documents (see
Section 3.1.2). The documents were preprocessed
using Brill’s POS-tagger (Brill, 1995) and the Ab-
ney’s chunker (Abney, 1991). For KEdis, context
vectors are extracted for noun phrases recognized
as NP-chunks with removed modifiers. The vec-
tor space includes the 250M most frequent noun
chunks in the corpus. KEdis returns as instances
all noun phrases having a similarity with the seeds’
centroid above τ = 0.0051. The sets of seeds S
for KEdis include 10, 24 and 10 manually chosen
instances for respectively the Actors, Athletes and
Musicians classes2. The sets of seedsP forKEpat

1Experimentally set on an independent development set.
2The higher number of seeds for Athletes is chosen to

cover different sports.
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Dataset Actors Athletes Musicians
KEpat 58,005 40,816 125,657
KEdis 72,659 24,380 24,593
KEpat ∪KEdis 113,245 61,709 142,694
KEpat ∩KEdis 17,419 3,487 7,556
R 500 500 500

P =80 P =258 P =134
N=420 N=242 N=366

Table 2: Number of extracted instances and the
sample sizes (P and N indicate positive and neg-
ative annotations).

include 11, 8 and 9 pairs respectively for the Ac-
tors (relation acts-in), Athletes (relation plays-for)
and Musicians (relation part-of-band) classes. Ta-
ble 6 lists all seeds for both KEdis and KEpat.
The GBDT ranker uses an ensemble of 300 trees.3

Goldset Preparation. The number of instances
extracted by KEpat and KEdis for each class
is reported in Table 2. For each class, we ex-
tract a random sample R of 500 instances from
KEpat ∪KEdis. A pool of 10 paid expert editors
annotated the instances of each class inR as posi-
tive or negative. Inter-annotator overlap was 0.88.
Uncertain instances were manually adjudicated by
a separate paid expert editor, yielding a gold stan-
dard dataset for each class.

Evaluation Metrics. Entity extraction perfor-
mance is evaluated using the average precision
(AP) statistic, a standard information retrieval
measure for evaluating ranking algorithms, de-
fined as:

AP (L) =
∑|L|

i=1 P (i) · corr(i)∑|L|
i=1 corr(i)

(1)

where L is a ranked list produced by an extractor,
P (i) is the precision of L at rank i, and corr(i) is 1
if the instance at rank i is correct, and 0 otherwise.
AP is computed overR for each class.

We also evaluate the coverage, i.e. the percent-
age of instances extracted by a system wrt those
extracted by all systems.

In order to accurately compute statistical signif-
icance, our experiments are performed using 10-
fold cross validation.

Baselines and comparisons. We compare our
proposed ES entity extractor, using different fea-
ture configurations, with state-of-the-art systems
(referred to as baselines B* below):

3GBDT model parameters were experimentally set on an
independent development set as follows: trees=300, shrink-
age=0.01, max nodes per tree=12, sample rate=0.5.

System Actors Athletes Musicians
AP Cov AP Cov AP Cov

B1 0.729 51.2% 0.616 66.1% 0.570 88.1%
B2 0.618 64.1% 0.687 39.5% 0.681 17.2%
B3 0.676 100% 0.664 100% 0.576 100%
B4 0.715 100% 0.697 100% 0.579 100%
ES-all 0.860‡ 100% 0.915‡ 100% 0.788‡ 100%

Table 3: Average precision (AP) and coverage
(Cov) results for our proposed system ES-all and
the baselines. ‡ indicates AP statistical signifi-
cance at the 0.95 level wrt all baselines.

ES-all. Our ES system, usingKEpat andKEdis,
the full set of feature families described in
Section 3.1.2, and the GBDT ranker.

B1. KEpat alone, a state-of-the-art pattern-
based extractor reimplementing (Paşca et al.,
2006), where the Ranker assigns scores to in-
stances using the confidence score returned
by KEpat.

B2. KEdis alone, a state-of-the-art distributional
system implementing (Pantel et al., 2009),
where the Ranker assigns scores to instances
using the similarity score returned by KEdis

alone.
B3. A rule-based ES system, combining B1 and

B2. This system uses bothKEpat andKEdis

as extractors, and a Ranker that assigns
scores to instances according to the sum of
their normalized confidence scores.

B4. A state-of-the-art machine learning system
based on (Mirkin et al., 2006). This ES
system uses KEpat and KEdis as extractors.
The Ranker is a GBDT regression model,
using the full sets of features derived from
the two extractors, i.e., wP and wD (see
Table 1). GBDT parameters are set as for our
proposed ES-all system.

4.2 Experimental Results

Table 3 summarizes the average-precision (AP)
and coverage results for our ES-all system and the
baselines. Figure 2 reports the precision at each
rank for the Athletes class (the other two classes
follow similar trends). Table 6 lists the top-10 en-
tities discovered for each class on one test fold.
ES-all outperforms all baselines in AP (all results
are statistically significant at the 0.95 level), offer-
ing at the same time full coverage4.

4Recall that coverage is reported relative to all instances
retrieved by extractors KEpat and KEdis.
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Figure 2: Precision at rank for the different sys-
tems on the Athletes class.

Our simple rule-based combination baseline,
B3, leads to a large increase in coverage wrt the in-
dividual extractors alone (B1 and B2) without sig-
nificant impact on precision. The supervised ML-
based combination baseline (B4) consistently im-
proves AP across classes wrt the rule-based com-
bination (B3), but without statistical significance.
These results corroborate those found in (Mirkin et
al., 2006), where this ML-based combination was
reported to be significantly better than a rule-based
one on the task of lexical entailment acquisition.

The large set of features adopted in ES-all ac-
counts for a dramatic improvement in AP, indicat-
ing that existing state-of-the-art systems for entity
extraction (reflected by our baselines strategies)
are not making use of enough semantic cues. The
adoption of evidence other than distributional and
pattern-based, such as features coming from web
documents, HTML tables and query logs, is here
demonstrated to be highly valuable.

The above empirical claim can be grounded and
corroborated by a deeper semantic analysis. From
a semantic perspective, the above results translate
in the observation that distributional and pattern-
based evidence do not completely capture all se-
mantic aspects of entities. Other evidence, such as
popularity, term cohesiveness and co-occurrences
capture other aspects. For instance, in one of our
Actors folds, the B3 system ranks the incorrect in-
stance ‘Tom Sellek’ (a misspelling of ‘Tom Sel-
leck’) in 9th position (out of 142), while ES-all
lowers it to the 33rd position, by relying on table-
based features (intuitively, tables contain much
fewer misspelling than running text). Other than
misspellings, ES-all fixes errors that are either typ-
ical of distributional approaches, such as the in-
clusion of instances of other classes (e.g. the
movie ‘Someone Like You’ often appears in con-
texts similar to those of actors); errors typical
of pattern-based approaches, such as incorrect in-

System AP MAP
Actors Athletes Musicians

B3 0.676 0.664 0.576 0.639
B4 0.715 0.697 0.579 0.664
B4+w 0.813‡ 0.908‡ 0.724‡ 0.815‡

B4+q 0.815‡ 0.905‡ 0.743‡ 0.821‡

B4+t 0.784† 0.825‡ 0.727‡ 0.779‡

B4+k 0.776† 0.825‡ 0.624 0.741†

B4+w+q 0.835‡ 0.915‡ 0.758‡ 0.836‡

B4+w+t 0.840‡ 0.906‡ 0.774‡ 0.840‡

B4+w+k 0.814‡ 0.903‡ 0.725‡ 0.814‡

B4+q+t 0.847‡ 0.910‡ 0.774‡ 0.844‡

B4+q+k 0.832‡ 0.906‡ 0.748‡ 0.829‡

B4+t+k 0.817‡ 0.861‡ 0.743‡ 0.807‡

B4+w+q+t 0.846‡ 0.917‡ 0.782‡ 0.849‡

B4+w+q+k 0.841‡ 0.916‡ 0.756‡ 0.838‡

B4+w+t+k 0.835‡ 0.906‡ 0.783‡ 0.841‡

Es-all 0.860‡ 0.915‡ 0.788‡ 0.854‡

Table 4: Overall AP results of the different feature
configurations, compared to two baselines. † in-
dicates statistical significance at the 0.95 level wrt
B3. ‡ indicates statistical significance at 0.95 level
wrt both B3 and B4.

stances highly-associated with an ambiguous pat-
tern (e.g., the pattern ‘X of the rock band Y’ for
finding Musicians matched an incorrect instance
‘song submission’); or errors typical of both, such
as the inclusion of common nouns (e.g. ‘country
music hall’) or too generic last names (e.g. ‘John-
son’). ES-all successfully recovers all these error
by using termness, co-occurrence and frequency
features.

We also compare ES-all with a state-of-the-art
random walk system (RW) presented by Talukdar
et al. (2008) (see Section 2.2 for a description).
As we could not reimplement the system, we re-
port the following indirect comparison. RW was
evaluated on five entity classes, one of which, NFL
players, overlaps with our Athletes class. On this
class, they report 0.95 precision on the top-100
ranked entities. Unfortunately, they do not report
coverage or recall statistics, making the interpre-
tation of this analysis difficult. In an attempt to
compare RW with ES-all, we evaluated the preci-
sion of our top-100 Athletes, obtaining 0.99. Us-
ing a random sample of our extracted Athletes, we
approximate the precision of the top-22,000 Ath-
letes to be 0.97± 0.01 (at the 0.95 level).

4.3 Feature Analysis

Feature family analysis: Table 4 reports the av-
erage precision (AP) for our system using different
feature family combinations (see Table 1). Col-
umn 1 reports the family combinations; columns
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2-4 report AP for each class; and column 5 reports
the mean-average-precision (MAP) across classes.
In all configurations, except the k family alone,
and along all classes, our system significantly out-
performs (at the 0.95 level) the baselines.

Rows 3-6 report the performance of each fea-
ture family alone. w and t are consistently better
than q and k, across all classes. k is shown to be
the least useful family. This is mostly due to data
sparseness, e.g., in our experiments almost 40%
of the test instances in the Actors sample do not
have any occurrence in Wikipedia. However, with-
out access to richer resources such as a webcrawl
or query logs, the features from k do indeed pro-
vide large gains over current baselines (on average
+10.2% and +7.7% over B3 and B4).

Rows 7-12 report results for combinations of
two feature families. All combinations (except
those with k) appear valuable, substantially in-
creasing the single-family results in rows 3-6, in-
dicating that combining different feature families
(as suggested by the ES paradigm) is helpful. Sec-
ond, it indicates that q, w and t convey comple-
mentary information, thus boosting the regression
model when combined together. It is interesting to
notice that q+t tends to be the best combination,
surprising given that t alone did not show high per-
formance (row 5). One would expect the combina-
tion q+w to outperform q+t, but the good perfor-
mance of q+t is mainly due to the fact that these
two families are more complementary than q+w.
To verify this intuition, we compute the Spearman
correlation coefficient r among the rankings pro-
duced by the different combinations. As expected,
q and w have a higher correlation (r = 0.82) than
q and t (r = 0.67) and w and t (r = 0.66), suggest-
ing that q and w tend to subsume each other (i.e.
no added information for the regression model).

Rows 13-15 report results for combinations of
three feature families. As expected, the best
combination is q+w+t with an average precision
nearly identical to the full ES-all system. If one
has access to Web or query log sources, then the
value of the Wikipedia features tends to be sub-
sumed by our web and query log features.

Feature by feature analysis: The feature fam-
ilies analyzed in the previous section consist of
402 features. For each trained GBDT model,
one can inspect the resulting most important fea-
tures (Friedman, 2001). Consistently, the two
most important features for ES-all are, as ex-

System AP MAP
Actors Athletes Musicians

B4 0.715 0.697 0.579 0.664
B4+w 0.813 0.908 0.724 0.815
B4+wF 0.798 0.865 0.679 0.781
B4+wT 0.806 0.891 0.717 0.805
B4+t 0.784 0.825 0.727 0.779
B4+tF 0.760 0.802 0.701 0.781
B4+tC 0.771 0.815 0.718 0.805
B4+q 0.815 0.905 0.743 0.821
B4+qF 0.786 0.890 0.693 0.790
B4+qC 0.715 0.738 0.581 0.678
B4+qD 0.735 0.709 0.644 0.696
B4+qP 0.779 0.796 0.648 0.741
B4+qT 0.780 0.868 0.725 0.791
B4+qF+qW+qT 0.816 0.906 0.743 0.822
ES-all 0.860 0.915 0.788 0.854

Table 5: Ablation study of the web (w), query-
log (q) and table (t) features (bold letters indicate
whole feature families).

pected, the confidence scores of KEpat and
KEdis. This suggests that syntagmatic and
paradigmatic information are most important in
defining the semantics of entities. Also very im-
portant, in third position, is a feature from qT ,
namely the ratio between the number of queries
matching the instance and the number of queries
containing it as a substring. This feature is a strong
indicator of termness.

Webcrawl term frequencies and document fre-
quencies (from the wF set) are also important.
Very frequent and infrequent instances were found
to be often incorrect (e.g., respectively ‘song’ and
‘Brad Pitttt’). Table PMI (a feature in the qC fam-
ily) also ranked high in importance: instances that
co-occurr very frequently in the same column/row
with seeds S are often found to be correct (e.g.,
a column containing the seeds ‘Brad Pitt’ and
‘Tom Hanks’ will likely contains other actors).
Other termness (T ), frequency-based (F ) and co-
occurrence (C) features also play some role in the
model.

Variable importance is only an intrinsic indi-
cator of feature relevance. In order to better as-
sess the actual impact of the single features on
AP, we ran our system on each feature type: re-
sults for the web (w), query log (q) and table (t)
families are reported in Table 5. For reason of
space constraints, we here only focus on some
high level observations. The set of web termness
features (wT ) and frequency features (wF ) are
alone able to provide a large improvement over B4
(row 1), while their combination (row 2) does not
improve much over the features taken individually.

245



Seed instances for KEdis

Actors Athletes Musicians
Jodie Foster Bob Gibson Jared Allen Randy Moss Rise Against the Machine
Humphrey Bogart Don Drysdale Andres Romero Peyton Manning Pink Floyd
Anthony Hopkins Albert Pujols Kenny Perry Jerry Rice Spice Girls
Katharine Hepburn Yogi Berra Martin Kaymer Robert Karlsson Pussycat Dolls
Christopher Walken Dejan Bodiroga Alexander Ovechkin Gheorghe Hagi The Beatles
Gene Hackman Allen Iverson Shea Weber Marco Van Basten Iron Maiden
Diane Keaton Yao Ming Patrick Roy Zinedine Zidane John Lennon
Edward Norton Tim Duncan Alexei Kovalev Roberto Baggio Frank Sinatra
Robert Duvall Led Zeppelin
Hilary Swank Freddie Mercury

Seed instances for KEpat

Actors Athletes Musicians
Dennis Hopper - The Good Life Dallas cowboys - Julius Crosslin Kevin Brown - Corndaddy
Tom Hanks - The Terminal New york Giants - Plaxico Burress Barry Gibb - The Bee Gees
Julia Roberts - Mona Lisa Smile Philadelphia Eagles - Danny Amendola Patty Smyth - Scandal
Kevin Bacon - Footloose Washington Redskins - Rock Cartwright Dave Matthews - Dave Mathews Band
Keanu Reeves - The Lake House New England Patriots - Laurence Maroney Gwen Stefani - No Doubt
Marlon Brando - Don Jaun Demarco Buffalo Bills - Xavier Omon George Michael - Wham
Morgan Freeman - The Shawshank Redemption Miami Dolphins - Ernest Wilford Mark Knopfler - Dire Straits
Nicole Kidman - Eyes Wide Shut New York Jets - Chansi Stuckey Brian Jones - The Rolling Stones
Al Pacino - The Godfather Pete Shelley - Buzzcocks
Johnny Depp - Chocolat
Halle Berry - Monster’s Ball

10-best ranked instances in one test fold
Actors Athletes Musicians

Gordon Tootoosis Ron Randell Rumeal Robinson Todd Warriner Colin Newman Wu-tang Clan
Rosalind Chao Alimi Ballard Jeff Mcinnis Hong-chih Kuo Ghost Circus Tristan Prettyman
John Hawkes Fernando Lamas Ahmad Nivins Leon Clarke Ray Dorset Top Cats
Jeffrey Dean Morgan Bruno Cremer Carlos Marchena Josh Dollard Plastic Tree *Roseanne
George Macready Muhammad Bakri Chad Kreuter Robbie Alomar *Doomwatch John Moen

Table 6: Listing of all seeds used for KEdis and KEpat, as well as the top-10 entities discovered by
ES-all on one of our test folds.

This suggests that wT and wF capture very simi-
lar information: they are indeed highly correlated
(r = 0.80). Rows 5-7 refer to web table features:
the features tC outperform and subsume the fre-
quency features tF (r = 0.92). For query log
features (rows 8-14), only qF , qP and qT signif-
icantly increase performance. Distributional and
co-occurrence features (qD and qC) have very low
effect, as they are mostly subsumed by the others.
The combination of qF , qP and qT (row 14) per-
forms as well as the whole q (row 8).

Experiment conclusions: From our experi-
ments, we can draw the following conclusions:

1. Wikipedia features taken alone outperform
the baselines, however, web and query log
features, if available, subsume Wikipedia fea-
tures;

2. q, t and w are all important, and should be
used in combination, as they drive mostly in-
dependent information;

3. the syntagmatic and paradigmatic informa-
tion conveyed by the two extractors are most
relevant, and can be significantly boosted by
adding frequency- and termness-based fea-
tures from other sources.

5 Conclusions and Future Work

In this paper, we presented a general informa-
tion extraction framework, called Ensemble Se-
mantics, for combining multiple sources of knowl-
edge, and we instantiated the framework to build
a novel ML-based entity extraction system. The
system significantly outperforms state-of-the-art
ones by up to 22% in mean average precision.
We provided an in-depth analysis of the impact of
our proposed 402 features, their feature families
(Web documents, HTML tables, query logs, and
Wikipedia), and feature types.

There is ample directions for future work. On
entity extraction, exploring more knowledge ex-
tractors from different sources (such as the HTML
tables and query log sources used for our features)
is promising. Other feature types may potentially
capture other aspects of the semantics of entities,
such as WordNet and search engine click logs. For
the ranking system, semi- or weakly-supervised
algorithms may provide competing performance
to our model with reduced manual labor. Finally,
there are many opportunities for applying the gen-
eral Ensemble Semantics framework to other in-
formation extraction tasks such as fact extraction
and event extraction.
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Abstract

A significant portion of the world’s text
is tagged by readers on social bookmark-
ing websites. Credit attribution is an in-
herent problem in these corpora because
most pages have multiple tags, but the tags
do not always apply with equal specificity
across the whole document. Solving the
credit attribution problem requires associ-
ating each word in a document with the
most appropriate tags and vice versa. This
paper introduces Labeled LDA, a topic
model that constrains Latent Dirichlet Al-
location by defining a one-to-one corre-
spondence between LDA’s latent topics
and user tags. This allows Labeled LDA to
directly learn word-tag correspondences.
We demonstrate Labeled LDA’s improved
expressiveness over traditional LDA with
visualizations of a corpus of tagged web
pages from del.icio.us. Labeled LDA out-
performs SVMs by more than 3 to 1 when
extracting tag-specific document snippets.
As a multi-label text classifier, our model
is competitive with a discriminative base-
line on a variety of datasets.

1 Introduction

From news sources such as Reuters to modern
community web portals like del.icio.us, a signif-
icant proportion of the world’s textual data is la-
beled with multiple human-provided tags. These
collections reflect the fact that documents are often
about more than one thing—for example, a news
story about a highway transportation bill might
naturally be filed under both transportation and
politics, with neither category acting as a clear
subset of the other. Similarly, a single web page
in del.icio.us might well be annotated with tags as
diverse as arts, physics, alaska, and beauty.

However, not all tags apply with equal speci-
ficity across the whole document, opening up new
opportunities for information retrieval and cor-
pus analysis on tagged corpora. For instance,
users who browse for documents with a particu-
lar tag might prefer to see summaries that focus
on the portion of the document most relevant to
the tag, a task we call tag-specific snippet extrac-
tion. And when a user browses to a particular
document, a tag-augmented user interface might
provide overview visualization cues highlighting
which portions of the document are more or less
relevant to the tag, helping the user quickly access
the information they seek.

One simple approach to these challenges can
be found in models that explicitly address the
credit attribution problem by associating individ-
ual words in a document with their most appropri-
ate labels. For instance, in our news story about
the transportation bill, if the model knew that the
word “highway” went with transportation and that
the word “politicians” went with politics, more
relevant passages could be extracted for either la-
bel. We seek an approach that can automatically
learn the posterior distribution of each word in a
document conditioned on the document’s label set.

One promising approach to the credit attribution
problem lies in the machinery of Latent Dirich-
let Allocation (LDA) (Blei et al., 2003), a recent
model that has gained popularity among theoreti-
cians and practitioners alike as a tool for automatic
corpus summarization and visualization. LDA is
a completely unsupervised algorithm that models
each document as a mixture of topics. The model
generates automatic summaries of topics in terms
of a discrete probability distribution over words
for each topic, and further infers per-document
discrete distributions over topics. Most impor-
tantly, LDA makes the explicit assumption that
each word is generated from one underlying topic.

Although LDA is expressive enough to model

248



multiple topics per document, it is not appropriate
for multi-labeled corpora because, as an unsuper-
vised model, it offers no obvious way of incorpo-
rating a supervised label set into its learning proce-
dure. In particular, LDA often learns some topics
that are hard to interpret, and the model provides
no tools for tuning the generated topics to suit an
end-use application, even when time and resources
exist to provide some document labels.

Several modifications of LDA to incorporate
supervision have been proposed in the literature.
Two such models, Supervised LDA (Blei and
McAuliffe, 2007) and DiscLDA (Lacoste-Julien
et al., 2008) are inappropriate for multiply labeled
corpora because they limit a document to being as-
sociated with only a single label. Supervised LDA
posits that a label is generated from each docu-
ment’s empirical topic mixture distribution. Dis-
cLDA associates a single categorical label variable
with each document and associates a topic mixture
with each label. A third model, MM-LDA (Ram-
age et al., 2009), is not constrained to one label
per document because it models each document as
a bag of words with a bag of labels, with topics for
each observation drawn from a shared topic dis-
tribution. But, like the other models, MM-LDA’s
learned topics do not correspond directly with the
label set. Consequently, these models fall short as
a solution to the credit attribution problem. Be-
cause labels have meaning to the people that as-
signed them, a simple solution to the credit attri-
bution problem is to assign a document’s words to
its labels rather than to a latent and possibly less
interpretable semantic space.

This paper presents Labeled LDA (L-LDA), a
generative model for multiply labeled corpora that
marries the multi-label supervision common to
modern text datasets with the word-assignment
ambiguity resolution of the LDA family of mod-
els. In contrast to standard LDA and its existing
supervised variants, our model associates each la-
bel with one topic in direct correspondence. In the
following section, L-LDA is shown to be a natu-
ral extension of both LDA (by incorporating su-
pervision) and Multinomial Naive Bayes (by in-
corporating a mixture model). We demonstrate
that L-LDA can go a long way toward solving the
credit attribution problem in multiply labeled doc-
uments with improved interpretability over LDA
(Section 4). We show that L-LDA’s credit attribu-
tion ability enables it to greatly outperform sup-
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Figure 1: Graphical model of Labeled LDA: un-
like standard LDA, both the label set Λ as well as
the topic prior α influence the topic mixture θ.

port vector machines on a tag-driven snippet ex-
traction task on web pages from del.icio.us (Sec-
tion 6). And despite its generative semantics,
we show that Labeled LDA is competitive with
a strong baseline discriminative classifier on two
multi-label text classification tasks (Section 7).

2 Labeled LDA

Labeled LDA is a probabilistic graphical model
that describes a process for generating a labeled
document collection. Like Latent Dirichlet Allo-
cation, Labeled LDA models each document as a
mixture of underlying topics and generates each
word from one topic. Unlike LDA, L-LDA in-
corporates supervision by simply constraining the
topic model to use only those topics that corre-
spond to a document’s (observed) label set. The
model description that follows assumes the reader
is familiar with the basic LDA model (Blei et al.,
2003).

Let each document d be represented by a tu-
ple consisting of a list of word indices w(d) =
(w1, . . . , wNd) and a list of binary topic pres-
ence/absence indicators Λ(d) = (l1, . . . , lK)
where eachwi ∈ {1, . . . , V } and each lk ∈ {0, 1}.
Here Nd is the document length, V is the vocabu-
lary size and K the total number of unique labels
in the corpus.

We set the number of topics in Labeled LDA to
be the number of unique labels K in the corpus.
The generative process for the algorithm is found
in Table 1. Steps 1 and 2—drawing the multi-
nomial topic distributions over vocabulary βk for
each topic k, from a Dirichlet prior η—remain
the same as for traditional LDA (see (Blei et al.,
2003), page 4). The traditional LDA model then
draws a multinomial mixture distribution θ(d) over
allK topics, for each document d, from a Dirichlet
prior α. However, we would like to restrict θ(d) to
be defined only over the topics that correspond to
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1 For each topic k ∈ {1, . . . ,K}:
2 Generate βk = (βk,1, . . . , βk,V )T ∼ Dir(·|η)
3 For each document d:
4 For each topic k ∈ {1, . . . ,K}
5 Generate Λ

(d)
k ∈ {0, 1} ∼ Bernoulli(·|Φk)

6 Generate α(d) = L(d) ×α

7 Generate θ(d) = (θl1 , . . . , θlMd
)T ∼ Dir(·|α(d))

8 For each i in {1, . . . , Nd}:
9 Generate zi ∈ {λ(d)

1 , . . . , λ
(d)
Md
} ∼ Mult(·|θ(d) )

10 Generate wi ∈ {1, . . . , V } ∼ Mult(·|βzi
)

Table 1: Generative process for Labeled LDA:
βk is a vector consisting of the parameters of the
multinomial distribution corresponding to the kth

topic, α are the parameters of the Dirichlet topic
prior and η are the parameters of the word prior,
while Φk is the label prior for topic k. For the
meaning of the projection matrix L(d), please re-
fer to Eq 1.

its labels Λ(d). Since the word-topic assignments
zi (see step 9 in Table 1) are drawn from this dis-
tribution, this restriction ensures that all the topic
assignments are limited to the document’s labels.

Towards this objective, we first generate the
document’s labels Λ(d) using a Bernoulli coin toss
for each topic k, with a labeling prior probability
Φk, as shown in step 5. Next, we define the vector
of document’s labels to be λ(d) = {k|Λ(d)

k = 1}.
This allows us to define a document-specific la-
bel projection matrix L(d) of size Md × K for
each document d, where Md = |λ(d)|, as fol-
lows: For each row i ∈ {1, . . . ,Md} and column
j ∈ {1, . . . ,K} :

L
(d)
ij =

{
1 if λ(d)

i = j

0 otherwise.
(1)

In other words, the ith row of L(d) has an entry of
1 in column j if and only if the ith document label
λ

(d)
i is equal to the topic j, and zero otherwise.

As the name indicates, we use the L(d) matrix to
project the parameter vector of the Dirichlet topic
prior α = (α1, . . . , αK)T to a lower dimensional
vector α(d) as follows:

α(d) = L(d) ×α = (α
λ
(d)
1

, . . . , α
λ
(d)
Md

)T (2)

Clearly, the dimensions of the projected vector
correspond to the topics represented by the labels
of the document. For example, suppose K = 4
and that a document d has labels given by Λ(d) =
{0, 1, 1, 0}which implies λ(d) = {2, 3}, then L(d)

would be: (
0 1 0 0
0 0 1 0

)
.

Then, θ(d) is drawn from a Dirichlet distribution
with parameters α(d) = L(d) × α = (α2, α3)T

(i.e., with the Dirichlet restricted to the topics 2
and 3).

This fulfills our requirement that the docu-
ment’s topics are restricted to its own labels. The
projection step constitutes the deterministic step
6 in Table 1. The remaining part of the model
from steps 7 through 10 are the same as for reg-
ular LDA.

The dependency of θ on both α and Λ is in-
dicated by directed edges from Λ and α to θ in
the plate notation in Figure 1. This is the only ad-
ditional dependency we introduce in LDA’s repre-
sentation (please compare with Figure 1 in (Blei et
al., 2003)).

2.1 Learning and inference
In most applications discussed in this paper, we
will assume that the documents are multiply
tagged with human labels, both at learning and in-
ference time.

When the labels Λ(d) of the document are ob-
served, the labeling prior Φ is d-separated from
the rest of the model given Λ(d). Hence the model
is same as traditional LDA, except the constraint
that the topic prior α(d) is now restricted to the
set of labeled topics λ(d). Therefore, we can use
collapsed Gibbs sampling (Griffiths and Steyvers,
2004) for training where the sampling probability
for a topic for position i in a document d in La-
beled LDA is given by:

P (zi = j|z−i) ∝
nwi−i,j + ηwi

n
(·)
−i,j + ηT1

× n
(d)
−i,j + αj

n
(d)
−i,· + αT1

(3)
where nwi−i,j is the count of word wi in topic j, that
does not include the current assignment zi, a miss-
ing subscript or superscript (e.g. n(·)

−i,j)) indicates
a summation over that dimension, and 1 is a vector
of 1’s of appropriate dimension.

Although the equation above looks exactly the
same as that of LDA, we have an important dis-
tinction in that, the target topic j is restricted to
belong to the set of labels, i.e., j ∈ λ(d).

Once the topic multinomials β are learned from
the training set, one can perform inference on any
new labeled test document using Gibbs sampling
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restricted to its tags, to determine its per-word la-
bel assignments z. In addition, one can also com-
pute its posterior distribution θ over topics by ap-
propriately normalizing the topic assignments z.

It should now be apparent to the reader how
the new model addresses some of the problems in
multi-labeled corpora that we highlighted in Sec-
tion 1. For example, since there is a one-to-one
correspondence between the labels and topics, the
model can display automatic topical summaries
for each label k in terms of the topic-specific dis-
tribution βk. Similarly, since the model assigns a
label zi to each word wi in the document d au-
tomatically, we can now extract portions of the
document relevant to each label k (it would be all
words wi ∈ w(d) such that zi = k). In addition,
we can use the topic distribution θ(d) to rank the
user specified labels in the order of their relevance
to the document, thereby also eliminating spurious
ones if necessary.

Finally, we note that other less restrictive vari-
ants of the proposed L-LDA model are possible.
For example, one could consider a version that
allows topics that do not correspond to the label
set of a given document with a small probability,
or one that allows a common background topic in
all documents. We did implement these variants
in our preliminary experiments, but they did not
yield better performance than L-LDA in the tasks
we considered. Hence we do not report them in
this paper.

2.2 Relationship to Naive Bayes

The derivation of the algorithm so far has fo-
cused on its relationship to LDA. However, La-
beled LDA can also be seen as an extension of
the event model of a traditional Multinomial Naive
Bayes classifier (McCallum and Nigam, 1998) by
the introduction of a mixture model. In this sec-
tion, we develop the analogy as another way to
understand L-LDA from a supervised perspective.

Consider the case where no document in the
collection is assigned two or more labels. Now
for a particular document d with label ld, Labeled
LDA draws each word’s topic variable zi from a
multinomial constrained to the document’s label
set, i.e. zi = ld for each word position i in the doc-
ument. During learning, the Gibbs sampler will
assign each zi to ld while incrementing βld(wi),
effectively counting the occurences of each word
type in documents labeled with ld. Thus in the

singly labeled document case, the probability of
each document under Labeled LDA is equal to
the probability of the document under the Multi-
nomial Naive Bayes event model trained on those
same document instances. Unlike the Multino-
mial Naive Bayes classifier, Labeled LDA does
not encode a decision boundary for unlabeled doc-
uments by comparing P (w(d)|ld) to P (w(d)|¬ld),
although we discuss using Labeled LDA for multi-
label classification in Section 7.

Labeled LDA’s similarity to Naive Bayes ends
with the introduction of a second label to any doc-
ument. In a traditional one-versus-rest Multino-
mial Naive Bayes model, a separate classifier for
each label would be trained on all documents with
that label, so each word can contribute a count
of 1 to every observed label’s word distribution.
By contrast, Labeled LDA assumes that each doc-
ument is a mixture of underlying topics, so the
count mass of single word instance must instead be
distributed over the document’s observed labels.

3 Credit attribution within tagged
documents

Social bookmarking websites contain millions of
tags describing many of the web’s most popu-
lar and useful pages. However, not all tags are
uniformly appropriate at all places within a doc-
ument. In the sections that follow, we examine
mechanisms by which Labeled LDA’s credit as-
signment mechanism can be utilized to help sup-
port browsing and summarizing tagged document
collections.

To create a consistent dataset for experimenting
with our model, we selected 20 tags of medium
to high frequency from a collection of documents
dataset crawled from del.icio.us, a popular so-
cial bookmarking website (Heymann et al., 2008).
From that larger dataset, we selected uniformly at
random four thousand documents that contained
at least one of the 20 tags, and then filtered each
document’s tag set by removing tags not present
in our tag set. After filtering, the resulting cor-
pus averaged 781 non-stop words per document,
with each document having 4 distinct tags on aver-
age. In contrast to many existing text datasets, our
tagged corpus is highly multiply labeled: almost
90% of of the documents have more than one tag.
(For comparison, less than one third of the news
documents in the popular RCV1-v2 collection of
newswire are multiply labeled). We will refer to
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this collection of data as the del.icio.us tag dataset.

4 Topic Visualization

A first question we ask of Labeled LDA is how its
topics compare with those learned by traditional
LDA on the same collection of documents. We ran
our implementations of Labeled LDA and LDA
on the del.icio.us corpus described above. Both
are based on the standard collapsed Gibbs sam-
pler, with the constraints for Labeled LDA imple-
mented as in Section 2.
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Figure 2: Comparison of some of the 20 topics
learned on del.icio.us by Labeled LDA (left) and
traditional LDA (right), with representative words
for each topic shown in the boxes. Labeled LDA’s
topics are named by their associated tag. Arrows
from right-to-left show the mapping of LDA topics
to the closest Labeled LDA topic by cosine simi-
larity. Tags not shown are: design, education, en-
glish, grammar, history, internet, language, phi-
losophy, politics, programming, reference, style,
writing.

Figure 2 shows the top words associated with
20 topics learned by Labeled LDA and 20 topics
learned by unsupervised LDA on the del.icio.us
document collection. Labeled LDA’s topics are
directly named with the tag that corresponds to
each topic, an improvement over standard prac-
tice of inferring the topic name by inspection (Mei
et al., 2007). The topics learned by the unsu-
pervised variant were matched to a Labeled LDA
topic highest cosine similarity.

The topics selected are representative: com-
pared to Labeled LDA, unmodified LDA allocates
many topics for describing the largest parts of the

The Elements of Style, William Strunk, Jr.

Asserting that one must first know the rules to break them, this 
classic reference book is a must-have for any student and 
conscientious writer.  Intended for use in which the practice of
composition is combined with the study of literature, it gives in
brief space the principal requirements of plain English style and
concentratesattention on the rules of usage and principles of
composition most commonly violated.

Figure 3: Example document with important
words annotated with four of the page’s tags as
learned by Labeled LDA. Red (single underline)
is style, green (dashed underline) grammar, blue
(double underline) reference, and black (jagged
underline) education.

corpus and under-represents tags that are less un-
common: of the 20 topics learned, LDA learned
multiple topics mapping to each of five tags (web,
culture, and computer, reference, and politics, all
of which were common in the dataset) and learned
no topics that aligned with six tags (books, english,
science, history, grammar, java, and philosophy,
which were rarer).

5 Tagged document visualization

In addition to providing automatic summaries of
the words best associated with each tag in the cor-
pus, Labeled LDA’s credit attribution mechanism
can be used to augment the view of a single doc-
ument with rich contextual information about the
document’s tags.

Figure 3 shows one web document from the col-
lection, a page describing a guide to writing En-
glish prose. The 10 most common tags for that
document are writing, reference, english, gram-
mar, style, language, books, book, strunk, and ed-
ucation, the first eight of which were included in
our set of 20 tags. In the figure, each word that has
high posterior probability from one tag has been
annotated with that tag. The red words come from
the style tag, green from the grammar tag, blue
from the reference tag, and black from the educa-
tion tag. In this case, the model does very well at
assigning individual words to the tags that, subjec-
tively, seem to strongly imply the presence of that
tag on this page. A more polished rendering could
add subtle visual cues about which parts of a page
are most appropriate for a particular set of tags.
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Figure 4: Representative snippets extracted by
L-LDA and tag-specific SVMs for the web page
shown in Figure 3.

6 Snippet Extraction

Another natural application of Labeled LDA’s
credit assignment mechanism is as a means of se-
lecting snippets of a document that best describe
its contents from the perspective of a particular
tag. Consider again the document in Figure 3. In-
tuitively, if this document were shown to a user
interested in the tag grammar, the most appropri-
ate snippet of words might prefer to contain the
phrase “rules of usage,” whereas a user interested
in the term style might prefer the title “Elements
of Style.”

To quantitatively evaluate Labeled LDA’s per-
formance at this task, we constructed a set of 29
recently tagged documents from del.icio.us that
were labeled with two or more tags from the 20 tag
subset, resulting in a total of 149 (document,tag)
pairs. For each pair, we extracted a 15-word win-
dow with the highest tag-specific score from the
document. Two systems were used to score each
window: Labeled LDA and a collection of one-
vs-rest SVMs trained for each tag in the system.
L-LDA scored each window as the expected prob-
ability that the tag had generated each word. For
SVMs, each window was taken as its own doc-
ument and scored using the tag-specific SVM’s
un-thresholded scoring function, taking the win-
dow with the most positive score. While a com-
plete solution to the tag-specific snippet extraction

Model Best Snippet Unanimous
L-LDA 72 / 149 24 / 51
SVM 21 / 149 2 / 51

Table 2: Human judgments of tag-specific snippet
quality as extracted by L-LDA and SVM. The cen-
ter column is the number of document-tag pairs for
which a system’s snippet was judged superior. The
right column is the number of snippets for which
all three annotators were in complete agreement
(numerator) in the subset of document scored by
all three annotators (denominator).

problem might be more informed by better lin-
guistic features (such as phrase boundaries), this
experimental setup suffices to evaluate both kinds
of models for their ability to appropriately assign
words to underlying labels.

Figure 3 shows some example snippets output
by our system for this document. Note that while
SVMs did manage to select snippets that were
vaguely on topic, Labeled LDA’s outputs are gen-
erally of superior subjective quality. To quantify
this intuition, three human annotators rated each
pair of snippets. The outputs were randomly la-
beled as “System A” or “System B,” and the anno-
tators were asked to judge which system generated
a better tag-specific document subset. The judges
were also allowed to select neither system if there
was no clear winner. The results are summarized
in Table 2.

L-LDA was judged superior by a wide margin:
of the 149 judgments, L-LDA’s output was se-
lected as preferable in 72 cases, whereas SVM’s
was selected in only 21. The difference between
these scores was highly significant (p < .001) by
the sign test. To quantify the reliability of the judg-
ments, 51 of the 149 document-tag pairs were la-
beled by all three annotators. In this group, the
judgments were in substantial agreement,1 with
Fleiss’ Kappa at .63.

Further analysis of the triply-annotated sub-
set yields further evidence of L-LDA’s advantage
over SVM’s: 33 of the 51 were tag-page pairs
where L-LDA’s output was picked by at least one
annotator as a better snippet (although L-LDA
might not have been picked by the other annota-
tors). And of those, 24 were unanimous in that

1Of the 15 judgments that were in contention, only two
conflicted on which system was superior (L-LDA versus
SVM); the remaining disagreements were about whether or
not one of the systems was a clear winner.

253



all three judges selected L-LDA’s output. By con-
trast, only 10 of the 51 were tag-page pairs where
SVMs’ output was picked by at least one anno-
tator, and of those, only 2 were selected unani-
mously.

7 Multilabeled Text Classification

In the preceding section we demonstrated how La-
beled LDA’s credit attribution mechanism enabled
effective modeling within documents. In this sec-
tion, we consider whether L-LDA can be adapted
as an effective multi-label classifier for documents
as a whole. To answer that question, we applied
a modified variant of L-LDA to a multi-label doc-
ument classification problem: given a training set
consisting of documents with multiple labels, pre-
dict the set of labels appropriate for each docu-
ment in a test set.

Multi-label classification is a well researched
problem. Many modern approaches incorporate
label correlations (e.g., Kazawa et al. (2004), Ji
et al. (2008)). Others, like our algorithm are
based on mixture models (such as Ueda and Saito
(2003)). However, we are aware of no methods
that trade off label-specific word distributions with
document-specific label distributions in quite the
same way.

In Section 2, we discussed learning and infer-
ence when labels are observed. In the task of mul-
tilabel classification, labels are available at train-
ing time, so the learning part remains the same as
discussed before. However, inferring the best set
of labels for an unlabeled document at test time is
more complex: it involves assessing all label as-
signments and returning the assignment that has
the highest posterior probability. However, this
is not straight-forward, since there are 2K possi-
ble label assignments. To make matters worse, the
support of α(Λ(d)) is different for different label
assignments. Although we are in the process of
developing an efficient sampling algorithm for this
inference, for the purposes of this paper we make
the simplifying assumption that the model reduces
to standard LDA at inference, where the document
is free to sample from any of the K topics. This
is a reasonable assumption because allowing the
model to explore the whole topic space for each
document is similar to exploring all possible label
assignments. The document’s most likely labels
can then be inferred by suitably thresholding its
posterior probability over topics.

As a baseline, we use a set of multiple one-vs-
rest SVM classifiers which is a popular and ex-
tremely competitive baseline used by most previ-
ous papers (see (Kazawa et al., 2004; Ueda and
Saito, 2003) for instance). We scored each model
based on Micro-F1 and Macro-F1 as our evalua-
tion measures (Lewis et al., 2004). While the for-
mer allows larger classes to dominate its results,
the latter assigns an equal weight to all classes,
providing us complementary information.

7.1 Yahoo

We ran experiments on a corpus from the Yahoo
directory, modeling our experimental conditions
on the ones described in (Ji et al., 2008).2 We
considered documents drawn from 8 top level cat-
egories in the Yahoo directory, where each doc-
ument can be placed in any number of subcate-
gories. The results were mixed, with SVMs ahead
on one measure: Labeled LDA beat SVMs on five
out of eight datasets on MacroF1, but didn’t win
on any datasets on MicroF1. Results are presented
in Table 3.

Because only a processed form of the docu-
ments was released, the Yahoo dataset does not
lend itself well to error analysis. However, only
33% of the documents in each top-level category
were applied to more than one sub-category, so the
credit assignment machinery of L-LDA was un-
used for the majority of documents. We there-
fore ran an artificial second set of experiments
considering only those documents that had been
given more than one label in the training data. On
these documents, the results were again mixed, but
Labeled LDA comes out ahead. For MacroF1,
L-LDA beat SVMs on four datasets, SVMs beat
L-LDA on one dataset, and three were a statistical
tie.3 On MicroF1, L-LDA did much better than on
the larger subset, outperforming on four datasets
with the other four a statistical tie.

It is worth noting that the Yahoo datasets are
skewed by construction to contain many docu-
ments with highly overlapping content: because
each collection is within the same super-class such
as “Arts”, “Business”, etc., each sub-categories’

2We did not carefully tune per-class thresholds of each of
the one vs. rest classifiers in each model, but instead tuned
only one threshold for all classifiers in each model via cross-
validation on the Arts subsets. As such, our numbers were on
an average 3-4% less than those reported in (Ji et al., 2008),
but the methods were comparably tuned.

3The difference between means of multiple runs were not
significantly different by two-tailed paired t-test.
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Dataset %MacroF1 %MicroF1
L-LDA SVM L-LDA SVM

Arts 30.70(1.62) 23.23 (0.67) 39.81(1.85) 48.42 (0.45)
Business 30.81(0.75) 22.82 (1.60) 67.00(1.29) 72.15 (0.62)
Computers 27.55(1.98) 18.29 (1.53) 48.95(0.76) 61.97 (0.54)
Education 33.78(1.70) 36.03 (1.30) 41.19(1.48) 59.45 (0.56)
Entertainment 39.42(1.38) 43.22 (0.49) 47.71(0.61) 62.89 (0.50)
Health 45.36(2.00) 47.86 (1.72) 58.13(0.43) 72.21 (0.26)
Recreation 37.63(1.00) 33.77 (1.17) 43.71(0.31) 59.15 (0.71)
Society 27.32(1.24) 23.89 (0.74) 42.98(0.28) 52.29 (0.67)

Table 3: Averaged performance across ten runs of multi-label text classification for predicting subsets
of the named Yahoo directory categories. Numbers in parentheses are standard deviations across runs.
L-LDA outperforms SVMs on 5 subsets with MacroF1, but on no subsets with MicroF1.

vocabularies will naturally overlap a great deal.
L-LDA’s credit attribution mechanism is most ef-
fective at partitioning semantically distinct words
into their respective label vocabularies, so we ex-
pect that Labeled-LDA’s performance as a text
classifier would improve on collections with more
semantically diverse labels.

7.2 Tagged Web Pages

We also applied our method to text classification
on the del.icio.us dataset, where the documents are
naturally multiply labeled (more than 89%) and
where the tags are less inherently similar than in
the Yahoo subcategories. Therefore we expect La-
beled LDA to do better credit assignment on this
subset and consequently to show improved perfor-
mance as a classifier, and indeed this is the case.

We evaluated L-LDA and multiple one-vs-rest
SVMs on 4000 documents with the 20 tag sub-
set described in Section 3. L-LDA and multiple
one-vs-rest SVMs were trained on the first 80% of
documents and evaluated on the remaining 20%,
with results averaged across 10 random permuta-
tions of the dataset. The results are shown in Ta-
ble 4. We tuned the SVMs’ shared cost parameter
C(= 10.0) and selected raw term frequency over
tf-idf weighting based on 4-fold cross-validation
on 3,000 documents drawn from an independent
permutation of the data. For L-LDA, we tuned the
shared parameters of threshold and proportional-
ity constants in word and topic priors. L-LDA and
SVM have very similar performance on MacroF1,
while L-LDA substantially outperforms on Mi-
croF1. In both cases, L-LDA’s improvement is
statistically significantly by a 2-tailed paired t-test
at 95% confidence.

Model %MacroF1 %MicroF1
L-LDA 39.85 (.989) 52.12 (.434)
SVM 39.00 (.423) 39.33 (.574)

Table 4: Mean performance across ten runs of
multi-label text classification for predicting 20
tags on del.icio.us data. L-LDA outperforms
SVMs significantly on both metrics by a 2-tailed,
paired t-test at 95% confidence.

8 Discussion

One of the main advantages of L-LDA on mul-
tiply labeled documents comes from the model’s
document-specific topic mixture θ. By explicitly
modeling the importance of each label in the doc-
ument, Labeled LDA can effective perform some
contextual word sense disambiguation, which sug-
gests why L-LDA can outperform SVMs on the
del.icio.us dataset.

As a concrete example, consider the excerpt
of text from the del.icio.us dataset in Figure 5.
The document itself has several tags, including
design and programming. Initially, many of the
likelihood probabilities p(w|label) for the (con-
tent) words in this excerpt are higher for the label
programming than design, including “content”,
“client”, “CMS” and even “designed”, while de-
sign has higher likelihoods for just “website” and
“happy”. However, after performing inference on
this document using L-LDA, the inferred docu-
ment probability for design (p(design)) is much
higher than it is for programming. In fact, the
higher probability for the tag more than makes up
the difference in the likelihood for all the words
except “CMS” (Content Management System), so
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The website is designed, CMS works, content has been added and the client is happy.

The website is designed, CMS works, content has been added and the client is happy.

Before Inference

After Inference

Figure 5: The effect of tag mixture proportions for credit assignment in a web document. Blue (single
underline) words are generated from the design tag; red (dashed underline) from the programming tag.
By themselves, most words used here have a higher probability in programming than in design. But
because the document as a whole is more about design than programming(incorporating words not shown
here), inferring the document’s topic-mixture θ enables L-LDA to correctly re-assign most words.

that L-LDA correctly infers that most of the words
in this passage have more to do with design than
programming.

9 Conclusion

This paper has introduced Labeled LDA, a novel
model of multi-labeled corpora that directly ad-
dresses the credit assignment problem. The new
model improves upon LDA for labeled corpora
by gracefully incorporating user supervision in the
form of a one-to-one mapping between topics and
labels. We demonstrate the model’s effectiveness
on tasks related to credit attribution within docu-
ments, including document visualizations and tag-
specific snippet extraction. An approximation to
Labeled LDA is also shown to be competitive with
a strong baseline (multiple one vs-rest SVMs) for
multi-label classification.

Because Labeled LDA is a graphical model
in the LDA family, it enables a range of natu-
ral extensions for future investigation. For exam-
ple, the current model does not capture correla-
tions between labels, but such correlations might
be introduced by composing Labeled LDA with
newer state of the art topic models like the Cor-
related Topic Model (Blei and Lafferty, 2006) or
the Pachinko Allocation Model (Li and McCal-
lum, 2006). And with improved inference for un-
supervised Λ, Labeled LDA lends itself naturally
to modeling semi-supervised corpora where labels
are observed for only some documents.
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Abstract

Keyphrases are widely used as a brief
summary of documents. Since man-
ual assignment is time-consuming, vari-
ous unsupervised ranking methods based
on importance scores are proposed for
keyphrase extraction. In practice, the
keyphrases of a document should not only
be statistically important in the docu-
ment, but also have a good coverage of
the document. Based on this observa-
tion, we propose an unsupervised method
for keyphrase extraction. Firstly, the
method finds exemplar terms by leverag-
ing clustering techniques, which guaran-
tees the document to be semantically cov-
ered by these exemplar terms. Then the
keyphrases are extracted from the doc-
ument using the exemplar terms. Our
method outperforms sate-of-the-art graph-
based ranking methods (TextRank) by
9.5% in F1-measure.

1 Introduction

With the development of Internet, information on
the web is emerging exponentially. How to effec-
tively seek and manage information becomes an
important research issue. Keyphrases, as a brief
summary of a document, provide a solution to help
organize, manage and retrieve documents, and are
widely used in digital libraries and information re-
trieval.

Keyphrases in articles of journals and books
are usually assigned by authors. However,
most articles on the web usually do not have
human-assigned keyphrases. Therefore, automatic
keyphrase extraction is an important research task.
Existing methods can be divided into supervised
and unsupervised approaches.

The supervised approach (Turney, 1999) re-
gards keyphrase extraction as a classification task.

In this approach, a model is trained to determine
whether a candidate term of the document is a
keyphrase, based on statistical and linguistic fea-
tures. For the supervised keyphrase extraction
approach, a document set with human-assigned
keyphrases is required as training set. However,
human labelling is time-consuming. Therefore, in
this study we focus on unsupervised approach.

As an example of an unsupervised keyphrase
extraction approach, the graph-based ranking (Mi-
halcea and Tarau, 2004) regards keyphrase extrac-
tion as a ranking task, where a document is repre-
sented by a term graph based on term relatedness,
and then a graph-based ranking algorithm is used
to assign importance scores to each term. Existing
methods usually use term cooccurrences within a
specified window size in the given document as an
approximation of term relatedness (Mihalcea and
Tarau, 2004).

As we know, none of these existing works
gives an explicit definition on what are appropri-
ate keyphrases for a document. In fact, the existing
methods only judge the importance of each term,
and extract the most important ones as keyphrases.

From the observation of human-assigned
keyphrases, we conclude that good keyphrases
of a document should satisfy the following
properties:

1. Understandable. The keyphrases are un-
derstandable to people. This indicates the
extracted keyphrases should be grammatical.
For example, “machine learning” is a gram-
matical phrase, but “machine learned” is not.

2. Relevant. The keyphrases are semantically
relevant with the document theme. For ex-
ample, for a document about “machine learn-
ing”, we want the keyphrases all about this
theme.

3. Good coverage. The keyphrases should
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cover the whole document well. Sup-
pose we have a document describing “Bei-
jing” from various aspects of “location”,
“atmosphere” and “culture”, the extracted
keyphrases should cover all the three aspects,
instead of just a partial subset of them.

The classification-based approach determines
whether a term is a keyphrase in isolation, which
could not guarantee Property 3. Neither does the
graph-based approach guarantee the top-ranked
keyphrases could cover the whole document. This
may cause the resulting keyphrases to be inappro-
priate or badly-grouped.

To extract the appropriate keyphrases for a doc-
ument, we suggest an unsupervised clustering-
based method. Firstly the terms in a document are
grouped into clusters based on semantic related-
ness. Each cluster is represented by an exemplar
term, which is also the centroid of each cluster.
Then the keyphrases are extracted from the docu-
ment using these exemplar terms.

In this method, we group terms based on se-
mantic relatedness, which guarantees a good cov-
erage of the document and meets Property 2 and
3. Moreover, we only extract the keyphrases in ac-
cordance with noun group (chunk) patterns, which
guarantees the keyphrases satisfy Property 1.

Experiments show that the clustering-based
method outperforms the state-of-the-art graph-
based approach on precision, recall and F1-
measure. Moreover, this method is unsupervised
and language-independent, which is applicable in
the web era with enormous information.

The rest of the paper is organized as follows.
In Section 2, we introduce and discuss the re-
lated work in this area. In Section 3, we give an
overview of our method for keyphrase extraction.
From Section 4 to Section 7, the algorithm is de-
scribed in detail. Empirical experiment results are
demonstrated in Section 8, followed by our con-
clusions and plans for future work in Section 9.

2 Related Work

A straightforward method for keyphrase extrac-
tion is to select keyphrases according to frequency
criteria. However, the poor performance of this
method drives people to explore other methods. A
pioneering achievement is carried out in (Turney,
1999), as mentioned in Section 1, a supervised ma-
chine learning method was suggested in this paper

which regards keyphrase extraction as a classifi-
cation task. In this work, parameterized heuristic
rules are combined with a genetic algorithm into a
system for keyphrase extraction. A different learn-
ing algorithm, Naive Bayes method, is applied in
(Frank et al., 1999) with improved results on the
same data used in (Turney, 1999). Hulth (Hulth,
2003; Hulth, 2004) adds more linguistic knowl-
edge, such as syntactic features, to enrich term
representation, which significantly improves the
performance. Generally, the supervised methods
need manually annotated training set, which may
sometimes not be practical, especially in the web
scenario.

Starting with TextRank (Mihalcea and Tarau,
2004), graph-based ranking methods are becom-
ing the most widely used unsupervised approach
for keyphrase extraction. The work in (Litvak
and Last, 2008) applies HITS algorithm on the
word graph of a document under the assumption
that the top-ranked nodes should be the document
keywords. Experiments show that classification-
based supervised method provides the highest key-
word identification accuracy, while the HITS al-
gorithm gets the highest F-measure. Work in
(Huang et al., 2006) also considers each document
as a term graph where the structural dynamics of
these graphs can be used to identify keyphrases.
Wan and Xiao (Wan and Xiao, 2008b) use a
small number of nearest neighbor documents to
provide more knowledge to improve graph-based
keyphrase extraction algorithm for single docu-
ment. Motivated by similar idea, Wan and Xiao
(Wan and Xiao, 2008a) propose to adopt cluster-
ing methods to find a small number of similar doc-
uments to provide more knowledge for building
word graphs for keyword extraction. Moreover,
after our submission of this paper, we find that
a method using community detection on seman-
tic term graphs is proposed for keyphrase extrac-
tion from multi-theme documents (Grineva et al.,
2009). In addition, some practical systems, such
as KP-Miner (Elbeltagy and Rafea, 2009), also
do not need to be trained on a particular human-
annotated document set.

In recent years, a number of systems are de-
veloped for extracting keyphrases from web docu-
ments (Kelleher and Luz, 2005; Chen et al., 2005),
email (Dredze et al., 2008) and some other spe-
cific sources, which indicates the importance of
keyphrase extraction in the web era. However,

258



none of these previous works has overall consid-
eration on the essential properties of appropriate
keyphrases mentioned in Section 1.

We should also note that, although the preci-
sion and recall of most current keyphrase extrac-
tors are still much lower compared to other NLP-
tasks, it does not indicate the performance is poor
because even different annotators may assign dif-
ferent keyphrases to the same document. As de-
scribed in (Wan and Xiao, 2008b), when two anno-
tators were asked to label keyphrases on308 doc-
uments, the Kappa statistic for measuring inter-
agreement among them was only0.70.

3 Algorithm Overview

The method proposed in this paper is mainly in-
spired by the nature of appropriate keyphrases
mentioned in Section 1, namelyunderstandable,
semanticallyrelevantwith the document andhigh
coverageof the whole document.

Let’s analyze the document describing “Bei-
jing” from the aspects of “location”, “atmosphere”
and “culture”. Under the bag-of-words assump-
tion, each term in the document, except for func-
tion words, is used to describe an aspect of the
theme. Based on these aspects, terms are grouped
into different clusters. The terms in the same clus-
ter are more relevant with each other than with
the ones in other clusters. Taking the terms “tem-
perature”, “cold” and “winter” for example, they
may serve the aspect “atmosphere” instead of “lo-
cation” or some other aspects when talking about
“Beijing”.

Based on above description, it is thus reason-
able to propose a clustering-based method for
keyphrase extraction. The overview of the method
is:

1. Candidate term selection.We first filter out
the stop words and select candidate terms for
keyphrase extraction.

2. Calculating term relatedness.We use some
measures to calculate the semantic related-
ness of candidate terms.

3. Term clustering. Based on term relatedness,
we group candidate terms into clusters and
find the exemplar terms of each cluster.

4. From exemplar terms to keyphrases. Fi-
nally, we use these exemplar terms to extract
keyphrases from the document.

In the next four sections we describe the algo-
rithm in detail.

4 Candidate Term Selection

Not all words in a document are possible to be se-
lected as keyphrases. In order to filter out the noisy
words in advance, we select candidate terms using
some heuristic rules. This step proceeds as fol-
lows. Firstly the text is tokenized for English or
segmented into words for Chinese and other lan-
guages without word-separators. Then we remove
the stop words and consider the remaining single
terms as candidates for calculating semantic relat-
edness and clustering.

In methods like (Turney, 1999; Elbeltagy and
Rafea, 2009), candidate keyphrases were first
found using n-gram. Instead, in this method, we
just find the single-word terms as the candidate
terms at the beginning. After identifying the ex-
emplar terms within the candidate terms, we ex-
tract multi-word keyphrases using the exemplars.

5 Calculating Term Relatedness

After selecting candidate terms, it is important to
measure term relatedness for clustering. In this pa-
per, we propose two approaches to calculate term
relatedness: one is based on term cooccurrence
within the document, and the other by leveraging
human knowledge bases.

5.1 Cooccurrence-based Term Relatedness

An intuitive method for measuring term relat-
edness is based on term cooccurrence relations
within the given document. The cooccurrence
relation expresses the cohesion relationships be-
tween terms.

In this paper, cooccurrence-based relatedness is
simply set to the count of cooccurrences within a
window of maximumw words in the whole doc-
ument. In the following experiments, the window
sizew is set from2 to 10 words.

Each document can be regarded as a word se-
quence for computing cooccurrence-based relat-
edness. There are two types of word sequence
for counting term cooccurrences. One is the origi-
nal word sequence without filtering out any words,
and the other is after filtering out the stop words
or the words with specified part-of-speech (POS)
tags. In this paper we select the first type because
each word in the sequence takes important role for
measuring term cooccurrences, no matter whether
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it is a stop word or something else. If we filter
out some words, the term relatedness will not be
as precise as before.

In experiments, we will investigate how the
window size influences the performance of
keyphrase extraction.

5.2 Wikipedia-based Term Relatedness

Many methods have been proposed for measuring
the relatedness between terms using external re-
sources. One principled method is leveraging hu-
man knowledge bases. Inspired by (Gabrilovich
and Markovitch, 2007), we adopt Wikipedia, the
largest encyclopedia collected and organized by
human on the web, as the knowledge base to mea-
sure term relatedness.

The basic idea of computing term related-
ness by leveragting Wikipedia is to consider each
Wikipedia article as a concept. Then the se-
mantic meaning of a term could be represented
as a weighted vector of Wikipedia concepts, of
which the values are the term’s TFIDF within cor-
responding Wikipedia articles. We could com-
pute the term relatedness by comparing the con-
cept vectors of the terms. Empirical evaluations
confirm that the idea is effective and practical
for computing term relatedness (Gabrilovich and
Markovitch, 2007).

In this paper, we select cosine similarity, Eu-
clidean distance, Point-wise Mutual Information
and Normalized Google Similarity Distance (Cili-
brasi and Vitanyi, 2007) for measuring term relat-
edness based on the vector of Wikipedia concepts.

Denote the Wikipedia-concept vector of the
term ti asCi = {ci1, ci2, ..., ciN}, whereN in-
dicates the number of Wikipedia articles, andcik

is the TFIDF value ofwi in thekth Wikipedia ar-
ticle. The cosine similarity is defined as

cos(i, j) =
Ci · Cj

‖Ci‖‖Cj‖ (1)

The definition of Euclidean distance is

euc(i, j) =

√√√√ N∑
k=1

(cik − cjk)2 (2)

Point-wise Mutual Information (PMI) is a com-
mon approach to quantify relatedness. Here we
take three ways to measure term relatedness using
PMI. One is based on Wikipedia page count,

pmip(i, j) = log2

N × p(i, j)
p(i) × p(j)

(3)

wherep(i, j) is the number of Wikipedia articles
containing bothti andtj , whilep(i) is the number
of articles which containti. The second is based
on the term count in Wikipedia articles,

pmit(i, j) = log2

T × t(i, j)
t(i) × t(j)

(4)

where T is the number of terms in Wikipedia,
t(i, j) is the number ofti and tj occurred adja-
cently in Wikipedia, andt(i) is the number ofti in
Wikipedia. The third one is a combination of the
above two PMI ways,

pmic(i, j) = log2

N × pt(i, j)
p(i) × p(j)

(5)

wherept(i, j) indicates the number of Wikipedia
articles containingti andtj as adjacency. It is ob-
vious thatpmic(i, j) ≤ pmip(i, j), andpmic(i, j)
is more strict and accurate for measuring related-
ness.

Normalized Google Similarity Distance (NGD)
is a new measure for measuring similarity between
terms proposed by (Cilibrasi and Vitanyi, 2007)
based on information distance and Kolmogorov
complexity. It could be applied to compute term
similarity from the World Wide Web or any large
enough corpus using the page counts of terms.
NGD used in this paper is based on Wikipedia ar-
ticle count, defined as

ngd(i, j) =
max(log p(i), log p(j)) − logp(i, j)

log N − min(logp(i), logp(j))
(6)

whereN is the number of Wikipedia articles used
as normalized factor.

Once we get the term relatedness, we could then
group the terms using clustering techniques and
find exemplar terms for each cluster.

6 Term Clustering

Clustering is an important unsupervised learning
problem, which is the assignment of objects into
groups so that objects from the same cluster are
more similar to each other than objects from dif-
ferent clusters (Han and Kamber, 2005). In this
paper, we use three widely used clustering algo-
rithms, hierarchical clustering, spectral clustering
and Affinity Propagation, to cluster the candidate
terms of a given document based on the semantic
relatedness between them.
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6.1 Hierarchical Clustering

Hierarchical clustering groups data over a variety
of scales by creating a cluster tree. The tree is a
multilevel hierarchy, where clusters at one level
are joined as clusters at the next level. The hier-
archical clustering follows this procedure:

1. Find the distance or similarity between every
pair of data points in the dataset;

2. Group the data points into a binary and hier-
archical cluster tree;

3. Determine where to cut the hierarchical tree
into clusters. In hierarchical clustering, we
have to specify the cluster numberm in ad-
vance.

In this paper, we use the hierarchical cluster-
ing implemented in Matlab Statistics Toolbox.
Note that although we use hierarchical clustering
here, the cluster hierarchy is not necessary for the
clustering-based method.

6.2 Spectral Clustering

In recent years, spectral clustering has become one
of the most popular modern clustering algorithms.
Spectral clustering makes use of the spectrum of
the similarity matrix of the data to perform dimen-
sionality reduction for clustering into fewer di-
mensions, which is simple to implement and often
outperforms traditional clustering methods such as
k-means. Detailed introduction to spectral cluster-
ing could be found in (von Luxburg, 2006).

In this paper, we use the spectral clustering tool-
box developed by Wen-Yen Chen, et al. (Chen et
al., 2008)1. Since the cooccurrence-based term
relatedness is usually sparse, the traditional eigen-
value decomposition in spectral clustering will
sometimes get run-time error. In this paper, we
use the singular value decomposition (SVD) tech-
nique for spectral clustering instead.

For spectral clustering, two parameters are re-
quired to be set by the user: the cluster number
m, andσ which is used in computing similarities
from object distances

s(i, j) = exp(
−d(i, j)2

2σ2
) (7)

wheres(i, j) andd(i, j) are the similarity and dis-
tance betweeni andj respectively.

1The package could be accessed viahttp://www.cs.
ucsb.edu/ ˜ wychen/sc.html .

6.3 Affinity Propagation

Another powerful clustering method, Affinity
Propagation, is based on message passing tech-
niques. AP was proposed in (Frey and Dueck,
2007), where AP was reported to find clusters with
much lower error than those found by other meth-
ods. In this paper, we use the toolbox developed
by Frey, et al.2.

Detailed description of the algorithm could be
found in (Frey and Dueck, 2007). Here we intro-
duced three parameters for AP:

• Preference. Rather than requiring prede-
fined number of clusters, Affinity Propaga-
tion takes as input a real numberp for each
term, so that the terms with largerp are more
likely to be chosen as exemplars, i.e., cen-
troids of clusters. These values are referred
to as “preferences”. The preferences are usu-
ally be set as the maximum, minimum, mean
or median ofs(i, j), i 6= j.

• Convergence criterion. AP terminates if (1)
the local decisions stay constant forI1 itera-
tions; or (2) the number of iterations reaches
I2. In this work, we setI1 to 100 andI2 to
1, 000.

• Damping factor. When updating the mes-
sages, it is important to avoid numerical os-
cillations by using damping factor. Each
message is set toλ times its value from the
previous iteration plus1 − λ times its pre-
scribed updated value, where the damping
factorλ is between0 and1. In this paper we
setλ = 0.9.

7 From Exemplar Terms to Keyphrases

After term clustering, we select the exemplar
terms of each clusters as seed terms. In Affinity
Propagation, the exemplar terms are directly ob-
tained from the clustering results. In hierarchical
clustering, exemplar terms could also be obtained
by the Matlab toolbox. While in spectral cluster-
ing, we select the terms that are most close to the
centroid of a cluster as exemplar terms.

As reported in (Hulth, 2003), most manually
assigned keyphrases turn out to be noun groups.
Therefore, we annotate the document with POS

2The package could be accessed viahttp://www.
psi.toronto.edu/affinitypropagation/ .
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tags using Stanford Log-Linear Tagger3, and then
extract the noun groups whose pattern is zero or
more adjectives followed by one or more nouns.
The pattern can be represented using regular ex-
pressions as follows

(JJ) ∗ (NN |NNS|NNP )+

whereJJ indicates adjectives and various forms
of nouns are represented usingNN , NNS and
NNP . From these noun groups, we select the
ones that contain one or more exemplar terms to
be the keyphrases of the document.

In this process, we may find single-word
keyphrases. In practice, only a small fraction of
keyphrases are single-word. Thus, as a part of
postprocessing process, we have to use a frequent
word list to filter out the terms that are too com-
mon to be keyphrases.

8 Experiment Results

8.1 Datasets and Evaluation Metric

The dataset used in the experiments is a collec-
tion of scientific publication abstracts from theIn-
specdatabase and the corresponding manually as-
signed keyphrases4. The dataset is used in both
(Hulth, 2003) and (Mihalcea and Tarau, 2004).
Each abstract has two kinds of keyphrases: con-
trolled keyphrases, restricted to a given dictionary,
and uncontrolled keyphrases, freely assigned by
the experts. We use the uncontrolled keyphrases
for evaluation as proposed in (Hulth, 2003) and
followed by (Mihalcea and Tarau, 2004).

As indicated in (Hulth, 2003; Mihalcea and
Tarau, 2004), in uncontrolled manually assigned
keyphrases, only the ones that occur in the cor-
responding abstracts are considered in evaluation.
The extracted keyphrases of various methods and
manually assigned keyphrases are compared after
stemming.

In the experiments of (Hulth, 2003), for her su-
pervised method, Hulth splits a total of2, 000 ab-
stracts into1, 000 for training,500 for validation
and500 for test. In (Mihalcea and Tarau, 2004),
due to the unsupervised method, only the test set
was used for comparing the performance of Tex-
tRank and Hulth’s method.

3The package could be accessed viahttp://http://
nlp.stanford.edu/software/tagger.shtml .

4Many thanks to Anette Hulth for providing us the dataset.

For computing Wikipedia-based relatedness,
we use a snapshot on November 11, 20055. The
frequent word list used in the postprocessing step
for filtering single-word phrases is also computed
from Wikipedia. In the experiments of this pa-
per, we add the words that occur more than1, 000
times in Wikipedia into the list.

The clustering-based method is completely un-
supervised. Here, we mainly run our method on
test set and investigate the influence of relatedness
measurements and clustering methods with differ-
ent parameters. Then we compare our method
with two baseline methods: Hulth’s method and
TextRank. Finally, we analyze and discuss the per-
formance of the method by taking the abstract of
this paper as a demonstration.

8.2 Influence of Relatedness Measurements

We first investigate the influence of semantic re-
latedness measurements. By systematic experi-
ments, we find that Wikipedia-based relatedness
outperforms cooccurrence-based relatedness for
keyphrase extraction, though the improvement is
not significant. In Table 1, we list the perfor-
mance of spectral clustering with various related-
ness measurements for demonstration. In this ta-
ble, thew indicates the window size for counting
cooccurrences in cooccurrence-based relatedness.
cos, euc, etc. are different measures for com-
puting Wikipedia-based relatedness which we pre-
sented in Section 5.2.

Table 1: Influence of relatedness measurements
for keyphrase extraction.
Parameters Precision Recall F1-measure

Cooccurrence-based Relatedness
w = 2 0.331 0.626 0.433
w = 4 0.333 0.621 0.434
w = 6 0.331 0.630 0.434
w = 8 0.330 0.623 0.432
w = 10 0.333 0.632 0.436

Wikipedia-based Relatedness
cos 0.348 0.655 0.455
euc 0.344 0.634 0.446

pmip 0.344 0.621 0.443
pmit 0.344 0.619 0.442
pmic 0.350 0.660 0.457
ngd 0.343 0.620 0.442

5The dataset could be get fromhttp://www.cs.
technion.ac.il/ ˜ gabr/resources/code/
wikiprep/ .
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We use spectral clustering here because it out-
performs other clustering techniques, which will
be shown in the next subsection. The results in Ta-
ble 1 are obtained when the cluster numberm =
2
3n, wheren is the number of candidate terms ob-
tained in Section 5. Besides, for Euclidean dis-
tance and Google distance, we setσ = 36 of For-
mula 7 to convert them to corresponding similari-
ties, where we get the best result when we conduct
different trails withσ = 9, 18, 36, 54, though there
are only a small margin among them.

As shown in Table 1, although the method using
Wikipedia-based relatedness outperforms that us-
ing cooccurrence-based relatedness, the improve-
ment is not prominent. Wikipedia-based related-
ness is computed according to global statistical in-
formation on Wikipedia. Therefore it is more pre-
cise than cooccurrence-based relatedness, which is
reflected in the performance of the keyphrase ex-
traction. However, on the other hand, Wikipedia-
based relatedness does not catch the document-
specific relatedness, which is represented by the
cooccurrence-based relatedness. It will be an in-
teresting future work to combine these two types
of relatedness measurements.

From this subsection, we conclude that, al-
though the method using Wikipedia-based related-
ness performs better than cooccurrence-based one,
due to the expensive computation of Wikipedia-
based relatedness, the cooccurrence-based one is
good enough for practical applications.

8.3 Influence of Clustering Methods and
Their Parameters

To demonstrate the influence of clustering meth-
ods for keyphrase extraction, we fix the relat-
edness measurement as Wikipedia-basedpmic,
which has been shown in Section 8.2 to be the best
relatedness measurement.

In Table 2, we show the performance of three
clustering techniques for keyphrase extraction.
For hierarchical clustering and spectral clustering,
the cluster numberm are set explicitly as the pro-
portion of candidate termsn, while for Affinity
Propagation, we set preferences as the minimum,
mean, median and maximum ofs(i, j) to get dif-
ferent number of clusters, denoted asmin, mean,
median andmax in the table respectively.

As shown in the table, when cluster numberm
is large, spectral clustering outperforms hierarchi-
cal clustering and Affinity Propagation. Among

Table 2: Influence of clustering methods for
keyphrase extraction.

Parameters Precision Recall F1-measure

Hierarchical Clustering
m = 1

4n 0.365 0.369 0.367
m = 1

3n 0.365 0.369 0.367
m = 1

2n 0.351 0.562 0.432
m = 2

3n 0.346 0.629 0.446
m = 4

5n 0.340 0.657 0.448

Spectral Clustering
m = 1

4n 0.385 0.409 0.397
m = 1

3n 0.374 0.497 0.427
m = 1

2n 0.374 0.497 0.427
m = 2

3n 0.350 0.660 0.457
m = 4

5n 0.340 0.679 0.453

Affinity Propagation
p = max 0.331 0.688 0.447
p = mean 0.433 0.070 0.121

p = median 0.422 0.078 0.132
p = min 0.419 0.059 0.103

these methods, only Affinity Propagation under
some parameters performs poorly.

8.4 Comparing with Other Algorithms

Table 3 lists the results of the clustering-based
method compared with the best results reported
in (Hulth, 2003; Mihalcea and Tarau, 2004) on
the same dataset. For each method, the table lists
the total number of assigned keyphrases, the mean
number of keyphrases per abstract, the total num-
ber of correct keyphrases, and the mean number of
correct keyphrases. The table also lists precision,
recall and F1-measure. In this table, hierarchical
clustering, spectral clustering and Affinity Propa-
gation are abbreviated by “HC”, “SC” and “AP”
respectively.

The result of Hulth’s method listed in this ta-
ble is the best one reported in (Hulth, 2003) on the
same dataset. This is a supervised classification-
based method, which takes more linguistic fea-
tures in consideration for keyphrase extraction.
The best result is obtained using n-gram as candi-
date keyphrases and adding POS tags as candidate
features for classification.

The result of TextRank listed here is the best
one reported in (Mihalcea and Tarau, 2004) on the
same dataset. To obtain the best result, the authors
built an undirected graph using windoww = 2
on word sequence of the given document, and ran
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Table 3: Comparison results of Hulth’s method, TextRank and our clustering-based method.
Assigned Correct

Method Total Mean Total Mean Precision Recall F1-measure

Hulth’s 7,815 15.6 1,973 3.9 0.252 0.517 0.339
TextRank 6,784 13.7 2,116 4.2 0.312 0.431 0.362
HC 7,303 14.6 2,494 5.0 0.342 0.657 0.449
SC 7,158 14.3 2,505 5.0 0.350 0.660 0.457
AP 8,013 16.0 2,648 5.3 0.330 0.697 0.448

PageRank on it.
In this table, the best result of hierarchical clus-

tering is obtained by setting the cluster number
m = 2

3n and using Euclidean distance for comput-
ing Wikipedia-based relatedness. The parameters
of spectral clustering are the same as in last sub-
section. For Affinity Propagation, the best result
is obtained underp = max and using Wikipedia-
based Euclidean distance as relatedness measure.

From this table, we can see clustering-
based method outperforms TextRank and Hulth’s
method. For spectral clustering, F1-measure
achieves an approximately9.5% improvement as
compared to TextRank.

Furthermore, since the clustering-based method
is unsupervised, we do not need any set for train-
ing and validation. In this paper, we also carry out
an experiment on the whole Hulth’s dataset with
2, 000 abstracts. The performance is similar to
that on500 abstracts as shown above. The best
result is obtained when we use spectral clustering
by settingm = 2

3n with Wikipedia-basedpmic
relatedness, which is the same in500 abstracts. In
this result, we extract29, 517 keyphrases, among
which 9, 655 are correctly extracted. The preci-
sion, recall and F1-measure are0.327, 0.653 and
0.436 respectively. The experiment results show
that the clustering-based method is stable.

8.5 Analysis and Discussions

From the above experiment results, we can see the
clustering-based method is both robust and effec-
tive for keyphrase extraction as an unsupervised
method.

Here, as an demonstration, we use spectral clus-
tering and Wikipedia-basedpmic relatedness to
extract keyphrases from the abstract of this pa-
per. The extracted stemmed keyphrases under var-
ious cluster numbers are shown in Figure 1. In
this figure, we find that whenm = 1

4n, 1
3n, 1

2n,
the extracted keyphrases are identical, where the

exemplar terms underm = 1
3n are marked in

boldface. We find several aspects like “unsuper-
vised”, “exemplar term” and “keyphrase extrac-
tion” are extracted correctly. In fact, “clustering
technique” in the abstract should also be extracted
as a keyphrase. However, since “clustering” is
tagged as a verb that ends in -ing, which disagrees
the noun group patterns, thus the phrase is not
among the extracted keyphrases.

When m = 2
3n, the extracted keyphrases

are noisy with many single-word phrases. As
the cluster number increases, more exemplar
terms are identified from these clusters, and more
keyphrases will be extracted from the document
based on exemplar terms. If we set the cluster
number tom = n, all terms will be selected as
exemplar terms. In this extreme case, all noun
groups will be extracted as keyphrases, which
is obviously not proper for keyphrase extraction.
Thus, it is important for this method to appropri-
ately specify the cluster number.

In the experiments, we also notice that frequent
word list is important for keyphrase extraction.
Without the list for filtering, the best F1-measure
will decrease by about5 percent to40%. How-
ever, the solution of using frequent word list is
somewhat too simple, and in future work, we plan
to investigate a better combination of clustering-
based method with traditional methods using term
frequency as the criteria.

9 Conclusion and Future Work

In this paper, we propose an unsupervised
clustering-based keyphrase extraction algorithm.
This method groups candidate terms into clus-
ters and identify the exemplar terms. Then
keyphrases are extracted from the document based
on the exemplar terms. The clustering based on
term semantic relatedness guarantees the extracted
keyphrases have a good coverage of the document.
Experiment results show the method has a good ef-
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Figure 1: Keyphrases in stemmed form extracted
from this paper’s abstract.
Keyphrases whenm = 1

4n, 1
3n, 1

2n

unsupervis method; variousunsupervis rank
method; exemplar term; state-of-the-art
graph-bas rank method;keyphras; keyphras
extract

Keyphrases whenm = 2
3n

unsupervis method; manual assign; brief sum-
mari; various unsupervis rank method; exem-
plar term; document; state-of-the-art graph-bas
rank method; experi; keyphras; import score;
keyphras extract

fectiveness and robustness, and outperforms base-
lines significantly.

Future work may include:

1. Investigate the feasibility of clustering di-
rectly on noun groups;

2. Investigate the feasibility of combining
cooccurrence-based and Wikipedia-based re-
latedness for clustering;

3. Investigate the performance of the method on
other types of documents, such as long arti-
cles, product reviews and news;

4. The solution of using frequent word list
for filtering out too common single-word
keyphrases is undoubtedly simple, and we
plan to make a better combination of
the clustering-based method with traditional
frequency-based methods for keyphrase ex-
traction.
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Abstract

One of the most desired information types
when planning a trip to some place is
the knowledge of transport, roads and
geographical connectedness of prominent
sites in this place. While some transport
companies or repositories make some of
this information accessible, it is not easy
to find, and the majority of information
about uncommon places can only be found
in web free text such as blogs and fo-
rums. In this paper we present an algo-
rithmic framework which allows an auto-
mated acquisition of map-like information
from the web, based on surface patterns
like “from X to Y”. Given a set of loca-
tions as initial seeds, we retrieve from the
web an extended set of locations and pro-
duce a map-like network which connects
these locations using transport type edges.
We evaluate our framework in several set-
tings, producing meaningful and precise
connection sets.

1 Introduction

Textual geographical information such as location
descriptions, directions, travel guides and trans-
port tables is extensively used by people. Dis-
covering such information automatically can as-
sist NLP applications such as question answering
(Santos and Cardoso, 2008), and can be useful
for a variety of other applications, including au-
tomatic map annotation.

Some textual geographical information can be
found in web sites of transport companies, tourist
sites and repositories such as Wikipedia. Such
sites usually utilize structured information such
as machine-readable meta-data, tables, schedule
forms or lists, which are relatively convenient
for processing. However, automatic utilization of

such information is limited. Even on these sites,
only a small fraction of the available geographi-
cal information is stored in a well-structured and
freely accessible form. With the growth of the
web, information can be frequently found in ‘or-
dinary’ web pages such as forums, travelogues or
news. In such sites, information is usually noisy,
unstructured and present in the form of free text.

This type of information can be addressed by
lexical patterns. Patterns were shown to be very
useful in all sorts of lexical acquisition tasks, giv-
ing high precision results at relatively low com-
putational costs (Pantel et al., 2004). Pattern-
driven search engine queries allow to access such
information and gather the required data very effi-
ciently (Davidov et al., 2007).

In this paper we present a framework that given
a few seed locations as a specification of a region,
discovers additional locations (including alternate
location names) and map-like travel paths through
this region labeled by transport type labels.

The type of output produced by our framework
here differs from that in previous pattern-based
studies. Unlike mainstream pattern-based web
mining, it does not target some specific two-slot
relationship and attempts to extract word tuples for
this relationship. Instead, it discovers geographi-
cal networks of transport or access connections.
Such networks are not unstructured sets of word
pairs, but a structured graph with labeled edges.

Our algorithm utilizes variations of the basic
pre-defined pattern “[Transport] from Location1
to Location2” which allows location names and
connections to be captured starting from the given
seed location set. We acquire search engine snip-
pets and extract contexts where location names co-
appear. Next we construct a location graph and
merge transport edges to identify main transport
group types. Finally, we improve the obtained data
by reducing transitive connections and identifying
key locations.
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The obtained location data can be used as a
draft for preparation of travel resources and on-
demand travel plans. It can also be used for ques-
tion answering systems and for automated enrich-
ment and verification of existing geographical re-
sources.

We evaluate our framework on three different
regions of different scale and type: Annapurna in
Nepal, the south Israel area and the Cardiff area
in England. In our evaluation we estimated pre-
cision and the amount of discovered locations and
transport edges, and examined the quality of the
obtained map as a whole by visually comparing
the overall connectedness of the graph to an actual
road or transport map.

2 Related Work

In this paper we utilize a pattern-based lexical
acquisition framework for the discovery of geo-
graphical information. Due to the importance of
lexical databases for many NLP tasks, substantial
research has been done on direct or indirect auto-
mated acquisition of concepts (sets of terms shar-
ing a significant aspect of their meaning) and con-
cept relationships in the form of graphs connect-
ing concepts or terms inside concepts into usually
hierarchical or bipartite networks. In the case of
geo-mining, concepts can include sets of alterna-
tive names for some place, or sets of all locations
of the same type (e.g., all countries). Geographical
relationships can include nearness of two locations
and entity-location relationships such as institute-
address, capital-country, tourist site-city etc.

The major differences between relationship ac-
quisition frameworks come from the types and an-
notation requirements of the supplied input and
the basic algorithmic approach used to process
this input. A first major algorithmic approach
is to represent word contexts as vectors in some
space and use distributional measures and auto-
matic clustering in that space. Curran (2002)
and Lin (1998) use syntactic features in the vec-
tor definition. Caraballo (1999) uses conjunction
and appositive annotations in the vector represen-
tation.While efforts have been made for improv-
ing the computational complexity of these meth-
ods (Gorman and Curran, 2006), they remain data
and computation intensive.

The second major algorithmic approach is to
use lexico-syntactic patterns, which have been
shown to produce more accurate results than fea-

ture vectors at a lower computational cost on large
corpora (Pantel et al., 2004). Most related work
deals with discovery of hypernymy (Hearst, 1992;
Pantel and Lin, 2002) and synonymy (Widdows
and Dorow, 2002; Davidov and Rappoport, 2006).
Some studies deal with the discovery of more spe-
cific relation sub-types, including inter-verb re-
lations (Chklovski and Pantel, 2004) and seman-
tic relations between nominals (Davidov and Rap-
poport, 2008). Extensive frameworks were pro-
posed for iterative discovery of pre-specified (e.g.,
(Riloff and Jones, 1999)) and unspecified (e.g.,
(Agichtein and Gravano, 2000)) relation types.

Some concepts and relationships examined by
seed-based discovery methods were of a geo-
graphical nature. For example, (Etzioni et al.,
2004) discovered a set of countries and (Davidov
et al., 2007) discovered diverse country relation-
ships, including location relationships between a
country and its capital and a country and its rivers.
As noted in Section 1, the type of output that we
produce here is not an unstructured collection of
word pairs but a labeled network. As such, our
task here is much more complex.

Our study is related to geographical informa-
tion retrieval (GIR) systems. However, our prob-
lem is very far from classic GIR problem settings.
In GIR, the goal is to classify or retrieve possi-
bly multilingual documents in response to queries
in the form ‘theme, spatial relationship, location’,
e.g., ‘mountains near New York’ (Purves et al.,
2006). Our goal, in contrast, is not document re-
trieval, but the generation of a structured informa-
tion resource, a labeled location graph.

Spatial relationships used in natural language
tend to be qualitative and descriptive rather than
quantitative. The concept of Naive Geography,
which reflects the way people think and write
about geographical space, is described in (Egen-
hofer and Shariff, 1995). Later in (Egenhofer
and Shariff, 1998) they proposed a way to convert
coordinate-based relationships between spatial en-
tities to natural language using terms as ‘crosses’,
‘goes through’ or ‘runs into’. Such terms can be
potentially used in patterns to extract geographi-
cal information from text. In this paper we start
from a different pattern, ‘from ... to’, which helps
in discovering transport or connectedness relation-
ships between places, e.g., ‘bus from X to Y’ and
‘road from X to Y’.

The majority of geographical data mining
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frameworks utilize structured data such as avail-
able gazetteers and Wikipedia metadata. Sev-
eral other studies utilize semi-structured data like
Wikipedia links (Overell and Ruger, 2007) or sub-
structures in web pages, including addresses and
phone numbers (Borges et al., 2007).

The recent Schockaert et al.( 2008) framework
for extraction of topological relationships from the
web has some similarities to our study. In both
cases the algorithm produces map-like structures
using the web. However, there are significant dif-
ferences. They utilize relatively structured address
data on web pages and rely on the order of named
entities in address data for extracting containment
relationships. They also use co-appearances in
addresses (e.g., ‘R1 / R2’ and ‘R1 & R2’ as in
“Newport & Gabalfa, Cardiff”) to deduce location
boundaries. This allows them to get high precision
data for modern and heavily populated regions like
Cardiff, where the majority of offices have avail-
able well-formatted web pages.

However, in less populated regions (a major tar-
get for tourist information requests), this strategy
could be problematic since a major information
source about these places would be not local web
sites (in which local addresses are likely to be
found) but foreign visitor sites, web forums and
news. We rely on free text available in all types
of web pages, which allows us to capture unstruc-
tured information which contains a significant por-
tion of the web-available geographical knowledge.

Our goals are also different from Schockaert et
al.( 2008), since we focus on obtaining informa-
tion based on paths and transport between loca-
tions, while in their work the goal is to find a net-
work representing nearness of places rather than
their connectivity by means of transport or walk-
ing. Nevertheless, in one of our evaluation settings
we targeted the area of Cardiff as in (Schockaert
et al., 2008). This allowed us to make an indi-
rect comparison of a relevant part of our results
to previous work, achieving state-of-the-art per-
formance.

3 The Algorithm

As input to our algorithm we are given a seed of
a few location names specifiying some geograph-
ical region. In this section we describe the algo-
rithm which, given these names, extracts the la-
beled structure of connections between entities in
the desired region. We first use a predefined pat-

tern for recursive extraction of the first set of enti-
ties. Then we discover additional patterns from
co-appearing location pairs and use them to get
more terms. Next, we label and merge the ob-
tained location pairs. Finally, we construct and
refine the obtained graph.

3.1 Pattern-based discovery with web queries

In order to obtain the first set of location connec-
tions, we use derivatives of the basic pattern ‘from
X to Y’. Using Yahoo! BOSS, we have utilized
the API’s ability to search for phrases with wild-
cards. Given a location name L we start the search
with patterns “from * to L”, “from * * to L”. These
are Yahoo! BOSS queries where enclosing words
in “” means searching for an exact phrase and ‘*’
means a wildcard for exactly one arbitrary word.

This pattern serves a few goals beyond the dis-
covery of connectedness. Thus putting ‘*’s inside
the pattern rather than using “from L to” allowed
us to avoid arbitrary truncation of multiword ex-
pressions as in ‘from Moscow to St. Petersburg’
and reduced the probability of capturing unrelated
sentence parts like ‘from Moscow to cover deficit’.

Location names are usually ambiguous and this
type of web queries can lead to a significant
amount of noise or location mix. There are two
types of ambiguity. First, as in ‘from Billericay to
Stock....’, stock can be a location or a verb. We
filter most such cases by allowing only capital-
ized location names. Besides, such an ambiguity
is rarely captured by ‘from * to L’ patterns. The
second type is location ambiguity. Thus ‘Moscow’
refers to at least 5 location names including farms
in Africa and Australia and a locality in Ireland. In
order to reduce mixing of locations we use the fol-
lowing simple disambiguation technique. Before
performing “from...to” queries, we downloaded up
to 100 web pages pointed by each possible pair
from the given seed locations, generating from
a location pair L1, L2 a conjunctive query “L1

* L2”. Then we extracted the most informative
terms using a simple probabilistic metric:

Rank(w) =
P (w|QueryCorpus)
P (w|GeneralCorpus) ,

comparing word distribution in the downloaded
QueryCorpus to a large general purpose offline
GeneralCorpus1. We thus obtained a set of

1We used the DMOZ corpus (Gabrilovich and
Markovitch, 2005).
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query-specific disambiguating words. Then we
added to all queries the same most frequent word
(DW) out of the ten words with highest ranks.
Thus for the seed set {Moscow, St. Petersburg},
an example of a query is <“from * to Moscow”
Russia>.

3.2 Iterative location retrieval

We retrieved all search engine snippets for each
of these initial queries2. If we succeeded to get
more than 50 snippets, we did not download the
complete documents. In case where only a hand-
ful of snippets were obtained, the algorithm down-
loaded up to 25 documents pointed by these snip-
pets in an attempt to get more pattern instances.
In the majority of tested cases, snippets provide
enough information for our task, and this informa-
tion was not significantly extended by download-
ing the whole documents.

Once we retrieve snippets we identify terms
appearing in the snippets in wildcard slots. For
example, if the query is <“from * to Moscow”
Russia> and we encounter a snippet “...from
Vladivostok to Moscow...”, we add ‘Vladivostok’
to our set of seeds. We then continue the search in
a breadth first search setting, stopping the search
on three conditions: (1) runaway detected – the
total frequency of newly obtained terms through
some term’s patterns is greater than the total fre-
quency of previously discovered terms+seeds. In
this case we stop exploration through the prob-
lematic term and continue exploration through
other terms3; (2) we reached a predefined maxi-
mal depth D4; (3) no new terms discovered.

At the end of this stage we get the extended
set of terms using the set of snippets where these
terms co-appear in patterns.

3.3 Enhancement of initial pattern set

In order to get more data, we enhance the pattern
set both by discovery of new useful secondary pat-
terns and by narrowing existing patterns. After ob-
taining the new pattern set we repeat the extraction
stage described in Section 3.2.

2Yahoo! Boss allows downloading up to a 1000 descrip-
tions, up to 50 in each request. Thus for each seed word, we
have performed a few dozen search requests.

3Note that the ‘problematic’ term may be the central term
in the region we focus upon – if this happen it means that the
seeds do not specify the region well.

4Depth is a function of the richness of transport links in
the domain. For connected domains (Cardiff, Israel) we used
4, for less connected ones (Nepal) we used 10.

Adding secondary patterns. As in a number of
previous studies, we improve our results discover-
ing additional patterns from the obtained term set.
The algorithm selects a subset of up to 50 discov-
ered (t1, t2) term pairs appearing in ‘from t1 to t2’
patterns and performs the set of additional queries
of the form <“t1 * t2” DW>.

We then extract from the obtained snippets the
patterns of the form ‘Prefix t1 Infix t2 Postfix’,
where Prefix and Postfix should contain either a
punctuation symbol or 1-3 words. Prefix/Postfix
should also be bounded from left/right by a punc-
tuation or one of the 50 most frequent words in the
language (based on word counts in the offline gen-
eral corpus). Infix should contain 1-3 words with
the possible addition of punctuation symbols5.

We examine patterns and select useful ones ac-
cording to the following ranking scheme, based
on how well each pattern captures named entities.
For each discovered pattern we scan the obtained
snippets and offline general corpus for instances
where this pattern connects one of the original
or discovered location terms to some other term.
Let T be the set of all one to three word terms
in the language, Td ⊂ T the set of discovered
terms, Tc ⊂ T the set of all capitalized terms and
Pat(t1, t2) indicates one or more co-appearances
of t1 and t2 in pattern Pat in the retrieved snippets
or offline general corpus. The rank R of pattern
Pat is defined by:

R(Pat) =
|{Pat|Pat(t1, t2), t1 ∈ Tc, t2 ∈ Td}|
|{Pat|Pat(t1, t2), t1 ∈ T, t2 ∈ Td}|

In other words, we rank patterns according to the
percentage of capitalized words connected by this
pattern. We sort patterns by rank and select the
top 20% patterns. Once we have discovered a new
pattern set, we repeat the term extraction in Sec-
tion 3.2. We do this only once and not reiterate
this loop in order to avoid potential runaway prob-
lems. Obtained secondary patterns include dif-
ferent from/to templates “to X from Y by bus”;
time/distance combinations “X -N km bus- Y”, “X
(bus, N min) Y” or patterns in different languages
with English location/transport names.

Narrowing existing patterns. When available
data volume is high, we would like to take advan-
tage of more data by utilizing more specific pattern

5Search engines do not support punctuation in queries,
hence these symbols were omitted in web requests and con-
sidered only when processing the retrieved snippets.
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sets. Since Yahoo! allows to obtain only the first
1K snippets, in case we get more than 10K hits,
we extend our queries by adding the most com-
mon term sequences appearing before or after the
pattern. Thus if for the query “from * to Moscow”
we got more than 10K hits and among the snippets
we see ‘... bus from X to Moscow...’ we create an
extended pattern ‘bus from * to Moscow’ and use
the term extraction in Section 3.2 to get additional
terms. Unlike the extraction of secondary patterns,
this narrowing process can be repeated recursively
as long as a query brings more than 10K results.

3.4 Extraction of labeled connections
At the end of the discovery stage we get an ex-
tended set of patterns and a list of search engine
snippets discovered using these patterns. Each
snippet which captures terms t1, t2 in either pri-
mary ‘from t1 to t2’ or secondary patterns repre-
sents a potential connection between entities.

Using an observed property of the primary pat-
tern, we select as a label a term or set of terms ap-
pearing directly before ‘from’ and delimited with
some high frequency word or punctuation. For
example, labels for snippets based on ‘from...to’
patterns and containing ‘the road from...’, ‘got a
bus from’, ‘a TransSiberian train from...’ would
be road, bus and TransSiberian train.

Once we acquire labels for the primary patterns,
we also attempt to find labels in snippets obtained
for secondary patterns discovered as described in
Section 3.3. We first locate some already labeled
pairs in secondary patterns’ snippets where we can
see both label and the labeled term pair. Then,
based on the label’s position in this snippet, we
define a label slot position for this type of snip-
pet. Suppose that during the labeling of primary
pattern snippets we assigned the label ‘bus’ to the
pair (Novgorod, Moscow) and during the pattern
extension stage the algorithm discovered a pattern
Pnew = ‘ride to t2 from t1,’ with a corresponding
snippet ‘... getting bus ride to Moscow from Nov-
gorod...’. Then using the labeled pair our algo-
rithm defines the label slot in such a snippet type:
‘getting [label] ride to t2 from t1’. Once a label
slot is defined, all other pairs captured by Pnew

can be successfully labeled.

3.5 Merging connection labels
Some labels may denote the same type of con-
nection. Also, large sets of connections can
share the same set of transport types. In this

case it is desired to assign a single label for
a shared set of transports. We do this by a
simple merging technique. Let C1, C2 be sets
of pairs assigned to labels L1, L2. We merge
two labels if one of the following conditions holds:

(1)|C1 ∩ C2| > 0.75 ∗min(|C1|, |C2|)
(2)|C1 ∩ C2| > 0.45 ∗max(|C1|, |C2|)

Thus, either one group is nearly included in the
other or each group shares nearly half with the
other group. We apply this rule only once and do
not iterate recursively. At this stage we also dis-
miss weakly populated labels, keeping the 10 most
populated labels.

3.6 Processing of connection graph

Now once we have merged and assigned the la-
bels we create a pattern graph for each label and
attempt to clean the graph of noise and unneces-
sary edges. Our graph definition follows (Wid-
dows and Dorow, 2002). In our pattern graph for
label L, nodes represent terms and directed edges
represent co-appearance of two terms in some pat-
tern in snippet labeled by L. We do not add unla-
beled snippets to the graph. Now we use a set of
techniques to reduce noise and unnecessary edges.

3.6.1 Transitivity elimination
One of the main problems with the pattern-based
graph is transitivity of connections. Thus if loca-
tion A is connected to B and B to C, we frequently
acquire a “shortcut” edge connecting A to C. Such
an edge diminishes our ability to create a clear and
meaningful spatial graph. In order to reduce such
edges we employ the following two strategies.

First, neighboring places frequently form fully
connected subgraphs. We would like to sim-
plify such cliques to reduce the amount of tran-
sitive connections. If three overlapping sets of
nodes {A1 . . . An−2},{A2 . . . An−1},{A3 . . . An}
form three different cliques, then we remove all
edges betweenA1 and the nodes in the third clique
and between An and the nodes in the first clique.

Second, in paths obtained by directional pat-
terns, it is common that if there is a path A1 →
A2 · · · → An where A1 and An are some
major ‘key’ locations6, then each of the nodes
A2 . . . An−1 tend to be connected both to A1 and

6Such locations will be shown in double circles in the
evaluation.
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to An while intermediate nodes are usually con-
nected only to their close neighbors. We would
like to eliminate such transitive edges leaving only
the inter-neighbor connections.

We define as key nodes in a graph, nodes whose
degree is more than 1.5 times the average graph
degree. Then we eliminate the transitive con-
nections: if A1 is a key node and A1 is con-
nected to each of the nodes A2 . . . An−1, and
∀i ∈ {2 . . . n − 1}, Ai is connected to Ai+1,
then we remove the connection of A1 to all nodes
A3 . . . An−1 , leaving A1 only connected to A2.

3.6.2 Clearing noise and merging names
Finally we remove potential noise which acciden-
tally connects remote graph parts. If some edge
discovered through a single pattern instance con-
nects distant (distance>3) parts of the graph we
remove it.

Additionally, we would like to merge common
name alternations and misspellings of places. We
merge two nodes A and B into one node if ei-
ther (1) A, B have exactly the same edges, and
their edge count is greater than 2; or (2) edges
of A are subset of B’s edges and the string edit
distance between A and B is less than a third of
min(StringLength(A), StringLength(B)).

4 Evaluation

Since our problem definition differs significantly
from available related work, it is not possible to
make direct comparisons. We selected three dif-
ferent cases (in Nepal, Israel, Wales) where the
obtained information can be reliably verified, and
applied our framework on these settings. As a de-
velopment set, we used the Russian rail network.

We have estimated the quality of our framework
using several measures and observations. First, we
calculated the precision and quantity of obtained
locations using map information. Then we manu-
ally estimated precision of the proposed edges and
their labels, comparing them with factual infor-
mation obtained from maps7, transport companies
and tourist sites. Finally we visually compared a
natural drawing of the obtained graph with a real
map. In addition, while our goals differ, the third
evaluation setting has deliberate significant simi-
larities to (Schockaert et al., 2008), which allows
us to make some comparisons.

7We recognize that in case of some labels, e.g. ‘walk’, the
precision measure is subjective. Nevertheless it provides a
good indication for the quality of our results.

4.1 The Annapurna trek area

One of the most famous sites in Nepal is the Anna-
purna trekking circuit. This is a 14-21 day walk-
ing path which passes many villages. Most of the
tourists going through this path spend weeks in
prior information mining and preparations. How-
ever, even when using the most recent maps and
guides, they discover that available geographical
knowledge is far from being complete and precise.
This trek is a good example of a case when formal
information is lacking while free-text shared expe-
rience in the web is abundant. Our goal was to test
whether the algorithm can discover such knowl-
edge automatically starting from few seed location
names (we used Pokhara, which is one of the cen-
tral cities in the area, and Khudi, a small village).
The quality of results for this task was very good.
While even crude recall estimation is very hard for
this type of task, we have discovered 100% of the
Annapurna trek settlements with population over
1K, all of the flight and bus connections, and about
80% of the walking connections.

On Figure 1 we can compare the real map and
the obtained map8. This discovered map includes
a partial map9 for 4 labels – flights, trek, bus and
jeep. You can see on the map different lines for
each label. The algorithm discovered 132 enti-
ties, all of them Annapurna-related locations. This
includes correctly recognized typos and alterna-
tive spellings, and the average was 1.2 names per
place. For example for Besisahar and Pokhara
the following spellings were recognized based
both on string distance and spatial collocation:
Besishahar, Bensisahar, BesiSahar, Besi Sahar,
Beshishahar, Beisahar, Phokra, Pohkala, Poka-
hara, Pokhara, Pokhar, Pokra, Pokhura, Pokhra.

We estimated correctness of edges comparing
to existing detailed maps. 95% of the edges were
correctly placed and labeled. Results were good
since this site is well covered and also not very
interconnected – most of it is connected in a sin-
gle possible way. After the elimination process
described in the previous section, only 6% of the
nodes participate in 3-cliques. Thus, due to the
linearity of the original path, our method success-

8Graph nodes were manually positioned such that edges
do not intersect. Recall that our goal is to build a network
graph, which is an abstract structure. The 2-D embedding of
the graph shown here is only for illustrative purposes and is
not part of our algorithm.

9A few dozens of correctly discovered places were omit-
ted to make the picture readable.
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Figure 1: Real path map of Annapurna circuit
(above) compared to automatically acquired graph
(below). The graph nodes were manually posi-
tioned such that edges do not cross each other.
Dozens of correctly discovered places were omit-
ted for readability. Double circles indicate key
nodes as explained in section 3.6.1

fully avoided the problem of mixing transitively
connected nodes into one large clique.

4.2 The Israeli south

The southern part of Israel (mostly the Negev
desert) is a sparsely populated region containing
a few main roads and a few dozen towns. There
is a limited number of tourists sites in the Negev
and hence little web information is supposed to be
available. Our goal was to see if the algorithm can
successfully detect at least major entities and to
discover their connectedness.

We discovered 56 names of different places, of
them 50 correctly belong to the region, where the
region is defined as south from the Ashquelon-

Jerusalem-Yericho line, the other 6 were Is-
raeli cities/locations outside the region (Tiberias,
Metulla, Ben Gurion, Tel Aviv, Ashdod, Haifa).
In addition we discovered 23 alternative names for
some of the 56 places. We also constructed the
corresponding connectedness graphs.

We tested the usefulness of this data attempting
to find the discovered terms in the NGA GEOnet
Names Server10 which is considered one of the
most exhaustive geographical resources. We could
find in the database only 60% of the correctly dis-
covered English terms denoting towns, so 40% of
the terms were discovered by us and ignored by
this huge coverage database. We also tested the
quality of edges, and found that 80% of the dis-
covered edges were correctly placed and labeled.
Figure 2 shows a partial graph of the places ob-
tained for the ‘road’ label.

Figure 2: Partial graph for Israel south settings.

4.3 The Cardiff area
Cardiff is the capital, largest city and most pop-
ulous county in Wales. Our goal was to see
if we can discover basic means of transport and
corresponding locations connected to and inside
Cardiff. This exploration also allowed us to com-
pare some of our results to related studies. We ex-
ecuted our algorithm using as seeds Grangetown,
Cardiff and Barry. Table 1 shows the most utilized
merged labels obtained for most edge-populated
graphs together with graph size and estimated pre-
cision. In case of flights, treks and trains, precision
was estimated using exact data. In other cases we
estimated precision based on reading relevant web
pages. We can see that the majority of connectiv-
ity sets are meaningful and the precision obtained
for most of these sets is high. Figure 3 shows a
partial graph for ‘walking’-type labels and Figure

10http://earth-info.nga.mil/gns/html/
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Nodes Edges(Prec) Label
88 120(81) walking,walk,cycling,short ride

taxis, Short bus ride,short walk
131 140(95) flights, airlines,# flights a day
12 16(100) foot path, trek, walking # miles
36 51(89) train, railway, rail travel,rail
32 98(65) bus, road, drive,direct bus

Table 1: The merged labels obtained for 5
most edge-populated graphs, including number of
nodes and edges for each label. The estimated pre-
cision according to each label definition is shown
in parentheses.

4 shows such a graph for train labels11. Compar-
ing the obtained map with real map data we notice
a definite correlation between actual and induced
relative connection of discovered places.

(Schockaert et al., 2008) used their frame-
work to discover neighborhoods of Cardiff. In
our case, the most appropriate relation which con-
nects neighborhood locations is walking/cycling.
Hence, comparing the results to previous work, we
have examined the results obtained for the ‘walk-
ing’ label in details. (Schockaert et al., 2008) re-
port discovery of 68 locations, of them 7 are al-
ternate entries, 4 can be considered vernacular or
colloquial, 10 are not considered to be neighbor-
hoods, and 5 are either close to, but not within,
Cardiff, or are areas within Cardiff that are not
recognized neighborhoods. In our set we have dis-
covered 88 neighborhood names, of them 18 are
alternate entries of correct neighborhoods, 4 can
be considered vernacular or colloquial, 3 are not
considered to be neighborhoods, and 15 are areas
outside the Cardiff area.

Considering alternate entries as hits, we got su-
perior precision of 66/88 = 0.75 in comparison to
49/68 = 0.72. It should be noted however that we
found many more alternative names possibly due
to our larger coverage. Also both our framework
and the goal were substantially different.

5 Discussion

In this paper we presented a framework which,
given a small set of seed terms describing a ge-
ographical region, discovers an underlying con-
nectivity and transport graph together with the ex-
traction of common and alternative location names
in this region. Our framework is based on the

11Spatial position of displayed graph components is arbi-
trary, we only made sure that there are no intersecting edges.

Figure 3: Partial graph of the obtained Cardiff re-
gion for the walk/walking/cycling label.

Figure 4: Partial graph of the obtained Cardiff re-
gion for the railway/train label.

observation that ‘from...to’-like patterns can en-
code connectedness in very precise manner. In our
framework, we have combined iterative pattern-
and web-based relationship acquisition with the
discovery of new patterns and refinement of the lo-
cation graph. In our evaluation we showed that our
framework is capable of extracting high quality
non-trivial information from free text given very
restricted input and not relying on any heavy pre-
processing techniques such as parsing or NER.

The success of the proposed framework opens
many challenging directions for its enhancement.
Thus we would like to incorporate in our net-
work patterns which allow traveling times and dis-
tances to be extracted, such as ‘N miles from X
to Y’. While in this paper we focus on specific
type of geographical relationships, similar frame-
works can be useful for a wider class of spatial re-
lationships. Automated acquisition of spatial data
can significantly help many NLP tasks, e.g., ques-
tion answering. We would also like to incorpo-
rate some patterns based on (Egenhofer and Shar-
iff, 1998), such as ‘crosses’, ‘goes through’ or
‘runs into’, which may allow automated acquisi-
tion of complex spatial relationships. Finally, we
would like to incorporate in our framework mod-
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ules which may allow recognition of structured
data, like those developed by (Schockaert et al.,
2008).
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Abstract

In this paper, we address the issue of au-
tomatic extending lexical resources by ex-
ploiting existing knowledge repositories.
In particular, we deal with the new task
of linking FrameNet and Wikipedia us-
ing a word sense disambiguation system
that, for a given pair frame – lexical unit
(F, l), finds the Wikipage that best ex-
presses the the meaning of l. The mapping
can be exploited to straightforwardly ac-
quire new example sentences and new lex-
ical units, both for English and for all lan-
guages available in Wikipedia. In this way,
it is possible to easily acquire good-quality
data as a starting point for the creation of
FrameNet in new languages. The evalua-
tion reported both for the monolingual and
the multilingual expansion of FrameNet
shows that the approach is promising.

1 Introduction

Many applications in the context of natural lan-
guage processing or information retrieval have
proved to convey significant improvement by ex-
ploiting lexical databases with high-quality anno-
tation such as FrameNet (Fillmore et al., 2003)
and WordNet (Fellbaum, 1998). Nevertheless, the
practical use of similar resources is often biased
by their limited coverage because manual anno-
tation is time-consuming and requires a relevant
financial effort. For this reason, some research ac-
tivities have focused on the automatic enrichment
of such resources with annotated information in
(near) manual quality. The main strategy proposed
was the mapping between resources in order to
reciprocally enrich different lexical databases by
linking their information layers. This has proved
to be useful in several tasks, from verb classifica-
tion (Chow and Webster, 2007) to semantic role

labeling (Giuglea and Moschitti, 2006), open text
semantic parsing (Shi and Mihalcea, 2004) and
textual entailment (Burchardt and Frank, 2006).

In this work, we focus on the automatic enrich-
ment of the FrameNet database for English and we
propose a new framework to extend this procedure
to new languages. While similar works in the past
have mainly proposed to automatically extend the
FrameNet database by mapping frames and Word-
Net synsets (Shi and Mihalcea (2005), Johans-
son and Nugues (2007), and Tonelli and Pighin
(2009)), we present an explorative approach that
for the first time exploits Wikipedia to this pur-
pose. In particular, given a lexical unit l belong-
ing to a frame F , we devise a strategy to link
l to the Wikipedia article that best captures the
sense of l in F . This is basically a word disam-
biguation (WSD) problem (Erk, 2004) and to this
purpose we employ a state-of-the-art WSD sys-
tem (Gliozzo et al., 2005). The mapping between
(F, l) pairs and Wikipedia pages could then be ex-
ploited for three further subtasks: (a) automati-
cally extract from Wikipedia all sentences point-
ing to the Wikipage mapped with (F, l) and assign
them to F ; (b) automatically expand the lexical
units sets in the English FrameNet by exploiting
the redirecting and linking strategy of Wikipedia;
and (c) since Wikipedia is available in 260 lan-
guages, use the English Wikipedia article linked to
(F, l) as a bridge to carry out sentence and lexical
unit retrieval in other languages. The set of auto-
matically collected data would represent the start-
ing point for the creation of FrameNet in new lan-
guages. In fact, having a repository of sentences
extracted from Wikipedia which have already been
divided by sense would significantly speed up the
annotation process. In this way, the annotators
would not need to extract all sentences in a cor-
pus containing l and classify them by sense. In-
stead, they should simply validate the given sen-
tences and assign the correct frame elements.
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In the following, we start by providing a brief
overview of FrameNet and Wikipedia and we
present their structure and organization. Next, we
describe the algorithm for mapping lexical units
and Wikipages and the word sense disambigua-
tion algorithm employed by the system. In Sec-
tion 5 we describe the dataset used in the first ex-
periment and report evaluation results of the map-
ping between (F, l) pairs and Wikipedia senses. In
Section 6 we describe an application of the map-
ping, i.e. the automatic enrichment of English
FrameNet. We describe the data extraction pro-
cess and evaluate the quality of the data. In Section
7 we describe and evaluate another application of
the mapping, i.e. the acquisition of data for the
automatic creation of Italian FrameNet using the
Italian Wikipedia. Finally, we draw conclusions
and present future research directions.

2 FrameNet and Wikipedia

FrameNet (Fillmore et al., 2003) is a lexical re-
source for English based on corpus evidence,
whose conceptual model comprises a set of proto-
typical situations called frames, the frame-evoking
words or expressions called lexical units (LUs)
and the roles or participants involved in these situ-
ations, called frame elements. All lexical units be-
longing to the same frame have similar semantics
but, differently from WordNet synsets, they can
belong to different categories and present differ-
ent parts of speech. For example, the KILLING

frame is described in the FrameNet database1

as “A Killer or Cause causes the death of the
Victim”. The elements in capitals are the se-
mantic roles (frame elements) typically involved
in the KILLING situation. The frame definition
comes also with the list of frame-evoking lexical
units, namely annihilate.v, annihilation.n, butch-
ery.n, carnage.n, crucify.v, deadly.a, etc. Since
FrameNet is a corpus-based resource, every lexi-
cal unit should be instantiated by a set of exam-
ple sentences, where the frame elements are anno-
tated as well. Instead, FrameNet is still an ongoing
project and in the latest release (v. 1.3) there are
about 3,380 lexical units out of 10,195 that come
with no example sentences. In this work we focus
on these lexical units and propose how to automat-
ically collect the missing sentences. Anyhow, the
algorithm we propose is suitable also for expand-
ing sentence sets already present in FrameNet.

1http://framenet.icsi.berkeley.edu

Wikipedia2 is one of the largest online reposito-
ries of encyclopedic knowledge, with millions of
articles available for a large number of languages
(>2,800,000 for English). The article (or page)
is the basic entry in Wikipedia. Every article has
an unique reference, i.e., one or more words that
identify the page and are present in its URL. For
example, Ball (dance) identifies the page that de-
scribes several types of ball intended as formal
dance, while Dance (musical form) describes the
dance as musical genre. Every Wikipedia article
is linked to others, and in the body of every page
there are plenty of links to connect the most rel-
evant terms to other pages. Another important
attribute is the presence of about 3,000,000 redi-
rection pages, that given an identifier that is not
present in Wikipedia, automatically display the
page with the most semantically similar identi-
fier (for example Killing is redirected to the Mur-
der page). Wikipedia contains also more than
100,000 disambiguation pages listing all senses
(pages) for an ambiguous entity. For example,
Book has 9 senses, which correspond to 9 dif-
ferent articles. Wikipedia structure and quality
make this resource particularly suitable for infor-
mation extraction and word sense disambiguation
tasks (Csomai and Mihalcea (2008) and Milne and
Witten (2008)). In fact, page references can be
seen as senses and Wikipedia as a large sense in-
ventory. From this point of view, also linking
a lexical unit to the correct Wikipedia page is a
word sense disambiguation issue because it im-
plies recognizing what meaning the lexical unit
has in the given frame. For example, dance.n
in the SOCIAL EVENT frame should be linked to
Ball (dance) and not to Dance (musical form).

3 The Mapping Algorithm

In this section, we describe how to map a frame
– lexical unit pair (F, l) into the Wikipedia arti-
cle that best captures the sense of l as defined in
F . The mapping problem is casted as a supervised
WSD problem, in which l must be disambiguated
using F to provide the context and Wikipedia to
provide the sense inventory and the training data.
Even if the idea of using Wikipedia links for dis-
ambiguation is not novel (Cucerzan, 2007), it is
applied for the first time to FrameNet lexical units,
considering a frame as a sense definition. The pro-
posed algorithm is summarized as follows:

2http://en.wikipedia.org
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Step 1 For each lexical unit l, we collect from
the English Wikipedia dump3 all contexts4 where l
is the anchor of an internal link (wiki link). The set
of targets represents the senses of l in Wikipedia
and the contexts are used as labelled training ex-
amples. For example, the lexical unit building.n in
the frame Buildings is an anchor in 708 different
contexts that point to 42 different Wikipedia pages
(senses).

Step 2 The set of contexts with their correspond-
ing senses is then used to train the WSD system
described in Section 4. For example, the context
“The building, which date from the mid-to-late
19th century, were built in a variety of High Victo-
rian architectural styles.” is a training example for
the sense defined by the Wikipedia page Building.

Step 3 Finally, the disambiguation model
learned in the previous step is used to map a pair
(F, l) to a Wikipedia article. (F, l) is represented
as a fictitious-context derived by aggregating the
frame definition and all lexical units associated to
F . We used the term “fictitious-context” to re-
mark the slight difference in structure compared
with the training contexts (i.e., the Wikipedia
paragraphs). For example, “. . . structures form-
ing an enclosure and providing protection from
the elements . . . acropolis arena auditorium bar
building . . . ” is the fictitious-context built for
the pair (Buildings, building.n). The sense, i.e.,
the Wikipedia article, assigned to the fictitious-
context by the disambiguation algorithm uniquely
defines the mapping. The previous example is as-
signed to the Wikipedia page Building.

4 The WSD Algorithm

Gliozzo et al. (2005) proposed an elegant approach
to WSD based on kernel methods. The algorithm
proved effective at Senseval-3 (Mihalcea and Ed-
monds, 2004) and, nowadays, it still represents
the state-of-the-art in WSD (Pradhan et al., 2007).
Specifically, they addressed these issues: (i) inde-
pendently modeling domain and syntagmatic as-
pects of sense distinction to improve feature rep-
resentativeness; and (ii) exploiting external knowl-
edge acquired from unlabeled data, with the pur-
pose of drastically reducing the amount of labeled

3http://download.wikimedia.org/enwiki/
20090306

4A context corresponds to a line of text in the Wikipedia
dump and it is represented as a paragraph in a Wikipedia ar-
ticle.

training data. The first direction is based on the
linguistic assumption that syntagmatic and domain
(associative) relations are crucial for representing
sense distictions, but they are originated by differ-
ent phenomena. Regarding the second direction, it
is possible to obtain a more accurate prediction by
taking into account unlabeled data relevant for the
learning problem (Chapelle et al., 2006).

On the other hand, kernel methods are theoret-
ically well founded in statistical learning theory
and shown good empirical results in many appli-
cations (Shawe-Taylor and Cristianini, 2004). The
strategy adopted by kernel methods consists of
splitting the learning problem into two parts. They
first embed the input data in a suitable feature
space, and then use a linear algorithm (e.g., sup-
port vector machines) to discover nonlinear pat-
terns in the input space. The kernel function is
the only task-specific component of the learning
algorithm. Thus, to develop a WSD system, one
only needs to define appropriate kernel functions
to represent the domain and syntagmatic aspects
of sense distinction and to exploit the properties
of kernel functions in order to define a composite
kernel that combines and extends individual ker-
nels.

The WSD system described in the following
consists of a composite kernel (Section 4.3) that
combines the domain and syntagmatic kernels.
The former (Section 4.1) models the domain as-
pects of sense distinction, the latter (Section 4.2)
represents the syntagmatic aspects of sense dis-
tinction.

4.1 Domain Kernel

It is been shown that domain information is fun-
damental for WSD (Magnini et al., 2002). For in-
stance, the (domain) polysemy between the com-
puter science and the medicine senses of the word
“virus” can be solved by considering the domain
of the context in which it appears.

In the context of kernel methods, domain infor-
mation can be exploited by defining a kernel func-
tion that estimates the domain similarity between
the contexts of the word to be disambiguated. The
simplest method to estimate the domain similarity
between two texts is to compute the cosine simi-
larity of their vector representations in the vector
space model (VSM). The VSM is a k-dimensional
space Rk, in which the text tj is represented by
a vector ~tj , where the ith component is the term
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frequency of the term wi in tj . However, such an
approach does not deal well with lexical variabil-
ity and ambiguity. For instance, despite the fact
that the sentences “he is affected by AIDS” and
“HIV is a virus” express concepts closely related,
their similarity is zero in the VSM because they
have no words in common (they are represented
by orthogonal vectors). On the other hand, due
to the ambiguity of the word “virus” , the simi-
larity between the sentences “the laptop has been
infected by a virus” and “HIV is a virus” is greater
than zero, even though they convey very different
messages.

To overcome this problem, Gliozzo et al. (2005)
introduced the domain model (DM) and show how
to define a domain VSM in which texts and terms
are represented in a uniform way. A DM is com-
posed of soft clusters of terms. Each cluster rep-
resents a semantic domain, that is, a set of terms
that often co-occur in texts having similar topics.
A DM is represented by a k × k′ rectangular ma-
trix D, containing the degree of association among
terms and domains.

The matrix D is used to define a function D :
Rk → Rk′ , that maps the vector ~tj represented in
the standard VSM, into the vector ~t′j in the domain
VSM. D is defined by

D(~tj) = ~tj(I
IDFD) = ~t′j , (1)

where ~tj is represented as a row vector, IIDF is a
k×k diagonal matrix such that iIDF

i,i = IDF (wi),
and IDF (wi) is the inverse document frequency
of wi.

In the domain space, the similarity is esti-
mated by taking into account second order rela-
tions among terms. For example, the similarity of
the two sentences “He is affected by AIDS” and
“HIV is a virus” is very high, because the terms
AIDS, HIV and virus are strongly associated with
the domain medicine.

Singular valued decomposition (SVD) is used to
acquire in a unsupervised way the DM from a cor-
pus represented by its term-by-document matrix
T. SVD decomposes the term-by-document ma-
trix T into three matrixes T ' VΣk′UT , where
V and U are orthogonal matrices (i.e., VT V = I
and UT U = I) whose columns are the eigenvec-
tors of TTT and TT T respectively, and Σk′ is
the diagonal k × k matrix containing the highest
k′ � k eigenvalues of T, and all the remaining
elements set to 0. The parameter k′ is the dimen-
sionality of the domain VSM and can be fixed in

advance. Under this setting, the domain matrix D
is defined by

D = INV
p

Σk′ (2)

where IN is a diagonal matrix such that iNi,i =
1q

〈 ~w′i,
~w′i〉

, ~w′i is the ith row of the matrix V
√

Σk′ .

The domain kernel is explicitly defined by

KD(ti, tj) = 〈D(ti),D(tj)〉, (3)

where D is the domain mapping defined in Equa-
tion 1. Finally, the domain kernel is further ex-
tended to include the standard bag-of-word kernel.

4.2 Syntagmatic Kernel
Kernel functions are not restricted to operate on
vectorial objects ~x ∈ Rk. In principle, kernels
can be defined for any kind of object representa-
tion, such as strings and trees. As syntagmatic re-
lations hold among words collocated in a partic-
ular temporal order, they can be modeled by ana-
lyzing sequences of words. Therefore, the string
kernel (Shawe-Taylor and Cristianini, 2004) is a
valid tool to represent such relations. It counts
how many times a (non-contiguous) subsequence
of symbols u of length n occurs in the input string
s, and penalizes non-contiguous occurrences ac-
cording to the number of gaps they contain. For-
mally, let V be the vocabulary, the feature space
associated with the string kernel of length n is in-
dexed by a set I of subsequences over V of length
n. The (explicit) mapping function is defined by

φnu(s) =
X

i:u=s(i)

λl(i), u ∈ V n, (4)

where u = s(i) is a subsequence of s in the posi-
tions given by the tuple i, l(i) is the length spanned
by u, and λ ∈]0, 1] is the decay factor used to pe-
nalize non-contiguous subsequences.

The associated string kernel is defined by

Kn(si, sj) = 〈φn(si), φ
n(sj)〉 =

X
u∈V n

φn(si)φ
n(sj)

(5)

Gliozzo et al. (2005) modified the generic def-
inition of the string kernel in order to take into
account (sparse) collocations. Specifically, they
defined syntagmatic kernels as a combination of
string kernels applied to sequences of words in a
fixed-size window centered on the word to be dis-
ambiguated. This formulation allows estimating
the number of common (sparse) subsequences of
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words (i.e., collocations) between two examples,
in order to capture syntagmatic similarity. The
syntagmatic kernel is defined by

KS(si, sj) =

pX
n=1

Kn(si, sj), (6)

where Kn is the string kernel defined in Equation
5 and the parameter n represents the length of the
subsequences analyzed when estimating the sim-
ilarity between contexts. Notice that the syntag-
matic kernel is only effective for those fictitious
contexts in which the lexical units do occur in
meaningful sentences, however this is not guaran-
teed for the lexical units without examples.

4.3 Composite Kernel
Finally, to combine domain and syntagmatic infor-
mation, the composite kernel is defined by

KWSD(ti, tj) = K̂D(ti, tj) + K̂S(ti, tj), (7)

where K̂D and K̂S are normalized kernels defined
in Equation 3 and 6, respectively.5 It follows di-
rectly from the explicit construction of the feature
space and from closure properties of kernels that
it is a valid kernel.

5 Mapping task

In this section we report the first experiment,
namely the mapping between (F, l) pairs and a
Wikipedia pages. We describe the experimental
setup and then present the corresponding evalua-
tion.

5.1 Experimental setup
We applied our algorithm to all lexical units that
do not have any example sentence in the FrameNet
database. In principle, the proposed approach can
be applied to every lexical unit, and we expect the
algorithm performance to improve if some exam-
ple sentences are already available because they
could be added to the fictitious-context used to
represent (F, l) in the system. Nevertheless, in this
explorative study we wanted to focus on the harder
cases, even if results are likely to be worse than on
the whole FrameNet database.

In FrameNet, 3,305 (F, l) pairs have no exam-
ple sentences (536 pairs with adjectival LU, 1313
verbal LU, 1456 nominal LU). Since Wikipedia is
basically a resource organized by concepts, which

5K̂(xi, xj) =
K(xi,xj)√

K(xj ,xj)K(xi,xi)

are generally expressed by nouns, we decided to
restrict our experiment to nominal lexical units.
Besides, many verbal and adjectival concepts in
Wikipedia are redirected to nominal identifiers.
So, we randomly selected 900 pairs with nominal
lexical units. For the moment, we decided to dis-
card lexical units expressed by multiwords (about
150), which will be taken into account in a future
version of our system. The average ambiguity of
the 900 LUs considered is 1.24 in FrameNet. In-
stead, every LU corresponds to about 35 candidate
senses in Wikipedia.

In order to perform WSD, we built the domain
model from the 200,000 most visited Wikipedia
articles. After removing terms that occur less than
5 times, the resulting dictionaries contain about
300,000 terms. We used the SVDLIBC pack-
age6 to compute the SVD, truncated to 100 di-
mensions. The experiments were performed using
the SVM package LIBSVM (Chang and Lin, 2001)
customized to embed the kernels described in Sec-
tion 4.

5.2 Evaluation

In this first evaluation step, we focus on the quality
of the mapping between (F, l) pairs and Wikipedia
articles. In order to evaluate the system output,
we created a gold standard where 250 (F, l) pairs
randomly extracted from the nominal subset de-
scribed above have been manually linked to the
Wikipedia page (if available) that best corresponds
to the meaning of l in F . The pairs have been cho-
sen in order to maximize the frame variability, i.e.
every pair corresponds to a different frame. Since
our gold standard contains 34% of all frames in
the FrameNet database, we believe that, despite its
limited size, it is well representative of FrameNet
characteristics. Evaluation was carried out com-
paring the system output against the gold stan-
dard. Results are reported in Table 1. The base-
line was computed considering the most frequent
sense of every lexical unit in Wikipedia. This ele-
ment is obtained by taking into account all occur-
rences in Wikipedia where the lexical unit LU we
consider is anchored to a given page. The most
frequent sense for LU is the page to which LU is
most frequently linked in Wikipedia. Since about
14% of the lexical units in the gold standard are
not present in Wikipedia, we also estimated an up-
per bound accuracy of 0.86. This confirms our in-

6http://tedlab.mit.edu/˜dr/svdlibc/
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tuition that FrameNet and Wikipedia are linkable
resources to a large extent and that our task is well-
founded.

Accuracy
Baseline 0.66
System output 0.71
Upper bound 0.86

Table 1: Accuracy evaluation.

Wrong assignments include also problematic
cases that are not directly connected to proper sys-
tem errors. One of the most relevant issues is the
different granularity between FrameNet frames
and Wikipages. For example, the NETWORK

frame is defined as “a set of entities of the same
or similar types (Nodes) are linked to each other
by Connections to form a Network allowing for
the flow of information, resources, etc.”. Even
if the listed lexical units (network.n and web.n)
and some examples refer to the informatics do-
main, the situation described in the FrameNet
database is more general. Wikipedia instead lists
several pages that may be seen as subdomains
of NETWORK such as Computer network, So-
cial network, Telecommunications network, etc.
In the future, it may be worth modifying the sys-
tem in order to allow multiple assignments of
Wikipages for every frame.

In other cases, frame definitions seem not to
be very consistent and it is very difficult to dis-
criminate between two frames even for a human
annotator. For example, ESTIMATED VALUE and
ESTIMATING include both estimation.n as lexical
unit, but since their frame definitions are almost
the same and the other lexical units in the same
frame are not discriminative, the system links both
(F, l) pairs to the same Wikipedia article.

6 English FrameNet expansion

In the following part of the experiment, we want
to investigate to what extent the FrameNet –
Wikipedia mapping can be effectively applied to
automatically expand the FrameNet database with
new example sentences, and eventually to acquire
new lexical units. For every (F, l) pair, we con-
sider the linked Wikipedia sense s and extract all
sentences Cs in Wikipedia with a reference to
s. In this way, we can assume that, if s was
linked to (F, l), Cs can be included in the exam-
ple sentences of F . This repository of sentences

is already divided by sense and can significantly
speed-up manual annotation. On the other hand,
the extracted sentences could enrich the training
set of machine learning systems for frame annota-
tion to improve the frame identification step. In
fact, this task has raised growing interest in the
NLP community, with a devoted challenge at the
last SemEval campaign (Baker et al., 2007).

This retrieval process allows also to ex-
tract from Cs all words Ws that have an
embedded reference to s in the form <a
href=“/wiki/Wiki Sense”...>word</a>. In this
way, Ws are automatically included in F as new
lexical units. In this phase, redirecting links are
very useful because they automatically connect a
word or expression to its nearest sense in case
there is no specific page for this word. The infor-
mation about redirecting allows also to account for
orthographic variations of the same lexical unit,
for example collectible is redirected to collectable.

We explain the data extraction process in
the light of an example from our dataset.
Our WSD system assigned to the (F, l) pair
(WORD RELATIONS – homonym.n) the Wikipage
http://en.wikipedia.org/wiki/Homonym.
So, we extracted from the English Wikipedia
dump all sentences where the anchor <a
href=”/wiki/Homonym”... > appears and as-
sumed that the word or multiword expression that
is linked to the Homonym site may be a good can-
didate as lexical unit for the WORD RELATIONS

frame. In this case, the example sentences were
186. Apart from homonym, the candidate lexical
units are homograph, homophone, homophonous,
homonymic, heteronym, same. Among them, only
the latter is not appropriate, even if the sentence
where it occurs is semantically connected to the
WORD RELATIONS frame: “In Hebrew the word
‘thus’ has the same triconsonantal root”. Instead,
homonymic and heteronym can be acquired as
new lexical units for WORD RELATIONS, and
homograph, for which no example sentences
are provided in FrameNet, can be automatically
instantiated by a set of examples.

6.1 Experimental setup

We considered 893 frame – lexical unit pairs as-
signed to Wikipedia pages following the algorithm
described in Section 3. We discarded 7 pairs for
which the system reported an assignment failure,
i.e. the best sense delivered is the disambigua-
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tion page. Then we extracted a set of sentences
for every (F, l) pair as described in the previous
paragraph. Statistics about the retrieved data is re-
ported in Table 2.

English Wikipedia
(F, l) pairs 893
N. of extracted sents 964,268
Avg. sents per (F, l) 1,080

Table 2: Extracted data from English Wikipedia

6.2 Evaluation
The dimension of the extracted corpus does not
allow to carry out a comprehensive evaluation.
For this reason, we manually evaluated 1,000 sen-
tences, i.e. we considered 20 (F, l) pairs, and for
each of them we evaluated 50 sentences extracted
from our large repository. Both (F, l) pairs and
the assigned sentences were randomly selected.
In particular, the 20 (F, l) pairs do not contain
only correctly assigned pairs, in fact three of them
are wrong. Anyhow, the 20 pairs seem to be
a representative subset of the 893 pairs consid-
ered in our experiment because they include both
monosemic lexical units (gynaecology.n in MED-
ICAL SPECIALTIES) and more ambiguous ones
(club.n in the WEAPON frame).

Our evaluation shows that 78% of the sentences
were correctly linked to (F, l) pairs. This value is
higher that the mapping accuracy between (F, l)
and Wikipages reported in Section 5.2. In fact,
we noticed that even if the Wikipage assigned to
(F, l) is not the article that best corresponds to the
meaning of l in F , some sentences pointing to it
may be appropriate to express l.

As we already mentioned in Section 5.2,
the different granularity of the information en-
coded by frames and Wikipages impacts on
the output quality. For example, conversion.n
in CAUSE CHANGE has a causative meaning,
while it implies a personal process in UN-
DERGO CHANGE. The mapping, instead, links
(CAUSE CHANGE – conversion.n) to the Reli-
gious conversion page, and all the sentences col-
lected point to religious conversion, regardless of
their causative form or not. Another characteristic
of this approach is that we can acquire new lexi-
cal units regardless of their part-of-speech, even if
we start from nominal lexical units. This proves
that we do not need to apply the initial mapping to

verbal or adjectival LUs to obtain new data for all
parts of speech. For example, we linked (MEDI-
CAL SPECIALTIES – gynaecology.n) to the Gynae-
cology Wikipage. Consequently, we could include
the adjective gynaecologic, pointing to the Gy-
naecology page, into the MEDICAL SPECIALTIES

frame for sentences like “Fellowship training in a
gynaecologic subspeciality can range from one to
four years”. However, this advantage can also turn
into a weakness, because gynaecologist is also
redirected to the Gynaecology page, but it belongs
to MEDICAL PROFESSIONALS and should not be
included into MEDICAL SPECIALTIES.

For the 20 (F, l) pairs considered in the given
sentences, it was possible also to retrieve 8 lex-
ical units that are not present in FrameNet, for
example billy-club for the WEAPON frame. Ex-
ploiting redirections and anchoring strategies, our
induction method can account for orthographical
variations, for example it acquires both memorize
and memorise. On the other hand, also misspelled
words may be collected, for instance gynaecolo-
gial instead of gynaecological.

7 Multilingual FrameNet expansion

One of the great advantages of Wikipedia is its
availability in several languages. The English ver-
sion is by far the most extended, but a considerable
repository of pages is available also for other lan-
guages, esp. European ones. In general, articles on
the same object in different languages are edited
independently and do not have to be translations
of one another, but are linked to each other by their
authors. In this way, the multilingual versions of
Wikipedia can be easily exploited to build compa-
rable corpora, with connected Wikipages in differ-
ent languages dealing with the same contents.

In this research step, we focus on this aspect of
Wikipedia and propose a methodology that, using
the English Wikipages as a bridge, automatically
acquires new lexical units and example sentences
also for other languages. This would represent the
starting point towards the creation of FrameNet
for new languages. Indeed, FrameNet structure
comprises a language-independent level of infor-
mation, namely frame and frame element defini-
tions, and a language-dependent one, i.e. the lex-
ical units and the example sentences. This makes
the resource particularly suitable to corpus-based
(semi) automatic creation of FrameNet for new
languages, because the descriptive part can be pre-
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served and the language-dependent layer can be
populated with new instances in other languages
(Crespo and Buitelaar, 2008).

We apply our extraction algorithm to the Italian
Wikipedia. Since several approaches have been
experimented to (semi) automatically build Italian
FrameNet using WordNet (De Cao et al. (2008)
and Tonelli and Pighin (2009)), we believe that
our new proposal to exploit Wikipedia may be of
interest in the research community. Anyhow, the
approach can be exploited in principle for every
language available in Wikipedia.

7.1 Experimental setup

Similarly to the data extraction process described
in Section 6, we consider for every (F, l) pair in
English the linked Wikipedia sense s, in English
as well. Then, we retrieve the Italian Wikipedia
sense si linked to s and extract all sentences Ci

in the Italian Wikipedia dump7 with a reference to
si. In this way, we can assume that Ci are exam-
ple sentences of F and that the words or expres-
sions Wi in Ci containing an embedded reference
to si are good candidate lexical units of F in the
Italian FrameNet. For example, if we link http:

//en.wikipedia.org/wiki/Court to the JUDI-
CIAL BODY frame, we first retrieve the Italian
version of the site http://it.wikipedia.org/

wiki/Tribunale. Then, with a top-down strat-
egy, we further extract all Italian sentences point-
ing to the Tribunale page and acquire as lexi-
cal units all words with an embedded reference to
this concept, for example tribunale and corte. In
this way, we can include the extracted lexical units
and the sentences where they occur in the JUDI-
CIAL BODY frame for Italian.

Given the 893 (F, l) pairs in English and the
linked Wikipedia senses described in 6.2, we first
extracted the Italian Wikipages that are linked to
the English ones. Then for every linked Wikipage
in Italian, we retrieved all sentences with a refer-
ence pointing to that page in the Italian Wikipedia
dump. Statistics about the extracted data are re-
ported in Table 3.

Since the Italian Wikipedia is about one fifth of
the English one, it was not possible to map ev-
ery English Wikipage with an Italian article. In
fact, only 371 senses out of 893 in English were
linked to an Italian page. Also the average num-

7http://download.wikimedia.org/itwiki/
20090203

Italian Wikipedia
Linked Wikipages in Italian 371
N. of extracted sents 23,078
Avg. sents per Italian sense 62

Table 3: Extracted data from Italian Wikipedia

ber of sentences extracted for every sense is much
smaller (62 vs. 1,080). Anyhow, this does not rep-
resent a problem because in the English FrameNet,
the lexical units whose annotation is considered
to be complete are usually instantiated by set of
20 annotated sentences on average. So, according
to the FrameNet standard, 60 sentences are more
than enough to represent the meaning of a lexical
unit in a frame.

7.2 Evaluation
In this evaluation part, we took into account 1,000
sentences, in order to have a comparable dataset
w.r.t. the evaluation for English. However, the sets
of Italian sentences extracted for every (F, l), i.e.
for every Wikipedia article, were much smaller,
so we increased the number of randomly chosen
(F, l) pairs to 80. Our evaluation is focused on the
quality of the sentences and aims at assessing if the
given sentences are correctly assigned to the (F, l)
pairs. We report 69% accuracy, which is 9% lower
than for English. Apart from the same errors and
issues reported for English, a decrease in perfor-
mance can be explained by the fact that, since less
articles are present w.r.t. the English version, redi-
rections and internal links tend to be less precise
and fine-grained. For example, the word “diritti”
in the sense of “(human) rights” redirects to the ar-
ticle about Diritto, corresponding to Law as a sys-
tem of rules. On the contrary, Law and Rights have
two different pages in English. Besides, the differ-
ent quality of the two resources can also depend
on the smaller number of users that edit and check
the Italian articles. From the 1,000 sentences eval-
uated we extracted 145 new lexical units: since
Italian FrameNet does not exist yet, every lexical
unit in a sentence that is correct can be straightfor-
wardly included in the first version of the resource.

8 Conclusions and Future work

In this work, we have proposed to apply a
word sense disambiguation system to a new
task, namely the linking between FrameNet and
Wikipedia. Results are promising and show that
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the task is adequately substantiated. The proposed
approach can help enriching FrameNet with new
example sentences and lexical units and provide a
starting point for the creation of FrameNet-like re-
sources in all Wikipedia languages. On the one
hand, the retrieved data could speed up human
annotation, requiring only a manual validation.
On the other hand, the extracted sentences could
provide enough training data to machine learning
systems for frame assignment, since insufficient
frame attestations in the FrameNet database are a
major problem for such systems.

In the next research step, we plan to carry out an
extended evaluation process in order to compute
inter-annotator agreement and eventually point out
validation problems. Then, we want to extend
the mapping and the data extraction process to all
(F, l) pairs in FrameNet (about 10,000). The re-
trieved sentences will be made available as train-
ing or annotation material. Besides, we want
to create an online resource where the links be-
tween (F, l) pairs and Wikipages are made explicit
and where users can browse the retrieved sen-
tences. The resource can be produced and made
available with a reduced effort for every language
in Wikipedia. Anyway, the English version has
proved to be more precise, while the resource for
new languages would require a more accurate re-
vision.
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Abstract

Manual evaluation of translation quality is
generally thought to be excessively time
consuming and expensive. We explore a
fast and inexpensive way of doing it using
Amazon’s Mechanical Turk to pay small
sums to a large number of non-expert an-
notators. For $10 we redundantly recre-
ate judgments from a WMT08 transla-
tion task. We find that when combined
non-expert judgments have a high-level of
agreement with the existing gold-standard
judgments of machine translation quality,
and correlate more strongly with expert
judgments than Bleu does. We go on to
show that Mechanical Turk can be used to
calculate human-mediated translation edit
rate (HTER), to conduct reading compre-
hension experiments with machine trans-
lation, and to create high quality reference
translations.

1 Introduction

Conventional wisdom holds that manual evalua-
tion of machine translation is too time-consuming
and expensive to conduct. Instead, researchers
routinely use automatic metrics like Bleu (Pap-
ineni et al., 2002) as the sole evidence of im-
provement to translation quality. Automatic met-
rics have been criticized for a variety of reasons
(Babych and Hartley, 2004; Callison-Burch et al.,
2006; Chiang et al., 2008), and it is clear that
they only loosely approximate human judgments.
Therefore, having people evaluate translation out-
put would be preferable, if it were more practical.

In this paper we demonstrate that the manual
evaluation of translation quality is not as expensive
or as time consuming as generally thought. We
use Amazon’s Mechanical Turk, an online labor
market that is designed to pay people small sums

of money to complete human intelligence tests –
tasks that are difficult for computers but easy for
people. We show that:

• Non-expert annotators produce judgments
that are very similar to experts and that have
a stronger correlation than Bleu.

• Mechanical Turk can be used for complex
tasks like human-mediated translation edit
rate (HTER) and creating multiple reference
translations.

• Evaluating translation quality through read-
ing comprehension, which is rarely done, can
be easily accomplished through creative use
of Mechanical Turk.

2 Related work

Snow et al. (2008) examined the accuracy of la-
bels created using Mechanical Turk for a variety
of natural language processing tasks. These tasks
included word sense disambiguation, word simi-
larity, textual entailment, and temporal ordering
of events, but not machine translation. Snow et
al. measured the quality of non-expert annotations
by comparing them against labels that had been
previously created by expert annotators. They re-
port inter-annotator agreement between expert and
non-expert annotators, and show that the average
of many non-experts converges on performance of
a single expert for many of their tasks.

Although it is not common for manual evalu-
ation results to be reported in conference papers,
several large-scale manual evaluations of machine
translation quality take place annually. These in-
clude public forums like the NIST MT Evalu-
ation Workshop, IWSLT and WMT, as well as
the project-specific Go/No Go evaluations for the
DARPA GALE program. Various types of human
judgments are used. NIST collects 5-point fluency
and adequacy scores (LDC, 2005), IWSLT and

286



WMT collect relative rankings (Callison-Burch et
al., 2008; Paul, 2006), and DARPA evaluates us-
ing HTER (Snover et al., 2006). The details of
these are provided later in the paper. Public eval-
uation campaigns provide a ready source of gold-
standard data that non-expert annotations can be
compared to.

3 Mechanical Turk

Amazon describes its Mechanical Turk web ser-
vice1 as artificial artificial intelligence. The name
and tag line refer to a historical hoax from the 18th
century where an automaton appeared to be able to
beat human opponents at chess using a clockwork
mechanism, but was, in fact, controlled by a per-
son hiding inside the machine. The Mechanical
Turk web site provides a way to pay people small
amounts of money to perform tasks that are sim-
ple for humans but difficult for computers. Exam-
ples of these Human Intelligence Tasks (or HITs)
range from labeling images to moderating blog
comments to providing feedback on relevance of
results for a search query.

Anyone with an Amazon account can either
submit HITs or work on HITs that were submit-
ted by others. Workers are sometimes referred to
as “Turkers” and people designing the HITs are
“Requesters.” Requesters can specify the amount
that they will pay for each item that is completed.
Payments are frequently as low as $0.01. Turkers
are free to select whichever HITs interest them.

Amazon provides three mechanisms to help en-
sure quality: First, Requesters can have each HIT
be completed by multiple Turkers, which allows
higher quality labels to be selected, for instance,
by taking the majority label. Second, the Re-
quester can require that all workers meet a particu-
lar set of qualications, such as sufficient accuracy
on a small test set or a minimum percentage of
previously accepted submissions. Finally, the Re-
quester has the option of rejecting the work of in-
dividual workers, in which case they are not paid.

The level of good-faith participation by Turkers
is surprisingly high, given the generally small na-
ture of the payment.2 For complex undertakings
like creating data for NLP tasks, Turkers do not

1http://www.mturk.com/
2For an analysis of the demographics of Turk-

ers and why they participate, see: http://
behind-the-enemy-lines.blogspot.com/
2008/03/mechanical-turk-demographics.
html

have a specialized background in the subject, so
there is an obvious tradeoff between hiring indi-
viduals from this non-expert labor pool and seek-
ing out annotators who have a particular expertise.

4 Experts versus non-experts

We use Mechanical Turk as an inexpensive way
of evaluating machine translation. In this section,
we measure the level of agreement between ex-
pert and non-expert judgments of translation qual-
ity. To do so, we recreate an existing set of gold-
standard judgments of machine translation quality
taken from the Workshop on Statistical Machine
Translation (WMT), which conducts an annual
large-scale human evaluation of machine transla-
tion quality. The experts who produced the gold-
standard judgments are computational linguists
who develop machine translation systems.

We recreated all judgments from the WMT08
German-English News translation task. The out-
put of the 11 different machine translation systems
that participated in this task was scored by ranking
translated sentences relative to each other. To col-
lect judgements, we reproduced the WMT08 web
interface in Mechanical Turk and provided these
instructions:

Evaluate machine translation quality Rank each transla-

tion from Best to Worst relative to the other choices (ties are

allowed). If you do not know the source language then you

can read the reference translation, which was created by a

professional human translator.

The web interface displaced 5 different machine
translations of the same source sentence, and had
radio buttons to rate them.

Turkers were paid a grand total of $9.75 to
complete nearly 1,000 HITs. These HITs ex-
actly replicated the 200 screens worth of expert
judgments that were collected for the WMT08
German-English News translation task, with each
screen being completed by five different Turkers.
The Turkers were shown a source sentence, a ref-
erence translation, and translations from five MT
systems. They were asked to rank the translations
relative to each other, assigning scores from best
to worst and allowing ties.

We evaluate non-expert Turker judges by mea-
suring their inter-annotator agreement with the
WMT08 expert judges, and by comparing the cor-
relation coefficient across the rankings of the ma-
chine translation systems produced by the two sets
of judges.
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57.8% 57.8% 57.8% 57.8% 57.8% <--reported in WMT08 paper<--reported in WMT08 paper

cat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",RANK," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",RANK," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",RANK," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",RANK," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",RANK," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",RANK," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",RANK," | perl ../process_judgements.pl

1 2 3 4 5

55.8% 54.8% 55.1% 53.2% 53.4% perl analyze.perl constituent-ranking-Batch_25553_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.plperl analyze.perl constituent-ranking-Batch_25553_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.plperl analyze.perl constituent-ranking-Batch_25553_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.plperl analyze.perl constituent-ranking-Batch_25553_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.plperl analyze.perl constituent-ranking-Batch_25553_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.plperl analyze.perl constituent-ranking-Batch_25553_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.plperl analyze.perl constituent-ranking-Batch_25553_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.pl

55.8% 54.8% 55.1% 53.2% 53.4%

64.0% 64.0% 64.0% 64.0% 64.0%  ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.pl ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.pl ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.pl ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.pl ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.pl ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.pl ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT," | perl ../process_judgements.pl

1 2 3 4 5

67.5% perl analyze-yes-no.perl constituent-yes-no-Batch_40756_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plperl analyze-yes-no.perl constituent-yes-no-Batch_40756_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plperl analyze-yes-no.perl constituent-yes-no-Batch_40756_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plperl analyze-yes-no.perl constituent-yes-no-Batch_40756_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plperl analyze-yes-no.perl constituent-yes-no-Batch_40756_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plperl analyze-yes-no.perl constituent-yes-no-Batch_40756_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plperl analyze-yes-no.perl constituent-yes-no-Batch_40756_result.csv.itemIDs_fixed | cat - ../wmt08-human-judgments.csv.expert_annotator_id | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.pl

67.5%

68.0% 68.0% 68.0% 68.0% 68.0% cat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.plcat ../wmt08-human-judgments.csv | grep German-English | grep -v Europarl | grep ",CONSTITUENT_ACCEPT," | perl ../process_judgements.pl
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Non-expert agreement with experts

Number of non-experts voting

Unweighted
Weighted by non-experts 
Weighted by experts
Expert v. Expert Agreement

Figure 1: Agreement on ranking translated
sentences increases as more non-experts vote.
Weighting non-experts’ votes based on agreement
with either experts or other non-expert increases
it up further. Five weighted non-experts reach the
top line agreement between experts.

Combining ranked judgments Each item is re-
dundantly judged by five non-experts. We would
like to combine of their judgments into a single
judgment. Combining ranked judgments it is more
complicated than taking simple majority vote. We
use techniques from preference voting, in which
voters rank a group of candidates in order of pref-
erence. To create an ordering from the the ranks
assigned to the systems by multiple Turkers, we
use Schulze’s method (Schulze, 2003). It is guar-
anteed to correctly pick the winner that is pre-
ferred pairwise over the other candidates. It fur-
ther allows a complete ranking of candidates to be
constructed, making it a suitable method for com-
bining ranked judgments.

Figure 1 shows the effect of combining non-
experts judgments on their agreement with ex-
perts. Agreement is measured by examining each
pair of translated sentence and counting when two
annotators both indicated that A > B, A < B,
or A = B. Chance agreement is 1

3 . The top line
indicates the inter-annotator agreement between
WMT08 expert annotators, who agreed with each
other 58% of the time. When we have only a sin-
gle non-expert annotator’s judgment for each item,
the agreement with experts is only 41%. As we
increase the number of non-experts to five, their
agreement with experts improves to 53%, if their

Turker num HITs agreement
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NRCDE
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AB1UOP54
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A38NBJV89

Z0LZX
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36OWV

A2CGL84Z8

W7SBS

A37CX0VE

G3TG23

A1036VFVD

H85DY

A2Y4KSQZ

JTFGGN

A35Y70MA3

4AFQ6

A2XUF8U8

TMOZ15

AA0KYO0D

ZS6WI

A339F49S4

6I0EC

A20YJNU6Y

X5DMS

A1XH9D9A

4NHG4

A1A6PCJW

CD65GU

A3VK3AVK

Z6WE90

A1LZZD7E

C0CUR5

AY1636IGK

CLHY

ACPRBLND

ZYK62

A2MLF2ME

MTX888

AMXXRYD

C28BY8

A2AJJ7A2V

LJR8V

AVIKREHT

NVTR5

AP914VPXZ

EVUW

AANG4NIT

PGM9A

A3JG7O1D

F5P7TI

A3IP9RZLIV

3UVJ

A2IINUWLH

XF4L7

A1O9BHBJ

KVI5PS

A1EVIR5BC

W38EG

A18B5QL32

8E02A

A16YNOXG

4YX7W0

AZSX83KO

OREJ0

AYWWEG6

5YVGCI

AS65HZZ5T

2B0U

A3MBIJON2

PHBNC

A37JQWRR

V7IS37

A2HBWOM

2DGNTCF

A24ZRABM

VOF68V

A1FM4EOZ

WGF6VV

A19X9J18Q

19NGY

AYUEYT9T

ZJDGU

AN7O7OLS

9ND8K

A8H56XB9K

7DB5

A3FGNLFD

OSH8W7

A36EOEBV

BUTO85

A2U5YY5E2

KPTP2

A2SB2BW2

W4T4WW

A20J9VGW

RY6KCP

A1OCUUH

OWY8B52

A1MBZ6LM

7JZKP7

A1E8EDB7

UZK38D

AUAZYGJW

M6JLK

A523O8LQ

K0C6E

A3V6V5LSC

4PN8H

A3OHQRF1

MDQ99B

A3MVGVHE

2HCERO

A3LSSQO6

UWSKFR

A3DOUTFZ

2DG53L

A2WLPO1V

YCAEQF

A2LYIHZLR

YIKPQ

A2HNP1YL

1IBFMU

A2CGQY6J

ZGGLYP

A2B8DTCHI

9U902

A2A4OZEX

98MVZS

A25ZA4IBIE

ZGNC

A235PZXM

LBGA4Q

A1T4TJIPC

OQOGP

A1SXPREF

GUADVY

A1MI7U9VJ

HRIPK

A1KS77MY

C4GGZ3

A1JQN7G6

S8158G

A169X9KQI

7BMA3

A15A3FUIS

ZDPI4

A14LPCJ1O

1773B

190 0.32321429

70 0.5710754

66 0.24120603

39 0.29553903

39 0.3436853

38 0.39960239

34 0.58924731

30 0.41605839

25 0.32698413

25 0.30027548

20 0.375

17 0.60888889

15 0.34259259

13 0.43842365

13 0.44970414

11 0.38922156

11 0.6

10 0.39751553

10 0.57236842

10 0.5

9 0.60759494

9 0.66666667

8 0.61151079

8 0.67346939

8 0.61983471
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7 0.44615385

6 0.60683761
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6 0.5

5 0.50943396
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Figure 2: The agreement of individual Turkers
with the experts. The most prolific Turker per-
formed barely above chance, indicating random
clicking. This suggests that users who contribute
more tend to have lower quality.

votes are counted equally.

Weighting votes Not all Turkers are created
equal. The quality of their works varies. Fig-
ure 2 shows the agreement of individual Turkers
with expert annotators, plotted against the num-
ber of HITs they completed. The figure shows
that their agreement varies considerably, and that
Turker who completed the most judgments was
among the worst performing.

To avoid letting careless annotators drag down
results, we experimented with weighted voting.
We weighted votes in two ways:

• Votes were weighted by measuring agree-
ment with experts on the 10 initial judgments
made. This would be equivalent to giving
Turkers a pretest on gold standard data and
then calibrating their contribution based on
how well they performed.

• Votes were weighted based on how often one
Turker agreed with the rest of the Turkers
over the whole data set. This does not re-
quire any gold standard calibration data. It
goes beyond simple voting, because it looks
at a Turker’s performance over the entire set,
rather than on an item-by-item basis.

Figure 1 shows that these weighting mechanisms
perform similarly well. For this task, deriving
weights from agreement with other non-experts
is as effective as deriving weights from experts.
Moreover, by weighting the votes of five Turkers,
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bleu

1 0.957 0.989 0.879 0.993 0.893 0.989 0.864 0.989 0.857 0.979

0.957 1 0.921 0.929 0.932 0.857 0.957 0.786 0.975 0.779 0.964

0.989 0.921 1 0.854 0.996 0.893 0.979 0.871 0.975 0.889 0.968

0.879 0.929 0.854 1 0.857 0.693 0.900 0.739 0.904 0.654 0.886

0.993 0.932 0.996 0.857 1 0.896 0.982 0.861 0.979 0.896 0.964

0.893 0.857 0.893 0.693 0.896 1 0.846 0.768 0.907 0.829 0.918

0.989 0.957 0.979 0.900 0.982 0.846 1 0.868 0.975 0.839 0.961

0.864 0.786 0.871 0.739 0.861 0.768 0.868 1 0.836 0.671 0.857

0.989 0.975 0.975 0.904 0.979 0.907 0.975 0.836 1 0.846 0.989

0.857 0.779 0.889 0.654 0.896 0.829 0.839 0.671 0.846 1 0.818

0.979 0.964 0.968 0.886 0.964 0.918 0.961 0.857 0.989 0.818 1

0.800 0.746 0.793 0.757 0.811 0.711 0.821 0.707 0.793 0.689 0.757

0.700 0.639 0.721 0.625 0.739 0.725 0.714 0.732 0.679 0.636 0.675

0.789 0.725 0.811 0.814 0.807 0.689 0.789 0.679 0.789 0.664 0.782

0.779 0.664 0.829 0.668 0.825 0.757 0.779 0.739 0.757 0.779 0.764

0.743 0.671 0.789 0.714 0.782 0.671 0.761 0.786 0.732 0.725 0.757

0.871 0.904 0.850 0.832 0.861 0.825 0.886 0.746 0.879 0.721 0.886

0.875 0.800 0.893 0.800 0.889 0.800 0.871 0.893 0.857 0.711 0.875

0.664 0.604 0.668 0.679 0.682 0.554 0.693 0.732 0.654 0.564 0.643

0.900 0.893 0.904 0.871 0.911 0.771 0.936 0.854 0.900 0.811 0.889

0.786 0.739 0.793 0.657 0.814 0.846 0.754 0.564 0.804 0.850 0.782 0.7679090909
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Figure 3: Correlation with experts’ ranking of sys-
tems. All of the different ways of combining the
non-expert judgments perform at the upper bound
of expert-expert correlation. All correlate more
strongly than Bleu.

we are able to achieve the same rate of agreement
with experts as they achieve with each other.

Correlation when ranking systems In addi-
tion to measuring agreement with experts at
the sentence-level, we also compare non-expert
system-level rankings with experts. Following
Callison-Burch et al. (2008), we assigned a score
to each of the 11 MT systems based on how of-
ten its translations were judged to be better than or
equal to any other system. These scores were used
to rank systems and we measured Spearman’s ρ
against the system-level ranking produced by ex-
perts.

Figure 3 shows how well the non-expert rank-
ings correlate with expert rankings. An up-
per bound is indicated by the expert-expert bar.
This was created using a five-fold cross valida-
tion where we used 20% of the expert judgments
to rank the systems and measured the correlation
against the rankings produced by the other 80%
of the judgments. This gave a ρ of 0.78. All ways
of combining the non-expert judgments resulted in
nearly identical correlation, and all produced cor-
relation within the range of with what we would
experts to.

The rankings produced using Mechanical Turk
had a much stronger correlation with the WMT08
expert rankings than the Blue score did. It should
be noted that the WMT08 data set does not have
multiple reference translations. If multiple ref-

erences were used that Bleu would likely have
stronger correlation. However, it is clear that the
cost of hiring professional translators to create
multiple references for the 2000 sentence test set
would be much greater than the $10 cost of col-
lecting manual judgments on Mechanical Turk.

5 Feasibility of more complex evaluations

In this section we report on a number of cre-
ative uses of Mechanical Turk to do more so-
phisticated tasks. We give evidence that Turkers
can create high quality translations for some lan-
guages, which would make creating multiple ref-
erence translations for Bleu less costly than using
professional translators. We report on experiments
evaluating translation quality with HTER and with
reading comprehension tests.

5.1 Creating multiple reference translations
In addition to evaluating machine translation qual-
ity, we also investigated the possibility of using
Mechanical Turk to create additional reference
translations for use with automatic metrics like
Bleu. Before trying this, we were skeptical that
Turkers would have sufficient language skills to
produce translations. Our translation HIT had the
following instructions:
Translate these sentences Your task is to translate 10 sen-
tences into English. Please make sure that your English
translation:

• Is faithful to the original in both meaning and style

• Is grammatical, fluent, and natural-sounding English

• Does not add or delete information from the original
text

• Does not contain any spelling errors

When creating your translation, please:

• Do not use any machine translation systems

• You may look up a word on wordreference.com if you
do not know its translation

Afterwards, we’ll ask you a few quick questions about your

language abilities.

We solicited translations for 50 sentences in
French, German, Spanish, Chinese and Urdu, and
designed the HIT so that five Turkers would trans-
late each sentence.

Filtering machine translation Upon inspecting
the Turker’s translations it became clear that many
had ignored the instructions, and had simply cut-
and-paste machine translation rather then translat-
ing the text themselves. We therefore set up a sec-
ond HIT to filter these out. After receiving the
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Figure 4: Bleu scores quantifying the quality of Turkers’ translations. The chart shows the average Bleu
score when one LDC translator is compared against the other 10 translators (or the other 2 translators in
the case of Urdu). This gives an upper bound on the expected quality. The Turkers’ translation quality
falls within a standard deviation of LDC translators for Spanish, German and Chinese. For all languages,
Turkers produce significantly better translations than an online machine translation system.

translations, we had a second group of Turkers
clean the results.

Detect machine translation Please use two online machine

translation systems to translate the text into English, and then

copy-and-paste the translations into the boxes below. Finally,

look at a list of translations below and click on the ones that

look like they came from the online translation services.

We automatically excluded Turkers whose transla-
tions were flagged 30% of the time or more.

Quality of Turkers’ translations Our 50 sen-
tence test sets were selected so that we could com-
pare the translations created by Turkers to transla-
tions commissioned by the Linguistics Data Con-
sortium. For the Chinese, French, Spanish, and
German translations we used the the Multiple-
Translation Chinese Corpus.3 This corpus has
11 reference human translations for each Chinese
source sentence. We had bilingual graduate stu-
dents translate the first 50 English sentences of
that corpus into French, German and Spanish, so
that we could re-use the multiple English reference
translations. The Urdu sentences were taken from
the NIST MT Eval 2008 Urdu-English Test Set4

which includes three distinct English translations
for every Urdu source sentence.

Figure 4 shows the Turker’s translation quality
in terms of the Bleu metric. To establish an upper
bound on expected quality, we determined what

3LDC catalog number LDC2002T01
4LDC catalog number LDC2009E11

the Bleu score would be for a professional trans-
lator when measured against other professionals.
We calculated a Bleu score for each of the 11
LDC translators using the other 10 translators as
the reference set. The average Bleu score for
LDC2002T01 was 0.54, with a standard deviation
of 0.07. The average Bleu for the Urdu test set is
lower because it has fewer reference translations.

To measure the Turkers’ translation quality, we
randomly selected translations of each sentence
from Turkers who passed the Detect MT HIT, and
compared them against the same sets of 10 ref-
erence translations that the LDC translators were
compared against. We randomly sampled the
Turkers 10 times, and calculated averages and
standard deviations for each source language. Fig-
ure 4 the Bleu scores for the Turkers’ translations
of Spanish, German and Chinese are within the
range of the LDC translators. For all languages,
the quality is significantly higher than an online
machine translation system. We used Yahoo’s Ba-
belfish for Spanish, German, French and Chinese,5

was likely and Babylon for Urdu.

Demographics We collected demographic in-
formation about the Turkers who completed the
translation task. We asked how long they had spo-
ken the source language, how long they had spo-

5We also compared against Google Translate, but ex-
cluded the results since its average Bleu score was better than
the LDC translators, likely because the test data was used to
train Google’s statistical system.
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Spanish
Native lang English (7 people), Spanish (2), English-Spanish bilingual, Portuguese English, Hindi
Country USA (7 people), Mexico (3), Brazil, USA (2)
Spanish level 30+ years (2 people), 15 years (2), 6 years, 2 years (2), whole life (4) 18 years, 4 years
English level 15 years (3), whole life (9) whole life , 15 years

German
Native lang German (3), Turkish (2), Italian, Danish, English, Norwegian, Hindi Marathi, Tamil, Hindi, English
Country Germany (3), USA, Italy, China, Denmark, Turkey, Norway, India USA (2), India (2)
German level 20 years (2), 10 years (3), 5 years (2), 2 years, whole life (3) 10 years, 1 year (2)
English level 20+ years (4), 10-20 years (5) whole life whole life (2), 15-20 years (2)

French
Native lang English (9 people), Portuguese, Hindi English (2)
Country USA (6), Israel, Singapore, UK, Brazil, India USA (2)
French level 20+ years (4 people), 8-12 years (4), 5 years (2), 2 years 10 years, 1 years, 6 years
English level whole life (9), 20 years, 15 years whole life (2),

Chinese
Native lang Hindi (2) English (3) Hindi, Marathi, Tamil
Country India (2) India (3), USA (3)
Chinese level 2 years, 1 year 3 years, 2 years, none
English level 18 years, 20+ years 16 years, whole life (2)

Urdu
Native lang Urdu (6 people) Tamil (2), Hindi, Telugu
Country Pakistan (3), Bahrain, India, Saudi Arabia India (4)
Urdu level whole life (6 people) 2 years, 1 year, never (2)
English level 20+ years (5), 15 years (2), 10 years 10+ years (5), 5 years

Table 1: Self-reported demographic information from Turkers who completed the translation HIT. The
statistics on the left are for people who appeared to do the task honestly. The statistics on the right are
for people who appeared to be using MT (marked as using it 20% or more in the Detect MT HIT).

ken English, what their native language was, and
where they lived. Table 1 gives their replies.

Cost and speed We paid Turkers $0.10 to trans-
late each sentence, and $0.006 to detect whether a
sentence was machine translated. The cost is low
enough that we could create a multiple reference
set quite cheaply; it would cost less than $1,000 to
create 4 reference translations for 2000 sentences.

The time it took for the 250 translations to be
completed for each language varied. It took less
than 4 hours for Spanish, 20 hours for French, 22.5
hours for German, 2 days for Chinese, and nearly
4 days for Urdu.

5.2 HTER
Human-mediated translation edit rate (HTER)
is the official evaluation metric of the DARPA
GALE program. The evaluation is conducted an-
nually by the Linguistics Data Consortium, and
it is used to determine whether the teams partic-
ipating the program have met that year’s bench-
marks. These evaluations are used as a “Go / No
Go” determinant of whether teams will continue
to receive funding. Thus, each team have a strong
incentive to get as good a result as possible under
the metric.

Each of the three GALE teams encompasses

multiple sites and each has a collection of ma-
chine translation systems. A general strategy em-
ployed by all teams is to perform system combi-
nation over these systems to produce a synthetic
translation that is better than the sum of its parts
(Matusov et al., 2006; Rosti et al., 2007). The con-
tribution of each component system is weighted
by the expectation that it will produce good out-
put. To our knowledge, none of the teams perform
their own HTER evaluations in order to set these
weights.

We evaluated the feasibility of using Mechan-
ical Turk to perform HTER. We simplified the
official GALE post-editing guidelines (NIST and
LDC, 2007). We provided these instructions:
Edit Machine Translation Your task is to edit the machine
translation making as few changes as possible so that it
matches the meaning of the human translation and is good
English. Please follow these guidelines:

• Change the machine translation so that it has the same
meaning as the human translation.

• Make the machine translation into intelligible English.

• Use as few edits as possible.

• Do not insert or delete punctuation simply to follow
traditional rules about what is “proper.”

• Please do not copy-and-paste the human translation
into the machine translation.
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Number of editors
System 0 1 2 3 4 5
google.fr-en .44 .29 .24 .22 .20 .19
google.de-en .48 .34 .30 .28 .25 .24
rbmt5.de-en .53 .41 .33 .28 .27 .25
geneva.de-en .65 .56 .50 .48 .45 .45
tromble.de-en .77 .75 .74 .73 .71 .70

Table 2: HTER scores for five MT systems. The
edit rate decreases as the number of editors in-
creases from zero (where HTER is simply the TER
score between the MT output and the reference
translation) and five.

We displayed 10 sentences from a news article. In
one column was the reference English translation,
in the other column were text boxes containing
the MT output to be edited. To minimize the edit
rate, we collected edits from five different Turkers
for every machine translated segment. We verified
these with a second HIT were we prompted Turk-
ers to:
Judge edited translations First, read the reference human
translation. After that judge the edited machine translation
using two criteria:

• Does the edited translation have the same meaning as
the reference human translation?

• Is it acceptable English? Some small errors are OK, so
long as its still understandable.

For the final score, we choose the edited segment
which passed the criteria and which minimized the
edit distance to the unedited machine translation
output. If none of the five edits was deemed to be
acceptable, then we used the edit distance between
the MT and the reference.

Setup We evaluated five machine translation
systems using HTER. These systems were se-
lected from WMT09 (Callison-Burch et al., 2009).
We wanted a spread in quality, so we took the top
two and bottom two systems from the German-
English task, and the top system from the French-
English task (which significantly outperformed
everything else). Based on the results of the
WMT09 evaluation we would expect the see the
following ranking from the least edits to the most
edits: google.fr-en, google.de-en, rbmt5.de-en,
geneva.de-en and tromble.de-en.

Results Table 2 gives the HTER scores for the
five systems. Their ranking is as predicted, indi-
cating that the editing is working as expected. The

table reports averaged scores when the five anno-
tators are subsampled. This gives a sense of how
much each additional editor is able to minimize
the score for each system. The difference between
the TER score with zero editors, and the HTER
five editors is greatest for the rmbt5 system, which
has a delta of .29 and is smallest for jhu-tromble
with .07.

5.3 Reading comprehension

One interesting technique for evaluating machine
translation quality is through reading comprehen-
sion questions about automatically translated text.
The quality of machine translation systems can be
quantified based on how many questions are an-
swered correctly.

Jones et al. (2005) evaluated translation quality
using a reading comprehension test the Defense
Language Proficiency Test (DLPT), which is ad-
ministered to military translators. The DLPT con-
tains a collection of foreign articles of varying lev-
els of difficulties, and a set of short answer ques-
tions. Jones et al used the Arabic DLPT to do a
study of machine translation quality, by automat-
ically translating the Arabic documents into En-
glish and seeing how many human subjects could
successfully pass the exam.

The advantage of this type of evaluation is that
the results have a natural interpretation. They indi-
cate how understandable the output of a machine
translation system is better than Bleu does, and
better than other manual evaluation like the rela-
tive ranking. Despite this advantage, evaluating
MT through reading comprehension hasn’t caught
on, due to the difficulty of administering it and due
to the fact that the DLPT or similar tests are not
publicly available.

We conducted a reading comprehension evalua-
tion using Mechanical Turk. Instead of simply ad-
ministering the test on Mechanical Turk, we used
it for all aspects from test creation to answer grad-
ing. Our procedure was as follows:

Test creation We posted human translations of
foreign news articles, and ask Tukers to write three
questions and provide sample answers. We gave
simple instructions on what qualifies as a good
reading comprehension question.
Reading comprehension test Please read the short news-
paper article, and then write three reading comprehension
questions about it, giving sample answers for each of your
questions. Good reading comprehension questions:
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• Ask about why something happened or why someone
did something.

• Ask about relationships between people or things.

• Should be answerable in a few words.

Poor reading comprehension questions:

• Ask about numbers or dates.

• Only require a yes/no answer.

Question selection We posted the questions for
each article back to Mechanical Turk, and asked
other Turkers to vote on whether each question
was a good and to indicate if it was redundant with
any other questions in the set. We sorted questions
to maximize the votes and minimized redundan-
cies using a simple perl script, which discarded
questions below a threshold, and eliminated all re-
dundancies.

Taking the test We posted machine translated
versions of the foreign articles along with the
questions, and had Turkers answer them. We en-
sured that no one would see multiple translations
of the same article.
Answer questions about a machine translated text You will
answer questions about an article that has been automat-
ically translated from another language into English. The
translation contains many errors, but the goal is to see how
understandable it is. Please do your best to guess at the right
answers to the questions. Please:

• Read through the automatically translated article.

• Answer the questions listed below, using just a few
words.

• Give your best guess at the answers, even if the trans-
lation is hard to understand.

• Don’t use any other information to answer the ques-
tions.

Grading the answers We aggregated the
answers and used Mechanical Turk to grade
them. We showed the human translation of the
article, one question, the sample answer, and
displayed all answers to it. After the Turkers
graded the answers, we calculated the percentage
of questions that were answered correctly for each
system.

Turkers created 90 questions for 10 articles, which
were subsequently filtered down to 47 good ques-
tions, ranging from 3–6 questions per article. 25
Turkers answered questions about each translated
article. To avoid them answering the questions
multiple times, we randomly selected which sys-
tem’s translation was shown to them. Each sys-
tem’s translation was displayed an average of 5

System % Correct Answers
reference 0.94
google.fr-en 0.85
google.de-en 0.80
rbmt5.de-en 0.77
geneva.de-en 0.63
jhu-tromble.de-en 0.50

Table 3: The results of evaluating the MT output
using a reading comprehension test

times per article. As a control, we had three Turk-
ers answer the reading comprehension questions
using the reference translation.

Table 3 gives the percent of questions that were
correctly answered using each of the different sys-
tems’ outputs and using the reference translation.
The ranking is exactly what we would expect,
based on the HTER scores and on the human eval-
uation of the systems in WMT09. This again
helps to validate that the reading comprehension
methodology. The scores are more interpretable
than Blue scores and than the WMT09 relative
rankings, since it gives an indication of how un-
derstandable the MT output is.

Appendix A shows some sample questions and
answers for an article.

6 Conclusions

Mechanical Turk is an inexpensive way of gather-
ing human judgments and annotations for a wide
variety of tasks. In this paper we demonstrate
that it is feasible to perform manual evaluations
of machine translation quality using the web ser-
vice. The low cost of the non-expert labor found
on Mechanical Turk is cheap enough to collect re-
dundant annotations, which can be utilized to en-
sure translation quality. By combining the judg-
ments of many non-experts we are able to achieve
the equivalent quality of experts.

The suggests that manual evaluation of trans-
lation quality could be straightforwardly done to
validate performance improvements reported in
conference papers, or even for mundane tasks
like tracking incremental system updates. This
challenges the conventional wisdom which has
long held that automatic metrics must be used
since manual evaluation is too costly and time-
consuming.

We have shown that Mechanical Turk can be
used creatively to produce quite interesting things.
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We showed how a reading comprehension test
could be created, administered, and graded, with
only very minimal intervention.

We believe that it is feasible to use Mechanical
Turk for a wide variety of other machine translated
tasks like creating word alignments for sentence
pairs, verifying the accuracy of document- and
sentence-alignments, performing non-simulated
active learning experiments for statistical machine
translation, even collecting training data for low
resource languages like Urdu.

The cost of using Mechanical Turk is low
enough that we might consider attempting
quixotic things like human-in-the-loop minimum
error rate training (Zaidan and Callison-Burch,
2009), or doubling the amount of training data
available for Urdu.
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A Example reading comprehension
questions

Actress Heather Locklear arrested for driving under the
influence of drugs

The actress Heather Locklear, Amanda on the popular se-
ries Melrose Place, was arrested this weekend in Santa Bar-
bara (California) after driving under the influence of drugs. A
witness saw her performing inappropriate maneuvers while
trying to take her car out of a parking space in Montecito, as
revealed to People magazine by a spokesman for the Califor-
nian Highway Police. The witness stated that around 4.30pm
Ms. Locklear “hit the accelerator very roughly, making ex-
cessive noise and trying to take the car out from the park-
ing space with abrupt back and forth maneuvers. While re-
versing, she passed several times in front of his sunglasses.”
Shortly after, the witness, who at first, apparently had not rec-
ognized the actress, saw Ms. Locklear stopping in a nearby
street and leaving the vehicle.

It was this person who alerted the emergency services, be-
cause “he was concerned about Ms. Locklear’s life.” When
the patrol arrived, the police found the actress sitting inside
her car, which was partially blocking the road. “She seemed
confused,” so the policemen took her to a specialized centre
for drugs and alcohol and submitted her a test. According to a
spokesman for the police, the actress was cooperative and ex-
cessive alcohol was ruled out from the beginning, even if “as
the officers initially observed, we believe Ms. Locklear was
under the influences drugs.” Ms. Locklear was arrested under
suspicion of driving under the influence of some - unspecified
substance, and imprisoned in the local jail at 7.00pm, to be re-
leased some hours later. Two months ago, Ms. Locklear was
released from a specialist clinic in Arizona where she was
treated after an episode of anxiety and depression.

4 questions were selected

• Why did the bystander call emergency services?
He was concerned for Ms. Locklear’s life.

• Why was Heather Locklear arrested in Santa Barbara?
Because she was driving under the influence of drugs

• Where did the witness see her acting abnormally?
Pulling out of parking in Montecito

• Where was Ms. Locklear two months ago?
She was at a specialist clinic in Arizona.

5 questions were excluded as being redundant

• What was Heather Locklear arrested for?
Driving under the influence of drugs

• Where was she taken for testing?
A specialized centre for drugs and alcohol

• Why was Heather Locklear arrested?
She was arested on suspicion of driving under the in-
fluence of drugs.

• Why did the policemen lead her to a specialized centre
for drugs and alcohol
Because she seemed confused.

• For what was she cured for two months ago?
She was cured for anxiety and depression.

Answers to Where was Ms. Locklear two months ago?
that were judged to be correct:

Arizona hospital for treatment of depression; at a treat-
mend clinic in Arizona; in the Arizona clinic being treated
for nervous breakdown; a clinic in Arizona; Arizona, un-
der treatment for depression; She was a patient in a clinic
in Arizona undergoing treatment for anxiety and depression;
In an Arizona mental health facility ; A clinic in Arizona.;
In a clinic being treated for anxiety and depression.; at an
Arizona clinic

These answers were judged to be incorrect: Locklear
was retired in Arizona; Arizona; Arizona; in Arizona;
Ms.Locklaer were laid off after a treatment out of the clinic
in Arizona.
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Abstract

Machine involvement has the potential to
speed up language documentation. We as-
sess this potential with timed annotation
experiments that consider annotator exper-
tise, example selection methods, and sug-
gestions from a machine classifier. We
find that better example selection and la-
bel suggestions improve efficiency, but ef-
fectiveness depends strongly on annota-
tor expertise. Our expert performed best
with uncertainty selection, but gained lit-
tle from suggestions. Our non-expert per-
formed best with random selection and
suggestions. The results underscore the
importance both of measuring annotation
cost reductions with respect to time and of
the need for cost-sensitive learning meth-
ods that adapt to annotators.

1 Introduction

Data annotated with linguistically interesting la-
bels is used in a wide variety of contexts. Com-
putational linguists generally use annotated data
as training and evaluation material for natural lan-
guage processing systems; corpus linguists use it
to test hypotheses about language; documentary
linguists create interlinear glossed texts to pre-
serve examples of endangered languages and hy-
potheses about the grammars of those languages.
Regardless of the context, creating annotated data
is costly in terms of time and/or money. Since both
time and money are undeniably in limited supply,
there is a widely shared desire to reduce this cost.

Reducing cost involves strategies that do more
with fewer human-annotated labels and/or reduce
the per-label cost. An example of the former is ac-
tive learning, which focuses annotation effort on
data points selected by the learner(s) for their ex-
pected utility in developing a more accurate model

(Settles, 2009). Examples of the latter include
providing suggestions from a machine labeler and
using extremely cheap human labelers, e.g. with
the Amazon Mechanical Turk (Snow et al., 2008).
Different techniques may be more or less appli-
cable depending on the language being annotated,
the kind of labels which are desired (tags, syntac-
tic structures, etc.), and the desired use of the an-
notated data (e.g., for training models, testing lin-
guistic hypotheses, or preserving a language).

This paper discusses experiments that measure
the effectiveness of machine-aided annotation for
language documentation using both active learn-
ing simulation experiments and annotation ex-
periments which involve actual documentary lin-
guists interacting with machine example selec-
tion and label suggestion. Specifically, we deal
with the task of labeling morphemes of the Mayan
language Uspanteko with fine-grained parts-of-
speech. We also run active learning simulation
experiments for part-of-speech tagging for Dan-
ish, Dutch, English, Swedish, and Uspanteko to
show the validity of our models and methods in a
standard setting. For Uspanteko, we provide re-
sults from annotation experiments in which anno-
tation cost is measured in terms of the actual an-
notation time required while varying three factors:
(1) example selection, (2) machine label sugges-
tions, and (3) annotator expertise.

Our findings indicate that there is consider-
able promise for reducing the cost of produc-
ing IGT, but they also demonstrate considerable
variation due to the interaction of these factors.
This suggests different prescriptions for appropri-
ate strategies in different contexts. Most clearly,
the worst performing strategy—by far—is that
used in nearly all documentary work: sequential
annotation without automation. Also, our expert
annotator did best with examples picked by un-
certainty selection, while our non-expert did best
with random selection aided by machine label sug-
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Language #words-tr #words-dev #tags #sents-tr #sents-dev Avg.sent Avg.tr.sent Avg.dev.sent
Danish 62825 31561 10 3570 1618 18.18 17.60 19.50
Dutch 129586 65483 13 9365 3982 14.61 13.84 16.44
English 167593 131768 45 6945 5527 24.00 24.13 23.84
Swedish 127684 63783 41 7326 3714 17.34 17.43 17.17
Uspanteko 43473 19906 69 7423 3288 5.92 5.86 6.05

Table 1: Corpora: number of words and sentences, number of possible tags, and average sentence length.

gestions. This difference confirms the importance
of cost-sensitive active learning strategies that are
not just learner-guided, but also take into account
modeling of the annotators (Settles et al., 2008;
Haertel et al., 2008; Vijayanarasimhan and Grau-
man, 2008). Finally, we confirm the importance
of using actual annotation time to measure annota-
tion cost: a unit-cost assumption—even at a fine-
grained level—can dramatically misrepresent the
actual effectiveness of different strategies.

2 Task and data

Annotation task: language documentation
The amount of money spent on obtaining human
annotations is an extremely important concern in
much language annotation. However, there is a
further urgency for annotation in the case of lan-
guage documentation: languages are dying at the
rate of two each month. By the end of this cen-
tury, half of the approximately 6000 extant spoken
languages will cease to be transmitted effectively
from one generation of speakers to the next (Crys-
tal, 2000). Recorded and transcribed texts anno-
tated with detailed linguistic information create an
important multi-faceted record of these languages,
but there are few trained linguists with adequate
time and appropriate levels of funding relative to
the size of the problem. Annotation cost—in both
time and money—is thus keenly felt in the work
of documenting and describing endangered lan-
guages. Active learning and automated label sug-
gestions could help deal with this language docu-
mentation bottleneck.

We focus on one stage of language documen-
tation, the production of interlinear glossed text
(IGT), a standard form of annotation that in-
volves both morphological and grammatical anal-
ysis. IGT is generally created following transcrip-
tion and translation of recorded speech, with the
annotations often being provided by trained anno-
tators with varying levels of expertise. The result
is generally a small amount of IGT annotated data
and a greater amount of unannotated data.

Data We use a collection of 32 interlinear
glossed texts (IGT) in the Mayan language Uspan-
teko. This corpus was cleaned up and adapted by
Palmer et al. (2009) from an original collection of
67 texts that were collected, transcribed, translated
and annotated by the OKMA language documen-
tation project (Pixabaj et al., 2007).

Two core tasks in creating IGT are morpholog-
ical analysis and tagging morphemes with their
glosses (labels indicating part-of-speech and/or
grammatical function). We deal with the latter task
and assume texts are morphologically segmented.
Standard four-line IGT has morphemes on one line
and their glosses on the next. The gloss line in-
cludes labels for grammatical morphemes (e.g. PL
or COM) and translations of stems (e.g. hablar or
idioma). The following is an Uspanteko example:
(1) TEXT: Kita’ tinch’ab’ej laj inyolj iin

MORPH:
GLOSS:
POS:

kita’
NEG
PART

t-in-ch’abe-j
INC-E1S-hablar-SC
TAM-PERS-VT-SUF

laj
PREP
PREP

in-yol-j
A1S-idioma-SC
PERS-S-SUF

iin
yo
PRON

TRANS: ‘No le hablo en mi idioma.’

We use a single layer that is a combination of the
GLOSS and POS layers (Palmer et al., 2009). For
(1), the morphemes and labels for our task are:
(2) kita’

NEG
t-
INC

in-
E1S

ch’abe
VT

-j
SC

laj
PREP

in-
A1S

yol
S

-j
SC

iin
PRON

We also consider POS-tagging for Danish,
Dutch, English, and Swedish; the English is from
sections 00-05 (as training set) and 19-21 (as de-
velopment set) of the Penn Treebank (Marcus et
al., 1993), and the other languages are from the
CoNLL-X dependency parsing shared task (Buch-
holz and Marsi, 2006).1 We split the original train-
ing data into training and development sets. Ta-
ble 1 shows the number of words and sentences
in each split of each dataset, as well as the num-
ber of possible labels and the average sentence
length. The Uspanteko data is counted in mor-
phemes rather than words; also, the Uspanteko
texts are divided at the clause rather than sentence
level. This gives the corpus a much lower average
clause length than the other languages (Table 1).

1The subset of the Penn Treebank was chosen to be of
comparable size to the CoNLL datasets.
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3 Model and methods

Classification model. We use a standard maxi-
mum entropy classifier for tagging Danish, Dutch,
English, and Swedish words with POS-tags and
tagging Uspanteko morphemes with Gloss/POS
tags. The label for a word/morpheme is pre-
dicted based on the word/morpheme itself plus
a window of two units before and after. Stan-
dard part-of-speech tagging features (Ratnaparkhi,
1998; Curran and Clark, 2003) are extracted from
the morpheme to help with predicting labels for
previously unseen morphemes. This is a strong
but standard model; better, more complex models
could be used, but the gains are likely to be small.
Thus, we opted for simplicity in our model so as to
focus more on the interaction between the annota-
tor and different levels of machine involvement.

The accuracy of the tagger on the datasets when
trained on all available training material is given
in the following table, along with accuracy of a
unigram model (learned from the training set and
constrained by a tag dictionary for known words).

Unigram Model
Danish 91.62% 95.58%
Dutch 90.92% 93.57%
English 87.87% 93.25%
Swedish 84.91% 87.74%
Uspanteko 77.84% 79.39%

Sample selection. We consider three sample
selection methods: sequential, random, and
uncertainty. Sequential selection is important
to consider as it is the default in documentary
projects. It is sub-optimal for corpora with con-
tiguous sub-domains, since it necessitates working
through many similar examples before getting to
possibly more informative examples. Random se-
lection is a model-free method that avoids the sub-
domain trap by sampling freely from the entire
corpus. It generally works better than sequential
selection and provides a strong baseline against
which to compare learner-guided selection.

Uncertainty selection (Cohn et al., 1995) iden-
tifies examples the model is least confident about.
We measure uncertainty as the entropy of the la-
bel distribution predicted by the maximum en-
tropy model for each example. Uncertainty for
a clause is calculated as the average entropy per
morpheme; clauses with the highest average en-
tropy are selected for labeling.

A recent development in active learning is cost-

sensitive selection that is guided not only by the
learner but also by the expected cost of labeling an
example based on its likely complexity and/or the
reliability of the annotator. Settles et al. (2008)
provide empirical validation for cost-related in-
tuitions; for example, that cost of annotation is
static neither per example nor per annotator. Also,
they show that taking annotation cost into account
can improve active learning effectiveness, but that
learning to predict annotation cost is not yet well-
understood. A cost-sensitive Return on Investment
heuristic is developed in Haertel et al. (2008) and
tested in a simulated POS-tagging context. Our
experiments do not employ cost-sensitive selec-
tion, but our results—from live (non-simulated)
active learning experiments of real-world scale—
empirically support the need to consider cost-
sensitive selection if better cost reductions are to
be achieved.

Annotation setup. We compare results from
two annotators with different levels of exposure to
Uspanteko. Both are documentary linguists with
extensive field experience. Our expert annota-
tor is a native speaker of K’ichee’, a closely re-
lated Mayan language, and has worked extensively
on Uspanteko. Our non-expert annotator had no
prior experience with Uspanteko and only limited
exposure to Mayan languages. During annotation,
he used an Uspanteko-Spanish dictionary.

For each selection method, we consider two
conditions for providing classifier labels: a do-
suggest (ds) condition where the labels predicted
by the machine learner are shown to the annotator,
and a no-suggest (ns) condition where the annota-
tor does not see the predictions. With ds, the anno-
tator is shown the most probable label and a ranked
list of all labels assigned a probability greater than
half that of the best label. For ns, the annotator
sees a frequency-ranked list of labels previously
seen in training data for the given morpheme.

Annotators improve as they see more examples.
To minimize the impact of this learning process,
annotation is done in rounds. Each round con-
sists of sixty clauses—six batches of ten each for
the six experimental cases. The annotator is free
to break between batches. Following annotation,
the newly-labeled clauses are added to the train-
ing data, and a new model is trained and evaluated.
Both annotators completed fifty-six rounds of an-
notation. See Palmer et al. (2009) for more details
on the annotation setup.
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Measuring annotation cost. Active learning
studies usually simulate annotation and use a unit
cost assumption that each word, sentence, con-
stituent, document, etc. takes the same time to an-
notate. This is often the only option since corpora
typically do not retain annotation time, but it is
likely to exaggerate the annotation cost reductions
achieved. This is exacerbated with active learn-
ing: the informative examples it seeks to find are
typically harder to annotate (Hachey et al., 2005).

Baldridge and Osborne (2008) correlate a unit
cost in terms of discriminants (decisions made
by annotators about valid parses) to annotation
time. This is a better approximation than unit costs
where such a relationship cannot be established.
However, it is based on a static measurement of
annotation time, and clearly the time taken to an-
notate an example is not a function of the example
alone. Annotation time is actually dynamic in that
it is dependent on how many and what kinds of
examples have already been annotated. An “infor-
mative” example is likely to take longer to anno-
tate if selected early than it would after the anno-
tator has seen many other examples.

Thus, it is important to measure annotation time
embedded in the context of a particular annota-
tion experiment with the sample selection/labeling
strategies of interest. In our annotation experi-
ments, we measure the exact time taken to anno-
tate each example by each annotator and use this
as the cost metric, inspired by Ngai and Yarowsky
(2000). In the simulation studies, as we are un-
able to measure time, we measure cost by sen-
tence/clause and word/morpheme.

Learning curve comparison. We are interested
in comparative evaluation of many different exper-
imental settings, across which we vary selection
methods, use of label suggestions, and annotators.
To achieve this, it is useful to have a summary
value for comparing the results from two individ-
ual experiments. One such measure is the percent-
age error reduction (PER), measured over a dis-
crete set of points on the first 20% of the points on
the learning curve (Melville and Mooney, 2004).2

We use a new related measure, which we call
the overall percentage error reduction (OPER),
that uses the entire area under the curves given by

2This is justified in standard conditions, sampling from a
finite corpus: active learning runs out of interesting examples
after considering a fraction of the data, so the curve is artifi-
cially pulled down by the remaining, boring examples.

fitted nonlinear regression models rather than av-
eraging over a subset of data points. Specifically,
we fit a modified Michaelis-Menton model:

f(cost, (K,Vm, A)) =
Vm(A+ cost)
K + cost

The (original) parameters Vm and K respectively
correspond to the horizontal asymptote and the
cost where accuracy is halfway between 0 and Vm.
The additional parameter A allows for a better fit
to our data by allowing for less sharp elbows and
letting cost be zero. Model parameters were de-
termined with nls in R (Ritz and Streibig, 2008).

With the fitted regression models, it is straight-
forward to calculate the area under the curve be-
tween a start cost ci and end cost cj by taking the
integral from ci to cj . The overall accuracy for
the experiment is given by dividing that area by
100 × (cj − ci). Call this the overall curve accu-
racy (OCA). Then, for experiment A compared to
experiment B, OPER(A,B) = OCAA−OCAB

100−OCAB
. For

the simulation experiments we calculate OPER for
only the first 20% of cost units, like Melville and
Mooney. For the annotation experiments, we cal-
culate it for the minimum amount of time spent on
any of the experiments (which ended up using less
than 10% of all available morphemes).

4 Simulation experiments

We verify that our tagger and dataset behave as
expected in standard active learning experiments
by running simulations on the Uspanteko data set,
and on POS-tagging for Danish, Dutch, English,
and Swedish. Here, we vary only the selection
method: sequential, random, or uncertainty.

For each language, we randomly select a seed
set of 10 labeled sentences. The number of exam-
ples selected to be labeled in each round begins
at 10 and doubles after every 20 rounds. For rand
and unc, each batch of examples is selected from a
pool (size of 1000) that is itself randomly selected
from the entire set of remaining unlabeled exam-
ples. rand and unc experiments for each language
are replicated 5 times; splines and regressions are
computed over all runs for each condition.

Figure 1 gives learning curves for the Uspan-
teko simulations, with cost measured in terms of
(a) clauses and (b) morphemes. Both graphs show
the usual behavior found in active learning exper-
iments. rand and unc both rise more quickly than
seq, and unc is well above rand. The relation-
ship between the methods is the same regardless
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Figure 1: Learning curves for simulations; (a) clause cost and (b) morphemes cost. The dashed vertical
lines indicate (a) #clauses=1485 and (b) #morphemes=8695 (to compare OPER values).

rand
seq

unc
seq

unc
rand

Uspanteko-Clauses 5.86 13.27 7.86
Uspanteko-Morphs 7.47 11.68 4.55

Table 2: OPER values for Uspanteko simulations,
comparing clause and morpheme cost. A

B indi-
cates we compute OPER(A,B).

of the cost metric, but the relative differences in
cost-savings are not, which we see when we look
at OPER values.

The dashed vertical lines in the two graphs cor-
respond to the 20% mark used to calculate OPER
values, which are given in Table 2. Most impor-
tantly, note the much larger OPER for unc over
rand with clause cost (7.86 vs 4.55). Also note
that OPER(rand,seq) is lower with clause cost—
this indicates that the beginning portions of the
corpus contain longer sentences with more mor-
phemes, an accident which overstates how well
seq would likely work in general.

Since rand is unbiased with respect to pick-
ing longer sentences, the large increase of
OPER(unc,rand) from 4.55 to 7.86 is a clear in-
dication of the well-known—but not always at-
tended to—tendency of uncertainty sampling to
select longer sentences. Consequently, one should
at least use sub-sentence cost in order not to over-
state the gains from active learning. The annota-
tion experiments in the next section take this word

rand
seq

unc
seq

unc
rand

Danish 4.58 6.95 2.48
Dutch 21.95 23.68 2.20
English 6.55 8.00 1.56
Swedish 9.56 9.29 -0.30
Uspanteko 7.47 11.68 4.55

Table 3: OPER values for morpheme cost for sim-
ulations. A

B indicates we compute OPER(A,B).

of caution one step further: even sub-sentence cost
(morpheme cost, in our setting) can overestimate
gains since the morphemes selected are actually
harder to annotate and thus take more time.

Table 3 gives overall percentage error reduc-
tions (OPER) between different selection methods
based on word/morpheme cost, for each language.
For all languages, rand and unc are better than
seq. Only in the case of Swedish is there no ben-
efit from unc over rand. For Dutch, the large
gains over seq for both rand and unc accurately
reflect the heterogeneity of the underlying Alpino
corpus.3 Most importantly, for Uspanteko, there
are large reductions from unc to rand to seq, mir-
roring the clear trends in Figure 1b.

These simulations have an unrealistic “perfect”
annotator, the corpus. Next, we discuss results
with real annotators—who may be fallible or may
(reasonably) beg to differ with the corpus analysis.

3http://www.let.rug.nl/vannoord/trees/
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Figure 2: A sample of the learning curves with (a) morpheme cost and (b) time cost. Morpheme cost
ranks strategies for a given annotator similarly to time cost, but it gives dramatically different results
from time cost when used to compare different annotators.

5 Annotation experiments

With two annotators (expert, non-expert), three
selection methods (seq, rand, unc), and two ma-
chine labeling settings (ns, ds), we obtain 12 dif-
ferent experiments. Each experiment measures ac-
curacy in terms of all words and unknown words
and cost in terms of clauses, morphemes and time;
this produces six views on every experiment. In
this paper we focus on one view: accuracy over all
words with time-based evaluation of cost.

As with the simulations, clause cost in the an-
notation experiments overestimates the cost reduc-
tions. For morpheme cost, the annotation experi-
ments show that (a) it also overstates cost reduc-
tions compared to time, and (b) it can mis-state
relative effectiveness when comparing annotators.

The big picture. Figure 2 shows curves for four
experiments: seq-ns for both annotators4 and the
most effective overall condition for each annota-
tor. Figure 2a uses morpheme cost evaluation; on
that metric, both annotators appear to be about
equally effective with seq-ns and much more ef-
fective with machine involvement (unc or ds) than
without. Additionally, the non-expert’s rand-ds
appears to beat the expert’s unc-ns. However, the
time cost evaluation in Figure 2b tells a dramat-
ically different story. Each annotator’s machine-

4Recall that sequential annotation is the default mode for
producing IGT, so this strategy is of particular interest.

involved experiment is much better than their seq-
ns, but now the expert’s best is clearly better than
the non-expert’s. We see this as clear evidence for
the need for cost-sensitive learning over vanilla ac-
tive learning (as we do here).5

The non-expert with rand-ds caught up to and
surpassed the unaided expert in about six hours
total annotation time, and he caught up to her
unc-ns curve after 35 hours. This is encourag-
ing since often language documentation projects
have participants with a wide range of expertise
levels, and these results suggest that assistance
from machine learning, if done properly, may in-
crease the effectiveness of participants with less
language-specific expertise. We are also encour-
aged, with respect to the effectiveness of active
learning, that the expert’s best performance is ob-
tained with uncertainty-based selection.

Within annotator comparisons. Figure 3
shows both actual measurements and the fitted
nonlinear regression curves used to compute
OPER. Figure 3a, the expert without suggestions,
exhibits typical active learning behavior similar to
that seen in the simulation experiments. Figure 3b,

5It is also clear to see that, unsurprisingly, the expert spent
much less time to complete the 56 rounds than the non-expert.
In general, the expert annotator was much quicker, particu-
larly in early rounds, averaging 4.1 seconds per morpheme
annotated against the non-expert’s 8.0 second average. See
Palmer et al. (2009) for more details.
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Figure 3: Sample measurements and fitted nonlinear regression curves for (a) the expert and (b) the
non-expert. Note that the scale is consistent for comparability. The dashed vertical lines indicate 12,500
seconds (about 35 hours), which is the upper limit used in computing OPER values for Table 4.

the non-expert with suggestions, shows that in the
ds conditions the non-expert was less effective
with unc. This is not unexpected: uncertainty
selects harder examples that will either take
longer to annotate or are easier to get wrong,
especially if the annotator trusts the classifier and
especially on examples the classifier is uncertain
about. Nonetheless, in all ds cases, the non-expert
performs better than with seq-ns.

OPER. Table 4 provides OPER values from
time 0 to 12,500 seconds (about 35 hours), the
minimum amount of annotation time logged in any
one of the twelve experiments.6 The table mixes
three types of comparison: (1) the boxed values
on the diagonal give OPER for the expert versus
the non-expert given the same selection and sug-
gestion conditions; (2) the upper (right) triangle
gives OPER for the expert versus herself for dif-
ferent conditions; and (3) the lower (left) trian-
gle is the non-expert versus himself. For exam-
ple: (1) the expert obtained an 11.52 OPER versus
the non-expert when both used rand-ns; (2) the
expert obtained a 10.52 OPER by using rand-ds
rather than seq-ns; and (3) the non-expert obtained
a 5.93 OPER over rand-ns by using rand-ds.

A number of patterns emerge. Quite unsurpris-

6Stopping at 12,500 seconds ensures a fair comparison,
for example, between the expert and the non-expert because
it requires no extrapolation of the expert’s performance.

XXXXXXnon-exp
exp seq-ns rand-ns unc-ns seq-ds rand-ds unc-ds

seq-ns 15.99 8.85 14.17 6.34 10.52 14.50
rand-ns 13.46 11.52 5.83 -2.76 1.83 6.20
unc-ns 19.20 6.63 10.76 -9.12 -4.25 0.39
seq-ds 10.24 -3.72 -11.09 12.34 4.46 8.72
rand-ds 18.59 5.93 -0.76 9.30 7.67 4.45
unc-ds 11.19 -2.62 -9.91 1.06 -9.09 19.13

Table 4: Overall percentage error reduction
(OPER) comparisons, with timing cost. See ex-
planation of table in the OPER subsection.

ingly, the values on the diagonal show that the ex-
pert is more effective than the non-expert in all
conditions. Also, every other condition is more ef-
fective than seq-ns for both annotators (first row
for the expert, first column for the non-expert).
unc-ns and rand-ds are particularly effective for
the non-expert, giving OPERs of 19.20 and 18.59
over seq-ns, respectively. These reductions, big-
ger than the expert’s reductions of 14.17 and 10.52
for the same conditions, considerably reduce the
large gap in seq-ns effectiveness between the two
annotators (see Figure 2b).

The expert actually gains very little from ds for
both rand and unc: adding suggestions gave OP-
ERs of just 1.83 and .39, respectively. In con-
trast, the non-expert obtains an improvement of
5.93 OPER when suggestions are used with rand,
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but performs worse when used with unc (-9.91
OPER). Even more striking: the non-expert’s
unc-ds is worse than rand-ns (-2.62 OPER), a
completely model-free setting. These variations
demonstrate the importance of modeling annotator
fallibility and sensitivity to cost, as well as char-
acteristics of the annotation task itself, if learner-
guided selection and suggestion are to be used
(Donmez and Carbonell, 2008; Arora et al., 2009).

Annotator accuracy. Another factor which
must be considered when annotation is done by
human annotators (rather than being simulated)
is the accuracy of the humans’ labels. Table 5
shows the overall accuracy of the annotators’ la-
bels for each condition (after 56 rounds) as mea-
sured against the original OKMA annotations.
Unsurprisingly, unc selection picks examples that
are more difficult to annotate: accuracy for both
annotators suffers in both unc-ns and unc-ds.

It may seem surprising that the non-expert’s ac-
curacies are generally higher than the expert’s.
The main reason for this is that the non-expert
took nearly twice as long to annotate his examples,
so each one was done with more care. However,
this difference also highlights challenges that arise
when we bring active learning into non-simulated
annotation contexts. The typical assumption is
that gold standard labeled data represents a true,
fixed target, against which annotator or machine-
predicted labels should be measured. In language
documentation, though, the analysis of the lan-
guage is continually evolving, and analysis and
annotation each inform the other. In fact, the ex-
pert recognized (in the morphological segmenta-
tion) several linguistic phenomena for which the
analysis has changed since the original OKMA an-
notations were done. As she changed her analy-
ses, her labels diverged from those of the original
corpus—another reason for her “lower” accuracy.
This is to say that the ground truth of the current
OKMA annotations we had to work with can be
viewed as one (valid) stage in the iterative reanal-
ysis process that language documentation is.

Error analysis. Preliminary analysis of ‘errors’
made by the annotators supports the idea that
the results seen in Table 5 are heavily influenced
by changes in the expert’s analysis of the lan-
guage. Some duplicate clause annotation oc-
curred for each annotator, because each of the
twelve annotator-selection-suggestion conditions

expert non-expert
seq-ns 73.17% 75.09%
rand-ns 69.90% 74.37%
unc-ns 61.23% 60.04%
seq-ds 67.48% 73.13%
rand-ds 68.34% 73.03%
unc-ds 59.79% 60.27%

Table 5: Overall accuracy of annotators’ labels,
measured against OKMA annotations.

drew from the same global set of unlabeled ex-
amples. This duplication allows us to measure
the consistency of each annotator on labeling such
duplicate clauses. Table 6 shows the percentage
of morphemes labeled consistently by each anno-
tator. Numbers for the expert appear in the top
(right) triangle, and for the non-expert in the bot-
tom (left) triangle. Overall intra-annotator consis-
tency is much higher for the expert (88.38%) than
for the non-expert (81.64%), suggesting that the
expert maintained a more consistent mental model
of the language, but one which disagrees in some
areas with the original annotations.

Another key error source comes from differ-
ences in use of one individual label: the annota-
tors could assign a label that does not appear in
the original corpus. This is yet another issue that
does not—in fact, cannot—arise in simulated ac-
tive learning. The label ESP was introduced for la-
beling Spanish loans or insertions (such as the dis-
course marker entonces) which do not have a clear
function in Uspanteko grammar. Such tokens are
inconsistently labeled in the original corpus, usu-
ally with catch-all categories like particle or ad-
verb. The annotators felt that the best analysis was
to mark the tokens as of Spanish origin. The expert
annotator used the ESP label for 2086 of 24129 to-
kens (8.65%) versus 221 of 22819 tokens (0.97%)
for the non-expert. Any such token labeled with
ESP is scored as incorrect when compared to the
OKMA standard, so this label alone accounts for
more than 7% of the expert annotator’s total error.

Finally, Table 7 presents inter-annotator agree-
ment measured as percent agreement on mor-
phemes in clauses labeled by both annotators.
Note that in general agreement seems to be low-
est for clauses duplicated in unc conditions, sup-
porting the expected result that uncertainty-based
selection does indeed select clauses that are more
difficult for human annotators to label.

303



PPPPPPnon
exp seq-ns rand-ns unc-ns seq-ds rand-ds unc-ds

seq-ns — 95.00% (41) 87.10% (56) 92.39% (60) 91.02% (28) 88.83% (51)
rand-ns 90.11% (49) — 90.91% (57) 87.57% (35) 90.94% (50) 89.53% (57)
unc-ns 80.80% (44) 81.68% (54) — 81.35% (41) 89.10% (40) 87.82% (332)
seq-ds 90.00% (54) 87.94% (44) 77.97% (48) — 86.13% (42) 82.14% (42)
rand-ds 90.15% (52) 86.64% (45) 79.46% (62) 81.43% (44) — 87.06% (49)
unc-ds 84.15% (47) 78.55% (52) 77.68% (328) 78.81% (35) 77.95% (60) —

Table 6: Annotation consistency, expert and non-expert, (number of duplicate clauses, of 560 possible)

PPPPPPnon
exp seq-ns rand-ns unc-ns seq-ds rand-ds unc-ds

seq-ns 69.91% (523) 70.82% (42) 62.42% (48) 72.35% (54) 74.25% (28) 67.82% (47)
rand-ns 71.32% (48) 83.94% (39) 66.56% (47) 66.15% (43) 73.75% (42) 67.55% (52)
unc-ns 66.31% (48) 67.87% (53) 62.31% (301) 58.87% (51) 73.31% (40) 61.10% (298)
seq-ds 73.35% (60) 75.56% (34) 56.39% (37) 60.02% (540) 66.00% (44) 61.01% (36)
rand-ds 68.67% (50) 76.40% (63) 66.67% (58) 65.88% (47) 76.33% (42) 66.99% (64)
unc-ds 65.41% (50) 67.98% (55) 60.43% (263) 58.13% (38) 70.74% (57) 60.40% (275)

Table 7: IAA: expert v. non-expert, percentage of morphemes in agreement, (number of duplicate
clauses, of 560 possible)

6 Conclusion

Through actual annotation experiments that con-
trol for several factors, we have evaluated the po-
tential of incorporating active learning and label
suggestions to speed up morpheme glossing in a
realistic language documentation context. Some
configurations of learner-guided example selec-
tion and machine label suggestions perform far
better than the standard strategy of sequential se-
lection without suggestions. However, the effec-
tiveness of any given strategy depends on annota-
tor expertise. The impact of differences between
annotators directly bears on the point made by
Donmez and Carbonell (2008) that if cost reduc-
tions are to be reliably obtained with active learn-
ing techniques, annotators’ fallibility, unreliabil-
ity, and sensitivity to cost must be modeled.

Our results suggest some possible prescriptions
for tuning techniques according to annotator ex-
pertise. However, even if we can estimate a rela-
tive level of expertise, following such broad pre-
scriptions is unlikely to be more robust than an ap-
proach which adapts selection and suggestion to
the individual annotator, perhaps working within
an annotation group. Indeed, it seems that dealing
with variation in annotators/oracles may be more
important than devising better selection strategies.

The difference in performance due to expertise
suggests that using multiple annotators to check
relative annotation rate and accuracy of different
annotators could be a key ingredient in any actu-

ally deployed active learning system. This could
provide for better modeling of individual anno-
tators as part of an annotation group they can be
compared against, allowing the system, for exam-
ple, to throttle active selection if an annotator ap-
pears to be too slow or inaccurate.

Another major issue we highlight is the uncer-
tainty around the question of whether active learn-
ing works in practical applications. Respondents
to the survey of Tomanek and Olsson (2009) in-
dicated that this uncertainty—will active learn-
ing work? what methods or techniques will work
best?—is one of the reasons active learning is not
widely used in actual annotation. In addition, cre-
ating the necessary software infrastructure to build
an active learning enabled annotation system—
a system which must interface robustly between
data, annotator, and machine classifier, yet still
be easy to use—is a substantial hurdle. It seems
unlikely that there will be much uptake until a)
consistent, large cost reductions can be shown in
actual annotation studies, and b) appropriate, tun-
able, widely-available software exists.
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Abstract

We present a fully automatic method for
content selection evaluation in summariza-
tion that does not require the creation of
human model summaries. Our work capi-
talizes on the assumption that the distribu-
tion of words in the input and an informa-
tive summary of that input should be sim-
ilar to each other. Results on a large scale
evaluation from the Text Analysis Con-
ference show that input-summary compar-
isons are very effective for the evaluation
of content selection. Our automatic meth-
ods rank participating systems similarly
to manual model-based pyramid evalua-
tion and to manual human judgments of
responsiveness. The best feature, Jensen-
Shannon divergence, leads to a correlation
as high as 0.88 with manual pyramid and
0.73 with responsiveness evaluations.

1 Introduction

The most commonly used evaluation method for
summarization during system development and
for reporting results in publications is the auto-
matic evaluation metric ROUGE (Lin, 2004; Lin
and Hovy, 2003). ROUGE compares system sum-
maries against one or more model summaries
by computing n-gram word overlaps between the
two. The wide adoption of such automatic mea-
sures is understandable because they are conve-
nient and greatly reduce the complexity of eval-
uations. ROUGE scores also correlate well with
manual evaluations of content based on compar-
ison with a single model summary, as used in
the early editions of the Document Understanding
Conferences (Over et al., 2007).

In our work, we take the idea of automatic
evaluation to an extreme and explore the feasi-
bility of developinga fully automatic evaluation

method for content selection that does not make
use of human model summaries at all. To this end,
we show that evaluating summaries by comparing
them with the input obtains good correlations with
manual evaluations for both query focused and up-
date summarization tasks.

Our results have important implications for fu-
ture development of summarization systems and
their evaluation.

High correlations between system ranking pro-
duced with the fully automatic method and
manual evaluations show that the new eval-
uation measures can be used during system
development when human model summaries
are not available.

Our results provide validation of several features
that can be optimized in the development of
new summarization systems when the objec-
tive is to improve content selection on aver-
age, overa collection of test inputs. However,
none of the features is consistently predictive
of good summary content forindividual in-
puts.

We find that content selection performance on
standard test collections can be approximated
well by the proposed fully automatic method.
This result greatly underlines the need to re-
quire linguistic quality evaluations alongside
content selection ones in future evaluations
and research.

2 Model-free methods for evaluation

Proposals for developing fully automatic methods
for summary evaluation have been put forward
in the past. Their attractiveness is obvious for
large scale evaluations, or for evaluation on non-
standard test sets for which human models are not
available.
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For example in Radev et al. (2003), a large
scale fully automatic evaluation of eight summa-
rization systems on18,000 documents was per-
formed without any human effort. A search engine
was used to rank documents according to their rel-
evance to a given query. The summaries for each
document were also ranked for relevance with re-
spect to the same query. For good summariza-
tion systems, the relevance ranking of summaries
is expected to be similar to that of the full docu-
ments. Based on this intuition, the correlation be-
tween relevance rankings of summaries and orig-
inal documents was used to compare the different
systems. The approach was motivated by the as-
sumption that the distribution of terms in a good
summary is similar to the distribution of terms in
the original document.

Even earlier, Donaway et al. (2000) suggested
that there are considerable benefits to be had in
adopting model-free methods of evaluation involv-
ing direct comparisons between the original docu-
ment and its summary. The motivation for their
work was the considerable variation in content se-
lection choices in model summaries (Rath et al.,
1961). The identity of the model writer signifi-
cantly affects summary evaluations (also noted by
McKeown et al. (2001), Jing et al. (1998)) and
evaluations of the same systems can be rather dif-
ferent when different models are used. In their
experiments, Donaway et al. (2000) demonstrated
that the correlations between manual evaluation
using a model summary and

a) manual evaluation using a different model
summary

b) automatic evaluation by directly comparing
input and summary1,
are the same. Their conclusion was that such au-
tomatic methods should be seriously considered as
an alternative to model based evaluation.

In this paper, we present a comprehensive study
of fully automatic summary evaluation without
any human models. A summary’s content is
judged for quality by directly estimating its close-
ness to the input. We compare several probabilistic
and information-theoretic approaches for charac-
terizing the similarity and differences between in-
put and summary content. A simple information-
theoretic measure, Jensen Shannon divergence be-
tween input and summary, emerges as the best fea-

1They used cosine similarity to perform the input-
summary comparison.

ture. System rankings produced using this mea-
sure lead to correlations as high as 0.88 with hu-
man judgements.

3 TAC summarization track

3.1 Query-focused and Update Summaries

Two types of summaries, query-focused and up-
date summaries, were evaluated in the summariza-
tion track of the 2008 Text Analysis Conference
(TAC)2. Query-focused summaries were produced
from input documents in response to a stated user
information need. The update summaries require
more sophistication: two sets of articles on the
same topic are provided. The first set of articles
represents the background of a story and users are
assumed to be already familiar with the informa-
tion contained in them. The update task is to pro-
duce a multi-document summary from the second
set of articles that can serve as an update to the
user. This task is reminiscent of the novelty de-
tection task explored at TREC (Soboroff and Har-
man, 2005).

3.2 Data

The test set for the TAC 2008 summarization task
contains 48 inputs. Each input consists of two sets
of 10 documents each, called docsetsA and B.
Both A andB are on the same general topic but
B contains documents published later than those
in A. In addition, the user’s information need as-
sociated with each input is given by a query state-
ment consisting of a title and narrative. An exam-
ple query statement is shown below.

Title: Airbus A380
Narrative: Describe developments in the pro-

duction and launch of the Airbus A380.
A system must produce two summaries: (1) a
query-focused summary of docsetA, (2) a compi-
lation of updates from docsetB, assuming that the
user has read all the documents inA. The max-
imum length for both types of summaries is 100
words.

There were 57 participating systems in TAC
2008. We use the summaries and evaluations of
these systems for the experiments reported in the
paper.

3.3 Evaluation metrics

Both manual and automatic evaluations were con-
ducted at NIST to assess the quality of summaries

2http://www.nist.gov/tac
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manual score R-1 recall R-2 recall
Query Focused summaries

pyramid score 0.859 0.905
responsiveness 0.806 0.873

Update summaries
pyramid score 0.912 0.941
responsiveness 0.865 0.884

Table 1: Spearman correlation between manual
scores and ROUGE-1 and ROUGE-2 recall. All
correlations are highly significant with p-value<
0.00001.

produced by the systems.

Pyramid evaluation: The pyramid evaluation
method (Nenkova and Passonneau, 2004) has been
developed for reliable and diagnostic assessment
of content selection quality in summarization and
has been used in several large scale evaluations
(Nenkova et al., 2007). It uses multiple human
models from which annotators identify seman-
tically defined Summary Content Units (SCU).
Each SCU is assigned a weight equal to the
number of human model summaries that express
that SCU. An ideal maximally informative sum-
mary would express a subset of the most highly
weighted SCUs, with multiple maximally infor-
mative summaries being possible. The pyramid
score for a system summary is equal to the ratio
between the sum of weights of SCUs expressed
in a summary (again identified manually) and the
sum of weights of an ideal summary with the same
number of SCUs.

Four human summaries provided by NIST for
each input and task were used for the pyramid
evaluation at TAC.

Responsiveness evaluation:Responsiveness of a
summary is a measure of overall quality combin-
ing both content selection and linguistic quality:
summaries must present useful content in a struc-
tured fashion in order to better satisfy the user’s
need. Assessors directly assigned scores on a
scale of 1 (poor summary) to 5 (very good sum-
mary) to each summary. These assessments are
done without reference to any model summaries.
The (Spearman) correlation between the pyramid
and responsiveness metrics is high but not perfect:
0.88 and 0.92 respectively for query focused and
update summarization.

ROUGE evaluation: NIST also evaluated the
summaries automatically using ROUGE (Lin,
2004; Lin and Hovy, 2003). Comparison between
a summary and the set of four model summaries

is computed using unigram (R1) and bigram over-
laps (R2)3. The correlations between ROUGE and
manual evaluations is shown in Table 1 and varies
between 0.80 and 0.94.
Linguistic quality evaluation: Assessors scored
summaries on a scale from 1 (very poor) to 5 (very
good) for five factors of linguistic quality: gram-
maticality, non-redundancy, referential clarity, fo-
cus, structure and coherence.

We do not make use of any of the linguistic
quality evaluations. Our work focuses on fully au-
tomatic evaluation of content selection, so man-
ual pyramid and responsiveness scores are used
for comparison with our automatic method. The
pyramid metric measures content selection exclu-
sively, while responsiveness incorporates at least
some aspects of linguistic quality.

4 Features for content evaluation

We describe three classes of features to compare
input and summary content: distributional simi-
larity, summary likelihood and use of topic signa-
tures. Both input and summary words were stop-
word filtered and stemmed before computing the
features.

4.1 Distributional Similarity

Measures of similarity between two probability
distributions are a natural choice for the task at
hand. One would expect good summaries to be
characterized by low divergence between proba-
bility distributions of words in the input and sum-
mary, and by high similarity with the input.

We experimented with three common measures:
KL and Jensen Shannon divergence and cosine
similarity. These three metrics have already been
applied for summary evaluation, albeit in differ-
ent contexts. In Lin et al. (2006), KL and JS di-
vergences between human and machine summary
distributions were used to evaluate content selec-
tion. The study found that JS divergence always
outperformed KL divergence. Moreover, the per-
formance of JS divergence was better than stan-
dard ROUGE scores for multi-document summa-
rization when multiple human models were used
for the comparison.

The use of cosine similarity in Donaway et
al. (2000) is more directly related to our work.
They show that the difference between evaluations

3The scores were computed after stemming but stop
words were retained in the summaries.
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based on two different human models is about the
same as the difference between system ranking
based on one model summary and the ranking pro-
duced using input-summary similarity. Inputs and
summaries were compared using only one metric:
cosine similarity.
Kullback Leibler (KL) divergence: The KL di-
vergence between two probability distributionsP
andQ is given by

D(P ||Q) =
∑

w

pP (w) log2

pP (w)

pQ(w)
(1)

It is defined as the average number of bits wasted
by coding samples belonging toP using another
distributionQ, an approximate ofP . In our case,
the two distributions are those for words in the
input and summary respectively. Since KL di-
vergence is not symmetric, both input-summary
and summary-input divergences are used as fea-
tures. In addition, the divergence is undefined
whenpP (w) > 0 but pQ(w) = 0. We perform
simple smoothing to overcome the problem.

p(w) =
C + δ

N + δ ∗ B
(2)

Here C is the count of wordw and N is the
number of tokens;B = 1.5|V |, whereV is the
input vocabulary andδ was set to a small value
of 0.0005 to avoid shifting too much probability
mass to unseen events.
Jensen Shannon (JS) divergence:The JS diver-
gence incorporates the idea that the distance be-
tween two distributions cannot be very different
from the average of distances from their mean dis-
tribution. It is formally defined as

J(P ||Q) =
1

2
[D(P ||A) + D(Q||A)], (3)

whereA = P+Q
2 is the mean distribution ofP

andQ. In contrast to KL divergence, the JS dis-
tance is symmetric and always defined. We use
both smoothed and unsmoothed versions of the di-
vergence as features.

Similarity between input and summary: The
third metric is cosine overlap between thetf ∗ idf
vector representations (with max-tf normalization)
of input and summary contents.

cosθ =
vinp.vsumm

||vinp||||vsumm || (4)

We compute two variants:

1. Vectors contain all words from input and
summary

2. Vectors contain only topic signatures from
the input and all words of the summary

Topic signatures are words highly descriptive of
the input, as determined by the application of log-
likelihood test (Lin and Hovy, 2000). Using only
topic signatures from the input to represent text is
expected to be more accurate because the reduced
vector has fewer dimensions compared with using
all the words from the input.

4.2 Summary likelihood

The likelihood of a word appearing in the sum-
mary is approximated as being equal to its proba-
bility in the input. We compute both a summary’s
unigram probability as well as its probability un-
der a multinomial model.
Unigram summary probability:

(pinpw1)
n1(pinpw2)

n2 ...(pinpwr)
nr (5)

where pinpwi is the probability in the input of
word wi, ni is the number of timeswi appears
in the summary, andw1...wr are all words in the
summary vocabulary.
Multinomial summary probability:

N !

n1!n2!...nr !
(pinpw1)

n1(pinpw2)
n2 ...(pinpwr)

nr (6)

whereN = n1 + n2 + ... + nr is the total number
of words in the summary.

4.3 Use of topic words in the summary

Summarization systems that directly optimize for
more topic signatures during content selection
have fared very well in evaluations (Conroy et al.,
2006). Hence the number of topic signatures from
the input present in a summary might be a good
indicator of summary content quality. We experi-
ment with two features that quantify the presence
of topic signatures in a summary:

1. Fraction of the summary composed of input’s
topic signatures.

2. Percentage of topic signatures from the input
that also appear in the summary.

While both features will obtain higher values
for summaries containing many topic words, the
first is guided simply by the presence of any topic
word while the second measures the diversity of
topic words used in the summary.
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4.4 Feature combination using linear
regression

We also evaluated the performance of a linear re-
gression metric combining all of the above fea-
tures. The value of the regression-based score for
each summary was obtained using a leave-one-
out approach. For a particular input and system-
summary combination, the training set consisted
only of examples which included neither the same
input nor the same system. Hence during training,
no examples of either the test input or system were
seen.

5 Correlations with manual evaluations

In this section, we report the correlations between
system ranking using our automatic features and
the manual evaluations. We studied the predictive
power of features in two scenarios.
MACRO LEVEL; PER SYSTEM: The values of fea-
tures were computed for each summary submitted
for evaluation. For each system, the feature values
were averaged across all inputs. All participating
systems were ranked based on the average value.
Similarly, the average manual score, pyramid or
responsiveness, was also computed for each sys-
tem. The correlations between the two rankings
are shown in Tables 2 and 4.
M ICRO LEVEL; PER INPUT: The systems were
ranked for each input separately, and correlations
between the summary rankings for each input
were computed (Table 3).

The two levels of analysis address different
questions: Can we automatically identify sys-
tem performance across all test inputs (macro
level) and can we identify which summaries for a
given input were good and which were bad (mi-
cro level)? For the first task, the answer is a defi-
nite “yes” while for the second task the results are
mixed.

In addition, we compare our results to model-
based evaluations using ROUGE and analyze the
effects of stemming the input and summary vo-
cabularies. In order to allow for in-depth discus-
sion, we will analyze our findings only for query
focused summaries. Similar results were obtained
for the evaluation of update summaries and are de-
scribed in Section 7.

5.1 Performance at macro level

Table 2 shows the Spearman correlation between
manual and automatic scores averaged across the

Features pyramid respons.
JS div -0.880 -0.736
JS div smoothed -0.874 -0.737
% of input topic words 0.795 0.627
KL div summ-inp -0.763 -0.694
cosine overlap 0.712 0.647
% of summ = topic wd 0.712 0.602
topic overlap 0.699 0.629
KL div inp-summ -0.688 -0.585
mult. summary prob. 0.222 0.235
unigram summary prob. -0.188 -0.101
regression 0.867 0.705
ROUGE-1 recall 0.859 0.806
ROUGE-2 recall 0.905 0.873

Table 2: Spearman correlation on macro level for
the query focused task. All results are highly sig-
nificant with p-values< 0.000001 except unigram
and multinomial summary probability, which are
not significant even at the 0.05 level.

48 inputs. We find that both distributional simi-
larity and the topic signature features produce sys-
tem rankings very similar to those produced by hu-
mans. Summary probabilities, on the other hand,
turn out to be unpredictive of content selection
performance. The linear regression combination
of features obtains high correlations with manual
scores but does not lead to better results than the
single best feature: JS divergence.

JS divergence outperforms other features in-
cluding the regression metric and obtains the best
correlations with both types of manual scores, 0.88
with pyramid score and 0.74 with responsiveness.
The regression metric performs comparably with
correlations of 0.86 and 0.70. The correlations ob-
tained by both JS divergence and the regression
metric with pyramid evaluations are in fact better
than that obtained by ROUGE-1 recall (0.85).

The best topic signature based feature—
percentage of input’s topic signatures that are
present in the summary—ranks next only to JS di-
vergence and regression. The correlation between
this feature and pyramid and responsiveness eval-
uations is 0.79 and 0.62 respectively. The propor-
tion of summary content composed of topic words
performs worse as an evaluation metric with cor-
relations 0.71 and 0.60. This result indicates that
summaries that cover more topics from the input
are judged to have better content than those in
which fewer topics are mentioned.

Cosine overlaps and KL divergences obtain
good correlations but still lower than JS diver-
gence or percentage of input topic words. Further,
rankings based on unigram and multinomial sum-
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mary probabilities do not correlate significantly
with manual scores.

5.2 Performance on micro level

On a per input basis, the proposed metrics are not
that effective in distinguishing which summaries
have better content. The minimum and maximum
correlations with manual evaluations across the 48
inputs are given in Table 3. The number and per-
centage of inputs for which correlations were sig-
nificant are also reported.

Now, JS divergence obtains significant correla-
tions with pyramid scores for 73% of the inputs
but for particular inputs, the correlation can be
as low as 0.27. The results are worse for other
features and for comparison with responsiveness
scores.

At the micro level, combining features with re-
gression gives the best result overall, in contrast to
the findings for the macro level setting. This re-
sult has implications for system development; no
single feature can reliably predict good content for
a particular input. Even a regression combination
of all features is a significant predictor of content
selection quality in only 77% of the cases.

We should note however, that our features are
based only on the distribution of terms in the in-
put and therefore less likely to inform good con-
tent for all input types. For example, a set of
documents each describing different opinion on a
given issue will likely have less repetition on both
lexical and content unit level. The predictiveness
of features like ours will be limited for such in-
puts4. However, model summaries written for the
specific input would give better indication of what
information in the input was important and inter-
esting. This indeed is the case as we shall see in
Section 6.

Overall, the micro level results suggest that the
fully automatic measures we examined will not be
useful for providing information about summary
quality for an individual input. For averages over
many test sets, the fully automatic evaluations give
more reliable and useful results, highly correlated
with rankings produced by manual evaluations.

4In fact, it would be surprising to find an automatically
computable feature or feature combination which would be
able to consistently predict good content for all individual in-
puts. If such features existed, an ideal summarization system
would already exist.

5.3 Effects of stemming

The analysis presented so far is on features com-
puted after stemming the input and summary
words. We also computed the values of the same
features without stemming and found that diver-
gence metrics benefit greatly when stemming is
done. The biggest improvements in correlations
are for JS and KL divergences with respect to re-
sponsiveness. For JS divergence, the correlation
increases from 0.57 to 0.73 and for KL divergence
(summary-input), from 0.52 to 0.69.

Before stemming, the topic signature and bag
of words overlap features are the best predictors
of responsiveness (correlations are 0.63 and 0.64
respectively) but do not change much after stem-
ming (topic overlap—0.62, bag of words—0.64).
Divergences emerge as better metrics only after
stemming.

Stemming also proves beneficial for the likeli-
hood features. Before stemming, their correlations
are directed in the wrong direction, but they im-
prove after stemming to being either positive or
closer to zero. However, even after stemming,
summary probabilities are not good predictors of
content quality.

5.4 Difference in correlations: pyramid and
responsiveness scores

Overall, we find that correlations with pyramid
scores are higher than correlations with respon-
siveness. Clearly our features are designed to
compare input-summary content only. Since re-
sponsiveness judgements were based on both con-
tent and linguistic quality of summaries, it is not
surprising that these rankings are harder to repli-
cate using our content based features. Neverthe-
less, responsiveness scores are dominated by con-
tent quality and the correlation between respon-
siveness and JS divergence is high, 0.73.

Clearly, metrics of linguistic quality should be
integrated with content evaluations to allow for
better predictions of responsiveness. To date, few
attempts have been made to automatically eval-
uate linguistic quality in summarization. Lapata
and Barzilay (2005) proposed a method for co-
herence evaluation which holds promise but has
not been validated so far on large datasets such
as those used in TAC and DUC. In a simpler ap-
proach, Conroy and Dang (2008) use higher order
ROUGE scores to approximate both content and
linguistic quality.
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pyramid responsiveness
features max min no. significant (%) max min no. significant (%)
JS div -0.714 -0.271 35 (72.9) -0.654 -0.262 35 (72.9)
JS div smoothed -0.712 -0.269 35 (72.9)-0.649 -0.279 33 (68.8)
KL div summ-inp -0.736 -0.276 35 (72.9) -0.628 -0.261 35 (72.9)
% of input topic words 0.701 0.286 31 (64.6) 0.693 0.279 29 (60.4)
cosine overlap 0.622 0.276 31 (64.6) 0.618 0.265 28 (58.3)
KL div inp-summ -0.628 -0.262 28 (58.3) -0.577 -0.267 22 (45.8)
topic overlap 0.597 0.265 30 (62.5) 0.689 0.277 26 (54.2)
% summary = topic wd 0.607 0.269 23 (47.9) 0.534 0.272 23 (47.9)
mult. summary prob. 0.434 0.268 8 (16.7) 0.459 0.272 10 (20.8)
unigram summary prob. 0.292 0.261 2 ( 4.2)0.466 0.287 2 (4.2)
regression 0.736 0.281 37 (77.1) 0.642 0.262 32 (66.7)
ROUGE-1 recall 0.833 0.264 47 (97.9) 0.754 0.266 46 (95.8)
ROUGE-2 recall 0.875 0.316 48 (100) 0.742 0.299 44 (91.7)

Table 3: Spearman correlations at micro level (query focused task). Only the minimum, maximum
values of the significant correlations are reported together with the number and percentage of significant
correlations.

update input only avg. update & background
features pyramid respons. pyramid respons.
JS div -0.827 -0.764 -0.716 -0.669
JS div smoothed -0.825 -0.764 -0.713 -0.670
% of input topic words 0.770 0.709 0.677 0.616
KL div summ-inp -0.749 -0.709 -0.651 -0.624
KL div inp-summ -0.741 -0.717 -0.644 -0.638
cosine overlap 0.727 0.691 0.649 0.631
% of summary = topic wd 0.721 0.707 0.647 0.636
topic overlap 0.707 0.674 0.645 0.619
mult. summmary prob. 0.284 0.355 0.152 0.224
unigram summary prob. -0.093 0.038 -0.151 -0.053
regression 0.789 0.605 0.699 0.522
ROUGE-1 recall 0.912 0.865 . .
ROUGE-2 recall 0.941 0.884 . .

regression combining features comparing with background and update inputs (without averaging)

correlations = 0.8058 with pyramid, 0.6729 with responsiveness

Table 4: Spearman correlations at macro level for update summarization. Results are reported separately
for features comparing update summaries with the update input only or with both update and background
inputs and averaging the two.

6 Comparison with ROUGE

For manual pyramid scores, the best correlation,
0.88, we observed in our experiments was with
JS divergence. This result is unexpectedly high
for a fully automatic evaluation metric. Note that
the best correlation between pyramid scores and
ROUGE (for R2) is 0.90, practically identical with
JS divergence. For ROUGE-1, the correlation is
0.85.

In the case of manual responsiveness, which
combines aspects of linguistic quality along with
content selection evaluation, the correlation with
JS divergence is 0.73. For ROUGE, it is 0.80
for R1 and 0.87 for R2. Using higher order n-
grams is obviously beneficial as observed from the
differences between unigram and bigram ROUGE
scores. So a natural extension of our features
would be to use distance between bigram distri-

butions. At the same time, for responsiveness,
ROUGE-1 outperforms all the fully automatic fea-
tures. This is evidence that the model summaries
provide information that is unlikely to ever be ap-
proximated by information from the input alone,
regardless of feature sophistication.

At the micro level, ROUGE does clearly better
than all the automatic measures. The results are
shown in the last two rows of Table 3. ROUGE-1
recall obtains significant correlations for over 95%
of inputs for responsiveness and 98% of inputs for
pyramid evaluation compared to 73% (JS diver-
gence) and 77% (regression). Undoubtedly, at the
input level, comparison with model summaries is
substantially more informative.

When reference summaries are available,
ROUGE provides scores that agree best with hu-
man judgements. However, when model sum-
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maries are not available, our features can provide
reliable estimates of system quality when averaged
over a set of test inputs. For predictions at the level
of individual inputs, our fully automatic features
are less useful.

7 Update Summarization

In Table 4, we report the performance of our fea-
tures for system evaluation on the update task. The
column, “update input only” summarizes the cor-
relations obtained by features comparing the sum-
maries with only the update inputs (setB). We
also compared the summaries individually to the
update and background (setA) inputs. The two
sets of features were then combined by a) averag-
ing (“avg. update and background”) and b) linear
regression (last line of Table 4).

As in the case of query focused summarization,
JS divergence and percentage of input topic sig-
natures in summary are the best features for the
update task as well. The overall best feature is
JS divergence between the update input and the
summaries—correlations of 0.82 and 0.76 with
pyramid and responsiveness.

Interestingly, the features combining both up-
date and background inputs do not lead to better
correlations than those obtained using the update
input only. The best performance from combined
features is given by the linear regression metric.
Although the correlation of this regression feature
with pyramid scores (0.80) is comparable to JS di-
vergence with update inputs, its correlation with
responsiveness (0.67) is clearly lower. These re-
sults show that the term distributions in the update
input are sufficiently good predictors of content
for update summaries. The role of the background
input appears to be negligable.

8 Discussion

We have presented a successful framework for
model-free evaluations of content which uses the
input as reference. The power of model-free eval-
uations generalizes across at least two summariza-
tion tasks: query focused and update summariza-
tion.

We have analyzed a variety of features for input-
summary comparison and demonstrated that the
strength of different features varies considerably.
Similar term distributions in the input and the sum-
mary and diverse use of topic signatures in the
summary are highly indicative of good content.

We also find that preprocessing like stemming im-
proves the performance of KL and JS divergence
features.

Very good results were obtained from a corre-
lation analysis with human judgements, showing
that input can indeed substitute for model sum-
maries and manual efforts in summary evaluation.
The best correlations were obtained by a single
feature, JS divergence (0.88 with pyramid scores
and 0.73 with responsiveness at system level).

Our best features can therefore be used to eval-
uate the content selection performance of systems
in a new domain where model summaries are un-
available. However, like all other content evalua-
tion metrics, our features must be accompanied by
judgements of linguistic quality to obtain whole-
some indicators of summary quality and system
performance. Evidence for this need is provided
by the lower correlations with responsiveness than
the content-only pyramid evaluations.

The results of our analysis zero in on JS diver-
gence and topic signature as desirable objectives to
optimize during content selection. On the macro
level, they are powerful predictors of content qual-
ity. These findings again emphasize the need for
always including linguistic quality as a component
of evaluation.

Observations from our input-based evaluation
also have important implications for the design of
novel summarization tasks. We find that high cor-
relations with manual evaluations are obtained by
comparing query-focused summaries with the en-
tire input and making no use of the query at all.
Similarly in the update summarization task, the
best predictions of content for update summaries
were obtained using only the update input. The
uncertain role of background inputs and queries
expose possible problems with the task designs.
Under such conditions, it is not clear if query-
focused content selection or ability to compile up-
dates are appropriately captured by any evaluation.
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Abstract

We propose a novel unsupervised approach
for distinguishing literal and non-literal use
of idiomatic expressions. Our model com-
bines an unsupervised and a supervised
classifier. The former bases its decision
on the cohesive structure of the context and
labels training data for the latter, which can
then take a larger feature space into account.
We show that a combination of both classi-
fiers leads to significant improvements over
using the unsupervised classifier alone.

1 Introduction

Idiomatic expressions are abundant in natural lan-
guage. They also often behave idiosyncratically
and are therefore a significant challenge for natural
language processing systems. For example, idioms
can violate selectional restrictions (as in push one’s
luck), disobey typical subcategorisation constraints
(e.g., in line without a determiner before line), or
change the default assignments of semantic roles
to syntactic categories (e.g., in break sth with X the
argument X would typically be an instrument but
for the idiom break the ice it is more likely to fill a
patient role, as in break the ice with Russia).

In order to deal with such idiosyncracies and as-
sign the correct analyses, NLP systems need to be
able to recognise idiomatic expressions. Much pre-
vious research on idioms has been concerned with
type-based classification, i.e., dividing expressions
into ‘idiom’ or ‘not idiom’ irrespective of their ac-
tual use in a given context. However, while some
expressions, such as by and large, always have an
idiomatic meaning, several other expressions, such
as break the ice or spill the beans, can be used liter-
ally as well as idiomatically (see examples (1) and
(2), respectively). Sometimes the literal usage can
even dominate in a domain, as for drop the ball,

which occurs fairly frequently in a literal sense in
the sports section of news texts.
(1) Dad had to break the ice on the chicken troughs so

that they could get water.
(2) Somehow I always end up spilling the beans all

over the floor and looking foolish when the clerk
comes to sweep them up.

Hence, whether a particular occurrence of a po-
tentially ambiguous expression has literal or non-
literal meaning has to be inferred from the context
(token-based idiom classification). Recently, there
has been increasing interest in this classification
task and both supervised and unsupervised tech-
niques have been proposed. The work we present
here builds on previous research by Sporleder and
Li (2009), who describe an unsupervised method
that exploits the presence or absence of cohesive
ties between the component words of a potential
idiom and its context to distinguish between literal
and non-literal use. If strong ties can be found
the expression is classified as literal otherwise as
non-literal. While this approach often works fairly
well, it has the disadvantage that it focuses exclu-
sively on lexical cohesion, other linguistic cues
that might influence the classification decision are
disregarded.

We show that it is possible to improve on
Sporleder and Li’s (2009) results by employing
a two-level strategy, in which a cohesion-based
unsupervised classifier is combined with a super-
vised classifier. We use the unsupervised classifier
to label a sub-set of the test data with high confi-
dence. This sub-set is then passed on as training
data to the supervised classifier, which then labels
the remainder of the data set. Compared to a fully
unsupervised approach, this two-stage method has
the advantage that a larger feature set can be ex-
ploited. This is beneficial for examples, in which
the cohesive ties are relatively weak but which con-
tain other linguistic cues for literal or non-literal
use.
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2 Related Work

Most studies on idiom classification focus on type-
based classification; few researchers have worked
on token-based approaches (i.e., classification of an
expression in a given context). Type-based meth-
ods frequently exploit the fact that idioms have a
number of properties which differentiate them from
other expressions. For example, they often exhibit
a degree of syntactic and lexical fixedness. Some
idioms, for instance, do not allow internal modi-
fiers (*shoot the long breeze) or passivisation (*the
bucket was kicked). They also typically only al-
low very limited lexical variation (*kick the vessel,
*strike the bucket).

Many approaches for identifying idioms focus
on one of these two aspects. For instance, measures
that compute the association strength between the
elements of an expression have been employed
to determine its degree of compositionality (Lin,
1999; Fazly and Stevenson, 2006) (see also Villav-
icencio et al. (2007) for an overview and a com-
parison of different measures). Other approaches
use Latent Semantic Analysis (LSA) to determine
the similarity between a potential idiom and its
components (Baldwin et al., 2003). Low similar-
ity is supposed to indicate low compositionality.
Bannard (2007) looks at the syntactic fixedness
of idiomatic expressions, i.e., how likely they are
to take modifiers or be passivised, and compares
this to what would be expected based on the ob-
served behaviour of the component words. Fazly
and Stevenson (2006) combine information about
syntactic and lexical fixedness (i.e., estimated de-
gree of compositionality) into one measure.

The few token-based approaches include a study
by Katz and Giesbrecht (2006), who devise a super-
vised method in which they compute the meaning
vectors for the literal and non-literal usages of a
given expression in the training data. An unseen
test instance of the same expression is then labelled
by performing a nearest neighbour classification.

Birke and Sarkar (2006) model literal vs. non-
literal classification as a word sense disambiguation
task and use a clustering algorithm which compares
test instances to two automatically constructed seed
sets (one with literal and one with non-literal ex-
pressions), assigning the label of the closest set.
While the seed sets are created without immediate
human intervention they do rely on manually cre-
ated resources such as databases of known idioms.

Cook et al. (2007) and Fazly et al. (2009) pro-

pose an alternative method which crucially relies
on the concept of canonical form, which is a fixed
form (or a small set of those) corresponding to the
syntactic pattern(s) in which the idiom normally
occurs (Riehemann, 2001).1 The canonical form
allows for inflectional variation of the head verb but
not for other variations (such as nominal inflection,
choice of determiner etc.). It has been observed that
if an expression is used idiomatically, it typically
occurs in its canonical form. For example, Riehe-
mann (2001, p. 34) found that for decomposable
idioms 75% of the occurrences are in canonical
form, rising to 97% for non-decomposable idioms.2

Cook et al. exploit this behaviour and propose an
unsupervised method which classifies an expres-
sion as idiomatic if it occurs in canonical form and
literal otherwise.

Finally, in earlier work, we proposed an unsu-
pervised method which detects the presence or ab-
sence of cohesive links between the component
words of the idiom and the surrounding discourse
(Sporleder and Li, 2009). If such links can be found
the expression is classified as ‘literal’ otherwise as
‘non-literal’. In this paper we show that the per-
formance of such a classifier can be significantly
improved by complementing it with a second-stage
supervised classifier.

3 First Stage: Unsupervised Classifier

As our first-stage classifier, we use the unsuper-
vised model proposed by Sporleder and Li (2009).
This model exploits the fact that words in a co-
herent discourse exhibit lexical cohesion (Halliday
and Hasan, 1976), i.e. concepts referred to in sen-
tences are typically related to other concepts men-
tioned elsewhere in the discourse. Given a suitable
measure of semantic relatedness, it is possible to
compute the strength of such cohesive ties between
pairs of words. While the component words of
literally used expressions tend to exhibit lexical co-
hesion with their context, the words of non-literally
used expressions do not. For example, in (3) the ex-
pression play with fire is used literally and the word
fire is related to surrounding words like grilling,
dry-heat, cooking, and coals. In (4), however play
with fire is used non-literally and cohesive ties be-

1This is also the form in which an idiom is usually listed
in a dictionary.

2Decomposable idioms are expressions such as spill the
beans which have a composite meaning whose parts can be
mapped to the words of the expression (e.g., spill→’reveal’,
beans→’secret’).
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tween play or fire and the context are absent.

(3) Grilling outdoors is much more than just another
dry-heat cooking method. It’s the chance to
play with fire, satisfying a primal urge to stir around
in coals .

(4) And PLO chairman Yasser Arafat has accused Israel
of playing with fire by supporting HAMAS in its
infancy.

To determine the strength of cohesive links, the
unsupervised model builds a graph structure (called
cohesion graph) in which all pairs of content words
in the context are connected by an edge which is
weighted by the pair’s semantic relatedness. Then
the connectivity of the graph is computed, defined
as the average edge weight. If the connectivity
increases when the component words of the idiom
are removed, then there are no strong cohesive ties
between the expression and the context and the
example is labelled as ‘non-literal’, otherwise it is
labelled as ‘literal’.

To model semantic distance, we use the Nor-
malized Google Distance (NGD, see Cilibrasi and
Vitanyi (2007)), which computes relatedness on the
basis of page counts returned by a search engine.3

It is defined as follows:

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

log M −min{log f(x), log f(y)}
(5)

where x and y are the two words whose association
strength is computed (e.g., fire and coal), f(x) is
the page count returned by the search engine for x
(and likewise for f(y) and y), f(x, y) is the page
count returned when querying for “x AND y”, and
M is the number of web pages indexed by the
search engine. The basic idea is that the more often
two terms occur together, relative to their overall
occurrence, the more closely they are related.

We hypothesise that the unsupervised classifier
will give us relatively good results for some exam-
ples. For instance, in (3) there are several strong
cues which suggest that play with fire is used liter-
ally. However, because the unsupervised classifier
only looks at lexical cohesion, it misses many other
clues which could help distinguish literal and non-
literal usages. For example, if break the ice is
followed by the prepositions between or over as in
example (6), it is more likely to be used idiomati-
cally (at least in the news domain).

(6) ”Gujral will meet Sharif on Monday and discuss
bilateral relations,” the Press Trust of India added.

3We employ Yahoo! rather than Google since we found
that it returns more stable counts.

The minister said Sharif and Gujral would be able
to break the ice over Kashmir.

Furthermore, idiomatic usages also exhibit co-
hesion with their context but the cohesive ties are
with the non-literal meaning of the expression. For
example, in news texts, break the ice in its figu-
rative meaning often co-occurs with discuss, rela-
tions, talks or diplomacy (see (6)). At the moment
we do not have any way to model these cohesive
links, as we do not know the non-literal meaning
of the idiom.4 However if we had labelled data we
could train a supervised classifier to learn these and
other contextual clues. The trained classifier might
then be able to correctly classify examples which
were misclassified by the unsupervised classifier,
i.e., examples in which the cohesive ties are weak
but where other clues exist which indicate how the
expression is used.

For example, in (7) there is weak cohesive evi-
dence for a literal use of break the ice, due to the
semantic relatedness between ice and water. How-
ever, there are stronger cues for non-literal usage,
such as the preposition between and the presence
of words like diplomats and talks, which are in-
dicative of idiomatic usage. Examples like this
are likely to be misclassified by the unsupervised
model; a supervised classifier, on the other hand,
has a better chance to pick up on such additional
cues and predict the correct label.

(7) Next week the two diplomats will meet in an attempt
to break the ice between the two nations. A crucial
issue in the talks will be the long-running water
dispute.

4 Second Stage: Supervised Classifier

For the supervised classifier, we used Support Vec-
tor Machines as implemented by the LIBSVM
package.5 We implemented four types of features,
which encode both cohesive information and word
co-occurrence more generally.6

4It might be possible to compute the Normalized Google
Distance between the whole expression and the words in the
context, assuming that whenever the whole expression occurs
it is much more likely to be used figuratively than literally.
For expressions in canonical form this is indeed often the
case (Riehemann, 2001), however there are exceptions (see
Section 6.1) for which such an approach would not work.

5Available from: http://www.csie.ntu.edu.tw/
˜cjlin/libsvm/ We used the default parameters.

6We also experimented with linguistically more informed
features, such as the presence of named entities in the local
context of the expression, and properties of the subject or
co-ordinated verbs, but we found that these features did not
lead to a better performance of the supervised classifier. This
is probably partly due to data sparseness.
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Salient Words (salW) This feature aims to iden-
tify words which are particularly salient for literal
usage. We used a frequency-based definition of
salience and computed the literal saliency score for
each word in a five-paragraph context around the
target expression:

sallit(w) =
log flit(w)× ilit(w)

log fnonlit(w)× inonlit(w)
(8)

where sallit(w) is the saliency score of the word w
for the class lit; flit(w) is the token frequency of
the word w for literally used expressions; ilit(w) is
the number of instances of the target expressions
classified as lit which co-occur with word w (and
mutatis mutandis nonlit for target expressions la-
belled as non-literal).7

Words with a high sallit occur much more fre-
quently with literal usages than with non-literal
ones. Conversely, words with a low sallit should
be more indicative of the non-literal class. How-
ever, we found that, in practice, the measure is
better at picking out indicative words for the literal
class; non-literal usages tend to co-occur with a
wide range of words. For example, among the high-
est scoring words for break the ice we find thick,
bucket, cold, water, reservoir etc. While we do find
words like relations, diplomacy, discussions among
the lowest scoring terms (i.e., terms indicative of
the non-literal class), we also find a lot of noise
(ask, month). The effect is even more pronounced
for other expressions (like drop the ball) which
tend to be used idiomatically in a wider variety
of situations (drop the ball on a ban of chemical
weapons, drop the ball on debt reduction etc.).

We implement the saliency score in our model by
encoding for the 300 highest scoring words whether
the word is present in the context of a given exam-
ple and how frequently it occurs.8 Note that this
feature (as well as the next one) can be computed in
a per-idiom or a generic fashion. In the former case,
we would encode the top 300 words separately for
each idiom in the training set, in the latter across all
idioms (with the consequence that more frequent

7Our definition of sallit bears similarities with the well
known tf.idf score. We include both the term frequencies
(flit) and the instance frequencies (ilit) in the formula because
we believe both are important. However, the instance fre-
quency is more informative and less sensitive to noise because
it indicates that expression classified as ’literal’ consistently
co-occurs with the word in question. Therefore we weight
down the effect of the term frequency by taking its log.

8We also experimented with different feature dimensions
besides 300 but did not find a big difference in performance.

idioms in the training set contribute to more po-
sitions in the feature vector). We found that, in
practice, it does not make a big difference which
variant is used. Moreover, in our bootstrapping
scenario, we cannot ensure that we have sufficient
examples of each idiom in the training set to train
separate classifiers, so we opted for generic models
throughout all experiments.

Related Words (relW) This feature set is a vari-
ant of the previous one. Here we score the words
not based on their saliency but we determine the
semantic relatedness between the noun in the id-
iomatic expression and each word in the global
context, using the Normalized Google Distance
mentioned in Section 3. Again we encode the 300
top-scoring words.

While the related words feature is less prone to
overestimation of accidental co-occurrence than the
saliency feature, it has the disadvantage of conflat-
ing different word senses. For example, among the
highest scoring words for ice are cold, melt, snow,
skate, hockey but also cream, vanilla, dessert.

Relatedness Score (relS) The fourth feature set
implements the relatedness score which encodes
the scores for the 100 most highly weighted edges
in the cohesion graph of an instance.9 If these
scores are high, there are many cohesive ties with
the surrounding discourse and the target expression
is likely to be used literally.

Discourse Connectivity (connect.) Finally, we
implemented two features which look at the cohe-
sion graph of an instance. We encode the connec-
tivity of the graph (i) when the target expression
is included and (ii) when it is excluded. The un-
supervised classifier uses the difference between
these two values to make its prediction. By encod-
ing the absolute connectivity values as features we
enable the supervised classifier to make use of this
information as well.

5 Combining the Classifiers

As mentioned before, we use the unsupervised clas-
sifier to label an initial training set for the super-
vised one. To ensure that the training set does
not contain too much noise, we only add those ex-
amples about which the unsupervised classifier is

9We only used the 100 highest ranked edges because we
are looking at a specific context here rather than the contexts
of the literal or non-literal class overall. Since the contexts we
use are only five paragraphs long, recording the 100 strongest
edges seems sufficient.
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most confident. We thus need to address two ques-
tions: (i) how to define a confidence function for
the unsupervised classifier, and (ii) how to set the
confidence threshold governing what proportion of
the data set is used for training the second classifier.

The first question is relatively easy to answer:
as the unsupervised classifier bases its decision on
the difference in connectivity between including or
excluding the component words of the idiom in the
cohesion graph, an obvious choice for a confidence
function is the difference in connectivity; i.e., the
higher the difference, the higher the confidence of
the classifier in the predicted label.

The confidence threshold could be selected on
the basis of the unsupervised classifier’s perfor-
mance on a development set. Note that when choos-
ing such a threshold there is usually a trade-off be-
tween the size of the training set and the amount of
noise in it: the lower the threshold, the larger and
the noisier the training set. Ideally we would like
a reasonably-sized training set which is also rela-
tively noise-free, i.e., does not contain too many
wrongly labelled examples. One way to achieve
this is to start with a relatively small training set
and then expand it gradually.

A potential problem for the supervised classifier
is that our data set is relatively imbalanced, with
the non-literal class being four times as frequent
as the literal class. Supervised classifiers often
have problems with imbalanced data and tend to be
overly biased towards the majority class (see, e.g.,
Japkowicz and Stephen (2002)). To overcome this
problem, we experimented with boosting the literal
class with additional examples.10 We describe our
methods for training set enlargement and boosting
the literal class in the remainder of this section.

Iteratively Enlarging the Training Set A typi-
cal method for increasing the training set is to go
through several iterations of enlargement and re-
training.11 We adopt a conservative enlargement
strategy: we only consider instances on whose la-
bels both classifiers agree and we use the confi-
dence function of the unsupervised classifier to
determine which of these examples to add to the
training set. The motivation for this is that we hy-
pothesise that the supervised classifier will not have

10Throughout this paper, we use the term ’boosting’ in a
non-technical sense.

11In our case re-training also involves re-computing the
ranked lists of salient and related words. As the process goes
on the classifier will be able to discover more and more useful
cue words and encode them in the feature vector.

a very good performance initially, as it is trained
on a very small data set. As a consequence its con-
fidence function may also not be very accurate. On
the other hand, we know from Sporleder and Li
(2009) that the unsupervised classifier has a rea-
sonably good performance. So while we give the
supervised classifier a veto-right, we do not allow
it to select new training data by itself or overturn
classifications made by the unsupervised classifier.

A similar strategy was employed by Ng and
Cardie (2003) in a self-training set-up. However,
while they use an ensemble of supervised classi-
fiers, which they re-train after each iteration, we
can only re-train the second classifier; the first one,
being unsupervised, will never change its predic-
tion. Hence it does not make sense to go through
a large number of iterations; the more iterations
we go through, the closer the performance of the
combined classifier will be to that of the unsuper-
vised one because that classifier will label a larger
and larger proportion of the data. However, going
through one or two iterations allows us to slowly
enlarge the training set and thereby gradually im-
prove the performance of the supervised classifier.

In each iteration, we select 10% of the remain-
ing examples to be added to the training set.12

We could simply add those 10% of the data about
which the unsupervised classifier is most confident,
but if the classifier was more confident about one
class than about the other, we would risk obtain-
ing a severely imbalanced training set. Hence, we
decided to separate examples classified as ‘literal’
from those classified as ‘non-literal’ and add the
top 10% from each set. Provided the automatic
classification is reasonably accurate, this will en-
sure that the distribution of classes in the training
set is roughly similar to that in the overall data set
at least at the early stages of the bootstrapping.

Boosting the Literal Class As the process goes
on, we are still likely to introduce more and more
imbalance in the training set. This is due to the
fact that the supervised classifier is likely to have
some bias towards the majority class (and our ex-
periments in Section 6.2 suggest that this is indeed
the case). Hence, as the bootstrapping process goes
on, potentially more and more examples will be
labelled as ’non-literal’ and if we always select the
top 10% of these, our training set will gradually

12Since we do not have a separate development set, we
chose the value of 10% intuitively as it seemed a reasonably
good threshold.
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become more imbalanced. This is a well-known
problem for bootstrapping approaches (Blum and
Mitchell, 1998; Le et al., 2006). We could coun-
teract this by selecting a higher proportion of ex-
amples labelled as ’literal’. However given that
the number of literal examples in our data set is
relatively small, we would soon deplete our literal
instance pool and moreover, because we would be
forced to add less confidently labelled examples
for the literal class, we are likely to introduce more
noise in the training set.

A better option is to boost the literal class with
external examples. To do this we exploit the
fact that non-canonical forms of idioms are highly
likely to be used literally. Given that our data set
only contains canonical forms (see Section 6.1), we
automatically extract non-canonical form variants
and label them as ’literal’. To generate possible
variants, we either (i) change the number of the
noun (e.g., rock the boat becomes rock the boats),
(ii) change the determiner (e.g., rock a boat), or (iii)
replace the verb or noun by one of its synonyms,
hypernyms, or siblings from WordNet (e.g., rock
the ship). While this strategy does not give us addi-
tional literal examples for all idioms, for example
we were not able to find non-canonical form occur-
rences of sweep under the carpet in the Gigaword
corpus, for most idioms we were able to gener-
ate additional examples. Note that this data set is
potentially noisy as not all non-canonical form ex-
amples are used literally. However, when checking
a small sample manually, we found that only very
small percentage (<< 1%) was mis-labelled.

To reduce the classifier bias when enlarging the
training set, we add additional literal examples dur-
ing each iteration to ensure that the class distri-
bution does not deviate too much from the dis-
tribution originally predicted by the unsupervised
classifier.13 The examples to be added are selected
randomly but we try to ensure that each idiom is
represented. When reporting the results, we disre-
gard these additional external examples.

6 Experiments and Results

We carried out a number of different experiments.
In Section 6.2 we investigate the performance of
the different features of the supervised classifier
and in Section 6.3 we look more closely at the

13We are assuming that the true distribution is not known
and use the predictions of the unsupervised classifier to ap-
proximate the true distribution.

behaviour of the combined classifier. We start by
describing the data set.

6.1 Data

We used the data from Sporleder and Li (2009),
which consist of 17 idioms that can be used both
literally and non-literally (see Table 1). For each
expression, all canonical form occurrences were
extracted from the Gigaword corpus together with
five paragraphs of context and labelled as ‘literal’
or ‘non-literal’.14 The inter-annotator agreement
on a small sample of doubly annotated examples
was 97% and the kappa score 0.7 (Cohen, 1960).

non-
expression literal literal all
back the wrong horse 0 25 25
bite off more than one can chew 2 142 144
bite one’s tongue 16 150 166
blow one’s own trumpet 0 9 9
bounce off the wall* 39 7 46
break the ice 20 521 541
drop the ball* 688 215 903
get one’s feet wet 17 140 157
pass the buck 7 255 262
play with fire 34 532 566
pull the trigger* 11 4 15
rock the boat 8 470 478
set in stone 9 272 281
spill the beans 3 172 175
sweep under the carpet 0 9 9
swim against the tide 1 125 126
tear one’s hair out 7 54 61
all 862 3102 3964

Table 1: Idiom statistics (* indicates expressions
for which the literal usage is more common than
the non-literal one)

6.2 Feature Analysis for the Supervised
Classifier

In a first experiment, we tested the contribution of
the different features (Table 2). For each set, we
trained a separate classifier and tested it in 10-fold
cross-validation mode. We also tested the perfor-
mance of the first three features combined (salient
and related words and relatedness score) as we
wanted to know whether their combination leads
to performance gains over the individual classifiers.
Moreover, testing these three features in combi-
nation allows us to assess the contribution of the
connectivity feature, which is most closely related
to the unsupervised classifier. We report the accu-
racy, and because our data are fairly imbalanced,

14The restriction to canonical forms was motivated by the
fact that for the mostly non-decomposable idioms in the set,
the vast majority (97%) of non-canonical form occurrences
will be used literally (see Section 2).
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also the F-Score for the minority class (’literal’).

Avg. literal (%) Avg. (%)
Feature Prec. Rec. F-Score Acc.
salW 77.10 56.10 65.00 86.83
relW 78.00 43.20 55.60 84.99
relS 74.90 37.50 50.00 83.68
connectivity 78.30 2.10 4.10 78.58
salW+relW+relS 82.90 63.50 71.90 89.20

all 85.80 66.60 75.00 90.34

Table 2: Performance of different feature sets, 10-
fold cross-validation

It can be seen that the salient words (salW) fea-
ture has the highest performance of the individual
features, both in terms of accuracy and in terms of
literal F-Score, followed by related words (relW),
and relatedness score (relS). Intuitively, it is plausi-
ble that the saliency feature performs quite well as
it can also pick up on linguistic indicators of idiom
usage that do not have anything to do with lexical
cohesion. However, a combination of the first three
features leads to an even better performance, sug-
gesting that the features do indeed model somewhat
different aspects of the data.

The performance of the connectivity feature is
also interesting: while it does not perform very well
on its own, as it over-predicts the non-literal class, it
noticeably increases the performance of the model
when combined with the other features, suggesting
that it picks up on complementary information.

6.3 Testing the Combined Classifier

We experimented with different variants of the
combined classifier. The results are shown in Ta-
ble 3. In particular, we looked at: (i) combining the
two classifiers without training set enlargement or
boosting of the literal class (combined), (ii) boost-
ing the literal class with 200 automatically labelled
non-canonical form examples (combined+boost),
(iii) enlarging the training set by iteration (com-
bined+it), and (iv) enlarging the training set by
iteration and boosting the literal class after each
iteration (combined+boost+it). The table shows
the literal precision, recall and F-Score of the com-
bined model (both classifiers) on the complete data
set (excluding the extra literal examples). Note that
the results for the set-ups involving iterative train-
ing set enlargement are optimistic: since we do not
have a separate development set, we report the op-
timal performance achieved during the first seven
iterations. In a real set-up, when the optimal num-
ber of iterations is chosen on the basis of a separate

data set, the results may be lower. The table also
shows the majority class baseline (Basemaj), and
the overall performance of the unsupervised model
(unsup) and the supervised model when trained in
10-fold cross-validation mode (super 10CV).

Model Precl Recl F-Scorel Acc.

Basemaj - - - 78.25
unsup. 50.04 69.72 58.26 78.38
combined 83.86 45.82 59.26 86.30
combined+boost 70.26 62.76 66.30 86.13
combined+it∗ 85.68 46.52 60.30 86.68
combined+boost+it∗ 71.86 66.36 69.00 87.03
super. 10CV 85.80 66.60 75.00 90.34

Table 3: Results for different classifiers; ∗ indicates
best performance (optimistic)

It can be seen that the combined classifier is 8%
more accurate than both the majority baseline and
the unsupervised classifier. This amounts to an
error reduction of over 35% (the difference is sta-
tistically significant, χ2 test, p << 0.01). While
the F-Score of the unboosted combined classifier is
comparable to that of the unsupervised one, boost-
ing the literal class leads to a 7% increase, due
to a significantly increased recall, with no signif-
icant drop in accuracy. These results show that
complementing the unsupervised classifier with a
supervised one, can lead to tangible performance
gains. Note that the accuracy of the combined clas-
sifier, which uses no manually labelled training
data, is only 4% below that of a fully supervised
classifier; in other words, we do not lose much by
starting with an automatically labelled data set. It-
erative enlargement of the training set can lead to
further improvements, especially when combined
with boosting to reduce the classifier bias.

To get a better idea of the effect of training set
enlargement, we plotted the accuracy and F-Score
of the combined classifier for a given number of
iterations with boosting (Figure 1) and without (Fig-
ure 2). It can be seen that enlargement has a notice-
able positive effect if combined with boosting. If
the literal class is not boosted, the increasing bias
of the classifier seems to outweigh most of the pos-
itive effects from the enlarged training set. Figure 1
also shows that the best performance is obtained af-
ter a relatively small number of iterations (namely
two), as expected.15 With more iterations the per-
formance decreases again. However, it decays rel-

15Note that this also depends on the confidence threshold.
For example, if a threshold of 5% is chosen, more iterations
may be required for optimal performance.
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atively gracefully and even after seven iterations,
when more than 40% of the data are classified by
the unsupervised classifier, the combined classifier
still achieves an overall performance that is sig-
nificantly above that of the unsupervised classifier
(84.28% accuracy compared to 78.38%, significant
at p << 0.01). Hence, the combined classifier
seems not to be very sensitive to the exact number
of iterations and performs reasonably well even if
the number of iterations is sub-optimal.
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Figure 1: Accuracy and literal F-Score on complete
data set after different iterations with boosting of
the literal class
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Figure 2: Accuracy and literal F-Score on complete
data set after different iterations without boosting
of the literal class

Figure 3 shows how the training set increases
as the process goes on16 and how the number of
mis-classifications in the training set develops. In-
terestingly, when going from the first to the second
iteration the training set nearly doubles (from 396
to 669 instances), while the proportion of errors is
also reduced by a third (from 7% to 5%). Hence,
the training set does not only grow but the pro-
portion of noise in it decreases, too. This shows

16Again, we disregard the extra literal examples here.

that our conservative enlargement strategy is fairly
successful in selecting correctly labelled examples.
Only at later stages, when the classifier bias takes
over, does the proportion of noise increase again.
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Figure 3: Training set size and error in training set
at different iterations

7 Conclusion

We presented a two-stage classification approach
for distinguishing literal and non-literal use of id-
iomatic expressions. Our approach complements
an unsupervised classifier, which exploits informa-
tion about the cohesive structure of the discourse,
with a supervised classifier. The latter can make
use of a range of features and therefore base its
classification decision on additional properties of
the discourse, besides lexical cohesion. We showed
that such a combined classifier can lead to a sig-
nificant reduction of classification errors. Its per-
formance can be improved further by iteratively
increasing the training set in a bootstrapping loop
and by adding additional examples of the literal
class, which is typically the minority class. We
found that such examples can be obtained automat-
ically by extracting non-canonical variants of the
target idioms from an unlabelled corpus.

Future work should look at improving the su-
pervised classifier, which so far has an accuracy
of 90%. While this is already pretty good, a more
sophisticated model might lead to further improve-
ments. For example, one could experiment with
linguistically more informed features. While our
initial studies in this direction were negative, care-
ful feature engineering might lead to better results.
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Abstract

A number of recent publications have
made use of the incremental output of
stochastic parsers to derive measures of
high utility for psycholinguistic modeling,
following the work of Hale (2001; 2003;
2006). In this paper, we present novel
methods for calculating separate lexical
and syntactic surprisal measures from a
single incremental parser using a lexical-
ized PCFG. We also present an approx-
imation to entropy measures that would
otherwise be intractable to calculate for a
grammar of that size. Empirical results
demonstrate the utility of our methods in
predicting human reading times.

1 Introduction

Assessment of linguistic complexity has played
an important role in psycholinguistics and neu-
rolinguistics for a long time, from the use of
mean length of utterance and related scores in
child language development (Klee and Fitzgerald,
1985), to complexity scores related to reading dif-
ficulty in human sentence processing studies (Yn-
gve, 1960; Frazier, 1985; Gibson, 1998). Opera-
tionally, such linguistic complexity scores are de-
rived via deterministic manual (human) annotation
and scoring algorithms of language samples. Nat-
ural language processing has been employed to
automate the extraction of such measures (Sagae
et al., 2005; Roark et al., 2007), which can have
high utility in terms of reduction of time required
to annotate and score samples. More interest-
ingly, however, novel data driven methods are be-
ing increasingly employed in this sphere, yield-
ing language sample characterizations that require
NLP in their derivation. For example, scores
derived from variously estimated language mod-
els have been used to evaluate and classify lan-
guage samples associated with neurodevelopmen-

tal or neurodegenerative disorders (Roark et al.,
2007; Solorio and Liu, 2008; Gabani et al., 2009),
as well as within general studies of human sen-
tence processing (Hale, 2001; 2003; 2006). These
scores cannot feasibly be derived by hand, but
rather rely on large-scale statistical models and
structured inference algorithms to be derived. This
is quickly becoming an important application of
NLP, making possible new methods in the study
of human language processing in both typical and
impaired populations.

The use of broad-coverage parsing for psy-
cholinguistic modeling has become very popular
recently. Hale (2001) suggested a measure (sur-
prisal) derived from an Earley (1970) parser us-
ing a probabilistic context-free grammar (PCFG)
for psycholinguistic modeling; and in later work
(Hale, 2003; 2006) he suggested an alternate
parser-derived measure (entropy reduction) that
may also account for some human sentence pro-
cessing performance. Recent work continues to
advocate surprisal in particular as a very use-
ful measure for predicting processing difficulty
(Boston et al., 2008a; Boston et al., 2008b; Dem-
berg and Keller, 2008; Levy, 2008), and the mea-
sure has been derived using a variety of incre-
mental (left-to-right) parsing strategies, includ-
ing an Earley parser (Boston et al., 2008a), the
Roark (2001) incremental top-down parser (Dem-
berg and Keller, 2008), and an n-best version of
the Nivre et al. (2007) incremental dependency
parser (Boston et al., 2008a; 2008b). Deriving
such measures by hand, even for a relatively lim-
ited set of stimuli, is not feasible, hence parsing
plays a critical role in this developing psycholin-
guistic enterprise.

There is no single measure that can account for
all of the factors influencing human sentence pro-
cessing performance, and some of the most recent
work on using parser-derived measures for psy-
cholinguistic modeling has looked to try to de-
rive multiple, complementary measures. One of
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the key distinctions being looked at is syntactic
versus lexical expectations (Gibson, 2006). For
example, in Demberg and Keller (2008), trials
were run deriving surprisal from the Roark (2001)
parser under two different conditions: fully lex-
icalized parsing, and fully unlexicalized parsing
(to pre-terminal part-of-speech tags). Boston et
al. (2008a) capture a similar distinction by mak-
ing use of an unlexicalized PCFG within an Ear-
ley parser and a fully lexicalized unlabeled depen-
dency parser (Nivre et al., 2007). As Demberg and
Keller (2008) point out, fully unlexicalized gram-
mars ignore important lexico-syntactic informa-
tion when deriving the “syntactic” expectations,
such as subcategorization preferences of particular
verbs, which are generally accepted to impact syn-
tactic expectations in human sentence processing
(Garnsey et al., 1997). Demberg and Keller argue,
based on their results, for unlexicalized surprisal
instead of lexicalized surprisal. Here we present a
novel method for deriving separate syntactic and
lexical surprisal measures from a fully lexicalized
incremental parser, to allow for rich probabilistic
grammars to be used to derive either measure, and
demonstrate the utility of this method versus that
of Demberg and Keller in empirical trials.

The use of large-scale lexicalized grammars
presents a problem for using an Earley parser to
derive surprisal or for the calculation of entropy as
Hale (2003; 2006) defines it, because both meth-
ods require matrix inversion of a matrix with di-
mensionality the size of the non-terminal set. With
very large lexicalized PCFGs, the size of the non-
terminal set is too large for tractable matrix in-
version. The use of an incremental, beam-search
parser provides a tractable approximation to both
measures. Incremental top-down and left-corner
parsers have been shown to effectively (and effi-
ciently) make use of non-local features from the
left-context to yield very high accuracy syntactic
parses (Roark, 2001; Henderson, 2003; Collins
and Roark, 2004), and we will use such rich mod-
els to derive our scores.

In addition to teasing apart syntactic and lexical
surprisal (defined explicitly in §3), we present an
approximation to the full entropy that Hale (2003;
2006) used to define the entropy reduction hypoth-
esis. Such an entropy measure is derived via a pre-
dictive step, advancing the parses independently
of the input, as described in §3.3. We also present
syntactic and lexical alternatives for this measure,
and demonstrate the utility of making such a dis-

tinction for entropy as well as surprisal.
The purpose of this paper is threefold. First,

to present a careful and well-motivated decompo-
sition of lexical and syntactic expectation-based
measures from a given lexicalized PCFG. Sec-
ond, to explicitly document methods for calculat-
ing these and other measures from a specific in-
cremental parser. And finally, to present some em-
pirical validation of the novel measures from real
reading time trials. We modified the Roark (2001)
parser to calculate the discussed measures1, and
the empirical results in §4 show several things,
including: 1) using a fully lexicalized parser to
calculate syntactic surprisal and entropy provides
higher predictive utility for reading times than
these measures calculated via unlexicalized pars-
ing (as in Demberg and Keller); and 2) syntactic
entropy is a useful predictor of reading time.

2 Notation and preliminaries

A probabilistic context-free grammar (PCFG)
G = (V, T, S†, P, ρ) consists of a set of non-
terminal variables V ; a set of terminal items
(words) T ; a special start non-terminal S† ∈ V ;
a set of rule productions P of the form A → α
for A ∈ V , α ∈ (V ∪ T )∗; and a function ρ
that assigns probabilities to each rule in P such
that for any given non-terminal symbol X ∈ V ,∑

α ρ(X → α) = 1.
For a given rule A → α ∈ P , let the func-

tion RHS return the right-hand side of the rule, i.e.,
RHS(A→ α) = α. Without loss of generality, we
will assume that for every rule A → α ∈ P , one
of two cases holds: either RHS(A → α) ∈ T or
RHS(A → α) ∈ V ∗. That is, the right-hand side
sequences consist of either (1) exactly one termi-
nal item, or (2) zero or more non-terminals.

Let W ∈ Tn be a terminal string of length n,
i.e., W = W1 . . .Wn and |W | = n. Let W [i, j]
denote the substring beginning at word Wi and
ending at word Wj of the string. Then W|W | is the
last word in the string, and W [1, |W |] is the string
as a whole. Adjacent strings represent concate-
nation, i.e., W [1, i]W [i+1, j] = W [1, j]. Thus
W [1, i]w represents the string where Wi+1 = w.

We can define a “derives” relation (denoted⇒G

for a given PCFG G) as follows: βAγ ⇒G βαγ
if and only if A → α ∈ P . A string W ∈ T ∗
is in the language of a grammar G if and only
if S† +⇒G W , i.e., a sequence of one or more
derivation steps yields the string from the start

1The parser version will be made publicly available.
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non-terminal. A leftmost derivation begins with
S† and each derivation step replaces the leftmost
non-terminal A in the yield with some α such that
A→ α ∈ P . For a leftmost derivation S† ∗⇒G α,
where α ∈ (V ∪ T )∗, the sequence of deriva-
tion steps that yield α can be represented as a
tree, with the start symbol S† at the root, and the
“yield” sequence α at the leaves of the tree. A
complete tree has only terminal items in the yield,
i.e., α ∈ T ∗; a partial tree has some non-terminal
items in the yield. With a leftmost derivation, the
yield α = βγ partitions into an initial sequence
of terminals β ∈ T ∗ followed by a sequence of
non-terminals γ ∈ V ∗. For a complete derivation,
γ = ε; for a partial derivation γ ∈ V +, i.e., one or
more non-terminals. Let T (G, W [1, i]) be the set
of complete trees with W [1, i] as the yield of the
tree, given PCFG G.

A leftmost derivation D consists of a sequence
of |D| steps. Let Di represent the ith step in
the derivation D, and D[i, j] represent the subse-
quence of steps in D beginning with Di and end-
ing with Dj . Note that D|D| is the last step in
the derivation, and D[1, |D|] is the derivation as
a whole. Each step Di in the derivation is a rule
in G, i.e., Di ∈ P for all i. The probability of the
derivation and the corresponding tree is:

ρ(D) =
m∏

i=1

ρ(Di) (1)

Let D(G, W [1, i]) be the set of all possible left-
most derivations D (with respect to G) such that
RHS(D|D|) = Wi. These are the set of partial left-
most derivations whose last step used a production
with terminal Wi on the right-hand side. The pre-
fix probability of W [1, i] with respect to G is

PrefixProbG(W [1, i]) =
∑

D∈D(G,W [1,i])

ρ(D) (2)

From this prefix probability, we can calculate the
conditional probability of each word w ∈ T in the
terminal vocabulary, given the preceding sequence
W [1, i] as follows:

PG(w |W [1, i]) =
PrefixProbG(W [1, i]w)P

w′∈T PrefixProbG(W [1, i]w′)

=
PrefixProbG(W [1, i]w)

PrefixProbG(W [1, i])
(3)

This, in fact, is precisely the conditional proba-
bility that is used for language modeling for such
applications as speech recognition and machine
translation, which was the motivation for various
syntactic language modeling approaches (Jelinek

and Lafferty, 1991; Stolcke, 1995; Chelba and Je-
linek, 1998; Roark, 2001).

As with language modeling, it is important to
model the end of the string as well, usually with
an explicit end symbol, e.g., </s>. For a string
W [1, i], we can calculate its prefix probability as
shown above. To calculate its complete probabil-
ity, we must sum the probabilities over the set of
complete trees T (G, W [1, i]). In such a way, we
can calculate the conditional probability of ending
the string with </s> given W [1, i] as follows:

PG(</s> |W [1, i]) =

∑
D∈T (G,W [1,i]) ρ(D)

PrefixProbG(W [1, i])
(4)

2.1 Incremental top-down parsing
In this section, we review relevant details of
the Roark (2001) incremental top-down parser,
as configured for use here. As presented in
Roark (2004), the probabilities in the PCFG are
smoothed so that the parser is guaranteed not to
fail due to garden pathing, despite following a
beam search strategy. Hence there is always a non-
zero prefix probability as defined in Eq. 2.

The parser follows a top-down leftmost deriva-
tion strategy. The grammar is factored so that ev-
ery production has either a single terminal item on
the right-hand side or is of the form A→ B A-B,
where A,B ∈ V and the factored A-B category
can expand to any sequence of children categories
of A that can follow B. This factorization of n-
ary productions continues to nullary factored pro-
ductions, i.e., the end of the original production
A→ B1. . . Bn is signaled with an empty produc-
tion A-B1-. . . -Bn→ ε.

The parser maintains a set of possible connected
derivations, weighted via the PCFG. It uses a beam
search, whereby the highest scoring derivations
are worked on first, and derivations that fall out-
side of the beam are discarded. The reader is re-
ferred to Roark (2001; 2004) for specifics about
the beam search.

The model conditions the probability of each
production on features extracted from the par-
tial tree, including non-local node labels such as
parents, grandparents and siblings from the left-
context, as well as c-commanding lexical items.
Hence this is a lexicalized grammar, though the
incremental nature precludes a general head-first
strategy, rather one that looks to the left-context
for c-commanding lexical items.

To avoid some of the early prediction of struc-
ture, the version of the Roark parser that we used
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performs an additional grammar transformation
beyond the simple factorization already described
– a selective left-corner transform of left-recursive
productions (Johnson and Roark, 2000). In the
transformed structure, slash categories are used to
avoid predicting left-recursive structure until some
explicit indication of modification is present, e.g.,
a preposition.

The final step in parsing, following the last word
in the string, is to “complete” all non-terminals
in the yield of the tree. All of these open non-
terminals are composite factored categories, such
as S-NP-VP, which are “completed” by rewriting
to ε. The probability of these ε productions is what
allows for the calculation of the conditional prob-
ability of ending the string, shown in Eq. 4.

One final note about the size of the non-terminal
set and the intractability of exact inference for
such a scenario. The non-terminal set not only
includes the original atomic non-terminals of the
grammar, but also any categories created by gram-
mar factorization (S-NP) or the left-corner trans-
form (NP/NP). Additionally, however, to remain
context-free, the non-terminal set must include
categories that incorporate non-local features used
by the statistical model into their label, includ-
ing parents, grandparents and sibling categories in
the left-context, as well as c-commanding lexical
heads. These non-local features must be made lo-
cal by encoding them in the non-terminal labels,
leading to a very large non-terminal set and in-
tractable exact inference. Heavy smoothing is re-
quired when estimating the resulting PCFG. The
benefit of such a non-terminal set is a rich model,
which enables a more peaked statistical distribu-
tion around high quality syntactic structures and
thus more effective pruning of the search space.
The fully connected left-context produced by top-
down derivation strategies provides very rich fea-
tures for the stochastic parsing models. See Roark
(2001; 2004) for discussion of these issues.

We now turn to measures that can be derived
from the parser which may be of use for psycholin-
guistic modeling.

3 Parser and grammar derived measures

3.1 Surprisal
The surprisal at word Wi is the negative log prob-
ability of Wi given the preceding words. Using
prefix probabilities, this can be calculated as:

SG(Wi) = − log
PrefixProbG(W [1, i])

PrefixProbG(W [1, i− 1])
(5)

Substituting equation 2 into this, we get

SG(Wi) = − log

∑
D∈D(G,W [1,i]) ρ(D)∑

D∈D(G,W [1,i−1]) ρ(D)
(6)

If we are using a beam-search parser, some of the
derivations are pruned away. Let B(G, W [1, i]) ⊆
D(G, W [1, i]) be the set of derivations in the
beam. Then the surprisal can be approximated as

SG(Wi) ≈ − log

∑
D∈B(G,W [1,i]) ρ(D)∑

D∈B(G,W [1,i−1]) ρ(D)
(7)

Any pruning in the beam search will result in a de-
ficient probability distribution, i.e., a distribution
that sums to less than 1. Roark’s thesis (2001)
showed that the amount of probability mass lost
for this particular approach is very low, hence this
provides a very tight bound on the actual surprisal
given the model.

3.2 Lexical and Syntactic surprisal

High surprisal scores result when the prefix proba-
bility at word Wi is low relative to the prefix prob-
ability at word Wi−1. Sometimes this is due to the
identity of Wi, i.e., it is a surprising word given
the context. Other times, it may not be the lexical
identity of the word so much as the syntactic struc-
ture that must be created to integrate the word into
the derivations. One would like to tease surprisal
apart into “syntactic surprisal” versus “lexical sur-
prisal”, which would capture this intuition of the
lexical versus syntactic dimensions to the score.
Our solution to this has the beneficial property of
producing two scores whose sum equals the origi-
nal surprisal score.

The original surprisal score is calculated via
sets of partial derivations at the point when each
word Wi is integrated into the syntactic structure,
D(G, W [1, i]). We then calculate the ratio from
point to point in sequence. To tease apart the lexi-
cal and syntactic surprisal, we will consider sets of
partial derivations immediately before each word
Wi is integrated into the syntactic structure, i.e.,
D[1, |D|−1] for D ∈ D(G, W [1, i]). Recall that
the last derivation move for every derivation in the
set is from the POS-tag to the lexical item. Hence
the sequence of derivation moves that excludes the
last one includes all structure except the word Wi.
Then the syntactic surprisal is calculated as:

SynSG(Wi) = − log

P
D∈D(G,W [1,i]) ρ(D[1, |D|−1])P

D∈D(G,W [1,i−1]) ρ(D)
(8)

327



and the lexical surprisal is calculated as:

LexSG(Wi) = − log

P
D∈D(G,W [1,i]) ρ(D)P

D∈D(G,W [1,i]) ρ(D[1, |D|−1])
(9)

Note that the numerator of SynSG(Wi) is the de-
nominator of LexSG(Wi), hence they sum to form
total surprisal SG(Wi). As with total surprisal,
these measures can be defined either for the full
set D(G, W [1, i]) or for a pruned beam of deriva-
tions B(G, W [1, i]) ⊆ D(G, W [1, i]).

Finally, we replicated the Demberg and Keller
(2008) “unlexicalized” surprisal by replacing ev-
ery lexical item in the training corpus with its
POS-tag, and then parsing the POS-tags of the lan-
guage samples rather than the words. This differs
from our syntactic surprisal by having no lexical
conditioning events for rule probabilities, and by
having no ambiguity about the POS-tag of the lex-
ical items in the string. We will refer to the result-
ing surprisal measure as “POS surprisal” to distin-
guish it from our syntactic surprisal measure.

3.3 Entropy
Entropy scores of the sort advocated by Hale
(2003; 2006) involve calculation over the set of
complete derivations consistent with the set of par-
tial derivations. Hale performs this calculation
efficiently via matrix inversion, which explains
the use of relatively small-scale grammars with
tractably sized non-terminal sets. Such methods
are not tractable for the kinds of richly condi-
tioned, large-scale PCFGs that we advocate using
here. At each word in the string, the Roark (2001)
top-down parser provides access to the weighted
set of partial analyses in the beam; the set of com-
plete derivations consistent with these is not im-
mediately accessible, hence additional work is re-
quired to calculate such measures.

Let H(D) be the entropy over a set of deriva-
tions D, calculated as follows:

H(D) = −
X
D∈D

ρ(D)P
D′∈D ρ(D′)

log
ρ(D)P

D′∈D ρ(D′)
(10)

If the set of derivations D = D(G, W [1, i])
is a set of partial derivations for string W [1, i],
then H(D) is a measure of uncertainty over the
partial derivations, i.e., the uncertainty regarding
the correct analysis of what has already been pro-
cessed. This can be calculated directly from the
existing parser operations. If the set of derivations
are the complete derivations consistent with the set
of partial derivations – complete derivations that

could occur over the set of possible continuations
of the string – then this is a measure of the un-
certainty about what is yet to come. We would
like measures that can capture this distinction be-
tween (a) uncertainty of what has already been
processed (“current ambiguity”) versus (b) uncer-
tainty of what is yet to be processed (“predictive
entropy”). In addition, as with surprisal, we would
like to tease apart the syntactic uncertainty versus
lexical uncertainty.

To calculate the predictive entropy after word
sequence W [1, i], we modify the parser as fol-
lows: the parser extends the set of partial deriva-
tions to include all possible next words (the entire
vocabulary plus </s>), and calculates the entropy
over that set. This measure is calculated from just
one additional word beyond the current word, and
hence is an approximation to Hale’s conditional
entropy of grammatical continuations, which is
over complete derivations. We will denote this as
H1

G(W [1, i]) and calculate it as follows:

H1
G(W [1, i]) = H(

⋃
w∈T∪{</s>}

D(G, W [1, i]w)) (11)

This is performing a predictive step that the base-
line parser does not perform, extending the parses
to all possible next words.

Unlike surprisal, entropy does not decompose
straightforwardly into syntactic and lexical com-
ponents that sum to the original composite mea-
sure. To tease apart entropy due to syntactic un-
certainty versus that due to lexical uncertainty, we
can define the set of derivations up to the pre-
terminal (POS-tag) non-terminals as follows. Let
S(D) = {D[1, |D|−1] : D ∈ D}, i.e., the set of
derivations achieved by removing the last step of
all derivations inD. Then we can calculate a “syn-
tactic” H1

G as follows:

SynH1
G(W [1, i]) = H(

[
w∈T∪{</s>}

S(D(G, W [1, i]w))) (12)

Finally, “lexical” H1
G is defined in terms of the

conditional probabilities derived from prefix prob-
abilities as defined in Eq. 3.

LexH1
G(W [1, i]) =

−
X

w∈T∪{</s>}
PG(w |W [1, i]) log PG(w |W [1, i]) (13)

As a practical matter, these values are calculated
within the Roark parser as follows. A “dummy”
word is created that can be assigned every POS-
tag, and the parser extends from the current state to
this dummy word. (The beam threshold is greatly
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expanded to allow for many possible extensions.)
Then every word in the vocabulary is substituted
for the word, and the appropriate probabilities cal-
culated over the beam. Finally, the actual next
word is substituted, the beam threshold is reduced
to the actual working threshold, and the requisite
number of analyses are advanced to continue pars-
ing the string. This represents a significant amount
of additional work for the parser – particularly for
vocabulary sizes that we currently use, on the or-
der of tens of thousands of words.

As with surprisal, we can calculate an “unlex-
icalized” version of the measure by training and
parsing just to POS-tags. We will refer to this sort
of entropy as “POS entropy”.

4 Empirical validation

4.1 Subjects and stimuli
In order to test the psycholinguistic relevance of
the different measures produced by the parser, we
conducted a word by word reading experiment.
23 native speakers of English read 4 short texts
(mean length: 883.5 words, 49.25 sentences). The
texts were the written versions of narratives used
in a parallel fMRI experiment making use of the
same parser derived measures and whose results
will be published in a different paper (Bachrach et
al., 2009). The narratives contained a high density
of syntactically complex structures (in the form of
sentential embeddings, relative clauses and other
non-local dependencies) but were constructed so
as to appear highly natural. The modified version
of the Roark parser, trained on the Brown Cor-
pus section of the Penn Treebank (Marcus et al.,
1993), was used to parse the different narratives
and produce the word by word measures.

4.2 Procedure
Each narrative was presented line by line (cer-
tain sentences required more than one line) on a
computer screen (Dell Optiplex 755 running Win-
dows XP Professional) using Linger 2.882. Each
line contained 11.5 words on average. Each word
would appear in its relative position on the screen.
The subject would then be required to push a key-
board button to advance to the next word. The
original word would then disappear and the fol-
lowing word appear in the subsequent position on
the screen. After certain sentences a comprehen-
sion question would appear on the screen (10 per
narrative). This was done in order to encourage

2http://tedlab.mit.edu/∼dr/Linger/readme.html

subjects to pay attention and to provide data for a
post-hoc evaluation of comprehension. After each
narrative, subjects were instructed to take a short
break (2 minutes on average).

4.3 Data analysis

The log (base 10) of the reaction times were ana-
lyzed using a linear mixed effects regression anal-
ysis implemented in the language R (Bates et al.,
2008). Reaction times longer than 1500 ms and
shorter than 150 ms (raw) were excluded from the
analysis (4.8% of total data). Since button press la-
tencies inferior to 150 ms must have been planned
prior to the presentation of the word, we consid-
ered that they could not reflect stimulus driven ef-
fects. Data from the first and last words on each
line were discarded.

The combined data from the 4 narratives was
first modeled using a model which included or-
der of word in the narrative3, word length, parser-
derived lexical surprisal, unigram frequency, bi-
gram probability, syntactic surprisal, lexical en-
tropy, syntactic entropy and mean number of
parser derivation steps as numeric regressors. We
also included the unlexicalized POS variants of
syntactic surprisal and entropy, along the lines of
Demberg and Keller (2008), as detailed in § 3.
Table 1 presents the correlations between these
mean-centered measures.

In addition, we modeled word class
(open/closed) as a categorical factor in order
to assess interaction between class and the vari-
ables of interest, since such an interaction has
been observed in the case of frequency (Bradley,
1983). Finally, the random effect part of the
model included intercepts for subjects, words and
sentences. We report significant effects at the
threshold p < .05.

Given the presence of significant interactions
between lexical class (open/closed) and a number
of the variables of interests, we decided to split
the data set into open and closed class words and
model these separately (linear mixed effects with
the same numeric variables as in the full model).

In order to evaluate the usefulness of splitting
total surprisal into lexical and syntactic compo-
nents we compared, using a likelihood ratio test,
a model where lexical and syntactic surprisal are
modeled as distinct regressors to a model where a
single regressor equal to their sum (total surprisal)

3This is a regressor to control for the trend of subjects to
read faster later in the narrative.
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Predictor SynH LexH SynS LexS Freq Bgrm PosS PosH Step WLen
Syntactic Entropy (SynH) 1.00 -0.26 0.00 0.24 -0.24 0.20 0.02 0.55 -0.05 0.18

Lexical Entropy (LexH) -0.26 1.00 0.01 -0.40 0.43 -0.38 -0.03 0.02 0.11 -0.29
Syntactic Surprisal (SynS) 0.00 0.01 1.00 -0.12 0.08 0.18 0.77 0.21 0.38 -0.03

Lexical Surprisal (LexS) 0.24 -0.40 -0.12 1.00 -0.81 0.87 -0.10 -0.20 -0.35 0.64
Unigram Frequency (Freq) -0.24 0.43 0.08 -0.81 1.00 -0.69 0.02 0.18 0.31 -0.72
Bigram Probability (Bgrm) 0.20 -0.38 0.18 0.87 -0.69 1.00 0.11 -0.11 -0.16 0.56

POS Surprisal (PosS) 0.02 -0.03 0.77 -0.10 0.02 0.11 1.00 0.22 0.32 0.02
POS Entropy (PosH) 0.55 0.02 0.21 -0.20 0.18 -0.11 0.22 1.00 0.16 -0.11

Derivation steps (Step) -0.05 0.11 0.38 -0.35 0.31 -0.16 0.32 0.16 1.00 -0.24
Word Length (WLen) 0.18 -0.29 -0.03 0.64 -0.72 0.56 0.02 -0.11 -0.24 1.00

Table 1: Correlations between (mean-centered) predictors. Note that unigram frequencies were represented as logs, other
scores as negative logs, hence the sign of the correlations.

was included. If the larger model provides a sig-
nificantly better fit than the smaller model, this
provides evidence that distinguishing between lex-
ical and syntactic contributions to surprisal is rel-
evant. Since total entropy is not a sum of syntactic
and lexical entropy, an analogous test would not
be valid in that case.

4.4 Results
All subjects successfully answered the com-
prehension questions (92.8% correct responses,
S.D.=5.1). In the full model, we observed signifi-
cant main effects of word class as well as of lexical
surprisal, bigram probability, unigram frequency,
syntactic entropy, POS entropy and of order in the
narrative. Syntactic surprisal, lexical entropy and
number of steps had no significant effect. Word
length also had no significant main effect but inter-
acted significantly with word class (open/closed).
Word class also interacted significantly with lexi-
cal surprisal, unigram frequency and syntactic sur-
prisal.

The presence of these interactions led us to
construct models restricted to open and closed
class items respectively. The estimated parame-
ters are reported in Table 2. Reading time for open
class words showed significant effects of unigram
frequency, syntactic surprisal, syntactic entropy,
POS entropy and order within the narrative. The
positive effect of length approached significance.
Reading time for closed class words exhibited sig-
nificant effects of lexical surprisal, bigram prob-
ability, syntactic entropy and order in the narra-
tive. Length had a non-significant negative effect,
thus explaining the interaction observed in the full
model.

The models with separate lexical and syntac-
tic surprisal performed better than models includ-
ing combined surprisal. For open class words, the
Akaike’s information criterion (AIC) was -54810
for the combined model and -54819 for the inde-
pendent model (likelihood ratio test comparing the

Estimate Std. Error t-value
Open-class
(Intercept) 2.40×10+00 2.39×10−02 100.4*
Lexical Surprisal -1.99×10−04 7.28×10−04 -0.3
Word Length 8.97×10−04 4.62×10−04 1.9
Bigram 4.18×10−04 5.27×10−04 0.8
Unigram Freq -2.43×10−03 1.20×10−03 -2.0*
Derivation Steps -1.17×10−03 9.02×10−04 -1.3
Syntactic Entropy 2.55×10−03 6.19×10−04 4.1*
Lexical Entropy 3.96×10−04 6.68×10−04 0.6
Syntactic Surprisal 3.28×10−03 9.71×10−04 3.4*
Order in narrative -1.43×10−05 4.34×10−06 -3.3*
POS Surprisal -6.84×10−04 8.11×10−04 -0.8
POS Entropy 1.47×10−03 6.05×10−04 2.4*

Closed-class
(Intercept) 2.42×10+00 2.32×10−02 104.3*
Lexical Surprisal 2.02×10−03 7.84×10−04 2.6*
Word Length -1.87×10−03 1.13×10−03 -1.7
Bigram 1.19×10−03 4.94×10−04 2.4*
Unigram Freq 1.69×10−03 2.67×10−03 0.6
Derivation Steps 3.01×10−04 5.09×10−04 0.6
Syntactic Entropy 3.15×10−03 5.05×10−04 6.2*
Lexical Entropy 1.83×10−04 8.63×10−04 0.2
Syntactic Surprisal 3.00×10−04 8.35×10−04 0.4
Order in narrative -1.33×10−05 3.99×10−06 -3.3*
POS Surprisal -6.46×10−04 6.81×10−04 -0.9
POS Entropy 6.63×10−04 5.04×10−04 1.3

Table 2: Estimated effects from mixed effects models on
open and closed items (stars denote significance at p<.05)

two, nested, models: χ2(1)=10.7, p<.001). For
closed class items, combined model’s AIC was -
61467 and full model’s AIC was -61469 (likeli-
hood ratio test: χ2(1)=3.54, p=0.06).

4.5 Discussion
Our results demonstrate the relevance of model-
ing psycholinguistic processes using an incremen-
tal probabilistic parser, and the utility of the novel
measures presented here. Of particular interest
are: the significant effects of our syntactic en-
tropy measure; the independent contributions of
lexical surprisal, bigram probability and unigram
frequency; and the differences between the pre-
dictions of the lexicalized parsing model and the
unlexicalized (POS) parsing model.

The effect of entropy, or uncertainty regarding
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the upcoming input independent of the surprise
of that input, has been observed in non-linguistic
tasks (Hyman, 1953; Bestmann et al., 2008) but
to our knowledge has not been quantified before
in the context of sentence processing. The use-
fulness of computational modeling is particularly
evident in the case of entropy given the absence of
any subjective procedure for its evaluation4. The
results argue in favor of a predictive parsing archi-
tecture (Van Berkum et al., 2005). The approach
to entropy here differs from the one described in
Hale (2006) in a couple of ways. First, as dis-
cussed above, the calculation procedure is differ-
ent – we focus on extending the derivations with
just one word, rather than to all possible complete
derivations. Second, and most importantly, Hale
emphasizes entropy reduction (or the gain in in-
formation, given an input, regarding the rest of the
sentence) as the correlate of cognitive cost while
here we are interested in the amount of entropy it-
self (and not the size of change).

Interestingly, we observed only an effect of syn-
tactic entropy, not lexical entropy. Recent ERP
work has demonstrated that subjects do form spe-
cific lexical predictions in the context of sentence
processing (Van Berkum et al., 2005; DeLong et
al., 2005) and so we suspect that the absence of
lexical entropy effect might be partly due to sparse
data. Lexical surprisal and entropy were calcu-
lated using the internal state of a parser trained
on the relatively small Brown corpus. Lexical en-
tropy showed no significant effect while lexical
surprisal affected only closed class words. This
pattern of results might be due to the sparseness
of the relevant information in such a small corpus
(e.g., verb/object preferences) and the relevance of
extra-textual dimensions (world knowledge, con-
textual information) to lexical-specific prediction.
Closed class words are both more frequent (and
hence better sampled) and are less sensitive to
world knowledge, yet are often determined by the
grammatical context.

Demberg and Keller (2008) made use of the
same parsing architecture used here to compute a
syntactic surprisal measure, but used an unlexical-
ized parser (down to POS-tags rather than words)
for this score. Their “lexicalized” surprisal is
equivalent to our total surprisal (lexical surprisal
+ syntactic surprisal), while their POS surprisal is

4The Cloze procedure (Taylor, 1953) is one way to derive
probabilities that could be used to calculate entropy, though
this procedure is usually conducted with lexical elicitation,
which would make syntactic entropy calculations difficult.

derived from a completely different model. In con-
trast, our approach achieves lexical and syntactic
measures from the same model. In order to eval-
uate the difference between the two approaches
we added unlexicalized POS surprisal calculated
along the lines of that paper to our model, along
with an unlexicalized POS entropy from the same
model. We found no effect of unlexicalized POS
surprisal5 and a significant (but relatively small)
effect of unlexicalized POS entropy. While syn-
tactic surprisal was correlated with POS surprisal
(see Table 1) and syntactic entropy correlated with
POS entropy, the fact that our syntactic measures
still had a significant effect suggests that lexical
information contributes towards the formation of
syntactic expectations.

While the effect of surprisal calculated by an
incremental top down parser has been already
demonstrated (Demberg and Keller, 2008), our re-
sults argue for a distinction between the effect
of lexical surprisal and that of syntactic surprisal
without requiring unlexicalized parsing of the sort
that Demberg and Keller advocate. It is important
to keep in mind that this distinction between types
of prediction (and as a consequence, prediction er-
ror) is not equivalent to the one drawn in the tradi-
tional cognitive science modularity debate, which
has focused on the source of these predictions. We
found a positive effect of syntactic surprisal in the
case of open class words. The absence of an effect
for closed class words remains to be explained.

We quantified word specific surprisal using 3
sources: the parser’s internal state (lexical sur-
prisal); probability given the preceding word (neg-
ative log bigram probability); and the unigram fre-
quency of the word in a large corpus6. As can
be observed in Table 1, these three measures are
highly correlated7. This is the consequence of the
smoothing in the estimation procedure but also re-
lates to a more general fact about language use:
overall, more frequent words are also words more
expected to appear in a specific context (Anderson
and Schooler, 1991). Despite these strong corre-
lations, the three measures produced independent

5We also ran the model including unlexicalized POS sur-
prisal without our syntactic surprisal or syntactic entropy, and
in this condition the unlexicalized POS surprisal measure had
a nearly significant effect (t = 1.85), which is consistent with
the results in Boston et al. (2008a) and Demberg and Keller
(2008).

6The unigram frequencies came from the HAL corpus
(Lund and Burgess, 1996). All other statistical models were
estimated from the Brown Corpus.

7Unigram frequencies were represented as logs, the others
as negative logs, hence the sign of the correlations.
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effects. Unigram frequency had a significant effect
for open class words while bigram probability and
lexical surprisal each had an effect on reading time
of closed class items. Bigram probability has been
often found to affect reading time using eye move-
ment measures. This is the first study to demon-
strate an additional effect of contextual surprisal
given the preceding sentential context (lexical sur-
prisal). Demberg and Keller found no effect for
surprisal once bigram and unigram probabilities
were included in the model but, importantly, they
did not distinguish lexical and syntactic surprisal,
rather “lexicalized” and “unlexicalized” surprisal.

5 Summary

We have presented novel methods for teasing apart
syntactic and lexical surprisal from a fully lexi-
calized parser, as well as for extending the oper-
ation of a predictive parser to capture novel en-
tropy measures that are also shown to be rele-
vant to psycholinguistic modeling. Such auto-
matic methods provide psycholinguistically rele-
vant measures that are intractable to calculate by
hand. The empirical validation presented here
demonstrated that the new measures – particularly
syntactic entropy and syntactic surprisal – have
high utility for modeling human reading time data.
Our approach to calculating syntactic surprisal,
based on fully lexicalized parsing, provided sig-
nificant effects, while the POS-tag based (unlexi-
calized) surprisal – of the sort used in Boston et
al. (2008a) and Demberg and Keller (2008) – did
not provide a significant effect in our trials. Fur-
ther, we showed an effect of lexical surprisal for
closed class words even when combined with uni-
gram and bigram probabilities in the same model.
This work contributes to the important, develop-
ing enterprise of leveraging data-driven NLP ap-
proaches to derive new measures of high utility for
psycholinguistic and neuropsychological studies.
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Abstract

Automatically detecting human social in-
tentions from spoken conversation is an
important task for dialogue understand-
ing. Since the social intentions of the
speaker may differ from what is perceived
by the hearer, systems that analyze human
conversations need to be able to extract
both the perceived and the intended social
meaning. We investigate this difference
between intention and perception by using
a spoken corpus of speed-dates in which
both the speaker and the listener rated the
speaker on flirtatiousness. Our flirtation-
detection system uses prosodic, dialogue,
and lexical features to detect a speaker’s
intent to flirt with up to 71.5% accuracy,
significantly outperforming the baseline,
but also outperforming the human inter-
locuters. Our system addresses lexical fea-
ture sparsity given the small amount of
training data by using an autoencoder net-
work to map sparse lexical feature vectors
into 30 compressed features. Our analy-
sis shows that humans are very poor per-
ceivers of intended flirtatiousness, instead
often projecting their own intended behav-
ior onto their interlocutors.

1 Introduction

Detecting human social meaning is a difficult task
for automatic conversational understanding sys-
tems. One cause of this difficulty is the pervasive
difference between intended social signals and the
uptake by the perceiver. The cues that a speaker
may use to attempt to signal a particular social
meaning may not be the cues that the hearer fo-
cuses on, leading to misperception.

In order to understand the impact of this dif-
ference between perception and intention, in this

paper we describe machine learning models that
can detect both the social meaning intended by the
speaker and the social meaning perceived by the
hearer. Automated systems that detect and model
these differences can lead both to richer socially
aware systems for conversational understanding
and more sophisticated analyses of conversational
interactions like meetings and interviews.

This task thus extends the wide literature on
social meaning and its detection, including the
detection of emotions such as annoyance, anger,
sadness, or boredom (Ang et al., 2002; Lee and
Narayanan, 2002; Liscombe et al., 2003), speaker
characteristics such as charisma (Rosenberg and
Hirschberg, 2005), personality features like ex-
troversion or agreeability (Mairesse et al., 2007;
Mairesse and Walker, 2008), speaker depression
or stress (Rude et al., 2004; Pennebaker and Lay,
2002; Cohn et al., 2004), and dating willingness
or liking (Madan et al., 2005; Pentland, 2005).

We chose to work on the domain of flirtation
in speed-dating. Our earlier work on this cor-
pus showed that it is possible to detect whether
speakers are perceived as flirtatious, awkward, or
friendly with reasonable accuracy (Jurafsky et al.,
2009). In this paper we extend that work to de-
tect whether speakers themselves intended to flirt,
explore the differences in these variables, and ex-
plore the ability and inability of humans to cor-
rectly perceive the flirtation cues.

While many of the features that we use to build
these detectors are drawn from the previous liter-
ature, we also explore new features. Conventional
methods for lexical feature extraction, for exam-
ple, generally consist of hand coded classes of
words related to concepts like sex or eating (Pen-
nebaker et al., 2007). The classes tend to per-
form well in their specific domains, but may not
be robust across domains, suggesting the need for
unsupervised domain-specific lexical feature ex-
traction. The naive answer to extracting domain-

334



specific lexical features would just be to throw
counts for every word into a huge feature vector,
but the curse of dimensionality rules this method
out in small training set situations. We propose
a new solution to this problem, using an unsuper-
vised deep autoencoder to automatically compress
and extract complex high level lexical features.

2 Dataset

Our experiments make use of the SpeedDate Cor-
pus collected by the third author, and described
in Jurafsky et al. (2009). The corpus is based
on three speed-dating sessions run at an Ameri-
can university in 2005, inspired by prior speed-
dating research (Madan et al., 2005). The grad-
uate student participants volunteered to be in the
study and were promised emails of persons with
whom they reported mutual liking. All partici-
pants wore audio recorders on a shoulder sash,
thus resulting in two audio recordings of the ap-
proximately 1100 4-minute dates. Each date was
conducted in an open setting where there was sub-
stantial background noise. This noisy audio was
thus hand-transcribed and turn start and end were
hand-aligned with the audio. In addition to the au-
dio, the corpus includes various attitude and de-
mographic questions answered by the participants.

Each speaker was also asked to report how of-
ten their date’s speech reflected different conver-
sational styles (awkward, flirtatious, funny, as-
sertive) on a scale of 1-10 (1=never, 10=con-
stantly): “How often did the other person behave
in the following ways on this ‘date’?”. In addition
they were also asked to rate their own intentions:
”How often did you behave in the following ways
on this ‘date’?” on a scale of 1-10.

In this study, we focus on the flirtation ratings,
examining how often each participant said they
were flirting, as well as how often each participant
was judged by the interlocutor as flirting.

Of the original 1100 dates only 991 total dates
are in the SpeedDate corpus due to various losses
during recording or processing. The current study
focuses on 946 of these, for which we have com-
plete audio, transcript, and survey information.

3 Experiment

To understand how the perception of flirting dif-
fers from the intention of flirting, we trained bi-
nary classifiers to predict both perception and in-
tention. In each date, the speaker and the inter-

locutor both labeled the speaker’s behavioral traits
on a Likert scale from 1-10. To generate binary
responses we took the top ten percent of Likert
ratings in each task and labeled those as positive
examples. We similarly took the bottom ten per-
cent of Likert ratings and labeled those as negative
examples. We ran our binary classification exper-
iments to predict this output variable. Our experi-
ments were split by gender. For the female exper-
iment the speaker was female and the interlocu-
tor was male, while for the male experiment the
speaker was male and the interlocutor was female.

For each speaker side of each 4-minute conver-
sation, we extracted features from wavefiles and
transcripts, as described in the next section. We
then trained four separate binary classifiers (for
each gender for both perception and intention).

4 Feature Descriptions

We used the features reported by Jurafsky et
al. (2009), which are briefly summarized here.
The features for a conversation side thus indicate
whether a speaker who talks a lot, laughs, is more
disfluent, has higher F0, etc., is more or less likely
to consider themselves flirtatious, or be considered
flirtatious by the interlocutor. We also computed
the same features for the alter interlocutor. Al-
ter features thus indicate the conversational behav-
ior of the speaker talking with an interlocutor they
considered to be flirtatious or not.

4.1 Prosodic Features

F0 and RMS amplitude features were extracted us-
ing Praat scripts (Boersma and Weenink, 2005).
Since the start and end of each turn were time-
marked by hand, each feature was easily extracted
over a turn, and then averages and standard devia-
tions were taken over the turns in an entire conver-
sation side. Thus the feature F0 MIN for a conver-
sation side was computed by taking the F0 min of
each turn in that side (not counting zero values of
F0), and then averaging these values over all turns
in the side. F0 MIN SD is the standard deviation
across turns of this same measure.

4.2 Dialogue and Disfluency Features

A number of discourse features were extracted,
following Jurafsky et al. (2009) and the dialogue
literature. The dialog acts shown in Table 2
were detected by hand-built regular expressions,
based on analyses of the dialogue acts in the
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F0 MIN minimum (non-zero) F0 per turn, averaged
over turns

F0 MIN SD standard deviation from F0 min
F0 MAX maximum F0 per turn, averaged over turns
F0 MAX SD standard deviation from F0 max
F0 MEAN mean F0 per turn, averaged over turns
F0 MEAN SD standard deviation (across turns) from F0

mean
F0 SD standard deviation (within a turn) from F0

mean, averaged over turns
F0 SD SD standard deviation from the f0 sd
PITCH RANGE f0 max - f0 min per turn, averaged over

turns
PITCH RANGE SD standard deviation from mean pitch range
RMS MIN minimum amplitude per turn, averaged

over turns
RMS MIN SD standard deviation from RMS min
RMS MAX maximum amplitude per turn, averaged

over turns
RMS MAX SD standard deviation from RMS max
RMS MEAN mean amplitude per turn, averaged over

turns
RMS MEAN SD standard deviation from RMS mean
TURN DUR duration of turn in seconds, averaged over

turns
TIME total time for a speaker for a conversation

side, in seconds
RATE OF
SPEECH

number of words in turn divided by dura-
tion of turn in seconds, averaged over turns

Table 1: Prosodic features from Jurafsky et al.
(2009) for each conversation side, extracted using
Praat from the hand-segmented turns of each side.

hand-labeled Switchboard corpus of dialog acts.
Collaborative completions, turns where a speaker
completes the utterance begun by the alter, were
detected by finding sentences for which the first
word of the speaker was extremely predictable
from the last two words of the previous speaker,
based on a trigram grammar trained on the Tree-
bank 3 Switchboard transcripts. Laughter, disflu-
encies, and overlap were all marked in the tran-
scripts by the transcribers.

4.3 Lexical Features

We drew our lexical features from the LIWC lex-
icons of Pennebaker et al. (2007), the standard
for social psychological analysis of lexical fea-
tures. We chose ten LIWC categories that have
proven useful in detecting personality-related fea-
tures (Mairesse et al., 2007): Anger, Assent, In-
gest, Insight, Negemotion, Sexual, Swear, I, We,
and You. We also added two new lexical features:
“past tense auxiliary”, a heuristic for automati-
cally detecting narrative or story-telling behavior,
and Metadate, for discussion about the speed-date
itself. The features are summarized in Table 3.

4.4 Inducing New Lexical Features

In Jurafsky et al. (2009) we found the LIWC lex-
ical features less useful in detecting social mean-
ing than the dialogue and prosodic features, per-
haps because lexical cues to flirtation lie in differ-
ent classes of words than previously investigated.
We therefore investigated the induction of lexical
features from the speed-date corpus, using a prob-
abilisitic graphical model.

We began with a pilot investigation to see
whether lexical cues were likely to be useful; with
a small corpus, it is possible that lexical fea-
tures are simply too sparse to play a role given
the limited data. The pilot was based on us-
ing Naive Bayes with word existence features (bi-
nomial Naive Bayes). Naive Bayes assumes all
features are conditionally independent given the
class, and is known to perform well with small
amounts of data (Rish, 2001). Our Naive Bayes
pilot system performed above chance, suggesting
that lexical cues are indeed informative.

A simple approach to including lexical fea-
tures in our more general classification system
would be to include the word counts in a high di-
mensional feature vector with our other features.
This method, unfortunately, would suffer from
the well-known high dimensionality/small train-
ing set problem. We propose a method for build-
ing a much smaller number of features that would
nonetheless capture lexical information. Our ap-
proach is based on using autoencoders to con-
struct high level lower dimension features from the
words in a nonlinear manner.

A deep autoencoder is a hierarchichal graphical
model with multiple layers. Each layer consists of
a number of units. The input layer has the same
number of units as the output layer, where the out-
put layer is the model’s reconstruction of the input
layer. The number of units in the intermediate lay-
ers tends to get progressively smaller to produce a
compact representation.

We defined our autoencoder with visible units
modeling the probabilities of the 1000 most com-
mon words in the conversation for the speaker
and the probabilities of the 1000 most common
words for the interlocutor (after first removing
a stop list of the most common words). We
train a deep autoencoder with stochastic nonlin-
ear feature detectors and linear feature detectors
in the final layer. As shown in Figure 1, we used
a 2000-1000-500-250-30 autoencoder. Autoen-
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BACKCHANNELS number of backchannel utterances in side (Uh-huh., Yeah., Right., Oh, okay.)
APPRECIATIONS number of appreciations in side (Wow, That’s true, Oh, great)
QUESTIONS number of questions in side
NTRI repair question (Next Turn Repair Indicator) (Wait, Excuse me)
COMPLETION (an approximation to) utterances that were ‘collaborative completions’
LAUGH number of instances of laughter in side
TURNS total number of turns in side
DISPREFERRED (approximation to) dispreferred responses, beginning with discourse marker well
UH/UM total number of filled pauses (uh or um) in conversation side
RESTART total number of disfluent restarts in conversation side
OVERLAP number of turns in side which the two speakers overlapped

Table 2: Dialog act and disfluency features from Jurafsky et al. (2009).

TOTAL WORDS total number of words
PAST TENSE uses of past tense auxiliaries was, were, had
METADATE horn, date, bell, survey, speed, form, questionnaire, rushed, study, research
YOU you, you’d, you’ll, your, you’re, yours, you’ve (not counting you know)
WE lets, let’s, our, ours, ourselves, us, we, we’d, we’ll, we’re, we’ve
I I’d, I’ll, I’m, I’ve, me, mine, my, myself (not counting I mean)
ASSENT yeah, okay, cool, yes, awesome, absolutely, agree
SWEAR hell, sucks, damn, crap, shit, screw, heck, fuck*
INSIGHT think*/thought, feel*/felt, find/found, understand*, figure*, idea*, imagine, wonder
ANGER hate/hated, hell, ridiculous*, stupid, kill*, screwed, blame, sucks, mad, bother, shit
NEGEMOTION bad, weird, hate, crazy, problem*, difficult, tough, awkward, boring, wrong, sad, worry,
SEXUAL love*, passion*, virgin, sex, screw
INGEST food, eat*, water, bar/bars, drink*, cook*, dinner, coffee, wine, beer, restaurant, lunch, dish

Table 3: Lexical features from Jurafsky et al. (2009). Each feature value is a total count of the words in
that class for each conversation side; asterisks indicate including suffixed forms (e.g., love, loves, loving).
All except the first three are from LIWC (Pennebaker et al., 2007) (modified slightly, e.g., by removing
you know and I mean). The last five classes include more words in addition to those shown.

coders tend to perform poorly if they are initialized
incorrectly, so we use the Restricted Boltzmann
Machine (RBM) pretraining procedure described
in Hinton and Salakhutdinov (2006) to initialize
the encoder. Each individual RBM is trained using
contrastive divergence as an update rule which has
been shown to produce reasonable results quickly
(Hinton et al., 2006). Finally, we use backpropa-
gation to fine tune the weights of our encoder by
minimizing the cross entropy error. To extract fea-
tures from each conversation, we sample the code
layer (30 unit layer in our encoder) with the visi-
ble units corresponding to the most common word
probabilities from that document, creating 30 new
features that we can use for classification. The
conditional distributions of the first layer features
can be given by the softmax of the activations for
each gender:

p(vi|h) =

exp(biasi +
∑
j

hj ∗ wij)∑
k∈K

exp(biask +
∑
j

vj ∗ wkj)
(1)

p(hj |v) =
1

1 + exp(bias(j) +
∑
i

vi ∗ wij)
(2)

where K is the set of all the units representing the
same speaker as i 1, vi is the ith visible unit, hj is
the jth hidden unit, wij is the weight between visi-
ble unit i and hidden unit j, and biasm is the offset
of unit m. Intuitively, this means that the proba-
bility that a hidden unit is activated by the visible
layer is sigmoid of the weighted sum of all the vis-
ible units plus the unit’s bias term. Similarly, the
visible units are activated through a weighted sum
of the hidden units, but they undergo an additional
normalization (softmax) over all the other visible
units from the speaker to effectively model the
multinomial distribution from each speaker. Since
in a RBM hidden units are conditionally indepen-
dent given the visible units, and visible units are

1The visible unit i models word probabilities of either the
speaker or the interlocutor, so the softmax is done over the
distribution of words for the speaker that unit i is modeling.
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conditionally independent given hidden layer, the
above equations completely specify the first layer
of the model.

To account for the fact that each visible unit in
the first layer contained 1000 observations from
the underlying distribution we upweighted our fea-
tures by that factor. During pretraining the “train-
ing data” for the higher layers is the activation
probabilities of the hidden units of layer directly
below when driven by that layer’s input data. The
intermediate layers in the model are symmetric
where the activation probabilities for both the vis-
ible and hidden units are of the same form as
p(hj |v) in layer 1. To produce real valued features
in the code layer we used linear hidden units. In
addition to the likelihood portion of the objective
we penalized large weights by using l2 regulariza-
tion and penalize all weights by applying a small
constant weight cost that gets applied at every up-
date. After training to find a good initial point
for the autoencoder we unroll the weights and use
backpropogation to fine tune our autoencoder.

While interpreting high level nonlinear features
can be challenging, we did a pilot analysis of one
of the 30 features fixing a large (positive or neg-
ative) weight on the feature unit (code layer) and
sampling the output units.

The top weighted words for a positive weight
are: O did, O live, S did, S friends, S went,
O live, S lot, S wait, O two, and O wasn’t (S for
speaker and O for interlocutor). The top weighted
words for a negative weight are: S long, O school,
S school, S phd, O years, S years, O stanford,
S lot, O research, O interesting and O education.
At least for this one feature, a large positive value
seemed to indicate the prevalence of questions
(wait, did) or storytelling (
em live, wasn’t). A large negative weight indicates
the conversation focused on the mundane details
of grad student life.

5 Classification

Before performing the classification task, we pre-
processed the data in two ways. First, we stan-
dardized all the variables to have zero mean and
unit variance. We did this to avoid imposing a
prior on any of the features based on their numer-
ical values. Consider a feature A with mean 100
and a feature B with mean .1 where A and B are
correlated with the output. Since the SVM prob-
lem minimizes the norm of the weight vector, there
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Figure 1: Pretraining is a fully unsupervised pro-
cedure that trains an RBM at each layer. Once the
pretraining of one layer is complete, the top layer
units are used as input to the next layer. We then
fine-tune our weights using backprop. The 30 fea-
tures are extracted from the code layer.

is a bias to put weight on feature A because intu-
itively the weight on feature B would need to be
1000 times larger to carry the same effect. This
argument holds similarly for the reduction to unit
variance. Second, we removed features correlated
greater than .7. One goal of removing correlated
features was to remove as much colinearity as pos-
sible from the regression so that the regression
weights could be ranked for their importance in the
classification. In addition, we hoped to improve
classification because a large number of features
require more training examples (Ng, 2004). For
example for perception of female flirt we removed
the number of turns by the alter (O turns) and the
number of sentence from the ego (S sentences) be-
cause they were highly correlated with S turns.

To ensure comparisons (see Section 7) between
the interlocutors’ ratings and our classifier (and
because of our small dataset) we use k-fold cross
validation to learn our model and evaluate our
model. We train our binary model with the top
ten percent of ratings labeled as positive class ex-
amples and bottom ten percent of ratings as the
negative class examples. We used five-fold cross
validation in which the data is split into five equal
folds of size 40. We used four of the folds for
training and one for test. K-fold cross validation
does this in a round robin manner so every exam-
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ple ends up in the test set. This yields a datasplit
of 160 training examples and 40 test examples. To
ensure that we were not learning something spe-
cific to our data split, we randomized our data or-
dering.

For classification we used a support vector ma-
chine (SVM). SVMs generally do not produce ex-
plicit feature weights for analysis because they are
a kernelized classifier. We solved the linear C-
SVM problem. Normally the problem is solved
in the dual form, but to facilitate feature analysis
we expand back to the primal form to retrieve w,
the weight vector. Our goal in the C-SVM is to
solve, in primal form,

minγ,w,b
1
2
||w||2 + C

m∑
i=1

ξi

s.t. y(i)(wTx(i) + b) ≥ 1− ξi, i = 1, . . . ,m
ξi ≥ 0, i = 1, . . . ,m (3)

where m is the number of training examples, x(i)

is the ith training examples, and y(i) is the ith class
(1 for the positive class, -1 for the negative class).
The ξi are the slack variables that allow this algo-
rithm to work for non linearly separable datasets.

A test example is classified by looking at the
sign of y(x) = wTx(test) + b. To explore mod-
els that captured interactions, but do not allow for
direct feature analysis we solved the C-SVM prob-
lem using a radial basis function (RBF) as a kernel
(Scholkopf et al., 1997). Our RBF kernel is based
on a Gaussian with unit variance.

K(x(i), x(j)) = exp(
−||x(i) − x(j)||2

2σ
) (4)

In this case predictions can be made by looking
at y(x(test)) =

∑m
i=1 α

(i)y(i)rbf(x(i), t(test)) + b,
where each α(i), for i = 1, . . . ,m is a member
of the set of dual variables that comes from trans-
forming the primal form into the dual form. The
SVM kernel trick allows us to explore higher di-
mensions while limiting the curse of dimensional-
ity that plagues small datasets like ours.

We evaluated both our linear C-SVM and our
radial basis function C-SVM using parameters
learned on the training sets by computing the ac-
curacy on the test set. Accuracy is the number of
correct examples / total number of test examples.
We found that the RBM classifier that handled in-
teraction terms outperformed linear methods like
logistic regression.

For feature weight extraction we aggregated the
feature weights calculated from each of the test
folds by taking the mean between them.2

6 Results

We report in Table 4 the results for detecting flirt
intention (whether a speaker said they were flirt-
ing) as well as flirt perception (whether the listener
said the speaker was flirting).

Flirt Intention Flirt Perception
by M by F of M of F

RBM SVM 61.5% 70.0% 77.0% 59.5%
+autoencoder 69.0% 71.5% 79.5% 68.0%
features

Table 4: Accuracy of binary classification of each
conversation side, where chance is 50%. The first
row uses all the Jurafsky et al. (2009) features for
both the speaker and interlocutor. The second row
adds the new autoencoder features.

In our earlier study of flirt perception, we
achieved 71% accuracy for men and 60% for
women (Jurafsky et al., 2009). Our current num-
bers for flirt perception are much better for both
men (79.5%), and women (68.0%). The improve-
ment is due both to the new autoencoder features
and the RBF kernel that considers feature inter-
actions (feature interactions were not included in
the logistic regression classifiers of Jurafsky et al.
(2009)).

Our number for flirt intention are 69.0% for men
and 71.5% for women. Note that our accuracies
are better for detecting women’s intentions as well
as women’s perceptions (of men) than men’s in-
tentions and perceptions.

7 Feature Analysis

We first considered the features that helped clas-
sification of flirt intention. Table 5 shows feature
weights for the features (features were normed so
weights are comparable), and is summarized in the
following paragraphs:
• Men who say they are flirting ask more ques-

tions, and use more you and we. They laugh more,
and use more sexual, anger, and negative emo-
tional words. Prosodically they speak faster, with
higher pitch, but quieter (lower intensity min).

2We could not use the zero median criteria used in Juraf-
sky et al. (2009) because C-SVMs under the l-2 metric pro-
vide no sparse weight guarantees.
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FEMALE FLIRT MALE FLIRT
O backchannel -0.0369 S you 0.0279
S appreciation -0.0327 S negemotion 0.0249
O appreciation -0.0281 S we 0.0236
O question 0.0265 S anger 0.0190
O avimin -0.0249 S sexual 0.0184
S turns -0.0247 O negemotion 0.0180
S backchannel -0.0245 O avpmax 0.0174
O you 0.0239 O swear 0.0172
S avtndur 0.0229 O laugh 0.0164
S avpmin -0.0227 O wordcount 0.0151
O rate 0.0212 S laugh 0.0144
S laugh 0.0204 S rate 0.0143
S wordcount 0.0192 S well 0.0131
S well 0.0192 S question 0.0131
O negemotion 0.019 O sexual 0.0128
S repair q 0.0188 S completion 0.0128
O sexual 0.0176 S avpmax 0.011
O overlap -0.0176 O completion 0.010
O sdpmean 0.0171 O sdimin 0.010
O avimax -0.0151 O metatalk -0.012
S avpmean -0.015 S sdpsd -0.015
S question -0.0146 S avimin -0.015
O sdimin 0.0136 S backchannel -0.022
S avpmax 0.0131
S we -0.013
S I 0.0117
S assent 0.0114
S metatalk -0.0107
S sexual 0.0105
S avimin -0.0104
O uh -0.0102

Table 5: Feature weights (mean weights of the ran-
domized runs) for the predictors with |weight| >
0.01 for the male and female classifiers. An S pre-
fix indicates features of the speaker (the candidate
flirter) while an O prefix indicates features of the
other. Weights for autoencoder features were also
significant but are omitted for compactness.

Features of the alter (the woman) that helped
our system detect men who say they are flirting
include the woman’s laughing, sexual words or
swear words, talking more, and having a higher
f0 (max).
•Women who say they are flirting have a much

expanded pitch range (lower pitch min, higher
pitch max), laugh more, use more I and well, use
repair questions but not other kinds of questions,
use more sexual terms, use far less appreciations
and backchannels, and use fewer, longer turns,
with more words in general. Features of the alter
(the man) that helped our system detect women
who say they are flirting include the male use of
you, questions, and faster and quieter speech.

We also summarize here the features for the per-
ception classification task; predicting which peo-
ple will be labeled by their dates as flirting. Here
the task is the same as for Jurafsky et al. (2009)

and the values are similar.
• Men who are labeled by their female date as

flirting present many of the same linguistic behav-
iors as when they express their intention to flirt.
Some of the largest differences are that men are
perceived to flirt when they use less appreciations
and overlap less, while these features were not sig-
nificant for men who said they were flirting. We
also found that fast speech and more questions are
more important features for flirtation perception
than intention.
• Women who are labeled by their male date

as flirting also present much of the same linguis-
tic behavior as women who intend to flirt. Laugh-
ter, repair questions, and taking fewer, longer turns
were not predictors of women labeled as flirting,
although these were strong predictors of women
intending to flirt.

Both genders convey intended flirtation by
laughing more, speaking faster, and using higher
pitch. However, we do find gender differences;
men ask more questions when they say they are
flirting, women ask fewer, although they do use
more repair questions, which men do not. Women
use more “I” and less “we”; men use more “we”
and “you”. Men labeled as flirting are softer, but
women labeled as flirting are not. Women flirting
use much fewer appreciations; appreciations were
not a significant factor in men flirting.

8 Human Performance on this task

To evaluate the performance of our classifiers we
compare against human labeled data.

We used the same test set as for our machine
classifier; recall that this was created by taking the
top ten percent of Likert ratings of the speaker’s
intention ratings by gender and called those posi-
tive for flirtation intention. We constructed nega-
tive examples by taking the bottom ten percent of
intention Likert ratings. We called the interlocu-
tor correct on the positive examples if the inter-
locutor’s rating was greater than 5. Symmetrically
for the negative examples, we said the interlocutor
was correct if their rating was less than or equal
to 5. Note that this metric is biased somewhat to-
ward the humans and against our systems, because
we do not penalize for intermediate values, while
the system is trained to make binary predictions
only on extremes. The results of the human per-
ceivers on classifying flirtation intent are shown in
Table 6.
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Male speaker Female speaker
(Female perceiver) (Male perceiver)
62.2% 56.2%

Table 6: Accuracy of human listeners at labeling
speakers as flirting or not.

We were quite surprised by the poor quality of
the human results. Our system outperforms both
men’s performance in detecting women flirters
(system 71.5% versus human 56.2%) and also
women’s performance in detecting male flirters
(system 69.0% versus human 62.2%).

Why are humans worse than machines at detect-
ing flirtation? We found a key insight by examin-
ing how the participants in a date label themselves
and each other. Table 7 shows the 1-10 Likert val-
ues for the two participants in one of the dates,
between Male 101 and Female 127. The two par-
ticipants clearly had very different perspectives on
the date. More important, however, we see that
each participant labels their own flirting (almost)
identically with their partner’s flirting.

I am flirting Other is flirting
Male 101 says: 8 7
Female 127 says: 1 1

Table 7: Likert scores for the date between Female
127 and Male 101.

We therefore asked whether speakers in general
tend to assign similar values to their own flirting
and their partner’s flirting. The Pearson correla-
tion coefficient between these two variables (my
perception of my own flirting, and my perception
of other’s flirting) is .73. By contrast, the poor per-
formance of subjects at detecting flirting in their
partners is coherent with the lower (.15) correla-
tion coefficient between those two variables (my
perception of the other’s flirting, and the other’s
perception of their own flirting). This discrepancy
is summarized in boldface in Table 8.

Since the speed-date data was also labeled for
three other variables, we then asked the same
question about these variables. As Table 8 shows,
for all four styles, speakers’ perception of others
is strongly correlated with the speakers’ percep-
tion of themselves, far more so than with what the
others actually think they are doing.3

3This was true no matter how the correlations were run,
whether with raw Likert values, with ego-centered (trans-
formed) values and with self ego-centered but other raw.

Variable Self-perceive-Other

& Self-perceive-Self

Self-perceive-Other &

Other-perceive-Other

Flirting .73 .15
Friendly .77 .05
Awkward .58 .07
Assertive .58 .09

Table 8: Correlations between speaker intentions
and perception for all four styles.

Note that although perception of the other does
not correlate highly with the other’s intent for any
of the styles, the correlations are somewhat bet-
ter (.15) for flirting, perhaps because in the speed-
date setting speakers are focusing more on detect-
ing this behavior (Higgins and Bargh, 1987). It is
also possible that for styles with positive valence
(friendliness and flirting) speakers see more simi-
larity between the self and the other than for nega-
tive styles (awkward and assertive) (Krahé, 1983).

Why should this strong bias exist to link self-
flirting with perception of the other? One pos-
sibility is that speakers are just not very good at
capturing the intentions of others in four minutes.
Speakers instead base their judgments on their
own behavior or intentions, perhaps because of a
bias to maintain consistency in attitudes and rela-
tions (Festinger, 1957; Taylor, 1970) or to assume
there is reciprocation in interpersonal perceptions
(Kenny, 1998).

9 Conclusion

We have presented a new system that is able to
predict flirtation intention better than humans can,
despite humans having access to vastly richer in-
formation (visual features, gesture, etc.). This sys-
tem facilitates the analysis of human perception
and human interaction and provides a framework
for understanding why humans perform so poorly
on intention prediction.

At the heart of our system is a core set of
prosodic, dialogue, and lexical features that al-
low for accurate prediction of both flirtation inten-
tion and flirtation perception. Since previous word
lists don’t capture sufficient lexical information,
we used an autoencoder to automatically capture
new lexical cues. The autoencoder shows potential
for being a promising feature extraction method
for social tasks where cues are domain specific.

Acknowledgments: Thanks to the anonymous review-
ers and to a Google Research Award for partial funding.
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Abstract

We present an implicit discourse relation
classifier in the Penn Discourse Treebank
(PDTB). Our classifier considers the con-
text of the two arguments, word pair infor-
mation, as well as the arguments’ internal
constituent and dependency parses. Our
results on the PDTB yields a significant
14.1% improvement over the baseline. In
our error analysis, we discuss four chal-
lenges in recognizing implicit relations in
the PDTB.

1 Introduction

In the field of discourse modeling, it is widely
agreed that text is not understood in isolation, but
in relation to its context. One focus in the study
of discourse is to identify and label the relations
between textual units (clauses, sentences, or para-
graphs). Such research can enable downstream
natural language processing (NLP) such as sum-
marization, question answering, and textual entail-
ment. For example, recognizing causal relations
can assist in answering why questions. Detect-
ing contrast and restatements is useful for para-
phrasing and summarization systems. While dif-
ferent discourse frameworks have been proposed
from different perspectives (Mann and Thompson,
1988; Hobbs, 1990; Lascarides and Asher, 1993;
Knott and Sanders, 1998; Webber, 2004), most ad-
mit these basic types of discourse relationships be-
tween textual units.

When there is a discourse connective (e.g., be-
cause) between two text spans, it is often easy to
recognize the relation between the spans, as most
connectives are unambiguous (Miltsakaki et al.,
2005; Pitler et al., 2008). On the other hand, it is
difficult to recognize the discourse relations when
there are no explicit textual cues. We term these
cases explicit and implicit relations, respectively.

While the recognition of discourse structure has
been studied in the context of explicit relations
(Marcu, 1998) in the past, little published work
has yet attempted to recognize implicit discourse
relations between text spans.

Detecting implicit relations is a critical step
in forming a discourse understanding of text, as
many text spans do not mark their discourse re-
lations with explicit cues. Recently, the Penn Dis-
course Treebank (PDTB) has been released, which
features discourse level annotation on both explicit
and implicit relations. It provides a valuable lin-
guistic resource towards understanding discourse
relations and a common platform for researchers
to develop discourse-centric systems. With the
recent release of the second version of this cor-
pus (Prasad et al., 2008), which provides a cleaner
and more thorough implicit relation annotation,
there is an opportunity to address this area of work.

In this paper, we provide classification of im-
plicit discourse relations on the second version of
the PDTB. The features we used include contex-
tual modeling of relation dependencies, features
extracted from constituent parse trees and depen-
dency parse trees, and word pair features. We
show an accuracy of 40.2%, which is a significant
improvement of 14.1% over the majority baseline.

After reviewing related work, we first give an
overview of the Penn Discourse Treebank. We
then describe our classification methodology, fol-
lowed by experimental results. We give a detailed
discussion on the difficulties of implicit relation
classification in the PDTB, and then conclude the
paper.

2 Related Work

One of the first works that use statistical meth-
ods to detect implicit discourse relations is that
of Marcu and Echihabi (2002). They showed that
word pairs extracted from two text spans provide
clues for detecting the discourse relation between
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the text spans. They used a set of textual patterns
to automatically construct a large corpus of text
span pairs from the web. These text spans were
assumed to be instances of specific discourse re-
lations. They removed the discourse connectives
from the pairs to form an implicit relation corpus.
From this corpus, they collected word pair statis-
tics, which were used in a Naı̈ve Bayes framework
to classify discourse relations.

Saito et al. (2006) extended this theme, to show
that phrasal patterns extracted from a text span
pair provide useful evidence in the relation clas-
sification. For example, the pattern “... should
have done ...” usually signals a contrast. The au-
thors combined word pairs with phrasal patterns,
and conducted experiments with these two feature
classes to recognize implicit relations between ad-
jacent sentences in a Japanese corpus.

Both of these previous works have the short-
coming of downgrading explicit relations to im-
plicit ones by removing the explicit discourse con-
nectives. While this is a good approach to auto-
matically create large corpora, natively implicit re-
lations may be signaled in different ways. The fact
that explicit relations are explicitly signaled indi-
cates that such relations need a cue to be unam-
biguous to human readers. Thus, such an artificial
implicit relation corpus may exhibit marked dif-
ferences from a natively implicit one. We validate
this claim later in this work.

Wellner et al. (2006) used multiple knowledge
sources to produce syntactic and lexico-semantic
features, which were then used to automatically
identify and classify explicit and implicit dis-
course relations in the Discourse Graphbank (Wolf
and Gibson, 2005). Their experiments show that
discourse connectives and the distance between
the two text spans have the most impact, and
event-based features also contribute to the perfor-
mance. However, their system may not work well
for implicit relations alone, as the two most promi-
nent features only apply to explicit relations: im-
plicit relations do not have discourse connectives
and the two text spans of an implicit relation are
usually adjacent to each other.

The work that is most related to ours is the
forthcoming paper of Pitler et al. (2009) on im-
plicit relation classification on the second ver-
sion of the PDTB. They performed classification
of implicit discourse relations using several lin-
guistically informed features, such as word polar-

ity, verb classes, and word pairs, showing perfor-
mance increases over a random classification base-
line.

3 Overview of the Penn Discourse
Treebank

The Penn Discourse Treebank (PDTB) is a dis-
course level annotation (Prasad et al., 2008) over
the one million word Wall Street Journal corpus.
The PDTB adopts the predicate-argument view of
discourse relations, where a discourse connective
(e.g., because) is treated as a predicate that takes
two text spans as its arguments. The argument
that the discourse connective structurally attaches
to is called Arg2, and the other argument is called
Arg1. The PDTB provides annotations for explicit
and implicit discourse relations. By definition, an
explicit relation contains an explicit discourse con-
nective. In the PDTB, 100 explicit connectives are
annotated. Example 1 shows an explicit Contrast
relation signaled by the discourse connective but.
The last line shows the relation type and the file in
the PDTB from which the example is drawn.

(1) Arg1: In any case, the brokerage firms are
clearly moving faster to create new ads than
they did in the fall of 1987.
Arg2: But it remains to be seen whether
their ads will be any more effective.

(Contrast - wsj 2201)

In the PDTB, implicit relations are constrained
by adjacency: only pairs of adjacent sentences
within paragraphs are examined for the existence
of implicit relations. When an implicit relation
was inferred by an annotator, he/she inserted an
implicit connective that best reflects the relation.
Example 2 shows an implicit relation, where the
annotator inferred a Cause relation and inserted an
implicit connective so (i.e., the original text does
not include so). The text in the box (he says)
shows the attribution, i.e., the agent that expresses
the arguments. The PDTB provides annotation for
the attributions and supplements of the arguments.

(2) Arg1: “A lot of investor confidence comes
from the fact that they can speak to us,”
he says .

Arg2: [so] “To maintain that dialogue is
absolutely crucial.”

(Cause - wsj 2201)
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The PDTB provides a three level hierarchy of
relation tags for its annotation. The first level
consists of four major relation classes: Temporal,
Contingency, Comparison, and Expansion. For
each class, a second level of types is defined to pro-
vide finer semantic distinctions. A third level of
subtypes is defined for only some types to specify
the semantic contribution of each argument. Rela-
tion classes and types in the PDTB are reproduced
in the first two columns of Table 1.

We focus on implicit relation classification of
the Level 2 types in the PDTB, as we feel that
Level 1 classes are too general and coarse-grained
for downstream applications, while Level 3 sub-
types are too fine-grained and are only provided
for some types. Table 1 shows the distribution of
the 16 Level 2 relation types of the implicit rela-
tions from the training sections, i.e., Sections 2
– 21. As there are too few training instances for
Condition, Pragmatic Condition, Pragmatic Con-
trast, Pragmatic Concession, and Exception, we
removed these five types from further considera-
tion. We thus use the remaining 11 Level 2 types
in our work. The initial distribution and adjusted
distribution are shown in the last two columns of
the table. We see that the three predominant types
are Cause (25.63%), Conjunction (22.25%), and
Restatement (19.23%).

Level 1 Class Level 2 Type Training % Adjusted %
instances

Temporal Asynchronous 583 4.36 4.36
Synchrony 213 1.59 1.59

Contingency Cause 3426 25.61 25.63
Pragmatic 69 0.52 0.52
Cause
Condition 1 0.01 –
Pragmatic 1 0.01 –
Condition

Comparison Contrast 1656 12.38 12.39
Pragmatic 4 0.03 –
Contrast
Concession 196 1.47 1.47
Pragmatic 1 0.01 –
Concession

Expansion Conjunction 2974 22.24 22.25
Instantiation 1176 8.79 8.80
Restatement 2570 19.21 19.23
Alternative 158 1.18 1.18
Exception 2 0.01 –
List 345 2.58 2.58

Total 13375
Adjusted total 13366

Table 1: Distribution of Level 2 relation types of
implicit relations from the training sections (Sec.
2 – 21). The last two columns show the initial
distribution and the distribution after removing the
five types that have only a few training instances.

4 Methodology

Our implicit relation classifier is built using super-
vised learning on a maximum entropy classifier.
As such, our approach processes the annotated ar-
gument pairs into binary feature vectors suitable
for use in training a classifier. Attributions and
supplements are ignored from the relations, as our
system does not make use of them. We chose the
following four classes of features as they represent
a wide range of information – contextual, syntac-
tic, and lexical – that have been shown to be help-
ful in previous works and tasks. We now discuss
the four categories of features used in our frame-
work.

Figure 1: Two types of discourse dependency
structures. Top: fully embedded argument, bot-
tom: shared argument.

Contextual Features. Lee et al. (2006) showed
that there are a variety of possible dependencies
between pairs of discourse relations: independent,
fully embedded argument, shared argument, prop-
erly contained argument, pure crossing, and par-
tially overlapping argument. They argued that the
last three cases – properly contained argument,
pure crossing, and partially overlapping argument
– can be factored out by appealing to discourse no-
tions such as anaphora and attribution. Moreover,
we also observed from the PDTB corpus that fully
embedded argument and shared argument are the
most common patterns, which are shown in Fig-
ure 1. The top portion of Figure 1 shows a case
where relation r1 is fully embedded in Arg1 of re-
lation r2, and the bottom portion shows r1 and r2
sharing an argument. We model these two patterns
as contextual features. We believe that these dis-
course dependency patterns between a pair of ad-
jacent relations are useful in identifying the rela-
tions. For example, if we have three items in a list,
according to the PDTB binary predicate-argument
definitions, there will be a List relation between
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the first item and the second item, and another List
relation between the previous List relation and the
third item, where the previous List relation is fully
embedded in Arg1 of the current List relation. As
we are using the gold standard argument segmen-
tation from the PDTB, we can extract and leverage
these dependency patterns. For each relation curr,
we use the previous relation prev and the next re-
lation next as evidence to fire six binary features,
as defined in Table 2.

Note that while curr is an implicit relation to
be classified, both prev and next can be implicit or
explicit relations. Pitler et al. (2008) showed that
the type of a relation sometimes correlates to the
type of its adjacent relation. When the adjacent
relation is explicit, its type may be suggested by
its discourse connective. Thus we include another
two groups of contextual features representing the
connectives of prev and next when they are explicit
relations.

Fully embedded argument:
prev embedded in curr.Arg1
next embedded in curr.Arg2
curr embedded in prev.Arg2
curr embedded in next.Arg1

Shared argument:
prev.Arg2 = curr.Arg1
curr.Arg2 = next.Arg1

Table 2: Six contextual features derived from two
discourse dependency patterns. curr is the relation
we want to classify.

Constituent Parse Features. Research work
from other NLP areas, such as semantic role la-
beling, has shown that features derived from syn-
tactic trees are useful in semantic understanding.
Such features include syntactic paths (Jiang and
Ng, 2006) and tree fragments (Moschitti, 2004).
From our observation of the PDTB relations, syn-
tactic structure within one argument may constrain
the relation type and the syntactic structure of
the other argument. For example, the constituent
parse structure in Figure 2(a) usually signals an
Asynchronous relation when it appears in Arg2,
as shown in Example 3, while the structure in Fig-
ure 2(b) usually acts as a clue for a Cause relation
when it appears in Arg1, as shown in Example 4.
In both examples, the lexicalized parts of the parse
structure are bolded.

(3) Arg1: But the RTC also requires “working”
capital to maintain the bad assets of thrifts
that are sold

Arg2: [subsequently] That debt would be
paid off as the assets are sold

(Asynchronous - wsj 2200)

(4) Arg1: It would have been too late to think
about on Friday.
Arg2: [so] We had to think about it ahead of
time.

(Cause - wsj 2201)

(a)
SBAR

IN

as

S

. . .

(b)
VP

MD VP

VB

have

VP

VBN

been

ADJP PP

Figure 2: (a) constituent parse in Arg2 of Example
3, (b) constituent parse in Arg1 of Example 4.

S-TPC-1

NP-SBJ

PRP

We

VP

VBD

had

NP

NP

DT

no

NN

operating

NNS

problems

ADVP

IN

at

DT

all

Figure 3: A gold standard subtree for Arg1 of an
implicit discourse relation from wsj 2224.

For Arg1 and Arg2 of each relation, we extract
the corresponding gold standard syntactic parse
trees from the corpus. As an argument can be a
single sentence, a clause, or multiple sentences,
this results in a whole parse tree, parts of a parse
tree, or multiple parse trees. From these parses,
we extract all possible production rules. Although
the structures shown in Figure 2 are tree frag-
ments, tree fragments are not extracted as produc-
tion rules act as generalization of tree fragments.
As an example, Figure 3 shows the parse tree for
Arg1 of an implicit discourse relation from the text
wsj 2224. As Arg1 is a clause, the extracted tree
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is a subtree. We then collect all production rules
from this subtree, with function tags (e.g., SBJ)
removed from internal nodes. POS tag to word
production rules are collected as well. The result-
ing production rules include ones such as: S →
NP VP, NP→ PRP, PRP→ “We”, etc. Each pro-
duction rule is represented as three binary features
to check whether this rule appears in Arg1, Arg2,
and both arguments.

Dependency Parse Features. We also experi-
mented with features extracted from dependency
trees of the arguments. We used the Stanford de-
pendency parser (de Marneffe et al., 2006), which
takes in a constituent parse tree and produces a de-
pendency tree. Again, for an argument, we may
collect a whole dependency tree, parts of a tree,
or multiple trees, depending on the span of the ar-
gument. The reason for using dependency trees
is that they encode additional information at the
word level that is not explicitly present in the con-
stituent trees. From each tree, we collect all words
with the dependency types from their dependents.
Figure 4 shows the dependency subtree for the
same example in Figure 3, from which we col-
lect three dependency rules: “had”← nsubj dobj,
“problems”← det nn advmod, “at”← dep.

Note that unlike the constituent parse features
which are guaranteed to be accurate (as they are
extracted from the gold parses of the corpus), the
dependency parses occasionally contain errors. As
with the constituent parse features, each depen-
dency rule is represented as three binary features
to check whether it appears in Arg1, Arg2, and
both arguments.

We

had

nsubj

problems

dobj

no operating

det nn

at

advmod

all

dep

Figure 4: A dependency subtree for Arg1 of an
implicit discourse relation from wsj 2224.

Lexical Features. Marcu and Echihabi (2002)
demonstrated that word pairs extracted from the
respective text spans are a good signal of the
discourse relation between arguments. Thus we
also consider word pairs as a feature class. We

stemmed and collected all word pairs from Arg1
and Arg2, i.e., all (wi, wj) where wi is a word
from Arg1 and wj a word from Arg2. Unlike their
study, we limit the collection of word pair statis-
tics to occurrences only in the PDTB corpus.

4.1 Feature Selection
For the collection of production rules, dependency
rules, and word pairs, we used a frequency cutoff
of 5 to remove infrequent features. From the im-
plicit relation dataset of the training sections (i.e.,
Sec. 2 – 21), we extracted 11,113 production rules,
5,031 dependency rules, and 105,783 word pairs
in total. We applied mutual information (MI) to
these three classes of features separately, resulting
in three ranked lists. A feature f has 11 MI values
with all 11 types (for example,MI(f, Cause) and
MI(f,Restatement)), and we used the MI with
the highest value for a feature to select features. In
our experiments, the top features from the lists are
used in the training and test phases.

5 Experiments

We experimented with a maximum entropy clas-
sifier from the OpenNLP MaxEnt package using
various combinations of features to assess their ef-
ficacy. We used PDTB Sections 2 – 21 as our train-
ing set and Section 23 as the test set, and only used
the implicit discourse relations.

In the PDTB, about 2.2% of the implicit rela-
tions are annotated with two types, as shown in
Example 7 in Section 6. During training, a relation
that is annotated with two types is considered as
two training instances, each with one of the types.
During testing, such a relation is considered one
test instance, and if the classifier assigns either of
the two types, we consider it as correct. Thus, the
test accuracy is calculated as the number of cor-
rectly classified test instances divided by the total
number of test instances.

In our work, we use the majority class as
the baseline, where all instances are classified as
Cause. This yields an accuracy of 26.1% on the
test set. A random baseline yields an even lower
accuracy of 9.1% on the test set.

5.1 Results and Analysis
To check the efficacy of the different feature
classes, we trained individual classifiers on all fea-
tures within a single feature class (Rows 1 to 4
in Table 3) as well as a single classifier trained
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with all features from all feature classes (Row 5).
Among the four individual feature classes, produc-
tion rules and word pairs yield significantly better
performance over the baseline with p < 0.01 and
p < 0.05 respectively, while context features per-
form slightly better than the baseline.

# Production # Dependency # Word Context Acc.
rules rules pairs

R1 11,113 – – No 36.7%
R2 – 5,031 – No 26.0%
R3 – – 105,783 No 30.3%
R4 – – – Yes 28.5%
R5 11,113 5,031 105,783 Yes 35.0%

Table 3: Classification accuracy with all features
from each feature class. Rows 1 to 4: individual
feature class; Row 5: all feature classes.

Interestingly, we noted that the performance
with all dependency rules is slightly lower than
the baseline (Row 2), and applying all feature
classes does not yield the highest accuracy (Row
5), which we suspected were due to noise. To con-
firm this, we employed MI to select the top 100
production rules and dependency rules, and the top
500 word pairs (as word pairs are more sparse).
We then repeated the same set of experiments, as
shown in Table 4 (Row 4 of this table is repeated
from Table 3 for consistency). With only the top
features, production rules, dependency rules, and
word pairs all gave significant improvement over
the baseline with p < 0.01. When we used all
feature classes, as in the last row, we obtained the
highest accuracy of 40.2%.

# Production # Dependency # Word Context Acc.
rules rules pairs

R1 100 – – No 38.4%
R2 – 100 – No 32.4%
R3 – – 500 No 32.9%
R4 – – – Yes 28.5%
R5 100 100 500 Yes 40.2%

Table 4: Classification accuracy with top
rules/word pairs for each feature class. Rows 1
to 4: individual feature class; Row 5: all feature
classes.

Table 4 also validates the pattern of predictive-
ness of the feature classes: production rules con-
tribute the most to the performance individually,
followed by word pairs, dependency rules, and fi-
nally, context features. A natural question to ask is
whether any of these feature classes can be omit-
ted to achieve the same level of performance as
the combined classifier. To answer this question,
we conducted a final set of experiments, in which
we gradually added in feature classes in the or-

der of their predictiveness (i.e., production rules
� word pairs � dependency rules � context fea-
tures), with results shown in Table 5. These results
confirm that each additional feature class indeed
contributes a marginal performance improvement,
(although it is not significant) and that all feature
classes are needed for optimal performance.

# Production # Dependency # Word Context Acc.
rules rules pairs

R1 100 – – No 38.4%
R2 100 – 500 No 38.9%
R3 100 100 500 No 39.0%
R4 100 100 500 Yes 40.2%

Table 5: Accuracy with feature classes gradually
added in the order of their predictiveness.

Note that Row 3 of Table 3 corresponds to
Marcu and Echihabi (2002)’s system which ap-
plies only word pair features. The difference is
that they used a Naı̈ve Bayes classifier while we
used a maximum entropy classifier. As we did
not implement their Naı̈ve Bayes classifier, we
compare their method’s performance using the re-
sult from Table 3 Row 3 with ours from Table 5
Row 4, which shows that our system significantly
(p < 0.01) outperforms theirs.

Level 2 Type Precision Recall F1 Count in
test set

Asynchronous 0.50 0.08 0.13 13
Synchrony – – – 5
Cause 0.39 0.76 0.51 200
Pragmatic Cause – – – 5
Contrast 0.61 0.09 0.15 127
Concession – – – 5
Conjunction 0.30 0.51 0.38 118
Instantiation 0.67 0.39 0.49 72
Restatement 0.48 0.27 0.35 190
Alternative – – – 15
List 0.80 0.13 0.23 30
All (Micro Avg.) 0.40 0.40 0.40 780

Table 6: Recall, precision, F1, and counts for 11
Level 2 relation types. “–” indicates 0.00.

Table 6 shows the recall, precision, and F1 mea-
sure for the 11 individual Level 2 relation types
in the final experiment set up (Row 4 from Ta-
ble 5). A point worth noting is that the classi-
fier labels no instances of the Synchrony, Prag-
matic Cause, Concession, and Alternative relation
types. The reason is that the percentages for these
four types are so small that the classifier is highly
skewed towards the other types. From the distribu-
tion shown in Table 1, there are just 4.76% training
data for these four types, but 95.24% for the re-
maining seven types. In fact, only 30 test instances
are labeled with these four types, as shown in the
last column of Table 6. As Cause is the most pre-

348



dominant type in the training data, the classifier
tends to label uncertain relations as Cause, thus
giving Cause high recall but low precision. We see
that the F measures correlate well with the train-
ing data frequency, thus we hypothesize that ac-
curacy may improve if more training data for low
frequency relations can be provided.

Our work differs from that of (Pitler et al., 2009)
in that our system performs classification at the
more fine-grained Level 2 types, instead of the
coarse-grained Level 1 classes. Their system ap-
plies a Naı̈ve Bayes classifier whereas our system
uses a maximum entropy classifier, and the sets of
features used are also different. In addition, the
data set of (Pitler et al., 2009) includes EntRel
and AltLex, which are relations in which an im-
plicit connective cannot be inserted between ad-
jacent sentences, whereas ours excludes EntRel
and AltLex.

6 Discussion: Why are implicit discourse
relations difficult to recognize?

In the above experiments, we have shown that by
using the four feature classes, we are able to in-
crease the classification accuracy from 26.1% of
the majority baseline to 40.2%. Although we feel
a 14.1 absolute percentage improvement is a solid
result, an accuracy of 40% does not allow down-
stream NLP applications to trust the output of such
a classification system.

To understand the difficulties of the task more
deeply, we analyzed individual training and val-
idation data pairs, from which we were able to
generalize four challenges to automated implicit
discourse relation recognition. We hope that this
discussion may motivate future work on implicit
discourse relation recognition.

Ambiguity. There is ambiguity among the rela-
tions. For example, we notice that a lot of Contrast
relations are mistakenly classified as Conjunction.
When we analyzed these relations, we observed
that Contrast and Conjunction in the PDTB anno-
tation are very similar to each other in terms of
words, syntax, and semantics, as Examples 5 and
6 show. In both examples, the same antonymous
verb pair is used (fell and rose), different subjects
are mentioned in Arg1 and Arg2 (net and revenue
in the first example, and net and sales in the sec-
ond), and these subjects are all compared to like
items from the previous year. Moreover, the im-
plicit discourse connective given by the annotators

is while in both cases, which is an ambiguous con-
nective as shown in (Miltsakaki et al., 2005).

(5) Arg1: In the third quarter, AMR said, net
fell to $137 million, or $2.16 a share, from
$150.3 million, or $2.50 a share.
Arg2: [while] Revenue rose 17% to $2.73
billion from $2.33 billion a year earlier.

(Contrast - wsj 1812)

(6) Arg1: Dow’s third-quarter net fell to $589
million, or $3.29 a share, from $632 million,
or $3.36 a share, a year ago.
Arg2: [while] Sales in the latest quarter rose
2% to $4.25 billion from $4.15 billion a year
earlier.

(Conjunction - wsj 1926)

Relation ambiguity may be ameliorated if an in-
stance is analyzed in context. However, according
to the PDTB annotation guidelines, if the annota-
tors could not disambiguate between two relation
types, or if they felt both equally reflect their un-
derstanding of the relation between the arguments,
they could annotate two types to the relation. In
the whole PDTB corpus, about 5.4% of the ex-
plicit relations and 2.2% of the implicit relations
are annotated with two relation types. Example 7
is such a case where the implicit connective mean-
while may be interpreted as expressing a Conjunc-
tion or Contrast relation.

(7) Arg1: Sales surged 40% to 250.17 billion
yen from 178.61 billion.
Arg2: [meanwhile] Net income rose 11% to
29.62 billion yen from 26.68 billion.

(Conjunction; Contrast - wsj 2242)

Inference. Sometimes inference and a knowl-
edge base are required to resolve the relation type.
In Example 8, to understand that Arg2 is a re-
statement of Arg1, we need a semantic mechanism
to show that either the semantics of Arg1 infers
that of Arg2 or the other way around. In the be-
low example, I had calls all night long infers I
was woken up every hour semantically, as shown
in: receive call(I) ∧ duration(all night) ⇒
woken up(I) ∧ duration(every hour).

(8) Arg1: “I had calls all night long from the
States,” he said.
Arg2: “[in fact] I was woken up every hour
– 1:30, 2:30, 3:30, 4:30.”

(Restatement - wsj 2205)

349



In fact, most relation types can be represented
using formal semantics (PDTB-Group, 2007), as
shown in Table 7, where |Arg1| and |Arg2| repre-
sent the semantics extracted from Arg1 and Arg2,
respectively. This kind of formal semantic reason-
ing requires a robust knowledge base, which is still
beyond our current technology.

Relation type Semantic representation
Cause |Arg1| ≺ |Arg2| ∨ |Arg2| ≺ |Arg1|
Concession A ≺ C ∧ B ⇒ ¬C

where A ∈ |Arg1|, B ∈ |Arg2|
Instantiation exemplify(|Arg2|, λx.x ∈ E)

where E = extract(|Arg1|)
Restatement |Arg1| ⇒ |Arg2| ∨ |Arg1| ⇐ |Arg2|
Alternative |Arg1| ∧ |Arg2| ∨ |Arg1| ⊕ |Arg2|

Table 7: Some examples of relation types with
their semantic representations, as taken from
(PDTB-Group, 2007).

Context. PDTB annotators adopted the Mini-
mality Principle in argument selection, according
to which they only included in the argument the
minimal span of text that is sufficient for the in-
terpretation of the relation. While the context is
not necessary to interpret the relation, it is usually
necessary to understand the meaning of the argu-
ments. Without an analysis of the context, Arg1
and Arg2 may seem unconnected, as the follow-
ing example shows, where the meaning of Arg1 is
mostly derived from its previous context (i.e., West
German ... technical reactions).

(9) Prev. Context: West German Economics
Minister Helmut Haussmann said, “In my
view, the stock market will stabilize
relatively quickly. There may be one or other
psychological or technical reactions,
Arg1: but they aren’t based on
fundamentals.
Arg2: [in short] The economy of West
Germany and the EC European Community
is highly stable.”

(Conjunction - wsj 2210)

Sometimes the range of the context may eas-
ily extend to the whole text, which would require
a system to possess a robust context modeling
mechanism. In Example 10, in order to realize
the causal relation between Arg2 and Arg1, we
possibly need to read the whole article and under-
stand what was happening: the machinist union
was having a strike and the strike prevented most
of its union members from working.

(10) Arg1: And at the company’s Wichita, Kan.,
plant, about 2,400 of the 11,700 machinists
still are working, Boeing said.
Arg2: [because] Under Kansas
right-to-work laws, contracts cannot require
workers to be union members.

(Cause - wsj 2208)

World Knowledge. Sometimes even context
modeling is not enough. We may also need world
knowledge to understand the arguments and hence
to interpret the relation. In the following example,
from the previous sentence of Arg1, it is reported
that “the Senate voted to send a delegation of con-
gressional staffers to Poland to assist its legisla-
ture”, and this delegation is viewed as a “gift” in
Arg1. It is suggested in Arg2 that the Poles might
view the delegation as a “Trojan Horse”. Here we
need world knowledge to understand that “Trojan
Horse” is usually applied as a metaphor for a per-
son or thing that appears innocent but has harm-
ful intent, and hence understand that Arg2 poses a
contrasting view of the delegation as Arg1 does.

(11) Arg1: Senator Pete Domenici calls this
effort “the first gift of democracy”.
Arg2: [but] The Poles might do better to
view it as a Trojan Horse.

(Contrast - wsj 2237)

These four classes of difficulties – ambiguity
between relations, inference, contextual modeling,
and world knowledge – show that implicit dis-
course relation classification needs deeper seman-
tic representations, more robust system design,
and access to more external knowledge. These ob-
stacles may not be restricted to recognizing im-
plicit relations, but are also applicable to other re-
lated discourse-centric tasks.

7 Conclusion

We implemented an implicit discourse relation
classifier and showed initial results on the recently
released Penn Discourse Treebank. The features
we used include the modeling of the context of re-
lations, features extracted from constituent parse
trees and dependency parse trees, and word pair
features. Our classifier achieves an accuracy of
40.2%, a 14.1% absolute improvement over the
baseline. We also conducted a data analysis and
discussed four challenges that need to be ad-
dressed in future to overcome the difficulties of
implicit relation classification in the PDTB.
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Abstract

Tree based translation models are a com-
pelling means of integrating linguistic in-
formation into machine translation. Syn-
tax can inform lexical selection and re-
ordering choices and thereby improve
translation quality. Research to date has
focussed primarily on decoding with such
models, but less on the difficult problem of
inducing the bilingual grammar from data.
We propose a generative Bayesian model
of tree-to-string translation which induces
grammars that are both smaller and pro-
duce better translations than the previous
heuristic two-stage approach which em-
ploys a separate word alignment step.

1 Introduction

Many recent advances in statistical machine trans-
lation (SMT) are a result of the incorporation of
syntactic knowledge into the translation process
(Marcu et al., 2006; Zollmann and Venugopal,
2006). This has been facilitated by the use of syn-
chronous grammars to model translation as a gen-
erative process over pairs of strings in two lan-
guages. Such models are particularly attractive
for translating between languages with divergent
word orders, such as Chinese and English, where
syntax-inspired translation rules can succinctly de-
scribe the requisite reordering operations. In con-
trast, standard phrase-based models (Koehn et al.,
2003) assume a mostly monotone mapping be-
tween source and target, and therefore cannot
adequately model these phenomena. Currently
the most successful paradigm for the use of syn-
chronous grammars in translation is that of string-
to-tree transduction (Galley et al., 2004; Zollmann
and Venugopal, 2006; Galley et al., 2006; Marcu
et al., 2006). In this case a grammar is extracted
from a parallel corpus, with strings on its source

side and syntax trees on its target side, which is
then used to translate novel sentences by perform-
ing inference over the space of target syntax trees
licensed by the grammar.

To date grammar-based translation models have
relied on heuristics to extract a grammar from a
word-aligned parallel corpus. These heuristics are
extensions of those developed for phrase-based
models (Koehn et al., 2003), and involve sym-
metrising two directional word alignments fol-
lowed by a projection step which uses the align-
ments to find a mapping between source words and
nodes in the target parse trees (Galley et al., 2004).
However, such approaches leave much to be de-
sired. Word-alignments rarely factorise cleanly
with parse trees (i.e., alignment points cross con-
stituent structures), resulting in large and implau-
sible translation rules which generalise poorly to
unseen data (Fossum et al., 2008). The principal
reason for employing a grammar based formal-
ism is to induce rules which capture long-range
reorderings between source and target. However
if the grammar itself is extracted using word-
alignments induced with models that are unable
to capture such reorderings, it is unlikely that the
grammar will live up to expectations.

In this work we draw on recent advances in
Bayesian modelling of grammar induction (John-
son et al., 2007; Cohn et al., 2009) to propose a
non-parametric model of synchronous tree substi-
tution grammar (STSG), continuing a recent trend
in SMT to seek principled probabilistic formula-
tions for heuristic translation models (Zhang et al.,
2008; DeNero et al., 2008; Blunsom et al., 2009b;
Blunsom et al., 2009a). This model leverages a
hierarchical Bayesian prior to induce a compact
translation grammar directly from a parsed paral-
lel corpus, unconstrained by word-alignments. We
show that the induced grammars are more plausi-
ble and improve translation output.

This paper is structured as follows: In Section
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2 we introduce the STSG formalism and describe
current heuristic approaches to grammar induc-
tion. We define a principled Bayesian model of
string-to-tree translation in Section 3, and describe
an inference technique using Gibbs sampling in
Section 4. In Section 5 we analyse an induced
grammar on a corpus of Chinese→English trans-
lation, comparing them with a heuristic grammar
in terms of grammar size and translation quality.

2 Background

Current tree-to-string translation models are a
form of Synchronous Tree Substitution Grammar
(STSG; Eisner (2003)). Formally, a STSG is a
5-tuple, G = (T, T ′, N, S,R), where T and T ′

are sets of terminal symbols in the target and
source languages respectively, N is a set of non-
terminal symbols, S ∈ N is the distinguished
root non-terminal and R is a set of productions
(a.k.a. rules). Each production is a tuple compris-
ing an elementary tree and a string, the former
referring to a tree fragment of depth ≥ 1 where
each internal node is labelled with a non-terminal
and each leaf is labelled with either a terminal or
a non-terminal. The string part of the rule de-
scribes the lexical component of the rule in the
source language and includes a special variable for
each frontier non-terminal in the elementary tree.
These variables describe the reordering and form
the recursion sites in the generative process of cre-
ating tree and string pairs with the grammar. For
example, the rule

〈(NP NP 1 (PP (IN of) NP 2 )), 2 的 1 〉 (1)

rewrites a noun-phrase (NP) as a NP and prepo-
sitional phrase (PP) headed by ‘of’ in the target
language. The rule generates the token ‘的’ in
the source and reverses the order of the two child
noun-phrases, indicated by the numbering of the
variables in the string part.

A derivation creates a (tree, string) pair by start-
ing with the root non-terminal and an empty string,
then choosing a rule to rewrite (substitute) the non-
terminal and expand the string. This process re-
peats by rewriting all frontier non-terminals until
there are none remaining. A Probabilistic STSG
assigns a probability to each rule in the grammar.
The probability of a derivation is the product of
the probabilities of its component rules, and the
probability of a (tree, string) pair is the sum of the
probabilities over all its derivations.

2.1 Heuristic Grammar Induction

Grammar based SMT models almost exclusively
follow the same two-stage approach to gram-
mar induction developed for phrase-based meth-
ods (Koehn et al., 2003). In this approach they
induce a finite-state grammar with phrase-pairs as
rules by taking a sentence aligned parallel cor-
pus and 1) predicting word alignments before 2)
extracting transduction rules that are ‘consistent’
with the word aligned data. Although empiri-
cally effective, this two stage approach is less than
ideal due to the disconnect between the word-
based models used for alignment and the phrase-
based translation model. This is problematic as the
word-based model cannot recognise phrase-based
phenomena. Moreover, it raises the problem of
identifying and weighting the rules from the word
alignment.

The same criticisms levied at the phrase-based
models apply equally to the two-stage technique
used for synchronous grammar induction (Galley
et al., 2004; Zollmann and Venugopal, 2006; Gal-
ley et al., 2006; Marcu et al., 2006). Namely that
the word alignment models typically do not use
any syntax and therefore will not be able to model,
e.g., consistent syntactic reordering effects, or the
impact of the syntactic category on phrase transla-
tions. The identification and estimation of gram-
mar rules from word aligned data is also non-
trivial. Galley et al. (2004) describe an algorithm
for inducing a string-to-tree grammar using a par-
allel corpus with syntax trees on target side. Their
method projects the source strings onto nodes of
the target tree using the word alignment, and then
extracts the minimal transduction rules as well as
rules composed of adjacent minimal units. The
production weights are estimated either by heuris-
tic counting (Koehn et al., 2003) or using the EM
algorithm. Both estimation techniques are flawed.
The heuristic method is inconsistent in the limit
(Johnson, 2002) while EM is degenerate, placing
disproportionate probability mass on the largest
rules in order to describe the data with as few a
rules as possible (DeNero et al., 2006). With no
limit on rule size this method will learn a single
rule for every training instance, and therefore will
not generalise to unseen sentences. These prob-
lems can be ameliorated by imposing limits on
rule size or early stopping of EM training, how-
ever neither of these techniques addresses the un-
derlying problems.
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In contrast, our model is trained in a single step,
i.e., the alignment model is the translation model.
This allows syntax to directly inform the align-
ments. We infer a grammar without resorting to
word alignment constraints or limits on rule size.
The model uses a prior to bias towards a compact
grammar with small rules, thus solving the degen-
eracy problem.

3 Model

Our training data comprises parallel target trees
and source strings and our aim is to induce a STSG
that best describes this data. This is achieved
by inferring a distribution over the derivations for
each training instance, where the set of derivations
collectively specify the grammar. In the follow-
ing, we denote the source trees as t, target strings
s, and derivations r which are sequences of gram-
mar rules, r.

As described in section 2.1, previous methods
for estimating a STSG have suffered from degen-
eracy. A principled way to correct for such degen-
erated behaviour is to use a prior over rules which
biases towards small rules. This matches our intu-
ition: we expect good translation rules to be small,
with few internal nodes, frontier non-terminals
and terminal strings. However, we recognise that
on occasion larger rules will be necessary; we al-
low such rules when there is sufficient support in
the data.

We model the grammar as a set of distributions,
Gc, over the productions for each non-terminal
symbol, c. We adopt a non-parametric Bayesian
approach by treating eachGc as a random variable
with a Dirichlet process (DP) prior,

r|c ∼ Gc

Gc|αc, P0 ∼ DP(αc, P0(·|c)) ,

where P0(·|c) (the base distribution) is a distribu-
tion over the infinite space of trees rooted with c,
and αc (the concentration parameter) controls the
model’s tendency towards either reusing existing
rules or creating novel ones as each training in-
stance is encountered (and consequently, the ten-
dency to infer larger or smaller grammars). We
discuss the base distribution in more detail below.

Rather than representing the distribution Gc ex-
plicitly, we integrate over all possible values ofGc.
This leads to the following predictive distribution
for the rule ri given the previously observed rules

r−i = r1 . . . ri−1,

p(ri|r−i, c, αc, P0) =
n−i

ri + αcP0(ri|c)
n−i

c + αc

, (2)

where n−i
ri is the number number of times

ri has been used to rewrite c in r−i, and
n−i

c =
∑

r,R(r)=c n
−i
r is the total count of rewrit-

ing c (hereR(r) is the root non-terminal of r). The
distribution is exchangeable, meaning that all per-
mutations of the input sequence are assigned the
same probability. This allows us to treat any item
as being the last, which is fundamental for efficient
Gibbs sampling. Henceforth we adopt the notation
r− and n− to refer to the rules and counts for the
whole data set excluding the current rules under
consideration, irrespective of their location in the
corpus.

The base distribution, P0, assigns a prior prob-
ability to an infinite number of rules, where each
rule is an (elementary tree, source string) pair de-
noted r = (e,w). While there are a myriad of
possible distributions, we developed a very sim-
ple one. We decompose the probability into two
factors,

P0(e,w|c) = P (e|c)P (w|e) , (3)

the probability of the target elementary tree
and the probability of the source string, where
c = R(r).

The tree probability, P (e|c) in (3), is modelled
using generative process whereby the root cate-
gory c is expanded into a sequence of child non-
terminals, then each of these are either expanded
or left as-is. This process continues until there
are no unprocessed children. The number of child
nodes for each expansion is drawn from a geo-
metric prior with parameter pchild, except in the
case of pre-terminals where the number of chil-
dren is always one. The binary expansion deci-
sions are drawn from a Bernoulli prior with pa-
rameter pexpand, and non-terminals and terminals
are drawn uniformly from N and T respectively.
For example, the source side of rule (1) was gen-
erated as follows: 1) the NP was rewritten as two
children; 2) an NP; and 4) a PP; 5) the NP child
was not expanded; 6) the PP child was expanded;
7) as an IN; and 8) a NP; 9) the IN was expanded to
the terminal ‘of’; and 10) the final NP was not ex-
panded. Each of these steps is a draw from the rel-
evant distribution, and the total probability is the
product of the probabilities for each step.
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Hong/NNP Kong/NNP

香港 的 每 一 个 角落 都 充满 着 乐趣 。

S

NP VP ./.

NP PP

Every/DT corner/NN of/IN NP

is/VBZ VP

filled/VBN PP

with/IN NP

fun/NN

0 1 2 3 4 5 6 7 8 109 11

[2,3)

[2,6)
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[0,2)

[0,11)

[10,11)[6,10)
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[7,9) [9,10)

[9,10)

∅

∅

∅ ∅ ∅ ∅

∅

Figure 1: Example derivation. Each node is annotated with their span in the target string (aligned nodes are shaded). The dotted
edges show the implied alignments. Preterminals are displayed with their child terminal in the leaf nodes.

The second factor in (3) is P (w|e), the prob-
ability of the source string (a sequence of source
terminals and variables). We assume that the el-
ementary tree is generated first, and condition the
string probability on l = F (e), its number of fron-
tier nodes (i.e., variables). The string is then cre-
ated by choosing a number of terminals from a ge-
ometric prior with parameter pterm then drawing
each terminal from a uniform distribution over T ′.
Finally each of the l variables are inserted into the
string one at a time using a uniform distribution
over the possible placements. For the example rule
in (1) the generative process corresponds to 1) de-
ciding to create one terminal; 2) with value的; 3)
inserting the first variable after the terminal; and
4) inserting the second variable before the termi-
nal. Again, the probability of the string is simply
the product of the probabilities for each step.

Together both the factors in the base distribu-
tion penalise large trees with many nodes and long
strings with many terminals and variables. P0 de-
creases exponentially with rule size, thus discour-
aging the model from using larger rules; for this
to occur the rules must significantly increase the
likelihood.

4 Training

To train our model we use Gibbs sampling (Geman
and Geman, 1984), a Markov chain Monte Carlo
method (Gilks et al., 1996) in which variables are
repeatedly sampled conditioned on the values of

all other variables in the model.1 After a period of
burn-in, each sampler state (set of variable assign-
ments) is a sample from the posterior distribution
of the model. In our case, we wish to sample from
the posterior over the grammar, P (r|t, s, α).

To simplify matters we associate an alignment
variable, a, with every internal node of the trees
in the training set. This variable specifies the span
of source tokens to which node is aligned. Alter-
natively, the node can be unaligned, which is en-
coded as an empty span. I.e. a ∈ (J × J) ∪ ∅
where J is the set of target word indices. Spans
are written [i, j): inclusive of i and exclusive of
j. Each aligned node (a 6= ∅) forms the root
of a rule as well as being a frontier non-terminal
of an ancestor rule, while unaligned nodes form
part of an ancestor rule.2 The set of valid align-
ments are constrained by the tree in a number of
ways. Child nodes can be aligned only to sub-
spans of their ancestor nodes’ alignments and no
two nodes’ alignments can overlap. Finally, the
root node of the tree must be aligned to the full

1Previous approaches to bilingual grammar induction
have used variational inference to optimise a bound on the
data log-likelihood (Zhang et al., 2008; Blunsom et al.,
2009b). Both these approaches truncated the grammar a pri-
ori in order to permit tractable inference. In contrast our
Gibbs sampler can perform inference over the full space of
grammars. See also Blunsom et al. (2009a) where we present
a Gibbs sampler for inducing SCFGs without truncation.

2The Gibbs sampler is an extension of our sampler for
monolingual tree-substitution grammar (Cohn et al., 2009),
which used a binary substitution variable at each node to en-
code the segmentation of a training tree into elementary trees.
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〈(S (NP NP 1 PP 2 ) VP 3 . 4 ), 2 1 3 4 〉
〈(NP DT 1 NN 2 ), 1 2 〉
〈(DT Every),每〉
〈(NN corner),一个角落〉
〈(PP (IN of) NP 1 ), 1 的〉
〈(NP (NNP Hong) (NNP Kong)),香港〉
〈(VP (VBZ is) VP 1 ), 1 〉
〈(VP VBN 1 PP 2 ),都 1 2 〉
〈(VBN filled),充着〉
〈(PP (IN with) (NP NN 1 )), 1 〉
〈(NN fun),趣〉
〈(. .),。〉

Table 1: Grammar rules specified by the derivation in Fig-
ure 1. Each rule is shown as a tuple comprising a tar-
get elementary tree and a source string. Boxed numbers
show the alignment between string variables and frontier non-
terminals.

span of source words.
Collectively, the training trees and alignment

variables specify the sequence of rules r, which
in turn specify the grammar. Figure 1 shows an
example derivation with alignment variables. The
corresponding STSG rules are shown in Table 1.

4.1 Gibbs operators

The Gibbs sampler works by sampling new val-
ues of the alignment variables, using two differ-
ent Gibbs operators to make the updates. The first
operator, EXPAND, takes a tree node, v, and sam-
ples a new alignment, av, given the alignments of
all other nodes in the same tree and all other trees
in the corpus, denoted a−. The set of valid la-
bels is constrained by the other alignments in the
tree, specifically that of the node’s closest aligned
ancestor, ap, its closest aligned descendants, ad,
and its aligned siblings, as (the aligned descen-
dants of a). The alignment variable may be empty,
av = ∅, while non-empty values must obey the
tree constraints. Specifically the span must be a
subspan of its ancestor, av ⊆ ap, subsume its de-
scendants, av ⊇

⋃
ad, and not overlap its siblings,

j 6∈ ⋃as ,∀j ∈ av. Figure 2 shows an exam-
ple with the range of valid values for corner/NN’s
alignment variable and the corresponding align-
ments that these encode.

Each alignment in the set of valid outcomes de-
fines a set of grammar rules. The non-aligned out-
come results in a single rule rp rooted at ancestor
node p. While the various aligned outcomes re-
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2 3 4 5
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6 6

6 6

6 6

∅

Figure 2: Possible state updates for the (NN corner) node us-
ing the EXPAND operator.

sult in a pair of rules, rp′ and rv, rooted at p and v
respectively. In the example in Figure 2, the top-
right outcome has av = ∅ and

rp = 〈(NP DT 1 (NN corner)), 1 一个角落〉 .
The bottom-right outcome, av = [4, 5), describes
the pair of rules:

rp′ = 〈(NP DT 1 NN 2 ), 1 一 2 角落〉 and

rv = 〈(NN corner),个〉 .
The set of valid options are then scored according
to the probability of their rules as follows:

P (rp|r−) =
n−rp + αP0(rp|cp)

n−cp + α
(4)

P (rp′ , rv|r−) = P (rp′ |r−)P (rv|r−, rp′)

=
n−rp′ + αP0(rp′ |cp)

n−cp + α
× (5)

n−rv + δ(rp′ , rv) + αP0(rv|cv)
n−cv + δ(cp, cv) + α

where cp is the non-terminal at node p (simi-
larly for cv), n− denote counts of trees (e.g., n−rp)
or the sum over all trees expanding a non-
terminal (e.g., n−cv ) in the conditioning context,
r−, and δ(·, ·) is the Kronecker delta function,
which returns 1 when its arguments are identi-
cal and 0 otherwise. For clarity, we have omit-
ted some items from the conditioning context
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in (4) and (5), namely t, s and hyper-parameters
α, pchild, pexpand, pterm. The δ terms in the sec-
ond factor of (5) account for the changes to n−

that would occur after observing rp′ , which forms
part of the conditioning context for rv. If the rules
rp′ and rv are identical, then the count n−rv would
increase by one, and if the rules expand the same
root non-terminal, then n−cv would increase by one.
Equation (4) is evaluated once for the unaligned
outcome, av = ∅, and (5) is evaluated for each
valid alignment. The probabilities are normalised
and an outcome sampled.

The EXPAND operator is sufficient to move
from one derivation to any other valid derivation,
however it may take many steps to do so. These
intermediate steps may require the sampler to pass
through highly improbable regions of the state
space, and consequently such moves are unlikely.
The second operator, SWAP, is designed to help
address this problem by increasing the mobility of
the sampler, allowing it to mix more quickly. The
operator considers pairs of nodes, v, w, in one tree
and attempts to swap their alignment values.3 This
is illustrated in the example in Figure 3. There are
two options being compared: preserving the align-
ments (left) or swapping them (right). This can
change three rules implied by the derivation: that
rooted at the nodes’ common aligned ancestor, p,
and those rooted at v and w. For the example, the
left option implies rules

{rp = 〈(NP DT 1 NN 2 ), 1 2 〉,
rv = 〈(DT Every),每〉,
rw = 〈(NN corner),一个角落〉} ,

and the right option implies rules

{rp = 〈(NP DT 1 NN 2 ), 2 1 〉,
rv = 〈(DT Every),一个角落〉,
rw = 〈(NN corner),每〉} .

We simply evaluate the probability of
both triples of rules under our model,
P (rp, rv, rw|r−) = P (rp|r−)P (rv|r−, rp)
P (rw|r−, rp, rv), where the additional rules in
the conditioning context signify their inclusion
in the counts r− before applying (2) to evaluate
the probability (much the same as in (5) where

3We rarely need to consider the full quadratic space of
node pairs, as the validity constraints mean that the only
candidates for swapping are siblings (i.e., share the closest
aligned ancestor) which do not have any aligned descendants.

每 一 个 角落
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2 3 4 5
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Every/DT corner/NN

2 3 4 5

[3,6)

[2,6)

6 6
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Figure 3: Possible state updates for the pair of nodes
(DT every) and (NN corner) using the SWAP operator.

English← Chinese
Sentences 300k
Words or Segments 11.0M 8.6M
Avg. Sent. Length 36 28
Longest Sent. 80 80

Table 2: NIST Chinese-English corpora statistics
(LDC2003E14, LDC2005E47).

the δ functions encode the changes to the counts).
An outcome is then sampled according to the
normalised probabilities of the preserve vs. swap
rules.

The Gibbs sampler makes use of both operators.
The algorithm visits each (tree, string) pair in the
training set in random order and applies the EX-
PAND operator to every node in the tree. After the
tree has been processed, the SWAP operator is ap-
plied to all candidate pairs of nodes. Visiting all
sentence pairs in this way constitutes a single sam-
ple from the Gibbs sampler.

5 Experiments

We evaluate our non-parametric model of gram-
mar induction on a subset of the NIST Chinese-
English translation evaluation, representing a real-
istic SMT experiment with millions of words and
long sentences. The Chinese-English training data
consists of the FBIS corpus (LDC2003E14) and
the first 100k sentence pairs from the Sinorama
corpus (LDC2005E47). The Chinese text was seg-
mented with a CRF-based Chinese segmenter op-
timized for MT (Chang et al., 2008), and the En-
glish text was parsed using the Stanford parser
(Klein and Manning, 2003).

As a baseline we implemented the heuristic
grammar extraction technique of Galley et al.
(2004) (henceforth GHKM). This method finds
the minimum sized translation rules which are
consistent with a word-aligned sentence pair, as
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described in section 2.1. The rules are then
treated as events in a relative frequency esti-
mate.4 We used Giza++ Model 4 to obtain
word alignments (Och and Ney, 2003), using
the grow-diag-final-and heuristic to sym-
metrise the two directional predictions (Koehn et
al., 2003).

The model was sampled for 300 iterations to
‘burn-in’, where in each iteration we applied both
sampling operators to all nodes (or node pairs)
of all training instances. We initialised the sam-
pler using the GHKM derivation of the training
data (the baseline system). The final state of the
sampler was used to extract the grammar. The
hyperparameters were set by hand to α = 106,
pchild = 0.5, pexpand = 0.5, and pterm = 0.5.5

Overall the model took on average 2,218s per full
iteration of Gibbs sampling and 1 week in total
to train, using a single core of a 2.3Ghz AMD
Opteron machine.

5.1 Grammar Analysis

The resulting grammar had 1.62M rules, al-
most identical to the GHKM grammar which had
1.63M. Despite their similarity in size the gram-
mars were quite different, as illustrated in Fig-
ure 4, which shows histograms over various mea-
sures of rule size for the two grammars. Under
each measure the sampled grammar finds many
more simple rules – shallower with fewer internal
nodes, fewer variables and fewer terminals – than
the GHKM method. This demonstrates that the
prior is effective in shifting mass away from com-
plex rules. To show how the rules themselves dif-
fer, Table 3 lists rules in the sampled grammar that
are not in the GHKM grammar. Note that many of
these rules are highly plausible, describing regular
tree structures and lexicalisation. These rules have
not been specified to the same extent in the GHKM
grammar. For example the first rule incorporates

4Our implementation of the GHKM algorithm attaches
unaligned source words to the highest possible node in the
source tree, rather than allowing all attachment points as in
the original presentation (Galley et al., 2004). Allowing all
attachments made no difference to translation performance,
but did make the grammar considerably larger. We imple-
mented only the minimal rule extraction, i.e., with no rule
composition (Galley et al., 2006). Consequently there is no
derivational ambiguity, obviating the need for expectation
maximisation or similar for rule estimation.

5Note that although α seems large, it still encourages
sparse distributions as the P0 values are typically much
smaller than its reciprocal, 10−6, especially if the rule is
large. αP0 < 1 implies a sparse Dirichlet prior.
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Figure 4: Histograms over rule statistics comparing the
heuristic grammar (GHKM) and learnt grammar (Gibbs).

the TOP symbol, while the GHKM grammar in-
stead relies on the rule 〈(TOP S 1 ), 1 〉 to produce
the same fragment. The model has learnt to dis-
tinguish between sentence-spanning and subsen-
tential S constituents, which typically do not in-
clude final punctuation. The third and ninth (last)
rule are particularly interesting. These rules en-
code reordering effects relating to noun phrases
and subordinate prepositional phrases, in partic-
ular that Chinese prepositional modifiers precede
the nouns they modify. Differences in word or-
der such as these are quite common in Chinese-
English corpora, so it is imperative that they are
modelled accurately.

The rules in the GHKM grammar that do not
appear in the sampled grammar are shown in
Table 4. In contrast to the rules only present in
the sampled grammar, these have much lower
counts, i.e., are less probable. Each of these rules
has been specified further by the Bayesian model.
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〈(TOP (S NP 1 VP 2 . 3 )), 1 2 3 〉
〈(S (VP (TO to) VP 1 )), 1 〉
〈(NP NP 1 (PP (IN of) NP 2 )), 2 1 〉
〈(PP (IN in) NP 1 ), 在 1 〉
〈(NP NP 1 (PP (IN of) NP 2 )), 1 2 〉
〈(NP (DT the) NN 1 ), 的 1 〉
〈(S (VP TO 1 VP 2 )), 1 2 〉
〈(VP (VBZ is) NP 1 ), 是 1 〉
〈(NP (NP (DT the) NN 1 ) (PP (IN of) NP 2 )), 2 1 〉

Table 3: Top ten rules in the sampled grammar that do not
appear in the GHKM grammar. All the above rules are quite
high probability, with counts between 37,118 and 7,275 from
first to last.

〈(PP (IN at) (NP DT 1 (NNS levels))), 1 級〉
〈(NP NP 1 , 2 NP 3 (, ,) CC 4 NP 5 ), 1 2 3 4 5 〉
〈(NP NP 1 , 2 NP 3 , 4 NP 5 (, ,) (CC and) NP 6 ), 1 2 3 4 5 , 6 〉
〈(S S 1 (NP (PRP They)) VP 2 . 3 ), 1 2 3 〉
〈(S PP 1 , 2 NP 3 VP 4 . 5 “ 6 ), 1 2 3 4 6 5 〉
〈(S PP 1 , 2 NP 3 VP 4 . 5 ), 1 中 2 3 4 5 〉
〈(NP (NNP Foreign) (NNP Ministry) NN 1 (NNP Zhu) (NNP Bangzao)),

外交部 1 朱邦造〉
〈(S S 1 S 2 ), 1 2 〉
〈(S S 1 (NP (PRP We)) VP 2 . 3 ), 1 2 3 〉
〈(NP (DT the) (NNS people) POS 1 ), 人民 1 〉

Table 4: Top ten rules in the GHKM grammar that do not ap-
pear in the sampled grammar. These are quite low probability
rules: their counts range from 1,137 to 103.

For example, every instance of the first rule
had the same determiner and target translation,
〈(PP (IN at) (NP (DT all) (NNS levels))),各級〉,
and therefore the model specified the determiner,
resulting in a single rule. The model has correctly
learnt that other translations for (DT all) are
not appropriate in this context (e.g., 都, 所有
or 一切). In a number of the remaining rules
the commas were lexicalised, or S rules were
extended to include the TOP symbol.

To further illustrate the differences between the
grammars, Table 5 shows the rules which include
the possessive particle, 的, and at least one vari-
able. In both grammars there are many fully lex-
icalised rules which translate the token to, e.g., a
determiner or a preposition. The grammars differ
on the complex rules which combine lexicalisa-
tion and frontier non-terminals. The GHKM rules
are all very simple depth-1 SCFG rules, contain-
ing minimal information. In contrast, the sampled
rules are more lexicalised, licensing the insertion
of various English tokens and tree substructure.
Note particularly the second and forth rule which
succinctly describe the reordering of prepositional

Sampled Grammar
〈(NP (DT the) NN 1 ),的 1 〉
〈(NP (NP (DT the) NN 1 ) (PP (IN of) NP 2 )), 2 的 1 〉
〈(NP (DT the) NN 1 ), 1 的〉
〈(NP (NP (DT the) JJ 1 NN 2 ) (PP (IN of) NP 3 )), 3 的 1 2 〉
〈(PP (IN of) NP 1 ), 1 的〉
GHKM Grammar
〈(NP JJ 1 NNS 2 ), 1 的 2 〉
〈(NP JJ 1 NN 2 ), 1 的 2 〉
〈(NP DT 1 JJ 2 NN 3 ), 1 2 的 3 〉
〈(NP PRP$ 1 NN 2 ), 1 的 2 〉
〈(NP NP 1 PP 2 ), 2 的 1 〉

Table 5: Top five rules which include the possessive particle
的 and at least one variable.

phrases with an noun phrase.

5.2 Translation

In order to test the translation performance of
the grammars induced by our model and the
GHKM method6 we report BLEU (Papineni et
al., 2002) scores on sentences of up to twenty
words in length from the MT03 NIST evaluation.
We built a synchronous beam search decoder to
find the maximum scoring derivation, based on
the CYK+ chart parsing algorithm and the cube-
pruning method of Chiang (2007). Parse edges for
all constituents spanning a given chart cell were
cube-pruned together using a beam of width 1000,
and only edges from the top ten constituents in
each cell were retained. No artificial glue-rules or
rule span limits were employed.7 The parameters
of the translation system were trained to maximize
BLEU on the MT02 test set (Och, 2003). Decoding
took roughly 10s per sentence for both grammars,
using a 8-core 2.6Ghz Intel Xeon machine.

Table 6 shows the BLEU scores for the baseline
using the GHKM rule induction algorithm, and
our non-parametric Bayesian grammar induction
method. We see a small increase in generalisation
performance from our model. Our previous anal-

6Our decoder was unable to process unary rules (those
which consume nothing in the source). Monolingual pars-
ing with unary productions is fairly straightforward (Stolcke,
1995), however in the transductive setting these rules can li-
cence infinite insertions in the target string. This is further
complicated by the language model integration. Therefore
we composed each unary rule instance with its descendant
rule(s) to create a non-unary rule.

7Our decoder lacks certain features shown to be beneficial
to synchronous grammar decoding, in particular rule binari-
sation (Zhang et al., 2006). As such the reported results for
MT03 lag the state-of-the-art: the Moses phrase-based de-
coder (Koehn et al., 2007) achieves 26.8. We believe that im-
provements from a better decoder implementation would be
orthogonal to the improvements presented here (and would
allow us to relax the length restriction on the test set).
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Model BLEU score
GHKM 26.0

Our model 26.6

Table 6: Translation results on the NIST test set MT03 for
sentences of length ≤ 20.

ysis (Section 5.1) of the grammars produced by
the two approaches showed our method produced
better lexicalised rules than those induced by the
GHKM algorithm. Galley et al. (2006) noted that
the GHKM algorithm often over generalised and
proposed combining minimal rules to form com-
posed rules as a solution. Although composing
rules was effective at improving BLEU scores, the
result was a massive expansion in the size of the
grammar. By learning the appropriate level of lex-
icalisation we believe that our inference algorithm
is having a similar effect as composing rules (Gal-
ley et al., 2006), however the resulting grammar
remains compact, a significant advantage of our
approach.

6 Conclusion

In this paper we have presented a method for in-
ducing a tree-to-string grammar which removes
the need for various heuristics and constraints
from models of word alignment. Instead the model
is capable of directly inferring a grammar in one
step, using the syntactic fragments that it has learnt
to better align the source and target data. Using a
prior which favours sparse distributions and sim-
pler rules, we demonstrate that the model finds
a more parsimonious grammar than the heuristic
technique. Moreover, this grammar results in im-
proved translations on a standard evaluation set.

We expect that various extensions to the model
would improve its performance. One avenue is to
develop a more sophisticated prior over rules, e.g.,
one that recognises common types of rule via the
shape of the tree and ordering pattern in the tar-
get. A second avenue is to develop better means
of inference under the grammar, in order to ensure
faster mixing and a means to escape from local
optima. Finally, we wish to develop a method for
decoding under the full Bayesian model, instead of
the current beam search. With these extensions we
expect that our model of grammar induction has
the potential to greatly improve translation output.
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Abstract 

Binarization of Synchronous Context Free 

Grammars (SCFG) is essential for achieving 

polynomial time complexity of decoding for 

SCFG parsing based machine translation sys-

tems. In this paper, we first investigate the 

excess edge competition issue caused by a left-

heavy binary SCFG derived with the method 

of Zhang et al. (2006). Then we propose a new 

binarization method to mitigate the problem 

by exploring other alternative equivalent bi-

nary SCFGs. We present an algorithm that ite-

ratively improves the resulting binary SCFG, 

and empirically show that our method can im-

prove a string-to-tree statistical machine trans-

lations system based on the synchronous bina-

rization method in Zhang et al. (2006) on the 

NIST machine translation evaluation tasks. 

1 Introduction 

Recently Statistical Machine Translation (SMT) 

systems based on Synchronous Context Free 

Grammar (SCFG) have been extensively investi-

gated (Chiang, 2005; Galley et al., 2004; Galley 

et al., 2006) and have achieved state-of-the-art 

performance. In these systems, machine transla-

tion decoding is cast as a synchronous parsing 

task. Because general SCFG parsing is an NP-

hard problem (Satta and Peserico, 2005), practic-

al SMT decoders based on SCFG parsing re-

quires an equivalent binary SCFG that is directly 

learned from training data to achieve polynomial 

time complexity using the CKY algorithm (Ka-

sami, 1965; Younger, 1967) borrowed from CFG 

parsing techniques. Zhang et al. (2006) proposed 

synchronous binarization, a principled method to 

binarize an SCFG in such a way that both the 

source-side and target-side virtual non-terminals 

have contiguous spans. This property of syn-

chronous binarization guarantees the polynomial 

time complexity of SCFG parsers even when an 

n-gram language model is integrated, which has 

been proved to be one of the keys to the success 

of a string-to-tree syntax-based SMT system. 

However, as shown by Chiang (2007), SCFG-

based decoding with an integrated n-gram lan-

guage model still has a time complexity of  

𝛩(𝑚3 𝑇 4(𝑛−1)), where m is the source sentence 

length, and  𝑇  is the vocabulary size of the lan-

guage model. Although it is not exponential in 

theory, the actual complexity can still be very 

high in practice. Here is an example extracted 

from real data. Given the following SCFG rule: 

     VP   →   VB  NP  会  JJR  , 

               VB  NP  will be  JJR 

we can obtain a set of equivalent binary rules 

using the synchronous binarization method 

(Zhang et al., 2006)  as follows: 

        VP → V1  JJR ,   V1  JJR 

            V1 → VB  V2 ,   VB  V2 

        V2 → NP 会 ,   NP  will be 

This binarization is shown with the solid lines as 

binarization (a) in Figure 1. We can see that bi-

narization (a) requires that “NP 会” should be 

reduced at first. Data analysis shows that “NP 会” 

is a frequent pattern in the training corpus, and 

there are 874 binary rules of which the source 

language sides are “NP 会”. Consequently these 

binary rules generate a large number of compet-

ing edges in the chart when “NP 会” is matched 

in decoding. To reduce the number of edges pro-
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posed in decoding, hypothesis re-combination is 

used to combine the equivalent edges in terms of 

dynamic programming. Generally, two edges can 

be re-combined if they satisfy the following two 

constraints:  1) the LHS (left-hand side) non-

terminals are identical and the sub-alignments 

are the same (Zhang et al., 2006); and 2) the 

boundary words
1
 on both sides of the partial 

translations are equal between the two edges 

(Chiang, 2007). However, as shown in Figure 2, 

the decoder still generates 801 edges after the 

hypothesis re-combination. As a result, aggres-

sive pruning with beam search has to be em-

ployed to reduce the search space to make the 

decoding practical. Usually in beam search only 

a very small number of edges are kept in the 

beam of each chart cell (e.g. less than 100). 

These edges have to compete with each other to 

survive from the pruning. Obviously, more com-

peting edges proposed during decoding can lead 

to a higher risk of making search errors.  

 

VB NP 会 JJR

(a)(b)

V2

V1

V2'

V1'

VP

VB NP will be JJR
 

Figure 1: Two different binarizations (a) and 

(b) of the same SCFG rule distinguished by the 

solid lines and dashed lines 

 

我们   希望   情况   会   更好 。
(We hope the situation will be better .)

我们   希望   NP   会   JJR   。

decoding

match 874 rules match 62 rules

competing edges: 801 competing edges: 57

Figure 2: Edge competitions caused by different 

binarizations 

 

The edge competition problem for SMT de-

coding is not addressed in previous work (Zhang 

et al., 2006; Huang, 2007) in which each SCFG 

rule is binarized in a fixed way. Actually the re-

sults of synchronous binarization may not be the 

only solution. As illustrated in Figure 1, the rule 

                                                 
1
 For the case of n-gram language model integration, 

2 × (𝑛 − 1) boundary words needs to be examined. 

can also be binarized as binarization (b) which is 

shown with the dashed lines.  

We think that this problem can be alleviated 

by choosing better binarizations for SMT decod-

ers, since there is generally more than one bina-

rization for a SCFG rule. In our investigation, 

about 96% rules that need to be binarized have 

more than one binarization under the contiguous 

constraint. As shown in binarization (b) (Figure 

1), “会 JJR” is reduced first. In the decoder, the 

number of binary rules with the source-side “会 

JJR” is 62, and the corresponding number of 

edges is 57 (Figure 2). The two numbers are both 

much smaller than those of “NP 会” in (a). This 

is an informative clue that the binarization (b) 

could be better than the binarization (a) based on 

the following: the probability of pruning the rule 

in (a) is higher than that in (b) as the rule in (b) 

has fewer competitors and has more chances to 

survive during pruning. 

In this paper we propose a novel binarization 

method, aiming to find better binarizations to 

improve an SCFG-based machine translation 

system. We formulate the binarization optimiza-

tion as a cost reduction process, where the cost is 

defined as the number of rules sharing a common 

source-side derivation in an SCFG. We present 

an algorithm, iterative cost reduction algorithm, 

to obtain better binarization for the SCFG learnt 

automatically from the training corpus. It can 

work with an efficient CKY-style binarizer to 

search for the lowest-cost binarization. We apply 

our method into a state-of-the-art string-to-tree 

SMT system. The experimental results show that 

our method outperforms the synchronous binari-

zation method (Zhang et al., 2006) with over 0.8 

BLEU scores on both NIST 2005 and NIST 2008 

Chinese-to-English evaluation data sets. 

2 Related Work 

The problem of binarization originates from the 

parsing problem in which several binarization 

methods are studied such as left/right binariza-

tion (Charniak et al., 1998; Tsuruoka and Tsujii, 

2004) and head binarization (Charniak et al., 

2006). Generally, the pruning issue in SMT de-

coding is unnecessary for the parsing problem, 

and the accuracy of parsing does not rely on the 

binarization method heavily. Thus, many efforts 

on the binarization in parsing are made for the 

efficiency improvement instead of the accuracy 

improvement (Song et al., 2008). 

Binarization is also an important topic in the 

research of syntax-based SMT. A synchronous 
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binarization method is proposed in (Zhang et al., 

2006) whose basic idea is to build a left-heavy 

binary synchronous tree (Shapiro and Stephens, 

1991) with a left-to-right shift-reduce algorithm. 

Target-side binarization is another binarization 

method which is proposed by Huang (2007). It 

works in a left-to-right way on the target lan-

guage side. Although this method is compara-

tively easy to be implemented, it just achieves 

the same performance as the synchronous binari-

zation method (Zhang et al., 2006) for syntax-

based SMT systems. In addition, it cannot be 

easily integrated into the decoding of some syn-

tax-based models (Galley et al., 2004; Marcu et 

al., 2006), because it does not guarantee conti-

guous spans on the source language side. 

3 Synchronous Binarization Optimiza-

tion by Cost Reduction 

As discussed in Section 1, binarizing an SCFG in 

a fixed (left-heavy) way (Zhang et al., 2006) may 

lead to a large number of competing edges and 

consequently high risk of making search errors. 

Fortunately, in most cases a binarizable SCFG 

can be binarized in different ways, which pro-

vides us with an opportunity to find a better solu-

tion than the default left-heavy binarization. An 

ideal solution to this problem could be that we 

define an exact edge competition estimation 

function and choose the best binary SCFG based 

on it. However, even for the rules with a com-

mon source-side, generally it is difficult to esti-

mate the exact number of competing edges in the 

dynamic SCFG parsing process for machine 

translation, because in order to integrate an n-

gram language model, the actual number of 

edges not only depends on SCFG rules, but also 

depends on language model states which are spe-

cific to input sentences. Instead, we have to em-

ploy certain kinds of approximation of it. First 

we will introduce some notations frequently used 

in later discussions. 

3.1 Notations 

We use 𝐺 = {𝑅𝑖 ∶  𝑋𝑖 → 𝛼𝑖 , 𝛽𝑖}  to denote an 

SCFG, where 𝑅𝑖  is the 𝑖𝑡ℎ  rule in 𝐺 ; 𝑋𝑖  is the 

LHS (left hand side) non-terminal of 𝑅𝑖 ; 𝛼𝑖  and 

𝛽𝑖  are the source-side and target-side RHS (right 

hand side) derivations of 𝑅𝑖  respectively. We use 

ℬ 𝐺  to denote the set of equivalent binary 

SCFG of 𝐺. The goal of SCFG binarization is to 

find an appropriate binary SCFG 𝐺′ ∈ ℬ 𝐺 . For 

𝑅𝑖 , ℬ 𝑅𝑖 = {𝑣𝑖𝑗 } ⊆ 𝐺′ ∈ ℬ 𝐺  is the set of 

equivalent binary rules based on 𝑅𝑖 , where 𝑣𝑖𝑗  is 

the 𝑗𝑡ℎ  binary rule in ℬ 𝑅𝑖 . Figure 3 illustrates 

the meanings of these notations with a sample 

grammar. 

 

VP →  VB NP 会 JJR  ,   VB NP will be JJR

S   →  NP 会 VP  ,           NP will VP

R1 :

R2 :

G

VP → V12 JJR ,    V12 JJR

 (R1)

G’ 

V12 → VB V13 ,     VB V13

V13 → NP 会 ,       NP  will be

v11 :

v12 :

v13 :

S   → V22 VP ,      V22 VP

V22 → NP 会 ,      NP will

v21 :

v22 :
 (R2)

binarization

...v11 v12 
v22 

S(“VB NP 会 JJR ”, G’) S(“VB NP 会”, G’) S(“NP 会”, G’)

L(v12)=”VB NP 会”

v13 

rule bucket

 
 

Figure 3: Binarization on a sample grammar 

 

The function 𝐿(∙) is defined to map a result-

ing binary rule 𝑣𝑖𝑗 𝜖𝐺′ to the sub-sequence in 𝛼𝑖  

derived from 𝑣𝑖𝑗 . For example, as shown in Fig-

ure 3, the binary rule 𝑣13 covers the source sub-

sequence “NP 会” in 𝑅1 , so 𝐿 𝑣13 = "NP 会". 

Similarly, 𝐿 𝑣12 = "VB NP 会".  

The function 𝐿(∙) is used to group the rules in 

𝐺′ with a common right-hand side derivation for 

source language. Given a binary rule 𝑣 ∈ 𝐺′, we 

can put it into a bucket in which all the binary 

rules have the same source sub-sequence 𝐿(𝑣). 

For example (Figure 3), as 𝐿 𝑣12 = "VB NP 会", 

𝑣12 is put into the bucket indexed by “VB NP 会”. 

And 𝑣13  and 𝑣22  are put into the same bucket, 

since they have the same source sub-sequence 

“NP 会”. Obviously, 𝐺′ can be divided into a set 

of mutual exclusive rule buckets by 𝐿(∙). 

In this paper, we use 𝑆(𝐿(𝑣), 𝐺′) to denote the 

bucket for the binary rules having the source sub-

sequence 𝐿(𝑣). For example, 𝑆("𝑁𝑃 会", 𝐺′) de-

notes the bucket for the binary rules having the 

source-side “NP 会”. For simplicity, we also use 

𝑆(𝑣, 𝐺′) to denote 𝑆 𝐿 𝑣 , 𝐺′ .  

3.2 Cost Reduction for SCFG Binarization 

Given a binary SCFG 𝐺′, it can be easily noticed 

that if a rule 𝑣 in  the bucket 𝑆(𝑣, 𝐺′) can be ap-

plied to generate one or more new edges in 

SCFG parsing, any other rules in this bucket can 

also be applied because all of them can be re-

duced from the same underlying derivation 𝐿(𝑣). 
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Each application of other rules in the bucket 

𝑆(𝑣, 𝐺′) can generate competing edges with the 

one based on 𝑣 . Intuitively, the size of bucket 

can be used to approximately indicate the actual 

number of competing edges on average, and re-

ducing the size of bucket could help reduce the 

edges generated in a parsing chart by applying 

the rules in the bucket. Therefore, if we can find 

a method to greedily reduce the size of each 

bucket 𝑆(𝑣, 𝐺′), we can reduce the overall ex-

pected edge competitions when parsing with 𝐺′. 
However, it can be easily proved that the 

numbers of binary rules in any 𝐺′ ∈ ℬ 𝐺  are 

same, which implies that we cannot reduce the 

sizes of all buckets at the same time – removing 

a rule from one bucket means adding it to anoth-

er. Allowing for this fact, the excess edge com-

petition example shown in Section 1 is essential-

ly caused by the uneven distribution of rules 

among different buckets 𝑆 ∙ . Accordingly, our 

optimization objective should be a more even 

distribution of rules among buckets. 

In the following, we formally define a metric 

to model the evenness of rule distribution over 

buckets. Given a binary SCFG 𝐺′ and a binary 

SCFG rule 𝑣 ∈ 𝐺′ , 𝑄(𝑣) is defined as the cost 

function that maps 𝑣  to the size of the bucket  

𝑆 𝑣, 𝐺′ : 

𝑄 𝑣 =  𝑆 𝑣, 𝐺′   (1) 

Obviously, all the binary rules in 𝑆 𝑣, 𝐺′  share a 

common cost value  𝑆 𝑣, 𝐺′  . For example (Fig-

ure 3), both 𝑣13  and 𝑣22  are put into the same 

bucket 𝑆 "𝑁𝑃 会", 𝐺′ , so 𝑄 𝑣13 = 𝑄 𝑣22 = 2. 

The cost of the SCFG 𝐺′  is computed by 

summing up all the costs of SCFG rules in it: 

𝑄 𝐺′ =  𝑄(𝑣)
𝑣∈𝐺 ′

 (2) 

Back to our task, we are to find an equivalent 

binary SCFG 𝐺′  of 𝐺  with the lowest cost in 

terms of the cost function 𝑄(. ) given in Equation 

(2): 

𝐺∗ = argmin𝐺′∈ℬ 𝐺 𝑄(𝐺′) (3) 

Next we will show how 𝐺∗  is related to the 

evenness of rule distribution among different 

buckets. Let 𝑆 𝐺′ = {𝑆1, … , 𝑆𝑀}  be the set of 

rule buckets containing rules in 𝐺′, then the value 

of 𝑄(𝐺′) can also be written as: 

𝑄 𝐺′ =   𝑆𝑖 
2

1≤𝑖≤𝑀
 (4) 

Assume 𝑌𝑖 =  𝑆𝑖  is an empirical distribution of a 

discrete random variable 𝑌, then the square devi-

ation of the empirical distribution is: 

𝜎2 =
1

𝑀
 ( 𝑆𝑖 − 𝑌 )2

𝑖
 (5) 

Noticing that Σ 𝑆𝑖 =  𝐺 ′   and 𝑌 =  𝐺′ /𝑀, Equ-

ation (5) can be written as: 

𝜎2 =
1

𝑀
 𝑄 𝐺 ′ −

 𝐺′ 2

𝑀
  (6) 

Since both 𝑀 and |𝐺′| are constants, minimizing 

the cost function 𝑄(𝐺′) is equivalent to minimiz-

ing the square deviation of the distribution of 

rules among different buckets. A binary SCFG 

with the lower cost indicates the rules are more 

evenly distributed in terms of derivation patterns 

on the source language side. 

3.3 Static Cost Reduction 

Before moving on discussing the algorithm 

which can optimize Equation (3) based on rule 

costs specified in Equation (1), we first present 

an algorithm to find the optimal solution to Eq-

uation (3) if we have known the cost setting of 

𝐺∗ and can use the costs as static values during 

binarization. Using this simplification, the prob-

lem of finding the binary SCFG  𝐺∗ with minim-

al costs can be reduced to find the optimal bina-

rization ℬ∗(𝑅𝑖) for each rule 𝑅𝑖  in 𝐺. 

To obtain ℬ∗(𝑅𝑖) , we can employ a CKY-

style binarization algorithm which builds a com-

pact binarization forest for the rule 𝑅𝑖  in bottom-

up direction. The algorithm combines two adja-

cent spans of 𝛼𝑖  each time, in which two spans 

can be combined if and only if they observe the 

BTG constraints− their translations are either 

sequentially or reversely adjacent in 𝛽𝑖 , the tar-

get-side derivation of 𝑅𝑖 . The key idea of this 

algorithm is that we only use the binarization tree 

with the lowest cost of each span for later com-

bination, which can avoid enumerating all the 

possible binarization trees of 𝑅𝑖  using dynamic 

programming. 

Let 𝛼𝑝
𝑞

 be the sub-sequence spanning from p 

to q on the source-side, 𝑣[𝑝, 𝑞] be optimal bina-

rization tree spanning 𝛼𝑝
𝑞
, 𝑄𝑣[𝑝, 𝑞] be the cost of 

𝑣[𝑝, 𝑞], and 𝑄𝑟 [𝑝, 𝑞] be the cost of any binary 

rules whose source-side is 𝛼𝑝
𝑞

, then the cost of 

optimal binarization tree spanning 𝛼𝑝
𝑞

 can be 

computed as: 

𝑄𝑣[𝑝, 𝑞] = min
𝑝≤𝑘≤𝑞−1

(𝑄𝑟 [𝑝, 𝑞] + 𝑄𝑣[𝑝, 𝑘] + 𝑄𝑣[𝑘 + 1, 𝑞]) 
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The algorithm is shown as follows: 

CYK-based binarization algorithm 
Input: a SCFG rule 𝑅𝑖  and the cost function 𝑄(. ).  

Output: the lowest cost binarization on 𝑅𝑖  
1:  Function CKYBINARIZATION(𝑅𝑖 , 𝑄) 

2:      for l = 2 to n do  ⊳  Length of span 

3:        for p = 1 to n – l + 1 do ⊳  Start of span 

4:               q = p + l  ⊳  End of span 

5:             for k = p to q – 1 do ⊳  Partition of span  

6:               if not CONSECUTIVE(𝑇 𝑝, 𝑘 , 𝑇 𝑘 + 1, 𝑞 )  

                         then next loop 

7:                   𝑄𝑟 [𝑝, 𝑞] ← 𝑄(𝛼𝑝
𝑞

)    

8:                   curCost ← 𝑄𝑟 𝑝, 𝑞 +𝑄𝑣 𝑝, 𝑘 +𝑄𝑣[𝑘 + 1, 𝑞] 

9:                 if curCost  <  minCost then 

10:                   minCost ← curCost 

11:                    𝑣[𝑝, 𝑞] ← COMBINE(𝑣[𝑝, 𝑘], 𝑣[𝑘 + 1, 𝑞]) 

12:             𝑄𝑣 𝑝, 𝑞  ← minCost 

13:    return 𝑣[1, 𝑛]     

14: Function CONSECUTIVE(( a, b), (c, d)) 

15:    return (b = c – 1) or (d = a – 1)   

where n is the number of tokens (consecutive 

terminals are viewed as a single token) on the 

source-side of 𝑅𝑖 . COMBINE(𝑣[𝑝, 𝑘], 𝑣[𝑘 + 1, 𝑞]) 
combines the two binary sub-trees into a larger 

sub-tree over 𝛼𝑝
𝑞
. 𝑇 𝑝, 𝑞 = (𝑎, 𝑏) means that the 

non-terminals covering 𝛼𝑝
𝑞

 have the consecutive 

indices ranging from a to b on the target-side. If 

the target non-terminal indices are not consecu-

tive, we set 𝑇 𝑝, 𝑞 = (−1,−1). 𝑄 𝛼𝑝
𝑞
 = 𝑄(𝑣′) 

where 𝑣′ is any rule in the bucket 𝑆 𝛼𝑝
𝑞

, 𝐺′ . 

In the algorithm, lines 9-11 implement dynam-

ic programming, and the function CONSECUTIVE 

checks whether the two spans can be combined. 

VB NP 会

V[1,2] V[3,4]

VP

JJR

V[2,3]

V[1,3] V[2,4]

c=6619 c=874 c=62

c=884 c=876 c=64c=6629

c=885

c=6682
c=65

VB NP will be JJR

lowest cost

c=0 c=0 c=0 c=0

 
Figure 4: Binarization forest for an SCFG rule 

 
𝐿(𝑣) 𝑄(𝑣) 𝐿(𝑣) 𝑄(𝑣) 

 VB NP 6619 VB NP 会 10 

 NP 会 874 NP 会 JJR 2 

 会 JJR 62 VB NP 会 JJR 1 

Table 1: Sub-sequences and corresponding costs 

Figure 4 shows an example of the compact 

forest the algorithm builds, where the solid lines 

indicate the optimal binarization of the rule, 

while other alternatives pruned by dynamic pro-

gramming are shown in dashed lines. The costs 

for binarization trees are computed based on the 

cost table given in Table 1. 

The time complexity of the CKY-based bina-

rization algorithm is Θ(n
3
), which is higher than 

that of the linear binarization such as the syn-

chronous binarization (Zhang et al., 2006). But it 

is still efficient enough in practice, as there are 

generally only a few tokens (n < 5) on the 

source-sides of SCFG rules. In our experiments, 

the linear binarization method is just 2 times 

faster than the CKY-based binarization. 

3.4 Iterative Cost Reduction 

However, 𝑄(∙) cannot be easily predetermined in 

a static way as is assumed in Section 3.3 because 

it depends on 𝐺′ and should be updated whenever 

a rule in 𝐺 is binarized differently. In our work 

this problem is solved using the iterative cost 

reduction algorithm, in which the update of 𝐺′ 
and the cost function 𝑄(∙) are coupled together. 

Iterative cost reduction algorithm 
Input: An SCFG 𝐺 

Output: An equivalent binary SCFG 𝐺′ of 𝐺 

1: Function ITERATIVECOSTREDUCTION(𝐺) 

2:   𝐺′ ← 𝐺0 

3:   for each 𝑣 ∈ 𝐺0do 

4:        𝑄(𝑣) =  𝑆 𝑣, 𝐺0   
5:   while 𝑄(𝐺′) does not converge do 

6:        for each 𝑅𝑖 ∈ 𝐺 do 

7:            𝐺[−𝑅𝑖]
 ← 𝐺′ −  ℬ(𝑅𝑖) 

8:            for each 𝑣 ∈ ℬ(𝑅𝑖) do 

9:                for each 𝑣′ ∈ 𝑆 𝑣, 𝐺′  do 

10:                  𝑄 𝑣′ ← 𝑄 𝑣′ − 1 

11:          ℬ(𝑅𝑖) ← CKYBINARIZATION(𝑅𝑖 , 𝑄) 

12:          𝐺′ ← 𝐺[−𝑅𝑖]
∪  ℬ(𝑅𝑖) 

13:          for each 𝑣 ∈ ℬ(𝑅𝑖) do 

14:              for each 𝑣′ ∈ 𝑆 𝑣, 𝐺′  do 

15:                  𝑄 𝑣′ ← 𝑄 𝑣′ + 1 

16: return 𝐺′ 

In the iterative cost reduction algorithm, we 

first obtain an initial binary SCFG 𝐺0 using the 

synchronous binarization method proposed in 

(Zhang et al., 2006). Then 𝐺0 is assigned to an 

iterative variable 𝐺′. The cost of each binary rule 

in 𝐺0 is computed based on 𝐺0 according to Equ-

ation (1) (lines 3-4 in the algorithm). 

After initialization, 𝐺′ is updated by iteratively 

finding better binarization for each rule in 𝐺. The 

basic idea is: for each 𝑅𝑖  in 𝐺 , we remove the 

current binarization result for 𝑅𝑖  from 𝐺′ (line 7), 

while the cost function 𝑄(∙)  is updated accor-

dingly since the removal of binary rule 𝑣 ∈ 

ℬ(𝑅𝑖) results in the reduction of the size of the 

corresponding bucket 𝑆 𝑣, 𝐺′ . Lines 8-10 im-
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plement the cost reduction of each binary rule in 

the bucket 𝑆 𝑣, 𝐺 ′ . 
Next, we find the lowest cost binarization for 

𝑅𝑖  based on the updated cost function 𝑄(∙) with 

the CKY-based binarization algorithm presented 

in Section 3.3 (line 11).  

At last, the new binarization for 𝑅𝑖  is added 

back to 𝐺′ and 𝑄(∙) is re-updated to synchronize 

with this change (lines 12-15). Figure 5 illu-

strates the differences between the static cost 

reduction and the iterative cost reduction. 

Ri

Ri-1

Ri+1

...

...

the ith 

rule

G

binarizer

Q(∙)

binarize

(a) static cost reduction

Ri

Ri-1

Ri+1

...

...

the ith 

rule

G

binarizer

Q(∙)

G0

(b) iterative cost reduction

update

static

dynamic

binarize

 
Figure 5: Comparison between the static cost 

reduction and the iterative cost reduction 

 

The algorithm stops when 𝑄(𝐺′) does not de-

crease any more. Next we will show that 𝑄(𝐺′)  

is guaranteed not to increase in the iterative 

process. 

For any ℬ(𝑅𝑖) on 𝑅𝑖 , we have 

               𝑄  𝐺[−𝑅𝑖] ∪  ℬ 𝑅𝑖   

        = 2 × 𝑄 ℬ 𝑅𝑖  +  ℬ 𝑅𝑖  + 𝑄 𝐺[−𝑅𝑖]  

As both  ℬ 𝑅𝑖   and 𝑄 𝐺[−𝑅𝑖]  are constants with 

respect to 𝑄(ℬ 𝑅𝑖 ), 𝑄  𝐺[−𝑅𝑖] ∪  ℬ 𝑅𝑖   is a li-

near function of 𝑄(ℬ 𝑅𝑖 ), and the correspond-

ing slope is positive. Thus 𝑄  𝐺[−𝑅𝑖] ∪  ℬ 𝑅𝑖   

reaches the lowest value only when 𝑄(ℬ 𝑅𝑖 ) 

reaches the lowest value. So 𝑄  𝐺[−𝑅𝑖] ∪  ℬ 𝑅𝑖   

achieves the lowest cost when we replace the 

current binarization with the new binarization  

ℬ∗(𝑅𝑖)  (line 12). Therefore 𝑄  𝐺[−𝑅𝑖]
∪  ℬ 𝑅𝑖   

does not increase in the processing on each 𝑅𝑖  
(lines 7-15), and 𝑄(𝐺′) will finally converge to a 

local minimum when the algorithm stops. 

4 Experiments 

The experiments are conducted on Chinese-to-

English translation in a state-of-the-art string-to-

tree SMT system. All the results are reported in 

terms of case-insensitive BLEU4(%). 

4.1 Experimental Setup 

Our bilingual training corpus consists of about 

350K bilingual sentences (9M Chinese words + 

10M English words)
2
. Giza++ is employed to 

perform word alignment on the bilingual sen-

tences. The parse trees on the English side are 

generated using the Berkeley Parser
3
. A 5-gram 

language model is trained on the English part of 

LDC bilingual training data and the Xinhua part 

of Gigaword corpus. Our development data set 

comes from NIST2003 evaluation data in which 

the sentences of more than 20 words are ex-

cluded to speed up the Minimum Error Rate 

Training (MERT). The test data sets are the 

NIST evaluation sets of 2005 and 2008. 

Our string-to-tree SMT system is built based 

on the work of (Galley et al., 2006; Marcu et al., 

2006), where both the minimal GHKM and 

SPMT rules are extracted from the training cor-

pus, and the composed rules are generated by 

combining two or three minimal GHKM and 

SPMT rules. Before the rule extraction, we also 

binarize the parse trees on the English side using 

Wang et al. (2007) „s method to increase the 

coverage of GHKM and SPMT rules. There are 

totally 4.26M rules after the low frequency rules 

are filtered out. The pruning strategy is similar to 

the cube pruning described in (Chiang, 2007). To 

achieve acceptable translation speed, the beam 

size is set to 50 by default. The baseline system 

is based on the synchronous binarization (Zhang 

et al., 2006).  

4.2 Binarization Schemes 

Besides the baseline (Zhang et al., 2006) and 

iterative cost reduction binarization methods, we 

also perform right-heavy and random synchron-

ous binarizations for comparison. In this paper, 

the random synchronous binarization is obtained 

by: 1) performing the CKY binarization to build 

the binarization forest for an SCFG rule; then 2) 

performing a top-down traversal of the forest. In 

the traversal, we randomly pick a feasible binari-

zation for each span, and then go on the traversal 

in the two branches of the picked binarization. 

Table 2 shows the costs of resulting binary 

SCFGs generated using different binarization 

methods. The costs of the baseline (left-heavy) 

                                                 
2
 LDC2003E14, LDC2003E07, LDC2005T06 and 

LDC2005T10 
3 http://code.google.com/p/berkeleyparser/ 
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and right-heavy binarization are similar, while 

the cost of the random synchronous binarization 

is lower than that of the baseline method
4
. As 

expected, the iterative cost reduction method ob-

tains the lowest cost, which is much lower than 

that of the other three methods.  

 

Method cost of binary SCFG 𝐺′ 

Baseline 4,897M 

Right-heavy 5,182M 

Random 3,479M 

Iterative cost reduction    185M 

Table 2: Costs of the binary SCFGs generated 

using different binarization methods. 

4.3 Evaluation of Translations 

Table 3 shows the performance of SMT systems 

based on different binarization methods. The 

iterative cost reduction binarization method 

achieves the best performance on the test sets as 

well as the development set. Compared with the 

baseline method, it obtains gains of 0.82 and 

0.84 BLEU scores on NIST05 and NIST08 test 

sets respectively. Using the statistical signific-

ance test described by Koehn (2004), the im-

provements are significant  (p < 0.05). 

 
Method Dev NIST05 NIST08 

Baseline 40.02 37.90 27.53  

Right-heavy 40.05 37.87 27.40 

Random 40.10 37.99 27.58 

Iterative cost 

reduction 

40.97* 38.72* 28.37* 

Table 3: Performance (BLUE4(%)) of different 

binarization methods. * = significantly better than 

baseline (p < 0.05).  

 

The baseline method and the right-heavy bina-

rization method achieve similar performance, 

while the random synchronous binarization me-

thod performs slightly better than the baseline 

method, which agrees with the fact of the cost 

reduction shown in Table 2. A possible reason 

that the random synchronous binarization me-

thod can outperform the baseline method lies in 

that compared with binarizing SCFG in a fixed 

way, the random synchronous binarization tends 

to give a more even distribution of rules among 

buckets, which alleviates the problem of edge 

competition. However, since the high-frequency 

source sub-sequences still have high probabilities 

to be generated in the binarization and lead to the 

                                                 
4
 We perform random synchronous binarization for 5 

times and report the average cost. 

excess competing edges, it just achieves a very 

small improvement. 

4.4 Translation Accuracy vs. Cost of Binary 

SCFG 

We also study the impacts of cost reduction on 

translation accuracy over iterations in iterative 

cost reduction. Figure 6 and Figure 7 show the 

results on NIST05 and NIST08 test sets. We can 

see that the cost of the resulting binary SCFG 

drops greatly as the iteration count increases, 

especially in the first iteration, and the BLEU 

scores increase as the cost decreases. 

 
Figure 6: Cost of binary SCFG vs. BLEU4 (NIST05) 

 

 
Figure 7: Cost of binary SCFG vs. BLEU4 (NIST08) 

4.5 Impact of Beam Size 

In this section, we study the impacts of beam 

sizes on translation accuracy as well as compet-

ing edges. To explicitly investigate the issue un-

der large beam sizes, we use a subset of NIST05 

and NIST08 test sets for test, which has 50 Chi-

nese sentences of no longer than 10 words. 

Figure 8 shows that the iterative cost reduction 

method is consistently better than the baseline 

method under various beam settings. Besides the 

experiment on the test set of short sentences, we 

also conduct the experiment on NIST05 test set. 

To achieve acceptable decoding speed, we range 

the beam size from 10 to 70. As shown in Figure 

9, the iterative cost reduction method also out-

performs the baseline method under various 

beam settings on the large test set. 

Though enlarging beam size can reduce the 

search errors and improve the system perfor-

mance, the decoding speed of string-to-tree SMT 

drops dramatically when we enlarge the beam 

size. The problem is more serious when long 
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sentences are translated. For example, when the 

beam size is set to a larger number (e.g. 200), our 

decoder takes nearly one hour to translate a sen-

tence whose length is about 20 on a 3GHz CPU. 

Decoding on the entire NIST05 and NIST08 test 

sets with large beam sizes is impractical. 

 
Figure 8: BLEU4 against beam size (small test set) 

 

 
Figure 9: BLEU4 against beam size (NIST05) 

 

Figure 10 compares the baseline method and 

the iterative cost reduction method in terms of 

translation accuracy against the number of edges 

proposed during decoding. Actually, the number 

of edges proposed during decoding can be re-

garded as a measure of the size of search space. 

We can see that the iterative cost reduction me-

thod outperforms the baseline method under var-

ious search effort.  

 
Figure 10: BLEU4 against competing edges  

 

The experimental results of this section show 

that compared with the baseline method, the iter-

ative cost reduction method can lead to much 

fewer edges (about 25% reduction) as well as the 

higher BLEU scores under various beam settings. 

4.6 Edge Competition vs. Cost of Binary 

SCFG 

In this section, we study the impacts of cost re-

duction on the edge competition in the chart cells 

of our CKY-based decoder. Two metrics are 

used to evaluate the degree of edge competition. 

They are the variance and the mean of the num-

ber of competing edges in the chart cells, where 

high variance means that in some chart cells the 

rules have high risk to be pruned due to the large 

number of competing edges. The same situation 

holds for the mean as well. Both of the two me-

trics are calculated on NIST05 test set, varying 

with the span length of chart cell. 

Figure 11 shows the cost of resulting binary 

SCFG and the variance of competing edges 

against iteration count in iterative cost reduction. 

We can see that both the cost and the variance 

reduce greatly as the iteration count increases. 

Figure 12 shows the case for mean, where the 

reduction of cost also leads to the reduction of 

the mean value. The results shown in Figure 11 

and Figure 12 indicate that the cost reduction is 

helpful to reduce edge competition in the chart 

cells.  

 
Figure 11: Cost of binary SCFG vs. variance of 

competing edge number (NIST05) 

 

 
Figure 12: Cost of binary SCFG vs. mean of 

competing edge number (NIST05) 

 

We also perform decoding without pruning 

(i.e. beam size = ∞) on a very small set which 

has 20 sentences of no longer than 7 words. In 

this experiment, the baseline system and our iter-

ative cost reduction based system propose 

14,454M and 10,846M competing edges respec-

tively. These numbers can be seen as the real 

numbers of the edges proposed during decoding 

instead of an approximate number observed in 

the pruned search space. It suggests that our me-

thod can reduce the number of the edges in real 

search space effectively. A possible reason to 
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this result is that the cost reduction based binari-

zation could reduce the probability of rule mis-

matching caused by binarization, which results in 

the reduction of the number of edges proposed 

during decoding. 

5 Conclusion and Future Work 

This paper introduces a new binarization method, 

aiming at choosing better binarization for SCFG-

based SMT systems. We demonstrate the effec-

tiveness of our method on a state-of-the-art 

string-to-tree SMT system. Experimental results 

show that our method can significantly outper-

form the conventional synchronous binarization 

method, which indicates that better binarization 

selection is very beneficial to SCFG-based SMT 

systems. 

In this paper the cost of a binary rule is de-

fined based on the competition among the binary 

rules that have the same source-sides. However, 

some binary rules with different source-sides 

may also have competitions in a chart cell. We 

think that the cost of a binary rule can be better 

estimated by taking the rules with different 

source-sides into account. We intend to study 

this issue in our future work. 
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Abstract

In this work we present a novel technique
to rescore fragments in the Data-Oriented
Translation model based on their contri-
bution to translation accuracy. We de-
scribe three new rescoring methods, and
present the initial results of a pilot experi-
ment on a small subset of the Europarl cor-
pus. This work is a proof-of-concept, and
is the first step in directly optimizing trans-
lation decisions solely on the hypothesized
accuracy of potential translations resulting
from those decisions.

1 Introduction

The Data-Oriented Translation (DOT) (Poutsma,
2000) model is a tree-structured translation model,
in which linked subtree fragments extracted from
a parsed bitext are composed to cover a source-
language sentence to be translated. Each linked
fragment pair consists of a source-language side
and a target-language side, similar to (Wu, 1997).
Translating a new sentence involves composing
the linked fragments into derivations so that a
new source-language sentence is covered by the
source tree fragments of the linked pairs, where
the yields of the target-side derivations are the can-
didate translations. Derivations are scored accord-
ing to their likelihood, and the translation is se-
lected from the derivation pair with the highest
score. However, we have no reason to believe that
maximizing likelihood is the best way to maxi-
mize translation accuracy – likelihood and accu-
racy do not necessarily correlate well.

We can frame the problem as a search problem,
where we are searching a space of derivations for
the one that yields the highest scoring translation.
By putting weights on the derivations in the search
space, we wish to point the decoder in the direc-
tion of the optimal translation. Since we want

the decoder to find the translation with the high-
est evaluation score, we would want to score the
derivations with weights that correlate well with
the particular evaluation measure in mind.

Much of the work in the MT literature has
focused on the scoring of translation decisions
made. (Yamada and Knight, 2001) follow (Brown
et al., 1993) in using the noisy channel model,
by decomposing the translation decisions mod-
eled by the translation model into different types,
and inducing probability distributions via max-
imum likelihood estimation over each decision
type. This model is then decoded as described
in (Yamada and Knight, 2002). This type of ap-
proach is also followed in (Galley et al., 2006).

There has been some previous work on
accuracy-driven training techniques for SMT, such
as MERT (Och, 2003) and the Simplex Armijo
Downhill method (Zhao and Chen, 2009), which
tune the parameters in a linear combination of var-
ious phrase scores according to a held-out tun-
ing set. While this does tune the relative weights
of the scores to maximize the accuracy of candi-
dates in the tuning set, the scores themselves in the
linear combination are not necessarily correlated
with the accuracy of the translation. Tillmann and
Zhang (2006) present a procedure to directly opti-
mize the global scoring function used by a phrase-
based decoder on the accuracy of the translations.
Similarly to MERT, Tillmann and Zhang estimate
the parameters of a weight vector on a linear com-
bination of (binary) features using a global objec-
tive function correlated with BLEU (Papineni et
al., 2002).

In this work, we prototype some methods for
moving directly towards incorporating a measure
of the translation quality of each fragment used,
bringing DOT more into the mainstream of cur-
rent SMT research. In Section 2 we describe
probability-based DOT fragment scoring. In Sec-
tion 3 we describe our rescoring setup and the
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Figure 1: Example DOT Fragments.

three rescoring methods. In Section 4, we describe
our experiments. In Section 5 we compare the
results of rescoring the fragments with the three
methods. In Section 6 we discuss some of the
decisions that are affected by our rescoring meth-
ods. Finally, we discuss the next steps in training
the DOT system by optimizing over a translation
accuracy-based objective function in Section 7.

2 DOT Scoring

As described in previous work (Poutsma, 2000;
Hearne and Way, 2003), DOT scores translations
according to the probabilities of the derivations,
which are in turn computed from the relative fre-
quencies of linked tree fragments in a parallel tree-
bank. Linked fragment pairs are conditionally in-
dependent, so the score of a derivation is the prod-
uct of the probabilities of all the linked fragments
used. To find the probability of a translation,
DOT marginalizes over the scores of all deriva-
tions yielding the translation.

From a parallel treebank aligned at the sub-
sentential level, we extract all possible linked frag-
ment pairs by first selecting all linked pairs of
nodes in the treebank to be the roots of a new sub-
tree pair, and then selecting a (possibly empty) set
of linked node pairs that are descendants of the
newly selected fragment roots and deleting all sub-
tree pairs dominated by these nodes. Leaves of
fragments can either be terminals, or non-terminal
frontier nodeswhere we can compose other frag-
ments (c.f. (Eisner, 2003)). We give example DOT
fragment pairs in Figure 1.

Given two subtree pairs〈s1, t1〉 and 〈s2, t2〉,
we can compose them using the DOT composi-
tion operator◦ if the leftmost non-terminal fron-

tier node ofs1 is equal to the root node ofs2,
and the leftmost non-terminal frontier node ofs1’s
linked counterpartin t1 is equal to the root node
of t2. The resulting tree pair consists of a copy
of s1 wheres2 has been inserted at the leftmost
frontier node, and a copy oft1 wheret2 has been
inserted at the node linked tos1’s leftmost frontier
node (Hearne and Way, 2003).

In Figure 1, fragment pair (a) is a fragment with
two open substitution sites. If we compose this
fragment pair with fragment pair (b), the source
side composition must take place on the leftmost
non-terminal frontier node (the leftmost NP). On
the target side we compose on the frontier linked
to the leftmost source side non-terminal frontier.
The result is fragment pair (c). If we now com-
pose the resulting fragment pair with fragment pair
(d), we obtain a fragment pair with no open sub-
stitution sites whose source-side yield isJohn likes
Mary and whose target-side yield isMary plâıt à
John. Note that there are two different derivations
using the fragment pairs in Figure 1 that result in
the same fragment pair, namely (a)◦ (b) ◦ (d), and
(c) ◦ (d).

For a given linked fragment pair〈ds, dt〉, the
probability assigned to it is

P (〈ds, dt〉) =
|〈ds, dt〉|∑

r(us)=r(ds)∧r(ut)=r(dt)
|〈us, ut〉|

(1)
where|〈ds, dt〉| is the number of times the frag-
ment pair〈ds, dt〉 is found in the bitext, andr(d)
is the root nonterminal ofd. Essentially, the prob-
ability assigned to the fragment pair is the relative
frequency of the fragment pair to the pair of non-
terminals that root the fragments.

Then, with the assumption that DOT fragments
are conditionally independent, the probability of a
derivation is

P (d) = P (〈ds, dt〉1 ◦ . . . ◦ 〈ds, dt〉N )

=
∏

i

P (〈ds, dt〉i) (2)

In the original DOT formulation, DOT disam-
biguated translations according to their probabil-
ities. Since a translation can have many possible
derivations, to obtain the probability of a transla-
tion it is necessary to marginalize over the distinct
derivations yielding a translation. The probabil-
ity of a translationwt of a source sentencews, is
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given by (3):

P (ws, wt) =
∑
d∈D

P (d〈ws,wt〉) (3)

and the translation is chosen so as to maximize (4):

ŵt = argmax
wt

P (ws, wt) (4)

Hearne and Way (2006) examined alternative dis-
ambiguation strategies. They found that rather
than disambiguating on the translation probability,
the translation quality would improve by disam-
biguating on the derivation probability, as in (5):

ŵt = argmax
d

P (d) (5)

Our analysis suggest that this is because many
derivations with very low probabilities generate
the same, poor translation. When applying Equa-
tion (3) to marginalize over those derivations, the
resulting score is higher for the poor translation
than a better translation with fewer derivations but
where the derivations had higher likelihood.

Using the DOT model directly is difficult –
the number of fragments extracted from a paral-
lel treebank is exponential in the size of the tree-
bank. Therefore we use the Goodman reduction
of DOT (Hearne, 2005) to create an isomorphic
PCFG representation of the DOT model that is lin-
ear in the size of the treebank. The idea behind the
Goodman reduction is that rather than storing frag-
ments in the grammar and translating via compo-
sition, we simultaneously build up the fragments
using the PCFG reduction and compose them to-
gether. To perform the reduction, we first relabel
the two linked nodes (X, Y) with the new label
X=Y. We then label each node in the parallel tree-
bank with a unique Goodman index. Each binary-
branching node and its two children can be inter-
nal or root/frontier. We add rules to the grammar
reflecting the role that each node can take, keeping
unaligned nodes as fragment-internal nodes. So in
the case where a node and both of its children are
aligned, we commit 8 rules into the grammar, as
follows:

LHS→ RHS1 RHS2 LHS+a→ RHS1 RHS2
LHS→ RHS1+b RHS2 LHS+a→ RHS1+b RHS2
LHS→ RHS1 RHS2+c LHS+a→ RHS1 RHS2+c
LHS→ RHS1+b RHS+c LHS+a→ RHS1+b RHS2+c

A category label which ends in a ‘+’ symbol fol-
lowed by a Goodman index is fragment-internal
and all other nodes are either fragment roots or

S=S1

N=N3

John

VP2

V4

likes

N=N5

Mary

S=S1

N=N4

Mary

VP2

V5

plâıt

PP3

P6

à

N=N7

John
Source PCFG Target PCFG

S=S→ N=N VP+2 0.5 S=S→ N=N VP+2 0.5
S=S→ N=N+3 VP+2 0.5 S=S→ N=N+4 VP+2 0.5
S=S+1→ N=N VP+2 0.5 S=S+1→ N=N VP+2 0.5
S=S+1→ N=N+3 VP+2 0.5 S=S+1→ N=N+4 VP+2 0.5
N=N→ John 0.5 N=N→Mary 0.5
N=N+3→ John 1 N=N+4→Mary 1
VP+2→ V+4 N=N 0.5 VP+2→ V+5 PP+3 1
VP+2→ V+4 N=N+5 0.5 V+5→ plâıt 1
V+4→ likes 1 PP+3→ P+6 N=N 0.5
N=N→Mary 0.5 PP+3→ P+6 N=N+7 0.5
N=N+5→Mary 1 P+6→ à 1

N=N→ John 0.5
N=N+7→ John 1

Figure 2: A parallel tree and its corresponding Goodman re-
duction.

frontier nodes. A fragment pair, then, is a pair of
subtrees in which the root does not have an index,
all internal nodes have indices, and all the leaves
are either terminals or un-indexed nodes. We give
an example Goodman reduction in Figure 2.

While we store the source grammar and the tar-
get grammar separately, we also keep track of the
correspondence between source and target Good-
man indices and can easily identify the alignments
according to the Goodman indices. Probabilities
for the PCFG rules are computed monolingually
as in the standard Goodman reduction for DOP
(Goodman, 1996). In decoding with the Goodman
reduction, we first find then-best parses on the
source side, and for each source fragment, we con-
struct thek-best fragments on the target side. We
finally compute the bilingual derivation probabil-
ities by multiplying the source and target deriva-
tion probabilities by the target fragment relative
frequencies conditioned on the source fragment.

There are a few problems with a likelihood-
based scoring scheme. First, it is not clear that
if a fragment is more likely to be seen in training
data then it is more likely to be used in a correct
translation of an unseen sentence. In our analysis
of the candidate translations of the DOT system,
we observed that frequently, the highest-likelihood
candidate translation output by the system was not
the highest-accuracy candidate inferred. An addi-
tional problem is that, as described in (Johnson,
2002), the relative frequency estimator for DOP
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(and by extension, DOT) is known to be biased
and inconsistent.

3 Accuracy-Based Fragment Scoring

In our work, we wish to incorporate a measure
of fragment accuracy into the scoring. To do so,
we reformulate the scoring of DOT as log-linear
rather than probabilistic, in order to incorporate
non-likelihood features into the derivation scores.
For all tree fragment pairs〈ds, dt〉, let

l(〈ds, dt〉) = log(p(〈ds, dt〉)) (6)

The general form of a rescored tree fragment will
be

s(〈ds, dt〉) = α0l(〈ds, dt〉) +
k∑

i=1

αifi(〈ds, dt〉)
(7)

where eachαi is the weight of that term in the fi-
nal score, and eachfi(d) is a feature. In this work,
we only considerf1(d), an accuracy-based score,
although in future work we will consider a wide
variety of features in the scoring function, includ-
ing combinations of the different scoring schemes
described below, binary lexical features, binary
source-side syntactic features, and local target side
features. The score of a derivation is now given by
(8):

s(d) = s(〈ds, dt〉1 ◦ . . . ◦ 〈ds, dt〉N )

=
∑

i

s(〈ds, dt〉i) (8)

In order to disambiguate between candidate
translations, we follow (Hearne and Way, 2006)
by using Equation (5).

3.1 Structured Fragment Rescoring

In all our approaches, we rescore fragments ac-
cording to their contribution to the accuracy of
a translation. We would like to give fragments
that contribute to good translations relatively high
scores, and give fragments that contribute to bad
translations relatively low scores, so that during
decoding fragments that are known to contribute to
good translations would be chosen over those that
are known to contribute to bad translations. Fur-
thermore, we would like to score each fragment in
a derivation independently, since bad translations
may contain good fragments, and vice-versa.

In practice, it is infeasible to rescore only those
fragments seen during the rescoring process, due

to the Goodman reduction for DOT. If we were to
properly rescore each fragment, a new rule would
need to be added to the grammar for each rule ap-
pearing in the fragment. Since the number of frag-
ments is exponential, this would lead to a substan-
tial increase in grammar size. Instead, we rescore
the individual rules in the fragments, by evenly di-
viding the total amount of scoring mass among the
rules of the particular fragment, and then assigning
them the average of the rule scores over all frag-
ments in which they appear. That is for each rule
r in a fragmentf consisting ofcf (r) rules with
scoreδ(f), the score of the rule is given as:

s(r) =

∑
f :r∈f δ(f)/cf (r)

|f | (11)

This has the further advantage that we are al-
lowing fragments that were unseen during tuning
to be rescored according to previously seen frag-
ment substructures.

To implement this scheme, we select a set of or-
acle translations for each sentence in the tuning
data by evaluating all the candidate translations
against the gold standard translation using the F-
score (Turian et al., 2003), and selecting those
with the highest F1-measure, with exponent 1. We
use GTM, rather than BLEU, because BLEU is
not known to work well on a per-sentence level
(Lavie et al., 2004) as needed for oracle selection.
We then compare all thetarget-sidefragments in-
ferred in the translation process for each candidate
translation against the fragments that yielded the
oracles. There are two relevant parts of the frag-
ments – the internal yields (i.e. the terminal leaves
of the fragment) and the substitution sites (i.e. the
frontiers where other fragments attach). We score
the fragments rooted at the substitution sites sepa-
rately from the parent fragment. We can uniquely
identify the set of fragments that can be rooted at
substitution sites by determining the span of the
linked source-side derivation.

To compare two fragments, we define an edit
distance between them. For a given fragmentd,
let r(d) be the root of the fragment, letr(d) →
rhs1 be the left subtree ofr(d), and letr(d) →
rhs2 be the right subtree. The difference between
a candidate fragmentdc and an oracle fragment
dgs is given by the equations in Table 1.

These equations define a minimum edit dis-
tance between two fragment trees, allowing sub-
fragment order inversion, insertion, and deletion
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δ(dc, dgs) =

(
0 if dc = dgs

1 if dc 6= dgs
Base case:dc anddgs are unary subtrees or substitution sites (9)

δ(dc, dgs) = min

8>>>>>>><>>>>>>>:

δ(dc → rhs1, dgs → rhs1) + δ(dc → rhs2, dgs → rhs2),

δ(dc → rhs2, dgs → rhs1) + δ(dc → rhs1, dgs → rhs2) + 1,

δ(dc, dgs → rhs1) + |y(dgs → rhs2)|,
δ(dc, dgs → rhs2) + |y(dgs → rhs1)|,
δ(dc → rhs1, dgs) + |y(dc → rhs2)|,
δ(dc → rhs2, dgs) + |y(dc → rhs1)|

(10)

Table 1: The recursive relation defining the fragment difference between two fragments.

(a) A

B

b

C

c

(b) A

C

c

B

b

(c) D

A

B

b

F

f

E

e

Figure 3: Comparing trees (a) and (b) with our distance met-
ric yields a value of 1. The difference between trees (a) and
(c) is 2, and for trees (b) and (c) the distance is 3.

as edit operations. For example, the only dif-
ference between trees (a) and (b) in Figure 3 is
that their children have been inverted. To com-
pare these trees using our distance metric, we first
compute the first argument of themin function in
Equation (10), directly comparing the structure of
each immediate subtree. We then compute the sec-
ond argument, obtaining the cost of performing an
inversion, and finally compute the remaining argu-
ments, assessing the cost of allowing each tree to
be a direct subtree of the other. The result of this
computation is1, representing the inversion oper-
ation required to transform tree (a) into tree (b).
If we compare trees (a) and (c) in Figure 3, we
obtain a value of2, given that the minimum opera-
tions required to transform tree (a) into tree (c) are
inserting an additional subtree at the top level and
then substituting the subtree rooted by C for the
subtree rooted by F. If we compare tree (b) with
tree (c) then the distance is3, since we are now
required to also replace the subtree rooted by C by
the one rooted by B.

Since it is not efficient to compute the differ-
ences directly, we utilize common substructures
and derive a dynamic programming implementa-
tion of the recursion. We compare each fragment
against the set of oracle fragments for the same
source span, and select the lowest cost as the score,
assigning the candidate the negative difference be-

tween it and the oracle fragment it is most similar
to, as in (12):

f(〈ds, dt〉) = max
〈do

s,do
t 〉∈Do:do

s=ds

−δ(dt, d
o
t ) (12)

In practice, given the Goodman reduction for
DOT, we divide the fragment score by the number
of rules in the fragment, and assign the average of
those scores for each rule instance across all frag-
ments rescored.

3.2 Normalized Structured Fragment
Rescoring

In the structured fragment rescoring scheme, the
scores that the fragments are assigned are the un-
normalized edit distances between the two frag-
ments. It may be better to normalize the fragment
scores, rather than using the minimum number of
tree transformations to convert one fragment into
the other. We would expect that when compar-
ing larger fragments, on average there would be
more transformations needed to change one into
the other than when comparing small fragments.
However in the previous scheme, small fragments
would have higher scores than large fragments,
since fewer differences would be observed. The
normalized score is given in (13):

f(〈ds, dt〉) = max
〈do

s,do
t 〉∈Do:do

s=ds

log(1 − δ(dt, d
o
t )/

max(|dt|, |do
t |))

(13)

Essentially, we are normalizing the edit distance
by the maximum edit distance possible, namely
the size of the largest fragment of the two being
compared.

3.3 Fragment Surface Rescoring

The disadvantage of the minimum tree fragment
edit approach is that it explicitly takes the internal
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syntactic structure of the fragment into account.
In comparing two fragments, they may have the
same (or very similar) surface yields, but differ-
ent internal structures. The previous approach
would penalize the candidate fragment, even if its
yield is quite close to the oracle. In this rescor-
ing method, we extract the leaves of the candi-
date and oracle fragments, representing the substi-
tution sites by the source span which their frag-
ments cover. We then compare them using the
Damerau-Levenshtein distanceδdl(dc, dgs) (Dam-
erau, 1964) between the two fragment yields, and
score them as in (14):

f(〈ds, dt〉) = max
〈do

s,do
t 〉∈Do:do

s=ds

−δdl(dt, d
o
t ) (14)

In Equation (14) we are selecting the maximal
score for〈ds, dt〉 from its comparison to all the
possible corresponding oracle fragments. In this
way, we are choosing to score〈ds, dt〉 against the
oracle fragment it is closest to.

4 Experiments

For our pilot experiments, we tested all the rescor-
ing methods in the previous section on Spanish-to-
English translation against the relative-frequency
baseline. We randomly selected 10,000 sentences
from the Europarl corpus (Koehn, 2005), and
parsed and aligned the bitext as described in (Tins-
ley et al., 2009). From the parallel treebank, we
extracted a Goodman reduction DOT grammar, as
described in (Hearne, 2005), although on an order
of magnitude greater amount of training data. Un-
like (Bod, 2007), we did not use the unsupervised
version of DOT, and did not attempt to scale up
our amount of training data to his levels, although
in ongoing work we are optimizing our system to
be able to handle that amount of training data. To
perform the rescoring, we randomly chose an ad-
ditional 30K sentence pairs from the Spanish-to-
English bitext. We rescored the grammar by trans-
lating the source side of the 10K training sentence
pairs and 10K of the additional sentences, and us-
ing the methods in Section 3 to score the frag-
ments derived in the translation process. We then
performed the same experiment translating the full
40K-sentence set. Rules in the grammar that were
not used during tuning were rescored using a de-
fault score defined to be the median of all scores
observed.

Our system performs translation by first obtain-
ing then-best parses for the source sentences and

BLEU NIST F-SCORE

Baseline 8.78 3.582 38.21

2-8 4-6 5-5 6-4 8-2
BLEU SFR 10.30 10.31 10.32 10.27 10.08

NSFR 8.31 9.37 9.53 9.66 9.90
FSR 10.19 10.25 10.18 10.19 9.93

NIST SFR 3.792 3.805 3.808 3.800 3.781
NSFR 3.431 3.638 3.661 3.693 3.722
FSR 3.784 3.799 3.792 3.795 3.764

F-SCORE SFR 40.92 40.82 40.86 40.84 40.78
NSFR 37.53 39.50 39.93 40.38 40.78
FSR 40.83 40.85 40.87 40.91 40.67

Table 2: Results on test set. Rescoring on 20K sentences.
SFR stands for Structured Fragment Rescoring,NSFR for
Normalized SFR andFSRfor Fragment Surface Rescoring.
system-i-j represents the corresponding system withα0 = i
andα1 = j. Underlined results are statistically significantly
better than the baseline atp = 0.01.

BLEU NIST F-SCORE

Baseline 8.78 3.582 38.21

2-8 4-6 5-5 6-4 8-2
BLEU SFR 10.59 10.58 10.41 10.38 10.08

NSFR 8.61 9.71 9.90 9.96 9.93
FSR 10.49 10.48 10.35 10.38 10.06

NIST SFR 3.841 3.835 3.810 3.807 3.785
NSFR 3.515 3.694 3.713 3.734 3.727
FSR 3.834 3.833 3.820 3.816 3.784

F-SCORE SFR 41.12 40.99 40.86 40.88 40.75
NSFR 38.16 40.39 40.69 40.90 40.75
FSR 41.03 41.02 41.01 40.98 40.72

Table 3: Results on test set. Rescoring on 40K sentences. Un-
derlined are statistically significantly better than the baseline
atp = 0.01.

then computing thek-best bilingual derivations for
each source parse. In our experiments we used
beams ofn = 10, 000 andk = 5. We also ex-
perimented with different values ofα0 andα1 in
Equation (7). We set these parameters manually,
although in future work we will automatically tune
them, perhaps using a MERT-like algorithm.

We tested our rescored grammars on a set of
2,000 randomly chosen Europarl sentences, and
used a set of 200 randomly chosen sentences as
a development test set.1

5 Results

Translation quality results can be found in Tables
2 and 3. In these tables, columns labeledi-j in-
dicate that the corresponding system was trained
using parametersα0 = i and α1 = j in Equa-
tion 7. Statistical significance tests for NIST and
BLEU were performed using Bootstrap Resam-
pling (Koehn, 2004).

1All sentences, including the ones used for training, were
limited to a length of at most 20 words.
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BLEU NIST F-SCORE

Baseline 10.82 3.493 42.31

2-8 4-6 5-5 6-4 8-2
BLEU SFR 11.34 12.12 11.94 11.97 11.78

NSFR 9.68 10.99 11.38 11.63 11.30
FSR 11.40 11.49 11.72 11.91 11.72

NIST SFR 3.653 3.727 3.723 3.708 3.694
NSFR 3.376 3.530 3.554 3.616 3.572
FSR 3.655 3.675 3.698 3.701 3.675

F-SCORE SFR 44.84 45.47 45.36 45.33 45.08
NSFR 41.44 43.38 44.18 44.79 44.26
FSR 44.68 44.91 45.15 45.19 44.82

Table 4: Results on development test set. Rescoring on 40K
sentences.

As Table 2 indicates, all three rescoring meth-
ods significantly outperform the relative frequency
baseline. The unnormalized structured fragment
rescoring method performed the best, with the
largest improvement of 1.5 BLEU points, a 17.5%
relative improvement. We note that the BLEU
scores for both the baseline and the experiments
are low. This is to be expected, because the gram-
mar is extracted from a very small bitext espe-
cially when the heterogeneity of the Europarl cor-
pus is considered. In our analysis, only 32.5 per-
cent of the test sentences had a complete source-
side parse, meaning that a lot of structural infor-
mation is lost contributing to arbitrary target-side
ordering. In these experiments we did not use an
additional language model. DOT (and many other
syntax-based SMT systems) essentially have the
target language model encoded within the trans-
lation model, since the inferences derived dur-
ing translations link source structures to target
structures, so in principle, no additional language
model should be necessary. Furthermore, we only
evaluate against a single reference, which also
contributes to the lowering of absolute scores. To
provide a sanity check against a state-of-the-art
system, we trained the Moses phrase-based MT
system (Koehn et al., 2007) using our training
corpus, using no language model and using uni-
form feature weights, to provide a fair comparison
against our baseline. We used this system to de-
code our development test set, and as a result we
obtained a BLEU score of 10.72, which is compa-
rable to the score obtained by our baseline on the
same set.

When we scale up to tuning on 40,000 sen-
tences we see an improvement in BLEU scores as
well, as shown in Table 3. When tuning on 40K
sentences, we observe an increase of 1.81 BLEU
points on the best-performing system, which is a

20.6% improvement over the baseline. We note
that rescoring on 20K sentences rescores approxi-
mately 275,000 rules out of 655,000 in the gram-
mar, whereas rescoring on 40K sentences rescores
approximately 280,000.

To analyze the benefits of the rescored gram-
mar, we set aside a separate development set that
we decoded with the grammar trained on 40K sen-
tences. The results are presented in Table 4. The
analysis is presented in Section 6.

Interestingly, there is a large difference between
the normalized and unnormalized versions of the
SFR scoring scheme. Our analysis suggests that
the differences are mostly due to numerical issues,
namely the difference in magnitude between the
NSFR scores and the likelihood scores in the linear
combination, and the default value assigned when
the NSFR score was zero. In ongoing work, we
are working to address these issues.

For most configurations the difference between
SFR and FSR was not statistically significant at
p = 0.05. Our analysis indicated that surface dif-
ferences tended to co-occur with structural differ-
ences. We hypothesize that as we scale up to larger
and more ambiguous grammars, the system will
infer more derivations with the same yields, ren-
dering a larger difference between the quality of
the two scoring mechanisms.

6 Discussion

To analyze the advantages and disadvantages of
our approach over the baseline, we closely ex-
amined and compared the derivations made on
the devset translation by the SFR-scored gram-
mar and the likelihood-scored grammar. Although
the BLEU scores are rather low, there were sev-
eral sentences in which the SFR-scored grammar
showed a marked improvement over the baseline.
We observed two types of improvements.

The first is where the rescored grammar gave
us translations that, while still generally bad, were
closer to the gold standard than the baseline trans-
lation. For example, the Spanish sentence “Y en
tercer lugar , está el problema de la aplicación uni-
forme del Derecho comunitario .” translates into
the gold standard “Thirdly , we have the problem
of the uniform application of Community law .”
The baseline grammar translates the sentence as
“on third place , Transport and Tourism . I are
the problems of the implementation standardised
is the EU law .” with a GTM F-Score of 0.378,
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sn=NP+67600−1.97/−5.66

NP+67608

the rapporteur

sp=PP+67601

s=IN −0.48/−0.37

in

sn=SBAR+165198−1.39/−1.90

nc=TO+165203

to

dn=VP 0/−0.49

make

sn=NP+36950−5.89/−5.09

NP+36952

the rapporteur

sp=PP+36951−4.28/−3.81

s=IN −0.48/−0.37

in

sn=NP+36953

dn=DT 0/−0.58

both

nc=NNS −1.03/−0.81

questions

Figure 4: Target side of the highest-scoring translations for a sentence, according to the baseline system (left) and the SFR
system (right). Boxed nodes are substitution sites. Scores in superscripts denote the score of the sub-derivation according to
the baseline and to the SFR system.

and the rescored grammar outputs the translation
“to there in the third place , I are the problem of
the implementation standardised is the Commu-
nity law .”, with an F-Score of 0.5. While many of
the fragments in the derivations that yielded these
two translations differ, the ones we would like to
focus on are the fragments that yield the transla-
tion of “comunitario”. The grammar contains sev-
eral competing unary fragment pairs for “comuni-
taro”. In the baseline grammar, the pair (aq=NNP
→ comunitario, aq=NNP → EU) has a score
of −0.693147, whereas the pair (aq=NNP →
comunitario, aq=NNP→ Community) has a
score of−1.38629. In the rescored grammar how-
ever, (aq=NNP → comunitario, aq=NNP →
EU) has a score of -0.762973, whereas (aq=NNP
→ comunitario, aq=NNP → Community)
has a score of -0.74399. In effect, the rescoring
scheme rescored the word alignment itself. This
suggests that in future work, it may be possible
to integrate a word aligner or fragment aligner di-
rectly into the MT training method.

The other improvement was where the baseline
and the SFR-scored grammar output translations
of roughly the same quality according to the eval-
uation measure, yet in terms of human evaluation,
the SFR translation was much better than the base-
line translation. For instance, our devset contained
the Spanish sentence “Estoy de acuerdo con el po-
nente en dos cuestiones .” The baseline transla-
tion given is “I agree with the rapporteur in to
make .”, and the SFR-scored translation given is
“I agree with the rapporteur in both questions .”.
While both translations have the same GTM score
against the gold standard “I agree with the rap-
porteur on two issues .”, clearly, the second one

is of far higher quality than the first. As we can
see in Figure 4, the derivation over the substring
“in both questions” gets a higher score than “in
to make” when translated with the rescored gram-
mar. In the baseline, “en dos cuestiones” is not
translated as a whole unit – rather, the derivation of
“el ponente en dos cuestiones” is decomposed into
four subderivations, yielding “el” “ponente” “en”
“dos cuestiones”, where each of those is translated
separately, into “∅” “the rapporteur” “in” and “to
make”. The SFR-scored grammar, however, out-
puts a different bilingual derivation. The source
is decomposed into five sub-derivations, one for
each word, and each word is translated separately.
Then, the rescored target fragments set the proper
target-side word order and select the target-side
words that maximize the score of the subderiva-
tion covering the source span. We note that in this
example, the score of translating “dos” to “make”
was higher than the score of translating “dos” to
“both”. However, the higher level target frag-
ment that composed the translation of “dos” to-
gether with the translation of “cuestiones” yielded
a higher score when composing “both questions”
rather than “to make”.

7 Conclusions and Future Work

The results presented above indicate that aug-
menting the scoring mechanism with an accuracy-
based measure is a promising direction for transla-
tion quality improvement. It gives us a statistically
significant improvement over the baseline, and our
analysis has indicated that the system is indeed
making better decisions, moving us a step closer
towards the goal of making translation decisions
based on the hypothesis of the resulting transla-
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tion’s accuracy.
Now that we have demonstrated that translation

quality can be improved by incorporating a mea-
sure of fragment quality into the scoring scheme,
our immediate next step is to optimize our sys-
tem so that we can scale up to significantly larger
training and tuning sets, and determine whether
the improvements we have noted carry over when
the likelihood is computed from more data. Af-
terwards, we will implement a training scheme
to maximize an accuracy-based objective func-
tion, for instance, by minimizing the difference
between the scores of the highest-scoring deriva-
tion and the oracle derivations, in effect maximiz-
ing the score of the highest-scoring translation.

The rescoring method presented in this paper
need not be limited to DOT. Fragments can be
thought of as analogous to phrases in Phrase-
Based SMT systems – we could implement a sim-
ilar rescoring system for phrase-based systems,
where we generate several candidate translations
for source sentences in a tuning set, and score each
phrase used against the phrases used in a set of or-
acles. More broadly, we could potentially take any
statistical MT system, and compare the features
of all candidates generated against those of oracle
translations, and score those that are closer to the
oracle higher than those further away.

Finally, by explicitly framing the translation
problem as a search problem, where we are di-
vorcing the inferences in the search space (i.e.
the model) from the path we take to find the op-
timal inference according to some criterion (i.e.
the scoring scheme), we can remove some of the
variability when comparing two models or scoring
mechanisms (Lopez, 2009).
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Abstract
Untranslated words still constitute a ma-
jor problem for Statistical Machine Trans-
lation (SMT), and current SMT systems
are limited by the quantity of parallel
training texts. Augmenting the training
data with paraphrases generated by pivot-
ing through other languages alleviates this
problem, especially for the so-called “low
density” languages. But pivoting requires
additional parallel texts. We address this
problem by deriving paraphrases monolin-
gually, using distributional semantic simi-
larity measures, thus providing access to
larger training resources, such as compa-
rable and unrelated monolingual corpora.
We present what is to our knowledge the
first successful integration of a colloca-
tional approach to untranslated words with
an end-to-end, state of the art SMT sys-
tem demonstrating significant translation
improvements in a low-resource setting.

1 Introduction

Phrase-based systems, flat and hierarchical alike
(Koehn et al., 2003; Koehn, 2004b; Koehn et al.,
2007; Chiang, 2005; Chiang, 2007), have achieved
a much better translation coverage than word-
based ones (Brown et al., 1993), but untranslated
words remain a major problem in SMT. For ex-
ample, according to Callison-Burch et al. (2006),
a SMT system with a training corpus of 10,000
words learned only 10% of the vocabulary; the
same system learned about 30% with a training
corpus of 100,000 words; and even with a large
training corpus of nearly 10,000,000 words it only
reached about 90% coverage of the source vocab-
ulary. Coverage of higher order n-gram levels is

even harder. This problem plays a major part in re-
ducing machine translation quality, as reflected by
both automatic measures such as BLEU (Papineni
et al., 2002) and human judgment tests. Improving
translation coverage accurately is therefore impor-
tant for SMT systems.

The first solution that might come to mind is
to use larger parallel training corpora. However,
current state-of-the-art SMT systems cannot learn
from non-aligned corpora, while sentence-aligned
parallel corpora (bitexts) are a limited resource
(See Section 2 for discussion of automatically-
compiled bitexts). Another direction might be
to make use of non-parallel corpora for training.
However, this requires developing techniques to
extract alignments or translations from them, and
in a sufficiently fast, memory-efficient, and scal-
able manner. One approach that can, in princi-
ple, better exploit both alignments from bitexts
and make use of non-parallel corpora is the dis-
tributional collocational approach, e.g., as used by
Fung and Yee (1998) and Rapp (1999). However,
the systems described there are not easily scalable,
and require pre-computation of a very large col-
location counts matrix. Related attempts propose
generating bitexts from comparable and “quasi-
comparable” bilingual texts by iteratively boot-
strapping documents, sentences, and words (Fung
and Cheung, 2004), or by using a maximum
entropy classifier (Munteanu and Marcu, 2005).
Alignment accuracy remains a challenge for them.

Recent work has proposed augmenting the
training data with paraphrases generated by pivot-
ing through other languages (Callison-Burch et al.,
2006; Madnani et al., 2007). This indeed allevi-
ates the vocabulary coverage problem, especially
for the so-called “low density” languages. How-
ever, these approaches still require bitexts where
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one side contains the original source language.
The paradigm described in this paper involves

constructing monolingual distributional profiles
(DPs; a.k.a. word association profiles, or co-
occurrence vectors) of out-of-vocabulary words
and phrases in the source language; then, gener-
ating paraphrase candidates from phrases that co-
occur in similar contexts, and assigning them sim-
ilarity scores. The highest ranking paraphrases
are used to augment the translation phrase table.
The table augmentation idea is similar to Callison-
Burch et al.’s (Callison-Burch et al., 2006), but
our proposed paradigm does not require using a
limited resource such as parallel texts in order
to generate paraphrases. Moreover, our proposed
paradigm can, in principle, achieve large-scale ac-
quisition of paraphrases with high semantic simi-
larity. However, using parallel training texts in
pivoting techniques offers the potential advantage
of implicit translational knowledge, in the form
of sentence alignments, while our approach is un-
guided in this respect. Therefore, we conducted
experiments to find out how these relative advan-
tages play out. We present here, to our knowledge
for the first time, positive results of integrating dis-
tributional monolingually-derived paraphrases in
an end-to-end state-of-the-art SMT system.

In the rest of this paper we discuss related work
in Section 2, describe the distributional hypothesis
and distributional profiles in Section 3, and present
the monolingually-derived paraphrase generation
system in Section 4. We report our experiments
and results in Section 5, and conclude by dis-
cussing the implications and future research direc-
tions in Section 6.

2 Related Work

This is not the first to attempt to ameliorate the
out-of-vocabulary (OOV) words problem in sta-
tistical machine translation, and other natural lan-
guage processing tasks. This work is most closely
related to that of Callison-Burch et al. (2006),
who also translate source-side paraphrases of the
OOV phrases. There, paraphrases are generated
from bitexts of various language pairs, by “pivot-
ing”: translating the OOV phrases to an additional
language (or languages) and back to the source
language. The quality of these paraphrases is es-
timated by marginalizing translation probabilities
to and from the additional language side(s) e, as
follows: p(f2|f1) =

∑
e p(e|f1)p(f2|e). A ma-

jor disadvantage of their approach is that it relies
on the availability of parallel corpora in other lan-
guages. While this works for English and many
European languages, it is far less likely to help
when translating from other source languages, for
which bitexts are scarce or non-existent. Also,
the pivoting approach is inherently noisy (in both
the paraphrase candidates’ correct sense, and their
translational likelihood), and it is likely to fare
poorly with out-of-domain translation. One ad-
vantage of the bitext-dependent pivoting approach
is the use of the additional human knowledge that
is encapsulated in the parallel sentence alignment.
However, we argue that the ability to use much
larger resources for paraphrasing should trump the
human knowledge advantage.

More recently, Callison-Burch (2008) has im-
proved performance of this pivoting technique by
imposing syntactic constraints on the paraphrases.
The limitation of such an approach is the reliance
on a good parser (in addition to reliance on bi-
texts), but a good parser is not available in all
languages, especially not in resource-poor lan-
guages. Another approach using a pivoting tech-
nique augments the human reference translation
with paraphrases, creating additional translation
“references” (Madnani et al., 2007). Both ap-
proaches have shown gains in BLEU score.

Barzilay and McKeown (2001) extract para-
phrases from a monolingual parallel corpus, con-
taining multiple translations of the same source.
In addition to the parallel corpus usage limitations
described above, this technique is further limited
by the small size of such materials, which are even
scarcer than the resources in the pivoting case.

Dolan et al. (2004) explore generating para-
phrases by edit-distance and headlines of time-
and topic-clustered news articles; they do not ad-
dress the OOV problem directly, as their focus
is sentence-level paraphrases; although they use
a standard SMT measure, alignment error rate
(AER), they only report results of the alignment
quality, and not of an end-to-end SMT system.
Much of the previous research largely focused on
morphological analysis in order to reduce type
sparseness; Callison-Burch et al. (2006) list some
of the influential work in that direction.

Work that relies on the distributional hypoth-
esis using bilingual comparable corpora (with-
out the need for bitexts), typically uses a seed
lexicon for “bridging” source language phrases
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with their target languages paraphrases (Fung and
Yee, 1998; Rapp, 1999; Diab and Finch, 2000).
This approach is sometimes viewed as, or com-
bined with, an information retrieval (IR) approach,
and normalizes strength-of-association measures
(see Section 3) with IR-related measures such as
TF/IDF (Fung and Yee, 1998). To date, reported
implementations suffer from scalability issues, as
they pre-compute and hold in memory a huge col-
location matrix; we know of no report of using this
approach in an end-to-end SMT system.

Another approach aiming to reduce OOV rate
concentrates on increasing parallel training set
size without using more dedicated human transla-
tion (Resnik and Smith, 2003; Oard et al., 2003).

3 Collocational Profiles

The distributional hypothesis and distribu-
tional profiles. Natural language processing
(NLP) applications that assume the distributional
hypothesis (Harris, 1940; Firth, 1957) typically
keep track of word co-occurrences in distribu-
tional profiles (a.k.a. collocation vectors, or con-
text vectors). Each distributional profile DPu

(for some word u) keeps counts of co-occurrence
of u with all words within a usually fixed dis-
tance from each of its occurrences (a sliding win-
dow) in some training corpus. More advanced pro-
files keep “strength of association” (SoA) infor-
mation between u and each of the co-occurring
words, which is calculated from the counts of u,
the counts of the other word, their co-occurrence
count, and the count of all words in the corpus
(corpus size). The information on the other words
with respect to u is typically kept in a vector whose
dimensions correspond to all words in the training
corpus. This is described in Equation (1), where
V is the training corpus vocabulary:

DPu = {< wi, SoA(u,wi) > |u,wi ∈ V }
for all i s.t. 1 ≤ i ≤ |V | (1)

Semantic similarity between words u and v can
be estimated by calculating the similarity (vector
distance) between their profiles. Slightly more for-
mally, the distributional hypothesis assumes that
if we had access to the hypothetical true (psycho-
linguistic) semantic similarity function over word
pairs, semsim(u, v), then

∀u, v, w ∈ V,
[semsim(u, v) > semsim(u,w)] =⇒

[psim(DPu, DPv) > psim(DPu, DPw)],
(2)

where V is the language vocabulary, DPword is
the distributional profile of word, and psim() is
a 2-place vector similarity function (all further
described below). Paraphrasing and other NLP
applications that are based on the distributional
hypothesis assume entailment in the reverse di-
rection: the right-hand-side of Formula (2) (pro-
file/vector similarity) entails the left-hand-side
(semantic similarity).

The sliding window and word association (SoA)
measures. Some researchers count positional
collocations in a sliding window, i.e., the co-
counts and SoA measures are calculated per rel-
ative position (e.g., for some word/token u, po-
sition 1 is the token immediately after u; posi-
tion -2 is the token preceding the token that pre-
cedes u) (Rapp, 1999); other researchers use non-
positional (which we dub here flat) collocations,
meaning, they count all token occurrences within
the sliding window, regardless of their positions
in it relative to u (McDonald, 2000; Mohammad
and Hirst, 2006). We use here flat collocations
in a 6-token sliding window. Beside simple co-
occurrence counts within sliding windows, other
SoA measures include functions based on TF/IDF
(Fung and Yee, 1998), mutual information (PMI)
(Lin, 1998), conditional probabilities (Schuetze
and Pedersen, 1997), chi-square test, and the log-
likelihood ratio (Dunning, 1993).

Profile similarity measures. A profile similar-
ity function psim(DPu, DPv) is typically defined
as a two-place function, taking vectors as argu-
ments, each vector representing a distributional
profile of some word u and v, respectively, and
whose cells contain the SoA of u (or v) with each
word (“collocate”) in the known vocabulary. Sim-
ilarity can be (and have been) estimated in several
ways, e.g., the cosine coefficient, the Jaccard co-
efficient, the Dice coefficient, and the City-Block
measure. The formula for the cosine function for
similarity measure is given in Eq. (3):
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psim(DPu, DPv)
= cos(DPu, DPv)

=

∑
wi∈V

SoA(u,wi)SoA(v, wi)√ ∑
wi∈V

SoA(u,wi)2
√ ∑

wi∈V

SoA(v, wi)2

(3)
In principle, any SoA can be used with any

profile similarity measure. However, in practice,
only some SoA/similarity measure combinations
do well, and finding the best combination is still
more art than science. Some successful combina-
tions are cosCP (Schuetze and Pedersen, 1997),
LinPMI (Lin, 1998), CityLL (Rapp, 1999), and
Jensen–Shannon divergence of conditional prob-
abilities (JSDCP ). We use here cosine of log-
likelihood vectors (McDonald, 2000).

Phrasal distributional profiles. Word DPs can
be generalized to phrasal DPs, simply by count-
ing words that co-occur within a sliding window
around the target phrase’s occurrences (i.e., count-
ing occurrences of words up to 6 words before
or after the target phrase). For example, when
building a DP for the target phrase counting words
in the previous sentence, then simply is in rela-
tive position -2, and sliding is in relative posi-
tion 5. Searching for similar phrasal DPs poses
an additional challenge over the word DP case
(see Section 4), but there is no additional diffi-
culty in building the phrasal profile itself as de-
scribed above. In preliminary experiments we
found no gain in using phrasal collocates (i.e.,
count how many times a phrase of more than one
word co-occurs in a sliding window around the tar-
get word/phrase).

4 Searching and Scoring Phrasal
Paraphrases

The system design is as follows: upon receiv-
ing OOV phrase phr, build distributional profile
DPphr. Next, gather contexts: for each occur-
rence of phr, keep surrounding (left and right)
context L__R. For each such context, gather para-
phrase candidates X which occur between L and
R in other locations in the training corpus, i.e.,
all X such that LXR occur in the corpus. Fi-
nally, rank all candidates X , by building distribu-
tional profile DPX and measuring profile similar-
ity between DPX and DPphr, for each X . Output

k-best candidates above a certain similarity score
threshold. The rest of this section describes this
system in more detail.

Build phrasal profile DPphr. Build a profile of
all word collocates, as described in Section 3. Use
sliding window of size MaxPos = 6. If phr
is very frequent (above some threshold of t oc-
currences), uniformly sample only t occurrences,
multiplying the gathered co-counts by factor of
count(phr)/t. We set t = 10000.

Gather context. The challenge in choosing the
relevant context is this: if it is very short and/or
very frequent (e.g., “the __ is”), then it might not
be very informative, in the sense that many words
can appear in that context (in this example, practi-
cally any noun); however, if it is too long (too spe-
cific), then it might not occur enough times else-
where (or not at all) in the training corpus. There-
fore, to balance between these two extremes, we
use the following heuristics. Start small: Start
with setting the left part of the context L to be a
single word/token to the left of phrase phr. If it
is stoplisted, append the next word to the left (now
having a bigram left context instead of a unigram),
and repeat until the left context is not in the sto-
plist. Repeat similarly for R, the context to the
right of phr. Add the resulting L__R context to
a context list. We stoplist “promiscuous” words,
i.e., those that have more than StoplistThreshold
collocates in the training corpus, using the above
MaxPos parameter value. We also stoplist bi-
grams which occur more than t times and com-
prise solely from stoplisted unigrams.

Gather candidates. For each gathered context
in the context list, gather all paraphrase candidate
phrases X that connect left hand side context L
with right hand side context R, i.e., gather all X
such that the sequence LXR occurs in the corpus.
In practice, to keep search complexity low, limit
X to be up to length MaxPhraseLen. Also, to
further speed up runtime, we uniformly sample the
context occurrences.

Rank candidates. For each candidate X ,
build distributional profile DPX , and evaluate
psim(DPphr, DPX).

Output k-best candidates. Output k-best para-
phrase candidates for phrase phr, in descending
order of similarity. We set k = 20. Filter out para-
phrases with score less than minScore.
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5 Experiment

We examined the application of the system’s para-
phrases to handling unknown phrases when trans-
lating from English into Chinese (E2C) and from
Spanish into English (S2E). For all baselines we
used the phrase-based statistical machine transla-
tion system Moses (Koehn et al., 2007), with the
default model features, weighted in a log-linear
framework (Och and Ney, 2002). Feature weights
were set with minimum error rate training (Och,
2003) on a development set using BLEU (Papineni
et al., 2002) as the objective function. Test re-
sults were evaluated using BLEU and TER (Snover
et al., 2005). The phrase translation probabili-
ties were determined using maximum likelihood
estimation over phrases induced from word-level
alignments produced by performing Giza++ train-
ing (Och and Ney, 2000) on both source and tar-
get sides of the parallel training sets. When the
baseline system encountered unknown words in
the test set, its behavior was simply to reproduce
the foreign word in the translated output.

The paraphrase-augmented systems were iden-
tical to the corresponding baseline system, with
the exception of additional (paraphrase-based)
translation rules, and additional feature(s). Simi-
larly to Callison-Burch et al. (2006), we added the
following feature:

h(e, f) =

8>>>>><>>>>>:

psim(DPf ′ , DPf ) If phrase table entry (e, f)

is generated from (e, f ′)
using monolingually-
derived paraphrases.

1 Otherwise,
(4)

Note that it is possible to construct a new trans-
lation rule from f to e via more than one pair of
source-side phrase and its paraphrase; e.g., if f1

is a paraphrase of f , and so is f2, and both f1, f2

translate to the same e, then both lead to the con-
struction of the new rule translating f to e, but
with potentially different feature scores.

In order to eliminate this duplicity and lever-
age over these alternate paths which can be used
to increase our confidence level in the new rule,
we did the following: For each paraphrase f
of some source-side phrases fi, with respec-
tive similarity scores sim(fi, f), we calculated
an aggregate score asim with a “quasi-online-
updating” method as follows: asimi = (1 −
asimi−1)sim(fi, f), where asim0 = 0. The ag-
gregate score asim is updated in an “online” fash-

ion with each pair fi, f as they are processed, but
only the final asimk score is used, after all k pairs
have been processed. Simple arithmetics can show
that this method is insensitive to the order in which
the paraphrases are processed. We only augment
the phrase table with a single rule from f to e,
and in it are the feature values of the phrase fi for
which the score sim(fi, f) was the highest.

5.1 English-to-Chinese Translation
For the English-Chinese (E2C) baseline system,
we trained on the LCD Sinorama and FBIS
tests (LCD2005T10 and LCD2003E14), and seg-
mented the Chinese side with the Stanford Seg-
menter (Tseng et al., 2005). After tokenization
and filtering, this bitext contained 231,586 lines
(6.4M + 5.1M tokens). We trained a trigram lan-
guage model on the Chinese side. We then split the
bitext to 32 even slices, and constructed a reduced
set of about 29,000 lines (sentences) by using only
every eighth slice. The purpose of creating this
subset model was to simulate a resource-poor lan-
guage. See Table 1.

Set # Tokens Source+Target
E2C 29K 0.8 + 0.6
E2C Full 6.4 + 5.1
bnc+apw 187
S2E 10K 0.3 + 0.3
S2E 20K 0.6 + 0.6
S2E 80K 2.3 + 2.3
wmt09 84
wmt09+acquis 139
wmt09+acquis+afp 402

Table 1: Training set sizes (million tokens).

For development, we used the Chinese-English
NIST MT 2005 evaluation set, taking one of the
English references as source, and the Chinese
source as a single reference translation. We tested
the system using the English-Chinese NIST MT
evaluation 2008 test set with its four reference
translations.

We augmented the E2C baseline models with
paraphrases generated as described above, train-
ing on the British National Corpus (BNC)
v3 (Burnard, 2000) and the first 3 million lines
of the English Gigaword v2 APW, totaling 187M
terms after tokenization, and number and punc-
tuation removal. We generated paraphrases for
phrases up to six tokens in length, and used an ar-

385



bitrary similarity threshold of minScore = 0.3.
We experimented with three variants: adding a
single additional feature for all paraphrases (1-
6grams); using only paraphrases of unigrams
(1grams); and adding two features, one only sen-
sitive to unigrams, and the other only to the rest
(1 + 2-6grams). All features had the same de-
sign as described in Section 5, each had an asso-
ciated weight (as all other features), and all fea-
ture weights in each system, including the base-
line, were tuned using a separate minimum error
rate training for each system.

Results are shown in Table 2. For the E2C sys-
tems, for which we had four reference translations
for the test set, we used shortest reference length,
and used the NIST-provided script to split the out-
put words to Chinese characters before evaluation.
Statistical significance for the BLEU results were
calculated using Koehn’s (Koehn, 2004) pair-wise
bootstrapping test with 95% confidence interval.

On the E2C 29,000-line subset, the augmented
system had a significant 1.7 BLEU points gain over
its baseline. On the full size model, results were
negative. Note that our E2C full size baseline
is reasonably strong: Its character-based BLEU

score is slightly higher than the JHU-UMD sys-
tem that participated in the NIST 2008 MT evalua-
tion (constrained training track), although we used
a subset of that system’s training materials, and
a smaller language model. Results there ranged
from 15.69 to 30.38 BLEU (ignoring a seeming
outlier of 3.93).

5.2 Spanish-to-English Translation

In order to to permit a more direct comparison
with the pivoting technique, we also experimented
with Spanish to English (S2E) translation, fol-
lowing Callison-Burch et al. (2006). For base-
line we used the Spanish and English sides of
the Europarl multilingual parallel corpus (Koehn,
2005), with the standard training, development,
and test sets. We created training subset models
of 10,000, 20,000, and 80,000 aligned sentences,
as described in Callison-Burch et al. (2006). For
better comparison with their pivoting system, we
used the same 5-gram language model, develop-
ment and test sets: For development, we used the
Europarl dev2006 Spanish and English sides, and
for testing we used the Europarl 2006 test set.

We trained the Spanish paraphrase generation
system on the Spanish corpora available from

dataset E2C model BLEU TER
29k baseline 15.21 90.354
29k 1grams 16.87*** 90.370
29k 1-6grams 16.54*** 90.376
29k 1 + 2-6grams 16.88*** 90.349
Full baseline 22.17 90.398
Full 1grams 21.64*** 90.459
Full 1-6grams 21.75 90.421
Full 1 + 2-6grams 21.39*** 90.433

Table 2: E2C Results: character-based BLEU and
TER scores. All models have one additional fea-
ture over baseline, except for the "1 + 2-6" mod-
els that have one feature for unigrams and an-
other feature for bigrams to 6-grams. Paraphrases
with score < .3 were filtered out. *** = sig-
nificance test over baseline with p < 0.0001,
using Koehn’s (2004) pair-wise bootstrap resam-
pling test for BLEU with 95% confidence interval.

Paraphrase Score
Source: deal

agreement 0.56
accord 0.53
talks 0.45
contract 0.42
peace deal 0.33
merger 0.32
agreement is 0.30

Source: fall
rise 0.87
slip 0.82
tumbled today 0.68
fell today 0.67
tumble 0.65
fall tokyo ap stock prices fell 0.56
are mixed 0.54

Source: to provide any other
to give any 0.74
to give further 0.70
to provide any 0.68
to give any other 0.62
to provide further 0.61
to provide other 0.53
to reveal any 0.52
to provide any further 0.48
to disclose any 0.47
to publicly discuss the 0.43

Source: we have a situation that
uncontroversial question about our 0.66
obviously with the developments this morning 0.65
community staffing of community centres 0.64
perhaps we are getting rather impatient 0.63
er around the inner edge 0.60
interested in going to the topics 0.60
and that is the day that 0.60
as a as a final point 0.59
left which it may still have 0.56

Table 3: English paraphrases from E2C 29K-
bitext systems.
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the EACL 2009 Fourth Workshop on Statistical
Machine Translation:1 the Spanish side of the
Europarl-v4, news training 2008, and news com-
mentary 2009. We also re-trained adding the JRC-
Acquis-v3 corpus2 to the paraphrase training set,
and then adding also the LDC Spanish Gigaword
(LDC2006T12) and truncating the resulting cor-
pus after the first 150M lines. We lowercased
these training sets, tokenized and removed punc-
tuation marks and numbers, and this resulted in
training set sizes as detailed in Table 1. We gen-
erated paraphrases for phrases up to four tokens
in length, and used two arbitrary similarity thresh-
olds of minScore = 0.3 (as in the E2C experi-
ments), and 0.6, for enforcing only higher preci-
sion paraphrasing.

We experimented with these variants: a single
feature for all paraphrase (1-4grams); using only
paraphrases of unigrams (1grams); and using two
features: one only sensitive to unigrams and bi-
grams, and the other to the rest (1-2 + 3-4grams).

Results are shown in Table 4. We used BLEU

over lowercased outputs to evaluate all S2E sys-
tems, and Koehn’s significance test as above.

On the S2E 10,000-line subset, both the 1grams
and 1-4grams models achieved significant gains of
.4 BLEU points over the baseline. We concluded
from a manual evaluation of the 10,000-line mod-
els that the two major weaknesses of the baseline
system were (not surprisingly) number of untrans-
lated (OOV) words / phrases, followed by number
of superfluous words / phrases.

On the larger subset models, no system sig-
nificantly outperformed the baseline. Note that
our S2E baselines’ scores are higher than those
of Callison-Burch et al. (2006), since we evaluate
lowercased outputs, instead of recased ones.

6 Discussion and Future Work

We have shown that monolingually-derived para-
phrases, based on distributional semantic similar-
ity measures over a source-language corpus, can
improve the performance of statistical machine
translation (SMT) systems. Our proposed method
has the advantage of not relying on bitexts in order
to generate the paraphrases, and therefore gives
access to large amounts of monolingual training
data, for which creating bitexts of equivalent size
is generally unfeasible. We haven’t trained our

1http://www.statmt.org/wmt09
2http://wt.jrc.it/lt/Acquis

system on nearly as large a corpus as it can han-
dle, and indeed we see this as a natural next step.

Results support the assumption that a larger
monolingual paraphrase training set yields bet-
ter paraphrases: our S2E 1-4grams model per-
formed significantly better than baseline when us-
ing wmt09+aquis for paraphrasing, but when only
using wmt09, the model had a smaller advantage
that did not reach significance. However, for the
S2E 1grams model, there was a slight decrease in
performance when switching paraphrasing corpus
from wmt09+aquis to wmt09+aquis+afp. This ef-
fect might be due to the genre or unbalanced con-
tent of the additional corpus, or perhaps it is the
case that in this corpus size, paraphrases of higher-
level ngrams benefitted from the additional text
much more than paraphrases of unigrams did. The
two rightmost columns in Table 5 show that al-
though Spanish monolingual paraphrases for the
unigram baile improve when using the larger cor-
pus, (e.g., danza and un balie become the third and
fourth top candidates, pushing much worse candi-
dates far down the list), the two top paraphrase
candidates remained unchanged. However, for
the 4gram a favor del informe, antonymous can-
didates, which are bad and misleading for trans-
lation, are pushed down from the top first and
third spots by synonymous, better candidates. Ta-
ble 3 contains additional examples of good and
bad top paraphrase candidates, also in English.
Paraphrases of phrases seem to be of lower qual-
ity than those of unigrams, as can be seen at the
bottom of the table.

These results also show that our method is es-
pecially useful in settings involving low-density
languages or special domains: The smaller sub-
set models, emulating a resource-poor language
situation, show higher gains than larger models
(which are supersets of the smaller subset models),
when augmented with paraphrases derived from
the same paraphrase training set. This was vali-
dated in two very different language pairs: English
to Chinese, and Spanish to English. We believe
that larger monolingual training sets for paraphras-
ing can help languages with richer resources, and
we intend to explore this too.

Although the gains in the Spanish-English sub-
sets are somewhat smaller than the pivoting tech-
nique reported in Callison-Burch et al. (2006),
e.g., .7 BLEU for the 10k subset, we take these
results as a proof of concept that can yield better
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bitext mono.corp. features minScore BLEU TER
10k (baseline) – – 23.78 62.382
10k wmt09 1-4grams .6 23.81
10k wmt09 1-2+3-4gr .6 23.92 62.202
10k wmt09+aquis 1-4grams .6 24.13*** 61.739
10k wmt09+aquis 1grams .6 24.11 61.979
20k (baseline) – – 24.68 62.333
20k wmt09+aquis 1-4grams .6 24.75 61.528
80k (baseline) – – 27.89 57.977
80k wmt09+aquis 1-4grams .6 27.82 57.906

10k wmt09+aquis 1grams .3 24.11 61.979
10k wmt09+aquis+afp 1grams .3 23.97 61.974
20k wmt09+aquis+afp 1grams .3 24.77 61.276
80k wmt09+aquis+afp 1grams .3 27.84*** 57.781

Table 4: S2E Results: Lowercase BLEU and TER. Paraphrases with score < minScore were filtered out.
*** = significance test over baseline with p < 0.0001, using Koehn’s (2004) pair-wise bootstrap test for
BLEU with 95% confidence interval.

pivot wmt09+acquis wmt09+acquis+afp
Source: baile

danza el baile el baile
bailar baile y baile y
a de david palomar y la danza
dans viejo como quien se acomoda una un baile
empresa por julián estrada el tercero de teatro
coro al baile a la baloncesto el cine

Source: a favor del informe
a favor de este informe en contra del informe favor del informe
favor del informe a favor de este informe en contra del informe
el informe en contra de este informe a favor de este informe
a favor a favor de la resolución en contra de este informe
por el informe a favor de esta resolución en contra de la resolución
al informe a favor del informe del señor a favor del informe del sr.
su a favor del informe del sr. en contra del informe del sr.
del informe en contra de la propuesta a favor del excelente informe
de este informe contra el informe a favor del informe deprez

Table 5: Comparison of Spanish paraphrases: by pivoting, and by two monolingual corpora. Ordered
from best to worst score.

system example
source cuando escucho las distintas intervenciones , creo que quienes afirman que deberíamos analizar

nuestras prioridades y limitar el número de objetivos que queremos conseguir , están en lo cierto .
reference when i listen to the various comments made , i find myself agreeing with those who recommend

that we take a look at our priorities and then limit the number of aims we want to achieve
baseline escucho when the various speeches, i believe that those who afirman that we should our

environmental limitar priorities and the number of objectives we want to achieve, are in this way.
pivoting (MW) when i can hear the various speeches , i believe that those people that we should look at our

priorities and to limit the number of objectives we want to achieve , are in fact .
wmt09+acquis escucho when the various speeches, i believe that those who claiming that we should environmental
.1-4grams limitar our priorities and the number of objectives we want to achieve, are on the way.
wmt09+acquis escucho when the various speeches, i believe that those who considered that we should our
.1grams environmental priorities and reducing the number of objectives we want to achieve, are on the way.
wmt09+acquis+afp escucho when the various speeches, i believe that those who say that we should our environmental
.1grams priorities and reduce the number of objectives we want to achieve, are on the way.

Table 6: S2E translation examples on 10k-bitext systems. Some translation differences are in bold.
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gains with larger monolingual training sets. Pivot-
ing techniques (translating back and forth) rely on
limited resources (bitexts), and are subject to shifts
in meaning due to their inherent double transla-
tion step. In contrast, large monolingual resources
are relatively easy to collect, and our system in-
volves only a single translation/paraphrasing step
per target phrase. Table 5 also shows an exemplar
comparison with the pivoting paraphrases used in
Callison-Burch et al. (2006). It seems that the piv-
oting paraphrases might suffer more from having
frequent function words as top candidates, which
might be a by-product of their alignment “promis-
cuity”. However, the top antonymous candidate
problem seems to mainly plague the monolin-
gual distributional paraphrases (but improves with
larger corpora). See also Table 6.

The paraphrase quality remains an issue with
this method (as with all other paraphrasing meth-
ods). Some possible ways of improving it, be-
sides using larger corpora, are: using syntactic in-
formation (Callison-Burch, 2008), using semantic
knowledge such as thesaurus or WordNet to per-
form word sense disambiguation (WSD) (Resnik,
1999; Mohammad and Hirst, 2006), improving
the similarity measure, and refining the similarity
threshold. We would like to explore ways of incor-
porating syntactic knowledge that do not sacrifice
coverage as much as in Callison-Burch (2008); in-
corporating semantic knowledge to disambiguate
phrasal senses; using context to help sense disam-
biguation (Erk and Padó, 2008); and optimizing
the similarity threshold for use in SMT, for exam-
ple on a held-out dataset: too high a threshold re-
duces coverage, while too low a threshold results
in bad paraphrases and translation.

The method presented here is quite general, and
therefore different similarity measures, including
other corpus-based ones, can be plugged in to gen-
erate paraphrases. We are looking into using DPs
with word-sense disambiguation: Since it has been
shown that similarity is often judged by the se-
mantic distance of the closest senses of the two
target words (Mohammad and Hirst, 2006), and
that paraphrases generated this way are likely to
be of higher quality (Marton et al., 2009), hence
it is also likely that the overall performance of an
SMT system using them will also improve further.

One potential advantage of using bitexts for
paraphrase generation is the usage of implicit hu-
man knowledge, i.e., sentence alignments. The

concern that not using this knowledge would turn
out detrimental to the performance of SMT sys-
tems augmented by paraphrases as described here
was largely put to rest, as our method improved
the tested subset SMT systems’ quality.
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Abstract

This work introduces a model free approach to
sentence compression, which grew out of ideas
from Nomoto (2008), and examines how it com-
pares to a state-of-art model intensive approach
known as Tree-to-Tree Transducer, or T3 (Cohn
and Lapata, 2008). It is found that a model free
approach significantly outperforms T3 on the par-
ticular data we created from the Internet. We also
discuss what might have caused T3’s poor perfor-
mance.

1 Introduction

While there are a few notable exceptions (Hori and
Furui, 2004; Yamagata et al., 2006), it would be
safe to say that much of prior research on sen-
tence compression has been focusing on what we
might call ‘model-intensive approaches,’ where
the goal is to mimic human created compressions
as faithfully as possible, using probabilistic and/or
machine learning techniques (Knight and Marcu,
2002; Riezler et al., 2003; Turner and Charniak,
2005; McDonald, 2006; Clarke and Lapata, 2006;
Cohn and Lapata, 2007; Cohn and Lapata, 2008;
Cohn and Lapata, 2009). Because of this, the
question has never been raised as to whether a
model free approach − where the goal is not to
model what humans would produce as compres-
sion, but to provide compressions just as useful as
those created by human − will offer a viable alter-
native to model intensive approaches. This is the
question we take on in this paper.1

1One caveat would be in order. By model free approach,
we mean a particular approach which does not furnish any
parameters or weights that one can train on human created
compressions. An approach is said to be model-intensive if it
does. So as far as the present paper is concerned, we might
do equally well with a mention of ‘model free’ (‘model-
intensive’) replaced with ‘unsupervised’ (‘supervised’), or
‘non-trainable’ (‘trainable’).

An immediate benefit of the model-free ap-
proach is that we could free ourselves from the
drudgery of collecting gold standard data from hu-
mans, which is costly and time-consuming. An-
other benefit is intellectual; it opens up an alterna-
tive avenue to addressing the problem of sentence
compression hitherto under-explored.

Also breaking from the tradition of previous re-
search on sentence compression, we explore the
use of naturally occurring data from the Internet
as the gold standard. The present work builds on
and takes further an approach called ’Generic Sen-
tence Trimmer’ (GST) (Nomoto, 2008), demon-
strating along the way that it could be adapted for
English with relative ease. (GST was originally
intended for Japanese.) In addition, to get a per-
spective on where we stand with this approach, we
will look at how it fares against a state-of-the-art
model intensive approach known as ’Tree-to-Tree
Transducer’ (T3) (Cohn, 2008), on the corpus we
created.

2 Approach

Nomoto (2008) discusses a two-level model
for sentence compression in Japanese termed
‘Generic Sentence Trimmer’ (GST), which con-
sists of a component dedicated to producing gram-
matical sentences, and another to reranking sen-
tences in a way consistent with gold standard com-
pressions. For the convenience’s sake, we refer
to the generation component as ‘GST/g’ and the
ranking part as ‘GST/r.’ The approach is moti-
vated largely by the desire to make compressed
sentences linguistically fluent, and what it does
is to retain much of the syntax of the source sen-
tence as it is, in compression, which stands in con-
trast to Filippova and Strube (2007) and Filippova
and Strube (2008), who while working with de-
pendency structure (as we do), took the issue to be
something that can be addressed by selecting and
reordering constituents that are deemed relevant.
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Figure 1: Dependency Structure for ‘ABCDEFGH’

Getting back to GST, let us consider a sentence,

(1) The bailout plan was likely to depend on
private investors to purchase the toxic assets
that wiped out the capital of many banks.

Among possible compressions GST/g produces
for the sentence are:

(2)

a. The bailout plan was likely to depend on
private investors to purchase the toxic assets.

b. The bailout plan was likely to depend on
private investors.

c. The bailout plan was likely to depend on
investors.

d. The bailout plan was likely.

Notice that they do not differ much from the
source sentence (1), except that they get some of
the parts chopped off. In the following, we talk
about how this could done systematically.

3 Compression with Terminating
Dependency Paths

One crucial feature of GST is the notion of Ter-
minating Dependency Paths or TDPs, which en-
ables us to factorize a dependency structure into
a set of independent fragments. Consider string
s = ABCDEFGH with a dependency structure as
shown in Figure 1. We begin by locating terminal
nodes, i.e., those which have no incoming edges,
depicted as filled circles in Figure 1. Next we find
a dependency (singly linked) path from each ter-
minal node to the root (labeled E). This would give
us three paths p1 = A-C-D-E, p2 = B-C-D-E, and
p3 = H-G-F-E (represented by dashed arrows in
Figure 1).

CD
E
B

#
CD
E

A

#
GF
E
H

#
@ %
Figure 2: TDP Trellis and POTs.

Given TDPs, we set out to find a set T of all
suffixes for each TDP, including an empty string,
which would look like:

T (p1) = {〈A C D E〉, 〈C D E〉, 〈D E〉, 〈E〉, 〈〉}
T (p2) = {〈B C D E〉, 〈C D E〉, 〈D E〉, 〈E〉, 〈〉}
T (p3) = {〈G F E〉, 〈F E〉, 〈E〉, 〈〉}

Next we combine suffixes, one from each set T ,
while removing duplicates if any. Combining, for
instance, 〈A C D E〉 ∈ T (p1), 〈C D E〉 ∈ T (p2),
and 〈G F E〉 ∈ T (p3), would produce {A C D

E G F}, which we take to correspond to a string
ACDEGF, a short version of s.

As a way of doing this systematically, we put
TDPs in a trellis format as in Figure 2, each file
representing a TDP, and look for a path across the
trellis, which we call ‘POT.’ It is easy to see that
traveling across the trellis (while keeping record
of nodes visited), gives you a particular way in
which to combine TDPs: thus in Figure 2, we have
three POTs, C-B-F, A-C-H, and A-B-F, giving rise
to BCDEF, ACDEFGH, and ABCDEF, respectively
(where ‘&’ denotes a starting node, ‘%’ an ending
node, and ‘#’ an empty string). Note that the POT
in effect determines what compression we get.

Take for instance a POT C-B-F. To get to a com-
pression, we first expand C-B-F to get {〈C D E〉1,
〈B C D E〉2, 〈F E〉3} (call it E(C-B-F)). (Note that
each TDP is trimmed to start with a node at a cor-
responding position of the POT.) Next we take a
union of TDPs treating them as if they were sets:
thus

∪ E(C-B-F) = {B C D E F} = BCDEF.

4 N-Best Search over TDP Trellis

An obvious problem of this approach, however,
is that it spawns hundreds of thousands of possi-
ble POTs. We would have as many as 53 = 125
of them for the eight-character long string in Fig-
ure 1.
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Figure 3: Dependency Structure

What we propose to deal with this problem is to
call on a particular ranking scheme to discriminate
among candidates we get. Our scheme takes the
form of Equation 3 and 4.

W (x) = idf(x) + exp(−depth(x)) (3)

S(p) =
∑

x0,...xn∈E(p)

W (xi) (4)

depth(x) indicates the distance between x and the
root, measured by the number of edges one need
to walk across to reach the root from x. Figure 3
shows how the depth is gauged for nodes in a de-
pendency structure. idf(x) represents the log of
the inverse document frequency of x. The equa-
tions state that the score S of a POT p is given as
the sum of weights of nodes that comprise

∪ E(p).
Despite their being simple, equations 3 and 4

nicely capture our intuition about the way the trim-
ming or compression should work, i.e., that the
deeper we go down the tree, or the further away
you are from the main clause, the less important
information becomes. Putting aside idf(x) for
the moment, we find in Figure 3, W (assets) >
W (capital) > W (banks) > W (many). Also de-
picted in the figure are four TDPs starting with
many, the (preceding toxic), investors, and the
(preceding bailout).

Finally, we perform a best-first search over the
trellis to pick N highest scoring POTs, using For-

Table 1: Drop-me-not rules. A ‘|’ stands for or.
‘a:b’ refers to an element which has both a and b
as attributes. Relation names such as nsubj, aux,
neg, etc., are from de Marneffe et al. (2006).

R1. VB ⇒ nsubj | aux | neg | mark
R2. VB ⇒ WDT | WRB

R3. JJ ⇒ cop
R4. NN ⇒ det | cop
R5. NN ⇒ poss:WP (=‘whose’)
R6. ⋆ ⇒ conj & cc

ward DP/Backward A* (Nagata, 1994), with the
evaluation function given by Equation 4. We
found that the beam search, especially when used
with a small width value, does not work as well
as the best first search as it tends to produce very
short sentences due to its tendency to focus on
inner nodes, which generally carry more weights
compared to those on the edge. In the experiments
described later, we limited the number of candi-
dates to explore at one time to 3,000, to make the
search computationally feasible.

5 ‘Drop-me-not’ Rules

Simply picking a path over the TDP trellis (POT),
however, does not warrant the grammaticality of
the tree that it generates. Take for instance, a de-
pendency rule, ‘likely←plan, was, depend,’ which
forms part of the dependency structure for sen-
tence (1). It gives rise to three TDPs, 〈plan, likely〉,
〈was, likely〉, and 〈depend, likely〉. Since we may
arbitrarily choose either of the two tokens in each
TDP with a complete disregard for a syntagmatic
context that each token requires, we may end up
with sequences such as ‘plan likely,’ ’plan was
likely,’ or ‘plan likely depend’ (instances of a same
token are collapsed into one). This would obvi-
ously suggest the need for some device to make
the way we pick a path syntagmatically coherent.

The way we respond to the issue is by introduc-
ing explicit prohibitions, or ‘drop-me-not’ rules
for POTs to comply with. Some of the major
rules are shown in Table 1. A ‘drop-me-not’ rule
(DMN) applies to a local dependency tree consist-
ing of a parent node and its immediate child nodes.
The intent of a DMN rule is to prohibit any one of
the elements specified on the right hand side of the
arrow from falling off in the presence of the head
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node; they will be gone only if their head node is.
R1 says that if you have a dependency tree

headed by VB with nsubj, aux, neg, or mark among
its children, they should stay with VB; R2 pro-
hibits against eliminating a WDT or WRB-labeled
word in a dependency structure headed by VB; R6
disallows either cc or conj to drop without accom-
panying the other, for whatever type the head node
assumes.

In Table 2, we find some examples that moti-
vate the kinds of DMN rules we have in Table 1.
Note that given the DMNs, the generation of ‘was
likely depend,’ or ‘plan likely depend’ is no longer
possible for the sentence in Figure 3.

6 Reranking with CRFs

Pipelining GST/g with CRFs allows us to tap into
a host of features found in the sentence that could
usefully be exploited toward generating compres-
sion, and requires no significant change in the way
it is first conceived in Nomoto (2008), in order to
make it work for English. It simply involves trans-
lating an output by GST/g into the form that al-
lows the use of CRFs; this could be done simply
by labeling words included in compression as ‘1’
and those taken out as ‘0,’ which would produce
a binary representation of an output generated by
GST/g. Given a source sentence x and a set G(S)
of candidate compressions generated by GST/g −
represented in binary format − we seek to solve
the following,

y⋆ = argmax
y∈G(S)

p(y|x;θθθ). (5)

where y⋆ could be found using regular linear-
chain CRFs (Lafferty et al., 2001). θ stands for
model parameters. In building CRFs, we made use
of features representing lexical forms, syntactic
categories, dependency relations, TFIDF, whether
a given word appears in the title of an article, and
the left and right lexical contexts of a word.

7 T3

Cohn and Lapata (2008; 2009) are a recent attempt
to bring a machine learning framework known as
‘Structured SVM’ to bear on sentence compres-
sion and could be considered to be among the
current state-of-art approaches. Roughly speak-
ing, their approach or what they call ‘Tree-to-Tree
Transducer’ (T3) takes sentence compression to
be the problem of classifying the source sentence

Table 3: RSS item and its source

R Two bombings rocked Iraq today, killing at
least 80 in attacks at a shrine in Karbala
and a police recruiting station in Ramadi.

S Baghdad, Jan. 5 − Two new suicide bomb-
ings rocked Iraq today, killing at least 80
in an attack at a shrine in the Shiite city of
Karbala and a police recruiting station in
the Sunni city of Ramadi.

with its target sentence, where one seeks to find
some label y, which represents a compression, for
a given source sentence x, that satisfies the follow-
ing equation,

f(x; w) = argmax
y∈Y

F (y, x; w), (6)

and

F (y, x; w) = 〈w, Ψ(y, x)〉, (7)

where w, a vector representing model parameters,
is determined in such a way that for a target class
y and a prediction y′, F (x, y; w) − F (x, y′; w) >
∆(y, y′) − ξ, ∀y′ ̸= y; ∆(y, y′) represents a loss
function and ξ a slack variable (Tsochantaridis et
al., 2005). Ψ(y, x) represents a vector of features
culled from y and x, and 〈·, ·〉 a dot product.

For each of the rules used to derive a source sen-
tence, T3 makes a decision on how or whether to
transform the rule, with reference to 〈·, ·〉, which
takes into account such features as the number
of terminals, root category, and lengths of fron-
tiers, which eventually leads to a compression via
a chart style dynamic programming.

8 Corpus

Parting ways with previous work on sentence com-
pression, which heavily relied on humans to create
gold standard references, this work has a particu-
lar focus on using data gathered from RSS feeds,
which if successful, could open a door to building
gold standard data in large quantities rapidly and
with little human effort. The primary objective of
the present work is to come up with an approach
capable of exploiting naturally occurring data as
references for compression. So we are interested
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Table 2: Examples. a ⇐r b means that b stands in an r-relation to a.

rel, nsubj In defying the President, Bill Frist was veering to the political center in a year
during which he had artfully courted his party’s right wing.

couted ⇐rel during
veering⇐nsubj Bill Frist

neg Isaac B. Weisfuse says that the idea that a pandemic flu will somehow skip the 21st
century does not make any sense.

make⇐neg not

mark Prime Minister Ariel Sharon of Israel lashed out at protesters as troops finished
clearing all but the last of the 21 Gaza settlements.

finished ⇐mark as

WDT The announcement offered few details that would convince protestants that they
should resume sharing power with the I.R.A.’s political wing.

convince ⇐wdt that

WRB Arbitron, a company best known for its radio ratings, is testing a portable, pager-
size device that tracks exposure to media throughout the day, wherever its wearer
may go.

go ⇐wrb wherever

cop Buildings in a semi-abandoned town just inside Mexico that is a haven for would-
be immigrants and smugglers will be leveled.

haven ⇐cop is

aux, poss:WP Harutoshi Fukui has penned a handful of best sellers whose common themes
resonate in a country shedding its pacifism and rearming itself.

resonate ⇐poss:WP whose
penned ⇐aux has

Table 4: RSS Corpus from NYTimes.com.

areas # of items
INTERNATIONAL 2052
NYREGION 1153
NATIONAL 1351
OBITUARIES 541
OPINION 1031
SCIENCE 465
SPORTS 1451
TECHNOLOGY 978
WASHINGTON 1297

in finding out how GST compares with T3 from
this particular perspective.

We gathered RSS feeds at NYTimes.com over a
period of several months, across different sections,
including INTERNATIONAL, NATIONAL, NYRE-
GION, BUSINESS, and so forth, out of which we
randomly chose 2,000 items for training data and
116 for testing data. For each RSS summary, we
located its potential source sentence in the linked
page, using a similarity metric known as Soft-
TFIDF (Cohen et al., 2003).2 Table 4 gives a run-
down on areas items came from and how many of
them we collected for each of these areas.

For the ease of reference, we refer to a corpus of
the training and test data combined as ‘NYT-RSS,’
and let ‘NYT-RSS(A)’ denote the training part of

2SoftTFIDF is a hybrid of the TFIDF scheme and an edit-
distance model known as Jaro-Winkler(Cohen et al., 2003).

NYT-RSS, and ‘NYT-RSS(B)’ the testing part.

9 Experiments

We ran the Stanford Parser on NYT-RSS to extract
dependency structures for sentences involved, to
be used with GST/g (de Marneffe et al., 2006;
Klein and Manning, 2003). We manually devel-
oped 28 DMN rules out of NYT-RSS(A), some of
which are presented in Table 1. An alignment be-
tween the source sentence and its corresponding
gold standard compression was made by SWA or
a standard sequence alignment algorithm by Smith
and Waterman (1981). Importantly, we set up
GST/g and T3 in such a way that they rely on the
same set of dependency analyses and alignments
when they are put into operation. We trained T3
on NYT-RSS(A) with default settings except for
“–epsilon” and “–delete” options which we turned
off, as preliminary runs indicated that their use led
to a degraded performance (Cohn, 2008). We also
set the loss function as was given in the default
settings. We trained both GST/r, and T3 on NYT-
RSS(A).

We ran GST/g and GST/g+r, i.e., GST/r
pipelined with GST/g, varying the compression
rate from 0.4 to 0.7. This involved letting GST/g
rank candidate compressions by S(p) and then
choosing the first candidate to satisfy a given com-
pression rate, whereas GST/g+r was made to out-
put the highest ranking candidate as measured by
p(y | x; θ), which meets a particular compression
rate. It should be emphasized, however, that in T3,
varying compression rate is not something the user
has control over; so we accepted whatever output
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Table 5: Results on NYT-RSS. ‘*’-marked figures
mean that performance of GST/g is different from
that of GST/g+r (on the comparable CompR) at
5% significance level according to t-test. The fig-
ures indicate average ratings.

Model CompR Intelligibility Rep.
GST/g+r 0.446 2.836 2.612
GST/g 0.469 3.095 2.569
GST/g+r 0.540 2.957 2.767
GST/g 0.562 3.069 3.026∗

GST/g+r 0.632 2.931 2.957
GST/g 0.651 3.060 3.259∗

GST/g+r 0.729 3.155 3.345
GST/g 0.743 3.328 3.621∗

T3 0.353 1.750 1.586
Gold Std. 0.657 4.776 3.931

T3 generated for a given sentence.
Table 5 shows how GST/g, GST/g+r, and T3

performed on NYT-RSS, along with the gold stan-
dard, on a scale of 1 to 5. Ratings were solicited
from 4 native speakers of English. ‘CompR’ in-
dicates compression rate. ‘Intelligibility’ means
how well the compression reads; ‘representative-
ness’ how well the compression represents its
source sentence. Table 6 presents a guideline for
rating, describing what each rating should mean,
which was also presented to human judges to fa-
cilitate evaluation.

The results in Table 5 indicate a clear supe-
riority of GST/g and GST/g+r over T3, while
differences in intelligibility between GST/g and
GST/g+r were found not statistically significant.
What is intriguing, though, is that GST/g produced
performance statistically different in representa-
tiveness from GST/g+r at 5% level as marked by
the asterisk.

Shown in Table 8 are examples of compression
created by GST/g+r, GST/g and T3, together with
gold standard compressions and relevant source
sentences. One thing worth noting about the ex-
amples is that T3 keeps inserting out-of-the-source
information into compression, which obviously
has done more harm than good to compression.

Table 6: Guideline for Rating
MEANING EXPLANATION SCORE

very bad For intelligbility, it means that the
sentence in question is rubbish; no
sense can be made out of it. As
for representativeness, it means that
there is no way in which the com-
pression could be viewed as repre-
senting its source.

1

poor Either the sentence is broken or fails
to make sense for the most part, or it
is focusing on points of least signifi-
cance in the source.

2

fair The sentence can be understood,
though with some mental effort; it
covers some of the important points
in the source sentence.

3

good The sentence allows easy compre-
hension; it covers most of important
points talked about in the source sen-
tence.

4

excellent The sentence reads as if it were writ-
ten by human; it gives a very good
idea of what is being discussed in the
source sentence.

5

Table 7: Examples from corpora. ‘C’ stands for
reference compression; ‘S’ source sentence.

NYT-RSS
C Jeanine F. Pirro said that she would abandon her

plans to unseat senator Hillary Rodham Clinton and
would instead run for state attorney general .

S Jeanine F. Pirro, whose campaign to unseat United
States senator Hillary Rodham Clinton was in up-
heaval almost from the start, said yesterday that she
would abandon the race and would instead run for
attorney general of New York.

CLwritten
C Montserrat, the Caribbean island, is bracing itself

for arrests following a fraud investigation by Scot-
land Yard.

S Montserrat, the tiny Caribbean island that once
boasted one bank for every 40 inhabitants, is brac-
ing itself this Easter for a spate of arrests following
a three-year fraud and corruption investigation by
Scotland Yard.

CLspoken
C This gives you the science behind the news, with top-

ics explained in detail, from Mad Cow disease to
comets.

S This page gives you the science behind the news,
with hundreds of topics explained in detail, from
Mad Cow disease to comets.
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Table 8: form GST/g+r, GST/g, T3, and Gold standard. (‘Source’ represents a source sentence.)

GST/g+r The Corporation plans to announce today at the Game Show that it will begin selling the
Xbox 360, its new video console , on Nov 22.

GST/g The Microsoft Corporation plans to announce at the Tokyo Game Show that it will begin
selling Xbox 360, new video console , on Nov.

T3 The Microsoft Corporation in New York plans to announce today at the Tokyo Game
Show it will begin selling the Xbox 360 , its new video game console, on Nov 22.

Gold The Microsoft Corporation plans to announce Thursday at the Tokyo Game Show that it
will begin selling the Xbox 360 , its new video game console, on Nov. 22.

Source The Microsoft Corporation plans to announce today at the Tokyo Game Show that it will
begin selling the Xbox 360, its new video game console, on Nov 22.

GST/g+r Scientists may have solved the chemical riddle of why the SARS virus causes such pneu-
monia and have developed a simple therapy.

GST/g Scientists may have solved the chemical riddle of why the virus causes such a pneumonia
and have developed a simple therapy.

T3 The scientists may solved the chemical riddle of the black river of why the SARS virus
causes such a deadly pneumonia.

Gold Scientists may have solved the riddle of why the SARS virus causes such a deadly pneu-
monia.

Source Scientists may have solved the chemical riddle of why the SARS virus causes such a
deadly pneumonia and have developed a simple therapy that promises to decrease the
extraordinarily high death rate from the disease, according to a report in the issue of the
journal nature-medicine that came out this week.

GST/g+r A flu shot from GlaxoSmithKline was approved by American regulators and the Corpo-
ration vaccine plant, shut year because of, moved closer to being opened work to avoid.

GST/g A flu shot was approved by regulators yesterday and the Chiron Corporation vaccine
plant, shut , moved closer to being opened as officials work to avoid shortage.

T3 A flu shot from gaza was the Chiron Corporation’s Liverpool vaccine plant, shut last year
of a contamination shortage,, but critics suggest he is making it worse.

Gold The Chiron Corporation’s liverpool vaccine plant , shut last year because of contamina-
tion, moved closer to being opened as officials work to avoid another shortage.

Source A flu shot from GlaxoSmithKline was approved by American regulators yesterday and the
Chiron Corporation’s Liverpool vaccine plant , shut last year because of contamination,
moved closer to being opened as officials work to avoid another shortage.
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Figure 4: Density distribution of alignment scores. The x-dimension represents the degree of alignment
between gold standard compression and its source sentence.
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Table 9: Alignment Scores by SWA

NYT-RSS CLwritten CLspoken
-3.061 (2000) -1.882 (1629) 0.450 (4110)

10 Why T3 fails

It is interesting and worthwhile to ask what caused
T3, heavily clad in ideas from the recent ma-
chine learning literature, to fail on NYT-RSS, as
opposed to the ‘CLwritten’ and ‘CLspoken’ cor-
pora on which T3 reportedly prevailed compared
to other approaches (Cohn and Lapata, 2009).
The CLwritten corpus comes from written sources
in the British National Corpus and the American
News Text corpus; the CLspoken corpus comes
from transcribed broadcast news stories (cf. Ta-
ble 7).

We argue that there are some important dif-
ferences between the NYT-RSS corpus and the
CLwritten/CLspoken corpora that may have led to
T3’s poor record with the former corpus.

The CLwritten and CLspoken corpora were cre-
ated with a specific purpose in mind: namely to
assess the compression-by-deletion approach. So
their authors had a very good reason to limit gold
standard compressions to those that can be arrived
at only through deletion; annotators were care-
fully instructed to create compression by delet-
ing words from the source sentence in a way that
preserves the gist of the original sentence. By
contrast, NYT-RSS consists of naturally occurring
compressions sampled from live feeds on the In-
ternet, where relations between compression and
its source sentence are often not as straightfor-
ward. For instance, to arrive at a compression in
NYT-RSS in Table 7 involves replacing race with
her plans to unseat senator Hillary Rodam Clin-
ton, which is obviously beyond what is possible
with the deletion based approach.

In CLwritten and CLspoken, on the other hand,
compressions are constructed out of parts that ap-
pear in verbatim in the original sentence, as Ta-
ble 7 shows: thus one may get to the compres-
sions by simply crossing off words from the origi-
nal sentence.

To see whether there is any significant differ-
ence among NYT-RSS, CLwritten and CLspoken,
we examined how well gold standard compres-
sions are aligned with source sentences on each
of the corpora, using SWA. Table 9 shows what

we found. Parenthetical numbers represent how
many pairs of compression and source are found in
each corpus. A larger score means a tighter align-
ment between gold standard compression and its
source sentence: we find in Table 9 that CLspoken
has a source sentence more closely aligned with
its compression than CLwritten, whose alignments
are more closely tied than NYT-RSS’s.

Figure 4 (found in the previous page) shows
how SWA alignment scores are distributed over
each of the corpora. CLwritten and CLspoken
have peaks at around 0, with an almost entire
mass of scores concentrating in an area close to or
above 0. This means that for the most of the cases
in either CLwritten or CLspoken, compression is
very similar in form to its source. In contrast,
NYT-RSS has a heavy concentration of scores in
a stretch between -5 and -10, indicating that for
the most of time, the overlap between compres-
sion and its source is rather modest compared to
CLwritten and CLspoken.

So why does T3 fails on NYT-RSS? Because
NYT-RSS contains lots of alignments that are only
weakly related: in order for T3 to perform well,
the training corpus should be made as free of spu-
rious data as possible, so that most of the align-
ments are rated over and around 0 by SWA. Our
concern is that such data may not happen naturally,
as the density distribution of NYT-RSS shows,
where the majority of alignments are found far be-
low 0, which could raise some questions about the
robustness of T3.

11 Conclusions

This paper introduced the model free approach,
GST/g, which works by creating compressions
only in reference to dependency structure, and
looked at how it compares with a model intensive
approach T3 on the data gathered from the Inter-
net. It was found that the latter approach appears
to crucially rely on the way the corpus is con-
structed in order for it to work, which may mean a
huge compromise.

Interestingly enough, GST/g came out a winner
on the particular corpus we used, even outperform-
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ing its CRFs harnessed version, GST/g+r in repre-
sentativeness. This suggests that we might gain
more by improving fluency of GST/g than by fo-
cusing on its representativeness, which in any case
came close to that of human at 70% compression
level. The future work should also look at how the
present approach fares on CLwritten and CLspo-
ken, for which T3 was found to be effective.
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Abstract

This paper presents an effective method
for generating natural language sentences
from their underlying meaning represen-
tations. The method is built on top of
a hybrid tree representation that jointly
encodes both the meaning representation
as well as the natural language in a tree
structure. By using a tree conditional
random field on top of the hybrid tree
representation, we are able to explicitly
model phrase-level dependencies amongst
neighboring natural language phrases and
meaning representation components in a
simple and natural way. We show that
the additional dependencies captured by
the tree conditional random field allows it
to perform better than directly inverting a
previously developed hybrid tree semantic
parser. Furthermore, we demonstrate that
the model performs better than a previ-
ous state-of-the-art natural language gen-
eration model. Experiments are performed
on two benchmark corpora with standard
automatic evaluation metrics.

1 Introduction

One of the ultimate goals in the field of natural lan-
guage processing (NLP) is to enable computers to
converse with humans through human languages.
To achieve this goal, two important issues need
to be studied. First, it is important for comput-
ers to capture the meaning of a natural language
sentence in a meaning representation. Second,
computers should be able to produce a human-
understandable natural language sentence from its
meaning representation. These two tasks are re-
ferred to as semantic parsing and natural language
generation (NLG), respectively.

In this paper, we use corpus-based statistical

methods for constructing a natural language gener-
ation system. Given a set of pairs, where each pair
consists of a natural language (NL) sentence and
its formal meaning representation (MR), a learn-
ing method induces an algorithm that can be used
for performing language generation from other
previously unseen meaning representations.

A crucial question in any natural language pro-
cessing system is the representation used. Mean-
ing representations can be in the form of a tree
structure. In Lu et al. (2008), we introduced a
hybrid tree framework together with a probabilis-
tic generative model to tackle semantic parsing,
where tree structured meaning representations are
used. The hybrid tree gives a natural joint tree rep-
resentation of a natural language sentence and its
meaning representation.

A joint generative model for natural language
and its meaning representation, such as that used
in Lu et al. (2008) has several advantages over var-
ious previous approaches designed for semantic
parsing. First, unlike most previous approaches,
the generative approach models a simultaneous
generation process for both NL and MR. One el-
egant property of such a joint generative model
is that it allows the modeling of both semantic
parsing and natural language generation within the
same process. Second, the generative process pro-
ceeds as a recursive top-down Markov process in
a way that takes advantage of the tree structure
of the MR. The hybrid tree generative model pro-
posed in Lu et al. (2008) was shown to give state-
of-the-art accuracy in semantic parsing on bench-
mark corpora.

While semantic parsing with hybrid trees has
been studied in Lu et al. (2008), its inverse task
– NLG with hybrid trees – has not yet been ex-
plored. We believe that the properties that make
the hybrid trees effective for semantic parsing also
make them effective for NLG. In this paper, we de-
velop systems for the generation task by building
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on top of the generative model introduced in Lu et
al. (2008) (referred to as the LNLZ08 system).

We first present a baseline model by directly
“inverting” the LNLZ08 system, where an NL sen-
tence is generated word by word. We call this
model the direct inversion model. This model is
unable to model some long range global depen-
dencies over the entire NL sentence to be gener-
ated. To tackle several weaknesses exhibited by
the baseline model, we next introduce an alterna-
tive, novel model that performs generation at the
phrase level. Motivated by conditional random
fields (CRF) (Lafferty et al., 2001), a different pa-
rameterization of the conditional probability of the
hybrid tree that enables the model to encode some
longer range dependencies amongst phrases and
MRs is used. This novel model is referred to as
the tree CRF-based model.

Evaluation results for both models are pre-
sented, through which we demonstrate that the tree
CRF-based model performs better than the direct
inversion model. We also compare the tree CRF-
based model against the previous state-of-the-art
model of Wong and Mooney (2007). Further-
more, we evaluate our model on a dataset anno-
tated with several natural languages other than En-
glish (Japanese, Spanish, and Turkish). Evalua-
tion results show that our proposed tree CRF-based
model outperforms the previous model.

2 Related Work

There have been substantial earlier research ef-
forts on investigating methods for transforming
MR to their corresponding NL sentences. Most
of the recent systems tackled the problem through
the architecture of chart generation introduced by
Kay (1996). Examples of such systems include
the chart generator for Head-Driven Phrase Struc-
ture Grammar (HPSG) (Carroll et al., 1999; Car-
roll and Oepen, 2005; Nakanishi et al., 2005), and
more recently for Combinatory Categorial Gram-
mar (CCG) (White and Baldridge, 2003; White,
2004). However, most of these systems only fo-
cused on surface realization (inflection and order-
ing of NL words) and ignored lexical selection
(learning the mappings from MR domain concepts
to NL words).

The recent work by Wong and Mooney (2007)
explored methods for generation by inverting a
system originally designed for semantic pars-
ing. They introduced a system named WASP−1

that employed techniques from statistical ma-
chine translation using Synchronous Context-Free
Grammar (SCFG) (Aho and Ullman, 1972). The
system took in a linearized MR tree as input, and
translated it into a natural language sentence as
output. Unlike most previous systems, their sys-
tem integrated both lexical selection and surface
realization in a single framework. The perfor-
mance of the system was enhanced by incorpo-
rating models borrowed from PHARAOH (Koehn,
2004). Experiments show that this new hybrid
system named WASP−1++ gives state-of-the-art
accuracies and outperforms the direct translation
model obtained from PHARAOH, when evaluated
on two corpora. We will compare our system’s
performance against that of WASP−1++ in Sec-
tion 5.

3 The Hybrid Tree Framework and the
LNLZ08 System

QUERY : answer(RIVER)

RIVER : longest(RIVER)

RIVER : exclude(RIVER1 RIVER2)

RIVER : river(all) RIVER : traverse(STATE)

STATE : stateid(STATENAME)

STATENAME : texas

what is the longest river that

does not run through texas

Figure 1: An example MR paired with its NL sen-
tence.

Following most previous works in this
area (Kate et al., 2005; Ge and Mooney, 2005;
Kate and Mooney, 2006; Wong and Mooney,
2006; Lu et al., 2008), we consider MRs in the
form of tree structures. An example MR and
its corresponding natural language sentence are
shown in Figure 1. The MR is a tree consisting
of nodes called MR productions. For example,
the node “QUERY : answer(RIVER)” is one MR
production. Each MR production consists of a
semantic category (“QUERY”), a function symbol
(“answer”) which can be optionally omitted, as
well as an argument list which possibly contains
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QUERY : answer(RIVER)

RIVER : longest(RIVER)

RIVER : exclude(RIVER1 RIVER2)

RIVER : traverse(STATE)

STATE : stateid(STATENAME)

STATENAME : texas

texas

run through

that does notRIVER : river(all)

river

the longest

what is

Figure 2: One possible hybrid tree T1

child semantic categories (“RIVER”).

Now we give a brief overview of the hybrid tree
framework and the LNLZ08 system that was pre-
sented in Lu et al. (2008). The training corpus re-
quired by the LNLZ08 system contains example
pairs d(i) = (m̂(i), ŵ(i)) for i = 1 . . . N , where
each m̂(i) is an MR, and each ŵ(i) is an NL sen-
tence. The system makes the assumption that the
entire training corpus is generated from an under-
lying generative model, which is specified by the
parameter set Ω.

The parameter set Ω includes the following: the
MR model parameter ρ(mj |mi, argk) which mod-
els the generation of an MR production mj from
its parent MR production mi as its k-th child, the
emission parameter θ(t|mi,Λ) that is responsible
for generation of an NL word or a semantic cate-
gory t from the MR production mi (the parent of
t) under the context Λ (such as the token to the left
of the current token), and the pattern parameter
φ(r|mi), which models the selection of a hybrid
pattern r that defines globally how the NL words
and semantic categories are interleaved given a
parent MR production mi. All these parameters
are estimated from the corpus during the training
phase. The list of possible hybrid patterns is given
in Table 1 (at most two child semantic categories
are allowed – MR productions with more child se-
mantic categories are transformed into those with
two).

In the table, m refers to the MR production, the
symbol w denotes an NL word sequence and is
optional if it appears inside []. The symbol Y and
Z refer to the first and second semantic category
under the MR production m respectively.

# RHS Hybrid Pattern # Patterns
0 m→ w 1
1 m→ [w]Y[w] 4

2
m→ [w]Y[w]Z[w] 8
m→ [w]Z[w]Y[w] 8

Table 1: The list of possible hybrid patterns, [] de-
notes optional

The generative process recursively creates MR
productions as well as NL words at each gen-
eration step in a top-down manner. This pro-
cess results in a hybrid tree for each MR-NL
pair. The list of children under each MR pro-
duction in the hybrid tree forms a hybrid se-
quence. One example hybrid tree for the MR-
NL pair given in Figure 1 is shown in Figure 2.
In this hybrid tree T1, the list of children under
the production RIVER : longest(RIVER) forms
the hybrid sequence “the longest RIVER :
exclude(RIVER1 RIVER2)”. The yield of the hy-
brid tree is exactly the NL sentence. The MR can
also be recovered from the hybrid tree by record-
ing all the internal nodes of the tree, subject to the
reordering operation required by the hybrid pat-
tern.

To illustrate, consider the generation of the hy-
brid tree T1 shown in Figure 2. The model first
generates an MR production from its parent MR
production (empty as the MR production is the
root in the MR). Next, it selects a hybrid pattern
m → wY from the predefined list of hybrid pat-
terns, which puts a constraint on the set of all al-
lowable hybrid sequences that can be generated:
the hybrid sequence must be an NL word sequence
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followed by a semantic category. Finally, actual
NL words and semantic categories are generated
from the parent MR production. Now the genera-
tion for one level is complete, and the above pro-
cess repeats at the newly generated MR produc-
tions, until the complete NL sentence and MR are
both generated.

Mathematically, the above generative process
yields the following formula that models the joint
probability for the MR-NL pair, assuming the con-
text Λ for the emission parameter is the preceding
word or semantic category (i.e., the bigram model
is assumed, as discussed in Lu et al. (2008)):

p
(T1(ŵ, m̂)

)
= ρ(QUERY : answer(RIVER)|−, arg1)
×φ(m→ wY|QUERY : answer(RIVER))

×θ(what|QUERY : answer(RIVER),BEGIN)
×θ(is|QUERY : answer(RIVER),what)
×θ(RIVER|QUERY : answer(RIVER),is)
×θ(END|QUERY : answer(RIVER),RIVER)

×ρ(RIVER : longest(RIVER)|
QUERY : answer(RIVER), arg1)× . . . (1)

where T1(ŵ, m̂) denotes the hybrid tree T1 which
contains the NL sentence ŵ and MR m̂.

For each MR-NL pair in the training set, there
can be potentially many possible hybrid trees asso-
ciated with the pair. However, the correct hybrid
tree is completely unknown during training. The
correct hybrid tree is therefore treated as a hidden
variable. An efficient inside-outside style algo-
rithm (Baker, 1979) coupled with further dynamic
programming techniques is used for efficient pa-
rameter estimation.

During the testing phase, the system makes use
of the learned model parameters to determine the
most probable hybrid tree given a new natural lan-
guage sentence. The MR contained in that hybrid
tree is the output of the system. Dynamic pro-
gramming techniques similar to those of training
are also employed for efficient decoding.

The generative model used in the LNLZ08 sys-
tem has a natural symmetry, allowing for easy
transformation from NL to MR, as well as from
MR to NL. This provides the starting point for our
work in “inverting” the LNLZ08 system to gener-
ate natural language sentences from the underly-
ing meaning representations.

4 Generation with Hybrid Trees

The task of generating NL sentences from MRs
can be defined as follows. Given a training cor-
pus consisting of MRs paired with their NL sen-
tences, one needs to develop algorithms that learn
how to effectively “paraphrase” MRs with natu-
ral language sentences. During testing, the sys-
tem should be able to output the most probable NL
“paraphrase” for a given new MR.

The LNLZ08 system models p(T (ŵ, m̂)), the
joint generative process for the hybrid tree con-
taining both NL and MR. This term can be rewrit-
ten in the following way:

p(T (ŵ, m̂)) = p(m̂)× p (T (ŵ, m̂)|m̂) (2)

In other words, we reach an alternative view of
the joint generative process as follows. We choose
to generate the complete MR m̂ first. Given m̂, we
generate hybrid sequences below each of its MR
production, which gives us a complete hybrid tree
T (ŵ, m̂). The NL sentence ŵ can be constructed
from this hybrid tree exactly.

We define an operation yield(T ) which returns
the NL sentence as the yield of the hybrid tree T .
Given an MR m̂, we find the most probable NL
sentence ŵ∗ as follows:

ŵ∗ = yield
(

argmax
T

p(T |m̂)
)

(3)

In other words, we first find the most probable
hybrid tree T that contains the provided MR m̂.
Next we return the yield of T as the most probable
NL sentence.

Different assumptions can be made in the pro-
cess of finding the most probable hybrid tree. We
first describe a simple model which is a direct in-
version of the LNLZ08 system. This model, as a
baseline model, generates a complete NL sentence
word by word. Next, a more sophisticated model
that exploits NL phrase-level dependencies is built
that tackles some weaknesses of the simple base-
line model.

4.1 Direct Inversion Model
Assume that a pre-order traversal of the
MR m̂ gives us the list of MR productions
m1,m2, . . . ,mS , where S is the number of MR
productions in m̂. Based on the independence
assumption made by the LNLZ08 system, each
MR production independently generates a hybrid
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sequence. Denote the hybrid sequence gener-
ated under the MR production ms as hs, for
s = 1, . . . , S. We call the list of hybrid sequences
h = 〈h1, h2, . . . , hS〉 a hybrid sequence list
associated with this particular MR. Thus, our goal
is to find the optimal hybrid sequence list h∗ for
the given MR m̂, which is formulated as follows:

h∗ = 〈h∗1, . . . , h∗S〉 = argmax
h1,...,hS

S∏
s=1

p(hs|ms) (4)

The optimal hybrid sequence list defines the op-
timal hybrid tree whose yield gives the optimal NL
sentence.

Due to the strong independence assumption in-
troduced by the LNLZ08 system, the hybrid tree
generation process is in fact highly decompos-
able. Optimization of the hybrid sequence list
〈h1, . . . , hS〉 can be performed individually since
they are independent of one another. Thus, math-
ematically, for s = 1, . . . , S, we have:

h∗s = argmax
hs

p(hs|ms) (5)

The LNLZ08 system presented three models for
the task of transforming NL to MR. In this in-
verse task, for generation of a hybrid sequence,
we choose to use the bigram model (model II). We
choose this model mainly due to its stronger abil-
ity in modeling dependencies between adjacent
NL words, which we believe to be quite important
in this NL generation task. With the bigram model
assumption, the optimal hybrid sequence that can
be generated from each MR production is defined
as follows:

h∗s = argmax
hs

p(hs|ms)

= argmax
hs

{
φ(r|ms)×

|hs|+1∏
j=1

θ(tj |ms, tj−1)

}
(6)

where ti is either an NL word or a semantic cat-
egory with t0 ≡ BEGIN and t|hs|+1 ≡ END, and
r is the hybrid pattern that matches the hybrid se-
quence hs, which is equivalent to t1, . . . , t|hs|.

Equivalently, we can view the problem in the
log-space:

h∗s = argmin
hs

{
− log φ(r|ms)

+
|hs|+1∑
j=1

− log θ(tj |ms, tj−1)

}
(7)

Note the term − log φ(r|ms) is a constant for
a particular MR production ms and a particu-
lar hybrid pattern r. This search problem can
be equivalently cast as the shortest path problem
which can be solved efficiently with Dijkstra’s al-
gorithm (Cormen et al., 2001). We define a set
of states. Each state represents a single NL word
or a semantic category, including the special sym-
bols BEGIN and END. A directed path between
two different states tu and tv is associated with
a distance measure − log θ(tv|ms, tu), which is
non-negative. The task now is to find the short-
est path between BEGIN and END1. The sequence
of words appearing in this path is simply the most
probable hybrid sequence under this MR produc-
tion ms. We build this model by directly inverting
the LNLZ08 system, and this model is therefore
referred to as the direct inversion model.

A major weakness of this baseline model is that
it encodes strong independence assumptions dur-
ing the hybrid tree generation process. Though
shown to be effective in the task of transform-
ing NL to MR, such independence assumptions
may introduce difficulties in this NLG task. For
example, consider the MR shown in Figure 1.
The generation steps of the hybrid sequences
from the two adjacent MR productions QUERY :
answer(RIVER) and RIVER : longest(RIVER)
are completely independent of each other. This
may harm the fluency of the generated NL sen-
tence, especially when a transition from one hy-
brid sequence to another is required. In fact, due
to such an independence assumption, the model
always generates the same hybrid sequence from
the same MR production, regardless of its context
such as parent or child MR productions. Such a
limitation points to the importance of better uti-
lizing the tree structure of the MR for this NLG
task. Furthermore, due to the bigram assumption,
the model is unable to capture longer range depen-
dencies amongst the words or semantic categories
in each hybrid sequence.

To tackle the above issues, we explore ways of
relaxing various assumptions, which leads to an

1In addition, we should make sure that the generated hy-
brid sequence t0 . . . t|hs|+1 is a valid hybrid sequence that
comply with the hybrid pattern r. For example, the MR
production STATE : loc 1(RIVER) can generate the follow-
ing hybrid sequence “BEGIN have RIVER END” but not
this hybrid sequence “BEGIN have END”. This can be
achieved by finding the shortest path from BEGIN to RIVER,
which then gets concatenated to the shortest path from RIVER
to END.
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QUERY : answer(RIVER)

RIVER : longest(RIVER)

RIVER : exclude(RIVER1 RIVER2)

RIVER : river(all) RIVER : traverse(STATE)

STATE : stateid(STATENAME)

STATENAME : texas

what is RIVER1

the longest RIVER1

RIVER1 that does not RIVER2

river run through STATE1

STATENAME1

texas

Figure 3: An MR (left) and its associated hybrid sequences (right)

alternative model as discussed next.

4.2 Tree CRF-Based Model
Based on the belief that using known phrases usu-
ally leads to better fluency in the NLG task (Wong
and Mooney, 2007), we explore methods for gen-
erating an NL sentence at phrase level rather than
at word level. This is done by generating hybrid
sequences as complete objects, rather than sequen-
tially one word or semantic category at a time,
from MR productions.

We assume that each MR production can gen-
erate a complete hybrid sequence below it from a
finite set of possible hybrid sequences. Each such
hybrid sequence is called a candidate hybrid se-
quence associated with that particular MR produc-
tion. Given a set of candidate hybrid sequences as-
sociated with each MR production, the generation
task is to find the optimal hybrid sequence list h∗
for a given MR m̂:

h∗ = argmax
h

p(h|m̂) (8)

Figure 3 shows a complete MR, as well as a
possible tree that contains hybrid sequences as-
sociated with the MR productions. For exam-
ple, in the figure the MR production RIVER :
traverse(STATE) is associated with the hybrid se-
quence run through STATE1. Each MR pro-
duction can be associated with potentially many
different hybrid sequences. The task is to deter-
mine the most probable list of hybrid sequences as
the ones appearing on the right of Figure 3, one for
each MR production.

To make better use of the tree structure of MR,
we take the approach of modeling the conditional
distribution using a log-linear model. Following
the conditional random fields (CRF) framework

(Lafferty et al., 2001), we can define the probabil-
ity of the hybrid sequence list given the complete
MR m̂, as follows:

p(h|m̂) =
1

Z(m̂)
exp

(∑
i∈V

∑
k

µkgk(hi, m̂, i)

+
∑

(i,j)∈E

∑
k

λkfk(hi, hj , m̂, i, j)

)
(9)

where V is the set of all the vertices in the tree, and
E is the set of the edges in the tree, consisting of
parent-child pairs. The function Z(m̂) is the nor-
malization function. Note that the dependencies
among the features here form a tree, unlike the se-
quence models used in Lafferty et al. (2001). The
function fk(hi, hj , m̂, i, j) is a feature function of
the entire MR tree m̂ and the hybrid sequences at
vertex i and j. These features are usually referred
to as the edge features in the CRF framework. The
function gk(hi, m̂, i) is a feature function of the
hybrid sequence at vertex i and the entire MR tree.
These features are usually referred to as the vertex
features. The parameters λk and µk are learned
from the training data.

In this task, we are given only MR-NL pairs
and do not have the hybrid tree corresponding to
each MR as training data. Now we describe how
the set of candidate hybrid sequences for each MR
production is obtained as well as how the train-
ing data for this model is constructed. After the
joint generative model is learned as done in Lu et
al. (2008), we first use a Viterbi algorithm to find
the optimal hybrid tree for each MR-NL pair in
the training set. From each optimal hybrid tree,
we extract the hybrid sequence hi below each MR
production mi. Using this process on the train-
ing MR-NL pairs, we can obtain a set of candidate
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hybrid sequences that can be associated with each
MR production. The optimal hybrid tree generated
by the Viterbi algorithm in this way is considered
the “correct” hybrid tree for the MR-NL pair and is
used as training data. While this does not provide
hand-labeled training data, we believe the hybrid
trees generated this way form a high quality train-
ing set as both the MR and NL are available when
Viterbi decoding is performed, guaranteeing that
the generated hybrid tree has the correct yield.

There exist several advantages of such a model
over the simple generative model. First, this model
allows features that specifically model the depen-
dencies between neighboring hybrid sequences in
the tree to be used. In addition, the model can effi-
ciently capture long range dependencies between
MR productions and hybrid sequences since each
hybrid sequence is allowed to depend on the entire
MR tree.

For features, we employ four types of simple
features, as presented below. Note that the first
three types of features are vertex features, and the
last are edge features. Examples are given based
on Figure 3. All the features are indicator func-
tions, i.e., a feature takes value 1 if a certain com-
bination is present, and 0 otherwise. The last three
features explicitly encode information from the
tree structure of MR.

Hybrid sequence features : one hybrid sequence
together with the associated MR production.
For example:

g1 : 〈run through STATE1,

RIVER : traverse(STATE)〉 ;

Two-level hybrid sequence features : one hy-
brid sequence, its associated MR production,
and the parent MR production. For example:

g2 : 〈run through STATE1,

RIVER : traverse(STATE),
RIVER : exclude(RIVER1,RIVER2)〉 ;

Three-level hybrid sequence features : one hy-
brid sequence, its associated MR production,
the parent MR production, and the grandpar-
ent MR production. For example:

g3 : 〈run through STATE1,

RIVER : traverse(STATE),
RIVER : exclude(RIVER1,RIVER2),

RIVER : longest(RIVER)〉 ;

Adjacent hybrid sequence features : two adja-
cent hybrid sequences, together with their as-
sociated MR productions. For example:

f1 : 〈run through STATE1,

RIVER1 that does not RIVER2,

RIVER : traverse(STATE),
RIVER : exclude(RIVER1,RIVER2)〉 .

For training, we use the feature forest model
(Miyao and Tsujii, 2008), which was originally
designed as an efficient algorithm for solving max-
imum entropy models for data with complex struc-
tures. The model enables efficient training over
packed trees that potentially represent exponen-
tial number of trees. The tree conditional random
fields model can be effectively represented using
the feature forest model. The model has also been
successfully applied to the HPSG parsing task.

To train the model, we run the Viterbi algorithm
on the trained LNLZ08 model and perform convex
optimization using the feature forest model. The
LNLZ08 model is trained using an EM algorithm
with time complexity O(MN3D) per EM itera-
tion, where M and N are respectively the maxi-
mum number of MR productions and NL words
for each MR-NL pair, and D is the number of
training instances. The time complexity of the
Viterbi algorithm is also O(MN3D). For training
the feature forest, we use the Amis toolkit (Miyao
and Tsujii, 2002) which utilizes the GIS algorithm.
The time complexity for each iteration of the GIS
algorithm is O(MK2D), where K is the maxi-
mum number of candidate hybrid sequences asso-
ciated with each MR production. Finally, the time
complexity for generating a natural language sen-
tence from a particular MR is O(MK2).

5 Experiments

In this section, we present the results of our sys-
tems when evaluated on two standard benchmark
corpora. The first corpus is GEOQUERY, which
contains Prolog-based MRs that can be used to
query a US geographic database (Kate et al.,
2005). Our task for this domain is to generate
NL sentences from the formal queries. The second
corpus is ROBOCUP. This domain contains MRs
which are instructions written in a formal language
called CLANG. Our task for this domain is to gen-
erate NL sentences from the coaching advice writ-
ten in CLANG.
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GEOQUERY (880) ROBOCUP (300)
BLEU NIST BLEU NIST

Direct inversion model 0.3973 5.5466 0.5468 6.6738
Tree CRF-based model 0.5733 6.7459 0.6220 6.9845

Table 2: Results of automatic evaluation of both models (bold type indicates the best performing system).

GEOQUERY (880) ROBOCUP (300)
BLEU NIST BLEU NIST

WASP−1++ 0.5370 6.4808 0.6022 6.8976
Tree CRF-based model 0.5733 6.7459 0.6220 6.9845

Table 3: Results of automatic evaluation of our tree CRF-based model and WASP−1++.

English Japanese Spanish Turkish
BLEU NIST BLEU NIST BLEU NIST BLEU NIST

WASP−1++ 0.6035 5.7133 0.6585 4.6648 0.6175 5.7293 0.4824 4.3283
Tree CRF-based model 0.6265 5.8907 0.6788 4.8486 0.6382 5.8488 0.5096 4.5033

Table 4: Results on the GEOQUERY-250 corpus with 4 natural languages.

The GEOQUERY domain contains 880 in-
stances, while the ROBOCUP domain contains 300
instances. The average NL sentence length for the
two corpora are 7.57 and 22.52 respectively. Fol-
lowing the evaluation methodology of Wong and
Mooney (2007), we performed 4 runs of the stan-
dard 10-fold cross validation and report the aver-
aged performance in this section using the stan-
dard automatic evaluation metric BLEU (Papineni
et al., 2002) and NIST (Doddington, 2002)2. The
BLEU and NIST scores of the WASP−1++ sys-
tem reported in this section are obtained from
the published paper of Wong and Mooney (2007).
Note that to make our experimental results directly
comparable to Wong and Mooney (2007), we used
the identical training and test data splits for the 4
runs of 10-fold cross validation used by Wong and
Mooney (2007) on both corpora.

Our system has the advantage of always pro-
ducing an NL sentence given any input MR, even
if there exist unseen MR productions in the input
MR. We can achieve this by simply skipping those
unseen MR productions during the generation pro-
cess. However, in order to make a fair comparison
against WASP−1++, which can only generate NL
sentences for 97% of the input MRs, we also do
not generate any NL sentence in the case of ob-
serving an unseen MR production. All the evalu-
ations discussed in this section follow this evalu-

2We used the official evaluation script (version 11b) pro-
vided by http://www.nist.gov/.

ation methodology, but we notice that empirically
our system is able to achieve higher BLEU/NIST

scores if we allow generation for those MRs that
include unseen MR productions.

5.1 Comparison between the two models

We compare the performance of our two models
in Table 2. From the table, we observe that the
tree CRF-based model outperforms the direct in-
version model on both domains. This validates
our earlier belief that some long range dependen-
cies are important for the generation task. In ad-
dition, while the direct inversion model performs
reasonably well on the ROBOCUP domain, it per-
forms substantially worse on the GEOQUERY do-
main where the sentence length is shorter. We note
that the evaluation metrics are strongly correlated
with the cumulative matching n-grams between
the output and the reference sentence (n ranges
from 1 to 4 for BLEU, and 1 to 5 for NIST). The
direct inversion model fails to capture the transi-
tional behavior from one phrase to another, which
makes it more vulnerable to n-gram mismatch, es-
pecially when evaluated on the GEOQUERY cor-
pus where phrase-to-phrase transitions are more
frequent. On the other hand, the tree CRF-based
model does not suffer from this problem, mainly
due to its ability to model such dependencies be-
tween neighboring phrases. Sample outputs from
the two models are shown in Figure 4.
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Reference: what is the largest state bordering texas
Direct inversion model: what the largest states border texas
Tree CRF-based model: what is the largest state that borders texas
Reference: if DR2C7 is true then players 2 , 3 , 7 and 8

should pass to player 4
Direct inversion model: if DR2C7 , then players 2 , 3 7 and 8 should

ball to player 4
Tree CRF-based model: if the condition DR2C7 is true then players 2 ,

3 , 7 and 8 should pass to player 4

Figure 4: Sample outputs from the two models, for GEOQUERY domain (top) and ROBOCUP domain
(bottom) respectively.

5.2 Comparison with previous model

We also compare the performance of our tree CRF-
based model against the previous state-of-the-art
system WASP−1++ in Table 3. Our tree CRF-based
model achieves better performance on both cor-
pora. We are unable to carry out statistical sig-
nificance tests since the detailed BLEU and NIST

scores of the cross validation runs of WASP−1++
as reported in the published paper of Wong and
Mooney (2007) are not available.

The results confirm our earlier discussions: the
dependencies between the generated NL words
are important and need to be properly modeled.
The WASP−1++ system uses a log-linear model
which incorporates two major techniques to at-
tempt to model such dependencies. First, a back-
off language model is used to capture dependen-
cies at adjacent word level. Second, a technique
that merges smaller translation rules into a single
rigid rule is used to capture dependencies at phrase
level (Wong, 2007). In contrast, the proposed tree
CRF-based model is able to explicitly and flexibly
exploit phrase-level features that model dependen-
cies between adjacent phrases. In fact, with the
hybrid tree framework, the better treatment of the
tree structure of MR enables us to model some cru-
cial dependencies between the complete MR tree
and generated NL phrases. We believe that this
property plays an important role in improving the
quality of the generated sentences in terms of flu-
ency, which is assessed by the evaluation metrics.

Furthermore, WASP−1++ employs minimum
error rate training (Och, 2003) to directly optimize
the evaluation metrics. We have not done so but
still obtain better performance. In future, we plan
to explore ways to directly optimize the evaluation
metrics in our system.

5.3 Experiments on different languages

Following the work of Wong and Mooney (2007),
we also evaluated our system’s performance on
a subset of the GEOQUERY corpus with 250 in-
stances, where sentences of 4 natural languages
(English, Japanese, Spanish, and Turkish) are
available. The evaluation results are shown in Ta-
ble 4. Our tree CRF-based model achieves better
performance on this task compared to WASP−1++.
We are again unable to conduct statistical signifi-
cance tests for the same reason reported earlier.

6 Conclusions

In this paper, we presented two novel models for
the task of generating natural language sentences
from given meaning representations, under a hy-
brid tree framework. We first built a simple di-
rect inversion model as a baseline. Next, to ad-
dress the limitations associated with the direct in-
version model, a tree CRF-based model was in-
troduced. We evaluated both models on standard
benchmark corpora. Evaluation results show that
the tree CRF-based model performs better than the
direct inversion model, and that the tree CRF-based
model also outperforms WASP−1++, which was a
previous state-of-the-art system reported in the lit-
erature.
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Abstract
This paper shows that discriminative
reranking with an averaged perceptron
model yields substantial improvements in
realization quality with CCG. The paper
confirms the utility of including language
model log probabilities as features in the
model, which prior work on discrimina-
tive training with log linear models for
HPSG realization had called into question.
The perceptron model allows the combina-
tion of multiple n-gram models to be opti-
mized and then augmented with both syn-
tactic features and discriminative n-gram
features. The full model yields a state-
of-the-art BLEU score of 0.8506 on Sec-
tion 23 of the CCGbank, to our knowledge
the best score reported to date using a re-
versible, corpus-engineered grammar.

1 Introduction

In this paper, we show how discriminative train-
ing with averaged perceptron models (Collins,
2002) can be used to substantially improve surface
realization with Combinatory Categorial Gram-
mar (Steedman, 2000, CCG). Velldal and Oepen
(2005) and Nakanishi et al. (2005) have shown that
discriminative training with log-linear (maximum
entropy) models is effective in realization rank-
ing with Head-Driven Phrase Structure Grammar
(Pollard and Sag, 1994, HPSG). Here we show
that averaged perceptron models also perform well
for realization ranking with CCG. Averaged per-
ceptron models are very simple, just requiring a
decoder and a simple update function, yet despite
their simplicity they have been shown to achieve
state-of-the-art results in Treebank and CCG pars-
ing (Huang, 2008; Clark and Curran, 2007a) as
well as on other NLP tasks.

Along the way, we address the question of
whether it is beneficial to incorporate n-gram log

probabilities as baseline features in a discrimina-
tively trained realization ranking model. On a lim-
ited domain corpus, Velldal & Oepen found that
including the n-gram log probability of each can-
didate realization as a feature in their log-linear
model yielded a substantial boost in ranking per-
formance; on the Penn Treebank (PTB), however,
Nakanishi et al. found that including an n-gram log
prob feature in their model was of no benefit (with
the use of bigrams instead of 4-grams suggested as
a possible explanation). With these mixed results,
the utility of n-gram baseline features for PTB-
scale discriminative realization ranking has been
unclear. In our particular setting, the question is:
Do n-gram log prob features improve performance
in broad coverage realization ranking with CCG,
where factored language models over words, part-
of-speech tags and supertags have previously been
employed (White et al., 2007; Espinosa et al.,
2008)?

We answer this question in the affirmative, con-
firming the results of Velldal & Oepen, despite
the differences in corpus size and kind of lan-
guage model. We show that including n-gram log
prob features in the perceptron model is highly
beneficial, as the discriminative models we tested
without these features performed worse than the
generative baseline. These findings are in line
with Collins & Roark’s (2004) results with incre-
mental parsing with perceptrons, where it is sug-
gested that a generative baseline feature provides
the perceptron algorithm with a much better start-
ing point for learning. We also show that discrim-
inative training allows the combination of multi-
ple n-gram models to be optimized, and that the
best model augments the n-gram log prob fea-
tures with both syntactic features and discrimina-
tive n-gram features. The full model yields a state-
of-the-art BLEU (Papineni et al., 2002) score of
0.8506 on Section 23 of the CCGbank, which is
to our knowledge the best score reported to date
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using a reversible, corpus-engineered grammar.
The paper is organized as follows. Section 2 re-

views previous work on broad coverage realization
with OpenCCG. Section 3 describes our approach
to realization reranking with averaged perceptron
models. Section 4 presents our evaluation of the
perceptron models, comparing the results of dif-
ferent feature sets. Section 5 compares our results
to those obtained by related systems and discusses
the difficulties of cross-system comparisons. Fi-
nally, Section 6 concludes with a summary and
discussion of future directions for research.

2 Background

2.1 Surface Realization with CCG

CCG (Steedman, 2000) is a unification-based cat-
egorial grammar formalism which is defined al-
most entirely in terms of lexical entries that encode
sub-categorization information as well as syntactic
feature information (e.g. number and agreement).
Complementing function application as the stan-
dard means of combining a head with its argu-
ment, type-raising and composition support trans-
parent analyses for a wide range of phenomena,
including right-node raising and long distance de-
pendencies. An example syntactic derivation ap-
pears in Figure 1, with a long-distance depen-
dency between point and make. Semantic com-
position happens in parallel with syntactic compo-
sition, which makes it attractive for generation.

OpenCCG is a parsing/generation library which
works by combining lexical categories for words
using CCG rules and multi-modal extensions on
rules (Baldridge, 2002) to produce derivations.
Surface realization is the process by which logical
forms are transduced to strings. OpenCCG uses
a hybrid symbolic-statistical chart realizer (White,
2006) which takes logical forms as input and pro-
duces sentences by using CCG combinators to
combine signs. Edges are grouped into equiva-
lence classes when they have the same syntactic
category and cover the same parts of the input log-
ical form. Alternative realizations are ranked us-
ing integrated n-gram or perceptron scoring, and
pruning takes place within equivalence classes of
edges. To more robustly support broad coverage
surface realization, OpenCCG greedily assembles
fragments in the event that the realizer fails to find
a complete realization.

To illustrate the input to OpenCCG, consider
the semantic dependency graph in Figure 2. In

aa1

he
h3

he
h2

<Det>

<Arg0>
<Arg1>

<TENSE>pres

<NUM>sg

<Arg0>

w1
want.01

m1

<Arg1>

<GenRel>

<Arg1>

<TENSE>pres

p1point

h1
have.03

make.03

<Arg0>

s[b]\np/np

np/n

np

n

s[dcl]\np/np

s[dcl]\np/(s[to]\np)

np

Figure 2: Semantic dependency graph from the
CCGbank for He has a point he wants to make
[. . . ], along with gold-standard supertags (cate-
gory labels)

the graph, each node has a lexical predication
(e.g. make.03) and a set of semantic features
(e.g. 〈NUM〉sg); nodes are connected via depen-
dency relations (e.g. 〈ARG0〉). (Gold-standard su-
pertags, or category labels, are also shown; see
Section 2.4 for their role in hypertagging.) In-
ternally, such graphs are represented using Hy-
brid Logic Dependency Semantics (HLDS), a
dependency-based approach to representing lin-
guistic meaning (Baldridge and Kruijff, 2002). In
HLDS, each semantic head (corresponding to a
node in the graph) is associated with a nominal
that identifies its discourse referent, and relations
between heads and their dependents are modeled
as modal relations.

2.2 Realization from an Enhanced CCGbank

Our starting point is an enhanced version of the
CCGbank (Hockenmaier and Steedman, 2007)—a
corpus of CCG derivations derived from the Penn
Treebank—with Propbank (Palmer et al., 2005)
roles projected onto it (Boxwell and White, 2008).
To engineer a grammar from this corpus suitable
for realization with OpenCCG, the derivations are
first revised to reflect the lexicalized treatment
of coordination and punctuation assumed by the
multi-modal version of CCG that is implemented
in OpenCCG (White and Rajkumar, 2008). Fur-
ther changes are necessary to support semantic de-
pendencies rather than surface syntactic ones; in
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He has a point he wants to make
np sdcl\np/np np/n n np sdcl\np/(sto\np) sto\np/(sb\np) sb\np/np

> >T >B
np s/(s\np) sto\np/np

>B
sdcl\np/np

>B
sdcl/np

np\np
<np
>

sdcl\np
<sdcl

Figure 1: Syntactic derivation from the CCGbank for He has a point he wants to make [. . . ]

particular, the features and unification constraints
in the categories related to semantically empty
function words such complementizers, infinitival-
to, expletive subjects, and case-marking preposi-
tions are adjusted to reflect their purely syntactic
status.

In the second step, a grammar is extracted from
the converted CCGbank and augmented with log-
ical forms. Categories and unary type chang-
ing rules (corresponding to zero morphemes) are
sorted by frequency and extracted if they meet the
specified frequency thresholds. A separate trans-
formation then uses a few dozen generalized tem-
plates to add logical forms to the categories, in a
fashion reminiscent of (Bos, 2005). As shown in
Figure 2, numbered semantic roles are taken from
PropBank when available, and more specific rela-
tions are introduced in the categories for closed-
class items such as determiners.

After logical form insertion, the extracted and
augmented grammar is loaded and used to parse
the sentences in the CCGbank according to the
gold-standard derivation. If the derivation can
be successfully followed, the parse yields a log-
ical form which is saved along with the corpus
sentence in order to later test the realizer. Cur-
rently, the algorithm succeeds in creating logical
forms for 98.85% of the sentences in the develop-
ment section (Sect. 00) of the converted CCGbank,
and 97.06% of the sentences in the test section
(Sect. 23). Of these, 95.99% of the development
LFs are semantic dependency graphs with a sin-
gle root, while 95.81% of the test LFs have a sin-
gle root. The remaining cases, with multiple roots,
are missing one or more dependencies required to
form a fully connected graph. Such missing de-
pendencies usually reflect remaining inadequacies
in the logical form templates.

An error analysis of OpenCCG output by Ra-
jkumar et al. (2009) recently revealed that out of

2331 named entities (NEs) annotated by the BBN
corpus (Weischedel and Brunstein, 2005), 238
were not realized correctly. For example, multi-
word NPs like Texas Instruments Japan Ltd. were
realized as Japan Texas Instruments Ltd. Accord-
ingly, inspired by Hogan et al.’s (2007)’s Experi-
ment 1, Rajkumar et al. used the BBN corpus NE
annotation to collapse certain classes of NEs. But
unlike Hogan et al.’s experiment where all the NEs
annotated by the BBN corpus were collapsed, Ra-
jkumar et al. chose to collapse into single tokens
only NEs whose exact form can be reasonably ex-
pected to be specified in the input to the realizer.
For example, while some quantificational or com-
paratives phrases like more than $ 10,000 are an-
notated as MONEY in the BBN corpus, Rajkumar
et al. only collapse $ 10,000 into an atomic unit,
with more than handled compositionally accord-
ing to the semantics assigned to it by the gram-
mar. Thus, after transferring the BBN annotations
to the CCGbank corpus, Rajkumar et al. (partially)
collapsed NEs which are CCGbank constituents
according to the following rules: (1) completely
collapse the PERSON, ORGANIZATION, GPE,
WORK OF ART major class type entitites; (2) ig-
nore phrases like three decades later, which are
annotated as DATE entities; and (3) collapse all
phrases with POS tags CD or NNP(S) or lexical
items % or $, ensuring that all prototypical named
entities are collapsed.

It is worth noting that improvements in our
corpus-based grammar engineering process—
including a more precise treatment of punctuation,
better named entity handling and the addition of
catch-all logical form templates—have resulted in
a 13.5 BLEU point improvement in our baseline
realization scores on Section 00 of the CCGbank,
from a score of 0.6567 in (Espinosa et al., 2008)
to 0.7917 in (Rajkumar et al., 2009), contribut-
ing greatly to the state-of-the-art results reported
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in Section 4. A further 4.5 point improvement is
obtained from the use of named entity classes in
language modeling and hypertagging (Rajkumar
et al., 2009), as described next, and from our per-
ceptron reranking model, described in Section 3.

2.3 Factored Language Models
As in (White et al., 2007; Rajkumar et al., 2009),
we use factored language models (Bilmes and
Kirchhoff, 2003) over words, part-of-speech tags
and supertags1 to score partial and complete real-
izations. The trigram models were created using
the SRILM toolkit (Stolcke, 2002) on the standard
training sections (02–21) of the CCGbank, with
sentence-initial words (other than proper names)
uncapitalized. While these models are consider-
ably smaller than the ones used in (Langkilde-
Geary, 2002; Velldal and Oepen, 2005), the train-
ing data does have the advantage of being in the
same domain and genre. The models employ in-
terpolated Kneser-Ney smoothing with the default
frequency cutoffs. The best performing model
interpolates three component models using rank-
order centroid weights: (1) a word trigram model;
(2) a word model with semantic classes replac-
ing named entities; and (3) a trigram model that
chains a POS model with a supertag model, where
the POS model (P ) conditions on the previous two
POS tags, and the supertag model (S) conditions
on the previous two POS tags as well as the current
one, as shown below:

pPS(~Fi | ~F i−1
i−2 ) = p(Pi | P i−1

i−2 )p(Si | P i
i−2) (1)

Training data for the semantic class–replaced
model was created by replacing (collapsed) words
with their NE classes, in order to address data spar-
sity issues caused by rare words in the same se-
mantic class. For example, the Section 00 sen-
tence Pierre Vinken , 61 years old , will join the
board as a nonexecutive director Nov. 29 . be-
comes PERSON , DATE:AGE DATE:AGE old ,
will join the ORG DESC:OTHER as a nonexecu-
tive PER DESC DATE:DATE DATE:DATE . Dur-
ing realization, word forms are generated, but are
then replaced by their semantic classes for scoring
using the semantic class–replaced model, similar
to Oh and Rudnicky (2002).

Note that the use of supertags in the factored
language model to score possible realizations is

1With CCG, supertags (Bangalore and Joshi, 1999) are
lexical categories considered as fine-grained syntactic labels.

distinct from the prediction of supertags for lexical
category assignment: the former takes the words
in the local context into account (as in supertag-
ging for parsing), while the latter takes features of
the logical form into account. This latter process
we call hypertagging, to which we now turn.

2.4 Hypertagging

A crucial component of the OpenCCG realizer is
the hypertagger (Espinosa et al., 2008), or su-
pertagger for surface realization, which uses a
maximum entropy model to assign the most likely
lexical categories to the predicates in the input log-
ical form, thereby greatly constraining the real-
izer’s search space.2 Figure 2 shows gold-standard
supertags for the lexical predicates in the graph;
such category labels are predicted by the hyper-
tagger at run-time. As in recent work on using
supertagging in parsing, the hypertagger operates
in a multitagging paradigm (Curran et al., 2006),
where a variable number of predictions are made
per input predicate. Instead of basing category as-
signment on linear word and POS context, how-
ever, the hypertagger predicts lexical categories
based on contexts within a directed graph structure
representing the logical form (LF) of the sentence
to be realized. The hypertagger generalizes Ban-
galore and Rambow’s (2000) method of using su-
pertags in generation by using maximum entropy
models with a larger local context.

During realization, the hypertagger returns a β-
best list of supertags in order of decreasing prob-
ability. Increasing the number of categories re-
turned clearly increases the likelihood that the
most-correct supertag is among them, but at a cor-
responding cost in chart size. Accordingly, the hy-
pertagger begins with a highly restrictive value for
β, and backs off to progressively less-restrictive
values if no complete realization can be found us-
ing the set of supertags returned. Clark and Curran
(2007b) have shown this iterative relaxation strat-
egy to be highly effective in CCG parsing.

3 Perceptron Reranking

As Collins (2002) observes, perceptron training
involves a simple, on-line algorithm, with few it-
erations typically required to achieve good perfor-
mance. Moreover, averaged perceptrons—which

2The approach has been dubbed hypertagging since it op-
erates at a level “above” the syntax, moving from semantic
representations to syntactic categories.
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Input: training examples (xi, yi)
Initialization: set α = 0, or use optional input
model
Algorithm:

for t = 1 . . . T , i = 1 . . . N
zi = argmaxy∈GEN(xi)Φ(xi, y) · α
if zi 6= yi

α = α+ Φ(xi, yi)− Φ(xi, zi)
Output: α =

∑T
t=1

∑N
i=1 αti/TN

Figure 3: Averaged perceptron training algorithm

approximate voted perceptrons, a maximum-
margin method with attractive theoretical
properties—seem to work remarkably well in
practice, while adding little further complexity.
Additionally, since features only take on non-
zero values when they appear in training items
requiring updates, perceptrons integrate feature
selection with, and often produce quite small
models, especially when starting with a good
baseline.

The generic averaged perceptron training algo-
rithm appears in Figure 3. In our case, the algo-
rithm trains a model for reranking the n-best real-
izations generated using our existing factored lan-
guage model for scoring, with the oracle-best re-
alization considered the correct answer. Accord-
ingly, the input to the algorithm is a list of pairs
(xi, yi), where xi is a logical form, GEN(xi) are
the n-best realizations for xi, and yi is the oracle-
best member of GEN(xi). The oracle-best realiza-
tion is determined using a 4-gram precision metric
(approximating BLEU) against the reference sen-
tence.

We have followed Huang (2008) in using
oracle-best targets for training, rather than gold
standard ones, in order to better approximate test
conditions during training. However, following
Clark & Curran (2007a), during training we seed
the realizer with the gold-standard supertags, aug-
menting the hypertagger’s β-best list, in order to
ensure that the n-best realizations are generally of
high quality; consequently, the gold standard real-
ization (i.e., the corpus sentence) usually appears
in the n-best list.3 In addition, we use a hyper-
tagger trained on all the training data, to improve
hypertagger performance, while excluding the cur-

3As in Clark & Curran’s approach, we use a single β value
during training, rather than iteratively loosening the β value;
the chosen β value determines the size of the discrimation
space.

rent training section (in jack-knifed fashion) from
the word-based parts of the language model, in or-
der to make the language model scores more re-
alistic. It remains for future work to determine
whether using a different compromise between en-
suring high-quality training data and remaining
faithful to the test conditions would yield better
results.

Since realization of the n-best lists for train-
ing is the most time-consuming part of the pro-
cess, in our current implementation we perform
this step once, generating event files along the way
containing feature vectors for each candidate real-
ization. The event files are used to calculate the
frequency distribution for the features, and mini-
mum cutoffs are chosen to trim the feature alpha-
bet to a reasonable size. Training then takes place
by iterating over the event files, ignoring features
that do not appear in the alphabet. As Figure 3
indicates, training consists of calculating the top-
ranked realization according to the current model
α, and performing an update when the top-ranked
realization does not match the oracle-best realiza-
tion. Updates to the model add the feature vec-
tor Φ(xi, yi) for the missed oracle-best realiza-
tion, and subtract the feature vector Φ(xi, zi) for
the mistakenly top-ranked realization. The final
model averages the models across the T iterations
over the training data, andN test cases within each
iteration.

Note that while training the perceptron model
involves n-best reranking, realization with the re-
sulting model can be viewed as forest rescoring,
since scoring of all partial realizations is integrated
into the realizer’s beam search. In future work, we
intend to investigate saving the realizer’s packed
charts, rather than event files, and integrating the
unpacking of the charts with the perceptron train-
ing algorithm.

The features we employ in our perceptron mod-
els are of three kinds. First, as in the log-linear
models of Velldal & Oepen and Nakanishi et al.,
we incorporate the log probability of the candidate
realization’s word sequence according to our fac-
tored language model as a single feature in the per-
ceptron model. Since our language model linearly
interpolates three component models, we also in-
clude the log prob from each component language
model as a feature, so that the combination of
these components can be optimized.

Second, we include syntactic features in our

414



Feature Type Example
LexCat + Word s/s/np + before
LexCat + POS s/s/np + IN
Rule sdcl → np sdcl\np
Rule + Word sdcl → np sdcl\np + bought
Rule + POS sdcl → np sdcl\np + VBD
Word-Word 〈company, sdcl → np sdcl\np, bought〉
Word-POS 〈company, sdcl → np sdcl\np, VBD〉
POS-Word 〈NN, sdcl → np sdcl\np, bought〉
Word + ∆w 〈bought, sdcl → np sdcl\np〉 + dw
POS + ∆w 〈VBD, sdcl → np sdcl\np〉 + dw
Word + ∆p 〈bought, sdcl → np sdcl\np〉 + dp
POS + ∆p 〈VBD, sdcl → np sdcl\np〉 + dp
Word + ∆v 〈bought, sdcl → np sdcl\np〉 + dv
POS + ∆v 〈VBD, sdcl → np sdcl\np〉 + dv

Table 1: Basic and dependency features from
Clark & Curran’s (2007b) normal form model;
distances are in intervening words, punctuation
marks and verbs, and are capped at 3, 3 and 2,
respectively

model by implementing Clark & Curran’s (2007b)
normal form model in OpenCCG.4 The features of
this model are listed in Table 1; they are integer-
valued, representing counts of occurrences in a
derivation. These syntactic features are quite com-
parable to the dominance-oriented features in the
union of the Velldal & Oepen and Nakanishi et
al. models, except that our feature set does not
include grandparenting, which has been found to
have limited utility in CCG parsing. Our syntac-
tic features also include ones that measure the dis-
tance between headwords in terms of intervening
words, punctuation marks or verbs; these features
generalize the ones in Nakanishi et al.’s model.
Note that in contrast to parsing, in realization dis-
tance features are non-local, since different partial
realizations in the same equivalence class typically
differ in word order; as we are working in a rerank-
ing paradigm though, the non-local nature of these
features is unproblematic.

Third, we include discriminative n-gram fea-
tures in our model, following Roark et al.’s (2004)
approach to discriminative n-gram modeling for
speech recognition. By discriminative n-gram fea-
tures, we mean features counting the occurrences
of each n-gram that is scored by our factored lan-
guage model, rather than a feature whose value is
the log prob determined by the language model.
As Roark et al. note, discriminative training with
n-gram features has the potential to learn to nega-

4We have omitted Clark & Curran’s root features, since
the category we use for the full stop ensures that it must ap-
pear at the root of any complete derivation.

Model #Alph-feats #Feats Acc Time
full-model 2402173 576176 96.40% 08:53
lp-ngram 1127437 342025 94.52% 05:19
lp-syn 1274740 291728 85.03% 05:57

Table 2: Perceptron Training Details—number of
features in the alphabet, number of features in the
model, training accuracy and training time (hours)
for 10 iterations on a single commodity server

tively weight n-grams that appear in some of the
GEN(xi) candidates, but which never appear in
the naturally occurring corpus used to train a stan-
dard, generative language model. Since our fac-
tored language model considers words, semantic
classes, part-of-speech tags and supertags, our n-
gram features represent a considerable generaliza-
tion of the sequence-oriented features in Velldal
& Oepen’s model, which never contain more than
one word and do not include semantic classes.

4 Evaluation

4.1 Experimental Conditions
For the experiments reported below, we used a
lexico-grammar extracted from Sections 02–21 of
our enhanced CCGbank, a hypertagging model in-
corporating named entity class features, and a tri-
gram factored language model over words, named
entity classes, part-of-speech tags and supertags,
as described in the preceding section. BLEU
scores were calculated after removing the under-
scores between collapsed NEs.

Events were generated for each training section
separately. As already noted, the hypertagger and
POS/supertag language model was trained on all
the training sections, while separate word-based
models were trained excluding each of the train-
ing sections in turn. Event files for 26530 training
sentences with complete realizations were gener-
ated in 7 hours and 16 minutes on a cluster us-
ing one commodity server per section, with an av-
erage n-best list size of 18.2. Perceptron models
were trained on single machines; details for three
of the models appear in Table 2. The complete set
of models is listed in Table 3.

4.2 Results
Realization results on the development section are
given in Table 4. As the first block of rows af-
ter the baseline shows, of the models incorporating
a single kind of feature, only the one with the n-
gram log prob features beats the baseline BLEU
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Model Description
baseline-w3 No perceptron (3g wd only)
baseline No perceptron
syn-only-nodist All syntactic features except distance
ngram-only Just ngram features
syn-only Just syntactic features
lp-only Just log prob features
lp-ngram Log prob + Ngram features
lp-syn Log prob + Syntactic features
full-model Log prob + Ngram +Syntactic features

Table 3: Legend for Experimental Conditions

score, with the other models falling well below
the baseline (though faring better than the trigram-
word LM baseline). This result confirms the im-
portance of including n-gram log prob features in
discriminative realization ranking models, in line
with Velldal & Oepen’s findings, and contra those
of Nakanishi et al., even though it was Nakanishi
et al. who experimented with the Penn Treebank
corpus, while Velldal & Oepen’s experiments were
on a much smaller, limited domain corpus. The
second block of rows shows that both the discrim-
inative n-gram features and the syntactic features
provide a substantial boost when used with the n-
gram log prob features, with the syntactic features
yielding a more than 3 BLEU point gain. The
final row shows that the full model works best,
though the boosts provided by the syntactic and
discriminative n-gram features are clearly not in-
dependent. The BLEU point trends are mirrored in
the percentage of exact match realizations, which
goes up by more than 10% from the baseline. The
percentage of complete (i.e., non-fragmentary) re-
alizations, however, goes down; we expect that
this is due to the time taken up by our current
naive method of feature extraction, which does not
cache the features calculated for partial realiza-
tions. Realization results on the standard test sec-
tion appear in Table 5, confirming the gains made
by the full model over the baseline.5

We calculated statistical significance for the
main results on the development section using
bootstrap random sampling.6 After re-sampling
1000 times, significance was calculated using a
paired t-test (999 d.f.). The results indicated that
lp-only exceeded the baseline, lp-ngram and lp-

5Note that the baseline for Section 23 uses 4-grams and a
filter for balanced punctuation (White and Rajkumar, 2008),
unlike the other reported configurations, which would explain
the somewhat smaller increase seen with this section.

6Scripts for running these tests are available at
http://projectile.sv.cmu.edu/research/
public/tools/bootStrap/tutorial.htm

Model %Exact %Compl. BLEU Time
baseline-w3 26.00 83.15 0.7646 1.8

baseline 29.00 83.28 0.7963 2.0
syn-only-nodist 26.02 82.69 0.7754 3.2

ngram-only 27.67 82.95 0.7777 3.0
syn-only 28.34 82.74 0.7838 3.4
lp-only 32.01 83.02 0.8009 2.1

lp-ngram 36.31 80.47 0.8183 3.1
lp-syn 39.47 79.74 0.8323 3.5

full-model 40.11 79.63 0.8373 3.6

Table 4: Section 00 Results (98.9% coverage)—
percentage of exact match and grammatically
complete realizations, BLEU scores and average
times, in seconds

Model %Exact %Complete BLEU
baseline 33.74 85.04 0.8173

full-model 40.45 83.88 0.8506

Table 5: Section 23 Results (97.06% coverage)

syn exceeded lp-only, and the full model exceeded
lp-syn, with p < 0.0001 in each case.

4.3 Examples
Table 6 presents four examples where the full
model improves upon the baseline. Example sen-
tence wsj 0020.10 in Table 6 is a case where the
perceptron successfully weights the component
ngram models, as the lp-ngram model and those
that build on it get it right. Note that here, the mod-
ifier ordering in small video-viewing is not speci-
fied in the logical form and either ordering is pos-
sible syntactically. In wsj 0024.2, number agree-
ment between the conjoined subject noun phrase
and verb is obtained only with the full model. This
suggests that the full model is more robust to cases
where the grammar is insufficiently precise (num-
ber agreement is enforced by the grammar in only
the simplest cases). Example wsj 0034.9 corrects
a VP ordering mismatch, where the corpus sen-
tence is clearly preferred to the one where into
oblivion is shifted to the end. Finally, wsj 0047.13
corrects an animacy mismatch on the wh-pronoun,
in large part due to the high negative weight as-
signed to the discriminative n-gram feature PER-
SON , which. Note that the full model still dif-
fers from the original sentence in its placement of
the adverb reportedly, choosing the arguably more
natural position following the auxiliary.

4.4 Comparison to Other Systems
Table 7 lists our results in the context of those re-
ported for other systems on PTB Section 23. The
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Ref-wsj 0020.10 that measure could compel Taipei ’s growing number of small video-viewing parlors to pay ...
baseline,syn-only,ngram-only that measure could compel Taipei ’s growing number of video-viewing small parlors to ...
lp-only, lp-ngram, full-model that measure could compel Taipei ’s growing number of small video-viewing parlors to ...

Ref-wsj 0024.2 Esso Australia Ltd. , a unit of new york-based Exxon Corp. , and Broken Hill Pty. operate the fields ...
all except full-model Esso Australia Ltd. , a unit of new york-based Exxon Corp. , and Broken Hill Pty. operates the fields ...
full-model Esso Australia Ltd. , a unit of new york-based Exxon Corp. , and Broken Hill Pty. operate the fields ...

Ref-wsj 0034.9 they fell into oblivion after the 1929 crash .
baseline, lp-ngram they fell after the 1929 crash into oblivion .
lp-only, ngram-only, syn-only, full-model they fell into oblivion after the 1929 crash .

Ref-wsj 0047.13 Antonio Novello , whom Mr. Bush nominated to serve as surgeon general , reportedly has assured . . .
baseline,baseline-w3, lp-syn, lp-only Antonio Novello , which Mr. Bush nominated to serve as surgeon general , has reportedly assured . . .
full-model, lp-ngram, syn-only, ngram-syn Antonio Novello , whom Mr. Bush nominated to serve as surgeon general , has reportedly assured . . .

Table 6: Examples of realized output

System Coverage BLEU %Exact
Callaway (05) 98.5% 0.9321 57.5
OpenCCG (09) 97.1% 0.8506 40.5
Ringger et al. (04) 100.0% 0.836 35.7
Langkilde-Geary (02) 83% 0.757 28.2
Guo et al. (08) 100.0% 0.7440 19.8
Hogan et al. (07) ≈100.0% 0.6882
OpenCCG (08) 96.0% 0.6701 16.0
Nakanishi et al. (05) 90.8% 0.7733

Table 7: PTB Section 23 BLEU scores and exact
match percentages in the NLG literature (Nakan-
ishi et al.’s results are for sentences of length 20 or
less)

most similar systems to ours are those of Nakan-
ishi et al. (2005) and Hogan et al. (2007), as they
both involve chart realizers for reversible gram-
mars engineered from the Penn Treebank. While
direct comparisons across systems cannot really
be made when inputs vary in their semantic depth
and specificity, we observe that our all-sentences
BLEU score of 0.8506 exceeds that of Hogan et
al., who report a top score of 0.6882 (though with
coverage near 100%), and also surpasses Nakan-
ishi et al.’s score of 0.7733, despite their results be-
ing limited to sentences of length 20 or less (with
91% coverage). Velldal & Oepen’s (2005) system
is also closely related, as noted in the introduc-
tion, but as their experiments are on a limited do-
main corpus, their results cannot be compared at
all meaningfully.

5 Related Work and Discussion

As alluded to above, realization systems cannot be
easily compared, even on the same corpus, when
their inputs are not the same. This point is dra-
matically illustrated in Langkilde-Geary’s (2002)
system, where a BLEU score of 0.514 is reported
for minimally specified inputs on PTB Section 23,
while a score of 0.757 is reported for the ‘Per-

mute, no dir’ case (which perhaps most closely
resembles our inputs), and a score of 0.924 is re-
ported for the most fully specified inputs; note,
however, that in the latter case word order is deter-
mined by sibling order in the inputs, an assump-
tion not commonly made. As another example,
Guo et al. (2008) report a competitive result of
0.7440 (with 100% coverage) using a dependency-
based approach; however, their inputs, like those
of Hogan et al., include more surface syntactic in-
formation than ours, as they specify case-marking
prepositions, wh-pronouns and complementizers.
In a recent experiment to assess the impact of
input specificity, we found that including pred-
icates for all prepositions in our logical forms
boosted our baseline results by more than 3 BLEU
points, with complete realizations found in more
than 90% of the test cases, indicating that generat-
ing from a more surfacy input is indeed an easier
task than generating from a deeper representation.
Given the current lack of consensus on realizer in-
put specificity, we believe it is important to keep
in mind that within-system comparisons (such as
those in the preceding section) are the ones that
should be given the most credence.

Returning to our cross-system comparison, it is
perhaps surprising that Callaway (2005) reports
the best PTB BLEU score to date, 0.9321, with
98.5% coverage, using a purely symbolic, hand-
crafted grammar augmented to handle the most
frequent coverage issues for the PTB. While Call-
away’s inputs are unordered, word order is often
determined by positional features (e.g. front) or
by the type of modification (e.g. describer vs.
qualifier), and parts-of-speech are included
for lexical items. Additionally, in contrast to our
approach, Callaway makes use of a generation-
only grammar, rather than a reversible one, and his
approach is less well-suited to producing n-best
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outputs. Nevertheless, his high scores do suggest
the potential for precise grammar engineering to
improve realization quality.

While we have yet to perform a thorough er-
ror analysis, our impression is that although the
current set of syntactic features substantially im-
proves clausal constituent ordering, a variety of
disfluent cases remain. More thorough inves-
tigations of features for constituent ordering in
English have been performed by Ringger et al.
(2004), Filippova and Strube (2009) and Zhong
and Stent (2009), all of whom develop classifiers
for determining linear order. In future work, we
plan to investigate whether features inspired by
these approaches can be usefully integrated into
our perceptron reranker.

Also related to the present work is discrimina-
tive training in syntax-based MT (Turian et al.,
2007; Watanabe et al., 2007; Blunsom et al., 2008;
Chiang et al., 2009). Not surprisingly, since MT is
a harder problem than surface realization, syntax-
based MT systems have made use of less precise
grammars and more impoverished (target-side)
feature sets than those tackling realization rank-
ing. With progress on discriminative training with
large numbers of features in syntax-based MT, the
features found to be useful for high-quality sur-
face realization may become increasingly relevant
for MT as well.

6 Conclusions

In this paper, we have shown how discriminative
reranking with an averaged perceptron model can
be used to achieve substantial improvements in re-
alization quality with CCG. Using a comprehen-
sive feature set, we have also confirmed the util-
ity of including language model log probabilities
as features in the model, which prior work on
discriminative training with log linear models for
HPSG realization had called into question. The
perceptron model allows the combination of mul-
tiple n-gram models to be optimized and then aug-
mented with both syntactic features and discrim-
inative n-gram features, inspired by related work
in discriminative parsing and language modeling
for speech recognition. The full model yields a
state-of-the-art BLEU score of 0.8506 on Section
23 of the CCGbank, to our knowledge the best
score reported to date using a reversible, corpus-
engineered grammar, despite our use of deeper,
less specific inputs. Finally, the perceptron model

paves the way for exploring the utility of richer
feature spaces in statistical realization, including
the use of linguistically-motivated and non-local
features, a topic which we plan to investigate in
future work.
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Abstract
Experiments are reported that investi-
gate the effect of various source docu-
ment representations on the accuracy of
the sentence extraction phase of a multi-
document summarisation task. A novel
representation is introduced based on
generic relation extraction (GRE), which
aims to build systems for relation iden-
tification and characterisation that can be
transferred across domains and tasks with-
out modification of model parameters. Re-
sults demonstrate performance that is sig-
nificantly higher than a non-trivial base-
line that uses tf*idf -weighted words and at
least as good as a comparable but less gen-
eral approach from the literature. Anal-
ysis shows that the representations com-
pared are complementary, suggesting that
extraction performance could be further
improved through system combination.

1 Introduction

The goal of summarisation is to take an informa-
tion source, extract content from it, and present
the most important content in a condensed form
(Mani, 2001). The field of automatic summarisa-
tion (Mani, 2001; Spärck Jones, 2007) aims to cre-
ate tools that address various summarisation tasks
with minimal human intervention. Extractive ap-
proaches to automatic summarisation create rep-
resentations of the source document that are gen-
erally based on an easily identified text sub-unit
such as sentences or paragraphs. These represen-
tations are then used to identify representative or
otherwise important snippets of text to place in the
summary.

Following Spärck Jones (2007), summarisation
systems can be characterised with respect to their
approach to three main sub-tasks: 1) interpreta-
tion, 2) transformation and 3) generation. The

input consists of the source document (or a col-
lection of source documents in the case of multi-
document summarisation). The first step (interpre-
tation) creates a representation of the source doc-
ument by performing some level of interpretation.
A simple approach here represents sentences by
their tokens (i.e., as an unordered bag-of-words).
The next step (transformation) is the compaction
step where the source representation is converted
into the summary representation, e.g. by identify-
ing sentences whose words are most representative
of the full text. Finally, in the last step (genera-
tion), the output summary is created. In the case
of sentence extraction, this includes various opera-
tions to maximise coherence such as ensuring that
entity references are comprehensible and arrang-
ing the sentences in a sensible order.

The current work investigates several represen-
tations of source documents. In particular, an ap-
proach from the literature based on atomic events
(Filatova and Hatzivassiloglou, 2004) is compared
to a novel approach based on generic relation ex-
traction (GRE), which aims to build systems for
relation identification and characterisation that can
be transferred across domains and tasks without
modification of model parameters (Hachey, 2009).
The various representations are substituted in the
interpretation phase of a multi-document sum-
marisation task and used as the basis for extract-
ing sentences to be placed in the summary. Sys-
tem summaries are compared by calculating term
overlap with reference summaries created by hu-
man analysts.

2 Motivation

In seminal work on automatic summarisation,
Luhn (1958) introduces a representation based
on content words. These are defined as non-
function words from the source document that are
neither too frequent nor too infrequent. Luhn
uses frequency to weight content words and ex-
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tracts sentences with the highest combined con-
tent scores to form the summary. Subsequent work
adapted the tf*idf weighting scheme, where term
frequency (tf ) is combined with inverse document
frequency (idf ), an inverse measure of term oc-
currence across documents that serves to down-
weight common words (Spärck Jones, 1972). In
modern work, tf*idf representations are often used
as simple but non-trivial baselines. The problem
is that these shallow features often break down
where underlying linguistic content needs to be
compared rather than just surface structure.

The use of representations based on informa-
tion extraction (IE) has been suggested as one ap-
proach to capturing deeper semantic information.
This is based on the notion that IE definitions of
types for entities, relations and events provide a
level of abstraction that is appropriate for auto-
matic summarisation. Several approaches in the
literature have explored the use of IE-based rep-
resentations for extractive summarisation: McK-
eown et al. (1998) incorporate patient character-
istic templates for matching potential treatments
to specific patients in a medical summarisation
system; White and Cardie (2002) incorporate a
bootstrapped IE system based on Autoslog (Riloff,
1996) for filling event templates; and Harabagiu
and Maiorano (2002) incorporate a hybrid ap-
proach that uses conventional supervised IE tech-
niques for known topics and a more general ap-
proach based on WordNet for unknown topics.1

The problem with these systems is that they all
use supervised approaches to IE that require that
the IE templates be known in advance and addi-
tionally require significant investment in writing
extraction rules or in annotating data for train-
ing. Where more general techniques are used, they
still require domain-specific resources, e.g. White
and Cardie (2002) bootstrapping approach still re-
quires that the extraction templates be known in
advance and Harabagiu and Maiorano (2002) ap-
proach depends on the WordNet lexical database,
for which coverage is not guaranteed for arbitrary
domains.

Filatova and Hatzivassiloglou (2004) intro-
duce methods using more general IE represen-
tations that are not based on supervised learn-
ing. Given a named entity recogniser, the rep-

1Comparable approaches using IE in the context of
abstractive–as opposed to extractive–summarisation include
work by DeJong (1982), Hahn and Reimer (1999), White et
al. (2001) and Saggion and Lapalme (2002).

resentation is automatically derived and consists
of <Ent,Connector, Ent> event triples, where
connectors are verbs or action nouns that occur in
between the two NEs. Thus, the approach aims to
perform a generic IE task that the authors refer to
as atomic event extraction. This representation is
shown to outperform a tf*idf baseline on a multi-
document summarisation task. As we will see in
Section 4.3 below, Filatova and Hatzivassiloglou’s
approach has three main shortcomings. First, it fo-
cuses exclusively on simple atomic events (i.e., en-
tity mention pairs with an intervening verbal con-
nector), meaning that it will not be able to ad-
dress tasks where relations are at least as impor-
tant as events (e.g., biographical summarisation).
Second, it relies on exact matching between con-
nectors, which is not capable of capturing latent
semantic similarities (e.g., between ‘work for’ and
‘employed by’). Third, its performance is subject
to the coverage of WordNet, which is used to iden-
tify action nouns.

Generic relation extraction (GRE) aims to build
systems that can be transferred across domains
and tasks without modification of model param-
eters (Hachey, 2009). For relation identification
(i.e., extraction of relation forming entity mention
pairs), this is achieved by using general rule-based
approaches and, for relation characterisation (i.e.,
assignment of types to relation mentions), this is
achieved by using unsupervised machine learning.
Hachey (2009) introduces a GRE approach that
addresses the shortcomings of the atomic event ap-
proach mentioned above. First, it models a type of
IE that includes relations. Second, it uses a con-
nector model based on latent Dirichlet allocation
(Blei et al., 2003), which provides a mechanism
for capturing latent semantic similarities between
connectors. Third, it does not rely on domain-
specific resource like WordNet. The GRE models
used here do rely on dependency parsing. How-
ever, they still generalise across formal domains
as the relation identification and characterisation
systems, developed on news data, achieve compa-
rable performance when applied directly to a rela-
tion extraction task in the biomedical domain (see
Hachey (2009) for details). Furthermore, gram-
matical relations obtained from dependency pars-
ing provide a means for constraining relation iden-
tification and supplying more linguistically mean-
ingful features for relation characterisation.
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c1 c2 c3 c4 c5

t1 1 1 0 1 1
t2 1 0 0 1 0
t3 0 1 0 0 1
t4 1 0 1 1 1

Table 1: Text × concept matrix for set cover ap-
proach to automatic summarisation (Filatova and
Hatzivassiloglou, 2004).

3 Algorithm for Set Cover Extraction

For the sake of comparison, the current evaluation
adopts the Filatova and Hatzivassiloglou (2004)
summarisation framework. This defines an extrac-
tion approach based on a mapping between textual
units and concepts. To illustrate, consider the ma-
trix in Table 1 where rows represent textual units
(e.g., sentences, paragraphs) and columns repre-
sent concepts (e.g., words, events, relations) in the
input text. Each concept is either absent or present
in a given textual unit. Additionally, each con-
cept has a weight associated with it. Looking at
the problem in this way makes it natural to for-
mulate it as follows: the summary should select
textual units such that there is maximal coverage
of the salient conceptual units.2 This is essentially
the maximum coverage problem, which has been
shown to be reducible to the set covering problem,
for which there are approximation algorithms in
the literature that run in polynomial time or better
(Hochbaum, 1997; Bienstock and Iyengar, 2004).

Filatova and Hatzivassiloglou define several
greedy algorithms that can be parametrised in
terms of the general SUMMARISE function in Fig-
ure 1, which takes the text × concept matrix D
and the maximum summary length k as input. The
SUMMARISE function first initialises the summary
S to the empty set. Then it enters a loop that
continues until the summary reaches the desired
length. Within the loop, a text unit is extracted and
added to the summary after which the text × con-
cept matrix is updated The output of the algorithm
is a set S comprising the text units that make up
the summary. For the experiments reported here,
the text units t are sentences and LENGTH(ti) re-

2While not considered in the current experiments, a more
discourse-oriented approach could be derived within the set
cover framework by down-weighting conceptual units that
occur e.g. in portions of the source documents that describe
background information, where text segments containing
background information could be identified using a sentence-
level rhetorical status classifier like that developed by Teufel
and Moens (2002).

SUMMARISE : D, k
1 S ← {}
2 while

∑
ti∈SLENGTH(ti) < k

3 tj ← EXTRACT(D)
4 S ← S ∪ tj
5 D ← UPDATE(D, tj)
6 return S

Figure 1: Generalised function for Filatova and
Hatzivassiloglou (2004) approach to extractive
summarisation.

EXTRACT: D
1 cj ← arg maxcj∈cols(D)

∑
ti∈rows(D)

D[ti, cj ]

2 tk ← arg maxtk∈rows(D)&D[tk,cj ]>0 SCORE(D, tk)
3 return tk

UPDATE: D, ti
1 for each cj ∈ cols(D)
2 if D[ti, cj ] > 0
3 for each tk ∈ rows(D)
4 D[tk, cj ]← 0
5 D ← DELETE(D, ti)
6 return D

Figure 2: Extraction and update functions for Fi-
latova and Hatzivassiloglou (2004) modified adap-
tive algorithm.

turns the count of word tokens in sentence ti.
Figure 2 contains the EXTRACT and UPDATE

functions used here.3 The EXTRACT function first
identifies the concept cj not yet covered in the
summary that has the highest overall weight in the
text × concept matrix D. Then it selects the text
unit tk with the highest score from among the text
units that contain concept cj . The SCORE func-
tion is the sum of concept weights for the given
text unit, i.e.:

SCORE : D, ti 7→ return
∑

cj∈cols(D)

D[ti, cj ] (1)

The UPDATE function in Figure 2 aims to min-
imise redundancy in the summary by globally
maximising the number of conceptual units cov-
ered in the output. In addition to removing the row
representing the extracted text unit from the text×
concept matrixD, it iterates through the remaining
text units and assigns zero weights to all concepts
that are covered by the extracted text unit.

3The EXTRACT and UPDATE functions in Figure 2 corre-
spond to Filatova and Hatzivassiloglou (2004) modified adap-
tive algorithm and were found in preliminary experiments to
be the better than the simple greedy and adaptive greedy al-
gorithms (see Hachey (2009) for details).
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Bush worked as an oil lease negotiator for Amoco in
Denver and later started his own oil company, JNB.
tf*idf (TF)
jnb:3.55, amoco:3.13, oil:3.05,
negotiator:3.04, lease:2.58, denver:2.45,
bush:2.44, worked:2.28, started:2.21,
later:2.13, own:1.96, company:1.94,
...

event (EV)
<PER bush,worked,XFN oil>:0.00023,
<PER bush,worked,ORG amoco>:0.00011,
<PER bush,worked,LOC denver>:0.00011,
<XFN oil,started,ORG jnb>:0.00011,
...

relation (RL)
<ORG amoco,rd94,LOC denver>:0.00039,
<ORG amoco,rd505,LOC denver>:0.00039,
<XFN oil,rd92,ORG jnb>:0.00002,
<XFN oil,rd712,ORG jnb>:0.00002,
...

entity pairev (EE)
<PER bush,XFN oil>:0.00244,
<PER bush,LOC denver>:0.00122,
<PER bush,ORG jnb>:0.00044,
<LOC denver,XFN oil>:0.00033,
...

entity pairrl (ER)
<ORG amoco,LOC denver>:0.00311,
<ORG jnb,XFN oil>:0.00155

Figure 3: Example sentence and various represen-
tations of sentence content.

4 Models

Figure 3 contains an example sentence and its rep-
resentations corresponding to the various models
of sentence content explored here.4 These are de-
scribed in detail in the rest of this section.

4.1 Baseline tf*idf Representation (TF)
The baseline model represents sentences as tf*idf -
weighted bags-of-words (TF). Document frequen-
cies for terms are derived from the same resource
used by Filatova and Hatzivassiloglou (2004)–a
frequency list compiled from a large sample of
web pages. Term weighting is calculated using
tf*idf as:

w(i, j) =

√
(1 + log (tfi,j)) ∗ log

(
N

dfi

)
(2)

where tfi,j is the number of times term i occurs in
sentence j and dfi is the number of documents in
which term i occurs. An example sentence and its
tf*idf representation can be seen in Figure 3.

4The sentence was selected from document set d47 (from
the data set described in Section 5.1 below), which contains
articles about Neil Bush and his role in the collapse of Sil-
verado Savings and Loan during the U.S. Savings and Loan
crisis of the 1980s and 1990s.

4.2 Event Representation (EV)

We also compare to Filatova and Hatzivassiloglou
(2004) atomic events (EV). This consists of
<Enti, Connectorj , Entk> event triples, where
connectors are verbs or action nouns (i.e., nouns
that are hyponyms of event or activity in Word-
Net) that occur in between the two entity men-
tions. Given a named entity recogniser and a lex-
ical resource (WordNet), these are derived auto-
matically from the text as follows. In the first step,
all pairs of entity mentions that occur together in a
sentence are identified. Next, the algorithm char-
acterises the entity mention pairs using the con-
nector words from the intervening context and dis-
cards pairs without an intervening connector word.

Event triple weighting is calculated by combin-
ing entity pair and connector weights as:

wev(i, j, k) = wne(i, k) ∗ wcn(j, i, k) (3)

where wne(i, k) is the weight of the entity
pair <i, k> consisting of entities i and k and
wcn(j, i, k) is the weight of connector j in the con-
text of entity pair <i, j>. wne(i, k) is calculated
as the normalised entity pair count, i.e.:

wne(i, k) =
Cne(< i, k >)
Cne(< ∗, ∗ >)

(4)

where Cne(<i, k>) is the count of mentions of
entity pair <i, k>5 and Cne(<∗, ∗>) is the total
count of entity mention pairs. And, wcn(j, i, k) is
calculated as the normalised count of connector j
in the context of the entity pair, i.e.:

wcn(j, i, k) =
C<i,k>

cn (j)

C<i,k>
cn (∗)

(5)

where C<i,k>
cn (j) is the count of occurrences of

connector j in the context of entity pair <i, k>
and C<i,k>

cn (∗) is the total count of connectors in
the context of entity pair <i, k>. An example
sentence and its event representation can be seen
in Figure 3. Event triples generated include
<PER bush,worked,ORG amoco> and
<PER bush,started,ORG jnb>.

Some erroneous event triples are also generated.
The first error has to do with the fact that entities

5Coreference between entity mentions is computed by ex-
act string match after removing punctuation, converting to
all lower case, and prefixing the entity type. For example,
the entity mention string “JNB” with type ORGANISATION is
normalised to ORG jnb.
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include named entities identified in the pre-
processing as well as the ten most frequent nouns
in the document set. In the example sentence from
Figure 3, the most frequent nouns include ‘oil’
but not ‘negotiator’ or ‘company’. Therefore, ‘oil’
is labelled as an entity and extracted in a num-
ber of triples such as <PER bush,worked,
XFN oil> (as opposed to <PER bush,
worked,XFN negotiator>). Another
problem illustrated by the example sentence has
to do with the noisy nature of the surface-level
approach to identifying entity mention pairs and
connectors which tends to generate many false
positive events, e.g. <ORG amoco,started,
ORG jnb>. If the algorithm was constrained
based on the underlying grammatical structure,
it should be able to identity that the arguments
of ‘worked’ are ‘Bush’ and ‘Amoco’ (i.e.,
<PER bush,worked,ORG amoco>) and that
‘worked’ does not describe an event involving
‘Amoco’ and ‘JNB’.

4.3 Relation Representation (RL)

The focus of the current evaluation is a novel rep-
resentation based on generic relation extraction
(GRE). As mentioned above, GRE is a minimally
supervised approach to the relation extraction task
that aims to build systems for relation identifica-
tion and characterisation that can be transferred
across domains and tasks without modification of
model parameters. Relation mentions are identi-
fied by taking pairs of entity mentions that have ei-
ther 1) no more than two intervening words in the
surface order of the sentence or 2) no more than
one edge intervening on the shortest path through
a dependency parse (see Hachey (2009) for details
and experiments comparing different window con-
figurations). This is stricter than the Filatova and
Hatzivassiloglou approach in that entity mentions
have to occur much closer or be connected by a
single dependency relation. At the same time, it
is less strict in the sense that an action- or event-
denoting word is not required in the context, which
makes it a more general model of IE.

Relation connectors are derived from a model of
relation types based on latent Dirichlet allocation
(Blei et al., 2003) that incorporates word, entity
and dependency path features from the context of
a relation-forming entity mention pair (see Hachey
(2009) for details). This outputs a topic distribu-
tion for each entity mention pair that corresponds

to the type of relation that is described. This rep-
resentation 1) models a type of generic IE that in-
cludes relations, 2) uses a connector model that ab-
stracts away from surface-level event descriptors
used by Filatova and Hatzivassiloglou (2004) and
3) does not rely on domain-specific resources like
WordNet.6 For the purpose of comparison, rela-
tion triples are weighted in the same way as event
triples using Equations 3 and 4 above. However,
the connector pair weighting is modified to use the
distribution over topics given by the LDA output.7

Relation triples generated for the example
sentence in Figure 3 include <ORG amoco,
rd94,LOC denver> and <ORG amoco,
rd505,LOC denver>, where the connectors
(i.e., rd94 and rd505) are identifiers that index
particular topics from the LDA output. Here,
rd94 and rd505 index topics that correspond
to located-in relations so the respective triples
both describe located-in relations between Amoco
and Denver. Relation triples generated for the
example sentence also include <XFN oil,
rd92,ORG jnb> and <XFN oil,rd712,
ORG jnb>. These are erroneous for the same
reason as some of the event triples above (i.e., due
to the noise inherent in the approach to identifying
nominal entity mentions by identifying the ten
most frequent nouns in the document set).

4.4 Entity Pair Representations (EE, ER)
Finally, we investigate the performance of rep-
resentations that do not model event or re-
lation type information. These are identical
to the EV and RL representations above, ex-
cept they are <Ent,Ent> 2-tuples instead of
<Ent,Connector, Ent> 3-tuples. That is, entity
pairs are included here provided that they meet the
relation mention identification constraints. They
are weighted using the normalised entity pair
count (Equation 4 above). Relation-based entity
pairs generated for the example sentence in Fig-
ure 3 include<LOC denver,ORG amoco> and
<ORG jnb,XFN oil>.

6The GRE representation here does rely on dependency
parsing, however, Hachey (2009) shows that it is still directly
portable between the news and biomedical domains without
modification of model parameters.

7Distributions for entity mention pairs tend to have a long
uniform tail and only a few topics with higher probability. In
converting to a weighting scheme, topic representations here
are converted to a sparse representation where all topics in
the uniform tail are removed.
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5 Experimental Setup

5.1 Data

The experiments here use the multi-document
summarisation data from the 2001 Document Un-
derstanding Conference (DUC),8 which is the
same data used by Filatova and Hatzivassiloglou
(2004). This comprises 30 test document sets,
each of which include approximately 10 news sto-
ries. Each document set is collected by a human
and focuses on a particular topic. Example topics
include the nomination of Clarence Thomas to the
American Supreme Court, Neil Bush’s role in the
collapse of Silverado Savings and Loan and the
Exxon Valdez oil spill. Gold standard summaries
are provided for each document set for summary
lengths of 50, 100, 200 and 400 words. This helps
to ensure that the systems are not over-tuned to
specific summary lengths. For each summary task
(i.e., all 120 document set× summary length com-
binations), there are three distinct gold standard
summaries created by different human analysts.

Pre-processing includes sentence boundary
identification, segmentation of words (tokenisa-
tion), labelling words with part-of-speech tags,
identification of noninflected base word forms
(lemmatisation) from the LT-TTT tools (Grover et
al., 2000). It also includes dependency parsing us-
ing Minipar (Lin, 1998) and automatic named en-
tity recognition using the C&C tagger (Curran and
Clark, 2003) trained on the data from the MUC-7
shared task (Chinchor, 1998). Weights for the var-
ious IE-based representations are calculated over
each input document set.

5.2 Evaluation

The evaluation uses Rouge9 to determine which
representation selects content that overlaps most
with human summaries. Rouge estimates the
coverage of appropriate concepts (Lin, 2004) in
a summary by comparing it to several human-
created reference summaries. Rouge-1 does so
by computing recall based on macro-averaged un-
igram overlap. Rouge-SU4 does so by calculating
skip-bigram overlap where bigrams are allowed to

8http://www-nlpir.nist.gov/projects/
duc/index.html

9Rouge stands for recall-oriented understudy for gisting
evaluations. While current versions also compute precision
and f-score of system summaries, the evaluation here uses
recall alone, which is sufficient when the length of the sum-
maries being compared is the same. Rouge can be obtained
from http://haydn.isi.edu/ROUGE/.

1 50 100 200 400
TF 0.0797 0.1113 0.1742 0.2467
EV 0.1360 0.1776 0.2315 0.3019
RL 0.1360 0.1766 0.2412 0.3014

SU4 50 100 200 400
TF 0.0173 0.0259 0.0442 0.0693
EV 0.0376 0.0494 0.0692 0.0950
RL 0.0356 0.0491 0.0701 0.0939

Table 2: Comparison of Rouge scores for the tf*idf
(TF), event (EV) and relation (RL).

be composed of non-contiguous words (with as
many as four words intervening). Rouge-SU4 also
includes unigrams to decrease the chances of zero
scores where there is no skip-bigram overlap.

The configuration is based on comparisons be-
tween Rouge and human judgements of content
coverage (Lin, 2004), which suggest that Rouge-
1 and Rouge-SU4 with stemming and removal
of stop words are good measures for evaluating
multi-document summarisation tasks, consistently
achieving Pearson’s correlation scores above 0.72
and as high as 0.9 for longer summaries. Paired
Wilcoxon signed ranks tests across document sets
are used to check for significant differences be-
tween systems. The paired Wilcoxon signed ranks
test is a non-parametric analogue of the paired t
test. The null hypothesis is that the two popula-
tions from which the scores are sampled are iden-
tical.

6 Results

Can extractive summarisation be improved us-
ing representations based on generic informa-
tion extraction? Table 2 contains results for
tf*idf (TF), event (EV) and relation (RL) repre-
sentations. Columns contain results for different
lengths of summary (50, 100, 200 and 400 words).
The best representation for each summary length
is in bold and representations that are statistically
distinguishable from the best (i.e., p ≤ 0.05) are
underlined. The results demonstrate unambigu-
ously that the event and relation representations
outperform the tf*idf representation, with strongly
significant p-values less than 0.001 for both Rouge
measures and all summary lengths. The event and
relation representations are indistinguishable for
both Rouge measures and all summary lengths.
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1 50 100 200 400
ER 0.1497 0.1929 0.2527 0.3123
EE 0.1442 0.1705 0.2288 0.3061

SU4 50 100 200 400
ER 0.0419 0.0537 0.0786 0.1008
EE 0.0364 0.0447 0.0643 0.0963

Table 3: Comparison of Rouge scores for entity
pairs based on relations (ER) and events (EE).

How does entity pair identification for generic
relations compare to entity pair identification
for atomic events? Table 3 contains results for
the representations described in Section 4.4. Rows
correspond to entity pair identification for rela-
tions (ER) and events (EE).10 Results suggest that
the entity pair model based on GRE data out-
performs the entity pair model based on atomic
events, at least for medium sized summaries of
100 and 200 words where ER is significantly better
than EE for both Rouge measures.

How do the event and relation representations
perform with respect to corresponding entity
pair representations? The scores for the entity
pair representations reported in Table 3 are statisti-
cally indistinguishable from those for correspond-
ing relation and event representations in Table 2
above. This appears to be a mixed result for both
the relation representation introduced here and
the Filatova and Hatzivassiloglou event represen-
tation. And, while GRE is shown to have a positive
effect on Rouge scores when compared to atomic
events, the same cannot be said of approaches
to characterising relation and event types. How-
ever, as the correlation analysis (Section 7.1 be-
low) demonstrates, RL and ER do not necessar-
ily perform well on the same document sets. This
suggests that they are actually complementary to
some degree, meaning that a combined system
based on both representations would outperform
RL and ER on their own.

10In contrast to the results for the tf*idf, relation and event
representations which use the modified adaptive algorithm
described above, results for entity pair representations use a
simplified version of the EXTRACT function that picks the
text unit that has the highest score. This performed signifi-
cantly better than the modified adaptive algorithm (p ≤ 0.01)
for all summary lengths for ER and was indistinguishable for
EE. See Hachey (2009) for details.

7 Analysis and Comparison

7.1 Complementarity

Figure 4 contains results for a correlation analy-
sis comparing the various representations. This
also includes a comparison to the human upper
bound (HU), computed by leave-one-out cross val-
idation. Cells in the matrix contain the correla-
tions values measured across document set Rouge-
SU4 scores11 using Spearman’s ρ rank correlation
coefficient (rS). Here, high values mean that two
representations tend to perform well on the same
document sets such that an ordering of document
sets by Rouge scores is similar for the representa-
tions being compared. In the figure, correlation
strength is represented by shading where light-
toned squares indicate strong correlation (and the
darkest squares indicate weak negative correla-
tion). For example, the upper left cell contains rS
between the TF and EV representations. The four
squares correspond to rS values of -0.085, 0.199,
0.245 and 0.267 respectively for summaries of 50,
100, 200 and 400 words.

The analysis illustrates a number of interest-
ing points. First, it demonstrates that none of
the representations correlate highly with the hu-
man upper bound, meaning that the automatic sys-
tems do not necessarily do well on the document
sets that may be considered easier as measured
by human agreement using Rouge. This suggests
that task difficulty does not need to be considered
as a possible underlying cause of correlation be-
tween the automatic systems. The analysis also
illustrates that there is no clear and consistent re-
lationship between summary length and correla-
tion values. Some cells suggest that correlation
may have a monotonic linear relationship increas-
ing with length (e.g., TF*EV) while others seem
to suggest inverse linear (e.g., TF*RL), quadratic
(e.g., EV*HU) and invariant (e.g., EV*EE) rela-
tionships with length.

Looking at correlation between automatic sys-
tems (i.e., TF, EV, RL, EE and ER), correla-
tion values closer to zero suggest that the sys-
tems do well on different document sets and that
a combined system might therefore be better.
By this reasoning, the largest gains would come
from combining TF with any other representation.
Among the other automatic systems, the relation

11Correlation across document set Rouge-1 scores shows
similar trends.
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Figure 4: Comparison of representations using Spearman’s rs. Row and column labels correspond to
tf*idf (TF), event (EV), relation (RL), event entity pair (EE), relation entity pair (ER) and human (HU)
representations. Lighter toned squares indicate stronger correlation.

representation (RL) shows moderately high poten-
tial for combination with its corresponding entity
pair representation (ER) with Spearman’s rS val-
ues in the range from 0.348 to 0.476. This sug-
gests that ER should not necessarily be consid-
ered a simpler representation of the same infor-
mation captured by RL when comparing results.
The event representation (EV), by contrast, shows
the strongest correlation of any comparison with
its corresponding entity pair representation (EE)
with rS values in the range from 0.541 to 0.725.

7.2 Error Analysis
Four document sets were considered for error
analysis. These were selected to cover different
relative rankings of representations. Rows in Ta-
ble 4 give the document set ID and list the repre-
sentations in order of their Rouge-SU4 scores. In-
spection of the corresponding document sets sug-
gests that the different approaches compared here
are appropriate for different types of summary
tasks. Specifically, it suggests that relation and
event representations perform poorly on summari-
sation tasks that are oriented towards sentiment,
description or analysis. However, they do well
on document sets that are oriented towards fac-
tual information typical of information extraction
tasks (though current representations do not cap-
ture date, time or numeric information). This sup-
ports the notion from the previous section that the
different representations evaluated here are com-
plementary.

The document set (d06) for the summaries in
Figure 5 illustrates a case where the relation and
event representations perform well with respect

Set Rank 1 Rank 2 Rank 3
d15 TF (0.046) RL (0.035) EV (0.023)
d39 TF (0.033) EV (0.024) RL (0.014)
d06 RL (0.094) EV (0.060) TF (0.016)
d53 RL (0.078) TF (0.035) EV (0.020)

Table 4: DUC 2001 document sets chosen for er-
ror analysis and corresponding Rouge-SU4 scores.

to tf*idf. The gold standard summary describes
a beating event, addressing the basic facts of the
Rodney King beating by Los Angeles police as
well as the political aftermath which consists pri-
marily of an investigation and a summary of re-
lated police brutality events. The difference in
performance seems to be due to the fact that re-
lations and events are central to all aspects of
this summary and the relation and event represen-
tations clearly do better than tf*idf at capturing
this information. This summary also illustrates an
unintended side-effect of the relation representa-
tion where the generic relation identification algo-
rithm finds relations between components of lex-
ical compounds or multi-word phrases. The rep-
resentation for the third sentence in the RL sum-
mary, for example, includes a relation between
ORG police and XFN chief in addition to
true positive relations e.g. between ORG police
and PER darylgates and false positive re-
lations e.g. between PER tombradley and
ORG police.

7.3 Comparison to Supervised Extraction

Related work by Wong et al. (2008) also com-
pares representations for sentence extraction on
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TF
(0.016)
(20/29)

[S1] Mr. Williams likened the report to the Knapp Commission, a 1970s blue-ribbon study that exposed
widespread corruption in the New York Police Department and led to significant improvements there. [S2]
“There’s no doubt in our mind that the only reason they stopped Joe Morgan was because he is black and
he was the first black who happened to come by,” said William Barnes, one of the attorneys representing
the former ballplayer. [S3] Joseph McNamara, retired chief of San Jose’s department and now a fellow
at Stanford University’s Hoover Institution, said he has been getting calls all summer from [END] cities
around the country about racism and brutality in their departments.

EV
(0.060)
(9/29)

[S1] A high-ranking commission appointed after the beating, under the chairmanship of Mr Warren
Christopher, a lawyer and former deputy secretary of state, concluded that the Los Angeles police de-
partment got results, in terms of arrests, but had developed a ‘siege mentality that alienates the officer
from the community’. [S2] The images of Los Angeles police swinging nightsticks at King as he lay on
the ground, played repeatedly on national news programs, were burned into the national conscience and
led to widespread calls for investigation of police brutality. [S3] Besides recommending that Mr Gates
should go, the Christopher commission urged a policy [END] of community policing with more foot pa-
trols, as well as measures to discipline racist police officers and to improve the investigation of complaints
about police brutality.

RL
(0.094)
(3/29)

[S1] Mr. Gates opposed the Police Corps because its members would not be professionals. [S2] Shortly
after Rodney King’s beating, a news program on ABC illustrating police brutality showed a still photo
of police using a martial-arts weapon against a person being arrested, but there was no mention that the
episode involved Operation Rescue. [S3] The report was issued yesterday by a commission appointed by
Mayor Tom Bradley and Police Chief Daryl Gates in the wake of the videotaped beating March 3 of a
black motorist, Rodney King, by Los Angeles police. [S4] Investigations have been launched by the FBI,
the Los [END] Angeles County district attorney’s office and the Long Beach Police Department.

HU
(0.400)
(15/29)

The most important of the many cases of police brutality reported in southern California 1989-1992, was
the beating of Rodney King by four Los Angeles officers on March 3, 1991. An investigating commission
outlined steps for improvement of the police department and called for the resignation of Chief Gates.
Gates did not resign until the following year after the acquittal of the four officers caused massive rioting.
Other cases of police brutality arose in Minneapolis, Chicago and Kansas City. Operation Rescue claimed
that its non-violent anti-abortion demonstrators were seriously injured by excessive police tactics in more
than [END] 50 cities.

Figure 5: Example system and human (HU) summaries where relation (RL) and event (EV) representa-
tions perform well with respect to the tf*idf (TF) representation: Police Brutality Document Set (d06).

the DUC 2001 data. However, it uses supervised
machine learning (probabilistic support vector ma-
chines) to derive a salience function while we fo-
cus on unsupervised approaches that can be ported
to new domains and tasks without annotation or
training. Interestingly, Wong et al.’s results sug-
gest that adding events to a word-based feature
set increases the precision of supervised sentence
extraction but reduces the recall. By contrast,
the current results and analysis provide evidence
that word and generic IE-based representations are
complementary when using unsupervised salience
functions for sentence extraction.

The Wong et al. (2008) paper also provides use-
ful results for comparison to state-of-the art. On
the 200 word summarisation task, Wong et al. re-
port Rouge-1 scores of 0.352 and 0.344 respec-
tively for word-based and event-based represen-
tations. On the same task, our unsupervised ap-
proach achieves Rouge-1 scores of 0.174, 0.232,
0.229, 0.241 and 0.253 respectively for the tf*idf,
event, event entity pair, relation and relation en-
tity pair representations. Wong et al.’s best overall
score is 0.396 using a representation that combines
surface, content and relevance features.

8 Conclusion

Experiments were presented that compare the ef-
fect of various source document representations
on the accuracy of automatic summarisation. This
serves as an extrinsic evaluation of generic relation
extraction, a domain-neutral and fully portable ap-
proach to relation identification and characterisa-
tion. Results demonstrate that GRE is an effective
representation for sentence extraction for multi-
document summarisation. Performance for the re-
lation representation is significantly better than a
non-trivial tf*idf baseline across the range of sum-
mary lengths explored. Performance is also at
least as good as a comparable but less general rep-
resentation based on event extraction. Correlation
analysis suggests that different representations are
complementary due to the fact that they perform
well on different document sets. Error analysis
supports this conclusion, suggesting that the rela-
tion and event representations perform poorly on
summarisation tasks that are oriented towards e.g.
sentiment, description or analysis while they per-
form well on tasks that focus on fact-oriented in-
formation.
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Abstract

In this paper we propose a novel statistical
language model to capture long-range se-
mantic dependencies. Specifically, we ap-
ply the concept of semantic composition to
the problem of constructing predictive his-
tory representations for upcoming words.
We also examine the influence of the un-
derlying semantic space on the composi-
tion task by comparing spatial semantic
representations against topic-based ones.
The composition models yield reductions
in perplexity when combined with a stan-
dard n-gram language model over the
n-gram model alone. We also obtain per-
plexity reductions when integrating our
models with a structured language model.

1 Introduction

Statistical language modeling plays an important
role in many areas of natural language process-
ing including speech recognition, machine trans-
lation, and information retrieval. The prototypi-
cal use of language models is to assign proba-
bilities to sequences of words. By invoking the
chain rule, these probabilities are generally es-
timated as the product of conditional probabili-
ties P(wi|hi) of a word wi given the history of
preceding words hi ≡ wi−1

1 . In theory, the history
could span any number of words up to wi such as
sentences or even a paragraphs. In practice, how-
ever, it has proven challenging to deal with the
combinatorial growth in the number of possible
histories which in turn impacts reliable parame-
ter estimation. A simple and effective strategy is
to truncate the chain rule to include only the n-1
preceding words (n is often set within the range
of 3–5). The simplification reduces the number of
free parameters. However, low values of n impose
an artificially local horizon to the language model,

and compromise its ability to capture long-range
dependencies, such as syntactic relationships, se-
mantic or thematic constraints.

The literature offers many examples of how to
overcome this limitation, essentially by allowing
the modulation of probabilities by dependencies
which extend to words beyond the n-gram horizon.
Cache language models (Kuhn and de Mori, 1992)
increase the probability of words observed in the
history, e.g., by some factor which decays expo-
nentially with distance. Trigger models (Rosen-
feld, 1996) go a step further by allowing arbi-
trary word pairs to be incorporated into the cache.
Structured language models (e.g., Roark (2001))
go beyond the representation of history as a lin-
ear sequence of words to capture the syntactic con-
structions in which these words are embedded.

It is also possible to build representations of
history which are semantic rather than syntactic
(Bellegarda (2000; Coccaro and Jurafsky (1998;
Gildea and Hofmann (1999)). In this approach, es-
timates for the probabilities of upcoming words
are derived from a comparison of their semantic
content with the content of the history so far. The
semantic representations, in this case, are vectors
derived from the distributional properties of words
in a corpus, based on the insight that words which
are semantically similar will be found in similar
contexts (Harris, 1968; Firth, 1957). Although the
the construction of a semantic representation for
the history is crucial to this approach, the under-
lying vector-based models are primarily designed
to represent isolated words rather than word se-
quences. Ideally, we would like to compose the
meaning of the history out of its constituent parts.
This is by no means a new idea. Much work in lin-
guistic theory (Partee, 1995; Montague, 1974) has
been devoted to compositionality, the process of
determining the meaning of complex expressions
from simpler ones. Previous work either ignores
this issue (e.g., Bellegarda (2000)) or simply com-
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putes the centroid of the vectors representing the
history (e.g., Coccaro and Jurafsky (1998)). This is
motivated primarily by mathematical convenience
rather than by empirical evidence.

In our earlier work (Mitchell and Lapata, 2008)
we formulated composition as a function of two
vectors and introduced a variety of models based
on addition and multiplication. In this paper we
apply vector composition to the problem of con-
structing predictive history representations for lan-
guage modeling. Besides integrating composition
with language modeling, a task which is novel to
our knowledge, our approach also serves as a valu-
able testbed of our earlier framework which we
originally evaluated on a small scale verb-subject
similarity task. We also investigate how the choice
of the underlying semantic representation inter-
acts with the choice of composition function by
comparing a spatial model that represents words
as vectors in a high-dimensional space against a
probabilistic model that represents words as topic
distributions.

Our results show that the proposed composi-
tion models yield reductions in perplexity when
combined with a standard n-gram model over
the n-gram model alone. We also show that with
an appropriate composition function spatial mod-
els outperform the more sophisticated topic mod-
els. Finally, we obtain further perplexity reduc-
tions when our models are integrated with a struc-
tured language model, indicating that the two ap-
proaches to language modeling are complemen-
tary.

2 Background

2.1 Distributional Models of Semantics
The insight that words with similar meanings will
tend to be distributed in similar contexts has given
rise to a number of approaches that construct
semantic representations from corpora. Broadly
speaking, these models come in two flavors. Se-
mantic space models represent the meaning of
words in terms of vectors, with the vector compo-
nents being derived from the distributional statis-
tics of those words. Essentially, these models pro-
vide a simple procedure for constructing spatial
representations of word meaning. Topic models, in
contrast, impose a probabilistic model onto those
distributional statistics, under the assumption that
hidden topic variables drive the process that gener-
ates words. Both approaches represent the mean-

ings of words in terms of an n-dimensional series
of values, but whereas the semantic space model
treats those values as defining a vector with spatial
properties, the topic model treats them as a proba-
bility distribution.

A simple and popular (McDonald, 2000; Bul-
linaria and Levy, 2007; Lowe, 2000) way to con-
struct a semantic space model is to associate each
vector component with a particular context word,
and assign it a value based on the strength of
its co-occurrence with the target (i.e., the word
for which a semantic representation is being con-
structed). For example, in Mitchell and Lapata
(2008) we used the 2,000 most frequent content
words in a corpus as their contexts, and defined
co-occurrence in terms of the context word be-
ing present in a five word window on either side
of the target word. We calculated the ratio of the
probability of the context word given the target
word to the overall probability of the context word
and use these values as their vector components.
This procedure has the benefits of simplicity and
also of being largely free of any additional the-
oretical assumptions over and above the distribu-
tional approach to semantics. This is not to say that
more sophisticated approaches have not been de-
veloped or that they are not useful. Much work has
been devoted to enriching semantic space mod-
els with syntactic information (e.g., Grefenstette
(1994; Padó and Lapata (2007)), selectional pref-
erences (Erk and Padó, 2008) or with identifying
optimal ways of defining the vector components
(e.g., Bullinaria and Levy (2007)).

The semantic space discussed thus far is based
on word co-occurrence statistics. However, the
statistics of how words are distributed across the
documents also carry useful semantic informa-
tion. Latent Semantic Analysis (LSA, Landauer
and Dumais (1997) utilizes precisely this distribu-
tional information to uncover hidden semantic fac-
tors by means of dimensionality reduction. Singu-
lar value decomposition (SVD, Berry et al. (1994))
is applied to a word-document co-occurrence ma-
trix which is factored into a product of a number
of other matrices; one of them represents words in
terms of the semantic factors and another repre-
sents documents in terms of the same factors. The
algebraic relation between these matrices can be
used to show that any document vector is a linear
combination of the vectors representing the words
it contains. Thus, within this paradigm it is nat-
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ural to treat multi-word structures as a “pseudo-
document” and represent them via linear combi-
nations of word vectors.

Due to its generality, LSA has proven a valuable
analysis tool with a wide range of applications.
However, the SVD procedure is somewhat ad-hoc
lacking a sound statistical foundation. Probabilis-
tic Latent Semantic Analysis (pLSA, Hofmann
(2001)) casts the relationship between documents
and words in terms of a generative model based on
a set of hidden topics. Documents are represented
by distributions over topics and topics are distri-
butions over words. Thus the mixture of topics
in any document determines its vocabulary. Maxi-
mum likelihood estimation of these distributions
over a word-document matrix has a comparable
effect to SVD in LSA: a set of hidden semantic
factors, in this case topics, are extracted and docu-
ments and words are represented by these topics.

Latent Dirichlet Allocation (Griffiths et al.,
2007; Blei et al., 2003) enhances further the math-
ematical foundation of this approach. Whereas
pLSA treats each document as a separate, inde-
pendent mixture of topics, LDA assumes that the
topic distributions of documents are generated by
a Dirichlet distribution. Thus, LDA is a probabilis-
tic model of the whole document collection. In this
model the process of generating a document can
be described as follows:

1. draw a multinomial distribution θ from a
Dirichlet distribution parametrized by α

2. for each word in a document:

(a) draw a topic zk from the multinomial
distribution characterized by θ

(b) draw a word from a multinomial distri-
bution conditioned on the topic zk and
word probabilities β

Under this model, constructing a representation
for a multi-word sequence amounts to estimating
the topic proportions for that sequence.1 Struc-
ture here arises from the mathematical form of the
model, as opposed to any linguistic assumptions.

Without anticipating our results too much, we
should point out that several features of the LDA
model are likely to affect the representation of

1Estimating the posterior distribution P(θ,z|w,α,β) of
the hidden variables given an observed collection of docu-
ments w is intractable in general; however, a variety of ap-
proximate inference algorithms have been proposed in the
literature (e.g., Blei et al. (2003; Griffiths et al. (2007)).

multi-word sequences. Firstly, it is a top-down
generative model (the topic proportions for a doc-
ument are first selected and then this drives the
generation of words) as opposed to a bottom-up
constructive process (words modulate each other
to produce a complex representation of their com-
bination). Secondly, the top level Dirichlet distri-
bution is likely to lead to documents being dom-
inated by a small number of topics, producing
sparse vectors. And lastly, the assumption that
words are generated independently means the in-
teraction between them is not modeled.

2.2 Language Modeling using Semantic
Representations

A common approach to embedding semantic rep-
resentations within language modeling is to mea-
sure the semantic similarity between an upcoming
word and its history and use it to modify the prob-
abilities from an n-gram model. In this way, the
n-gram’s sensitivity to short-range dependencies
is enriched with information about longer-range
semantic coherence. Much of previous work has
taken this approach (Bellegarda, 2000; Coccaro
and Jurafsky, 1998; Wandmacher and Antoine,
2007), whilst relying on LSA to provide seman-
tic representations for individual words. Some au-
thors (Coccaro and Jurafsky, 1998; Wandmacher
and Antoine, 2007) use the geometric notion of
a vector centroid to construct representations of
history, whereas others (Bellegarda, 2000; Deng
and Khundanpur, 2003) use the idea of a “pseudo-
document”, which is derived from the algebraic
relation between documents and words assumed
within LSA. They all derive P(wi|hi), the probabil-
ity of an upcoming word given its history, from the
cosine similarity measure which must be somehow
normalized in order to yield well-formed probabil-
ity estimates.

The approach of Gildea and Hofmann (1999)
overcomes this difficulty by using representations
constructed with pLSA, which have a direct prob-
abilistic interpretation. As a result, the probabil-
ity of an upcoming word given the history can be
derived naturally and directly, avoiding the need
for ad-hoc transformations. In constructing their
representation of history, Gildea and Hofmann
(1999) use an online Expectation Maximization
process, which derives from the probabilistic basis
of pLSA, to update the history with new words.

Extensions on the basic semantic language
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models sketched above involve representing the
history by multiple LSA models of varying granu-
larity in an attempt to capture topic, subtopic, and
local information (Zhang and Rudnicky, 2002); in-
corporating syntactic information by building the
semantic space over words and their syntactic an-
notations (Kanejiya et al., 2004); and treating the
LSA similarity as a feature in a maximum entropy
language model (Deng and Khundanpur, 2003).

3 Composition Models

The problem of vector composition has re-
ceived relatively little attention within natural lan-
guage processing. Attempts to use tensor products
(Smolensky, 1990; Clark et al., 2008; Widdows,
2008) as a means of binding one vector to another
face major computational difficulties as their di-
mensionality grows exponentially with the num-
ber of constituents being composed. To overcome
this problem, other techniques (Plate, 1995) have
been proposed in which the binding of two vectors
results in a vector which has the same dimension-
ality as its components. Crucially, the success of
these methods depends on the assumption that the
vector components are randomly distributed. This
is problematic for modeling language which has
regular structure.

Given the above considerations, in Mitchell and
Lapata (2008) we introduce a general framework
for studying vector composition, which we formu-
late as a function f of two vectors u and v:

h = f (u,v) (1)

where h denotes the composition of u and v. Dif-
ferent composition models arise, depending on
how f is chosen. Our earlier work (Mitchell and
Lapata, 2008) explored two broad classes of mod-
els based on additive and multiplicative functions.

Additive models are the most common method
of vector combination in the literature. They have
been applied to a wide variety of tasks includ-
ing document coherence (Foltz et al., 1998), es-
say grading (Landauer and Dumais, 1997), mod-
eling selectional restrictions (Kintsch, 2001), and
notably language modeling (Coccaro and Jurafsky,
1998; Wandmacher and Antoine, 2007):

hi = ui + vi (2)

Vector addition (or averaging, which is equivalent
under the cosine similarity measure) is a computa-
tionally efficient composition model as it does not

increase the dimensionality of the resulting vector.
However, the idea of averaging is somewhat coun-
terintuitive from a linguistic perspective. Compo-
sition of simple elements onto more complex ones
must allow the construction of novel meanings
which go beyond those of the individual elements
(Pinker, 1994).

In Mitchell and Lapata (2008) we argue that
composition models based on multiplication ad-
dress this problem:

hi = ui · vi (3)

Whereas the addition of vectors ‘lumps their con-
tent together’, multiplication picks out the content
relevant to their combination by scaling each com-
ponent of one with the strength of the correspond-
ing component of the other. This argument is ap-
pealing, especially if one is interested in explain-
ing how the meaning of a verb is modulated by
its subject. Here, we also develop a complemen-
tary, probabilistic argument for the validity of this
model.

Let us assume that semantic vectors are based
on components defined as the ratio of the condi-
tional probability of a context word given the tar-
get word to the overall probability of the context
word.

vi =
p(contexti|target)

p(contexti)
(4)

These vectors represent the distributional proper-
ties of a given target word in terms of the strength
of its co-occurrence with a set of context words.
Dividing through by the overall probability of each
context word prevents the vectors being dominated
by the most frequent context words, which will of-
ten also have the highest conditional probabilities.

Let us assume vectors u and v represent tar-
get words w1 and w2. Now, when we compose
these vectors using the multiplicative model and
the components definition in (4), we obtain:

hi = vi ·ui =
p(ci|w1)

p(ci)
p(ci|w2)

p(ci)
(5)

And by Bayes’ theorem:

hi =
p(w1|ci)p(w2|ci)

p(w1)p(w2)
(6)

Assuming w1 and w2 are independent and apply-
ing Bayes’ theorem again, hi becomes:

hi ≈ p(w1w2|ci)
p(w1w2)

=
p(ci|w1w2)

p(ci)
(7)
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By comparing to (4), we can see that the expres-
sion on the right hand side gives us something akin
to the vector components we would expect when
our target is the co-occurrence of w1 and w2. Thus,
for the multiplicative model, the combined vec-
tor hi can be thought of as an approximation to
a vector representing the distributional properties
of the phrase w1w2.

If multiplication results in a vector which is
something like the representation of w1 and w2,
then addition produces a vector which is more like
the representation of w1 or w2. Suppose we were
unsure whether a word token x was an instance
of w1 or of w2. It would be reasonable to express
the probabilities of context words around this to-
ken in terms of the probabilities for w1 and w2,
assuming complete uncertainty between them:

p(ci|x) =
1
2

p(ci|w1)+
1
2

p(ci|w2) (8)

Therefore, we could represent x with a vector,
based on these probabilities, having the compo-
nents:

xi =
1
2

p(ci|w1)
p(ci)

+
1
2

p(ci|w2)
p(ci)

(9)

Which is exactly the vector averaging approach to
semantic composition. As more vectors are com-
bined, vector addition will lead to greater general-
ity rather than greater specificity. The multiplica-
tive approach, on the other hand, picks out the
components of the constituents that are relevant
to the combination, and represents more faithfully
the properties of their conjunction.

As an aside, we should point out that our earlier
work (Mitchell and Lapata, 2008) introduced sev-
eral other models, additive and multiplicative, be-
sides the ones discussed here. We selected the ad-
ditive model as a baseline and also due to its over-
whelming popularity in the language modeling lit-
erature. The multiplicative model presented above
performed best in our evaluation study (i.e., pre-
dicting verb-subject similarity).

4 Language Modeling

Estimating Probabilities In language modeling
our aim is to derive probabilities, p(w|h), given
the semantic representations of word, w, and its
history, h, based on the assumption that probable
words should be semantically coherent with the

history. Semantic coherence is commonly mea-
sured via the cosine of the angle between two vec-
tors:

sim(w,h) =
w ·h
|w||h| (10)

w ·h = ∑
i

wihi (11)

where w · h is the dot product of w and h. Coc-
caro and Jurafsky (1998) utilize this measure in
their approach to language modeling. Unfortu-
nately, they find it necessary to resort to a number
of ad-hoc mechanisms to turn the cosine similari-
ties into useful probabilities. The primary problem
with the cosine measure is that, although its values
lie between 0 and 1, they do not sum to 1, as prob-
abilities must. Thus, some form of normalization
is required. A further problem concerns the fact
that such a measure takes no account of the under-
lying frequency of w, which is crucial for a proba-
bilistic model. For example, encephalon and brain
are roughly synonymous, and may be equally sim-
ilar to some context, but brain may nonetheless be
much more likely, as it is generally more common.

An ideal measure would take account of the un-
derlying probabilities of the elements involved and
produce values that sum to 1. Our approach is to
modify the dot product (equation (11)) on which
the cosine measure is based. Assuming that our
vector components are given by equation (4), the
dot product becomes:

w ·h = ∑
i

p(ci|w)
p(ci)

p(ci|h)
p(ci)

(12)

which we modify to derive probabilities as fol-
lows:

p(w|h) = p(w)∑
i

p(ci|w)
p(ci)

p(ci|h)
p(ci)

p(ci) (13)

This expression now weights the sum with the in-
dependent probabilities of the context words and
the word to be predicted. That this is indeed a valid
probability can be seen by the fact it is equiva-
lent to ∑i p(w|ci)p(ci|h). However, in constructing
a representation of the history h, it is more conve-
nient to work with equation (13) as it is based on
vector components and can be readily used with
the composition models presented in Mitchell and
Lapata (2008).

Equation (13) allows us to derive probabilities
from vectors representing a word and its prior his-
tory. We must also construct a representation of
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the history up to the nth word of a sentence. To do
this, we combine, via some (additive or multiplica-
tive) function f , the vector representing that word
with the vector representing the history up to n−1
words:

hn = f (wn,hn−1) (14)

h1 = w1 (15)

One issue that must be resolved in implement-
ing equation (14) is that the history vector should
remain correctly normalized. In other words, the
products hi · p(ci) must themselves be a valid dis-
tribution over context words. So, after each vec-
tor composition the history vector is normalized
as follows:

hi =
ĥi

∑
j

ĥ j · p(ci)
(16)

Equations (13)–(16) define a language model
that incorporates vector composition. To generate
probability estimates, it requires a set of word vec-
tors whose components are based on the ratio of
probabilities described by equation (4).

Our discussion thus far has assumed a spatial
semantic space model similar to that employed in
Mitchell and Lapata (2008). However, there is no
reason why the vectors should not be constructed
by some other means. As mentioned earlier, in the
LDA topic model, words are represented as dis-
tributions over topics. These distributions are es-
sentially components of a vector v corresponding
to the target word for which we wish to construct
a semantic representation. Analogously to equa-
tion (4), we convert these probabilities to ratios of
probabilities:

vi =
p(topici|target)

p(topici)
(17)

Integrating with Other Language Models The
models defined above are based on little more than
semantic coherence. As such they will be only
weakly predictive, since they largely ignore word
order, which n-gram models primarily exploit. The
simplest means to integrate semantic information
with a standard language model involves combin-
ing two probability estimates as a weighted sum:

p(w|h) = λ1 p1(w|h)+(1−λ)p2(w|h) (18)

Linear interpolation is guaranteed to produce
valid probabilities, and has been used, for exam-
ple, to integrate structured language models with

n-gram models (Roark, 2001). However, it will
work best when the models being combined are
roughly equally predictive and have complemen-
tary strengths and weaknesses. If one model is
much weaker than the other, linear interpolation
will typically produce a model of intermediate
strength (i.e., worse than the better model), with
the weaker model contributing a form of smooth-
ing at best.

Therefore, based on equation (13), we express
our semantic probabilities as the product of the
unigram probability, p(w), and a semantic com-
ponent, ∆, which determines the factor by which
this probability should be scaled up or down given
the context in which it occurs.

p(w|h) = p(w) ·∆(w,h) (19)

∆(w,h) = ∑
i

p(ci|w)
p(ci)

p(ci|h)
p(ci)

p(ci) (20)

Thus, it seems reasonable to integrate the n-gram
model by replacing the unigram probabilities with
the n-gram versions.2

p̂(wn) = p(wn|wn−1
n−2) ·∆(wn,h) (21)

To obtain a true probability estimate we normalize
p̂(wn) by dividing through the sum of all word
probabilities:

p(wn|wn−1
n−2,h) =

p̂(wn)
∑w p̂(w)

(22)

In integrating our semantic model with an n-gram
model, we allow the latter to handle short range
dependencies and have the former handle the
longer dependencies outside the n-gram window.
For this reason, the history h used by the semantic
model in the prediction of wn only includes words
up to wn−3 (i.e., only words outside the n-gram).

We also integrate our models with a structured
language model (Roark, 2001). However, in this
case we use linear interpolation (equation (18))
because the models are roughly equally predic-
tive and also because linear interpolation is widely
used when structured language models are com-
bined with n-grams and other information sources.
This approach also has the benefit of allowing the

2Equation (21) can also be expressed as p(wn|wn−1
n−2,h)≈

p(wn|wn−1
n−2)p(wn|h)
p(wn)

, Which is equivalent to assuming that h is

conditionally independent of wn−1
n−2 (Gildea and Hofmann,

1999).
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models to be combined without out the need to
renormalize the probabilities. In the case of the
structured language model, normalizing across the
whole vocabulary would be prohibitive.

5 Experimental Setup

In this section we discuss our experimental design
for assessing the performance of the models pre-
sented above. We give details on our training pro-
cedure and parameter estimation, and present the
methods used for comparison with our approach.

Method Following previous work (e.g., Belle-
garda (2000)) we integrated our compositional
language models with a standard n-gram model
(see equation (21)). We experimented with addi-
tive and multiplicative composition functions, and
two semantic representations (LDA and the sim-
pler semantic space model), resulting in four com-
positional models. In addition, we compared our
models against a state of the art structured lan-
guage model in order to assess the extent to which
the information provided by the semantic repre-
sentation is complementary to syntactic structure.
Our experiments used Roark’s (2001) grammar-
based language model. Similarly to standard lan-
guage models, it computes the probability of the
next word based upon the previous words of the
sentence. This is done by computing a subset of all
possible grammatical relations for the prior words
and then estimating the probability of the next
grammatical structure and the probability of see-
ing the next word given each of the prior gram-
matical relations. When estimating the probability
of the next word, the model conditions on the two
prior heads of constituents, thereby using informa-
tion about word triples (like a trigram model).

All our models were evaluated by computing
perplexity on the test set. Roughly, this quanti-
fies the degree of unpredictability in a probabil-
ity distribution, such that a fair k-sided dice would
have a perplexity of k. More precisely, perplexity
is the reciprocal of the geometric average of the
word probabilities and a lower score indicates bet-
ter predictions.

Parameter Estimation The compositional lan-
guage models were trained on the BLLIP corpus,
a collection of texts from the Wall Street Journal
(years 1987–89). The training corpus consisted of
38,521,346 words. We used a development corpus
of 50,006 words and a test corpus of similar size.

All words were converted to lowercase and num-
bers were replaced with the symbol 〈num〉. A vo-
cabulary of 20,000 words was chosen and the re-
maining tokens were replaced with 〈unk〉.

Following Mitchell and Lapata (2008), we con-
structed a simple semantic space based on co-
occurrence statistics from the BLLIP training set.
We used the 2,000 most frequent word types as
contexts and a symmetric five word window. Vec-
tor components were defined as in equation (4).
Contrary to our earlier work, we did not lemma-
tize the corpus before constructing the vectors as
in the context of language modeling this was not
appropriate. We also trained the LDA model on
BLLIP, using Blei et al.’s (2003) implementation.3

We experimented with different numbers of topics
on the development set (from 10 to 200) and re-
port results on the test set with 100 topics. In our
experiments, the hyperparameter α was initialized
to 0.5, and the β word probabilities were initial-
ized randomly.

We integrated our compositional models with a
trigram model which we also trained on BLLIP.
The model was built using the SRILM toolkit
(Stolcke, 2002) with backoff and Good-Turing
smoothing. Ideally, we would have liked to train
Roark’s (2001) parser on the same data as that
used for the semantic models. However, this would
require a gold standard treebank several times
larger than those currently available. Following
previous work on structured language modeling
(Roark, 2001; Charniak, 2001; Chelba and Jelinek,
1998), we therefore trained the parser on sections
2–21 of the Penn Treebank containing 936,017
words. Note that Roark’s (2001) parser produces
prefix probabilities for each word of a sentence
which we converted to conditional probabilities by
dividing each current probability by the previous
one.

6 Results

Table 1 shows perplexity results when the com-
positional models are combined with an n-gram
model. With regard to the simple semantic space
model (SSM) we observe that both additive and
multiplicative approaches to constructing history
are successful in reducing perplexity over the
n-gram baseline, with the multiplicative model
outperforming the additive one. This confirms the

3Available from http://www.cs.princeton.edu/
˜blei/lda-c/index.html.
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Model Perplexity
n-gram 78.72
n-gram+AddSSM 76.65
n-gram + MultiplySSM 75.01
n-gram+AddLDA 76.60
n-gram+MultiplyLDA 123.93
parser 173.35
n-gram + parser 75.22
n-gram + parser + AddSSM 73.45
n-gram + parser + MultiplySSM 71.32
n-gram + parser + AddLDA 71.58
n-gram + parser + MultiplyLDA 87.93

Table 1: Perplexities for n-gram, composition and
structured language models, and their combina-
tions; subscripts SSM and LSA refer to the semantic
space and LDA models, respectively.

hypothesis that for this type of semantic space the
multiplicative vector combination function pro-
duces representations which have a sounder prob-
abilistic basis.

The results for the LDA model are also reported
in the table. This model reduces perplexity with an
additive composition function, but performs worse
than the n-gram with a multiplicative function. For
comparison, Figure 1 plots the perplexity of the
combined LDA and n-gram models against the
number of topics. Increasing the number of top-
ics produces higher dimensional representations
which ought to be richer, more detailed and there-
fore more predictive. While this is true for the
additive model, a greater number of topics actu-
ally increases the perplexity of the multiplicative
model, indicating it has become less predictive.

We compared these perplexity reductions
against those obtained with a structured lan-
guage model. Following Roark (2001), we com-
bined the structured language model with a
trigram model using linear interpolation (the
weights were optimized on the development
set). This model (n-gram + parser) performs
comparably to our best compositional model
(n-gram + MultiplySSM). While both models in-
corporate long range dependencies, the parser is
trained on a hand annotated treebank, whereas the
compositional model uses raw text, albeit from
a larger corpus. Interestingly, when interpolating
the trigram with the parser and the compositional
models, we obtain additional perplexity reduc-
tions. This suggests that the semantic models are

Figure 1: Perplexity versus Number of Topics for
the LDA models using additive and multiplicative
composition functions.

encoding useful predictive information about long
range dependencies, which is distinct from and po-
tentially complementary to the parser’s syntactic
information about such dependencies. Note that
the semantic space multiplicative model yields the
highest perplexity reduction in this suite of exper-
iments followed by the LDA additive model.

7 Conclusions

In this paper we advocated the use of vector
composition models for language modeling. Us-
ing semantic representations of words outside the
n-gram window, we enhanced a trigram model
with longer range dependencies. We compared
composition models based on addition and multi-
plication and examined the influence of the under-
lying semantic space on the composition task. Our
results indicate that the multiplicative composition
function produced the most predictive representa-
tions with a simple semantic space. Interestingly,
its effect in the LDA setting was detrimental. In-
creasing the representational power of the LDA
model, by using a greater number of topics, ren-
dered the multiplicative model less predictive.

These results, together with the basic mathe-
matical structure of the LDA model, suggest that
it may not be well suited to forming represen-
tations for word sequences. In particular, the as-
sumption that words are generated independently
within documents prevents the interactions be-
tween words being modeled. This assumption,
along with the Dirichlet prior on document distri-
butions tends to lead to highly sparse word vec-
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tors, with a typical word being strongly associated
with only one or two topics. Multiplication of a
number of these vectors generally produces a vec-
tor in which most of these associations have been
obliterated by the sparse components, resulting in
a representation with little predictive power.

These shortcomings arise from the mathemati-
cal formulation of LDA, which is not directed at
modeling the semantic interaction between words.
An interesting future direction would be to opti-
mize the vector components of the probabilistic
model over a suitable training corpus, in order to
derive a vector model of semantics adapted specif-
ically to the task of composition. We also plan to
investigate more sophisticated composition mod-
els that take syntactic structure into account. Our
results on interpolating the compositional mod-
els with a parser indicate that there is substantial
mileage to be gained by combining syntactic and
semantic dependencies.
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Abstract

Word sense disambiguation is typically
phrased as the task of labeling a word in
context with the best-fitting sense from a
sense inventory such as WordNet. While
questions have often been raised over the
choice of sense inventory, computational
linguists have readily accepted the best-
fitting sense methodology despite the fact
that the case for discrete sense bound-
aries is widely disputed by lexical seman-
tics researchers. This paper studies graded
word sense assignment, based on a recent
dataset of graded word sense annotation.

1 Introduction

The task of automatically characterizing word
meaning in text is typically modeled as word sense
disambiguation (WSD): given a list of senses for
target lemma w, the task is to pick the best-fitting
sense for a given occurrence of w. The list of
senses is usually taken from an online dictionary
or thesaurus. However, clear cut sense boundaries
are sometimes hard to define, and the meaning of
words depends strongly on the context in which
they are used (Cruse, 2000; Hanks, 2000). Some
researchers in lexical semantics have suggested
that word meanings lie on a continuum between
i) clear cut cases of ambiguity and ii) vagueness
where clear cut boundaries do not hold (Tuggy,
1993). Certainly, it seems that a more complex
representation of word sense is needed with a
softer, graded representation of meaning rather
than a fixed listing of senses (Cruse, 2000).

A recent annotation study ((Erk et al., 2009),
hereafter GWS) marked a target word in context
with graded ratings (on a scale of 1-5) on senses
from WordNet (Fellbaum, 1998). Table 1 shows
an example of a sentence with the target word
in bold, and with the annotator judgments given

to each sense. The study found that annotators
made ample use of the intermediate ratings on the
scale, and often gave high ratings to more than one
WordNet sense for the same occurrence. It was
found that the annotator ratings could not easily
be transformed to categorial judgments by making
more coarse-grained senses. If human word sense
judgments are best viewed as graded, it makes
sense to explore models of word sense that can
predict graded sense assignments.

In this paper we look at the issue of graded ap-
plicability of word sense from the point of view
of automatic graded word sense assignment, us-
ing the GWS graded word sense dataset. We make
three primary contributions. Firstly, we propose
evaluation metrics that can be used on graded
word sense judgments. Some of these metrics, like
Spearman’s ρ, have been used previously (Mc-
Carthy et al., 2003; Mitchell and Lapata, 2008),
but we also introduce new metrics based on the
traditional precision and recall. Secondly, we in-
vestigate how two classes of models perform on
the task of graded word sense assignment: on
the one hand classical WSD models, on the other
hand prototype-based vector space models that
can be viewed as simple one-class classifiers. We
study supervised models, training on traditional
WSD data and evaluating against a graded scale.
Thirdly, the evaluation metrics we use also pro-
vides a novel analysis of annotator performance
on the GWS dataset.

2 Related Work

WSD has to date been a task where word senses are
viewed as having clear cut boundaries. However,
there are indications that word meanings do not
behave in this way (Kilgarriff, 2006). Researchers
in the field of WSD have acknowledged these prob-
lems but have used existing lexical resources in
the hope that useful applications can be built with
them. However, there is no consensus on which
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Senses
Sentence 1 2 3 4 5 6 7 Annotator
This can be justified thermodynamically in this case, and
this will be done in a separate paper which is being
prepared.

2 3 3 5 5 2 3 Ann. 1
1 3 1 3 5 1 1 Ann. 2
1 5 2 1 5 1 1 Ann. 3

1.3 3.7 2 3 5 1.3 1.7 Avg

Table 1: A sample annotation in the GWS experiment. The senses are: 1 material from cellulose 2 report
3 publication 4 medium for writing 5 scientific 6 publishing firm 7 physical object

inventory is suitable for which application, other
than cross-lingual applications where the inven-
tory can be determined from parallel data (Carpuat
and Wu, 2007; Chan et al., 2007). For monolin-
gual applications however it is less clear whether
current state-of-the-art WSD systems for tagging
text with dictionary senses are able to have an im-
pact on applications.

One way of addressing the problem of low inter-
annotator agreement and system performance is to
create an inventory that is coarse-grained enough
for humans and computers to do the job reli-
ably (Ide and Wilks, 2006; Hovy et al., 2006;
Palmer et al., 2007). Such coarse-grained invento-
ries can be produced manually from scratch (Hovy
et al., 2006) or by automatically relating (Mc-
Carthy, 2006) or clustering (Navigli, 2006; Nav-
igli et al., 2007) existing word senses. While the
reduction in polysemy makes the task easier, we
do not know which are the right distinctions to re-
tain. In fact, fine-grained distinctions may be more
useful than coarse-grained ones for some applica-
tions (Stokoe, 2005). Furthermore, Hanks (2000)
goes further and argues that while the ability to
distinguish coarse-grained senses is indeed desir-
able, subtler and more complex representations of
word meaning are necessary for text understand-
ing.

In this paper, instead of focusing on issues of
granularity we try to predict graded judgments of
word sense applicability, using a recent dataset
with graded annotation (Erk et al., 2009). Our
hope is that models which can mimic graded hu-
man judgments on the same task should better re-
flect the underlying phenomena of word mean-
ing compared to a system that focuses on mak-
ing clear cut distinctions. Also, we hope that such
models might prove more useful in applications.
There is one existing study of graded sense as-
signment (Ramakrishnan et al., 2004). It tries to
estimate a probability distribution over senses by
converting all of WordNet into a huge Bayesian
Network, and reports improvements in a Question

Answering task. However, it does not test its pre-
diction against human annotator data.

We concentrate on supervised models in this
paper since they generally perform better than
their unsupervised or knowledge-based counter-
parts (Navigli, 2009). We compare them against
a baseline model which simply uses the train-
ing data to obtain a probability distribution over
senses regardless of context, since marginal distri-
butions are highly skewed making a prior distribu-
tion very informative (Chan and Ng, 2005; Lapata
and Brew, 2004).

Along with standard WSD models, we evalu-
ate vector space models that use the training data
to locate a word sense in semantic space. Word
sense and vector space models have been related in
two ways. On the one hand, vector space models
have been used for inducing word senses (Schütze,
1998; Pantel and Lin, 2002). The different mean-
ings of a word are obtained by clustering vectors.
The clusters must then be mapped to an inven-
tory if a standard WSD dataset is used for eval-
uation. In contrast, we use sense tagged train-
ing data with the aim of building models of given
word senses, rather than clustering occurrences
into word senses. The second way in which word
sense and vector space models have been related is
to assign disambiguated feature vectors to Word-
Net concepts (Pantel, 2005; Patwardhan and Ped-
ersen, 2006). However those works do not use
sense-tagged data and are not aimed at WSD, rather
the applications are to insert new concepts into an
ontology and to measure the relatedness of con-
cepts.

We are not concerned in this paper with argu-
ing for or against any particular sense inventory.
WordNet has been criticized for being overly fine-
grained (Navigli et al., 2007; Ide and Wilks, 2006),
we are using it here because it is the sense inven-
tory used by Erk et al. (2009). That annotation
study used it because it is sufficiently fine-grained
to allow for the examination of subtle distinctions
between usages and because it is publicly available
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lemma # # training
(PoS) senses SemCor SE-3
add (v) 6 171 238
argument (n) 7 14 195
ask (v) 7 386 236
different (a) 5 106 73
important (a) 5 125 11
interest (n) 7 111 160
paper (n) 7 46 207
win (v) 4 88 53
total training sentences 1047 1173

Table 2: Lemmas used in this study

with various sense-tagged datasets (e.g. (Miller et
al., 1993; Mihalcea et al., 2004)) for comparison.

3 Data

In this paper, we use a subset of the GWS

dataset (Erk et al., 2009) where three annotators
supplied ordinal judgments of the applicability of
WordNet (v3.0) senses on a 5 point scale: 1 –
completely different, 2 – mostly different, 3 – sim-
ilar, 4 – very similar and 5 – identical. Table 1
shows a sample annotation. The sentences that
we use from the GWS dataset were originally ex-
tracted from the English SENSEVAL-3 lexical sam-
ple task (Mihalcea et al., 2004) (hereafter SE-3)
and SemCor (Miller et al., 1993). 1 For 8 lem-
mas, 25 sentences were randomly sampled from
SemCor and 25 randomly sampled from SE-3, giv-
ing a total of 50 sentences per lemma. The lem-
mas, their PoS and number of senses from Word-
Net are shown in table 2.

The annotation study found that annotators
made ample use of the intermediate levels of ap-
plicability (2-4), and they often gave positive rat-
ings (3-5) to more than one sense for a single oc-
currence. The example in Table 1 is one such
case. An analysis of the annotator ratings found
that they could not easily be explained in catego-
rial terms by making more coarse-grained senses
because senses that were not positively correlated
often had high ratings for the same instance.

The GWS dataset contains a sequence of judg-
ments for each occurrence of a target word in a
sentence context: one judgment for each Word-
Net sense of the target word. To obtain a sin-
gle judgment for each sense in each sentence we
use the average judgment from the three annota-
tors. As models typically assign values between

1The GWS data also contains data from the English Lex-
ical Substitution Task (McCarthy and Navigli, 2007) but we
do not use that portion of the data for these experiments.

0 and 1, we normalize the annotator judgments
from the GWS dataset to fall into the same range by
using normalized judgment = (judgment −
1.0)/4.0. This maps an original judgment of 5 to
a normalized judgment of 1.0, it maps an original
1 to 0.0, and intermediate judgments are mapped
accordingly.

As the GWS dataset is too small to accommodate
both training and testing of a supervised model, we
use all the data from GWS for testing our models,
and train our models on traditional word sense an-
notation data. We use as training data all sentences
from SemCor and the training portion of SE-3 that
are not included in GWS. The quantity of training
data available is shown in the last two columns of
table 2.

4 Evaluating Graded Word Sense
Assignment

This section discusses measures for evaluating
system performance for the case where gold judg-
ments are graded rather than categorial.

Correlation. The standard method for compar-
ing a list of graded gold judgments to a list of
graded predicted judgments is by testing for corre-
lation. In our case, as we cannot assume a normal
distribution of the judgments, a non-parametric
test such as Spearman’s ρ will be appropriate.
Spearman’s ρ uses the formula of Pearson’s coef-
ficient, defined as

ρ(X,Y ) =
cov(X,Y )
σXσY

Pearson’s coefficient computes the correlation of
two random variables X and Y as their covari-
ance divided by the product of their standard devi-
ations. In the computation of Spearman’s ρ, values
are transformed to rankings before the formula is
applied. 2 As Spearman’s ρ compares the rank-
ings of two sets of judgments, it abstracts from the
absolute values of the judgments. It is useful to
have a measure that abstracts from absolute values
of judgments and magnitude of difference because
the GWS dataset contains annotator judgments on
a fixed scale, and it is quite possible that human
judges will differ in how they use such a scale.

Each judgment in the gold-standard can be
represented as a 4-tuple 〈lemma, sense no, sen-
tence no, gold judgment〉. For example, 〈add.v,

2Mitchell and Lapata (2008) note that Spearman’s ρ tends
to yield smaller coefficients than its parametric counterparts
such as Pearson’s coefficient.
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1, 1, 0.8〉 is the first sentence for target add.v, first
WordNet sense, with a (normalized) judgment of
0.8. Likewise, each prediction by the model can
be represented as a 4-tuple 〈lemma, sense no, sen-
tence no, predicted judgment〉. We writeG for the
set of gold tuples, A for the set of assigned tuples,
L for the set of lemmas, S` for the set of sense
numbers that exist for lemma `, and T for the set
of sentence numbers (there are 50 sentences for
each lemma). We writeG|lemma=` for the gold set
restricted to those tuples with lemma `, and anal-
ogously for other set restrictions and for A. There
are several possibilities for measuring correlation:

by lemma: for each lemma ` ∈ L, compute cor-
relation between G|lemma=` and A|lemma=`

by lemma+sense: for each lemma ` and each
sense number i ∈ S`, compute cor-
relation between G|lemma=`,senseno=i and
A|lemma=`,senseno=i

by lemma+sentence: for each lemma ` and sen-
tence number t ∈ T , compute cor-
relation between G|lemma=`,sentence=t and
A|lemma=`,sentence=t

Comparison by lemma tests for the consis-
tent use of judgments for the same target lemma.
A comparison by lemma+sense ranks all occur-
rences of the same target lemma by how strongly
they evoke a given word sense. A comparison
by lemma+sentence ranks different senses by how
strongly they apply to a given target lemma oc-
currence. In reporting correlation by lemma (by
lemma+sense, by lemma+sentence), we average
over all lemmas (lemma+sense, lemma+sentence
combinations), and we report the percentage of
lemmas (combinations) for which the correlation
was significant. We report averaged correlation by
lemma rather than one overall correlation over all
judgments in order not to give more weight to lem-
mas with more senses.

Divergence. Another possibility for measuring
the performance of a graded sense assignment
model is to use Jensen/Shannon divergence (J/S),
which is a symmetric version of Kullback/Leibler
divergence. Given two probability distributions
p, q, the Kullback/Leibler divergence of q from p
is

D(p||q) =
∑

x

p(x) log
p(x)
q(x)

and their J/S is

JS(p, q) =
1
2
(
D(p||p+ q

2
) +D(q||p+ q

2
)

We will use J/S for an evaluation by
lemma+sentence: for each lemma ` ∈ L
and sentence number t ∈ T , we normalize
G|lemma=`,sentence=t, the set of judgments for
senses of ` in t, by the sum of sense judgments for
` and t. We do the same for A|lemma=`,sentence=t.
Then we compute J/S. In doing so, we are not
trying to interpret G|lemma=`,sentence=t as some
kind of probability distribution over senses, rather
we use J/S as a measure that abstracts from
absolute judgments but not from the magnitude of
differences between judgments.

Precision and Recall. We have discussed a
measure that abstracts from both absolute judg-
ments and magnitude of differences (Spearman’s
ρ), and a measure that abstracts from absolute
judgments but not the magnitude of differences
(J/S). What is still missing is a measure that tests
to what degree a model conforms to the absolute
judgments given by the human annotators.

To obtain a measure for performance in predict-
ing absolute gold judgments, we generalize preci-
sion and recall. In the categorial case, precision is
defined as P = true positives

true positives+false positives , true pos-
itives divided by system-assigned positives, and
recall is R = true positives

true positives+false negatives , true posi-
tives divided by gold positives. Writing gold`,i,t

for the judgment j associated with lemma ` and
sense number i for sentence t in the gold data (i.e.,
〈`, i, t, j〉 ∈ G), and analogously assigned`,i,t, we
extend precision and recall to the graded case as
follows:

P` =

∑
i∈S`,t∈T min(gold`,i,t, assigned`,i,t)∑

i∈S`,t∈T assigned`,i,t

and

R` =

∑
i∈S`,t∈T min(gold`,i,t, assigned`,i,t)∑

i∈S`,t∈T gold`,i,t

where ` is a lemma. We compute precision and re-
call by lemma, then macro-average them in order
not to give more weight to lemmas that have more
senses. The formula for F-score as the harmonic
mean of precision and recall remains unchanged:
F = 2 P R/(P +R).

If the data is categorial, the graded precision and
recall measures coincide with “classical” precision
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Cx/2 until, IN, soft, JJ, remaining, VBG, ingredient,
NNS

Cx/50 for, IN, sweet-sour, NN, sauce, NN, . . . , to, TO,
a, DT, boil, NN

Ch OA, OA/ingredient/NNS

Table 3: Sample features for add in BNC occur-
rence For sweet-sour sauce, cook onion in oil un-
til soft. Add remaining ingredients and bring to
a boil. Cx/2 (Cx/50): context of size 2 (size 50)
either side of the target. Ch: children of target.

and recall, which can be seen as follows. Graded
sense assignment is represented by assigning each
sense a score between 0.0 and 1.0. The categorial
case can be represented in the same way, the dif-
ference being that one single sense will receive a
score of 1.0 while all other senses get a score of
0.0. With this representation for categorial sense
assignment, consider a fixed token t of lemma `.∑

i∈S`
min(assigned`,i,t, gold`,i,t) will be 1 if the

assigned sense is the gold sense, and 0 otherwise.

5 Models for Graded Word Sense
Assignment

In this section we discuss the computational mod-
els for graded word sense that are tested in this
paper.

Single-best-sense WSD. The first model that we
test is a standard WSD model that assigns, to each
test occurrence of a target word, a single best-
fitting word sense. The system thus attributes a
confidence score of 1 to the assigned sense and a
confidence score of 0 for all other senses for that
sentence. We refer to it as WSD/single. The model
uses standard features: lemma and part of speech
in a narrow context window (2 words either side)
and a wide context window (50 words either side),
as well as dependency labels leading to parent,
children, and siblings of the target word, and lem-
mas and part of speech of parent, child, and sibling
nodes. Table 3 shows sample model features for an
occurrence of add in the British National Corpus
(BNC) (Leech, 1992). The model uses a maxi-
mum entropy learner3, training one binary classi-
fier per sense. (With n-ary classifiers, the model’s
performance is slightly worse.) The model is thus
not highly optimized, but fairly standard.

WSD confidence level as judgment. Our second
model is the same WSD system as above, but we

3http://maxent.sourceforge.net/

use it to predict a judgment for each sense of a
target occurrence, taking the confidence level re-
turned by each sense-specific binary classifier as
the predicted judgment. We refer to this model as
WSD/conf .

Word senses as points in semantic space. The
results of the GWS annotation study raise the ques-
tion of how word senses are best conceptualized,
given that annotators assigned graded judgments
of applicability of word senses, and given that they
often combined high judgments for multiple word
senses. One way of modeling these findings is
to view word senses as prototypes, where some
uses of a word will be typical examples of a given
sense, for some uses the sense will clearly not ap-
ply, and to some uses the sense will be borderline
applicable.

We use a very simple model of word senses as
prototypes, representing them as points in a se-
mantic space. Graded sense applicability judg-
ments can then be modeled using vector similarity.
The dimensions of the vector space are the features
of the WSD system above (including dimensions
like Cx2/until, Cx2/IN, Ch/OA/ingredient/NNS for
the example in Table 3), and the coordinates are
raw feature counts. We compute a single vector
for each sense s, the centroid of all training oc-
currences that have been labeled with s. The pre-
dicted judgment for a test sentence and sense s
is then the similarity of the sentence’s vector to
the centroid vector for s, computed using cosine.
We call this model Prototype. Like instance-based
learners (Daelemans and den Bosch, 2005), the
Prototype model measures the distance between
feature vectors in space. Unlike instance-based
learners, it only uses data from a single category
for training.

As it is to be expected that the vectors in this
space will be very sparse, we also test a variant
of the Prototype model with Schütze-style second-
order vectors (Schütze, 1998), called Prototype/2.
Given a (first-order) feature vector, we compute
a second-order vector as the centroid of vectors
for all lemma features (omitting stopwords) in the
first-order vector. For the feature vector in Table 3,
this is the centroid of vectors ~sweet-sour, ~sauce,
. . . , ~boil. We compute the vectors ~sweet-sour etc.
as dependency vectors (Padó and Lapata, 2007) 4

over a Minipar parse (Lin, 1993) of the BNC.
4We use the DV package, http://www.nlpado.de/

˜sebastian/dv.html, to compute the vector space.
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We transform raw co-occurrence counts in the
BNC-based vectors using pointwise mutual in-
formation (PMI), a common transformation func-
tion (Mitchell and Lapata, 2008). 5

Another way of motivating the use of vector
space models of word sense is by noting that we
are trying to predict graded sense assignment by
training on traditional word sense annotated data,
where each target word occurrence is typically
marked with a single word sense. Traditional word
sense annotation, when used to predict GWS judg-
ments, will contain spurious negative data: sup-
pose a human annotator is annotating an occur-
rence of target word t and views senses s1, s2 and
s3 as somewhat applicable, with sense s1 applying
most clearly. Then if the annotation guidelines ask
for the best-fitting sense, the annotator should only
assign s1. The occurrence is recorded as having
sense s1, but not senses s2 and s3. This, then, con-
stitutes spurious negative data for senses s2 and s3.
The simple vector space model of word sense that
we use implements a radical solution to this prob-
lem of spurious negative data: it only uses positive
data for a single sense, thus forgoing competition
between categories. It is to be expected that not
using competition between categories will hurt the
vector space model’s performance, but this design
gives us the chance to compare two model classes
that use opposing strategies with respect to spuri-
ous negative data: the WSD models fully trust the
negative data, while the vector space models ig-
nore it.

6 Experiments

This section reports on experiments for the task
of graded word sense assignment. As data, we
use the GWS dataset described in Sec. 3. We test
the models discussed in Sec. 5, evaluating with the
methods described in Sec. 4.

To put the models’ performance into perspec-
tive, we first consider the human performance on
the task, shown in Table 4. The first three lines
of the table show the performance of each annota-
tor evaluated against the average of the other two.
The fourth line averages over the previous three
lines to provide an average human ceiling for the
task. In the correlation of rankings by lemma, cor-
relation is statistically significant for all lemmas at

5We also tested PMI transformation for the first-order vec-
tors, but will not report the results here as they were worse
across the board than without PMI.

p ≤ 0.01. For correlation by lemma+sense and by
lemma+sentence, the percentage of pairs with sig-
nificant correlation is lower: 73.6 of lemma/sense
pairs and 29.0 of lemma/sentence pairs reach sig-
nificance at p ≤ 0.05. For p ≤ 0.01, the per-
centage is 58.3 and 12.2, respectively. The higher
ρ but lower proportion of significant values for
lemma+sentence pairs compared to lemma+sense
is due to the fact that there are far fewer dat-
apoints (sample size) for each calculation of ρ
(#senses for lemma+sentence vs 50 sentences for
lemma+sense).

At 0.131, J/S for Annotator 1 is considerably
lower than for Annotators 2 and 3. 6 In terms
of precision and recall, Annotator 1 again differs
from the other two. At 87.5, her recall is higher
than her precision (50.6), while the other annota-
tors have considerably higher precision (75.5 and
82.4) than recall (62.4 and 52.3). This indicates
that Annotator 1 tended to assign higher ratings
throughout, an impression that is confirmed by Ta-
ble 6. The left two columns show average rat-
ings for each annotator over all senses of all to-
kens (normalized to values between 0.0 and 1.0 as
described in Sec. 3). The three annotators differ
widely in their average ratings, which range from
0.285 for Ann.3 to 0.540 for Ann.1.

Standard WSD. We tested the performance of
the WSD/single model on a standard WSD task,
using the same training and testing data as in
our subsequent experiments, as described in sec-
tion 3. 7 The model’s accuracy when trained and
tested on SemCor was A=77.0%, with a most fre-
quent sense baseline of 63.5%. When trained
and tested on SE-3, the model achieved A=53.0%
against a baseline of 44.0%. When trained and
tested on SemCor plus SE-3, the model reached an
accuracy 58.2%, with a baseline of 56.0%. So on
the combined dataset, the baseline is the average
of the baselines on the individual datasets, while
the model’s performance falls below the average
performance on the individual datasets.

WSD models for graded sense assignment.
Table 5 shows the performance of different mod-
els in the task of graded word sense assignment.
The first line in Table 5 lists results for the maxi-
mum entropy model when used to assign a single
best sense. The second line lists the results for

6Low J/S implies a closer agreement between two sets of
judgments.

7Note that this constitutes less training data than in the
SE-3 task.
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by lemma by lemma+sense by lemma+sentence
Ann ρ * ** ρ * ** ρ * ** J/S P R F
Ann.1 0.517 100.0 100.0 0.407 75.0 58.3 0.482 27.3 11.5 0.131 50.6 87.5 64.1
Ann.2 0.587 100.0 100.0 0.403 68.8 58.3 0.612 38.1 17.2 0.153 75.5 62.4 68.3
Ann.3 0.528 100.0 100.0 0.41 77.1 58.3 0.51 21.8 7.8 0.165 82.4 52.3 64.0
Avg 0.544 100.0 100.0 0.407 73.6 58.3 0.535 29.0 12.2 0.149 69.5 67.4 65.5

Table 4: Human ceiling: one annotator vs. average of the other two annotators. ∗, ∗∗: percentage
significant at p ≤ 0.05, p ≤ 0.01. Avg: average annotator performance

by lemma by lemma+sense by lemma+sentence
Model ρ * ** ρ * ** ρ * ** J/S P R F
WSD/single 0.267 87.5 75.0 0.053 6.3 4.2 0.28 2.8 1.8 0.39 58.7 25.5 35.5
WSD/conf 0.396 87.5 87.5 0.177 33.3 18.8 0.401 10.8 3.0 0.164 81.8 37.1 51.0
Prototype 0.245 62.5 62.5 0.053 20.8 8.3 0.396 15.3 2.5 0.173 58.4 78.3 66.9
Prototype/2 0.292 87.5 87.5 0.086 14.6 4.2 0.478 22.8 7.5 0.164 68.2 63.3 65.7
Prototype/N 0.396 100.0 100.0 0.137 22.9 14.6 0.396 15.3 2.5 0.173 82.2 29.9 43.9
Prototype/2N 0.465 100.0 100.0 0.168 29.8 23.4 0.478 22.8 7.5 0.164 82.6 30.9 45.0
baseline 0.338 87.5 87.5 0.0 0.0 0.0 0.355 10.3 3.0 0.167 79.9 34.5 48.2

Table 5: Evaluation: computational models, and baseline. ∗, ∗∗: percentage significant at p ≤ 0.05,
p ≤ 0.01

the same maximum entropy model when classifier
confidence is used as predicted judgment. The last
line shows the baseline, an adaptation of the most
frequent sense baseline to the graded case. For
this baseline, we computed the relative frequency
of each sense in the training corpus and used this
relative frequency as the prediction for each test
sentence and sense combination. The WSD/single
model remains below the baseline in all evalua-
tions except correlation by lemma+sense, where
no rank-based correlation could be computed for
the baseline because it always assigns the same
judgment for a given sense. WSD/conf shows a
performance slightly above the baseline in all eval-
uation measures. Table 6 lists average ratings, av-
eraged over all lemmas, senses, and occurrences,
for each model in the two right-hand columns.

Prototype models. Lines 3-6 in Tables 5 and
6 show results for Prototype variants. While each
Prototype and Prototype/2 model only sees pos-
itive data annotated for a single sense, the vari-
ants with /N (lines 5 and 6) make very limited use
of information coming from all senses of a given
lemma. They normalize judgments for each sen-
tence, with

assignednorm
`,i,t =

assigned`,i,t∑
j∈S`

assigned`,j,t

Line 3 evaluates the Prototype model with first-
order vectors. Its correlation with the gold data is
somewhat lower than that of WSD/conf in almost
all cases. 8 The Prototype model deviates strongly

8The reason why the average ρ for correlation by

from both WSD/conf and baseline in having a very
good recall, at 78.3, with lower precision at 58.4,
for an overall F-score that is 16 points higher than
that of WSD/conf . Both Prototype and Prototype/2
have average ratings (Table 6) far above those
of the WSD models and of the /N variants. The
second-order vector model Prototype/2 has rela-
tively low correlation by lemma+sense, while cor-
relation by lemma+sentence shows the best per-
formance of all models (along with Prototype/2N).
Its correlation by lemma+sentence is similar to the
lowest correlation by lemma+sentence achieved
by a human annotator. In terms of J/S, this
model also shows the best performance along with
WSD/conf and Prototype/2N. Both /N variants
achieve very high correlation by lemma. Corre-
lation by lemma+sense for the /N models is be-
tween those of Prototype and WSD/conf . The cor-
relation by lemma+sentence is the same with or
without normalization, as normalization does not
change the ranking of senses of an individual sen-
tence. While Prototype has higher recall than pre-
cision, normalization turns it into a model with
even higher precision than WSD/conf but even
lower recall.

Discussion

Human performance. The evaluation of human
annotators in Table 4 provides a novel analysis of
the GWS dataset over and above that by Erk et al.

lemma+sense is the same for Prototype and WSD/single
while the significance percentage differs greatly is that the
Prototype shows negative correlation for some of the senses.
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Ann. avg Model avg
Ann.1 0.540 WSD/single 0.163
Ann.2 0.345 WSD/conf 0.173
Ann.3 0.285 Prototype 0.558

Prototype/N 0.143
Prototype/2 0.375

Prototype/2N 0.143
baseline 0.167

Table 6: Average judgment for individual annota-
tors (transformed) and average rating for models

(2009). Human annotators show very strong cor-
relation of their rankings by lemma. They also had
strong agreement on rankings by lemma+sense,
which ranks occurrences of a lemma by how
strongly they evoke a given sense. The relatively
low precision and recall in Table 4 confirm that
different annotators use the 5-point scale in differ-
ent ways. A comparison of precision and recall
between the annotators reflects the fact that An-
notator 1 tended to give considerably higher rat-
ings than the other two, which is also apparent
in the average ratings in Table 6. Given the rela-
tively low F-score achieved by human annotators,
judgments by additional annotators could make
the GWS dataset more useful, in that the average
judgments would not be influenced so strongly by
idiosyncrasies in the use of the 5-point scale. (Psy-
cholinguistic experiments using fixed scales typi-
cally elicit judgments from 10 or more participants
per item.)

Evaluation measures. Given the degree of dif-
ferences in the absolute values of the human an-
notator judgments (Table 4), a rank-based evalu-
ation of graded sense assignment models, com-
plemented by J/S to evaluate the magnitude of
differences between ratings, seems most appro-
priate to the data. Rankings by lemma+sense
and by lemma+sentence are especially interest-
ing for their potential use in systems that might
use graded sense assignment as part of a larger
pipeline. Still, the new graded precision and re-
call measures allow for a more fine-grained anal-
ysis of the performance of models, showing fun-
damental differences in the behavior of WSD/conf
and the Prototype model. Graded precision and
recall could become even more informative mea-
sures with a gold set containing judgments of more
annotators, since then the absolute gold judgments
would be more reliable.

Standard WSD models and vector space mod-
els. The results in Table 5 reflect the compromise

between the advantage of having competition be-
tween categories and the disadvantage of spurious
negative data: WSD/conf , Prototype/N and Proto-
type/2N achieve the highest correlation by lemma,
and high precision, while Prototype has much bet-
ter recall for an overall higher F-score. However,
as Table 6 shows, Prototype tends to assign high
ratings across the board, leading to high recall.
The much lower average ratings of the /N mod-
els explain their higher precision and lower recall:
they overshoot less and undershoot more. The im-
provement in correlation for the /N models also
indicates that Prototype assigns some sentences
high ratings for all senses, impacting rankings by
lemma and by lemma+sense.

The comparison of Prototype and Prototype/2
gives us a chance to study effects of feature sparse-
ness. Prototype/2, using second-order vectors that
should be much less sparse, yields better rankings
than Prototype. The average ratings of model Pro-
totype/2 (Table 6) are lower than those of Pro-
totype (and closer to human average ratings), re-
sulting in higher precision and lower recall. One
possible reason for the high average ratings of
Prototype is that in sparser (and shorter) vectors,
matches in dimensions for high-frequency, rela-
tively uninformative context items have greater
impact.

It is interesting to see that WSD/conf performs
slightly above the sense frequency baseline in all
evaluations, since this is a very familiar picture
from standard WSD.

Prototype/2N shows the overall most favorable
performance in terms of correlation as it i) pays
minimal attention to the negative data ii) uses nor-
malization to avoid overshooting and iii) compen-
sates for sparse data by using second order vectors.
For J/S, WSD/conf , Prototype/2, Prototype/2N
and the sense frequency baseline just outperform
the score of the lowest-scoring of the three anno-
tators. In terms of F-score, Prototype shows re-
sults very close to human performance. Interest-
ingly, the Prototype model resembles Annotator 1
in its precision and recall, while WSD/conf more
resembles Annotators 2 and 3. None of the mod-
els come close to human performance in ranking
by lemma+sense, which requires an identification
of the “typical” occurrence of a given sense. The
low ratings in correlation by lemma+sense indi-
cate that the models might be limited by the lack
of training data for many of the rarer senses. In fu-
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ture work, we will test how the frequency of senses
in the training data affects the different models.

7 Conclusion

In this paper we have done a first study on mod-
eling graded annotator judgments on sense appli-
cability. We have discussed evaluation measures
for models of graded sense assignment, includ-
ing new extensions of precision and recall to the
graded case. A combination of rank-based correla-
tion at the level of lemmas, senses, and sentences,
Jensen/Shannon divergence, and precision and re-
call provided a nuanced picture of the strengths
and weaknesses of different models. We have
tested two types of models: on the one hand a
standard binary WSD model using classifier con-
fidence as predicted judgments, and on the other
hand several vector space models which compute a
prototype vector for each sense in semantic space.
These two types of model differ strongly in their
behavior. The WSD model shows a similar behav-
ior as the baseline, with high precision but low re-
call, while the unnormalized version of the vector
space model has higher recall at lower precision.
The results show both the benefits of having com-
petition between categories, for improved rank-
based correlation and precision, and the problem
of spurious negative data in the training set arising
from the best-sense methodology.

The last two correlation measures, by
lemma+sense and by lemma+sentence, yield
maybe the most insight into the question of the
usability of a computational model for graded
word sense assignment: a graded word sense
assignment model that is a component of a larger
system could provide useful sense information
either by ranking occurrences by how strongly
they evoke a sense, or by ranking senses by how
strongly they apply to a given occurrence. There
is room for improvement however as system
performance is well below that of humans. In
the future we plan to investigate features that are
more informative for making graded judgments.
Second, the vector space model we used was
very simple; it might be worthwhile to test more
sophisticated one-class classifiers (Marsland,
2003; Schölkopf et al., 2000).
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Abstract

The sense of a preposition is related to the
semantics of its dominating prepositional
phrase. Knowing the sense of a prepo-
sition could help to correctly classify the
semantic role of the dominating preposi-
tional phrase and vice versa. In this pa-
per, we propose a joint probabilistic model
for word sense disambiguation of preposi-
tions and semantic role labeling of prepo-
sitional phrases. Our experiments on the
PropBank corpus show that jointly learn-
ing the word sense and the semantic role
leads to an improvement over state-of-the-
art individual classifier models on the two
tasks.

1 Introduction

Word sense disambiguation (WSD) and seman-
tic role labeling (SRL) are two key components
in natural language processing to find a semantic
representation for a sentence. Semantic role la-
beling is the task of determining the constituents
of a sentence that represent semantic arguments
with respect to a predicate and labeling each with
a semantic role. Word sense disambiguation tries
to determine the correct meaning of a word in a
given context. Ambiguous words occur frequently
in normal English text.

One word class which is both frequent and
highly ambiguous is preposition. The different
senses of a preposition express different relations
between the preposition complement and the rest
of the sentence. Semantic roles and word senses
offer two different inventories of “meaning” for
prepositional phrases (PP): semantic roles distin-
guish between different verb complements while
word senses intend to fully capture the preposition
semantics at a more fine-grained level. In this pa-
per, we use the semantic roles from the PropBank

corpus and the preposition senses from the Prepo-
sition Project (TPP). Both corpora are explained
in more detail in the following section. The re-
lationship between the two inventories (PropBank
semantic roles and TPP preposition senses) is not
a simple one-to-one mapping, as we can see from
the following examples:

• She now lives with relatives [insense1

Alabama.]ARGM-LOC

• The envelope arrives [insense1 the mail.]ARG4

• [Insense5 separate statements]ARGM-LOC the two
sides said they want to have “further discus-
sions.”

In the first two examples, the sense of the preposi-
tion in is annotated as sense 1 (“surrounded by or
enclosed in”), following the definitions of the TPP,
but the semantic roles are different. In the first
example the semantic role is a locative adjunctive
argument (ARGM-LOC), while in the second ex-
ample it is ARG4 which denotes the “end point or
destination” of the arriving action1. In the first and
third example, the semantic roles are the same, but
the preposition senses are different, i.e., sense 1
and sense 5 (“inclusion or involvement”).

Preposition senses and semantic roles provide
two different views on the semantics of PPs.
Knowing the semantic role of the PP could be
helpful to successfully disambiguate the sense of
the preposition. Likewise, the preposition sense
could provide valuable information to classify the
semantic role of the PP. This is especially so for
the semantic roles ARGM-LOC and ARGM-TMP,
where we expect a strong correlation with spatial
and temporal preposition senses respectively.

In this paper, we propose a probabilistic model
for joint inference on preposition senses and se-
mantic roles. For each prepositional phrase that

1http://verbs.colorado.edu/framesets/arrive-v.html
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has been identified as an argument of the pred-
icate, we jointly infer its semantic role and the
sense of the preposition that is the lexical head of
the prepositional phrase. That is, our model maxi-
mizes the joint probability of the semantic role and
the preposition sense.

Previous research has shown the benefit of
jointly learning semantic roles of multiple con-
stituents (Toutanova et al., 2008; Koomen et al.,
2005). In contrast, our joint model makes pre-
dictions for a single constituent, but multiple tasks
(WSD and SRL) .

Our experiments show that adding the SRL
information leads to statistically significant im-
provements over an independent, state-of-the-art
WSD classifier. For the SRL task, we show statis-
tically significant improvements of our joint model
over an independent, state-of-the-art SRL clas-
sifier for locative and temporal adjunctive argu-
ments, even though the overall improvement over
all semantic roles is small. To the best of our
knowledge, no previous research has attempted to
perform preposition WSD and SRL of preposi-
tional phrases in a joint learning approach.

The remainder of this paper is structured as fol-
lows: First, we give an introduction to the WSD
and SRL task. Then, in Section 3, we describe the
individual and joint classifier models. The details
of the data set used in our experiments are given
in Section 4. In Section 5, we present experiments
and results. Section 6 summarizes related work,
before we conclude in the final section.

2 Task Description

This section gives an introduction to preposition
sense disambiguation and semantic role labeling
of prepositional phrases.

2.1 Preposition Sense Disambiguation

The task of word sense disambiguation is to find
the correct meaning of a word, given its context.
Most prior research on word sense disambigua-
tion has focused on disambiguating the senses of
nouns, verbs, and adjectives, but not on preposi-
tions. Word sense disambiguation can be framed
as a classification task. For each preposition, a
classifier is trained on a corpus of training exam-
ples annotated with preposition senses, and tested
on a set of unseen test examples.

To perform WSD for prepositions, it is neces-
sary to first find a set of suitable sense classes.

We adopt the sense inventory from the Preposition
Project (TPP) (Litkowski and Hargraves, 2005)
that was also used in the SemEval 2007 preposi-
tion WSD task (Litkowski and Hargraves, 2007).
TPP is an attempt to create a comprehensive lex-
ical database of English prepositions that is suit-
able for use in computational linguistics research.
For each of the over 300 prepositions and phrasal
prepositions, the database contains a set of sense
definitions, which are based on the Oxford Dic-
tionary of English. Every preposition has a set
of fine-grained senses, which are grouped together
into a smaller number of coarse-grained senses. In
our experiments, we only focus on coarse-grained
senses since better inter-annotator agreement can
be achieved on coarse-grained senses, which also
results in higher accuracy of the trained WSD clas-
sifier.

2.2 Semantic Role Labeling

The task of semantic role labeling in the context
of PropBank (Palmer et al., 2005) is to label tree
nodes with semantic roles in a syntactic parse tree.

The PropBank corpus adds a semantic layer to
parse trees from the Wall Street Journal section of
the Penn Treebank II corpus (Marcus et al., 1993).
There are two classes of semantic roles: core argu-
ments and adjunctive arguments. Core arguments
are verb sense specific, i.e., their meaning is de-
fined relative to a specific verb sense. They are
labeled with consecutive numbers ARG0, ARG1,
etc. ARG0 usually denotes the AGENT and ARG1
the THEME of the event. Besides the core ar-
guments, a verb can have a number of adjunc-
tive arguments that express more general proper-
ties like time, location, or manner. They are la-
beled as ARGM plus a functional tag, e.g., LOC for
locative or TMP for temporal modifiers. Preposi-
tional phrases can appear as adjunctive arguments
or core arguments.

The standard approach to semantic role labeling
is to divide the task into two sequential sub-tasks:
identification and classification. During the identi-
fication phase, the system separates the nodes that
fill some semantic roles from the rest. During the
classification phase, the system assigns the exact
semantic roles for all nodes that are identified as
arguments. In this paper, we focus on the classi-
fication phase. That is, we assume that preposi-
tional phrases that are semantic arguments have
been identified correctly and concentrate on the
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task of determining the semantic role of preposi-
tional phrases. The reason is that argument identi-
fication mostly relies on syntactic features, like the
path from the constituent to the predicate (Pradhan
et al., 2005). Consider, for example, the phrase in
the dark in the sentence: “We are in the dark”, he
said. The phrase is clearly not an argument to the
verb say. But if we alter the syntactic structure
of the sentence appropriately (while the sense of
the preposition in remains unchanged), the same
phrase suddenly becomes an adjunctive argument:
In the dark, he said “We are”. On the other hand,
we can easily find examples, where in has a differ-
ent sense, but the phrase always fills some seman-
tic role:

• In a separate manner, he said . . .

• In 1998, he said . . .

• In Washington, he said . . .

This illustrates that the preposition sense is inde-
pendent of whether the PP is an argument or not.
Thus, a joint learning model for argument identifi-
cation and preposition sense is unlikely to perform
better than the independent models.

3 Models

This section describes the models for preposition
sense disambiguation and semantic role labeling.

We compare three different models for each
task: First, we implement an independent model
that only uses task specific features from the liter-
ature. This serves as the baseline model. Second,
we extend the baseline model by adding the most
likely prediction of the other task as an additional
feature. This is equivalent to a pipeline model of
classifiers that feeds the prediction of one classifi-
cation step into the next stage. Finally, we present
a joint model to determine the preposition sense
and semantic role that maximize the joint proba-
bility.

3.1 WSD model
Our approach to building a preposition WSD clas-
sifier follows that of Lee and Ng (2002), who eval-
uated a set of different knowledge sources and
learning algorithms for WSD. However, in this pa-
per we use maximum entropy models2 (instead of
support vector machines (SVM) reported in (Lee

2Zhang Le’s Maximum Entropy Modeling Toolkit,
http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html

and Ng, 2002)), because maximum entropy mod-
els output probability distributions, unlike SVM.
This property is useful in the joint model, as we
will see later. Maxent models have been success-
fully applied to various NLP tasks and achieve
state-of-the-art performance. There are two train-
ing parameters that have to be adjusted for maxent
models: the number of training iterations and the
Gaussian smoothing parameter. We find optimal
values for both parameters through 10-fold cross-
validation on the training set.

For every preposition, a baseline maxent model
is trained using a set of features reported in
the state-of-the-art WSD system of Lee and
Ng (2002). These features encode three knowl-
edge sources:

• Part-of-speech (POS) of surrounding words

• Single words in the surrounding context

• Local collocations

For part-of-speech features, we include the POS
tags of surrounding tokens from the same sentence
within a window of seven tokens around the target
prepositions. All tokens (i.e., all words and punc-
tuation symbols) are considered. We use the Penn
Treebank II POS tag set.

For the knowledge source single words in the
surrounding context, we consider all words from
the same sentence. The input sentence is tokenized
and all tokens that do not contain at least one al-
phabetical character (such as punctuation symbols
and numbers) and all words that appear on a stop-
word list are removed. The remaining words are
converted to lower case and replaced by their mor-
phological root form. Every unique morphologi-
cal root word contributes one binary feature, in-
dicating whether or not the word is present in the
context. The position of a word in the sentence is
ignored in this knowledge source.

The third knowledge source, local collocations,
encodes position-specific information of words
within a small window around the target prepo-
sition. For this knowledge source, we consider
unigrams, bigrams, and trigrams from a window
of seven tokens. The position of the target prepo-
sition inside the n-gram is marked with a special
character ‘ ’. Words are converted to lower case,
but no stemming or removal of stopwords is per-
formed. If a token falls outside the sentence, it is
replaced by the empty token symbol nil.

During testing, the maxent model computes the
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conditional probability of the sense, given the fea-
ture representation of the surrounding context c.
The classifier outputs the sense that receives the
highest probability:

ŝ = argmax
s

P (s|Ψ(c)) (1)

where Ψ(·) is a feature map from the surrounding
context to the feature representation.

To ensure that our model is competitive, we
tested our system on the data set from the SemEval
2007 preposition WSD task (Litkowski and Har-
graves, 2007). Our baseline classifier achieved a
coarse-grained accuracy of 70.7% (micro-average)
on the official test set. This would have made our
system the second best system in the competition,
behind the MELB-YB system (Ye and Baldwin,
2007).

We also investigate the effect of the semantic
role label by adding it as a feature to the base-
line model. This pipeline model is inspired by the
work of Dang and Palmer (2005) who investigated
the role of SRL features in verb WSD. We add
the semantic role of the prepositional phrase dom-
inating the preposition as a feature to the WSD
model. During training, the PropBank gold SRL
label is used. During testing, we rely on the base-
line SRL model (to be introduced in the next sub-
section) to predict the semantic role of the prepo-
sitional phrase. This is equivalent to first per-
forming semantic role labeling and adding the out-
put as a feature to the WSD classifier. In ear-
lier experiments, we found that training on gold
SRL labels gave better results than training on
automatically predicted SRL labels (using cross-
validation). Note that our approach uses automati-
cally assigned SRL labels during testing, while the
system of Dang and Palmer (2005) only uses gold
SRL labels.

3.2 SRL model
Our semantic role labeling classifier is also based
on maxent models. It has been shown that max-
imum entropy models achieve state-of-the-art re-
sults on SRL (Xue and Palmer, 2004; Toutanova
et al., 2008). Again, we find optimal values
for the training parameters through 10-fold cross-
validation on the training set.

By treating SRL as a classification problem, the
choice of appropriate features becomes a key is-
sue. Features are encoded as binary-valued func-
tions. During testing, the maxent model computes

Baseline Features (Gildea and Jurafsky, 2002)
pred predicate lemma
path path from constituent to predicate
ptype syntactic category (NP, PP, etc.)
pos relative position to the predicate
voice active or passive voice
hw syntactic head word of the phrase
sub-cat rule expanding the predicate’s parent
Advanced Features (Pradhan et al., 2005)
hw POS POS of the syntactic head word
PP hw/POS head word and POS of the rightmost

NP child if the phrase is a PP
first/last word first/last word and POS in the con-

stituent
parent ptype syntactic category of the parent node
parent hw/POS head word and POS of the parent
sister ptype phrase type of left and right sister
sister hw/POS head word and POS of left and right

sister
temporal temporal key words present
partPath partial path predicate
proPath projected path without directions
Feature Combinations (Xue and Palmer, 2004)
pred & ptype predicate and phrase type
pred & hw predicate and head word
pred & path predicate and path
pred & pos predicate and relative position

Table 1: SRL features for the baseline model

the conditional probability P (a|t, p, v) of the ar-
gument label a, given the parse tree t, predicate p,
and constituent node v. The classifier outputs the
semantic role with the highest probability:

â = argmax
a

P (a|t, p, v) (2)

= argmax
a

P (a|Φ(t, p, v)) (3)

where Φ(·, ·, ·) is a feature map to an appropriate
feature representation.

For our baseline SRL model, we adopt the fea-
tures used in other state-of-the-art SRL systems,
which include the seven baseline features from the
original work of Gildea and Jurafsky (2002), addi-
tional features taken from Pradhan et al. (2005),
and feature combinations which are inspired by
the system in Xue and Palmer (2004). Table 1 lists
the features we use for easy reference.

In the pipeline model, we investigate the use-
fulness of the preposition sense as a feature for
SRL by adding the preposition lemma concate-
nated with the sense number (e.g., on 1) as a fea-
ture. During training, the gold annotated prepo-
sition sense is used. During testing, the sense is
automatically tagged by the baseline WSD model.
This is equivalent to first running the WSD clas-
sifier for all prepositions, and adding the output
preposition sense as a feature to our baseline SRL
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system.

3.3 Joint Inference Model
The two previous models seek to maximize the
probability of the semantic role and the preposi-
tion sense individually, thus ignoring possible de-
pendencies between the two. Instead of maximiz-
ing the individual probabilities, we would like to
maximize the joint probability of the semantic role
and the preposition sense, given the parse tree,
predicate, constituent node, and surrounding con-
text. ̂(a, s) = argmax

(a,s)
P (a, s|t, p, v, c) (4)

We assume that the probability of the semantic
role is already determined by the syntactic parse
tree t, the predicate p, and the constituent node v,
and is conditionally independent of the remaining
surrounding context c given t, p, and v. Likewise,
we assume that the probability of the preposition
sense is conditionally independent of the parse tree
t, predicate p, and constituent v, given the sur-
rounding context c and the semantic role a. This
assumption allows us to factor the joint probability
into an SRL and a WSD component:̂(a, s) = argmax

(a,s)
P (a|t, p, v)×P (s|c, a) (5)

= argmax
(a,s)

P (a|Φ(t, p, v))×P (s|Ψ(c, a))(6)

We observe that the first component in our joint
model corresponds to the baseline SRL model
and the second component corresponds to the
WSD pipeline model. Because our maxent mod-
els output a complete probability distribution, we
can combine both components by multiplying the
probabilities. Theoretically, the joint probability
could be factored in the other way, by first com-
puting the probability of the preposition sense and
then conditioning the SRL model on the predicted
preposition sense. However, in our early exper-
iments, we found that this approach gave lower
classification accuracy.

During testing, the classifier seeks to find the
tuple of semantic role and preposition sense that
maximizes the joint probability. For every se-
mantic role, the classifier computes its probability
given the SRL features, and multiplies it by the
probability of the most likely preposition sense,
given the context and the semantic role. The tu-
ple that receives the highest joint probability is the
final output of the joint classifier.

Semantic Role Total Training Test
ARG0 28 15 13
ARG1 374 208 166
ARG2 649 352 297
ARG3 111 67 44
ARG4 177 91 86
ARGM-ADV 141 101 40
ARGM-CAU 31 23 8
ARGM-DIR 28 19 9
ARGM-DIS 29 9 20
ARGM-EXT 61 42 19
ARGM-LOC 954 668 286
ARGM-MNR 316 225 91
ARGM-PNC 115 78 37
ARGM-PRD 1 1 0
ARGM-REC 1 0 1
ARGM-TMP 838 563 275
Total 3854 2462 1392

Table 2: Number of annotated prepositional
phrases for each semantic role

4 Data Set

The joint model uses the probability of a prepo-
sition sense, given the semantic role of the dom-
inating prepositional phrase. To estimate this
probability, we need a corpus which is annotated
with both preposition senses and semantic roles.
Unfortunately, PropBank is not annotated with
preposition senses. Instead, we manually anno-
tated the seven most frequent prepositions in four
sections of the PropBank corpus with their senses
from the TPP dictionary. According to Juraf-
sky and Martin (2008), the most frequent English
prepositions are: of, in, for, to, with, on and at (in
order of frequency). Our counts on Sections 2 to
21 of PropBank revealed that these top 7 prepo-
sitions account for about 65% of all prepositional
phrases that are labeled with semantic roles.

The annotation proceeds in the following way.
First, we automatically extract all sentences which
have one of the prepositions as the lexical head of
a prepositional phrase. The position of the prepo-
sition is marked in the sentence. By only consid-
ering prepositional phrases, we automatically ex-
clude occurrences of the word to before infinitives
and instances of particle usage of prepositions,
such as phrasal verbs. The extracted prepositions
are manually tagged with their senses from the
TPP dictionary. Idiomatic usage of prepositions
like for example or in fact, and complex preposi-
tion constructions that involve more than one word
(e.g., because of, instead of, etc.) are excluded by
the annotators and compiled into a stoplist.

We annotated 3854 instances of the top 7 prepo-
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Preposition Total Training Test
at 404 260 144
for 478 307 171
in 1590 1083 507
of 97 51 46
on 408 246 162
to 532 304 228
with 345 211 134
Total 3854 2462 1392

Table 3: Number of annotated prepositional
phrases for each preposition

sitions in Sections 2 to 4 and 23 of the PropBank
corpus. The data shows a strong correlation be-
tween semantic roles and preposition senses that
express a spatial or temporal meaning. For the
preposition in, 90.8% of the instances that ap-
pear inside an ARGM-LOC are tagged with sense 1
(“surrounded by or enclosed in”) or sense 5 (“in-
clusion or involvement”). 94.6% of the instances
that appear inside an ARGM-TMP role are tagged
with sense 2 (“period of time”). Our counts fur-
thermore show that about one third of the anno-
tated prepositional phrases fill core roles and that
ARGM-LOC and ARGM-TMP are the most fre-
quent roles. The detailed breakdown of semantic
roles is shown in Table 2.

To see how consistent humans can perform the
annotation task, we computed the inter-annotator
agreement between two annotators on Section 4 of
the PropBank corpus. We found that the two anno-
tators assigned the same sense in 86% of the cases.
Although not directly comparable, it is interesting
to note that this figure is similar to inter-annotator
agreement for open-class words reported in previ-
ous work (Palmer et al., 2000). In our final data
set, all labels were tagged by the same annotator,
which we believe makes our annotation reason-
ably consistent across different instances. Because
we annotate running text, not all prepositions have
the same number of annotated instances. The
numbers for all seven prepositions are shown in
Table 3. In our experiments, we use Sections 2 to 4
to train the models, and Section 23 is kept for test-
ing. Although our experiments are limited to three
sections of training data, it still allows us to train
competitive SRL models. Pradhan et al. (2005)
have shown that the benefit of using more training
data diminishes after a few thousand training in-
stances. We found that the accuracy of our SRL
baseline model, which is trained on the 5275 sen-
tences of these three sections, is only an absolute

Baseline
Pipeline
Joint

  30%

  40%

  50%

  60%

  70%

  80%

  90%

at for in of on to with total
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y

Figure 1: Classification accuracy of the WSD
models for the seven most frequent prepositions
in test section 23

3.89% lower than the accuracy of the same model
when it is trained on twenty sections (71.71% ac-
curacy compared to 75.60% accuracy).

5 Experiments and Results

We evaluate the performance of the joint model on
the annotated prepositional phrases in test section
23 and compare the results with the performance
of the baseline models and the pipeline models.

Figure 1 shows the classification accuracy of the
WSD models for each of the seven prepositions in
the test section. The results show that the pipeline
model and the joint model perform almost equally,
with the joint model performing marginally better
in the overall score. The detailed scores are given
in Table 4. Both models outperform the baseline
classifier for three of the seven prepositions: at,
for, and to. For the prepositions in, of, and on, the
SRL feature did not affect the WSD classification
accuracy significantly. For the preposition with,
the classification accuracy even dropped by about
6%.

Performing the student’s t-test, we found that
the improvement for the prepositions at, for, and
to is statistical significant (p < 0.05), as is the
overall improvement. This confirms our hypoth-
esis that the semantic role of the prepositional
phrase is a strong hint for the preposition sense.
However, our results also show that it is the
SRL feature that brings the improvement, not the
joint model, because the pipeline and joint model
achieve about the same performance.

For the SRL task, we report the classification
accuracy over all annotated prepositional phrases
in the test section and the F1 measure for the se-
mantic roles ARGM-LOC and ARGM-TMP. Fig-
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Preposition Baseline Pipeline Joint
at 70.83 78.47∗ 78.47∗

for 41.52 49.12∗ 49.12∗

in 62.33 61.74 61.93
of 43.48 43.48 43.48
on 51.85 51.85 52.47
to 58.77 67.11∗ 66.67∗

with 44.78 38.06 38.06
Total 56.54 58.76∗ 58.84∗

Table 4: Classification accuracy of the baseline,
pipeline, and joint model on the WSD task in test
section 23, statistically significant improvements
over the baseline are marked with an (*)

Baseline
Pipeline
Joint

  65%

  70%

  75%

  80%

  85%

  90%

Argm−LOC Argm−TMP Overall

 f1
−

m
ea
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Figure 2: F1 measure of the SRL models for
ARGM-LOC and ARGM-TMP, and overall accu-
racy on prepositional phrases in test section 23

ure 2 shows the results. The joint model shows
a small performance increase of 0.43% over the
baseline in the overall accuracy. Adding the
preposition sense as a feature, on the other hand,
significantly lowers the accuracy by over 2%. For
ARGM-LOC and ARGM-TMP, the joint model im-
proves the F1 measure by about 1.3% each. The
improvement of the joint model for these roles
is statistically significant (p ≤ 0.05, student’s t-
test). Simply adding the preposition sense in the
pipeline model again lowers the F1 measure. The
detailed results are listed in Table 5.

Semantic Role Baseline Pipeline Joint
ARGM-LOC(F1) 72.88 71.54 74.27*
ARGM-TMP(F1) 81.87 79.43 83.24*
Overall(A) 71.71 69.47 72.14

Table 5: F1 measure and accuracy of the baseline,
pipeline, and joint model on the SRL task in test
section 23, statistically significant improvements
over the baseline are marked with an (*)

Our SRL experiments show that a pipeline
model degrades the performance. The reason is
the relatively high degree of noise in the WSD

classification and that the pipeline model does not
discriminate whether the previous classifier pre-
dicts the extra feature with high or low confi-
dence. Instead, the model only passes on the 1-
best WSD prediction, which can cause the next
classifier to make a wrong classification based on
the erroneous prediction of the previous step. In
principle, this problem can be mitigated by train-
ing the pipeline model on automatically predicted
labels using cross-validation, but in our case we
found that automatically predicted WSD labels
decreased the performance of the pipeline model
even more. In contrast, the joint model computes
the full probability distribution over the semantic
roles and preposition senses. If the noise level in
the first classification step is low, the joint model
and the pipeline model perform almost identically,
as we have seen in the previous WSD experiments.
But if the noise level is high, the joint model can
still improve while the pipeline model drops in
performance. Our experiments show that the joint
model is more robust in the presence of noisy fea-
tures than the pipeline model.

6 Related Work

There is relatively less prior research on preposi-
tions and prepositional phrases in the NLP com-
munity. O’Hara and Wiebe (2003) proposed a
WSD system to disambiguate function tags of
prepositional phrases. An extended version of
their work was recently presented in (O’Hara and
Wiebe, 2009). Ye and Baldwin (2006) extended
their work to a semantic role tagger specifically
for prepositional phrases. Their system first classi-
fies the semantic roles of all prepositional phrases
and later merges the output with a general SRL
system. Ye and Baldwin (2007) used semantic
role tags from surrounding tokens as part of the
MELB-YB preposition WSD system. They found
that the SRL features did not significantly help
their classifier, which is different from our find-
ings. Dang and Palmer (2005) showed that se-
mantic role features are helpful to disambiguate
verb senses. Their approach is similar to our
pipeline WSD model, but they do not present re-
sults with automatically predicted semantic roles.
Toutanova et al. (2008) presented a re-ranking
model to jointly learn the semantic roles of mul-
tiple constituents in the SRL task. Their work
dealt with joint learning in SRL, but it is not di-
rectly comparable to ours. The difference is that
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Toutanova et al. attempt to jointly learn semantic
role assignment of different constituents for one
task (SRL), while we attempt to jointly learn two
tasks (WSD and SRL) for one constituent. Be-
cause we only look at one constituent at a time,
we do not have to restrict ourselves to a re-ranking
approach like Toutanova et al., but can calculate
the full joint probability distribution of both tasks.
Andrew et al. (2004) propose a method to learn a
joint generative inference model from partially la-
beled data and apply their method to the problems
of word sense disambiguation for verbs and deter-
mination of verb subcategorization frames. Their
motivation is similar to ours, but they focus on
learning from partially labeled data and they in-
vestigate different tasks.

None of these systems attempted to jointly learn
the semantics of the prepositional phrase and the
preposition in a single model, which is the main
contribution of our work reported in this paper.

7 Conclusion

We propose a probabilistic model to jointly clas-
sify the semantic role of a prepositional phrase
and the sense of the associated preposition. We
show that learning both tasks together leads to an
improvement over competitive, individual models
for both subtasks. For the WSD task, we show
that the SRL information improves the classifi-
cation accuracy, although joint learning does not
significantly outperform a simpler pipeline model
here. For the SRL task, we show that the joint
model improves over both the baseline model and
the pipeline model, especially for temporal and lo-
cation arguments. As we only disambiguate the
seven most frequent prepositions, potentially more
improvement could be gained by including more
prepositions into our data set.
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Abstract 

We report in this paper a way of doing Word 

Sense Disambiguation (WSD) that has its ori-

gin in multilingual MT and that is cognizant 

of the fact that parallel corpora, wordnets and 

sense annotated corpora are scarce re-

sources. With respect to these resources, lan-

guages show different levels of readiness; 

however a more resource fortunate language 

can help a less resource fortunate language. 

Our WSD method can be applied to a lan-

guage even when no sense tagged corpora for 

that language is available. This is achieved by 

projecting wordnet and corpus parameters 
from another language to the language in 

question. The approach is centered around a 

novel synset based multilingual dictionary and 

the empirical observation that within a domain 

the distribution of senses remains more or less 

invariant across languages. The effectiveness 

of our approach is verified by doing parameter 

projection and then running two different 

WSD algorithms. The accuracy values of ap-

proximately 75% (F1-score) for three lan-

guages in two different domains establish the 

fact that within a domain it is possible to cir-

cumvent the problem of scarcity of resources 

by projecting parameters like sense distribu-

tions, corpus-co-occurrences, conceptual dis-

tance, etc. from one language to another. 

1 Introduction 

Currently efforts are on in India to build large scale 

Machine Translation and Cross Lingual Search 

systems in consortia mode. These efforts are large, 

in the sense that 10-11 institutes and 6-7 languages 

spanning the length and breadth of the country are 

involved.  The approach taken for translation is 

transfer based which needs to tackle the problem of 

word sense disambiguation (WSD) (Sergei et. al., 

2003).  Since 90s machine learning based ap-

proaches to WSD using sense marked corpora have 

gained ground (Eneko Agirre & Philip Edmonds, 

2007). However, the creation of sense marked cor-

pora has always remained a costly proposition. 

Statistical MT has obviated the need for elaborate 

resources for WSD, because WSD in SMT hap-

pens implicitly through parallel corpora (Brown et. 

al., 1993). But parallel corpora too are a very cost-

ly resource.  

The above situation brings out the challenges 

involved in Indian language MT and CLIR. Lack 

of resources coupled with the multiplicity of Indian 

languages severely affects the performance of sev-

eral NLP tasks. In the light of this, we focus on the 

problem of developing methodologies that reuse 

resources. The idea is to do the annotation work 

for one language and find ways of using them for 

another language. 

Our work on WSD takes place in a multilingual 

setting involving Hindi (national language of India; 

500 million speaker base), Marathi (20 million 

speaker base), Bengali (185 million speaker base) 

and Tamil (74 million speaker base). The wordnet 

of Hindi and sense marked corpora of Hindi are 

used for all these languages. Our methodology 

rests on a novel multilingual dictionary organiza-

tion and on the idea of “parameter projection” from 

Hindi to the other languages. Also the domains of 

interest are tourism and health. 

The roadmap of the paper is as follows. Section 

2 describes related work. In section 3 we introduce 

the parameters essential for domain-specific WSD. 

Section 4 builds the case for parameter projection. 

Section 5 introduces the Multilingual Dictionary 

Framework which plays a key role in parameter 

projection. Section 6 is the core of the work, where 

we present parameter projection from one language 

to another. Section 7 describes two WSD algo-

rithms which combine various parameters for do-
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main-specific WSD. Experiments and results are 

presented in sections 8 and 9. Section 10 concludes 

the paper. 

2 Related work 

Knowledge based approaches to WSD such as 

Lesk‟s algorithm (Michael Lesk, 1986), Walker‟s 

algorithm (Walker D. & Amsler R., 1986), concep-

tual density (Agirre Eneko & German Rigau, 1996) 

and random walk algorithm (Mihalcea Rada, 2005) 

essentially do Machine Readable Dictionary loo-

kup. However, these are fundamentally overlap 

based algorithms which suffer from overlap sparsi-

ty, dictionary definitions being generally small in 

length.  

Supervised learning algorithms for WSD are 

mostly word specific classifiers, e.g., WSD using 

SVM (Lee et. al., 2004), Exemplar based WSD 

(Ng Hwee T. & Hian B. Lee, 1996) and decision 

list based algorithm (Yarowsky, 1994). The re-

quirement of a large training corpus renders these 

algorithms unsuitable for resource scarce languag-

es. 

Semi-supervised and unsupervised algorithms 

do not need large amount of annotated corpora, but 

are again word specific classifiers, e.g., semi-

supervised decision list algorithm (Yarowsky, 

1995) and Hyperlex (Véronis Jean, 2004)). Hybrid 

approaches like WSD using Structural Semantic 

Interconnections (Roberto Navigli & Paolo Velar-

di, 2005) use combinations of more than one 

knowledge sources (wordnet as well as a small 

amount of tagged corpora). This allows them to 

capture important information encoded in wordnet 

(Fellbaum, 1998) as well as draw syntactic genera-

lizations from minimally tagged corpora.  

At this point we state that no single existing so-

lution to WSD completely meets our requirements 

of multilinguality, high domain accuracy and 

good performance in the face of not-so-large 

annotated corpora. 

3 Parameters for WSD  

We discuss a number of parameters that play a 

crucial role in WSD. To appreciate this, consider 

the following example: 
 

The river flows through this region to meet the sea. 
 

The word sea is ambiguous and has three senses as 

given in the Princeton Wordnet (PWN): 

S1: (n) sea (a division of an ocean or a large body 

of salt water partially enclosed by land) 

S2: (n) ocean, sea (anything apparently limitless in 

quantity or volume) 

S3: (n) sea (turbulent water with swells of consi-

derable size) "heavy seas" 

Our first parameter is obtained from Domain 

specific sense distributions. In the above example, 

the first sense is more frequent in the tourism do-

main (verified from manually sense marked tour-

ism corpora). Domain specific sense distribution 

information should be harnessed in the WSD task. 

The second parameter arises from the domin-

ance of senses in the domain. Senses are ex-

pressed by synsets, and we define a dominant 

sense as follows: 

 

A few dominant senses in the Tourism domain are 

{place, country, city, area}, {body of water}, {flo-

ra, fauna}, {mode of transport} and {fine arts}. In 

disambiguating a word, that sense which belongs 

to the sub-tree of a domain-specific dominant 

sense should be given a higher score than other 

senses. The value of this parameter (θ) is decided 

as follows: 

θ = 1; if the candidate synset is a dominant synset 

θ = 0.5; if the candidate synset belongs to the sub-

tree of a dominant synset 

θ = 0.001; if the candidate synset is neither a do-

minant synset nor belongs to the sub-tree of a do-

minant synset. 

Our third parameter comes from Corpus co-

occurrence. Co-occurring monosemous words as 

well as already disambiguated words in the con-

text help in disambiguation. For example, the word 

river appearing in the context of sea is a mono-

semous word. The frequency of co-occurrence of 

river with the “water body” sense of sea is high in 

the tourism domain. Corpus co-occurrence is cal-

A synset node in the wordnet hypernymy 

hierarchy is called Dominant if the syn-

sets in the sub-tree below the synset are 

frequently occurring in the domain cor-

pora. 
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culated by considering the senses which occur in a 

window of 10 words around a sense. 

Our fourth parameter is based on the semantic 

distance between any pair of synsets in terms of 

the shortest path length between two synsets in the 

wordnet graph. An edge in the shortest path can be 

any semantic relation from the wordnet relation 

repository (e.g., hypernymy, hyponymy, meronymy, 

holonymy, troponymy etc.). 

For nouns we do something additional over and 

above the semantic distance. We take advantage of 

the deeper hierarchy of noun senses in the wordnet 

structure. This gives rise to our fifth and final pa-

rameter which arises out of the conceptual dis-

tance between a pair of senses. Conceptual 

distance between two synsets S1 and S2 is calcu-

lated using Equation (1), motivated by Agirre Ene-

ko & German Rigau (1996). 

 
Concep-
tual 

Distance    

(S1, S2) 

 

 

 
= 

Length of the path between (S1, 

S2) in terms of hypernymy hie-

rarchy 

Height of the lowest common 

ancestor of S1 and S2 in the word-

net hierarchy 

 

 
 (1) 

The conceptual distance is proportional to the 

path length between the synsets, as it should be. 

The distance is also inversely proportional to the 

height of the common ancestor of two sense nodes, 

because as the common ancestor becomes more 

and more general the conceptual relatedness tends 

to get vacuous (e.g., two nodes being related 

through entity which is the common ancestor of 

EVERYTHING, does not really say anything 

about the relatedness). 

To summarize, our various parameters used for 

domain-specific WSD are: 

Wordnet-dependent parameters  

 belongingness-to-dominant-concept 

 conceptual-distance 

 semantic-distance 

Corpus-dependent parameters 

 sense distributions 

 corpus co-occurrence. 

In section 7 we show how these parameters are 

used to come up with a scoring function for WSD. 

4 Building a case for Parameter Projec-

tion   

Wordnet-dependent parameters depend on the 

graph based structure of Wordnet whereas the 

Corpus-dependent parameters depend on various 

statistics learnt from a sense marked corpora. Both 

the tasks of (a) constructing a wordnet from scratch 

and (b) collecting sense marked corpora for mul-

tiple languages are tedious and expensive. An im-

portant question being addressed in this paper is: 

whether the effort required in constructing seman-

tic graphs for multiple wordnets and collecting 

sense marked corpora can be avoided? Our find-

ings seem to suggest that by projecting relations 

from the wordnet of a language and by projecting 

corpus statistics from the sense marked corpora of 

the language we can achieve this end. Before we 

proceed to discuss the way to realize parameter 

projection, we present a novel dictionary which 

facilitates this task. 

5 Synset based multilingual dictionary  

Parameter projection as described in section 4 rests 

on a novel and effective method of storage and use 

of dictionary in a multilingual setting proposed by 

Mohanty et. al. (2008). For the purpose of current 

discussion, we will call this multilingual dictionary 

framework MultiDict. One important departure 

from traditional dictionary is that synsets are 

linked, and after that the words inside the syn-

sets are linked. The basic mapping is thus be-

tween synsets and thereafter between the words.  

 
Concepts L1 

(Eng-

lish) 

L2 (Hindi) L3 (Mara-

thi) 

04321: a 

youthful 

male per-

son 

{male

child, 

boy} 

{लड़का ladkaa, 
बालक  baalak,  
बच्चा 
bachchaa}  

{मुलगा  mulgaa , 
पोरगा  porgaa , 
पोर  por } 

Table 1: Multilingual Dictionary Framework 

Table 1 shows the structure of MultiDict, with one 

example row standing for the concept of boy. The 

first column is the pivot describing a concept with 

a unique ID. The subsequent columns show the 

words expressing the concept in respective lan-

guages (in the example table above, English, Hindi 

and Marathi). Thus to express the concept „04321: 

a youthful male person‟, there are two lexical ele-

ments in English, which constitute a synset. Cor-

respondingly, the Hindi and Marathi synsets 

contain 3 words each. 
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It may be noted that the central language whose 

synsets the synsets of other languages link to is 

Hindi. This way of linking synsets- more popularly 

known as the expansion approach- has several ad-

vantages as discussed in (Mohanty et. al., 2008). 

One advantage germane to the point of this paper 

is that the synsets in a particular column automati-

cally inherit the various semantic relations of the 

Hindi wordnet (Dipak Narayan et. al., 2000), 

which saves the effort involved in reconstructing 

these relations for multiple languages. 

After the synsets are linked, cross linkages are 

set up manually from the words of a synset to the 

words of a linked synset of the central language. 

The average number of such links per synset per 

language pair is approximately 3. These cross-

linkages actually solve the problem of lexical 

choice in translating from text of one language to 

another. 

Thus for the Marathi word मुलगा  {mulagaa} de-

noting “a youthful male person”, the correct lexi-

cal substitute from the corresponding Hindi synset 

is लड़का {ladakaa} (Figure 1). One might argue that 

any word within the synset could serve the purpose 

of translation. However, the exact lexical substitu-

tion has to respect native speaker acceptability.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Cross linked synset members for the 

concept: a youthful male person 

We put these cross linkages to another use, as 

described later. 

Since it is the MultiDict which is at the heart of 

parameter projection, we would like to summarize 

the main points of this section. (1) By linking with 

the synsets of Hindi, the cost of building wordnets 

of other languages is partly reduced (semantic rela-

tions are inherited). The wordnet parameters of 

Hindi wordnet now become projectable to other 

languages. (2) By using the cross linked words in 

the synsets, corpus parameters become projectable 

(vide next section).  

6 Parameter projection using MultDict  

6.1 P(Sense|Word) parameter 

Suppose a word (say, W) in language L1 (say, Ma-

rathi) has k senses. For each of these k senses we 

are interested in finding the parameter P(Si|W)- 

which is the probability of sense Si given the word 

W expressed as: 

𝑃 𝑆𝑖  𝑊) =  
#(𝑆𝑖  ,𝑊)

 #(𝑆𝑗  ,𝑊)𝑗  

 

where „#‟ indicates „count-of‟. Consider the exam-

ple of two senses of the Marathi word सागर 
{saagar}, viz., sea and abundance and the corres-

ponding cross-linked words in Hindi (Figure 2 be-

low): 

     Marathi            Hindi 

 

 

 

 

 

 
Figure 2: Two senses of the Marathi word सागर 

(saagar), viz., {water body} and {abundance}, and 

the corresponding cross-linked words in Hindi
1
. 

The probability P({water body}|saagar) for Mara-

thi is  
#({𝒘𝒂𝒕𝒆𝒓 𝒃𝒐𝒅𝒚}, 𝒔𝒂𝒂𝒈𝒂𝒓)

#({𝒘𝒂𝒕𝒆𝒓 𝒃𝒐𝒅𝒚}, 𝒔𝒂𝒂𝒈𝒂𝒓) + #({𝒂𝒃𝒖𝒏𝒅𝒂𝒏𝒄𝒆}, 𝒔𝒂𝒂𝒈𝒂𝒓)
 

 

We propose that this can be approximated by the 

counts from Hindi sense marked corpora by replac-

ing saagar with the cross linked Hindi words sa-

mudra and saagar, as per Figure 2: 

 
#({water body}, samudra)

#({water body}, samudra) + #({abundance}, saagar)
 

                                                           
1 Sense_8231 shows the same word saagar for both Marathi 

and Hindi. This is not uncommon, since Marathi and Hindi are 

sister languages. 

मुलगा 
/MW1 

mulagaa,  

पोरगा 
/MW2 

poragaa, 

पोर /MW3 

pora  
 

  लड़का 
/HW1 

ladakaa,  

बालक 

/HW2 
baalak, 

बच्चा /HW3 

bachcha, 

छोरा /HW4 

choraa  

 
 
 

male-child 

/HW1, 
 

boy 

/HW2  

 
 
 

 

Marathi Synset Hindi Synset   English Synset 

Sense_2650 

Sense_8231 

 

saagar (sea) 

{water body} 

saagar (sea) 

{abundance} 

samudra (sea) 

{water body} 

saagar (sea) 

{abundance} 
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Thus, the following formula is used for calculat-

ing the sense distributions of Marathi words using 

the sense marked Hindi corpus from the same do-

main: 

𝑃 𝑆𝑖 𝑊) =  
#(𝑆𝑖  , 𝑐𝑟𝑜𝑠𝑠_𝑙𝑖𝑛𝑘𝑒𝑑_𝑕𝑖𝑛𝑑𝑖_𝑤𝑜𝑟𝑑)

 #(𝑆𝑗  , 𝑐𝑟𝑜𝑠𝑠_𝑙𝑖𝑛𝑘𝑒𝑑_𝑕𝑖𝑛𝑑𝑖_𝑤𝑜𝑟𝑑)𝑗  
           (2) 

Note that we are not interested in the exact sense 

distribution of the words, but only in the relative 

sense distribution.  

To prove that the projected relative distribution 

is faithful to the actual relative distribution of 

senses, we obtained the sense distribution statistics 

of a set of Marathi words from a sense tagged Ma-

rathi corpus (we call the sense marked corpora of a 

language its self corpora). These sense distribu-

tion statistics were compared with the statistics for 

these same words obtained by projecting from a 

sense tagged Hindi corpus using Equation (2).  The 

results are summarized in Table 2. 

Sr. 

No 

Marathi 

Word 

Synset P(S|word) 

as learnt 

from 

sense 

tagged 

Marathi 

corpus 

P(S|word) as 

projected 

from sense 

tagged 

Hindi cor-

pus 

1 ककिं मत 

(kimat)  

{ worth } 0.684 0.714 

{ price }  0.315 0.285 

2 रस्ता 
(rasta)  

 

{ roadway } 0.164 0.209 

{road, 

route} 

0.835 0.770 

3 ठिकाण 

(thikan) 

{ land site, 

place} 

0.962 0.878 

{ home } 0.037 0.12 

4 सागर 

(saagar) 

{water 

body} 

1.00 1.00 

{abun-

dance} 

0 0 

Table 2: Comparison of the sense distributions of 

some Marathi words learnt from Marathi sense 

tagged corpus with those projected from Hindi 

sense tagged corpus. 

The fourth row of Table 2 shows that whenever 

सागर (saagar) (sea) appears in the Marathi tourism 

corpus there is a 100% chance that it will appear in 

the “water body” sense and 0% chance that it will 

appear in the sense of “abundance”. Column 5 

shows that the same probability values are ob-

tained using projections from Hindi tourism cor-

pus. Taking another example, the third row shows 

that whenever ठिकाण (thikaan) (place, home) ap-

pears in the Marathi tourism corpus there is a much 

higher chance of it appearing in the sense of 

“place” (96.2%) then in the sense of “home” 

(3.7%). Column 5 shows that the relative proba-

bilities of the two senses remain the same even 

when using projections from Hindi tourism corpus 

(i.e. by using the corresponding cross-linked words 

in Hindi). To quantify these observations, we cal-

culated the average KL divergence and Spearman‟s 

correlation co-efficient between the two distribu-

tions. The KL divergence is 0.766 and Spearman‟s 

correlation co-efficient is 0.299. Both these values 

indicate that there is a high degree of similarity 

between the distributions learnt using projection 

and those learnt from the self corpus. 

6.2 Co-occurrence parameter 

Similarly, within a domain, the statistics of co-

occurrence of senses remain the same across lan-

guages. For example, the co-occurrence of the Ma-

rathi synsets {आकाव (akash) (sky), अिंबर (ambar) 

(sky)} and {मेघ (megh) (cloud), अभ्र (abhra) 

(cloud)} in the Marathi corpus remains more or 

less same as (or proportional to) the co-occurrence 

between the corresponding Hindi synsets in the 

Hindi corpus.   

Sr. No Synset Co-
occurring 

Synset 

P(co-
occurrence) 

as learnt 

from sense 
tagged 

Marathi 

corpus 

P(co-
occurrence) 

as learnt 

from sense 
tagged 

Hindi 

corpus 

1 {रोप, रोपटे} 

{small bush} 

{झाड, ऴकृ्ष, 

तरुऴर, द्रमु, 

तरू, पादप}  

{tree} 

0.125 0.125 

2 {मेघ, अभ्र} 

{cloud} 

{आकाव, 

आभाळ, 

अिंबर}  

{sky} 

0.167 0.154 

3 {क्षेत्र, इऱाका, 
इऱाका, 
भूखडं}  

{geographical 
area} 

{यात्रा, 
सफ़र}  

{travel} 

0.0019 0.0017 

Table 3: Comparison of the corpus co-occurrence 

statistics learnt from Marathi and Hindi Tourism 

corpus. 
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Table 3 shows a few examples depicting similarity 

between co-occurrence statistics learnt from Mara-

thi tourism corpus and Hindi tourism corpus. Note 

that we are talking about co-occurrence of synsets 

and not words. For example, the second row shows 

that the probability of co-occurrence of the synsets 

{cloud} and {sky} is almost same in the Marathi 

and Hindi corpus. 

7 Our algorithms for WSD 

We describe two algorithms to establish the use-

fulness of the idea of parameter projection. The 

first algorithm- called iterative WSD (IWSD-) is 

greedy, and the second based on PageRank algo-

rithm is exhaustive. Both use scoring functions that 

make use of the parameters detailed in the previous 

sections.  

7.1 Iterative WSD (IWSD) 

We have been motivated by the Energy expression 

in Hopfield network (Hopfield, 1982) in formulat-

ing a scoring function for ranking the senses. Hop-

field Network is a fully connected bidirectional 

symmetric network of bi-polar (0/1 or +1/-1) neu-

rons. We consider the asynchronous Hopfield 

Network. At any instant, a randomly chosen neu-

ron (a) examines the weighted sum of the input, (b) 

compares this value with a threshold and (c) gets to 

the state of 1 or 0, depending on whether the input 

is greater than or less than or equal to the thre-

shold. The assembly of 0/1 states of individual 

neurons defines a state of the whole network. Each 

state has associated with it an energy, E, given by 

the following expression 

 

𝐸 = −𝜃𝑖𝑉𝑖 +  𝑊𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

𝑉𝑖𝑉𝑗  
 
(3) 

 

where, N is the total number of neurons in the net-

work, 𝑉𝑖   and 𝑉𝑗  are the activations of neurons i and 

j respectively and 𝑊𝑖𝑗  is the weight of the connec-

tion between neurons i and j.  Energy is a funda-

mental property of Hopfield networks, providing 

the necessary machinery for discussing conver-

gence, stability and such other considerations. 

The energy expression as given above cleanly 

separates the influence of self-activations of neu-

rons and that of interactions amongst neurons to 

the global macroscopic property of energy of the 

network.  This fact has been the primary insight for 

equation (4) which was proposed to score the most 

appropriate synset in the given context. The cor-

respondences are as follows:   
 

Neuron  Synset 

Self-activation  Corpus Sense Distribu-

tion 

Weight of connec-

tion between two 

neurons 

 

 

Weight as a function of 

corpus co-occurrence 

and Wordnet distance 

measures between syn-

sets 

 

𝑆∗ = argmax
𝑖

  𝜃𝑖 ∗ 𝑉𝑖 +   𝑊𝑖𝑗 ∗ 𝑉𝑖 ∗ 𝑉𝑗
𝑗  ∈ J

   4  

𝑤𝑕𝑒𝑟𝑒, 
  J = 𝑆𝑒𝑡 𝑜𝑓 𝑑𝑖𝑠𝑎𝑚𝑏𝑖𝑔𝑢𝑎𝑡𝑒𝑑 𝑊𝑜𝑟𝑑𝑠            

         𝜃𝑖 = 𝐵𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑇𝑜𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡 (𝑆𝑖)

   𝑉𝑖 = 𝑃 𝑆𝑖  | 𝑤𝑜𝑟𝑑                                                   
 

 𝑊𝑖𝑗 =  𝐶𝑜𝑟𝑝𝑢𝑠𝐶𝑜𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠  𝑆𝑖 , 𝑆𝑗                    

                 ∗  1 𝑊𝑁𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆𝑖 , 𝑆𝑗 )           

                   ∗  1 𝑊𝑁𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐺𝑟𝑎𝑝𝑕𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆𝑖 , 𝑆𝑗 )    

 

The component 𝜃𝑖 ∗ 𝑉𝑖  of the energy due to the self 

activation of a neuron can be compared to the cor-

pus specific sense of a word in a domain. The other 

component 𝑤𝑖𝑗 ∗  𝑉𝑖 ∗ 𝑉𝑗  coming from the interaction 

of activations can be compared to the score of a 

sense due to its interaction in the form of corpus 

co-occurrence, conceptual distance, and wordnet-

based semantic distance with the senses of other 

words in the sentence. The first component thus 

captures the rather static corpus sense, whereas the 

second expression brings in the sentential context.  

Algorithm 1: performIterativeWSD(sentence) 

1. Tag all monosemous words in the sentence. 

2. Iteratively disambiguate the remaining words in the 

sentence in increasing order of their degree of polyse-

my. 

3. At each stage select that sense for a word which max-

imizes the score given by Equation (4) 

Algorithm1: Iterative WSD  

IWSD is clearly a greedy algorithm. It bases its 

decisions on already disambiguated words, and 

ignores words with higher degree of polysemy. For 

example, while disambiguating bisemous words, 

the algorithm uses only the monosemous words. 
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7.2 Modified PageRank algorithm 

Rada Mihalcea (2005) proposed the idea of using 

PageRank algorithm to find the best combination 

of senses in a sense graph. The nodes in a sense 

graph correspond to the senses of all the words in a 

sentence and the edges depict the strength of inte-

raction between senses. The score of each node in 

the graph is then calculated using the following 

recursive formula: 

𝑠𝑐𝑜𝑟𝑒 𝑆𝑖 =                                                                 

 1 − d + d ∗  
Wij

 WjkSk∈Out  Si 
∗ Score Sj 

S j∈In S i 

 

Instead of calculating Wij  based on the overlap 

between the definition of senses Si and S  as pro-

posed by Rada Mihalcea (2005), we calculate the 

edge weights using the following formula: 

 𝑊𝑖𝑗 =  𝐶𝑜𝑟𝑝𝑢𝑠𝐶𝑜𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠  𝑆𝑖 , 𝑆𝑗                    

                   ∗  1 𝑊𝑁𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑖 , 𝑆𝑗             

                   

∗  1 𝑊𝑁𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐺𝑟𝑎𝑝𝑕𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑖 , 𝑆𝑗    

∗  𝑃 𝑆𝑖  | 𝑤𝑜𝑟𝑑𝑖                                                   

∗  𝑃 𝑆𝑗  | 𝑤𝑜𝑟𝑑𝑗                                                   

  

𝑑 = 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟  𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦 0.85     

 

This formula helps capture the edge weights in 

terms of the corpus bias as well as the interaction 

between the senses in the corpus and wordnet. It 

should be noted that this algorithm is not greedy. 

Unlike IWSD, this algorithm allows all the senses 

of all words to play a role in the disambiguation 

process.  

8 Experimental Setup: 

We tested our algorithm on tourism corpora in 3 

languages (viz., Marathi, Bengali and Tamil) and 

health corpora in 1 language (Marathi) using pro-

jections from Hindi. The corpora for both the do-

mains were manually sense tagged. A 4-fold cross 

validation was done for all the languages in both 

the domains. The size of the corpus for each lan-

guage is described in Table 4. 

Language # of polysemous words 

(tokens) 

Tourism 

Domain 

Health 

Domain 

Hindi 50890 29631 

Marathi 32694 8540 

Bengali 9435  - 

Tamil 17868 - 

Table 4: Size of manually sense tagged corpora for 

different languages. 

 

Table 5 shows the number of synsets in MultiDict 

for each language. 

Language # of synsets in 

MultiDict 

Hindi 29833 

Marathi 16600 

Bengali 10732 

Tamil 5727 

Table 5: Number of synsets for each language 

 

Algorithm Language 

Marathi Bengali 

P  % R % F % P  % R % F % 

IWSD (training on self corpora; no parameter pro-

jection) 81.29 80.42 80.85 81.62 78.75 79.94 

IWSD (training on Hindi and reusing parameters  

for another language) 73.45 70.33 71.86 79.83 79.65 79.79 

PageRank (training on self corpora; no parameter 

projection) 79.61 79.61 79.61 76.41 76.41 76.41 

PageRank (training on Hindi and reusing parame-

ters  for another language) 71.11 71.11 71.11 75.05 75.05 75.05 

Wordnet Baseline 58.07 58.07 58.07 52.25 52.25 52.25 

Table 6: Precision, Recall and F-scores of IWSD, PageRank and Wordnet Baseline. Values are re-

ported with and without parameter projection. 
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9 Results and Discussions 

Table 6 shows the results of disambiguation (preci-

sion, recall and F-score). We give values for two 

algorithms in the tourism domain: IWSD and Pa-

geRank. In each case figures are given for both 

with and without parameter projection. The word-

net baseline figures too are presented for the sake 

of grounding the results.  

Note the lines of numbers in bold, and compare 

them with the numbers in the preceding line. This 

shows the fall in accuracy value when one tries the 

parameter projection approach in place of self cor-

pora. For example, consider the F-score as given 

by IWSD for Marathi. It degrades from about 81% 

to 72% in using parameter projection in place of 

self corpora.  Still, the value is much more than the 

baseline, viz., the wordnet first sense (a typically 

reported baseline). 

Coming to PageRank for Marathi, the fall in ac-

curacy is about 8%. Appendix A shows the corres-

ponding figure for Tamil with IWSD as 10%. 

Appendix B reports the fall to be 11% for a differ-

ent domain- Health- for Marathi (using IWSD).  

In all these cases, even after degradation the per-

formance is far above the wordnet baseline. This 

shows that one could trade accuracy with the cost 

of creating sense annotated corpora.  

10 Conclusion and Future Work: 

Based on our study for 3 languages and 2 domains, 

we conclude the following: 

(i) Domain specific sense distributions- if 

obtainable- can be exploited to advantage. 

(ii) Since sense distributions remain same across 

languages, it is possible to create a disambiguation 

engine that will work even in the absence of sense 

tagged corpus for some resource deprived 

language, provided (a) there are aligned and cross 

linked sense dictionaries for the language in 

question and another resource rich language, (b) 

the domain in which disambiguation needs to be 

performed for the resource deprived language is 

the same as the domain for which sense tagged 

corpora is available for the resource rich language.  

(iii) Provided the accuracy reduction is not drastic, 

it may make sense to trade high accuracy for the 

effort in collecting sense marked corpora.  

It would be interesting to test our algorithm on 

other domains and other languages to conclusively 

establish the effectiveness of parameter projection 

for multilingual WSD.  

It would also be interesting to analyze the con-

tribution of corpus and wordnet parameters inde-

pendently. 
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Appendix A: Results for Tamil (Tourism 

Domain) 

Algorithm P  % R  % F % 

IWSD (training on 

Tamil) 89.50 88.18 88.83 

IWSD (training on 

Hindi and reusing  for 

Tamil) 84.60 73.79 78.82 

Wordnet Baseline 65.62 65.62 65.62 

Table 7: Tamil Tourism corpus using parameters 

projected from Hindi 

Appendix B: Results for Marathi (Health 

Domain) 

Algorithm 

Words 

P  % R  % F % 

IWSD (training on Mara-

thi) 84.28 81.25 82.74 

IWSD (training on Hindi 

and reusing  for Marathi) 75.96 67.75 71.62 

Wordnet Baseline 60.32 60.32 60.32 

Table 8: Marathi Health corpus parameters pro-

jected from Hindi 
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Abstract

Much NLP research on Multi-Word Ex-
pressions (MWEs) focuses on the discov-
ery of new expressions, as opposed to the
identification in texts of known expres-
sions. However, MWE identification is
not trivial because many expressions al-
low variation in form and differ in the
range of variations they allow. We show
that simple rule-based baselines do not
perform identification satisfactorily, and
present a supervised learning method for
identification that uses sentence surface
features based on expressions’ canonical
form. To evaluate the method, we have
annotated 3350 sentences from the British
National Corpus, containing potential uses
of 24 verbal MWEs. The method achieves
an F-score of 94.86%, compared with
80.70% for the leading rule-based base-
line. Our method is easily applicable to
any expression type. Experiments in pre-
vious research have been limited to the
compositional/non-compositional distinc-
tion, while we also test on sentences in
which the words comprising the MWE ap-
pear but not as an expression.

1 Introduction

Multi-Word Expressions (MWEs) such as ‘pull
strings’, ‘make a face’ and ‘get on one’s nerves’
are very common in language. Such MWEs can
be characterized as being non-compositional: the
meaning of the expression does not transparently
follow from the meaning of the words that com-
prise it. Much of the work on MWEs in NLP has
been in MWE extraction – the discovery of new

MWEs from a corpus, using statistical and other
methods. Identification of known MWEs in text
has received less attention, but is necessary for
many NLP applications, for example in machine
translation. The current work deals with the MWE
identification task: deciding if a sentence contains
a use of a known expression.

MWE identification is not as simple as may ini-
tially appear, as will be shown by the performance
of two rule-based baselines in our experiments.
One source of difficulty is variations in expres-
sions’ usage in text. Although MWEs generally
show less variation than single words, they show
enough that it cannot be ignored. In a study on
V+NP idioms, Riehemann (2001) found that the
idioms’ canonical form accounted for 75% of their
appearances in a corpus. Additionally, expressions
differ considerably in the types of variations they
allow, which include passivization, nominalization
and addition of modifying words (Moon, 1998).

A second source of difficulty is that expressions
consisting of very frequent words will often co-
occur in sentences in a non-MWE usage and in
similar but distinct expressions.

MWE identification can be modeled as a two
step process. Given a sentence and a known ex-
pression, step (1) is to decide if the sentence con-
tains a potential use of the expression. This is a
relatively simple step based on the appearance in
the sentence of the words comprising the MWE.
Step (2) is to decide if the potential use is indeed
non-compositional. Consider the following sen-
tences with regard to the expression hit the road,
meaning ‘to leave on a journey’:

(a) ‘At the time, the road was long and difficult
with few travelers daring to take it.’

(b) ‘The headlights of the taxi-van behind us
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flashed as it hit bumps in the road.’

(c) ‘The bullets were hitting the road and I could
see them coming towards me a lot faster than
I was able to reverse.’

(d) ‘Lorry trailers which would have been hitting
the road tomorrow now stand idle.’

Sentence (a) does not contain a potential use of
the expression due to the missing component ‘hit’.
Each of (b)-(d) does contain a potential use of the
expression. In (b) all of the expression compo-
nents are present, but they do not form an expres-
sion. In (c), the words form an expression, but
with a compositional (literal) meaning. Only (d)
contains a non-compositional use of hit the road.
The task we address in this paper is to identify
whether or not we are in case (d), for a given ex-
pression in a given sentence.

To date, most work in MWE identification has
focused on manually encoding rules that identify
expressions in text. The encodings, usually con-
sisting of regular expressions and syntactic struc-
tures, are intended to contain all the necessary in-
formation for processing the MWE in text. Being
manual, this is time-consuming work and requires
expert knowledge of individual expressions. In
terms of the above model, such encodings handle
both MWE identification steps.

A second approach is to use machine learning
methods to learn an expression’s behavior from a
corpus. Studies taking this approach have focused
on distinguishing between compositional and non-
compositional uses of an expression (cases (c) and
(d) above). As will be detailed in Section 2, exist-
ing methods are tailored to an expression’s type,
and experiment with a single MWE pattern. In ad-
dition, the training and test sets they used did not
contain non-expression uses as in case (b), which
can be quite common in practice.

Our approach is more general. Given a set of
sentences with potential MWE uses, we use sen-
tence surface features to create a Support Vec-
tor Machine (SVM) classifier for each expres-
sion. The classifier is binary and differentiates be-
tween non-compositional uses of the expression
((d) above) on the one hand, and compositional
and non-expression uses ((b) and (c)) on the other.
The experiments and results presented below fo-
cus on verbal MWEs, since verbal MWEs are
quite common in language use and have also been
investigated in related MWE research (e.g., (Cook

et al., 2007)). However, the developed features are
not specific to a particular type of expression.

The supervised method is compared with two
simple rule-based baselines in order to test
whether a simple approach is sufficient. In addi-
tion, the use of surface features is compared with
the use of syntactic features (based on dependency
parse trees of the sentences). Averaged over ex-
pressions in an independent test set, the super-
vised classifiers outperform the rule-based base-
lines, with F-scores of 94.86% (surface features)
and 87.77% (syntactic features), compared with
80.70% for the best baseline.

Section 2 reviews previous work. Section 3 dis-
cusses the features used for the supervised classi-
fier. Section 4 explains the experimental setting.
The results and a discussion are given in sections
5 and 6.

2 Previous Work

2.1 MWE Lexical Encoding

The approach to handling MWEs in early systems
was to employ a list of expressions, each with
a quasi regular expression that encodes morpho-
syntactic variations. One example is Leech et
al. (1994) who used this method for automatic
part-of-speech tagging for the BNC. Another is a
formalism called IDAREX (IDioms And Regular
EXpressions) (Breidt et al., 1996).

More recent research emphasizes the integra-
tion of MWE lexical entries into existing single
word lexicons and grammar systems (Villavicen-
cio et al., 2004; Alegria et al., 2004). There is
also an attempt to take advantage of regularities in
morpho-syntactic properties across MWE groups,
which allows encoding the behavior of the group
instead of individual expressions (Villavicencio et
al., 2004; Grégoire, 2007). Fellbaum (1998) dis-
cusses some difficulties in representing idioms,
which are largely figurative in meaning, in Word-
Net. More recent work (Fellbaum et al., 2006) fo-
cuses on German VP idioms.

As already mentioned, one issue with lexi-
cal encoding is that it is done manually, mak-
ing lexicons difficult to create, maintain and ex-
tend. The use of regularities among different types
of MWEs is one way of reducing the amount
of work required. A second issue is that im-
plementations tend to ignore the likelihood and
even the possibility of compositional and other
interpretations of expressions in text, which can
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be common for some expressions. For exam-
ple, in an MWE identification study, Hashimoto
et al. (2006) built an identification system us-
ing hand crafted rules for some 100 Japanese id-
ioms. The results showed near perfect perfor-
mance on expressions without compositional/non-
compositional ambiguity but significantly poorer
performance on expressions with ambiguity.

2.2 MWE Identification by ML

Katz and Giesbrecht (2006) used a supervised
learning method to distinguish between composi-
tional and non-compositional uses of an expres-
sion (in German text) by using contextual infor-
mation in the form of Latent Semantic Analy-
sis (LSA) vectors. LSA vectors of compositional
and non-compositional meaning were built from a
training set of example sentences and then a near-
est neighbor algorithm was applied on the LSA
vector of one tested MWE. The technique was
tested more thoroughly in Cook et al. (2007).

Cook et al. (2007) devised two unsupervised
methods to distinguish between compositional (lit-
eral) and non-compositional (idiomatic) tokens of
verb-object expressions. The first method is based
on an expression’s canonical form. In a previ-
ous study (Fazly and Stevenson, 2006), the authors
came up with a dozen possible syntactic forms for
verb-object pairs (based on passivization, deter-
miner, and object pluralization) and used a corpus-
based statistical measure to determine the canoni-
cal form(s). The method classifies new tokens as
idiomatic if they use a canonical form, and literal
otherwise.

The second method uses context as well as
form. Co-occurrence vectors representing the id-
iomatic and literal meaning of each expression
were computed based on corpus data. Idiomatic-
meaning vectors were based on examples match-
ing the expressions’ canonical form. Literal mean-
ing vectors were based on examples that did not
match the canonical form. New tokens were
classified as literal/idiomatic based on their (co-
occurrence) vector’s cosine similarity to the id-
iomatic and literal vectors.

(Sporleder and Li, 2009) also attempted to dis-
tinguish compositional from non-compositional
uses of expressions in text. Their assumption was
that if an expression is used literally, but not id-
iomatically, its component words will be related
semantically to several words in the surrounding

discourse. For example, when the expression ‘play
with fire’ is used literally, words such as ‘smoke,
‘burn’, ‘fire department’, and ‘alarm’ tend to also
be used nearby; when it is used idiomatically, they
aren’t (indeed, other words, e.g., ‘danger’ or ‘risk’
appear nearby but they are not close semantically
to ‘play’ or to ‘fire’). This property was used
to distinguish literal and non-literal instances by
measuring the semantic relatedness of an expres-
sion’s component words to nearby words in the
text. If one or more of the expression’s compo-
nents were sufficiently related to enough nearby
words, forming a ‘lexical chain’, the usage was
classified as literal. Otherwise it was idiomatic.
Two classifiers based on lexical chains were de-
vised. These were compared with a supervised
method that trains a classifier for each expression
based on surrounding context. The results showed
that the supervised classifier method did much bet-
ter (90% F-score on literal uses) than the lexical
chain classifier methods (60% F-score).

In the above studies the focus is on the
compositional/non-compositional expression dis-
tinction. The sentence data used contains exam-
ples of either one or the other. In (Sporleder and
Li, 2009) the experimental data included only sen-
tences in which the expressions were in canoni-
cal form (allowing for verb inflection). In (Cook
et al., 2007) a syntactic parser was used to col-
lect sentences containing the MWEs in the active
and passive voice using heuristics. Thus, exam-
ples such as the following (from the BNC) would
not be included in their sample:

1. take a chance: ‘While he still had a chance
of being near Maisie, he would take it’.

2. face the consequences: ‘. . . she did not have
to face, it appears, the possible serious or
even fatal consequences of her decision’.

3. make a distinction: ‘Logically, the distinc-
tion between the two aspects of the theory
can and should be made’.

4. break the ice: ‘The ice, if not broken, was
beginning to soften a little’.

5. settle a score: ‘Morrissey had another score
to settle’.

This means that their experiments have not in-
cluded all types of sentences that might be encoun-
tered in practice when attempting MWE identifi-
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cation. Specifically, they would miss many ex-
amples in which the MWE words are present but
are not used as an expression (case (b) in Sec-
tion 1). Moreover, their heuristics are tailored
to the Verb-Direct Object MWE type. Different
heuristics would need to be employed for different
MWE types.

In our approach there is no pre-processing stage
requiring type-specific knowledge. Specifically,
the above examples are used as training sentences
in our experiments.

2.3 MWE Extraction
There exists an extensive body of research on
MWE extraction (see Wermter and Hahn (2004)
for a review), where the only input is a corpus,
and the output is a list of MWEs found in it. Most
methods collect MWE candidates from the corpus,
score them according to some association measure
between their components, and accept candidates
with scores passing some threshold. The focus of
research has been on developing association mea-
sures, including statistical, information-theoretic
and linguistically motivated measures (e.g., Juste-
son and Katz (1995), Wermter and Hahn (2006),
and Deane (2005)).

3 MWE Identification Method

Our method decides if a potential use of a
known expression in a given sentence is non-
compositional. The input to the method, for each
MWE, is a labeled training set of sentences con-
taining one or more potentially non-compositional
uses of the MWE. The output, for each MWE, is a
binary classifier, trained on those sentences. Thus,
we target step (2) of MWE identification, which is
the difficult one.

The learning algorithm used is Support Vector
Machine (SVM), which outputs a binary classifier,
using Sequential Minimal Optimization (Platt,
1998)1 in the Weka toolkit2 (Witten and Frank,
2000).

For training, sentences are converted into fea-
ture vectors. Features depend on the assignment
of the lexical components of the expression to spe-
cific tokens in the sentence. In some cases, there
are several tokens in the sentence that match a sin-
gle component in the expression, and this leads to

1Using the PUK kernel (The Pearson VII function-
based Universal Kernel), with parameters omega=1.0 and
sigma=1.0.

2Weka version 3.5.6; www.cs.waikato.ac.nz/ ml/ weka/

multiple (potential) assignments. So in the gen-
eral case a sentence is converted to a set of feature
vectors, each corresponding to a single assignment
of the MWE’s lexical components to sentence to-
kens.

Training sentences are labeled positive if they
contain a non-compositional use of the expression
and negative if they do not (i.e., literal and other
uses). If the sentence is positive, at least one of
the assignments is the true assignment (there may
be more than one, e.g., when an expression is used
twice in the same sentence). The vector matching
the true assignment is labeled positive. The others
are labeled negative. If the sentence is negative,
all of the vectors are labeled negative.

As mentioned, the output of the method is a
distinct binary classifier for each MWE. Although
having a single classifier for all expressions would
seem advantageous, the wide variation exhibited
by MWEs (e.g., for some the passive is common,
for other not at all) precludes this option and re-
quires having a separate classifier for each expres-
sion.

3.1 Features

Surface features include order and distance, part-
of-speech and inflection of an expression’s words
in a sentence.

Use of surface features is intuitive and relatively
cheap. In addition, many studies have shown the
importance of order and distance in MWE extrac-
tion in English (two recent examples are (Dias,
2003; Deane, 2005)). Thus, we develop a super-
vised classifier based on surface features.

Many of the surface features make use of an
expression’s Canonical Form (CF), thus the learn-
ing algorithm assumes that it is given such a form.
Formally defining the CF is difficult. Indeed, some
researchers have concluded that some expressions
do not have a CF (Moon, 1998). For our purposes,
CF can be informally defined as the most frequent
form in which the expression appears. In practice,
an approximation of this definition, explained in
Section 4, is used.

3.1.1 Surface Features
1. Word Distance: The number of words be-

tween the leftmost and rightmost MWE to-
kens in the sentence.

2. Ordered Gap List: A list of gaps, measured
in number of words, between each pair of the
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expression’s tokens in their canonical form
order. For example, if the token locations (in
canonical form order) are 10, 7 and 3, the or-
dered gap list would be (10 ↔ 7 = 2, 10 ↔
3 = 6, 7↔ 3 = 3).

3. Word Order: A boolean value indicating
whether the expression’s word order in the
sentence matches the canonical form word
order.

4. Word Order Permutation: The permutation
of word order relative to the canonical form.
For example, the permutation (1,0,2) indi-
cates that component words 1 and 0 have
switched order in the sentence.

5. Inflection Ratio: The fraction of words in the
expression that have undergone inflection rel-
ative to the canonical form.

6. Lexical Values: A list of the tokens in the
sentence matching the expression’s compo-
nent words, ordered according to canonical
form. For example, if the expression is ‘make
a distinction’, a possible lexical values list
is (made,no,distinction) in the sentence ‘No
possible distinction can be made between the
two’.

7. POS Pattern: A boolean value indicating
whether the expression’s use in the sentence
has the same part-of-speech pattern as the
canonical form.

Two combinations of surface features are used
in the experiments below. The first, named R1,
uses all of the above features. The second, R2,
uses only Word Distance, Ordered Gap List and
Word Order Permutation. Using R2 the learner
has only word order and distance information from
which to create a classifier.

3.1.2 Syntactic Features
An expression’s words may appear unrelated in
a sentence, because of distance, order, part-of-
speech and other surface variations. However, the
words will still be closely related syntactically.
Syntactic analysis of the sentence in the form of
a dependency parse tree directly gives the syntac-
tic relationships between the expression’s compo-
nents. Thus, we also develop a classifier based on
syntactic features.

Dependency Parsing. A dependency parse tree
is a directed acyclic graph in which the nodes rep-
resent tokens in the sentence and the edges rep-
resent syntactic dependencies between the words
(e.g., direct-object, prepositional-object, noun-
subject etc.). The Stanford Parser3 (Marneffe et
al., 2006) was used.

Minimal Sub-Tree. To compute a syntactic fea-
ture, the dependency tree is computed and then the
minimal sub-tree containing the expression’s to-
kens is extracted.

The features are:

1. Sub-Tree Distance Sum: The number of
edges in the minimal sub-tree. A large num-
ber of edges suggests a weaker dependency.

2. Sub-Tree Distance List: A list of the dis-
tances of the MWE component nodes from
the root of their sub-tree.

3. Descendant Relations List: A list of descen-
dant relations between each pair of MWE
component nodes.
A descendant relation between two nodes ex-
ists if there is a directed path from one node
(the ancestor) to the other (the descendant).
Descendant relations are either direct (parent-
child) or indirect. The list consists of the lev-
els of descendant relations between the MWE
component nodes, which can be none, indi-
rect or direct.

4. Descendant Direction List: A list of the di-
rections of the descendant relations between
each pair of MWE component nodes.
If there are descendant relations between a
pair of nodes, the direction of the depen-
dency, indicating which is the modifying and
which the modified node, is important.

5. Sibling Relations List: A list of sibling rela-
tions between each pair of MWE component
nodes.
Two nodes are first degree siblings if they
share the same parent (which usually means
they modify the same word). Two nodes are
second degree siblings if they share a com-
mon ancestor no more than two edges away,
and so on. The list consists of the level of
sibling relations for each pair of component

3http://www-nlp.stanford.edu/software/lex-parser.shtml
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nodes, which can be first, second and third
degree.

6. Descendant Type List: A list of the depen-
dency types (e.g., subject, direct object etc.)
between each pair of component nodes. If the
component nodes are not direct descendants
their dependency type is null.

7. Sibling Type List: A list of pairs of depen-
dency types corresponding to the dependen-
cies between a pair of component nodes and
their common parent. If the component nodes
are not first degree siblings, the type is null.

In the experiments reported below, the classifier
using only the syntactic features is denoted by S,
and the one using all surface and all syntactic fea-
tures is denoted by C. We have experimented with
additional feature combinations, with no improve-
ment in results.

4 Experimental Method

Canonical form. As described, an expression’s
canonical form (CF) is used in many of the learn-
ing algorithm’s features. The CF is taken from
Collins COBUILD Advanced Learner’s English
Dictionary (2003) which is also used as our source
for MWEs. COBUILD is an English-English dic-
tionary based on the Bank of English (BOE) cor-
pus (over 520 million words) with approximately
34,000 entries.

Traditional single-word dictionaries are a good
source for expressions because they usually list, as
part of single-word entries, expressions in which
the word is a component. The CF is not explic-
itly given in COBUILD, so an approximation is
the form which appears in the expression’s defini-
tion. This is a reasonable approximation since the
COBUILD authors claim to have selected typical
uses of the expressions in their definitions.

Each CF also has a matching part-of-speech
(POS) pattern, which is a list of the parts-
of-speech of the components in the CF. For
example, ‘walking on air’ has the pattern
(V erb, Preposition,Noun). COBUILD does
not include part-of-speech information for expres-
sions so this information was determined using the
British National Corpus (BNC) (BNC, 2001), a
(mostly) automatically POS tagged corpus (using
the CLAWS tagger). For each MWE, the POS pat-
terns of all instances of the CF in the corpus were

counted. The most frequent pattern is the expres-
sion’s POS pattern.

The expressions. A set of 17 verbal MWEs, the
development set, was used for development of the
surface and syntactic features described above. All
of the development set MWEs had the POS pattern
(V erb,Determiner,Noun). Another set of 24
verbal MWEs, the training/test set4, was then used
to test the method. Because the method is not spe-
cific to the (V erb,Determiner,Noun) pattern,
new POS patterns are included in the training/test
set. The training/test set consists of 8 MWEs
of the POS pattern (V erb,Determiner,Noun),
7 (V erb, Preposition,Noun) MWEs and and 9
(V erb,Noun, Preposition) MWEs. The list of
MWEs was selected randomly from the corre-
sponding POS pattern types. MWEs with a pos-
itive or negative percentage of under 5% in their
data set were discarded5. The MWEs, in their
canonical form, are:
Development set:
(V erb,Determiner,Noun) [17]: break the ice,
calls the shots, catch a cold, clear the air, face
the consequences, fits the bill, hit the road, make
a face, make a distinction, makes an impression,
raise the alarm, set an example, sound the alarm,
stay the course, take a chance, take the initiative,
tie the knot.
Training/test set:
(V erb,Determiner,Noun) [8]: changes the
subject, get a grip, get the picture, lead the way,
makes the grade, sets the scene, take a seat, take
the plunge;
(V erb, Preposition,Noun) [7]: fall into place,
goes to extremes, brought to justice, take to heart,
gets on nerves, keep up appearances, comes to
light;
(V erb,Noun, Preposition) [9]: take aim at,
make allowances for, takes advantage of, keep
hands off, lay claim to, take care of, make contact
with, gives rise to, wash hands of.

The sentences. As mentioned, the first step of
MWE identification is to identify if the sentence
contains a potential non-compositional use of the
expression. In order to test our method, which tar-
gets step (2), a set of such sentences (for each ex-
pression) was collected from the BNC corpus and

4Using 10-fold cross validation.
5Initially there were 20 MWEs in the development set and

30 (10 per group) in the training/test set.
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then labeled for use as training/test sentences6.
The collection method was intended to allow

a wide range of variations in expression use. In
practice, for each expression sentences contain-
ing all of the expression’s CF components, in any
of their inflections, were collected, but excluding
common auxiliary words. So for example, when
targeting the MWE ‘make an impression’ we al-
lowed inflections of ‘make’ and ‘impression’ and
did not require ‘an’, to allow for variations such
as ‘make no impression’ and ‘make some impres-
sion’. For some expressions, sentences were lim-
ited to those with a distance of up to 8 words be-
tween each expression component. Very long sen-
tences (above 80 words) were discarded. The final
set of sentences was then randomly selected.

Given this method, training/test sentences al-
low non-lexical variations: inflection, word or-
der, part-of-speech, syntactic structure and other
non-syntactic transformations. Lexical variations
which involve a change in one of the expression’s
components are not allowed, except for common
auxiliary words.

For the development set an average of 97 (40-
137) sentences were collected per MWE, giving a
total of 1663 sentences, with a micro average of
49% positive labels. For the training/test set there
were 139 (73-150) sentences per MWE on aver-
age, totaling 3350, with a 40% average positive
ratio.

The sentences were manually labeled as posi-
tive if they contained a non-compositional use of
the MWE and negative if they contained a compo-
sitional or non-expression usage. Judgment was
based on a single sentence, without wider context.

Baseline methods. Two baseline methods are
used to test the intuitive notion that simple rule-
based methods are sufficient for MWE identifica-
tion as well as for comparison with the supervised
learning methods.

The first method, CanonicalForm (CF), accepts
a sentence use as a non-compositional MWE use
if and only if the MWE is in canonical form (there
are no intervening words between the MWE com-
ponents, their order matches canonical-form order,
and there is an inflection in at most one component
word).

The second method, DistanceOrder (DO), ac-

6The PyLucene software package, http://pylucene. os-
afoundation. org/, was used for building an index to the BNC
and for searching.

CF DO R1 R2 S C
Verb-Det-Noun: All (17)

A 73.53 82.27 89.48 90.83 88.58 87.02
P 97.09 89.29 82.71 87.18 83.89 78.54
R 58.81 76.83 92.29 90.35 92.97 97.19
F 67.39 79.68 86.92 88.56 87.78 86.00

Verb-Det-Noun: Best (8)
A 84.51 91.56 95.33 95.48 92.52 93.27
P 95.90 85.70 92.50 95.63 91.12 87.63
R 73.50 89.80 97.25 95.25 95.83 98.50
F 78.63 86.29 94.70 95.36 93.44 92.25

Table 1: Development set: Average performance over all
MWEs and best 8. Supervised classifiers outperform base-
lines. A: Accuracy; P: Positive Precision; R: Positive Recall;
F: F-Score.

cepts a sentence use if and only if the number of
words between the leftmost and rightmost MWE
components is less than or equal to 2 (not count-
ing the middle MWE component), and if the order
matches the canonical form order.

5 Results

The baseline methods (CF and DO) and the super-
vised methods (R1,R2,S,C) were run on the devel-
opment and training/test sets. For the supervised
methods, for each MWE we used 10-fold cross-
validation7.

Tables 1 and 2 summarize the results for the de-
velopment and test sets, respectively. For the de-
velopment set, average results over all 17 MWEs
and over the best 8 MWEs (on R1), a group size
comparable to the test set, are shown. For the test
set, results over all 24 MWEs and the three MWE
types tested are shown.

The tables show average overall accuracy and
average precision, recall and F-score on posi-
tive instances, where the averages are taken over
the results of the individual MWEs (i.e., micro-
averaged).

Baselines. Baseline accuracy, (for DO) 82.27%
on the development set and 87.2% on the test set
(over all groups), is probably insufficient for many
NLP applications.

The baselines perform similarly in terms of av-
erage accuracy. CF does this with very high preci-
sion and low recall, while for DO recall improves
at the expense of precision. Looking at individ-
ual MWEs reveals that for expressions which al-
low more variation in terms of intervening words

7I.e., we ran 10 experiments where in each experiment we
divided the corresponding annotated sentence sets into 90%
training sentences and 10% test sentences, and the results re-
ported are the average of the 10 experiments.
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CF DO R1 R2 S C
All (24)

A 86.16 87.15 93.50 91.61 89.73 91.50
P 94.16 80.38 93.08 93.16 89.86 89.26
R 68.86 86.88 93.00 89.74 88.94 93.33
F 75.53 80.70 94.86 93.09 87.77 92.80

Verb-Det-Noun (8)
A 89.08 89.08 93.83 93.65 90.07 91.33
P 95.44 84.13 92.88 94.00 91.04 89.25
R 73.30 88.53 97.50 95.50 91.57 97.63
F 80.97 84.91 95.09 94.71 91.21 93.08

Verb-Prep-Noun (7)
A 85.53 91.15 93.64 92.62 88.75 92.10
P 97.13 81.40 96.81 97.20 92.48 94.33
R 64.36 92.67 84.73 82.79 82.71 85.00
F 74.08 86.03 97.81 96.87 83.13 96.65

Verb-Noun-Prep (9)
A 84.06 82.32 93.11 88.99 90.18 91.18
P 90.72 76.26 90.78 89.73 86.78 85.89
R 68.41 80.90 95.44 90.03 91.44 96.00
F 71.82 72.82 92.69 89.14 88.33 89.99

Table 2: Test set: Average performance over all MWEs and
by group. The best supervised classifier outperforms base-
lines in all groups. A: Accuracy; P: Precision; R: Recall; F:
F-Score.

and lexical change, DO outperforms CF. To name
a few, make an impression, raise the alarm, take
a chance and make allowances for. For example,
for take a chance intervening words are quite com-
mon, as in: ‘I’m taking a real chance on you.’, or
a change in determiner as in: ‘I preferred to take
my chances’. Indeed, CF showed poor precision
only for MWEs with a common literal usage. Two
such MWEs were present in the development set
(break the ice and tie the knot ) and two in the test
set (wash hands of and keep hands off).

Baselines versus supervised classifiers. As
shown in the tables, R1 outperforms the best base-
line in terms of accuracy in both test and devel-
opment. Moreover, the supervised classifiers are
more stable in their accuracy. For the develop-
ment set the standard deviation of accuracy scores
averages 22.58 for CF and DO, and 6.68 for R1,
R2, S, and C. For the test set the baselines av-
erage 9.07 (Verb-Det-Noun), 11.11 (Verb-Prep-
Noun) and 14.26 (Verb-Noun-Prep), and the su-
pervised methods average 4.97 (Verb-Det-Noun),
7.66 (Verb-Prep-Noun) and 7.97. This stability
means that the supervised classifiers are able to
perform well on MWEs with different behavior.
For example, R1 is able to perform well on ex-
pressions where order is strict, as DO does (e.g.,
make a face), while also performing well on those
where order varies (e.g., make a distinction).

Supervised classifiers. R1 and R2, based on
surface features, show similar accuracy values,
with R1 doing somewhat better in the Verb-Prep-
Noun and Verb-Noun-Prep groups. This is due
to the Lexical Values feature, which accounts for
a change in preposition. A change in preposi-
tion (as in ‘wash hands of some matter’ versus
‘wash hands in the sink’) is more significant than
a change in determiner in the Verb-Determiner-
Noun group. This improves precision on negative
instances, which are rejected more precisely based
on the preposition value. Nevertheless, the rela-
tively simple features in R2, essentially order and
distance, perform quite well.

The F-score result for R1, 94.86, is an improve-
ment over the F-score result of the supervised clas-
sifier used in (Sporleder and Li, 2009), 90.15.
Although the sentence data is different (our data
includes sentences with non-expression uses) the
number of sentences used is similar.

S, based on syntactic features, performs worse
than R1/2. It shows better accuracy than the base-
lines in all but the (Verb-Prep-Noun) group and
is also more stable. C, a combination of surface
and syntactic features, performs better than S and
slightly worse than R1/2.

Why do the syntactic features perform worse
than surface features? An analysis of the S clas-
sifier errors reveals two important causes. First,
there is substantial variation in the dependency
tree structures of the non-compositional uses of
the expressions as output by the parser. Thus,
the syntactic feature classifier was more difficult
to learn than the surface feature one, requiring a
larger training set. This is not surprising, given
that many MWEs exhibit an irregular syntactic be-
havior that might even seem strange at times. For
example, in the sentence fragment “and then he
came to.”, ‘came to’ is an MWE. A parser might
find it difficult to parse the sentence correctly, ex-
pecting a noun phrase to follow the ‘to’.

Second, as described above, the syntactic fea-
tures consist of general syntactic relations ex-
tracted from the parse tree and not type-specific
knowledge. As a result, literal or non-expression
uses of the MWE’s components, which have a
close syntactic relation in a given sentence, appear
as non-compositional uses of the expression to the
classifier.
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6 Discussion

This study has addressed MWE identification: de-
ciding if a potential use of an expression is a non-
compositional one. Despite its importance in ba-
sic NLP tasks, the problem has been largely over-
looked in NLP research, probably due to it pre-
sumed simplicity. However, as we have shown,
simple methods for MWE identification, such as
our baselines, do not perform consistently well
across MWEs. This study serves to highlight this
point and the need for more sophisticated methods
for MWE identification.

We have shown that using a supervised learning
method employing surface sentence features based
on canonical form, it is possible to improve perfor-
mance significantly. Unlike previous research, our
method is not tailored to specific MWE types, and
we did not ignore non-expression uses in our ex-
periments.

Future research should experiment with non-
verbal MWEs, since our features are not spe-
cific to verbal MWE types. Another direction is
a more sophisticated corpus sampling algorithm.
The current work ignored MWEs which had an un-
balanced training set (usually too few positives).
Methods for gathering enough positive instances
of such MWEs will be useful for testing the meth-
ods proposed here, as well as for general MWE
research.

References
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Abstract 

In this paper, we present an algorithm for ex-
tracting translations of any given multiword 
expression from parallel corpora. Given a 
multiword expression to be translated, the 
method involves extracting a short list of tar-
get candidate words from parallel corpora 
based on scores of normalized frequency, 
generating possible translations and filtering 
out common subsequences, and selecting the 
top-n possible translations using the Dice 
coefficient. Experiments show that our ap-
proach outperforms the word alignment-
based and other naive association-based me-
thods. We also demonstrate that adopting the 
extracted translations can significantly im-
prove the performance of the Moses machine 
translation system. 

1 Introduction 

Translation of multiword expressions (MWEs), 
such as compound words, phrases, collocations 
and idioms, is important for many NLP tasks, 
including the techniques are helpful for dictio-
nary compilation, cross language information 
retrieval, second language learning, and machine 
translation. (Smadja et al., 1996; Gao et al., 2002; 
Wu and Zhou, 2003). However, extracting exact 
translations of MWEs is still an open problem, 
possibly because the senses of many MWEs are 
not compositional (Yamamoto and Matsumoto, 
2000), i.e., their translations are not composi-
tions of the translations of individual words. For 
example, the Chinese idiom 坐視不理 should be 
translated as “turn a blind eye,” which has no 
direct relation with respect to the translation of 
each constituent (i.e., “to sit”, “to see” and “to 
ignore”) at the word level.  

Previous SMT systems (e.g., Brown et al., 
1993) used a word-based translation model 
which assumes that a sentence can be translated 
into other languages by translating each word 
into one or more words in the target language. 

Since many concepts are expressed by idiomatic 
multiword expressions instead of single words, 
and different languages may realize the same 
concept using different numbers of words (Ma et 
al., 2007; Wu, 1997), word alignment based me-
thods, which are highly dependent on the proba-
bility information at the lexical level, are not 
well suited for this type of translation.  

To address the above problem, some methods 
have been proposed for extending word align-
ments to phrase alignments. For example, Och et 
al. (1999) proposed the so-called grow-diag-
final heuristic method for extending word 
alignments to phrase alignments. The method is 
widely used and has achieved good results for 
phrase-based statistical machine translation. 
(Och et al., 1999; Koehn et al., 2003; Liang et al., 
2006). Instead of using heuristic rules, Ma et al. 
(2008) showed that syntactic information, e.g., 
phrase or dependency structures, is useful in ex-
tending the word-level alignment. However, the 
above methods still depend on word-based 
alignment models, so they are not well suited to 
extracting the translation equivalences of seman-
tically opaque MWEs due to the lack of word 
level relations between the translational corres-
pondences. Moreover, the aligned phrases are 
not precise enough to be used in many NLP ap-
plications like dictionary compilation, which 
require high quality translations. 

Association-based methods, e.g., the Dice 
coefficient, are widely used to extract transla-
tions of MWEs. (Kupiec, 1993; Smadja et al., 
1996; Kitamura and Matsumoto, 1996; Yama-
moto and Matsumoto, 2000; Melamed, 2001). 
The advantage of such methods is that associa-
tion relations are established at the phrase level 
instead of the lexical level, so they have the po-
tential to resolve the above-mentioned transla-
tion problem. However, when applying associa-
tion-based methods, we have to consider the fol-
lowing complications. The first complication, 
which we call the contextual effect, causes the 
extracted translation to contain noisy words. For 
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example, translations of the Chinese idiom 兩全
其美 (best of both worlds) extracted by a naive 
association-based method may contain noisy 
collocation words like difficult, try and cannot, 
which are not part of the translation of the idiom. 
They are actually translations of its collocation 
context, such as 難以(difficult), 嘗試(try), and 
不能(cannot). This problem arises because naive 
association methods do not deal with the effect 
of strongly collocated contexts carefully. If we 
can incorporate lexical-level information to dis-
count the noisy collocation words, the contextual 
effect could be resolved. 

 
English (y) fy fx,y Dice(x,y)
quote out of context 22 19 0.56 
take out of context 17 11 0.35 
interpret out of context 2 2 0.08 
out of context 53 32 0.65 

Table 1. The Dice coefficient tends to select a com-
mon subsequence of translations. (The frequency of
斷章取義 ,fx, is 46.) 

 
The second complication, which we call the 

common subsequence problem, is that the Dice 
coefficient tends to select the common subse-
quences of a set of similar translations instead of 
the full translations. Consider the translations of 
斷章取義 (quote out of context) shown in the 
first three rows of Table 1. The Dice coefficient 
of each translation is smaller than that of the 
common subsequence “out of context” in the last 
row. If we can tell common subsequence apart 
from correct translations, the common subse-
quence problem could be resolved. 

In this paper, we propose an improved preci-
sion method for extracting MWE translations 
from parallel corpora. Our method is similar to 
that of Smadja et al. (1996), except that we in-
corporate lexical-level information into the asso-
ciation-based method. The algorithm works ef-
fectively for various types of MWEs, such as 
phrases, single words, rigid word sequences (i.e., 
no gaps) and gapped word sequences. Our expe-
riment results show that the proposed translation 
extraction method outperforms word alignment-
based methods and association-based methods. 
We also demonstrate that precise translations 
derived by our method significantly improve the 
performance of the Moses machine translation 
system. 

The remainder of this paper is organized as 
follows. Section 2 describes the methodology for   
extracting translation equivalences of MWEs. 

Section 3 describes the experiment and presents 
the results. In Section 4, we consider the appli-
cation of our results to machine translation. Sec-
tion 5 contains some concluding remarks. 

2 Extracting Translation Equivalences   

Our MWE translation extraction method is simi-
lar to the two-phase approach proposed by 
Smadja et al. (1996). The two phases can be 
briefly described as follows:  

Phase 1: Extract candidate words correlated to 
the given MWE from parallel text. 

Phase 2:  
1. Generate possible translations for the 

MWE by combining the candidate words. 
2. Select possible translations by the Dice 

coefficient. 

We propose an association function, called the 
normalized correlation frequency, to extract 
candidate words in the phase 1. This method 
incorporates lexical-level information with asso-
ciation measure to overcome the contextual ef-
fect. In phase 2, we also propose a weighted fre-
quency function to filter out false common sub-
sequences from possible translations. The filter-
ing step is applied before the translation select-
ing step of phase 2.   

Before describing our extraction method, we 
define the following important terms used 
throughout the paper. 
Focused corpus (FC): This is the corpus 
created for each targeted MWE. It is a subset of 
the original parallel corpora, and is comprised of 
the selected aligned sentence pairs that contain 
the source MWE and its translations. 

Candidate word list (CW): A list of extracted 
candidate words for the translations of the 
source MWE. 

2.1 Selecting Candidate Words 
For a source MWE, we try to extract from the 
FC a set of k candidate words CW that are high-
ly correlated to the source MWE. We then as-
sume that the target translation is a combination 
of some words in CW. As noted by Smadja et al. 
(1996), this two-step approach drastically reduc-
es the search space. 

However, translations of collocated context 
words in the source word sequence create noisy 
candidate words, which might cause incorrect 
extraction of target translations by naive statis-
tical correlation measures, such as the Dice coef-
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ficient used by Smadja et al. (1996). The need to 
avoid this context effect motivates us to propose 
a candidate word selection method that uses the 
normalized correlation frequency as an associa-
tion measure. 

The rationale behind the proposed method is 
as follows. When counting the word frequency, 
each word in the target corpus normally contri-
butes a frequency count of one. However, we are 
only interested in the word counts correlated to a 
MWE. Therefore, intuitively, we define the 
normalized count of a target word e as the trans-
lation probability of e given the MWE.  

We explain the concept of normalizing the 
correlation count in Section 2.1.1 and the com-
putation of the normalized correlation frequency 
in Section 2.1.2. 

2.1.1 Normalizing Correlation Count 
We propose an association measure called the 
normalized correlation frequency, which ranks 
the association strength of target words with the 
source MWE. For ease of explanation, we use 
the following notations: let f=f1,f2,…,fm and 
e=e1,e2,…,en be a pair of parallel Chinese and 
English sentences; and let w=t1,t2,…,tr be the 
Chinese source MWE. Hence, w is a subse-
quence of f.  

When counting the word frequency, each 
word in the target corpus normally contributes a 
frequency count of one. However, since we are 
interested in the word counts that correlate to w, 
we adopt the concept of the translation model 
proposed by Brown et al (1993). Each word e in 
a sentence e might be generated by some words, 
denoted as r, in the source sentence f. If r is 
non-empty the relation between r and w should 
fit one of the following cases: 

 
1) All words in r belong to w, i.e., wr ⊆ , so 

we say that e is only generated by w. 
2) No words in r belong to w, i.e., wfr −⊆ , 

so we say that e is only generated by context 
words.  

3) Some words in r belong to w, while others 
are context words. 
 

Intuitively, In Cases 1 and 2, the correlation 
count of an instance e should be 1 and 0 respec-
tively. In Case 3, the normalized count of e is 
the expected frequency generated by w divided 
by the expected frequency generated by f. With 
that in mind, we define the weighted correlation 
count, wcc, as follows:  
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where Δ is a very small smoothing factor in case 
e is not generated by any word in f. The proba-
bility p(e | f) is the word translation probability 
trained by IBM Model 1 on the whole parallel 
corpus. 

The rationale behind the weighted correlation 
count, wcc, is that if e is part of the translation of 
w, then its association with w should be stronger 
than other words in the context. Hence its wcc 
should be closer to 1. Otherwise, the association 
is weaker and the wcc should be closer to 0. 

2.1.2 Normalized Correlation 
Once the weighted correlation counts wcc is 
computed for each word in FC, we compute the 
normalized correlation frequency for each word 
e as the total sum of the  of all w 
in bilingual sentences (e, f)  in FC. The norma-
lized correlation frequency (ncf) is defined as 
follows: 

),,;( wfeewcc
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We choose the top-n English words ranked by 

ncf as our candidate words and filter out those 
whose ncf is less than a pre-defined threshold. 
Table 2 shows the candidate words for the Chi-
nese term 斷章取義 (quote/take/interpret out of 
context) sorted by their ncf values. To illustrate 
the effectiveness ncf, we also display candidate 
words of the term with their Dice values in 
Tables 3. As shown in the tables, noise words 
such as justify, meaning and unfair are ranked 
lower using ncf than using Dice, while correct 
candidates, such as out, take and remark are 
ranked higher.  We present more experimental 
results in Section 3. 
 

2.2 Generation and Ranking of Candi-
date Translations 

After determining the candidate words, candi-
date translations of w can be generated by mark-
ing the candidate words in each sentence of FC. 
The word sequences marked in each sentence 
are deemed possible translations. At the same 
time, the weakly associated function words,  
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Candidate words e freq ncf(e,w) 
context 54 31.55 

out 58 24.58 
quote 26 5.84 

take 23 4.81 
remark 8 1.84 

interpret 3 1.38 
piecemeal 1 0.98 
deliberate 3 0.98 

Table 2. Candidate words for the Chinese term 
斷章取義 sorted by their global normalized correla-
tion frequencies. 
 
Candidate words e freq dice(e,w) 

context 54 0.0399 
quote 26 0.0159 

deliberate 3 0.0063 
justify 3 0.0034 

interpretation 7 0.0032 
meaning 3 0.0029 

cite 3 0.0025 
unfair 4 0.0023 

Table 3. Candidate words for the Chinese term 斷章
取義  sorted by their Dice coefficient values. 
 
which we fail to select in the candidate word 
selection stage, should be recovered. The rule is 
quite simple: if a function word is adjacent to 
any candidate word, it should be recovered. For 
example, in the following sentence, the function 
word of would be recovered and added to the 
marked sequence: 

 
“The financial secretary has 
been quoted out of context. 
財政司 司長 之 談話 被 斷章取義.”  
 

 The marked words are shown in boldface.  

2.2.1 Generating Possible Translations 
Although we have selected a reliable candidate 
word list, it may still contain some noisy words 
due to the MWE’s collocation context. Consider 
the following example: 

 
...as quoted in the audit 
report, if taken out of con-
text...  
 

In this instance, quoted is a false positive; there-
fore, the marked word sequence m “quoted tak-
en out of context” is not the correct translation. 
To avoid such false positives, we include m and 
all its subsequences as possible translations.  

quoted taken out of context 
quoted taken out of 
quoted taken out context 
quoted taken of context 
quoted out of context 
taken out of context 
… 
quoted out 
taken out 
quoted 
taken 
out 
context

Table 4. Example subsequences generated of w and 
add them to the candidate translation list.  
 
Table 4 shows the subsequences of m in the 
above example. The generation process is used 
to increase the coverage of correct translations in 
the candidate list; otherwise, many correct trans-
lations will be lost. However, the process may 
also trigger the side effect of the common sub-
sequence problem described in Section 1.  Since 
all candidates compete for the best translations 
by comparing their association strength with w, 
the common subsequences will have an advan-
tage. 

 

2.2.2 Filtering Common Subsequences 
To resolve the common subsequence effect prob-
lem, we evaluate each candidate translation, in-
cluding its subsequences, by a concept similar to 
the normalized correlation frequency. As men-
tioned in Section 1, the Dice coefficient tends to 
select the common subsequences of some candi-
dates because they have higher frequencies. To 
avoid this problem, we use the normalized corre-
lation frequency to filter out false common sub-
sequences from the candidate translation list. 
Here, we also use the weighted correlation count 
wcc to weight the frequency count of a candidate 
translation. Suppose we have a marked sequence 
in a sentence, m, whose subsequences are gener-
ated in the way described in the previous section. 
If the weighted count of m is assigned the score 
1, the weighted count (wc) of a subsequence t is 
then defined as follows: 
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The underlying concept of wc is that the original 
marked sequence m is supposed to be the most 

481



likely translation of w and the weighted count is 
set to 1. Then, if a subsequence t is generated by 
removing a word e from m, the weighted count 
of the subsequence is reduced by multiplying the 
complement probability of e generated by w. 
Note that the weighted correlation count wcc is 
the probability of the word e generated by w. 

After all  in each sentence of 
the FC have been computed, the weighted fre-
quency for a sequence t can be determined by 
summing the weighted frequencies over FC as 
follows:  

),,,;( wmfetwc
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We compute the wf for each candidate transla-
tion and then sort the candidate translations by 
their wf values. 

Next, we filter out common subsequences 
based on the following rule: for a sequence t, if 
there is a super-sequence t' on the sorted candi-
date translation list and the wf value of t is less 
than that of t', then t is assumed be a common 
subsequence of real translations and removed 
from the list. 
 
candidate translation list freq wf 
quote out of context 19 17.55 
of context 35 15.45 
out of context 32 14.82 
quote of context 19 13.32 
out 35 11.92 
quote 23 11.63 
quote out 19 9.42 

Table 5. Part of the candidate translation list for the 
Chinese idiom, 斷章取義, sorted by the wf values. 

 
Table 5 shows an example of the rule’s appli-

cation. The candidate translation list is sorted by 
the translations’ wf values. Then, candidates 2-7 
are removed because they are subsequences of 
the first candidate and their wf values are smaller 
than that of the first candidate. 

2.3 Selection of Candidate Translations 
Having removed the common subsequences of 
real translations from the candidate translation 
list of w, we can select the best translations by 
comparing their association strength with w for 
the remaining candidates.  The Dice coefficient 
is a good measure for assessing the association 
strength and selecting translations from the can-

didate list. For a candidate translation t, the Dice 
coefficient is defined as follows: 
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Where p(t,w), p(t), p(w) are probabilities of  
(t,w), t, w derived from the training corpus.  

After obtaining the Dice coefficients of the 
candidate translations, we select the top-n candi-
date translations as possible translations of w. 

 

3 Experiments 

In our experiments, we use the Hong Kong Han-
sard and the Hong Kong News parallel corpora 
as training data. The training data was prepro-
cessed by Chinese word segmentation to identify 
words and parsed by Chinese parser to extract 
MWEs. To evaluate the proposed approach, we 
randomly extract 309 Chinese MWEs from 
training data, including dependent word pairs 
and rigid idioms. We then randomly select 103 
of those MWEs as the development set and use 
the other 206 as the test set. The reference trans-
lations of each Chinese MWE are manually ex-
tracted from the parallel corpora. 

 

3.1 Evaluation of Word Candidates 
To evaluate the method for selecting candidate 
words, we use the coverage rate, which is de-
fined as follows: 
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where n is the number of MWEs in the test set, 
Aw denotes the word set of the reference transla-
tions of w, and Cw denotes a candidate word list 
extracted by the system.  

Table 6 shows the coverage of our method, 
NCF, compared with the coverage of the IBM 
model 1 and the association-based methods MI, 
Chi-square, and Dice. As we can see, the top-10 
candidate words of NCF cover almost 90% of 
the words in the reference translations. Whereas, 
the coverage of the association-based methods 
and IBM model 1 is much lower than 90%. The 
result implies that the candidate extraction me-
thod can extract a more precise candidate set 
than other methods. 
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Method Top10 Top20 Top30 
MI 0.514 0.684 0.760 
Chi-square 0.638 0.765 0.828 
Dice 0.572 0.735 0.803 
IBM 1 0.822 0.900 0.948
NCF 0.899 0.962 0.973 

Table 6. The coverage rates of the candidate words 
extracted by the compared methods 
 

Figure 1 shows the curve diagram of the cov-
erage rate of each method. As the figure shows, 
when the size of the candidate list is increased, 
the coverage rate of using NCF rises rapidly as n 
increases but levels off after n=20. Whereas, the 
coverage rates of other measures grow much 
slowly.  

 

 
Figure 1. The curve diagram of the coverage of 
the candidate word list compiled by each method. 

 
From the evaluation of candidate word selec-

tion, we find that the ncf method, which incorpo-
rates lexical-level information into association-
based measure, can effectively filter out noisy 
words and generates a highly reliable list of can-
didate words for a given MWE. 

 

3.2 Evaluating Extracted Translations 
To evaluate the quality of MWE translations 
extracted automatically, we use the following 
three criteria: 

 
1) Translation accuracy: 

This criterion is used to evaluate the top-n 
translations of the system. It treats each 
translation produced as a string and com-
pares the whole string with the given ref-
erence translations. If any one of the top-n 
hypothesis translations is included in the 
reference translations, it is deemed correct.   

2) WER (word error rate): 
This criterion compares the top-1 hypo-
thesis translation with the reference trans-
lations by computing the edit distance (i.e., 
the minimum number of substitutions, in-
sertions, and deletions) between the hypo-
thesis translation and the given reference 
translations. 

3) PER (position-independent word error 
rate): 
This criterion ignores the word order and 
computes the edit distance between the 
top-1 hypothesis translation and the given 
reference translations. 
 

We also use the MT task to evaluated our me-
thod with other systems. For that, we use the 
GIZA++ toolkit (Och et al., 2000 ) to align the 
Hong Kong Hansard and Hong Kong News pa-
rallel corpora. Then, we extract the translations 
of the given source sequences from the aligned 
corpus as the baseline. We use the following two 
methods to extract translations from the aligned 
results. 

 
1) Uni-directional alignment  

We mark all English words that were 
linked to any constituent of w in the pa-
rallel Chinese-English aligned corpora. 
Then, we extract the marked sequences 
from the corpora and compute the fre-
quency of each sequence. The top-n high 
frequency sequences are returned as the 
possible translations of w. 

2) Bi-directional alignments 
We use the grow-diag-final heuristic (Och 
et al., 1999) to combine the Chinese-
English and English-Chinese alignments, 
and then extract the top-n high frequency 
sequences as described in method 1. 

 
To determine the effect of the common subse-

quence filtering method, FCS, we divide the 
evaluation of our system into two phases: 

 
1) NCF+Dice: 

This system uses the normalized correla-
tion frequency, NCF, to select candidate 
words as described in Section 2.1. It then 
extracts candidate translations (described 
in Section 2.2), but FCS is not used. 

2) NCF+FCS+Dice: 
This is similar to system 1, but it uses 
FCS to filter out common subsequences 
(described in subsection 2.2.2). 
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Method WER(%) PER(%) 
Uni-directional 4.84 4.02 
Bi-directional 5.84 5.12 
NCF+Dice 3.55 3.24 
NCF+FCS+Dice 2.45 2.23 

Table 7. Translation error rates of the systems. 
 

 
Method Top1 Top2 Top3 
Uni-directional 67.5 79.6 83.0 
Bi-directional 65.5 77.7 81.1 
NCF+Dice 72.8 85.9 88.3 
NCF+FCS+Dice 78.2 89.3 91.7 

Table 8. Translation accuracy rates of the systems. 
(%) 

 
Table 7 shows the word error rates for the 

above systems. As shown in the first and second 
rows, the translations extracted from uni-
directional alignments are better than those ex-
tracted from bi-directional alignments. This 
means that the grow-diag-final heuristic reduces 
the accuracy rate when extracting MWE transla-
tions.  

The results in the third row show that the 
NCF+Dice system outperforms the methods 
based on GIZA++. In other words, the NCF me-
thod can effectively resolve the difficulties of 
extracting MWE translations discussed in Sec-
tion 1. 

In addition, the fourth row shows that the 
NCF+FCS+Dice system also outperforms the 
NCF+Dice system.  Thus, the FCS method can 
resolve the common subsequence problem effec-
tively. 

Table 8 shows the translation accuracy rates 
of each system. The NCF+FCS+Dice system 
achieves the best translation accuracy. Moreover, 
it significantly improves the performance of 
finding MWE translation equivalences. 

 

4 Applying  MWE Translations to MT 

To demonstrate the usefulness of extracted 
MWE translations to existing statistical machine 
translation systems, we use the XML markup 
scheme provided by the Moses decoder, which 
allows the specification of translations for parts 
of a sentence. The procedure for this experiment 
consists of three steps: (1) the extracted MWE 
translations are added to the test set with the 
XML markup scheme, (2) after which the data is 
input to the Moses decoder to complete the 
translation task, (3) the results are evaluated 

 Moses  MWE +Moses
NIST06-sub 23.12 23.49 
NIST06 21.57 21.79 

 Table 9. BLEU scores of the translation results. 
 
using the BLEU metric (Papineni et al., 2002). 

4.1 Experimental Settings 
To train a translation model for Moses, we use 
the Hong Kong Hansard and the Hong Kong 
News parallel corpora as training data 
(2,222,570 sentence pairs). We also use the 
same parallel corpora to extract translations of 
MWEs. The NIST 2008 evaluation data (1,357 
sentences, 4 references) is used as development 
set and NIST 2006 evaluation data (1,664 sen-
tences, 4 references) is used as test set. 

4.2 Selection of MWEs 
Due to the limitation of the XML markup 
scheme, we only consider two types of MWEs: 
continuous bigrams and idioms. Since the goal 
of this experiment is not focus on extraction of 
MWEs, simple methods are applied to extract 
MWEs from the training data: (1) we collect all 
continuous bigrams from Chinese sentences in 
the training data and then simply filter out the 
bigrams by mutual information (MI) with a thre-
shold1, (2) we also extract all idioms from Chi-
nese sentences of the training data by collecting 
all 4-syllables words from the training data and 
filtering out obvious non-idioms, such as deter-
minative-measure words and temporal words by 
their part-of-speeches, because most Chinese 
idioms are 4-syllables words.  
In total, 33,767 Chinese bigram types and 
20,997 Chinese idiom types were extracted from 
training data; and the top-5 translations of each 
MWE were extracted by the method described in 
Section 2. Meanwhile 1,171 Chinese MWEs 
were added to the translations in the test set. The 
Chinese words covered by the MWEs in test 
data set were 2,081 (5.3%). 

 

4.3 Extra Information 
When adding the translations to the test data, 
two extra types of information are required by 
the Moses decoder. The first type comprises the 
function words between the translation and its 
context. For example, if 經貿  合作/economic 
cooperation is added to the test data, possible  

                                                 
1 We set the threshold at 5. 
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source sentence ... 進入  <MWE>五光十色</MWE>  的社會 ... 

Moses ... entered blinded by the colourful community ... 
MWE+Moses ... entered the colourful community ... 
reference ... entered the colorful society ... 
source sentence ... 不希望看到  <MWE>進一步  升級</MWE>  危機 ... 

Moses ... do not want to see an escalation of crisis ... 
MWE+Moses ... do not want to see a further escalation of crisis ... 
reference ... don 't want to see the further escalation of the crisis ... 
source sentence ... 廣大 人民 的 <MWE>根本 利益</MWE> ... 
Moses ... the people 's interests ... 
MWE+Moses ... the people of the fundamental interests ... 
reference ... the fundamental interests of the masses ... 

Table 10. Examples of improved translation quality with the MWE translation equivalences. 
 
function words, such as ‘in’ or ‘with’, should be 
provided for the translation. Because the Moses 
decoder does not generate function words that 
are context dependent, it treats a function word 
as a part of the translation. Therefore, we collect 
possible function words for each translation 
from the corpora when the conditional probabili-
ty is larger than a threshold2. 

The second type of information is the phrase 
translation probability and lexical weighting. 
Computing the phrase translation probability is 
trivial in the training corpora, but lexical weight-
ing (Koehn et al., 2003) needs lexical-level 
alignment. For convenience, we assume that 
each word in an MWE links to each word in the 
translations. Under this assumption, the lexical 
weighting is simplified as follows:   
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Then, it is trivial to compute the simplified lexi-
cal weighting of each MWE correspondence 
when the word translation probability table is 
provided. Here, we use the IBM model 1 to learn 
the table from the training data. 

4.4 Evaluation Results 
We trained a model using Moses toolkit (Koehn 
et al., 2007) on the training data as our baseline 
system.  

Table 9 shows the influence of adding the 
MWE translations to the test data. In the first 

row (NIST06-sub), we only consider sentences 
containing MWE translations for BLEU score 
evaluation (726 sentences). In the second row, 
we took the whole NIST 2006 evaluation set 
into consideration (1,664 sentences). The Chi-
nese words covered by the MWEs in NIST06-
sub and NIST06 were 9.9% and 5.3% respec-
tively. 

Adding MWE translations to the test data sta-
tistically significantly lead to better results than 
those of the baseline. Significance was tested 
using a paired bootstrap (Koehn, 2004) with 
1000 samples (p<0.02). Although the improve-
ment in BLEU score seems small, it is actually 
reasonably good given that the MWEs account 
for only 5% of the NIST06 test set. Examples of 
improved translations are shown in Table 10. 
There is still room for improvement of the pro-
posed MWE extraction method in order to pro-
vide more MWE translation pairs or design a 
feasible way to incorporate discontinuous bilin-
gual MWEs to the decoder. 

5 Conclusions and Future Work 

We have proposed a high precision algorithm for 
extracting translations of multiword expressions 
from parallel corpora. The algorithm can be used 
to translate any language pair and any type of 
word sequence, including rigid sequences and 
discontinuous sequences. Our evaluation results 
show that the algorithm can cope with the diffi-
culties caused by indirect association and the 
common subsequence effects, leading to signifi-
cant improvement over the word alignment-
based extraction methods used by the state of the 
art systems and other association-based extrac-
tion methods. We also demonstrate that ex-
tracted translations significantly improve the                                                  

2 We set the threshold at 0.1. 
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performance of the Moses machine translation 
system. 

In future work, it would be interesting to de-
velop a machine translation model that can be 
integrated with the translation acquisition algo-
rithm in a more effective way. Using the norma-
lized-frequency score to help phrase alignment 
tasks, as the grow-diag-final heuristic, would 
also be interesting direction to explore. 
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Abstract 

Statistical bilingual word alignment has been 
well studied in the context of machine trans-
lation. This paper adapts the bilingual word 
alignment algorithm to monolingual scenario 
to extract collocations from monolingual cor-
pus. The monolingual corpus is first repli-
cated to generate a parallel corpus, where 
each sentence pair consists of two identical 
sentences in the same language. Then the 
monolingual word alignment algorithm is 
employed to align the potentially collocated 
words in the monolingual sentences. Finally 
the aligned word pairs are ranked according 
to refined alignment probabilities and those 
with higher scores are extracted as colloca-
tions. We conducted experiments using Chi-
nese and English corpora individually. Com-
pared with previous approaches, which use 
association measures to extract collocations 
from the co-occurring word pairs within a 
given window, our method achieves higher 
precision and recall. According to human 
evaluation in terms of precision, our method 
achieves absolute improvements of 27.9% on 
the Chinese corpus and 23.6% on the English 
corpus, respectively. Especially, we can ex-
tract collocations with longer spans, achiev-
ing a high precision of 69% on the long-span 
(>6) Chinese collocations. 

1 Introduction 

Collocation is generally defined as a group of 
words that occur together more often than by 
chance (McKeown and Radev, 2000). In this pa-
per, a collocation is composed of two words oc-
curring as either a consecutive word sequence or 
an interrupted word sequence in sentences, such 
as "by accident" or "take … advice". The collo-
cations in this paper include phrasal verbs (e.g. 
"put on"), proper nouns (e.g. "New York"), idi-

oms (e.g. "dry run"), compound nouns (e.g. "ice 
cream"), correlative conjunctions (e.g. "either … 
or"), and the other commonly used combinations 
in following types: verb+noun, adjective+noun, 
adverb+verb, adverb+adjective and adjec-
tive+preposition (e.g. "break rules", "strong tea", 
"softly whisper", "fully aware", and "fond of"). 

Many studies on collocation extraction are 
carried out based on co-occurring frequencies of 
the word pairs in texts (Choueka et al., 1983; 
Church and Hanks, 1990; Smadja, 1993; Dun-
ning, 1993; Pearce, 2002; Evert, 2004). These 
approaches use association measures to discover 
collocations from the word pairs in a given win-
dow. To avoid explosion, these approaches gen-
erally limit the window size to a small number. 
As a result, long-span collocations can not be 
extracted1. In addition, since the word pairs in 
the given window are regarded as potential col-
locations, lots of false collocations exist. Al-
though these approaches used different associa-
tion measures to filter those false collocations, 
the precision of the extracted collocations is not 
high. The above problems could be partially 
solved by introducing more resources into collo-
cation extraction, such as chunker (Wermter and 
Hahn, 2004), parser (Lin, 1998; Seretan and We-
hrli, 2006) and WordNet (Pearce, 2001). 

This paper proposes a novel monolingual 
word alignment (MWA) method to extract collo-
cation of higher quality and with longer spans 
only from monolingual corpus, without using 
any additional resources. The difference between 
MWA and bilingual word alignment (Brown et 
al., 1993) is that the MWA method works on 
monolingual parallel corpus instead of bilingual 
corpus used by bilingual word alignment. The 
                                                 
1  Here, "span of collocation" means the distance of two 
words in a collocation. For example, if the span of the col-
location (w1, w2) is 6, it means there are 5 words interrupt-
ing between w1 and w2 in a sentence. 
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monolingual corpus is replicated to generate a 
parallel corpus, where each sentence pair con-
sists of two identical sentences in the same lan-
guage, instead of a sentence in one language and 
its translation in another language. We adapt the 
bilingual word alignment algorithm to the mono-
lingual scenario to align the potentially collo-
cated word pairs in the monolingual sentences, 
with the constraint that a word is not allowed to 
be aligned with itself in a sentence. In addition, 
we propose a ranking method to finally extract 
the collocations from the aligned word pairs. 
This method assigns scores to the aligned word 
pairs by using alignment probabilities multiplied 
by a factor derived from the exponential function 
on the frequencies of the aligned word pairs. The 
pairs with higher scores are selected as colloca-
tions. 

The main contribution of this paper is that the 
well studied bilingual statistical word alignment 
method is successfully adapted to monolingual 
scenario for collocation extraction. Compared 
with the previous approaches, which use associa-
tion measures to extract collocations, our method 
achieves much higher precision and slightly 
higher recall. The MWA method has the follow-
ing three advantages. First, it explicitly models 
the co-occurring frequencies and position infor-
mation of word pairs, which are integrated into a 
model to search for the potentially collocated 
word pairs in a sentence. Second, a new feature, 
fertility, is employed to model the number of 
words that a word can collocate with in a sen-
tence. Finally, our method can obtain the long-
span collocations. Human evaluations on the ex-
tracted Chinese collocations show that 69% of 
the long-span (>6) collocations are correct. Al-
though the previous methods could also extract 
long-span collocations by setting the larger win-
dow size, the precision is very low. 

In the remainder of this paper, Section 2 de-
scribes the MWA model for collocation extrac-
tion. Section 3 describes the initial experimental 
results. In Section 4, we propose a method to 
improve the MWA models. Further experiments 
are shown in Sections 5 and 6, followed by a dis-
cussion in Section 7. Finally, the conclusions are 
presented in Section 8. 

2 Collocation Extraction With Mono-
lingual Word Alignment Method 

2.1 Monolingual Word Alignment 

Given a bilingual sentence pair, a source lan-
guage word can be aligned with its correspond- 

 

Figure 1. Bilingual word alignment 

ing target language word. Figure 1 shows an ex-
ample of Chinese-to-English word alignment. 

In Figure 1, a word in one language is aligned 
with its counterpart in the other language. For 
examples, the Chinese word "团队/tuan-dui" is 
aligned with its English translation "team", while 
the Chinese word "负责人/fu-ze-ren" is aligned 
with its English translation "leader". 

In the Chinese sentence in Figure 1, there are 
some Chinese collocations, such as (团队/tuan-
dui, 负责人/fu-ze-ren). There are also some Eng-
lish collocations in the English sentence, such as 
(team, leader). We separately illustrate the collo-
cations in the Chinese sentence and the English 
sentence in Figure 2, where the collocated words 
are aligned with each other. 

 
(a) Collocations in the Chinese sentence 

 
(b) Collocations in the English sentence 

Figure 2. Word alignments of collocations in 
sentence 

Comparing the alignments in Figures 1 and 2, 
we can see that the task of monolingual colloca-
tions construction is similar to that of bilingual 
word alignment. In a bilingual sentence pair, a 
source word is aligned with its corresponding 
target word, while in a monolingual sentence, a 
word is aligned with its collocates. Therefore, it 
is reasonable to regard collocation construction 
as a task of aligning the collocated words in 
monolingual sentences. 

团队 负责人 在 项目  进行  中  起 关键  作用   。 
tuan-dui fu-ze-ren zai xiang-mu jin-xing zhong qi guan-jian zuo-yong . 

The team leader plays a key role in the project undertaking . 

The team leader plays a key role in the project undertaking.

The team leader plays a key role in the project undertaking. 

团队 负责人 在 项目  进行  中  起 关键  作用   。 
tuan-dui fu-ze-ren zai xiang-mu jin-xing zhong qi guan-jian zuo-yong .

团队  负责人 在 项目  进行  中  起 关键  作用   。
tuan-dui fu-ze-ren zai xiang-mu jin-xing zhong qi guan-jian zuo-yong . 
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Statistical bilingual word alignment method, 
which has been well studied in the context of 
machine translation, can extract the aligned bi-
lingual word pairs from a bilingual corpus. This 
paper adapts the bilingual word alignment algo-
rithm to monolingual scenario to align the collo-
cated words in a monolingual corpus. 

Given a sentence with l words },...,{ 1 lwwS = , 
the word alignments ]},1[|),{( liaiA i ∈=  can be 
obtained by maximizing the word alignment 
probability of the sentence, according to Eq. (1). 

)|(maxarg SApA
A

′=
′∀

                    (1) 

Where Aai i ∈),(  means that the word iw  is 
aligned with the word 

iaw . 
In a monolingual sentence, a word never col-

locates with itself. Thus the alignment set is de-
noted as }&],1[|),{( ialiaiA ii ≠∈= . 

We adapt the bilingual word alignment model, 
IBM Model 3 (Brown et al., 1993), to monolin-
gual word alignment. The probability of the 
alignment sequence is calculated using Eq. (2). 
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Where iφ  denotes the number of words that are 
aligned with iw . Three kinds of probabilities are 
involved: 

- Word collocation probability )|(
jaj wwt , 

which describes the possibility of wj collo-
cating with 

jaw ;  

- Position collocation probability d(j, aj, l), 
which describes the probability of a word 
in position aj collocating with another 
word in position j; 

- Fertility probability )|( ii wn φ , which de-
scribes the probability of the number of 
words that a word wi can collocate with 
(refer to subsection 7.1 for further discus-
sion). 

Figure 3 shows an example of word alignment 
on the English sentence in Figure 2 (b) with the 
MWA method. In the sentence, the 7th word 
"role" collocates with both the 4th word "play" 
and the 6th word "key". Thus, )|( 74 wwt  and 

)|( 76 wwt  describe the probabilities that the 
word "role" collocates with "play" and "key",  

 
Figure 3. Results of MWA method 

respectively. )12,7|4(d  and )12,7|6(d  describe 
the probabilities that the word in position 7 col-
locates with the words in position 4 and 6 in a 
sentence with 12 words. For the word "role", 7φ  
is 2, which indicates that the word "role" collo-
cates with two words in the sentence. 

To train the MWA model, we implement a 
MWA tool for collocation extraction, which uses 
similar training methods for bilingual word 
alignment, except that a word can not be aligned 
to itself. 

2.2 Collocation Extraction 

Given a monolingual corpus, we use the trained 
MWA model to align the collocated words in 
each sentence. As a result, we can generate a set 
of aligned word pairs on the corpus. According 
to the alignment results, we calculate the fre-
quency for two words aligned in the corpus, de-
noted as ),( ji wwfreq . In our method, we filtered 
those aligned word pairs whose frequencies are 
lower than 5. Based on the alignment frequency, 
we estimate the alignment probabilities for each 
aligned word pair as shown in Eq. (3) and (4). 
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With alignment probabilities, we assign scores 
to the aligned word pairs and those with higher 
scores are selected as collocations, which are 
estimated as shown in Eq. (5). 

2
)|()|(

),( ijji
ji

wwpwwp
wwp

+
=      (5) 

3 Initial Experiments 

In this experiment, we used the method as de-
scribed in Section 2 for collocation extraction. 
Since our method does not use any linguistic in-
formation, we compared our method with the  

The team leader plays a key role in the project undertaking . 
(1)        (2)           (3)           (4)      (5)   (6)      (7)      (8)    (9)        (10)               (11)               (12) 

The team leader plays a key role in the project undertaking .
(1)        (2)           (3)           (4)      (5)   (6)      (7)      (8)    (9)        (10)               (11)              (12) 
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Figure 4. Precision of collocations 

baseline methods without using linguistic knowl-
edge. These baseline methods take all co-
occurring word pairs within a given window as 
collocation candidates, and then use association 
measures to rank the candidates. Those candi-
dates with higher association scores are extracted 
as collocations. In this paper, the window size is 
set to [-6, +6]. 

3.1 Data 

The experiments were carried out on a Chinese 
corpus, which consists of one year (2004) of the 
Xinhua news corpus from LDC 2 , containing 
about 28 millions of Chinese words. Since punc-
tuations are rarely used to construct collocations, 
they were removed from the corpora. To auto-
matically estimate the precision of extracted col-
locations on the Chinese corpus, we built a gold 
set by collecting Chinese collocations from 
handcrafted collocation dictionaries, containing 
56,888 collocations. 

3.2 Results 

The precision is automatically calculated against 
the gold set according to Eq. (6). 

)(#
)(#
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goldTop

N

N

C
CC

precision
−

−=
I

           (6) 

Where CTop-N and Cgold denote the top colloca-
tions in the N-best list and the collocations in the 
gold set, respectively. 

We compared our method with several base-
line methods using different association meas-
ures3: co-occurring frequency, log-likelihood 
                                                 
2 Available at: http://www.ldc.upenn.edu/Catalog/Catalog 
Entry.jsp?catalogId=LDC2007T03 
3 The definitions of these measures can be found in Man-
ning and Schütze (1999). 
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Figure 5. Frequency vs. precision/alignment 
probability 

ratio, chi-square test, mutual information, and t-
test. Among them, the log-likelihood ratio meas-
ure achieves the best performance. Thus, in this 
paper, we only show the performance of the log-
likelihood ratio measure. 

Figure 4 shows the precisions of the top N col-
locations as N steadily increases with an incre-
ment of 1K, which are extracted by our method 
and the baseline method using log-likelihood 
ratio as the association measure. 

The absolute precision of collocations is not 
high in the figure. For example, among the top 
200K collocations, about 4% of the collocations 
are correct. This is because our gold set contains 
only about 57K collocations. Even if all colloca-
tions in the gold set are included in the 200K-
best list, the precision is only 28%. Thus, it is 
more useful to compare precision curves for col-
locations in the N-best lists extracted by different 
methods. In addition, since this gold set only in-
cludes a small number of collocations, the preci-
sion curves of our method and the baseline 
method are getting closer, as N increases. For 
example, when N is set to 200K, our method and 
the baseline method achieved precisions of 
4.09% and 3.12%, respectively. And when N is 
set to 400K, they achieved 2.78% and 2.26%, 
respectively. For convenience of comparison, we 
set N up to 200K in the experiments. 

From the results, it can also be seen that, 
among the N-best lists with N less than 20K, the 
precision of the collocations extracted by our 
method is lower than that of the collocations ex-
tracted by the baseline, and became higher when 
N is larger than 20K. 

In order to analyze the possible reasons, we 
investigated the relationships among the fre-
quencies of the aligned word pairs, the alignment 
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probabilities, and precisions of collocations, 
which are shown in Figure 5. From the figure, 
we can see (1) that the lower the frequencies of 
the aligned word pairs are, the higher the align-
ment probabilities are; and (2) that the precisions 
of the aligned word pairs with lower frequencies 
is lower. According to the above observations, 
we conclude that it is the word pairs with lower 
frequencies but higher probabilities that caused 
the lower precision of the top 20K collocations 
extracted by our method. 

4 Improved MWA Method 

According to the analysis in subsection 3.2, we 
need to penalize the aligned word pairs with 
lower frequencies. In order to achieve the above 
goal, we need to refine the alignment probabili-
ties by using a penalization factor derived from a 
function on the frequencies of the aligned word 
pairs. This function )(xfy =  should satisfy the 
following two conditions, where x  represents 
the log function of frequencies. 

(1) The function is monotonic. When x  is set to 
a smaller number, y  is also small. This re-
sults in the penalization on the aligned word 
pairs with lower frequencies. 

(2) When ∞→x , y  is set to 1. This means that 
we don’t penalize the aligned word pairs 
with higher frequencies. 

According to the above descriptions, we pro-
pose to use the exponential function in Eq. (7).  

    xbey /−=  (7)

Figure 6 describes this function. The constant 
b in the function is used to adjust the shape of the 
line. The line is sharp with b set to a small num-
ber, while the line is flat with b set to a larger 
number. In our case, if b is set to a larger number,  
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Figure 7. Precision of collocations extracted by 
the improved method 

we assign a larger penalization weight to those 
aligned word pairs with lower frequencies. 

According to the above discussion, we can use 
the following measure to assign scores to the 
aligned words pairs generated by the MWA 
method. 

)),(log(
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)|()|(
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ji wwfreq
b

ijji

jir

e
wwpwwp

wwp

−

×
+

=
  (8) 

Where wi and wj are two aligned words. p(wi|wj) 
and p(wj|wi) are alignment probabilities as shown 
in Eq. (3) and (4). )),(log( ji wwfreq  is the log 
function of the frequencies of the aligned word 
pairs (wi, wj). 

5 Evaluation on Chinese corpus 

We used the same Chinese corpus described in 
Section 3 to evaluate the improved method as 
shown in Section 4. In the experiments, b  was 
tuned by using a development set and set to 25. 

5.1 Precision 

In this section, we evaluated the extracted collo-
cations in terms of precision using both auto-
matic evaluation and human evaluation. 

Automatic Evaluation 

Figure 7 shows the precisions of the colloca-
tions in the N-best lists extracted by our method 
and the baseline method against the gold set in 
Section 3. For our methods, we used two differ-
ent measures to rank the aligned word pairs: 
alignment probabilities in Eq. (5) and refined 
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 Our method Baseline 
True 569 290 

A 25 16 
B 5 4 
C 240 251 False 

D 161 439 

Table 1. Manual evaluation of the top 1K Chi-
nese collocations. The precisions of our method 
and the baseline method are 56.9% and 29.0%, 
respectively. 

alignment probabilities in Eq. (8). From the re-
sults, it can be seen that with the refined align-
ment probabilities, our method achieved the 
highest precision on the N-best lists, which 
greatly outperforms the best baseline method. 
For example, in the top 1K list, our method 
achieves a precision of 20.6%, which is much 
higher than the precision of the baseline method 
(11.7%). This indicates that the exponential func-
tion used to penalize the alignment probabilities 
plays a key role in demoting most of the aligned 
word pairs with low frequencies. 

Human Evaluation 

In automatic evaluation, the gold set only con-
tains collocations in the existing dictionaries. 
Some collocations related to specific corpora are 
not included in the set. Therefore, we selected 
the top 1K collocations extracted by our im-
proved method to manually estimate the preci-
sion. During human evaluation, the true colloca-
tions are denoted as "True" in our experiments. 
The false collocations were further classified into 
the following classes. 

A: The candidate consists of two words that 
are semantically related, such as (医生 doctor,  
护士 nurse). 

B: The candidate is a part of the multi-word 
(≥ 3) collocation. For example, (自我 self, 机制  
mechanism) is a part of the three-word colloca-
tion (自我 self, 约束 regulating, 机制 mecha-
nism). 

C: The candidates consist of the adjacent 
words that frequently occur together, such as (他 
he, 说 say) and (很 very, 好 good). 

D: Two words in the candidates have no rela-
tionship with each other, but occur together fre-
quently, such as (北京 Beijing, 月 month) and 
(和 and, 为 for). 

Table 1 shows the evaluation results. Our 
method extracted 569 true collocations, which  
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Figure 8. Corpus size vs. precision 

are much more than those extracted by the base-
line method. Further analysis shows that, in addi-
tion to extracting short-span collocations, our 
method extracted collocations with longer spans 
as compared with the baseline method. For ex-
ample, (处于 in, 状态 state) and (由于 because, 
因此 so) are two long-span collocations. Among 
the 1K collocations, there are 48 collocation can-
didates whose spans are larger than 6, which are 
not covered by the baseline method since the 
window size is set to 6.  And 33 of them are true 
collocations, with a higher precision of 69%. 

Classes C and D account for the most part of 
the false collocations. Although the words in 
these two classes co-occur frequently, they can 
not be regarded as collocations. And we also 
found out that the errors in class D produced by 
the baseline method are much more than that of 
those produced by our method. This indicates 
that our MWA method can remove much more 
noise from the frequently occurring word pairs. 

In Class A, the two words are semantically re-
lated and occur together in the corpus. These 
kinds of collocations can not be distinguished 
from the true collocations by our method without 
additional resources. 

Since only bigram collocations were extracted 
by our method, the multi-word (≥ 3) collocations 
were split into bigram collocations, which caused 
the error collocations in Class B4. 

Corpus size vs. precision 

Here, we investigated the effect of the corpus 
size on the precision of the extracted collocations. 
We evaluated the precision against the gold set 
as shown in the automatic evaluation. First, the 
whole corpus (one year of newspaper) was split 
into 12 parts according to the published months. 
Then we calculated the precisions as the training 

                                                 
4 Since only a very small faction of collocations contain 
more than two words, a few error collocations belong to 
Class B. 
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Figure 9. Recall on the Chinese corpus 

corpus increases part by part. The top 20K collo-
cations were selected for evaluation. 

Figure 8 shows the experimental results. The 
precision of collocations extracted by our method 
is obviously higher than that of collocations ex-
tracted by the baseline method. When the size of 
the training corpus became larger, the difference 
between our method and the baseline method 
also became bigger. When the training corpus 
contains more than 9 months of corpora, the pre-
cision of collocations extracted by the baseline 
method did not increase anymore. However, the 
precision of collocations extracted by our method 
kept on increasing. This indicates the MWA 
method can extract more true collocations of 
higher quality when it is trained with larger size 
of training data. 

5.2 Recall 

Recall was evaluated on a manually labeled sub-
set of the training corpus. The subset contains 
100 sentences that were randomly selected from 
the whole corpus. The sentence average length is 
24. All true collocations (660) were labeled 
manually. The recall was calculated according to 
Eq. (9). 

)(#
)(#

subset

subsetTop

C
CC

recall N I−=               (9) 

Here, CTop-N denotes the top collocations in the 
N-best list and Csubset denotes the true colloca-
tions in the subset. 

Figure 9 shows the recalls of collocations ex-
tracted by our method and the baseline method 
on the labeled subset. The results show that our 
method can extract more true collocations than 
the baseline method. 
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Figure 10. Recall on the English corpus 

 Our method Baseline 
True 591 355 

A 11 4 
B 19 20 
C 200 136 False

D 179 485 

Table 2. Manual evaluation of the top 1K Eng-
lish collocations. The precisions of our method 
and the baseline method are 59.1% and 35.5%, 
respectively. 

In our experiments, the baseline method ex-
tracts about 20 millions of collocation candidates, 
while our method only extracts about 3 millions 
of collocation candidates5. Although the colloca-
tions of our method are much less than that of the 
baseline, the experiments show that the recall of 
our method is higher. This again proved that our 
method has the stronger ability to distinguish 
true collocations from false collocations. 

6 Evaluation on English corpus 

We also manually evaluated the proposed 
method on an English corpus, which is a subset 
randomly extracted from the British National 
Corpus6. The English corpus contains about 20 
millions of words. 

6.1 Precision 

We estimated the precision of the top 1K collo-
cations. Table 2 shows the results. The classifica-
tion of the false collocations is the same as that 
in Table 1. The results show that our methods 
outperformed the baseline method using log- 
                                                 
5 We set the threshold to 7.88 with a confidence level  of 

005.0=α  (cf. page 174 of Chapter 5 in (McKeown and 
Radev, 2000) for more details). 
6 Available at: http://www.hcu.ox.ac.uk/BNC/ 
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Figure 11. Fertility vs. precision 

likelihood ratio. And the distribution of the false 
collocations is similar to that on the Chinese cor-
pus. 

6.2 Recall 

We used the method described in subsection 5.2 
to calculate the recall. 100 English sentences 
were labeled manually, obtaining 205 true collo-
cations. Figure 10 shows the recall of the collo-
cations in the N-best lists. From the figure, it can 
be seen that the trend on the English corpus is 
similar to that on the Chinese corpus, which in-
dicates that our method is language-independent. 

7 Discussion 

7.1 The Effect of Fertility 

In the MWA model as described in subsection 
2.1, iφ  denotes the number of words that can 
align with iw . Since a word only collocates with 
a few other words in a sentence, we should set a 
maximum number for φ , denote as maxφ . 

In order to set maxφ , we examined the true col-
locations in the manually labeled set described in 
subsection 5.2. We found that 78% of words col-
locate with only one word, and 17% of words 
collocate with two words. In sum, 95% of words 
in the corpus can only collocate with at most two 
words. According to the above observation, we 
set maxφ  to 2. 

In order to further examine the effect of maxφ  
on collocation extraction, we used several differ-
ent maxφ  in our experiments. The comparison 
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Figure 12. Distribution of spans 

results are shown in Figure 11. The highest pre-
cision is achieved when maxφ  is set to 2. This 
result verifies our observation on the corpus. 

7.2 Span of Collocation 

One of the advantages of our method is that 
long-span collocations can be reliably extracted. 
In this subsection, we investigate the distribution 
of the span of the aligned word pairs. For the 
aligned word pairs occurring more than once, we 
calculated the average span as shown in Eq. (10). 

),(

);,(
),(

ji

corpuss
ji

ji wwfreq

swwSpan
wwAveSpan

∑
= ∈  (10) 

Where, );,( swwSpan ji  is the span of the words 
wi and wj in the sentence s; ),( ji wwAveSpan  is 
the average span. 

The distribution is shown in Figure 12. It can 
be seen that the number of the aligned word pairs 
decreased exponentially as the average span in-
creased. About 17% of the aligned word pairs 
have spans longer than 6. According to the hu-
man evaluation result for precision in subsection 
5.1, the precision of the long-span collocations is 
even higher than that of the short-span colloca-
tions. This indicates that our method can extract 
reliable collocations with long spans. 

8 Conclusion 

We have presented a monolingual word align-
ment method to extract collocations from mono-
lingual corpus. We first replicated the monolin-
gual corpus to generate a parallel corpus, in 
which each sentence pair consists of the two 
identical sentences in the same language. Then 
we adapted the bilingual word alignment algo-
rithm to the monolingual scenario to align the 
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potentially collocated word pairs in the monolin-
gual sentences. In addition, a ranking method 
was proposed to finally extract the collocations 
from the aligned word pairs. It scores collocation 
candidates by using alignment probabilities mul-
tiplied by a factor derived from the exponential 
function on the frequencies. Those with higher 
scores are selected as collocations. Both Chinese 
and English collocation extraction experiments 
indicate that our method outperforms previous 
approaches in terms of both precision and recall. 
For example, according to the human evaluations 
on the Chinese corpus, our method achieved a 
precision of 56.9%, which is much higher than 
that of the baseline method (29.0%). Moreover, 
we can extract collocations with longer span. 
Human evaluation on the extracted Chinese col-
locations shows that 69% of the long-span (>6) 
collocations are correct. 
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Abstract

The recently introduced online
confidence-weighted (CW) learning
algorithm for binary classification per-
forms well on many binary NLP tasks.
However, for multi-class problems CW
learning updates and inference cannot
be computed analytically or solved as
convex optimization problems as they are
in the binary case. We derive learning
algorithms for the multi-class CW setting
and provide extensive evaluation using
nine NLP datasets, including three derived
from the recently released New York
Times corpus. Our best algorithm out-
performs state-of-the-art online and batch
methods on eight of the nine tasks. We
also show that the confidence information
maintained during learning yields useful
probabilistic information at test time.

1 Introduction

Online learning algorithms such as the Perceptron
process one example at a time, yielding simple and
fast updates. They generally make few statisti-
cal assumptions about the data and are often used
for natural language problems, where high dimen-
sional feature representations, e.g., bags-of-words,
demand efficiency. Most online algorithms, how-
ever, do not take into account the unique properties
of such data, where many features are extremely
rare and a few are very frequent.

Dredze, Crammer and Pereira (Dredze et al.,
2008; Crammer et al., 2008) recently introduced
confidence weighted (CW) online learning for bi-
nary prediction problems. CW learning explicitly
models classifier weight uncertainty using a multi-
variate Gaussian distribution over weight vectors.
The learner makes online updates based on its con-
fidence in the current parameters, making larger

changes in the weights of infrequently observed
features. Empirical evaluation has demonstrated
the advantages of this approach for a number of bi-
nary natural language processing (NLP) problems.

In this work, we develop and test multi-class
confidence weighted online learning algorithms.
For binary problems, the update rule is a sim-
ple convex optimization problem and inference
is analytically computable. However, neither is
true in the multi-class setting. We discuss sev-
eral efficient online learning updates. These up-
date rules can involve one, some, or all of the
competing (incorrect) labels. We then perform an
extensive evaluation of our algorithms using nine
multi-class NLP classification problems, includ-
ing three derived from the recently released New
York Times corpus (Sandhaus, 2008). To the best
of our knowledge, this is the first learning evalua-
tion on these data. Our best algorithm outperforms
state-of-the-art online algorithms and batch algo-
rithms on eight of the nine datasets.

Surprisingly, we find that a simple algorithm in
which updates consider only a single competing
label often performs as well as or better than multi-
constraint variants if it makes multiple passes over
the data. This is especially promising for large
datasets, where the efficiency of the update can
be important. In the true online setting, where
only one iteration is possible, multi-constraint al-
gorithms yield better performance.

Finally, we demonstrate that the label distribu-
tions induced by the Gaussian parameter distribu-
tions resulting from our methods have interesting
properties, such as higher entropy, compared to
those from maximum entropy models. Improved
label distributions may be useful in a variety of
learning settings.

2 Problem Setting

In the multi-class setting, instances from an input
space X take labels from a finite set Y , |Y| = K.
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We use a standard approach (Collins, 2002) for
generalizing binary classification and assume a
feature function f(x, y) ∈ Rd mapping instances
x ∈ X and labels y ∈ Y into a common space.

We work in the online framework, where learn-
ing is performed in rounds. On each round the
learner receives an input xi, makes a prediction ŷi

according to its current rule, and then learns the
true label yi. The learner uses the new example
(xi, yi) to modify its prediction rule. Its goal is to
minimize the total number of rounds with incor-
rect predictions, |{i : yi 6= ŷi}|.

In this work we focus on linear models parame-
terized by weightsw and utilizing prediction func-
tions of the form hw(x) = arg maxzw · f(x, z).
Note that since we can choose f(x, y) to be the
vectorized Cartesian product of an input feature
function g(x) and y, this setup generalizes the use
of unique weight vectors for each element of Y .

3 Confidence Weighted Learning

Dredze, Crammer, and Pereira (2008) introduced
online confidence weighted (CW) learning for bi-
nary classification, where X = Rd and Y =
{±1}. Rather than using a single parameter vec-
tor w, CW maintains a distribution over param-
eters N (µ,Σ), where N (µ,Σ) the multivariate
normal distribution with mean µ ∈ Rd and co-
variance matrix Σ ∈ Rd×d. Given an input in-
stance x, a Gibbs classifier draws a weight vector
w from the distribution and then makes a predic-
tion according to the sign of w · x.

This prediction rule is robust if the example
is classified correctly with high-probability, that
is, for some confidence parameter .5 ≤ η < 1,
Prw [y (w · x) ≥ 0] ≥ η. To learn a binary CW
classifier in the online framework, the robustness
property is enforced at each iteration while mak-
ing a minimal update to the parameter distribution
in the KL sense:

(µi+1,Σi+1) =
arg min

µ,Σ
DKL (N (µ,Σ) ‖N (µi,Σi))

s.t. Prw [yi (w · xi) ≥ 0] ≥ η (1)

Dredze et al. (2008) showed that this optimization
can be solved in closed form, yielding the updates

µi+1 = µi + αiΣixi (2)

Σi+1 =
(
Σ−1

i + βixix
T
i

)−1
(3)

for appropriate αi and βi.
For prediction, they use the Bayesian rule

ŷ = arg max
z∈{±1}

Prw∼N (µ,Σ) [z (x ·w) ≥ 0] ,

which for binary labels is equivalent to using the
mean parameters directly, ŷ = sign (µ · x).

4 Multi-Class Confidence Weighted
Learning

As in the binary case, we maintain a distribution
over weight vectors w ∼ N (µ,Σ). Given an in-
put instance x, a Gibbs classifier draws a weight
vector w ∼ N (µ,Σ) and then predicts the label
with the maximal score, arg maxz (w · f(x, z)).
As in the binary case, we use this prediction rule
to define a robustness condition and corresponding
learning updates.

We generalize the robustness condition used in
Crammer et al. (2008). Following the update on
round i, we require that the ith instance is correctly
labeled with probability at least η < 1. Among the
distributions that satisfy this condition, we choose
the one that has the minimal KL distance from the
current distribution. This yields the update

(µi+1,Σi+1) = (4)

arg min
µ,Σ

DKL (N (µ,Σ) ‖N (µi,Σi))

s.t. Pr [yi |xi,µ,Σ] ≥ η ,

where

Pr [y |x,µ,Σ] =

Prw∼N (µ,Σ)

[
y = arg max

z∈Y
(w · f(x, z))

]
.

Due to the max operator in the constraint, this op-
timization is not convex when K > 2, and it does
not permit a closed form solution. We therefore
develop approximations that can be solved effi-
ciently. We define the following set of events for a
general input x:

Ar,s(x) def= {w : w · f(x, r) ≥ w · f(x, s)}
Br(x) def= {w : w · f(x, r) ≥ w · f(x, s) ∀s}

=
⋂
s 6=r

Ar,s(x)

We assume the probability that w · f(x, r) =
w · f(x, s) for some s 6= r is zero, which
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holds for non-trivial distribution parameters and
feature vectors. We rewrite the prediction ŷ =
arg maxr Pr [Br(x)], and the constraint from
Eq. (4) becomes

Pr [Byi(x)] ≥ η . (5)

We focus now on approximating the event Byi(x)
in terms of events Ayi,r. We rely on the fact that
the level sets of Pr [Ayi,r] are convex in µ and
Σ. This leads to convex constraints of the form
Pr [Ayi,r] ≥ γ.

Outer Bound: Since Br(x) ⊆ Ar,s(x), it holds
trivially that Pr [Byi(x)] ≥ η ⇒ Pr [Ayi,r] ≥
η,∀r 6= yi. Thus we can replace the constraint
Pr [Byi(x)] ≥ η with Pr [Ayi,r] ≥ η to achieve an
outer bound. We can simultaneously apply all of
the pairwise constraints to achieve a tighter bound:

Pr [Ayi,r] ≥ η ∀r 6= yi

This yields a convex approximation to Eq. (4) that
may improve the objective value at the cost of
violating the constraint. In the context of learn-
ing, this means that the new parameter distribu-
tion will be close to the previous one, but may not
achieve the desired confidence on the current ex-
ample. This makes the updates more conservative.

Inner Bound: We can also consider an inner
bound. Note that Byi(x)c = (∩rAyi,r(x))c =
∪rAyi,r(x)c, thus the constraint Pr [Byi(x)] ≥ η
is equivalent to

Pr [∪rAyi,r(x)c] ≤ 1− η ,

and by the union bound, this follows whenever∑
r

Pr [Ayi,r(x)c] ≤ 1− η .

We can achieve this by choosing non-negative
ζr ≥ 0,

∑
r ζr = 1, and constraining

Pr [Ayi,r(x)] ≥ 1− (1− η) ζr for r 6= yi .

This formulation yields an inner bound on the
original constraint, guaranteeing its satisfaction
while possibly increasing the objective. In the
context of learning, this is a more aggressive up-
date, ensuring that the current example is robustly
classified even if doing so requires a larger change
to the parameter distribution.

Algorithm 1 Multi-Class CW Online Algorithm
Input: Confidence parameter η

Feature function f(x, y) ∈ Rd

Initialize: µ1 = 0 , Σ1 = I
for i = 1, 2 . . . do

Receive xi ∈ X
Predict ranking of labels ŷ1, ŷ2, . . .
Receive yi ∈ Y
Set µi+1,Σi+1 by approximately solving
Eq. (4) using one of the following:

Single-constraint update (Sec. 5.1)
Exact many-constraint update (Sec. 5.2)
Seq. many-constraint approx. (Sec. 5.2)
Parallel many-constraint approx. (Sec. 5.2)

end for
Output: Final µ and Σ

Discussion: The two approximations are quite
similar in form. Both replace the constraint
Pr [Byi(x)] ≥ η with one or more constraints of
the form

Pr [Ayi,r(x)] ≥ ηr . (6)

To achieve an outer bound we choose ηr = η for
any set of r 6= yi. To achieve an inner bound we
use all K − 1 possible constraints, setting ηr =
1 − (1− η) ζr for suitable ζr. A simple choice is
ζr = 1/(K − 1).

In practice, η is a learning parameter whose
value will be optimized for each task. In this case,
the outer bound (when all constraints are included)
and inner bound (when ζr = 1/(K − 1)) can be
seen as equivalent, since for any fixed value of
η(in) for the inner bound we can choose

η(out) = 1− 1− η(in)

K − 1
,

for the outer bound and the resulting ηr will be
equal. By optimizing η we automatically tune the
approximation to achieve the best compromise be-
tween the inner and outer bounds. In the follow-
ing, we will therefore assume ηr = η.

5 Online Updates

Our algorithms are online and process examples
one at a time. Pseudo-code for our approach is
given in algorithm 1. We approximate the pre-
diction step by ranking each label y according
to the score given by the mean weight vector,
µ · f(xi, y). Although this approach is Bayes op-
timal for binary problems (Dredze et al., 2008),
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it is an approximation in general. We note that
more accurate inference can be performed in the
multi-class case by sampling weight vectors from
the distribution N (µ,Σ) or selecting labels sen-
sitive to the variance of prediction; however, in
our experiments this did not improve performance
and required significantly more computation. We
therefore proceed with this simple and effective
approximation.

The update rule is given by an approximation
of the type described in Sec. 4. All that remains
is to choose the constraint set and solve the opti-
mization efficiently. We discuss several schemes
for minimizing KL divergence subject to one or
more constraints of the form Pr [Ayi,r(x)] ≥ η.
We start with a single constraint.

5.1 Single-Constraint Updates
The simplest approach is to select the single con-
straint Pr [Ayi,r(x)] ≥ η corresponding to the
highest-ranking label r 6= yi. This ensures that,
following the update, the true label is more likely
to be predicted than the label that was its closest
competitor. We refer to this as the k = 1 update.

Whenever we have only a single constraint, we
can reduce the optimization to one of the closed-
form CW updates used for binary classification.
Several have been proposed, based on linear ap-
proximations (Dredze et al., 2008) and exact for-
mulations (Crammer et al., 2008). For simplicity,
we use the Variance method from Dredze et al.
(2008), which did well in our initial evaluations.
This method leads to the following update rules.
Note that in practice Σ is projected to a diagonal
matrix as part of the update; this is necessary due
to the large number of features that we use.

µi+1 = µi + αiΣigi,yi,r (7)

Σi+1 =
(

Σ−1
i + 2αiφgi,yi,rg

>
i,yi,r

)−1
(8)

gi,yi,r = f(xi, yi)− f (xi, r) φ = Φ−1(η)

The scale αi is given by max(γi, 0), where γi is
equal to

−(1 + 2φmi) +
√

(1 + 2φmi)2 − 8φ(mi − φvi)
4φvi

and

mi = µi · gi,yi,r vi = g>i,yi,rΣigi,yi,r .

These rules derive directly from Dredze et al.
(2008) or Figure 1 in Crammer et al. (2008); we
simply substitute yi = 1 and xi = gi,yi,r.

5.2 Many-Constraints Updates
A more accurate approximation can be obtained
by selecting multiple constraints. Analogously, we
choose the k ≤ K−1 constraints corresponding to
the labels r1, . . . , rk 6= yi that achieve the highest
predicted ranks. The resulting optimization is con-
vex and can be solved by a standard Hildreth-like
algorithm (Censor & Zenios, 1997). We refer to
this update as Exact. However, Exact is expen-
sive to compute, and tends to over-fit in practice
(Sec. 6.2). We propose several approximate alter-
natives.

Sequential Update: The Hildreth algorithm it-
erates over the constraints, updating with respect
to each until convergence is reached. We approxi-
mate this solution by making only a single pass:

• Set µi,0 = µi and Σi,0 = Σi.
• For j = 1, . . . , k, set (µi,j ,Σi,j) to the solu-

tion of the following optimization:

min
µ,Σ

DKL
(N (µ,Σ) ‖N (µi,j−1,Σi,j−1

))
s.t. Pr

[
Ayi,rj (x)

] ≥ η
• Set µi+1 = µi,k and Σi+1 = Σi,k.

Parallel Update: As an alternative to the Hil-
dreth algorithm, we consider the simultaneous al-
gorithm of Iusem and Pierro (1987), which finds
an exact solution by iterating over the constraints
in parallel. As above, we approximate the exact
solution by performing only one iteration. The
process is as follows.

• For j = 1, . . . , k, set (µi,j ,Σi,j) to the solu-
tion of the following optimization:

min
µ,Σ

DKL (N (µ,Σ) ‖N (µi,Σi))

s.t. Pr
[
Ayi,rj (x)

] ≥ η
• Let λ be a vector, λj≥0 ,

∑
j λj =1.

• Set µi+1 =
∑

j λjµi,j , Σ−1
i+1 =

∑
j λjΣ−1

i,j .

In practice we set λj = 1/k for all j.

6 Experiments

6.1 Datasets
Following the approach of Dredze et al. (2008),
we evaluate using five natural language classifica-
tion tasks over nine datasets that vary in difficulty,
size, and label/feature counts. See Table 1 for an
overview. Brief descriptions follow.
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Task Instances Features Labels Bal.
20 News 18,828 252,115 20 Y
Amazon 7 13,580 686,724 7 Y
Amazon 3 7,000 494,481 3 Y
Enron A 3,000 13,559 10 N
Enron B 3,000 18,065 10 N
NYTD 10,000 108,671 26 N
NYTO 10,000 108,671 34 N
NYTS 10,000 114,316 20 N
Reuters 4,000 23,699 4 N

Table 1: A summary of the nine datasets, includ-
ing the number of instances, features, and labels,
and whether the numbers of examples in each class
are balanced.

Amazon Amazon product reviews. Using the
data of Dredze et al. (2008), we created two do-
main classification datasets from seven product
types (apparel, books, dvds, electronics, kitchen,
music, video). Amazon 7 includes all seven prod-
uct types and Amazon 3 includes books, dvds, and
music. Feature extraction follows Blitzer et al.
(2007) (bigram features and counts).

20 Newsgroups Approximately 20,000 news-
group messages, partitioned across 20 different
newsgroups.1 This dataset is a popular choice for
binary and multi-class text classification as well as
unsupervised clustering. We represent each mes-
sage as a binary bag-of-words.

Enron Automatic sorting of emails into fold-
ers.2 We selected two users with many email
folders and messages: farmer-d (Enron A) and
kaminski-v (Enron B). We used the ten largest
folders for each user, excluding non-archival email
folders such as “inbox,” “deleted items,” and “dis-
cussion threads.” Emails were represented as bi-
nary bags-of-words with stop-words removed.

NY Times To the best of our knowledge we are
the first to evaluate machine learning methods on
the New York Times corpus. The corpus con-
tains 1.8 million articles that appeared from 1987
to 2007 (Sandhaus, 2008). In addition to being
one of the largest collections of raw news text,
it is possibly the largest collection of publicly re-
leased annotated news text, and therefore an ideal
corpus for large scale NLP tasks. Among other
annotations, each article is labeled with the desk
that produced the story (Financial, Sports, etc.)
(NYTD), the online section to which the article was

1
http://people.csail.mit.edu/jrennie/20Newsgroups/

2
http://www.cs.cmu.edu/˜enron/

Task Sequential Parallel Exact
20 News 92.16 91.41 88.08
Amazon 7 77.98 78.35 77.92
Amazon 3 93.54 93.81 93.00
Enron A 82.40 81.30 77.07
Enron B 71.80 72.13 68.00
NYTD 83.43 81.43 80.92
NYTO 82.02 78.67 80.60
NYTS 52.96 54.78 51.62
Reuters 93.60 93.97 93.47

Table 2: A comparison of k = ∞ updates. While
the two approximations (sequential and parallel)
are roughly the same, the exact solution over-fits.

posted (NYTO), and the section in which the arti-
cle was printed (NYTS). Articles were represented
as bags-of-words with feature counts (stop-words
removed).

Reuters Over 800,000 manually categorized
newswire stories (RCV1-v2/ LYRL2004). Each
article contains one or more labels describing its
general topic, industry, and region. We performed
topic classification with the four general topics:
corporate, economic, government, and markets.
Details on document preparation and feature ex-
traction are given by Lewis et al. (2004).

6.2 Evaluations

We first set out to compare the three update ap-
proaches proposed in Sec. 5.2: an exact solution
and two approximations (sequential and parallel).
Results (Table 2) show that the two approxima-
tions perform similarly. For every experiment the
CW parameter η and the number of iterations (up
to 10) were optimized using a single randomized
iteration. However, sequential converges faster,
needing an average of 4.33 iterations compared to
7.56 for parallel across all datasets. Therefore, we
select sequential for our subsequent experiments.

The exact method performs poorly, displaying
the lowest performance on almost every dataset.
This is unsurprising given similar results for bi-
nary CW learning Dredze et al. (2008), where ex-
act updates were shown to over-fit but converged
after a single iteration of training. Similarly, our
exact implementation converges after an average
of 1.25 iterations, much faster than either of the
approximations. However, this rapid convergence
appears to come at the expense of accuracy. Fig. 1
shows the accuracy on Amazon 7 test data after
each training iteration. While both sequential and
parallel improve with several iterations, exact de-
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Figure 1: Accuracy on test data after each iteration
on the Amazon 7 dataset.

grades after the first iteration, suggesting that it
may over-fit to the training data. The approxima-
tions appear to smooth learning and produce better
performance in the long run.

6.3 Relaxing Many-Constraints

While enforcing many constraints may seem op-
timal, there are advantages to pruning the con-
straints as well. It may be time consuming to en-
force dozens or hundreds of constraints for tasks
with many labels. Structured prediction tasks of-
ten involve exponentially many constraints, mak-
ing pruning mandatory. Furthermore, many real
world datasets, especially in NLP, are noisy, and
enforcing too many constraints can lead to over-
fitting. Therefore, we consider the impact of re-
ducing the constraint set in terms of both reducing
run-time and improving accuracy.

We compared using all constraints (k = ∞)
with using 5 constraints (k = 5) for the sequential
update method (Table 3). First, we observe that
k = 5 performs better than k =∞ on nearly every
dataset: fewer constraints help avoid over-fitting
and once again, simpler is better. Additionally,
k = 5 converges faster than k = ∞ in an average
of 2.22 iterations compared with 4.33 iterations.
Therefore, reducing the number of constraints im-
proves both speed and accuracy. In comparing
k = 5 with the further reduced k = 1 results, we
observe the latter improves on seven of the nine
methods. This surprising result suggests that CW
learning can perform well even without consid-
ering more than a single constraint per example.
However, k = 1 exceeds the performance of mul-

tiple constraints only through repeated training it-
erations. k = 5 CW learning converges faster —
2.22 iterations compared with 6.67 for k = 1 — a
desirable property in many resource restricted set-
tings. (In the true online setting, only a single it-
eration may be possible.) Fig. 1 plots the perfor-
mance of k = 1 and k = 5 CW on test data after
each training iteration. While k = 1 does better
in the long run, it lags behind k = 5 for several
iterations. In fact, after a single training iteration,
k = 5 outperforms k = 1 on eight out of nine
datasets. Thus, there is again a tradeoff between
faster convergence (k = 5) and increased accuracy
(k = 1). While the k = 5 update takes longer per
iteration, the time required for the approximate so-
lutions grows only linearly in the number of con-
straints. The evaluation in Fig. 1 required 3 sec-
onds for the first iteration of k = 1, 10 seconds
for k = 5 and 11 seconds for one iteration of all
7 constraints. These differences are insignificant
compared to the cost of performing multiple itera-
tions over a large dataset. We note that, while both
approximate methods took about the same amount
of time, the exact solution took over 4 minutes for
its first iteration.

Finally, we compare CW methods with sev-
eral baselines in Table 3. Online baselines in-
clude Top-1 Perceptron (Collins, 2002), Top-1
Passive-Aggressive (PA), and k-best PA (Cram-
mer & Singer, 2003; McDonald et al., 2004).
Batch algorithms include Maximum Entropy (de-
fault configuration in McCallum (2002)) and sup-
port vector machines (LibSVM (Chang & Lin,
2001) for one-against-one classification and multi-
class (MC) (Crammer & Singer, 2001)). Classifier
parameters (C for PA/SVM and maxent’s Gaus-
sian prior) and number of iterations (up to 10) for
the online methods were optimized using a sin-
gle randomized iteration. On eight of the nine
datasets, CW improves over all baselines. In gen-
eral, CW provides faster and more accurate multi-
class predictions.

7 Error and Probabilistic Output

Our focus so far has been on accuracy and speed.
However, there are other important considerations
for selecting learning algorithms. Maximum en-
tropy and other probabilistic classification algo-
rithms are sometimes favored for their probabil-
ity scores, which can be useful for integration
with other learning systems. However, practition-
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PA CW SVM
Task Perceptron K=1 K=5 K=1 K=5 K=∞ 1 vs. 1 MC Maxent
20 News 81.07 88.59 88.60 ∗∗92.90 ∗∗92.78 ∗∗92.16 85.18 90.33 88.94
Amazon 7 74.93 76.55 76.72 ∗∗78.70 ∗∗78.04 ∗∗77.98 75.11 76.60 76.40
Amazon 3 92.26 92.47 93.29 †94.01 ∗∗94.29 93.54 92.83 93.60 93.60
Enron A 74.23 79.27 80.77 ††83.83 †82.23 †82.40 80.23 82.60 82.80
Enron B 66.30 69.93 68.90 ∗∗73.57 ∗∗72.27 ∗∗71.80 65.97 71.87 69.47
NYTD 80.67 83.12 81.31 ∗∗84.57 ∗83.94 83.43 82.95 82.00 83.54
NYTO 78.47 81.93 81.22 †82.72 †82.55 82.02 82.13 81.01 82.53
NYTS 50.80 56.19 55.04 54.67 54.26 52.96 55.81 56.74 53.82
Reuters 92.10 93.12 93.30 93.60 93.67 93.60 92.97 93.32 93.40

Table 3: A comparison of CW learning (k = 1, 5,∞ with sequential updates) with several baseline
algorithms. CW learning achieves the best performance eight out of nine times. Statistical significance
(McNemar) is measured against all baselines (∗ indicates 0.05 and ∗∗ 0.001) or against online baselines
(† indicates 0.05 and †† 0.001).
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Figure 2: First panel: Error versus prediction entropy on Enron B. As CW converges (right to left) error
and entropy are reduced. Second panel: Number of test examples per prediction probability bin. The
red bars correspond to maxent and the blue bars to CW, with increasing numbers of epochs from left
to right. Third panel: The contribution of each bin to the total test error. Fourth panel: Test error
conditioned on prediction probability.

ers have observed that maxent probabilities can
have low entropy and be unreliable for estimating
prediction confidence (Malkin & Bilmes, 2008).
Since CW also produces label probabilities — and
does so in a conceptually distinct way — we in-
vestigate in this section some empirical properties
of the label distributions induced by CW’s param-
eter distributions and compare them with those of
maxent.

We trained maxent and CW k = 1 classi-
fiers on the Enron B dataset, optimizing parame-
ters as before (maxent’s Gaussian prior and CW’s
η). We estimated the label distributions from our
CW classifiers after each iteration and on every
test example x by Gibbs sampling weight vec-
tors w ∼ N (µ,Σ), and for each label y count-
ing the fraction of weight vectors for which y =
arg maxzw · f(x, z). Normalizing these counts
yields the label distributions Pr [y|x]. We denote
by ŷ the predicted label for a given x, and refer to
Pr [ŷ|x] as the prediction probability.

The leftmost panel of Fig. 2 plots each
method’s prediction error against the nor-

malized entropy of the label distribution
− ( 1

m

∑
i

∑
z Pr [z|xi] log (Pr [z|xi])

)
/ log(K).

Each CW iteration (moving from right to left in
the plot) reduces both error and entropy. From our
maxent results we make the common observation
that maxent distributions have (ironically) low
entropy. In contrast, while CW accuracy exceeds
maxent after its second iteration, normalized
entropy remains high. Higher entropy suggests
a distribution over labels that is less peaked and
potentially more informative than those from
maxent. We found that the average probability
assigned to a correct prediction was 0.75 for
CW versus 0.83 for maxent and for an incorrect
prediction was 0.44 for CW versus 0.56 for
maxent.

Next, we investigate how these probabilities
relate to label accuracy. In the remaining pan-
els, we binned examples according to their pre-
diction probabilities Pr [ŷ|x] = maxy Pr [y|x].
The second panel of Fig. 2 shows the numbers
of test examples with Pr [ŷ|x] ∈ [θ, θ + 0.1) for
θ = 0.1, 0.2 . . . 0.9. (Note that since there are 10
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classes in this problem, we must have Pr [ŷ|x] ≥
0.1.) The red (leftmost) bar corresponds to the
maximum entropy classifier, and the blue bars cor-
respond, from left to right, to CW after each suc-
cessive training epoch.

From the plot we observe that the maxent classi-
fier assigns prediction probability greater than 0.9
to more than 1,200 test examples out of 3,000.
Only 50 examples predicted by maxent fall in the
lowest bin, and the rest of examples are distributed
nearly uniformly across the remaining bins. The
large number of examples with very high predic-
tion probability explains the low entropy observed
for the maximum entropy classifier.

In contrast, the CW classifier shows the oppo-
site behavior after one epoch of training (the left-
most blue bar), assigning low prediction probabil-
ity (less than 0.3) to more than 1,200 examples
and prediction probability of at least 0.9 to only
100 examples. As CW makes additional passes
over the training data, its prediction confidence
increases and shifts toward more peaked distribu-
tions. After seven epochs fewer than 100 examples
have low prediction probability and almost 1,000
have high prediction probability. Nonetheless, we
note that this distribution is still less skewed than
that of the maximum entropy classifier.

Given the frequency of high probability maxent
predictions, it seems likely that many of the high
probability maxent labels will be wrong. This is
demonstrated in the third panel, which shows the
contribution of each bin to the total test error. Each
bar reflects the number of mistakes per bin divided
by the size of the complete test set (3,000). Thus,
the sum of the heights of the corresponding bars
in each bin is proportional to test error. Much of
the error of the maxent classifier comes not only
from the low-probability bins, due to their inac-
curacy, but also from the highest bin, due to its
very high population. In contrast, the CW clas-
sifiers see very little error contribution from the
high-probability bins. As training progresses, we
see again that the CW classifiers move in the direc-
tion of the maxent classifier but remain essentially
unimodal.

Finally, the rightmost panel shows the condi-
tional test error given bin identity, or the fraction
of test examples from each bin where the predic-
tion was incorrect. This is the pointwise ratio be-
tween corresponding values of the previous two
histograms. For both methods, there is a monoton-

ically decreasing trend in error as prediction prob-
ability increases; that is, the higher the value of
the prediction probability, the more likely that the
prediction it provides is correct. As CW is trained,
we see an increase in the conditional test error, yet
the overall error decreases (not shown). This sug-
gests that as CW is trained and its overall accuracy
improves, there are more examples with high pre-
diction probability, and the cost for this is a rela-
tive increase in the conditional test error per bin.
The maxent classifier produces an extremely large
number of test examples with very high prediction
probabilities, which yields relatively high condi-
tional test error. In nearly all cases, the conditional
error values for the CW classifiers are smaller than
the corresponding values for maximum entropy.
These observations suggest that CW assigns prob-
abilities more conservatively than maxent does,
and that the (fewer) high confidence predictions it
makes are of a higher quality. This is a potentially
valuable property, e.g., for system combination.

8 Conclusion

We have proposed a series of approximations for
multi-class confidence weighted learning, where
the simple analytical solutions of binary CW
learning do not apply. Our best CW method out-
performs online and batch baselines on eight of
nine NLP tasks, and is highly scalable due to the
use of a single optimization constraint. Alterna-
tively, our multi-constraint algorithms provide im-
proved performance for systems that can afford
only a single pass through the training data, as in
the true online setting. This result stands in con-
trast to previously observed behaviors in non-CW
settings (McDonald et al., 2004). Additionally, we
found improvements in both label entropy and ac-
curacy as compared to a maximum entropy clas-
sifier. We plan to extend these ideas to structured
problems with exponentially many labels and de-
velop methods that efficiently model label correla-
tions. An implementation of CW multi-class algo-
rithms is available upon request from the authors.
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Abstract 

This paper explores two classes of model adapta-
tion methods for Web search ranking: Model In-
terpolation and error-driven learning approaches 
based on a boosting algorithm.  The results show 
that model interpolation, though simple, achieves 
the best results on all the open test sets where the 
test data is very different from the training data. 
The tree-based boosting algorithm achieves the 
best performance on most of the closed test sets 
where the test data and the training data are sim-
ilar, but its performance drops significantly on 
the open test sets due to the instability of trees.  
Several methods are explored to improve the 
robustness of the algorithm, with limited success. 

1 Introduction 

We consider the task of ranking Web search 
results, i.e., a set of retrieved Web documents 
(URLs) are ordered by relevance to a query is-
sued by a user.  In this paper we assume that the 
task is performed using a ranking model (also 
called ranker for short) that is learned on labeled 
training data (e.g., human-judged 
query-document pairs).  The ranking model acts 
as a function that maps the feature vector of a 
query-document pair to a real-valued score of 
relevance. 

Recent research shows that such a learned 
ranker is superior to classical retrieval models in 
two aspects (Burges et al., 2005; 2006; Gao et al., 
2005).  First, the ranking model can use arbitrary 
features. Both traditional criteria such as TF-IDF 
and BM25, and non-traditional features such as 
hyperlinks can be incorporated as features in the 
ranker. Second, if large amounts of high-quality 
human-judged query-document pairs were 
available for model training, the ranker could 
achieve significantly better retrieval results than 
the traditional retrieval models that cannot ben-
efit from training data effectively.  However, 
such training data is not always available for 

many search domains, such as non-English 
search markets or person name search. 

One of the most widely used strategies to re-
medy this problem is model adaptation, which 
attempts to adjust the parameters and/or struc-
ture of a model trained on one domain (called the 
background domain), for which large amounts of 
training data are available, to a different domain 
(the adaptation domain), for which only small 
amounts of training data are available.  In Web 
search applications, domains can be defined by 
query types (e.g., person name queries), or lan-
guages, etc. 

In this paper we investigate two classes of 
model adaptation methods for Web search 
ranking: Model Interpolation approaches and 
error-driven learning approaches.  In model 
interpolation approaches, the adaptation data is 
used to derive a domain-specific model (also 
called in-domain model), which is then com-
bined with the background model trained on the 
background data.  This appealingly simple con-
cept provides fertile ground for experimentation, 
depending on the level at which the combination 
is implemented (Bellegarda, 2004).  In er-
ror-driven learning approaches, the background 
model is adjusted so as to minimize the ranking 
errors the model makes on the adaptation data 
(Bacchiani et al., 2004; Gao et al. 2006).  This is 
arguably more powerful than model interpola-
tion for two reasons.  First, by defining a proper 
error function, the method can optimize more 
directly the measure used to assess the final 
quality of the Web search system, e.g., Normalized 
Discounted Cumulative Gain (Javelin & Kekalainen, 
2000) in this study.  Second, in this framework, 
the model can be adjusted to be as fine-grained as 
necessary.  In this study we developed a set of 
error-driven learning methods based on a 
boosting algorithm where, in an incremental 
manner, not only each feature weight could be 
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changed separately, but new features could be 
constructed. 

We focus our experiments on the robustness 
of the adaptation methods. A model is robust if it 
performs reasonably well on unseen test data 
that could be significantly different from training 
data.  Robustness is important in Web search 
applications.  Labeling training data takes time.  
As a result of the dynamic nature of Web, by the 
time the ranker is trained and deployed, the 
training data may be more or less out of date.  
Our results show that the model interpolation is 
much more robust than the boosting-based me-
thods. We then explore several methods to im-
prove the robustness of the methods, including 
regularization, randomization, and using shal-
low trees, with limited success. 

2 Ranking Model and Quality 
Measure in Web Search 

This section reviews briefly a particular example 
of rankers, called LambdaRank (Burges et al., 
2006), which serves as the baseline ranker in our 
study.  

Assume that training data is a set of input/ 
output pairs (x, y). x is a feature vector extracted 
from a query-document pair. We use approx-
imately 400 features, including dynamic ranking 
features such as term frequency and BM25, and 
statistic ranking features such as PageRank.  y is 
a human-judged relevance score, 0 to 4, with 4 as 
the most relevant. 

LambdaRank is a neural net ranker that maps 
a feature vector x to a real value y that indicates 
the relevance of the document given the query 
(relevance score).  For example, a linear Lamb-
daRank simply maps x to y with a learned weight 

vector w such that 𝑦 = 𝐰 ∙ 𝐱. (We used nonli-
near LambdaRank in our experiments). Lamb-
daRank is particularly interesting to us due to the 
way w is learned. Typically, w is optimized w.r.t. 
a cost function using numerical methods if the 
cost function is smooth and its gradient w.r.t. w 
can be computed easily.  In order for the ranker 
to achieve the best performance in document 
retrieval, the cost function used in training 
should be the same as, or as close as possible to, 
the measure used to assess the quality of the 
system. In Web search, Normalized Discounted 
Cumulative Gain (NDCG) (Jarvelin and Kekalai-
nen, 2000) is widely used as quality measure. For 
a query,  NDCG is computed  as 

𝒩𝑖 = 𝑁𝑖  
2𝑟 𝑗  − 1

log 1 + 𝑗 

𝐿

𝑗 =1

, (1) 

where 𝑟(𝑗) is the relevance level of the j-th doc-
ument, and the normalization constant Ni is 
chosen so that a perfect ordering would result in 
𝒩𝑖 = 1.  Here L is the ranking truncation level at 
which NDCG is computed. The 𝒩𝑖  are then av-
eraged over a query set. However, NDCG, if it 
were to be used as a cost function, is either flat or 
discontinuous everywhere, and thus presents 
challenges to most optimization approaches that 
require the computation of the gradient of the 
cost function.  

LambdaRank solves the problem by using an 
implicit cost function whose gradients are speci-
fied by rules. These rules are called λ-functions. 
Burges et al. (2006) studied several λ-functions 
that were designed with the NDCG cost function 
in mind. They showed that LambdaRank with 
the best λ-function outperforms significantly a 
similar neural net ranker, RankNet (Burges et al., 
2005), whose parameters are optimized using the 
cost function based on cross-entropy. 

The superiority of LambdaRank illustrates the 
key idea based on which we develop the model 
adaptation methods.  We should always adapt 
the ranking models in such a way that the NDCG 
can be optimized as directly as possible. 

3 Model Interpolation 

One of the simplest model interpolation methods 
is to combine an in-domain model with a back-
ground model at the model level via linear in-
terpolation.  In practice we could combine more 
than two in-domain/background models.  Let-
ting Score(q, d) be a ranking model that maps a 
query-document pair to a relevance score, the 
general form of the interpolation model is  

𝑆𝑐𝑜𝑟𝑒(𝑞, 𝑑) =  𝛼𝑖𝑆𝑐𝑜𝑟𝑒𝑖 𝑞, 𝑑 ,

𝑁

𝑖=1

 (2) 

where the ’s are interpolation weights, opti-
mized on validation data with respect to a pre-
defined objective, which is NDCG in our case.  
As mentioned in Section 2, NDCG is not easy to 
optimize, for which we resort to two solutions, 
both of which achieve similar results in our ex-
periments. 

The first solution is to view the interpolation 
model of Equation (2) as a linear neural net 
ranker where each component  model Scorei(.) is 
defined as a feature function. Then, we can use 
the LambdaRank algorithm described in Section 
2 to find the optimal weights.  

An alternative solution is to view interpola-
tion weight estimation as a multi-dimensional 
optimization problem, with each model as a 
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dimension. Since NCDG is not differentiable, we 
tried in our experiments the numerical algo-
rithms that do not require the computation of 
gradient. Among the best performers is the 
Powell Search algorithm (Press et al., 1992). It 
first constructs a set of N virtual directions that 
are conjugate (i.e., independent with each other), 
then it uses line search N times, each on one vir-
tual direction, to find the optimum.  Line search 
is a one-dimensional optimization algorithm. 
Our implementation follows the one described in 
Gao et al. (2005), which is used to optimize the 
averaged precision.  

The performance of model interpolation de-
pends to a large degree upon the quality and the 
size of adaptation data. First of all, the adaptation 
data has to be “rich” enough to suitably charac-
terize the new domain.  This can only be 
achieved by collecting more in-domain data.  
Second, once the domain has been characterized, 
the adaptation data has to be “large” enough to 
have a model reliably trained.  For this, we de-
veloped a method, which attempts to augment 
adaptation data by gathering similar data from 
background data sets. 

The method is based on the k-nearest-neighbor 
(kNN) algorithm, and is inspired by Bishop 
(1995).  We use the small in-domain data set D1 
as a seed, and expand it using the large back-
ground data set D2.  When the relevance labels 
are assigned by humans, it is reasonable to as-
sume that queries with the lowest information 
entropy of labels are the least noisy.  That is, for 
such a query most of the URLs are labeled as 
highly relevant/not relevant documents rather 
than as moderately relevance/not relevant 
documents. 

Due to computational limitations of 
kNN-based algorithms, a small subset of queries 
from D1 which are least noisy are selected. This 
data set is called S1.  For each sample in D2, its 
3-nearest neighbors in S1 are found using a co-
sine-similarity metric.  If the three neighbors are 
within a very small distance from the sample in 
D2, and one of the labels of the nearest neighbors 
matches exactly, the training sample is selected 
and is added to the expanded set E2, in its own 
query.  This way, S1 is used to choose training 
data from D2, which are found to be close in 
some space.  

This process effectively creates several data 
points in close neighborhood of the points in the 
original small data set D1, thus expanding the 
set, by jittering each training sample a little. This 
is equivalent to training with noise (Bishop, 
1995), except that the training samples used are 

actual queries judged by a human. This is found 
to increase the NDCG in our experiments. 

4 Error-Driven Learning 

Our error-drive learning approaches to ranking 
modeling adaptation are based on the Stochastic 
Gradient Boosting algorithm (or the boosting 
algorithm for short) described in Friedman 
(1999). Below, we follow the notations in Fried-
man (2001). 

Let adaptation data (also called training data in 
this section) be a set of input/output pairs {xi, yi}, 
i = 1…N. In error-driven learning approaches, 
model adaptation is performed by adjusting the 
background model into a new in-domain model 
𝐹: 𝑥 → 𝑦 that minimizes a loss function L(y, F(x)) 
over all samples in training data  

𝐹∗ = argmin
𝐹

 𝐿(𝑦𝑖 , 𝐹(𝐱𝑖))

𝑁

𝑖=1

. (3) 

We further assume that F(x) takes the form of 
additive expansion as 

𝐹 𝐱 =  𝛽𝑚ℎ 𝐱; 𝐚𝑚  

𝑀

𝑚=0

, (4) 

where h(x; a) is called basis function, and is 
usually a simple parameterized function of the 
input x, characterized by parameters a. In what 
follows, we drop a, and use h(x) for short.  In 
practice, the form of h has to be restricted to a 
specific function family to allow for a practically 
efficient procedure of model adaptation.  β is a 
real-valued coefficient. 

Figure 1 is the generic algorithm.  It starts 
with a base model F0, which is a background 
model.  Then for m = 1, 2, …, M, the algorithm 
takes three steps to adapt the base model so as to 
best fit the adaptation data: (1) compute the re-
sidual of the current base model (line 3), (2) select 
the optimal basis function (line 4) that best fits 
the residual, and (3) update the base model by 
adding the optimal basis function (line 5).  The 
two model adaptation algorithms that will be 
described below follow the same 3-step adapta-
tion procedure. They only differ in the choice of 
h.  In the LambdaBoost algorithm (Section 4.1) h 

1 Set F0(x) be the background ranking model 
2 for m = 1 to M do 

3 𝑦𝑖
′ = −  

𝜕𝐿 𝑦 𝑖 ,𝐹 𝐱𝑖  

𝜕𝐹 𝐱𝑖 
 
𝐹 𝐱 =𝐹𝑚 −1 𝐱 

, for i = 1… N 

4 (ℎ𝑚 , 𝛽𝑚 ) = argmin
ℎ,𝛽

  𝑦𝑖
′ − 𝛽ℎ(𝐱𝑖) 

2𝑁

𝑖=1
 

5 𝐹𝑚  𝐱 = 𝐹𝑚−1 𝐱 + 𝛽𝑚ℎ(𝐱) 

Figure 1. The generic boosting algorithm for model 
adaptation 
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is defined as a single feature, and in LambdaS-
MART (Section 4.2), h is a regression tree.  

Now, we describe the way residual is com-
puted, the step that is identical in both algo-
rithms. Intuitively, the residual, denoted by y’ 
(line 3 in Figure 1), measures the amount of er-
rors (or loss) the base model makes on the train-
ing samples.  If the loss function in Equation (3) is 
differentiable, the residual can be computed 
easily as the negative  
gradient of the loss function.  As discussed in 
Section 2, we want to directly optimize the 
NDCD, whose gradient is approximated via the 
λ-function.  Following Burges et al. (2006), the 
gradient of a training sample (xi, yi), where xi is a 
feature vector representing the query-document 
pair (qi, di), w.r.t. the current base model is com-
puted by marginalizing the λ-functions of all 
document pairs, (di, dj), of the query, qi, as 

𝑦𝑖
′ =  ∆NDCG ∙

𝜕𝐶𝑖𝑗

𝜕𝑜𝑖𝑗

,
𝑗≠𝑖

 (5) 

where ∆NDCG is the NDCG gained by swapping 
those two documents (after sorting all docu-
ments by their current scores);  𝑜𝑖𝑗 ≡ 𝑠𝑖 − 𝑠𝑗  is the 

difference in ranking scores of di and dj given qi; 
and Cij is the cross entropy cost defined as  

𝐶𝑖𝑗 ≡ 𝐶 𝑜𝑖𝑗  = 𝑠𝑗 − 𝑠𝑖

+ log(1 + exp(𝑠𝑖 − 𝑠𝑗 )). 
(6) 

Thus, we have 
𝜕𝐶𝑖𝑗

𝜕𝑜𝑖𝑗

=
−1

1 + exp 𝑜𝑖𝑗  
. (7) 

This λ-function essentially uses the cross en-
tropy cost to smooth the change in NDCG ob-
tained by swapping the two documents. A key 
intuition behind the λ-function is the observation 
that NDCG does not treat all pairs equally; for 
example, it costs more to incorrectly order a pair, 
where the irrelevant document is ranked higher 
than a highly relevant document, than it does to 
swap a moderately relevant/not relevant pair. 

4.1 The LambdaBoost Algorithm 

In LambdaBoost, the basis function h is defined 
as a single feature (i.e., an element feature in the 
feature vector x).  The algorithm is summarized 
in Figure 2.  It iteratively adapts a background 
model to training data using the 3-step proce-

dure, as in Figure 1. Step 1 (line 3 in Figure 2) has 
been described.  

Step 2 (line 4 in Figure 2) finds the optimal 
basis function h, as well as its optimal coefficient 
β, that best fits the residual according to the 
least-squares (LS) criterion. Formally, let h and β 
denote the candidate basis function and its op-
timal coefficient. The LS error on training data 

is 𝐿𝑆 ℎ; 𝛽 =   𝑦𝑖
′ − 𝛽ℎ 𝑁

𝑖=0
2

, where 𝑦𝑖
′  is com-

puted as Equation (5). The optimal coefficient of 

h is estimated by solving the equation 𝜕   𝑦𝑖
′ −𝑁

𝑖=1

𝛽ℎ2/𝜕𝛽=0. Then, β is computed as 

𝛽 =
 𝑦𝑖

′ℎ(𝐱𝑖)
𝑁
𝑖=1

 ℎ(𝐱𝑖)
𝑁
𝑖=1

. (8) 

Finally, given its optimal coefficient β, the op-
timal LS loss of h is  

𝐿𝑆 ℎ; 𝛽 =  𝑦𝑖
′ × 𝑦𝑖

′  

𝑁

𝑖=1

−
  𝑦𝑖

′ℎ 𝐱𝑖 
𝑁
𝑖=1  2

 ℎ2(𝐱𝑖)
𝑁
𝑖=1

. (9) 

Step 3 (line 5 in Figure 2) updates the base 
model by adding the chosen optimal basis func-
tion with its optimal coefficient.  As shown in 
Step 2, the optimal coefficient of each candidate 
basis function is computed when the basis func-
tion is evaluated.  However, adding the basis 
function using its optimal efficient is prone to 
overfitting. We thus add a shrinkage coefficient 0 
< υ < 1 – the fraction of the optimal line step 
taken. The update equation is thus rewritten in 
line 5 in Figure 2.   

Notice that if the background model contains 
all the input features in x, then LambdaBoost 
does not add any new features but adjust the 
weights of existing features.  If the background 
model does not contain all of the input features, 
then LambdaBoost can be viewed as a feature 
selection method, similar to Collins (2000), where 
at each iteration the feature that has the largest 
impact on reducing training loss is selected and 
added to the background model. In either case, 
LambdaBoost adapts the background model by 
adding a model whose form is a (weighted) li-
near combination of input features.  The property 
of linearity makes LambdaBoost robust and less 
likely to overfit in Web search applications.  But 
this also limits the adaptation capacity. A simple 
method that allows us to go beyond linear 
adaptation is to define h as nonlinear terms of the 
input features, such as regression trees in 
LambdaSMART. 

4.2 The LambdaSMART Algorithm 

LambdaSMART was originally proposed in Wu 
et al. (2008). It is built on MART (Friedman, 2001) 
but uses the λ-function (Burges et a., 2006) to 

1 Set F0(x) to be the background ranking model 
2 for m = 1 to M do 
3 compute residuals according to Equation (5)  
4 select best hm (with its best βm), according to LS, 

computed by Equations (8) and (9) 
5 𝐹𝑚  𝐱 = 𝐹𝑚−1 𝐱 + 𝜐𝛽𝑚ℎ(𝐱) 

Figure 2. The LambdaBoost algorithm for model adaptation. 
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compute gradients. The algorithm is summa-
rized in Figure 3.  Similar to LambdaBoost, it 
takes M rounds, and at each boosting iteration, it 
adapts the background model to training data 
using the 3-step procedure. Step 1 (line 3 in Fig-
ure 3) has been described.  

Step 2 (lines 4 to 6) searches for the optimal 
basis function h to best fit the residual.  Unlike 
LambdaBoost where there are a finite number of 
candidate basis functions, the function space of 
regression trees is infinite. We define h as a re-
gression tree with L terminal nodes.  In line 4, a 
regression tree is built using Mean Square Error 
to determine the best split at any node in the tree.  
The value associated with a leaf (i.e., terminal 
node) of the trained tree is computed first as the 
residual (computed via λ-function) for the train-
ing samples that land at that leaf.  Then, since 
each leaf corresponds to a different mean, a 
one-dimensional Newton-Raphson line step is 
computed for each leaf (lines 5 and 6).  These line 
steps may be simply computed as the derivatives 
of the LambdaRank gradients w.r.t. the model 
scores si.  Formally, the value of the l-th leaf, βml, 
is computed as 

𝛽𝑚𝑙 =
 𝑦𝑖

′
𝑥∈𝑅𝑙𝑚

 𝑤𝑖𝑥∈𝑅𝑙𝑚

, (10) 

where 𝑦𝑖
′  is the residual of training sample i, 

computed in Equation (5), and  𝑤𝑖  is the deriva-
tive of 𝑦𝑖

′ , i.e., 𝑤𝑖 = 𝜕𝑦𝑖
′ /𝜕𝐹(𝐱𝑖). 

In Step 3 (line 7), the regression tree is added 
to the current base model, weighted by the 
shrinkage coefficient 0 < υ < 1.  

Notice that since a regression tree can be 
viewed as a complex feature that combines mul-
tiple input features, LambdaSMART can be used 
as a feature generation method. LambdaSMART 
is arguably more powerful than LambdaBoost in 
that it introduces new complex features and thus 
adjusts not only the parameters but also the 
structure of the background model1. However, 

                                                      
1  Note that in a sense our proposed LambdaBoost 
algorithm is the same as LambdaSMART, but using a 
single feature at each iteration, rather than a tree. In 
particular, they share the trick of using the Lambda 

one problem of trees is their high variance.  
Often a small change in the data can result in a 
very different series of splits.  As a result, 
tree-based ranking models are much less robust 
to noise, as we will show in our experiments.  In 
addition to the use of shrinkage coefficient 0 < υ 
< 1, which is a form of model regularization 
according to Hastie, et al., (2001), we will ex-
plore in Section 5.3 other methods of improving 
the model robustness, including randomization 

and using shallow trees. 

5 Experiments 

5.1 The Data 

We evaluated the ranking model adaptation 
methods on two Web search domains, namely (1) 
a name query domain, which consists of only 
person name queries, and (2) a Korean query 
domain, which consists of queries that users 
submitted to the Korean market.   

For each domain, we used two in-domain 
data sets that contain queries sampled respec-
tively from the query log of a commercial Web 
search engine that were collected in two 
non-overlapping periods of time.  We used the 
more recent one as open test set, and split the 
other into three non-overlapping data sets, 
namely training, validation and closed test sets, 
respectively.  This setting provides a good si-
mulation to the realistic Web search scenario, 
where the rankers in use are usually trained on 
early collected data, and thus helps us investigate 
the robustness of these model adaptation me-
thods. 

The statistics of the data sets used in our per-
son name domain adaptation experiments are 
shown in Table 1. The names query set serves as 
the adaptation domains, and Web-1 as the back-
ground domain. Since Web-1 is used to train a 
background ranker, we did not split it to 
train/valid/test sets. We used 416 input features 
in these experiments.  

For cross-domain adaptation experiments 
from non-Korean to Korean markets, Korean 
data serves as the adaptation domain, and Eng-
lish, Chinese, and Japanese data sets as the 
background domain.  Again, we did not split the 
data sets in the background domain to 
train/valid/test sets.  The statistics of these data 
sets are shown in Table 2. We used 425 input 
features in these experiments. 

                                                                                
gradients to learn NDCG. 

1 Set F0(x) to be the background ranking model 
2 for m = 1 to M do 
3 compute residuals according to Equation (5)  
4 create a  L-terminal node tree, ℎ𝑚 ≡  𝑅𝑙𝑚  𝑙=1…𝐿  
5 for l = 1 to L do 
6 compute the optimal βlm according to Equation 

(10), based on approximate Newton step. 

7 𝐹𝑚  𝐱 = 𝐹𝑚−1 𝑥 + 𝜐  𝛽𝑙𝑚 1(𝑥 ∈ 𝑅𝑙𝑚 )
𝑙=1…𝐿

 

Figure 3. The LambdaSMART algorithm for model adaptation. 
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In each domain, the in-domain training data is 
used to train in-domain rankers, and the back-
ground data for background rankers. Validation 
data is used to learn the best training parameters 

of the boosting algorithms, i.e., M, the total 

number of boosting iterations, , the shrinkage 
coefficient, and L, the number of leaf nodes for 

each regression tree (L=1 in LambdaBoost). 
Model performance is evaluated on the 
closed/open test sets.  

All data sets contain samples labeled on a 
5-level relevance scale, 0 to 4, with 4 as most 
relevant and 0 as irrelevant. The performance of 
rankers is measured through NDCG evaluated 
against closed/open test sets.  We report NDCG 
scores at positions 1, 3 and 10, and the averaged 
NDCG score (Ave-NDCG), the arithmetic mean 
of the NDCG scores at 1 to 10. Significance test 
(i.e., t-test) was also employed. 

5.2 Model Adaptation Results 

This section reports the results on two adapta-
tion experiments.  The first uses a large set of 
Web data, Web-1, as background domain and 
uses the name query data set as adaptation data. 
The results are summarized in Tables 3 and 4.  
We compared the three model adaptation me-
thods against two baselines: (1) the background 
ranker (Row 1 in Tables 3 and 4), a 2-layer 
LambdaRank model with 15 hidden nodes and a 
learning rate of 10-5 trained on Web-1; and (2) the 
In-domain Ranker (Row 2), a 2-layer Lambda-
Rank model with 10 hidden nodes and a learning 
rate of 10-5 trained on Names-1-Train.  We built 
two interpolated rankers.  The 2-way interpo-
lated ranker (Row 3) is a linear combination of 
the two baseline rankers, where the interpolation 
weights were optimized on Names-1-Valid.  To 
build the 3-way interpolated ranker (Row 4), we 
linearly interpolated three rankers.  In addition 
to the two baseline rankers, the third ranker is 
trained on an augmented training data, which 
was created using the kNN method described in 
Section 3.   

In LambdaBoost (Row 5) and LambdaSMART 
(Row 6), we adapted the background ranker to 
name queries by boosting the background ranker 
with Names-1-Train. We trained LambdaBoost 

with the setting M = 500,  = 0.5, optimized on 
Names-1-Valid. Since the background ranker 
uses all of the 416 input features, in each boosting 
iteration, LambdaBoost in fact selects one exist-
ing feature in the background ranker and adjusts 
its weight. We trained LambdaSMART with M = 

500, L = 20,  = 0.5, optimized on Names-1-Valid. 
We see that the results on the closed test set 

(Table 3) are quite different from the results on 
the open test set (Table 4).  The in-domain ranker 
outperforms the background ranker on the 
closed test set, but underperforms significantly 
the background ranker on the open test set.  The 
interpretation is that the training set and the 
closed test set are sampled from the same data 
set and are very similar, but the open test set is a 
very different data set, as described in Section 5.1.  
Similarly, on the closed test set, LambdaSMART 
outperforms LambdaBoost with a big margin 
due to its superior adaptation capacity; but on 
the open test set their performance difference is 
much smaller due to the instability of the trees in 
LambdaSMART, as we will investigate in detail 
later.  Interestingly, model interpolation, though 
simple, leads to the two best rankers on the open 
test set. In particular, the 3-way interpolated 
ranker outperforms the two baseline rankers 

Coll. Description  #qry. # url/qry 

Web-1 Background training data 31555 134 
Names-1-Train In-domain training data  

(adaptation data)  
5752 85 

Names-1-Valid In-domain validation data 158 154 
Names-1-Test Closed test data 318 153 
Names-2-Test Open test data 4370 84 

Table 1. Data sets in the names query domain experiments,  
where # qry is number of queries, and # url/qry is number 
of documents per query. 

Coll. Description  # qry. # url/qry 

Web-En Background En training data 6167 198 
Web-Ja Background Ja training data 45012 58 
Web-Cn Background Ch training data 32827 72 
Kokr-1-Train In-domain Ko training data 

(adaptation data)  
3724 64 

Kokr-1-Valid In-domain validation data 334 130 
Kokr-1-Test Korean closed test data 372 126 
Kokr-2-Test Korean open test data 871 171 

Table 2. Data sets in the Korean domain experiments. 

# Models NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Back. 0.4575 0.4952 0.5446 0.5092 
2 In-domain 0.4921 0.5296 0.5774 0.5433 
3 2W-Interp. 0.4745 0.5254 0.5747 0.5391 
4 3W-Interp. 0.4829 0.5333 0.5814 0.5454 
5 λ-Boost 0.4706 0.5011 0.5569 0.5192 
6 λ-SMART 0.5042 0.5449 0.5951 0.5623 

Table 3. Close test results on Names-1-Test. 

# Models NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Back. 0.5472 0.5347 0.5731 0.5510 
2 In-domain 0.5216 0.5266 0.5789 0.5472 
3 2W-Interp. 0.5452 0.5414 0.5891 0.5604 
4 3W-Interp. 0.5474 0.5470 0.5951 0.5661 
5 λ-Boost 0.5269 0.5233 0.5716 0.5428 
6 λ-SMART 0.5200 0.5331 0.5875 0.5538 

Table 4. Open test results on Names-2-Test. 
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significantly (i.e., p-value < 0.05 according to 
t-test) on both the open and closed test sets. 

The second adaptation experiment involves 
data sets from several languages (Table 2).  
2-layer LambdaRank baseline rankers were first 
built from Korean, English, Japanese, and Chi-
nese training data and tested on Korean test sets 

(Tables 5 and 6).  These baseline rankers then 
serve as in-domain ranker and background 
rankers for model adaptation.  For model inter-
polation (Tables 7 and 8), Rows 1 to 4 are three 
2-way interpolated rankers built by linearly in-
terpolating  
each of the three background rankers with the 
in-domain ranker, respectively.  Row 4 is a 4-way 
interpolated ranker built by interpolating the 
in-domain ranker with the three background 
rankers.  For LambdaBoost (Tables 9 and 10) and 
LambdaSMART (Tables 11 and 12), we used the 
same parameter settings as those in the name 
query experiments, and adapted the three back-
ground rankers, to the Korean training data, 
Kokr-1-Train. 

The results in Tables 7 to 12 confirm what we 
learned in the name query experiments. There 
are three main conclusions. (1) Model interpola-
tion is an effective method of ranking model 
adaptation. E.g., the 4-way interpolated ranker 
outperforms other ranker significantly. (2) 
LambdaSMART is the best performer on the 
closed test set, but its performance drops signif-
icantly on the open test set due to the instability 
of trees. (3) LambdaBoost does not use trees. So 
its modeling capacity is weaker than Lamb-
daSMART (e.g., it always underperforms 
LambdaSMART significantly on the closed test 
sets), but it is more robust due to its linearity (e.g., 
it performs similarly to LambdaSMART on the 
open test set). 

5.3 Robustness of Boosting Algorithms 

This section investigates the robustness issue 
of the boosting algorithms in more detail. We 
compared LambdaSMART with different values 
of L (i.e., the number of leaf nodes), and with and 
without randomization. Our assumptions are (1) 
allowing more leaf nodes would lead to deeper 
trees, and as a result, would make the resulting 
ranking models less robust; and (2) injecting 
randomness into the basis function (i.e. regres-
sion tree) estimation procedure would improve 
the robustness of the trained models (Breiman, 
2001; Friedman, 1999).  In LambdaSMART, the 
randomness can be injected at different levels of 
tree construction.  We found that the most effec-
tive method is to introduce the randomness at 
the node level (in Step 4 in Figure 3). Before each 
node split, a subsample of the training data and a 
subsample of the features are drawn randomly. 
(The sample rate is 0.7). Then, the two randomly 
selected subsamples, instead of the full samples, 
are used to determine the best split.  
 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Back. (En) 0.5371 0.5413 0.5873 0.5616 
2 Back. (Ja) 0.5640 0.5684 0.6027 0.5808 
3 Back. (Cn) 0.4966 0.5105 0.5761 0.5393 
4 In-domain  0.5927 0.5824 0.6291 0.6055 

Table 5. Close test results of baseline rankers, on Kokr-1-Test 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Back. (En) 0.4991 0.5242 0.5397 0.5278 
2 Back. (Ja) 0.5052 0.5092 0.5377 0.5194 
3 Back. (Cn) 0.4779 0.4855 0.5114 0.4942 
4 In-domain  0.5164 0.5295 0.5675 0.5430 

Table 6. Open test results of baseline rankers, on Kokr-2-Test 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Interp. (En) 0.5954 0.5893 0.6335 0.6088 
2 Interp. (Ja) 0.6047 0.5898 0.6339 0.6116 
3 Interp. (Cn) 0.5812 0.5807 0.6268 0.6024 
4 4W-Interp. 0.5878 0.5870 0.6289 0.6054 

Table 7. Close test results of interpolated rankers, on 
Kokr-1-Test. 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 Interp. (En) 0.5178 0.5369 0.5768 0.5500 
2 Interp. (Ja) 0.5274 0.5416 0.5788 0.5531 
3 Interp. (Cn) 0.5224 0.5339 0.5766 0.5487 
4 4W-Interp.  0.5278 0.5414 0.5823 0.5549 

Table 8. Open test results of interpolated rankers, on 
Kokr-2-Test. 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 λ-Boost (En) 0.5757 0.5716 0.6197 0.5935 
2 λ-Boost (Ja) 0.5801 0.5807 0.6225 0.5982 
3 λ-Boost (Cn)  0.5731 0.5793 0.6226 0.5972 

Table 9. Close test results of λ-Boost rankers, on Kokr-1-Test. 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 λ-Boost (En) 0.4960 0.5203 0.5486 0.5281 
2 λ-Boost (Ja) 0.5090 0.5167 0.5374 0.5233 
3 λ-Boost (Cn)  0.5177 0.5324 0.5673 0.5439 

Table 10. Open test results of λ-Boost rankers, on Kokr-2-Test. 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 λ-SMART 
(En) 

0.6096 0.6057 0.6454 0.6238 

2 λ- SMART 
(Ja) 

0.6014 0.5966 0.6385 0.6172 

3 λ- SMART 
(Cn)  

0.5955 0.6095 0.6415 0.6209 

Table 11. Close test results of λ-SMART rankers, on 
Kokr-1-Test. 

# Ranker NDCG@1 NDCG@3 NDCG@10 AveNDCG 

1 λ- SMART 
(En) 

0.5177 0.5297 0.5563 0.5391 

2 λ- SMART 
(Ja) 

0.5205 0.5317 0.5522 0.5368 

3 λ- SMART 
(Cn)  

0.5198 0.5305 0.5644 0.5410 

Table 12. Open test results of λ-SMART rankers, on 
Kokr-2-Test. 
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We first performed the experiments on name 
queries. The results on the closed and open test sets 
are shown in Figures 4 (a) and 4 (b), respectively. 
The results are consistent with our assumptions. 
There are three main observations.  First, the gray 
bars in Figures 4 (a) and 4 (b) (boosting without 
randomization) show that on the closed test set, as  
expected, NDCG increases with the value of L, but 
the correlation does not hold on the open test set.  
Second, the black bars in these figures (boosting 
with randomization) show that in both closed and 
open test sets, NDCG increases with the value of L.  
Finally, comparing the gray bars with their cor-
responding black bars, we see that randomization 
consistently improves NDCG on the open test set, 
with a larger margin of gain for the boosting algo-
rithms with deeper trees (L > 5). 

These results are very encouraging.  Randomi-
zation seems to work like a charm. Unfortunately, 
it does not work well enough to help the boosting 
algorithm beat model interpolation on the open test 
sets.  Notice that all the LambdaSMART results 
reported in Section 5.2 use randomization with the 
same sampling rate  of 0.7.  We repeated the com-
parison in the cross-domain adaptation experi-
ments.  As shown in Figure 4, results in 4 (c) and 4 
(d) are consistent with those on names queries in 4 
(b). Results in 4 (f) show a visible performance drop 
from LambdaBoost to LambdaSMART with L = 2, 
indicating again the instability of trees. 

6 Conclusions and Future Work 

In this paper, we extend two classes of model 
adaptation methods (i.e., model interpolation and 
error-driven learning), which have been well stu-
died in statistical language modeling for speech 
and natural language applications (e.g., Bacchiani 
et al., 2004; Bellegarda, 2004; Gao et al., 2006), to 
ranking models for Web search applications.  

We have evaluated our methods on two adap-
tation experiments over a wide variety of datasets 
where the in-domain datasets bear different levels 
of similarities to their background datasets.  We 
reach different conclusions from the results of the 
open and close tests, respectively. Our open test 
results show that in the cases where the in-domain 
data is dramatically different from the background 
data, model interpolation is very robust and out-
performs the baseline and the error-driven learning 
methods significantly; whereas our close test re-
sults show that in the cases where the in-domain 
data is similar to the background data, the tree- 
based boosting algorithm (i.e. LambdaSMART) is 
the best performer, and achieves a significant im-
provement over the baselines.  We also show that 
these different conclusions are largely due to the 
instability of the use of trees in the boosting algo-
rithm. We thus explore several methods of im-
proving the robustness of the algorithm, such as 
randomization, regularization, using shallow trees, 
with limited success.  Of course, our experiments, 

 (a)  (b)  

  

(c)  (d)  (e)  

Figure 4. AveNDCG results (y-axis) of LambdaSMART with different values of L (x-axis), where L=1 is LambdaBoost; (a) and (b) are 
the results on closed and open tests using Names-1-Train as adaptation data, respectively;  (d),  (e) and (f) are the results on the 
Korean open test set, using background models trained on Web-En, Web-Ja, and Web-Cn data sets, respectively. 
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described in Section 5.3, only scratch the surface of 
what is possible.  Robustness deserves more inves-
tigation and forms one area of our future work. 

Another family of model adaptation methods 
that we have not studied in this paper is transfer 
learning, which has been well-studied in the ma-
chine learning community (e.g., Caruana, 1997; 
Marx et al., 2008).  We leave it to future work. 

To solve the issue of inadequate training data, in 
addition to model adaptation, researchers have 
also been exploring the use of implicit user feed-
back data (extracted from log files) for ranking 
model training (e.g., Joachims et al., 2005; Radlinski 
et al., 2008).  Although such data is very noisy, it is 
of a much larger amount and is cheaper to obtain 
than human-labeled data.  It will be interesting to 
apply the model adaptation methods described in 
this paper to adapt a ranker which is trained on a 
large amount of automatically extracted data to a 
relatively small amount of human-labeled data. 
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Abstract

This paper addresses the issue of extract-
ing contexts and answers of questions
from post discussion of online forums.
We propose a novel and unified model by
customizing the structural Support Vector
Machine method. Our customization has
several attractive properties: (1) it gives a
comprehensive graphical representation of
thread discussion. (2) It designs special
inference algorithms instead of general-
purpose ones. (3) It can be readily ex-
tended to different task preferences by
varying loss functions. Experimental re-
sults on a real data set show that our meth-
ods are both promising and flexible.

1 Introduction

Recently, extracting questions, contexts and an-
swers from post discussions of online forums in-
curs increasing academic attention (Cong et al.,
2008; Ding et al., 2008). The extracted knowl-
edge can be used either to enrich the knowledge
base of community question answering (QA) ser-
vices such as Yahoo! Answers or to augment the
knowledge base of chatbot (Huang et al., 2007).

Figure 1 gives an example of a forum thread
with questions, contexts and answers annotated.
This thread contains three posts and ten sentences,
among which three questions are discussed. The
three questions are proposed in three sentences,
S3, S5 and S6. The context sentences S1 and
S2 provide contextual information for question
sentence S3. Similarly, the context sentence S4
provides contextual information for question sen-
tence S5 and S6. There are three question-context-
answer triples in this example, (S3) − (S1,S2) −
(S8,S9), (S5)− (S4)− (S10) and (S6)− (S4)−

∗This work was done while the first author visited Mi-
crosoft Research Asia.

Post1: <context id=1> S1: Hi I am looking for
a pet friendly hotel in Hong Kong because all of
my family is going there for vacation. S2: my fam-
ily has 2 sons and a dog. </context> <question
id=1> S3: Is there any recommended hotel near
Sheung Wan or Tsing Sha Tsui? </question>
<context id=2, 3> S4: We also plan to go shopping
in Causeway Bay. </context> <question id=2>
S5: What’s the traffic situation around those com-
mercial areas? </question> <question id=3> S6:
Is it necessary to take a taxi? </question> S7: Any
information would be appreciated.
Post2: <answer id=1> S8: The Comfort Lodge
near Kowloon Park allows pet as I know, and usu-
ally fits well within normal budgets. S9: It is also
conveniently located, nearby the Kowloon railway
station and subway. </answer>
Post3: <answer id=2, 3> S10: It’s very crowd in
those areas, so I recommend MTR in Causeway Bay
because it is cheap to take you around. </answer>

Figure 1: An example thread with three posts and
ten sentences

(S10). As shown in the example, a forum question
usually requires contextual information to com-
plement its expression. For example, the ques-
tion sentence S3 would be of incomplete meaning
without the contexts S1 and S2, since the impor-
tant keyword pet friendly would be lost.

The problem of extracting questions, contexts,
and answers can be solved in two steps: (1) iden-
tify questions and then (2) extract contexts and an-
swers for them. Since identifying questions from
forum discussions is already well solved in (Cong
et al., 2008), in this paper, we are focused on step
(2) while assuming questions already identified.

Previously, Ding et al. (2008) employ general-
purpose graphical models without any customiza-
tions to the specific extraction problem (step 2).
In this paper, we improve the existing models in
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three aspects: graphical representation, inference
algorithm and loss function.

Graphical representation. We propose a more
comprehensive and unified graphical representa-
tion to model the thread for relational learning.
Our graphical representation has two advantages
over previous work (Ding et al., 2008): unifying
sentence relations and incorporating question in-
teractions.

Three types of relation should be considered for
context and answer extraction: (a) relations be-
tween successive sentences (e.g., context sentence
S2 occurs immediately before question sentence
S3); (b) relations between context sentences and
answer sentences (e.g., context S4 presents the
phrase Causeway Bay linking to answer which is
absent from question S6); and (c) relations be-
tween multiple labels for one sentence (e.g., one
question sentence is unlikely to be the answer to
another question although one sentence can serve
as contexts for more than one questions). Our pro-
posed graphical representation improves the mod-
eling of the three types of sentence relation (Sec-
tion 2.2).

Certain interactions exist among questions. For
example, question sentences S5 and S6 interact by
sharing context sentence S4. Our proposed graphi-
cal representation can naturally model the interac-
tions. Previous work (Ding et al., 2008) performs
the extraction of contexts and answers in multiple
passes of the thread (with each pass corresponding
to one question), which cannot address the interac-
tions well. In comparison, our model performs the
extraction in one pass of the thread.

Inference algorithm. Inference is usually a
time-consuming process for structured prediction.
We design special inference algorithms, instead of
general-purpose inference algorithms used in pre-
vious works (Cong et al., 2008; Ding et al., 2008),
by taking advantage of special properties of our
task. Specifically, we utilize two special properties
of thread structure to reduce the inference (time)
cost. First, context sentences and question sen-
tences usually occur in the same post while answer
sentences can only occur in the following posts.
With this properties, we can greatly reduce context
(or answer) candidate sets of a question, which
results in a significant decrease in inference cost
(Section 3). Second, context candidate set is usu-
ally much smaller than the number of sentences
in a thread. This property enables our proposal to

have an exact and efficient inference (Section 4.1).
Moreover, an approximate inference algorithm is
also given (Section 4.2).

Loss function. In practice, different applica-
tion settings usually imply different requirements
for system performance. For example, we expect
a higher recall for the purpose of archiving ques-
tions but a higher precision for the purpose of re-
trieving questions. A flexible framework should
be able to cope with various requirements. We
employ structural Support Vector Machine (SVM)
model that could naturally incorporate different
loss functions (Section 5).

We use a real data set to evaluate our approach
to extracting contexts and answers of questions.
The experimental results show both the effective-
ness and the flexibility of our approach.

In the next section, we formalize the problem
of context and answer extraction and introduce the
structural model. In Sections 3, 4 and 5 we give
the details of customizing structural model for our
task. In Section 6, we evaluate our methods. In
Section 7, we discuss the related work. Finally,
we conclude this paper in Section 8.

2 Problem Statement

We first introduce our notations in Section 2.1 and
then in Section 2.2 introduce how we model the
problem of extracting contexts and answers for
questions with a novel form of graphical represen-
tation. In Section 2.3 we introduce the structured
model based on the new representation.

2.1 Notations

Assuming that a given thread contains p posts
{p1, . . . , pp}, which are authored by a set of
users {u1, . . . , up}. The p posts can be further
segmented into n sentences x = {x1, . . . , xn}.
Among the n sentences,m question sentences q =
{xq1 , . . . , xqm} have been identified. Our task is
to identify the context sentences and the answer
sentences for those m question sentences. More
formally, we use four types of label {C,A,Q, P}
to stand for context, answer, question and plain la-
bels. Then, our task is to predict an m × n label
matrix y = (yij)1≤i≤m,1≤j≤n, except m elements
{y1,q1 , . . . , ym,qm} which correspond to (known)
question labels. The element yij in label matrix y
represents the role that the jth sentence plays for
the ith question. We denote the ith row and jth
column of the label matrix y by yi. and y.j .
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y2 y3 y5y4 y6y1 y7

{C , P } {C , P } {C , P } {Q } {P } {A, P } {A, P }

x1 x2 x3 x4 x5 x6 x7

(a) Skip-chain model

y2 y3 y5y4 y6y1 y7

{C , P } {C , P } {C , P } {Q } {P } {A, P } {A, P }

x1 x2 x3 x4 x5 x6 x7

(b) Complete skip-chain model

y12 y13 y14y11 y1n

y22 y23 y24y21 y2n

ym 2 ym 3 ym 4ym 1 ym n

(c) 2D model

y12 y13 y14y11 y1n

y22 y23 y24y21 y2n

ym 2 ym 3 ym 4ym 1 ym n

(d) Label group model

Figure 2: Structured models

2.2 Graphical Representation

Recently, Ding et al. (2008) use skip-chain and
2D Conditional Random Fields (CRFs) (Lafferty
et al., 2001) to perform the relational learning for
context and answer extraction. The skip-chain
CRFs (Sutton and McCallum, 2004; Galley, 2006)
model the long distance dependency between con-
text and answer sentences and the 2D CRFs (Zhu
et al., 2005) model the dependency between con-
tiguous questions. The graphical representation
of those two models are shown in Figures 2(a)
and 2(c), respectively. Those two CRFs are both
extensions of the linear chain CRFs for the sake
of powerful relational learning. However, di-
rectly using the skip-chain and 2D CRFs with-
out any customization has obvious disadvantages:
(a) the skip-chain model does not model the de-
pendency between answer sentence and multiple
context sentences; and (b) the 2D model does not
model the dependency between non-contiguous
questions.

To better model the problem of extracting con-
texts and answers of questions, we propose two
more comprehensive models, complete skip-chain
model and label group model to improve the ca-
pability of the two previous models. These two
models are shown in Figures 2(b) and 2(d).

In Figures 2(a) and 2(b), each label node is an-

notated with its allowed labels and the labels C, A,
Q and P stand for context, answer, question and
plain sentence labels, respectively. Note that the
complete skip-chain model completely links each
two context and answer candidates and the label
group model combines the labels of one sentence
into one label group.

2.3 Structured Model

Following the standard machine learning setup,
we denote the input and output spaces by X and
Y , then formulate our task as learning a hypoth-
esis function h : X → Y to predict a y when
given x. In this setup, x represents a thread of n
sentences andm identified questions. y represents
the m× n label matrix to be predicted.

Given a set of training examples, S =
{(x(i),y(i)) ∈ X × Y : i = 1, . . . , N}, we
restrict ourselves to the supervised learning sce-
nario. We focus on hypothesis functions that
take the form h(x;w) = arg maxy∈Y F(x,y;w)
with discriminant function F : X × Y → R
where F(x,y;w) = wT Ψ(x,y). As will be
introduced in Section 4, we employ structural
SVMs (Joachims et al., 2009) to find the optimal
parameters w. The structural SVMs have sev-
eral competitive properties as CRFs. First, it fol-
lows from the maximum margin strategy, which
has been shown with competitive or even better
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performance (Tsochantaridis et al., 2005; Nguyen
and Guo, 2007). Second, it allows flexible choices
of loss functions to users. Moreover, in general,
it has theoretically proved convergence in polyno-
mial time (Joachims et al., 2009).

To use structural SVMs in relational learning,
one needs to customize three steps according to
specific tasks. The three steps are (a) definition of
joint feature mapping for encoding relations, (b)
algorithm of finding the most violated constraint
(inference) for efficient trainings and (c) definition
of loss function for flexible uses.

In the following Sections 3, 4 and 5, we describe
the customizations of the three steps for our con-
text and answer extraction task, respectively.

3 Encoding Relations

We use a joint feature mapping to model the rela-
tions between sentences in a thread. For context
and answer extraction, the joint feature mapping
can be defined as follows,

Ψ(x,y) =

 Ψn(x,y)
Ψh(x,y)
Ψv(x,y)

 ,

where the sub-mappings Ψn(x,y), Ψh(x,y), and
Ψv(x,y) encode three types of feature mappings,
node features, edge features and label group fea-
tures. The node features provide the basic infor-
mation for the output labels. The edge features
consist of the sequential edge features and skip-
chain edge features for successive label dependen-
cies. The label group features encode the relations
within each label group.

Before giving the detail definitions of the sub-
mappings, we first introduce the context and an-
swer candidate sets, which will be used for the
definitions and inferences. Each row of the label
matrix y corresponds to one question. Assuming
that the ith row yi. corresponds to the question
with sentence index qi, we thus have two candi-
date sets of contexts and answers for this question
denoted by C and A, respectively. We denote the
post indices and the author indices for the n sen-
tences as p = (p1, . . . , pn) and u = (u1, . . . , un).
Then, we can formally define the two candidate

sets for the yi. as

C =

{
cj

∣∣∣∣∣ pcj = pqi︸ ︷︷ ︸
In Question Post

, cj 6= qi︸ ︷︷ ︸
Not Question Sentence

}
,

A =

{
aj

∣∣∣∣∣ paj > pqi︸ ︷︷ ︸
After Question Post

, uaj 6= uqi︸ ︷︷ ︸
Not by the Same User

}
.

In the following, we describe formally about the
definitions of the three feature sub-mappings.

The node feature mapping Ψn(x,y) encodes
the relations between sentence and label pairs, we
define it as follows,

Ψn(x,y) =
m∑

i=1

n∑
j=1

ψn(xj , yij),

where ψn(xj , yij) is a feature mapping for a given
sentence and a label. It can be formally defined as
follows,

ψn(xj , yij) = Λ(yij)⊗ φqi(xj), (1)

where ⊗ denotes a tensor product, φqi(xj) and
Λ(yij) denote two vectors. φqi(xj) contains ba-
sic information for output label. Λ(yij) is a 0/1
vector defined as

Λ(yij) = [λC(yij), λA(yij), λP (yij)]T ,

where λC(yij) equal to one if yij = C, otherwise
zero. The λA(yij) and λP (yij) are similarly de-
fined. Thus, for example, writing out ψn(xj , yij)
for yij = C one gets,

ψn(xj , yij) =

 φqi(xj)
0
0

 ← context
← answer
← plain

.

Note that the node feature mapping does not in-
corporate the relations between sentences.

The edge feature mapping Ψh(x,y) is used
to incorporate two types of relation, the relation
between successive sentences and the relation be-
tween context and answer sentences. It can be de-
fined as follows,

Ψh(x,y) =
[

Ψhn(x,y)
Ψhc(x,y)

]
,

where Ψhn(x,y) and Ψhc(x,y) denote the two
types of feature mappings corresponding to se-
quential edges and skip-chain edges, respectively.
Their formal definitions are given as follows,

Ψhn(x,y) =
m∑

i=1

n−1∑
j=1

ψhn(xj , xj+1, yij , yi,j+1),
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Descriptions Dimensions
ψqi(xj) (32 dimensions) in Ψn(x,y)

The cosine, WordNet and KL-divergence similarities with the question xqi 3
The cosine, WordNet and KL-divergence similarities with the questions other than xqi 3
The cosine, WordNet and KL-divergence similarities with previous and next sentences 6
Is this sentence xj exactly xqi or one of the questions in {xq1 , . . . , xqm}? 2
Is this sentence xj in the three beginning sentences? 3
The relative position of this sentence xj to questions 4
Is this sentence xj share the same author with the question sentence xqi? 1
Is this sentence xj in the same post with question sentences? 2
Is this sentence xj in the same paragraph with question sentences? 2
The presence of greeting (e.g., “hi”) and acknowledgement words in this sentence xj 2
The length of this sentence xj 1
The number of nouns, verbs and pronouns in this sentence xj , respectively 3

Ψh(x,y) (704 dimensions)
For Ψhn(x,y), the above 32 dimension features w.r.t. 4× 4 = 16 transition patterns 512
For Ψhc(x,y), 12 types of pairwise or merged similarities w.r.t. 16 transition patterns 192

Ψv(x,y) (32 dimensions)
The transition patterns for any two non-contiguous labels in a label group 16
The transition patterns for any two contiguous labels in a label group 16

Table 1: Feature descriptions and demisions

Ψhc(x,y) =
m∑

i=1

∑
j∈C

∑
k∈A︸ ︷︷ ︸

Complete Edges

ψhc(xj , xk, yij , yik),

ψhn(xj , xj+1, yij , yi,j+1)
= Λ(yij , yi,j+1)⊗ φhn(xj , xj+1, yij , yi,j+1),

ψhc(xj , xk, yij , yik)
= Λ(yij , yik)⊗ ψhc(xj , xk, yij , yik)

where Λ(yij , yik) is a 16-dimensional vector. It in-
dicates all 4×4 pairwise transition patterns of four
types of labels, the context, answer, question and
plain. Note that apart from previous work (Ding
et al., 2008) we use complete skip-chain (context-
answer) edges in Ψhc(x,y).

The label group feature mapping Ψv(x,y) is
defined as follows,

Ψv(x,y) =
n∑

j=1

ψv(xj ,y.j),

where ψv(xj ,y.j) encodes each label group pat-
tern into a vector.

The detail descriptions and vector dimensions
of the used features are listed in Table 1.

4 Structural SVMs and Inference

Given a training set S = {(x(i),y(i)) ∈ X ×
Y : i = 1, . . . , N}, we use the structural
SVMs (Taskar et al., 2003; Tsochantaridis et
al., 2005; Joachims et al., 2009) formulation, as
shown in Optimization Problem 1 (OP1), to learn
a weight vector w.

OP 1 (1-Slack Structural SVM)

min
w,ξ≥0

1
2
||w||2 +

C

N
ξ

s.t. ∀(ȳ(1), . . . , ȳ(N)) ∈ Yn,

1
N

wT
N∑

i=1

[Ψ(x(i),y(i))−Ψ(x(i), ȳ(i))]

≥ 1
N

N∑
i=1

∆(y(i), ȳ(i))− ξ,

where ξ is a slack variable, Ψ(x,y) is the joint
feature mapping and ∆(y, ȳ) is the loss func-
tion that measures the loss caused by the dif-
ference between y and ȳ. Though OP1 is al-
ready a quadratic optimization problem, directly
using off-the-shelf quadratic optimization solver
will fail, due to the large number of constraints.
Instead, a cutting plane algorithm is used to ef-
ficiently solve this problem. For the details of the
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{C , P } {C , P } {C , P } {Q } {P } {A, P } {A, P }

(a) Original graph

{P P P , P P C , P C P , P C C , C P P , C P C , C C P , C C C }

{Q } {P } {A, P } {A, P }

(b) Transformed graph

{P P P }

{Q } {P } {A, P } {A, P }

{C C C }

{Q } {P } {A, P } {A, P }

....

(c) Decomposed graph

Figure 3: The equivalent transform of graphs

Algorithm 1 Exact Inference Algorithm
1: Input: (Ci,Ai) for each qi, w, x, y
2: for i ∈ {1, . . . ,m} do
3: for Cs ⊆ Ci do
4: [R(Cs), ȳi.(Cs)]← Viterbi(w,x; Cs)
5: end for
6: C∗s = arg maxCs⊆Ci R(Cs)
7: ȳ∗i. = ȳi.(C∗s )
8: end for
9: return ȳ∗

structural SVMs, please refer to (Tsochantaridis et
al., 2005; Joachims et al., 2009).

The most essential and time-consuming step in
structural SVMs is finding the most violated con-
straint, which is equivalent to solve

arg max
y∈Y

wT Ψ(x(i),y) + ∆(y(i),y). (2)

Without the ability to efficiently find the most vio-
lated constraint, the cutting plane algorithm is not
tractable.

In the next sub-sections, we introduce the al-
gorithms for finding the most violated constraint,
also called loss-augmented inference. The algo-
rithms are essential for the success of customizing
structural SVMs to our problem.

4.1 Exact Inference
The exact inference algorithm is designed for a
simplified model with two sub-mappings Ψn and
Ψh, except Ψv.

One naive approach to finding the most violated
constraint for the simplified model is to enumer-
ate all the 2|C|+|A| cases for each row of the label
matrix. However, it would be intractable for large
candidate sets.

An important property is that the context can-
didate set is usually much smaller than the whole
number of sentences in a thread. This property en-
ables us to design efficient and exact inference al-
gorithm by transforming from the original graph

representation in Figure 2 to the graphs in Fig-
ure 3. This graph transform merges all the nodes
in the context candidate set C to one node with 2|C|

possible labels.
We design an exact inference algorithm in Algo-

rithm 1 based on the graph in Figure 3(c). The al-
gorithm can be summarized in three steps: (1) enu-
merate all the 2|C| possible labels1 for the merged
node (line 3). (2) For each given label of the
merged node, perform the Viterbi algorithm (Ra-
biner, 1989) on the decomposed graph (line 4) and
store the Viterbi algorithm outputs in R and ŷi..
(3) From the 2|C| Viterbi algorithm outputs, select
the one with highest score as the output (lines 6
and 7).

The use of the Viterbi algorithm is assured by
the fact that there exists certain equivalence be-
tween the decomposed graph (Figure 3(c)) and a
linear chain. By fixing the the label of the merged
node, we could remove the dashed edges in the
decomposed graph and regard the rest graph as a
linear chain, which results in the Viterbi decoding.

4.2 Approximate Inference

The exact inference cannot handle the complete
model with three sub-mappings, Ψn, Ψh, and
Ψv, since the label group defeats the graph trans-
form in Figure 3. Thus, we design two ap-
proximate algorithms by employing undergener-
ating and overgenerating approaches (Finley and
Joachims, 2008).

First, we develop an undergenerating local
greedy search algorithm shown in Algorithm 2. In
the algorithm, there are two loops, inner and outer
loops. The outer loop terminates when no labels
change (steps 3-11). The inner loop enumerates
the whole label matrix and greedily determines
each label (step 7) by maximizing the Equation
(2). Since the whole algorithm terminates only if

1Since the merged node is from context candidate set C,
enumerating its label is equivalent to enumerating subsets Cs
of the candidate set C
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Algorithm 2 Greedy Inference Algorithm
1: Input: w, x, y
2: initialize solution: ȳ← y0

3: repeat
4: y′ ← ȳ
5: for i ∈ {1, . . . ,m} do
6: for j ∈ {1, . . . , n} do

7:
ȳ∗ij ← arg maxȳij wT Ψ(x, ȳ)

+4(y, ȳ)

8: ȳij ← ȳ∗ij
9: end for

10: end for
11: until ȳ = y′

12: ȳ∗ ← ȳ
13: return ȳ∗

the label matrix does not change during the last
outer loop. This indicates that at least a local opti-
mal solution is obtained.

Second, an overgenerating method can be
designed by using linear programming relax-
ation (Finley and Joachims, 2008). To save the
space, we skip the details of this algorithm here.

5 Loss Functions

Structural SVMs allow users to customize the loss
function 4 : Y × Y → R according to different
system requirements. In this section, we introduce
the loss functions used in our work.

Basic loss function. The simplest way to quan-
tify the prediction quality is counting the number
of wrongly predicted labels. Formally,

4b(y, ȳ) =
m∑

i=1

n∑
j=1

I[yij 6= ȳij ], (3)

where I[.] is an indicative function that equals to
one if the condition holds and zero otherwise.

Recall-vs-precision loss function. In practice,
we may place different emphasis on recall and pre-
cision according to application settings. We could
include this preference into the model by defining
the following loss function,

4p(y, ȳ) =
m∑

i=1

n∑
j=1

I[yij 6= P, ȳij = P ] · cr

+I[yij = P, ȳij 6= P ] · cp. (4)

This function penalizes the wrong prediction de-
creasing recall and that decreasing precision with

Items in the data set #items
Thread 515
Post 2, 035
Sentence 8, 500
question annotation 1, 407
context annotation 1, 962
answer annotation 4, 652
plain annotation 18, 198

Table 2: The data statistics

two weights cr and cp respectively. Specifically,
we denote the loss function with cp/cr = 2 and
that with cr/cp = 2 by4p

p and4r
p, respectively.

Various types of loss function can be defined in
a similar fashion. To save the space, we skip the
definitions of other loss functions and only use the
above two types of loss functions to show the flex-
ibility of our approach.

6 Experiments

6.1 Experimental Setup

Corpus. We made use of the same data set as
introduced in (Cong et al., 2008; Ding et al.,
2008). Specifically, the data set includes about
591 threads from the forum TripAdvisor2. Each
sentence in the threads is tagged with the labels
‘question’, ‘context’, ‘answer’, or ‘plain’ by two
annotators. We removed 76 threads that have no
question sentences or more than 40 sentences and
6 questions. The remaining 515 forum threads
form our data set.

Table 2 gives the statistics on the data set. On
average, each thread contains 3.95 posts and 2.73
questions, and each question has 1.39 context sen-
tences and 3.31 answer sentences. Note that the
number of annotations is much larger than the
number of sentences because one sentence can be
annotated with multiple labels.

Experimental Details. In all the experiments,
we made use of linear models for the sake of com-
putational efficiency. As a preprocessing step, we
normalized the value of each feature value into
the interval [0, 1] and then followed the heuristic
used in SVM-light (Joachims, 1998) to set C to
1/||x||2, where ||x|| is the average length of input
samples (in our case, sentences). The tolerance pa-
rameter εwas set to 0.1 (the value also used in (Cai

2TripAdvisor (http://www.tripadvisor.com/
ForumHome) is one of the most popular travel forums
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and Hofmann, 2004)) in all the runs of the experi-
ments.

Evaluation. We calculated the standard preci-
sion (P), recall (R) and F1-score (F1) for both tasks
(context extraction and answer extraction). All the
experimental results were obtained through 5-fold
cross validation.

6.2 Baseline Methods
We employed binary SVMs (B-SVM), multiclass
SVMs (M-SVM), and C4.5 (Quinlan, 1993) as our
baseline methods:

B-SVM. We trained two binary SVMs for con-
text extraction (context vs. non-context) and an-
swer extraction (answer vs. non-answer), respec-
tively. We used the feature mapping φqi(xj) de-
fined in Equation (1) while training the binary
SVM models.

M-SVM. We extended the binary SVMs by
training multiclass SVMs for three category labels
(context, answer, plain).

C4.5. This decision tree algorithm solved the
same classification problem as binary SVMs and
made use of the same set of features.

6.3 Modeling Sentence Relations and
Question Interactions

We demonstrate in Table 3 that our approach can
make use of the three types of relation among sen-
tences well to boost the performance.

In Table 3, S-SVM represents the structural
SVMs only using the node features Ψn(x,y). The
suffixes H, C, and V denote the models using
horizontal sequential edges, complete skip-chain
edges and vertical label groups, respectively. The
suffixes C* and V* denote the models using in-
complete skip-chain edges and vertical sequential
edges proposed in (Ding et al., 2008), as shown
in Figures 2(a) and 2(c). All the structural SVMs
were trained using basic loss function ∆b in Equa-
tion (3). From Table 3, we can observe the follow-
ing advantages of our approaches.

Overall improvement. Our structural approach
steadily improves the extraction as more types of
relation (corresponding to more types of edge) are
included. The best results obtained by using the
three types of relation together improve the base-
line methods binary SVMs by about 6% and 20%
in terms of F1 values for context extraction and
answer extraction, respectively.

The usefulness of relations. The relations
encoded by horizontal sequential edges and la-

Method 4b P (%) R (%) F1 (%)

Context Extraction
C4.5 − 74.2 68.7 71.2
B-SVM − 78.3 72.2 74.9
M-SVM − 68.0 77.6 72.1
S-SVM 8.86 75.6 71.7 73.4
S-SVM-H 8.60 77.5 75.5 76.3
S-SVM-HC* 8.65 77.9 74.1 75.8
S-SVM-HC 8.62 77.5 75.2 76.2
S-SVM-HCV* 8.08 79.5 79.6 79.5
S-SVM-HCV 7.98 79.7 80.2 79.9

Answer Extraction
C4.5 − 61.3 45.2 51.8
B-SVM − 69.7 42.0 51.8
M-SVM − 63.2 51.5 55.8
S-SVM 8.86 67.0 48.0 55.6
S-SVM-H 8.60 66.9 49.7 56.7
S-SVM-HC* 8.65 66.5 49.4 56.4
S-SVM-HC 8.62 65.7 51.5 57.4
S-SVM-HCV* 8.08 65.5 58.7 61.7
S-SVM-HCV 7.98 65.1 61.2 63.0

Table 3: The effectiveness of our approach

bel groups are useful for both context extraction
and answer extraction. The relation encoded by
complete skip-chain edges is useful for answer
extraction. The complete skip-chain edges not
only avoid preprocessing but also boost the per-
formance when compared with the preprocessed
skip-chain edges. The label groups improve the
vertical sequential edges.

Interactions among questions. The interac-
tions encoded by label groups are especially use-
ful. We conducted significance tests (sign test) on
the experimental results. The test result shows that
S-SVM-HCV outperforms all the other methods
without vertical edges statistically significantly (p-
value < 0.01). Our proposed graphical represen-
tation in Figure 2(d) eases us to model the complex
interactions. In comparison, the 2D model in Fig-
ure 2(c) used in previous work (Ding et al., 2008)
can only model the interaction between adjacent
questions.

6.4 Loss Function Results

We report in Table 4 the comparison between
structural SVMs using different loss functions.
Note that ∆p

p prefers precision and ∆r
p prefers re-

call. From Table 4, we can observe that the ex-
perimental results also exhibit this kind of system
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Method P (%) R (%) F1 (%)
Context Extraction

S-SVM-HCV-4b 79.7 80.2 79.9
S-SVM-HCV-4p

p 82.0 70.3 75.6
S-SVM-HCV-4r

p 75.7 84.2 79.7
Answer Extraction

S-SVM-HCV-4b 65.1 61.2 63.0
S-SVM-HCV-4p

p 71.8 52.2 60.2
S-SVM-HCV-4r

p 61.8 66.1 63.7

Table 4: The use of different loss functions

preference. Moreover, we further demonstrate the
capability of the loss function ∆p in Figure 4. The
curves are achieved by varying the ratio between
two parameters cp/cr in Equation (4). The curves
confirm our intuition: when log(cp/cr) becomes
larger, the precisions increase but the recalls de-
crease and vice versa.

7 Related work

Previous work on extracting questions, answers
and contexts is most related with our work. Cong
et al. (2008) proposed a supervised approach for
question detection and an unsupervised approach
for answer detection without considering contexts.
Ding et al. (2008) used CRFs to detect contexts
and answers of questions from forum threads.

Some researches on summarizing discussion
threads and emails are related to our work, too.
Zhou and Hovy (2005) segmented internet re-
lay chat, clustered segments into sub-topics, and
identified responding segments of the first seg-
ment in each sub-topic by assuming the first seg-
ment to be focus. In (Nenkova and Bagga, 2003;
Wan and McKeown, 2004; Rambow et al., 2004),
email summaries were organized by extracting
overview sentences as discussion issues. The
work (Shrestha and McKeown, 2004) used RIP-
PER as a classifier to detect interrogative questions
and their answers then used the resulting question
and answer pairs as summaries. We also note the
existing work on extracting knowledge from dis-
cussion threads. Huang et al. (2007) used SVMs
to extract input-reply pairs from forums for chat-
bot knowledge. Feng et al. (2006) implemented
a discussion-bot which used cosine similarity to
match students’ query with reply posts from an an-
notated corpus of archived threaded discussions.

Moreover, extensive researches have been done
within the area of question answering (Burger et

−1.5 −1 −0.5 0 0.5 1 1.5
0.6

0.7

0.8

0.9

1

Log loss ratio

P
re

ci
si

on

 

 

Context
Answer

−1.5 −1 −0.5 0 0.5 1 1.5
0.4

0.6

0.8

1

Log loss ratio

R
ec

al
l

 

 

Context
Answer

Figure 4: Balancing between precision and recall

al., 2006; Jeon et al., 2005; Harabagiu and Hickl,
2006; Cui et al., 2005; Dang et al., 2006). They
mainly focused on using sophisticated linguistic
analysis to construct answer from a large docu-
ment collection.

8 Conclusion and Future Work

We have proposed a new form of graphical rep-
resentation for modeling the problem of extract-
ing contexts and answers of questions from online
forums and then customized structural SVM ap-
proach to solve it.

The proposed graphical representation is able
to naturally express three types of relation among
sentences: relation between successive sentences,
relation between context sentences and answer
sentences, and relation between multiple labels for
one sentence. The representation also enables us
to address interactions among questions. We also
developed the inference algorithms for the struc-
tural SVM model by exploiting the special struc-
ture of thread discussions.

Experimental results on a real data set show that
our approach significantly improves the baseline
methods by effectively utilizing various types of
relation among sentences.

Our future work includes: (a) to summa-
rize threads and represent the forum threads in
question-context-answer triple, which will change
the organization of online forums; and (b) to en-
hance QA services (e.g., Yahoo! Answers) by the
contents extracted from online forums.
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Abstract 

User clicks on a URL in response to a query are 

extremely useful predictors of the URL’s rele-

vance to that query. Exact match click features 

tend to suffer from severe data sparsity issues in 

web ranking. Such sparsity is particularly pro-

nounced for new URLs or long queries where 

each distinct query-url pair will rarely occur. To 

remedy this, we present a set of straightforward 

yet informative query-url n-gram features that al-

lows for generalization of limited user click data 

to large amounts of unseen query-url pairs. The 

method is motivated by techniques leveraged in 

the NLP community for dealing with unseen 

words. We find that there are interesting regulari-

ties across queries and their preferred destination 

URLs; for example, queries containing “form” 

tend to lead to clicks on URLs containing “pdf”. 

We evaluate our set of new query-url features on 

a web search ranking task and obtain improve-

ments that are statistically significant at a p-value 

< 0.0001 level over a strong baseline with exact 

match clickthrough features.   

1 Introduction 

Clickthrough logs record user click behaviors, 

which are a critical source for improving search 

relevance (Bilenko and White, 2008; Radlinski et 

al., 2007; Agichtein and Zheng, 2006; Lu et al. 

2006). Previous work (Agichtein et al., 2006) 

demonstrated that clickthrough features (e.g., 

IsNextClicked and IsPreviousClicked) can lead 

to substantial improvements in relevance. Such 

features summarize query-specific user interac-

tions on a search engine. One commonly used 

clickthrough feature is generated based on the 

following observation: if a URL receives a large 

number of first and last clicks across many user 

sessions, then it indicates that this URL might be 

a strongly preferred destination of a query. For 

example, when a user searches for “yahoo”, they 

tend to only click on the URL www.yahoo.com 

rather than other alternatives. This results in 

www.yahoo.com being the first and last clicked 

URL for the query. We refer to such behavior as 

being navigational clicks (NavClicks). Features 

that use exact query and URL string matches 

(e.g., NavClick, IsNextClicked and IsPrevious-

Clicked)  are referred to as exact match features 

(ExactM) for the remainder of this paper.  

 

The coverage of ExactM features is sparse, espe-

cially for long queries and new URLs. Many 

long queries are either unique or very low fre-

quency. Hence, the improvements from ExactM 

features are limited to the more popular queries. 

In addition, ExactM features tend to be weighted 

heavily in the ranking of results when they are 

available. This introduces a bias where the rank-

ing models tend to strongly favor older URLs 

over new URLs even when the latter otherwise 

appear to be more relevant.  

 

By inspecting the clickthrough logs, we observed 

that unseen query-url pairs are often composed of 

informative previously observed subsequences. 

Specifically, we saw that query n-grams can be 

correlated with sequences of URL n-grams.  For 

example, we find that there are interesting regu-

larities across queries and URLs, such as queries 

containing “form” tending to lead to clicks on 

URLs containing “pdf”. This strongly motivates 

the adoption of an approach similar to the Natu-

ral Language Processing (NLP) technique of us-

ing n-grams to deal with unseen words. For ex-

ample, part-of-speech tagging (Brants, 2000) and 

parsing (Klein and Manning, 2003) both require 

dealing with unknown words. By using n-gram 

substrings, novel items can be dealt with using 

any informative substrings they contain that were 

actually observed in the training data.  
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The remainder of the paper is organized as fol-

lows. In Section 2, we introduce our overall me-

thodology. Section 2.1 presents a data mining 

method for building a query-url n-gram diction-

ary, Section 2.2 describes the new ranking fea-

tures in detail. In section 3, we present our ex-

perimental results. Section 4 discusses related 

work, and Section 5 summarizes the contribution 

of this work.  

2 Methodology 

This section describes the detailed methodology 

used in generating the query-url n-gram features. 

Our features require association scores to be pre-

viously calculated, and, hence, we first introduce 

a data mining approach that is used to build an 

association dictionary in Section 2.1. Then, we 

present the procedure used to generate the query-

url n-gram features that use the dictionary in Sec-

tion 2.2. 

 
 

Figure 1: Steps to build a query-url n-gram dic-

tionary 

 

2.1 Data Mining on a Query-URL 

 N-gram Dictionary 

 

The steps involved in building the dictionary are 

shown in Figure 1. We first collect seed query-

url pairs from clickthrough data based on Nav-

Clicks. The queries and URLs from the collected 

pairs are tokenized and converted into a collec-

tion of paired query-url n-grams. For each pair, 

we calculate the mutual information of the query 

n-gram and its corresponding URL n-gram. For 

our experiment, we collect a total of more than 

15M seed pairs and 0.5B query-url n-gram pairs 

using six months of query log data. The details 

are described in the following sections.  

2.1.1 Seed List 

We identify the seed list based on characteristic 

user click behavior. Given a query, we select the 

URL with the most NavClicks as compared to 

other URLs returned. During data collection, the 

rank positions of the top 5 URLs were shuffled to 

avoid the position bias. We aggregate NavClicks 

for a URL occurring in these positions in order to 

both obtain more click data and to avoid the posi-

tion bias issue discussed in Dupret and Piwowar-

ski (2008) and Craswell et al. (2008).  

 

For example, in Figure 1, the numbers of Nav-

Clicks for the top three URLs are shown. The 

URL www.irs.gov/pub/irs-pdf/f1040.pdf receives 

the largest number of NavClicks, and, therefore, 

it is used to create the query-url pair: 
 

[irs 1040 form, www.irs.gov/pub/irs-pdf/f1040.pdf] 

 

2.1.2 Query and URL Segmentation  

We segment the seed pairs to n-gram pairs in 

order to increase the coverage beyond that of 

ExactM click features. Within NLP, n-grams are 

typically extracted such that words that are adja-

cent in the original sequence are also adjacent in 

the extracted n-grams. Furthermore, we attempt 

to achieve additional generalization by using skip 

n-grams (Lin and Och, 2004). This means we not 

only extract n-grams for adjacent terms but also 

for sequences that leave out intermediate terms. 

This is motivated by the observation that the se-

mantics of user queries is often preserved even 

when some intermediate terms are removed.  The 

details of the segmentation methods are de-

scribed below. 

2.1.2.1 Query Segmentation  

Prior to query segmentation, we normalize raw 

queries by replacing punctuations with spaces. 

Queries are then segmented into a sequence of 
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space delimited tokens. From these, we extract 

all possible query n-grams and skip n-grams for 

n smaller than or equal to three (i.e., all unigrams, 

bigrams, and trigrams). For example, given the 

sequence “irs 1040 form” the adjacent bigrams 

would be “irs 1040” and “1040 form”. With skip 

n-grams we also extract “irs form” as shown in 

Table 1. We do not use n-grams longer than 3 in 

order to avoid problems with overfitting. We will 

refer to this segmentation method as Affix Seg-

mentation.  

 

Table 1: An Example of Affix Segmentation 

N-gram Affix Segmentation 

Unigram irs, 1040, form 

Bigram irs 1040, 1040 form, irs form 

Trigram irs 1040 form 

2.1.2.2 URL Segmentation  

As shown in Table 2, after the queries are seg-

mented, URLs are categorized into four groups: 

domain, URL language, URL region and URL 

path. In general, a URL is delimited by punctua-

tion characters such as “?”, “.”,” “/”, and “=”.  

 

Table 2: An Example of URL Segmentation 

URL Groups Example 

Domain irs.gov 

URL language en 

URL region us 

URL path pub, irs, pdf, f1040, pdf 

 

The domain group includes one domain token, 

for example, irs.gov. Although domains could be 

divided into multiple n-grams, we treat them as a 

single unit, with the exception of encoded lan-

guage and region information.  

 

The language and region groups are based on the 

language or region part of the URL n-grams such 

as the suffixes “.en” and “.de”. The language and 

region of a URL n-gram are identified by a table 

look-up method. The table is created based on 

the information available at en.wikipedia.org/ 

wiki/List_of_ISO_639-1_codes and en.wikipedia. 

org/wiki/ISO_3166. When there is no clear lan-

guage or region URL n-gram, we use English (en) 

as the default language and United States (us) as 

the default region. 

2.1.3 Calculation of Mutual Information 

After query and URL n-grams are extracted, we 

calculate mutual information (Gale and Church, 

1991) to determine the degree of association be-

tween the n-grams. The definition of query-url n-

gram mutual information (MI) is given in Equa-

tion 1. 

 

)Freq( )Freq(

),Freq(
log2

),MI(
uq

uq
uq =   (1) 

 

Here q corresponds to a query n-gram and u cor-

responds to a URL n-gram. Freq (q) is the count 

of q in the seed list normalized by the total num-

ber of q. Freq (u) is the count of u normalized by 

the total number of u.  Freq (q, u) is the count of 

q and u that co-occurred in a full query-url pair 

normalized by the total number of q and u. A pair 

will be assigned to a MI score of zero if the items 

occur together no more than expected by chance, 

under the assumption that the two items are sta-

tistically independent. When a pair occurs more 

than is expected by chance, the MI score is posi-

tive. On the other hand, if a pair occurs together 

less than is expected by chance, the mutual in-

formation score is negative. In order to increase 

the confidence of the MI scores, we remove all 

n-grams with less than 3 occurrences in the seed 

list, and assign a zero MI score for any pairs in-

volving these n-grams. No smoothing is applied. 

 

This scoring scheme fits well with the associa-

tion properties we would like to have for our 

query-url n-gram click features. If a query n-

gram cues for a certain URL through one of its n-

grams, the feature will take on a positive value. 

Similarly, if a query n-gram cues against a cer-

tain URL, the feature will take on a negative val-

ue.  

2.1.4 Analysis of Query-URL N-gram 

Association 

By examining our dictionary, we observed a 

number of pairs that are interesting from a rele-

vance ranking perspective. To illustrate, we pre-

sent four examples of n-gram pairs and intui-

tively explore the nature of the n-gram associa-

tions in the dictionary.  

 

Table 3: Examples of MI Scores 

Query n-gram URL n-gram MI score 

“iphone” apple.com 8.7713 

“iphone” amazon.com -0.1555 

“iphone plan” att.com 11.5388 

“iphone plan” apple.com 8.9676 

 

First, let’s examine the association between 

query n-grams and URL n-grams for the queries 
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“iphone” and “iphone plan”. Notice that the 

query unigram “iphone” is strongly associated 

with apple.com, but negatively associated with 

amazon.com. This can be explained by the fact 

that “iphone” as a product is not only developed 

by Apple but also strongly associated with the 

Apple brand. In contrast, while Amazon.com 

sells iphones, it also sells a large variety of other 

products, thus is not regarded as a very authorita-

tive source of information about the “iphone”. 

However, by adding additional context, the most 

preferred URL according to MI can change. The 

two examples in the bottom of Table 3 illustrate 

the URL preferences for the query bigram 

“iphone plan”. While apple.com is still a strongly 

preferred destination, there is a much stronger 

preference for att.com. This preference follows 

since apple.com has more product information on 

the “iphone” while the information provided by 

att.com will be more targeted at visitors who 

want to explore what rate plans are available. 

 

Second, Table 4 shows the association between 

“kimo”, “.tw” and “.us”. “Kimo” was a Taiwan-

ese start-up acquired by Yahoo!. The mutual in-

formation scores accurately reflect the associa-

tion between the query n-gram and region ids.  

 

Table 4: Example of MI Scores 

Query n-gram URL n-gram MI score 

“kimo” tw (taiwan) 12.8303 

“kimo” us (united states) 0.7209 

 

Third, Table 5 shows the association between 

“kanji”, and URLs with Language identification 

of “Japanese”, “Chinese” and “English”. “Kanji” 

means “Chinese” in Japanese. Since queries con-

taining “Kanji” are typically from users inter-

ested in Japanese sites, the mutual information 

shows higher correlation with Japanese than with 

English or Chinese.  

 

Table 5: Example of MI Scores 

Query n-gram URL n-gram MI score 

“kanji” ja (japanese) 11.3862 

“kanji” zh (chinese) 6.2567 

“kanji” en (english) 4.2110 
 

Table 6: Example of MI Score 

Query n-gram URL n-gram MI score 

“form” pdf 4.9067 

“form” htm 1.0916 

“video” watch 5.7192 

“video” htm -1.9079 

 

Fourth, Table 6 shows the association between 

two query n-grams, “form” and “video”, that at 

first glance may not actually look very informa-

tive for URL path selection. However, notice that 

the unigram “form” has a strong preference for 

pdf documents over more standard web pages 

with an html extension. Similarly, queries that 

include “video” convey a preference for URLs 

containing “watch”, a characteristic URL n-gram 

for many video sharing websites. 

 

It is reasonable to anticipate that incorporating 

such associations into a search engine’s ranking 

function should help improve both search quality 

and user experience. Take the example where, 

there are two high ranking competing URLs for 

the query “irs 1040 form”. Let’s also assume 

both documents contain the same query relevant 

keywords, but one is an introduction of the “irs 

1040 form” as an htm webpage and the other one 

is the real filing form given as a pdf document. 

Since in our dictionary, “form” is more associ-

ated with pdf than htm, we predict that most us-

ers would prefer the real pdf form directly, so it 

should be placed first in the list of query results. 

While click data for the exact query-url pairs 

confirms this preference, it is reassuring that we 

could identify it without needing to rely on see-

ing the specific query string before. As described 

in detail below, and motivated by this analysis, 

we designed our query-url click features based 

on the contents of the n-gram MI dictionary. 

2.2 Query-URL N-gram Features  

For our feature set, we explored the use of differ-

ent query segmentation approaches (concept and 

affix segmentation) in order to increase the di-

versity of n-grams. In the following section, we 

use an unseen query “irs 1040 forms” and con-

trast it with the known query “irs 1040 form” 

from the last section.  

2.2.1 Concept Segmentation Features 

Query concept segmentation is a weighted query 

segmentation approach. Each query is analyti-

cally interpreted as being a main concept and a 

sub concept. We search for the unique segmenta-

tion of the query that maximizes its cumulative 

mutual information score with the URL n-grams. 

Main concepts and sub concepts are n-grams 

from the query that have the strongest association 

with URL n-grams and thus assist in identifying 

relevant landing URL n-grams when the whole 

query or the whole URL has not been seen.  

527



 

Algorithm 1: Concept Segmentation 

for U = domain, URL language, URL region, 

URL path do 

    for j = 0... n-1 do 

          M  ⇐  W0...j 

          S   ⇐  Wj+1...n 

          for k = 0... m do          

               curr_mi_M ⇐ arg maxk=1...m  MI (M, Uk) 

               curr_mi_S ⇐ arg maxk=1...m  MI (S, Uk) 

                if curr_mi_M + curr_mi_S > curr_best                    

                then 
                    curr_best = curr_mi_M + curr_mi_S 

                    mi_M ⇐ curr_mi_M 

                    mi_S ⇐ curr_mi_S 

                end if 

           end for 

           adding mi_M as a feature 

           adding mi_S as a feature 

      end for 

end for 

 

Pseudo-code for generating query-url n-gram 

features based on the concept segmentation is 

given in Algorithm 1. Each query (Q) is com-

posed of a number of words, w1, w2, w3…,wn. 

Each URL is segmented and categorized to four 

groups: domain, URL language, URL region and 

URL path. Each URL group has m number of 

URL n-grams.  M is the main concept of Q and S 

is the sub concept of Q.  

 

One potential drawback of such concept segmen-

tation is data sparsity. When we look for the 

maximum of cumulative mutual information, we 

may obtain main concepts with very high mutual 

information and sub concepts which do not exist 

in the dictionary. In order to address this problem, 

we implement a second query segmentation me-

thod, affix segmentation, that is discussed in sec-

tion 2.2.2.  

 

Table 7 shows eight concept segmented features. 

“Coverage” is the percentage of query-url pairs 

that have valid feature values. Some of the sam-

ples do not have values because no clicks for the 

pairs were seen in the sample of data used to 

build the dictionary. When a pair does not have a 

value, the default value of zero is assigned. This 

default value is based on the assumption that 

unless we have evidence otherwise, we assume 

all query-url n-grams are statistically independ-

ent and thus provide no preference signal. 

 

Table 7: Eight Features Generated based on 

Concept Segmentation.  

Feature Query N-

gram 

URL N-

gram 

Coverage 

(%) 

MainDS M domain 54.09 

SubDS S domain 30.46 

MainLang M lang. 94.41 

SubLang S lang. 72.40 

MainReg M reg. 90.34 

SubReg S reg. 68.19 

MainPath M path 64.96 

SubPath S path 58.76 

 

Query-URL Domain Features are defined as 

the mutual information of a query n-gram and the 

domain level URL. There are two features in this 

category, one for the query main concept and one 

for the sub concept. They help to identify the 

user preferred host given a query.  

 

Table 8: Example of Selecting Query Segmenta-

tion 

MI(q,u) irs.gov 

“irs” 11.2174 

“1040” 

  

11.6175 

“forms” 7.5049 

11.5550 

Cumulative MI 19.1224 22.7724 

  Seg. 1 Seg.2 

 

To illustrate the concept segmentation features, 

let’s examine the query, “irs 1040 forms” in the 

context of the domain irs.gov.  The query “irs 

1040 forms” can be segmented either as “irs 

1040” and “forms” or as “irs” and “1040 forms”. 

As shown in Table 8, taking the cumulative max-

imum, the second segmentation scores higher 

than the first one. Therefore, the “irs” and “1040 

forms” segmentation is preferred. The feature 

value for the main concept is 11.5550, and the 

sub concept is then assigned to be 11.2174. 

 

Query-URL Language and Region Features 
are the mutual information of a query n-gram and 

URL language/region. They are used for provid-

ing language and region information.  
 

Query-URL Path Features are the mutual 

information of a query n-gram and a URL path n-

gram. While there are typically many URL path 

n-grams, only one URL path n-gram is selected 

to be paired with each query n-gram. The se-

lected n-gram is the one that achieves the highest 
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cumulative maximum MI score. They are used 

for providing association between query n-grams 

and url n-grams such as “forms” and “pdf”. 

2.2.2 Affix Segmentation Features 

As previously mentioned, affix segmentation 

addresses sparsity issues associated with concept 

segmentation. Here, we introduce the features 

generated based on affix segmentation. Pseudo-

code for generating the features is given in Algo-

rithm 2. Two query unigrams (w0 and wn) and 

one bigram (w0wn) is used. Each URL is seg-

mented and categorized to four groups: domain, 

URL language, URL region and URL path. Each 

URL group has m number of URL n-grams.   

 

This approach is complementary to the concept 

segmentation for long queries. The affix n-grams 

are in smaller unit, and therefore, are less sparse.  

In addition, the skip bigrams allow for generali-

zations using non-adjacent terms. Table 9 shows 

the coverage of the twelve affix features.  

 

Algorithm 2:  Affix Segmentation  

for U = domain, URL language, URL region, 

URL path do 

     for q = w0, wn, w0wn do 

          for k = 0... m do          

               curr_mi_q ⇐ arg maxk=1...m  MI (q, Uk) 

                if curr_mi_q > curr_best then 

                    curr_best = curr_mi_q  

                end if 

           end for 

           adding curr_mi_q as a feature 

      end for 

end for 

 

Table 9: Twelve Features Generated based on 

Affix Segmentation  

Feature Query N-

gram 

URL N-

gram 

Coverage 

(%) 

PreDS w0 domain 48.09 

SufDS wn domain 47.72 

PresufDS w0wn domain 23.57 

PreLang w0 lang. 55.58 

SufLang wn lang. 58.22 

PresufLang w0wn lang. 24.91 

PreReg w0 reg. 93.82 

SufReg wn reg. 93.59 

PresufReg w0wn reg. 69.29 

PrePath w0 path 98.15 

SufPath wn path 97.80 

PresufPath w0wn path 75.81 

 

Query-url domain affix features has three fea-

tures: MI(w0, domain), MI(wn, domain), and 

MI(w0wn, domain). In the example of “irs 1040 

forms” and “irs.gov”, the features are MI(irs, 

irs.gov), MI(forms, irs.gov), and MI(irs forms, 

irs.gov).  

 

Query-url language and region affix features 
has three features respectively: MI(w0, language), 

MI(wn, language), MI(w0wn, language) MI(w0, 

region), MI(wn, region), and MI(w0wn, region). 

In the example of “irs 1040 forms”, “en” and 

“us”, the features are MI (irs, en), MI (forms, en), 

MI (irs forms, en), MI (irs, us), MI (forms, us), 

and MI (irs forms,us).  

 

Query-url path affix features has three fea-

tures: MI(w0, path), MI(wn, path), and MI(w0wn, 

path). In the example of “irs 1040 forms” and 

“www.irs.gov/pub/irs-pdf/f1040.pdf”, there are 

four URL path n-grams, “pub”, “irs”, “pdf”, and 

“f1040”. The URL path n-gram, irs, gets maxi-

mum MI score. Therefore, the query-url path af-

fix features are MI (irs, irs), MI (forms, irs), and 

MI (irs forms, irs).  

 

We demonstrated the procedure to generate 20 

query-url n-gram features, and in Section 3, we 

will present their effectiveness in relevance rank-

ing.   

3 Experiment 

We evaluate the performance of query-url n-

grams features (8 concept and 12 affix features) 

on a ranking application and analyze the results 

from several different perspectives.  

3.1 Datasets 

For all experiments, our training and test data are 

query-url pairs annotated with human judgments.  

In our data, we use five grades to evaluate rele-

vance of a query and URL pair.  

 

The data includes 94K queries for training and 

3.4K queries for evaluation, and each query is 

associated with the top ranked URLs returned 

from a search engine. Totally, there are 916K 

query-url pairs for training and 42K pairs for 

testing. The queries are general and uniformly 

and randomly sampled with replacement, result-

ing in more frequent queries also appearing more 

frequently in our training and test sets. 
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3.2 Ranking Algorithm 

GBRank is a supervised learning algorithm that 

uses boosted decision trees and incorporates the 

pair-wise information from the training data 

(Zheng et al, 2007). It is able to deal with a large 

amount of training data with hundreds of features. 

We use an internal C++ implementation of 

GBRank. 

3.3 Evaluation Metric 

We use Discounted Cumulative Gain (Järvelin 

and Kekäläinen, 2002) to evaluate our ranking 

accuracy. Discounted Cumulative Gain (DCG) 

has been widely used in evaluating the quality of 

search engine rankings and is defined as: 
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Gi represents the editorial judgment of the i-th 

document. In this paper, we only report normal-

ized DCG5, which is an absolute DCG5 normal-

ized by a baseline, and relative DCG5 im-

provement, which is an improvement normal-

ized by the baseline. Note normalized DCG5 is 

different than NDCG (Normalized Discounted 

Cumulative Gain defined in Järvelin and 

Kekäläinen, 2002). We use Wilcoxon signed test 

(Wilcoxon, 1945) to evaluate the significance for 

model comparison. 

3.4 Feature Sets 

Five feature sets are used in our experiments. 

Details are listed in Table 10.  

 

Table 10: Five Feature Sets 

Tag Description  

Base Feature 

Set  

Core Feature Set and ExactM 

click features 

Q-U N-gram 

Feature Set (I) 

Base Feature Set and Q-U N-

gram features 

Core Feature 

Set  

query-based, document-based, 

query-document based fea-

tures 

NavClick Fea-

ture Set 

Core Feature Set and Nav-

Click 

Q-U N-gram 

Feature Set (II) 

Core Feature Set and Q-U N-

gram features 

 
Base Feature Set is a strong baseline feature set 

from a state-of-the-art commercial search engine. 

This set includes NavClick features, and other 

internal ExactM click features. It is used for 

evaluating Query-URL N-gram Feature Set (I) in 

order to know whether query-url n-gram features 

can achieve gains when stacked on top of Ex-

actM features.  

 

Core Feature Set is a weaker variant of the 

baseline system that excludes ExactM click fea-

tures. This system is used for evaluating 

NavClick Feature Set and Query-URL N-gram 

Feature Set (II) independently in order to study 

and contrast the effected queries.  

3.5 Experimental Results 

We compare the query-URL N-gram feature set 

(I) with the base feature set in Section 3.5.1, and 

contrast the NavClick features and the query-

URL N-gram features (II) using the Core Feature 

Set in Section 3.5.2. 

3.5.1 Query-URL N-gram Feature Set (I) 

versus Base Feature Set 

As shown in Figure 2, Query-URL N-gram Fea-

ture Set (I) outperforms Base Feature Set. The 

additional 20 query-url n-gram features achieve 

statistically significant gains at a p-value < 

0.0001 level, suggesting that they are compli-

mentary to ExactM click features. Even though 

the query-url n-gram features are generated from 

the same data as the ExactM features, the gain is 

additive and stackable. The DCG5 impact is 

0.53% relative improvement when running 

GBRank using 2500 trees. Every data point is 

normalized by the DCG5 of the baseline feature 

set using 2500 trees. This is represented in the 

graph as the rightmost point of Base Feature Set 

curve. 
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Figure 2: Comparison of the five feature sets on 

the normalized DCG5 (Y-axis) against number of 

trees (X-axis).  
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3.5.2 NavClick and Query-URL N-gram 

Feature Set (II) versus Core Fea-

ture Set 

We compare NavClick Feature Set and Query-

URL N-gram Feature Set (II) in the context of 

Core Feature Set, in order to evaluate the two 

independently. As shown in Figure 2, both 

NavClick and Query-URL N-gram Feature Set 

(II) outperform Core Feature Set. It is not sur-

prising that NavClick also outperforms Query-

URL N-gram Feature Set (II) since the n-gram 

features are backoff of NavClick. However, their 

gains are competitive suggesting the query-url n-

gram features are very good relevance indicators. 

The impact of NavClick and Query-URL N-gram 

Feature Set (II) is 0.72% and 0.62% relative 

DCG5 improvement at Tree 2500 respectively. 

3.5.3 Feature Importance 

Using the GBRank model, features are evaluated 

and sequentially selected to build the boosted 

decision trees. The split of each node increases 

the DCG during training. We evaluate a feature’s 

importance by aggregating the DCG impact of 

the feature over all trees (Zheng et al., 2007). 

Here, the feature importance is rescaled so that 

the feature with largest DCG impact is assigned a 

normalized score of 1. Figure 3 illustrates the 

relative influence of each of query-url n-gram 

feature. Of these, n-gram features associated with 

a domain name (i.e., MainDS) rank highest. 

 

 
Figure 3: Feature importance of query-url n-

gram features. The importance (Y axis) is nor-

malized so that the most important feature 

(MainDS)’s importance is 1. 

3.6 Analysis 

We access system performance with respect to 

both query length and frequency using the two 

click features sets in combination with the Core 

Feature Set in order to gain insight into the ef-

fected queries.  

3.6.1 Query Length 

As shown in Table 11, NavClick (NavClick Fea-

ture Set) best improves relevance for two word 

queries. In contrast, Query-url n-gram features in 

isolation (Query-URL N-gram Feature II) are 

able to show sizable improvements on longer 

queries, while slightly degrading performance on 

short 1-word queries. Using both feature sets to-

gether (Query-URL N-gram Feature I) results in 

improvement for queries of all lengths. 

 

These results suggest that the strong signal being 

provided by NavClick for short queries helps to 

compensate for any additional noisy introduced 

by the n-gram features, while allowing the n-

gram features to handle  longer queries that are 

less well covered by NavClick. These longer 

queries are exactly the type of queries our query-

url n-gram features were designed to help with. 

 

Table 11: Relative DCG5 Improvement of 

NavClick, Query-URL N-gram (II), and Query-

URL N-gram Features  (I) vs Core Feature Set 

Length NavClick 

vs Core 

(%) 

QU N-

gram (II)  

vs Core 

(%) 

QU N-

gram (I) 

vs Core 

(%) 

1 word 0.03 -0.04 0.62 

2 words 1.04 1.06 1.58 

3 words 1.00 1.44 2.12 

4+ words 0.4 0.68 1.01 

3.6.2 Query Frequency 

We found that query-url n-gram features improve 

tail queries. Head queries are considered as top 

two million frequent queries in our traffic and 

tail queries include anything outside of that range.  

 

Table 12: Relative DCG5 Improvement of 

NavClick, Query-URL N-gram Features (II) and 

Query-URL N-gram Features (I) vs Core Feature 

Set 

 NavClick vs 

Core (%) 

QU N-gram 

(II) vs Core 

(%) 

QU N-

gram (I) vs 

Core (%) 

Head 0.91 -0.15 1.11 

Tail 0.59 1.11 1.40 

 

As shown in Table 12, query-url n-gram features 

(Query-URL Feature Set II) differ from 

NavClick (NavClick Feature Set) in that they get 
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more gain from tail queries. Together, they 

(Query-URL Feature Set I) improve both head 

and tail queries. 

3.7 Case Study 

Below we examine queries from the test set and 

analyze the effects of Query-URL N-gram Fea-

ture Set (II) versus Core Feature Set. 

3.7.1 Positive Cases 

1) Animal shelter in va: this query targets a spe-

cific geographic location. Using the baseline fea-

ture set, the root url wvanimalshelter.org is incor-

rectly ranked higher than www.netpets.com/ 

cats/catresc/virginia.htm. Without any addition-

ally ranking information, general URLs (root) 

tend to be ranked more highly than more specific 

URLs (path), as the root pages tend to be more 

popular. However, our new features express a 

preference between “va” and “virginia”, and this 

correctly flips the ranking order.  

2) Myspace profile generator: www. myspacgens. 

com/handler.php?gen=profile was incorrectly 

ranked higher than www.profilemods.com/ 

myspace-generators. Our new features convey a 

high user preference association between “profile 

generator” and the domain profilemods.com, 

which helps to correctly swap the order.   

3.7.2 Negative Cases 

We determined that negative cases where the 

baseline feature set outperforms the new features 

are typically one word navigational queries such 

as “craigslist”. However, after we combine the 

query-url n-gram features with NavClick, one 

word navigational queries are ranked correctly. 

4 Related Work 

Our work is mainly related to Gao et al. (2009) 

and Bilenko and White (2008). Gao et al. (2009) 

addressed the sparsity issue by propagating click 

information among similar queries in the same 

cluster. Their idea is based on an observation that 

similar queries go to similar pages. When two 

queries have similar clicked URLs, it is likely 

that they share clicked URLs. In contrast, our 

idea is to utilize NLP techniques to break down 

long, infrequent queries into shorter, frequent 

queries. The two approaches can be mutually 

beneficial. Bilenko and White (2008) expanded 

click data with a search engine by using post-

search user experience collected from toolbars. 

Toolbars keep track of users’ click behavior both 

when they are using the search engine directly 

and beyond. Their relevance features are built 

based on whole session clicks extracted from the 

toolbar. In contrast, our n-gram features are built 

on search engine clicks directly. We should be 

able to expand our method to integrate the post-

search clicks with toolbar data.    

 

Other related work can be found in the domain of 

query rewriting. Our n-gram dictionary was orig-

inally designed for query rewriting. Query re-

writing (Xu and Croft, 1996; Salton and Voor-

hees, 1984) reformulates a query to its synonyms 

or related terms automatically. However, the 

coverage of query rewriting is normally small, 

because an inappropriate rewrite can cause sig-

nificant decrease in precision. In contrast, our 

approach can cover a larger number of queries 

without decreasing precision, because it does not 

need to make a binary decision whether a query 

should be reformulated. The association scores 

between queries and rewrites are used as ranking 

features which are trained discriminatively to-

ward search quality.   

5 Conclusion 

In this paper, we presented a set of straightfor-

ward yet informative query-url n-gram features. 

They allow for generalization of limited user 

click data to large amounts of unseen query-url 

pairs. Our experiments showed such features 

gave significant improvement over models with-

out using the features. In addition, we mined an 

interesting dictionary which contains informa-

tive, but not necessarily obvious, query-url syno-

nym pairs such as “form” and “pdf”. We are cur-

rently extending our work to a variety of exact 

match features and different sources of click-

through logs.  

Acknowledgement 

Thanks to the anonymous reviewers for detailed 

suggestion and our colleagues: Jon Degenhardt 

and Narayanan Sadagopan for assistance on gen-

erating clickthrough data, Jiang Chen for devel-

oping the decision tree package, Xiangyu Jin for 

a discussion on map/reduce, Benoît Dumoulin, 

Fuchun Peng, Yumao Lu, and Xing Wei for pro-

ductizing the work, and Rosie Jones, Su-lin Wu, 

Bo Long, Xin Li and Ruiqiang Zhang for com-

ments on an earlier draft.  

 

 

 

532



References  

Agichtein, E., E. Brill, and S. Dumais. 2006. Im-

proving web search ranking by incorporating 

user behavior information. In Proceedings of 

the ACM SIGIR 29. 

Agichtein, Eugene, Zijian Zheng. 2006. Identify-

ing "best bet" web search results by mining 

past user behavior.  In Proceedings of KDD. 

Bilenko, Mikhail and Ryen W. White. 2008.  

Mining the search trails of surfing crowds: 

identifying relevant websites from user activ-

ity. In Proceedings of WWW.  

Brants, T. 2000. Tnt: a statistical part-ofspeech 

tagger. In Proceedings of ANLP 6. 

Craswell, Nick and Martin Szummer. 2007. Ran-

dom walks on the click graph. In Proceedings 

of SIGIR. 

Craswell, Nick, Onno Zoeter, Michael Taylor, 

Bill Ramsey. 2008. An experimental compari-

son of click position-bias models in WSDM. 

Dupret, Georges, Benjamin Piwowarski. 2008. A 

user browsing model to predict search engine 

click data from past observations. In Proceed-

ings of SIGIR 31. 

Gale, William A. and Kenneth W. Church. 1991. 

Identifying word correspondence in parallel 

texts. In Proceedings of HLT 91. 

Gao, Jianfeng, Wei Yuan, Xiao Li, Kefeng Deng, 

and Jian-Yun Nie. 2009. Smoothing Click-

through Data for Web Search Ranking. In Pro-

ceedings of SIGIR 32. 

Järvelin, K. and J. Kekäläinen. 2002. Cumulated 

gain-based evaluation of IR techniques, Jour-

nal ACM Transactions on Information Sys-

tems, 20: 422-446. 

Klein, D. and C. Manning. 2003. Accurate unlex-

icalized parsing. In Proceedings of ACL 41. 

Lin, Chin-Yew and Franz Josef Och. 2004. Au-

tomatic evaluation of machine translation 

quality using longest common subsequence 

and skip-bigram. In In Proceedings of ACL 42.  

Lu, Yumao, Fuchun Peng, Xin Li and Nawaaz 

Ahmed, 2006, Coupling Feature Selection and 

Machine Learning Methods for Navigational 

Query Identification, In Proceeding of CIKM. 

Radlinski, F., Kurup, M. and Joachims, T. 2007. 

Active exploration for learning rankings from 

clickthrough data. In SIGKDD. 

Salton G. and E. Voorhees. 1984. Comparison of 

two methods for Boolean query relevancy 

feedback. Information Processing & Manage-

ment, 20(5).   

Wilcoxon, F. 1945. Individual Comparisons by 

Ranking Methods. Biometrics, 1:80–83. 

Xu Q. and W. Croft. 1996. Query expansion us-

ing local and global document analysis. In 

Proceed of the 19th annual international ACM 

SIGIR. 

Zheng, Z., H. Zha, K. Chen, and G. Sun. 2007. A 

regression framework for learning ranking 

functions using relative relevance judgments. 

In Proceedings of SIGIR 30.  

533



Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 534–542,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

The role of named entities in Web People Search

Javier Artiles
UNED NLP & IR group

Madrid, Spain
javart@bec.uned.es

Enrique Amigó
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Abstract
The ambiguity of person names in the Web
has become a new area of interest for NLP
researchers. This challenging problem has
been formulated as the task of clustering
Web search results (returned in response
to a person name query) according to the
individual they mention. In this paper we
compare the coverage, reliability and in-
dependence of a number of features that
are potential information sources for this
clustering task, paying special attention to
the role of named entities in the texts to
be clustered. Although named entities are
used in most approaches, our results show
that, independently of the Machine Learn-
ing or Clustering algorithm used, named
entity recognition and classification per se
only make a small contribution to solve the
problem.

1 Introduction

Searching the Web for names of people is a highly
ambiguous task, because a single name tends to
be shared by many people. This ambiguity has
recently become an active research topic and, si-
multaneously, in a relevant application domain for
web search services: Zoominfo.com, Spock.com,
123people.com are examples of sites which per-
form web people search, although with limited
disambiguation capabilities.

A study of the query log of the AllTheWeb and
Altavista search sites gives an idea of the relevance
of the people search task: 11-17% of the queries
were composed of a person name with additional
terms and 4% were identified as person names
(Spink et al., 2004). According to the data avail-
able from 1990 U.S. Census Bureau, only 90,000
different names are shared by 100 million people
(Artiles et al., 2005). As the amount of informa-
tion in the WWW grows, more of these people are

mentioned in different web pages. Therefore, a
query for a common name in the Web will usually
produce a list of results where different people are
mentioned.

This situation leaves to the user the task of find-
ing the pages relevant to the particular person he
is interested in. The user might refine the original
query with additional terms, but this risks exclud-
ing relevant documents in the process. In some
cases, the existence of a predominant person (such
as a celebrity or a historical figure) makes it likely
to dominate the ranking of search results, compli-
cating the task of finding information about other
people sharing her name. The Web People Search
task, as defined in the first WePS evaluation cam-
paign (Artiles et al., 2007), consists of grouping
search results for a given name according to the
different people that share it.

Our goal in this paper is to study which doc-
ument features can contribute to this task, and in
particular to find out which is the role that can be
played by named entities (NEs): (i) How reliable
is NEs overlap between documents as a source of
evidence to cluster pages? (ii) How much recall
does it provide? (iii) How unique is this signal?
(i.e. is it redundant with other sources of informa-
tion such as n-gram overlap?); and (iv) How sen-
sitive is this signal to the peculiarities of a given
NE recognition system, such as the granularity of
its NE classification and the quality of its results?

Our aim is to reach conclusions which are are
not tied to a particular choice of Clustering or Ma-
chine Learning algorithms. We have taken two de-
cisions in this direction: first, we have focused on
the problem of deciding whether two web pages
refer to the same individual or not (page corefer-
ence task). This is the kind of relatedness measure
that most clustering algorithms use, but in this way
we can factor out the algorithm and its parameter
settings. Second, we have developed a measure,
Maximal Pairwise Accuracy (PWA) which, given
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an information source for the problem, estimates
an upper bound for the performance of any Ma-
chine Learning algorithm using this information.
We have used PWA as the basic metric to study the
role of different document features in solving the
coreference problem, and then we have checked
the predictive power of PWA with a Decision Tree
algorithm.

The remainder of the paper is organised as fol-
lows. First, we examine the previous work in Sec-
tion 2. Then we describe the our experimental set-
tings (datasets and features we have used) in Sec-
tion 3 and our empirical study in Section 4. The
paper ends with some conclusions in Section 5.

2 Previous work

In this section we will discuss (i) the state of the
art in Web People Search in general, focusing on
which features are used to solve the problem; and
(ii) lessons learnt from the WePS evaluation cam-
paign where most approaches to the problem have
been tested and compared.

The disambiguation of person names in Web
results is usually compared to two other Natu-
ral Language Processing tasks: Word Sense Dis-
ambiguation (WSD) (Agirre and Edmonds, 2006)
and Cross-document Coreference (CDC) (Bagga
and Baldwin, 1998). Most of early research work
on person name ambiguity focuses on the CDC
problem or uses methods found in the WSD litera-
ture. It is only recently that the web name ambigu-
ity has been approached as a separate problem and
defined as an NLP task - Web People Search - on
its own (Artiles et al., 2005; Artiles et al., 2007).

Therefore, it is useful to point out some crucial
differences between WSD, CRC and WePS:

• WSD typically concentrates in the disam-
biguation of common words (nouns, verbs,
adjectives) for which a relatively small num-
ber of senses exist, compared to the hun-
dreds or thousands of people that can share
the same name.

• WSD can rely on dictionaries to define the
number of possible senses for a word. In the
case of name ambiguity no such dictionary
is available, even though in theory there is an
exact number of people that can be accounted
as sharing the same name.

• The objective of CDC is to reconstruct the
coreference chain for every mention of a per-

son. In Web person name disambiguation it
suffices to group the documents that contain
at least one mention to the same person.

Before the first WePS evaluation campaign in
2007 (Artiles et al., 2007), research on the topic
was not based on a consistent task definition, and
it lacked a standard manually annotated testbed.
In the WePS task, systems were given the top web
search results produced by a person name query.
The expected output was a clustering of these re-
sults, where each cluster should contain all and
only those documents referring to the same indi-
vidual.

2.1 Features for Web People Search

Many different features have been used to repre-
sent documents where an ambiguous name is men-
tioned. The most basic is a Bag of Words (BoW)
representation of the document text. Within-
document coreference resolution has been applied
to produce summaries of text surrounding occur-
rences of the name (Bagga and Baldwin, 1998;
Gooi and Allan, 2004). Nevertheless, the full
document text is present in most systems, some-
times as the only feature (Sugiyama and Okumura,
2007) and sometimes in combination with others -
see for instance (Chen and Martin, 2007; Popescu
and Magnini, 2007)-. Other representations use
the link structure (Malin, 2005) or generate graph
representations of the extracted features (Kalash-
nikov et al., 2007).

Some researchers (Cucerzan, 2007; Nguyen and
Cao, 2008) have explored the use of Wikipedia
information to improve the disambiguation pro-
cess. Wikipedia provides candidate entities that
are linked to specific mentions in a text. The obvi-
ous limitation of this approach is that only celebri-
ties and historical figures can be identified in this
way. These approaches are yet to be applied to the
specific task of grouping search results.

Biographical features are strongly related to
NEs and have also been proposed for this task
due to its high precision. Mann (2003) extracted
these features using lexical patterns to group pages
about the same person. Al-Kamha (2004) used a
simpler approach, based on hand coded features
(e.g. email, zip codes, addresses, etc). In Wan
(2005), biographical information (person name, ti-
tle, organisation, email address and phone num-
ber) improves the clustering results when com-
bined with lexical features (words from the doc-
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ument) and NE (person, location, organisation).

The most used feature for the Web People
Search task, however, are NEs. Ravin (1999) in-
troduced a rule-based approach that tackles both
variation and ambiguity analysing the structure of
names. In most recent research, NEs (person, lo-
cation and organisations) are extracted from the
text and used as a source of evidence to calculate
the similarity between documents -see for instance
(Blume, 2005; Chen and Martin, 2007; Popescu
and Magnini, 2007; Kalashnikov et al., 2007)-
. For instance, Blume (2005) uses NEs coocur-
ring with the ambiguous mentions of a name as a
key feature for the disambiguation process. Sag-
gion (2008) compared the performace of NEs ver-
sus BoW features. In his experiments a only a
representation based on Organisation NEs outper-
formed the word based approach. Furthermore,
this result is highly dependent on the choice of
metric weighting (NEs achieve high precision at
the cost of a low recall and viceversa for BoW).

In summary, the most common document repre-
sentations for the problem include BoW and NEs,
and in some cases biographical features extracted
from the text.

2.2 Named entities in the WePS campaign

Among the 16 teams that submitted results for the
first WePS campaign, 10 of them1 used NEs in
their document representation. This makes NEs
the second most common type of feature; only
the BoW feature was more popular. Other fea-
tures used by the systems include noun phrases
(Chen and Martin, 2007), word n-grams (Popescu
and Magnini, 2007), emails and URLs (del Valle-
Agudo et al., 2007), etc. In 2009, the second
WePS campaign showed similar trends regarding
the use of NE features (Artiles et al., 2009).

Due to the complexity of systems, the results
of the WePS evaluation do not provide a direct
answer regarding the advantages of using NEs
over other computationally lighter features such as
BoW or word n-grams. But the WePS campaigns
did provide a useful, standardised resource to per-
form the type of studies that were not possible be-
fore. In the next Section we describe this dataset
and how it has been adapted for our purposes.

1By team ID: CU-COMSEM, IRST-BP, PSNUS, SHEF,
FICO, UNN, AUG, JHU1, DFKI2, UC3M13

3 Experimental settings

3.1 Data

We have used the testbeds from WePS-1 (Artiles et
al., 2007)2 and WePS-2 (Artiles et al., 2009) eval-
uation campaigns 3.

Each WePS dataset consists of 30 test cases: a
random sample of 10 names from the US Cen-
sus, 10 names from Wikipedia, and 10 names from
Programme Committees in the Computer Science
domain (ACL and ECDL). Each test case consists
of, at most, 100 web pages from the top search
results of a web search engine, using a (quoted)
person name as query.

For each test case, annotators were asked to or-
ganise the web pages in groups where all docu-
ments refer to the same person. In cases where
a web page refers to more than one person us-
ing the same ambiguous name (e.g. a web page
with search results from Amazon), the document
is assigned to as many groups as necessary. Doc-
uments were discarded when they did not contain
any useful information about the person being re-
ferred.

Both the WePS-1 and WePS-2 testbeds have
been used to evaluate clustering systems by WePS
task participants, and are now the standard testbed
to test Web People Search systems.

3.2 Features

The evaluated features can be grouped in four
main groups: token-based, n-grams, phrases and
NEs. Wherever possible, we have generated lo-
cal versions of these features that only consider
the sentences of the text that mention the ambigu-
ous person name4. Token-based features consid-
ered include document full text tokens, lemmas
(using the OAK analyser, see below), title, snip-
pet (returned in the list of search results) and URL
(tokenised using non alphanumeric characters as
boundaries) tokens. English stopwords were re-
moved, including Web specific stopwords, as file
and domain extensions, etc.

We generated word n-grams of length 2 to 5,

2The WePS-1 corpus includes data from the Web03
testbed (Mann, 2006) which follows similar annotation
guidelines, although the number of document per ambiguous
name is more variable.

3Both corpora are available from the WePS website
http://nlp.uned.es/weps

4A very sparse feature might never occur in a sentence
with the person name. In that cases there is no local version
of the feature.
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using the sentences found in the document text.
Punctuation tokens (commas, dots, etc) were gen-
eralised as the same token. N-grams were dis-
carded when they were composed only of stop-
words or when they did not contain at least one
token formed by alphanumeric characters (e.g. n-
grams like “at the” or “# @”). Noun phrases (us-
ing OAK analyser) were detected in the document
and filtered in a similar way.

Named entities were extracted using two dif-
ferent tools: the Stanford NE Recogniser and the
OAK System5.

Stanford NE Recogniser6 is a high-performance
Named Entity Recognition (NER) system based
on Machine Learning. It provides a general im-
plementation of linear chain Conditional Ran-
dom Field sequence models and includes a model
trained on data from CoNLL, MUC6, MUC7, and
ACE newswire. Three types of entities were ex-
tracted: person, location and organisation.

OAK7 is a rule based English analyser that in-
cludes many functionalities (POS tagger, stemmer,
chunker, Named Entity (NE) tagger, dependency
analyser, parser, etc). It provides a fine grained
NE recognition covering 100 different NE types
(Sekine, 2008). Given the sparseness of most of
these fine-grained NE types, we have merged them
in coarser groups: event, facility, location, person,
organisation, product, periodx, timex and numex.

We have also used the results of a baseline
NE recognition for comparison purposes. This
method detects sequences of two or more upper-
cased tokens in the text, and discards those that are
found lowercased in the same document or that are
composed solely of stopwords.

Other features are: emails, outgoing links found
in the web pages and two boolean flags that in-
dicate whether a pair of documents is linked or
belongs to the same domain. Because of their
low impact in the results these features haven’t re-
ceived an individual analysis, but they are included
in the “all features” combination in Figure 7.

5From the output of both systems we have discarded per-
son NEs made of only one token (these are often first names
that significantly deteriorate the quality of the comparison be-
tween documents).

6http://nlp.stanford.edu/software/CRF-NER.shtml
7http://nlp.cs.nyu.edu/oak . OAK was also used to detect

noun phrases and extract lemmas from the text.

4 Experiments and results

4.1 Reformulating WePS as a classification
task

As our goal is to study the impact of different fea-
tures (information sources) in the task, a direct
evaluation in terms of clustering has serious disad-
vantages. Given the output of a clustering system
it is not straightforward to assess why a document
has been assigned to a particular cluster. There are
at least three different factors: the document sim-
ilarity function, the clustering algorithm and its
parameter settings. Features are part of the doc-
ument similarity function, but its performance in
the clustering task depends on the other factors as
well. This makes it difficult to perform error anal-
ysis in terms of the features used to represent the
documents.

Therefore we have decided to transform the
clustering problem into a classification problem:
deciding whether two documents refer to the same
person. Each pair of documents in a name dataset
is considered a classification instance. Instances
are labelled as coreferent (if they share the same
cluster in the gold standard) or non coreferent (if
they do not share the same cluster). Then we
can evaluate the performance of each feature sep-
arately by measuring its ability to rank coreferent
pairs higher and non coreferent pairs lower. In the
case of feature combinations we can study them by
training a classifier or using the maximal pairwise
accuracy methods (explained in Section 4.3).

Each instance (pair of documents) is repre-
sented by the similarity scores obtained using dif-
ferent features and similarity metrics. We have
calculated for each feature three similarity met-
rics: Dice’s coefficient, cosine (using standard
tf.idf weighting) and a measure that simply counts
the size of the intersection set for a given feature
between both documents. After testing these met-
rics we found that Dice provides the best results
across different feature types. Differences be-
tween Dice and cosine were consistent, although
they were not especially large. A possible expla-
nation is that Dice does not take into account the
redundancy of an n-gram or NE in the document,
and the cosine distance does. This can be a cru-
cial factor, for instance, in the document retrieval
by topic; but it doesn’t seem to be the case when
dealing with name ambiguity.

The resulting classification testbed consists of
293,914 instances with the distribution shown in
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Table 1, where each instance is represented by 69
features.

true false total
WePS1 61,290 122,437 183,727
WePS2 54,641 55,546 110,187
WePS1+WePS2 115,931 177,983 293,914

Table 1: Distribution of classification instances

4.2 Analysis of individual features

There are two main aspects related with the use-
fulness of a feature for WePS task. The first one is
its performance. That is, to what extent the simi-
larity between two documents according to a fea-
ture implies that both mention the same person.
The second aspect is to what extent a feature is or-
thogonal or redundant with respect to the standard
token based similarity.

4.2.1 Feature performance
According to the transformation of WePS cluster-
ing problem into a classification task (described
in Section 4.1), we follow the next steps to study
the performance of individual features. First, we
compute the Dice coefficient similarity over each
feature for all document pairs. Then we rank the
document pair instances according to these simi-
larities. A good feature should rank positive in-
stances on top. If the number of coreferent pairs
in the top n pairs is tn and the total number of
coreferent pairs is t, then P = tn

n andR = tn
t . We

plot the obtained precision/recall curves in Figures
1, 2, 3 and 4.

From the figures we can draw the following
conclusions:

First, considering subsets of tokens or lemma-
tised tokens does not outperform the basic token
distance (figure 1 compares token-based features).
We see that only local and snippet tokens perform
slightly better at low recall values, but do not go
beyond recall 0.3.

Second, shallow parsing or n-grams longer than
2 do not seem to be effective, but using bi-grams
improves the results in comparison with tokens.
Figure 2 compares n-grams of different sizes with
noun phrases and tokens. Overall, noun phrases
have a poor performance, and bi-grams give the
best results up to recall 0.7. Four-grams give
slightly better precision but only reach 0.3 recall,
and three-grams do not give better precision than
bi-grams.

Figure 1: Precision/Recall curve of token-based
features

Figure 2: Precision/Recall curve of word n-grams

Third, individual types of NEs do not improve
over tokens. Figure 3 and Figure 4 display the
results obtained by the Stanford and OAK NER
tools respectively. In the best case, Stanford per-
son and organisation named entities obtain results
that match the tokens feature, but only at lower
levels of recall.

Finally, using different NER systems clearly
leads to different results. Surprisingly, the base-
line NE system yields better results in a one to
one comparison, although it must be noted that
this baseline agglomerates different types of en-
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Figure 3: Precision/Recall curve of NEs obtained
with the Stanford NER tool

Figure 4: Precision/Recall curve of NEs obtained
with the OAK NER tool

tities that are separated in the case of Stanford and
OAK, and this has a direct impact on its recall.
The OAK results are below the tokens and NE
baseline, possibly due to the sparseness of its very
fine grained features. In NE types, cases such as
person and organisation results are still lower than
obtained with Stanford.

4.2.2 Redundancy

In addition to performance, named entities (as well
as other features) are potentially useful for the task

only if they provide information that complements
(i.e. that does not substantially overlap) the basic
token based metric. To estimate this redundancy,
let us consider all document tuples of size four <
a, b, c, d >. In 99% of the cases, token similarity is
different for < a, b > than for < c, d >. We take
combinations such that < a, b > are more similar
to each other than < c, d > according to tokens.
That is:

simtoken(a, b) > simtoken(c, d)

Then for any other feature similarity
simx(a, b), we will talk about redundant samples
when simx(a, b) > simx(c, d), non redundant
samples when simx(a, b) < simx(c, d), and
non informative samples when simx(a, b) =
simx(c, d). If all samples are redundant or
non informative, then simx does not provide
additional information for the classification task.

Figure 5 shows the proportion of redundant, non
redundant and non informative samples for sev-
eral similarity criteria, as compared to token-based
similarity. In most cases NE based similarities
give little additional information: the baseline NE
recogniser, which has the largest independent con-
tribution, gives additional information in less than
20% of cases.

In summary, analysing individual features, the
NEs do not outperform BoW in terms of the clas-
sification task. In addition, NEs tend to be re-
dundant regarding BoW. However, if we are able
to combine optimally the contributions of the dif-
ferent features, the BoW approach could be im-
proved. We address this issue in the next section.

Figure 5: Independence of similarity criteria with
respect to the token based feature
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4.3 Analysis of feature combinations
Up to now we have analysed the usefulness of in-
dividual features for the WePS Task. However,
this begs to ask to what extent the NE features can
contribute to the task when they are combined to-
gether and with token and n-gram based features.
First, we use each feature combinations as the in-
put for a Machine Learning algorithm. In particu-
lar, we use a Decision Tree algorithm and WePS-1
data for training and WePS-2 data for testing. The
Decision Tree algorithm was chosen because we
have a small set of features to train (similarity met-
rics) and some of these features output Boolean
values.

Results obtained with this setup, however, can
be dependent on the choice of the ML approach.
To overcome this problem, in addition to the re-
sults of a Decision Tree Machine Learning algo-
rithm, we introduce a Maximal Pairwise Accuracy
(MPA) measure that provides an upper bound for
any machine learning algorithm using a feature
combination.

We can estimate the performance of an individ-
ual similarity feature x in terms of accuracy. It
is considered a correct answer when the similarity
x(a, a′) between two pages referring to the same
person is higher than the similarity x(b, c) between
two pages referring to different people. Let us
call this estimation Pairwise Accuracy. In terms
of probability it can be defined as:

PWA = Prob(x(a, a′) > x(c, d))

PWA is defined over a single feature (similar-
ity metric). When considering more than one sim-
ilarity measure, the results depend on how mea-
sures are weighted. In that case we assume that
the best possible weighting is applied. When com-
bining a set of features X = {x1 . . . xn}, a per-
fect Machine Learning algorithm would learn to
always “listen” to the features giving correct in-
formation and ignore the features giving erroneous
information. In other words, if at least one feature
gives correct information, then the perfect algo-
rithm would produce a correct output. This is what
we call the Maximal Pairwise Accuracy estimation
of an upper bound for any ML system using the set
of features X:

MaxPWA(X) =

Prob(∃x ∈ X.x(a, a′) > x(c, d))

Figure 6: Estimated PWA upper bound versus the
real PWA of decision trees trained with feature
combinations

Figure 7: Maximal Pairwise Accuracy vs. results
of a Decision Tree

The upper bound (MaxPWA) of feature combi-
nations happens to be highly correlated with the
PWA obtained by the Decision Tree algorithm (us-
ing its confidence values as a similarity metric).
Figure 6 shows this correlation for several features
combinations. This is an indication that the Deci-
sion Tree is effectively using the information in the
feature set.

Figure 7 shows the PWA upper bound estima-
tion and the actual PWA performance of a Deci-
sion Tree ML algorithm for three combinations:
(i) all features; (ii) non linguistic features, i.e.,
features which can be extracted without natural
language processing machinery: tokens, url, title,
snippet, local tokens, n-grams and local n-grams;
and (iii) just tokens. The results show that accord-
ing to both the Decision Tree results and the upper-
bound (MaxPWA), adding new features to tokens
improves the classification. However, taking non-
linguistic features obtains similar results than tak-
ing all features. Our conclusion is that NE features
are useful for the task, but do not seem to offer a
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competitive advantage when compared with non-
linguistic features, and are more computationally
expensive. Note that we are using NE features in a
direct way: our results do not exclude the possibil-
ity of effectively exploiting NEs in more sophisti-
cated ways, such as, for instance, exploiting the
underlying social network relationships between
NEs in the texts.

4.3.1 Results on the clustering task
In order to validate our results, we have tested
whether the classifiers learned with our feature
sets lead to competitive systems for the full clus-
tering task. In order to do so, we use the output of
the classifiers as similarity metrics for a particu-
lar clustering algorithm, using WePS-1 to train the
classifiers and WePS-2 for testing.

We have used a Hierarchical Agglomerative
Clustering algorithm (HAC) with single linkage,
using the classifier’s confidence value in the nega-
tive answer for each instance as a distance metric8

between document pairs. HAC is the algorithm
used by some of the best performing systems in the
WePS-2 evaluation. The distance threshold was
trained using the WePS-1 data. We report results
with the official WePS-2 evaluation metrics: ex-
tended B-Cubed Precision and Recall (Amigó et
al., 2008).

Two Decision Tree models were evaluated: (i)
ML-ALL is a model trained using all the available
features (which obtains 0.76 accuracy in the clas-
sification task) (ii) ML-NON LING was trained
with all the features except for OAK and Stanford
NEs, noun phrases, lemmas and gazetteer features
(which obtains 0.75 accuracy in the classification
task). These are the same classifiers considered in
Figure 7.

Table 2 shows the results obtained in the clus-
tering task by the two DT models, together with
the four top scoring WePS-2 systems and the av-
erage values for all WePS-2 systems. We found
that a ML based clustering using only non linguis-
tic information slightly outperforms the best par-
ticipant in WePS-2. Surprisingly, adding linguis-
tic information (NEs, noun phrases, etc.) has a
small negative impact on the results (0.81 versus
0.83), although the classifier with linguistic infor-
mation was a bit better than the non-linguistic one.
This seems to be another indication that the use of

8The DT classifier output consists of two confidence val-
ues, one for the positive and one for the negative answer, that
add up to 1.0 .

noun phrases and other linguistic features to im-
prove the task is non-obvious to say the least.

B-Cubed
run F-α =0.5 Pre. Rec.
ML-NON LING .83 .91 .77
S-1 .82 .87 .79
ML- ALL .81 .89 .76
S-2 .81 .85 .80
S-3 .81 .93 .73
S-4 .72 .82 .66
WePS-2 systems aver. .61 .74 .63

Table 2: Evaluation on the WePS-2 clustering task

5 Conclusions

We have presented an empirical study that tries to
determine the potential role of several sources of
information to solve the Web People Search clus-
tering problem, with a particular focus on studying
the role of named entities in the task.

To abstract the study from the particular choice
of a clustering algorithm and a parameter set-
ting, we have reformulated the problem as a co-
reference classification task: deciding whether
two pages refer to the same person or not. We
have also proposed the Maximal Pairwise Accu-
racy estimation that establish an upper bound for
the results obtained by any Machine Learning al-
gorithm using a particular set of features.

Our results indicate that (i) NEs do not provide a
substantial competitive advantage in the clustering
process when compared to a rich combination of
simpler features that do not require linguistic pro-
cessing (local, global and snippet tokens, n-grams,
etc.); (ii) results are sensitive to the NER system
used: when using all NE features for training, the
richer number of features provided by OAK seems
to have an advantage over the simpler types in
Stanford NER and the baseline NER system.

This is not exactly a prescription against the use
of NEs for Web People Search, because linguistic
knowledge can be useful for other aspects of the
problem, such as visualisation of results and de-
scription of the persons/clusters obtained: for ex-
ample, from a user point of view a network of the
connections of a person with other persons and or-
ganisations (which can only be done with NER)
can be part of a person’s profile and may help as
a summary of the cluster contents. But from the
perspective of the clustering problem per se, a di-
rect use of NEs and other linguistic features does
not seem to pay off.
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Abstract

In this paper, we investigate how an ac-

curate question classifier contributes to

a question answering system. We first

present a Maximum Entropy (ME) based

question classifier which makes use of

head word features and their WordNet hy-

pernyms. We show that our question clas-

sifier can achieve the state of the art per-

formance in the standard UIUC question

dataset. We then investigate quantitatively

the contribution of this question classifier

to a feature driven question answering sys-

tem. With our accurate question classifier

and some standard question answer fea-

tures, our question answering system per-

forms close to the state of the art using

TREC corpus.

1 Introduction

Question answering has drawn significant atten-

tion from the last decade (Prager, 2006). It at-

tempts to answer the question posed in natural

language by providing the answer phrase rather

than the whole documents. An important step in

question answering (QA) is to classify the ques-

tion to the anticipated type of the answer. For

example, the question of Who discovered x-rays

should be classified into the type of human (indi-

vidual). This information would narrow down the

search space to identify the correct answer string.

In addition, this information can suggest different

strategies to search and verify a candidate answer.

In fact, the combination of question classification

and the named entity recognition is a key approach

in modern question answering systems (Voorhees

and Dang, 2005).

The question classification is by no means triv-

ial: Simply using question wh-words can not

achieve satisfactory results. The difficulty lies

in classifying the what and which type questions.

Considering the example What is the capital of Yu-

goslavia, it is of location (city) type, while What

is the pH scale is of definition type. As with

the previous work of (Li and Roth, 2002; Li and

Roth, 2006; Krishnan et al., 2005; Moschitti et

al., 2007), we propose a feature driven statistical

question classifier (Huang et al., 2008). In partic-

ular, we propose head word feature and augment

semantic features of such head words using Word-

Net. In addition, Lesk’s word sense disambigua-

tion (WSD) algorithm is adapted and the depth of

hypernym feature is optimized. With further aug-

ment of other standard features such as unigrams,

we can obtain accuracy of 89.0% using ME model

for 50 fine classes over UIUC dataset.

In addition to building an accurate question

classifier, we investigate the contribution of this

question classifier to a feature driven question an-

swering rank model. It is worth noting that, most

of the features we used in question answering rank

model, depend on the question type information.

For instance, if a question is classified as a type of

sport, we then only care about whether there are

sport entities existing in the candidate sentences.

It is expected that a fine grained named entity rec-

ognizer (NER) should make good use of the accu-

rate question type information. However, due to

the lack of a fine grained NER tool at hand, we

employ the Stanford NER package (Finkel et al.,

2005) which identifies only four types of named

entities. Even with such a coarse named entity

recognizer, the experiments show that the question

classifier plays an important role in determining

the performance of a question answering system.

The rest of the paper is organized as follow-

ing. Section 2 reviews the maximum entropy

model which are used in both question classifica-

tion and question answering ranking. Section 3

presents the features used in question classifica-

tion. Section 4 presents the question classification
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accuracy over UIUC question dataset. Section 5

presents the question answer features. Section 6

illustrates the results based on TREC question an-

swer dataset. And Section 7 draws the conclusion.

2 Maximum Entropy Models

Maximum entropy (ME) models (Berger et al.,

1996; Manning and Klein, 2003), also known as

log-linear and exponential learning models, pro-

vide a general purpose machine learning technique

for classification and prediction which has been

successfully applied to natural language process-

ing including part of speech tagging, named entity

recognition etc. Maximum entropy models can in-

tegrate features from many heterogeneous infor-

mation sources for classification. Each feature

corresponds to a constraint on the model. Given

a training set of (C, D), where C is a set of class

labels and D is a set of feature represented data

points, the maximal entropy model attempts to

maximize the log likelihood

log P (C|D, λ) =
∑

(c,d)∈(C,D)

log
exp

∑
i
λifi(c, d)∑

c′ exp
∑

j
λjfi(c, d)

,

(1)

where fi(c, d) are feature indicator functions. We

use ME models for both question classification

and question answer ranking. In question answer

context, such function, for instance, could be the

presence or absence of dictionary entities (as pre-

sented in Section 5.2) associated with a particular

class type (either true or false, indicating a sen-

tence can or cannot answer the question). λi are

the parameters need to be estimated which reflects

the importance of fi(c, d) in prediction.

3 Question Classification Features

Li and Roth (2002) have developed a machine

learning approach which uses the SNoW learning

architecture. They have compiled the UIUC ques-

tion classification dataset1 which consists of 5500

training and 500 test questions.2 All questions in

the dataset have been manually labeled according

to the coarse and fine grained categories as shown

in Table 1, with coarse classes (in bold) followed

by their fine classes.

The UIUC dataset has laid a platform for the

follow-up research including (Hacioglu and Ward,

2003; Zhang and Lee, 2003; Li and Roth, 2006;

1Available at http://12r.cs.uiuc.edu/∼cogcomp/Data/QA/QC.
2Test questions are from TREC 10.

Table 1: 6 coarse and 50 fine Question types de-
fined in UIUC question dataset.

ABBR letter desc NUM
abb other manner code
exp plant reason count
ENTITY product HUMAN date
animal religion group distance
body sport individual money
color substance title order
creative symbol desc other
currency technique LOC period
dis.med. term city percent
event vehicle country speed
food word mountain temp
instrument DESC other size
lang definition state weight

Krishnan et al., 2005; Moschitti et al., 2007). In

contrast to Li and Roth (2006)’s approach which

makes use of a very rich feature set, we propose

to use a compact yet effective feature set. The fea-

tures are briefly described as following. More de-

tailed information can be found at (Huang et al.,

2008).

Question wh-word The wh-word feature is the

question wh-word in given questions. For ex-

ample, the wh-word of question What is the

population of China is what.

Head Word head word is defined as one single

word specifying the object that the question

seeks. For example the head word of What

is a group of turkeys called, is turkeys. This

is different to previous work including (Li

and Roth, 2002; Krishnan et al., 2005) which

has suggested a contiguous span of words

(a group of turkeys in this example). The

single word definition effectively avoids the

noisy information brought by non-head word

of the span (group in this case). A syntac-

tic parser (Petrov and Klein, 2007) and the

Collins rules (Collins, 1999) are modified to

extract such head words.

WordNet Hypernym WordNet hypernyms are

extracted for the head word of a given ques-

tion. The classic Lesk algorithm (Lesk, 1986)

is used to compute the most probable sense

for a head word in the question context, and

then the hypernyms are extracted based on

that sense. The depth of hypernyms is set to
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six with trial and error.3 Hypernyms features

capture the general terms of extracted head

word. For instance, the head word of ques-

tion What is the proper name for a female

walrus is extracted as walrus and its direct

hypernyms such as mammal and animal are

extracted as informative features to predict

the correct question type of ENTY:animal.

Unigram words Bag of words features. Such

features provide useful question context in-

formation.

Word shape Five word shape features, namely all

upper case, all lower case, mixed case, all

digits, and other are used to serve as a coarse

named entity recognizer.

4 Question Classification Experiments

We train a Maximum Entropy model using the

UIUC 5500 training questions and test over the

500 test questions. Tables 2 shows the accuracy of

6 coarse class and 50 fine grained class, with fea-

tures being fed incrementally. The question classi-

fication performance is measured by accuracy, i.e.,

the proportion of the correctly classified questions

among all test questions. The baseline using the

Table 2: Question classification accuracy using in-
cremental feature sets for 6 and 50 classes over
UIUC split.

6 class 50 class
wh-word 46.0 46.8
+ head word 92.2 82.0
+ hypernym 91.8 85.6
+ unigram 93.0 88.4
+ word shape 93.6 89.0

wh-head word results in 46.0% and 46.8% respec-

tively for 6 coarse and 50 fine class classification.

The incremental use of head word boosts the accu-

racy significantly to 92.2% and 82.0% for 6 and 50

classes. This reflects the informativeness of such

feature. The inclusion of hypernym feature within

6 depths boosts 3.6% for 50 classes, while result-

ing in slight loss for 6 coarse classes. The further

use of unigram feature leads to 2.8% gain in 50

classes. Finally, the use of word shape leads to

0.6% accuracy increase for 50 classes. The best

3We performed 10 cross validation experiment over train-
ing data and tried various depths of 1, 3, 6, 9 and ∞, with ∞
signifies that no depth constraint is imposed.

accuracies achieved are 93.6% and 89.0% for 6

and 50 classes respectively.

The individual feature contributions were dis-

cussed in greater detail in (Huang et al., 2008).

Also, The SVM (rathern than ME model) was em-

ployed using the same feature set and the results

were very close (93.4% for 6 class and 89.2% for

50 class). Table 3 shows the feature ablation ex-

periment4 which is missing in that paper. The

experiment shows that the proposed head word

and its hypernym features play an essential role

in building an accurate question classifier.

Table 3: Question classification accuracy by re-
moving one feature at a time for 6 and 50 classes
over UIUC split.

6 class 50 class
overall 93.6 89.0
- wh-word 93.6 89.0
- head word 92.8 88.2
- hypernym 90.8 84.2
- unigram 93.6 86.8
- word shape 93.0 88.4

Our best result feature space only consists of

13’697 binary features and each question has 10

to 30 active features. Compared to the over feature

size of 200’000 in Li and Roth (2002), our feature

space is much more compact, yet turned out to be

more informative as suggested by the experiments.

Table 4 shows the summary of the classification

accuracy of all question classifiers which were ap-

plied to UIUC dataset.5 Our results are summa-

rized in the last row.

In addition, we have performed the 10 cross

validation experiment over the 5500 UIUC train-

ing corpus using our best model. The result is

89.05±1.25 and 83.73±1.61 for 6 and 50 classes,6

which outperforms the best result of 86.1±1.1 for

6 classes as reported in (Moschitti et al., 2007).

5 Question Answer Features

For a pair of a question and a candidate sentence,

we extract binary features which include CoNLL

named entities presence feature (NE), dictionary

4Remove one feature at a time from the entire feature set.
5Note (1) that SNoW accuracy without the related word

dictionary was not reported. With the semantically related
word dictionary, it achieved 91%. Note (2) that SNoW with a
semantically related word dictionary achieved 84.2% but the
other algorithms did not use it.

6These results are worse than the result over UIUC split;
as the UIUC test data includes a larger percentage of easily
classified question types.
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Table 4: Accuracy of all question classifiers which
were applied to UIUC dataset.

Algorithm 6 class 50 class

Li and Roth, SNoW −(1) 78.8(2)

Hacioglu et al., SVM+ECOC − 80.2-82
Zhang & Lee, Linear SVM 87.4 79.2
Zhang & Lee, Tree SVM 90.0 −
Krishnan et al., SVM+CRF 93.4 86.2
Moschitti et al., Kernel 91.8 −
Maximum Entropy Model 93.6 89.0

entities presence feature (DIC), numerical entities

presence feature (NUM), question specific feature

(SPE), and dependency validity feature (DEP).

5.1 CoNLL named entities presence feature

We use Stanford named entity recognizer (NER)

(Finkel et al., 2005) to identify CoNLL style NEs7

as possible answer strings in a candidate sentence

for a given type of question. In particular, if the

question is ABBR type, we tag CoNLL LOC,

ORG and MISC entities as candidate answers; If

the question is HUMAN type, we tag CoNLL PER

and ORG entities; And if the question is LOC

type, we tag CoNLL LOC and MISC entities. For

other types of questions, we assume there is no

candidate CoNLL NEs to tag. We create a binary

feature NE to indicate the presence or absence of

tagged CoNLL entities. Further more, we cre-

ate four binary features NE-PER, NE-LOC, NE-

ORG, and NE-MISC to indicate the presence of

tagged CoNLL PER, LOC, ORG and MISC enti-

ties.

5.2 Dictionary entities presence feature

As four types of CoNLL named entities are not

enough to cover 50 question types, we include the

101 dictionary files compiled in the Ephyra project

(Schlaefer et al., 2007). These dictionary files con-

tain names for specific semantic types. For exam-

ple, the actor dictionary comprises a list of actor

names such as Tom Hanks and Kevin Spacey. For

each question, if the head word of such question

(see Section 3) matches the name of a dictionary

file, then each noun phrase in a candidate sentence

is looked up to check its presence in the dictio-

nary. If so, a binary DIC feature is created. For

example, for the question What rank did Chester

7Person (PER), location (LOC), organization (ORG), and
miscellaneous (MISC).

Nimitz reach, as there is a military rank dictionary

matches the head word rank, then all the noun

phrases in a candidate sentence are looked up in

the military rank dictionary. As a result, a sen-

tence contains word Admiral will result in the DIC

feature being activated, as such word is present in

the military rank dictionary.

Note that an implementation tip is to allow the

proximity match in the dictionary look up. Con-

sider the question What film introduced Jar Jar

Binks. As there is a match between the ques-

tion head word film and the dictionary named

film, each noun phrase in the candidate sentence

is checked. However, no dictionary entities have

been found from the candidate sentence Best plays

Jar Jar Binks, a floppy-eared, two-legged creature

in “Star Wars: Episode I – The Phantom Men-

ace”, although there is movie entitled Star Wars

Episode I: The Phantom Menace in the dictionary.

Notice that Star Wars: Episode I – The Phantom

Menace in the sentence and the dictionary entity

Star Wars Episode I: The Phantom Menace do not

have exactly identical spelling. The use of prox-

imity look up which allows edit distance being less

than 10% error can resolve this.

5.3 Numerical entities presence feature

There are so far no match for question types of

NUM (as shown in Table 1) including NUM:count

and NUM:date etc. These types of questions

seek the numerical answers such as the amount of

money and the duration of period. It is natural to

compile regular expression patterns to match such

entities. For example, for a NUM:money typed

question What is Rohm and Haas’s annual rev-

enue, we compile NUM:money regular expression

pattern which matches the strings of number fol-

lowed by a currency sign ($ and dollars etc). Such

pattern is able to identify 4 billion $ as a candidate

answer in the candidate sentence Rohm and Haas,

with 4 billion $ in annual sales... There are 13 pat-

terns compiled to cover all numerical types. We

create a binary feature NUM to indicate the pres-

ence of possible numerical answers in a sentence.

5.4 Specific features

Specific features are question dependent. For ex-

ample, for question When was James Dean born,

any candidate sentence matches the pattern James

Dean (number - number) is likely to answer such

question. We create a binary feature SPE to indi-

cate the presence of such match between a ques-
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tion and a candidate sentence. We list all question

and sentence match patterns which are used in our

experiments as following:

when born feature 1 The question begins with when is/was
and follows by a person name and then follows by key
word born; The candidate sentence contains such per-
son name which follows by the pattern of (number -
number).

when born feature 2 The question begins with when is/was
and follows by a person name and then follows by key
word born; The candidate sentence contains such per-
son name, a NUM:date entity, and a key word born.

where born feature 1 The question begins with where
is/was and follows by a person name and then follows
by key word born; The candidate sentence contains
such person name, a NER LOC entity, and a key word
born.

when die feature 1 The question begins with when did and
follows by a person name and then follows by key word
die; The candidate sentence contains such person name
which follows by the pattern of (number - number).

when die feature 2 The question begins with when did and
follows by a person name and then follows by key
word die; The candidate sentence contains such person
name, a NUM:date entity, and a key word died.

how many feature The question begins with how many and
follows by a noun; The candidate sentence contains a
number and then follows by such noun.

cooccurrent Feature This feature takes two phrase argu-
ments, if the question contains the first phrase and the
candidate sentence contains the second, such feature
would be activated.

Note that the construction of specific features

require the access to aforementioned extracted

named entities. For example, the when born fea-

ture 2 pattern needs the information whether a

candidate sentence contains a NUM:date entity

and where born feature 1 pattern needs the in-

formation whether a candidate sentence contains

a NER LOC entity. Note also that the patterns of

when born feature and when die feature have

similar structure and thus can be simplified in im-

plementation. How many feature can be used

to identify the sentence Amtrak annually serves

about 21 million passengers for question How

many passengers does Amtrak serve annually. The

cooccurrent feature is the most general one. An

example of cooccurrent feature would take the

arguments of marry and husband, or marry and

wife. Such feature would be activated for ques-

tion Whom did Eileen Marie Collins marry and

candidate sentence ... were Collins’ husband,

Pat Youngs, an airline pilot... It is worth noting

that the two arguments are not necessarily differ-

ent. For example, they could be both established,

which makes such feature activated for question

When was the IFC established and candidate sen-

tence IFC was established in 1956 as a member of

the World Bank Group. The reason why we use the

cooccurrence of the word established is due to its

main verb role, which may carry more information

than other words.

5.5 Dependency validity features

Like (Cui et al., 2004), we extract the dependency

path from the question word to the common word

(existing in both question and sentence), and the

path from candidate answer (such as CoNLL NE

and numerical entity) to the common word for

each pair of question and candidate sentence using

Stanford dependency parser (Klein and Manning,

2003; Marneffe et al., 2006). For example, for

question When did James Dean die and candidate

sentence In 1955, actor James Dean was killed in

a two-car collision near Cholame, Calif., we ex-

tract the pathes of When:advmod:nsubj:Dean and

1955:prep-in:nsubjpass:Dean for question and

sentence respectively, where advmod and nsubj

etc. are grammatical relations. We propose the

dependency validity feature (DEP) as following.

For all paired paths between a question and a can-

didate sentence, if at least one pair of path in which

all pairs of grammatical relations have been seen

in the training, then the DEP feature is set to be

true, false otherwise. That is, the true validity fea-

ture indicates that at least one pair of path between

the question and candidate sentence is possible to

be a true pair (ie, the candidate noun phrase in the

sentence path is the true answer).

6 Question Answer Experiments

Recall that most of the question answer features

depend on the question classifier. For instance,

the NE feature checks the presence or absence of

CoNLL style named entities subject to the clas-

sified question type. In this section, we evaluate

how the quality of question classifiers affects the

question answering performance.

6.1 Experiment setup

We use TREC99-03 factoid questions for training

and TREC04 factoid questions for testing. To fa-

cilitate the comparison to others work (Cui et al.,

2004; Shen and Klakow, 2006), we first retrieve

all relevant documents which are compiled by Ken

Litkowski8 to create training and test datasets. We

8Available at http://trec.nist.gov/data/qa.html.
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then apply key word search for each question and

retrieve the top 20 relevant sentences. We create

a feature represented data point using each pair of

question and candidate sentence and label it either

true or false depending on whether the sentence

can answer the given question or not. The labeling

is conducted by matching the gold factoid answer

pattern against the candidate sentence.

There are two extra steps performed for train-

ing set but not for test data. In order to construct

a high quality training set, we manually check the

correctness of the training data points and remove

the false positive ones which cannot support the

question although there is a match to gold answer.

In addition, in order to keep the training data well

balanced, we keep maximum four false data points

(question answer pair) for each question but no

limit over the true label data points. In doing so,

we use 1458 questions to compile 8712 training

data points and among them 1752 have true labels.

Similarly, we use 202 questions to compile 4008

test data points and among them 617 have true la-

bels.

We use the training data to train a maximum

entropy model and use such model to rank test

data set. Compared with a classification task (such

as the question classifier), the ranking process re-

quires one extra step: For data points which share

the same question, the probabilities of being pre-

dicted as true label are used to rank the data points.

In align with the previous work, performance is

evaluated using mean reciprocal rank (MRR), top

1 prediction accuracy (top1) and top 5 prediction

accuracy (top5). For the test data set, 157 among

the 202 questions have correct answers found in

retrieved sentences. This leads to the upper bound

of MRR score being 77.8%.

To evaluate how the quality of question clas-

sifiers affects the question answering, we have

created three question classifiers: QC1, QC2

and QC3. The features which are used to train

these question classifiers and their performance

are shown in Table 5. Note that QC3 is the best

question classifier we obtained in Section 4.

Table 5: Features used to train and the perfor-
mance of three question classifiers.

Name features 6 class 50 class
QC1 wh-word 46.0 46.8
QC2 wh-word+ head 92.2 82.0
QC3 All 93.6 89.0

6.2 Experiment results

The first experiment is to evaluate the individ-

ual contribution of various features derived using

three question classifiers. Table 6 shows the base-

line result and results using DIC, NE, NE-4, REG,

SPE, and DEP features. The baseline is the key

word search without the use of maximum entropy

model. As can be seen, the question classifiers

do not affect the DIC feature at all, as DIC fea-

ture does not depend on question classifiers. Bet-

ter question classifier boosts considerable gain for

NE, NE-4 and REG in their contribution to ques-

tion answering. For example, the best question

classifier QC3 outperforms the worst one (QC1)

by 1.5%, 2.0%, and 2.0% MRR scores for NE,

NE-4 and REG respectively. However, it is sur-

prising that the MRR and top5 contribution of NE

and NE-4 decreases if QC1 is replaced by QC2, al-

though the top1 score results in performance gain

slightly. This unexpected results can be partially

explained as follows. For some questions, even

QC2 produces correct predictions, the errors of

NE and NE-4 features may cause over-confident

scores for certain candidate sentences. As SPE and

DEP are not directly dependent on question clas-

sifier, their individual contribution only changes

slightly or remains the same for different ques-

tion classifiers. If the best question classifier is

used, the most important features are SPE and

REG, which can individually boost the MRR score

over 54%, while the others result in less significant

gains.

We now incrementally use various features and

the results are show in Table 6 as well. As can

be seen, the more features and the better question

classifier are used, the higher performance the ME

model has. The inclusion of REG and SPE results

in significant boost for the performance. For ex-

ample, if the best question classifier QC3 is used,

the REG results in 6.9% and 8% gain for MRR

and top1 scores respectively. This is due to a large

portion of NUM type questions in test dataset. The

SPE feature contributes significantly to the per-

formance due to its high precision in answering

birth/death time/location questions. NE and NE-4

result in reasonable gains while DEP feature con-

tributes little. However, this does not mean that

DEP is not important, as once the model reaches a

high MRR score, it becomes hard to improve.

Table 6 clearly shows that the question type

classifier plays an essential role in a high perfor-
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Table 6: Performance of individual and incremental feature sets for three question classifiers.
Individual

Feature MRR Top1 Top5
QC1 QC2 QC3 QC1 QC2 QC3 QC1 QC2 QC3

Baseline 49.9 49.9 49.9 40.1 40.1 40.1 59.4 59.4 59.4
DIC 49.5 49.5 49.5 42.6 42.6 42.6 60.4 60.4 60.4
NE 48.5 47.5 50.0 40.6 40.6 42.6 61.9 60.9 63.4
NE-4 49.5 48.5 51.5 41.6 42.1 44.6 62.4 61.9 64.4
REG 52.0 54.0 54.0 44.1 47.0 47.5 64.4 65.3 65.3
SPE 55.0 55.0 55.0 48.5 48.5 48.5 64.4 64.4 64.4
DEP 51.0 51.5 52.0 43.6 44.1 44.6 65.3 65.8 65.8

Incremental
Baseline 49.9 49.9 49.9 40.1 40.1 40.1 59.4 59.4 59.4
+DIC 49.5 49.5 49.5 42.6 42.6 42.6 60.4 60.4 60.4
+NE 50.0 48.5 51.0 43.1 42.1 44.6 62.9 61.4 64.4
+NE-4 51.5 50.0 53.0 44.1 43.6 46.0 63.4 62.9 65.8
+REG 55.0 56.9 59.9 48.0 51.0 54.0 68.3 68.8 71.8
+SPE 60.4 62.4 65.3 55.4 58.4 61.4 70.8 70.8 73.8
+DEP 61.4 62.9 66.3 55.9 58.4 62.4 71.8 71.8 73.8

mance question answer system. Assume all the

features are used, the better question classifier sig-

nificantly boosts the overall performance. For ex-

ample, the best question classifier QC3 outper-

forms the worst QC1 by 4.9%, 6.5%, and 2.0%

for MRR, top1 and top5 scores respectively. Even

compared to a good question classifier QC2, the

gain of using QC3 is still 3.4%, 4.0% and 2.0%

for MRR, top1 and top5 scores respectively. One

can imagine that if a fine grained NER is available

(rather than the current four type coarse NER), the

potential gain is much significant.

The reason that the question classifier affects

the question answering performance is straightfor-

ward. As a upstream source, the incorrect classi-

fication of question type would confuse the down-

stream answer search process. For example, for

question What is Rohm and Haas’s annual rev-

enue, our best question classifier is able to clas-

sify it into the correct type of NUM:money and

thus would put $ 4 billion as a candidate answer.

However, the inferior question classifiers misclas-

sify it into HUM:ind type and thereby could not

return a correct answer. Figure 1 shows the indi-

vidual MRR scores for the 42 questions (among

the 202 test questions) which have different pre-

dicted question types using QC3 and QC2. For al-

most all test questions, the accurate question clas-

sifier QC3 achieves higher MRR scores compared

to QC2.

Table 7 shows performance of various question

answer systems including (Tanev et al., 2004; Wu

et al., 2005; Cui et al., 2004; Shen and Klakow,
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Figure 1: Individual MRR scores for questions
which have different predicted question types us-
ing QC3 and QC2.

2006) and this work which were applied to the

same training and test datasets. Among all the sys-

tems, our model can achieve the best MRR score

of 66.3%, which is close to the state of the art of

67.0%. Considering the question answer features

used in this paper are quite standard, the boost is

mainly due to our accurate question classifier.

Table 7: Various system performance comparison.

System MRR Top1 Top5
Tanev et al. 2004 57.0 49.0 67.0
Cui et al. 2004 60.0 53.0 70.0
Shen and Klakow, 2006 67.0 62.0 74.0
This work 66.3 62.4 73.8
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7 Conclusion

In this paper, we have presented a question clas-

sifier which makes use of a compact yet effi-

cient feature set. The question classifier outper-

forms previous question classifiers over the stan-

dard UIUC question dataset. We further investi-

gated quantitatively how the quality of question

classifier impacts the performance of question an-

swer system. The experiments showed that an ac-

curate question classifier plays an essential role

in question answering system. With our accurate

question classifier and some standard question an-

swer features, our question answering system per-

forms close to the state of the art.
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Abstract

This paper describes an empirical study
of high-performance dependency parsers
based on a semi-supervised learning ap-
proach. We describe an extension of semi-
supervised structured conditional models
(SS-SCMs) to the dependency parsing
problem, whose framework is originally
proposed in (Suzuki and Isozaki, 2008).
Moreover, we introduce two extensions re-
lated to dependency parsing: The first ex-
tension is to combine SS-SCMs with an-
other semi-supervised approach, described
in (Koo et al., 2008). The second exten-
sion is to apply the approach to second-
order parsing models, such as those de-
scribed in (Carreras, 2007), using a two-
stage semi-supervised learning approach.
We demonstrate the effectiveness of our
proposed methods on dependency parsing
experiments using two widely used test
collections: the Penn Treebank for En-
glish, and the Prague Dependency Tree-
bank for Czech. Our best results on
test data in the above datasets achieve
93.79% parent-prediction accuracy for En-
glish, and 88.05% for Czech.

1 Introduction

Recent work has successfully developed depen-
dency parsing models for many languages us-
ing supervised learning algorithms (Buchholz and
Marsi, 2006; Nivre et al., 2007). Semi-supervised
learning methods, which make use of unlabeled
data in addition to labeled examples, have the po-
tential to give improved performance over purely
supervised methods for dependency parsing. It
is often straightforward to obtain large amounts
of unlabeled data, making semi-supervised ap-
proaches appealing; previous work on semi-

supervised methods for dependency parsing in-
cludes (Smith and Eisner, 2007; Koo et al., 2008;
Wang et al., 2008).

In particular, Koo et al. (2008) describe a
semi-supervised approach that makes use of clus-
ter features induced from unlabeled data, and gives
state-of-the-art results on the widely used depen-
dency parsing test collections: the Penn Tree-
bank (PTB) for English and the Prague Depen-
dency Treebank (PDT) for Czech. This is a very
simple approach, but provided significant perfor-
mance improvements comparing with the state-
of-the-art supervised dependency parsers such as
(McDonald and Pereira, 2006).

This paper introduces an alternative method for
semi-supervised learning for dependency parsing.
Our approach basically follows a framework pro-
posed in (Suzuki and Isozaki, 2008). We extend it
for dependency parsing, which we will refer to as
a Semi-supervised Structured Conditional Model
(SS-SCM). In this framework, a structured condi-
tional model is constructed by incorporating a se-
ries of generative models, whose parameters are
estimated from unlabeled data. This paper de-
scribes a basic method for learning within this ap-
proach, and in addition describes two extensions.
The first extension is to combine our method with
the cluster-based semi-supervised method of (Koo
et al., 2008). The second extension is to apply the
approach to second-order parsing models, more
specifically the model of (Carreras, 2007), using
a two-stage semi-supervised learning approach.

We conduct experiments on dependency parsing
of English (on Penn Treebank data) and Czech (on
the Prague Dependency Treebank). Our experi-
ments investigate the effectiveness of: 1) the basic
SS-SCM for dependency parsing; 2) a combina-
tion of the SS-SCM with Koo et al. (2008)’s semi-
supervised approach (even in the case we used the
same unlabeled data for both methods); 3) the two-
stage semi-supervised learning approach that in-
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corporates a second-order parsing model. In ad-
dition, we evaluate the SS-SCM for English de-
pendency parsing with large amounts (up to 3.72
billion tokens) of unlabeled data .

2 Semi-supervised Structured
Conditional Models for Dependency
Parsing

Suzuki et al. (2008) describe a semi-supervised
learning method for conditional random fields
(CRFs) (Lafferty et al., 2001). In this paper we
extend this method to the dependency parsing
problem. We will refer to this extended method
as Semi-supervised Structured Conditional Mod-
els (SS-SCMs). The remainder of this section de-
scribes our approach.

2.1 The Basic Model
Throughout this paper we will use x to denote an
input sentence, and y to denote a labeled depen-
dency structure. Given a sentence x with n words,
a labeled dependency structure y is a set of n de-
pendencies of the form (h,m, l), where h is the
index of the head-word in the dependency, m is
the index of the modifier word, and l is the label
of the dependency. We use h = 0 for the root of
the sentence. We assume access to a set of labeled
training examples, {xi,yi}Ni=1, and in addition a
set of unlabeled examples, {x′i}Mi=1.

In conditional log-linear models for dependency
parsing (which are closely related to conditional
random fields (Lafferty et al., 2001)), a distribu-
tion over dependency structures for a sentence x
is defined as follows:

p(y|x) =
1

Z(x)
exp{g(x,y)}, (1)

where Z(x) is the partition function, w is a pa-
rameter vector, and

g(x,y) =
∑

(h,m,l)∈y

w · f(x, h,m, l)

Here f(x, h,m, l) is a feature vector represent-
ing the dependency (h,m, l) in the context of the
sentence x (see for example (McDonald et al.,
2005a)).

In this paper we extend the definition of g(x,y)
to include features that are induced from unlabeled
data. Specifically, we define

g(x,y) =
∑

(h,m,l)∈y

w · f(x, h,m, l)

+
∑

(h,m,l)∈y

k∑
j=1

vjqj(x, h,m, l). (2)

In this model v1, . . . , vk are scalar parameters that
may be positive or negative; q1 . . . qk are func-
tions (in fact, generative models), that are trained
on unlabeled data. The vj parameters will dictate
the relative strengths of the functions q1 . . . qk, and
will be trained on labeled data.

For convenience, we will use v to refer to the
vector of parameters v1 . . . vk, and q to refer to the
set of generative models q1 . . . qk. The full model
is specified by values for w,v, and q. We will
write p(y|x; w,v,q) to refer to the conditional
distribution under parameter values w,v,q.

We will describe a three-step parameter estima-
tion method that: 1) initializes the q functions
(generative models) to be uniform distributions,
and estimates parameter values w and v from la-
beled data; 2) induces new functions q1 . . . qk from
unlabeled data, based on the distribution defined
by the w,v,q values from step (1); 3) re-estimates
w and v on the labeled examples, keeping the
q1 . . . qk from step (2) fixed. The end result is a
model that combines supervised training with gen-
erative models induced from unlabeled data.

2.2 The Generative Models
We now describe how the generative models
q1 . . . qk are defined, and how they are induced
from unlabeled data. These models make direct
use of the feature-vector definition f(x,y) used in
the original, fully supervised, dependency parser.

The first step is to partition the d fea-
tures in f(x,y) into k separate feature vectors,
r1(x,y) . . . rk(x,y) (with the result that f is the
concatenation of the k feature vectors r1 . . . rk). In
our experiments on dependency parsing, we parti-
tioned f into up to over 140 separate feature vec-
tors corresponding to different feature types. For
example, one feature vector rj might include only
those features corresponding to word bigrams in-
volved in dependencies (i.e., indicator functions
tied to the word bigram (xm, xh) involved in a de-
pendency (x, h,m, l)).

We then define a generative model that assigns
a probability

q′j(x, h,m, l) =
dj∏
a=1

θ
rj,a(x,h,m,l)
j,a (3)

to the dj-dimensional feature vector rj(x, h,m, l).
The parameters of this model are θj,1 . . . θj,dj ;

552



they form a multinomial distribution, with the con-
straints that θj,a ≥ 0, and

∑
a θj,a = 1. This

model can be viewed as a very simple (naive-
Bayes) model that defines a distribution over fea-
ture vectors rj ∈ Rdj . The next section describes
how the parameters θj,a are trained on unlabeled
data.

Given parameters θj,a, we can simply define the
functions q1 . . . qk to be log probabilities under the
generative model:

qj(x, h,m, l) = log q′j(x, h,m, l)

=
dj∑
a=1

rj,a(x, h,m, l) log θj,a.

We modify this definition slightly, be introducing
scaling factors cj,a > 0, and defining

qj(x, h,m, l) =
dj∑
a=1

rj,a(x, h,m, l) log
θj,a
cj,a

(4)

In our experiments, cj,a is simply a count of the
number of times the feature indexed by (j, a) ap-
pears in unlabeled data. Thus more frequent fea-
tures have their contribution down-weighted in the
model. We have found this modification to be ben-
eficial.

2.3 Estimating the Parameters of the
Generative Models

We now describe the method for estimating the
parameters θj,a of the generative models. We
assume initial parameters w,v,q, which define
a distribution p(y|x′i; w,v,q) over dependency
structures for each unlabeled example x′i. We will
re-estimate the generative models q, based on un-
labeled examples. The likelihood function on un-
labeled data is defined as

M∑
i=1

∑
y

p(y|x′i; w,v,q)
∑

(h,m,l)∈y

log q′j(x
′
i, h,m, l),

(5)
where q′j is as defined in Eq. 3. This function re-
sembles the Q function used in the EM algorithm,
where the hidden labels (in our case, dependency
structures), are filled in using the conditional dis-
tribution p(y|x′i; w,v,q).

It is simple to show that the estimates θj,a that
maximize the function in Eq. 5 can be defined as
follows. First, define a vector of expected counts

based on w,v,q as

r̂j =
M∑
i=1

∑
y

p(y|x′i; w,v,q)
∑

(h,m,l)∈y

rj(x′i, h,m, l).

Note that it is straightforward to calculate these ex-
pected counts using a variant of the inside-outside
algorithm (Baker, 1979) applied to the (Eisner,
1996) dependency-parsing data structures (Paskin,
2001) for projective dependency structures, or the
matrix-tree theorem (Koo et al., 2007; Smith and
Smith, 2007; McDonald and Satta, 2007) for non-
projective dependency structures.

The estimates that maximize Eq. 5 are then

θj,a =
r̂j,a∑dj
a=1 r̂j,a

.

In a slight modification, we employ the follow-
ing estimates in our model, where η > 1 is a pa-
rameter of the model:

θj,a =
(η − 1) + r̂j,a

dj × (η − 1) +
∑dj
a=1 r̂j,a

. (6)

This corresponds to a MAP estimate under a
Dirichlet prior over the θj,a parameters.

2.4 The Complete Parameter-Estimation
Method

This section describes the full parameter estima-
tion method. The input to the algorithm is a set
of labeled examples {xi,yi}Ni=1, a set of unla-
beled examples {x′i}Mi=1, a feature-vector defini-
tion f(x,y), and a partition of f into k feature vec-
tors r1 . . . rk which underly the generative mod-
els. The output from the algorithm is a parameter
vector w, a set of generative models q1 . . . qk, and
parameters v1 . . . vk, which define a probabilistic
dependency parsing model through Eqs. 1 and 2.
The learning algorithm proceeds in three steps:

Step 1: Estimation of a Fully Supervised
Model. We choose the initial value q0 of the
generative models to be the uniform distribution,
i.e., we set θj,a = 1/dj for all j, a. We then de-
fine the regularized log-likelihood function for the
labeled examples, with the generative model fixed
at q0, to be:

L(w,v; q0) =
n∑
i=1

log p(yi|xi; w,v,q0)

−C
2

(
||w||2 + ||v||2

)
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This is a conventional regularized log-likelihood
function, as commonly used in CRF models. The
parameter C > 0 dictates the level of regular-
ization in the model. We define the initial pa-
rameters (w0,v0) = arg maxw,v L(w,v; q0).
These parameters can be found using conventional
methods for estimating the parameters of regu-
larized log-likelihood functions (in our case we
use LBFGS (Liu and Nocedal, 1989)). Note that
the gradient of the log-likelihood function can be
calculated using the inside-outside algorithm ap-
plied to projective dependency parse structures, or
the matrix-tree theorem applied to non-projective
structures.

Step 2: Estimation of the Generative Mod-
els. In this step, expected count vectors r̂1 . . . r̂k
are first calculated, based on the distribution
p(y|x; w0,v0,q0). Generative model parameters
θj,a are calculated through the definition in Eq. 6;
these estimates define updated generative models
q1
j for j = 1 . . . k through Eq. 4. We refer to the

new values for the generative models as q1.

Step 3: Re-estimation of w and v. In
the final step, w1 and v1 are estimated as
arg maxw,v L(w,v; q1) where L(w,v; q1) is de-
fined in an analogous way to L(w,v; q0). Thus w
and v are re-estimated to optimize log-likelihood
of the labeled examples, with the generative mod-
els q1 estimated in step 2.

The final output from the algorithm is the set of
parameters (w1,v1,q1). Note that it is possible to
iterate the method—steps 2 and 3 can be repeated
multiple times (Suzuki and Isozaki, 2008)—but
in our experiments we only performed these steps
once.

3 Extensions

3.1 Incorporating Cluster-Based Features

Koo et al. (2008) describe a semi-supervised
approach that incorporates cluster-based features,
and that gives competitive results on dependency
parsing benchmarks. The method is a two-stage
approach. First, hierarchical word clusters are de-
rived from unlabeled data using the Brown et al.
clustering algorithm (Brown et al., 1992). Sec-
ond, a new feature set is constructed by represent-
ing words by bit-strings of various lengths, corre-
sponding to clusters at different levels of the hier-
archy. These features are combined with conven-
tional features based on words and part-of-speech

tags. The new feature set is then used within a
conventional discriminative, supervised approach,
such as the averaged perceptron algorithm.

The important point is that their approach uses
unlabeled data only for the construction of a new
feature set, and never affects to learning algo-
rithms. It is straightforward to incorporate cluster-
based features within the SS-SCM approach de-
scribed in this paper. We simply use the cluster-
based feature-vector representation f(x,y) intro-
duced by (Koo et al., 2008) as the basis of our ap-
proach.

3.2 Second-order Parsing Models

Previous work (McDonald and Pereira, 2006; Car-
reras, 2007) has shown that second-order parsing
models, which include information from “sibling”
or “grandparent” relationships between dependen-
cies, can give significant improvements in accu-
racy over first-order parsing models. In principle
it would be straightforward to extend the SS-SCM
approach that we have described to second-order
parsing models. In practice, however, a bottle-
neck for the method would be the estimation of
the generative models on unlabeled data. This
step requires calculation of marginals on unlabeled
data. Second-order parsing models generally re-
quire more costly inference methods for the cal-
culation of marginals, and this increased cost may
be prohibitive when large quantities of unlabeled
data are employed.

We instead make use of a simple ‘two-stage’ ap-
proach for extending the SS-SCM approach to the
second-order parsing model of (Carreras, 2007).
In the first stage, we use a first-order parsing
model to estimate generative models q1 . . . qk from
unlabeled data. In the second stage, we incorpo-
rate these generative models as features within a
second-order parsing model. More precisely, in
our approach, we first train a first-order parsing
model by Step 1 and 2, exactly as described in
Section 2.4, to estimate w0, v0 and q1. Then,
we substitute Step 3 as a supervised learning such
as MIRA with a second-order parsing model (Mc-
Donald et al., 2005a), which incorporates q1 as a
real-values features. We refer this two-stage ap-
proach to as two-stage SS-SCM.

In our experiments we use the 1-best MIRA
algorithm (McDonald and Pereira, 2006)1 as a

1We used a slightly modified version of 1-best MIRA,
whose difference can be found in the third line in Eq. 7,
namely, including L(yi,y).
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(a) English dependency parsing
Data set (WSJ Sec. IDs) # of sentences # of tokens
Training (02–21) 39,832 950,028
Development (22) 1,700 40,117
Test (23) 2,012 47,377
Unlabeled 1,796,379 43,380,315

(b) Czech dependency parsing
Data set # of sentences # of tokens
Training 73,088 1,255,590
Development 7,507 126,030
Test 7,319 125,713
Unlabeled 2,349,224 39,336,570

Table 1: Details of training, development, test data
(labeled data sets) and unlabeled data used in our
experiments

parameter-estimation method for the second-order
parsing model. In particular, we perform the fol-
lowing optimizations on each update t = 1, ..., T
for re-estimating w and v:

min ||w(t+1) −w(t)||+ ||v(t+1) − v(t)||
s.t. S(xi,yi)− S(xi, ŷ) ≥ L(yi, ŷ)
ŷ = arg maxy S(xi,y) + L(yi,y),

(7)

whereL(yi,y) represents the loss between correct
output of i’th sample yi and y. Then, the scoring
function S for each y can be defined as follows:

S(x,y) = w · (f1(x,y) + f2(x,y))

+B
k∑
j=1

vjqj(x,y), (8)

where B represents a tunable scaling factor, and
f1 and f2 represent the feature vectors of first and
second-order parsing parts, respectively.

4 Experiments

We now describe experiments investigating the ef-
fectiveness of the SS-SCM approach for depen-
dency parsing. The experiments test basic, first-
order parsing models, as well as the extensions
to cluster-based features and second-order parsing
models described in the previous section.

4.1 Data Sets
We conducted experiments on both English and
Czech data. We used the Wall Street Journal
sections of the Penn Treebank (PTB) III (Mar-
cus et al., 1994) as a source of labeled data for
English, and the Prague Dependency Treebank
(PDT) 1.0 (Hajič, 1998) for Czech. To facili-
tate comparisons with previous work, we used ex-
actly the same training, development and test sets

Corpus article name (mm/yy) # of sent. # of tokens
BLLIP wsj 00/87–00/89 1,796,379 43,380,315
Tipster wsj 04/90–03/92 1,550,026 36,583,547
North wsj 07/94–12/96 2,748,803 62,937,557
American reu 04/94–07/96 4,773,701 110,001,109
Reuters reu 09/96–08/97 12,969,056 214,708,766
English afp 05/94–12/06 21,231,470 513,139,928
Gigaword apw 11/94–12/06 46,978,725 960,733,303

ltw 04/94–12/06 10,524,545 230,370,454
nyt 07/94–12/06 60,752,363 1,266,531,274
xin 01/95–12/06 12,624,835 283,579,330

total 175,949,903 3,721,965,583

Table 2: Details of the larger unlabeled data set
used in English dependency parsing: sentences ex-
ceeding 128 tokens in length were excluded for
computational reasons.

as those described in (McDonald et al., 2005a;
McDonald et al., 2005b; McDonald and Pereira,
2006; Koo et al., 2008). The English dependency-
parsing data sets were constructed using a stan-
dard set of head-selection rules (Yamada and Mat-
sumoto, 2003) to convert the phrase structure syn-
tax of the Treebank to dependency tree repre-
sentations. We split the data into three parts:
sections 02-21 for training, section 22 for de-
velopment and section 23 for test. The Czech
data sets were obtained from the predefined train-
ing/development/test partition in the PDT. The un-
labeled data for English was derived from the
Brown Laboratory for Linguistic Information Pro-
cessing (BLLIP) Corpus (LDC2000T43)2, giving
a total of 1,796,379 sentences and 43,380,315
tokens. The raw text section of the PDT was
used for Czech, giving 2,349,224 sentences and
39,336,570 tokens. These data sets are identical
to the unlabeled data used in (Koo et al., 2008),
and are disjoint from the training, development
and test sets. The datasets used in our experiments
are summarized in Table 1.

In addition, we will describe experiments that
make use of much larger amounts of unlabeled
data. Unfortunately, we have no data available
other than PDT for Czech, this is done only for
English dependency parsing. Table 2 shows the
detail of the larger unlabeled data set used in our
experiments, where we eliminated sentences that
have more than 128 tokens for computational rea-
sons. Note that the total size of the unlabeled data
reaches 3.72G (billion) tokens, which is approxi-

2We ensured that the sentences used in the PTB were
excluded from the unlabeled data, since sentences used in
BLLIP corpus are a super-set of the PTB.
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mately 4,000 times larger than the size of labeled
training data.

4.2 Features

4.2.1 Baseline Features
In general we will assume that the input sentences
include both words and part-of-speech (POS) tags.
Our baseline features (“baseline”) are very simi-
lar to those described in (McDonald et al., 2005a;
Koo et al., 2008): these features track word and
POS bigrams, contextual features surrounding de-
pendencies, distance features, and so on. En-
glish POS tags were assigned by MXPOST (Rat-
naparkhi, 1996), which was trained on the train-
ing data described in Section 4.1. Czech POS tags
were obtained by the following two steps: First,
we used ‘feature-based tagger’ included with the
PDT3, and then, we used the method described in
(Collins et al., 1999) to convert the assigned rich
POS tags into simplified POS tags.

4.2.2 Cluster-based Features
In a second set of experiments, we make use of the
feature set used in the semi-supervised approach
of (Koo et al., 2008). We will refer to this as the
“cluster-based feature set” (CL). The BLLIP (43M
tokens) and PDT (39M tokens) unlabeled data sets
shown in Table 1 were used to construct the hierar-
chical clusterings used within the approach. Note
that when this feature set is used within the SS-
SCM approach, the same set of unlabeled data is
used to both induce the clusters, and to estimate
the generative models within the SS-SCM model.

4.2.3 Constructing the Generative Models
As described in section 2.2, the generative mod-
els in the SS-SCM approach are defined through
a partition of the original feature vector f(x,y)
into k feature vectors r1(x,y) . . . rk(x,y). We
follow a similar approach to that of (Suzuki and
Isozaki, 2008) in partitioning f(x,y), where the
k different feature vectors correspond to different
feature types or feature templates. Note that, in
general, we are not necessary to do as above, this
is one systematic way of a feature design for this
approach.

4.3 Other Experimental Settings

All results presented in our experiments are given
in terms of parent-prediction accuracy on unla-

3Training, development, and test data in PDT already con-
tains POS tags assigned by the ‘feature-based tagger’.

beled dependency parsing. We ignore the parent-
predictions of punctuation tokens for English,
while we retain all the punctuation tokens for
Czech. These settings match the evaluation setting
in previous work such as (McDonald et al., 2005a;
Koo et al., 2008).

We used the method proposed by (Carreras,
2007) for our second-order parsing model. Since
this method only considers projective dependency
structures, we “projectivized” the PDT training
data in the same way as (Koo et al., 2008). We
used a non-projective model, trained using an ap-
plication of the matrix-tree theorem (Koo et al.,
2007; Smith and Smith, 2007; McDonald and
Satta, 2007) for the first-order Czech models, and
projective parsers for all other models.

As shown in Section 2, SS-SCMs with 1st-order
parsing models have two tunable parameters, C
and η, corresponding to the regularization con-
stant, and the Dirichlet prior for the generative
models. We selected a fixed value η = 2, which
was found to work well in preliminary experi-
ments.4 The value of C was chosen to optimize
performance on development data. Note that C
for supervised SCMs were also tuned on develop-
ment data. For the two-stage SS-SCM for incor-
porating second-order parsing model, we have ad-
ditional one tunable parameter B shown in Eq. 8.
This was also chosen by the value that provided
the best performance on development data.

In addition to providing results for models
trained on the full training sets, we also performed
experiments with smaller labeled training sets.
These training sets were either created through
random sampling or by using a predefined subset
of document IDs from the labeled training data.

5 Results and Discussion

Table 3 gives results for the SS-SCM method un-
der various configurations: for first and second-
order parsing models, with and without the clus-
ter features of (Koo et al., 2008), and for varying
amounts of labeled data. The remainder of this
section discusses these results in more detail.

5.1 Effects of the Quantity of Labeled Data

We can see from the results in Table 3 that our
semi-supervised approach consistently gives gains

4An intuitive meaning of η = 2 is that this adds one
pseudo expected count to every feature when estimating new
parameter values.
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(a) English dependency parsing: w/ 43M token unlabeled data (BLLIP)
WSJ sec. IDs wsj 21 random selection random selection wsj 15–18 wsj 02-21(all)
# of sentences / tokens 1,671 / 40,039 2,000 / 48,577 8,000 / 190,958 8,936 / 211,727 39,832 / 950,028
feature type baseline CL baseline CL baseline CL baseline CL baseline CL
Supervised SCM (1od) 85.63 86.80 87.02 88.05 89.23 90.45 89.43 90.85 91.21 92.53
SS-SCM (1od) 87.16 88.40 88.07 89.55 90.06 91.45 90.23 91.63 91.72 93.01
(gain over Sup. SCM) (+1.53) (+1.60) (+1.05) (+1.50) (+0.83) (+1.00) (+0.80) (+0.78) (+0.51) (+0.48)
Supervised MIRA (2od) 87.99 89.05 89.20 90.06 91.20 91.75 91.50 92.14 93.02 93.54
2-stage SS-SCM(+MIRA) (2od) 88.88 89.94 90.03 90.90 91.73 92.51 91.95 92.73 93.45 94.13
(gain over Sup. MIRA) (+0.89) (+0.89) (+0.83) (+0.84) (+0.53) (+0.76) (+0.45) (+0.59) (+0.43) (+0.59)

(b) Czech dependency parsing: w/ 39M token unlabeled data (PDT)
PDT Doc. IDs random selection c[0-9]* random selection l[a-i]* (all)
# of sentences / tokens 2,000 / 34,722 3,526 / 53,982 8,000 / 140,423 14,891 / 261,545 73,008 /1,225,590
feature type baseline CL baseline CL baseline CL baseline CL baseline CL
Supervised SCM (1od) 75.67 77.82 76.88 79.24 80.61 82.85 81.94 84.47 84.43 86.72
SS-SCM (1od) 76.47 78.96 77.61 80.28 81.30 83.49 82.74 84.91 85.00 87.03
(gain over Sup. SCM) (+0.80) (+1.14) (+0.73) (+1.04) (+0.69) (+0.64) (+0.80) (+0.44) (+0.57) (+0.31)
Supervised MIRA (2od) 78.19 79.60 79.58 80.77 83.15 84.39 84.27 85.75 86.82 87.76
2-stage SS-SCM(+MIRA) (2od) 78.71 80.09 80.37 81.40 83.61 84.87 84.95 86.00 87.03 88.03
(gain over Sup. MIRA) (+0.52) (+0.49) (+0.79) (+0.63) (+0.46) (+0.48) (+0.68) (+0.25) (+0.21) (+0.27)

Table 3: Dependency parsing results for the SS-SCM method with different amounts of labeled training
data. Supervised SCM (1od) and Supervised MIRA (2od) are the baseline first and second-order ap-
proaches; SS-SCM (1od) and 2-stage SS-SCM(+MIRA) (2od) are the first and second-order approaches
described in this paper. “Baseline” refers to models without cluster-based features, “CL” refers to models
which make use of cluster-based features.

in performance under various sizes of labeled data.
Note that the baseline methods that we have used
in these experiments are strong baselines. It is
clear that the gains from our method are larger for
smaller labeled data sizes, a tendency that was also
observed in (Koo et al., 2008).

5.2 Impact of Combining SS-SCM with
Cluster Features

One important observation from the results in Ta-
ble 3 is that SS-SCMs can successfully improve
the performance over a baseline method that uses
the cluster-based feature set (CL). This is in spite
of the fact that the generative models within the
SS-SCM approach were trained on the same un-
labeled data used to induce the cluster-based fea-
tures.

5.3 Impact of the Two-stage Approach

Table 3 also shows the effectiveness of the two-
stage approach (described in Section 3.2) that inte-
grates the SS-SCM method within a second-order
parser. This suggests that the SS-SCM method
can be effective in providing features (generative
models) used within a separate learning algorithm,
providing that this algorithm can make use of real-
valued features.
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Figure 1: Impact of unlabeled data size for the SS-
SCM on development data of English dependency
parsing.

5.4 Impact of the Amount of Unlabeled Data

Figure 1 shows the dependency parsing accuracy
on English as a function of the amount of unla-
beled data used within the SS-SCM approach. (As
described in Section 4.1, we have no unlabeled
data other than PDT for Czech, hence this section
only considers English dependency parsing.) We
can see that performance does improve as more
unlabeled data is added; this trend is seen both
with and without cluster-based features. In addi-
tion, Table 4 shows the performance of our pro-
posed method using 3.72 billion tokens of unla-
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feature type baseline CL
SS-SCM (1st-order) 92.23 93.23
(gain over Sup. SCM) (+1.02) (+0.70)
2-stage SS-SCM(+MIRA) (2nd-order) 93.68 94.26
(gain over Sup. MIRA) (+0.66) (+0.72)

Table 4: Parent-prediction accuracies on develop-
ment data with 3.72G tokens unlabeled data for
English dependency parsing.

beled data. Note, however, that the gain in perfor-
mance as unlabeled data is added is not as sharp
as might be hoped, with a relatively modest dif-
ference in performance for 43.4 million tokens vs.
3.72 billion tokens of unlabeled data.

5.5 Computational Efficiency

The main computational challenge in our ap-
proach is the estimation of the generative mod-
els q = 〈q1 . . . qk〉 from unlabeled data, partic-
ularly when the amount of unlabeled data used
is large. In our implementation, on the 43M to-
ken BLLIP corpus, using baseline features, it takes
about 5 hours to compute the expected counts re-
quired to estimate the parameters of the generative
models on a single 2.93GHz Xeon processor. It
takes roughly 18 days of computation to estimate
the generative models from the larger (3.72 billion
word) corpus. Fortunately it is simple to paral-
lelize this step; our method takes a few hours on
the larger data set when parallelized across around
300 separate processes.

Note that once the generative models have been
estimated, decoding with the model, or train-
ing the model on labeled data, is relatively in-
expensive, essentially taking the same amount of
computation as standard dependency-parsing ap-
proaches.

5.6 Results on Test Data

Finally, Table 5 displays the final results on test
data. There results are obtained using the best
setting in terms of the development data perfor-
mance. Note that the English dependency pars-
ing results shown in the table were achieved us-
ing 3.72 billion tokens of unlabeled data. The im-
provements on test data are similar to those ob-
served on the development data. To determine
statistical significance, we tested the difference of
parent-prediction error-rates at the sentence level
using a paired Wilcoxon signed rank test. All eight
comparisons shown in Table 5 are significant with

(a) English dependency parsing: w/ 3.72G token ULD
feature set baseline CL
SS-SCM (1st-order) 91.89 92.70
(gain over Sup. SCM) (+0.92) (+0.58)
2-stage SS-SCM(+MIRA) (2nd-order) 93.41 93.79
(gain over Sup. MIRA) (+0.65) (+0.48)

(b) Czech dependency parsing: w/ 39M token ULD (PDT)
feature set baseline CL
SS-SCM (1st-order) 84.98 87.14
(gain over Sup. SCM) (+0.58) (+0.39)
2-stage SS-SCM(+MIRA) (2nd-order) 86.90 88.05
(gain over Sup. MIRA) (+0.15) (+0.36)

Table 5: Parent-prediction accuracies on test data
using the best setting in terms of development data
performances in each condition.

(a) English dependency parsers on PTB
dependency parser test description
(McDonald et al., 2005a) 90.9 1od
(McDonald and Pereira, 2006) 91.5 2od
(Koo et al., 2008) 92.23 1od, 43M ULD
SS-SCM (w/ CL) 92.70 1od, 3.72G ULD
(Koo et al., 2008) 93.16 2od, 43M ULD
2-stage SS-SCM(+MIRA, w/ CL) 93.79 2od, 3.72G ULD

(b) Czech dependency parsers on PDT
dependency parser test description
(McDonald et al., 2005b) 84.4 1od
(McDonald and Pereira, 2006) 85.2 2od
(Koo et al., 2008) 86.07 1od, 39M ULD
(Koo et al., 2008) 87.13 2od, 39M ULD
SS-SCM (w/ CL) 87.14 1od, 39M ULD
2-stage SS-SCM(+MIRA, w/ CL) 88.05 2od, 39M ULD

Table 6: Comparisons with the previous top sys-
tems: (1od, 2od: 1st- and 2nd-order parsing
model, ULD: unlabeled data).

p < 0.01.

6 Comparison with Previous Methods

Table 6 shows the performance of a number of
state-of-the-art approaches on the English and
Czech data sets. For both languages our ap-
proach gives the best reported figures on these
datasets. Our results yield relative error reduc-
tions of roughly 27% (English) and 20% (Czech)
over McDonald and Pereira (2006)’s second-order
supervised dependency parsers, and roughly 9%
(English) and 7% (Czech) over the previous best
results provided by Koo et. al. (2008)’s second-
order semi-supervised dependency parsers.

Note that there are some similarities between
our two-stage semi-supervised learning approach
and the semi-supervised learning method intro-
duced by (Blitzer et al., 2006), which is an exten-
sion of the method described by (Ando and Zhang,
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2005). In particular, both methods use a two-stage
approach; They first train generative models or
auxiliary problems from unlabeled data, and then,
they incorporate these trained models into a super-
vised learning algorithm as real valued features.
Moreover, both methods make direct use of exist-
ing feature-vector definitions f(x,y) in inducing
representations from unlabeled data.

7 Conclusion

This paper has described an extension of the
semi-supervised learning approach of (Suzuki and
Isozaki, 2008) to the dependency parsing problem.
In addition, we have described extensions that in-
corporate the cluster-based features of Koo et al.
(2008), and that allow the use of second-order
parsing models. We have described experiments
that show that the approach gives significant im-
provements over state-of-the-art methods for de-
pendency parsing; performance improves when
the amount of unlabeled data is increased from
43.8 million tokens to 3.72 billion tokens. The ap-
proach should be relatively easily applied to lan-
guages other than English or Czech.

We stress that the SS-SCM approach requires
relatively little hand-engineering: it makes di-
rect use of the existing feature-vector representa-
tion f(x,y) used in a discriminative model, and
does not require the design of new features. The
main choice in the approach is the partitioning
of f(x,y) into components r1(x,y) . . . rk(x,y),
which in our experience is straightforward.
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Abstract

We present an inexact search algorithm for

the problem of predicting a two-layered

dependency graph. The algorithm is based

on a k-best version of the standard cubic-

time search algorithm for projective de-

pendency parsing, which is used as the

backbone of a beam search procedure.

This allows us to handle the complex non-

local feature dependencies occurring in

bistratal parsing if we model the interde-

pendency between the two layers.

We apply the algorithm to the syntactic–

semantic dependency parsing task of the

CoNLL-2008 Shared Task, and we obtain

a competitive result equal to the highest

published for a system that jointly learns

syntactic and semantic structure.

1 Introduction

Numerous linguistic theories assume a multistratal

model of linguistic structure, such as a layer of

surface syntax, deep syntax, and shallow seman-

tics. Examples include Meaning–Text Theory

(Mel’čuk, 1988), Discontinuous Grammar (Buch-

Kromann, 2006), Extensible Dependency Gram-

mar (Debusmann et al., 2004), and the Functional

Generative Description (Sgall et al., 1986) which

forms the theoretical foundation of the Prague De-

pendency Treebank (Hajič, 1998).

In the statistical NLP community, the most

widely used grammatical resource is the Penn

Treebank (Marcus et al., 1993). This is a purely

syntactic resource, but we can also include this

treebank in the category of multistratal resources

since the PropBank (Palmer et al., 2005) and

NomBank (Meyers et al., 2004) projects have an-

notated shallow semantic structures on top of it.

Dependency-converted versions of the Penn Tree-

bank, PropBank and NomBank were used in the

CoNLL-2008 Shared Task (Surdeanu et al., 2008),

in which the task of the participants was to pro-

duce a bistratal dependency structure consisting of

surface syntax and shallow semantics.

Producing a consistent multistratal structure is

a conceptually and computationally complex task,

and most previous methods have employed a

purely pipeline-based decomposition of the task.

This includes the majority of work on shallow se-

mantic analysis (Gildea and Jurafsky, 2002, in-

ter alia). Nevertheless, since it is obvious that

syntax and semantics are highly interdependent, it

has repeatedly been suggested that the problems of

syntactic and semantic analysis should be carried

out simultaneously rather than in a pipeline, and

that modeling the interdependency between syn-

tax and semantics would improve the quality of all

the substructures.

The purpose of the CoNLL-2008 Shared Task

was to study the feasibility of a joint analysis

of syntax and semantics, and while most partici-

pating systems used a pipeline-based approach to

the problem, there were a number of contribu-

tions that attempted to take the interdependence

between syntax and semantics into account. The

top-performing system in the task (Johansson and

Nugues, 2008) applied a very simple reranking

scheme by means of a k-best syntactic output,

similar to previous attempts (Gildea and Juraf-

sky, 2002; Toutanova et al., 2005) to improve se-

mantic role labeling performance by using mul-
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tiple parses. The system by Henderson et al.

(2008) extended previous stack-based algorithms

for dependency parsing by using two separate

stacks to build the syntactic and semantic graphs.

Lluı́s and Màrquez (2008) proposed a model that

simultaneously predicts syntactic and semantic

links, but since its search algorithm could not take

the syntactic–semantic interdependencies into ac-

count, a pre-parsing step was still needed. In ad-

dition, before the CoNLL-2008 shared task there

have been a few attempts to jointly learn syntac-

tic and semantic structure; for instance, Merlo and

Musillo (2008) appended semantic role labels to

the phrase tags in a constituent treebank and ap-

plied a conventional constituent parser to predict

constituent structure and semantic roles.

In this paper, we propose a new approximate

search method for bistratal dependency analysis.

The search method is based on a beam search pro-

cedure that extends a k-best version of the stan-

dard cubic-time search algorithm for projective

dependency parsing. This is similar to the search

method for constituent parsing used by Huang

(2008), who referred to it as cube pruning, in-

spired by an idea from machine translation decod-

ing (Chiang, 2007). The cube pruning approach,

which is normally used to solve the arg max prob-

lem, was also recently extended to summing prob-

lems, which is needed in some learning algorithms

(Gimpel and Smith, 2009).

We apply the algorithm on the CoNLL-2008

Shared Task data, and obtain the same evalua-

tion score as the best previously published system

that simultaneously learns syntactic and semantic

structure (Titov et al., 2009).

2 Bistratal Dependency Parsing

In the tradition of dependency representation of

sentence structure, starting from Tesnière (1959),

the linguistic structure of the sentence is repre-

sented as a directed graph of relations between

words. In most theories, certain constraints are im-

posed on this graph; the most common constraint

on dependency graphs in syntax, for instance, is

that the graph should form a tree (i.e. it should be

connected, acyclic, and every node should have at

most one incoming edge). This assumption un-

derlies almost all dependency parsing, although

there are also a few parsers based on slightly more

general problem formulations (Sagae and Tsuji,

2008).

In this paper, we assume a different type of con-

straint: that the graph can be partitioned into two

subgraphs that we will refer to as strata or layers,

where the first of the layers forms a tree. For the

second layer, the only assumption we make is that

there is at most one link between any two words.

However, we believe that for any interesting lin-

guistic structure, the second layer will be highly

dependent on the structure of the first layer.

Figure 1 shows an example of a bistratal depen-

dency graph such as in the CoNLL-2008 Shared

Task on syntactic and semantic dependency pars-

ing. The figure shows the representation of the

sentence We were expecting prices to fall. The pri-

mary layer represents surface-syntactic relations,

shown above the sentence, and the secondary layer

consists of predicate–argument links (here, we

have two predicates expecting and fall).

SBJ

ROOT

We were expecting prices to fall

VC IM

OPRD

OBJ

C−A1

A1 A1

A0

Figure 1: Example of a bistratal dependency

graph.

We now give a formal model of the statistical

parsing problem of prediction of a bistratal depen-

dency graph. For a given input sentence x, the task

of our algorithm is to predict a structure ŷ consist-

ing of a primary layer ŷp and a secondary layer

ŷs. In a discriminative modeling framework, we

model this prediction problem as the search for the

highest-scoring output from the candidate space Y
under a scoring function F :

〈ŷp, ŷs〉 = arg max
〈yp,ys〉∈Y

F (x, yp, ys)

The learning problem consists of searching in the

model space for a scoring function F that mini-

mizes the cost of predictions on unseen examples

according to a given cost function ρ. In this work,

we consider linear scoring functions of the follow-

ing form:

F (x, yp, ys) = w ·Φ(x, yp, ys)

where Φ(x, y) is a numeric feature representation

of the tuple (x, yp, ys) and w a high-dimensional

vector of feature weights.
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Based on the structural assumptions made

above, we now decompose the feature represen-

tation into three parts:

Φ = Φp + Φi + Φs

Here, Φp represents the primary layer, assumed to

be a tree, Φs the secondary layer, and finally Φi

is the representation of the interdependency be-

tween the layers. For the feature representations

of the primary and secondary layers, we employ

edge factorization, a decomposition widely used

in statistical dependency parsing, and assume that

all edges can be scored independently:

Φp(x, yp) =
∑
f∈yp

φp(x, f)

The representation of the interdependency be-

tween the layers assumes that each secondary link

is dependent on the primary layer, but independent

of other secondary links.

Φi(x, yp, ys) =
∑
f∈ys

φi(x, f, yp)

The interdependency between layers is the bottle-

neck for the search algorithm that we will present

in Section 3. For semantic role analysis, this in-

volves all features that rely on a syntactic repre-

sentation, most importantly the PATH feature that

represents the grammatical relation between pred-

icate and argument words. For instance, in Fig-

ure 1, we can represent the surface-syntactic re-

lation between the tokens fall and prices as the

string IM↑OPRD↑OBJ↓. In this work, all interde-

pendency features will be based on paths in the

primary layer.

3 A Bistratal Search Algorithm

This section presents an algorithm to approxi-

mately solve the arg max problem for prediction

of bistratal dependency structures. We present the

algorithm in two steps: first, we review a k-best

version of the standard search algorithm for pro-

jective monostratal dependency parsing, based on

the work by Huang and Chiang (2005).1 In the

second step, starting from the k-best monostratal

search, we devise a search method for the bistratal

problem.

1Huang and Chiang (2005) described an even more effi-
cient k-best algorithm based on lazy evaluation, which we
will not use here since it is not obviously adaptable to the
situation where the search is inexact.

3.1 Review of k-Best Dependency Parsing

The search method commonly used in dependency

parsers is a chart-based dynamic programming al-

gorithm that finds the highest-scoring projective

dependency tree under an edge-factored scoring

function. It runs in cubic time with respect to the

sentence length. In a slightly more general for-

mulation, it was first published by Eisner (1996).

Starting from McDonald et al. (2005), it has been

widely used in recent statistical dependency pars-

ing frameworks.

The algorithm works by creating open struc-

tures, which consist of a dependency link and the

set of links that it spans, and closed structures,

consisting of the left or right half of a complete

subtree. An open structure is created by a proce-

dure LINK that adds a dependency link to connect

a right-pointing and a left-pointing closed struc-

ture, and a closed structure by a procedure JOIN

that joins an open structure with a closed structure.

Figure 2 shows schematic illustrations: a LINK

operation connects the right-pointing closed struc-

ture between s and j with the left-pointing closed

structure between j + 1 and e, and a JOIN oper-

ation connects an open structure between s and j
with a closed structure between j and e.

es j j+1 es j

Figure 2: Illustrations of the LINK and JOIN oper-

ations.

The search algorithm can easily be extended to

find the k best parses, not only the best one. In

k-best parsing, we maintain a k-best list in every

cell in the dynamic programming table. To create

the k-best list of derivations for an open structure

between the positions s and e, for instance, there

are up to |L| · (e − s) · k2 possible combinations

to consider if the set of allowed labels is L. The

key observation by Huang and Chiang (2005) is to

make use of the fact that the lists are sorted. For

every position between s and e, we add the best

combination to a priority queue, from which we

then repeatedly remove the front item. For every

item we remove, we add three successors: an item

with a next-best left part, an item with a next-best

right part, and finally an item with a next-best edge

563



label.

The pseudocode of the search algorithm for

k-best dependency parsing is given in Algo-

rithms 1 and 2. For brevity, we omitted the

code for ADVANCE-LEFT and ADVANCE-RIGHT,

which are similar to ADVANCE-EDGE, as well as

ADVANCE-LOWER, which resembles ADVANCE-

UPPER. The FST function used in the pseudocode

returns the first element of a tuple.

The algorithm uses a priority queue with stan-

dard operations ENQUEUE, which enqueues an

element, and DEQUEUE, which removes the

highest-scoring item from the queue. With a stan-

dard binary heap implementation of the priority

queue, these two operations execute in logarithmic

time. To build the queue, we use a constant-time

TOSS operation, which appends an item to the

queue without enforcing the priority queue con-

straint, and a HEAPIFY operation that constructs a

consistent priority queue in linear time.

3.2 Extension to Bistratal Dependency

Parsing

The k-best algorithm forms the core of the inexact

bistratal search algorithm. Our method is similar

to the forest reranking method by Huang (2008),

although there is no forest pruning or reranking in-

volved here. Crucially, we divide the features into

local features, which can be computed “offline”,

and nonlocal features, which must be computed

during search. In our case, the local features are

Φp and Φs, while the nonlocal features are the in-

terdependent features Φi.

Algorithm 3 shows pseudocode for the main

part of the bistratal search algorithm, and Algo-

rithm 4 for its support functions. The algorithm

works as follows: for every span 〈s, e〉, the algo-

rithm first uses the LINK procedure from the k-

best monostratal search to construct a k-best list of

open structures without semantic links. In the next

step, secondary links are added in the procedure

LINK-SECONDARY. For brevity, we show only

the procedures that create open structures; they are

very similar to their closed-structure counterparts.

The LINK-SECONDARY procedure starts by

creating an initial candidate (FIRST-SEC-OPEN)

based on the best open structure for the primary

layer. FIRST-SEC-OPEN creates the candidate

space for secondary links for a single primary

open structure. To reduce search complexity, it

makes use of a problem-specific function SCOPE

Algorithm 1 k-best search algorithm for depen-

dency parsing.

function k-BEST-SEARCH(k)
n← length of the sentence
initialize the table O of open structures
initialize the table C of closed structures
for m ∈ [1, . . . , n]

for s ∈ [0, . . . , n−m]
LINK(s, s + m,→, k)
LINK(s, s + m,←, k)
JOIN(s, s + m,→, k)
JOIN(s, s + m,←, k)

return C[0, n,→]

procedure LINK(s, e, dir, k)
E ← CREATE-EDGES(s,e, dir, k)
q ← empty priority queue
for j ∈ [s, . . . , e− 1]

l ← C[s, j,→]
r ← C[j + 1, e,←]
o← CREATE-OPEN(E,l, r, 1, 1, 1)
TOSS(q, o)

HEAPIFY(q)
while |O[s, e, dir]| < k and |q| > 0

o← DEQUEUE(q)
if o /∈ O[s, e, dir]

APPEND(O[s, e, dir], o)
ENQUEUE(q, ADVANCE-EDGE(o))
ENQUEUE(q, ADVANCE-LEFT(o))
ENQUEUE(q, ADVANCE-RIGHT(o))

procedure JOIN(s, e, dir, k)
q ← empty priority queue
if dir =→

for j ∈ [s + 1, . . . , e]
u← O[s, j,→]
l← C[j, e,→]
c← CREATE-CLOSED(u, l, 1, 1)
TOSS(q, c)

else
for j ∈ [s, . . . , e− 1]

u← O[j, e,←]
l← C[s, j,←]
c← CREATE-CLOSED(u, l, 1, 1)
TOSS(q, c)

HEAPIFY(q)
while |C[s, e, dir]| < k and |q| > 0

c← DEQUEUE(q)
if c /∈ C[s, e, dir]

APPEND(C[s, e, dir], c)
ENQUEUE(q, ADVANCE-UPPER(c))
ENQUEUE(q, ADVANCE-LOWER(c))

that defines which secondary links are possible

from a given token, given a primary-layer context.

An important insight by Huang (2008) is that

nonlocal features should be computed as early as

possible during search. In our case, we assume

that the interdependency features are based on tree

paths in the primary layer. This means that sec-

ondary links between two tokens can be added

when there is a complete path in the primary layer

between the tokens. When we create an open
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Algorithm 2 Support operations for the k-best

search.
function CREATE-EDGES(s,e, dir, k)

E ← ∅
for l ∈ ALLOWED-LABELS(s,e, dir)

scoreL ← w · φp(s, e, dir, l)
edge← 〈scoreL, s, e, dir, l〉
APPEND(E, edge)

return the top k edges in E

function CREATE-OPEN(E,l, r, ie, il, ir)
scoreL ← FST(E[ie]) + FST(l[il]) + FST(r[ir])
return 〈scoreL + scoreN , E, l, r, ie, il, ir〉

function CREATE-CLOSED(u,l, iu, ir)
scoreL ← FST(u[iu]) + FST(l[il])
return 〈scoreL + scoreN , u, l, iu, il〉

function ADVANCE-EDGE(o)
where o = (score, E, l, r, ie, il, ir)

if ie = LENGTH(E)
return ∅

else
return CREATE-OPEN(E,l, r, ie + 1, il, ir)

function ADVANCE-UPPER(c)
where c = (u, l, iu, il)

if iu = LENGTH(u)
return ∅

else
return CREATE-CLOSED(u,l, iu + 1, il)

structure by adding a link between two substruc-

tures, a complete path is created between the to-

kens in the substructures. We thus search for pos-

sible secondary links only between the two sub-

structures that are joined.

Figure 3 illustrates this process. A primary open

structure between s and e has been created by

adding a link from the right-pointing closed struc-

ture between s and j to the left-pointing closed

structure between j + 1 and e. We now try to

add secondary links between the two substruc-

tures. For instance, in the semantic role parsing

task described in subsection 3.3, if we know that

there is a predicate between s and j, then we look

for arguments between j + 1 and e, i.e. we apply

the SCOPE function to the right substructure.

When computing the scores for secondary links,

note that for efficiency only the interdependent

part Φi should be computed in CREATE-SEC-

EDGES; the part of the score that does not depend

on the primary layer can be computed before en-

tering the search procedure.

es j j+1
p a

Figure 3: Illustration of the secondary linking pro-

cess: When two substructures are connected, we

can compute the path between a predicate in the

left substructure and an argument in the right sub-

structure.

Algorithm 3 Search algorithm for bistratal depen-

dency parsing.

function BISTRATAL-SEARCH(k)
n← length of the sentence
initialize the table O of open structures
initialize the table C of closed structures
using φs, compute a table scoress for all

possible secondary edges 〈h, d, l〉
for m ∈ [1, . . . , n]

for s ∈ [0, . . . , n−m]
LINK(s, s + m,→, k)
LINK-SECONDARY(s,s + m,→, k)
LINK(s, s + m,←, k)
LINK-SECONDARY(s,s + m,←, k)
JOIN(s, s + m,→, k)
JOIN-SECONDARY(s,s + m,→, k)
JOIN(s, s + m,←, k)
JOIN-SECONDARY(s,s + m,←, k)

return FIRST(C[0, n,→])

procedure LINK-SECONDARY(s,e, dir, k)
q ← empty priority queue
o← FIRST-SEC-OPEN(O[s,e, dir], 1, k)
ENQUEUE(q, o)
buf ← empty list
while |buf | < k and |q| > 0

o← DEQUEUE(q)
if o /∈ buf

APPEND(buf, o)
for o′ ∈ ADVANCE-SEC-OPEN(o, k)

ENQUEUE(q,o′)
SORT(buf) to O[s, e, dir]

3.3 Application on the CoNLL-2008 Shared

Task Treebank

We applied the bistratal search method in Algo-

rithm 3 on the data from the CoNLL-2008 Shared

Task (Surdeanu et al., 2008). Here, the primary

layer is the tree of surface-syntactic relations such

as subject and object, and the secondary layer con-

tains the links between the predicate words in the

sentence and their respective logical arguments,

such as agent and patient. The training corpus con-

sists of sections 02 – 21 of the Penn Treebank, and

contains roughly 1 million words.
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Algorithm 4 Support operations in bistratal

search.
function FIRST-SEC-OPEN(L,iL, k)

if i = LENGTH(L)
return ∅

l←GET-LEFT(L[iL]), r ←GET-RIGHT(L[iL])
for h ∈ [START(l), . . . , END(l)]
for d ∈ SCOPE(r, h)]

E[h][d]← CREATE-SEC-EDGES(h, d, L[iL], k)]
IE[h][d]← 1

for h ∈ [START(r), . . . , END(r)]
for d ∈ SCOPE(l, h)]

E[h][d]← CREATE-SEC-EDGES(h, d, L[iL], k)]
IE[h][d]← 1

return CREATE-SEC-OPEN(L, iL, E, I)

function CREATE-SEC-EDGES(h,d, o, k)
E ← ∅
for l ∈ ALLOWED-SEC-LABELS(h,d)

score← w · φi(h, d, l, o) + scoress[h, d, l]
edge← 〈score, h, d, l〉
APPEND(E, edge)

return the top k edges in E

function CREATE-SEC-OPEN(L,iL, E, I)
score← FST(L[iL]) +

∑
h,d

FST(E[h, d, IE[h, d]])

return 〈score, L, iL, E, IE〉

function ADVANCE-SEC-OPEN(o,k)
where o = 〈score, L, iL, E, IE〉

buf ← ∅
if iL < LENGTH(L) and IE = [1, . . . , 1]

APPEND(buf, FIRST-SEC-OPEN(L, iL + 1, k))
for h, d
if IE[h, d] < LENGTH(E[h, d])

I ′
E ← COPY(IE)

I ′
E[h, d]← I ′

E[h, d] + 1
APPEND(buf, CREATE-SEC-OPEN(L, iL, E, I ′

E))
return buf

To apply the bistratal search algorithm to

the problem of syntactic–semantic parsing, a

problem-specific implementation of the SCOPE

function is needed. In this case, we made two as-

sumptions. First, we assumed that the identities

of the predicate words are known a priori2. Sec-

ondly, we assumed that every argument of a given

predicate word is either a direct dependent of the

predicate, one of its ancestors, or a direct depen-

dent of one of its ancestors. This assumption is a

simple adaptation of the pruning algorithm by Xue

and Palmer (2004), and it holds for the vast major-

ity of arguments in the CoNLL-2008 data; in the

training set, we measured that this covers 99.04%

of the arguments of verbs and 97.55% of the argu-

2Since our algorithm needs to know the positions of the
predicates, we trained a separate classifier using the LIBLIN-
EAR toolkit (Fan et al., 2008) to identify the predicate words.
As features for the classifier, we used the words and part-of-
speech tags in a ±3 window around the word under consid-
eration.

ments of nouns.

Figure 4 shows an example of how the SCOPE

function works in our case. If a predicate is con-

tained in the right substructure, we find two po-

tential arguments: one at the start of the left sub-

structure, and one more by recursively searching

the left structure.

pa a21

Figure 4: Illustration of the SCOPE function for

predicate–argument links. If the right substructure

contains a predicate, we can find potential argu-

ments in the left substructure.

While the primary layer is assumed to be pro-

jective in Algorithm 3, the syntactic trees in the

CoNLL-2008 data have a small number of nonpro-

jective links. We used a pseudo-projective edge la-

bel encoding to handle nonprojectivity (Nivre and

Nilsson, 2005).

To implement the model, we constructed fea-

ture representations Φp, Φs, and Φi. The surface-

syntactic representation Φp was a standard first-

order edge factorization using the same features

as McDonald et al. (2005). The features in Φs and

Φi are shown in Table 1 and are standard features

in statistical semantic role classification.

Φs Φi

Predicate word Path
Predicate POS Path + arg. POS
Argument word Path + pred. POS
Argument POS Path + arg. word
Pred. + arg. words Path + pred. word
Predicate word + label Path + label
Predicate POS + label Path + arg. POS + label
Argument word + label Path + pred. POS + label
Argument POS + label Path + arg. word + label
Pred. + arg. words + label Path + pred. word + label

Table 1: Feature representation for secondary

links.

We trained the discriminative model using

the Online Passive–aggressive algorithm (Cram-

mer et al., 2006), which is an efficient online

learning method that can be used to train mod-

els for learning problems with structured out-

put spaces. A cost function ρ is needed in the

learning algorithm; we decomposed it into a pri-
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mary part ρp and a secondary part ρs. We com-

puted the primary part as the sum of link errors:

ρp(yp, ŷp) =
∑

l∈ŷp
cp(l, yp), where

cp(l, yp) =
0 if l ∈ yp and its label is correct

0.5 if l ∈ yp but its label is incorrect

1 if l /∈ yp

In a similar vein, we computed the secondary part

ρs of the cost function as #fp+#fn+0.5 ·#fl,
where #fp is the number of false positive sec-

ondary links, #fn the number of false negative

links, and #fl the number of links with correct

endpoints but incorrect label.

The training procedure took roughly 24 hours

on an 2.3 GHz AMD Athlon processor. The mem-

ory consumption was about 1 GB during training.

4 Experiments

We evaluated the performance of our system on

the test set from the CoNLL-2008 shared task,

which consists of section 23 of the WSJ part of

the Penn Treebank, as well as a small part of the

Brown corpus. A beam width k of 4 was used

in this experiment. Table 2 shows the results of

the evaluation. The table shows the three most

important scores computed by the official evalua-

tion script: labeled syntactic dependency accuracy

(LAS), labeled semantic dependency F1-measure

(Sem. F1), and the macro-averaged F1-measure, a

weighted combination of the syntactic and seman-

tic scores (M. F1). Our result is competitive; we

obtain the same macro F1 as the newly published

result by Titov et al. (2009), which is the high-

est published figure for a joint syntactic–semantic

parser so far. Importantly, our system clearly out-

performs the system by Lluı́s and Màrquez (2008),

which is the most similar system in problem mod-

eling, but which uses a different search strategy.

System LAS Sem. F1 M. F1

This paper 86.6 77.1 81.8

Titov et al. (2009) 87.5 76.1 81.8

H. et al (2008) 87.6 73.1 80.5

L. & M. (2008) 85.8 70.3 78.1

Table 2: Results of published joint syntactic–

semantic parsers on the CoNLL-2008 test set.

Since the search procedure is inexact, it is im-

portant to quantify roughly how much of a detri-

mental impact the approximation has on the pars-

ing quality. We studied the influence of the beam

width parameter k on the performance of the

parser. The results on the development set can be

seen in Table 3. As can be seen, a modest increase

in performance can be obtained by increasing the

beam width, at the cost of increased parsing time.

k LAS Sem. F1 M. F1 Time

1 85.14 77.05 81.10 242

2 85.43 77.17 81.30 369

4 85.49 77.20 81.35 625

8 85.58 77.20 81.40 1178

Table 3: Influence of beam width on parsing accu-

racy.

In addition, to have a rough indication of the im-

pact of search errors on the quality of the parses,

we computed the fraction of sentences where the

gold-standard parse had a higher score accord-

ing to the model than the parse returned by the

search3. Table 4 shows the results of this exper-

iment. This suggests that the search errors, al-

though they clearly have an impact, are not the ma-

jor source of errors, even with small beam widths.

k Fraction

1 0.121

2 0.104

4 0.096

8 0.090

Table 4: Fraction of sentences in the development

set where the gold-standard parse has a higher

score than the parse returned by the search pro-

cedure.

To investigate where future optimization efforts

should be spent, we used the built-in hprof pro-

filing tool of Java to locate the bottlenecks. Once

again, we ran the program on the development

set with a beam width of 4, and Table 5 shows

the three types of operations where the algorithm

spent most of its time. It turns out that 74% of the

time was spent on the computation and scoring of

interdependency features. To make our algorithm

truly useful in practice, we thus need to devise a

way to speed up or cache these computations.

3To be able to compare the scores of the gold-standard
and predicted parses, we disabled the automatic classifier for
predicate identification and provided the parser with gold-
standard predicates in this experiment.
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Operation Fraction

w · Φi 0.64

Queue operations 0.15

Computation of Φi 0.10

Table 5: The three most significant bottlenecks

and their fraction of the total runtime.

5 Discussion

In this paper, we have presented a new approxi-

mate search method to solve the problem of jointly

predicting the two layers in a bistratal dependency

graph. The algorithm shows competitive perfor-

mance on the treebank used in the CoNLL-2008

Shared Task, a bistratal treebank consisting of a

surface-syntactic and a shallow semantic layer. In

addition to the syntactic–semantic task that we

have described in this paper, we believe that our

method can be used in other types of multistratal

syntactic frameworks, such as a representation of

surface and deep syntax as in Meaning–Text The-

ory (Mel’čuk, 1988).

The optimization problem that we set out to

solve is intractable, but we have shown that rea-

sonable performance can be achieved with an in-

exact, beam search-based search method. This is

not obvious: it has previously been shown that us-

ing an inexact search procedure when the learn-

ing algorithm assumes that the search is exact

may lead to slow convergence or even divergence

(Kulesza and Pereira, 2008), but this does not

seem to be a problem in our case.

While we used a beam search method as the

method of approximation, other methods are cer-

tainly possible. An interesting example is the re-

cent system by Smith and Eisner (2008), which

used loopy belief propagation in a dependency

parser using highly complex features, while still

maintaining cubic-time search complexity.

An obvious drawback of our approach com-

pared to traditional pipeline-based semantic role

labeling methods is that the speed of the algo-

rithm is highly dependent on the size of the in-

terdependency feature representation Φi. Also,

extracting these features is fairly complex, and it

is of critical importance to implement the feature

extraction procedure efficiently since it is one of

the bottlenecks of the algorithm. It is plausible

that our performance suffers from the absence of

other frequently used syntax-based features such

as dependent-of-dependent and voice.

It is thus highly dubious that a joint modeling

of syntactic and semantic structure is worth the

additional implementational effort. So far, no sys-

tem using tightly integrated syntactic and semantic

processing has been competitive with the best sys-

tems, which have been either completely pipeline-

based (Che et al., 2008; Ciaramita et al., 2008)

or employed only a loose syntactic–semantic cou-

pling (Johansson and Nugues, 2008). It has been

conjectured that modeling the semantics of the

sentence would also help in syntactic disambigua-

tion; however, it is likely that this is already im-

plicitly taken into account by the lexical features

present in virtually all modern parsers.

In addition, a problem that our beam search

method has in common with the constituent pars-

ing method by Huang (2008) is that highly non-

local features must be computed late. In our case,

this means that if there is a long distance between a

predicate and an argument, the secondary link be-

tween them will be unlikely to influence the final

search result.
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Abstract

This paper presents a simple and effective
approach to improve dependency parsing
by using subtrees from auto-parsed data.
First, we use a baseline parser to parse
large-scale unannotated data. Then we ex-
tract subtrees from dependency parse trees
in the auto-parsed data. Finally, we con-
struct new subtree-based features for pars-
ing algorithms. To demonstrate the ef-
fectiveness of our proposed approach, we
present the experimental results on the En-
glish Penn Treebank and the Chinese Penn
Treebank. These results show that our ap-
proach significantly outperforms baseline
systems. And, it achieves the best accu-
racy for the Chinese data and an accuracy
which is competitive with the best known
systems for the English data.

1 Introduction

Dependency parsing, which attempts to build de-
pendency links between words in a sentence, has
experienced a surge of interest in recent times,
owing to its usefulness in such applications as
machine translation (Nakazawa et al., 2006) and
question answering (Cui et al., 2005). To ob-
tain dependency parsers with high accuracy, super-
vised techniques require a large amount of hand-
annotated data. While hand-annotated data are
very expensive, large-scale unannotated data can
be obtained easily. Therefore, the use of large-
scale unannotated data in training is an attractive
idea to improve dependency parsing performance.

In this paper, we present an approach that ex-
tracts subtrees from dependency trees in auto-
parsed data to improve dependency parsing. The

auto-parsed data are generated from large-scale
unannotated data by using a baseline parser. Then,
from dependency trees in the data, we extract dif-
ferent types of subtrees. Finally, we represent
subtree-based features on training data to train de-
pendency parsers.

The use of auto-parsed data is not new. How-
ever, unlike most of the previous studies (Sagae
and Tsujii, 2007; Steedman et al., 2003) that im-
proved the performance by using entire trees from
auto-parsed data, we exploit partial information
(i.e., subtrees) in auto-parsed data. In their ap-
proaches, they used entire auto-parsed trees as
newly labeled data to train the parsing models,
while we use subtree-based features and employ
the original gold-standard data to train the mod-
els. The use of subtrees instead of complete trees
can be justified by the fact that the accuracy of par-
tial dependencies is much higher than that of en-
tire dependency trees. Previous studies (McDon-
ald and Pereira, 2006; Yamada and Matsumoto,
2003; Zhang and Clark, 2008) show that the accu-
racies of complete trees are about 40% for English
and about 35% for Chinese, while the accuracies
of relations between two words are much higher:
about 90% for English and about 85% for Chinese.
From these observations, we may conjecture that
it is possible to conduct a more effective selection
by using subtrees as the unit of information.

The use of word pairs in auto-parsed data was
tried in van Noord (2007) and Chen et al. (2008).
However, the information on word pairs is limited.
To provide richer information, we consider more
words besides word pairs. Specifically, we use
subtrees containing two or three words extracted
from dependency trees in the auto-parsed data. To
demonstrate the effectiveness of our proposed ap-
proach, we present experimental results on En-
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glish and Chinese data. We show that this sim-
ple approach greatly improves the accuracy and
that the use of richer structures (i.e, word triples)
indeed gives additional improvement. We also
demonstrate that our approach and other improve-
ment techniques (Koo et al., 2008; Nivre and Mc-
Donald, 2008) are complementary and that we can
achieve very high accuracies when we combine
our method with other improvement techniques.
Specifically, we achieve the best accuracy for the
Chinese data.

The rest of this paper is as follows: Section 2
introduces the background of dependency parsing.
Section 3 proposes an approach for extracting sub-
trees and represents the subtree-based features for
dependency parsers. Section 4 explains the ex-
perimental results and Section 5 discusses related
work. Finally, in section 6 we draw conclusions.

2 Dependency parsing

Dependency parsing assigns head-dependent rela-
tions between the words in a sentence. A sim-
ple example is shown in Figure 1, where an arc
between two words indicates a dependency rela-
tion between them. For example, the arc between
“ate” and “fish” indicates that “ate” is the head of
“fish” and “fish” is the dependent. The arc be-
tween “ROOT” and “ate” indicates that “ate” is the
ROOT of the sentence.

ROOT    I    ate    the    fish    with    a    fork    .

Figure 1: Example for dependency structure

2.1 Parsing approach
For dependency parsing, there are two main
types of parsing models (Nivre and McDonald,
2008): graph-based model and transition-based
model, which achieved state-of-the-art accuracy
for a wide range of languages as shown in recent
CoNLL shared tasks (Buchholz et al., 2006; Nivre
et al., 2007). Our subtree-based features can be
applied in both of the two parsing models.

In this paper, as the base parsing system, we
employ the graph-based MST parsing model pro-
posed by McDonald et al. (2005) and McDonald
and Pereira (2006), which uses the idea of Max-
imum Spanning Trees of a graph and large mar-
gin structured learning algorithms. The details

of parsing model were presented in McDonald et
al. (2005) and McDonald and Pereira (2006).

2.2 Baseline Parser
In the MST parsing model, there are two well-used
modes: the first-order and the second-order. The
first-order model uses first-order features that are
defined over single graph edges and the second-
order model adds second-order features that are
defined on adjacent edges.

For the parsing of unannotated data, we use the
first-order MST parsing model, because we need
to parse a large number of sentences and the parser
must be fast. We call this parser the Baseline
Parser.

3 Our approach

In this section, we describe our approach of ex-
tracting subtrees from unannotated data. First,
we preprocess unannotated data using the Baseline
Parser and obtain auto-parsed data. Subsequently,
we extract the subtrees from dependency trees in
the auto-parsed data. Finally, we generate subtree-
based features for the parsing models.

3.1 Subtrees extraction
To ease explanation, we transform the dependency
structure into a more tree-like structure as shown
in Figure 2, the sentence is the same as the one in
Figure 1.

ate

I                             fish      with                    .

the                                       fork

ROOT

a

I       ate      the      fish      with      a      fork .

Figure 2: Example for dependency structure in
tree-format

Our task is to extract subtrees from dependency
trees. If a subtree contains two nodes, we call it a
bigram-subtree. If a subtree contains three nodes,
we call it a trigram-subtree.

3.2 List of subtrees
We extract subtrees from dependency trees and
store them in list Lst. First, we extract bigram-
subtrees that contain two words. If two words have
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a dependency relation in a tree, we add these two
words as a subtree into list Lst. Similarly, we can
extract trigram-subtrees. Note that the dependency
direction and the order of the words in the original
sentence are important in the extraction. To enable
this, the subtrees are encoded in the string format
that is expressed as st = w : wid : hid(−w :
wid : hid)+1, where w refers to a word in the
subtree, wid refers to the ID (starting from 1) of
a word in the subtree (words are ordered accord-
ing to the positions of the original sentence)2 , and
hid refers to an ID of the head of the word (hid=0
means that this word is the root of a subtree). For
example, “ate” and “fish” have a right dependency
arc in the sentence shown in Figure 2. So the
subtree is encoded as “ate:1:0-fish:2:1”. Figure 3
shows all the subtrees extracted from the sentence
in Figure 2, where the subtrees in (a) are bigram-
subtrees and the ones in (b) are trigram-subtrees.

ate

I

I:1:1-ate:2:0

ate

fish

ate:1:0-fish:2:1

ate

fish  with 

ate:1:0-fish:2:1-with:3:1

ate

with
ate:1:0-with:2:1

ate

.
ate:1:0-.:2:1

fish

the

the:1:1-fish:2:0

with

fork

with:1:0-fork:2:1
fork

a

a:1:1-fork:2:0

ate

with   . 

ate:1:0-with:2:1-.:3:1

(b)

(a)

Figure 3: Examples of subtrees

Note that we only used the trigram-subtrees
containing a head, its dependent d1, and d1’s
leftmost right sibling3. We could not consider
the case where two children are on different
sides4 of the head (for instance, “I” and “fish”
for “ate” in Figure 2). We also do not use the
child-parent-grandparent type (grandparent-type
in short) trigram-subtrees. These are due to the
limitations of the parsing algorithm of (McDonald
and Pereira, 2006), which does not allow the fea-
tures defined on those types of trigram-subtrees.

We extract the subtrees from the auto-parsed
data, then merge the same subtrees into one en-
try, and count their frequency. We eliminate all
subtrees that occur only once in the data.

1+ refers to matching the preceding element one or more
times and is the same as a regular expression in Perl.

2So, wid is in fact redundant but we include it for ease of
understanding.

3Note that the order of the siblings is based on the order
of the words in the original sentence.

4Here, “side” means the position of a word relative to the
head in the original sentence.

3.3 Subtree-based features

We represent new features based on the extracted
subtrees and call them subtree-based features. The
features based on bigram-subtrees correspond to
the first-order features in the MST parsing model
and those based on trigram-subtrees features cor-
respond to the second-order features.

We first group the extracted subtrees into dif-
ferent sets based on their frequencies. After ex-
periments with many different threshold settings
on development data sets, we chose the follow-
ing way. We group the subtrees into three sets
corresponding to three levels of frequency: “high-
frequency (HF)”, “middle-frequency (MF)”, and
“low-frequency (LF)”. HF, MF, and LF are used
as set IDs for the three sets. The following are the
settings: if a subtree is one of the TOP-10% most
frequent subtrees, it is in set HF; else if a subtree is
one of the TOP-20% subtrees, it is in set MF; else
it is in set LF. Note that we compute these levels
within a set of subtrees with the same number of
nodes. We store the set ID for every subtree in
Lst. For example, if subtree “ate:1:0-with:2:1” is
among the TOP-10%, its set ID is HF.

3.3.1 First-order subtree-based features
The first-order features are based on bigram-
subtrees that are related to word pairs. We gener-
ate new features for a head h and a dependent d in
the parsing process. Figure 4-(a)5 shows the words
and their surrounding words, where h−1 refers to
the word to the left of the head in the sentence,
h+1 refers to the word to the right of the head, d−1

refers to the word to the left of the dependent, and
d+1 refers to the word to the right of the depen-
dent. Temporary bigram-subtrees are formed by
word pairs that are linked by dashed-lines in the
figure. Then we retrieve these subtrees in Lst to
get their set IDs (if a subtree is not included in
Lst, its set ID is ZERO. That is, we have four sets:
HF, MF, LF, and ZERO.).

Then we generate first-order subtree-based fea-
tures, consisting of indicator functions for set IDs
of the retrieved bigram-subtrees. When generating
subtree-based features, each dashed line in Figure
4-(a) triggers a different feature.

To demonstrate how to generate first-order
subtree-based features, we use an example that is
as follows. Suppose that we are going to parse the
sentence “He ate the cake with a fork.” as shown

5Please note that d could be before h.

572



… h
-1

h      h
+1

… d
-1     

d      d
+1  

…

(a)

(b)

… h      … d1 … d2 …

Figure 4: Word pairs and triple for feature repre-
sentation

in Figure 5, where h is “ate” and d is “with”.
We can generate the features for the pairs linked
by dashed-lines, such as h − d, h − d+1 and so
on. Then we have the temporary bigram-subtrees
“ate:1:0-with:2:1” for h − d and “ate:1:0-a:2:1”
for h − d+1, and so on. If we can find subtree
“ate:1:0-with:2:1” for h − d from Lst with set ID
HF, we generate the feature “H-D:HF”, and if we
find subtree “ate:1:0-a:2:1” for h−d+1 with set ID
ZERO, we generate the feature “H-D+1:ZERO”.
The other three features are also generated simi-
larly.

He    ate    the    cake    with    a    fork    .

h
-1

h       h
+1

d
-1

d      d
+1

Figure 5: First-order subtree-based features

3.3.2 Second-order subtree-based features
The second-order features are based on trigram-
subtrees that are related to triples of words. We
generate features for a triple of a head h, its de-
pendent d1, and d1’s right-leftmost sibling d2.
The triple is shown in Figure 4-(b). A temporary
trigram-subtree is formed by the word forms of h,
d1, and d2. Then we retrieve the subtree in Lst to
get its set ID. In addition, we consider the triples
of “h-NULL”6, d1, and d2, which means that we
only check the words of sibling nodes without
checking the head word.

Then, we generate second-order subtree-based
features, consisting of indicator functions for set
IDs of the retrieved trigram-subtrees.

6h-NULL is a dummy token

We also generate combined features involving
the set IDs and part-of-speech tags of heads, and
the set IDs and word forms of heads. Specifically,
for any feature related to word form, we remove
this feature if the word is not one of the Top-N
most frequent words in the training data. We used
N=1000 for the experiments in this paper. This
method can reduce the size of the feature sets.

In this paper, we only used bigram-subtrees and
the limited form of trigram-subtrees, though in
theory we can use k-gram-subtrees, which are lim-
ited in the same way as our trigram subtrees, in
(k-1)th-order MST parsing models mentioned in
McDonald and Pereira (2006) or use grandparent-
type trigram-subtrees in parsing models of Car-
reras (2007). Although the higher-order MST
parsing models will be slow with exact inference,
requiring O(nk) time (McDonald and Pereira,
2006), it might be possible to use higher-order k-
gram subtrees with approximated parsing model
in the future. Of course, our method can also be
easily extended to the labeled dependency case.

4 Experiments

In order to evaluate the effectiveness of the
subtree-based features, we conducted experiments
on English data and Chinese Data.

For English, we used the Penn Treebank (Mar-
cus et al., 1993) in our experiments and the tool
“Penn2Malt”7 to convert the data into dependency
structures using a standard set of head rules (Ya-
mada and Matsumoto, 2003). To match previ-
ous work (McDonald et al., 2005; McDonald and
Pereira, 2006; Koo et al., 2008), we split the data
into a training set (sections 2-21), a development
set (Section 22), and a test set (section 23). Fol-
lowing the work of Koo et al. (2008), we used
the MXPOST (Ratnaparkhi, 1996) tagger trained
on training data to provide part-of-speech tags for
the development and the test set, and we used 10-
way jackknifing to generate tags for the training
set. For the unannotated data, we used the BLLIP
corpus (Charniak et al., 2000) that contains about
43 million words of WSJ text.8 We used the MX-
POST tagger trained on training data to assign
part-of-speech tags and used the Basic Parser to
process the sentences of the BLLIP corpus.

For Chinese, we used the Chinese Treebank

7http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html
8We ensured that the text used for extracting subtrees did

not include the sentences of the Penn Treebank.
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(CTB) version 4.09 in the experiments. We also
used the “Penn2Malt” tool to convert the data and
created a data split: files 1-270 and files 400-931
for training, files 271-300 for testing, and files
301-325 for development. We used gold standard
segmentation and part-of-speech tags in the CTB.
The data partition and part-of-speech settings were
chosen to match previous work (Chen et al., 2008;
Yu et al., 2008). For the unannotated data, we
used the PFR corpus10, which has approximately
15 million words whose segmentation and POS
tags are given. We used its original segmentation
though there are differences in segmentation pol-
icy between CTB and this corpus. As for POS
tags, we discarded the original POS tags and as-
signed CTB style POS tags using a TNT-based
tagger (Brants, 2000) trained on the training data.
We used the Basic Parser to process all the sen-
tences of the PFR corpus.

We measured the parser quality by the unla-
beled attachment score (UAS), i.e., the percentage
of tokens (excluding all punctuation tokens) with
the correct HEAD. And we also evaluated on com-
plete dependency analysis.

4.1 Experimental Results

In our experiments, we used MSTParser, a
freely available implementation11 of the first- and
second-order MST parsing models. For baseline
systems, we used the first- and second-order basic
features, which were the same as the features used
by McDonald and Pereira (2006), and we used
the default settings of MSTParser throughout the
paper: iters=10; training-k=1; decode-type=proj.
We implemented our systems based on the MST-
Parser by incorporating the subtree-based features.

4.1.1 Main results of English data

English
UAS Complete

Ord1 90.95 37.45
Ord1s 91.76(+0.81) 40.68
Ord2 91.71 42.88
Ord2s 92.51(+0.80) 46.19
Ord2b 92.28(+0.57) 45.44
Ord2t 92.06(+0.35) 42.96

Table 1: Dependency parsing results for English

9http://www.cis.upenn.edu/˜chinese/.
10http://www.icl.pku.edu.
11http://mstparser.sourceforge.net

The results are shown in Table 1, where
Ord1/Ord2 refers to a first-/second-order
MSTParser with basic features, Ord1s/Ord2s
refers to a first-/second-order MSTParser with
basic+subtree-based features, and the improve-
ments by the subtree-based features over the basic
features are shown in parentheses. Note that
we use both the bigram- and trigram- subtrees
in Ord2s. The parsers using the subtree-based
features consistently outperformed those using
the basic features. For the first-order parser,
we found that there is an absolute improvement
of 0.81 points (UAS) by adding subtree-based
features. For the second-order parser, we got an
absolute improvement of 0.8 points (UAS) by
including subtree-based features. The improve-
ments of parsing with subtree-based features were
significant in McNemar’s Test (p < 10−6).

We also checked the sole effect of bigram- and
trigram-subtrees. The results are also shown in
Table 1, where Ord2b/Ord2t refers to a second-
order MSTParser with bigram-/trigram-subtrees
only. The results showed that trigram-subtrees can
provide further improvement, although the effect
of the bigram-subtrees seemed larger.

4.1.2 Comparative results of English data
Table 2 shows the performance of the systems
that were compared, where Y&M2003 refers to
the parser of Yamada and Matsumoto (2003),
CO2006 refers to the parser of Corston-Oliver et
al. (2006), Hall2006 refers to the parser of Hall
et al. (2006), Wang2007 refers to the parser of
Wang et al. (2007), Z&C 2008 refers to the combi-
nation graph-based and transition-based system of
Zhang and Clark (2008), KOO08-dep1c/KOO08-
dep2c refers to a graph-based system with first-
/second-order cluster-based features by Koo et al.
(2008), and Carreras2008 refers to the paper of
Carreras et al. (2008). The results showed that
Ord2s performed better than the first five systems.
The second-order system of Koo et al. (2008) per-
formed better than our systems. The reason may
be that the MSTParser only uses sibling interac-
tions for second-order, while Koo et al. (2008)
uses both sibling and grandparent interactions, and
uses cluster-based features. Carreras et al. (2008)
reported a very high accuracy using information of
constituent structure of the TAG grammar formal-
ism. In our systems, we did not use such knowl-
edge.

Our subtree-based features could be combined
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with the techniques presented in other work,
such as the cluster-based features in Koo et al.
(2008), the integrating methods of Zhang and
Clark (2008), and Nivre and McDonald (2008),
and the parsing methods of Carreras et al. (2008).

English
UAS Complete

Y&M2003 90.3 38.4
CO2006 90.8 37.6

Hall2006 89.4 36.4
Wang2007 89.2 34.4
Z&C2008 92.1 45.4

KOO08-dep1c 92.23 –
KOO08-dep2c 93.16 –
Carreras2008 93.5 –

Ord1 90.95 37.45
Ord1s 91.76 40.68
Ord1c 91.88 40.71
Ord1i 91.68 41.43

Ord1sc 92.20 42.98
Ord1sci 92.60 44.28

Ord2 91.71 42.88
Ord2s 92.51 46.19
Ord2c 92.40 44.08
Ord2i 92.12 44.37

Ord2sc 92.70 46.56
Ord2sci 93.16 47.15

Table 2: Dependency parsing results for English,
for our parsers and previous work

To demonstrate that our approach and other
work are complementary, we thus implemented
a system using all the techniques we had at hand
that used subtree- and cluster-based features
and applied the integrating method of Nivre and
McDonald (2008). We used the word clustering
tool12, which was used by Koo et al. (2008), to
produce word clusters on the BLLIP corpus. The
cluster-based features were the same as the fea-
tures used by Koo et al. (2008). For the integrating
method, we used the transition MaxEnt-based
parser of Zhao and Kit (2008) because it was
faster than the MaltParser. The results are shown
in the bottom part of Table 2, where Ord1c/Ord2c
refers to a first-/second-order MSTParser with
cluster-based features, Ord1i/Ordli refers to a first-
/second-order MSTParser with integrating-based
features, Ord1sc/Ord2sc refers to a first-/second-
order MSTParser with subtree-based+cluster-
based features, and Ord1sci/Ord2sci refers to
a first-/second-order MSTParser with subtree-
based+cluster-based+integrating-based features.
Ord1c/Ord2c was worse than KOO08-dep1c/-
dep2c, but Ord1sci outperformed KOO08-dep1c

12http://www.cs.berkeley.edu/˜pliang/software/brown-
cluster-1.2.zip

and Ord2sci performed similarly to KOO08-dep2c
by using all of the techniques we had. These
results indicated that subtree-based features can
provide different information and work well with
other techniques.

4.1.3 Main results of Chinese data
The results are shown in Table 3 where abbrevia-
tions are the same as in Table 1. As in the English
experiments, parsers with the subtree-based fea-
tures outperformed parsers with the basic features,
and second-order parsers outperformed first-order
parsers. For the first-order parser, the subtree-
based features provided 1.3 absolute points im-
provement. For the second-order parser, the
subtree-based features achieved an absolute im-
provement of 1.25 points. The improvements of
parsing with subtree-based features were signifi-
cant in McNemar’s Test (p < 10−5).

Chinese
UAS Complete

Ord1 86.38 40.80
Ord1s 87.68(+1.30) 42.24
Ord2 88.18 47.12

Ord2s 89.43(+1.25) 47.53
Ord2b 89.16(+0.98) 47.12
Ord2t 88.55(+0.37) 47.12

Table 3: Dependency parsing results for Chinese.

4.1.4 Comparative results of Chinese data
Table 4 shows the comparative results, where
Wang2007 refers to the parser of Wang et
al. (2007), Chen2008 refers to the parser of Chen
et al. (2008), and Yu2008 refers to the parser of
Yu et al. (2008) that is the best reported results
for this data set. And “all words” refers to all the
sentences in test set and “≤ 40 words”13 refers to
the sentences with the length up to 40. The table
shows that our parsers outperformed previous sys-
tems.

We also implemented integrating systems for
Chinese data as well. When we applied the
cluster-based features, the performance dropped a
little. The reason may be that we are using gold-
POS tags for Chinese data14. Thus we did not

13Wang et al. (2007) and Chen et al. (2008) reported the
scores on these sentences.

14We tried to use the cluster-based features for Chinese
with the same setting of POS tags as English data, then the
cluster-based features did provide improvement.
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use cluster-based features for the integrating sys-
tems. The results are shown in Table 4, where
Ord1si/Ord2si refers to the first-order/second-
order system with subtree-based+intergrating-
based features. We found that the integrating sys-
tems provided better results. Overall, we have
achieved a high accuracy, which is the best known
result for this dataset.

Zhang and Clark (2008) and Duan et al. (2007)
reported results on a different data split of Penn
Chinese Treebank. We also ran our systems
(Ord2s) on their data and provided UAS 86.70
(for non-root words)/77.39 (for root words), better
than their results: 86.21/76.26 in Zhang and Clark
(2008) and 84.36/73.70 in Duan et al. (2007).

Chinese
all words ≤ 40 words
UAS Complete UAS Complete

Wang2007 – – 86.6 28.4
Chen2008 86.52 – 88.4 –

Yu2008 87.26 – – –
Ord1s 87.68 42.24 91.11 54.40

Ord1si 88.24 43.96 91.32 55.93
Ord2s 89.43 47.53 91.67 59.77

Ord2si 89.91 48.56 92.34 62.83

Table 4: Dependency parsing results for Chinese,
for our parsers and for previous work

4.1.5 Effect of different sizes of unannotated
data

Here, we consider the improvement relative to the
sizes of the unannotated data. Figure 6 shows the
results of first-order parsers with different num-
bers of words in the unannotated data. Please note
that the size of full English unannotated data is
43M and the size of full Chinese unannotated data
is 15M. From the figure, we found that the parser
obtained more benefits as we added more unanno-
tated data.

 86
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 92

4332168420

U
A

S

Size of unannotated data(M)

English
Chinese

Figure 6: Results with different sizes of large-
scale unannotated data.
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Figure 7: Improvement relative to unknown words
for English
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Figure 8: Improvement relative to unknown words
for Chinese

4.2 Additional Analysis

In this section, we investigated the results on
sentence level from different views. For Fig-
ures 7-12, we classified each sentence into one of
three classes: “Better” for those where the pro-
posed parsers provided better results relative to
the parsers with basic features, “Worse” for those
where the proposed parsers provided worse results
relative to the basic parsers, and “NoChange” for
those where the accuracies remained the same.

4.2.1 Unknown words
Here, we consider the unknown word15 problem,
which is an important issue for parsing. We cal-
culated the number of unknown words in one sen-
tence, and listed the changes of the sentences with
unknown words. Here, we compared the Ord1
system and the Ord1s system.

Figures 7 and 8 show the results, where the x
axis refers to the number of unknown words in one
sentence and the y axis shows the percentages of
the three classes. For example, for the sentences
having three unknown words in the Chinese data,
31.58% improved, 23.68% worsened, and 44.74%
were unchanged. We did not show the results of

15An unknown word is a word that is not included in the
training data.
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Figure 9: Improvement relative to number of
conjunctions for English
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Figure 10: Improvement relative to number of
conjunctions for Chinese

the sentences with more than six unknown words
because their numbers were very small. The Bet-
ter and Worse curves showed that our approach al-
ways provided better results. The results indicated
that the improvements apparently became larger
when the sentences had more unknown words for
the Chinese data. And for the English data, the
graph also showed the similar trend, although the
improvements for the sentences have three and
four unknown words were slightly less than the
others.

4.2.2 Coordinating conjunctions
We analyzed our new parsers’ behavior for coordi-
nating conjunction structures, which is a very dif-
ficult problem for parsing (Kawahara and Kuro-
hashi, 2008). Here, we compared the Ord2 system
with the Ord2s system.

Figures 9 and 10 show how the subtree-based
features affect accuracy as a function of the num-
ber of conjunctions, where the x axis refers to the
number of conjunctions in one sentence and the
y axis shows the percentages of the three classes.
The figures indicated that the subtree-based fea-
tures improved the coordinating conjunction prob-
lem. In the trigram-subtree list, many subtrees
are related to coordinating conjunctions, such as
“utilities:1:3 and:2:3 businesses:3:0” and “pull:1:0
and:2:1 protect:3:1”. These subtrees can provide
additional information for parsing models.

4.2.3 PP attachment
We analyzed our new parsers’ behavior for
preposition-phrase attachment, which is also a dif-
ficult task for parsing (Ratnaparkhi et al., 1994).
We compared the Ord2 system with the Ord2s sys-
tem. Figures 11 and 12 show how the subtree-
based features affect accuracy as a function of the
number of prepositions, where the x axis refers to
the number of prepositions in one sentence and the

y axis shows the percentages of the three classes.
The figures indicated that the subtree-based fea-
tures improved preposition-phrase attachment.

5 Related work

Our approach is to incorporate unannotated data
into parsing models for dependency parsing. Sev-
eral previous studies relevant to our approach have
been conducted.

Chen et al. (2008) previously proposed an ap-
proach that used the information on short de-
pendency relations for Chinese dependency pars-
ing. They only used the word pairs within two
word distances for a transition-based parsing al-
gorithm. The approach in this paper differs in
that we use richer information on trigram-subtrees
besides bigram-subtrees that contain word pairs.
And our work is focused on graph-based parsing
models as opposed to transition-based models. Yu
et al. (2008) constructed case structures from auto-
parsed data and utilized them in parsing. Com-
pared with their method, our method is much sim-
pler but has great effects.

Koo et al. (2008) used the Brown algorithm to
produce word clusters on large-scale unannotated
data and represented new features based on the
clusters for parsing models. The cluster-based fea-
tures provided very impressive results. In addition,
they used the parsing model by Carreras (2007)
that applied second-order features on both sibling
and grandparent interactions. Note that our ap-
proach and their approach are complementary in
that we can use both subtree- and cluster-based
features for parsing models. The experimental re-
sults showed that we achieved better accuracy for
first-order models when we used both of these two
types of features.

Sagae and Tsujii (2007) presented an co-
training approach for dependency parsing adap-
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Figure 11: Improvement relative to number of
prepositions for English
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Figure 12: Improvement relative to number of
prepositions for Chinese

tation. They used two parsers to parse the sen-
tences in unannotated data and selected only iden-
tical results produced by the two parsers. Then,
they retrained a parser on newly parsed sentences
and the original labeled data. Our approach repre-
sents subtree-based features on the original gold-
standard data to retrain parsers. McClosky et
al. (2006) presented a self-training approach for
phrase structure parsing and the approach was
shown to be effective in practice. However,
their approach depends on a high-quality reranker,
while we simply augment the features of an ex-
isting parser. Moreover, we could use the output
of our systems for co-training/self-training tech-
niques.

6 Conclusions

We present a simple and effective approach to
improve dependency parsing using subtrees from
auto-parsed data. In our method, first we use a
baseline parser to parse large-scale unannotated
data, and then we extract subtrees from depen-
dency parsing trees in the auto-parsed data. Fi-
nally, we construct new subtree-based features for
parsing models. The results show that our ap-
proach significantly outperforms baseline systems.
We also show that our approach and other tech-
niques are complementary, and then achieve the
best reported accuracy for the Chinese data and an
accuracy that is competitive with the best known
systems for the English data.
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Abstract

While traditional work on text clustering
has largely focused on grouping docu-
ments by topic, it is conceivable that a user
may want to cluster documents along other
dimensions, such as the author’s mood,
gender, age, or sentiment. Without know-
ing the user’s intention, a clustering al-
gorithm will only group documents along
the most prominent dimension, which may
not be the one the user desires. To ad-
dress this problem, we propose a novel
way of incorporating user feedback into
a clustering algorithm, which allows a
user to easily specify the dimension along
which she wants the data points to be clus-
tered via inspecting only a small number
of words. This distinguishes our method
from existing ones, which typically re-
quire a large amount of effort on the part
of humans in the form of document an-
notation or interactive construction of the
feature space. We demonstrate the viabil-
ity of our method on several challenging
sentiment datasets.

1 Introduction

Text clustering is one of the most important appli-
cations in Natural Language Processing (NLP). A
common approach to this problem consists of (1)
computing the similarity between each pair of doc-
uments, each of which is typically represented as a
bag of words; and (2) using an unsupervised clus-
tering algorithm to partition the documents. The
majority of existing work on text clustering has
focused ontopic-basedclustering, where high ac-
curacies can be achieved even for datasets with a
large number of classes (e.g., 20 Newsgroups).

On the other hand, there has been relatively lit-
tle work onsentiment-basedclustering and the re-
lated task ofunsupervised polarity classification,

where the goal is to cluster (or classify) a set of
documents (e.g., reviews) according to the po-
larity (e.g., “thumbs up” or “thumbs down”) ex-
pressed by the author in an unsupervised man-
ner. Despite the large amount of recent work on
sentiment analysis and opinion mining, much of
it has focused onsupervisedmethods (e.g., Pang
et al. (2002), Kim and Hovy (2004), Mullen and
Collier (2004)). One weakness of these existing
supervised polarity classification systems is that
they are typicallydomain-and language-specific.
Hence, when given a new domain or language,
one needs to go through the expensive process of
collecting a large amount of annotated data in or-
der to train a high-performance polarity classifier.
Some recent attempts have been made to leverage
existing sentiment corpora or lexica to automati-
cally create annotated resources for new domains
or languages. However, such methods require
the existence of either a parallel corpus/machine
translation engine for projecting/translating anno-
tations/lexica from a resource-rich language to the
target language (Banea et al., 2008; Wan, 2008),
or a domain that is “similar” enough to the target
domain (Blitzer et al., 2007). When the target do-
main or language fails to meet this requirement,
sentiment-based clustering or unsupervised polar-
ity classification become appealing alternatives.
Unfortunately, to our knowledge, these tasks are
largely under-investigated in the NLP community.
Turney’s (2002) work is perhaps one of the most
notable examples of unsupervised polarity classi-
fication. However, while his system learns the se-
mantic orientation of the phrases in a review in an
unsupervised manner, this information is used to
predict the polarity of a review heuristically.

Despite its practical significance, sentiment-
based clustering is a challenging task. To illus-
trate its difficulty, consider the task of clustering
a set of movie reviews. Since each review may
contain a description of the plot and the author’s
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sentiment, a clustering algorithm may cluster re-
views along either theplot dimension or thesenti-
mentdimension; and without knowing the user’s
intention, they will be clustered along the most
prominentdimension. Assuming the usual bag-
of-words representation, the most prominent di-
mension will more likely beplot, as it is not un-
common for a review to be devoted almost exclu-
sively to the plot, with the author briefly express-
ing her sentiment only at the end of the review.
Even if the reviews contain mostly subjective ma-
terial, the most prominent dimension may still not
besentiment, due to the fact that many reviews are
sentimentally ambiguous. Specifically, a reviewer
may have negative opinions on the actors but at the
same time talk enthusiastically about how much
she enjoyed the plot. The presence of both posi-
tive and negative sentiment-bearing words in these
reviews renders the sentiment dimensionhidden
(i.e., less prominent) as far as clustering is con-
cerned. Therefore, there is no guarantee that the
clustering algorithm will automatically produce a
sentiment-based clustering of the reviews.

Hence, it is important for a user to provide feed-
back on the clustering process to ensure that the
reviews are clustered along thesentimentdimen-
sion, possibly in an interactive manner. One way
to do this would be to ask the user to annotate
a small number of reviews with polarity infor-
mation, possibly through an active learning pro-
cedure to minimize human intervention (Dredze
and Crammer, 2008). Another way would be to
have the user explicitly identify the relevant fea-
tures (in our case, the sentiment-bearing words) at
the beginning of the clustering process (Liu et al.,
2004), or incrementally construct the set of rele-
vant features in an interactive fashion (Bekkerman
et al., 2007; Raghavan and Allan, 2007; Roth and
Small, 2009). In addition, the user may supply
constraints on which pairs of documents must or
must not appear in the same cluster (Wagstaff et
al., 2001), or simply tell the algorithm whether
two clusters should bemergedor split during the
clustering process (Balcan and Blum, 2008). It is
worth noting that many of these feedback mech-
anisms were developed by machine learning re-
searchers for general clustering tasks and not for
sentiment-based clustering.

Our goal in this paper is to propose a novel
mechanism allowing a user to cluster a set of docu-
ments along the desired dimension, which may be

a hidden dimension, withvery limiteduser feed-
back. In comparison to the aforementioned feed-
back mechanisms, ours is arguably much simpler:
we only require that the userselecta dimension
by examining a small number of features for each
dimension, as opposed to having the usergener-
ate the feature space in an interactive manner or
identifyclusters that need to be merged or split. In
particular, identifying clusters for merging or split-
ting in Balcan and Blum’s algorithm may not be as
easy as it appears: for eachMERGE or SPLIT de-
cision the user makes, she has to sample a large
number of documents from the cluster(s), read
through the documents, and base her decision on
the extent to which the documents are (dis)similar
to each other. Perhaps more importantly, our hu-
man experiments involving five users indicate that
all of them can easily identify the sentiment di-
mension based on the features, thus providing sug-
gestive evidence that our method is viable.

In sum, our contributions in this paper are three-
fold. First, we propose a novel feedback mecha-
nism for clustering allowing a user to easily spec-
ify the dimension along which she wants data
points to be clustered and apply the mechanism
to the challenging, yet under-investigated problem
of sentiment-based clustering. Second, spectral
learning, which is the core of our method, has not
been applied extensively to NLP problems, and we
hope that our work can increase the awareness of
this powerful machine learning technique in the
NLP community. Finally, we demonstrate the via-
bility of our method not only by evaluating its per-
formance on sentiment datasets, but also via a set
of human experiments, which is typically absent
in papers that involve algorithms for incorporating
user feedback.

The rest of the paper is organized as follows.
Section 2 presents the basics of spectral clustering,
which will facilitate the discussion of our feedback
mechanism in Section 3. We describe our human
experiments and evaluation results on several sen-
timent datasets in Section 4, and present our con-
clusions in Section 5.

2 Spectral Clustering

When given a clustering task, an important ques-
tion to ask is: which clustering algorithm should
we use? A popular choice isk-means. Neverthe-
less, it is well-known thatk-means has the major
drawback of not being able to separate data points
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that are not linearly separable in the given feature
space (e.g., see Dhillon et al. (2004) and Cai et al.
(2005)). Spectral clustering algorithms were de-
veloped in response to this problem withk-means.
The central idea behind spectral clustering is to
(1) construct a low-dimensional space from the
original (typically high-dimensional) space while
retaining as much information about the original
space as possible, and (2) cluster the data points in
this low-dimensional space. The rest of this sec-
tion provides the details of spectral clustering.

2.1 Algorithm

Although there are several well-known spectral
clustering algorithms in the literature (e.g., Weiss
(1999), Shi and Malik (2000), Kannan et al.
(2004)), we adopt the one proposed by Ng et al.
(2002), as it is arguably the most widely-used. The
algorithm takes as input a similarity matrixS cre-
ated by applying a user-defined similarity function
to each pair of data points. Below are the main
steps of the algorithm:

1. Create the diagonal matrixD whose (i,i)-
th entry is the sum of thei-th row of S,
and then construct the Laplacian matrixL =
D−1/2SD−1/2.

2. Find the eigenvalues and eigenvectors ofL.
3. Create a new matrix from them eigenvectors

that correspond to them largest eigenvalues.1

4. Each data point is now rank-reduced to a
point in them-dimensional space. Normal-
ize each point to unit length (while retaining
the sign of each value).

5. Cluster the resulting data points usingk-
means.

In essence, each dimension in the reduced space
is defined by exactly one eigenvector. The reason
why eigenvectors with large eigenvalues are used
is that they capture the largest variance in the data.
As a result, each of them can be thought of as re-
vealing an important dimension of the data.

2.2 Clustering with Eigenvectors

As Ng et al. (2002) point out, “different authors
still disagree on which eigenvectors to use, and
how to derive clusters from them”. There are two
common methods for deriving clusters using the
eigenvectors. These methods will serve as our
baselines in our evaluation.

1For brevity, we will refer to the eigenvector with then-th
largest eigenvalue simply as then-th eigenvector.

Method 1: Using the second eigenvector only
The first method is to use only the second eigen-
vector,e2, to partition the points. Besides reveal-
ing one of the most important dimensions of the
data, this eigenvector induces an intuitively ideal
partition of the data — the partition induced by the
minimum normalized cut of the similarity graph2,
where the nodes are the data points and the edge
weights are the pairwise similarity values of the
points (Shi and Malik, 2000). Clustering in a one-
dimensional space is trivial: since we have a lin-
earization of the points, all we need to do is to
determine a threshold for partitioning the points.
However, we follow Ng et al. (2002) and cluster
using 2-means in this one-dimensional space.

Method 2: Usingm eigenvectors
Recall from Section 2.1 that after eigen-
decomposing the Laplacian matrix, each data
point is represented bym co-ordinates. In the
second method, we simply use 2-means to cluster
the data points in thism-dimensional space,
effectively exploiting all of them eigenvectors.

3 Our Approach

As mentioned before, sentiment-based clustering
is challenging, in part due to the fact that the re-
views can be clustered along more than one di-
mension. In this section, we propose and incor-
porate a user feedback mechanism into a spec-
tral clustering algorithm, which makes it easy for
a user to specify the dimension along which she
wants to cluster the data points.

Recall that our method first applies spectral
clustering to reveal the most important dimensions
of the data, and then lets the user select the de-
sired dimension. To motivate the importance of
user feedback, it helps to understand why the two
baseline clustering algorithms described in Sec-
tion 2.2, which are also based on spectral meth-
ods but do not rely on user feedback, may not al-
ways yield a sentiment-based clustering. To be-
gin with, consider the first method, where only
the second eigenvector is used to induce the par-
tition. Recall that the second eigenvector reveals
the most prominent dimension of the data. Hence,
if sentiment is not the most prominent dimension
(which can happen if the non-sentiment-bearing

2Using the normalized cut (as opposed to the usual cut)
ensures that the size of the two clusters are relatively bal-
anced, avoiding trivial cuts where one cluster is empty and
the other is full. See Shi and Malik (2000) for details.
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words outnumber the sentiment-bearing words in
the bag-of-words representation of a review), then
the resulting clustering of the reviews may not be
sentiment-oriented. A similar line of reasoning
can be used to explain why the second baseline
clustering algorithm, which clusters based on all
of the eigenvectors in the low-dimensional space,
may not always work well. Since each eigenvector
corresponds to a different dimension (and, in par-
ticular, some of them correspond to non-sentiment
dimensions), using all of them to represent a re-
view may hamper the accurate computation of the
similarity of two reviews as far as clustering along
the sentiment dimension is concerned. In the rest
of this section, we discuss the major steps of our
user-feedback mechanism in detail.

Step 1: Identify the important dimensions
To identify the important dimensions of the given
reviews, we take the top eigenvectors computed
from the eigen-decomposition of the Laplacian
matrix, which is in turn formed from the input sim-
ilarity matrix. We compute the similarity between
two reviews by taking the dot product of their fea-
ture vectors (see Section 4.1 for details on feature
vector generation). Following Ng et al., we set the
diagonal entries of the similarity matrix to 0.

Step 2: Identify the relevant features
Given the eigen-decomposition from Step 1, we
first obtain the second through the fifth eigenvec-
tors3, which as mentioned above, correspond to
the most important dimensions of the data. Then,
we ask the user to select one of the four dimen-
sions defined by these eigenvectors according to
their relevance to sentiment. One way to do this
is to (1) induce one partition of the reviews from
each of the four eigenvectors, using a procedure
identical to Method 1 in Section 2.2, and (2) have
the user inspect the four partitions and decide
which corresponds most closely to a sentiment-
based clustering. The main drawback associated
with this kind of user feedback is that the user may
have to read a large number of reviews in order to
make a decision. Hence, to reduce human effort,
we employ an alternative procedure: we (1) iden-
tify the most informative features for characteriz-
ing each partition, and (2) have the user inspect
just the features rather than the reviews.

While traditional feature selection techniques
such as log-likelihood ratio and information

3The first eigenvector is not used because it is a constant
vector, meaning that it cannot be used to partition the data.

gain can be applied to identify these informa-
tive features (see Yang and Pedersen (1997)
for an overview), we employ a more sophisti-
cated feature-ranking method that we callmax-
imum margin feature ranking(MMFR). Recall
that a maximum margin classifier (e.g., a support
vector machine) separates data points from two
classes while maximizing the margin of separa-
tion. Specifically, a maximum margin hyperplane
is defined byw · x − b = 0, wherex is a fea-
ture vector representing an arbitrary data point,
and w (a weight vector) andb (a scalar) are pa-
rameters that are learned by solving the following
constrained optimization problem:

arg min
1
2
‖w‖2 + C

∑
i

ξi

subject to

ci(w · xi − b) ≥ 1− ξi, 1 ≤ i ≤ n,

whereci ∈ {+1,−1} is the class of thei-th train-
ing point xi, ξi is the degree of misclassification
of xi, andC is a regularization parameter that bal-
ances training error and model complexity.

We usew to identify the most informative fea-
tures for a partition. Note that a feature with a
large positive weight is strongly indicative of the
positive class, whereas a feature with a large neg-
ative weight is strongly indicative of the negative
class. In other words, the most informative fea-
tures are those with large absolute weight values.
We exploit this observation and identify the most
informative features for a partition by (1) training
an SVM classifier4 on the partition, where data
points in the same cluster belong to the same class;
(2) sorting the features according to the SVM-
learned feature weights; and (3) generating two
ranked lists of informative features using the top
and bottom 100 features, respectively.

Given the ranked lists generated for each of the
four partitions, the user will select one of the parti-
tions/dimensions as most relevant to sentiment by
inspecting as many features in the ranked lists as
needed. After picking the most relevant dimen-
sion, the user will label one of the two feature lists
associated with this dimension asPOSITIVE and
the other asNEGATIVE. Since each feature list
represents one of the clusters, the cluster associ-
ated with the positive list is labeledPOSITIVE and

4All the SVM classifiers in this paper are trained using
the SVMlight package (Joachims, 1999), with the learning
parameters set to their default values.
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the cluster associated with the negative list is la-
beledNEGATIVE.

In comparison to existing user feedback mech-
anisms for assisting a clustering algorithm, ours
requires comparatively little human intervention:
we only require that the user select a dimension by
examining a small number of features, as opposed
to having the user construct the feature space or
identify clusters that need to be merged or split as
is required with other methods.

Step 3: Identify the unambiguous reviews
There is a caveat, however. As mentioned in the
introduction, many reviews contain both positive
and negative sentiment-bearing words. These am-
biguous reviews are more likely to be clustered
incorrectly than their unambiguous counterparts.
Now, since the ranked lists of features are derived
from the partition, the presence of these ambigu-
ous reviews can adversely affect the identification
of informative features using MMFR. As a result,
we remove the ambiguous reviews before deriving
informative features from a partition.

We employ a simple method for identifying un-
ambiguous reviews. In the computation of eigen-
values, each data point factors out the orthogo-
nal projections of each of the other data points
with which they have an affinity. Ambiguous data
points receive the orthogonal projections from
both the positive and negative data points, and
hence they have near zero values in the pivot
eigenvectors. We exploit this important informa-
tion. The basic idea is that the data points with
near zero values in the eigenvectors are more am-
biguous than those with large absolute values. As
a result, we posit 250 reviews from each cluster
whose corresponding values in the eigenvector are
farthest away from zero as unambiguous, and in-
duce the ranked list of features only from the re-
sulting 500 unambiguous reviews.5

Step 4: Cluster along the selected dimension
Finally, we employ the 2-means algorithm to clus-
ter all the reviews along the dimension (i.e., the
eigenvector) selected by the user, regardless of
whether a review is ambiguous or not.

5Note that 500 is a somewhat arbitrary choice. Under-
lying this choice is our assumption that a fraction of the re-
views is unambiguous. As we will see in the evaluation sec-
tion, these 500 reviews can be classified with a high accuracy;
consequently, the features induced from the resulting clus-
ters are also of high quality. Additional experiments reveal
that the list of top-ranking features does not change signifi-
cantly when induced from a smaller number of unambiguous
reviews.

4 Evaluation

4.1 Experimental Setup

Datasets. We use five sentiment classification
datasets, including the widely-used movie review
dataset [MOV] (Pang et al., 2002) as well as four
datasets containing reviews of four different types
of products from Amazon [books (BOO), DVDs
(DVD), electronics (ELE), and kitchen appliances
(KIT)] (Blitzer et al., 2007). Each dataset has
2000 labeled reviews (1000 positives and 1000
negatives). To illustrate the difference between
topic-based clustering and sentiment-based clus-
tering, we will also show topic-based clustering
results on POL, a dataset created by taking all the
documents from two sections of 20 Newsgroups,
namely,sci.crypt andtalks.politics.

To preprocess a document, we first tokenize and
downcase it, and then represent it as a vector of
unigrams, using frequency as presence. In ad-
dition, we remove from the vector punctuation,
numbers, words of length one, and words that oc-
cur in only a single review. Following the common
practice in the information retrieval community,
we also exclude words with high document fre-
quency, many of which are stopwords or domain-
specific general-purpose words (e.g., “movies” in
the movie domain). A preliminary examination
of our evaluation datasets reveals that these words
typically comprise 1–2% of a vocabulary. The de-
cision of exactly how many terms to remove from
each dataset is subjective: a large corpus typically
requires more removals than a small corpus. To be
consistent, we simply sort the vocabulary by doc-
ument frequency and remove the top 1.5%.

Evaluation metrics. We employ two evaluation
metrics. First, we report results in terms of the ac-
curacy achieved on the 2000 labeled reviews for
each dataset. Second, following Kamvar et al.
(2003), we evaluate the clusters produced by our
approach against the gold-standard clusters using
the Adjusted Rand Index (ARI). ARI ranges from
–1 to 1; better clusterings have higher ARI values.

4.2 Baseline Systems

Clustering using the second eigenvector only.
As our first baseline, we adopt Shi and Malik’s ap-
proach and cluster the reviews using only the sec-
ond eigenvector,e2, as described in Section 2.2.
Results on POL and the five sentiment datasets are
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Accuracy Adjusted Rand Index
System Variation POL MOV KIT BOO DVD ELE POL MOV KIT BOO DVD ELE
Baseline: 2nd eigenvector 93.7 70.9 69.7 58.9 55.3 50.8 0.76 0.17 0.15 0.03 0.01 0.01
Baseline:m eigenvectors 95.9 59.3 63.2 60.1 62.5 63.8 0.84 0.03 0.07 0.04 0.06 0.08
Our approach 93.7 70.9 69.7 69.5 70.8 65.8 0.76 0.17 0.15 0.15 0.17 0.10

Table 1: Results in terms of accuracy and Adjusted Rand Index for the six datasets.

shown in row 1 of Table 1.6 As we can see, this
baseline achieves an accuracy of 90% on POL, but
a much lower accuracy (of 50–70%) on the sen-
timent datasets. The same performance trend can
be observed with ARI. These results provide sup-
port for the claim that sentiment-based clustering
is more difficult than topic-based clustering.

In addition, it is worth noting that the base-
line achieves much lower accuracies and ARI val-
ues on BOO, DVD, and ELE than on the re-
maining two sentiment datasets. Sincee2 cap-
tures the most prominent dimension, these results
suggest that sentiment dimension is not the most
prominent dimension in these three datasets. In
fact, this is intuitively plausible. For instance,
in the book domain, positive book reviews typ-
ically contain a short description of the content,
with the reviewer only briefly expressing her sen-
timent somewhere in the review. Similarly for the
electronics domain: electronic product reviews are
typically aspect-oriented, with the reviewer talk-
ing about the pros and cons of each aspect of the
product (e.g., battery, durability). Since the re-
views are likely to contain both positive and nega-
tive sentiment-bearing words, the sentiment-based
clustering is unlikely to be captured bye2.

Clustering using top five eigenvectors. As our
second baseline, we represent each data point
using the top five eigenvectors (i.e.,e1 through
e5), and cluster them using 2-means in this 5-
dimensional space, as described in Section 2.2.
Hence, this can be thought of as an “ensemble”
approach, where the clustering decision is collec-
tively made by the five eigenvectors.

Results are shown in row 2 of Table 1. In
comparison to the first baseline, we see improve-
ments in accuracy and ARI for the three datasets
on which the first baseline performs poorly (i.e.,
BOO, DVD, and ELE), with the most drastic
improvement observed on ELE. On the other
hand, performance on the remaining two senti-

6Owing to the randomness in the choice of seeds for 2-
means, these and all other experimental results involving 2-
means are averaged over ten independent runs.

ment datasets deteriorates. These results can be
attributed to the fact that for BOO, DVD, and
ELE,e2 does not capture the sentiment dimension,
but since some other eigenvector in the ensemble
does, we see improvements. On the other hand,e2

has already captured the sentiment dimension in
MOV and KIT; as a result, employing additional
dimensions, which may not be sentiment-related,
may only introduce noise into the computation of
the similarities between the reviews.

4.3 Our Approach

Human experiments. Unlike the two baselines,
our approach requires users to specify which of the
four dimensions (defined by the second through
fifth eigenvectors) are most closely related to sen-
timent by inspecting a set of features derived from
the unambiguous reviews for each dimension us-
ing MMFR. To better understand how easy it is
for a human to select the desired dimension given
the features, we performed the experiment inde-
pendently with five humans (all of whom are com-
puter science graduate students not affiliated with
this research) and computed the agreement rate.

More specifically, for each dataset, we showed
each human judge the top 100 features for each
cluster according to MMFR (see Tables 4–6 for
a snippet). In addition, we informed them of the
intended dimension: for example, for POL, the
judge was told that the intended clustering is Poli-
tics vs. Science. Also, if she determined that more
than one dimension was relevant to the intended
clustering, she was instructed to rank these dimen-
sions in terms of their degree of relevance, where
the most relevant one would appear first in the list.

The dimensions (expressed in terms of the IDs
of the eigenvectors) selected by each of the five
judges for each dataset are shown in Table 2. The
agreement rate (shown in the last row of the ta-
ble) was computed based on only the highest-
ranked dimension selected by each judge. As we
can see, perfect agreement is achieved for four of
the five sentiment datasets, and for the remaining
two datasets, near-perfect agreement is achieved.
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Judge POL MOV KIT BOO DVD ELE
1 2,3,4 2 2 4 3 3
2 2,4 2 2 4 3 3
3 4 2,4 4 4 3 3
4 2,3 2 2 4 3 3,4
5 2 2 2 4 3 3

Agr 80% 100% 80% 100% 100% 100%

Table 2: Human agreement rate.

POL MOV KIT BOO DVD ELE
Acc 99.8 87.0 87.6 86.2 87.4 77.6

Table 3: Accuracies on unambiguous documents.

These results together with the fact that it took 5–
6 minutes to identify the relevant dimension, indi-
cate that asking a human to determine the intended
dimension based on solely the “informative” fea-
tures is a viable task.

Clustering results. Next, we cluster all 2000
documents for each dataset using the dimension
selected by the majority of the human judges. The
clustering results are shown in row 3 of Table 1. In
comparison to the better baseline for each dataset,
we see that our approach performs substantially
better on BOO, DVD and ELE, at almost the same
level on MOV and KIT, but slightly worse on POL.
Note that the improvements observed for BOO,
DVD and ELE can be attributed to the failure ofe2

to capture the sentiment dimension. Perhaps most
importantly, by exploiting human feedback, our
approach has achieved more stable performance
across the datasets than the baselines, with accura-
cies ranging from 65.8% to 93.7% and ARI rang-
ing from 0.10 to 0.76.

Role of unambiguous documents. Recall that
the features with the largest MMFR were com-
puted from the unambiguous documents only. To
get an intuitive understanding of the role of unam-
biguous documents in our approach, we show in
Table 3 the accuracy when the unambiguous doc-
uments in each dataset were clustered using the
eigenvector selected by the majority of the judges.
As we can see, the accuracy of each dataset is
higher than the corresponding accuracy shown in
row 3 of Table 1. In fact, an accuracy of more than
85% was achieved on all but one dataset. This sug-
gests that our method of identifying unambiguous
documents is useful.

Note that it is crucial to be able to achieve a high
accuracy on the unambiguous documents: if clus-
tering accuracy is low, the features induced from

the clusters may not be an accurate representation
of the corresponding dimension, and the human
judge may have a difficult time identifying the in-
tended dimension. In fact, some human judges re-
ported difficulty in identifying the correct dimen-
sion for the ELE dataset, and this can be attributed
in part to the low accuracy achieved on the unam-
biguous documents.

Features as summary. Recall that the method
we proposed represents each dimension with a
small number of features and asks a user to se-
lect the desired dimension by inspecting the corre-
sponding feature lists. In other words, each feature
list serves as a “summary” of its corresponding di-
mension, and inspecting the features induced for
each dimension can give us insights into the dif-
ferent dimensions of a dataset. Hence, if a user is
not sure how she wants the data points to be clus-
tered (due to lack of knowledge of the data, for
instance), our automatically induced features may
serve as an overview of the different dimensions
of the data. To better understand whether these
features can indeed provide a user with additional
useful information about a dataset, we show in Ta-
bles 4–6 the top ten features induced for each clus-
ter and each dimension for the six datasets. As an
example, consider the MOV dataset. Inspecting
the induced features, we can determine that it has
a sentiment dimension (e2), as well as a humor vs.
thriller dimension (e4). In other words, if we clus-
ter alonge2, we get a sentiment-based clustering;
and if we cluster alonge4, we obtain a genre-based
(humor vs. thriller) clustering.

User feedback vs. labeled data. Recall that our
two baselines are unsupervised, whereas our ap-
proach can be characterized as semi-supervised, as
it relies on user feedback to select the intended di-
mension. Hence, it should not be surprising to see
that the average clustering performance of our ap-
proach is better than that of the baselines.

To do a fairer comparison, we conduct another
experiment in which we compare our approach
against a semi-supervised sentiment classification
system, which uses transductive SVM as the un-
derlying semi-supervised learner. More specifi-
cally, the goal of this experiment is to determine
how many labeled documents are needed in or-
der for the transductive learner to achieve the same
level of performance as our approach. To answer
this question, we first give the transductive learner
access to the 2000 documents for each dataset as
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POL MOV
e2 e3 e4 e5 e2 e3 e4 e5

C1 C1 C1 C1 C1 C1 C1 C1

serder beyer serbs escrow relationship production jokes starts
armenian arabs palestinians serial son earth kids person

turkey andi muslims algorithm tale sequences live saw
armenians research wrong chips husband aliens animation feeling
muslims israelis department ensure perfect war disney lives

sdpa tim bosnia care drama crew animated told
argic uci live strong focus alien laughs happen

davidian ab matter police strong planet production am
dbd@ura z@virginia freedom omissions beautiful horror voice felt

troops holocaust politics excepted nature evil hilarious happened

C2 C2 C2 C2 C2 C2 C2 C2

sternlight escrow standard internet worst sex thriller comic
wouldn sternlight sternlight uucp stupid romantic killer sequences

pgp algorithm des uk waste school murder michael
crypto access escrow net bunch relationship crime supporting

algorithm net employer quote wasn friends police career
isn des net ac video jokes car production

likely privacy york co worse laughs dead peter
access uk jake didn boring sexual killed style
idea systems code ai guess cute starts latest

cryptograph pgp algorithm mit anyway mother violence entertaining

Table 4: Top ten features induced for each dimension for the POL and MOVdomains.The shaded columns

correspond to the dimensions selected by the human judges.e2, . . ., e5 are the top eigenvectors;C1 andC2 are the clusters.

BOO ELE
e2 e3 e4 e5 e2 e3 e4 e5

C1 C1 C1 C1 C1 C1 C1 C1

history series loved must mouse music easy amazon
must man highly wonderful cable really used cable

modern history easy old cables ipod card card
important character enjoyed feel case too fine recommend

text death children away red little using dvd
reference between again children monster headphones problems camera
excellent war although year picture hard fine fast
provides seems excellent someone kit excellent drive far
business political understand man overall need computer printer

both american three made paid fit install picture

C2 C2 C2 C2 C2 C2 C2 C2

plot buy money boring working worked money phone
didn bought bad series never problem worth off

thought information nothing history before never amazon worked
boring easy waste pages phone item over power

got money buy information days amazon return battery
character recipes anything between headset working years unit
couldn pictures doesn highly money support much set

ll look already page months months headphones phones
ending waste instead excellent return returned sony range

fan copy seems couldn second another received little

Table 5: Top ten features induced for each dimension for the BOO and ELEdomains.The shaded columns

correspond to the dimensions selected by the human judges.e2, . . ., e5 are the top eigenvectors;C1 andC2 are the clusters.

unlabeled data. Next, we randomly sample 50 un-
labeled documents and assign them the true label.
We then re-train the classifier and compute its ac-
curacy on the 2000 documents. We keep adding
more labeled data (50 in each iteration) until it

reaches the accuracy achieved by our system. Re-
sults of this experiment are shown in Table 7. Ow-
ing in the randomness involved in the selection of
unlabeled documents, these results are averaged
over ten independent runs. As we can see, our
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KIT DVD
e2 e3 e4 e5 e2 e3 e4 e5

C1 C1 C1 C1 C1 C1 C1 C1

love works really pan worth music video money
clean water nice oven bought collection music quality
nice clean works cooking series excellent found video
size work too made money wonderful feel worth
set ice quality pans season must bought found

kitchen makes small better fan loved workout version
easily thing sturdy heat collection perfect daughter picture
sturdy need little cook music highly recommend waste

recommend keep think using tv makes our special
price best item clean thought special disappointed sound

C2 C2 C2 C2 C2 C2 C2 C2

months price ve love young worst series saw
still item years coffee between money cast watched
back set love too actors thought fan loved
never ordered never recommend men boring stars enjoy

worked amazon clean makes cast nothing original whole
money gift months over seems minutes comedy got

did got over size job waste actors family
amazon quality pan little beautiful saw worth series
return received been maker around pretty classic season

machine knives pans cup director reviews action liked

Table 6: Top ten features induced for each dimension for the KIT and DVDdomains.The shaded columns

correspond to the dimensions selected by the human judges.e2, . . ., e5 are the top eigenvectors;C1 andC2 are the clusters.

POL MOV KIT BOO DVD ELE
# labels 400 150 200 350 350 200

Table 7: Transductive SVM results.

user feedback is equivalent to the effort of hand-
annotating 275 documents per dataset on average.

Multiple relevant dimensions. As seen from
Table 2, some human judges selected more than
one dimension for some datasets (e.g., 2,3,4 for
POL; 2,4 for MOV; and 3,4 for ELE). However,
we never took into account these “extra” dimen-
sions in our previous experiments. To better un-
derstand whether these extra dimensions can help
improve accuracy and ARI, we conduct another
experiment in which we apply 2-means to clus-
ter the documents in a space that is defined by
all of the selected dimensions. The final accu-
racy turns out to be 95.9%, 70.9%, and 67.5% for
POL, MOV, and ELE respectively, which is con-
siderably better than using only the optimal di-
mension and suggests that the extra dimensions
contain useful information.

5 Conclusions

Unsupervised clustering algorithms typically
group objects along the most prominent di-
mension, in part owing to their objective of

simultaneously maximizing inter-cluster similar-
ity and intra-cluster dissimilarity. Hence, if the
user’s intended clustering dimension is not the
most prominent dimension, these unsupervised
clustering algorithms will fail miserably. To
address this problem, we proposed to integrate a
novel user feedback mechanism into a spectral
clustering algorithm, which allows us to mine
the intended, possibly hidden, dimension of the
data and produce the desired clustering. This
mechanism differs from competing methods in
that it requires very limited feedback: to select the
intended dimension, the user only needs to inspect
a small number of features. We demonstrated its
viability via a set of human and automatic experi-
ments with unsupervised sentiment classification,
obtaining promising results.

In future work, we plan to explore several ex-
tensions to our proposed method. First, we plan to
use our user-feedback method in combination with
existing methods (e.g., Bekkerman et al. (2007))
for improving its performance. For instance, in-
stead of having the user construct a relevant fea-
ture space from scratch, she can simply extend
the set of informative features identified for the
user-selected dimension. Second, since none of
the steps in our method is specifically designed
for sentiment classification, we plan to apply it to
other non-topic-based text classification tasks.
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Abstract

Polarity lexicons have been a valuable re-

source for sentiment analysis and opinion

mining. There are a number of such lexi-

cal resources available, but it is often sub-

optimal to use them as is, because general

purpose lexical resources do not reflect

domain-specific lexical usage. In this pa-

per, we propose a novel method based on

integer linear programming that can adapt

an existing lexicon into a new one to re-

flect the characteristics of the data more

directly. In particular, our method collec-

tively considers the relations among words

and opinion expressions to derive the most

likely polarity of each lexical item (posi-

tive, neutral, negative, or negator) for the

given domain. Experimental results show

that our lexicon adaptation technique im-

proves the performance of fine-grained po-

larity classification.

1 Introduction

Polarity lexicons have been a valuable resource for

sentiment analysis and opinion mining. In particu-

lar, they have been an essential ingredient for fine-

grained sentiment analysis (e.g., Kim and Hovy

(2004), Kennedy and Inkpen (2005), Wilson et al.

(2005)). Even though the polarity lexicon plays an

important role (Section 3.1), it has received rela-

tively less attention in previous research. In most

cases, polarity lexicon construction is discussed

only briefly as a preprocessing step for a sentiment

analysis task (e.g., Hu and Liu (2004), Moilanen

and Pulman (2007)), but the effect of different al-

ternative polarity lexicons is not explicitly inves-

tigated. Conversely, research efforts that focus

on constructing a general purpose polarity lexicon

(e.g., Takamura et al. (2005), Andreevskaia and

Bergler (2006), Esuli and Sebastiani (2006), Rao

and Ravichandran (2009)) generally evaluate the

lexicon in isolation from any potentially relevant

NLP task, and it is unclear how the new lexicon

might affect end-to-end performance of a concrete

NLP application.

It might even be unrealistic to expect that there

can be a general-purpose lexical resource that

can be effective across all relevant NLP applica-

tions, as general-purpose lexicons will not reflect

domain-specific lexical usage. Indeed, Blitzer

et al. (2007) note that the polarity of a particu-

lar word can carry opposite sentiment depending

on the domain (e.g., Andreevskaia and Bergler

(2008)).

In this paper, we propose a novel method based

on integer linear programming to adapt an existing

polarity lexicon into a new one to reflect the char-

acteristics of the data more directly. In particular,

our method considers the relations among words

and opinion expressions collectively to derive the

most likely polarity of each word for the given do-

main.

Figure 1 depicts the key insight of our approach

using a bipartite graph. On the left hand side, each

node represents a word, and on the right hand side,

each node represents an opinion expression. There

is an edge between a word wi and an opinion ex-

pression ej , if the word wi appears in the expres-

sion ej . We assume the possible polarity of each

expression is one of the following three values:

{positive, neutral, negative}, while the possible

polarity of each word is one of: {positive, neutral,

negative or negator}. Strictly speaking, negator is

not a value for polarity, but we include them in our

lexicon, because valence shifters or negators have

been shown to play an important role for sentiment

analysis (e.g., Polanyi and Zaenen (2004), Moila-

nen and Pulman (2007), Choi and Cardie (2008)).

Typically, the ultimate goal of the sentiment

analysis task is to determine the expression-level

(or sentiment/ document-level) polarities, rather
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than the correct word-level polarities with respect

to the domain. Therefore, word-level polarities

can be considered as latent information. In this pa-

per, we show how we can improve the word-level

polarities of a general-purpose polarity lexicon by

utilizing the expression-level polarities, and in re-

turn, how the adapted word-level polarities can

improve the expression-level polarities.

In Figure 1, there are two types of relations

we could exploit when adapting a general-purpose

polarity lexicon into a domain-specific one. The

first are word-to-word relations within each ex-

pression. That is, if we are not sure about the

polarity of a certain word, we can still make a

guess based on the polarities of other words within

the same expression and knowledge of the polar-

ity of the expression. The second type of relations

are word-to-expression relations: e.g., some words

appear in expressions that take on a variety of po-

larities, while other words are associated with ex-

pressions of one polarity class or another.

In relation to previous research, analyz-

ing word-to-word (intra-expression) relations

is most related to techniques that determine

expression-level polarity in context (e.g., Wilson

et al. (2005)), while exploring word-to-expression

(inter-expression) relations has connections to

techniques that employ more of a global-view of

corpus statistics (e.g., Kanayama and Nasukawa

(2006)).1

While most previous research exploits only one

or the other type of relation, we propose a unified

method that can exploit both types of semantic re-

lation, while adapting a general purpose polarity

lexicon into a domain specific one. We formulate

our lexicon adaptation task using integer linear

programming (ILP), which has been shown to be

very effective when solving problems with com-

plex constraints (e.g., Roth and Yih (2004), Denis

and Baldridge (2007)). And the word-to-word and

word-to-expression relations discussed above can

be encoded as soft and hard constraints in ILP. Un-

fortunately, one class of constraint that we would

like to encode (see Section 2) will require an

exponentially many number of constraints when

grounded into an actual ILP problem. We there-

fore propose an approximation scheme to make

the problem more practically solvable.

We evaluate the effect of the adapted lex-

1In case of document-level polarity classification, word-
to-expression relations correspond to word-to-document re-
lations.
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Figure 1: The relations among words and expres-

sions. + indicates positive, - indicates negative, =

indicates neutral, and ¬ indicates a negator.

icon in the context of a concrete NLP task:

expression-level polarity classification. Experi-

mental results show that our lexicon adaptation

technique improves the accuracy of two com-

petitive expression-level polarity classifiers from

64.2% - 70.4% to 67.0% - 71.2%..

2 An Integer Linear Programming

Approach

In this section, we describe how we formulate the

lexicon adaptation task using integer linear pro-

gramming. Before we begin, we assume that we

have a general-purpose polarity lexicon L, and a

polarity classification algorithm f(el,L), that can

determine the polarity of the opinion expression el

based on the words in el and the initial lexicon L.

The polarity classification algorithm f(·) can be

either a heuristic-based one, or a machine-learning

based one – we consider it as a black box for now.

Constraints for word-level polarities: For

each word xi, we define four binary variables:

x+
i , x=

i , x−
i , x¬

i to represent positive, neutral, neg-

ative polarity, and negators respectively. If xδ
i = 1

for some δ ∈ {+, =,−,¬}, then the word xi has

the polarity δ. The following inequality constraint

states that at least one polarity value must be cho-

sen for each word.

x+
i + x=

i + x−
i + x¬

i >= 1 (1)

If we allow only one polarity per word, then the

above inequality constraint should be modified as

an equality constraint. Although most words tend

to associate with a single polarity, some can take

on more than one polarity. In order to capture this

observation, we introduce an auxiliary binary vari-

able αi for each word xi. Then the next inequality
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constraint states that at most two polarities can be

chosen for each word.

x+
i + x=

i + x−
i + x¬

i <= 1 + αi (2)

Next we introduce the initial part of our objec-

tive function.

maximize
∑

i

(

w+
i x+

i + w=
i x=

i

+ w−
i x−

i + w¬
i x¬

i

− wααi

)

+ · · · (3)

For the auxiliary variable αi, we apply a con-

stant weight wα to discourage ILP from choosing

more than one polarity for each word. We can al-

low more than two polarities for each word, by

adding extra auxiliary variables and weights. For

each variable xδ
i , we define its weight wδ

i , which

indicates how likely it is that word xi carries the

polarity δ. We define the value of wδ
i using two

different types of information as follows:

wδ
i := Lwδ

i + Cwδ
i

where Lwδ
i is the degree of polarity δ for word xi

determined by the general-purpose polarity lexi-

con L, and Cwδ
i is the degree of polarity δ deter-

mined by the corpus statistics as follows:2

Cwδ
i :=

# of xi in expressions with polarity δ

# of xi in the corpus C

Note that the occurrence of word xi in an ex-

pression ej with a polarity δ does not necessar-

ily mean that the polarity of xi should also be

δ, as the interpretation of the polarity of an ex-

pression is more than just a linear sum of the

word-level polarities (e.g., Moilanen and Pulman

(2007)). Nonetheless, not all expressions require

a complicated inference procedure to determine

their polarity. Therefore, Cwδ
i still provides useful

information about the likely polarity of each word

based on the corpus statistics.

From the perspective of Chomskyan linguistics,

the weights Lwδ
i based on the prior polarity from

the lexicon can be considered as having a ”com-

petence” component , while Cwδ
i derived from

the corpus counts can be considered as a ”perfor-

mance” component (Noam Chomsky (1965)).

2If a word xi is in an expression that is not an opinion,
then we count it as an occurrence with neutral polarity.

Constraints for content-word negators: Next

we describe a constraint that exploits knowledge

of the typical distribution of content-word nega-

tors in natural language. Content-word negators

are words that are not function words, but act se-

mantically as negators (Choi and Cardie, 2008).3

Although it is possible to artificially construct a

very convoluted sentence with lots of negations, it

is unlikely for multiple layers of negations to ap-

pear very often in natural language (Pickett et al.

(1996)). Therefore, we allow at most one content-

word negator for each expression el. Because we

do not restrict the number of function-word nega-

tors, our constraint still gives room for multiple

layers of negations.

∑

i∈µ(el)

x¬
i <= 1 (4)

In the above constraint, µ(el) indicates the set

of indices of content words appearing in el . For

instance, if i ∈ µ(el), then xi appears in el. This

constraint can be polished further to accommodate

longer expressions where multiple content-word

negators are more likely to appear, by adding a

separate constraint with a sliding window.

Constraints for expression-level polarities:

Before we begin, we introduce π(el) that will be

used often in the remaining section. For each ex-

pression el, we define π(el) to be the set of con-

tent words appearing in el, together with the most

likely polarity proposed by a general-purpose po-

larity lexicon L. For instance, if x+
i ∈ π(el), then

the polarity of word xi is + according to L.

Next we encode constraints that consider

expression-level polarities. If the polarity classifi-

cation algorithm f(el,L) makes an incorrect pre-

diction for el using the original lexicon L, then we

need to encourage ILP to fix the error by suggest-

ing different word-level polarities. We capture this

idea by the following constraint:

∑

xδ

i
∈π(el)

xδ
i <= |π(el)| − 1 + βl (5)

The auxiliary binary variable βl is introduced

for each el so that the assignment π(el) does not

have to be changed if paying for the cost wβ in the

objective function. (See equation (10).) That is,

suppose the ILP solver assigns ‘1’ to all variables

3Examples of content-word negators are destroy, elimi-
nate, prevent etc.
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in φ(el), (which corresponds to keeping the orig-

inal lexicon as it is for all words in the given ex-

pression el), then the auxiliary variable βl must be

also set as ‘1’ in order to satisfy the constraint (5).

Because βl is associated with a negative weight

in the objective function, doing so will act against

maximizing the objective function. This way, we

discourage the ILP solver to preserve the original

lexicon as it is.

To verify the constraint (5) further, suppose that

the ILP solver assigns ‘1’ for all variables in φ(el)

except for one variable. (Notice that doing so cor-

responds to proposing a new polarity for one of

the words in the given expression el.) Then the

constraint (5) will hold regardless of whether the

ILP solver assigns ‘0’ or ‘1’ to βl. Because βl is

associated with a negative weight in the objective

function, the ILP solver will then assign ‘0’ to βl to

maximize the objective function. In other words,

we encourage the ILP solver to modify the original

lexicon for the given expression el .

We use this type of soft constraint in order to

cope with the following two noise factors: first, it

is possible that some annotations are noisy. Sec-

ond, f(el,L) is not perfect, and might not be able

to make a correct prediction even with the correct

word-level polarities.

Next we encode a constraint that is the oppo-

site of the previous one. That is, if the polarity

classification algorithm f(el,L) makes a correct

prediction on el using the original lexicon L, then

we encourage ILP to keep the original word-level

polarities for words in el.

∑

xδ

i
∈π(el)

xδ
i >= |π(el)| − |π(el)|βl (6)

Interpretation of constraint (6) with the auxil-

iary binary variable βl is similar to that of con-

straint (5) elaborated above.

Notice that in equation (5), we encouraged ILP

to fix the current lexicon L for words in el, but

we have not specified the consequence of a mod-

ified lexicon (L′) in terms of expression-level po-

larity classification f(el,L
′). Certain changes to

L might not fix the prediction error for el, and

those might even cause extra incorrect predictions

for other expressions. Then it would seem that we

need to replicate constraints (5) & (6) for all per-

mutations of word-level polarities. However, do-

ing so would incur exponentially many number of

constraints (4|el|) for each expression.4

To make the problem more practically solv-

able, we only consider changes to the lexicon that

are within edit-one distance with respect to π(el).

More formally, let us define π′(el) to be the set of

content words appearing in el, together with the

most likely polarity proposed by a modified polar-

ity lexicon L′. Then we need to consider all π′(el)

such that |π′(el)∩ π(el)| = |π(el)| − 1. There are

(4−1)|el| number of different π′(el), and we index

them as π′
k(el). We then add following constraints

similarly as equation (5) & (6):

∑

xδ
i
∈π′

k
(el)

xδ
i <= |π′

k(el)| − 1 + β(l,k) (7)

if the polarity classification algorithm f(·) makes

an incorrect prediction based on π′
k(el). And,

∑

xδ
i
∈π′

k
(el)

xδ
i >= |π′

k(el)| − |π
′
k(el)|β(l,k) (8)

if the polarity classification algorithm f(·) makes

a correct prediction based on π′
k(el). Remember

that none of the constraints (5) - (8) enforces as-

signment π(el) or π′
k(el) as a hard constraint. In

order to enforce at least one of them to be chosen,

we add the following constraint:

∑

xδ
i
∈π(el)

xδ
i >= |π(el)| − 1 (9)

This constraint ensures that the modified lexi-

con L′ is not drastically different from L. Assum-

ing that the initial lexicon L is a reasonably good

one, constraining the search space for L′ will reg-

ulate that L′ does not turn into a degenerative one

that overfits to the current corpus C.

Objective function: Finally, we introduce our

full objective function.

4For certain simple polarity classification algorithm
f(el,L), it is possible to write polynomially many number of
constraints. However our approach intends to be more gen-
eral by treating f(el,L) as a black box, so that algorithms
that do not factor nicely can also be considered as an option.
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maximize
∑

i

(

w+
i x+

i + w=
i x=

i

+ w−
i x−

i + w¬
i x¬

i

− wααi

)

−
∑

l

wβρlβl

−
∑

l,k

wβρ(l,k)β(l,k) (10)

We have already described the first part of the

objective function (equation (3)), thus we only de-

scribe the last two terms here. wβ is defined simi-

larly as wα; it is a constant weight that applies for

any auxiliary binary variable βl and β(l,k).

We further define ρl and ρ(l,k) as secondary

weights, or amplifiers to adjust the constant weight

wβ. To enlighten the motivation behind the am-

plifiers ρl and ρ(l,k), we bring out the following

observations:

1. Among the incorrect predictions for

expression-level polarity classification,

some are more incorrect than the other.

For instance, classifying positive class to

negative class is more wrong than classifying

positive class to neutral class. Therefore, the

cost of not fixing very incorrect predictions

should be higher than the cost of not fixing

less incorrect predictions. (See [R2] and

[R3] in Table 1.)

2. If the current assignment π(el) for expression

el yields a correct prediction using the classi-

fier y(el,L), then there is not much point in

changingL toL′, even if y(el,L
′) also yields

a correct prediction. In this case, we would

like to assign slightly higher confidence in the

original lexicon L then the new one L′. (See

[R1] in Table 1.)

3. Likewise, if the current assignment π(el) for

expression el yields an incorrect prediction

using the classifier y(el,L), then there is not

much point in changing L to L′, if y(el,L
′)

also yields an equally incorrect prediction.

Again we assign slightly higher confidence in

the original lexicon L than the new one L′ in

such cases. (Compare each row in [R2] with

a corresponding row in [R3] in Table 1.)

[R1] If π(el) correct ρl ← 1.5
If π′

k(el) correct ρ(l,k) ← 1.0

[R2] If π(el) very incorrect ρl ← 1.0
If π(el) less incorrect ρl ← 0.5

[R3] If π′
k(el) very incorrect ρ(l,k) ← 1.5

If π′
k(el) less incorrect ρ(l,k) ← 1.0

Table 1: The value of amplifiers ρl and ρ(l,k).

To summarize, for correct predictions, the de-

gree of ρ determines the degree of cost of (unde-

sirably) altering the current lexicon for el. For in-

correct predictions, the degree of ρ determines the

degree of cost of not fixing the current lexicon for

el.

3 Experiments

In the experiment section, we seek for answers for

the following questions:

Q1 What is the effect of a polarity lexicon on the

expression-level polarity classification task?

In particular, is it useful when using a ma-

chine learning technique that might be able to

learn the necessary polarity information just

based on the words in the training data, with-

out consulting a dictionary? (Section 3.1)

Q2 What is the effect of an adapted polarity lex-

icon on the expression-level polarity classifi-

cation task? (Section 3.2)

Notice that we include the neutral polarity in the

polarity classification. It makes our task much

harder (e.g., Wilson et al. (2009)) than those that

assume inputs are guaranteed to be either strongly

positive or negative (e.g., Pang et al. (2002), Choi

and Cardie (2008)). But in practice, one can-

not expect that a given input is strongly polar, as

automatically extracted opinions are bound to be

noisy. Furthermore, Wiebe et al. (2005) discuss

that some opinion expressions do carry a neutral

polarity.

We experiment with the Multi-Perspective

Question Answering (MPQA) corpus (Wiebe et

al., 2005) for evaluation. It contains 535 newswire

documents annotated with phrase-level subjectiv-

ity information. We evaluate on all opinion ex-

pressions that are known to have high level of

inter-annotator agreement. That is, we include

opinions with intensity marked as ‘medium’ or
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higher, and exclude those with annotation confi-

dence marked as ‘uncertain’. To focus our study

on the direct influence of the polarity lexicon upon

the sentiment classification task, we assume the

boundaries of the expressions are given. How-

ever, our approach can be readily used in tan-

dem with a system that extracts opinion expres-

sions (e.g., Kim and Hovy (2005), Breck et al.

(2007)). Performance is reported using 10-fold

cross-validation on 400 documents, and a separate

135 documents were used as a development set.

For the general-purpose polarity lexicon, we ex-

pand the polarity lexicon of Wilson et al. (2005)

with General Inquirer dictionary as suggested by

Choi and Cardie (2008).

We report the performance in two measures: ac-

curacy for 3-way classification, and average error

distance. The reason why we consider average er-

ror distance is because classifying a positive class

into a negative class is worse than classifying a

positive class into a neutral one. We define the er-

ror distance between ‘neutral’ class and any other

class as 1, while the error distance between ‘posi-

tive’ class and ‘negative’ class as 2. If a predicted

polarity is correct, then the error distance is 0. We

compute the error distance of each prediction and

take the average over all predictions in the test

data.

3.1 Experiment-I: Effect of a Polarity

Lexicon

To verify the effect of a polarity lexicon on the

expression-level polarity classification task, we

experiment with simple classification-based ma-

chine learning technique. We use the Mallet

(McCallum, 2002) implementation of Conditional

Random Fields (CRFs) (Lafferty et al., 2001).5 To

highlight the influence of a polarity lexicon, we

compare the performance of CRFs with and with-

out features derived from polarity lexicons.

Features: We encode basic features as words

and lemmas for all content words in the given ex-

pression. The performance of CRFs using only the

basic features are given in the first row of the Ta-

ble 2. Next we encode features derived from po-

larity lexicons as follows.

• The output of Vote & Flip algorithm. (Sec-

tion 3.2 & Figure 2.)

5We use the CRF implementation of Mallet (McCallum,
2002) with Markov-order 0, which is equivalent to Maximum
Entropy models (Berger et al. (1996)).

Accuracy Avg. Error Distance

Without Lexicon 63.9 0.440

With Lexicon 70.4 0.334

Table 2: Effect of a polarity lexicon on expression-

level classification using CRFs

• Number of positive, neutral, negative, and

negators in the given expression.

• Number of positive (or negative) words in

conjunction with number of negators.

• (boolean) Whether the number of positive

words dominates negative ones.

• (boolean) Whether the number of negative

words dominates positive ones.

• (boolean) None of the above two cases

• Each of the above three boolean values in

conjunction with the number of negators.

Results: Table 2 shows the performance of

CRFs with and without features that consult the

general-purpose lexicon. As expected, CRFs can

perform reasonably well (accuracy = 63.9%) even

without consulting the dictionary, by learning di-

rectly from the data. However, having the polarity

lexicon boosts the performance significantly (ac-

curacy = 70.4%), demonstrating that lexical re-

sources are very helpful for fine-grained sentiment

analysis. The difference in performance is statisti-

cally significant by paired t-test for both accuracy

(p < 0.01) and average error distance (p < 0.01).

3.2 Experiment-II: Adapting a Polarity

Lexicon

In this section, we assess the quality of the adapted

lexicon in the context of an expression-level polar-

ity classification task. In order to perform the lex-

icon adaptation via ILP, we need an expression-

level polarity classification algorithm f(el,L) as

described in Section 2. According to Choi and

Cardie (2008), voting algorithms that recognize

content-word negators achieve a competitive per-

formance, so we will use a variant of it for sim-

plicity. Because none of the algorithms proposed

by Choi and Cardie (2008) is designed to handle

the neutral polarity, we invent our own version as

shown in Figure 2.
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For each expression ei,

nPositive← # of positive words in ei

nNeutral ← # of neutral words in ei

nNegative← # of negative words in ei

nNegator ← # of negating words in ei

if (nNegator % 2 = 0)

then fF lipPolarity ← false

else

then fF lipPolarity ← true

if (nPositive > nNegative) & ¬ fF lipPolarity

then Polarity(ei)← positive

else if (nPositive > nNegative) & fF lipPolarity

then Polarity(ei)← negative

else if (nPositive < nNegative) & ¬ fF lipPolarity

then Polarity(ei)← negative

else if (nPositive < nNegative) & fF lipPolarity

then Polarity(ei)← neutral

else if nNeutral > 0

then Polarity(ei)← neutral

else

then Polarity(ei)← default polarity (the most

prominent polarity in the corpus)

Figure 2: Vote & Flip Algorithm

It might look a bit complex at first glance,

but the intuition is simple. The variable

fFlipPolarity determines whether we need to

flip the overall majority polarity based on the num-

ber of negators in the given expression. If the

positive (or negative) polarity words dominate the

given expression, and if there is no need to flip

the majority polarity, then we take the positive (or

negative) polarity as the overall polarity. If the

positive (or negative) polarity words dominate the

given expression, and if we need to flip the major-

ity polarity, then we take the negative (or neutral)

polarity as the overall polarity.

Notice that the result of flipping the negative po-

larity is neutral, not positive. In our pilot study, we

found that this strategy works better than flipping

the negative polarity to positive.6 Finally, if the

number of positive words and the negative words

tie, and there is any neutral word, then we assign

the neutral polarity. In this case, we don’t worry if

6This finding is not surprising. For instance, if we con-
sider the polarity of ”She did not get hurt much from the ac-
cident.”, it can be viewed as neutral; although it is good that
one did not hurt much, it is still bad that there was an acci-
dent. Hence it gives a mixed feeling, which corresponds to
the neutral polarity.

there is a negator, because flipping a neutral polar-

ity would still result in a neutral polarity. If none of

above condition is met, than we default to the most

prominent polarity of the data, which is the nega-

tive polarity in the MPQA corpus. We name this

simple algorithm as Vote & Flip algorithm. The

performance is shown in the first row in Table 2.

Next we describe the implementation part of the

ILP. For 10 fold-cross validation, we formulate the

ILP problem using the training data (360 docu-

ments), and then test the effect of the adapted lex-

icon on the remaining 40 documents. We include

only those content words that appeared more than

3 times in the training data. From the pilot test us-

ing the development set, we picked the value of

wβ as 0.1. We found that having the auxiliary

variables αl which allow more than one polarity

per word does not necessarily help with the per-

formance, so we omitted them. We suspect it is

because the polarity classifiers we experimented

with is not highly capable of disambiguating dif-

ferent lexical usages and select the right polarity

for a given context. We use CPLEX integer pro-

gramming solver to solve our ILP problems. On a

machine with 4GHz CPU, it took several minutes

to solve each ILP problem.

In order to assess the effect of the adapted lex-

icon using CRFs, we need to first train the CRFs

model. Using the same training set used for the

lexicon adaptation would be suboptimal, because

the features generated from the adapted lexicon

will be unrealistically good in that particular data.

Therefore, we prepared a separate training data for

CRFs using 135 documents from the development

set.

Results: Table 3 shows the comparison of the

original lexicon and the adapted lexicon in terms

of polarity classification performance using the

Vote & Flip algorithm. The adapted lexicon im-

proves the accuracy as well as reducing the aver-

age error distance. The difference in performance

is statistically significant by paired t-test for both

accuracy (p < 0.01) and average error distance

(p < 0.01).

Table 4 shows the comparison of the original

lexicon and the adapted lexicon using CRFs. The

improvement is not as substantial as that of Vote &

Flip algorithm but the difference in performance is

also statistically significant for both accuracy (p =
0.03) and average error distance (p = 0.04).
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Accuracy Avg. Error Distance

Original Lexicon 64.2 0.395

Adapted Lexicon 67.0 0.365

Table 3: Effect of an adapted polarity lexicon on

expression-level classification using the Vote &

Flip Algorithm

Accuracy Avg. Error Distance

Original Lexicon 70.4 0.334

Adapted Lexicon 71.2 0.327

Table 4: Effect of an adapted polarity lexicon on

expression-level classification using CRFs

4 Related Work

There are a number of previous work that focus

on building polarity lexicons (e.g., Takamura et

al. (2005), Kaji and Kitsuregawa (2007), Rao and

Ravichandran (2009)). But most of them evalu-

ated their lexicon in isolation from any potentially

relevant NLP task, and it is unclear how the new

lexicon might affect end-to-end performance of a

concrete NLP application. Our work differs in that

we try to draw a bridge between general purpose

lexical resources and a domain-specific NLP ap-

plication.

Kim and Hovy (2005) and Banea et al. (2008)

present bootstrapping methods to construct a sub-

jectivity lexicon and measure the effect of the new

lexicon for sentence-level subjectivity classifica-

tion. However, their lexicons only tell whether a

word is a subjective one, but not the polarity of the

sentiment. Furthermore, the construction of lexi-

con is still an isolated step from the classification

task. Our work on the other hand allows the classi-

fication task to directly influence the construction

of lexicon, enabling the lexicon to be adapted for

a concrete NLP application and for a specific do-

main.

Wilson et al. (2005) pioneered the expression-

level polarity classification task using the MPQA

corpus. The experimental results are not directly

comparable to ours, because Wilson et al. (2005)

limit the evaluation only for the words that ap-

peared in their polarity lexicon. Choi and Cardie

(2008) also focus on the expression-level polarity

classification, but their evaluation setting is not as

practical as ours in that they assume the inputs are

guaranteed to be either strongly positive or nega-

tive.

5 Conclusion

In this paper, we present a novel lexicon adapta-

tion technique based on integer linear program-

ming to reflect the characteristics of the domain

more directly. In particular, our method collec-

tively considers the relations among words and

opinion expressions to derive the most likely po-

larity of each lexical item for the given domain.

We evaluate the effect of our lexicon adaptation

technique in the context of a concrete NLP ap-

plication: expression-level polarity classification.

The positive results from our experiments encour-

age further research for lexical resource adaptation

techniques.
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Abstract
Sentiment analysis often relies on a se-
mantic orientation lexicon of positive and
negative words. A number of approaches
have been proposed for creating such lex-
icons, but they tend to be computation-
ally expensive, and usually rely on signifi-
cant manual annotation and large corpora.
Most of these methods use WordNet. In
contrast, we propose a simple approach to
generate a high-coverage semantic orien-
tation lexicon, which includes both indi-
vidual words and multi-word expressions,
using only a Roget-like thesaurus and a
handful of affixes. Further, the lexicon
has properties that support the Polyanna
Hypothesis. Using the General Inquirer
as gold standard, we show that our lexi-
con has 14 percentage points more correct
entries than the leading WordNet-based
high-coverage lexicon (SentiWordNet). In
an extrinsic evaluation, we obtain signifi-
cantly higher performance in determining
phrase polarity using our thesaurus-based
lexicon than with any other. Additionally,
we explore the use of visualization tech-
niques to gain insight into the our algo-
rithm beyond the evaluations mentioned
above.

1 Introduction

Sentiment analysis involves determining the opin-
ions and private states (beliefs, emotions, specu-
lations, and so on) of the speaker (Wiebe, 1994).
It has received significant attention in recent years
due to increasing online opinion content and ap-
plications in tasks such as automatic product rec-
ommendation systems (Tatemura, 2000; Terveen

et al., 1997), question answering (Somasundaran
et al., 2007; Lita et al., 2005), and summarizing
multiple view points (Seki et al., 2004) and opin-
ions (Mohammad et al., 2008a).

A crucial sub-problem is to determine whether
positive or negative sentiment is expressed. Auto-
matic methods for this often make use of lexicons
of words tagged with positive and negative seman-
tic orientation (Turney, 2002; Wilson et al., 2005;
Pang and Lee, 2008). A word is said to have a
positive semantic orientation (SO) (or polarity)
if it is often used to convey favorable sentiment
or evaluation of the topic under discussion. Some
example words that have positive semantic orien-
tation are excellent, happy, honest, and so on. Sim-
ilarly, a word is said to have negative semantic ori-
entation if it is often used to convey unfavorable
sentiment or evaluation of the target. Examples
include poor, sad, and dishonest.

Certain semantic orientation lexicons have been
manually compiled for English—the most notable
being the General Inquirer (GI) (Stone et al.,
1966).1 However, the GI lexicon has orientation
labels for only about 3,600 entries. The Pitts-
burgh subjectivity lexicon (PSL) (Wilson et al.,
2005), which draws from the General Inquirer and
other sources, also has semantic orientation labels,
but only for about 8,000 words.

Automatic approaches to creating a seman-
tic orientation lexicon and, more generally, ap-
proaches for word-level sentiment annotation can
be grouped into two kinds: (1) those that rely
on manually created lexical resources—most of
which use WordNet (Strapparava and Valitutti,
2004; Hu and Liu, 2004; Kamps et al., 2004; Taka-
mura et al., 2005; Esuli and Sebastiani, 2006; An-

1http://www.wjh.harvard.edu/ inquirer
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dreevskaia and Bergler, 2006; Kanayama and Na-
sukawa, 2006); and (2) those that rely on text cor-
pora (Hatzivassiloglou and McKeown, 1997; Tur-
ney and Littman, 2003; Yu and Hatzivassiloglou,
2003; Grefenstette et al., 2004). Many of these
lexicons, such as SentiWordNet (SWN) (Esuli
and Sebastiani, 2006) were created using super-
vised classifiers and significant manual annota-
tion, whereas others such as the Turney and
Littman lexicon (TLL) (2003) were created from
very large corpora (more than 100 billion words).

In contrast, we propose a computationally
inexpensive method to compile a high-coverage
semantic orientation lexicon without the use of
any text corpora or manually annotated semantic
orientation labels. Both of these resources may
be used, if available, to further improve results.
The lexicon has about twenty times the number
of entries in the GI lexicon, and it includes en-
tries for both individual words and common multi-
word expressions. The method makes use of a
Roget-like thesaurus and a handful of antonym-
generating affix patterns. Whereas thesauri have
long been used to estimate semantic distance (Jar-
masz and Szpakowicz, 2003; Mohammad and
Hirst, 2006), the closest thesaurus-based work on
sentiment analysis is by Aman and Szpakowicz
(2007) on detecting emotions such as happiness,
sadness, and anger. We evaluated our thesaurus-
based algorithm both intrinsically and extrinsi-
cally and show that the semantic orientation lex-
icon it generates has significantly more correct en-
tries than the state-of-the-art high-coverage lexi-
con SentiWordNet, and that it has a significantly
higher coverage than the General Inquirer and
Turney–Littman lexicons.

In Section 2 we examine related work. Section 3
presents our algorithm for creating semantic orien-
tation lexicons. We describe intrinsic and extrin-
sic evaluation experiments in Section 4, followed
by a discussion of the results in Section 5. Ad-
ditionally, in Section 6 we show preliminary vi-
sualizations of how our algorithm forms chains of
positive and negative thesaurus categories. Good
visualizations are not only effective in presenting
information to the user, but also help us better un-
derstand our algorithm. Section 7 has our conclu-
sions.

2 Related Work

Pang and Lee (2008) provide an excellent survey
of the literature on sentiment analysis. Here we
briefly describe the work closest to ours.

Hatzivassiloglou and McKeown (1997) pro-
posed a supervised algorithm to determine the se-
mantic orientation of adjectives. They first gen-
erate a graph that has adjectives as nodes. An
edge between two nodes indicates either that the
two adjectives have the same or opposite seman-
tic orientation. A clustering algorithm partitions
the graph into two subgraphs such that the nodes
in a subgraph have the same semantic orientation.
The subgraph with adjectives that occur more of-
ten in text is marked positive and the other neg-
ative. They used a 21 million word corpus and
evaluated their algorithm on a labeled set of 1336
adjectives (657 positive and 679 negative). Our
approach does not require manually annotated se-
mantic orientation entries to train on and is much
simpler.

Esuli and Sebastiani (2006) used a supervised
algorithm to attach semantic orientation scores to
WordNet glosses. They train a set of ternary clas-
sifiers using different training data and learning
methods. The set of semantic orientation scores
of all WordNet synsets is released by the name
SentiWordNet.2 An evaluation of SentiWordNet
by comparing orientation scores of about 1,000
WordNet glosses to scores assigned by human an-
notators is presented in Esuli (2008). Our ap-
proach uses a Roget-like thesaurus, and it does not
use any supervised classifiers.

Turney and Littman (2003) proposed a mini-
mally supervised algorithm to calculate the se-
mantic orientation of a word by determining if
its tendency to co-occur with a small set of pos-
itive words is greater than its tendency to co-occur
with a small set of negative words. They show
that their approach performs better when it has a
large amount of text at its disposal. They use text
from 350 million web-pages (more than 100 bil-
lion words). Our approach does not make use of
any text corpora, although co-occurrence statistics
could be used to further improve the lexicon. Fur-
thermore, our lexicon has entries for commonly
used multi-word expressions as well.

Mohammad et al. (2008b) developed a method
to determine the degree of antonymy (contrast)
between two words using the Macquarie The-

2http://sentiwordnet.isti.cnr.it/
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saurus (Bernard, 1986), co-occurrence statistics,
and a small set of antonym-generating affix pat-
terns such as X–disX. Often, one member of a pair
of contrasting terms is positive and one member is
negative. In this paper, we describe how a subset
of those affix patterns can be used in combination
with a thesaurus and the edicts of marking the-
ory to create a large lexicon of words and phrases
marked with their semantic orientation.

3 Generating the Semantic Orientation
Lexicon

Our algorithm to generate a semantic orientation
lexicon has two steps: (1) identify a seed set of
positive and negative words; (2) use a Roget-like
thesaurus to mark the words synonymous with the
positive seeds “positive” and words synonymous
with the negative seeds “negative”. The two steps
are described in the subsections below. Our im-
plementation of the algorithm used the Macquarie
Thesaurus (Bernard, 1986). It has about 100,000
unique words and phrases.

3.1 Seed words

3.1.1 Automatically identifying seed words
It is known from marking theory that overtly
marked words, such as dishonest, unhappy, and
impure, tend to have negative semantic orienta-
tion, whereas their unmarked counterparts, hon-
est, happy, and pure, tend to have positive seman-
tic orientation (Lehrer, 1974; Battistella, 1990).
Exceptions such as biased–unbiased and partial–
impartial do exist, and in some contexts even a
predominantly negative marked word may be pos-
itive. For example irreverent is negative in most
contexts, but positive in the sentence below:

Millions of fans follow Moulder’s irrev-
erent quest for truth.

However, as we will show through experiments,
the exceptions are far outnumbered by those that
abide by the predictions of marking theory.

We used a set of 11 antonym-generating af-
fix patterns to generate overtly marked words and
their unmarked counterparts (Table 1). Similar
antonyms-generating affix patterns exist for many
languages (Lyons, 1977). The 11 chosen af-
fix patterns generated 2,692 pairs of marked and
unmarked valid English words that are listed in
the Macquarie Thesaurus. The marked words

Affix pattern # word
w1 w2 pairs example word pair
X disX 382 honest–dishonest
X imX 196 possible–impossible
X inX 691 consistent–inconsistent
X malX 28 adroit–maladroit
X misX 146 fortune–misfortune
X nonX 73 sense–nonsense
X unX 844 happy–unhappy
X Xless 208 gut–gutless
lX illX 25 legal–illegal
rX irX 48 responsible–irresponsible
Xless Xful 51 harmless–harmful

Total 2692

Table 1: Eleven affix patterns used to generate the
seed set of marked and unmarked words. Here ‘X’
stands for any sequence of letters common to both
words w1 and w2.

are deemed negative and the unmarked ones pos-
itive, and these form our seed set of positive
and negative words. We will refer to this set
of orientation-marked words as the affix seeds
lexicon (ASL). Note that some words may have
multiple marked counterparts, for example, trust–
trustless and trust–mistrust. Thus, ASL has more
negative words (2,652) than positive ones (2,379).
Also, the Xless–Xful pattern generates word pairs
that are both overtly marked; words generated
from Xless are deemed negative and words gen-
erated from Xful are deemed positive.

It should be noted that the affix patterns used
here are a subset of those used in Mohammad et
al. (2008b) to generate antonym pairs. The affix
patterns ignored are those that are not expected
to generate pairs of words with opposite seman-
tic orientation. For instance, the pattern imX-exX
generates word pairs such as import–export and
implicit–explicit that are antonymous, but do not
have opposite semantic orientations.

3.1.2 Using manually annotated seed words
Since manual semantic orientation labels exist for
some English words (the GI lexicon), we inves-
tigated their usefulness in further improving the
coverage and correctness of the entries in our lex-
icon. We used the GI words as seeds in the same
way as the words generated from the affix patterns
were used (Section 3.1.1).

3.2 Generalizing from the seeds

A published thesaurus such as the Roget’s or Mac-
quarie has about 1,000 categories, each consist-
ing of on average 120 words and commonly used
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Mode of
SO lexicon creation Resources used # entries # positives # negatives
ASL automatic 11 affix rules 5,031 2,379 (47.3%) 2,652 (52.7%)
GI manual human SO annotation 3,605 1,617 (44.9%) 1,988 (55.1%)
GI-subset manual human SO annotation 2,761 1,262 (45.7%) 1,499 (54.3%)
MSOL(ASL) automatic thesaurus, 11 affix rules 51,157 34,152 (66.8%) 17,005 (33.2%)
MSOL(GI) automatic GI, thesaurus 69,971 25,995 (37.2%) 43,976 (62.8%)
MSOL(ASL and GI) automatic GI, thesaurus, 11 affix rules 76,400 30,458 (39.9%) 45,942 (60.1%)
PSL mostly manual GI, other sources 6,450 2,298 (35.6%) 4,485 (64.4%)
SWN automatic human SO annotation, 56,200 47,806 (85.1%) 8,394 (14.9%)

WordNet, ternary classifiers
TLL automatic 100 billion word corpus, 3,596 1,625 (45.2%) 1,971 (54.8%)

minimal human SO annotation

Table 2: Key details of semantic orientation (SO) lexicons. ASL = affix seeds lexicon, GI = General
Inquirer, MSOL = Macquarie semantic orientation lexicon, PSL = Pitt subjectivity lexicon, SWN =
SentiWordNet, TLL = Turney–Littman lexicon.

multi-word expressions. Terms within a cate-
gory tend to be closely related, and they are fur-
ther grouped into sets of near-synonymous words
and phrases called paragraphs. There are about
10,000 paragraphs in most Roget-like thesauri.

Every thesaurus paragraph is examined to deter-
mine if it has a seed word (by looking up the seed
lexicon described in Section 3.1). If a thesaurus
paragraph has more positive seed words than neg-
ative seed words, then all the words (and multi-
word expressions) in that paragraph are marked as
positive. Otherwise, all its words are marked neg-
ative.

Note that this method assigns semantic orienta-
tion labels to word–thesaurus paragraph pairs.
Thesaurus paragraphs can be thought of as word
senses. A word with multiple meanings is listed
in multiple thesaurus paragraphs, and so will be
assigned semantic orientation labels for each of
these paragraphs. Thus, the method assigns a se-
mantic orientation to a word–sense combination
similar to the SentiWordNet approach and differ-
ing from the General Inquirer and Turney–Littman
lexicons.

However, in most natural language tasks, the in-
tended sense of the target word is not explicitly
marked. So we generate a word-based lexicon by
asking the different senses of a word to vote. If
a word is listed in multiple thesaurus paragraphs,
then the semantic orientation label most common
to them is chosen as the word’s label. We will re-
fer to this set of word–semantic orientation pairs
as the Macquarie Semantic Orientation Lexicon
(MSOL). A set created from only the affix seeds
will be called MSOL(ASL), a set created from
only the GI seeds will be called MSOL(GI), and

the set created using both affix seeds and GI seeds
will be called MSOL(ASL and GI).3 We gener-
ated a similar word-based lexicon for SentiWord-
Net (SWN) by choosing the semantic orientation
label most common to the synsets pertaining to a
target word.

Table 2 summarizes the details of all the lex-
icons. MSOL(ASL and GI) has a much larger
percentage of negatives than MSOL(ASL) be-
cause GI has a much larger percentage of negative
words. These negative seeds generate many more
negative entries in MSOL(ASL and GI). Of the
51,157 entries in MSOL(ASL), 47,514 are single-
word entries and 3,643 are entries for multi-word
expressions. Of the 69,971 entries in MSOL(GI),
45,197 are single-word entries and 24,774 are en-
tries for common multi-word expressions. Of the
76,400 entries in MSOL(ASL and GI), 51,208
are single-word entries and 25,192 are entries for
common multi-word expressions. In our evalua-
tion, we used only the single-word entries to main-
tain a level playing field with other lexicons.

4 Evaluation

We evaluated the semantic orientation lexicons
both intrinsically (by comparing their entries to the
General Inquirer) and extrinsically (by using them
in a phrase polarity annotation task).

4.1 Intrinsic: Comparison with GI

Similar to how Turney and Littman (2003) evalu-
ated their lexicon (TLL), we determine if the se-
mantic orientation labels in the automatically gen-
erated lexicons match the semantic orientation la-

3MSOL is publicly available at: www.umiacs.umd.edu/
∼saif/WebPages/ResearchInterests.html.
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Lexicon All Positives Negatives
MSOL(ASL) 74.3 84.2 65.9
SWN 60.1 86.5 37.9
TLL 83.3 83.8 82.8

Table 3: The percentage of GI-subset entries (all,
only the positives, only the negatives) that match
those of the automatically generated lexicons.

bels of words in GI. GI, MSOL(ASL), SWN, and
TLL all have 2,761 words in common. We will
call the corresponding 2,761 GI entries the GI-
subset.

Table 3 shows the percentage of GI-subset en-
tries that match those of the three automatically-
generated lexicons (MSOL(ASL), SWN, and
TLL). (The differences in percentages shown in
the table are all statistically significant—p <
0.001.) We do not show results for MSOL(GI),
MSOL(ASL and GI), and the Pittsburgh subjectiv-
ity lexicon (PSL) because these lexicons were cre-
ated using GI entries. TLL most closely matches
the GI-subset, and MSOL matches the GI-subset
more closely than SWN with the GI-subset. How-
ever, the goal of this work is to produce a high-
coverage semantic orientation lexicon and so we
additionally evaluate the lexicons on the extrinsic
task described below.

4.2 Extrinsic: Identifying phrase polarity

The MPQA corpus contains news articles man-
ually annotated for opinions and private states.4

Notably, it also has polarity annotations (posi-
tive/negative) at the phrase-level. We conducted
an extrinsic evaluation of the manually-generated
and automatically-generated lexicons by using
them to determine the polarity of phrases in the
MPQA version 1.1 collection of positive and neg-
ative phrases (1,726 positive and 4,485 negative).

We used a simple algorithm to determine the
polarity of a phrase: (1) If any of the words in
the target phrase is listed in the lexicon as having
negative semantic orientation, then the phrase is
marked negative. (2) If none of the words in the
phrase is negative and if there is at least one posi-
tive word in the phrase, then it is marked positive.
(3) In all other instances, the classifier refrains
from assigning a tag. Indeed better accuracies in
phrase semantic orientation annotation can be ob-
tained by using supervised classifiers and more
sophisticated context features (Choi and Cardie,

4http://www.cs.pitt.edu/mpqa

2008). However, our goal here is only to use this
task as a testbed for evaluating different seman-
tic orientation lexicons, and so we use the method
described above to avoid other factors from influ-
encing the results.

Table 4 shows the performance of the algorithm
when using different lexicons. The performance
when using lexicons that additionally make use
of GI entries—MSOL(GI), MSOL(ASL and GI),
PSL, and a combined GI-SWN lexicon—is shown
lower down in the table. GI–SWN has entries
from both GI and SWN. (For entries with oppos-
ing labels, the GI label was chosen since GI en-
tries were created manually.) Observe that the best
F-scores are obtained when using MSOL (in both
categories—individual lexicons and combinations
with GI). The values are significantly better than
those attained by others (p < 0.001).

5 Discussion

The extrinsic evaluation shows that our thesaurus-
and affix-based lexicon is significantly more accu-
rate than SentiWordNet. Moreover, it has a much
larger coverage than the GI and Pitt lexicons. Ob-
serve also that the affix seeds set, by itself, attains
only a modest precision and a low recall. This is
expected because it is generated by largely auto-
matic means. However, the significantly higher
MSOL performance suggests that the generaliza-
tion step (described in Section 3.2) helps improve
both precision and recall. Precision is improved
because multiple seed words vote to decide the se-
mantic orientation of a thesaurus paragraph. Re-
call improves simply because non-seed words in
a paragraph are assigned the semantic orientation
that is most prevalent among the seeds in the para-
graph.

5.1 Support for the Polyanna Hypothesis

Boucher and Osgood’s (1969) Polyanna Hypoth-
esis states that people have a preference for using
positive words and expressions as opposed to us-
ing negative words and expressions. Studies have
shown that indeed speakers across languages use
positive words much more frequently than nega-
tive words (Kelly, 2000). The distribution of pos-
itive and negative words in MSOL(ASL) further
supports the Polyanna Hypothesis as it shows that
even if we start with an equal number of positive
and negative seed words, the expansion of the pos-
itive set through the thesaurus is much more pro-

603



All phrases Only positives Only negatives
SO lexicon P R F P R F P R F
Individual lexicons

ASL 0.451 0.165 0.242 0.451 0.165 0.242 0.192 0.063 0.095
GI 0.797 0.323 0.459 0.871 0.417 0.564 0.763 0.288 0.419
MSOL(ASL) 0.623 0.474 0.539 0.631 0.525 0.573 0.623 0.458 0.528
SWN 0.541 0.408 0.465 0.745 0.624 0.679 0.452 0.328 0.380
TLL 0.769 0.298 0.430 0.761 0.352 0.482 0.775 0.279 0.411

Automatic lexicons + GI information
MSOL(GI) 0.713 0.540 0.615 0.572 0.470 0.516 0.777 0.571 0.658
MSOL(ASL and GI) 0.710 0.546 0.617 0.577 0.481 0.525 0.771 0.574 0.658
PSL 0.823 0.422 0.558 0.860 0.487 0.622 0.810 0.399 0.535
GI-SWN 0.650 0.494 0.561 0.740 0.623 0.677 0.612 0.448 0.517

Table 4: Performance in phrase polarity tagging. P = precision, R = recall, F = balanced F-score. The
best F-scores in each category are marked in bold.

nounced than the expansion of the negative set.
(About 66.8% of MSOL(ASL) words are positive,
whereas only 33.2% are negative.) This suggests
that there are many more near-synonyms of pos-
itive words than near-synonyms of negative ones,
and so there are many more forms for expressing
positive sentiments than forms for expressing neg-
ative sentiment.

5.2 Limitations

Some of the errors in MSOL were due to non-
antonymous instantiations of the affix patterns.
For example, immigrate is not antonymous to mi-
grate. Other errors occur because occasionally the
words in the same thesaurus paragraph have dif-
fering semantic orientations. For example, one
paragraph has the words slender and slim (which,
many will agree, are positive) as well as the words
wiry and lanky (which many will deem negative).
Both these kinds of errors can be mitigated using a
complementary source of information, such as co-
occurrence with other known positive and negative
words (the Turney–Littman method).

5.3 Future work

Theoretically, a much larger Turney–Littman lex-
icon can be created even though it may be com-
putationally intensive when working with 100 bil-
lion words. However, MSOL and TLL are created
from different sources of information—MSOL
from overtly marked words and a thesaurus, and
TLL from co-occurrence information. Therefore,
a combination of the two approaches is expected
to produce an even more accurate semantic orien-
tation lexicon, even with a modest-sized corpus at
its disposal. This is especially attractive for low
resource languages. We are also developing meth-

ods to leverage the information in an English the-
saurus to create semantic orientation lexicons for a
low-resource language through the use of a bilin-
gual lexicon and a translation disambiguation al-
gorithm.

6 Visualizing the semantic orientation of
thesaurus categories

In recent years, there have been substantial de-
velopments in the field of information visualiza-
tion, and it is becoming increasingly clear that
good visualizations can not only convey informa-
tion quickly, but are also an important tool for
gaining insight into an algorithm, detecting sys-
tematic errors, and understanding the task. In this
section, we present some preliminary visualiza-
tions that are helping us understand our approach
beyond the evaluations described above.

As discussed in Section 3.1.1, the affix seeds
set connects the thesaurus words with opposite se-
mantic orientation. Usually these pairs of words
occur in different thesaurus categories, but this is
not necessary. We can think of these connections
as relationships of contrast in meaning and seman-
tic orientation, not just between the two words
but also between the two categories. To better
aid our understanding of the automatically deter-
mined category relationships we visualized this
network using the Fruchterman-Reingold force-
directed graph layout algorithm (Fruchterman and
Reingold, 1991) and the NodeXL network analy-
sis tool (Smith et al., 2009) 5.

Our dataset consists of 812 categories from the
Macquarie Thesaurus and 27,155 antonym edges
between them. There can be an edge from a cat-

5Available from http://www.codeplex.com/NodeXL
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Figure 1: After removing edges with low weight we can see the structure the network backbone. Isolate
category pairs are drawn in a ring around the main connected component and singletons are staggered
in the corners. Each node is colored by its semantic orientation (red for negative, blue for positive)
and edges are colored by their weight, from red to blue. Node shape also codes semantic orientation,
with triangles positive and circles negative. Size codes the magnitude the semantic orientation, with the
largest nodes representing the extremes. Node labels are shown for nodes in isolates and those in the top
20 for betweenness centrality.

egory to itself called a self-edge, indicating that
a word and its antonym (with opposite seman-
tic orientation) both exist in the same category.
There can be multiple edges between two cate-
gories indicating that one or more words in one
category have one or more antonyms in the other
category. These multiple edges between category
pairs were merged together resulting in 14,597
weighted meta-edges. For example, if there are n
edges between a category pair they were replaced
by a single meta-edge of weight n.

The network is too dense and interconnected
for force-directed placement to generate a useful
publication-size drawing of the entire network. By
removing edges that had a weight less than 6, we
can visualize a smaller and more understandable
540 edge network of the core categories and any

new isolates created. Additionally, we show only
edges between categories with opposite semantic
orientations (Figure 1). Observe that there are
three groups of nodes: those in the core connected
component, the small isolates in the ring surround-
ing it, and the connectionless singletons arranged
in the corners.

Each node c (thesaurus category) is colored on
a red to blue continuous scale according to its se-
mantic orientation SO, which is computed purely
from its graph structure (in-degree ID and out-
degree OD):

SO(c) =
OD(c)− ID(c)
OD(c) + ID(c)

(1)

Blue nodes represent categories with many pos-
itive words; we will call them positive cate-

605



gories (p). Red nodes are categories with many
negative words; we will call them negative cate-
gories (n). Shades of purple in between are cat-
egories that have words with both positive and
negative semantic orientation (mixed categories).
Similarly, edges are colored according to their
weight from red (small weight) to blue (large
weight). We also use shape coding for seman-
tic orientation, with triangles being positive and
circles negative, and the size of the node depicts
the magnitude of the semantic orientation. For
example, the pair HEARING(p)–DEAFNESS(n) in
the top left of Figure 1 represent the two size ex-
tremes: HEARING has a semantic orientation of 1
and DEAFNESS has a score of -1. The mixed cat-
egories with near 0 semantic orientation such as
LIKELIHOOD with a score of .07 are the smallest.

Nodes are labeled by the thesaurus-provided
head words—a word or phrase that best represents
the coarse meaning of the category. For read-
ability, we have restricted the labels to nodes in
the isolates and the top 20 nodes in the core con-
nected component that have the highest between-
ness centrality, which means they occur on more
shortest paths between other nodes in the network
(i.e., they are the bridges or gatekeepers).

From the ring of isolates we can see how
many antonymous categories, and their se-
mantic orientations, are correctly recognized.
For example, ASSERTION(p)–DENIAL(n),
HEARING(p)–DEAFNESS(n), GRATEFULNESS(p)–
UNGRATEFULNESS(n), and so on. Some codings
may seem less intuitive, such as those in the core,
but much of this is the effect of abstracting away
the low weight edges, which may have more
clearly identified the relationships.

An alternative approach to removing edges with
low weight is to filter categories in the network
based on graph-theoretic metrics like betweenness
centrality, closeness centrality, and eigenvector
centrality. We discussed betweenness central-
ity before. The closeness centrality of a node is
the average distance along the shortest path be-
tween that node and all other nodes reachable from
it. Eigenvector centrality is another measure of
node importance, assigning node score based on
the idea that connections to high-scoring nodes are
more important than those to low-scoring ones.
We removed nodes with less than 0.1 between-
ness centrality, less than 0.04 eigenvector central-
ity, and above 2.1 closeness centrality, leaving

the key 56 nodes. They have 497 edges between
them, of which we show only those between cat-
egories with opposite semantic orientations (Fig-
ure 2). Node and edge color, size, and shape cod-
ing is as before.

Observe that most of these categories have a
strongly evaluative nature. Also, as our algorithm
makes connections using overt negative markers,
it makes sense that the central categories in our
network have negative orientation (negative cat-
egories have many words with overt markings).
It is interesting, though, how some positive and
mixed categories reside in the core too. Further in-
spection revealed that these categories have a large
number of words within them. For example, it
may be less intuitive as to why the category of MU-
SIC is listed in the core, but this is because it has
about 1,200 words in it (on average, each category
has about 120 words), and because many of these
words, such as harmonious(p), melodious(n), and
lament(n) are evaluative in nature.

7 Conclusion

We created a high-coverage semantic orientation
lexicon using only affix rules and a Roget-like
thesaurus. The method does not require terms
with manually annotated semantic orientation la-
bels, though we show that if available they can be
used to further improve both the correctness of its
entries and its coverage. The lexicon has about
twenty times as many entries as in the General In-
quirer and the Turney–Littman lexicons, and in-
cludes entries for both individual words and com-
mon multi-word expressions. Experiments show
that it has significantly more correct entries than
SentiWordNet. The approach is complementary to
that of Turney and Littman (2003) and a combina-
tion of this approach with co-occurrence statistics
(even if drawn from a modest sized corpus) is ex-
pected to yield an even better lexicon.

Visualization of the thesaurus categories as per
the semantic orientations assigned to them by our
algorithm reveals that affix patterns produce a
strongly connected graph and that indeed there are
many long chains of positive and negative cate-
gories. Furthermore, the key categories of this
graph (the ones with high centrality and closeness)
are strongly evaluative in nature, and most of them
tend to have negative semantic orientation.
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Figure 2: After filtering out nodes based on graph-theoretic metrics, the core of the network becomes
visible. The visualization is colored as in Figure 1, and we can see how the core is dominated by
categories with negative semantic orientation (red). Shape, size, and color coding is as before.
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Abstract

We develop a general method to match un-
structured text reviews to a structured list
of objects. For this, we propose a lan-
guage model for generating reviews that
incorporates a description of objects and a
generic review language model. This mix-
ture model gives us a principled method to
find, given a review, the object most likely
to be the topic of the review. Extensive
experiments and analysis on reviews from
Yelp show that our language model-based
method vastly outperforms traditional tf-
idf-based methods.

1 Introduction

Consider a user searching for reviews of
“Casablanca Moroccan Restaurant.” The search
engine would like to obtain as many reviews of
this restaurant as possible, both to offer a high-
quality result set for even obscure restaurants, and
to enable advanced applications such as aggrega-
tion/summarization/categorization of reviews and
recommendation of alternate restaurants. To solve
this problem, it faces two high-level challenges:
first, identify the restaurant review pages on the
Web; and second, given a review, identify the
restaurant that is being reviewed. There has been
previous work addressing the first challenge (Sec-
tion 2). We focus in this paper on the second.

The Web is replete with restaurant reviews
available on top restaurant verticals such as Yelp
and CitySearch, as well as newspaper articles,
newsgroup discussions, blog posts, small local re-
view aggregators and so forth. Ideally, the search
engine would like to obtain reviews from all pos-
sible sources. While identifying the subject mat-
ter of a given review on the large sites may be
amenable to structured extraction through wrapper
induction or related techniques, it is typically not

cost-effective to apply such techniques to smaller
“tail” sites, and purely unstructured sources re-
quire alternate approaches altogether. In this pa-
per, we explore the setting of matching reviews to
objects using only their textual content. Note that
matching reviews to objects is a pervasive prob-
lem beyond the restaurant domain. Shopping ver-
ticals like to aggregate camera reviews, entertain-
ment verticals wish to collect movie reviews, and
so on. We use restaurant reviews as a running ex-
ample, but the techniques are general.

More specifically, the problem we consider in
this paper is the following. Given a list of struc-
tured objects (restaurants/cameras/movies) and a
text review, identify the object from the list that
is the topic of the review. Our focus on tex-
tual content allows us to expand the universe of
sources from which we can extract reviews to in-
clude sources that are purely textual, such as fo-
rum posts, blog posts, newsgroup postings, and
the like. In fact, even among collections of “struc-
tured” sources like review aggregators, there are
no highly accurate unsupervised techniques to
match a known review page to an object. Struc-
tured (e.g., HTML) cues provide valuable lever-
age in attacking this problem, but the types of tex-
tual cues we focus on are also a key part of the
puzzle; in such a context, our techniques can still
contribute to the overall matching problem.

It is important to contrast our problem against
two settings of related flavor — entity matching,
whose goal is to find the correspondence between
two structured objects and information retrieval
(IR), whose goal is to match unstructured short
text (query) against unstructured text (document).

Our problem is considerably harder than entity
matching for the following reasons. In matching
two structured objects there is often a natural cor-
respondence between their attributes, whereas no
such correspondence exists between an object and
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its review. For instance, while trying to match a
review to a restaurant object, it is unclear if a spe-
cific portion of the review refers to the name of the
restaurant, or to its location, or is a statement not
concerning specifics of the restaurant. Moreover,
even if we wish to use entity matching, we must
first recognize the entities from a review. There
are two methods to do this, namely, wrapper in-
duction and information extraction. Wrapper in-
duction methods have serious limitations: they are
applicable only to highly-structured websites and
involve human labeling effort that is expensive and
error-prone and entails constant maintenance to
keep wrappers up-to-date. Information extraction
methods (Cardie, 1997; Sarawagi, 2008), on the
other hand, often have limited accuracy.

Our problem is also not amenable to classical
IR methods such as tf-idf. For example, suppose
we want to find the relevant restaurant for a given
review. The standard tf-idf will treat the review as
the query, the set of restaurant as documents and
compute the tf-idf scores. Now consider a restau-
rant called “Food.”1 Since the term “food” is rare
as a restaurant name, it will get a very high idf
score and hence will likely be the top match for all
reviews containing the word “food.” In fact, unlike
in traditional IR, a “query” (i.e., review) is long
and a “document” (i.e., restaurant) is short — this
demands adapting established IR concepts such as
inverse document frequency and document length
normalization to our setting. If we take the op-
posite view by considering reviews as documents
and restaurants as queries, we still deviate from the
IR setting, since now we need to rank and find the
best “query” for a given “document.” In Section
3.4, we illustrate the shortcomings of both these
approaches.

In fact, the nature of the object database we con-
sider provides several unique opportunities over
traditional IR. First the “document”, i.e., the ob-
ject to be matched, has more semantics, since
each document is associated with one or more se-
mantic attribute, such as the name/location of the
restaurant. Second, the “query”, i.e., the text we
are matching is known to be a review of the ob-
ject, and hence is rendered in a language that is
“review-like” — this can be modeled by a genera-
tive process that produces reviews from objects.
Third, the set of objects we are interested in is

11569 Lexington Ave., New York, NY 10029. (212) 348-
0200.

given a priori, and we only seek to match reviews
with one of these objects; this makes our problem
more tractable than open-ended entity recognition.

Our contributions. We propose a general
method to match reviews to objects. To this end,
we postulate a language model for generating re-
views. The intuition behind our model is simple
and natural: when a review is written about an ob-
ject, each word in the review is drawn either from a
description of the object or from a generic review
language that is independent of the object. This
mixture model leads to a method to find, given a
review, the object most likely to be the topic of the
review.

Our method is light-weight and scalable and
can be viewed as obviating the need for highly-
expensive information extraction. Since the
method is text-based and does not rely on any
HTML structural clues, it is especially applicable
to reviews present in blogs and the so-called tail
web sites — web sites for which it is not feasible
to maintain wrappers to automatically extract the
object of a review.

We then report results on over 11K restaurant
reviews from Yelp. The experiments and our ex-
tensive analysis show that our language model-
based method significantly outperforms traditional
tf-idf based methods, which fail to take full ad-
vantage of the properties that are specific to our
setting.

2 Related work

Opinion topic identification is the work closest
to ours. In a recent paper, Stoyanov and Cardie
(2008) approach this problem by treating it as an
exercise in topic coreference resolution. Though
they have to deal with topic ambiguities and a lack
of explicit topic mentions as in our case, their no-
tion of a topic is not driven by a structured list-
ing. There has been some work on fine-grained
opinion extraction from reviews (Kobayashi et al.,
2004; Yi et al., 2003; Popescu and Etzioni, 2005;
Hu and Liu, 2004); see (Pang and Lee, 2008) for a
comprehensive survey. Most of this body of work
focused on identifying product features of the ob-
ject under review, rather than identifying the prod-
uct itself. Note that while a dictionary of prod-
ucts is often more readily available than a dictio-
nary of product features, identifying objects of re-
views is non-trivial even with the help of the for-
mer. Indeed, it has been reported that lexicon-
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lookup methods have limited success on general
non-product review texts (Stoyanov and Cardie,
2008). In general, this line of work is more rooted
in the information extraction literature, where text
spans covering the object (or features of the ob-
ject) were extracted as the first step; in contrast,
we do not have an explicit extraction phase. Since
the (very extensive) list of candidate objects are
given as input, our task is to rank all matching ob-
jects, and in this sense is closer in nature to infor-
mation retrieval tasks. There has been some work
on detecting reviews in large-scale collections (Ng
et al., 2006; Barbosa et al., 2009); this is a logical
step that precedes the review matching step, the
topic of our paper.

Language modeling is becoming a powerful
paradigm in the realm of information retrieval ap-
plications (Ponte and Croft, 1998; Hiemstra, 1998;
Song and Croft, 1999; Lafferty and Zhai, 2003;
Zhai, 2008). The basic theme behind language
modeling is to first postulate a model for each doc-
ument and for a given query select the document
that is most likely to have generated the query;
smoothing is an important means to manage data
sparsity in language models (Zhai and Lafferty,
2004). As noted earlier, language models devel-
oped for IR are unsuitable for our setting. Further-
more, there are opportunities, such as the presence
of structure in our data, which we use in this work
(Section 3.2). In fact, in a subsequent paper, we
show how a language model specific to each at-
tribute can further improve the accuracy of review
matching (Dalvi et al., 2009).

Entity matching is a well-studied topic in
databases. There are several approaches to entity
matching: non-relational approaches, which con-
sider pairwise attribute similarities between enti-
ties (Newcombe et al., 1959; Fellegi and Sunter,
1969), relational approaches, which exploit the re-
lationships that exist between entities (Ananthakr-
ishna et al., 2002; Kalashnikov et al., 2005), and
collective approaches, which exploit the relation-
ship between various matching decisions, (Bhat-
tacharya and Getoor, 2007; McCallum and Well-
ner, 2004). The EROCS system (Chakaravarthy et
al., 2006), which uses information extraction and
entity matching, is closest in spirit to our problem;
they, however, employ tf-idf to match, which we
show to be significantly sub-optimal in our set-
ting.

3 Model and method

In this section we present the problem formula-
tion, the basic generative model for reviews, a
method based on this model to associate an object
with a review, and the techniques to estimate the
parameters of this model.

Problem formulation. Let E denote a set of ob-
jects. Each object e ∈ E has a set of attributes
and let text(e) denote the union of the textual con-
tent of all its attributes. Suppose we have a col-
lection of reviews R, where each review is writ-
ten (mainly) about one of the objects in the listing
E . The problem now is to correctly associate each
r ∈ R with exactly one of e ∈ E .

We model each review as a bag of words.
Therefore, notation such as “w ∈ r” for a word
w and a review r makes sense. For a review r and
an object e, let re = r ∩ text(e).

As a running example, we use E to denote the
set of all restaurants and R to denote the set of all
restaurant reviews.

3.1 A generative model for reviews

We first state the intuition behind our generative
model: when a review r is written about an object
e, some words in r (e.g., the name and the address
of the restaurant) are drawn from text(e) to refer
to the object under discussion, while some other
words are drawn from a generic review language
independent of e.

Formally, let α ∈ (0, 1) be a parameter.
Let Pe(·) denote a distribution whose support is
text(e); this corresponds to the distribution of
words specific to the object e, taken from the de-
scription text(e). We use Pe(w) to denote the
probability the word w is chosen according to this
distribution. Let P (·) be an object-independent
distribution whose support is the review language,
i.e., all the words that can be used to write a re-
view; we use P (w) to denote the probability the
word w is chosen according to this distribution.
Now, for a given object e, a review r is gener-
ated as follows. Each word in r is generated in-
dependently: with probability α, a word w is cho-
sen with probability Pe(w) and with probability
1− α, a word w is chosen with probability P (w).
Thus, the review generation process is a multino-
mial, where the underlying process is a mixture of
object-specific language and a generic review lan-
guage.
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Given a review r and an object e, by our inde-
pendence assumption,

Pr[r | e] = Z(r)
∏
w∈r

Pr[w | e]

= Z(r)
∏
w∈r

((1− α)P (w) + αPe(w)), (1)

where Z(r) is a normalizing term that only de-
pends on the length of r and the counts of the
words in it. Recalling re = r ∩ text(e), we note
that Pe(w) assigns zero probability to w 6∈ re.
From (1), we get

Pr[r | e] = Z(r)
∏

w∈r\re
(1− α)P (w)·

∏
w∈re

((1− α)P (w) + αPe(w))

= Z(r)
∏
w∈r

(1− α)P (w) ·
∏

w∈re

(
1 +

α

1− α
Pe(w)
P (w)

)
. (2)

Note that Eq. (2) appears similar to the formula
obtained in the language model approach for IR
(Hiemstra and Kraaij, 1998); the interpretation of
terms, however, is very different. For instance,
P (w) in our case is computed over the “query”
corpus whereas the analogous term (collection fre-
quency) in (Hiemstra and Kraaij, 1998) is com-
puted over the “document” corpus. As the “Food”
restaurant example in Section 1 suggests, using
the “document” frequency is undesirable. The use
of “query” corpus frequency arises naturally from
our generative story and also guides us to a differ-
ent way to estimate P (w); see Section 3.3.

3.2 Matching a review to an object
Given the above review language model (RLM),
we now state how to match a given review to an
object. According to our model, the most likely
object e∗ to have generated a review r is given by

e∗ = arg max
e

Pr[e | r] = arg max
e

Pr[e]
Pr[r]

·Pr[r | e].

In the absence of any information, we assume
a uniform distribution for Pr[e]. (Additional
information about objects, such as their rat-
ing/popularity, can be used to model Pr[e] more
accurately.) From this, we get

e∗ = arg max
e

Pr[r | e],

or equivalently,

e∗ = arg max
e

log Pr[r | e].
Since Z(r)

∏
w∈r((1−α)P (w)) is independent of

e, using (2), we have

e∗ = arg max
e

∑
w∈re

log
(

1 +
α

1− α
Pe(w)
P (w)

)
.

(3)

3.3 Estimating the parameters
We now describe how to estimate the parameters
of the model, namely, P (·), Pe(·), and α.

Recall that P (·) is the distribution of generic re-
view language. Ideally, for each review r, if we
know the component r(e) that came from the dis-
tribution Pe(·) and the component r(g) that came
from P (·), then we can collect the r(g) compo-
nents of all the reviews inR, denoted asR(g), and
estimate P (·) by the fraction of occurrences of w
in R(g). More specifically, let c(w,R(g)) denote
the number of times w occurs in R(g). With add-
one smoothing, we estimate

P (w) =
c(w,R(g)) + 1∑

w′ c(w′,R(g)) + |V | ,

where |V | is the vocabulary size.
In reality, we only have access to r and not to the

components r(e) and r(g). If we have an aligned
review corpus R′, where for each review r, we
know the true object e that generated it, we can
closely approximate r(e) with re.2 Let no-obj(R′)
be the set of processed reviews where for each
review-object pair (r, e), words in text(e) are re-
moved from r. By treating no-obj(R′) as an ap-
proximation ofR(g), we can compute P (w) in the
aforementioned manner. If we only have access
to a review collection R′ with no object align-
ment, there are other ways to effectively approx-
imateR(g); see Section 5.3 for more details.

Unlike P (·), we cannot learn an individual lan-
guage model Pe(·) for each e, since we cannot ex-
pect to have training examples of reviews for each
possible object e in the dataset. Thus, we need
a simpler way to model Pe(w). The most naive
way would be to assume a uniform distribution,
i.e., Pe(w) = 1/|text(e)|. However, each word

2There can be exceptions to this, e.g., review of a restau-
rant called “Tasty Bites” might use the word “tasty” from the
review language, but not to refer to the restaurant. Nonethe-
less, we believe these will be rare exceptions and will not
have significant effect in the estimation of P (·).
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in text(e) may not be generated with equal prob-
ability. In our running example, consider the case
when text(e) contains the full name of the restau-
rant, i.e., “Casablanca Moroccan Restaurant.” A
review for this restaurant is more likely to choose
the word “Casablanca” than any other word to re-
fer to this restaurant since this is arguably more in-
formative than “Moroccan” or “Restaurant.” This
can be captured by using the frequency fw of the
word w in R or in {text(e) | e ∈ E}. For a suit-
able function g(w) that is inversely growing as fw

(say, g(w) = log(1/fw)), we let

Pe(w) =
g(w)∑

w′∈text(e) g(w′)
.

Alternatively, it is possible to construct models
where Pe(w) is more directly estimated from the
data; in fact, one can also use suitable transla-
tion models to estimate Pe(w) for w that may not
even occur in text(e) — this will help in cases
where reviews use an abbreviation such as “Casa”
or “CMR” to refer to our running example. Such
models require either fine-grained labeled exam-
ples or, as we show in (Dalvi et al., 2009), more
sophisticated estimation techniques.

It is tempting to assume that common words
such as “Restaurant” may not contribute towards
matching a review to an object and hence one can
conveniently set Pe(w) = 0 for such words w.
(Such a list of words can easily be compiled using
a domain-specific stopword list.) This may hurt —
in our example, the presence of the word “Restau-
rant” in a review might help to disambiguate the
object of reference, if the listing were also to con-
tain a “Casablanca Moroccan Cafe”.

3.4 Properties of the model
Eq. (3) indicates that our method (denoted as
RLM) gives less importance to common words
with high P (w). This corresponds to the intuition
behind the standard tf-idf scheme. Why, then, do
we expect RLM to be more effective? Here, we
discuss the salient features of our method, con-
trasting it with tf-idf in particular.

First, we take a closer look at different ways to
apply tf-idf techniques to our setting. Since the
task is to find the most relevant object given a re-
view, a naive way to apply the standard tf-idf (de-
noted TFIDF) will treat each review to be the query
and each object to be a document and score docu-
ments using the standard tf-idf scoring. This, how-
ever, leads to severe problems since this computes

the inverse document scores over the object corpus
— recall the “Food” example in Section 1.

A more reasonable way to apply tf-idf is to
instead treat objects as queries and reviews as
documents for computing tf-idf scores (denoted
TFIDF+). For a word w, let Q(w) = df(w)

N ,
where N is the number of reviews in the corpus
and df(w) is the number of reviews containing w.
Given a review r and an object e, the score of the
object is given by

∑
w∈re log (1/Q(w)), and we

want to pick the object with the maximum score.
As we will discuss later, document-length nor-
malization (i.e., normalizing by object description
length so that a restaurant with a long name does
not get an unfair disadvantage) is still non-trivial
here.

As noted earlier, Eq. (3), used by RLM for
matching reviews with objects, has a striking re-
semblance to the TFIDF+ scoring function. Both
have the form

e∗ = arg max
e

∑
w∈re

log f(w),

where for RLM,

f(w) = fR(w) = 1 +
α

1− α
Pe(w)
P (w)

,

and for TFIDF+,

f(w) = fB(w) =
1

Q(w)
.

In both cases, f(w) is monotonically decreas-
ing in the frequency of w in the corpus. How-
ever, there are several differences between the two
cases. We highlight some of them here, with the
aim of illustrating the power of our review lan-
guage model (RLM).

Object length normalization. First note that the
Pe(w) term in fR(w) acts as an object length nor-
malizing term, i.e., it adds up to one for each
e and weighs down P (w) for objects with long
text(e). This also has the effect of penalizing re-
views that are missing critical words in the object
description. In contrast, fB(w) is unnormalized
with respect to the object length. The standard
document normalization techniques in IR do not
apply well to our setting since our “documents”
(i.e., object descriptions) are short. E.g., if the ob-
ject description contains only one token, the stan-
dard cosine-normalization technique (Salton et al.,
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1975) will yield a normalized score of 1 irre-
spective of the token. Thus for a review contain-
ing the words “Food” and “Casablanca”, the stan-
dard normalization will yield the same score for a
restaurant named “Food” and a restaurant named
“Casablanca”, ignoring the fact that “Food” is
much more likely to be an object-independent
term. Note that this only becomes a problem when
the entire “document” is part of the match, which
rarely happens in an IR setting where the docu-
ments are typically much longer than the queries.
Indeed, in our experiments, we observe lower per-
formance when we apply cosine-normalization to
the tf-idf scores. On the other hand, in fR(w), the
P (w) term can still distinguish the two aforemen-
tioned objects even when Pe(w) are equal.

Dampening. With α < 1, fR(w) is effectively
a dampened version of Pe(w)

P (w) . In other words, dif-
ferences between very frequent words and very in-
frequent words are somewhat smoothed out. In-
deed, if we modify TFIDF+ by introducing a sim-
ilar dampening factor into fB(w), we observe im-
provement in its performance (Section 5.4).

Removing mentions of an object. Another differ-
ence is that in RLM, P (w) is estimated on reviews
with object mentions removed, since the model in-
dicate that P (w) accounts for object-independent
review language. In contrast, TFIDF+ computes
Q(w) on full reviews. We illustrate the differ-
ence on the following example. Consider a review
that reads “. . . Maggiano’s has great Fondue.” If
“Maggiano’s” and “Fondue” both occur the same
number of times in the corpus, then they get the
same idf (i.e., Q(w)) score. In RLM, however,
“Maggiano’s” will get much smaller probability
in the generic review distribution P (·) than “Fon-
due”, since “Maggiano’s” almost always occurs in
reviews as restaurant name mentions, thus is re-
moved from the estimation of its P (·) probabil-
ity. On the other hand, the word “Fondue” is more
likely to retain higher probability in P (·) since it
tends to appear as dish names. As a result, our
model will assign higher weight to “Maggiano’s
Restaurant” than “Fondue Restaurant”. As we can
see, RLM evaluates the ability of a word to identify
the review object rather than rely on the absolute
rarity of the word, which is done by tf-idf.

Using term counts. One last difference is that
fR(w) uses term counts of words rather than the
standard document counts used by fB(w). Our

evaluation suggests that at least in practice, this
does not have a big impact on the overall accuracy.

In the experiments we show that these factors
together account for the performance difference
between RLM and tf-idf. Our model gives a prin-
cipled way to introduce these factors, however.

4 Data

In this section we describe the dataset constructed
for the task of matching restaurant reviews to the
corresponding restaurant objects. Our goal is to
obtain a large collection of reviews on which to
estimate the generic language model, with a sig-
nificant portion of them aligned with the objects
for which the reviews were written; this portion
will serve as the gold-standard test set.

To this end, we obtained a set of reviews from
the Yelp website, yelp.com. This website con-
tains a collection of reviews about various busi-
nesses and for each business, has a webpage con-
taining the business information and a list of re-
views. We crawled all restaurant pages from Yelp.
For each restaurant, we extracted its name and
city location from the business information sec-
tion via HTML cues, and a list of no more than
40 reviews. We obtained the textual content of
299,762 reviews, each aligned with one of a set
of 12,408 unique restaurants hosted on Yelp. Note
that while our technique is not targeted for head
sites like Yelp (where wrapper induction might
be a more accurate approach), this provides a
large-scale dataset, conveniently labeled with ob-
ject information, and simulates the tail-site sce-
nario where we rely heavily on the textual content
of reviews to identify objects.

Many of the reviews in Yelp do not contain any
identifying information. In fact, some of them are
as short as “Great place. Awesome food!!”. We
processed the dataset to retain only reviews that
mention the name of the restaurant, even if par-
tially, and, when the restaurant name is a common
word, also the city of the restaurant. Each of the
remaining reviews is expected to have enough in-
formation for a human to identify the restaurant
corresponding to the review.

To further increase the difficulty of the match-
ing task, we obtained a much more extensive list
of restaurant objects in the Yahoo! Local database,
which contains 681,320 restaurants. Our task
is to match a given Yelp review, using only its
free-form textual content, with its corresponding
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restaurant in the Yahoo! Local database. We then
proceeded to generate the gold standard that con-
tains the correct restaurant in the Yahoo! Local
database for each review. We employed geocoding
to match addresses across the two databases along
with approximate name matches. Note that in the
final dataset, only half of the restaurants have the
exact same name listed in both Yelp and Yahoo!
Local; this limits the success of naive dictionary-
based methods.

The final aligned dataset contained 24,910 Yelp
reviews (R), covering 6,010 restaurants. We set
aside half of the reviews (R′) to estimate the mod-
els and the other half (Rtest) to evaluate our tech-
nique. We also set aside 1,000 reviews as devel-
opment set, on which we conducted initial exper-
iments. The total size of the test corpus, Rtest

was 11,217. The splitting of R into R′, Rtest,
and the development set was done in such a way
that there are no overlapping restaurants between
them. Also, the reviews that were filtered out
because of lack of identifying information were
added back toR′ for learning the review language
model, expandingR′ to a total of 205,447 reviews.

5 Evaluation

In this section we evaluate our proposed review-
language based matching algorithm RLM.

5.1 Experimental considerations

Baseline system. We use the TFIDF and TFIDF+

algorithms described in Section 3.4 as baseline
algorithms. Since we are comparing objects
that can have varying lengths, we tried the stan-
dard cosine-normalization techniques for docu-
ment length normalization. For reasons described
in Section 3.4, however, the normalization signif-
icantly lowered the accuracy. All the numbers re-
ported here are using tf-idf scores without normal-
ization.

Efficiency. For both RLM and the baseline algo-
rithms, it is impractical to compute the similar-
ity of a review with each object in the database.
Since all objects that do not intersect with the re-
view have a zero score, we built an inverted in-
dex to retrieve all objects containing a given word.
Even a simple inverted index can be very ineffi-
cient since for each review, words such as “Restau-
rant” or “Cafe” retrieve a substantial fraction of
the whole database. Hence, we further optimized
the index by looking at the document frequencies

of the words and considering word bigrams in ob-
ject descriptions. The index only retrieves ob-
jects that have a non-trivial overlap with the re-
view; e.g., an overlap of “Casablanca” is consid-
ered non-trivial while an overlap of “Restaurant”
is considered trivial. Once these candidates are re-
trieved, our scoring function takes into account all
overlapping tokens.

For the YELP dataset, the index returns an av-
erage of 200 restaurants for each review. This
points to the general difficulty of review match-
ing over a large corpus of objects, since a simple
dictionary-based named-entity recognition will hit
at least 200 objects for many reviews.

Experiment settings. For RLM, we conducted
initial experiments and performed parameter esti-
mation on the development data. The experimen-
tal settings we used for RLM are as follows: we
set g(w) = log(1/fw) for Pe, where fw is esti-
mated on the review collection. P (w) is estimated
on all reviews in R′, where for each review, all to-
kens of its corresponding text(e), if present, are
removed, in order to approximate the generic re-
view language independent of e, as required by
our generative model. We estimate α to be 0.002,
tuned on the development set; in our experiments,
we observe that the performance is not very sensi-
tive to α.

5.2 Main results
In this section we present the main comparisons
between RLM and the baseline in details.

Performance measure. Our task resembles a
standard IR task in that our algorithm ranks can-
didate objects for a given review by their “about-
ness” level. Unlike a standard IR task, however,
we are not interested in retrieving multiple “rel-
evant” objects, as each review in our dataset has
only one single correct match from E . A review
match is correct if the top-1 prediction (i.e., e∗) is
accurate. In what follows, we report the average
accuracy for various experimental settings. Note
that we can take the average accuracy over all re-
views (reported as micro-average), regardless of
which restaurants they are about; or we can first
compute the average for reviews about the same
restaurant, and report the average over all restau-
rants (macro-average). When not specified, we re-
port the micro-average.

Main comparisons. Table 1(a) summarizes the
main comparison. Our proposed algorithm RLM
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Method Micro-avg. Macro-avg.
RLM 0.647 0.576
TFIDF+ 0.518 0.481
TFIDF 0.314 0.317

(a) Main comparison.

Method Micro-avg. Macro-avg.
RLM-UNIFORM 0.634 0.562
RLM-UNCUT 0.627 0.546
RLM-DECAP 0.640 0.573

(b) RLM variants.

Method Micro-avg. Macro-avg.
TFIDF+-N 0.586 0.523
TFIDF+-D 0.593 0.533
TFIDF+-O 0.522 0.488
TFIDF+-ND 0.628 0.549
TFIDF+-NDO 0.647 0.576

(c) TFIDF+ variants.

Table 1: Average accuracy of the top-1 prediction
for various techniques. Micro-average computed
over 11,217 reviews inRtest; macro-average com-
puted over 2,810 unique restaurants inRtest.

clearly outperforms the TFIDF+ baseline mea-
sured by either micro- or macro-average accuracy.
The standard TFIDF, as predicted, performs the
worst.

Some reviews can be particularly difficult to
match, which can be reflected in a low matching
score. Nonetheless, we predict the most likely ob-
ject. Suppose we impose a threshold and return
the most likely object only when its score is above
threshold, we can then compute precision and re-
call at different thresholds. Figure 1 presents the
precision–recall curve (using micro-average) for
both RLM and TFIDF+. Again, RLM clearly out-
performs TFIDF+ across the board.

We then generalize the definition of accuracy
into accuracy@k: a review is considered as cor-
rectly matched if one of the top-k objects returned
is the correct match. We plot accuracy@k as a
function of k. While the gap between RLM and
TFIDF+ is smaller as k increases, RLM clearly
outperforms TFIDF+ for all k ∈ {1, . . . , 10}.

One final comparison is accuracy@1 as a func-
tion of the review length. Given our current set-
ting, longer reviews might be more difficult to
match since they may include more proper nouns
such as dish names and related restaurants, and

Figure 1: Precision–recall curve (of top one pre-
diction): RLM vs. TFIDF+ baseline.

Figure 2: Accuracy@k (percentage of reviews
whose correct match is returned in one of its top-k
predictions): RLM vs. TFIDF+ baseline.

Figure 3: Average accuracy of the top-1 prediction
for reviews with different length (on test set): RLM

vs. TFIDF+ baseline.
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yield a longer list of highly competitive candi-
date objects. Interestingly, the gap between RLM

and TFIDF+ is much smaller for shorter reviews.
As reviews get longer, the performance of RLM

is relatively stable, whereas the performance of
TFIDF+ drops down significantly.

5.3 Experimental choices for RLM

We now examine the experimental choices we
made for different components of RLM by defin-
ing the following variations of RLM.

RLM-UNIFORM: rather than setting g(w) =
log(1/fw) for Pe, we use the uniform distribution
Pe(w) = 1/|text(e)|. From the third line of Table
1 (b), there is a slight accuracy drop of ∼ 1.3%.

RLM-UNCUT: suppose we only have access to
a review corpus with no alignment to text(e), and
thus have to approximate P (w) by estimating it
on the set of original “un-cut” reviews, how much
does that affect our performance? As indicated in
the fourth row of Table 1 (b), this reduces accuracy
by about 2% on our test data.

RLM-DECAP: as an alternative way to deal with
lack of aligned data, we consider a variation of
the above algorithm by removing all the capital-
ized words from un-annotated reviews. Clearly,
this can result in both “over-cutting” and “under-
cutting” of true restaurant name mentions. How-
ever, as indicated in the fourth row of Table 1 (b),
this is very close to the best accuracy achieved.
Thus, an effective model can be learned even with-
out aligned data.

5.4 Revisiting TFIDF+: what’s amiss?
In this section we revisit the main differences be-
tween our model and the TFIDF+ outlined in Sec-
tion 3.4, and investigate their empirical impor-
tance by introducing these features into TFIDF+

and examine their effectiveness in that framework.

Object length normalization. We con-
sider a modified TFIDF+ measure fM (w) =
Pe(w)/Q(w), which we call TFIDF+-N (normal-
ized). As shown in Table 1 (c), this change alone
can increase the average accuracy by nearly 7%.

Dampening. We consider a modified TFIDF+

measure fM (w) = 1 + β · N
df(w) , which we call

TFIDF+-D. Table 1 (c) reports the performance of
using this measure, with β = 0.1 (set on develop-
ment data). Again, this measure alone can induce
over 7% increase in accuracy. Indeed, combin-
ing normalization and dampening, (i.e., fM (w) =

1+β ·Pe(w) · N
df(w) ), denoted as TFIDF+-ND, we

get comparable performance to RLM-UNCUT.

Removing mentions of objects. Again, we can
incorporate this in a heuristic way in TFIDF+,
which we denote by TFIDF+-O. Interestingly,
while using the original fB(w) function with
df(w) computed on the object-removed review
collection does not yield a big improvement, this
does bring the performance of the fully modified
TFIDF+ to the same level of the standard RLM

(see line marked TFIDF+-NDO.)

Using term counts. Our investigation suggests
that at least in practice, using Q(w) vs. P (w) is
not a critical decision, as a fully modified TFIDF+

can achieve the same performance using df(w) to
quantify frequency of the word. Our experiments
on this dataset show that each of the other model-
ing decisions incorporated in RLM is important.

6 Conclusions

We proposed a generative model for reviews
where reviews are generated from the mixture of
a distribution involving object terms and a generic
review language model. The model provides us
a principled way to match reviews to objects.
Our evaluation on a real-world dataset shows that
our techniques vastly outperforms standard tf-idf
based techniques.
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Abstract

Mitchell et al. (2008) demonstrated that
corpus-extracted models of semantic
knowledge can predict neural activation
patterns recorded using fMRI. This
could be a very powerful technique for
evaluating conceptual models extracted
from corpora; however, fMRI is expensive
and imposes strong constraints on data
collection. Following on experiments
that demonstrated that EEG activation
patterns encode enough information to
discriminate broad conceptual categories,
we show that corpus-based semantic rep-
resentations can predict EEG activation
patterns with significant accuracy, and
we evaluate the relative performance of
different corpus-models on this task.

1 Introduction

Models of semantic relatedness induced from cor-
pus data have proven effective in a number of em-
pirical tasks (Sahlgren, 2006) and there is increas-
ing interest in whether distributional information
extracted from corpora correlates with aspects
of speakers’ semantic knowledge: see Lund and
Burgess (1996), Landauer and Dumais (1997), Al-
muhareb (2006), Padó and Lapata (2007), Schulte
im Walde (2008), among many others. For this
purpose, corpus models have been tested on data-
sets that are based on semantic judgements (met-
alinguistic or meta-cognitive intuitions about syn-
onymy, semantic distance, category-membership)
or behavioural experiments (semantic priming,
property generation, free association). While all
these data are valuable, they are indirect reflec-
tions of semantic knowledge, and when the pre-
dictions they make diverge from those of corpora,
interpretation is problematic: is the corpus model
missing essential aspects of semantics, or are non-

semantic factors biasing the data elicited from in-
formants?

Reading semantic processes and representations
directly from the brain would be an ideal way to
get around these limitations. Until recently, anal-
ysis of linguistic quantities using neural data col-
lected with EEG (measurement at the scalp of volt-
ages induced by neuronal firing) or fMRI (mea-
surement of changes of oxygen concentrations in
the brain tied to cognitive processes) had neither
the advantages of corpora (scale) nor of infor-
mants (finer grained judgements).

However, some clear patterns of differential ac-
tivity have been found for broad semantic classes.
Viewing images of natural (typically animals and
plants) and non-natural (typically artefacts like
tools or vehicles) objects elicits different loci of
activity in fMRI (Martin and Chao, 2001) and
EEG (Kiefer, 2001), that persist across partici-
pants. Differences have also been found in re-
sponse to auditorily or visually presented words of
different lexical classes, such as abstract/concrete,
and verb/noun (Pulvermüller, 2002). But interpre-
tation of such group results remains somewhat dif-
ficult, as they may be consistent with more than
one distinction: the natural/artefactual division
just mentioned, may rather be between living/non-
living entities, dynamic/static entities, or be based
on embodied experience (e.g. manipulable or not).

More recently, however, machine learning and
other numerical techniques have been successfully
applied to extract semantic information from neu-
ral data in a more discriminative fashion, down
to the level of individual concepts. The work
presented here builds on two strands of previ-
ous work: Murphy et al. (2008) use EEG data
to perform semantic categorisation on single stim-
uli; and Mitchell et al. (2008) introduce an fMRI-
based method that detects word level distinctions
by learning associations between features of neu-
ral activity and semantic features derived from a

619



corpus. We combine these innovations by intro-
ducing a method that extracts featural represen-
tations from the EEG signal, and uses corpus-
based models to predict word level distinctions in
patterns of EEG activity. The proposed method
achieves a performance level significantly above
chance (also when distinguishing between con-
cepts from the same semantic category, e.g., dog
and cat), and approaching that achieved with
fMRI.

The paper proceeds as follows. The next section
describes a simple behavioural experiment where
Italian-speaking participants had to name photo-
graphic images of mammals and tools while their
EEG activity was being recorded, and continues
to detail how the rich and multidimensional sig-
nals collected were reduced to a small set of op-
timally informative features using a new method.
Section 3 describes a series of corpus-based se-
mantic models derived from both a raw-text web
corpus, and from various parsings of a conven-
tional corpus. In Section 4 we describe the train-
ing of a series of linear models, that each learn
the associations between a set of corpus semantic
features and an individual EEG activity feature.
By combining these models it is possible to pre-
dict the EEG activity pattern for a single unseen
word, and compare this to the observed pattern
for the corresponding concept. Results (Section
5) show that these predictions succeed at a level
significantly above chance, both for coarser dis-
tinctions between words in different superordinate
categories (e.g., differentiating between drill and
gorilla), and, at least for the model based on the
larger web corpus, for those within the same cate-
gory (e.g., drill vs spanner, koala vs gorilla).

2 Neural Activation Data

2.1 Data collection
EEG data was gathered from native speakers of
Italian during a simple behavioural experiment at
the CIMeC/DiSCoF laboratories at Trento Univer-
sity. Seven participants (five male and two fe-
male; age range 25-33; all with college educa-
tion) performed a silent naming task. Each of them
was presented1 on screen with a series of contrast-
normalised greyscale photographs of tools (gar-
den and work tools) and land mammals (exclud-
ing emotionally valent domesticated animals and

1Using the E-Prime software package: http://www.
pstnet.com/e-prime/.

~1.5s

0.5s

0.5s

2s

Figure 1: Presentation of image stimuli

predators), for which they had to think of the most
appropriate name (see figure 1). They were not ex-
plicitly asked to group the entities into superordi-
nate categories, or to concentrate on their seman-
tic properties, but completing the task involved re-
solving each picture to its corresponding concept.
Images remained on screen until a keyboard re-
sponse was received from the participant to indi-
cate a suitable label had been found, and presenta-
tions were interleaved with three second rest peri-
ods. Thirty stimuli in each of the two classes were
each presented six times, in random order, to give
a total of 360 image presentations in the session.
Response rates were over 95%, and a post-session
questionnaire determined that participants agreed
on image labels in approximately 90% of cases.
English terms for the concepts used are listed be-
low.

Mammals anteater, armadillo, badger, beaver, bi-
son, boar, camel, chamois, chimpanzee, deer,
elephant, fox, giraffe, gorilla, hare, hedge-
hog, hippopotamus, ibex, kangaroo, koala,
llama, mole, monkey, mouse, otter, panda,
rhinoceros, skunk, squirrel, zebra

Tools Allen key, axe, chainsaw, craft knife, crow-
bar, file, garden fork, garden trowel, hack-
saw, hammer, mallet, nail, paint brush, paint
roller, pen knife, pick axe, plaster trowel,
pliers, plunger, pneumatic drill, power drill,
rake, saw, scissors, scraper, screw, screw-
driver, sickle, spanner, tape measure

The EEG signals were recorded at 500Hz from
64 scalp locations based on the 10-20 standard
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montage.2 The EEG recording computer and stim-
ulus presentation computer were synchronised by
means of parallel port transmitted triggers. Af-
ter the experiment, pre-processing of the recorded
signals was carried out using the EEGLAB pack-
age (Delorme and Makeig, 2003): signals were
band-pass filtered at 1-50Hz to remove slow drifts
and high-frequency noise, and then down-sampled
to 120Hz. An ICA decomposition was subse-
quently applied (Makeig et al., 1996), and signal
components due to eye-movements were manually
identified and removed.

As a preliminary test to verify that the recorded
signals included category specific patterns, we
applied a discriminative classification technique
based on source-separation, similar to that de-
scribed in Murphy et al. (2008). This found that
the categories of mammals and tools could be dis-
tinguished with an accuracy ranging from 57% to
80% (mean of 72% over the seven participants).

2.2 Feature extraction

The features extracted are metrics of signal power
at a particular scalp location, in a particular fre-
quency band, and at a particular time latency rel-
ative to the presentation of each image stimulus.
Termed Event Related Synchronisation (ERS) or
Event Related Spectral Perturbation (ERSP), such
frequency-specific changes in signal amplitude are
known to correlate with a wide range of cogni-
tive functions (Pfurtscheller and Lopes da Silva,
1999), and have specifically been shown to be sen-
sitive to category distinctions during the process-
ing of linguistic and visual stimuli (Murphy et al.,
2008; Gilbert et al., 2009).

Feature extraction and selection is performed
individually on a per-participant basis. As a first
step all signal channels are z-score normalised
to control for varying conductivity at each elec-
trode site, and a Laplacian sharpening is applied
to counteract the spatial blurring of signals caused
by the skull, and so minimise redundancy of infor-
mation between channels.

For each stimulus presentation, 14,400 signal
power features are extracted: 64 electrode chan-
nels by 15 frequency bands (of width 3.3Hz, be-
tween 1 and 50Hz) by 15 time intervals (of length
67ms, in the first second after image presentation).
A z-score normalisation is carried out across all

2Using a Brain Vision BrainAmp system: http://
www.brainproducts.com/.

Figure 2: Mean rank of selected features in the
time/frequency space (left panel) and on the scalp
(right panel) for participant E

stimulus presentations to equalise variance across
frequencies and times: to control both for the low-
pass filtering action of the skull, and for the re-
duced synchronicity of activity at increasing laten-
cies. For each stimulus a mean is then taken over
each of six presentations to arrive at a more reli-
able power estimate for each feature.3

The feature ranking method used in Mitchell et
al. (2008) evaluates the extent to which the rela-
tionship among stimuli is stable across across pre-
sentations, using a correlational measure,4 but pre-
liminary analyses with this selection method on
EEG features proved disappointing. Here, two ad-
ditional ranking criteria are used: each feature is
evaluated for its noisiness (the amount of power
variation seen across presentations of the same
stimulus), and for its distinctiveness (the amount
of variation in power estimates across different
stimuli). A combination of these three strategies
is used to rank the features by their informative-
ness, and the top 50 features are then selected for
each participant.5

A qualitative evaluation of the feature selec-
tion strategy can be carried out by examining
the distribution of features selected. Figure 2
shows the distribution of selected features over the
time/frequency spectrum (left panel), and over the
scalp (right panel - viewed from above, with the
nose pointing upwards). The distribution seen is

3Stimulus power features are isolated by band-pass filter-
ing for the required frequencies, cropping following the rel-
evant time interval relative to each image presentation, and
then taking the variance of the resulting signal, which is pro-
portional to power.

4See the associated supplementary materials of Mitchell
et al. (2008) for details: http://www.sciencemag.
org/cgi/content/full/320/5880/1191/DC1.

5Several combinations of these parameters (selection
thresholds of 5, 20, 50, 100, 200 features; ranking criteria in
isolation and in combination) were investigated - the one cho-
sen gave highest overall performance with the web-derived
corpus model: 50 features, combined ranking criteria.
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Figure 3: First two components of principal com-
ponents analysis of selected features for partici-
pant E (crosses: mammals; circles: tools)

plausible in reference to previous work: lower fre-
quencies (Pfurtscheller and Lopes da Silva, 1999),
latencies principally in the first few hundred mil-
liseconds (Kiefer, 2001), and activity in the visual
centres at the rear of the head, as well as parietal
areas (Pulvermüller, 2005). A principal compo-
nents analysis can also be performed on the se-
lected features to see if they reflect any plausi-
ble semantic space. As figure 3 shows, the fea-
ture selection stage has captured quite faithfully
the mammal/tool distinction in a totally unsuper-
vised fashion.

3 Corpus-based semantic models

Data from linguistics (Pustejovsky, 1995; Fill-
more, 1982) and neuroscience (Barsalou, 1999;
Barsalou, 2003; Pulvermüller, 2005) underline
how certain verbs, by emphasising typical ways in
which we interact with entities and how they be-
have, are pivotal in the representation of concrete
nominal concepts. Following these traditions,
Mitchell et al. (2008) use 25 manually picked
verbs as their corpus-based features.

Here that approach is replicated by translating
these verbs into Italian. Mitchell et al. (2008) se-
lected verbs that denote our interaction with ob-
jects and living things, such as smell and ride.
While the translations are not completely faithful
(because frequent verbs of this sort tend to span
different sets of senses in the two languages), the
aim was to respect the same principle when build-
ing the Italian list. The full list, with our back

translations into English, is presented in Table 1.
We refer to this set as the “Mitchell” verbs.

alzare “raise” annusare “smell/sniff”
aprire “open” ascoltare “listen”
assaggiare “taste” avvicinare “near”
cavalcare “ride” correre “run/flow”
dire “say/tell” entrare “enter”
guidare “drive” indossare “wear”
maneggiare “handle” mangiare “eat”
muovere “move” pulire “clean”
puzzare “stink” riempire “fill”
rompere “break” sentire “feel/hear”
sfregare “rub” spingere “push”
temere “fear” toccare “touch”
vedere “see”

Table 1: The “Mitchell” verbs, with English trans-
lations

As in Mitchell et al. (2008), in order to find
a corpus large enough to provide reliable co-
occurrence statistics for our target concepts and
the 25 verbs, we resorted to the Web, queried us-
ing the Yahoo! API.6 In particular, we represent
each concept by a vector that records how many
times it co-occurred with each target verb within
a span of 5 words left and right, according to Ya-
hoo! counts. We refer to this corpus-based model
as the yahoo-mitchell model below.

While manual verb picking has proved effec-
tive for Mitchell and colleagues (and for us, as we
will see in a moment), ultimately what we are in-
terested in is discovering the most distinctive fea-
tures of each conceptual category. We are there-
fore interested in more systematic approaches to
inducing corpus-based concept descriptions, and
in which of these approaches works best for this
task. The alternative models we consider were
not extracted from the Web, but from an existing
corpus, so that we could rely on pre-existing lin-
guistic annotation (POS tagging, lemmatization,
dependency paths), and perform more flexible,
annotation-aware queries to collect co-occurrence
statistics.

More specifically, we used the la Repub-
blica/SSLMIT corpus7, that contains about 400
million tokens of newspaper text. From this, we
extracted four models where nominal concepts are
represented in terms of patterns of co-occurrence
with verbs (we collected statistics for the top
20,000 most common nouns in the corpus, includ-
ing the concepts used as stimuli in the silent nam-

6http://developer.yahoo.com/search/
7http:://sslmit.unibo.it/repubblica/

622



ing experiment, and the top 5,000 verbs). We first
re-implemented a “classic” window-based word
space model (Sahlgren, 2006), referred to below
as repubblica-window, where each noun lemma is
represented by its co-occurrence with verb lem-
mas within the maximum span of a sentence, with
no more than one other intervening noun. The
repubblica-position model is similar, but it also
records the position of the verb with respect to
the noun (so that X-usare “X-use” and usare-X
“use-X” count as different features), analogously
to the seminal HAL model (Lund and Burgess,
1996). It has been shown that models that take
the syntactic relation between a target word and
a collocate feature into account can outperform
“flat” models in some tasks (Padó and Lapata,
2007). The next two models are based on the de-
pendency parse of the la Repubblica corpus docu-
mented by Lenci (2009). We only counted as col-
locates those verbs that were linked to nouns by
a direct path (such as subject and object) or via
preposition-mediated paths (e.g., tagliare con for-
bici “to cut with scissors”), and where the paths
were among the top 30 most frequent in the cor-
pus. In the repubblica-depfilter model, we record
co-occurrence with verbs that are linked to the
nouns by one of the top 30 paths, but we do
not preserve the paths themselves in the features.
This is analogous to the model proposed by Padó
and Lapata (2007). In the repubblica-deppath
model, we preserve the paths as part of the fea-
tures (so that subj-uccidere “subj-kill” and obj-
uccidere count as different features), analogously
to Lin (1998), Curran and Moens (2002) and oth-
ers. For all models, following standard practice in
computational linguistics (Evert, 2005), we trans-
form raw co-occurrence counts into log-likelihood
ratios.

Following the evaluation paradigm of Mitchell
et al. (2008), linear models trained on corpus-
based features are used to predict the pattern of
EEG activity for unseen concepts. This only
works if we have a very limited number of fea-
tures (or else we would have more parameters to
estimate than data-points to estimate them). The
Repubblica-based models have thousands of fea-
tures (one per verb collocate, or verb+path collo-
cate). We adopt two strategies to select a reduced
number of features. In the topfeat versions, we
first pick the 50 features that have the highest asso-
ciation with each of the target concepts. We then

count in how many of these concept-specific top
lists a feature occurs, and we pick the 25 features
that occur in the largest number of them. The intu-
ition is that this should give us a good trade-off be-
tween how characteristic the features are (we only
use features that are highly associated with some
of our concepts), and their generalization capabili-
ties (we pick features that are associated with mul-
tiple concepts). Randomly selected examples of
the features extracted in this way for the various
Repubblica models are reported in Table 2.

repubblica-window repubblica-position
abbattere “demolish” X-ferire “X-wound”
afferrare “seize” X-usare “X-use”
impugnare “grasp” dipingere-X “paint-X”
tagliare “cut” munire-X “supply-X”
trovare “find” tagliare-X “cut-X”
repubblica-depfilter repubblica-deppath
abbattere “demolish” con+tagliare “with+cut”
correre “run” obj+abbattere “obj+demolish”
parlare “speak” obj+uccidere “obj+kill”
saltare “jump” intr-subj+vivere “intr-subj+live”
tagliare “cut” tr-subj+aprire “tr-subj+open”

Table 2: Examples of top features from the la Re-
pubblica models

Alternatively, instead of feature selection we
perform feature reduction by means of a Singular
Value Decomposition (SVD) of the noun-by-verb
matrix. We apply the SVD to matrices that include
the top 20,000 most frequent nouns in the cor-
pus (including our target concepts) since the qual-
ity of the resulting reduced model should improve
if we can exploit richer patterns of correlations
among the columns – verbs – across rows – nouns
(Landauer and Dumais, 1997; Schütze, 1997). In
the svd versions of our models, we pick as fea-
tures the top 25 left singular vectors, weighted
by the corresponding singular values. These fea-
tures do not have a straightforward interpretation,
but they tend to group verb meanings that belong
to broad semantic domains. For example, among
the original verbs that are most strongly correlated
with one of the top singular vectors of repubblica-
window we find giocare “play”, vincere “win” and
perdere “lose”. Another singular vector is asso-
ciated with ammontare “amount”, costare “cost”,
pagare “pay”, etc. One of the top singular vec-
tors of repubblica-deppath is strongly correlated
with in+scendere “descend into”, in+mettere “put
into”, in+entrare “enter into”, though not all sin-
gular vectors are so clearly characterized by the
verbs they correlate with.
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None of the la Repubblica models had full cov-
erage of our concept stimulus set (see the second
column of Table 3 below), because our extraction
method missed some multi-word units, and fea-
ture selection led to losing some more items due
to data sparseness (e.g., some target words had no
collocates connected by the dependency paths we
selected). The experiments reported in the next
section used all the target concepts available in
each model, but a replication using the 50 concepts
that were common to all models obtained results
that are comparable. For a direct comparison be-
tween Yahoo! and la Repubblica derived features,
we tried collecting statistics for the Mitchell verbs
from Repubblica as well, but the resulting model
was extremely sparse, and we do not report its per-
formance here.

Finally, it is important to note that any repre-
sentation yielded by a corpus semantic model does
not characterise a concept directly, but is rather an
aggregate of the various senses and usages of the
noun chosen to represent it. This obvious limita-
tion will persist until comprehensive, robust and
computationally efficient word-sense disambigua-
tion techniques become available. However these
models are designed to extract semantic (as op-
posed to syntactic or phonological) properties of
words, and as noted in the introduction, have been
demonstrated to correlate with behavioural effects
of conceptual processing.

4 Predicting EEG patterns using
corpus-based models

In Section 2.2 above we showed how we extracted
features summarizing the spatial, temporal and
frequency distribution of the EEG signal collected
while participants were processing each of the tar-
get concepts. In Section 3, we described various
ways to obtain a compact representation of the
same concepts in terms of corpus-derived features.
We will now discuss the method we employed to
verify whether the corpus-derived features can be
used to predict the EEG patterns – that is whether
semantics can be used to predict neural activity.
Our hope is that a good corpus-based model will
provide a decomposition of concepts into mean-
ingful properties, corresponding to coherent sub-
patterns of activation in the brain, and thus capture
generalizations across concepts. For example, if
a concept is particularly visually evocative (e.g.,
zebra), we might expect it to be strongly associ-

ated with the verb see, while also causing partic-
ular activation of the vision centres of the brain.
Similarly, concepts with strong associations with
a particular sound (e.g., cuckoo) might be seman-
tically associated with hear while also dispropor-
tionately activating auditory areas of the brain. It
should thus be possible to learn a model of corpus-
to-EEG-pattern correspondences on training data,
and use it to predict the EEG activation patterns of
unseen concepts.

We follow the paradigm proposed by Mitchell et
al. (2008) for fMRI data. For each participant and
selected EEG feature, we train a model where the
level of activation of the latter in response to dif-
ferent concepts is approximated by a linear com-
bination of the corpus features:

~f = C~β + ~ε

where ~f is the vector of activations of a specific
EEG feature for different concepts, the matrix C
contains the values of the corpus features for the
same concepts (row-normalised to z-scores), ~β is
the weight we must learn for each corpus feature,
and~ε is a vector of error terms. We use the method
of least squared errors to learn the weights that
maximize the fit of the model. We can then predict
the activation of an EEG feature in response to a
new concept that was not in the training data by a
~β-weighted sum of the values of each corpus fea-
ture for the new concept. In some cases collinear-
ity in the corpus data (regular linear relationships
among the corpus-feature columns) prevented the
estimation procedure from finding a solution. In
such cases (due to the small number of data, rel-
ative to the number of unknowns), the least in-
formative corpus-features (those that correlated on
average most highly with other features) were iter-
atively removed until a solution was reached. All
models were trained with between 23 and 25 cor-
pus features.

Again following Mitchell and colleagues, we
adopt a leave-2-out paradigm in which a linear
model for each EEG feature is trained in turn on
all concepts minus 2. For each of the 2 left out
concepts, we predict the EEG activation pattern
using the trained linear model and their corpus
features, as just described. We then try to cor-
rectly match the predicted and observed activa-
tions, by measuring the Euclidean distance be-
tween the model-generated EEG activity (a vec-
tor of estimated power levels for the n EEG fea-
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tures selected) and the corresponding EEG activ-
ity recorded in the experiment (other distance met-
rics gave similar results to the ones reported here).
Given the 2 left-out concepts a and b, we com-
pute 2 matched distances (i.e., distance between
predicted and observed pattern for a, and the same
for b) and 2 mismatched distances (predicted a and
observed b; predicted b and observed a). If the av-
erage of the matched distances is lower than the
average of the mismatched distances, we consider
the prediction successful – otherwise we count is
as a failed prediction. At chance levels, expected
matching accuracy is 50%.

5 Results

Table 3 shows the comparative results for all the
corpus models introduced in Section 3. The third
column (all) shows the overall accuracy in cor-
rectly matching predicted to observed EEG ac-
tivity patterns, and so successfully distinguishing
word meanings. The significance of the figures is
indicated with the conventional annotation (calcu-
lated using a one-way two-sided t-test across the
individual participant accuracy figures against an
expected population mean of 50%).8 The second
column shows the coverage of each model of the
60 mammal and tool concepts used, which ranged
from full (for the yahoo-mitchell model) to 51 con-
cepts (for the depfilter-topfeat model). The corre-
sponding number of matching comparisons over
which accuracy was calculated ranged from 1770
down to 1225.

As suggested by previous work (Murphy et al.,
2008), and illustrated by figure 3, coarse distinc-
tions between words in different superordinate cat-
egories (e.g., hammer vs armadillo; giraffe vs
nail) may be easier to detect than those among
concepts within the same category (e.g., ham-
mer vs nail; giraffe vs armadillo). The fourth
and fifth columns give these accuracies, and while
between-category discriminations do prove more
reliable, they indicate that, for the top rated model
at least, finer within-category distinctions are also
being captured. Figures from the top two perform-
ing models are given for individual participants in
tables 4 and 5.

8On average, the difference seen between matched and
mismatched pairs was small, at about 3% of the distance
between observed and predicted representations, and was
marginally bigger for correct than for incorrect predictions
(p < 0.01).

part. overall within between
A 54 53 55
B 54 47 60
C 62 56 67
D 61 56 67
E 68 58 78
F 52 54 51
G 57 51 63

Table 4: Accuracy levels for individual participant
sessions, yahoo-mitchell web corpus

part. overall within between
A 49 52 46
B 59 57 60
C 60 60 59
D 50 45 55
E 56 53 58
F 64 64 65
G 52 49 55

Table 5: Accuracy levels for individual participant
sessions, repubblica-window-svd

6 Discussion

Our results show that corpus-extracted conceptual
models can be used to distinguish between the
EEG activation levels associated with conceptual
categories to a degree that is significantly above
chance. Though category specific patterns are de-
tectable in the EEG signal alone (as illustrated by
the PCA analysis in figure 3), on that basis we can-
not be sure that semantics is being detected. Some
other property of the stimuli that co-varies with the
semantic classes of interest could be responsible,
such as visual complexity, conceptual familiarity,
lexical frequency, or phonological form. Only by
cross-training with individual corpus features and
showing that these hold a predictive relationship to
neural activity have we been able to establish that
EEG patterns encode semantics.

Present evidence indicates that fMRI may pro-
vide richer data for training such models than EEG
(Mitchell and colleagues obtain an average accu-
racy of 77%, and 65% for the within category set-
ting). However, fMRI has several clear disadvan-
tages as a tool for language researchers. First of
all, the fine spatial resolution it provides (down
to 2-3mm), while of great interest to neuroscien-
tists, is not in itself linguistically informative. Its
coarse temporal resolution (of the order of several
seconds), makes it ill-suited to analysing on-line
linguistic processes. EEG on the other hand, de-
spite its low spatial resolution (several centime-
tres), gives millisecond-level temporal resolution,
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model coverage all within cat between cat
yahoo-mitchell 100 58.3** (5.7) 53.6* (3.7) 63.0** (8.9)
repubblica-window-svd 96.7 55.7* (5.6) 54.3 (6.5) 56.9* (5.9)
repubblica-window-topfeat 93.3 52.1 (4.3) 48.7 (3.6) 55.4 (7.0)
repubblica-deppath-svd 93.3 51.4 (8.7) 49.0 (8.0) 54.0 (10.0)
repubblica-depfilter-topfeat 85.0 51.1 (9.6) 49.3 (9.6) 53.1 (10.0)
repubblica-position-topfeat 93.3 50.0 (5.2) 46.0 (4.7) 53.6 (8.0)
repubblica-deppath-topfeat 86.7 49.9 (9.0) 47.0 (9.3) 52.4 (9.6)
repubblica-position-svd 96.7 49.4 (10.2) 46.6 (9.8) 52.3 (11.3)
repubblica-depfilter-svd 93.3 48.9 (11.1) 47.1 (8.9) 50.6 (12.9)

Table 3: Comparison across corpus models, with percentage concept coverage, mean cross-subject per-
centage prediction accuracy and standard deviation; ∗p < 0.05, ∗ ∗ p < 0.01

enabling the separate analysis of sequential cogni-
tive processes and states (e.g., auditory process-
ing, word comprehension, semantic representa-
tion). fMRI is also prohibitively expensive for
most researchers (ca. 300 euros per hour at cost
price), compared to EEG (ca. 30 euros per hour).
Finally, there is no prospect of fMRI being minia-
turised, while wearable EEG systems are already
becoming commercially available, making exper-
imentation in more ecological settings a possibil-
ity (e.g., playing with a child, meeting at a desk,
walking around). In short, while EEG can be used
to carry out systematic investigations of categori-
cal distinctions, doing so with fMRI would be pro-
hibitively expensive.

Present results indicate that distinctions be-
tween categories are easier than distinctions be-
tween category elements; and that selecting the
conceptual features by hand gives better results
than discovering them automatically. Both of
these results however may be due to limitations
of the current method. One limitation is that we
have been using the same set of features for all
concepts, which is likely to blur the distinctions
between members of a category more than those
between categories. A second limitation of our
present methodology is that it is constrained to use
very small numbers of semantic features, which
limits its applicability. For example it is hard to
conceive of a small set of verbs, or other parts-of-
speech, whose co-occurrence patterns could suc-
cessfully characterise the full range of meaning
found in the human lexicon. Even the more eco-
nomical corpus-extracted conceptual models tend
to run in the hundreds of features (Almuhareb,
2006). We are currently working on variations in
the method that will address these shortcomings.

The web-based model with manually picked
features outperformed all la Repubblica-based
models. However, the results attained with

repubblica-window-svd are encouraging, espe-
cially considering that we are reporting results for
an EEG feature configuration optimised for the
web data (see footnote 5), and that la Repubblica
is several orders of magnitude smaller than the
web. That data sparseness might be the main is-
sue with la Repubblica models is suggested by
the fact that repubblica-window-svd is the least
sparse of them, since it does not filter data by posi-
tion or dependency path, and compresses informa-
tion from many verbs via SVD. In future research,
we plan to extract richer models from larger cor-
pora. And as the discriminative accuracy of cross-
training techniques improves, further insights into
the relative validity of corpus representations will
be attainable. One research aim is to see if individ-
ual corpus semantic properties are encoded neu-
rally, so providing strong evidence for a particular
model. These techniques may also prove more ob-
jective and reliable in evaluating representations of
abstract concepts, for which it is more difficult to
collect reliable judgements from informants.
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Italiana.

D. Lin. 1998. Automatic retrieval and clustering
of similar words. In COLING-ACL98, Montreal,
Canada.

K. Lund and C. Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instru-
ments, and Computers, 28:203—208.

S. Makeig, A.J. Bell, T. Jung, and T.J. Sejnowski.
1996. Independent component analysis of elec-
troencephalographic data. In in Advances in Neu-
ral Information Processing Systems, pages 145–151.
MIT Press.

A. Martin and L. Chao. 2001. Semantic memory and
the brain: structure and processes. Current Opinions
in Neurobiology, 11:194–201.

T. Mitchell, S. Shinkareva, A. Carlson, K. Chang,
V. Malave, R. Mason, and M. Just. 2008. Predicting
human brain activity associated with the meanings
of nouns. Science, 320:1191–1195.

B. Murphy, M. Dalponte, M. Poesio, and L. Bruz-
zone. 2008. Distinguishing concept categories from
single-trial electrophysiological activity. In Pro-
ceedings of the Annual Meeting of the Cognitive Sci-
ence Society.
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Abstract
Distance-based (windowless) word asso-
cation measures have only very recently
appeared in the NLP literature and their
performance compared to existing win-
dowed or frequency-based measures is
largely unknown. We conduct a large-
scale empirical comparison of a variety of
distance-based and frequency-based mea-
sures for the reproduction of syntagmatic
human assocation norms. Overall, our
results show an improvement in the pre-
dictive power of windowless over win-
dowed measures. This provides support
to some of the previously published the-
oretical advantages and makes window-
less approaches a promising avenue to
explore further. This study also serves
as a first comparison of windowed meth-
ods across numerous human association
datasets. During this comparison we
also introduce some novel variations of
window-based measures which perform as
well as or better in the human association
norm task than established measures.

1 Introduction

Automatic discovery of semantically associated
words has attracted a large amount of attention in
the last decades and a host of computational asso-
ciation measures have been proposed to deal with
this task (see Section 2). These measures tradi-
tionally rely on the co-ocurrence frequency of two
words in a corpus to estimate a relatedness score.
There has been a recent emergence of distance-
based language modelling techiques in NLP (Sav-
icki and Hlavacova, 2002; Terra and Clarke, 2004)
in which the number of tokens separating words
is the essential quantity. While some of this work
has considered distance-based alternatives to con-
ventional association measures (Hardcastle, 2005;

Washtell, 2009), there has been no principled em-
pirical evaluation of these measures as predictors
of human association. We remedy this by conduct-
ing a thorough comparison of a wide variety of
frequency-based and distance-based measures as
predictors of human association scores as elicited
in several different free word association tasks.

In this work we focus on first-order associ-
ation measures as predictors of syntagmatic as-
sociations. This is in contrast to second and
higher-order measures which are better predictors
of paradigmatic associations, or word similarity.
The distinction between syntagmatic and paradig-
matic relationship types is neither exact nor mu-
tually exclusive, and many paradigmatic relation-
ships can be observed syntagmatically in the text.
Roughly in keeping with (Rapp, 2002), we hereby
regard paradigmatic assocations as those based
largely on word similarity (i.e. including those
typically classed as synonyms, antonyms, hyper-
nyms, hyponyms etc), whereas syntagmatic as-
sociations are all those words which strongly in-
voke one another yet which cannot readily be
said to be similar. Typically these will have an
identifiable semantic or grammatical relationship
(meronym/holonym: stem – flower, verb/object:
eat – food etc), or may have harder-to-classify top-
ical or idiomatic relationships (family – Christmas,
rock – roll).

We will show in Section 3.2 that syntagmatic
relations by themselves constitute a substantial
25-40% of the strongest human responses to cue
words. Although the automatic detection of these
assocations in text has received less attention
than that of paradigmatic associations, they are
nonetheless important in applications such as the
resolution of bridging anaphora (Vieira and Poe-
sio, 2000).1 Furthermore, first-order associations

1where for example resolving my house – the windows to
the windows of my house can be aided by the knowledge that
windows are often (syntagmatically) associated with houses.
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are often the basis of higher-order vector word-
space models used for predicting paradigmatic
relationships: i.e. through the observation of
words which share similar sets of syntagmatic as-
sociations. Therefore improvements made at the
level we are concerned with may reasonably be
expected to carry through to applications which
hinge on the identification of paradigmatic rela-
tionships.

After a discussion of previous work in Sec-
tion 2, we formulate the exact association mea-
sures and parameter settings which we compare
in Section 3, where we also introduce the corpora
and human association sets used. Then, by using
evaluations similar to those described in (Baroni
et al., 2008) and by Rapp (2002), we show that
the best distance-based measures correlate better
overall with human association scores than do the
best window based configurations (see Section 4),
and that they also serve as better predictors of the
strongest human associations (see Section 5).

2 Related Work

Measures based on co-ocurrence frequency.
The standard way of estimating the syntagmatic
association of word pairs in a corpus is to ex-
amine the frequency of their co-occurence, and
then usually to compare this to some expected fre-
quency. There are a host of measures which ex-
ist for this purpose. After raw co-occurrence fre-
quency, the simplest and most prevalent in the
literature is Pointwise Mutual Information, fa-
mously used by Church (1989) (as the associa-
tion ratio). This is defined as the log of the ra-
tio of the observed co-occurrence frequency to the
frequency expected under independence. More
sophisticated and statistically-informed measures
include t-Score, z-Score, Chi-Squared and Log-
Likelihood (see Evert (2005) for a thorough re-
view).

All of these measures have in common that they
require co-occurrence frequency to be specified,
and therefore require some definition of a region
within which to count co-occurrences. This re-
gion might be the entirety of a document at one
extreme, or a bigram at the other. A versatile and
hugely popular generalised approach is therefore
to consider a ”‘window”’ ofw words, wherew can
be varied to suit the application. Unsurprisingly,
it has been found that this is a parameter which
can have a significant impact upon performance

(Yarowsky and Florian, 2002; Lamjiri et al., 2004;
Wang, 2005). While choosing an optimum win-
dow size for an application is often subject to
trial and error, there are some generally recog-
nized trade-offs between small versus large win-
dows, such as the impact of data-sparseness, and
the nature of the associations retrieved (Church
and Hanks, 1989; Church and Hanks, 1991; Rapp,
2002)

Measures based on distance between words in
the text. The idea of using distance as an al-
ternative to frequency for modelling language has
been touched upon in recent literature (Savicki and
Hlavacova, 2002; Terra and Clarke, 2004; Hard-
castle, 2005). Washtell (2009) showed that it is
possible to build distance-based analogues of ex-
isting syntagmatic association measures, by using
the notions of mean and expected distance rather
than of frequency. These measures have certain
theoretical qualities - notably scale-independence
and relative resilience to data-sparseness - which
might be expected to provide gains in tasks such
as the reproduction of human association norms
from corpus data. The specific measure introduced
by Washtell, called Co-Dispersion, is based upon
an established biogeographic dispersion measure
(Clark and Evans, 1954). We provide a thor-
ough empirical investigation of Co-Dispersion and
some of its derivatives herein.

Measures based on syntactic relations. Sev-
eral researchers (Lin, 1998; Curran, 2003; Pado
and Lapata, 2007) have used word space models
based on grammatical relationships for detecting
and quantifying (mostly paradigmatic) word asso-
ciations. In this paper, we will not use syntactic
relation measures for two main reasons. Firstly
these depend on the availability of parsers, which
is not a given for many languages. Secondly, this
may not be the most pertinent approach for pre-
dicting human free associations, in which certain
observed relationsips can be hard to express in
terms of syntactic relationships.

3 Methodology

Similar to (Rapp, 2002; Baroni et al., 2008, among
others), we use comparison to human assocation
datasets as a test bed for the scores produced by
computational association measures. An alterna-
tive might be to validate scores against those de-
rived from a structured resource such as WordNet.
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Table 1: Human association datasets

Name Origin Cues Respondents
Kent Kent & Rosanoff (1910) 100 ∼ 1000

Minnesota Russell & Jenkins (1954) 100 ∼ 1000
EAT Kiss et al (1973) 8400 100

Florida Nelson et al (1980) 5019 ∼ 140

However, relatedness measures for WordNet are
many and varied and are themselves the subject of
evaluation (Pedersen et al., 2004). Although hu-
man association datasets have their own peculiari-
ties, they do at least provide some kind of definite
Gold Standard. Yet another alternative might be to
incorporate our computational association scores
into an application (such as anaphora resolution),
and measure the performance of that, but noise
from other submodules would complicate evalu-
ation. We leave such extensions to possible future
work.

We use evaluations similar to those used before
(Rapp, 2002; Pado and Lapata, 2007; Baroni et
al., 2008, among others). However, whereas most
existing studies use only one dataset, or hand-
selected parts thereof, we aim to evaluate mea-
sures across four different human datasets. In this
way we hope to get as unbiased a picture as possi-
ble.

3.1 Association data

The datasets used are listed in Table 1. While
the exact experimental conditions may differ, the
datasets used were all elicited using the same ba-
sic methodology: by presenting individual words
(cues) to a number of healthy human subjects and
asking in each case for the word that is most imme-
diately or strongly evoked. An association score
can then be derived for each cue/response pair in a
dataset by dividing the number of participants pro-
viding a given response by the number who were
presented with the cue word. In Table 1, respon-
dents refers to the number of people from whom
a response was solicited for each cue word in a
study (this is not to be confused with the number
of unique responses).

Of these four datasets, one (Kent & Rosanoff)
appears not to have been previously used in any
peer-reviewed study of corpus-derived lexical as-
sociation. It is worth noting that some of these
datasets are quite dated, which might affect corre-
lations with corpus-derived scores, as culture and
contemporary language have a fundamental im-

pact upon the associations humans form (White
and Abrams, 2004).

3.2 Frequency of Syntagmatic Associations

To verify that strong human associations do in-
clude a large number of syntagmatic associations,
we manually annotated all pairs consisting of
a cue and its strongest human response in the
Minnesota and Kent datasets as expressing ei-
ther a syntagmatic or a paradigmatic relationship.
The overall set to be annotated consisted of 200
pairs.

Annotators were given short (half-page) guide-
lines on syntagmatic and paradigmatic assoca-
tions, stating that very similar items (including
hyponyms/hypernyms) as well as antonyms were
to be judged as paradigmatic whereas words that
do not fulfil this criterion are to be judged as
syntagmatic. The two annotators were the au-
thors of this paper (one native and one near-native
speaker). After independent annotation, agree-
ment was measured at a percentage agreement of
91/93% and a kappa of 0.80/0.82 for Minnesota
and Kent, respectively. Therefore, the distinction
can be made with high reliability.

Overall, 27/39% of the human responses
were syntagmatic in the Kent/Minnesota datasets,
showing that syntagmatic relations make up a
large proportion of even the strongest human as-
sociations.

3.3 Corpora

We use two randomized subsets of the British Na-
tional Corpus (BNC), a representative 100 million
word corpus of British English (Burnard, 1995):
one 10 million word sample, and a 1 million word
sample. A vocabulary of approximately 33,000
word types was used. The selected words included
approximately 24,000 word types comprising all
cue and target words from the multiple sets of hu-
man association norms to be used in this study. To
these were added a top-cut of the most frequent
words in the BNC, until the total of 33,000 word
types was reached. The resultant set included ap-
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proximately the 24,000 most common word types
in the BNC, with the remaining 9000 words types
therefore comprising relatively uncommon words
taken from the human associative responses.

The words included in the vocabulary ac-
counted for over 94.5% of tokens in the corpus.
Although statistics for the remaining word types
in the BNC were not gathered, their correspond-
ing tokens were left in the corpus so that these
could be properly accounted for when calculating
distances and window spans.

In order to maximize matching between word
types in the corpus and association norms, all
words in both were normalized by converting to
lower-case and removing hyphens and periods.
Words consisting entirely of numerals, or numer-
als and punctuation, and all ”phrasal” associa-
tive responses (those containing spaces) were dis-
carded. The 33,000 word count was satisfied after
making these normalizations.

In order to maximize the variety of the language
in the samples, the subsets were built from ap-
proximately the first 2000 words only of each ran-
domly selected document from the BNC (a similar
strategy to that used in constructing the 1 million
word Brown Corpus). Both a 10 million word and
a 1 million word sample were constructed in this
fashion, allowing us to also examine the effects of
varying corpus size and content.

3.4 Association measures used

3.4.1 Frequency-based measures
In the following, x is the cue word and y a (possi-
ble) response word. Therefore p(x) is the proba-
bility of observing x, and p(x̄) refers to the prob-
ability of not observing x.

Pointwise Mutual Information (hereonin PMI)
was introduced in Section 2. For ranking word
pairs, we can neglect the usual logarithm.

PMI =
p(x, y)

p(x)p(y)

PMI is infamous for its tendency to attribute very
high association scores to pairs involving low fre-
quency words, as the denominator is small in such
cases, even though the evidence for association in
such cases is also small. This can result in some
unlikely associations. There exist a number of al-
ternative measures which factor in the amount of
evidence to give an estimate of the significance of

association. One popular and statistically appeal-
ing such measure is Log-Likelihood (LL) (Dun-
ning, 1993). LL works on a similar principle to
PMI but considers the ratio of the observed to ex-
pected co-occurrence frequencies for all contin-
gencies (i.e. including those where the words do
not co-occur). LL, as it most frequently appears in
the literature, is not actually a measure of positive
association: it also responds to significant negative
association. Therefore LL is arguably not suited to
the task in hand. Krenn & Evert (2001) experiment
with one-tailed variants of LL and Chi-Squared
measures, although they do not define these vari-
ants. Here, we construct a one-tailed variant of LL
by simply reversing the signs of the terms which
respond to negative association.

LL1tail = p(x, y) log
p(x, y)

p(x)p(y)
− p(x, ȳ) log

p(x, ȳ)

p(x)p(ȳ)

− p(x̄, y) log
p(x̄, y)

p(x̄)p(y)
+ p(x̄, ȳ) log

p(x̄, ȳ)

p(x̄)p(ȳ)

LL does not have a clear analogue amongst
the distance-based measures (introduced in Sec-
tion 3.4.2), whereas PMI for instance does. We
therefore construct variants of PMI and other mea-
sures which take the amount of evidence into ac-
count in a way which can be directly reproduced
in the distance domain. For this we borrow from
Sackett (2001) who asserts that, all other things
being equal, statistical significance is proportional
to the square root of the sample size. There are a
number of ways one might quantify sample size.
We take a consistent approach across the various
distance-based and frequency-based measures: we
assume sample size to be equivalent to the lesser of
the frequencies of the two words as this represents
the total number of words available for pairing,
with fewer observed pairs therefore being consid-
ered to constitute negative evidence.

PMIsig =
√

min(p(x), p(y))
p(x, y)

p(x)p(y)

All of the above measures are symmetric. Human
associative responses however are not (Michel-
bacher et al., 2007): a person’s tendency to give
the response because to the cue why does not nec-
essarily reflect their tendency to give the response
why to the cue because.2 A simple asymmetric as-
sociation measure is conditional probability (CP)

2This notion of assymmetry is not to be confused with
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- the probability of observing the response, given
that the cue has already occurred.

CP = p(y|x) =
p(x, y)

p(x)

CP suffers from the fact that it does not account
at all for the general frequency of the response
word. It therefore tends to favour very frequent
words, such as function words. An obvious so-
lution would be to divide CP by the frequency of
the response word, however this merely results in
PMI which is symmetric. By multiplying CP with
PMI (and taking the root, to simplify) we obtain a
measure which is asymmetric yet does not overtly
favour frequent response words.3 We refer to this
herein as Semi-Conditional Information (SCI).

SCI =
p(x, y)

p(x)
√

p(y)

We also explore variants of both CP and SCI with
the additional significance correction presented for
PMIsig. These can be easily inferred from the for-
mulae above.

3.4.2 Distance-based Measures
Co-Dispersion (herein CD), introduced by
Washtell (2009), is defined as the ratio of the
mean observed distance to the expected distance,
where the expected distance is derived from
the frequency of the more frequent word type.
Distance refers to the number of tokens separat-
ing an occurrence of one word and the nearest
occurrence of another word. Pairs spanning an
intervening occurrence of either word type or a
document boundary are not considered. Note that
here we specify only the generalised mean M , as
we wish to keep the specific choice of mean as a
parameter to be explored,

CD =
1/ max(p(x), p(y))

M(distxy1 . . . distxyn)

that of direction in the text. While the two may correlate, one
can find ample counter-examples: jerky triggers beef more
strongly than beef triggers jerky.

3Note that Wettler & Rapp (1993) introduced a more gen-
eral asymmetric measure for predicting human associations,
by employing an exponent parameter to p(y). Our formuli-
sation is equivalent to their measure with an exponent of 0.5,
whereas they found an exponent of 0.66 to be most effective
in their empirical study. Exponents of 0 and 1 result in CP
and PMI respectively.

where distxyi is ith observed distance between
some occurrence of word type x and its nearest
preceding or following occurrence of word type
y, and n is the total number of such distances ob-
served (being at most equal to the frequency of the
rarer word).

In cases where many occurrences of the less
frequent word were not able to be paired, raw
CD gives midleading results. This is because un-
pairable words themselves provide useful nega-
tive evidence which CD ignores. A more ap-
propriate measure can be formed in which the
mean distance is calculated using the frequency of
the less frequent word, regardless of whether this
many distances were actually observed. This gives
us Neutrally-Weighted Co-Dispersion (NWCD).
Note that for convenience, we keep the standard
definition of the mean and introduce a correction
factor instead.

NWCD =
n

min(p(x), p(y))

1/ max(p(x), p(y))

M(distxy1 . . . distxyn)

An asymmetric association measure can be
formed in a similar manner. Instead of calculat-
ing the mean using the frequency of the less fre-
quent word as described above, we explicitly use
the frequency of the cue word (which in some
cases may actually exceed the number of dis-
tances observed). This gives us Cue-Weighted Co-
Dispersion (CWCD).

CWCD =
n

p(x)

1/ max(p(x), p(y))

M(distxy1 . . . distxyn)
(1)

In addition to these measures, we also ex-
plore significance-corrected forms NWCDsig and
CWCDsig, by introducing the same sample size
term employed by PMIsig, CPsig and SCIsig.
Again, these can readily be inferred from the ex-
isting formulae in the above two sections.

3.5 Co-occurrence Parameters

For frequency-based co-occurrence statistics, the
principle parameter is the window size. We will
use five window sizes separated by a constant scal-
ing factor, chosen so as to span those most com-
monly encountered in the literature, with some ex-
tension towards the upper end. We use w to rep-
resent this parameter, with w = 2 implying a win-
dow size of +/-2. The parameter values explored
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are w = 2, w = 10, w = 50, w = 250 and
w = 1250. We examine such large window sizes
so as to give a fairer comparison with the distance
approach which is not bounded by a window, and
in acknowledgement of the fact that the entire doc-
ument as context has been used with some success
in other application areas (most notably informa-
tion retrieval).

For distance-based statistics, the principle pa-
rameter is the function via which the various ob-
served distances between tokens are reduced to a
single mean value. In this investigation we will ex-
plore five means. These are the power means with
exponents (which herein we refer to as m) rang-
ing from -2 to +2. These give us the quadratic
mean or RMS (m = 2), the arithmetic mean
(m = 1), the geometric mean (m = 0), the har-
monic mean (m = −1), and the inverse quadratic
mean (m = −2).

4 Task I: Correlations on word pairs

One of the ESSLLI Workshop shared tasks (Ba-
roni et al., 2008) required the evaluation of cor-
relation between a small, manually selected sub-
set of human cue-response scores from the EAT
dataset and automatic scores for the same word
pairs. Here, tather than focusing on word pairs
which meet certain grammatical and frequency
criteria we test on all pairs. For the EAT and
Florida datasets, this amounts to many tens of
thousands of cue-response pairs. Although this
makes the task of correlation harder, it means we
can attribute a great deal of statistical significance
to the results and make our observations as general
as possible.

4.1 Evaluation Measures, Upper Bounds and
Baselines

For evaluating agreement between corpus-derived
associations and human associations, we use
Spearman’s Rank correlation. This is appropri-
ate because we are primarily interested in the rel-
ative ranking of word pair associations (in order
to predict particularly strong responses, for exam-
ple). Although some studies have used Pearson’s
correlation, the various association measures ex-
plored here are not linear within each another and
it would be inappropriate to evaluate them under
the assumption of a linear relationship with the hu-
man norms.

Two of the human datasets, Kent and

Minnesota, though collected independently, are
based on the same set of 100 cue words established
by Kent (1910). Therefore by performing a rank
correlation of these two datasets with one another,
(each of which was produced by pooling the re-
sponses of some 1000 people) we can get a useful
upper-bound for correlations: if a computer-based
system were to exceed this upper-bound in corre-
lations with either dataset, then we would need to
suspect it of over-fitting.

As a baseline, we use the corpus frequency of
the response word. The simple assumption is that
the more frequent a word is, the more likely it is
to appear as a human response independent of the
cue given. This is also the simplest formulation
which does not assign equal scores to the various
possible responses, and which is therefore capable
of producing a rank-list of predictions.

4.2 Task I Results
Figure 1 shows the Spearman’s rank correlation
co-efficients across all paramaterisations of all as-
sociation measures (frequency-based on the left,
and distance-based on the right), with each human
dataset, for the 10 million word corpus. Embold-
ened are the best performing windowed and win-
dowless configurations for each dataset. The dif-
ference of these figures over the baseline is highly
significant (p < 0.0001 in most cases). The panels
to the right show summary statistics for these fig-
ures, and for the 1 million word corpus (for which
full figures are not included owing to space limita-
tions). These statistics include the performance of
the baseline, where relevant the estimated upper-
bound (see Section 4.1), and the difference in per-
formance of the distance-based method over the
window-based. The accuracy and error figures are
based on the co-efficients of determination (r2)
and are expressed both as a relative improvement
in accuracy (how much closer (r2) is to 1 under the
distance-based approach) and reduction in error
(how much further r2 is from zero). Also the sig-
nificance of the difference in the r values is given.

4.3 Discussion
The two-way Spearman’s rank correlations be-
tween the Kent and Minesota datasets sug-
gested an upper bound of r = 0.4. In theory,
a large proportion of this agreement is accounted
for by paradigmatic associations which we are
not likely to fully reproduce with these first-order
measures. By this standard, the general levels of
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Figure 1: Correlations for window-based and windowless measures on a 10 million word corpus

correlation seen here (for these datasets r = 0.235
and r = 0.239 respectively) seem very reasonable.

What is immediately clear from Figure 1 is that,
for the range of parameters tested here, we see
a relatively small but statistically significant im-
provement across four of the five datasets when
adopting the distance-based approach.

The correlations are unsurprisingly lower across
the board for the much smaller 1 million word cor-
pus. Here, the best distance-based measure statis-
tically significantly outperforms the best window-
based one (with a significance level of p <
0.0001) on one out of four datasets, while the dif-
ferences are not great enough to be considered sta-
tistically significant on the other three datasets.
There is therefore some evidence that the bene-
fits observed with the larger corpus hold in the
presence of limited data, which is in support of
the general theory that distance-based methods
capture more information from the corpus at the
co-occurrence level (Washtell, 2009). It remains
clear, however, that no method is presently a sub-
stitute for using a larger corpus.

In terms of optimum configurations, we find
that for the frequency-based approach with the
larger corpus, a window size of around +/-10 to
+/-50 words more or less consistently produces the
best results, irrespective of association the mea-
sure. Interestingly on the small corpus the ten-
dency appears to be towards a somewhat larger

window size than with the larger corpus. This
may be related to the larger windows’ increased
resilience to data-sparseness. Somewhat surpris-
ingly, we also see that our assymmetric associa-
tion measures SCI and SCIsig perform the best
overall amongst the windowed measures, largely
irrespective of the window or corpus, size.

In the large corpus, the best distance-based
measure is the asymmetric CWCD, with the sig-
nificance corrected measure CWCDsig showing
greater strength in the small corpus: perhaps,
again, for its improved reliability in the presence
of very low-frequency data. The optimum mean
for the distance-based parameterisations is some-
where around m = −1 (the harmonic) to m = 0
(the geometric). We find this unsurprising as the
typical distribution of inter-word distances in a
corpus is heavily skewed towards the smaller dis-
tances - indeed even a random corpus exhibits this
characteristic with the distances following a geo-
metric distribution.

5 Task II: Agreement with strongest
human associations

The correlation evalation presented considers all
word pairs present in the human datasets. How-
ever, human association norms tend to contain
a very long tail of hapax legomena - responses
which were given by only one individual. Such
responses are extremely difficult for corpus-based
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association measures to predict, and given that
there is so little consensus amongst human respon-
dents over these items, it is probably not partic-
ularly useful to do so. Rather, it might be most
useful to predict common or majority human re-
sponses.

5.1 Evaluation measure and Upper Bound
For the strongest human response to each cue
in the human datasets, its rank was calculated
amongst all 33, 000 possible responses to that
cue, according to each association measure and
parameterisation. Where there were tied scores
for various responses, a median rank was assigned.
As a rough upper bound, we would be impressed
by a computer system which was able to predict
the most popular human response as often as a
randomly selected individual in the human exper-
iments happened to chose the most popular re-
sponse.

5.2 Task II Results
Figure 2 illustrates the range of computational as-
sociation scores attributed to only the strongest
human responses. The position of the strongest
human response to each cue word, within the
computationally-ranked lists of all possible re-
sponses, is plotted on the y-axis. For each asso-
ciation measure the points are ordered from best
to worst along the x-axis. In the ideal case there-
fore, the most popular human response for ev-
ery cue word would appear at rank 1 amongst the
computer-generated responses, resulting in a hori-
zonal line at y=1. Generally speaking therefore,
the smaller the area above a line the better the per-
formance of a measure.

Three summary statistics can be derived from
Figure 2:

1) The number of most popular human re-
sponses that are correctly predicted by a measure
is indicated by the x-position at which its line de-
parts from y=1. This can be seen to be around 11%
for CWCDsig and is zero for the two best PMI
parameterizations, with other illustrated measures
performing intermediately.

2) The width of the flat horizontal tails at the op-
posite corner of the figure indicate the proportion
of the cue words for which a measure was unable
to differentiate the strongest human response from
the large contingent of zero association scores re-
sulting from unobservable co-occurrences. This
tail is non-existent for CWCDsig, but afflicts some

25% and 62% of cue words under the two best
PMI parameterizations, again with other illus-
trated measures performing intermediately.

3) The median rank of the most popular human
response for each measure can be read of on the
y-axis at the horizontal mid-point (indicated by a
feint vertical line).

Figure 2: Agreement of computational measures
with strongest human responses

Figure 3: Relative agreement of computational
measures with strongest human responses

The results shown are for the Kent dataset, and
are highly typical. Included in the figure are
the three frequency-based configurations with the
highest median rank: SCIsig at window sizes w =
10 andw = 50, and standard LL atw = 10. Three
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other frequency-based configurations are included
for contrast. Also included is the single window-
less configuration with the highest median rank -
in this case CWCDsig using the harmonic mean.
Several other windowless configurations (notably
CWCD and the nearby means) and had very simi-
lar profiles.

Figure 3 shows the magnitude of the difference
in the ranking of each of the same 100 strong hu-
man cue/response pairs, between the best window-
less versus best windowed method. Points above
the axis represent those cue/response pairs which
the windowless method ranked more highly, and
vice-versa. The points have been ordered on the
x-axis according the the cue word frequency.

5.3 Discussion

Noteworthy, studying Figure 2, is the great sen-
sitivity of the frequency-based measures to the
window size parameter. There exists a cut-off
point, linked to window size, beyond which the
frequency-based measures are unable to make
any differentiation between the desired human re-
sponse and a large portion of the 33, 000 candidate
responses. This is almost certainly due to a lack
of evidence in the presence of very low frequency
words. Log-Likelihood performs somewhat better
in this respect, as it takes negative information into
account.

Although the distance-based approach follows
the same general trend as the other measures, it
is nonetheless able to generate a distinct non-zero
association score for every strong human response
and overall it aptly ranks them more highly. A
larger number these responses are actually ranked
first (i.e. successfully predicted) by the distance-
based approach. In fact this number is compara-
ble to, and sometimes exceeds, the upper-bound
of 10% implied by taking the average proportion
of human respondents who give the most popular
response to a given cue.

Whilst Figure 2 showed that overall the win-
dowless method fairs better, on a per-cue basis
(Figure 3) things are a little more interesting: For
a little over a third of cue-words the windowed
method actually appears to perform somewhat bet-
ter. For the majority however, the windowless ap-
proach performs considerably better (note that the
y-axis scale is logarithmic). It can also be seen
that the difference between the methods is most
pronounced for low frequency cue words, with re-

sponses to some cues exhibiting a relative ranking
of around one-hundred times lower for the win-
dowed method. This further supports the theory
that the windowless methods are better able to ex-
ploit sparse data.

6 Conclusions and Future work

This paper presented the first empirical compar-
ison of window-based and the relatively recently
introduced windowless association measures, us-
ing their ability to reproduce human association
scores as a testbed. We show that the best win-
dowless measures are always at least as good as
the best window-based measures, both when it
comes to overall correlation with human associ-
ation scores and predicting the strongest human
response. In addition, for several human associ-
ation sets, they perform significantly better. Al-
though not all parameter settings and corpus sizes
could be explored, we conclude that it is worth-
while investigating windowless association mea-
sures further. As a side-benefit, we have also in-
troduced new variants of existing frequency-based
association measures and shown them to perform
as well as or better than their existing counterparts.
Although these measures were semi-principled in
their construction, a deeper understanding of why
they work so well is needed. This may in turn lead
to the construction of superior windowless mea-
sures.

In our own future work, we are especially in-
terested in using higher-order windowless associa-
tion measures for retrieving paradigmatic relations
as well as exploring their use in various NLP ap-
plications.
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Abstract

In previous research in automatic verb
classification, syntactic features have
proved the most useful features, although
manual classifications rely heavily on se-
mantic features. We show, in contrast
with previous work, that considerable ad-
ditional improvement can be obtained by
using semantic features in automatic clas-
sification: verb selectional preferences ac-
quired from corpus data using a fully unsu-
pervised method. We report these promis-
ing results using a new framework for
verb clustering which incorporates a re-
cent subcategorization acquisition system,
rich syntactic-semantic feature sets, and
a variation of spectral clustering which
performs particularly well in high dimen-
sional feature space.

1 Introduction
Verb classifications have attracted a great deal
of interest in natural language processing (NLP).
They have proved useful for various important
NLP tasks and applications, including e.g. parsing,
word sense disambiguation, semantic role label-
ing, information extraction, question-answering,
and machine translation (Swier and Stevenson,
2004; Dang, 2004; Shi and Mihalcea, 2005; Za-
pirain et al., 2008).

Verb classes are useful because they offer a
powerful tool for generalization and abstraction
which can be beneficial when faced e.g. with the
problem of data sparsity. Particularly useful can
be classes which capture generalizations over a
range of (cross-)linguistic properties, such as the
ones proposed by Levin (1993). Being defined in
terms of similar meaning and (morpho-)syntactic
behaviour of words, Levin style classes gener-
ally incorporate a wider range of properties than

e.g. classes defined solely on semantic grounds
(Miller, 1995).

In recent years, a variety of approaches have
been proposed for automatic induction of verb
classes from corpus data (Schulte im Walde, 2006;
Joanis et al., 2008; Sun et al., 2008; Li and Brew,
2008; Korhonen et al., 2008; Ó Séaghdha and
Copestake, 2008; Vlachos et al., 2009). This work
opens up the opportunity of learning and tuning
classifications tailored to the application and do-
main in question. Although manual classification
may always yields higher accuracy, automatic verb
classification is cost-effective and gathers statisti-
cal information as a side-effect of the acquisition
process which is difficult for humans to gather but
can be highly useful for NLP applications.

To date, both supervised and unsupervised ma-
chine learning (ML) methods have been proposed
for verb classification and used to classify a vari-
ety of features extracted from raw, tagged and/or
parsed corpus data. The best performing features
on cross-domain verb classification have been syn-
tactic in nature (e.g. syntactic slots, subcategoriza-
tion frames (SCFs)). Disappointingly, semantic
features have not yielded significant additional im-
provement, although they play a key role in man-
ual and theoretical work on verb classification and
could thus be expected to offer a considerable con-
tribution to classification performance.

Since the accuracy of automatic verb classifi-
cation shows room for improvement, we further
investigate the potential of semantic features –
verb selectional preferences (SPs) – for the task.
We introduce a novel approach to verb cluster-
ing which involves the use of (i) a recent subcate-
gorization frame (SCF) acquisition system (Preiss
et al., 2007) which produces rich lexical, SCF and
syntactic data, (ii) novel syntactic-semantic fea-
ture sets extracted from this data which incorpo-
rate a variety of linguistic information, including
SPs, and (iii) a new variation of spectral cluster-
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ing based on the MNCut algorithm (Meila and Shi,
2001) which is well-suited for dealing with the re-
sulting, high dimensional feature space.

Using this approach, we show on two well-
established test sets that automatically acquired
SPs can be highly useful for verb clustering. They
yield high performance when used in combination
with syntactic features. We obtain our promis-
ing results using a fully unsupervised approach
to SP acquisition which differs from previous
approaches in that it does not exploit WordNet
(Miller, 1995) or other lexical resources. It is
based on clustering argument head data in the
grammatical relations associated with verbs.

We describe our features in section 2 and the
clustering methods in section 3. Experimental
evaluation and results are reported in sections 4
and 5, respectively. Section 6 provides discus-
sion and describes related work, and section 7 con-
cludes.

2 Features

Our target classification is the taxonomy of Levin
(1993) where verbs taking similar diathesis al-
ternations are assumed to share meaning compo-
nents and are organized into semantically coherent
classes. The main feature of this classification is a
diathesis alternation which manifests at the level
of syntax in alternating sets of SCF (e.g. in the
causative/inchoative alternation an NP frame alter-
nates with an intransitive frame: Tony broke the
window↔ The window broke).

Since automatic detection of diathesis alterna-
tions is very challenging (McCarthy, 2001), most
work on automatic classification has exploited the
fact that similar alternations tend to result in sim-
ilar SCFs. The research reported so far1 has used
mainly syntactic features for classification, rang-
ing from shallow syntactic slots (e.g. NPs preced-
ing or following the verb) to SCFs. Some re-
searchers have discovered that supplementing ba-
sic syntactic features with information about ad-
juncts, co-occurrences, tense, and/or voice of the
verb have resulted in better performance.

However, additional information about seman-
tic SPs of verbs has not yielded considerable im-
provement on verb classification although SPs can
be strong indicators of diathesis alternations (Mc-
Carthy, 2001) and although fairly precise semantic
descriptions, including information about verb se-

1See section 6 for discussion on previous work.

lectional restrictions, can be assigned to the major-
ity of Levin classes, as demonstrated by VerbNet
(Kipper-Schuler, 2005).

SP acquisition from undisambiguated corpus
data is arguably challenging (Brockmann and La-
pata, 2003; Erk, 2007; Bergsma et al., 2008). It is
especially challenging in the context of verb clas-
sification where SP models are needed for specific
syntactic slots for which the data may be sparse,
and the resulting feature vectors integrating both
syntactic and semantic features may be high di-
mensional. However, we wanted to investigate
whether better results could be obtained if the fea-
tures were optimised for richness, the feature ex-
traction for accuracy, and a clustering method ca-
pable of dealing with the resulting high dimen-
sional feature space was employed.

2.1 Feature extraction

We adopted a recent SCF acquisition system which
has proved more accurate than previous compa-
rable systems2 but which has not been employed
for verb clustering before: the system of Preiss
et al. (2007). This system tags, lemmatizes and
parses corpus data using the current version of the
RASP (Robust Accurate Statistical Parsing) toolkit
(Briscoe et al., 2006), and on the basis of resulting
grammatical relations (GRs) assigns each occur-
rence of a verb to one of 168 verbal SCFs classes3.

The system provides a filter which can be used
to remove adjuncts from the resulting lexicon.
We do not employ this filter since adjuncts have
proved informative for verb classification (Sun
et al., 2008; Joanis et al., 2008). However, we
do frequency-based thresholding to minimise the
noise (e.g. erroneous scfs) and sparse data in verb
classification and to ensure that only features sup-
ported by several verbs are used in classification:
we only consider SCFs and GRs which have fre-
quency larger than 40 with 5 or more verbs4.

The system produces a rich lexicon which in-
cludes raw and processed input sentences and pro-
vides a variety of material for verb clustering, in-
cluding e.g. (statistical) information related to the
part-of-speech (POS) tags, GRs, SCFs, argument
heads, and adjuncts of verbs. Using this mate-
rial, we constructed a wide range of feature sets

2See Preiss et al. (2007) for the details of evaluation.
3We used an implementation of the SCF classifier pro-

vided by Paula Buttery.
4These and other threshold values mentioned in this paper

were determined empirically on corpus data.
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for experimentation, both shallow and deep syn-
tactic and semantic features. As described below,
some of the feature types have been employed in
previous works and some are novel.

2.2 Feature sets

The first feature set F1 includes information
about the lexical context (co-occurrences) of verbs
which has proved useful for supervised verb clas-
sification (Li and Brew, 2008):

F1: Co-occurrence (CO): We adopt the best
method of Li and Brew (2008) where collo-
cations are extracted from the four words im-
mediately preceding and following a lemma-
tized verb. Stop words are removed prior to
extraction, and the 600 most frequent result-
ing COs are kept.

F2-F3 provide information about lexical prefer-
ences of verbs in argument head positions of spe-
cific GRs associated with the verb:

F2: Prepositional preference (PP): the type and
frequency of prepositions in the indirect ob-
ject relation.

F3: Lexical preference (LP): the type and fre-
quency of nouns and prepositions in the sub-
ject, object, and indirect object relation.

All the other feature sets include information
about SCFs which have been widely employed in
verb classification, e.g. (Schulte im Walde, 2006;
Sun et al., 2008; Li and Brew, 2008; Korhonen
et al., 2008). F4-F7 include basic SCF information
and/or refine it with additional information which
has proved useful in previous works:

F4: SCFs and relative frequencies with verbs.
SCFs abstract over particles and prepositions.

F5: F4 with COs (F1). The SCF and CO feature
vectors are concatenated.

F6: F4 with the tense of the verb. The frequency
of verbal POS tags is calculated specific to
each SCF.

F7: F4 with PPs (F2). This feature parameterizes
SCFs for prepositions.

F8: Basic SCF feature corresponding to F4 but ex-
tracted from the VALEX lexicon (Korhonen
et al., 2006)5.

The following 9 feature sets are novel. They
build on F7, refining it further. F9-F11 refine F7
with information about LPs:

F9: F7 with F3 (subject only)

F10: F7 with F3 (object only)

F11: F7 with F3 (subject, object, indirect object)

F12-17 refine F7 with SPs. We adopt a fully un-
supervised approach to SP acquisition. We acquire
the SPs by

1. taking the GR relations (subject, object, indi-
rect object) associated with verbs,

2. extracting all the argument heads in these re-
lations which occur with frequency> 20 with
more than 3 verbs, and

3. clustering the resulting N most frequent ar-
gument heads into M classes using the spec-
tral clustering method described in the fol-
lowing section.

We tried the N settings {200, 500} and the M
settings {10, 20, 30, 80}. The best settings N =
200,M = 20 and N = 500,M = 30 are reported
in this paper. We enforce the features to be shared
by all the potential members of a verb class. The
expected class size is approximatelyN/K, and we
allow for 10% outliers (the features occurring less
than (N/K)× 0.9 verbs are thus removed).

The resulting SPs are combined with SCFs in a
similar fashion as LPs are combined with SCFs in
F9-F11:

F12-F14: as F9-F11 but SPs (20 clusters from 200
argument heads) are used instead of LPs

F15-F17: as F9-F11 but SPs (30 clusters from 500
argument heads) are used instead of LPs

5This feature was included to enable comparing the con-
tribution of the recent SCF system to that of an older, com-
parable system which was used for constructing the VALEX
lexicon.
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3 Clustering methods
We use two clustering methods: (i) pairwise clus-
tering (PC) which obtained the best performance
in comparison with several other methods in re-
cent work on biomedical verb clustering (Korho-
nen et al., 2008), and (ii) a method which is
new to the task (and to the best of our knowl-
edge, to NLP): a variation of spectral clustering
which exploits the MNCut algorithm (Meila and
Shi, 2001) (SPEC). Spectral clustering has been
shown to be effective for high dimensional and
non-convex data in NLP (Chen et al., 2006) and
it has been applied to German verb clustering by
Brew and Schulte im Walde (2002). However, pre-
vious work has used Ng et al. (2002)’s algorithm,
while we adopt the MNCut algorithm. The lat-
ter has shown a wider applicability (von Luxburg,
2007; Verma and Meila, 2003) and it can be justi-
fied from the random walk view, which has a clear
probabilistic interpretation.

Clustering groups a given set of items (verbs in
our experiment) V = {vn}Nn=1 into a disjoint par-
tition of K classes I = {Ik}Kk=1. Both our algo-
rithms take a similarity matrix as input. We con-
struct this from the skew divergence (Lee, 2001).
The skew divergence between two feature vectors
v and v′ is dskew(v, v′) = D(v′||a ·v+(1−a) ·v′)
where D is the KL-divergence. v is smoothed
with v′. The level of smoothing is controlled by
a whose value is set to a value close to 1 (e.g.
0.9999). We symmetrize the skew divergence
as follows: d(v, v′)sskew = 1

2(dskew(v, v′) +
dskew(v′, v)).

SPEC is typically used with the Radial Basis
Function (RBF) kernel. We adopt a new kernel
similar to the symmetrized KL divergence kernel
(Moreno et al., 2004) which avoids the need for
scale parameter estimation.

w(v, v′) = exp(−dsskew(v, v′))
The similarity matrix W is constructed where
Wij = w(vi, vj).

Pairwise clustering

PC (Puzicha et al., 2000) is a method where a cost
criterion guides the search for a suitable partition.
This criterion is realized through a cost function of
the similarity matrix W and partition I:

H = −∑nj · Avgsimj ,

Avgsimj =
P
{a,b∈Aj} w(a,b)

nj ·(nj−1)

where nj is the size of the jth cluster and Avgsimj

is the average similarity between cluster members.

Spectral clustering

In SPEC, the similarities Wij are viewed as the
weight on the edges ij of a graph G over V . The
similarity matrix W is thus the adjacency matrix
for G. The degree of a vertex i is di =

∑N
j=1wij .

A cut between two partitions A and A′ is defined
to be Cut(A,A′) =

∑
m∈A,n∈A′Wmn.

In MNCut algorithm, the similarity matrixW is
transformed to a stochastic matrix P .

P = D−1W (1)

The degree matrix D is a diagonal matrix where
Dii = di.

It was shown by Meila and Shi (2001) that if P
has the K leading eigenvectors that are piecewise
constant6 with respect to a partition I∗ and their
eigenvalues are not zero, then I∗ minimizes the
multiway normalized cut(MNCut):

MNCut(I) = K −∑K
k=1

Cut(Ik,Ik)
Cut(Ik,I)

Pmn can be interpreted as the transition probabil-
ity between vertices m,n. The criterion can thus
be expressed as MNCut(I) =

∑K
k=1(1−P (Ik →

Ik|Ik)) (Meila, 2001), which is the sum of transi-
tion probabilities across different clusters. The cri-
terion finds the partition where the random walks
are most likely to happen within the same cluster.

In practice, the K leading eigenvectors of P is
not piecewise constant. But we can extract the
partition by finding the approximately equal ele-
ments in the eigenvectors using a clustering algo-
rithm like K-means.

The numerator of MNCut is similar to the cost
function of PC. The main differences between the
two algorithms are: 1) MNCut takes into account
of the cross cluster similarity, while PC does not.
2) PC optimizes the cost function using determin-
istic annealing, whereas SPEC uses eigensystem
decomposition.

The spectral clustering algorithm is based on the
Multicut algorithm (Meila and Shi, 2001).

6The eigenvector v is piecewise constant with respect to I
if v(i) = v(j)∀i, j ∈ Ik and k ∈ 1, 2...K
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Input: Dataset S, Number of clusters K
1. Compute similarity matrixW and Degree ma-
trix D
2. Construct stochastic matrix P using equation
1
3. Compute the eigenvalues and eigenvectors
{λn, xn}Nn=1 of P , where λn ≥ λn+1, form a
matrix X = [x2, . . . , xk] by stacking the eigen-
vectors in columns.
4. Form a matrix Y from X by normalizing the
row sums to have norm 1: Yij = Xij/(

∑
j X

2
ij)

1
2

5. Consider the row of Y to be the transformed
feature vectors for each verb and cluster them
into clusters C1 . . . Ck usingK-means clustering
algorithm.
Output: Clusters C1 . . . Ck

4 Experimental evaluation
4.1 Test sets

We employed two test sets which have been used
to evaluate previous work on English verb classi-
fication:

T1 The test set of Joanis et al. (2008) provides
a classification of 835 verbs into 15 (some
coarse, some fine-grained) Levin classes. 11
tests are provided for 2-14 way classifica-
tions. We employ the 14 way classifica-
tion because this corresponds the closest to
our target (Levin’s fine-grained) classifica-
tion7. We select 586 verbs according to Joa-
nis et al.’s selection criteria, resulting in 10-
120 verbs per class. We restrict the class
imbalance to 1:1.5.8. This yields 205 verbs
(10-15 verbs per class) which is similar to
the sub-set of T1 employed by Stevenson and
Joanis (2003).

T2 The test set of Sun et al. (2008) classifies 204
verbs to 17 fine-grained Levin classes, so that
each class has 12 member verbs.

Table 1 shows the classes in T1 and T2.

4.2 Data processing

For each verb in T1 and T2, we extracted all
the occurrences (up to 10,000) from the raw cor-
pus data gathered originally for constructing the

7However, the correspondence is not perfect with half
of the classes including two or more Levin’s fine-grained
classes.

8Otherwise, in the case of a large class imbalance the eval-
uation measure would be dominated by the classes with large
population.

T1
Object Drop 26.{1,3,7}
Recipient 13.{1,3}
Admire 31.2
Amuse 31.1
Run 51.3.2
Sound 43.2
Light & 43.{1,4}Substance
Cheat 10.6
Steal & 10.{5,1}Remove
Wipe 10.4.{1,2}
Spray / Load 9.7
Fill 9.8
Putting 9.1-6
Change of State 45.1-4

T2
Remove 10.1
Send 11.1
Get 13.5.1
Hit 18.1
Amalgamate 22.2
Characterize 29.2
Peer 30.3
Amuse 31.1
Correspond 36.1
Manner 37.3of speaking
Say 37.7
Nonverbal 40.2expression
Light 43.1
Other change 45.4of state
Mode with 47.3Motion
Run 51.3.2
Put 9.1

Table 1: Levin classes in T1 and T2

T1 T2
total avg total avg

CO F1 1328 764 743 382
LP (p) F2 61 37 55 25
LP (all) F3 2521 526 1481 295
SCF F4 88 46 86 38
SCF+CO F5 1466 833 856 422
SCF+POS F6 319 114 299 87
SCF+P F7 282 96 273 76
SCF (V) F8 - - 92 45
SCF+LP (s) F9 1747 324 1474 225
SCF+LP (o) F10 2817 424 2319 279
SCF+LP (all) F11 4250 649 3515 426
SCF+SP20 (s) F12 821 235 690 145
SCF+SP20 (o) F13 792 218 706 135
SCF+SP20 (all) F14 1333 357 1200 231
SCF+SP30 (s) F15 977 274 903 202
SCF+SP30 (o) F16 1026 273 1012 205
SCF+SP30 (all) F17 1720 451 1640 330

Table 2: (i) The total number of features and (ii)
the average per verb for all the feature sets

VALEX lexicon (Korhonen et al., 2006). The data
was gathered from five corpora, including e.g. the
British National Corpus (Leech, 1992) and the
North American News Text Corpus (Graff, 1995).
The average frequency of verbs in T1 was 1448
and T2 2166, showing that T1 is a more sparse
data set.

The data was first processed using the feature
extraction module. Table 2 shows (i) the total
number of features in each feature set and (ii) the
average per verb in the resulting lexicons for T1
and T2.

We normalized the feature vectors by the sum
of the feature values before applying the clustering
techniques. Since both clustering algorithms have
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an element of randomness, we run them multiple
times. The step 5 of SPEC (K-means) was run for
50 times. The result that minimizes the distortion
(the distances to cluster centroid) is reported. PC

was run 20 times, and the results are averaged.

4.3 Evaluation measures

To facilitate meaningful comparisons, we em-
ploy the same measures for evaluation as previ-
ously employed e.g. by Korhonen et al. (2008); Ó
Séaghdha and Copestake (2008).

The first measure is modified purity (mPUR) –
a global measure which evaluates the mean preci-
sion of clusters. Each cluster is associated with its
prevalent class. The number of verbs in a cluster
K that take this class is denoted by nprevalent(K).
Verbs that do not take it are considered as errors.
Clusters where nprevalent(K) = 1 are disregarded
as not to introduce a bias towards singletons:

mPUR =

∑
nprevalent(ki)>2

nprevalent(ki)

number of verbs

The second measure is weighted class accuracy
(ACC): the proportion of members of dominant
clusters DOM-CLUSTi within all classes ci.

ACC =
∑C

i=1 verbs in DOM-CLUSTi

number of verbs

mPUR and ACC can be seen as a measure of pre-
cision(P) and recall(R) respectively. We calculate
F measure as the harmonic mean of P and R:

F =
2 · mPUR · ACC

mPUR + ACC

The random baseline(BL) is calculated as follows:

BL = 1/number of classes

5 Results

5.1 Quantitative evaluation

Table 3 includes the F-measure results for all the
feature sets when the two methods (PC and SPEC)
are used to cluster verbs in the test sets T1 and T2,
respectively. A number of tendencies can be ob-
served in the results. Firstly, the results for T2 are
clearly better than those for T1. Including a higher
number of verbs lower in frequency from classes
of variable granularity, T1 is probably a more chal-
lenging test set than T2. T2 is controlled for the
number and frequency of verbs to facilitate cross-
class comparisons. While this may contribute to
better results, T2 is a more accurate test set for us
in the sense that it offers a better correspondence
with our target (fine-grained Levin) classes.

T1 T2
PC SPEC PC SPEC

BL 7.14 7.14 5.88 5.88
CO F1 15.62 33.85 17.86 40.94
LP (p) F2 40.40 38.97 50.98 49.02
LP (all) F3 42.94 47.50 41.08 74.55
SCF F4 34.22 36.16 52.33 57.78
SCF+CO F5 26.43 28.70 19.52 29.10
SCF+POS F6 36.14 34.75 44.44 46.70
SCF+P F7 43.57 43.85 63.40 63.28
SCF (V) F8 - - 34.08 38.30
SCF+LP (s) F9 47.72 56.09 65.94 71.65
SCF+LP (o) F10 43.09 48.43 57.11 73.97
SCF+LP (all) F11 45.87 54.63 56.30 72.97
SCF+SP20 (s) F12 46.67 57.75 39.52 71.67
SCF+SP20 (o) F13 44.95 51.70 40.76 70.78
SCF+SP20(all) F14 48.19 55.12 39.68 73.09
SCF+SP30 (s) F15 45.89 56.10 64.44 80.35
SCF+SP30 (o) F16 42.01 48.74 52.75 70.52
SCF+SP30(all) F17 46.66 52.68 51.07 68.67

Table 3: Results on testsets T1 and T2

Secondly, the difference between the two clus-
tering methods is clear: the new SPEC outperforms
PC on both test sets and across all the feature sets.
The performance of the two methods is still fairly
similar with the more basic, less sparse feature sets
(F1-F2, F4, F6-7) but when the more sophisticated
feature sets are used (F3, F5, F9-F17) SPEC per-
forms considerably better. This demonstrates that
it is clearly a better suited method for high dimen-
sional feature sets.

Comparing the feature sets, the simple co-
occurrence based F1 performs clearly better than
the random baseline. F2 and F3 which exploit lex-
ical data in the argument head positions of GRs
prove significantly better than F1. F3 yields sur-
prisingly good results on T2: it is the second best
feature set on this test set. Also on T1, F3 per-
forms better than the SCF-based feature sets F4-
F7. This demonstrates the usefulness of lexical
data when obtained from argument positions in
relevant GRs.

Our basic SCF feature set F4 performs consid-
erably better than the comparable feature set F8
obtained from the VALEX lexicon. The difference
is 19.50 in F-measure. As both lexicons were ex-
tracted from the same corpus data, the improve-
ment can be attributed to improved parser and SCF

acquisition performance (Preiss et al., 2007).
F5-F7 refine the basic SCF feature set F4 fur-

ther. F5 which combines a SCF with CO in-
formation proved the best feature set in the su-
pervised verb classification experiment of Li and
Brew (2008). In our experiment, F5 produces sub-
stantially lower result than CO and SCF alone (i.e.
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F1 and F4). However, our corpus is smaller (Li
and Brew used the large Gigaword corpus), our
SCFs are different, and our approach is unsuper-
vised, making meaningful comparisons difficult.

F6 combines F4 with information about verb
tense. This was not helpful: F6 produces worse re-
sults than F4. F7, on the other hand, yields better
results than F4 on both test sets. This demonstrates
what the previous research has shown: SCF per-
form better when parameterized for prepositions.

Looking at our novel feature sets F9-F17, F9-
F11 combine the most accurate SCF feature set
F4 with the LP-based features F2-F3. Although
the feature space gets more sparse, all the feature
sets outperform F2-F3 on T1. On T2, F3 per-
forms exceptionally well, and thus yields a better
result than F9-F11, but F9-F11 nevertheless per-
form clearly better than the best SCF-based feature
set F4 alone. The differences among F9, F10 and
F11 are small on T2, but on T1 F9 yields the best
performance. It could be that F9 works the best
for the more sparse T1 because it suffers the least
from data sparsity (it uses LPs only for the subject
relation).

F12-F17 replace the LPs in F9-F11 by semantic
SPs. When only 20 clusters are used as SP models
and acquired from the smaller sample of (200) ar-
gument heads (F12-F14), SPs do not perform bet-
ter than LPs on T2. A small improvement can be
observed on T1, especially with F12 which uses
only the subject data (yielding the best F measure
on T1: 57.75%). However, when 30 more fine-
grained clusters are acquired from a bigger sample
of (500) argument heads (F15-F17), lower results
can be seen on T1. On T2, on the other hand, F15
yields dramatic improvement and we get the best
performance for this test set: 80.35% F-measure.

The fact that no improvement is observed when
using F16 and F17 on T2 could be explained by
the fact that SPs are stronger for the subject posi-
tion which also suffers less from the sparse data
problem than e.g. i. object position. The fact that
no improvement is observed on T1 is likely to be
due to the fact that verbs have strong SPs only at
the finer-grained level of Levin classification. Re-
call that in T1, as many as half of the classes are
coarser-grained.

5.2 Qualitative evaluation

The best performing feature sets on both T1 and
T2 were thus our new SP-based feature sets. We
conducted qualitative analysis of the best 30 SP

Human mother, wife, parent, girl, child
Role patient, student, user, worker, teacher
Body-part neck, shoulder, back, knee, corner
Authority committee, police, court, council, board
Organization society, firm, union, bank, institution
Money cash, currency, pound, dollar, fund
Amount proportion, value, size, speed, degree
Time minute, moment, night, hour, year
Path street, track, road, stair, route
Building office, shop, hotel, hospital, house
Region site, field, area, land, island
Technology system, model, facility, engine, machine
Task operation, test, study, analysis, duty
Arrangement agreement, policy, term, rule, procedure
Matter aspect, subject, issue, question, case
Problem difficulty, challenge, loss, pressure, fear
Idea argument, concept, idea, theory, belief
Power control, lead, influence, confidence, ability
Form colour, style, pattern, shape, design
Item letter, book, goods, flower, card

Table 4: Cluster analysis: 20 clusters, their SP la-
bels, and prototypical member nouns

clusters in the T2 data created using SPEC to find
out whether these clusters were really semantic in
nature, i.e. captured semantically meaningful pref-
erences. As no gold standard specific to our verb
classification task was available, we did manual
cluster analysis using VerbNet (VN) as aid. In VN,
Levin classes are assigned with semantic descrip-
tions: the arguments of SCFs involved in diathesis
alternations are labeled with thematic roles some
of which are labeled with selectional restrictions.

From the 30 thematic role types in VN, as many
as 20 are associated with the 17 Levin classes in
T2. The most frequent role in T2 is agent, fol-
lowed by theme, location, patient, recipient, and
source. From the 36 possible selectional restric-
tion types, 7 appear in T2; the most frequent ones
being +animate and +organization, followed by
+concrete, +location, and +communication.

As SP clusters capture selectional preferences
rather than restrictions, we examined manu-
ally whether the 30 clusters (i) capture seman-
tically meaningful classes, and whether they (ii)
are plausible given the VN semantic descrip-
tions/restrictions for the classes in T2.

The analysis revealed that all the 30 clusters had
a predominant, semantically motivated SP sup-
ported by the majority of the member nouns. Al-
though many clusters could be further divided into
more specific SPs (and despite the fact that some
nouns were clearly misclassified), we were able to
assign each cluster a descriptive label characteriz-
ing the predominant SP. Table 4 shows 15 sam-
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ple clusters, the SP labels assigned to them, and a
number of example nouns in these clusters.

When comparing each SP cluster against the
VN semantic descriptions/restrictions for T2, we
found that each predominant SP was plausible.
Also, the SPs frequent in our data were also fre-
quent among the 17 classes according to VN. For
example, the many SP clusters labeled as arrange-
ments, issues, ideas and other abstract concepts
were also frequent in T2, e.g. among COMMUNI-
CATION (37), CHARACTERISE (29.2), AMALGA-
MATE (22.2) and other classes.

This analysis showed that the SP models which
performed well in verb clustering were semanti-
cally meaningful for our task. An independent
evaluation using one of the standard datasets avail-
able for SP acquisition research (Brockmann and
Lapata, 2003) is of course needed to determine
how well the acquisition method performs in com-
parison with other existing methods.

Finally, we evaluated the quality of the verb
clusters created using the SP-based features. We
found that some of the errors were similar to those
seen on T2 when using syntactic features: errors
due to polysemy and syntactic idiosyncracy. How-
ever, a new error type clearly due to the SP-based
feature was detected. A small number of classes
got confused because of strong similar SPs in the
subject (agent) position. For example, some PEER

(30.3) verbs (e.g. look, peer) were found in the
same cluster with SAY (37.7) verbs (e.g. shout,
yell) – an error which purely syntactic features do
not produce. Such errors were not numerous and
could be addressed by developing more balanced
SP models across different GRs.

6 Discussion and related work
Although features incorporating semantic infor-
mation about verb SPs make theoretical sense they
have not proved equally promising in previous ex-
periments which have compared them against syn-
tactic features in verb classification. Joanis et al.
(2008) incorporated an ’animacy’ feature (a kind
of a ’SP’) which was determined by classifying
e.g. pronouns and proper names in data to this sin-
gle SP class. A small improvement was obtained
when this feature was used in conjunction with
syntactic features in supervised classification.

Joanis (2002) and Schulte im Walde (2006) ex-
perimented with more conventional SPs with syn-
tactic features in English and German verb clas-
sification, respectively. They employing top level

Method Result

T1

Li et al. 2008 supervised 66.3
Joanis et al. 2008 supervised 58.4

Stevenson et al. 2003 semi-supervised 29
unsupervised 31

SPEC unsupervised 57.55

T2 Sun et al. 2008 supervised 62.50
unsupervised 51.6

Ó Séaghdha et al. 2008 supervised 67.3
SPEC unsupervised 80.35

Table 5: Previous verb classification results

WordNet (Miller, 1995) and Germanet (Kunze and
Lemnitzer, 2002) classes as SP models. Joanis
(2002) obtained no improvement over syntactic
features, whereas Schulte im Walde (2006) ob-
tained insignificant improvement.

Korhonen et al. (2008) combined SPs with SCFs
when clustering biomedical verbs. The SPs were
acquired automatically from syntactic slots of
SCFs (not from GRs as in our experiment) using
PC clustering. A small improvement was obtained
using LPs extracted from the same syntactic slots,
but the SP clusters offered no improvement. Re-
cently, Schulte im Walde et al. (2008) proposed an
interesting SP acquisition method which involves
combining EM training and the MDL principle for
an verb classification incorporating SPs. However,
no comparison against purely syntactic features is
provided.

In our experiment, we obtained a considerable
improvement over syntactic features, despite using
a fully unsupervised approach to both verb clus-
tering and SP acquisition. In addition to the rich,
syntactic-semantic feature sets, our good results
can be attributed to the clustering technique capa-
ble of dealing with them. The potential of spectral
clustering for the task was recognised earlier by
Brew and Schulte im Walde (2002). Although a
different version of the algorithm was employed
and applied to German (rather than to English),
and although no SP features were used, these ear-
lier experiments did demonstrate the ability of the
method to perform well in high dimensional fea-
ture space.

To get an idea of how our performance com-
pares with that of related approaches, we exam-
ined recent works on verb classification (super-
vised and unsupervised) which were evaluated on
same test sets using comparable evaluation mea-
sures. These works are summarized in table 5.
ACC and F-measure are shown for T1 and T2, re-
spectively.
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On T1, the best performing supervised method
reported so far is that of Li and Brew (2008). Li
and Brew used Bayesian Multinomial Regression
for classification. A range of feature sets integrat-
ing COs, SCFs and/or LPs were evaluated. The
combination of COs and SCFs gave the best result,
shown in the table. Joanis et al. (2008) report the
second best supervised result on T1, using Support
Vector Machines for classification and features de-
rived from linguistic analysis: syntactic slots, slot
overlaps, tense, voice, aspect, and animacy of NPs.
Stevenson and Joanis (2003) report a semi- and
unsupervised experiment on T1. A feature set sim-
ilar to that of Joanis et al. (2008) was employed
(features were selected in a semi-supervised fash-
ion) and hierarchical clustering was used.

Our unsupervised method SPEC performs sub-
stantially better than the unsupervised method of
Stevenson et al. and nearly as well as the super-
vised approach of Joanis et al. (2008) (note, how-
ever, that the different experiments involved differ-
ent sub-sets of T1 so are not entirely comparable).

On T2, the best performing supervised method
so far is that of Ó Séaghdha and Copestake (2008)
which employs a distributional kernel method to
classify SCF features parameterized for preposi-
tions in the automatically acquired VALEX lexicon.
Using exactly the same data and feature set, Sun
et al. (2008) obtain a slightly lower result when us-
ing a supervised method (Gaussian) and a notably
lower result when using an unsupervised method
(PC clustering). Our method performs consider-
ably better and also outperforms the supervised
method of Ó Séaghdha and Copestake (2008).

7 Conclusion and Future Work
We introduced a new approach to verb cluster-
ing which involves the use of (i) rich lexical, SCF

and GR data produced by a recent SCF system, (ii)
novel syntactic-semantic feature sets which com-
bine a variety of linguistic information, and (iii) a
new variation of spectral clustering which is par-
ticularly suited for dealing with the resulting, high
dimensional feature space. Using this approach,
we showed on two well-established test sets that
automatically acquired SPs can be highly useful
for verb clustering. This result contrasts with most
previous works but is in line with theoretical work
on verb classification which relies not only on syn-
tactic but also on semantic features (Levin, 1993).

In addition to the ideas mentioned earlier, our
future plans include looking into optimal ways

of acquiring SPs for verb classification. Consid-
erable research has been done on SP acquisition
most of which has involved collecting argument
headwords from data and generalizing to Word-
Net classes. Brockmann and Lapata (2003) have
showed that WordNet-based approaches do not
always outperform simple frequency-based mod-
els, and a number of techniques have been re-
cently proposed which may offer ideas for refin-
ing our current unsupervised approach (Erk, 2007;
Bergsma et al., 2008). The number and type (and
combination) of GRs for which SPs can be reliably
acquired, especially when the data is sparse, re-
quires also further investigation.

In addition, we plan to investigate other po-
tentially useful features for verb classification
(e.g. named entities and preposition classes) and
explore semi-automatic ML technology and active
learning for guiding the classification. Finally, we
plan to conduct a bigger experiment with a larger
number of verbs, and conduct evaluation in the
context of practical application tasks.
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bustness and generalization of role sets: PropBank
vs. VerbNet. In Proc. of ACL, 2008.

647



Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 648–657,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Improving Web Search Relevance with Semantic Features

Yumao Lu Fuchun Peng Gilad Mishne Xing Wei Benoit Dumoulin
Yahoo! Inc.

701 First Avenue
Sunnyvale, CA, 94089

yumaol,fuchun,gilad,xwei,benoitd@yahoo-inc.com

Abstract

Most existing information retrieval (IR)
systems do not take much advantage of
natural language processing (NLP) tech-
niques due to the complexity and limited
observed effectiveness of applying NLP
to IR. In this paper, we demonstrate that
substantial gains can be obtained over a
strong baseline using NLP techniques, if
properly handled. We propose a frame-
work for deriving semantic text matching
features from named entities identified in
Web queries; we then utilize these features
in a supervised machine-learned ranking
approach, applying a set of emerging ma-
chine learning techniques. Our approach
is especially useful for queries that contain
multiple types of concepts. Comparing to
a major commercial Web search engine,
we observe a substantial 4% DCG5 gain
over the affected queries.

1 Introduction

Most existing IR models score documents pri-
marily based on various term statistics. In tra-
ditional models—from classic probabilistic mod-
els (Croft and Harper, 1979; Fuhr, 1992), through
vector space models (Salton et al., 1975; Narita
and Ogawa, 2000), to well studied statistical lan-
guage models (Ponte and Croft, 2000; Lafferty
and Zhai, 2001)—these term statistics have been
captured directly in the ranking formula. More re-
cently, learning to rankapproaches to IR (Fried-
man, 2002) have become prominent; in these
frameworks, that aim at learning a ranking func-
tion from data, term statistics are often modeled
as term matching featuresin a machine learning
process.

Traditional text matching features are mainly
based on frequencies ofn-grams of the user’s

query in a variety of document sections, such as
the document title, body text, anchor text, and so
on. Global information such as frequency of term
or term group in the corpus may also be used, as
well as its combination with local statistics – pro-
ducing relative scores such astf · idf or BM25
scores (Robertson et al., 1995). Matching may
be restricted to certain window sizes to enforce
proximity, or may be more lenient, allowing un-
ordered sequences and nonconsecutive sequences
for a higher recall.

Even before machine learning was applied to
IR, NLP techniques such as Named Entity Recog-
nition (NER), Part-of-Speech (POS) tagging, and
parsing have been applied to both query model-
ing and document indexing (Smeaton and van Ri-
jsbergen, 1988; Narita and Ogawa, 2000; Sparck-
Jones, 1999). For example, statistical concept
language models generalize classicn-gram mod-
els to conceptn-gram model by enforcing query
term proximity within each concept (Srikanth and
Srihari, 2003). However, researchers have of-
ten reported limited gains or even decreased per-
formance when applying NLP to IR (Voorhees,
1999).

Typically, concepts detected through NLP tech-
niques either in the query or in documents are
used as proximity constraints for text match-
ing (Sparck-Jones, 1999), ignoring the actual con-
cept type. The machine learned approach to docu-
ment ranking provides us with an opportunity to
revisit the manner in which NLP information is
used for ranking. Using knowledge gained from
NLP application as features rather than heuris-
tically allows us much greater flexibility in the
amount and variability of information used – e.g.,
incorporating knowledge about the actual entity
types. This has several benefits: first, entity types
appearing in queries are an indicator of the user’s
intent. A query consisting of a businesscategory
and a location (e.g.,hotels Palo Alto) appears to be
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informational, and perhaps is best answered with
a page containing a list of hotels in Palo Alto.
Queries containing a businessnameand a location
(e.g.,Fuki Sushi Palo Alto) are more navigational
in nature – for many users, the intent is finding the
home page of a specific business. Similarly, entity
types appearing in documents are an indicator of
the document type. For example, if “Palo Alto”
appears ten times in document’s body text, it is
more likely to be a local listing page than a home
page. For the queryhotels Palo Alto, a local listing
page may be a good page, while for the queryFuki
Sushi Palo Altoa listing page is not a good page.

In addition, knowledge of the particular entities
in queries allows us to incorporate external knowl-
edge about these entities, such as entity-specific
stopwords (“inc.” as inYahoo Inc.or “services”
as inkaiser medical service), and so on.

Finally, even when using named entities only
for deriving proximity-related features, we can
benefit from applying different levels of proxim-
ity for different entities. For example, for enti-
ties like cities (e.g., “River Side”), the proximity
requirement is fairly strict: we should not allow
extra words between the original terms, and pre-
serve their order. For other entities the proximity
constraint can be relaxed—for example, for per-
son names, due to the middle name convention:
Hillary Clinton vs. Hillary R. Clinton.

In this paper, we propose a systematic approach
to modeling semantic features, incorporating con-
cept types extracted from query analysis. Ver-
tical attributes, such as city-state relationships,
metropolitan definition, oridf scores from a do-
main specific corpus, are extracted for each con-
cept type from vertical database. The vertical at-
tributes, together with the concept attributes, are
used to compose a set of semantic features for ma-
chine learning based IR models. A few machine
learning techniques are discussed to further im-
prove relevance for subclass of difficult queries
such as queries containing multiple types of con-
cepts. Figure 1 shows an overview of our ap-
proach; after discussing related work in Section 2,
we spend Sections 3 to 5 of the paper describing
the components of our system. We then evaluate
the effectiveness of our approach both using gen-
eral queries and with a set of “difficult” queries;
our results show that the techniques are robust, and
particularly effective for this type of queries. We
conclude in Section 7.
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Figure 1: Ranking with Semantic Features

2 Related Work

There is substantial body of work involving us-
age of NLP techniques to improve information re-
trieval (Brants, 2003; Strzalkowski et al., 1996).
Allan and Ragahavan (Allan and Raghavan, 2002)
use Part-of-Speech tagging to reduce ambiguity
of difficult queries by converting short queries
to questions. In other POS-tags work, Aram-
patzis et al. (Arampatzis et al., 1990) observed
an improvement when using nouns only for re-
trieval. Croft et al. (Croft et al., 1991) and Tong
et al. (Buckley et al., 1993; Tong et al., 1996) ex-
plored phrases and structured queries and found
phrases are effective in improving retrieval per-
formance. Voorhees (Voohees, 1993) uses word
sense disambiguation to improve retrieval perfor-
mance. One IR domain that consistently benefits
from usage of various NLP techniques is question
answering, where queries are formed in natural
language format; e.g., (Peng et al., 2005).

In general, however, researchers often observe
limited gains or even degraded performance when
applying NLP to IR (Voorhees, 1999). Having
said this, most past studies use small datasets and
a modest baseline; it is unclear whether a similar
conclusion would be reached when using a state-
of-art system such as a commercial web search
engine as a baseline, and a full-web corpus – as
we do in this paper. This leads to another differ-
ence between this work and existing work involv-
ing named entity recognition for retrieval. Most
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previous research on usage of named entities in
IR combines entity detection in documents and
queries (Prager et al., 2000). Entity detection in
document has a high indexing cost that is often
overlooked, but cannot be ignored in the case of
commercial search engines. For this reason, we
restrict NLP processing to queries only – although
we believe that document-side NLP processing
will provide additional useful information.

3 Query Analysis

We begin by briefly describing our approach to
named entity recognition in web queries, which
serves as the basis for deriving the semantic text
matching features.

Named entity recognition (NER) is the task of
identifying and classifying entities, such as per-
son names or locations, in text. The majority of
state-of-the-art NER methods utilize a statistical
approach, attempting to learn a mapping between
a sequence of observations (words) and a sequence
of tags (entity types). In these methods, the se-
quential nature of the data is often central to the
model, as named entities tend to appear in particu-
lar context in text. For example, for most types of
text, in the two sequencesmet with Xandbuy the
Y, the likelihood ofX being a person name is sub-
stantially higher than the corresponding likelihood
of Y . Indeed, many named entity taggers perform
well when applied to grammatical text with suf-
ficient contexts, such as newswire text (Sang and
Meulder, 2003).

Web queries, however, tend to be short, with
most queries consisting of 1–3 words, and lack
context – posing a particular challenge for iden-
tifying named entities in them. Existing work on
NER in web queries focuses on tailoring a solu-
tion for a particular entity type and its usage in
web search (Wang et al., 2005; Shen et al., 2008);
in contrast, we aim at identifying a large range
of possible entities in web queries, and using a
generic solution for all of them.

In web queries, different entity types may bene-
fit from different detection techniques. For exam-
ple, an entity type with a large variability among
instances as well as existence of external resources
like product name calls for an approach that can
make use of many features, such as a conditional
random field; for entity types that are more struc-
tured like person names, a grammar-based ap-
proach can be more effective (Shen et al., 2008).

To this end, we utilize multiple approaches for en-
tity detection and combine them into a single, co-
herent “interpretation” of the query.

Given a query, we use several entity recogniz-
ers in parallel, one for each of the common en-
tity types found in web queries. The modeling
types may differ between the recognizers: some
are Markovian models, while others are just dic-
tionary lookups; the accuracy of each recognizer
is also different. We then have a machine-learned
disambiguation module that combines output from
different taggers, ranking the tagging sequences.
The details of scoring is out of the scope of this
paper, and we omit it for simplicity.

4 Semantic Text Matching Features

Our proposed semantic features operate at the
semantic type level rather than at the term level:
instead of matching a term (or set of terms) in doc-
uments, we match their semantic type. Given the
querySan Francisco collegesand the annotation
[San Francisco]CityName [colleges]BusinessCategory,
the semantic text matching features would de-
scribe how relevant a document section is for a en-
tity of typeCityName, for BusinessCategory,
and for their combination.

Concretely, we exploit a set of features that
attempts to capture proximity, general relevance,
and vertical relevance for each type of semantic
tag and for each section of the document. We now
review these feature by their broad types.

4.1 Semantic Proximity Features

Proximity features—features that capture the de-
gree to which search terms appear close to each
other in a document—are among the most impor-
tant feature sets in ranking functions. Traditional
proximity features are typically designed for all
query terms (Metzler and Croft, 2005) and may
suffer from wrong segmentations of the query. For
example, for the queryNew York city bus char-
ter, a traditional proximity feature may treat “city
bus” similarly to “York city.” But given detailed
information about the entities in the query in their
types, we can enforce proximity for “New York
city” and “bus charter” more accurately. Different
types of entities usually have different proximity
characteristics in relevant documents. Strongly-
bound entities such as city names typically have
very high proximity in relevant documents, while
entities such as business names may have much
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lower proximity: a search forKaiser medical of-
fice, for example, may be well-served with docu-
ments referring toKaiser Permanente medical of-
fice, and as we mentioned before, person names
matches may also benefit from lenient proximity
enforcement. This is naturally addressed by treat-
ing each entity type differently.

We propose a set of semantic proximity fea-
tures that associate each semantic tag type with
generic proximity measures. We also consider tag-
ging confidence together with term group proxim-
ity; we discuss these two approaches next.

4.1.1 Semantic Minimum Coverage (SMC)

Minimum Coverage (MC) is a popular span based
proximity distance measure, which is defined as
the length of the shortest document segment that
cover the query term at least once in a docu-
ment (Tao and Zhai, 2007). We extend this mea-
sure to Semantic Minimum Coverage (SMC) for
each semantic typet in document sections and
define it as

SMCt,s =
1

|{k|Tk = t}|
∑

i∈{k|Tk=t}
wiMCi,s,

wherewi is a weight for tagged term groupi,
MCi,s is the the minimum coverage of term group
i in document sections, {k|Tk = t} denotes the
set of all concepts having typet, and|{k|Tk = t}|
is the size of the set. The definition of the weight
w is flexible. We list a few candidate weight-
ing schemes in this paper: uniform weights (wu),
weights based onidf scores (widf) and “strength”-
based weight (ws), which we define as follows:

wu = 1;

widf =
c

fq

wherec is a constant andfq is the frequency of the
term group in a large query log;

ws = min
l

MI l

where MIl is the point-wise mutual information of
the l-th consecutive pair within the semantic tag.
We can also combine strength andidf scores such
that the weight reflects both relative importance
and constraints in proximity. In this paper, we use

wsi = wswidf .

In Section 6, we use all four weighting schemes
mentioned above in the semantic feature set.

4.1.2 Semantic Moving Average BM25
(SMABM25)

BM25, a commonly-used bag-of-words relevance
estimation method (Robertson et al., 1995), is de-
fined (when applied to document sections) as

BM25 =
∑

j

idfj
fj,s(c1 + 1)

fi,s + c1(1− c2 + c2
ls
l̄s

)

wherefj,s is the frequency of termj in sections,
ls is the length of sections, l̄s is the average length
of document sections, c1, c2, c3 are constants and
theidf score of termj is defined as

idfj = log
c4 − dj + c5
dj + c5

,

wheredj is the number of sections in all collec-
tions that contains termj andc4, c5 are constants.

To characterize proximity, we could use a fixed
length sliding window and calculate the average
BM25. We further associate each sliding average
BM25 with each type of semantic term groups.
This results in a Semantic Moving Average BM25
(SMABM25) of type t, which we define as fol-
lows:

1
|{k|Tk = t}|

∑
i∈{k|Tk=t}

(1/M)
∑
m

BM25m

wherem is a fixed length sliding windowm and
M is the total number of sliding windows (that de-
pends on the length of the section window size).

4.2 Semantic Vertical Relevance Features

Vertical databases contain a large amount of struc-
tured domain knowledge typically discarded by
traditional web relevance features. Having access
to the semantic types in queries, we can tap into
that knowledge to improve accuracy. For exam-
ple, term frequencies in different corpora can as-
sist in determining relevance given an entity type.
As we mentioned in Section 1, we observe that
term frequency in a database of business names
provides an indication of the business brand, the
key part of the business name phrase. While both
“yahoo” and “inc” are very common terms on the
web, in a database of businesses only “inc” is com-
mon enough to be considered a stopword in the
context of business names.

We propose a Vertical Moving Average BM25
(VMABM25) as a feature aiming at quantifying
the vertical knowledge for web search. The ba-
sic idea here is to replace theidf score idfj of
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SMABM25 with an idf score calculated from a
vertical database for typet, namely idftj :

1
|{k|Tk = t}|

∑
i∈{k|Tk=t}

(1/M)
∑
m

BM25m,t

where

BM25m,t =
∑

j

idftj
fj,s(c1 + 1)

fi,s + c1(1− c2 + c2
ls
l̄s

)

where the idftj is associated with the semantic type
t and calculated from the corpus associated with
that type.

VMABM25 links vertical knowledge, proxim-
ity, and page relevance together; we show later that
it is one of most salient features among all seman-
tic features.

4.3 Generalized Semantic Features

Finally, we develop a generalized feature based on
the previous features by removing tags. Semantic
features are often sparse, as many queries contain
one entity or no entities at all; generalized features
increase their coverage by combining the basic se-
mantic features. An entity without tag is essen-
tially a segment.

A segment featurexi for queryi does not have
entity type and can be expressed as

xi =
1
Ki

Ki∑
k=1

xT (k)

whereKi is the number of segments in the query
andT (k) is the semantic type associated withkth
concept.

Although these features are less informative
than type-specific features, one advantage of using
them is that they have substantially higher cover-
age. In our experiments, more than40% of the
queries have some identified entity. Another rel-
atively subtle advantage is that segment features
have no type related errors: the only possible error
is a mistake in entity boundaries.

5 Ranking Function Optimization

The ultimate goal of the machine learning ap-
proach to web search is to learn a ranking func-
tion h(xi), wherexi is a feature vector of a query-
document pairi, such that the error

L(h) ≡
N∑

i=1

(yi − h(xi))2 (1)

is minimized. Here,yi is the actual relevance score
for the query-document pairi (typically assigned
by a human) andN is the number of training sam-
ples.

As mentioned in the previous Section, an inher-
ent issue with semantic features is their sparse-
ness. User queries are usually short, with an av-
erage length of less than 3 words. Text matching
features that are associated with the semantic type
of query term or term groups are clearly sparse
comparing with traditional, non-entity text match-
ing features – that can be derived for any query.
When a feature is very sparse, it is unlikely that
it would play a very meaningful role in a machine
learned ranking function, since the errorL would
largely depend on other samples that do not con-
tain the specific semantic features at all. To over-
come the spareness issue and take advantage of
semantic features, we suggested generalizing our
features; but we also exploit a few ranking func-
tion modeling techniques.

First, we use a “divide-and-conquer” approach.
Long queries usually contain multiple concepts
and could be difficult to retrieve relevant docu-
ments. Semantic features, however, are rich in
this set of queries. We may train special models
to further optimize our ranking function for those
queries. The loss function over ranking functionh
becomes

LC(h) ≡
∑
i∈C

(yi − h(xi))2 (2)

whereC is the training set that falls into a pre-
defined subclass. For example, queries containing
both location and business name, queries contains
both location and business category, etc, are good
candidates to apply semantic features.

To this end, we first classify queries into several
classes, each of which has multiple types of enti-
ties. The semantic features of those types would
be dense for this subclass of queries. We then
train models that may rank the specific class of
queries well. This approach, however, may suf-
fer from significantly less training samples due to
training data partition resulted from the query clas-
sification. Increasing the modeling accuracy, then,
comes at a cost of reduced data available for train-
ing. We apply two techniques to address this is-
sue. The first approach is to over-weight subclass
training samples such that the subclass of queries
plays a more important role in modeling while still
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keeping a large pool of the overall training sam-
ples. The second approach is model adaptation:
a generalized incremental learning method. Here,
instead of being over-weighted in a joint optimiza-
tion, the subclass of training data is used to mod-
ify an existing model such that the new model is
“adapted” to the subclass problem. We elaborate
on our approaches as follows.

5.1 Weighted Training Samples

To take advantage of both large a pool of training
samples and sparse related semantic features for
a subclass of queries, we could modify the loss
function as follows

Lw
C(h) ≡ w

∑
i∈C

(yi− h(xi))2 +
∑
i∈C̄

(yi− h(xi))2,

(3)
whereC̄ is the complement of setC. Here, the
weightw is a compromise between loss function
(1) and (2). Whenw = 1, we have

L1
C(h) ≡ L(h);

whenw− >∞

L∞C (h) ≡ LC(h).

A large weight may help optimize the training for
a special subclass of queries, and a small weight
may help to preserve good generality of the ranker.
We could use cross-validation to select the weight
w to optimize a the ranking function for a sub-
class of queries. In practice, a smallw is desired
to avoid overfitting.

5.2 Model Adaptation

Model adaptation is an emerging machine learn-
ing technique that is used for information retrieval
applications with limited amount of training data.
In this paper, we apply Trada, proposed by Chen
et al. (Chen et al., 2008), as our adaptation algo-
rithm.

The Trada algorithm aims at adapting tree-
based models. A popular tree based regression ap-
proach is Gradient Boosting Trees (GBT) , which
is an additive modelh(x) =

∑K
k=1 γkhk(x),

where each regression treehk is sequentially op-
timized with a hill-climbing procedure. As with
other decision trees, a binary regression treehk(x)
consists of a set of decision nodes; each node is
associated with a feature variable and a splitting
value that partition the data into two parts, with the

corresponding predicted value defined in the leave
node. The basic idea of Trada is to apply piece-
wise linear transformation to the base model based
on the new training data. A set of linear transfor-
mations are applied to each decision node, either
predict or split point or both, such that the new pre-
dict or the split point of a node in a decision tree
satisfies

v = (1− pC)v̂ + pCvC

wherev̂ denotes predict or split point of that node
in the base mode andvC denotes predict or split
point of that node using new data setC, and
the weightpC depends on the number of origi-
nal training data and new training data that fall
through the node. For each node, the split or pre-
dict can be estimated by

pC =
βnC

n+ βnC
,

wheren is the number of training sample of the
base model that fall through the node,nC is the
number of new training sample that fall through
the node, andβ is a parameter that can be deter-
mined using cross validation. The parameterβ
is used to over-weight new training data, an ap-
proach that is very effective in practice. For new
features that are not included in the base model,
more trees are allowed to be added to incorporate
them.

6 Experiments

We now measure the effectiveness of our proposal,
and answer related questions, through extensive
experimental evaluation. We begin by examining
the effectiveness of features as well as the model-
ing approaches introduced in Section 5 on a par-
ticular class of queries—those with a local intent.
We proceed by evaluating whether if thetypeasso-
ciated with each entity really matters by compar-
ing results with type dependent semantic features
and segment features. Finally, we examine the ro-
bustness of our features by measuring the change
in the accuracy of our resulting ranking function
when the query analysis is wrong; we do this by
introducing simulated noise into the query analy-
sis results.

6.1 Dataset

Our training, validation and test sets are human-
labeled query-document pairs. Each item in the
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sets consists of a feature vectorxi represent-
ing the query and the document, and a judg-
ment scoreyi assigned by a human. There are
around600 features in each vector, including both
the newly introduced semantic features and exist-
ing features; features are either query-dependent
ones, document-dependent ones, or query-and-
document-dependent features.

The training set is based on uniformly sampled
Web queries from our query log, and top ranked
documents returned by commercial search engines
for these queries; this set consists of 1.24M query-
document pairs.

We use two additional sets for validation and
testing. One set is based on uniformly sampled
Web queries, and contains42790 validation sam-
ples and70320 test samples. The second set is
based on uniformly sampledlocal queries. By lo-
cal queries, we mean queries that contain at least
two types of semantic tags: a location tag (such
as street, city or state name) and a business tag (a
business name or business category). We refer to
this class of queries “local queries,” as users often
type this kind of queries in local vertical search.
The local query set consists of11040 validation
samples and39169 test samples. In the training
set we described above, there are56299 training
samples out of the 1.24M total number of training
samples that satisfy the definition of local queries.
We call this set local training subset.

6.2 Evaluation Metrics

To evaluate the effectiveness of our semantic
features we use Discounted Cumulative Gain
(DCG) (Jarvelin and Kekalainen, 2000), a widely-
used metric for measuring Web search relevance.
(Jarvelin and Kekalainen, 2000). Given a query
and a ranked list ofK documents (K = 5 in our
experiments), the DCG for this query is defined as

DCG(K) =
K∑

i=1

yi

log2(1 + i)
. (4)

whereyi ∈ [0, 10] is a relevance score for the
document at positioni, typically assigned by a hu-
man, where10 is assigned to the most relevant
documents and0 to the least relevant ones.

To measure statistical significance, we use the
Wilcoxon test (Wilcoxon, 1945); when thep-value
is below 0.01 we consider a difference to be statis-
tically significant and mark it with abold font in
the result table.

6.3 Experimental Results

We use Stochastic Gradient Boosting Trees
(SGBT) (Friedman, 2002), a robust none linear
regression algorithm, for training ranking func-
tions and, as mentioned earlier, Trada (Chen et al.,
2008) for model adaptation.

Training parameters are selected to optimize the
relevance on a separated validation set. The best
resulting is evaluated against the test set; all results
presented here use the test set for evaluation.

6.3.1 Feature Effectiveness with Ranking
Function Modeling

We apply the modeling approaches introduced in
Section 5 to improve feature effectiveness on “dif-
ficult” queries—those more than one entity type;
we evaluate these approaches with the semantic-
feature-rich set, the local query test set. We split
training sets into two parts: one set belongs to the
local queries, the other is the rest. We first weight
the local queries and use the combined dataset as
training data to learn the ranking functions; we
train functions with and without the semantic fea-
tures. We evaluate these functions against the lo-
cal query test set. The results are summarized in
Table 1, wherew denotes the weight assigned to
the local training set, bolded numbers are statis-
tically significant result compared to the baseline,
uniformly weighted training data without seman-
tic features (with superscriptb). It is interesting
to observe that without semantic features, over-
weighted local training data does not have statis-
tically significant impact on the test performance;
with semantic features, a proper weight over train-
ing samples does improve test performance sub-
stantially.

Table 1: Evaluation of Ranking Models Trained
Against Over-weighted Local Queries with Se-
mantic Features on the Local Query Test Set

w/o semantic features w/ semantic features
Weight DCG(5) Impr. DCG(5) Impr.
w = 0 8.09b - 8.25 2.0%
w = 2 8.09 0.02% 8.26 2.1%
w = 4 8.13 0.49% 8.34 3.1%
w = 8 8.13 0.49% 8.42 4.1%
w = 16 8.13 0.49% 8.30 2.6%
w = 32 8.04 −0.60% 8.27 2.2%

Next, we use the local query training set as “new
data” in the tree adaptation approach. In tree adap-
tations, all parameters are set to optimize the per-
formance over the local validation set. We com-
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pare two major adaptation approaches proposed
in (Chen et al., 2008): adapting predict only and
adapting both predict and split. We use the model
trained with the combined training and uniform
weights as the baseline; results are summarized in
Table 2.

Table 2: Trada Algorithms with Semantic Features
on Local Query Test Set

w/o semantic feat. w/ semantic feat.
Ada. Appr. DCG(5) Impr. DCG(5) Impr.
Combined data 8.09b - 8.25 2.0%
Ada. predict 8.02 −0.1% 8.14 0.6%
Ada. predict 8.00 −0.1% 8.17 1.0%
& split

Comparing Tables 1 and 2, note that using the
combined training data with local query training
samples over-weighted achieves better results than
tree adaption. The latter approach, however, has
the advantage of far less training time, since the
adaptation is over a much smaller local query
training set. With the same hardware, it takes
just a few minutes to train an adaptation model,
while it takes days to train a model over the entire,
combined training data. Considering that massive
model validation tasks are required to select good
training parameters, training many different mod-
els with over a million training samples becomes
prohibitly costly. Applying tree adaptation tech-
niques makes research and prototyping of these
models feasible.

6.3.2 Type Dependent Semantic Features vs.
Segment Features

Our next experiment compares type-dependent
features and segment features, evaluating models
trained with these features against the local query
test set. No special modeling approach is applied
here; results are summarized in Table 3. We ob-
serve that by using type-dependent semantic fea-
tures only, we can achieve as much as by using
all semantic features. Since segment features only
convey proximity information while the base fea-
ture set already contain a systematic set of prox-
imity measures, the improvement through segment
features is not as significant as the the type depen-
dent ones.

6.3.3 Robustness of Semantic Features

Our final set of experiments aims at evaluating the
robustness of our semantic features by introducing

Table 3: Type-dependent Semantic Features vs.
Segment Features

Feature set DCG(5)
base + type dependent semantic features 8.23
base + segment features 8.19
base + all semantic features 8.25

simulated errors to the output of our query analy-
sis. Concretely, we manipulate the precision and
the recall of a specific type of entity tagger,t, on
the training and test set. To decrease therecall of
type t, we uniformly remove a set ofa% tags of
type t – preserving precision. To decreasepreci-
sion, we uniformly select a set of query segments
(viewing the entity detection as simple segmenta-
tion, as detailed earlier) and assign the semantic
type t to those segments. Since the newly added
term group are selected from query segmentation
results, the introduced errors are rather semantic
typeerror than boundary error or proximity error.
The total number of newly assigned typet tags are
b% of the original number of typet tags in the
training set. By doing this, we decrease the preci-
sion of typet while keeping the recall of it at the
same level.

Suppose the original tagger achieves precision
p and recallr. By removinga% of tags, we have
estimated precision̂p and recallr̂ defined as fol-
lows:

r̂ =
100r − ar

100
,

p̂ = p.

By addingb% more term group to this type, we
have estimated precision and recall as

p̂ =
100p

100 + bp
,

r̂ = r.

In the experiment reported here we useBUSI-
NESS NAMEas the target semantic type for this ro-
bustness experiment. An editorial test shows that
our tagger achieves74% precision and66% recall
based on a random set of human labeled queries
for this entity type. We train ranking models with
various values ofa and b. When we reduce the
estimated recall, we evaluate these models against
the local test set since other data are not affected.
The results are summarized in Table 4.

When we reduce the precision, we evaluate the
resulting models against the general test set as
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Table 4: Relevance with simulated error on local
query test set

a b p̂ r̂ DCG(5) Impr.
0 0 0.74 0.66 8.25 −

10 0 0.74 0.594 8.21 0.48%
20 0 0.74 0.528 8.19 0.72%
40 0 0.74 0.396 8.18 0.85%

Table 5: Search relevance with simulated error for
semantic features on general test set

a b p̂ r̂ DCG(5) Impr.
0 0 0.74 0.66 10.11 -
0 10 0.689 0.66 10.11 0.00%
0 20 0.645 0.66 10.12 0.10%
0 40 0.571 0.66 10.12 0.10%
0 60 0.513 0.66 10.12 0.10%
0 80 0.465 0.66 10.11 0.00%
0 100 0.425 0.66 10.10 −0.10%

simulated errors would virtually affect any sam-
ples with certain probability. Results appear in
Table 5. The results are quite interesting: when
the recall of business name entity decreases, we
observe statistically significant relevance degrada-
tion: if less entities are discovered, search rele-
vance is hit. The experiments with simulated pre-
cision error, however, are less conclusive. One
may note the experiments are conducted over the
general test set. Therefore, it is not clear if the pre-
cision of the NER system really has insignificant
impact on the IR relevance or just the impact is
diluted in a larger test set.

6.4 Case Analysis

In this section, we take a close look at a few
cases where our new semantic features help
most and where they fail. For the querysil-
verado ranch in irving texas, with no semantic
features, the ranking function ranks a local
listing page for this business,http://local.
yahoo.com/info-28646193 , as the top
document. With semantic features, the ranking
function ranks the business home page:http:
//www.silveradoranchparties.com/
as top URL. Examining the two documents, the
local listing page actually contains much more rel-
evant anchor text, which are the among the most
salient features in traditional ranking models. The
home page, however, contains almost no relevant
anchor text: for a small business home page, this
is not a rare situation. Looking at the semantic
features of these two pages, the highest resolution
of location, the city name “Irving,” appears in the

document body text 19 times in the local listing
page body text, and only 2 times in the home page
body text. The training process learns, then, that
for a query for a local business name (rather than
a business category), home pages—even with
fewer location terms in them—are likely to be
more relevant than a local listing page that usually
contain high frequency location terms.

In some cases, however, our new features do
hurt performance. For the querypa treasur-
ers office, the ranking function with no seman-
tic features ranks the documenthttp://www.
patreasury.org highest, while the one with
semantic features ranks the pagehttp://www.
pikepa.org/treasurer.htm higher. The
latter page is somewhat relevant: it is a treasurer’s
office in Pennsylvania. However, it belongs to a
specific county, which makes it less relevant than
the former page. This is a classic error that we ob-
serve: a mismatch of the intended location area.
While users are looking for state level business,
we provide results of county level. To resolve
this type of error, query analysis and semantic text
matching are no longer enough: here, the rank-
ing function needs to know that Pike County is a
county in Pennsylvania, Milford is a city in Pike
County, and neither are referred to by the user.
Document-side entity recognition, however, may
provide this type of information, helping to ad-
dress this type of errors.

7 Conclusion and Future Research

In this paper, we investigate how semantic features
can improve search relevance in a large-scale in-
formation retrieval setting; to our knowledge, it is
the first study of this approach on a web scale. We
present a set of features that incorporate semantic
and vertical knowledge into the retrieval process,
propose techniques to handle the sparseness prob-
lem for these features, and describe how they fit
in the learning process. We demonstrate that these
carefully designed features significantly improve
relevance, particularly for difficult queries – long
queries with multiple entities.

The work reported here focuses on query-side
processing, avoiding the indexing cost of docu-
ment processing. We are currently investigating
document-side analysis to complement the query-
side work, and believe that this will further boost
the retrieval accuracy; we hope to report on this in
a follow-up study.
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Abstract

Inspired by the success of English
grapheme-to-phoneme research in speech
synthesis, many researchers have pro-
posed phoneme-based English-to-Chinese
transliteration models. However, such ap-
proaches have severely suffered from the
errors in Chinese phoneme-to-grapheme
conversion. To address this issue,
we propose a new English-to-Chinese
transliteration model and make system-
atic comparisons with the conventional
models. Our proposed model relies on
the joint use of Chinese phonemes and
their corresponding English graphemes
and phonemes. Experiments showed that
Chinese phonemes in our proposed model
can contribute to the performance im-
provement in English-to-Chinese translit-
eration.

1 Introduction

1.1 Motivation

Transliteration, i.e., phonetic translation, is com-
monly used to translate proper names and techni-
cal terms across languages. A variety of English-
to-Chinese machine transliteration models has
been proposed in the last decade (Meng et al.,
2001; Gao et al., 2004; Jiang et al., 2007; Lee
and Chang, 2003; Li et al., 2004; Li et al., 2007;
Wan and Verspoor, 1998; Virga and Khudanpur,
2003). They can be categorized into those based
on Chinese phonemes (Meng et al., 2001; Gao
et al., 2004; Jiang et al., 2007; Lee and Chang,
2003; Wan and Verspoor, 1998; Virga and Khu-
danpur, 2003) and those that don’t rely on Chinese
phonemes (Li et al., 2004; Li et al., 2007).

Inspired by the success of English grapheme-to-
phoneme research in speech synthesis, many re-
searchers have proposed phoneme-based English-

to-Chinese transliteration models. In these ap-
proaches, Chinese phonemes are generated from
English graphemes or phonemes, and then the
Chinese phonemes are converted into Chinese
graphemes (or characters), where Chinese Pinyin
strings1 are used for representing a syllable-level
Chinese phoneme sequence. Despite its high ac-
curacy in generating Chinese phonemes from En-
glish, this approach has severely suffered from er-
rors in Chinese phoneme-to-grapheme conversion,
mainly caused by Chinese homophone confusion
– one Chinese Pinyin string can correspond to sev-
eral Chinese characters (Li et al., 2004). For ex-
ample, the Pinyin string “LI” corresponds to such
different Chinese characters as�,�, and�. For
this reason, it has been reported that English-to-
Chinese transliteration without Chinese phonemes
outperforms that with Chinese phonemes (Li et al.,
2004).

Then “Can Chinese phonemes improve
English-to-Chinese transliteration, if we can re-
duce the errors in Chinese phoneme-to-grapheme
conversion?” Our research starts from this
question.

1.2 Our Approach

Previous approaches using Chinese phonemes
have relied only on Chinese phonemes in Chi-
nese phoneme-to-grapheme conversion. However,
the simple use of Chinese phonemes doesn’t al-
ways provide a good clue to reduce the ambi-
guity in Chinese phoneme-to-grapheme conver-
sion. Let us explain with an example, the Chinese
transliteration of Greeley in Table 1, where Chi-
nese phonemes are represented in terms of Chi-
nese Pinyin strings and English phonemes are rep-
resented by ARPAbet symbols2.

In Table 1, Chinese Pinyin string “LI” corre-
sponds to two different Chinese characters,� and

1Pinyin, the most commonly used Romanization sys-
tem for Chinese characters, faithfully represents Chinese
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Table 1: Chinese Pinyin string “LI” and its corre-
sponding Chinese characters in Chinese transliter-
ation of Greeley

English grapheme g ree ley
English phoneme G R IY L IY
Chinese Pinyin GE LI LI
Chinese character � � �

�. It seems difficult to find evidence for select-
ing the correct Chinese character corresponding to
each Chinese Pinyin string “LI” by just looking
at the sequence of Chinese Pinyin strings “GE LI
LI.” However, English graphemes (ree and ley) or
phonemes (“R IY” and “L IY”) corresponding to
Chinese Pinyin string “LI”, especially their conso-
nant parts (r and l in the English graphemes and
“R” and “L” in the English phonemes), provide
strong evidence to resolve the ambiguity. Thus,
we can easily find rules for the conversion from
Chinese Pinyin string “LI” to� and� as follows:

• 〈 “R IY”, LI 〉 →�
• 〈 “L IY”, LI 〉 →�
Based on the observation, we propose an

English-to-Chinese transliteration model based on
the joint use of Chinese phonemes and their corre-
sponding English graphemes and phonemes. We
define a set of English-to-Chinese transliteration
models and categorize them into the following
three classes:

• MI: Models Independent of Chinese
phonemes

• MS: Models based on Simple use of Chinese
phonemes

• MJ: Models based on Joint use of Chi-
nese phonemes and English graphemes and
phonemes that correspond to our proposed
model.

Our comparison among the three types of translit-
eration models can be summarized as follows.

• The MI models relying on either English
graphemes or phonemes could not outper-
form those based on both English graphemes
and phonemes.

phonemes and syllables (Yin and Felley, 1990).
2http://www.cs.cmu.edu/˜laura/pages/

arpabet.ps

• The MS models always showed the worst
performance due to the severe error rate in
Chinese phoneme-to-grapheme conversion.

• The MJ models significantly reduced er-
rors in Chinese phoneme-to-grapheme con-
version; thus they achieved the best perfor-
mance.

The rest of this paper is organized as follows.
Section 2 introduces the notations used through-
out this paper. Section 3 describes the translitera-
tion models we compared. Section 4 describes our
tests and results. Section 5 concludes the paper
with a summary.

2 Preliminaries

Let EG be an English word composed of n English
graphemes, and let EP be a sequence of English
phonemes that represents the pronunciation of EG.
Let CG be a sequence of Chinese graphemes cor-
responding to the Chinese transliteration of EG,
and let CP be a sequence of Chinese phonemes
that represents the pronunciation of CG.

CP corresponds to a sequence of the Chinese
Pinyin strings of CG. Because a Chinese Pinyin
string represents the pronunciation of a sylla-
ble consisting of consonants and vowels, we di-
vide a Chinese Pinyin string into consonant and
vowel parts like “L+I”, “L+I+N”, and “SH+A.”
In this paper, we define a Chinese phoneme
as the vowel and consonant parts in a Chinese
Pinyin string (e.g., “L”, “SH”, and “I”). A Chi-
nese character usually corresponds to multiple
English graphemes, English phonemes, and Chi-
nese phonemes (i.e., � corresponds to English
graphemes ree, English phonemes “R IY”, and
Chinese phonemes “L I” in Table 1). To repre-
sent these many-to-one correspondences, we use
the well-known BIO labeling scheme to represent
a Chinese character, where B and I represent the
beginning and inside/end of the Chinese charac-
ters, respectively, and O is not used. Each Chi-
nese phoneme corresponds to a Chinese character
with B and I labels. For example, Chinese charac-
ter “�” in Table 1 can be represented as “�:B”
and “�:I”, where “�:B” and “�:I” correspond
to Chinese phonemes “L” and “I”, respectively. In
this paper, we define a Chinese grapheme as a Chi-
nese character represented with a BIO label, e.g.,
“�:B” and “�:I.”
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Table 2: egi and its corresponding epi, cpi, and cgi

in Greeley and its corresponding Chinese translit-
eration “���”

i 1 2 3 4 5 6 7
EG g r e e l e y
EP G R IY φ L IY φ

CP
GE L I φ L I φ
GE LI φ LI φ

CG
�:B �:B �:I φ �:B �:I φ
� � φ � φ

Then EP , CP , and CG can be segmented into a
series of sub-strings, each of which corresponds to
an English grapheme in EG. We can thus write

• EG = eg1, · · · , egn = egn
1

• EP = ep1, · · · , epn = epn
1

• CP = cp1, · · · , cpn = cpn
1

• CG = cg1, · · · , cgn = cgn
1

where egi, epi, cpi, and cgi represent the ith

English grapheme, English phonemes, Chinese
phonemes, and Chinese graphemes corresponding
to egi, respectively.

Based on the definition, we model English-
to-Chinese transliteration so that each English
grapheme is tagged with its corresponding En-
glish phonemes, Chinese phonemes, and Chinese
graphemes. Table 2 illustrates egi, epi, cpi, and
cgi with the same example listed in Table 1 (En-
glish word Greeley and its corresponding Chinese
transliteration “���”)3, where φ represents an
empty string.

3 Transliteration Model

We defined eighteen transliteration models to be
compared. These transliteration models are clas-
sified into three classes, MI, MS, and MJ as de-
scribed in Section 1.2; each class has three basic
transliteration models and three hybrid ones. In
this section, we first describe the basic translit-
eration models in each class by focusing on the
main difference among the three classes and then
describe the hybrid transliteration models.

3We performed alignment between EG and EP and be-
tween EP and CP in a similar manner presented in Li et al.
(2004). Then the two alignment results were merged using
EP as a pivot. Finally, we made a correspondence relation
among egi, epi, cpi, and cgi using the merged alignment re-
sult and the Pinyin table.

3.1 Basic Transliteration Models

The basic transliteration models in each class are
denoted as M(x, y).

• (x, y) ∈ X × Y

• x ∈ X = {EG, EP , EGP }
• y ∈ Y = {φ, CP , JCP }

x is an English-side parameter representing En-
glish grapheme (EG), English phoneme (EP ), and
the joint use of English grapheme and phoneme
(EGP = 〈EG, EP 〉) that contributes to generat-
ing Chinese phonemes or Chinese graphemes in
a transliteration model. y is a Chinese-phoneme
parameter that represents a way of using Chinese
phonemes to generate Chinese graphemes in a
transliteration model. Since M(x, φ) represents
a transliteration model that does not rely on Chi-
nese phonemes, it falls into MI, while M(x, CP )
corresponds to a transliteration model in MS that
only uses Chinese phonemes in Chinese phoneme-
to-grapheme conversion. M(x, JCP ) is a translit-
eration model in the MJ class that generates Chi-
nese transliterations based on joint use of x and
Chinese phoneme CP , where x ∈ X . Thus,
M(x, JCP ) can be rewritten as M(x, 〈x, CP 〉),
where the joint representation of x and CP ,
〈x, CP 〉, is used in Chinese phoneme-to-grapheme
conversion. The three basic models in MJ can be
interpreted as follows:

• M(EG, JCP ) = M(EG, 〈EG, CP 〉)
• M(EP , JCP ) = M(EP , 〈EP , CP 〉)
• M(EGP , JCP ) = M(EGP , 〈EGP , CP 〉)
M(EG, JCP ) directly converts English

graphemes into Chinese phonemes without
the help of English phonemes and then gener-
ates Chinese transliterations based on the joint
representation of English graphemes and Chi-
nese phonemes. The main difference between
M(EP , JCP ) and M(EGP , JCP ) lies in the
use of English graphemes to generate Chinese
phonemes and graphemes. English graphemes
are only used in English grapheme-to-phoneme
conversion, and English phonemes play a crucial
role for generating Chinese transliteration in
M(EP , JCP ). Chinese phoneme-to-grapheme
conversion that relies on the joint use of English
graphemes, English phonemes, and Chinese
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PM(EG,JCP )(CG|EG) =
∑
∀CP

P (CP |EG)× P (CG|EG, CP ) (1)

PM(EP ,JCP )(CG|EG) =
∑
∀CP

∑
∀EP

P (EP |EG)× P (CP |EP )× P (CG|EP , CP ) (2)

PM(EGP ,JCP )(CG|EG) =
∑
∀CP

∑
∀EP

P (EP |EG)× P (CP |EG, EP )× P (CG|EG, EP , CP ) (3)

PM(EG,CP )(CG|EG) =
∑
∀CP

P (CP |EG)× P (CG|CP ) (4)

PM(EP ,CP )(CG|EG) =
∑
∀CP

∑
∀EP

P (EP |EG)× P (CP |EP )× P (CG|CP ) (5)

PM(EGP ,CP )(CG|EG) =
∑
∀CP

∑
∀EP

P (EP |EG)× P (CP |EG, EP )× P (CG|CP ) (6)

phonemes is the key feature of M(EGP , JCP ).
Because M(x, JCP ) can be interpreted as
M(x, 〈x, CP 〉), English-side parameter x de-
termines the English graphemes and phonemes,
or both jointly used with Chinese phonemes in
Chinese phoneme-to-grapheme conversion. Then
we can represent the three basic transliteration
models as in Eqs. (1)–(3), where P (CG|EG, CP ),
P (CG|EP , CP ), and P (CG|EG, EP , CP ) are the
key points in our proposed models, MJ.

The three basic transliteration models in MS

– M(EG, CP ), M(EP , CP ), and M(EGP , CP ) –
are formulated as Eqs. (4)–(6). Chinese phoneme-
based transliteration models in the literature fall
into either M(EG, CP ) or M(EP , CP ) (Meng et
al., 2001; Gao et al., 2004; Jiang et al., 2007; Lee
and Chang, 2003; Wan and Verspoor, 1998; Virga
and Khudanpur, 2003). The three basic transliter-
ation models in MS are identical as those in MJ,
except for the Chinese phoneme-to-grapheme con-
version method. They only depend on Chinese
phonemes in Chinese phoneme-to-grapheme con-
version represented as P (CG|CP ) in Eqs. (4)–(6).

PM(EG,φ)(CG|EG) = P (CG|EG) (7)

PM(EP ,φ)(CG|EG) (8)

=
∑
∀EP

P (EP |EG)× P (CG|EP )

PM(EGP ,φ)(CG|EG) (9)

=
∑
∀EP

P (EP |EG)× P (CG|EG, EP )

The three basic transliteration models in MI are
represented in Eqs. (7)–(9). Because the MI mod-

els are independent of Chinese phonemes, they are
the same as the transliteration models in the lit-
erature used for machine transliteration from En-
glish to other languages without relying on target-
language phonemes (Karimi et al., 2007; Malik,
2006; Oh et al., 2006; Sherif and Kondrak, 2007;
Yoon et al., 2007). Note that M(EG, φ) is the
same transliteration model as the one proposed by
Li et al. (2004).

3.2 Hybrid Transliteration Models

The hybrid transliteration models in each class
are defined by discrete mixture between the prob-
ability distribution of the two basic transliter-
ation models, as in Eq. (10) (Al-Onaizan and
Knight, 2002; Oh et al., 2006), where 0 < α <
1. We denote a hybrid transliteration model be-
tween two basic transliteration models M(x1, y)
and M(x2, y) as M(x1 + x2, y, α), where y ∈
Y = {φ, CP , JCP }, x1 �= x2, and x1, x2 ∈
X = {EG, EP , EGP }. In this paper, we define
three types of hybrid transliteration models in each
class: M(EG + EP , y, α), M(EG + EGP , y, α),
and M(EP + EGP , y, α).

PM(x1+x2,y,α)(CG|EG) (10)

= α× PM(x1,y)(CG|EG)

+ (1− α)× PM(x2,y)(CG|EG)

3.3 Probability Estimation

Because Eqs. (1)–(9) can be estimated in a similar
way, we limit our focus to Eq. (3) in this section.
Assuming that P (EP |EG), P (CP |EG, EP ), and
P (CG|EG, EP , CP ) in Eq. (3) depend on the size
of the context window, k (k = 3 in this paper),
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Table 3: Feature functions for P (cgi|cgi−1
i−k, 〈eg, ep, cp〉i+k

i−k) with an example in Table 2, where i = 2
f1 gram3(egi) egi+2

i = “ree” cgi = “�:B”
f2 pair11(cpi−1, cgi−1) cpi−1 = “G”, cgi−1 = “�:B” cgi = “�:B”
f3 pair12(cgi−1, cpi−1) cpi

i−1 = “GE L”, cgi−1= “�:B” cgi = “�:B”
f4 pair22(cpi−1, cgi−2) egi

i−1 = “gr”, epi
i−1 = “G R” cgi = “�:B”

f5 triple1(egi, cpi, cgi−1) egi = “r”, cpi−1 = “GE”, cgi−1= “�:B” cgi = “�:B”
f6 triple2(egi−1, cgi−1, cpi−1) egi−1 = “g”, cpi

i−1= “GE L”, cgi−1= “�:B” cgi = “�:B”

they can be simplified into a series of products in
Eqs. (11)–(13).

The maximum entropy model is used to esti-
mate the probabilities in Eqs. (11)–(13) (Berger
et al., 1996). Generally, a conditional maxi-
mum entropy model is an exponential model that
gives the conditional probability, as described in
Eq. (14), where λi is the parameter to be estimated
and fi(a, b) is a feature function corresponding to
λi (Berger et al., 1996; Ratnaparkhi, 1997):

P (EP |EG) ≈
∏

i

P (epi|epi−1
i−k, eg

i+k
i−k) (11)

P (CP |EG, EP ) (12)

≈
∏

i

P (cpi|cpi−1
i−k, 〈eg, ep〉i+k

i−k)

P (CG|EG, EP , CP ) (13)

≈
∏

i

P (cgi|cgi−1
i−k, 〈eg, ep, cp〉i+k

i−k)

P (b|a) =
exp(

∑
i λifi(a, b))∑

b′ exp(
∑

i λifi(a, b′))
(14)

fi(a, b) is a binary function returning TRUE
or FALSE based on context a and output b.
If fi(a, b)=1, its corresponding model parame-
ter λi contributes toward conditional probability
P (b|a) (Berger et al., 1996; Ratnaparkhi, 1997).
The feature functions used here are defined in
terms of context predicates — a function return-
ing TRUE or FALSE that depends on the presence
of the information in the current context (Ratna-
parkhi, 1997). Context predicates and their de-
scriptions used are given in Table 4.

N-GRAM includes gram1(uj), gram2(uj), and
gram3(uj) corresponding to a unigram, a bigram,
and a trigram, respectively. PAIR includes a pair of
unigrams (pair11), unigram and bigram (pair12),
and bigrams (pair22). TRIPLE includes a triple of
three unigrams (triple1) and a triple of two uni-
grams and one bigram (triple2). Note that if dif-
ferent context predicates represent the same con-
text, we accept one of them and ignore the others

Table 4: Context predicates and their descriptions

Category Context predicates Description
N-GRAM gram1(uj) uj

gram2(uj) uj+1
j

gram3(uj) uj+2
j

PAIR pair11(uj , vk) uj , vk

pair12(uj , vk) uj , vk+1
k

pair22(uj , vk) uj+1
j , vk+1

k

TRIPLE triple1(uj , vk, wl) uj , vk, wl

triple2(uj , vk, wl) uj , vk, wl+1
l

(e.g., pair12(uj , uj+1) = trigram(uj) = uj+2
j ).

Table 3 represents the examples of feature func-
tions for P (cgi|cgi−1

i−k, 〈eg, ep, cp〉i+k
i−k).

We used the “Maximum Entropy Modeling
Toolkit”4 to estimate the probabilities and the
LBFGS algorithm to find λi in Eq. (14). For
each transliteration model, we produced n-best
transliterations using a stack decoder (Schwartz
and Chow, 1990).

3.4 Summary

In this paper, we defined eighteen transliteration
models to be compared. There are six translitera-
tion models, three basic and three hybrid ones, in
each class, MI, MS, and MJ. We compared the
transliteration models from the viewpoint of Chi-
nese phonemes or the class of transliteration mod-
els in our experiments.

4 Testing and Results

We used the same test set used in Li et al. (2004)
for our testing5. It contains 37,694 pairs of English
words and their official Chinese transliterations

4Available at http://homepages.inf.ed.ac.
uk/s0450736/maxent_toolkit.html

5This test set was also used in “NEWS09 machine translit-
eration shared task” for English-to-Chinese transliteration (Li
et al., 2009)
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extracted from the “Chinese Transliteration of For-
eign Personal Names” (Xinhua News Agency,
1992), which includes names in English, French,
German, and many other foreign languages (Li et
al., 2004). We used the same test data as in Li et
al. (2004). But we randomly selected 90% of the
training data used in Li et al. (2004) as our training
data and the remainder as the development data, as
shown in Table 5.

Table 5: Number of English-Chinese translitera-
tion pairs in each data set

Ours Li et al. (2004)
Training data 31,299 34,777
Development data 3,478 N/A
Blind test data 2,896 2,896

We used the training data for training the
transliteration models. For each model, we tuned
the parameters including the number of iterations
for training the maximum entropy model and a
Gaussian prior for smoothing the maximum en-
tropy model using the development data. Further,
the development data was used to select param-
eter α of the hybrid transliteration models. We
varied parameter α from 0 to 1 in 0.1 intervals
(i.e., α=0, 0.1, 0.2, · · · ,1) and tested the perfor-
mance of the hybrid models with the development
data. Then we chose α that showed the best per-
formance in each hybrid model. The blind test
data was used for evaluating the performance of
each transliteration model. The CMU Pronounc-
ing Dictionary6, which contains about 120,000
English words and their pronunciations, was used
for estimating P (EP |EG).

We conducted two experiments. First, we com-
pared the overall performance of the translitera-
tion models. Second, we investigated the effect
of training data size on the performance of each
transliteration model.

The evaluation was done for word accuracy
in top-1 (ACC), Chinese pronunciation accuracy
(CPA) and a mean reciprocal rank (MRR) met-
ric (Kantor and Voorhees, 2000; Li et al., 2009;
Chang et al., 2009). ACC measures how many
correct transliterations appeared in the top-1 re-
sult of each system. CPA measures the Chinese
pronunciation accuracy in the top-1 of the n-best
Chinese pronunciation. We used CPA for com-

6Available at http://www.speech.cs.cmu.edu/
cgi-bin/cmudict

paring the performance between systems based on
Chinese phonemes. MRR, mean reciprocal ranks
of n-best results of each system over the test en-
tries, is an evaluation measure for n-best translit-
erations. If a transliteration generated by a system
matches a reference transliteration7 at the rth posi-
tion of the n-best results, its reciprocal rank equals
1/r; otherwise its reciprocal rank equals 0, where
1 ≤ r ≤ n. We produced 10-best Chinese translit-
erations for each English word in our experiments.

4.1 Comparison of the Overall Performance

Table 6 represents the overall performance of one
system in a previous work (Li et al., 2004) and
eighteen systems based on the transliteration mod-
els defined in this paper. ACC, MRR, and CPA
represent the evaluation results for each model
trained by our training data. To test transliteration
models without the errors introduced by incorrect
Chinese phonemes, we carried out the experiments
with the correct Chinese pronunciation (or the
correct Chinese phoneme sequence) in Chinese
phoneme-to-grapheme conversion. In the exper-
iment, we put the correct Chinese pronunciation
into the top-1 of the n-best Chinese pronunciation
with the highest probability, say P (CP |EG)=1;
thus CPA was assumed to be 100%. The ACC
of the transliteration models under this condition
is denoted as ACC’ in Table 6. TRAIN represents
the evaluation results of the transliteration mod-
els trained by our training data. To compare Li
et al. (2004) and transliteration models defined in
this paper under the same condition, we also car-
ried out experiments with the same training data
in Li et al. (2004). Since the training data used
in Li et al. (2004) is identical as the union of
our training and development data, we denoted it
as TRAIN+DEV in Table 6. In both TRAIN and
TRAIN+DEV, we used the same parameter setting
that was obtained by using the development data.

LI04 represents a system in Li et al. (2004),
and its ACC’ in TRAIN+DEV is taken from the
literature. The systems based on the translitera-
tion models defined in our paper are represented
from the second row in Table 6. The phoneme-
based transliteration models in the literature cor-
respond to either M(EG, CP ) (Wan and Verspoor,
1998; Lee and Chang, 2003; Jiang et al., 2007) or
M(EP , CP ) (Meng et al., 2001; Gao et al., 2004;

7In our test set, an English word corresponds to one refer-
ence Chinese transliteration.
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Table 6: Comparison of the overall performance

Class Model
TRAIN TRAIN+DEV

ACC MRR CPA ACC’ ACC MRR CPA ACC’

LI04 N/A N/A N/A N/A 70.1 N/A N/A N/A
M(EG, JCP ) 71.9 80.4 72.3 88.2 72.3 80.7 73.1 88.9
M(EP , JCP ) 61.1 70.3 62.4 82.8 61.1 70.6 63.1 83.8

MJ M(EGP , JCP ) 72.3 80.9 73.2 89.6 73.5 81.5 73.9 90.4
M(EG+EP , JCP , 0.7) 72.8 80.7 73.8 89.7 73.2 81.0 74.7 90.5
M(EG+EGP , JCP , 0.6) 73.5 81.7 74.2 90.6 73.7 81.8 74.8 91.2
M(EP +EGP , JCP , 0.1) 71.6 80.3 73.3 89.8 72.5 80.8 73.8 90.1
M(EG, φ) 70.0 78.5 N/A N/A 70.6 79.0 N/A N/A
M(EP , φ) 58.5 69.3 N/A N/A 59.4 70.1 N/A N/A

MI M(EGP , φ) 71.2 79.9 N/A N/A 72.3 80.7 N/A N/A
M(EG+EP , φ, 0.7) 70.7 79.1 N/A N/A 72.0 80.0 N/A N/A
M(EG+EGP , φ, 0.4) 72.0 80.3 N/A N/A 72.8 80.9 N/A N/A
M(EP +EGP , φ, 0.1) 71.0 79.6 N/A N/A 72.0 80.4 N/A N/A
M(EG, CP ) 58.9 70.2 72.3 78.4 59.1 70.4 73.1 78.4
M(EP , CP ) 50.2 62.3 62.4 78.4 50.4 62.6 63.1 78.5

MS M(EGP , CP ) 59.1 70.4 73.2 78.4 59.3 70.5 73.9 78.5
M(EG+EP , CP , 0.8) 59.7 71.3 73.8 79.0 60.3 71.7 74.7 79.0
M(EG+EGP , CP , 0.6) 59.8 71.7 74.2 78.9 60.6 72.1 74.8 78.9
M(EP +EGP , CP , 0.1) 58.8 70.4 73.3 78.9 59.4 70.7 73.8 78.8

Virga and Khudanpur, 2003).

A comparison between the basic and hybrid
transliteration models showed that the hybrid
ones usually performed better (the exception was
M(EP +EGP , y, α) but the performance still com-
parable to the basic ones in each class). Es-
pecially, the hybrid ones based on the best two
basic transliteration models, M(EG+EGP , y, α),
showed the best performance.

A comparison among the MI, MS, and
MJ models showed that Chinese phonemes did
contribute to the performance improvement of
English-to-Chinese transliteration when Chinese
phonemes were used together with their corre-
sponding English graphemes and phonemes in
Chinese phoneme-to-grapheme conversion. A
one-tail paired t-test between the MI and MJ

models showed that the results of the MJ mod-
els were always significantly better than those
of the MI models if the MI and MJ models
shared the same English-side parameter, x ∈
{EG, EP , EGP } (level of significance = 0.001).
In the results obtained by the MS and MJ mod-
els, the figures in CPA are the same when the MS

and our MJ models share the same English-side
parameter. Moreover, the difference between the
figures in ACC and CPA can be interpreted as

the error rate of Chinese phoneme-to-grapheme
conversion. Our proposed MJ models gener-
ated Chinese transliterations with a very low er-
ror rate in Chinese phoneme-to-grapheme conver-
sion, while the MS models suffered from a signif-
icant error rate in Chinese phoneme-to-grapheme
conversion. ACC’ showed that the MJ models
still outperformed the MS models even without
errors in generating Chinese pronunciation from
the English words. These results indicate that the
joint use of Chinese phonemes and their corre-
sponding English graphemes and phonemes sig-
nificantly improved the performance in Chinese
phoneme-to-grapheme conversion and English-to-
Chinese transliteration.

Table 7 shows the Chinese transliterations gen-
erated by M(EG, φ), M(EGP , φ), M(EG, JCP ),
and M(EGP , JCP ) where English or Chinese
phonemes contributed to the correct translitera-
tion. In this table, the first column show the
English words and their English phonemes, and
the second and third columns represent the Chi-
nese transliterations and their phonemes. Note
that the Chinese phonemes in the second and third
columns of the MI models are not used in translit-
eration. They are shown in the table to indicate
the difference in the Chinese phonemes of Chinese
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Table 7: Top-1 results of M(EG, φ), M(EGP , φ),
M(EG, JCP ), and M(EGP , JCP ), where * rep-
resents incorrect transliterations

M(EGP,JCP)M(EG,JCP)MJ models

赖因哈特*

(LAI YIN HA TE)

赖因哈特*

(LAI YIN HA TE)

Reinhardt

(R AI N HH AA R T)

艾维

(AI WEI)

伊维*

(YI WEI)

Ivy

(AY V IY)

埃米利*

(AI MI LI)

埃米利*

(AI MI LI)

Emily

(EH M IH L IY)

莱因哈特

LAI YIN HA TE
莱因哈特

LAI YIN HA TE

Reinhardt

(R AI N HH AA R T)

艾维

AI WEI

伊维*

YI WEI

Ivy

(AY V IY)

埃米莉

AI MI LI
埃米莉

AI MI LI

Emily

(EH M IH L IY)

M(EGP,φ)M(EG,φ)MI models

transliterations between the MI and MJ models.

For Emily and Reinhardt, the MJ models gen-
erated correct Chinese transliterations, but the MI

models did not. Figure 1 shows the probabil-
ity distribution when a transliteration model gen-
erates the first Chinese character in the Chinese
transliteration of Reinhardt with and without Chi-
nese phonemes. Two Chinese characters, � and
�, were strong candidates and � is the correct
one in this case. Without Chinese phonemes,
M(EG, φ), which is based on P(cg|Reinhardt)
in Figure 1(a) preferring � to �, generated the
incorrect transliteration as shown in Table 7. How-
ever, Figure 1(b) shows that � can be selected
if the correct Chinese phoneme sequence “LAI
YIN ...” is given. Three Chinese phoneme se-
quences starting with “LAI YIN ...”, “LAI NA
...”, and “LAI NEI ...” were generated from Rein-
hardt, where “LAI YIN ...” was the best Chinese
phoneme sequence based on the probability distri-
bution in Figure 1(c). As a result, M(EG, JCP ),
which jointly used Chinese phonemes with En-
glish graphemes, generated the correct Chinese
transliteration of Reinhardt based on two probabil-
ity distribution in Figures 1(b) and 1(c). In the case
of Ivy, English phonemes contributed to generat-
ing the correct transliteration in the M(EGP , φ)
and M(EGP , JCP ) models.

Chinese transliterations sometimes reflect the
English word’s pronunciation as well as the Chi-
nese character’s meaning (Li et al., 2007). Li
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0.6

0.8

P(赖|Reinhardt) P(莱|Reinhardt)

(a) Probability distribution when Chi-
nese phonemes are not given
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赖 莱

P(cg|Reinhardt, "LAI YIN ..") P(cg|Reinhardt, "LAI NA ..")
P(cg|Reinhardt, "LAI NEI ..")

(b) Probability distribution when Chinese phonemes are
given
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P("LAI YIN .."|Reinhardt) P(¬"LAI YIN .."|Reinhardt)

(c) Probability distribution for Chinese phoneme se-
quence “LAI YIN ...” and others

Figure 1: Probability distribution for the first Chi-
nese character in the Chinese transliteration of
Reinhardt: M(EG, φ) vs. M(EG, JCP )

et al. (2007) defined such a Chinese transliter-
ation as a phonetic-semantic transliteration (se-
mantic transliteration) to distinguish it from a
usual phonetic transliteration. One fact that
affects semantic transliteration is gender asso-
ciation (Li et al., 2007). For example, �
(meaining jasmine) is frequently used in Chi-
nese transliterations of female names but sel-
dom in common person names. Because Emily
is often used in female names, the results ob-
tained by the M(EG, JCP ) and M(EGP , JCP )
models are acceptable. This indicates that Chi-
nese phonemes coupled with English graphemes
or those coupled with English graphemes and
phonemes could provide evidence required for se-
mantic transliteration as well as phonetic translit-
eration. As a result, M(EGP , φ), M(EG, JCP ),
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and M(EGP , JCP ), which used phonemes cou-
pled with English graphemes, achieved higher per-
formance than M(EG, φ), which relied only on
English graphemes.

4.2 Effect of Training Data Size
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(a) Basic transliteration models
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(b) Hybrid transliteration models

Figure 2: Performance of each system with differ-
ent training data size

We investigated the effect of training data size
on the performance of each transliteration model.
We randomly selected training data with ratios
from 10 to 90% and compared the performance
of each system trained by different sizes of train-
ing data. The results for the basic translitera-
tion models in Figure 2(a) can be categorized into
three groups. M(EGP , φ) and M(EGP , JCP )
fall into the best group, where they showed the
best performance regardless of training data size.
M(EG, φ) and M(EG, JCP ) belong to the mid-
dle group, where they showed lower performance
than the best group if the training data size is
small, but their performance is comparable to the
best group if the size of the training data is large
enough. The others always showed lower perfor-
mance than both the best and middle groups. Fig-

ure 2(b) shows that hybrid transliteration models,
on average, were less sensitive to the training data
size than the basic ones, because the two differ-
ent basic transliteration models used in the hybrid
ones boosted transliteration performance by com-
plementing each other’s weak points.

5 Conclusion

We proposed a new English-to-Chinese transliter-
ation model based on Chinese phonemes and their
corresponding English graphemes and phonemes.
We defined eighteen English-to-Chinese translit-
eration models including our proposed model and
classified them into three classes based on the role
of Chinese phonemes in the transliteration mod-
els. Experiments showed that Chinese phonemes
in our proposed model can contribute to the
performance improvement in English-to-Chinese
transliteration.

Now we can answer Yes to this paper’s key ques-
tion, “Can Chinese phonemes improve machine
transliteration?” Actually, this is the second time
the same question has been answered. The pre-
vious answer, which was unfortunately reported
as No by Li et al. (2004), has been accepted as
true for the last five years; the research issue has
been considered closed. In this paper, we found
a new answer that contradicts the previous an-
swer. We hope that our answer promotes research
on phoneme-based English-to-Chinese translitera-
tion.

Appendix: Illustration of Basic
Transliteration Models in MJ and MS
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CPEG EP

EG EP

CG

CP

CP

CG

CG
:)JC,Μ(Ε
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:)JC,Μ(Ε
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:)JC,Μ(Ε
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(a) MJ models

EG

CPEG EP

EG EP

CG

CP

CP

CG

CG

:)C,Μ(Ε
PGP

:)C,Μ(Ε
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(b) MS models
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Abstract

Many approaches to unsupervised mor-
phology acquisition incorporate the fre-
quency of character sequences with re-
spect to each other to identify word stems
and affixes. This typically involves heuris-
tic search procedures and calibrating mul-
tiple arbitrary thresholds. We present a
simple approach that uses no thresholds
other than those involved in standard ap-
plication of χ2 significance testing. A
key part of our approach is using docu-
ment boundaries to constrain generation of
candidate stems and affixes and clustering
morphological variants of a given word
stem. We evaluate our model on English
and the Mayan language Uspanteko; it
compares favorably to two benchmark sys-
tems which use considerably more com-
plex strategies and rely more on experi-
mentally chosen threshold values.

1 Introduction

Unsupervised morphology acquisition attempts to
learn from raw corpora one or more of the follow-
ing about thewritten morphology of a language:
(1) the segmentation of the set of word types in a
corpus (Creutz and Lagus, 2007), (2) the cluster-
ing of word types in a corpus based on some notion
of morphological relatedness (Schone and Juraf-
sky, 2000), (3) the generation of out-of-vocabulary
items which are morphologically related to other
word types in the corpus (Yarowsky et al., 2001).

We take a novel approach to segmenting words
and clustering morphologically related words.
The approach uses no parameters that need to
be tuned on data. The two main ideas of the
approach are (a) the filtering of affixes by sig-
nificant co-occurrence, and (b) the integration of
knowledge of document boundaries when gener-

ating candidate stems and affixes and when clus-
tering morphologically related words. The main
application that we envision for our approach is
to produce interlinearized glossed texts for under-
resourced/endangered languages (Palmer et al.,
2009). Thus, we strive to eliminate hand-tuned
parameters to enable documentary linguists to use
our model as a preprocessing step for their manual
analysis of stems and affixes. To require a docu-
mentary linguist–who is likely to have little to no
knowledge of NLP methods–to tune parameters is
unfeasible. Additionally, data-driven exploration
of parameter settings is unlikely to be reliable in
language documentation since datasets typically
are quite small. To be relevant in this context, a
model needs to produce useful results out of the
box.

Constraining learning by using document
boundaries has been used quite effectively in un-
supervised word sense disambiguation (Yarowsky,
1995). Many applications in information retrieval
are built on the statistical correlation between doc-
uments and terms. However, we are unaware of
cases where knowledge of document boundaries
has been used for unsupervised learning for mor-
phology. The intuition behind our approach is very
simple: if two words in a single document are
very similar in terms of orthography, then the two
words are likely to be related morphologically. We
measure how integrating these assumptions into
our model at different stages affects performance.

We define a simple pipeline model. After gen-
erating candidate stems and affixes (possibly con-
strained by document boundaries), aχ2 test based
on global corpus counts filters out unlikely affixes.
Mutually consistent affix pairs are then clustered
to form affix groups. These in turn are used to
build morphologically related word clusters, pos-
sibly constrained by evidence from co-occurence
of word forms in documents. Following Schone
and Jurafsky (2000), clusters are evaluated for
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whether they capture inflectional paradigms using
CELEX (Baayen et al., 1993).

We are unaware of other work on morphology
usingχ2 tests despite its wide application across
many disciplines.1 This may be due to the large
degree of noise found in the candidate affix sets
induced through other candidate generation meth-
ods. Theχ2 test has two standard thresholds–a
significance threshold and a lower bound on ob-
served counts. These are the only manually set
parameters we require—and we in fact use the
widely accepted standard values for these thresh-
olds without varying them in our experiments.
This is a significant improvement over other ap-
proaches that typically require a number of arbi-
trary thresholds and parameters yet provide little
intuitive justification for them. (We give examples
of these in§3.)

We evaluate our approach on two languages,
English and Uspanteko, and compare its per-
formance to two benchmark systems, Morfessor
(Creutz and Lagus, 2007) and Linguistica (Gold-
smith, 2001). English is commonly used in other
studies and permits the use of CELEX as a gold
standard for evaluation. Uspanteko is an endan-
gered Mayan language for which we have a set of
interlinearized glossed texts (IGT) (Pixabaj et al.,
2007; Palmer et al., 2009). IGT provides word-
by-word morpheme segmenation, which we use
to create a synthetic gold standard. In addition
to evaluation against this standard, Telma Kaan
Pixabaj—a Mayan linguist who helped create the
annotated corpus—reviewed by hand 100 word
clusters produced by our system, Morfessor and
Linguistica. Note that because English is suffixal
and Uspanteko is both prefixal and suffixal, we use
a slightly modified model for Uspanteko.

The approach introduced in this paper compares
favorably to Linguistica and Morfessor, two mod-
els that employ much more complex strategies and
rely on experimentally-tuned language/corpus-
specific parameters. In our evaluation, document
boundary awareness greatly benefits precision for
small datasets, blocking acquisition of spurious af-
fixes. For large datasets, global candidate genera-
tion outperforms document-aware candidate gen-
eration at the task of filtering out spurious stems,
but document-aware clustering improves preci-
sion. These findings are promising for the applica-
tion of this approach to under-resourced languages

1Monson (2004) suggests, but does not actually use,χ2.

like Uspanteko.

2 Unsupervised morphology acquisition

Unsupervised morphology acquisition aims to
model one or more of three properties ofwrit-
tenmorphology: segmentation, clustering around
a common stem, and generation of new word
forms with productive affixes. Intuitively, there are
straightforward, but non-trivial, challenges that
arise when evaluating a model. One large chal-
lenge is distinguishing derivational from inflec-
tional morphology. Most approaches deal with to-
kens without considering context. Since inflec-
tional morphology is virtually always driven by
syntax and word context, such approaches are un-
able to learn only inflectional morphology or only
derivational morphology. Even approaches which
take context into consideration (Schone and Juraf-
sky, 2000; Baroni et al., 2002; Freitag, 2005) can-
not learn specifically for one or the other.

In addition, the evaluation of both segmentation
and clustering involves arbitrary judgment calls.
Concerning segmentation, shouldaltimeter and
altitude be one morpheme or two? (The sam-
ple English gold standard for MorphoChallenge
2009 providesalti+meterbutaltitude.) Similar is-
sues arise when evaluating clusters of related word
forms if inflection and derivation are not distin-
guished. Doesatheismbelong to the same cluster
astheism? Where is the frequency cutoff point be-
tween a productive derivational morpheme and an
unproductive one? Yet, many studies have eval-
uated their segmentations and clusters by going
over their results word by word, cluster by cluster
and judging by sight whether some segmentation
or clustering is good (e.g., Goldsmith (2001)).

Like Schone and Jurafsky (2001), we build clus-
ters that will have both inflectionally and deriva-
tionally related stems and evaluate them with re-
spect to a gold standard ofonly inflectionally re-
lated stems.

3 Related work

There is a diverse body of existing work on unsu-
pervised morphology acquisition. We summarize
previous work, emphasizing some of its more ar-
bitrary andad hocaspects.

Letter successor variety. Letter successor va-
riety (LSV) models (Hafer and Weiss, 1974;
Gaussier, 1999; Bernhard, 2005; Bordag, 2005;
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Keshava and Pitler, 2005; Hammarström, 2006;
Dasgupta and Ng, 2007; Demberg, 2007) use the
hypothesis that there is less certainty when pre-
dicting the next character at morpheme bound-
aries. LSV has several issues that require fine pa-
rameter tuning. For example, Hafer and Weiss
(1974) counts how many types of characters ap-
pear after some initial string (thesuccessorcount)
and how many types of characters appear before
some final string (thepredecessorcount). A suc-
cessful criterion for segmenting a word was if the
predecessor count for the second part was greater
than 17 and the successor count for the first part
was greater than 5. Other studies have similar data
specific parameters and restrictions.

MDL and Bayesian models. Minimum descrip-
tion length (MDL) models (Goldsmith, 2001;
Creutz and Lagus, 2002; Creutz and Lagus, 2004;
Goldsmith, 2006; Creutz and Lagus, 2007) try to
segment words by maximizing the probability of
a training corpus subject to a penalty based on
the size of hypothesized morpheme lexicons they
build on the basis of the segmentations. While the-
oretically elegant, a pure implementation on real
data results in descriptions that do not reflect ac-
tual morphology. Creutz and Lagus (2005) re-
port that, “frequent word forms remain unsplit,
whereas rare word forms are excessively split.” In
the end, every MDL approach uses probabilisti-
cally motivated refinements that restrict the ten-
dency of raw MDL to generate descriptions that
do not fit linguistic notions of morphology. De-
spite the sophistication of the models in this group,
there are many parameters that need to be set, and
heuristic search procedures are crucial for their
success (Goldwater, 2007). Snover et al. (2002)
present a Bayesian model that uses a prior distribu-
tion to refine disjoint clusters of morphologically
related words. It disposes with parameter setting
by selecting the highest ranking hypothesis.

Context aware approaches. A word’s mor-
phology is strongly influenced by its syntactic and
semantic context. Schone and Jurafsky (2000) at-
tempts to cluster morphologically related words
starting with an unrefined trie search (but with a
parameter of minimum possible stem length and
an upper bound on potential affix candidates) that
is constrained by semantic similarity in a word
context vector space. Schone and Jurafsky (2001)
builds on this approach, but adds moread hoc

parameters to handle circumfixation. Baroni et
al. (2002) takes a similar approach but uses edit
distance to cluster words that are similar but do
not necessarily share a long, contiguous substring.
They remove noise by constraining cluster mem-
bership with mutual information derived semantic
similarity. Freitag (2005) uses a mutual informa-
tion derived measure to learn thesyntacticsimi-
larity between words and clusters them. Then he
derives finite state machines across words in dif-
ferent clusters and refines them through a graph
walk algorithm. This group is the only one to eval-
uate against CELEX (Schone and Jurafsky, 2000;
Schone and Jurafsky, 2001; Freitag, 2005).

Others. Some other models require input such
as POS tables and lexicons and use a wider range
of information about the corpus (Yarowsky and
Wicentowski, 2000; Yarowsky et al., 2001; Chan,
2006). Because of the knowledge dependence of
these models, they are able to properly induce
inflectional morphology, as opposed to the stud-
ies cited above. Snyder and Barzilay (2008) uses
a set of aligned phrases across related languages
to learn how to segment words with a Bayesian
model and is otherwise fully unsupervised.

4 Model2

Our goal is to generateconflation sets: sets of
word types that are related through either inflec-
tional or derivational morphology (Schone and Ju-
rafsky, 2000). Solving this task requires learning
how individual types are segmented (though the
segmentation itself is not evaluated). For present
purposes, we assume that the affixal pattern of the
language is known: whether it is prefixal, suffixal,
or both. To simplify presentation, we discuss a
model that captures suffixes only. Our approach is
a four stage process:

1. Candidate Generation: generate candidate
stems and affixes using an orthographically
defined data structure (a trie)

2. Candidate Filtering: filter candidate affixes
using the statistical significance for pairs of
affixes based on their co-occurence counts
with shared stems

3. Affix Clustering: cluster significant affix pairs
into affix groups

2The code implementing the model is available from
http://comp.ling.utexas.edu/earl
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4. Word Clustering: form conflation sets based
on affix clusters

The first and last stages are particularly prone to
noise, which has necessitated many of the thresh-
olds and heuristics employed in previous work.
We hypothesize that naturally occuring document
boundaries provide a strong constraint that should
reduce this noise, and we test that hypothesis by
using it in those stages.

Our intuition comes from an observation by
Yarowsky (1995) regarding multiple tokens of
words in documents. He tabulates theapplicabil-
ity of using document boundaries to disambiguate
word senses, which measures how often a given
word occurs more than twice in the same docu-
ment. For ten potentially ambiguous words, he
counts how often they occur more than once in
some document and finds that if the words do oc-
cur, they do so multiple times in 50.1% of these
documents, on average. His counts ignored mor-
phological variation, and it is likely theapplica-
bility measure would have increased considerably:
if a content word is used more than once in some
text, it is likely to be repeated in different syntactic
contexts, requiring the word to be inflected or to be
derived for a different part-of-speech category.3

For stage one, we build separate tries for each
document rather than a trie for the entire corpus.
This should reduce the chance that orthographi-
cally similar but morphologically unrelated word
pairs lead to bad candidates by reducing the search
space for words which share a stem to a local doc-
ument. For example,assuageandassumeare both
likely to occur in a large corpus and suggest that
there is a stemassuwith affixes -age and -me.
They are less likely to occur together in many dif-
ferent documents that form the corpus, whereas
assume, assumed, andassumingare. We refer to
this document constrained candidate generation as
CandGen-D, and to the unconstrained generation
(a single trie for all documents) asCandGen-G.

For stage four, documents are used to constrain
potential membership of words in clusters: all
pairs of words in a cluster must have occured to-
gether in some document. We refer to document-
constrained clustering asClust-D and the uncon-
strained global clustering asClust-G.

3For example, in just thisone paragraph we have
{document,documents}, {measure, measures}, {occur, oc-
curs, occuring}, and{word, words}.

4.1 Candidate generation

Given a document or collection of documents, we
use tries (prefix trees) to identify potential stems
and affixes and collect statistics for co-occurrences
between affixes and between affixes and stems.

a

b c

d $

Figure 1

A trie G, like the example
on the right, can be iden-
tified with the set of all
words on paths from the
root to any leaf, in the case
of the example figure the
set G = {abd, ab$, ac}.
(We use $ to denote an
empty affix.) Given a trie
G over alphabetL, we de-
fine the set oftrunksof G
as all paths from the root to a branching point:

Tr(G) = {w ∈ L+ |∃a, b ∈ L, x1, x2 ∈ L∗ :
a 6= b ∧ wax1, wbx2 ∈ G}

Also, we define the set ofbranchesof a trunkt ∈
Tr(G) as the paths from its branching points to the
leaves:

Br(t,G) = {x ∈ L+ | tx ∈ G}

In our example, {a, ab} are the trunks, with
Br(a, G) = {bd, b$, c} and Br(ab, G) = {d, $}.
When we use a trie to induce stems and affixes,
all induced stems will be trunks, and all induced
affixes will be branches.

From a given trie, we induce a set ofstem can-
didatesandaffix candidates. A simple criterion is
used: if a trunk is longer than all of its branches,
the trunk is a stem candidate and its branches are
affix candidates. So, the set of stem candidates for
a trieG, CStem(G), is the set of trunkst ∈ Tr(G)
such that|t| > |b| for all b ∈ Br(t, G).

Given a stem candidates ∈ CStem(G), its set of
affix candidatesCAff(s, G) is identical to its set of
branches. (To talk about the sets of stem and affix
candidates for a whole trieG or a set of tries, we
write CAff(G), StC(G), CAff, andCStem.) The
countof an affix candidateb ∈ CAff is the number
of stem candidates with which it occurs:

count(b) =
∑

G

|{s ∈ CStem(G) | b ∈ CAff(s,G)}|

For Fig. 1, the set of stem candidates is{ab} (since
some branches of the trunka are longer than the
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trunk itself). The matching set of affix candidates
is CAff(ab, G) = {d, $}, each with a count of one.

An affix rule candidateis an unordered pair of
affix candidates{b1, b2}. It states that any stem
occurring withb1 can also occur withb2. Affix
rules implement the assumption that all produc-
tive affixes will cooccur with other productive af-
fixes and that these will form a coherent group.
The rule candidates for a given stem candidate
s ∈ CStem(G) are:

CRule(s, G) =
{{b1, b2} ⊆ CAff(s, G) | b1 6= b2

}
For example, the single stem candidateab in
Fig. 1 has one rule candidate,{d, $}. We also use
CRule(G) for the rule candidates of a trieG across
all stems, andCRulefor the union of rule candi-
dates in a set of tries.

The count of a rule candidater={b1, b2} in a
trie is the number of stem candidates it appears
with:

count(r) =
∑

G

|{s ∈ CStem(G) | r ∈ CRule(s, G)}|

We also useCAff(s) for the set of affix candidates
of stems across several tries, andCRule(s) for the
set of rule candidates of a stems across several
tries.

Document-specific versus global candidate gen-
eration. CandGen-Ddefines separate tries for
every document in the corpus and induces stem,
affix and rule candidates for each document.
CandGen-Ginstead induces these candidates for
a global trie over all the words in the corpus.
From the perspective of the formalism laid out
above, the only difference is thatCandGen-D
has as many triesGi as there are documentsi
and CandGen-Ghas only oneG. This simple
difference leads to different candidate sets and
counts over their occurrences. For example, say
two documents contain the pairputt/putts and
another containsbogey/bogeys. With CandGen-
D, count($)=3, count(s)=3, and count($, s)=2.
For the same documents,CandGen-Gwould pro-
duce count($)=2 and count(s)=2 sinceputt/putts
would have occurred only once in the global trie.

Also, consider a rare pair such asaard-
vark/aardvarkswhere each word is found in a dif-
ferent document. The pair would be identified
by CandGen-Gbut not byCandGen-D. The pair
would contribute a count of one to count($, s) in

CandGen-Gbut not inCandGen-D. So,CandGen-
G can provide better coverage, but it is also more
likely to identify noisy candidates, such asas-
suage/assumed, thanCandGen-D.

4.2 Candidate filtering

The sets of candidatesCStem, CAff, CRule is ex-
pected to be noisy since the only basis for gener-
ating them was strings that share a large portion of
their substrings. One way of filtering candidates is
to find affix candidates whose co-occurence with
other candidates is not statistically significant.

We measure correlation between candidate af-
fixes b1, b2 in a candidate rule with the paired
χ2 test. By usingχ2, we only consider pairwise
correlation between affixes, rather than attempting
global inference. Global consistency of affix sets
is not ensured, and as such the approach is sus-
ceptible to the multiple comparisons problem. We
still opt for this approach for its simplicity and be-
cause global inference is problematic due to data
sparseness.

Correlation betweenb1 andb2 is determined by
the following contingency table:4

b1 ∼ b1

b2 O11 O12

∼ b2 O21 O22

Based on the significance testing, we define the set
of valid rulesPairRuleas those for which theχ2

test is significant atp < 0.05. Thus, affix can-
didates not significantly correlated with any other
affix in CAff are discarded.

4.3 Affix clustering

The previous stage produces a set ofpairs of af-
fixes that are significantly correlated. However,
inflectional paradigms rarely contain just two af-
fixes, so we would like to group together affix
pairs into larger affix sets to improve generaliza-
tion. We use a bottom up, minimum distance clus-
tering for valid affix pairs (rules). We do not as-
sume that cluster membership is exclusive. For
example, it would not make sense to determine
that the null affix-$ can belong to only one cluster.
Therefore, we produce non-disjoint affix clusters.

A valid cluster of affixes is a maximal set of af-
fixes forming pairwise valid rules:Aff ⊆ CAff is a
valid cluster of affixes iff

4where O11 = count({b1, b2}), O12 = count(b2) −
O11, O21 = count(b1)−O11, O22 = N−O11−O12−O21

andN =
P

b∈CAff count(b). See table (1) for examples.
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ed ∼ed
ing 10273 21853

∼ing 27120 4119332

(a)χ2 = 352678

le ∼le
s 122 132945

∼s 936 4044575

(b) χ2 = 239.132

ed ∼ed
ing 2651 1310

∼ing 1490 150848

(c) χ2 = 65101.6

le ∼le
s 20 12073

∼s 198 144008

(d) χ2 = 0.631, p = 0.427

Table 1: Affix counts in contingency tables for the valid paired/ingand spurious pairle/saccording to
CandGen-Din (a) and (b) and according toCandGen-Gin (c) and (d).χ2 test values are given under
each table. Data is from NYT. Total affix token counts inducedthroughCandGen-DandCandGen-G
areN=4178578 andN=156299, respectively. A total of 2054 and 3739 affixtypeswere induced for
CandGen-DandCandGen-G, respectively showing thatCandGen-Gdoes have better coverage though
it might have more noise.

1. ∀b1, b2 ∈ Aff : {b1, b2} ∈ PairRule, and

2. If b ∈ CAff with ∀b′ ∈ Aff : {b, b′} ∈
PairRule, thenb ∈ Aff.

The set of all valid affix clusters isGroupRule.
This formulation does not rule out the existence
of clusters with affixes in common.

4.4 Word clustering

We next cluster word forms into morphologically
related groups. Our model assumes two word
forms to be morphologically related iff (1) they oc-
curred in the same trieG, (2) they have a trunks in
common that is a stem inStem(G), and (3) their af-
fixes under this stems are members in a common
valid affix cluster inGroupRule. Hence a single
stems can be involved in at most|GroupRule| con-
flation sets, one for each valid affix cluster. Again,
the only distinction between clustering with a
global trie (Clust-G) and clustering with several
tries from the documents in a corpus (Clust-D) is
that the former has only one trie.

We define the conflation set for a given stems ∈
Stemand valid affix clusterAff ∈ GroupRuleas

Wd(s, Aff) = {sb1, sb2 | b1, b2 ∈ Aff∧
∃G.s ∈ Stem(G) ∧ b1, b2 ∈ CAff(s,G)}

One issue that needs clarification is when the
candidate generation and clustering stages use dif-
ferent strategies, i.e. the modelsCandGen-D
+Clust-G and CandGen-G+Clust-D. This sim-
ply means that thestatistics, and thus the valid
GroupRule, are derived from eitherCandGen-Dor
CandGen-G.

4.5 Induction for languages that are both
prefixal and affixal

The above approach would not fit a language that
is prefixal and suffixal. Assuming we have in-

duced separate conflation sets over a prefix trie and
a suffix trie, we merge clusters between the two if
they have at least one word form in common. For-
mally, given a set of prefix conflation setsPCSand
a set of suffix conflation setsSCS, the final set of
conflation setsCSis:

CS= {p ∪ s |p ∈ PCS, s ∈ SCS∧ p ∩ s 6= ∅}

5 Data

We apply our method on English and Uspanteko,
an endangered Mayan language.

Learning corpora. For English, we use two
subsets of the NYTimes portion in the Gigaword
corpus which we will call NYT andMINI -NYT.
NYT in the current study is the complete collec-
tion of articles in the New York Times from June,
2002. NYT has 10K articles, 88K types and 9M
tokens. MINI -NYT is a subset of NYT with 190
articles, 15K types and 187K tokens.

The Uspanteko text, USP has 29 distinct texts,
7K types, and 50K tokens. The texts are from
OKMA (Pixabaj et al., 2007) and the segmenta-
tion and labels of the interlinear glossed text anno-
tations were checked for consistency and cleaned
up (Palmer et al., 2009). All counts are for lower-
cased, punctuation-removed word forms.

CELEX. The CELEX lexical database (Baayen
et al., 1993) has been built for Dutch, English and
German and provides detailed entries that list and
analyze the morphological properties of words,
among other information. Using CELEX, we eval-
uate on types rather than tokens. The performance
of the model is based on how many of the words it
judges to be morphologically related overlap with
the entries in CELEX. Following previous work
(Schone and Jurafsky, 2000; Schone and Jurafsky,
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2001; Freitag, 2005), we evaluate on inflectional
clusters only, using the CELEX file listing clusters
of inflectional variants.5

6 Experiments and evaluation

We outline our evaluation methodology, baselines,
benchmarks and results, and discuss the results.

6.1 Evaluation metric

Schone and Jurafsky (2000) give definitions for
correct (C), inserted (I), and deleted (D) words
in model-derived conflation sets in relation to a
gold standard. Their formulation does not allow
for multiple cluster membership of words. We ex-
tend the definition to incorporate this fact about the
data. Letw be a word form. We writeXw for the
clusters induced by the model that containw, and
Yw for gold standard clusters containingw. Xw

andYw only count words which occurred in both
model and gold standard clusters. Then

C =
∑
w

∑
Xw

∑
Yw

(|Xw ∩ Yw|/|Yw|)

I =
∑
w

∑
Xw

∑
Yw

(|Xw − (Xw ∩ Yw)|/|Yw|)

D =
∑
w

∑
Xw

∑
Yw

(|Yw − (Xw ∩ Yw)|/|Yw|)

Based on these definitions, we formulate preci-
sion (P ), recall (R), and thef -score (F ) as:P =
C/(C+I), R = C/(C+D), F = (2PR)/(P +R).

USP evaluation We use two different means to
evaluate the performance on USP. One is the
f -score derived from the above section with re-
spect to a standard that was automatically gen-
erated from the morpheme segment tiers of the
OKMA IGT. We generated the standard by taking
non-hyphenated segments as the stem and cluster-
ing words with shared stems.

We also had an expert in Uspanteko manually
evaluate a random subset (N = 100) of the model
output to compensate for any failings in the stan-
dard. The evaluator determined a dominant stem
for a cluster and identified words which were not
related to that stem. We measured accuracy and

5CELEX does have a second file listing words and their
breakup into constituent morphemes for both derivation and
inflection, but its use would have required additional process-
ing that could introduce errors.
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Figure 2: Precision/recall graph for baseline ex-
periments on English, prefix USP(Usp-P) and suf-
fix USP (Usp-S).

full cluster accuracy6 for the expert evaluations
(table 4).

We experimented on Uspanteko with three dif-
ferent assumptions: (1) it is only prefixal; (2) it is
only suffixal; (3) it is both prefixal and suffixal.
We applied the assumptions of only prefixal or
only suffixal to LINGUISTICA as well. The rele-
vant results are given row headers in tables with a
corresponding+P(prefix) or+S(suffix).

6.2 Baselines and benchmarks

In a set of baselines, we put words which share
the first k characters into the same cluster. We
do this for NYT, MINI -NYT, and USP in a pre-
fix tree, and for USP in suffix tree (using the lastk
characters). We set the values of0 < k < max,
wheremax is the length of the longest string, and
plot the results in a precision-recall graph (Fig. 2).
Low k corresponds to high recall and low preci-
sion while highk shows the opposite. The contrast
in morphological patterns for each language can
also be seen. Because Uspanteko is morpholog-
ically complex with suffixes and prefixes, a very
simple strategy cannot achieve high recall as op-
posed to English where it is possible to retrieve all
variants with a simple prefix tree.

We use Linguistica (Goldsmith, 2001) and Mor-
fessor (Creutz and Lagus, 2007) as benchmarks.
We used the default settings for these programs.
Note that comparison with these tools is not com-

6Given a model clusterCi and the “misses” for each clus-
terMi, accuracy is measured as1/N

P
i(|Ci|−|Mi|)/(|Ci|)

whereN is the sample size. Full cluster accuracy is the num-
ber of clusters that did not have any misses overN .
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MINI -NYT NYT
P R F P R F

L INGUISTICA 64.30 93.34 76.15 47.50 88.33 61.77
MORFESSOR 45.2 87.8 59.7 63.6 69.2 66.3

CandGen-D+ Clust-G 69.41 91.42 78.91 46.00 79.81 58.36
CandGen-D+ Clust-D 83.47 80.36 81.89 59.02 74.50 65.86
CandGen-G+ Clust-G 73.44 88.72 80.36 61.81 82.98 70.85
CandGen-G+ Clust-D 88.34 77.95 82.82 77.71 70.24 73.79

Table 2: Results on English for all models in precision(P), recall(R),f -score(F) for each data set.

pletely fair. Morfessor only generates segmenta-
tions. We therefore processed Morfessor output
by clustering words by assuming that the longest
segment in any segmentation is the stem and eval-
uated this instead. Linguistica produces stems and
associated suffixes so the clusters naturally follow
from this output. However, Linguistica only infers
either prefix or suffix patterns.

6.3 Results and discussion

The results on English are in table 2 withχ2 test
criteria ofp<0.05 and each cell in the contingency
table>5. CandGen-G+Clust-D had the bestf -
score, and easily beats the benchmarks.

This is different from our expectation that
awareness of document boundaries at all stages
(i.e., CandGen-D+Clust-D) would show the best
results. The discrepancy is especially marked for
the larger NYT. One important reason for this is
the affix criterion itself: trunks must be longer than
branches. Consider again the sample contingency
tables in Table 1 that were derived from NYT
throughCandGen-DandCandGen-G. We had as-
sumed at the outset thatCandGen-Dwould be bet-
ter able to filter out noise and would be sparser, but
results show the opposite. The reason is that that
short words in a global lexicon are more likely to
share trunks with longer, unrelated words. This
ensures that short word forms rarely generate can-
didate affixes. Longer words which are less likely
to have spurious long branches generate the bulk
of candidate suffixes and stems. This is born out
by the stems that were associated with the spuri-
ous suffix pairle/s: CandGen-Ghascliente, cripp,
crumb, daniel, ender, label, mccord, nag, oval,
sear, stubb, whipp. CandGen-Dhascrumb, hand,
need, sing, tab, trick, trip. The word forms that
are associated withle/s through theCandGen-D
strategy arecrumble/crumbs, handle/hands, . . ..

Compare this with the word forms associated with
the search strategyCandGen-Gsuch asclien-
tele/clientes, cripple/crips, . . .. The majority of
them are not common English words; they are
most probably proper names such asLaBelleand
Searle. Furthermore, there is no item among the
stems from theCandGen-Gsearch where concate-
nating the stemsle andswould result in both word
forms being a common noun or verb as is the
case with the stems from theCandGen-Dsearch
where all concatenated word forms are common
English words. ThoughCandGen-Gfinds spuri-
ous stems, the counts for the spurious affix pair are
suppressed (see table 1) because it is a type count
rather than a token count. This results inle/s be-
ing properly excluded as a rule. This explains why
CandGen-Dhas worse precision in general than
CandGen-G.

The affix criterion has other minor issues. One
is that it ignores the few cases where stems are
shorter than affixes, such as the very common
words be, do, go.7 Assuming that the longest
productive inflectional suffix in English is-ing8,
the criterion would correctly find stem candidates
for -ing only when the stem is longer than 3 or
4 letters. Another is that the criterion, when
combined withCandGen-D, generates candidates
from the/them/then/their/thesewhich cooccur fre-
quently in documents. This is not an issue when
the criterion is applied inCandGen-G.

Nonetheless, results show that when data sizes
are small, as with USP (Table 3) andMINI -NYT,
awareness of document boundaries at the candi-
date generation stage is beneficial to precision.

7The exclusion of such words in atokenbased evaluation
as opposed to atypebased evaluation would heavily penalize
our approach. We are not aware, however, of any prior work
in unsupervised morphology that evaluates over tokens.

8with occasional gemination of final consonant such as
occur→ occurring
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P R F

Ca-D+ Cl-D 70.51 44.35 54.45
Ca-G+ Cl-G 70.00 46.87 56.15

Ca-D + Cl-D + S 88.58 45.21 59.86
Ca-D + Cl-G + S 85.03 44.75 58.64
Ca-G+ Cl-D + S 90.34 45.48 60.50
Ca-G+ Cl-G + S 84.54 46.03 59.60
Ca-D + Cl-D + P 93.84 47.90 63.42
Ca-D + Cl-G + P 89.94 47.38 62.06
Ca-G+ Cl-D + P 95.42 47.89 63.78
Ca-G+ Cl-G + P 92.03 50.01 64.80

L INGUISTICA + S 81.14 47.60 60.00
L INGUISTICA + P 84.15 52.00 64.28

MORFESSOR 28.12 62.28 38.75

Table 3: Performance of models on automatically
generated USP evaluation set.P: Prefix only,S:
Suffix only. If there is no indication ofS or P, it
means model attempted to learn both

Acc. FAcc. Avg. Sz.

Ca-G+ Cl-G 98.5 79.0 2.94
L INGUISTICA 96.0 85.0 2.64
MORFESSOR 85.3 55.0 4.8

Table 4: Human expert evaluated accuracy (Acc.)
and full cluster accuracy (FAcc.) of models on
USPand average cluster size in words (Avg. Sz.)

However, it seems thatCandGen-Ghas better cov-
erage no matter the size of the corpus, which
explains why coupling it withClust-D produces
overall better scores.Clust-Ddoes provide a use-
ful added constraint to mere orthographic similar-
ity (i.e. shared trunks in a trie).

A worrisome aspect of the results is that perfor-
mance degrades for large data sets (this is also true
for Linguistica). However, it also hints that this
method might work well for under-resourced lan-
guages. We surmise that since productive suffixes
do not suffer from sparsity, even a small data set
provides sufficient evidence to reach reliable con-
clusions about the productive morphology of some
language. Increasing the size of the data merely
increases the counts of spurious affixes and poses
problems for a relative simple measure such as
theχ2 test. A similar result was shown in Creutz
and Lagus (2005) wheref -score performance of
their segmentation method improved as more data
was provided then decreased as the input exceeded

250K tokens in English. Their method showed
continued improvement with increased data for
Finnish. This hints that more data is beneficial
for morphologically complex languages but not
for morphologically impoverished languages.

Finally, it is also encouraging that the manual
evaluation (Table 4) shows very high accuracy, as
judged by a documentary linguist. Both our model
and Linguistica perform very well under this eval-
uation.

7 Conclusion

We have presented a novel approach to unsuper-
vised morphology acquisition that uses a very
simple pipeline and does not use any thresholds
other than standard ones associated with theχ2

test. The model relies on document boundaries
and correlation tests for filtering spurious stems
and affixes. The model compares favorably to
Linguistica and Morfessor, two models that em-
ploy much more complex strategies and rely on
fine-tuned parameters. We found that the use of
document boundaries is especially beneficial with
small datasets, which is promising for the applica-
tion of this model to under-resourced languages.
For large datasets, global candidate generation
outperformed document-aware candidate genera-
tion at the task of filtering out spurious stems,
but document-aware clustering does improve pre-
cision and overall performance.

In this paper we have addressed one aspect of
morphology acquisition, segmentation and clus-
tering. Extending the approach is straightforward,
for example, substituting more sophisticated data
structures or statistical tests for the current ones.
In particular, we will move from the use of doc-
ument boundaries to a flexible notion of textual
distance to estimate likelihood of morphological
relatedness.
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Abstract

We extend previous work on fully unsu-
pervised part-of-speech tagging. Using
a non-parametric version of the HMM,
called the infinite HMM (iHMM), we ad-
dress the problem of choosing the number
of hidden states in unsupervised Markov
models for PoS tagging. We experi-
ment with two non-parametric priors, the
Dirichlet and Pitman-Yor processes, on the
Wall Street Journal dataset using a paral-
lelized implementation of an iHMM in-
ference algorithm. We evaluate the re-
sults with a variety of clustering evalua-
tion metrics and achieve equivalent or bet-
ter performances than previously reported.
Building on this promising result we eval-
uate the output of the unsupervised PoS
tagger as a direct replacement for the out-
put of a fully supervised PoS tagger for the
task of shallow parsing and compare the
two evaluations.

1 Introduction

Many Natural Language Processing (NLP) tasks
are commonly tackled using supervised learning
approaches. These learning methods rely on the
availability of labeled datasets which are usually
produced by expensive manual annotation. For
some tasks, we have the choice to use unsuper-
vised learning approaches. While they do not nec-
essarily achieve the same level of performance,
they are appealing as unlabeled data is usually
abundant. In particular, for the purpose of ex-
ploring new domains and languages, obtainining
labeled material can be prohibitively expensive
and unsupervised learning methods are a very at-
tractive choice. Recent work (Johnson, 2007;
Goldwater and Griffiths, 2007; Gao and Johnson,
2008) explored the task of part-of-speech tagging

(PoS) using unsupervised Hidden Markov Models
(HMMs) with encouraging results. PoS tagging is
a standard component in many linguistic process-
ing pipelines, so any improvement on its perfor-
mance is likely to impact a wide range of tasks.

It is important to point out that a completely
unsupervised learning method will discover the
statistics of a dataset according to a particular
model choice but these statistics might not cor-
respond exactly to our intuition about PoS tags.
Johnson (2007) and Gao & Johnson (2008) as-
sume that words are generated by a hidden Markov
model and find that the resulting states strongly
correlate with POS tags. Nonetheless, identifying
the HMM states with appropriate POS tags is hard.
Because many evaluation methods often require
POS tags (rather than HMM states) this identifica-
tion problem makes unsupervised systems difficult
to evaluate.

One potential solution is to add a small amount
of supervision as in Goldwater & Griffiths (2007)
who assume a dictionary of frequent words asso-
ciated with possible PoS tags extracted from a la-
beled corpus. Although this technique improves
performance, in this paper we explore the com-
pletely unsupervised approach. The reason for this
is that better unsupervised approaches provide us
with better starting points from which to explore
how and where to incorporate supervision.

In previous work on unsupervised PoS tagging
a main question was how to set the number of hid-
den states appropriately. Johnson (2007) reports
results for different numbers of hidden states but it
is unclear how to make this choice a priori, while
Goldwater & Griffiths (2007) leave this question
as future work.

It is not uncommon in statistical machine learn-
ing to distinguish between parameters of a model
and the capacity of a model. E.g. in a clustering
context, the choice for the number of clusters (ca-
pacity) and the parameters of each cluster are often
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treated differently: the latter are estimated using
algorithms like EM, MCMC or Variational Bayes
while the former is chosen using common sense,
heuristics or in a Bayesian framework maybe us-
ing evidence maximization.

Non-parametric Bayesian methods are a class of
probability distributions which explicitly treat the
capacity of a model as “just another parameter”.
Potential advantages are

• the model capacity can automatically adjust
to the amount of data: e.g. when clustering
a very small dataset, it is unlikely that many
fine grained clusters can be distinguished,

• inference can be more efficient: e.g. instead
of running full inference for different model
capacities and then choosing the best ca-
pacity (according to some choice of “best”),
inference in non-parametric Bayesian meth-
ods integrates the capacity search in one al-
gorithm. This is particularly advantageous
when parameters other than capacity need to
be explored, since it reduces signifcantly the
number of experiments needed.

None of these potential advantages are guaranteed
and in this paper we investigate these two aspects
for the task of unsupervised PoS tagging.

The contributions in this paper extend previous
work on unsupervised PoS tagging in five ways.
First, we introduce the use of a non-parametric
version of the HMM, namely the infinite HMM
(iHMM) (Beal et al., 2002) for unsupervised PoS
tagging. This answers an open problem from
Goldwater & Griffiths (2007). Second, we care-
fully implemented a parallelized version of the
inference algorithms for the iHMM so we could
use it on the Wall Street Journal Penn Treebank
dataset. Third, we introduce a new variant of
the iHMM that builds on the Pitman-Yor process.
Fourth, we evaluate the results with a variety of
clustering evaluation methods and achieve equiv-
alent or better performances than previously re-
ported. Finally, building on this promising result
we use the output of the unsupervised PoS tagger
as a direct replacement for the output of a fully su-
pervised PoS tagger for the task of shallow pars-
ing. This evaluation enables us to assess the appli-
cability of an unsupervised PoS tagging method
and provides us with means of comparing its per-
formance against a supervised PoS tagger.

The rest of the paper is structured as follows:
in section 2 we introduce the iHMM as a non-
parametric version of the Bayesian HMM used
in previous work on unsupervised PoS tagging.
Then, in section 3 we describe some details of
our implementation of the iHMM. In section 4 we
present a variety of evaluation metrics to compare
our results with previous work. Finally, in sec-
tion 5 we report our experimental results. We con-
clude this paper with a discussion of ongoing work
and experiments.

2 The Infinite HMM

In this section, we describe a non-parametric hid-
den Markov model known as the infinite HMM
(iHMM) (Beal et al., 2002; Teh et al., 2006). As
we show below, this model is flexible in the num-
ber of hidden states which it can accomodate. In
other words, the capacity is an uncertain quantity
with an a priori infinite range that is a posteriori
inferred by the data. It is instructive to first re-
view the finite HMM and its Bayesian treatment:
for one, it is the model that has been used in previ-
ous work on unsupervised PoS tagging, secondly
it allows us to better understand the iHMM.

The Bayesian HMM A finite first-order HMM
consists of a hidden state sequence s =
(s1, s2, . . . , sT ) and a corresponding observation
sequence y = (y1, y2, . . . , yT ). Each state vari-
able st can take on a finite number of states, say
1 . . .K. Transitions between states are governed
by Markov dynamics parameterized by the tran-
sition matrix π, where πij = p(st = j|st−1 =
i), while the initial state probabilities are π0i =
p(s1 = i). For each state st ∈ {1 . . .K} there
is a parameter φst which parameterizes the obser-
vation likelihood for that state: yt|st ∼ F (φst).
Given the parameters {π0,π,φ,K} of the HMM,
the joint distribution over hidden states s and ob-
servations y can be written (with s0 = 0):

p(s,y|π0,π,φ,K) =
T∏
t=1

p(st|st−1)p(yt|st)

As Johnson (2007) clearly explained, training the
HMM with EM leads to poor results in PoS tag-
ging. However, we can easily treat the HMM in a
fully Bayesian way (MacKay, 1997) by introduc-
ing priors on the parameters of the HMM. With
no further prior knowledge, a typical prior for the
transition (and initial) probabilities are symmet-
ric Dirichlet distributions. This corresponds to our
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belief that, a priori, each state is equally likely to
transition to every other state. Also, it is com-
monly known that the parameter of a Dirichlet
distribution controls how sparse its samples are.
In other words, by making the hyperprior on the
Dirichlet distribution for the rows of the transi-
tion matrix small, we can encode our belief that
any state (corresponding to a PoS tag in this ap-
plication context) will only be followed by a small
number of other states. As we explain below, we
will be able to include this desirable property in
the non-parametric model as well. Secondly, we
need to introduce a prior on the observation pa-
rameters φk. Without any further prior knowl-
edge, a convenient choice here is another sym-
metric Dirichlet distribution with sparsity induc-
ing hyperprior. This encodes our belief that only
a subset of the words correspond to a particular
state.

The Infinite HMM A first naı̈ve way to obtain
a non-parametric HMM with an infinite number
of states might be to use symmetric Dirichlet pri-
ors over the transition probabilities with parameter
α/K and take K → ∞. This approach unfortu-
nately does not work: α/K → 0 when K → ∞
and hence the rows of the matrix will become “in-
finitely sparse”. Since the sum of the entries must
sum to one, the rows of the transition matrix will
be zero everywhere and all its mass in a random
location. Unfortunately, this random location is
out of an infinite number of possible locations and
hence with probability 1 will be different for all
the rows. As a consequence, at each timestep the
HMM moves to a new state and will never revisit
old states. As we shall see shortly, we can fix this
by using a hierarchical Bayesian formalism where
the Dirichlet priors on the rows have a shared pa-
rameter.

Before moving on to the iHMM, let us look at
the finite HMM from a different perspective. The
finite HMM of length T with K hidden states can
be seen as a sequence of T finite mixture models.
The following equation illustrates this idea: con-
ditioned on the previous state st−1, the marginal
probability of observation yt can be written as:

p(yt|st−1 = k) =
K∑
st=1

p(st|st−1 = k)p(yt|st),

=
K∑
st=1

πk,stp(yt|φst). (1)

The variable st−1 = k specifies the mixing
weights πk,· for the mixture distribution, while st
indexes the mixture component generating the ob-
servation yt. In other words, equation (1) says that
each row of the transition matrix π specifies a dif-
ferent mixture distribution over the same set of K
mixture components φ.

Our second attempt to define a non-parametric
version of the hidden Markov model is to replace
the finite mixture by an infinite mixture. The
theory of Dirichlet process mixtures (Antoniak,
1974) tells us exactly how to do this. A draw
G ∼ DP (α,H) from a Dirichlet process (DP)
with base measure H and concentration parame-
ter α ≥ 0 is a discrete distribution which can be
written as an infinite mixture of atoms

G(·) =
∞∑
i=1

πiδφi(·)

where the φi are i.i.d. draws from the base mea-
sure H , δφi(·) represents a point distribution at
φi and πi = vi

∏i−1
l=1(1 − vl) where each vl ∼

Beta(1, α). The distribution over πi is called a
stick breaking construction and is essentially an
infinite dimensional version of the Dirichlet dis-
tribution. We refer to Teh et al. (2006) for more
details.

Switching back to the iHMM our next step is to
introduce a DP Gj for each state j ∈ {1 · · ·∞};
we write Gj(·) =

∑∞
i=1 π

j
i δφji

(·). There is now
a parameter for each state j and each index i ∈
{1, 2, · · · ,∞}. Next, we draw the datapoint at
timestep t given that the previous datapoint was in
state st−1 by drawing from DP Gst−1 . We first se-
lect a mixture component st from the vector πst−1,·
and then sample a datapoint yt ∼ F (φst−1,st) so
we get the following distribution for yt

p(yt|α, st−1) =
∞∑
st=1

πst−1,stp(yt|φst−1,st).

This is almost the non-parametric equivalent of
equation (1) but there is a subtle difference: each
Gj selects their own set of parameters φj· . This
is unfortunate as it means that the output distribu-
tion would not be the same for each state, it would
depend on which state we were moving to! Luck-
ily, we can easily fix this: by introducing an in-
termediate distribution G0 ∼ DP (γ,H) and let
Gj ∼ DP (α,G0) we enforce that the i.i.d. draws
φj· are draws from a discrete distribution (sinceG0
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is a draw from a Dirichlet process) and hence all
Gj will share the same infinite set of atoms as cho-
sen byG0. Figure 1 illustrates the graphical model
for the iHMM.

The iHMM with Pitman-Yor Prior The
Dirichlet process described above defines a very
specific distribution over the number of states
in the iHMM. One particular generalization of
the Dirichlet process that has been studied in the
NLP literature before is the Pitman-Yor process.
Goldwater et al. (2006) have shown that the
Pitman-Yor distribution can more accurately cap-
ture power-law like distributions that frequently
occur in natural language.

More specifically, a draw G ∼ PY (d, α,H)
from a Pitman-Yor process (PY) with base mea-
sure H , discount parameter 0 ≤ d < 1 and con-
centration parameter α > −d is a discrete distri-
bution which can be written as an infinite mixture
of atoms

G(·) =
∞∑
i=1

πiδφi(·)

where the φi are i.i.d. draws from the base mea-
sure H , δφi(·) represents a point distribution at
φi and πi = vi

∏i−1
l=1(1 − vl) where each vl ∼

Beta(1−d, α+ ld). Note the similarity to the DP:
in fact, the DP is a special case of PY with d = 0.

In our experiments, we constructed an iHMM
where the DP (α,H) base measure G0 is re-
placed with its two parameter generalization
PY (d, α,H). Because the Dirichlet and Pitman-
Yor processes only differ in the way π is con-
structed, without loss of generality we will de-
scribe hyper-parameter choice and inference in the
context of the iHMM with Dirichlet process base
measure.

Hyperparameter Choice The description
above shows that there are 4 parameters which
we must specify: the base measure H , the
output distribution p(yt|φst), the discount1 and
concentration2 parameters d, γ for G0 and the
concentration parameter α for the DP’sGj . Just as
in the finite case, the base measure H is the prior
distribution on the parameter φ of p(yt|φst). We
chose to use a symmetric Dirichlet distribution
with parameter δ over the word types in our
corpus. Since we do not know the sparsity level δ
of the output distributions we decided to learn this

1for Pitman-Yor base measure
2for both Dirichlet and Pitman-Yor base measures

parameter from the data. We initially set a vague
Gamma prior over δ but soon realized that as we
expect hidden states in the iHMM to correspond
to PoS tags, it is unrealistic to expect each state
to have the same sparsity level. Hence we chose
a Dirichlet process as the prior for δ; this way
we end up with a small discrete set of sparsity
levels: e.g. we can learn that states corresponding
to verbs and nouns share one sparsity level
while states correpsonding to determiners have
their own (much sparser) sparsity level. For the
output distribution p(yt|φst) we chose a simple
multinomial distribution.

The hyperparameters d and γ mostly control the
number of states in the iHMM while - as we dis-
cussed above - α controls the sparsity of the tran-
sition matrix. In the experiments below we report
both fixing the two parameters and learning them
by sampling (using vague Gamma hyperpriors).
Because of computational constraints, we chose to
use vague Bayesian priors for all hyperparameters
rather than run the whole experiment over a grid of
“reasonable” parameter settings and use the best
ones according to cross validation.

3 Inference

The Wall Street Journal part of the Penn Tree-
bank that was used for our experiments contains
about one million words. In the non-parametric
Bayesian literature not many algorithms have been
described that scale into this regime. In this sec-
tion we describe our parallel implementation of
the iHMM which can easily handle a dataset of
this scale.

There is a wealth of evidence (Scott, 2002; Gao
and Johnson, 2008) in the machine learning litera-
ture that Gibbs sampling for Markov models leads
to slow mixing times. Hence we decided our start-
ing point for inference needs to be based on dy-
namic programming. Because we didn’t have a
good idea for the number of states that we were go-
ing to end up with, we prefered the beam sampler
of Van Gael et al. (2008) over a finite truncation
of the iHMM. Moreover, the beam sampler also
introduces a certain amount of sparsity in the dy-
namic program which can speed up computations
(potentially at the cost of slower mixing).

The beam sampler is a blocked Gibbs sampler
where we alternate between sampling the param-
eters (transition matrix, output parameters), the
state sequence and the hyperparameters. Sam-
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Figure 1: The graphical model for the iHMM. The variable β represents the mixture for the DP G0.

pling the transition matrix and output distribu-
tion parameters requires computing their sufficient
statistics and sampling from a Dirichlet distribu-
tion; we refer to the beam sampling paper for de-
tails. For the hyperparameters we use standard
Gibbs sampling. We briefly sketch the resam-
pling step for the state sequence for a single se-
quence of data (sentence of words). Running stan-
dard dynamic programming is prohibitive because
the state space of the iHMM is infinitely large.
The central idea of the beam sampler is to adap-
tively truncate the state space of the iHMM and
run dynamic programming. In order to truncate
the state space, we sample an auxilary variable ut
for each word in the sequence from the distribu-
tion ut ∼ Uniform(0, πst−1st) where π represents
the transition matrix.

Intuitively, when we sample u1:T |s1:T accord-
ing to the distribution above, the only valid sam-
ples are those for which the ut are smaller than
the transition probabilities of the state sequence
s1:T . This means that when we sample s1:T |u1:T

at a later point, it must be the case that the ut’s
are still smaller than the new transition probabil-
ities. This significantly reduces the set of valid
state sequences that we need to consider. More
specifically, Van Gael et al. (2008) show that we
can compute p(st|y1:t, u1:t) using the following
dynamic programming recursion p(st|y1:t, u1:t) =

p(yt|st)
∑

st−1:ut<πst−1,st

p(st−1|y1:t−1, u1:t−1).

The summation
∑

st−1:ut<πst−1,st
ensures that this

computation remains finite. When we compute
p(st|y1:t, u1:t) for t ∈ {1 · · ·T}, we can easily
sample sT and using Bayes rule backtrack sample
every other st. It can be shown that this procedure

produces samples from the exact posterior.
Notice that the dynamic program only needs to

perform computation when ut < πst−1,st . A care-
ful implementation of the beam sampler consists
of preprocessing the transition matrix π and sort-
ing its elements in descending order. We can then
iterate over the elements of the transition matrix
starting from the largest element and stop once
we reach the first element of the transition matrix
smaller than ut. In our experiments we found that
this optimization reduces the amount of computa-
tion per sentence by an order of magnitutde.

A second optimization which we introduced
is to use the map-reduce paradigm (Dean and
Ghemawat, 2004) to parallelize our computations.
More specifically, after we preprocess the transi-
tion matrix, the dynamic program computations
are independent for each sentence in the dataset.
This means we can perform each dynamic pro-
gram in parallel; in other words our “map” con-
sists of running the dynamic program on one sen-
tence in the dataset. Next, we need to resample
the transition matrix and output distribution pa-
rameters. In order to do so we need to compute
their sufficient statistics: the number of transitions
from state to state and the number of emissions of
each word out of each state. Our “reduce” func-
tion consists of computing the sufficient statistics
for each sentence and then aggregating the statis-
tics for the whole dataset. Our implementation
runs on a quad-core shared memory architecture
and we find an almost linear speedup going from
one to four cores.

4 Evaluation

Evaluating unsupervised PoS tagging is rather dif-
ficult mainly due to the fact that the output of such
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systems are not actual PoS tags but state identi-
fiers. Therefore it is impossible to evaluate per-
formance against a manually annotated gold stan-
dard using accuracy. Recent work (Goldwater and
Griffiths, 2007; Johnson, 2007; Gao and Johnson,
2008) on this task explored a variety of method-
ologies to address this issue.

The most common approach followed in pre-
vious work is to evaluate unsupervised PoS tag-
ging as clustering against a gold standard using
the Variation of Information (VI) (Meilă, 2007).
VI assesses homogeneity and completeness us-
ing the quantities H(C|K) (the conditional en-
tropy of the class distribution in the gold stan-
dard given the clustering) and H(K|C) (the con-
ditional entropy of clustering given the class dis-
tribution in the gold standard). However, as Gao
& Johnson (2008) point out, VI is biased to-
wards clusterings with a small number of clus-
ters. A different evaluation measure that uses
the same quantities but weighs them differently is
the V-measure (Rosenberg and Hirschberg, 2007),
which is defined in Equation 2 by setting the pa-
rameter β to 1.

h = 1− H(C|K)
H(C)

c = 1− H(K|C)
H(K)

Vβ =
(1 + β)hc
(βh) + c

(2)

Vlachos et al. (2009) noted that V-measure favors
clusterings with a large number of clusters. Both
of these biases become crucial in our experiments,
since the number of clusters (states of the iHMM)
is not fixed in advance. Vlachos et al. proposed a
variation of the V-measure, V-beta, that adjusts the
balance between homogeneity and completeness
using the parameter β in Eq. 2.

It is worth mentioning that, unlike V-measure
and V-beta, VI scores are not normalized
and therefore they are difficult to interpret.
Meilă (2007) presented two normalizations,
acknowledging the potential disadvantages
they have. The first one normalizes VI by
2 log(max(|K|, |C|)), which is inappropriate
when the number of clusters discovered |K|
changes between experiments. The second
normalization involves the quantity logN which
is appropriate when comparing different algo-
rithms on the same dataset (N is the number

of instances). However, this quantity depends
exclusively on the size of the dataset and hence if
the dataset is very large it can result in normalized
VI scores misleadingly close to 100%. This does
not affect rankings, i.e. a better VI score will also
be translated into a better normalized VI score. In
our experiments, we report results only with the
un-normalized VI scores, V-measure and V-beta.

All the evaluation measures mentioned so far
evaluate PoS tagging as a clustering task against
a manually annotated gold standard. While this
is reasonable, it still does not provide means of
assessing the performance in a way that would
allow comparisons with supervised methods that
output actual PoS tags. Even for the normalized
measures V-measure and V-beta, it is unclear how
their values relate to accuracy levels. Gao & John-
son (2008) partially addressed this issue by map-
ping states to PoS tags following two different
strategies, cross-validation accuracy, and greedy
1-to-1 mapping, which both have shortcomings.
We argue that since an unsupervised PoS tagger is
trained without taking any gold standard into ac-
count, it is not appropriate to evaluate against a
particular gold standard, or at least this should not
be the sole criterion. The fact that different authors
use different versions of the same gold standard to
evaluate similar experiments (e.g. Goldwater &
Griffiths (2007) versus Johnson (2007)) supports
this claim. Furthermore, PoS tagging is seldomly
a goal in itself, but it is a component in a linguistic
pipeline.

In order to address these issues, we perform an
extrinsic evaluation using a well-explored task that
involves PoS tags. While PoS tagging is consid-
ered a pre-processing step in many natural lan-
guage processing pipelines, the choice of task is
restricted by the lack of real PoS tags in the out-
put of our system. For our purposes we need a
task that relies on discriminating between PoS tags
rather than the PoS tag semantics themselves, in
other words, a task in which knowing whether a
word is tagged as noun instead of a verb is equiv-
alent to knowing it is tagged as state 1 instead of
state 2. Taking these considerations into account,
in Section 5 we experiment with shallow pars-
ing in the context of the CoNLL-2000 shared task
(Tjong Kim Sang and Buchholz, 2000) in which
very good performances were achieved using only
the words with their PoS tags. Our intuition is that
if the iHMM (or any unsupervised PoS tagging
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method) has a reasonable level of performance, it
should improve on the performance of a system
that does not use PoS tags. Moreover, if the per-
formance is very good indeed, it should get close
to the performance of a system that uses real PoS
tags, provided either by human annotation or by a
good supervised system. Similar extrinsic evalu-
ation was performed by Biemann et al. (2007). It
is of interest to compare the results between the
clustering evaluation and the extrinsic one.

A different approach in evaluating non-
parametric Bayesian models for NLP is state-
splitting (Finkel et al., 2007; Liang et al., 2007).
In this setting, the model is used in order to re-
fine existing annotation of the dataset. While this
approach can provide us with some insights and
interpretable results, the use of existing annotation
influences the output of the model. In this work,
we want to verify whether the output of the iHMM
(without any supervision) can be used instead of
that of a supervised system.

5 Experiments

In all our experiments, the Wall Street Journal
(WSJ) part of the Penn Treebank was used. As ex-
plained in Section 4, we evaluate the output of the
iHMM in two ways, as clustering with respect to a
gold standard and as direct replacement of the PoS
tags in the task of shallow parsing. In each experi-
ment, we obtain a sample from the iHMM over all
the sections of WSJ. The states for sections 15-18
and 20 of the WSJ (training and testing sets re-
spectvely in the CoNLL shared task) are used for
the evaluation based on shallow parsing, while the
remaining sections are used for evaluation against
the WSJ gold standard PoS tags using clustering
evaluation measures.

As described in Section 2 we performed three
runs with the iHMM: one run with DP prior and
fixed γ, α, one with PY prior and fixed d, γ, α and
one with DP prior but where we learn the hyper-
parameters γ, α from the data. Our inference algo-
rithm uses 1000 burn-in iterations after which we
collect a sample every 1000 iterations. Our infer-
ence procedure is annealed during the first 1000
burnin and 2400 iterations by powering the likeli-
hood of the output distribution with a number that
smoothly increases from 0.4 to 1.0 over the 3400
first iterations. The numbers of iterations reported
in the remainder of the section refer to the itera-
tions after burn-in. We initialized the sampler by:

a) sampling the hyperparameters from the prior
where applicable, b) uniformly assign each word
one out of 20 iHMM states. For the DP run with
fixed parameters, we chose α = 0.8 to encourage
some sparsity in the transition matrix and γ = 5.0
to allow for enough hidden states. For the PY run
with fixed parameters, we chose α = 0.8 for simi-
lar reasons and d = 0.1 and γ = 1.0. We point out
that one weakness of MCMC methods is that they
are hard to test for convergence. We chose to run
the simulations until they became prohibitively ex-
pensive to obtain a new sample.

First, we present results using clustering eval-
uation measures which appear in the figures of
Table 1. The three runs exhibit different behav-
ior. The number of states reached by the iHMM
with fixed parameters using the DP prior stabilizes
close to 50 states, while for the experiment with
learnt hyperparameters the number of states grows
more rapidly, reaching 194 states after 8,000 iter-
ations. With the PY prior, the number of states
reached grows less rapidly reaching 90 states. All
runs achieve better performances with respect to
all the measures used as the number of iterations
grows. An exception is that VI scores tend to in-
crease (lower VI scores are better) when the num-
ber of states grows larger than the gold standard.
It is interesting to notice how the measures exhibit
different biases, in particular that VI penalizes the
larger numbers of states discovered in the DP run
with learnt parameters as well as the run with the
PY prior, compared to the more lenient scores pro-
vided by V-measure and V-beta. The latter though
assigns lower scores to the DP run with learnt pa-
rameters because it takes into account that the high
homogeneity is achieved using even more states.
Finally, the interpretability of these scores presents
some interest. For example, in the run with fixed
parameters using the DP prior, after burn-in VI
was 4.6, which corresponds to 76.65% normalized
VI score, while V-measure and V-beta were 12.7%
and 9% respectively. In 8,000 iterations after burn-
in, VI was 3.94 (80.3% when normalized), while
V-measure and V-beta were 53.3%, since the num-
ber of states was almost the same as the number of
unique PoS tags in the gold standard.

The closest experiment to ours is the one by
Gao & Johnson (2008) who run their Bayesian
HMM over the whole WSJ and evaluated against
the full gold standard, the only difference being
is that we exclude the CoNLL shared task sec-
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Table 1: Performance of the three iHMM runs according to clustering evaluation measures against num-
ber of iteretions (in thousands).
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Table 2: Performance of the output of the three iHMM runs when used in shallow parsing against number
of iteretions (in thousands).

tions from our evaluation, which leaves us with 19
sections instead of 24. Their best VI score was
4.03886 which they achieved using the collapsed,
sentence-blocked Gibbs sampler with the number

of states fixed to 50. The VI score achieved by the
iHMM with fixed parameters using the PY prior
reaches 3.73, while using the DP prior VI reaches
4.32 with learnt parameters and 3.93 with fixed
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parameters. These results, even if they are not
directly comparable, are on par with the state-of-
the-art, which encouraged us to proceed with the
extrinsic evaluation.

For the experiments with shallow parsing we
used the CRF++ toolkit3 which has an efficient
implementation of the model introduced by Sha &
Pereira (2003) for this task. First we ran an experi-
ment using the words and the PoS tags provided in
the shared task data and the performances obtained
were 96.07% accuracy and 93.81% F-measure.
The PoS tags were produced using the Brill tag-
ger (Brill, 1994) which employs tranformation-
based learning and was trained using the WSJ cor-
pus. Then we ran an experiment removing the
PoS tags altogether, and the performances were
93.25% accuracy and 88.58% F-measure respec-
tively. This gave us some indication as to what the
contribution of the PoS tags is in the context of the
shallow parsing task at hand.

The experiments using the output of the iHMM
as PoS tags for shallow parsing are presented in
Table 2. The best performance achieved was
94.48% and 90.98% in accuracy and F-measure,
which is 1.23% and 2.4% better respectively than
just using words, but worse by 1.57% and 2.83%
compared to using the supervised PoS tagger out-
put. Given that the latter is trained on WSJ we be-
lieve that this is a good result. Interestingly, this
was obtained by using the last sample from the
iHMM run using the DP prior with learnt param-
eters which has worse overall clustering evalua-
tion scores, especially in terms of VI. This sample
though has the best homogeneity score (69.39%).
We believe that homogeneity is more important
than the overall clustering score due to the fact
that, in the application considered, it is probably
worse to assign tokens that belong to different PoS
tags to the same state, e.g. verb and adverbs, rather
than generate more than one state for the same
PoS. This is likely to be the case in tasks where
we are interested in distinguishing between PoS
tags rather than the actual tag itself. Also, clus-
tering evaluation measures tend to score leniently
consistent mixing of members of different classes
in the same cluster. However, such mixing results
in consistent noise when the clustering output be-
comes input to a machine learning method, which
is harder to deal with.

3http://crfpp.sourceforge.net/

6 Conclusions - Future Work

In the context of shallow parsing we saw that the
performance of the iHMM does not match the
performance of a supervised PoS tagger but does
lead to a performance increase over a model us-
ing only words as features. Given that it was con-
structed without any need for human annotation,
we believe this is a good result. At the same time
though, it suggests that it is still some way from
being a direct drop-in replacement for a supervised
method. We argue that the extrinsic evaluation of
unsupervised PoS tagging performed in this paper
is quite informative as it allowed us to assess our
results in a more realistic context. In this work we
used shallow parsing for this, but we are consider-
ing other tasks in which we hope that PoS tagging
performance will be more crucial.

Our experiments also suggest that the number of
states in a Bayesian non-parametric model can be
rather unpredictable. On one hand, this is a strong
warning towards inference algorithms which per-
form finite truncation of non-parametric models.
On the other hand, the remarkable difference in
behavior between the DP with fixed and learned
priors suggests that more research is needed to-
wards understanding the influence of hyperparam-
eters in Bayesian non-parametric models.

We are currently experimenting with a semi-
supervised PoS tagger where we let the transi-
tion matrix of the iHMM depend on annotated
PoS tags. This model allows us to: a) use an-
notations whenever they are available and do un-
supervised learning otherwise; b) use the power
of non-parametric methods to possibly learn more
fine grained statistical structure than tag sets cre-
ated manually.

On the implementation side, it would be in-
teresting to see how our methods scale in a dis-
tributed map-reduce architecture where network
communication overhead becomes an issue.

Finally, the ultimate goal of our investigation is
to do unsupervised PoS tagging using web-scale
datasets. Although the WSJ corpus is reasonably
sized, our computational methods do not currently
scale to problems with one or two order of magni-
tude more data. We will need new breakthroughs
to unleash the full potential of unsupervised learn-
ing for NLP.
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Abstract
We propose a new model for unsupervised
POS tagging based on linguistic distinc-
tions between open and closed-class items.
Exploiting notions from current linguis-
tic theory, the system uses far less infor-
mation than previous systems, far simpler
computational methods, and far sparser
descriptions in learning contexts. By ap-
plying simple language acquisition tech-
niques based on counting, the system is
given the closed-class lexicon, acquires a
large open-class lexicon and then acquires
disambiguation rules for both. This sys-
tem achieves a 20% error reduction for
POS tagging over state-of-the-art unsuper-
vised systems tested under the same con-
ditions, and achieves comparable accuracy
when trained with much less prior infor-
mation.

1 Introduction

All recent research on unsupervised tagging, as
well as the majority of work on supervised tag-
gers, views POS tagging as a sequential labeling
problem and treats all POS tags, both closed- and
open-class, as roughly equivalent. In this work we
explore a different understanding of the tagging
problem, viewing it as a process of first identifying
functional syntactic contexts, which are flagged
by closed-class items, and then using these func-
tional contexts to determine the POS labels. This
disambiguation model differs from most previous
work in three ways: 1) it uses different encod-
ings over two distinct domains (roughly open- and
closed-class words) with complementary distribu-
tion (and so decodes separately); 2) it is determin-
istic and 3) it is non-lexicalized. By learning dis-
ambiguation models for open- and closed- classes
separately, we found that the deterministic, rule-
based model can be learned from unannotated data

by a simple strategy of selecting a rule in each ap-
propriate context with the highest count.

In contrast to this, most previous work on un-
supervised tagging (especially for English) con-
centrates on improving the parameter estima-
tion techniques for training statistical disambigua-
tion models from unannotated data. For exam-
ple, (Smith&Eisner, 2005) proposes contrastive
estimation (CE) for log-linear models (CRF),
achieving the current state-of-the-art performance
of 90.4%; (Goldwater&Griffiths, 2007) applies
a Bayesian approach to improve maximum-
likelihood estimation (MLE) for training genera-
tive models (HMM). In the main experiments of
both of these papers, the disambiguation model
is learned, but the algorithms assume a complete
knowledge of the lexicon with all possible tags for
each word. In this work, we propose making such
a large lexicon unnecessary by learning the bulk
of the lexicon along with learning a disambigua-
tion model.

Little previous work has been done on this nat-
ural and simple idea because the clusters found by
previous induction schemes are not in line with the
lexical categories that we care about. (Chan, 2008)
is perhaps the first with the intention of generat-
ing ”a discrete set of clusters.” By applying simi-
lar techniques to (Chan, 2008), which we discuss
later, we can generate clusters that closely approx-
imate the central open-class lexical categories, a
major advance, but we still require a closed-class
lexicon specifying possible tags for these words.
This asymmetry in our lexicon acquisition model
conforms with our understanding of natural lan-
guage as structured data over two distinct domains
with complementary distribution: open-class (lex-
ical) and closed-class (functional).

Provided with only a closed-class lexicon of
288 words, about 0.6% of the full lexicon, the sys-
tem acquires a large open-class lexicon and then
acquires disambiguation rules for both closed- and
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open-class words, achieving a tagging accuracy of
90.6% for a 24k dataset, as high as the current
state-of-the-art (90.4%) achieved with a complete
dictionary. In the test condition where both algo-
rithms are provided with a full lexicon, and are
trained and evaluated over the same 96k dataset,
we reduce the tagging error by up to 20%.

In Section 2 we explain our understanding of the
POS tagging problem in detail and define the no-
tions of functional context and open- and closed-
class elements. Then we will introduce our meth-
ods for acquiring the lexicon (Section 3) and learn-
ing disambiguation models (Section 4, 5 and 6)
step by step. Results are reported in Section 7 fol-
lowed by Section 8 which discusses the linguistic
motivation behind this work and the simplicity and
efficiency of our model.

2 The Tagging Problem

In most work on both unsupervised and supervised
problem, tagging is viewed as a sequential label-
ing problem. In this work, however, we would like
to explore another view on tagging especially con-
sidering language as structured data.

The engineering concept of POS tags derives
from the linguistic notion of syntactic category
which specifies the combinatorial properties of a
word in an underlying (syntactic) structure. Given
the parse structure for a given word sequence
which breaks the input into recursive functional
domains such as IP, VP and NP, the POS tag of
each word can be directly inferred. Of course, as-
suming a pre-parsed structure as input to POS tag-
ging is somewhat ridiculous, but it strongly mo-
tivates us to highlight the features of structural
information for POS tagging. Without resorting
to any intermediate representations richer than the
input string, we propose for engineering purposes
to capture the features of interest for POS tagging
by the functional items in language themselves.
Then tagging is considered to be a process of iden-
tifying the functional contexts (functional items in
context) in which the categorical property of the
target item can be inferred.

Following ideas in current linguistic theory dis-
cussed in Section 8, we observe that the functional
categories and some morphological endings serve
as markers of the functional domains themselves
(discussed above) and sit abstractly at the edge of
those domains; the open-class (lexical) items must
sit within appropriate functional domains. More

specifically, although long distance dependencies
are not at all rare, for a token in sequence, we
only consider adjacent closed-class words and the
verbal categorical feature (but not morphology) as
functional contexts, the core concept in our disam-
biguation model.

Our system uses five open-class categories:
three basic lexical categories verb, noun and ad-
verb, and two derived Nominal categories (the two
kinds of participles in English); and consider all
other words not included in those categories to be
closed-class items.

Overall, for the task of unsupervised tagging,
we use a rule-based disambiguation model con-
taining disambiguation rules conditioned on func-
tional contexts, and the model is learned from
unannotated data constrained by much less lexi-
cal knowledge than most previous work, namely
the closed-class lexicon as introduced below.

2.1 Closed-class Lexicon
A dictionary containing all possible tags for each
word is very useful to constrain the unsupervised
learning of a POS disambiguation model, and in
most previous work, a full lexicon computed from
the WSJ corpus (the source of both training and
test datasets) is used for both learning and tagging.
Since a full lexicon is not a reasonable resource,
we aim to limit the required knowledge to func-
tional (closed-class) words only.

It is hard to define functional words in a lin-
guistically strict sense, but this category is close
to the notion within the engineering field of NLP
of closed-class words, classes of words that are
not open for new members. From the engineer-
ing point of view, this implies that a closed class
has a finite and static number of members, so its
members can be listed once and for all.

For English, lists of closed-class categories such
as preposition, pronoun or even degree adverb, are
obtainable resources, but this is not necessarily the
case for other languages. In this paper, we leave
the automatic acquisition of a closed-class lexicon
for future work. For experiments in this work, we
automatically compute a closed-class lexicon from
the WSJ treebank 00-24 sections by picking out
those words that are labeled predominantly with
closed-class tags1. For each word selected as a
closed-class word, all possible tags encountered

1For each word, if the number of instances labeled by
closed-class tags is greater than by open-class tags, we select
it as a closed-class word.
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more than twice in the WSJ corpus are reserved
in the closed-class lexicon, so closed-class words
may also have open-class tags in our data set, a
source of noise in our results. As a core part of
language, this closed-class lexicon containing 288
entries, about 0.6% of the full lexicon by types,
should be invariant over various genres, which is
confirmed in experiments on both WSJ and Brown
corpus2.

2.2 Tagset
The 45 tags in the Penn Tagset (Marcus et al.,
2003) contain more information than just basic
lexical categories. In recent work on unsupervised
learning of POS taggers following (Smith&Eisner,
2005), the Penn tagset is reduced to 17 tags which
nicely improves the tagging performance.

Based on our view of POS tags as local mark-
ers of underlying syntactic structure, we derive 27
tags from a feature-based analysis of the original
Penn tagset. The main principle for reduction is
that we collapse any two tags which are not distin-
guishable by structural features; such features in-
clude +/-N, +/-V for predication and +/-wh, +/-en
for movement3. For example, under our analysis,
the tag ’VBG’ has the features [+V, +N, -tense, -
en], tag ’VBD’ [+V, +tense(past), -en], and ’VB’
[+V, -tense(finite), -en]. However, since we do not
consider the tense feature to be a structural feature,
we do not distinguish ’VBD’ from ’VB’; since
N(ominal) is a structural feature, ’VBG’ remains
distinct from both ’VBD’ and ’VB’. The 27 tags
do not cover all cases of ambiguities of closed-
class words in the original Penn tagset. Most no-
tably, adjectives are not separated from nouns.

This reduction naturally follows the crucial
properties of our disambiguation model. First of
all, our model is not lexicalized, so it can only
capture basic interactive relations between cate-
gories but cannot capture lexical dependencies,
which are heavily required to disambiguate ’RP’

2There are two special classes of words worthy of dis-
cussion with respect to being closed or open. 1. While the
morphological ending ’-ly’ freely introduces adverbs, this
category is otherwise essentially closed class; and 2. There
are obviously unboundedly many numbers(CD), but all these
match some regular pattern. So we include adverbs without
explicit morphological marking in the closed-class lexicon
(we frankly doubt adverbs can be acquired by distributional
clustering); and as for numbers, we embed exactly such a
regular pattern in our model.

3Not all features of tags are listed here, and further dis-
cussion of the feature-based analysis of the tagset is to be
reported in other work. This analysis of tags is motivated by
Chomsky.

Tagset #tags #closed #open amb./token
Smith&Eisner 17 7 6 2.07

ThisWork 27 12 6 1.83
Penn 45 15 15 2.74

Table 1: Comparison of tagsets

Category Open tags Closed tags
Verbal VB ...

Nominal NN, VBN, VBG DT, CD, PRP($), WDT, WP($)
None RB CC, EX, IN, MD, POS, TO

Table 2: N/V categories of 27 POS tags

with ’IN’ or ’PDT’ with ’DT’ (so these two pairs
are collapsed). More importantly, the structural
information carried by the closed-class items is
the key feature of our disambiguation model, but
nouns and adjectives are not distinguishable by
their structural positions (in NP), so they are not
to be distinguished in our tagset4.

We use this new reduced tagset with 27 tags in
our experiments5. For the purposes of comparison,
we map the results using our 27 tag tagset to the
commonly-used 17 tag tagset6, and evaluate our
algorithms for both tagsets. Table 1 compare the
three tagsets, and the ambiguity column shows the
average number of ambiguous tags per token in
WSJ corpus section 00-24.

2.3 NV category

By using the reduced 27 tags, we found in this
work that the heart of the disambiguation task
for open-class words is to distinguish them in the
Nominal vs. Verbal domains; and for the closed-
class words, the Nominal vs. Verbal property of
the adjacent context words is also very helpful for

4Due to the indistinguishable roles of adjectives and
nouns in Noun Phrase, it is also hard to extract the adjectives
from nouns for lexicon acquisition.

5For open-class categories, we keep VB (for VB*), NN
for (NN*), VBG, VBN and RB (for RB*), and we reduce the
JJ* tags to the tag NN and for closed-class tags, we keep al-
most all the original distinctions, except for two pairs: ’PDT’
and ’DT’; ’RP’ and ’IN’. Also ’WRB’ is reduced to ’RB’.

6In our tagset, there are two coarser tags which stand for
more than one tag in the 17 tags: ’NN’ stands for both ’N’ and
’ADJ’ and ’IN’ for both ’RP’ and ’IN’. So to map the output
of coarser tags to the finer ones, we need to look up the full-
lexicon, since adjectives are not extracted from nouns in the
lexicon acquisition process. For a word tagged as ’NN’ with
a possible tag of ’JJ’, if the following word is also tagged as
’NN’, then the current ’NN’ is mapped to ’JJ’. On the other
hand, no action is done for mapping ’IN’, so gold ’RP’ is
always mis-tagged as ’IN’ after mapping. If our tagging sys-
tem outputs a finer tag (e.g. WDT) then it is reduced to the
corresponding coarser one (e.g. ’W’) in mapping to 17 tags.
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disambiguation. The Nominal vs. Verbal property
is defined through N/V categories of POS tags, and
we list each category containing both closed-class
and open-class tags in table 2.

3 Acquiring the open-class lexicon

Not being equipped with a full lexicon, our system
takes the closed-class lexicon as given, and auto-
matically computes possible tags, which must be
open class, for all other words in the acquisition
process as described below. There are five open-
class tags in our reduced tagset, as we describe
above: ’VBG’ and ’VBN’ represent two kinds
of derived Nominal elements, with correspond-
ing morphological endings attached to the verbal
roots; and ’RB’ represents the adverbial class into
which new words can only be introduced if affixed
with the special ending ’-ly’. Taking into account
this special morphology, we divide our construc-
tion of the open-class lexicon into two steps: N/V-
Clustering and Morphing. At the N/V-clustering
step, we classify the base-forms (roots) of open-
class words into two clusters in a sparse feature
space. At the Morphing step, we count on the em-
bedded functional elements (i.e. morphology) to
derive specific tags for words in each cluster.

3.1 Clustering

Inducing syntactic categories is a language ac-
quisition task on which there has been ex-
tensive research, e.g. (Clark, 2003) and
(Schütze, 1993), based largely on variants
of distributional clustering. In a standard
setup of POS clustering, each target word to
be clustered, wi, is represented as a vector,
<count(wi,C1), count(wi,C2),...,count(wi,Cm)>,
collecting counts of occurrences ofwi in each con-
text, Cj . Then the chosen algorithm clusters the
feature vectors according to similarity.

In previous work, the contextual features are
lexical, so the length of a feature vector varies
from hundreds to thousands of features. The
clustering algorithm then runs over this high-
dimensional space, which is computationally quite
intensive. Unlike previous work, our system only
employs seven features, all functional, to represent
target words, and we are paid back by a substantial
improvement in efficiency. Each open-class word
is represented in the feature space by the following
seven component vector: <left:DT, left:MD, mid:-
φ, mid:-ed, mid:-ing, right:DT, right:MD>. The

first two values in this vector represent the counts
of modal verbs (MD) and determiners (DT) occur-
ring to the left of all forms of a base form; the three
values in the middle represent the counts of three
possible morphological forms of a word; and the
last two values represent the counts of an immedi-
ately following MD and DT. This radical reduction
of the feature space eliminates any need for so-
phisticated clustering techniques. For the purpose
of convenience, we use a basic k-means clustering
algorithm which allows us to specify the number
of output clusters (Maffi, 2007).

As is well known, clustering all words in a cor-
pus using distributional clustering results in a high
number of clusters. For example, (Schütze, 1993)
induces 200 clusters and (Clark, 2003) chooses
between 16-128; and most of these induced cate-
gories are difficult to associate with a specific POS
tag. Chan’s recent thesis work (Chan, 2008) pro-
vides us with a solution to this problem. In the first
pass of Chan’s model for unsupervised lexical cat-
egory induction, verbs are separated from all other
categories with a high level of purity; the second
pass separates adjectives from nouns by using the
categorical results from the first pass as an addi-
tional feature7. His experiments for a wide range
of languages show that the ”restriction to clus-
ter base forms only8” is crucial to induce clusters
more in line with the definition of the open-class
syntactic categories we care about here.

Here, we follow a variant of Chan’s approach,
grouping words with their base-forms for cluster-
ing. For example, we group all occurrences of the
transformed (morphological) forms, (start, starts,
starting and started), in a particular context, Cj ,
together with the base form start to form a single
count for (start, Cj), in forming the correspond-
ing feature vectors. Given this, since all inflections
of one base form share the same feature vector, all
inflections enter into the same class of their base-
form. In (Chan, 2008), morphological base forms
are the output of a new morphology induction al-
gorithm he develops. Here, we simply extract the
base form of a word by stripping three possible
forms of endings: -s, -ing and -ed9.

7For simplicity, we don’t run a second pass but reduce
adjectives to noun.

8See p.139 in (Chan, 2008)
9This simple strategy, as well as more complex morpho-

logical analyzers, cannot deal with irregular verbs, so we list
in memory the corresponding ’regular’ ending of each irreg-
ular verb. For example, we know that the ending of ran is
’-ed’, but we DO NOT know that ran is only the past tense
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3.2 Morphing

After the clustering step, which we intend to sep-
arate the Nominal and Verbal classes, two clusters
as desired are induced, but we still need a method
to automatically decide which one is which. A
trick that works well in practice is simply to pick
the smaller class as the Verbal class. These two
classes reflect the basic categories of the roots;
by a generative mechanism observed in most lan-
guages, roots (base-forms) are transformed into
derived categories by fusing with functional el-
ements, which surface as the few morphological
endings in English.

For all words in the Nominal class, except for
those with the ending -ly, the only possible tag for
each is ’NN’, since no finer categories of ’NN’ ex-
ist in our reduced tagset. On the other hand, for a
word with ending -ly falling into the N class, we
simply assume that its tag must be ’RB’, although
this assumption may have a few exceptions.

The Verbal class contains all words with ver-
bal roots. There are two specific endings in En-
glish serving as morphological markers of derived
Nominal categories, -ed and -ing, correspond-
ing to derived categories ’VBN’ and ’VBG’ re-
spectively. So for each word ending with -ed,
we assign two possible tags to it, ’VB’(our re-
duced form of ’VBD’) and ’VBN’; and for each
word ending with -ing we assume only one pos-
sible tag, ’VBG’, although this assumption may
systematically introduce tagging error confusing
’VBG’ and ’NN’. For example, if the feature vec-
tor representing the base-form group start, starts,
started,starting is classified into the verbal class,
then both starts and start will receive one possi-
ble tag ’VB’; starting will receive one possible tag
’VBG’; but started will receive two possible tags
’VBN’ and ’VB’.

As one may notice, start and starts should have
two senses, noun and verb, but the Nominal sense
is lost in the Morphing step. For such cases, we
introduce a simple supplemental process to com-
pensate for the missing Nominal sense. For a word
with the possible tag ’VB’ (not ’VBG’ or ’VBN’)
as determined in the Morphing step, if it is ever
seen following a determiner in context, another
possible tag ’NN’ will be assigned to it.

Remember that, as introduced in Sect 2.2,

form of run, because the ending ’-ed’ is ambiguous for both
past tense and past participle. The list of irregular verbs is
obtained from http://www.englishpage.com.

’VBN’, ’VBG’ and ’NN’ are of category N and
’VB’ is of category V. Then for each word in the
resulting lexicon, there is maximally one possible
tag of it falling in either category N or V, so the
category information (N or V) is enough for the
disambiguation task, as specified in Section 6.

4 Unsupervised Tagging

Taking a dictionary as input, the task of unsuper-
vised tagging is to learn a disambiguation model
from unannotated data and apply this model for
disambiguating the occurrences of words in con-
text. In this section, we are going to introduce the
representation of our disambiguation model first,
and then discuss how it affects the system design.
In the following two sections, we will describe the
algorithms for learning and decoding the language
model respectively.

4.1 Disambiguation Model

Again, we view tagging as a process of identifying
functional context, from which the proper tagging
simply follows. Given this, we represent the lan-
guage model as a set of disambiguation rules con-
ditioned on functional contexts that predict cate-
gorical information, with each rule of the form of
r = (con : cat) with con and cat the functional
context and categorical information respectively.

In both open- and closed-class domains, given
a pair of words (Wl,Wr), the disambiguation
rules check the functional property of Wl and pre-
dicts the N/V category of Wr. However, in the
open-class disambiguation model, con represents
closed-class items as well as verbal feature, but in
the closed-class disambiguation model, con rep-
resents closed-class categories (closed-class POS
tags). In disambiguating an open-class word, con
is checked against the preceding closed-class word
or verbal feature (if any), and cat of the follow-
ing open-class word is predicted. In disambiguat-
ing a closed-class word cw, each possible tag of
cw may invoke a rule and each rule will predict a
N/V category of the following item; if some rule
makes the right prediction, the corresponding tag
is assigned to cw. For example, he:V, a disam-
biguation rule for open-class words, says that if an
open-class token follows the closed-class item he,
then the Verbal tag should be assigned to this to-
ken. On the other hand, IN:N, a disambiguation
rule for closed-class words, says that if a closed-
class token precedes a Nominal word (open- or
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closed- class) in context and has a possible tag of
’IN’, then tag it with ’IN’.

This rule-based disambiguation model is deter-
ministic in the sense that for each token in context
there is maximally one tag that can be predicted.
Not being statistically parameterized, this greedy
prediction requires that 1) each rule is determin-
istic and 2) in each context, only one rule is in-
voked (which is guaranteed by the selection step
introduced in Section 5.2). Moreover, this disam-
biguation model is non-lexicalized in that it is only
conditioned on the functional items in context but
not the target word itself.

4.2 System Design
Ideally, we should use closed-class tags in con-
text for disambiguating open-class words because
closed-class words are potentially ambiguous; but
this would cause a chicken-egg problem. If we
did this, then the learning of disambiguation rules
for closed-class words requires category informa-
tion for open-class items and vice versa, but none
of the required category information is available
from the unannotated data10. Thanks to how lan-
guage works (including principally the low de-
gree of ambiguity of closed-class words), it is
good enough practically, as shown by our exper-
iments, to encode the disambiguation model for
open-class words using closed-class items without
categorical information.

In this way, we can learn the disambiguation
model of open-class items from raw data; how-
ever, closed-class disambiguation model is better
learned after open-class words are disambiguated.
Then there are four models in the system for learn-
ing and tagging over two distinct domains: Model-
LC and Model-LO for learning the disambigua-
tion model of closed- and open-class words re-
spectively; Model-DC and Model-DO for disam-
biguating closed- and open-class words respec-
tively; and they must be executed in a strict order
as follows: Model-LO → Model-DO → Model-
LC→Model-DC, as illustrated in Figure 1.

5 Learning Disambiguation Rules

In this section, we describe the learning algorithm
used in both Model-LO and Model-LC. Although
there is no annotated data available for learning,

10Our disambiguation model is not statistically parameter-
ized, so this problem can not be resolved by any kind of pa-
rameter estimation technique as in previous work on unsuper-
vised tagging.

Disamb.

LO

Learning

LC

DO

DC

Open

Closed

Figure 1: The order of the four models in system.

we can use the unambiguous events in data to
establish the disambiguation rules and apply the
rules to ambiguous events. The only difference in
implementation of the two models lies in the ’rule-
extraction’, corresponding to different interpreta-
tions of unambiguous events for learning open-
and closed-class disambiguation models. After
being extracted from pairs of adjacent words in the
input sequence, the rules are counted and selected
using the same algorithm in both models.

5.1 Rule-extraction

For open-class words, disambiguation rules are
extracted from raw data. A pair of adjacent words
(Wl,Wr) is considered unambiguous if it satis-
fies the following two conditions: 1. Wl is in
the closed class or an unambiguous type with only
possible tag of ’VB’; and 2. all possible tags ofWr

fall in the same N/V category (Nominal or Verbal
but not mixed). If (Wl,Wr) is unambiguous in this
sense, then extract rule r = (con : cat), where
con is Wl (for closed-class words) or ’V’ (for un-
ambiguous verbal words), and cat is the N/V cat-
egory of Wr. For example, in the sequence (...he
has claimed..), the pair (he, has) is unambiguous
in that he is a closed-class item and has has only
one possible tag, ’VB’, so a rule ((he : V ) is
extracted; but (has, claimed) is not usable since
claimed has two possible tags: ’VB’ of category
V and ’VBN’ of category N.

Disambiguation rules for closed-class words are
extracted after open-class disambiguation. A pair
of adjacent words (Wl,Wr) is considered unam-
biguous if it satisfies the following two conditions:
1. Wl is in the closed class and has only one
possible tag in the closed-class lexicon; 2. Wr

is either disambiguated or all possible tags of Wr

fall in the same N/V category. If (Wl,Wr) is un-
ambiguous in the above sense, then extract rule
r = (con : cat), where con is the single tag of
Wl, and cat is the N/V category of Wr. For ex-
ample, in the sequence ”...for his stepping...”, the
pair (for his) is unambiguous in that for has only
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one possible tag ’IN’ and both possible tags of his,
’PRP’ and ’PRP$’, fall into the Nominal category,
then a rule (IN : N) is extracted; but (his about)
is not usable since his has more than one possi-
ble tag and about has two possible tags, ’RB’ and
’IN’, which are neither both ’N’ nor both ’V’.

5.2 Counting and Selecting

In the counting step, a set of rules R is first initial-
ized to be empty, and then, as each disambigua-
tion rule r is generated while passing through the
data, if not already in R, it is added with an ini-
tial count of one; otherwise, Nr, the count of r,
is incremented by one. Note that we know that
for a rule, (con : cat), the prediction cat can
only be either N or V; then for each context con,
there are two forms of rules counted, (con : N)
or (con : V ). By selecting the rule with a greater
count for each context, we guarantee that the re-
sulting disambiguation model is deterministic.

6 Tagging

Given our rule-based, deterministic language
model, tagging is a straightforward process of
decoding the disambiguation rules. Recall that
there are two separate tagging models in the sys-
tem, Model-DO and Model-DC for disambiguat-
ing open- and closed-class respectively.

The inputs to Model-DO are the open-class lex-
icon, the disambiguation rules learned in Model-
LO and raw data in sequence. For each ambiguous
open-class word w in sequence if the preceding
closed-class word (if any) invokes a disambigua-
tion rule, r = (con : cat), then pick the possible
tag of w that falls in the category of cat (N or V),
as discussed in Section 3.2. If no rule is triggered
our default choice is ’NN’; but if ’NN’ is not a pos-
sible tag, we assume the default domain is Verbal
(so the ‘VB’ tag is favored).

The application of disambiguation rules in
Model-DC is a little more complex. For each
ambiguous closed-class word cw in sequence fol-
lowed by a token of category cat, N or V, pick a
possible tag of cw, con, such that (con : cat) is
a rule learned in Model-LC. If no tag is picked,
a random choice is made. While there are resid-
ual cases that no functional context can help with
tagging, the disambiguation model proposed here
combined with random choice results in a good
overall performance, as shown in section 7.3.

dict. with words of count > d
d 1 2 3 ∞ #tag

(percent lex.) (100%) (55%) (41%) (0.6%) -
BHMM2 87.3 79.6 65.0 - 17
CRF/CE 90.4 77.0 71.7 - 17
model-17 91.8 ... ... 90.6 17
model-27 93.2 ... ... 92.1 27
LDA+AC 93.4 91.2 89.7 - 17

Table 3: Tagging accuracy with partial dictionaries over
24k dataset; our closed-class lexicon is the closest approxi-
mation to the∞ column .

7 Results

Our unsupervised tagging system is com-
pared to the following models As reported in
(Banko&Moore, 2004), ’the quality of the lexicon
made available to unsupervised learner made the
greatest difference to tagging accuracy’. So we
only compare our experiments to recent work
built over the same dataset and a full lexicon
automatically extracted from the Penn Treebank.
As described in section 2.1, the closed-class
lexicon, special in our experiments, is also auto-
matically constructed from the WSJ corpus, and
will be used in experiments on both WSJ and
Brown corpora below11. CRF/CE (Smith&Eisner,
2005) and BHMM2 (Goldwater&Griffiths, 2007)
have been discussed briefly in the introduction.
LDA+AC (Toutanova&Johnson, 2007) is actually
a semi-unsupervised model given the prior on
p(t|w); despite this additional information, our
model outperforms it in experiments with partial
dictionaries. For the purpose of comparison,
our experiments use the same dataset as in these
previous work, varying in sizes from 12K to 96K.
In addition to reporting on our own tagset with 27
tags, we also map the results onto the 17 tags used
in other models as explained above.

7.1 Unsupervised Tagging over Partial
Dictionaries

As shown in Table 3, reducing the dictionary by
filtering rare words (with count<= d) has not been
a promising track to follow for accomplishing the
task with as little information as possible. How-
ever, by introducing a lexicon acquisition step, we
achieve a tagging accuracy of 90.6% for the 24K
test data with no prior open-class lexicon, pro-
vided with only a minimal lexicon of closed-class
items (about 0.6% of the full lexicon), as high as

11If we control the quality of the closed-class lexicon (but
still leave the full-lexicon untouched) by filtering out errors
in the Treebank, the performance is considerably higher.
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size 12K 24k 48k 96K #tag lex.
BHMM2 85.8 84.4 85.7 85.8 17 full
CRF/CE 86.2 88.6 88.4 89.4 17 full
Model-17 91.0 91.6 91.6 91.5 17 full
Model-27 93.1 93.6 93.5 93.4 27 full
model-17 88.9 89.3 90.2 90.4 17 closed
model-27 90.9 91.2 92.0 92.2 27 closed

Table 4: Tagging Accuracy of models trained over dataset
varying in sizes with full/closed-class lexicon

the best previous performance of 90.4 given a full
lexicon (CRF/CE with d = 1)12.

One other work that investigates the use of a
limited lexicon is (Haghighi&Klein, 2006), which
develops a prototype-drive approach to propagate
the categorical property using distributional simi-
larity features; using only three exemplars of each
tag, they achieve a tagging accuracy of 80.5% us-
ing a somewhat larger dataset but also the full
Penn tagset, which is much larger.

7.2 Varying in sizes
As shown in Table 4, our new algorithm reduces
tagging error by up to 20% over the state-of-the-
art given a full lexicon, from 89.4% to 91.5% over
the 96k dataset13.

To better understand the learning property of
our system and to get an estimate of the vari-
ance of our results above, we repeated the exper-
iments above, starting with either the full lexicon
or just the closed-class lexicon, with datasets vary-
ing from 0.5K to 96K in size, and repeated each
experiment 60 times on different sequences, with
four samples randomly selected from the Brown
corpus, one from the training data reported above
and the others from the WSJ corpus. As shown in
Figure 2, for the closed-class lexicon experiments,
the standard deviation of tagging accuracy over the
dataset of each size sharply decreases as the size of
the data increases, as expected. It is also clear that

12Since we are facing an unsupervised task, the training set
is unannotated, and hence there is no reason not to use it as the
test set as well. For the sake of comparison, we use the same
split of the dataset for training as previous work. In Table 3
the tagging model is trained over 96k and evaluated on 24k,
but in Table 4, the tagging model is trained and evaluated over
test and training sets of the same size.

13With a full lexicon, we need to disambiguate between
open-class tags which fall into the same N/V category, which
is beyond the ability of our disambiguation rules which pre-
dict N or V only. When more than one possible tag in the
same category predicted by the disambiguation rule, we sim-
ply make a random choice. Although not as constrained as
the acquired lexicon, a full lexicon does improve the tagging
performance, since the automatic lexicon acquisition is far
from perfect.
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Figure 2: Standard Deviation of Tagging Accuracy with
closed-class lexicon; 60 samples for each size, randomly se-
lected from both Brown and WSJ corpus.

system with system with
closed-class lexicon full lexicon

sub-model #errors accuracy #errors accuracy
Model-DO 1089 87.3% 3546 78.9%
Model-DC 1694 89.6% 1709 89.7%

random 1148 44.2% 981 44.9%
recall 3650 - 75 -
total 7581 75.2% 6311 82.1%

#ambiguous 30563 35229

Table 5: The number of errors and percent ambiguous to-
kens tagged correctly in the 96k dataset with 27 tags. For ei-
ther system built upon closed-class lexicon or full lexicon, the
table shows the disambiguation accuracy and number of er-
rors for each sub-model in the system: Model-DO for disam-
biguating open-class, Model-DC for disambiguating Closed-
class and random choice. The numbers of recall errors (gold
tag not in dictionary) and total errors for each system are also
shown.

the performance of our algorithm on the Brown
corpus is as strong as on the WSJ corpus. Results
for the full-lexicon are similar.

7.3 Error Analysis

There are certainly cases that no functional context
can help with tagging, since our disambiguation
models are encoded by functional context only.
Thus it is worth a closer look to how often the
system resorts to random choice, as well as to the
disambiguation accuracy of either disambiguation
model for open- and closed- class learned from
unannotated data. We show the disambiguation
accuracy of ambiguous words only for each model
in Table 5, and also the number of errors due to
imperfect lexicons or random choice.

8 Discussion and Future Work

In this work on unsupervised tagging, we com-
bine lexicon acquisition with the learning of a
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POS disambiguation model. Moreover, the dis-
ambiguation model we used is deterministic, non-
lexicalized and defined over two distinct do-
mains with complementary distribution (open- and
closed-class).

Building a lexicon based on induced clusters
requires our morphological knowledge of three
special endings in English: -ing, -ed and -s; on
the other hand, to reduce the feature space used
for category induction, we utilize vectors of func-
tional features only, exploiting our knowledge of
the role of determiners and modal verbs. How-
ever, the above information is restricted to the lex-
icon acquisition model. Taking a lexicon as in-
put, which either consists of a known closed-class
lexicon together with an acquired open-class lexi-
con or is composed by automatic extraction from
the Penn Treebank, we need NO language-specific
knowledge for learning the disambiguation model.

We would like to point the reader to (Chan,
2008) for more discussion on Category induc-
tion14; and discussions below will concentrate on
the proposed disambiguation model.

Current Chomskian theory, developed in the
Minimalist Program (MP) (Chomsky, 2006), ar-
gues (very roughly speaking) that the syntactic
structure of a sentence is built around a scaffold-
ing provided by a set of functional elements15.
Each of these provides a large tree fragment
(roughly corresponding to what Chomsky calls a
phase) that provide the piece parts for full utter-
ances. Chomsky observes that when these frag-
ments combine, only the very edge of the frag-
ments can change and that the internal structure of
these fragments is rigid (he labels this observation
the Phase Impenetrability Condition, PIC). With
the belief in PIC, we propose the concept of func-
tional context, in which category property can be
determined; also we notice the distinct distribution
of the elements (functional) on the edge of phase
and those (lexical) assembled within the phase.

Instead of chasing the highest possible perfor-
mance by using the strongest method possible, we
wanted to explore how well a deterministic, non-
lexicalized model, following certain linguistic in-
tuitions, can approach the NLP problem. For the

14In our experiment, using the base-forms and adding a
compensation process improves the coverage rate of the ac-
quired lexicon from 79% to 93%.

15Such as determiners (for NPs), complementizers like that
(for clauses), and case assigning elements associated with
transitive verbs (for propositions).

unsupervised tagging task, this simple model, with
less than two hundred rules learned, even outper-
forms non-deterministic generative models with
ten of thousands of parameters.

Another motivation for our pursuit of this deter-
ministic, non-lexicalized model is computational
efficiency16. It takes less than 3 minutes total for
our model to acquire the lexicon, learn the disam-
biguation model, tag raw data and evaluate the out-
put for a 96k dataset on a small laptop17. And a
model using only counting and selecting is com-
mon in the research field of language acquisition
and perhaps more compatible to the way humans
process language.

We are certainly aware that our work does not
yet address two problems: 1). How the system
can be adapted to work for other languages and
2) How to automatically obtain the knowledge of
functional elements. We believe that, given the
proper understanding of functional elements, our
system will be easily adapted to other languages,
but we clearly need to test this hypothesis. Also,
we are highly interested in completing our system
by incorporating the acquisition of functional el-
ements. (Chan, 2008) presents an extensive dis-
cussion of his work on morphological induction
and (Mintz et al., 2002) presents interesting psy-
chological experiments we can build on to acquire
closed-class words.
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Abstract 

Structured syntactic knowledge is important 
for phrase reordering. This paper proposes us-
ing convolution tree kernel over source parse 
tree to model structured syntactic knowledge 
for BTG-based phrase reordering in the con-
text of statistical machine translation. Our 
study reveals that the structured syntactic fea-
tures over the source phrases are very effective 
for BTG constraint-based phrase reordering 
and those features can be well captured by the 
tree kernel. We further combine the structured 
features and other commonly-used linear fea-
tures into a composite kernel. Experimental re-
sults on the NIST MT-2005 Chinese-English 
translation tasks show that our proposed 
phrase reordering model statistically signifi-
cantly outperforms the baseline methods. 

1 Introduction  

Phrase-based method (Koehn et al., 2003; Och 
and Ney, 2004; Koehn et al., 2007) and syntax-
based method (Wu, 1997; Yamada and Knight, 
2001; Eisner, 2003; Chiang, 2005; Cowan et al., 
2006; Marcu et al., 2006; Liu et al., 2007; Zhang 
et al., 2007c, 2008a, 2008b; Shen et al., 2008; Mi 
and Huang, 2008) represent the state-of-the-art 
technologies in statistical machine translation 
(SMT). As the two technologies are complemen-
tary in many ways, an interesting research topic 
is how to combine the strengths of the two me-
thods. Many research efforts have been made to 
address this issue, which can be summarized into 
two ideas. One is to add syntax into phrase-based 
model while another one is to enhance syntax-
based model to handle non-syntactic phrases. In 
this paper, we bring forward the first idea by 
studying the issue of how to utilize structured 

syntactic features for phrase reordering in a 
phrase-based SMT system with BTG (Bracketing 
Transduction Grammar) constraints (Wu, 1997). 

Word and phrase reordering is a crucial com-
ponent in a SMT system. In syntax-based method, 
word reordering is implicitly addressed by trans-
lation rules, thus the performance is subject to 
parsing errors to a large extent (zhang et al., 
2007a) and the impact of syntax on reordering is 
difficult to single out (Li et al., 2007). In phrase-
based method, local word reordering1 can be ef-
fectively captured by phrase pairs directly while 
local phrase reordering is explicitly modeled by 
phrase reordering model and distortion model. 
Recently, many phrase reordering methods have 
been proposed, ranging from simple distance-
based distortion model (Koehn  et al., 2003; Och 
and Ney, 2004), flat reordering model (Wu, 1997; 
Zens et al., 2004), lexicalized reordering model 
(Tillmann, 2004; Kumar and Byrne, 2005), to 
hierarchical phrase-based model (Chiang, 2005; 
Setiawan et al., 2007) and classifier-based reor-
dering model with linear features (Zens and Ney, 
2006; Xiong et al., 2006; Zhang et al., 2007a; 
Xiong et al., 2008). However, one of the major 
limitations of these advances is the structured 
syntactic knowledge, which is important to glob-
al reordering (Li et al., 2007; Elming, 2008), has 
not been well exploited. This makes the phrase-
based method particularly weak in handling 
global phrase reordering. From machine learning 
viewpoint (Vapnik, 1995), it is computationally 
infeasible to explicitly generate features involv-
ing structured information in many NLP applica-

                                                 
1 This paper follows the term convention of global reorder-
ing and local reordering of Li et al. (2007), between which 
the distinction is solely defined by reordering distance 
(whether beyond four source words) (Li et al., 2007). 

698



tions. For example, one cannot enumerate effi-
ciently all the sub-tree features for a full parse 
tree. This would be the reason why structured 
features are not fully utilized in previous statis-
tical feature-based phrase reordering model. 

Thanks to the nice property of kernel-based 
machine learning method that can implicitly ex-
plore (structured) features in a high dimensional 
feature space (Vapnik, 1995), in this paper we 
propose using convolution tree kernel (Haussler, 
1999; Collins and Duffy, 2001) to explore the 
structured syntactic knowledge for phrase reor-
dering and further combine the tree kernel with 
other diverse linear features into a composite 
kernel to strengthen the model’s predictive abili-
ty. Indeed, using tree kernel methods to mine 
structured knowledge has shown success in some 
NLP applications like parsing (Collins and Duffy, 
2001), semantic role labeling (Moschitti, 2004; 
Zhang et al., 2007b), relation extraction (Zhang 
et al., 2006), pronoun resolution (Yang et al., 
2006) and question classification (Zhang and 
Lee, 2003). However, to our knowledge, such 
technique still remains unexplored for phrase 
reordering. 

In this paper, we look into the phrase reorder-
ing problem in two aspects: 1) how to model and 
optimize structured features, and 2) how to com-
bine the structured features with other linear fea-
tures and further integrate them into the log-
linear model-based translation framework. Our 
study shows that: 1) the structured syntactic fea-
tures are very useful and 2) our kernel-based 
model can well explore diverse knowledge, in-
cluding previously-used linear features and the 
structured syntactic features, for phrase reorder-
ing. Our model displays one advantage over the 
previous work that it is able to utilize the struc-
tured syntactic features without the need for ex-
tensive feature engineering in decoding a parse 
tree into a set of linear syntactic features. 

To have a more insightful evaluation, we de-
sign three experiments with three different eval-
uation metrics. Experimental results on the NIST 
MT-2005 Chinese-English translation tasks show 
that our method statistically significantly outper-
forms the baseline methods in term of the three 
different evaluation metrics. 

The rest of the paper is organized as follows. 
Section 2 introduces the baseline method of 
BTG-based phrase translation method while sec-
tion 3 discusses the proposed method in detail. 
The experimental results are reported and dis-
cussed in section 4. Finally, we conclude the pa-
per in section 5. 

2 Baseline System and Method 

We use the MaxEnt-based BTG translation sys-
tem (Xiong et al., 2006) as our baseline. It is a 
phrase-based SMT system with BTG reordering 
constraint. The system uses the BTG lexical 
translation rules ( ܣ ՜ ݕ/ݔ ) to translate the 
source phrase ݔ  into target phrase ݕ , and the 
BTG merging rules ( ܣ ՜ ሾܣ, |ሿܣ ൏ ,ܣ ܣ ൐ ) to 
combine two neighboring phrases with a straight 
or inverted order. In the translation model, the 
BTG lexical rules are weighted with several fea-
tures, such as phrase translation, word penalty 
and language models, in a log-linear form. With 
the BTG constraint, the reordering model Ω is 
defined on the two neighboring phrases ܣଵ  and ܣଶ and their order ݋ א ሼݐ݄݃݅ܽݎݐݏ,  ሽ as݀݁ݐݎ݁ݒ݊݅
follows: Ω ൌ f(݋, ,ଵܣ  ଶ)                                  (1)ܣ

In the baseline system, a MaxEnt-based clas-
sifier with boundary words of the two neighbor-
ing phrases as features is used to model the 
merging/reordering order. The baseline MaxEnt-
based reordering model is formulized as follows: Ω ൌ ,ଵܣ|݋)ఏ݌ (ଶܣ ൌ ௘௫௣(∑ ఏ೔௛೔(௢,஺భ,஺మ))೔∑ ௘௫௣(∑ ఏ೔௛೔(௢,஺భ,஺మ))೔೚     (2) 
where the functions  ݄௜(݋, ,ଵܣ (ଶܣ א ሼ0,1ሽ  are 
model feature functions using the boundary 
words of the two neighboring phrases as features, 
and ߠ௜ are feature weights that are trained based 
on the MaxEnt-based criteria. 

3 Tree Kernel-based Phrase Reordering 
Model  

3.1 Kernel-based Classifier Solution to 
Phrase Reordering 

In this paper, phrase reordering is recast as a 
classification issue as done in previous work 
(Xiong et al., 2006 & 2008; Zhang et al., 2007a). 
In training, we use a machine learning algorithm 
training on the annotated phrase reordering in-
stances that are automatically extracted from 
word-aligned, source sentence parsed training 
corpus, to learn a classifier. In testing (decoding), 
the learned classifier is applied to two adjacent 
source phrases to decide whether they should be 
merged (straight) or reordered (inverted) and 
what their probabilities are, and then these prob-
abilities are used as one feature in the log-linear 
model in a phrase-based decoder. 

In addition to the previously-used linear fea-
tures, we are more interested in the value of 
structured syntax in phrase reordering and how 
to capture it using kernel methods. However, not 
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all classifiers are able to work with kernel me-
thods. Only those dot-product-based classifiers 
can work with kernels by replacing the dot prod-
uct with a kernel function, where the kernel func-
tion is able to directly calculate the similarity 
between two (structured) objects without enume-
rating them into linear feature vectors. In this 
paper, we select SVM as our classifier. In this 
section, we first define the structured syntactic 
features and introduce the commonly used linear 
features, and then discuss how to utilize these 
features by kernel methods together SVM for 

phrase reordering 

3.2 Structured Syntactic Features 

A reordering instance ݔ ൌ ሼܣଵ,  ଶሽ (see Eq.1) inܣ
this paper refers to two adjacent source phrases ܣଵ  and ܣଶ to be translated. The structured syn-
tactic feature spaces of a reordering instance are 
defined as the portion of a parse tree of the 
source sentence that at least covers the span of 
the reordering instance (i.e. the two neighboring 
phrases). The syntactic features are defined as all 

 
T1) Minimum Sub-Tree (MST) 

                               
T2) Minimum Sub-Structure (MSS)                T4) Chunking Tree (CT) 
 

 

 
T3) Context-sensitive Minimum Sub-Structure (CMSS) 

 

Figure 1. Different representations of structured syntactic features of a reordering instance in the example 
sentence excerpted from our training corpus “…建立/build  规模/scale 宏大/mighty 的/of 各类/various 
types 人才/qualified personnel  队伍/contingent 首先/above all  迫切/urgently  需要/necessary 中央

/central authorities  统筹/overall  规划/planning…(To build a mighty contingent of qualified personnel of 
various types, it is necessary, above all, for the central authorities to make overall planning.) ”, where “各
类/various types 人才/qualified personnel  队伍/contingent (contingent of qualified personnel of various 
types)” is the 1st/left phrase and “首先/above all  迫切/urgent  需要/necessary (it is necessary, above all, 
…)” is the 2nd/right phrase. Note that different function tags are attached to the grammar tag of each inter-
nal node. 
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the possible subtrees in the structured feature 
spaces. We can see that the structured feature 
spaces and their features are encapsulated by a 
full parse tree of source sentences. Thus, it is 
critical to understand which portion of a parse 
tree (i.e. structured feature space) is the most ef-
fective to represent a reordering instance. Moti-
vated by the work of (Zhang et al., 2006), we 
here examine four cases that contain different 
sub-structures as shown in Fig. 1. 
 

(1) Minimum Sub-Tree (MST): the sub-tree 
rooted by the nearest common ancestor of the 
two phrases. This feature records the minimum 
sub-structure covering the two phrases and its 
left and right contexts as shown in Fig 1.T1. 

(2) Minimum Sub-Structure (MSS): the smal-
lest common sub-structure covering the two 
phrases. It is enclosed by the shortest path link-
ing the two phrases. Thus, its leaf nodes exactly 
consist of all the phrasal words. 
(3) Context-sensitive Minimum Sub-Structure 
(CMSS): the MSS extending with the 1st left 
sibling node of the left phrase and the 1st right 
sibling node of the right phrase and their descen-
dants. If sibling is unavailable, then we move to 
the parent of current node and repeat the same 
process until the sibling is available or the root of 
the MST is reached. 
(4) Chunking Tree (CT): the base phrase list 
extracted from the MSS. We prune out all the 
internal structures of the MSS and only keep the 
root node and the base phrase list for generating 
the chunking tree. 

Fig. 1 illustrates the different representations 
of an example reordering instance. T1 is the MST 
for the example instance, where the sub-structure 
circled by a dotted line is the MSS, which is also 
shown in T2 for clarity. We can see that the MSS 
is a subset of the MST. By T2 we would like to 
evaluate whether the structured information is 
effective for phrase reordering while by compar-
ing the system performance when using T1 and 
T2, we would like to evaluate whether the struc-
tured context information embedded in the MST 
is useful to phrase reordering. T3 is the CMSS, 
where the two sub-structures circled by dotted 
lines are included as the context to T2 and make 
T3 limited context-sensitive. This is to evaluate 
whether the limited context information in the 
CMSS is helpful. By comparing the performance 
of T1 and T3, we would like to see whether the 
larger context in T1 is a noisy feature. T4 is the 
CT, where only the basic structured information 
is kept. By comparing the performance of T2 and 

T4, we would like to study whether the high-level 
structured syntactic features in T2 are useful to 
phrase reordering. 

After defining the four structured feature 
spaces, we further partition each feature space 
into five parts according to their functionalities. 
Because it only makes sense to evaluate two par-
titions of the same functionality between two 
reordering instances, the feature space partition 
leads to a more precise similarity calculation. As 
shown in Fig 1, all the internal nodes in each par-
tition are labeled with a unique function tag in 
the following way: 

• Left Context (-lc): nodes in this partition 
do not cover any phrase word and they are 
all in the left of the left phrase. 

• Right Context (-rc): nodes in this partition 
do not cover any phrase word and they are 
all in the right of the right phrase. 

• Left Phrase (-lp): nodes in this partition 
only cover the first phrase and/or its left 
context. 

• Right Phrase (-rp): nodes in this partition 
only cover the second phrase and/or its right 
context. 

• Shared Part (-sp): nodes in this partition at 
least cover both of the two phrases partially. 

No lexical word is tagged since it is not a part 
of the structured features, and therefore not par-
ticipating in the tree kernel computing. 

3.3 Linear Features 

In our study, we define the following lexicalized 
linear features which are easily to be extracted 
and integrated to our composite kernel: 

• Leftmost and rightmost boundary words of 
the left and right source phrases 

• Leftmost and rightmost boundary words of 
the left and right target phrases 

• Internal words of the four phrases (exclud-
ing boundary words) 

• Target language model (LM) score differ-
ence  (monotone-inverted) 

In total, we arrive at 13 features, including 8 
boundary word features, 4 (kinds of) internal 
word features and 1 LM feature. The first 12 fea-
tures have been proven useful (Xiong et al., 
2006; Zhang et al., 2007a) to phrase reordering. 
LM score is certainly a strong evidence for mod-
eling word orders and lexical selection. Although 
it is already used as a standalone feature in the 
log-linear model, we also would like to explicitly 
re-optimize it together with other reordering fea-
tures in our reordering model. 
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3.4 Tree Kernel, Composite Kernel and In-
tegrating into our Reordering Model 

As discussed before, we use convolution tree 
kernel to capture the structured syntactic feature 
implicitly by directly computing similarity be-
tween the parse-tree representations of two reor-
dering instances with explicitly enumerating all 
the features one by one. In convolution tree ker-
nel (Collins and Duffy, 2001), a parse tree T  is 
implicitly represented by a vector of integer 
counts of each sub-tree type (regardless of its 
ancestors): 

 

( )Tφ = (# subtree1(T), …, # subtreen(T))  
where # subtreei(T) is the occurrence number of 
the ith sub-tree type (subtreei) in T. Since the 
number of different sub-trees is exponential with 
the parse tree size, it is computationally infeasi-
ble to directly use the feature vector ( )Tφ . To 
solve this computational issue, Collins and Duffy 
(2001) proposed the following parse tree kernel 
to calculate the dot product between the above 
high dimensional vectors implicitly. 
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where N1 and N2 are the sets of nodes in trees T1 
and T2, respectively, and ( )

isubtreeI n  is a function 
that is 1 iff the subtreei occurs with root at node n 
and zero otherwise, and 1 2( , )n nΔ  is the number of 
the common subtrees rooted at n1 and n2, i.e., 

 

1 2 1 2( , ) ( ) ( )
i isubtree subtreei

n n I n I nΔ = ⋅∑  

1 2( , )n nΔ can be further computed efficiently by 
the following recursive rules: 
Rule 1: if the productions (CFG rules) at 1n  and 

2n  are different, 1 2( , ) 0n nΔ = ; 
Rule 2: else if both 1n  and 2n  are pre-terminals 

(POS tags), 1 2( , ) 1n n λΔ = × ; 
Rule 3: else,  

1( )
1 2 1 21

( , ) (1 ( ( , ), ( , )))nc n

j
n n ch n j ch n jλ

=
Δ = + Δ∏ ,  

where 1( )nc n is the child number of 1n , ch(n,j) is 
the jth child of node n  and λ (0< λ <1) is the de-
cay factor in order to make the kernel value less 
variable with respect to the subtree sizes. In ad-
dition, the recursive Rule 3 holds because given 
two nodes with the same children, one can con-
struct common sub-trees using these children and 
common sub-trees of further offspring. The time 

complexity for computing this kernel is
1 2(| | | |)O N N⋅ and in practice in near to linear 

computational time without the need of enume-
rating all subtree features.  

In our study, the linear feature-based similarity 
is simply calculated using dot-product. We then 
define the following composite kernel to com-
bine the structured features-based and the linear 
features-based similarities:  
,ଵݔ)௖ܭ  (ଶݔ ൌ ߙ · ,ଵݔ)௧ܭ (ଶݔ ൅ (1 െ (ߙ · ,ଵݔ)௟ܭ  ଶ) (3)ݔ
 

where Kt is the tree kernel over the structured 
features and Kl is the linear kernel (dot-product) 
over the linear features. The composite kernel Kc 
is a linear combination of the two individual ker-
nels, where the coefficient α is set to its default 
value 0.3 as that in Moschitti (2004)’s implemen-
tation. The kernels return the similarities be-
tween two reordering instances based on their 
features used. Our basic assumption is, the more 
similar the two reordering instances of x1 and x2 
are, the more chance they share the same order. 

Now let us see how to integrate the kernel 
functions into SVM. The linear classifier learned 
by SVM is formulized as: 

( ) sgn( )i i ii
f x y a x x b= • +∑                    (4) 

where ia is the weight of a support vector ix (i.e., 
a support reordering instance ݔ௜ ൌ ሼܣଵ,  ଶሽin ourܣ
study), iy  is its class label (1: - or  ݐ݄݃݅ܽݎݐݏ 
in our study) and b ݀݁ݐݎ݁ݒ݊݅ :1 is the intercept 
of the hyperplane. An input reordering instance x
is classified as positive (negative) if ( )f x >0 (

( )f x <0). 
Based on the linear classifier, a kernelized 

SVM can be easily implemented by simply re-
placing the dot product ix x∗ in Eq (4) with a 

kernel function ( , )iK x x . Thus, the kernelized 
SVM classifier is formulated as: 

( ) sgn( ( , ) )i i ii
f x y a K x x b= +∑                 (5) 

where ( , )iK x x is either ( , )c iK x x , ( , )t iK x x or  

( , )l iK x x in our study. Following Eq (1), our 
reordering model (implemented by the kerne-
lized SVM) can be formulized as follows: 
 Ω ൌ f(݋, ,ଵܣ (ଶܣ ൌ ݔ|݋)௦௩௠݌ ൌ ሼܣଵ, ଶሽ) ൌܣ ∑)݊݃ݏ ,ݔ)ܭ௜ܽ௜ݕ) (௜ݔ ൅ ܾ)௜ )                   (6)  

 

A reordering instance x is classified as straight 
(or inverted) if ݌௦௩௠(ݔ|݋) ൐ 0 (or ݌௦௩௠(ݔ|݋) ൏0). Eq (6) and Eq (2) show the difference be-
tween our kernalized SVM-based reordering 
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model and the MaxEnt-based reordering model. 
The main difference between them lies in that 
our model is able to utilize structured syntactic 
features by kernalized SVM while the previous 
work can only use lexicalized word features by 
MaxEnt-based classifier.  

Finally, because the return value of  ݌௦௩௠(ݔ|݋)  is a distance function rather than a 
probability, we use a sigmoid function to convert ݌௦௩௠(ݔ|݋) to a posterior probability as shown 
using the following to functions and apply it as 
one feature to the log-linear model in the decod-
ing.  

( | )

1( | )
1 svmp o xP straight x

e−=
+

    and  

( | )

1( | )
1 svmp o xP inverted x

e
=

+
 

where straight represents a positive instance and 
inverted represents a negative instance. 

4 Experiments and Discussion 

4.1 Experimental Settings 

Basic Settings: we evaluate our method on Chi-
nese-English translation task. We use the FBIS 
corpus as training set, the NIST MT-2002 test set 
as development (dev) set and the NIST MT-2005 
test set as test set. The Stanford parser (Klein and 
Manning, 2003) is used to parse Chinese sen-
tences on the training, dev and test sets. GIZA++ 
(Och and Ney, 2004) and the heuristics “grow-
diag-final-and” are used to generate m-to-n word 
alignments. The translation model is trained on 
the FBIS corpus and a 4-gram language model is 
trained on the Xinhua portion of the English Gi-
gaword corpus using the SRILM Toolkits 
(Stolcke, 2002) with modified Kneser-Ney 
smoothing (Kenser and Ney, 1995). For the 
MER training (Och, 2003), we modify Koehn’s 
MER trainer (Koehn, 2004) to train our system. 
For significance test, we use Zhang et al’s im-
plementation (Zhang et al, 2004). 

Baseline Systems: we set three baseline sys-
tems: B1) Moses (Koehn et al., 2007) that uses 
lexicalized unigram reordering model to predict 
three orientations: monotone, swap and discon-
tinuous; B2) MaxEnt-based reordering model 
with lexical boundary word features only (Xiong 
et al., 2006); B3) Linguistically annotated reor-
dering model for BTG-based (LABTG) SMT 
(Xiong et al., 2008). For Moses, we used the de-
fault settings. We build a CKY-style decoder and 
integrate the corresponding reordering modelling 
methods into the decoder to implement the 2nd 

and the 3rd baseline systems and our system. Ex-
cept reordering models, all the four systems use 
the same features in translation model, language 
model and distortion model as Moses in the log-
linear framework. We tune the four systems us-
ing the strategies as discussed previously in this 
section. 

Reordering Model Training: we extract all 
reordering instances from the m-to-n word-
aligned training corpus. The reordering instances 
include the two source phrases, two target phras-
es, order label and its corresponding parse tree. 
We generate the boundary word features from 
the extracted reordering instances in the same 
way as discussed in Xiong et al. (2006) and use 
Zhang’s MaxEnt Tools 2  to train a reordering 
model for the 2nd baseline system. Similarly, we 
use the algorithm 1 in Xiong et al. (2008) to ex-
tract features and use the same MaxEnt Tools to 
train a reordering model for the 3rd baseline sys-
tem. Based on the extracted reordering instances, 
we generate the four structured features and the 
linear features, and then use the Tree Kernel 
Tools (Moschitti, 2004) to train our kernel-based 
reordering model (linear, tree and composite). 

Experimental Design and Evaluation Met-
rics: we design three experiments and evaluate 
them using three metrics.  

 Classification-based: in the first experiment, 
we extract all reordering instances and their fea-
tures from the dev and test sets, and then use the 
reordering models trained on the training set to 
classify (label) those instances extracted from the 
dev and test sets. In this way, we can isolate the 
reordering problem from the influence of others, 
such as translation model, pruning and decoding 
strategies, to better examine the reordering mod-
els’ ability and to give analytical insights into the 
features. Classification Accuracy (CAcc), the 
percentage of the correctly labeled instances over 
all trials, is used as the evaluation metric.  

Forced decoding3-based and normal decoding-
based: the two experiments evaluate the reorder-
ing models through a real SMT system. The 
reordering model and the language model are the 
same in the two experiments. However, in forced 
decoding, we train two translation models, one 
using training data only while another using both 

                                                 
2 http://homepages.inf.ed.ac.uk/s0450736/maxent.html 
3 A normal SMT decoder filters a translation model accord-
ing to the source sentences, whereas in forced decoding, a 
translation model is filtered based on both source sentence 
and target references. In other words, in forced decoding, 
the decoder is forced to use those phrases whose translations 
are already in the references. 
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training, dev and test data. By forced decoding, 
we aim to isolate the reordering problem from 
those of OOV and lexical selections resulting 
from imperfect translation model in the context 
of a real SMT task. Besides the the case-sensitive 
BLEU-4 (Papineni et al., 2002) used in the two 
experiments, we design another evaluation me-
trics Reordering Accuracy (RAcc) for forced de-
coding evaluation. RAcc is the percentage of the 
adjacent word pairs with correct word order 4 
over all words in one-best translation results. 
Similar to BLEU score, we also use the similar 
Brevity Penalty BP (Papineni et al., 2002) to pe-
nalize the short translations in computing RAcc. 
Finally, please note for the three evaluation me-
trics, the higher values represent better perfor-
mance. 

 

Feature Spaces CAcc (%) 
Dev Test 

Minimum Sub-Tree (MST) 89.87 89.92
Minimum Sub-Structure (MSS) 87.95 87.88
Context-Sensitive MSS (CMSS) 89.11 89.01
Chunking Tree (CT) 86.17 86.21
Linear Features (Kl) 90.79 90.46
Kl w/o using LM feature (Kl-LM) 84.24 84.06
Composite Kernel (Kc: MST+Kl) 92.98 92.67
MST w/o the 5 function tags 86.94 87.03
All are straight (monotonic) 78.92 78.67

 
Table 1: Performance of our methods on the 
dev and test sets with different feature combi-
nations 

4.2 Experimental Results 

Classification of Instances: Table 1 reports the 
performance of our defined four structured fea-
tures, linear feature and the composite kernel. 
The results are summarized as follows. 

The last row reports the performance without 
using any reordering features. We just suppose 
that all the translations are monotonic, no reor-
dering happens. The CAccs of 78.92% and 78.67% 
serve as the bottom line in our study. Compared 
with the bottom line, the tree kernels over the 4 
structured features are very effective for phrase 

                                                 
4 An adjacent word pair wiwi+1 in a translation have correct 
word order if and only if wi appears before wi+1 in transla-
tion references. Note than the two words may not be adja-
cent in the references even if they have correct word order. 

reordering since only structured information is 
used in the tree kernel5. 

The CTs performs the worst among the 4 
structured features. This suggests that the middle 
and high-level structures beyond base phrases are 
very useful for phrase reordering. The MSSs 
show lower performance than the CMSSs and 
the MSTs achieve the best performance. This 
clearly indicates that the structured context in-
formation is useful for phrase reordering. For this 
reason, the subsequent discussions are focused 
on the MSTs, unless otherwise specified. The 
MSSs without using the 5 function tags perform 
much worse than the original ones. This suggests 
that the partitions of the structured feature spaces 
are very helpful, which can effectively avoid the 
undesired matching between partitions of differ-
ent functionalities. Comparison of Kl and Kl-LM 
shows the LM plays an important role in phrase 
reordering. The composite kernel (Kc) performs 
much better than the two individual kernels. This 
suggests that the structured and linear features 
are complementary and the composite kernel can 
well integrate them for phrase reordering. 

 

Methods CAcc (%) 
Dev Test 

Minimum Sub-Tree (MST) 89.87 89.92
Linear Features (Kl) 90.79 90.46
Composite Kernel (Kc: MST+Kl) 92.98 92.67
MaxEnt+boundary word (B2) 88.33 86.97
MaxEnt+linguistic features (B3_1) 84.83 83.92
MaxEnt+LABTG (B3: B2+ B3_1) 88.82 88.18

 
Table 2: Performance comparison of different me-

thods 
 

Table 2 compares the performance of the base-
line methods with ours. Comparison between 
B3_1 and MST clearly demonstrates that the 
structured syntactic features are much more ef-
fective than the linear syntactic features that are 
manually extracted via heuristics. It also suggests 
that the tree kernel can well capture the struc-
tured features implicitly. Kl outperforms B2. This 
is mainly due to the contribution of LM features. 
B2 (MaxEnt-based) significantly outperforms Kl-

LM in Table 1 (SVM-based). This suggests that 
phrase reordering may not be a good linearly bi-
nary-separable task if only boundary word fea-
tures are used. Our composite kernel (Kc) signifi-
cantly outperforms LABTG (B3). This mainly 
                                                 
5 The tree kernel algorithm only compares internal struc-
tures. It does not concern any lexical leaf nodes.   
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attributes to the contributions of structured syn-
tactic features, LM and the tree kernel. 

 

Forced Decoding: Table 3 compares the per-
formance of our composite kernel with that of 
the LABTG (Baseline 3) in forced decoding. As 
discussed before, here we try two translation 
models.  

The composite kernel outperforms the 
LABTG in all test cases. This further validates 
the effectiveness of the kernel methods in phrase 
reordering. There are still around 30% words 
reordered incorrectly even if we use the transla-
tion model trained on both training, dev and test 
sets. This reveals the limitations of current SMT 
modeling methods and suggests interesting fu-
ture work in this area. The source language 
OOV6 rate in forced decoding (13.6%) is much 
higher that in normal decoding (6.22%, see table 
4). This is mainly due to the fact that the phrase 
table in forced decoding is filtered out based on 
both source and target languages while in normal 
decoding it is based on source language only. As 
a result, more phrases are filtered out in the 
forced decoding. There is 1.4% OOV even if the 
translation model is trained on the test set. This is 
due to the incorrect word alignment, large-span 
word alignment and different English tokeniza-
tion strategies used in BLEU-scoring tool and 
ours. 

 

Methods Test Set (%) 
RAcc OOV BLEU

Composite Kernel (Kc) 
  +translation model on 
   Training, dev and test 

51.03 
72.67 
 

13.6 
1.41 
 

38.56 
62.87 
 

MaxEnt+LABTG (B3) 
  +translation model on  
    training, dev and test 

48.96 
71.45 
 

13.6 
1.41 
 

37.32 
62.14 
 

 

Table 3: Performance comparison of forced de-
coding 

 

Methods Test Set 
 BLEU(%) OOV(%)

Composite Kernel (Kc) 27.65 6.26 
Moses (B1) 25.71 6.17 
MaxEnt+boundary word(B2) 25.99 6.22 
MaxEnt+LABTG (B3) 26.63 6.22 

 

Table 4: Performance comparison 
 

                                                 
6 OOV means a source words has no any English translation 
according to the translation model. OOV rate is the percent-
age of the number of OOV words over all the source words.  

Normal Decoding/Translation: Table 4 reports 
the translation performance of our system and 
the three baseline systems. 

Moses (B1) and the MaxEnt-based boundary 
word model (B2) achieve comparable perfor-
mance. This means the lexicalized orientation-
based reordering model in Moses performs simi-
larly to the boundary word-based reordering 
model since the two models are both lexical 
word-based. However, theoretically, the Max-
Ent-based model may suffer less from data 
sparseness issue since it does not depends on 
internal phrasal words and uses MaxEnt to op-
timize feature weights while the orientation-
based model uses relative frequency of the entire 
phrases to compute the posterior probabilities. s. 
The MaxEnt-based LABTG model significantly 
outperforms (p<0.05) the MaxEnt-based boun-
dary word model and the lexicalized orientation-
based reordering model. This indicates that the 
linearly linguistically syntactic information is a 
useful feature to phrase reordering. 

Our composite kernel-based model signifi-
cantly outperforms (p<0.01) the three baseline 
methods. This again proves that the structured 
syntactic features are much more effective than 
the linear syntactic features for phrase reordering 
and the tree kernel method can well capture the 
informative structured features. The four me-
thods show very slight difference in OOV rates. 
This is mainly due to the difference in implemen-
tation detail, such as different OOV penalties and 
other pruning thresholds.  

5 Conclusion and Future Work 

Structured syntactic knowledge is very useful to 
phrase reordering. This paper provides insights 
into how the structured feature can be used for 
phrase reordering. In previous work, the struc-
tured features are selected manually by heuristics 
and represented by a linear feature vector. This 
may largely compromise the contribution of the 
structured features to phrase reordering. Thanks 
to the nice properties of kernel-based learning 
method and SVM classifier, we propose leverag-
ing on the kernelized SVM learning algorithm to 
address the problem. Specifically, we propose 
using convolution tree kernel to capture the 
structured features and design a composite kernel 
to combine the structured features and other li-
near features for phrase reordering. The tree ker-
nel is able to directly take the structured reorder-
ing instances as inputs and compute their similar-
ities without enumerating them into a set of liner 
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features. In addition, we also study how to find 
the optimal structured feature space and how to 
partition the structured feature spaces according 
to their functionalities. Finally, we evaluate our 
method on the NIST MT-2005 Chinese-English 
translation tasks. To provide insights into the 
model, we design three kinds of experiments to-
gether with three different evaluation metrics. 
Experimental results show that the structured 
features are very effective and our composite 
kernel can well capture both the structured and 
the linear features without the need for extensive 
feature engineering. It also shows that our me-
thod significantly outperforms the baseline me-
thods. 

The tree kernel-based phrase reordering me-
thod is not only applicable to adjacent phrases. It 
is able to work with any long phrase pairs with 
gap of any length in-between. We will study this 
case in the near future. We would also like to use 
one individual tree kernel for one partition in a 
structured feature space. In doing so, we are able 
to give different weights to different partitions 
according to their functionalities and contribu-
tions. Note that these weights can be automati-
cally tuned and optimized easily against a dev 
set. 
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Abstract

Current statistical machine translation
(SMT) systems are trained on sentence-
aligned and word-aligned parallel text col-
lected from various sources. Translation
model parameters are estimated from the
word alignments, and the quality of the
translations on a given test set depends
on the parameter estimates. There are
at least two factors affecting the parame-
ter estimation: domain match and training
data quality. This paper describes a novel
approach for automatically detecting and
down-weighing certain parts of the train-
ing corpus by assigning a weight to each
sentence in the training bitext so as to op-
timize a discriminative objective function
on a designated tuning set. This way, the
proposed method can limit the negative ef-
fects of low quality training data, and can
adapt the translation model to the domain
of interest. It is shown that such discrim-
inative corpus weights can provide sig-
nificant improvements in Arabic-English
translation on various conditions, using a
state-of-the-art SMT system.

1 Introduction

Statistical machine translation (SMT) systems rely
on a training corpus consisting of sentences in
the source language and their respective reference
translations to the target language. These paral-
lel sentences are used to perform automatic word
alignment, and extract translation rules with asso-
ciated probabilities. Typically, a parallel training
corpus is comprised of collections of varying qual-
ity and relevance to the translation problem of in-
terest. For example, an SMT system applied to
broadcast conversational data may be trained on
a corpus consisting mostly of United Nations and

newswire data, with only a very small amount of
in-domain broadcast news/conversational data. In
this case, it would be desirable to down-weigh the
out-of-domain data relative to the in-domain data
during the rule extraction and probability estima-
tion. Similarly, it would be good to assign a lower
weight to data of low quality (e.g., poorly aligned
or incorrectly translated sentences) relative to data
of high quality.

In this paper, we describe a novel discrimina-
tive training method that can be used to estimate a
weight for each sentence in the training bitext so as
to optimize an objective function – expected trans-
lation edit rate (TER) (Snover et al., 2006) – on a
held-out development set. The training bitext typ-
ically consists of millions of (parallel) sentences,
so in order to ensure robust estimation we express
each sentence weight as a function of sentence-
level features, and estimate the parameters of this
mapping function instead. Sentence-level fea-
tures may include the identifier of the collection or
genre that the sentence belongs to, the number of
tokens in the source or target side, alignment infor-
mation, etc. The mapping from features to weights
can be implemented via any differentiable func-
tion, but in our experiments we used a simple per-
ceptron. Sentence weights estimated in this fash-
ion are applied directly to the phrase and lexical
counts unlike any previously published method to
the author’s knowledge. The tuning framework is
developed for phrase-based SMT models, but the
tuned weights are also applicable to the training of
a hierarchical model. In cases where the tuning set
used for corpus weight estimation is a close match
to the test set, this method yields significant gains
in TER, BLEU (Papineni et al., 2002), and ME-
TEOR (Lavie and Agarwal, 2007) scores over a
state-of-the-art hierarchical baseline.

The paper is organized as follows. Related work
on data selection, data weighting, and model adap-
tation is presented in Section 2. The corpus weight
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approach and estimation algorithm are described
in Section 3. Experimental evaluation of the ap-
proach is presented in Sections 4 and 5. Section 6
concludes the paper with a few directions for fu-
ture work.

2 Related Work

Previous work related to corpus weighting may
be split into three categories: data selection, data
weighting, and translation model adaptation. The
first two approaches may improve the quality
of the word alignment and prevent phrase-pairs
which are less useful for the domain to be learned.
The model adaptation, on the other hand, may
boost the weight of the more relevant phrase-
pairs or introduce translations for unseen source
phrases.

Resnik and Smith (2003) mined parallel text
from the web using various filters to identify likely
translations. The filtering may be viewed as a
data selection where poor quality translation are
discarded before word alignment. Yasuda et al.
(2008) selected subsets of an existing parallel cor-
pus to match the domain of the test set. The dis-
carded sentence pairs may be valid translations
but they do not necessarily improve the translation
quality on the test domain. Mandal et al. (2008)
used active learning to select suitable training data
for human translation. Hildebrand et al. (2005) se-
lected comparable sentences from parallel corpora
using information retrieval techniques.

Lu et al. (2007) proposed weighting compara-
ble portions of the parallel text before word align-
ment based on information retrieval. The relevant
portions of the parallel text were given a higher in-
teger weight in GIZA++ word alignment. Similar
effect may be achieved by replicating the relevant
subset in the training data.

Lu et al. (2007) also proposed training adapted
translation models which were interpolated with a
model trained on the entire parallel text. Snover
et al. (2008) used cross-lingual information re-
trieval to identify possible bias-rules to improve
the coverage on the source side. These rules may
cover source phrases for which no translations
were learned from the available parallel text.

Koehn and Schroeder (2007) described a pro-
cedure for domain adaptation that was using two
translation models in decoding, one trained on
in-domain data and the other on out-of-domain
data. Phrase translation scores from the two mod-

els where combined in a log-linear fashion, with
weights estimated based on minimum error rate
training (Och, 2003) on a designated tuning set.

The method described in this paper can also be
viewed as data filtering or (static) translation adap-
tation, but it has the following advantages over
previously published techniques:

1. The estimated corpus weights arediscrim-
inative and are computed so as to directly
optimize an MT performance metric on a
pre-defined development set. Unlike the do-
main adaptation technique in (Koehn and
Schroeder, 2007), which also estimates the
adaptation parameters discriminatively, our
proposed method does not require a man-
ual specification of the in-domain and out-
of-domain training data collections. Instead,
it automatically determines which collections
are most relevant to the domain of interest,
and increases their weight while decreasing
the weight assigned to less relevant collec-
tions.

2. All sentences in the parallel corpus can in-
fluence the translation model, as opposed
to filtering/discarding data. However, the
proposed method can still assign very low
weights to parts of the corpus, if it determines
that it helps improve MT performance.

3. The framework used for estimating the cor-
pus weights can be easily extended to support
discriminative alignment link-level weights,
thus allowing the system to automatically
identify which portions of the training sen-
tences are most useful.

Naturally, as with any method, the proposed
technique has certain limitations. Specifically, it
is only concerned with influencing the translation
rule probabilities via the corpus weights; it does
not change the set of rules extracted. Thus, it is
unable to add new translation rules as in Snover
et al. (2008). Also, it can potentially lead to pa-
rameter over-fitting, especially if the function that
maps sentence features to weights is complex and
based on a large number of parameters, or if the
development set used for estimating the mapping
function does not match the characteristics of the
test set.
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3 Corpus Weights Estimation

3.1 Feature Extraction

The purpose of feature extraction is to identify,
for each sentence in the parallel training data, a
set of features that can be useful in estimating a
weight that is correlated with quality or relevance
to the MT task at hand. Starting from sentence-
aligned, word-aligned parallel training data, one
could extract various types of sentence-level fea-
tures. For example, we could specify features that
describe the two sides of the parallel data or the
alignment between them, such as collection id,
genre id, number of source tokens, number of tar-
get tokens, ratio of number of source and target
tokens, number of word alignment links, fraction
of source tokens that are unaligned, and fraction
of target tokens that are unaligned. Additionally,
we could include information retrieval (IR) related
features that reflect the relevance of a training sen-
tence to the domain of interest, e.g., by measur-
ing vector space model (VSM) distance of the sen-
tence to the current tuning set, or its log likelihhod
with respect to an in-domain language model.

Note that the collection and genre identifiers
(ids) mentioned above are bit vectors. Each col-
lection in the training set is mapped to a number.
A collection may consist of sentences from multi-
ple genres (e.g., newswire, web, broadcast news,
broadcast conversations). Genres are also mapped
to a unique number across the whole training set.
Then, given a sentence in the training bitext, we
can extract a binary vector that contains two non-
zero bits, one indicating the collection id, and an-
other denoting the genre id.

It is worth mentioning that in the experiments
reported later in this paper we made use of only the
collection and genre ids as features, although the
framework supports general sentence-level fea-
tures.

3.2 Mapping Features to Weights

As mentioned previously, one way to map a fea-
ture vector to a weight is to use a perceptron.
A multi-layer neural network may also be used,
but at the expense of slower training. In this
work, all of the experiments carried out made use
of a perceptron mapping function. However, it
is also possible to cluster the training sentences
into classes by training a Gaussian mixture model

(GMM) on their respective feature vectors1. Then,
given a feature vector we can compute the (poste-
rior) probability that it was generated by one of
the N Gaussians in the GMM, and use this N-
dimensional vector of posteriors as input to the
perceptron. This is similar to having a neural net-
work with a static hidden layer and Gaussian acti-
vation functions.

Given the many choices available in mapping
features to weights, we will describe the mapping
function in general terms. Letfi be then × 1
feature vector corresponding to sentencei. Let
φ(x;λ) denote a functionRn → (0, 1) that is pa-
rameterized in terms of the parameter vectorλ and
maps a feature vectorx to a scalar weight in(0, 1).
The goal of the automatic corpus weight estima-
tion procedure is to estimate the parameter vector
λ so as to optimize an objective function on a de-
velopment set.

3.3 Training with Weighted Corpora

Once the sentence features have been mapped to
weights, the translation rule extraction and prob-
ability estimation can proceed as usual, but with
weighted counts. For example, letwi = φ(fi;λ)
be the weight assigned to sentencei. Let (s, t) be
a source-target phrase pair that can be extracted
from the corpus, andA(s) andB(t) indicating the
sets of sentences thats andt occur in. Then,

P (s|t) =

∑
j∈A(s)∩B(t)wjcj(s, t)∑

j∈B(t)wjcj(t)
(1)

wherecj(·) denotes the number of occurrences of
the phrase (or phrase-pair) in sentencej.

3.4 Optimizing the Mapping Function

Estimation of the parametersλ of the mapping
functionφ can be performed by directly optimiz-
ing a suitable objective function on a development
set. Ideally, we would like to estimate the param-
eters of the mapping function so as to directly op-
timize an automatic MT performance evaluation
metric, such as TER or BLEU on the full transla-
tion search space. However, this is extremely com-
putationally intensive for two reasons: (a) opti-
mizing in the full translation search space requires
a new decoding pass for each iteration of opti-
mization; and (b) a direct optimization of TER or

1Note that in order to train such a GMM it may be nec-
essary to first apply a decorrelating, dimensionality reducing,
transform (e.g., principal component analysis) to the features.
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BLEU requires the use of a derivative free, slowly
converging optimization method such as MERT
(Och, 2003), because these objective functions are
not differentiable.

In our case, for every parameter vector update
we need to essentially retrain the translation model
(reestimate the phrase and lexical translation prob-
abilities based on the updated corpus weights), so
the cost of each iteration is significantly higher
than in a typical MERT application. For these rea-
sons, in this work we chose to minimize the ex-
pected TER over a translation N-best on a desig-
nated tuning set, which is a continuous and differ-
entiable function and can be optimized with stan-
dard gradient descent methods in a small number
of iterations. Note, that using expected TER is not
the only option here; any criterion that can be ex-
pressed as a continuous function of the phrase or
lexical translation probabilities can be used to op-
timizeλ.

Given an N-best of translation hypotheses over
a development set ofS sentences, we can define
the expected TER as follows

T =

∑S
s=1

∑Ns
j=1 psjεsj∑S

s=1 rs
(2)

whereNs is the number of translation hypothe-
ses available for segments; εsj is the minimum
raw edit distance between hypothesisj of seg-
ments (orhsj , for short) and the reference transla-
tion(s) corresponding to segments; rs is the aver-
age number of reference translation tokens in seg-
ments, andpsj is the posterior probability of hy-
pothesishsj in the N-best. The latter is computed
as follows

psj =
eγLsj∑Ns

k=1 e
γLsk

(3)

whereLsj is the total log likelihood of hypothe-
sishsj , andγ is a tunable scaling factor that can
be used to change the dynamic range of the likeli-
hood scores and hence the distribution of posteri-
ors over the N-best. The hypothesis likelihoodLsj

is typically computed as a dot product of a decod-
ing weight vector and a vector of various “feature”
scores, such as log phrase translation probability,
log lexical translation probability, log n-gram lan-
guage model probability, and number of tokens in
the hypothesis. However, in order to simplify this
presentation we will assume that it contains a sin-
gle translation model score, the log phrase transla-
tion probability of source given target. This score

is a sum of log conditional probabilities, similar
to the one defined in Equation 1. Therefore,Lsj

is indirectly a function of the training sentence
weights.

In order to minimize the expected TERT , we
need to compute the derivative ofT with respect
to the mapping function parametersλ. Using the
chain rule, we get equations (4)-(8), where the
summation in Equation 6 is over all source-target
phrase pairs in the derivation of hypothesishsm, ξ
is the decoding weight assigned to the log phrase
translation score, and the summation in Equation
7 is over all training sentences2.

Thus, in order to compute the derivative of
the objective function we first need to calculate
∂ ln P (sk|tk)

∂λ for every phrase pair(sk, tk) in the
translation N-best based on Equations 7 and 8,
which requires time proportional to the number of
occurrences of these phrases in the parallel train-
ing data. After that, we can compute∂Lsm

∂λ for
each hypothesishsm, based on Equation 6. Fi-
nally, we calculate∂ ln psj

∂λ and ∂T
∂λ based on Equa-

tions 5 and 4, respectively.

3.5 Implementation Issues

In our system, the corpus weights were trained
based on N-best translation hypotheses generated
by a phrase-based MT system on a designated tun-
ing set. Each translation hypothesis in the N-best
has a score that is a (linear) function of the fol-
lowing log translation probabilities: target phrase
given source phrase, source phrase given target
phrase, and lexical smoothing term. Additionally,
each hypothesis specifies information about its
derivation, i.e., which source-target phrase pairs it
consists of. Therefore, given an N-best, we can
identify the set of unique phrase pairs and use this
information in order to perform a filtered accumu-
lation of the statistics needed for calculating the
derivative in Equation 8. This reduces the storage
needed for the sufficient statistics significantly.

Minimization of the expected TER of the N-
best hypotheses was performed using the limited-
memory BFGS algorithm (Liu and Nocedal,
1989). Typically, the parameter vectorλ required
about 30 iterations of LBFGS to converge.

Since the N-best provides only a limited repre-
sentation of the MT hypothesis search space, we
regenerated the N-best after every 30 iterations

2In the general case whereLsj includes other translation
scores, e.g., lexical translation probabilities, the derivative
∂Lsm
∂λ

will have to include additional terms.
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∂T
∂λ

=
S∑

s=1

Ns∑
j=1

∂T
∂ ln psj

∂ ln psj

∂λ
=

(
1∑S

s=1 rs

)
S∑

s=1

Ns∑
j=1

psjεsj
∂ ln psj

∂λ
(4)

∂ ln psj

∂λ
=

Ns∑
m=1

∂ ln psj

∂Lsm

∂Lsm

∂λ
= γ

(
∂Lsj

∂λ
−

Ns∑
m=1

psm
∂Lsm

∂λ

)
(5)

∂Lsm

∂λ
=

∑
(sk,tk)∈hsm

∂Lsm

∂ lnP (sk|tk)
∂ lnP (sk|tk)

∂λ
=

∑
(sk,tk)∈hsm

ξ
∂ lnP (sk|tk)

∂λ
(6)

∂ lnP (sk|tk)
∂λ

=
∑

i

∂ lnP (sk|tk)
∂wi

∂wi

∂λ
(7)

∂ lnP (sk|tk)
∂wi

=

∑
j∈A(sk)∩B(tk)

δ (j − i) cj(sk, tk)∑
j∈A(sk)∩B(tk)

wjcj(sk, tk)
−
∑

j∈B(tk)
δ (j − i) cj(tk)∑

j∈B(tk)
wjcj(tk)

(8)

δ(x) =
{

1 x = 0
0 x 6= 0

(9)

of LBFGS training, merging new hypotheses with
translations from previous iterations. The overall
training procedure is described in more detail be-
low:

1. Initialize parameter vectorλ to small random
values, so that all training sentences receive
approximately equal weights.

2. Initialize phrase-based MT decoding weights
to previously tuned values.

3. Perform weighted phrase rule extraction as
described in Equation 1, to estimate the
phrase and lexical translation probabilities.

4. Decode the tuning set, generating N-best.

5. Merge N-best hypotheses from previous iter-
ations to current N-best.

6. Tune decoding weights so as to minimize
TER on merged N-best, using a derivative
free optimization method. In our case, we
used Powell’s algorithm (Powell, 1964) mod-
ified by Brent as described in (Brent, 1973)3.

7. Identify set of unique source-target phrase
pairs in merged N-best.

8. Extract sufficient statistics from training data
for all phrases identified in step 7.

3This method was first used for N-best based parameter
optimization in (Ostendorf et al., 1991).

9. Run the LBFGS algorithm to minimize the
expected TER in the merged N-best, using
the derivative equations described previously.

10. Assign a weight to each training sentence
based on theλ values optimized in 9.

11. Go to step 3.

Typically, the corpus weights converge in about
4-5 main iterations. The calculation of the deriva-
tive is parallelized to speed up computation, re-
quiring about 10 minutes per iteration of LBFGS.

4 Experimental Setup

In this section we describe the setup that was used
for all experiments reported in this paper. Specif-
ically, we provide details about the training data,
development sets, and MT systems (phrase-based
and hierarchical).

4.1 Training Data

All MT training experiments made use of an
Arabic-English corpus of approximately 200 mil-
lion tokens (English side). Most of the collections
in this corpus are available through the Linguis-
tic Data Consortium (LDC) and are regularly part
of the resources specified for the constrained data
track of the NIST MT evaluation4.

4For a list of the NIST MT09 constrained train-
ing condition resources, seehttp://www.itl.
nist.gov/iad/mig/tests/mt/2009/MT09_
ConstrainedResources.pdf
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The corpus includes data from multiple gen-
res, as shown in Table 1. The “Sakhr” newswire
collection is a set of Arabic-to-English and
English-to-Arabic data provided by Sakhr Soft-
ware, totaling about 30.8 million tokens, and
is only available to research teams participat-
ing in the Defense Advanced Research Projects
Agency (DARPA) Global Autonomous Language
Exploitation (GALE) program. The “LDC Giga-
word (ISI)” collection was produced by automati-
cally detecting and extracting portions of parallel
text from the monolingual LDC Arabic and En-
glish Gigaword collections, using a method devel-
oped at the Information Sciences Institute (ISI) of
the University of Southern California.

Data Origin Style
Size

(K tokens)

LDC pre-GALE
U. Nations 118049
Newswire 2700
Treebank 685

LDC post-GALE

Newswire 14344
Treebank 292

Web 478
Broad. News 573
Broad. Conv. 1003

Web-found text
Lexicons 436

Quran 406
Sakhr Newswire 30790

LDC Gigaword
Newswire 29169

(ISI)

Table 1: Composition of the Arabic-English par-
allel corpus used for MT training.

It is easy to see that most of the parallel train-
ing data are either newswire or from United Na-
tions. The amount of web text or broadcast
news/conversations is only a very small fraction
of the total corpus. In total, there are 31 collec-
tions in the training bitext. Some collections (es-
pecially those released recently by LDC for the
GALE project) consist of data from multiple gen-
res. The total number of unique genres (or data
types) in the training set is 10.

Besides the above bitext, we also used approxi-
mately 8 billion words of English text for language
model (LM) training (3.7B words from the LDC
Gigaword corpus, 3.3B words of web-downloaded
text, and 1.1B words of data from CNN archives).
This data was used to train two language mod-
els: an entropy-pruned trigram LM, used in decod-

ing, and an unpruned 5-gram LM used in N-best
rescoring. Kneser-Ney smoothing was applied to
the n-grams in both cases.

4.2 Development Sets

The development sets used for tuning and testing
the corpus weights and other MT settings were
comprised of documents from previous Arabic-
English NIST MT evaluation sets and from GALE
development/evaluation sets.

Specifically, the newswire Tune and Test sets
consist of documents from the following col-
lections: the newswire portion of NIST MT04,
MT05, MT06, and MT08 evaluation sets, the
GALE Phase 1 (P1) and Phase 2 (P2) evaluation
sets, and the GALE P2 and P3 development sets.
The web Tune and Test sets are made of docu-
ments from NIST MT06 and MT08, the GALE P1
and P2 evaluation sets, the GALE P2 and P3 devel-
opment sets, and a held-out portion of the GALE
year 1 quarter 4 web training data release.

The audio Tune and Test sets consist of roughly
equal parts of news and conversations broadcast
from November 2005 through May 2007 by ma-
jor Arabic-speaking television and radio stations
(e.g., Al-Jazeera, Al-Arabiya, Syrian TV), totaling
approximately 14 hours of speech. The audio was
processed through automated speech recognition
(ASR) in order to produce (errorful) transcripts
that were used as input to all MT decoding experi-
ments reported in this paper. However, the corpus
weight estimation was carried out based on N-best
MT of the Arabic audio reference transcriptions
(i.e., the transcripts had no speech recognition er-
rors, and contained full punctuation).

It is important to note that some of the docu-
ments in the above devsets have multiple reference
translations (usually 4), while others have only
one. Most of the documents in the newswire sets
have 4 references, but unfortunately the web and
audio sets have, on average, less than 2 reference
translations per segment. More details are listed in
Table 2.

Another important note is that, although the au-
dio sets consist of both broadcast news (BN) and
broadcast conversations (BC), we did not perform
BN or BC-specific tuning. Corpus weights and
MT decoding parameters were optimized based on
a single Tune set, on a mix of BN and BC data.
However, when we report speech translation re-
sults in later sections, we break down the perfor-
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Genre
Tune Test

#segs #tokens #refs/seg#segs #tokens #refs/seg

Newswire 1994 72359 3.94 3149 115700 3.67
Web 3278 99280 1.69 4425 125795 2.08

Audio BN 897 32990 1.00 1530 53067 1.00
Audio BC 765 24607 1.00 1416 44435 1.00

Table 2: Characteristics of the tuning (Tune) and validation (Test) sets used for development on Arabic
newswire, web, and audio. The audio sets include material from both broadcast news and broadcast
conversations.

mance by genre.

4.3 MT Systems

Experiments were performed using two types of
statistical MT systems: a phrase-based system,
similar to Pharaoh (Koehn, 2004), and a state-
of-the-art, hierarchical string-to-dependency-tree
system, similar to (Shen et al., 2008).

The phrase-based MT system employs a pruned
3-gram LM in decoding, and can optionally gen-
erate N-best unique translation hypotheses which
are used to estimate the corpus weights, as de-
scribed in Section 3.

The hierarchical MT system performs decoding
with the same 3-gram LM, generates N-best of
unique translation hypotheses, and then rescores
them using a large, unpruned 5-gram LM in order
to select the best scoring translation. It is worth
mentioning that this hierarchical MT system pro-
vides a very strong baseline; it achieves a case-
sensitive BLEU score of 52.20 on the newswire
portion of the NIST MT08 evaluation set, which
is similar to the score of the second-best system
that participated in the unconstrained data track of
the NIST MT08 evaluation.

Both types of models were trained on the same
word alignments generated by GIZA++ (Och and
Ney, 2003).

5 Results

In this section we report results on the Arabic
newswire, web, and audio development sets, us-
ing both phrase-based and hierarchical MT sys-
tems, in terms of TER, BLEU5, and METEOR
(Lavie and Agarwal, 2007). Whenever corpus
weights are used, they were estimated on the des-
ignated Tune set using the phrase-based MT sys-

5The brevity penalty was calculated using the formula in
the original IBM paper, rather than the more recent definition
implemented in the NIST mteval-v11b.pl script.

tem. Only the collection and genre ids were used
as sentence features in order to estimate the corpus
weights. As mentioned in Section 4.1, the train-
ing bitext consists of 31 collections and 10 gen-
res, so each training sentence was assigned a 41-
dimensional binary vector indicating its particu-
lar collection/genre combination. That vector was
then mapped into a single weight using a percep-
tron.

5.1 Phrase-based MT

Results using the phrase-based MT system are
shown in Table 3. In all cases, the decoding
weights were optimized so as to minimize TER
on the designated Tune set. On newswire, the
discriminative corpus weights provide 0.8% abso-
lute gain in TER, in both Tune and Test sets. On
web, the TER gain is 0.9% absolute on Tune and
0.5% on Test. On the audio Test set, the TER gain
is 0.5% on BN and 1.4% on BC. Significant im-
provements were also obtained in the BLEU and
METEOR scores, on all sets and conditions.

5.2 Hierarchical MT

Results using the hierarchical MT system are
shown in Table 4. The hierarchical system
used different tuning criteria in each genre. On
newswire, the decoding weights were optimized
so as to maximize BLEU, while on web and audio
the tuning was based on0.5TER+0.5(1−BLEU)
(referred to as TERBLEU in what follows). Note
that these were the criteria for tuning the decoding
weights; whenever corpus weights were used, they
were taken from the phrase-based system.

It is interesting to see that gains from discrimi-
native corpus weights carry over to the more pow-
erful hierarchical MT system. On newswire Test,
the gain in BLEU is 0.8; on web Test, the gain in
TERBLEU is 0.3. On the audio Test set, the cor-
pus weights provide 0.7 and 0.75 TERBLEU re-
duction on BN and BC, respectively. As with the
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Set Corpus Weights
Newswire Web

TER BLEU MTR TER BLEU MTR

Tune
No 42.3 48.2 67.5 60.0 21.9 51.3
Yes 41.5 49.6 68.7 59.1 22.8 52.3

Test
No 43.2 46.2 66.5 58.6 24.2 52.2
Yes 42.4 47.5 67.8 58.1 25.4 52.9

(a) Results on Arabic text.

Set Corpus Weights
BN BC

TER BLEU MTR TER BLEU MTR

Tune
No 56.0 22.9 55.5 57.3 21.7 55.0
Yes 55.0 25.0 57.1 56.1 23.6 56.4

Test
No 53.0 25.3 57.7 55.9 22.9 55.4
Yes 52.5 26.6 58.8 54.5 24.7 56.8

(b) Results on Arabic audio.

Table 3: Phrase-based trigram decoding results on the Arabic text and audio development sets. Decoding
weights were optimized on the Tune set in order to directly minimize TER. Corpus weights were also
optimized on Tune set, but based on expected TER.

phrase-based system, all metrics improve from the
use of corpus weights, in all sets/conditions.

6 Conclusions

We have described a novel approach for estimat-
ing a weight for each sentence in a parallel train-
ing corpus so as to optimize MT performance of a
phrase-based statistical MT system. The sentence
weights influence MT performance by being ap-
plied to the phrase and lexical counts during trans-
lation rule extraction and probability estimation.

In order to ensure robust training of the weights,
we expressed them as a function of sentence-level
features. Then, we defined the process for opti-
mizing the parameters of that function based on
the expected TER of a translation hypothesis N-
best on a designated tuning set.

The proposed technique was evaluated in the
context of Arabic-English translation, on multiple
conditions. It was shown that encouraging results
were obtained by just using collection and genre
ids as features. Interestingly, the discriminative
corpus weights were found to be generally appli-
cable and provided gains in a state-of-the-art hi-
erarchical string-to-dependency-tree MT system,
even though they were trained using the phrase-
based MT system.

Next step is to include other sentence-level fea-

tures, as described in Section 3.1. Finally, the
technique described in this paper can be extended
to address the estimation of weights at the align-
ment link level, based on link-level features. We
believe that this will have a larger impact on the
lexical and phrase translation probabilities, since
there is a large number of parallel training sen-
tences that are partially correct, i.e., they contain
parts that are aligned and translated correctly, and
parts that are wrong. The current procedure tries
to assign a single weight to such sentences, so
there is no way to distinguish between the “good”
and “bad” portions of each sentence. Pushing the
weight estimation at the alignment link level will
alleviate this problem and will make the discrimi-
native training more targeted.
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Abstract
Training a statistical machine translation
starts with tokenizing a parallel corpus.
Some languages such as Chinese do not in-
corporate spacing in their writing system,
which creates a challenge for tokenization.
Moreover, morphologically rich languages
such as Korean present an even bigger
challenge, since optimal token boundaries
for machine translation in these languages
are often unclear. Both rule-based solu-
tions and statistical solutions are currently
used. In this paper, we present unsuper-
vised methods to solve tokenization prob-
lem. Our methods incorporate informa-
tion available from parallel corpus to de-
termine a good tokenization for machine
translation.

1 Introduction

Tokenizing a parallel corpus is usually the first
step of training a statistical machine translation
system. With languages such as Chinese, which
has no spaces in its writing system, the main chal-
lenge is to segment sentences into appropriate to-
kens. With languages such as Korean and Hun-
garian, although the writing systems of both lan-
guages incorporate spaces between “words”, the
granularity is too coarse compared with languages
such as English. A single word in these lan-
guages is composed of several morphemes, which
often correspond to separate words in English.
These languages also form compound nouns more
freely. Ideally, we want to find segmentations for
source and target languages that create a one-to-
one mapping of words. However, this is not al-
ways straightforward for two major reasons. First,
what the optimal tokenization for machine trans-
lation should be is not always clear. Zhang et al.
(2008b) and Chang et al. (2008) show that get-
ting the tokenization of one of the languages in

the corpus close to a gold standard does not nec-
essarily help with building better machine trans-
lation systems. Second, even statistical methods
require hand-annotated training data, which means
that in resource-poor languages, good tokenization
is hard to achieve.

In this paper, we explore unsupervised methods
for tokenization, with the goal of automatically
finding an appropriate tokenization for machine
translation. We compare methods that have ac-
cess to parallel corpora to methods that are trained
solely using data from the source language. Unsu-
pervised monolingual segmentation has been stud-
ied as a model of language acquisition (Goldwater
et al., 2006), and as model of learning morphol-
ogy in European languages (Goldsmith, 2001).
Unsupervised segmentation using bilingual data
has been attempted for finding new translation
pairs (Kikui and Yamamoto, 2002), and for finding
good segmentation for Chinese in machine trans-
lation using Gibbs sampling (Xu et al., 2008). In
this paper, further investigate the use of bilingual
information to find tokenizations tailored for ma-
chine translation. We find a benefit not only for
segmentation of languages with no space in the
writing system (such as Chinese), but also for the
smaller-scale tokenization problem of normaliz-
ing between languages that include more or less
information in a “word” as defined by the writ-
ing system, using Korean-English for our exper-
iments. Here too, we find a benefit from using
bilingual information, with unsupervised segmen-
tation rivaling and in some cases surpassing su-
pervised segmentation. On the modeling side,
we use dynamic programming-based variational
Bayes, making Gibbs sampling unnecessary. We
also develop and compare various factors in the
model to control the length of the tokens learned,
and find a benefit from adjusting these parame-
ters directly to optimize the end-to-end translation
quality.
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2 Tokenization

Tokenization is breaking down text into lexemes
— a unit of morphological analysis. For relatively
isolating languages such as English and Chinese, a
word generally equals a single token, which is usu-
ally a clearly identifiable unit. English, especially,
incorporates spaces between words in its writing
system, which makes tokenization in English usu-
ally trivial. The Chinese writing system does not
have spaces between words, but there is less am-
biguity where word boundaries lie in a given sen-
tence compared to more agglutinative languages.
In languages such as Hungarian, Japanese, and
Korean, what constitutes an optimal token bound-
ary is more ambiguous. While two tokens are usu-
ally considered two separate words in English, this
may be not be the case in agglutinative languages.
Although what is considered a single morpholog-
ical unit is different from language to language,
if someone were given a task to align words be-
tween two languages, it is desirable to have one-
to-one token mapping between two languages in
order to have the optimal problem space. For ma-
chine translation, one token should not necessarily
correspond to one morphological unit, but rather
should reflect the morphological units and writing
system of the other language involved in transla-
tion.

For example, consider a Korean “word” meok-
eoss-da, which means ate. It is written as a sin-
gle word in Korean but consists of three mor-
phemes eat-past-indicative. If one uses morpho-
logical analysis as the basis for Korean tokeniza-
tion, meok-eoss-da would be split into three to-
kens, which is not desirable if we are translat-
ing Korean to English, since English does not
have these morphological counterparts. However,
a Hungarian word szekrényemben, which means in
my closet, consists of three morphemes closet-my-
inessive that are distinct words in English. In this
case, we do want our tokenizer to split this “word”
into three morphemes szekrény em ben.

In this paper, we use segmentation and to-
kenization interchangeably as blanket terms to
cover the two different problems we have pre-
sented here. The problem of segmenting Chinese
sentences into words and the problem of segment-
ing Korean or Hungarian “words” into tokens of
right granularity are different in their nature. How-
ever, our models presented in section 3 handle the
both problems.

3 Models

We present two different methods for unsuper-
vised tokenization. Both are essentially unigram
tokenization models. In the first method, we try
learning tokenization from word alignments with
a model that bears resemblance to Hidden Markov
models. We use IBM Model 1 (Brown et al., 1993)
for the word alignment model. The second model
is a relatively simpler monolingual tokenization
model based on counts of substrings which serves
as a baseline of unsupervised tokenization.

3.1 Learning tokenization from alignment
We use expectation maximization as our primary
tools in learning tokenization form parallel text.
Here, the observed data provided to the algorithm
are the tokenized English string en

1 and the unto-
kenized string of foreign characters cm

1 . The un-
observed variables are both the word-level align-
ments between the two strings, and the tokeniza-
tion of the foreign string. We represent the tok-
enization with a string sm

1 of binary variables, with
si = 1 indicating that the ith character is the final
character in a word. The string of foreign words
f ℓ
1 can be thought of as the result of applying the

tokenization s to the character string c:

f = s ◦ c where ℓ =
m∑

i=1

si

We use IBM Model 1 as our word-level align-
ment model, following its assumptions that each
foreign word is generated independently from one
English word:

P (f |e) =
∑
a

P (f ,a | e)

=
∑
a

∏
i

P (fi | eai)P (a)

=
∏

i

∑
j

P (fi | ej)P (ai = j)

and that all word-level alignments a are equally
likely: P (a) = 1

n for all positions. While Model 1
has a simple EM update rule to compute posteri-
ors for the alignment variables a and from them
learn the lexical translation parameters P (f | e),
we cannot apply it directly here because f itself is
unknown, and ranges over an exponential number
of possibilities depending on the hidden segmenta-
tion s. This can be addressed by applying dynamic
programing over the sequence s. We compute the
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posterior probability of a word beginning at posi-
tion i, ending at position j, and being generated by
English word k:

P (si...j = (1, 0, . . . , 0, 1), a = k | e)

=
α(i)P (f | ek)P (a = k)β(j)

P (c | e)

where f = ci . . . cj is the word formed by con-
catenating characters i through j, and a is a vari-
able indicating which English position generated
f . Here α and β are defined as:

α(i) = P (ci
1, si = 1 | e)

β(j) = P (cm
j+1, sj = 1 | e)

These quantities resemble forward and backward
probabilities of hidden Markov models, and can
be computed with similar dynamic programming
recursions:

α(i) =
L∑

ℓ=1

α(i− ℓ)
∑

a

P (a)P (cii−ℓ | ea)

β(j) =
L∑

ℓ=1

∑
a

P (a)P (cj+ℓ
j | ea)β(j + ℓ)

where L is the maximum character length for a
word.

Then, we can calculate the expected counts of
individual word pairs being aligned (cji , ek) by ac-
cumulating these posteriors over the data:

ec(cji , ek) +=
α(i)P (a)P (cji | ek)β(j)

α(m)

The M step simply normalizes the counts:

P̃ (f | e) =
ec(f, e)∑
e ec(f, e)

Our model can be compared to a hidden Markov
model in the following way: a target word gen-
erates a source token which spans a zeroth order
Markov chain of characters in source sentence,
where a “transition” represents a segmentation and
a “emission” represents an alignment. The model
uses HMM-like dynamic programming to do in-
ference. For the convenience, we refer to this
model as the bilingual model in the rest of the
paper. Figure 1 illustrates our first model with
an small example. Under this model we are not
learning segmentation directly, but rather we are
learning alignments between two sentences. The

c1 c2 c3 c4

f1 f2

e1 e2

Figure 1: The figure shows a source sentence
f = f1, f2 = s ◦ c1 . . . c4 where s = (0, 0, 1, 1)
and a target sentence e = e1, e2. There is a seg-
mentation between c3 and c4; thus c1, c2, c3 form
f1 and c3 forms f2. f1 is generated by e2 and f2 is
generated by e1.

segmentation is by-product of learning the align-
ment. We can find the optimal segmentation of
a new source language sentence using the Viterbi
algorithm. Given two sentences e and f ,

a∗ = argmax
a

P (f ,a | e)

and segmentation s∗ implied by alignment a∗ is
the optimal segmentation of f found by this model.

3.2 Learning tokenization from substring
counts

The second tokenization model we propose is
much simpler. More sophisticated unsupervised
monolingual tokenization models using hierarchi-
cal Bayesian models (Goldwater et al., 2006)
and using the minimum description length prin-
ciple (Goldsmith, 2001; de Marcken, 1996) have
been studied. Our model is meant to serve as
a computationally efficient baseline for unsuper-
vised monolingual tokenization. Given a corpus
of only source language of unknown tokenization,
we want to find the optimal s given c — s that
gives us the highest P (s | c). According to Bayes’
rule,

P (s | c) ∝ P (c | s)P (s)

Again, we assume that all P (s) are equally likely.
Let f = s◦c = f1 . . . fℓ, where fi is a word under
some possible segmentation s. We want to find the
s that maximizes P (f). We assume that

P (f) = P (f1)× . . .× P (fℓ)

To calculate P (fi), we count every possible
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substring — every possible segmentation of char-
acters — from the sentences. We assume that

P (fi) =
count(fi)∑
k count(fk)

We can compute these counts by making a sin-
gle pass through the corpus. As in the bilingual
model, we limit the maximum size of f for prac-
tical reasons and to prevent our model from learn-
ing unnecessarily long f . With P (f), given a se-
quence of characters c, we can calculate the most
likely segmentation using the Viterbi algorithm.

s∗ = argmax
s

P (f)

Our rationale for this model is that if a span of
characters f = ci . . . cj is an independent token, it
will occur often enough in different contexts that
such a span of characters will have higher prob-
ability than other spans of characters that are not
meaningful. For the rest of the paper, this model
will be referred to as the monolingual model.

3.3 Tokenizing new data
Since the monolingual tokenization only uses in-
formation from a monolingual corpus, tokenizing
new data is not a problem. However, with the
bilingual model, we are learning P (f | e). We are
relying on information available from e to get the
best tokenization for f. However, the parallel sen-
tences will not be available for new data we want
to translate. Therefore, for the new data, we have
to rely only on P (f) to tokenize any new data,
which can be obtained by calculating

P (f) =
∑

e

P (f | e)P (e)

With P (f) from the bilingual model, we can run
the Viterbi algorithm in the same manner as mono-
lingual tokenization model for monolingual data.
We hypothesize that we can learn valuable infor-
mation on which token boundaries are preferable
in language f when creating a statistical machine
translation system that translates from language f
to language e.

4 Preventing overfitting

We introduce two more refinements to our word-
alignment induced tokenization model and mono-
lingual tokenization model. Since we are consid-
ering every possible token f that can be guessed

from our corpus, the data is very sparse. For the
bilingual model, we are also using the EM algo-
rithm to learn P (f | e), which means there is a
danger of the EM algorithm memorizing the train-
ing data and thereby overfitting. We put a Dirichlet
prior on our multinomial parameter for P (f | e)
to control this situation. For both models, we also
want a way to control the distribution of token
length after tokenization. We address this problem
by adding a length factor to our models.

4.1 Variational Bayes
Beal (2003) and Johnson (2007) describe vari-
ational Bayes for hidden Markov model in de-
tail, which can be directly applied to our bilingual
model. With this Bayesian extension, the emission
probability of our first model can be summarized
as follows:

θe | α ∼ Dir(α),
fi | ei = e ∼ Multi(θe).

Johnson (2007) and Zhang et al. (2008a) show
having small α helps to control overfitting. Fol-
lowing this, we set our Dirichlet prior to be as
sparse as possible. It is set at α = 10−6, the num-
ber we used as floor of our probability.

For the model incorporating the length factor,
which is described in the next section, we do not
place a prior on our transition probability, since
there are only two possible states, i.e. P (s = 1)
and P (s = 0). This distribution is not as sparse as
the emission probability.

Comparing variational Bayes to the traditional
EM algorithm, the E step stays the same but the
M step for calculating the emission probability
changes as follows:

P̃ (f | e) =
exp(ψ(ec(f, e) + α))

exp(ψ(
∑

e ec(f, e) + sα))

where ψ is the digamma function, and s is the size
of the vocabulary from which f is drawn. Since
we do not accurately know s, we set s to be the
number of all possible tokens. As can be seen from
the equation, by setting α to a small value, we are
discounting the expected count with help of the
digamma function. Thus, having lower α leads to
a sparser solution.

4.2 Token length
We now add a parameter that can adjust the to-
kenizer’s preference for longer or shorter tokens.
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Figure 2: Distribution of token length for (from left to right) Chinese, and Korean. “ref” is the empirical
distribution from supervised tokenization. Two length factors — φ1 and φ2 are also shown. For φ1, the
parameter to geometric distribution P (s) is set to the value learned from our bilingual model. For φ2, λ
is set using the criterion described in the experiment section.

This parameter is beneficial because we want our
distribution of token length after tokenization to
resemble the real distribution of token length. This
parameter is also useful because we also want to
incorporate information on the number of tokens
in the other language in the parallel corpus. This is
based on the assumption that, if tokenization cre-
ates a one-to-one mapping, the number of tokens
in both languages should be roughly the same. We
can force the two languages to have about the same
number of tokens by adjusting this parameter. The
third reason is to further control overfitting. Our
observation is that certain morphemes are very
common, such that they will be always observed
attached to other morphemes. For example, in Ko-
rean, a noun attached with nominative case marker
is very common. Our model is likely to learn a
noun attached with the morpheme — nominative
case marker — rather than noun itself. This is not
desirable when the noun occurs with less common
morphemes; in these cases the morpheme will be
split off creating inconsistencies.

We have experimented with two different length
factors, each with one adjustable parameter:

φ1(ℓ) = P (s)(1− P (s))ℓ−1

φ2(ℓ) = 2−ℓλ

The first, φ1, is the geometric distribution, where
l is length of a token and P (s) is probability of
segmentation between two characters. The second
length factor φ2 was acquired through several ex-
periments and was found to work well. As can
been seen from Figure 2, the second factor dis-

counts longer tokens more heavily than the geo-
metric distribution. We can adjust the value of λ
and P (s) to increase or decrease number of tokens
after segmentation.

For our monolingual model, incorporating these
factors is straightforward. We assume that

P (f) ∝ P (f1)φ(ℓ1)× . . .× P (fn)φ(ℓn)

where ℓi is the length of fi. Then, we use the same
Viterbi algorithm to select the f1 . . . fn that max-
imizes P (f), thereby selecting the optimal s ac-
cording to our monolingual model with a length
factor. We pick the value of λ and P (s) that
produces about the same number of tokens in the
source side as in the target side, thereby incorpo-
rating some information about the target language.

For our bilingual model, we modify our model
slightly to incorporate φ1, creating a hybrid
model. Now, our forward probability of forward-
backward algorithm is:

α(i) =
L∑

ℓ=1

α(i− l)φ1(ℓ)
∑

a

P (a)P (cii−ℓ | ea)

and the expected count of (cji , ek) is

ec(cji , ek) +=
α(i)P (a)P (cji | ek)β(j)φ1(j − i)

α(m)

For φ1, we can learn P (s) for the geometric dis-
tribution from the model itself:1

P (s) =
1
m

m∑
i

α(i)β(i)
α(m)

1The equation is for one sentence, but in practice, we sum
over all sentences in the training data to calculate P (s).
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We can also fix P (s) instead of learning it through
EM. We incorporate φ2 into the bilingual model
as follows: after learning P (f) from the bilingual
model, we pick the λ in the same manner as the
monolingual model and run the Viterbi algorithm.

After applying the length factor, what we have
is a log-linear model for tokenization, with two
feature functions with equal weights: the length
factor and P (f) learned from model.

5 Experiments

5.1 Data

We tested our tokenization methods on two differ-
ent language pairs: Chinese-English, and Korean-
English. For Chinese-English, we used FBIS
newswire data. The Korean-English parallel data
was collected from news websites and sentence-
aligned using two different tools described by
Moore (2002) and Melamed (1999). We used sub-
sets of each parallel corpus consisting of about 2M
words and 60K sentences on the English side. For
our development set and test set, Chinese-English
had about 1000 sentences each with 10 reference
translations taken from the NIST 2002 MT eval-
uation. For Korean-English, 2200 sentence pairs
were randomly sampled from the parallel corpus,
and held out from the training data. These were
divided in half and used for test set and develop-
ment set respectively. For all language pairs, very
minimal tokenization — splitting off punctuation
— was done on the English side.

5.2 Experimental setup

We used Moses (Koehn et al., 2007) to train
machine translation systems. Default parameters
were used for all experiments except for the num-
ber of iterations for GIZA++ (Och and Ney, 2003).
GIZA++ was run until the perplexity on develop-
ment set stopped decreasing. For practical rea-
sons, the maximum size of a token was set at three
for Chinese, and four for Korean.2 Minimum error
rate training (Och, 2003) was run on each system
afterwards and BLEU score (Papineni et al., 2002)
was calculated on the test sets.

For the monolingual model, we tested two ver-
sions with the length factor φ1, and φ2. We picked
λ and P (s) so that the number of tokens on source
side (Chinese, and Korean) will be about the same

2In the Korean writing system, one character is actually
one syllable block. We do not decompose syllable blocks
into individual consonants and vowels.

as the number of tokens in the target side (En-
glish).

For the bilingual model, as explained in the
model section, we are learning P (f | e), but only
P (f) is available for tokenizing any new data. We
compared two conditions: using only the source
data to tokenize the source language training data
according to P (f) (which is consistent with the
conditions at test time), and using both the source
and English data to tokenize the source language
training data (which might produce better tok-
enization by using more information). For the first
length factor φ1, we ran an experiment where the
model learns P (s) as described in the model sec-
tion, and we also had experiments where P (s) was
pre-set at 0.9, 0.7, 0.5, and 0.3 for comparison. We
also ran an experiment with the second length fac-
tor φ2 where λ was picked as the same manner as
the monolingual model.

We varied tokenization of development set and
test set to match the training data for each ex-
periment. However, as we have implied in the
previous paragraph, in the one experiment where
P (f | e) was used to segment training data, di-
rectly incorporating information from target cor-
pus, tokenization for test and development set is
not exactly consistent with tokenization of train-
ing corpus. Since we assume only source corpus
is available at the test time, the test and the devel-
opment set was tokenized only using information
from P (f).

We also trained MT systems using supervised
tokenizations and tokenization requiring a mini-
mal effort for the each language pair. For Chinese-
English, the minimal effort tokenization is maxi-
mal tokenization where every Chinese character is
segmented. Since a number of Chinese tokeniz-
ers are available, we have tried four different to-
kenizations for the supervised tokenizations. The
first one is the LDC Chinese tokenizer available at
the LDC website3, which is compiled by Zhibiao
Wu. The second tokenizer is a maxent-based to-
kenizer described by Xue (2003). The third and
fourth tokenizations come from the CRF-based
Stanford Chinese segmenter described by Chang
et al. (2008). The difference between third and
fourth tokenization comes from the different gold
standard, the third one is based on Beijing Uni-
versity’s segmentation (pku) and the fourth one is
based on Chinese Treebank (ctb). For Korean-

3http://projects.ldc.upenn.edu/Chinese/LDC ch.htm
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Chinese Korean
BLEU F-score BLEU

Supervised
Rule-based morphological analyzer 7.27
LDC segmenter 20.03 0.94
Xue’s segmenter 23.02 0.96
Stanford segmenter (pku) 21.69 0.96
Stanford segmenter (ctb) 22.45 1.00

Unsupervised
Splitting punctuation only 6.04
Maximal (Character-based MT) 20.32 0.75
Bilingual P (f | e) with φ1 P (s) = learned 19.25 6.93
Bilingual P (f) with φ1 P (s) = learned 20.04 0.80 7.06
Bilingual P (f) with φ1 P (s) = 0.9 20.75 0.87 7.46
Bilingual P (f) with φ1 P (s) = 0.7 20.59 0.81 7.31
Bilingual P (f) with φ1 P (s) = 0.5 19.68 0.80 7.18
Bilingual P (f) with φ1 P (s) = 0.3 20.02 0.79 7.38
Bilingual P (f) with φ2 22.31 0.88 7.35
Monolingual P (f) with φ1 20.93 0.83 6.76
Monolingual P (f) with φ2 20.72 0.85 7.02

Table 1: BLEU score results for Chinese-English and Korean-English experiments and F-score of seg-
mentation compared against Chinese Treebank standard. The highest unsupervised score is highlighted.

English, the minimal effort tokenization splitting
off punctuation and otherwise respecting the spac-
ing in the Korean writing system. A Korean mor-
phological analysis tool4 was used to create the su-
pervised tokenization.

For Chinese-English, since a gold standard for
Chinese segmentation is available, we ran an addi-
tional evaluation of tokenization from each meth-
ods we have tested. We tokenized the raw text
of Chinese Treebank (Xia et al., 2000) using all
of the methods (supervised/unsupervised) we have
described in this section except for the bilingual
tokenization using P (f | e) because the English
translation of the Chinese Treebank data was not
available. We compared the result against the gold
standard segmentation and calculated the F-score.

6 Results

Results from Chinese-English and Korean-English
experiments are presented in Table 1. Note that
nature of data and number of references are dif-
ferent for the two language pairs, and therefore
the BLEU scores are not comparable. For both
language pairs, our models perform equally well
as supervised baselines, or even better. We can

4http://nlp.kookmin.ac.kr/HAM/eng/main-e.html

observe three things from the result. First, tok-
enization of training data using P (f | e) tested on
a test set tokenized with P (f) performed worse
than any other experiments. This affirms our be-
lief that consistency in tokenization is important
for machine translation, which was also mentioned
by Chang et al. (2008). Secondly, we are learning
valuable information by looking at the target lan-
guage. Compare the result of the bilingual model
with φ2 as the length factor to the result of the
monolingual model with the same length factor.
The bilingual version consistently performed bet-
ter than the monolingual model in all language
pairs. This tells us we can learn better token
boundaries by using information from the target
language. Thirdly, our hypothesis on the need
for heavy discount for longer tokens is confirmed.
The value for P (s) learned by the model was 0.55,
and 0.58 for Chinese, and Korean respectively. For
both language pairs, this accurately reflects the
empirical distribution of token length, as can be
seen in Figure 2. However, experiments where
P (s) was directly optimized performed better, in-
dicating that this parameter should be optimized
within the context of a complete system. The sec-
ond length factor φ2, which discounts longer to-
kens even more heavily, generally performed bet-
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English the two presidents will hold a joint press conference at the end of their summit talks .

Untokenized Korean 㥪㑶㩁㡜㧹㳧㖺㨋㔚㔦㘏㑗㗴㒟㨙㳧㐾㧺㐍㑌㳧㖺㑀㑙㛵㑗㣩㞌㱶㲢㖰 .

Supervised 㥪㑶㩁㡜 㧹㳧㖺 㨋㔚㔣 ㄴ㘏㑗㗴㒟㨙㳧㐾 㧺㐍 㑌㳧㖺㑀㑙 㛵㑗㣩㞌㱶 㲠 ㄴ㖰 .

Bilingual P (f | e) with φ1 㥪㑶㩁㡜㧹㳧㖺 㨋㔚㔦㘏㑗㗴㒟㨙㳧㐾 㧺㐍㑌㳧㖺㑀㑙 㛵㑗㣩㞌㱶㲢 㖰 .

Bilingual P (f) with φ2 㥪㑶㩁㡜 㧹㳧㖺 㨋㔚㔦㘏㑗㗴㒟㨙㳧㐾 㧺㐍㑌㳧㖺㑀㑙 㛵㑗㣩㞌㱶 㲢㖰 .

Monolingual P (f) with φ1 㥪㑶㩁 㡜 㧹㳧㖺 㨋㔚㔦㘏㑗㗴㒟㨙㳧㐾 㧺㐍㑌㳧㖺㑀㑙㛵㑗㣩㞌㱶㲢 㖰 .

Monolingual P (f) with φ2 㥪㑶㩁㡜 㧹㳧㖺 㨋㔚㔦㘏㑗㗴㒟㨙㳧㐾 㧺㐍㑌㳧㖺㑀㑙㛵㑗㣩㞌㱶 㲢㖰 .

Figure 3: Sample tokenization results for Korean-English data. The underscores are added to clearly
visualize where the breaks are.

ter than the first length factor when used in con-
junction with the bilingual model. Lastly, F-scores
of Chinese segmentations compared against the
gold standard shows higher segmentation accuracy
does not necessarily lead to higher BLEU score.
F-scores presented in Table 1 are not directly com-
parable for all different experiments because the
test data (Chinese Treebank) is used in training for
some of the supervised segmenters, but these num-
bers do show how close unsupervised segmenta-
tions are to the gold standard. It is interesting to
note that our highest unsupervised segmentation
result does make use of bilingual information.

Sample tokenization results for Korean-English
experiments are presented in Figure 3. We observe
that different configurations produce different tok-
enizations, and the bilingual model produced gen-
erally better tokenizations for translation com-
pared to the monolingual models or the super-
vised tokenizer. In this example, the tokenization
obtained from the supervised tokenizer, although
morphologically correct, is too fine-grained for the
purpose of translation to English. For example,
it correctly tokenized the attributive suffix ㄴ -n
however, this is not desirable since English has no
such counterpart. Both variations of the monolin-
gual tokenization have errors such as incorrectly
not segmenting 㑀㑙㛵 gyeol-gwa-reul, which is
a compound of a noun and a case marker, into㑀
㑙 㛵 gyeol-gwa reul as the bilingual model was
able to do.

6.1 Conclusion and future work

We have shown that unsupervised tokenization for
machine translation is feasible and can outperform
rule-based methods that rely on lexical analysis,
or supervised statistical segmentations. The ap-
proach can be applied both to morphological anal-
ysis of Korean and the segmentation of sentences
into words for Chinese, which may at first glace

appear to be quite different problems. We have
only shown how our methods can be applied to
one language of the pair, where one language is
generally isolating and the other is generally syn-
thetic. However, our methods could be extended
to tokenization for both languages by iterating be-
tween languages. We also used the most simple
word-alignment model, but more complex word
alignment models could be incorporated into our
bilingual model.
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Abstract
Tree Adjoining Grammars have well-known
advantages, but are typically considered too
difficult for practical systems. We demon-
strate that, when done right, adjoining im-
proves translation quality without becoming
computationally intractable. Using adjoining
to model optionality allows general translation
patterns to be learned without the clutter of
endless variations of optional material. The
appropriate modifiers can later be spliced in as
needed.
In this paper, we describe a novel method
for learning a type of Synchronous Tree Ad-
joining Grammar and associated probabilities
from aligned tree/string training data. We in-
troduce a method of converting these gram-
mars to a weakly equivalent tree transducer
for decoding. Finally, we show that adjoining
results in an end-to-end improvement of +0.8
BLEU over a baseline statistical syntax-based
MTmodel on a large-scale Arabic/EnglishMT
task.

1 Introduction
Statistical MT has changed a lot in recent years.
We have seen quick progress from manually
crafted linguistic models to empirically learned
statistical models, from word-based models to
phrase-based models, and from string-based mod-
els to tree-based models. Recently there is a swing
back to incorporating more linguistic information
again, but this time linguistic insight carefully
guides the setup of empirically learned models.
Shieber (2007) recently argued that proba-

bilistic Synchronous Tree Adjoining Grammars
(Shieber and Schabes, 1990) have the right com-
bination of properties that satisfy both linguists
and empirical MT practitioners. So far, though,
most work in this area has been either more lin-
guistic than statistical (Abeille et al., 1990) or
statistically-based, but linguistically light (Nesson
et al., 2006).

Current tree-based models that integrate lin-
guistics and statistics, such as GHKM (Galley et
al., 2004), are not able to generalize well from
a single phrase pair. For example, from the data
in Figure 1, GHKM can learn rule (a) to translate
nouns with two pre-modifiers, but does not gener-
alize to learn translation rules (b) - (d) without the
optional adjective or noun modifiers. Likewise,
none of these rules allow extra material to be intro-
duced, e.g. “Pakistan’s national defense minister”.
In large enough training data sets, we see many
examples of all the common patterns, but the rarer
patterns have sparse statistics or poor coverage.

NP

JJ

national

NN

defense

NN

minister

wzyr AldfAE AlwTnY

(a)
NP

JJ1 NN2 NN3

↔ NN3 NN2 JJ1

(b)
NP

NN1 NN2

↔ NN2 NN1

(c)
NP

JJ1 NN2

↔ NN2 JJ1

(d)
NP

NN1

↔ NN1

Figure 1: Rule (a) can be learned from this training
example. Arguably, the more general rules (b) -
(d) should also be learnable.

To mitigate this problem, the parse trees used
as training data for these systems can be binarized
(Wang et al., 2007). Binarization allows rules with
partial constituents to be learned, resulting in more
general rules, richer statistics, and better phrasal
coverage (DeNeefe et al., 2007), but no principled
required vs. optional decision has been made. This
method’s key weakness is that binarization always
keeps adjacent siblings together, so there is no way
to group the head with a required complement if
optional information intervenes between the two.
Furthermore, if all kinds of children are consid-
ered equally optional, then we have removed im-
portant syntactic constraints, which may end up
permitting too much freedom. In addition, spu-
rious alignments may limit the binarization tech-
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nique’s effectiveness.
In this paper, we present a method of learning

a type of probabilistic Synchronous Tree Adjoin-
ing Grammar (STAG) automatically from a cor-
pus of word-aligned tree/string pairs. To learn this
grammar we use linguistic resources to make the
required vs. optional decision. We then directly
model the optionality in the translation rules by
learning statistics for the required parts of the rule
independently from the optional parts. We also
present a method of converting these rules into a
well-studied tree transducer formalism for decod-
ing purposes. We then show that modeling option-
ality using adjoining results in a statistically sig-
nificant BLEU gain over our baseline syntax-based
model with no adjoining.

2 Translation Model

2.1 Synchronous Tree Insertion Grammars
Tree Adjoining Grammars (TAG), introduced by
Joshi et al. (1975) and Joshi (1985), allow inser-
tion of unbounded amounts of material into the
structure of an existing tree using an adjunction
operation. Usually they also include a substitution
operation, which has a ‘fill in the blank’ seman-
tics, replacing a substitution leaf node with a tree.
Figure 2 visually demonstrates TAG operations.
Shieber and Schabes (1990) offer a synchronous
version of TAG (STAG), allowing the construc-
tion of a pair of trees in lockstep fashion using the
TAG operations of substitution and adjunction on
tree pairs. To facilitate this synchronous behav-
ior, links between pairs of nodes in each tree pair
define the possible sites for substitution and ad-
junction to happen. One application of STAG is
machine translation (Abeille et al., 1990).
One negative aspect of TAG is the compu-

tational complexity: O(n6) time is required
for monolingual parsing (and thus decoding),
and STAG requires O(n12) for bilingual parsing
(which might be used for training the model di-
rectly on bilingual data). Tree Insertion Grammars
(TIG) are a restricted form of TAG that was in-
troduced (Schabes and Waters, 1995) to keep the
same benefits as TAG (adjoining of unbounded
material) without the computational complexity—
TIG parsing is O(n3). This reduction is due to a
limitation on adjoining: auxiliary trees can only
introduce tree material to the left or the right of
the node adjoined to. Thus an auxiliary tree can
be classified by direction as left or right adjoining.

adjunction
NP

DT

the

NP

NN↓

NP

JJ↓ NP*

substitution substitution

NN

minister

JJ

defense

=⇒

NP

DT

the

NP

JJ

defense

NP

NN

minister

Figure 2: TAG grammars use substitution and ad-
junction operations to construct trees. Substitu-
tion replaces the substitution node (marked with
↓) with another tree. Adjunction inserts an aux-
iliary tree—a special kind of tree fragment with a
foot node (marked with *)—into an existing tree at
a permitted non-terminal node. Note that in TAG,
adjunctions are permitted at any non-terminal with
the same label as the root and foot node of the
auxiliary tree, while in STAG adjunctions are re-
stricted to linked sites.

Nesson et al. (2006) introduce a probabilis-
tic, synchronous variant of TIG and demonstrate
its use for machine translation, showing results
that beat both word-based and phrase-based MT
models on a limited-vocabulary, small-scale train-
ing and test set. Training the model uses an
O(n6) bilingual parsing algorithm, and decoding
is O(n3). Though this model uses trees in the for-
mal sense, it does not create Penn Treebank (Mar-
cus et al., 1993) style linguistic trees, but uses only
one non-terminal label (X) to create those trees us-
ing six simple rule structures.
The grammars we use in this paper share some

properties in common with those of Nesson et al.
(2006) in that they are of the probabilistic, syn-
chronous tree-insertion variety. All pairs of sites
(both adjunction and substitution in our case) are
explicitly linked. Adjunction sites are restricted by
direction: at each linked site, the source and target
side each specify one allowed direction. The re-
sult is that each synchronous adjunction site can be
classified into one of four direction classes: {LR,
LL, RR, RL}. For example, LR means the source
side site only allows left adjoining trees and the
target side site only allows right adjoining trees.
There are several important differences between

our grammars and the ones of Nesson et al. (2006):

Richer, Linguistic Trees: Our grammars have a
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Penn Treebank-style linguistic tree on the En-
glish (target) side, and a hierarchical structure
using only a single non-terminal symbol (X)
on the source side. We believe this provides
the rich information needed in the target lan-
guage without over-constraining the model.

Substitution Sites/Non-lexical trees: We use
both substitution and adjunction (Nesson
et al. (2006) only used adjunction) and do
not require all trees to contain lexical items
as is commonly done in TIG (Schabes and
Waters, 1995).

Single Adjunction/Multiple Sites: Each non-
terminal node in a tree may allow multiple
adjunction sites, but every site only allows at
most one adjunction,1 a common assumption
for TAG as specified in the Vijay-Shanker
(1987) definition.

Here are some examples of automatically
learned translation rules with interpretations of
how they work:

1. simple lexical rules for translating words or
phrases:

IN

without
⇐⇒ X

AlA

interpretation: translate the Arabic word
“AlA” as the preposition “without”

2. rules with substitution for translating phrases
with holes (substitution sites are designated
by an arrow and numeric subscript, e.g.
NP↓1):

PP

PP

IN

of

NP↓1 ⇐⇒ X

X↓1

interpretation: insert “of” to turn a noun
phrase into a prepositional phrase

3. simple adjoining rules for inserting optional
modifiers (adjoining sites are designated by

1An adjoined rule may itself have adjoining sites allowing
further adjunction.

an alphabetic subscript before or after a non-
terminal to indicate direction of adjoining,
e.g. aNP):

aNP

JJ↓1 NP*
⇐⇒

X

X* Xa

X↓1
interpretation: adjoin an adjective before a
noun in English but after in Arabic, and al-
lowing further adjoinings in those same di-
rections afterward

4. rules with multiple adjunction and substitu-
tion sites:

aS

NP↓1 bSc

VPd

VPe

VBD↓2

NP↓3

⇐⇒
X

aX

X↓2

X

X↓1

e,bXd,c

X↓3

interpretation: translate an Arabic sentence in
VSO form into an English sentence in SVO
form, with multiple adjoining options

2.2 Generative Story
When we use these rules to translate from a for-
eign sentence f into an English sentence e, we
use several models together in a log-linear fash-
ion, but our primary model is a joint model of
P (etree, ftree), which is our surrogate for directly
modeling P (e|f). This can be justified because
P (e|f) = P (e,f)

P (f) , and P (f) is fixed for a given
foreign sentence. Therefore:

argmax
e

P (e|f) = argmax
e

P (e, f)

≈ yield(argmax
etree

P (etree, ftree))

≈ yield(argmax
etree

P (detree,ftree))

where detree,ftree is a derivation tree of rules that
generates etree and ftree. In other words, e, the
highest probability translation of f , can be approx-
imated by taking the yield of the highest proba-
bility tree etree that is a translation of the high-
est probability tree of f . This can further be ap-
proximated by the highest probability derivation
of rules translating between f and e via trees.
Now we define the probability of generating

detree,ftree . Starting with an initial symbol pair
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representing a rule with a single substitution site,2
〈TOP↓, X↓〉, a tree pair can be generated by the
following steps:

1. For each substitution site si in the current rule
r1:

(a) Choose with probability
Psub(r2|〈labelL(si), labelR(si)〉) a rule
r2 having root node labels labelL(si)
and labelR(si) that match the left and
right labels at si.

2. For each adjunction site si,r1 in the current
rule r1:

(a) Choose with rule-specific probability
Pifadj(decisionadjoin|si,r1, r1) choose
whether or not to adjoin at the current
site si,r1.

(b) If we are adjoining at site
si,r1, choose with probability
Padj(r2|d, 〈labelL(si,r1), labelR(si,r1)〉)
a rule r2 of direction class d having
root node labels labelL(si,r1) and
labelR(si,r1) that match the left and
right labels at si,r1 .

3. Recursively process each of the added rules

For all substitution rules rs, adjoining rules ra,
and adjoining sites si,r, the probability of a deriva-
tion tree using these rules is the product of all the
probabilities used in this process, i.e.:

Pderiv =∏
rs

(
Psub(rs|〈rootL(rs), rootR(rs)〉) ·

∏
si,rs

Pifadj(decisionadjoin|si,rs , rs)
)

·

∏
ra

(
Padj(ra|dir(ra), 〈rootL(ra), rootR(ra)〉) ·

∏
si,ra

Pifadj(decisionadjoin|si,ra , ra)
)

Note that while every new substitution site re-
quires an additional rule to be added, adjunction
sites may or may not introduce an additional rule
based on the rule-specific Pifadj probability. This
allows adjunction to represent linguistic optional-
ity.

2Here and in the following, we use site as shorthand for
synchronous site pair.

3 Learning the Model

Instead of using bilingual parsing to directly train
our model from strings as done by Nesson et al.
(2006), we follow the method of Galley et al.
(2004) by dividing the training process into steps.
First, we word align the parallel sentences and
parse the English (target) side. Then, we transform
the aligned tree/string training data into derivation
trees of minimal translation rules (Section 3.1). Fi-
nally, we learn our probability models Psub, Pifadj ,
and Padj by collecting counts over the derivation
trees (Section 3.2). This method is quick enough
to allow us to scale our learning process to large-
scale data sets.

3.1 Generating Derivation Trees and Rules
There are four steps in transforming the training
data into derivation trees and rules, the first two
operating only on the English parse tree itself:3
A. Marking Required vs. Optional. For each

constituent in the English parse tree, we mark chil-
dren as (H)ead, (R)equired, or (O)ptional elements
(see step (a) in Figure 3). The choice of head, re-
quired, or optional has a large impact on the gen-
erality and applicability of our grammar. If all
children are considered required, the result is the
same as the GHKM rules of Galley et al. (2004)
and has the same problem—lots of low count,
syntactically over-constrained rules. Too many
optional children, on the other hand, allows un-
grammatical output. Our proposed model is a lin-
guistically motivated middle ground: we consider
the linguistic heads and complements selected by
Collins’ (2003) rules to be required and all other
children to be optional.

B. Parse tree to TIG tree. Next, we re-
structure the English tree to form a TIG deriva-
tion where head and required elements are substi-
tutions, and optional elements are adjunctions (see
step (b) in Figure 3). To allow for adjoining be-
tween siblings under a constituent, we first do a
head-out binarization of the tree. This is followed
by excising4 any children marked as optional and
replacing them with an adjunction site, as shown
in Figure 4. Note that we excise a chain of op-
tional children as one site with each optional child

3These first two steps were inspired by the method Chiang
(2003) used to automatically extract a TIG from an English
parse tree.

4Excising is the opposite of adjoining: extracting out an
auxiliary rule from a tree to form two smaller trees.
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S

ADVP , NP VP .
(a)
=⇒

S

ADVPO ,O NPR VPH .O
(b)
=⇒

S

ADVP , NP VP .

Figure 3: Parse tree to TIG transformation: (a) mark constituent children with (H)ead, (R)equired, and
(O)ptional, then (b) restructure the tree so that head and required elements are substitutions, while op-
tional elements are adjoined (shown with dotted lines).

NT1

NT1

ABC

NT2

XYZ

=⇒
NT1

ABC NT1

NT1* NT2

XYZ

NT1

NT3

XYZ

NT1

NT2

DEF

NT1

ABC

=⇒

NT1

NT1

NT1

NT3

XYZ

NT1*

NT2

DEF

NT1*

ABC

(a) excising one optional child (XYZ) (b) excising a series of optional children (DEF, then XYZ)

Figure 4: Two examples of excising auxiliary trees from a head-out binarized parse tree: (a) excising one
optional left branch, (b) excising a chain of optional branches in the same (right) direction into a series
of adjunctions. In both examples, the ‘ABC’ child is the head, while the other children are optional.

adjoined to the previous child, as in Figure 4(b).
C. Extracting rules and derivation trees. We

now have a TIG derivation tree, with each elemen-
tary tree attached to its parent by a substitution or
adjunction link. We can now extract synchronous
rules allowed by the alignments and syntactic con-
stituents. This can be done using a method in-
spired by the rule-extraction approach of Galley et
al. (2004), but instead of directly operating on the
parse tree we process the English TIG derivation
tree. In bottom-up fashion, we visit each elemen-
tary tree in the derivation, allowing a rule rooted
at this tree to be extracted if its words or those
of its descendants are aligned such that they are
the English side of a self-contained parallel phrase
(i.e., the foreign text of this phrase is not aligned to
English leaves outside of the set of descendants).
Otherwise, this elementary tree is rejoined with its
parent to form a larger elementary tree. At the end
of this process we have a new set of linked ele-
mentary trees which make up the English side of
the grammar, where each substitution or adjunc-
tion link becomes a substitution or adjunction site
in the synchronous grammar.
On the foreign side we start with the foreign text

of the self-contained parallel phrase and replace
any parts of this phrase covered by substituted or

adjoined children of the English side tree with sub-
stitution sites or adjunction site markers. From
this, we produce a tree with a simple, regular form
by placing all items under a root node labeled X.
In the case of more than one foreign word or sub-
stitution site, we introduce an intermediate level of
X-labeled non-terminals to allow for possible ad-
junction between elements, otherwise the adjoin-
ing sites attach to the single root node. We attach
all foreign-side adjoining sites to be left adjoining,
except on the right side of the right-hand child.
It is possible to have the head child tree on the

English side not aligned to anything, while the ad-
joined children are. This may lead to rules with no
foreign non-terminal from which to anchor the ad-
junctions, so in this case, we attach adjoined child
elementary trees starting from the head and mov-
ing out until we attach a some child with a non-
empty foreign side.
D. Generalizing rules. We need to clarify

what makes one rule distinct from another. Con-
sider the example in Figure 5, which shows se-
lected rules learned in the case of two different
noun phrases. If the noun phrase consists of just
a single noun, we learn rule (a), while if the noun
phrase also has an adjective, we learn rules (b) and
(c). Since adjoining the adjective is optional, we
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consider rules (a) and (c) to be the same rule, the
latter with an adjoining seen, and the former with
the same adjoining not seen.

3.2 Statistical Models
Once we have the derivation trees and list of rules,
we learn our statistical models using maximum
likelihood estimation. By counting and normal-
izing appropriately over the entire corpus, we can
straightforwardly learn the Psub and Padj distribu-
tions. However, recall that in our model Pifadj is a
rule-specific probability, which makes it more dif-
ficult to estimate accurately. For common rules,
we see plenty of examples of adjoining, while for
other rules, we need to learn from only a handful
of examples. Smoothing and generalization are es-
pecially important for these low frequency cases.
Two options present themselves for how to esti-

mate adjoining:

(a) A joint model of adjoining. We assume that
adjoining decisions are made in combination
with each other, and so learn non-zero proba-
bilities only for adjoining combinations seen
in data

(b) An independent model of adjoining. We as-
sume adjoining decisions are made indepen-
dently, and learn a model for each adjoining
site separately

Option (a) may be sufficient for frequent rules,
and will accurately model dependencies between
different kinds of adjoining. However, it does not
allow us to generalize to unseen patterns of adjoin-
ing. Consider the low frequency situation depicted
in Figure 6, rules (d)-(f). We may have seen this
rule four times, once with adjoining site a, twice
with adjoining sites a and b, and once with a third
adjoining site c. The joint model will give a zero
probability to unseen patterns of adjoining, e.g. no
adjoining at any site or adjoining at site b alone.
Even if we use a discounting method to give a non-
zero probability to unseen cases, we still have no
way to distinguish one from another.
Option (b) allows us to learn reasonable esti-

mates for these missing cases by separating out
adjoining decisions and letting each speak for it-
self. To properly learn non-zero probabilities for
unseen cases5 we use add k smoothing (k = 1

2 ).
5For example, low frequency rules may have always been

observed with a single adjoining pattern, and never without
adjoining.

A weakness of this approach still remains: ad-
joining is not a truly independent process, as we
observe empirically in the data. In real data, fre-
quent rules have many different observed adjoin-
ing sites (10 or 20 in some cases), many of which
represent already infrequent sites in combinations
never seen together. To reduce the number of in-
valid combinations produced, we only allow ad-
joinings to be used at the same time if they have
occurred together in the training data. This restric-
tion makes it possible to do less adjoining than ob-
served, but not more. For the example in Figure 6,
in addition to the observed patterns, we would also
allow site b to be used alone, and we would allow
no adjoinings, but we would not allow combina-
tions of site c with either a or b. Later, we will
see that this makes the decoding process more ef-
ficient.
Because both option (a) and (b) above have

strengths and weaknesses, we also explore a third
option which builds upon the strengths of each:

(c) A log-linear combination of the joint model
and independent model. We assume the prob-
ability has both a dependent and indepen-
dent element, and learn the relative weight
between them automatically

To help smooth this model we add two addi-
tional binary features: one indicating adjoining
patterns seen in data and one indicating previously
unseen patterns.

4 Decoding

To translate with these rules, we do a monolingual
parse using the foreign side of the rules (constrain-
ing the search using non-terminal labels from both
sides), while keeping track of the English side
string and structure for language modeling pur-
poses. This produces all valid derivations of rules
whose foreign side yield is the input string, from
which we simply choose the one with the high-
est log-linear model score. Though this process
could be done directly using a specialized parsing
algorithm, we note that these rules have weakly
equivalent counterparts in the Synchronous Tree
Substitution Grammar (STSG) and Tree-to-string
transducer (xLNTs6) worlds, such that each STIG
rule can be translated into one equivalent rule, plus
some helper rules to model the adjoin/no-adjoin

6xLNTs is shorthand for extended linear non-deleting top-
down tree-to-string transducer.
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Case 1: Case 2:

NP

NN

health

AlSHp

→ (a)
NP

NN↓1
⇐⇒ X

X↓1

NP

JJ

national

NP

NN

defense

AldfAE AlwTnY

→
(b)

NP

JJ↓1 NP*
⇐⇒

X

X* X

X↓1
(c)

aNP

NN↓1
⇐⇒ Xa

X↓1

Figure 5: Selected rules learned in two cases. Rule (a) and (c) are considered the same rule, where (c)
has the optional synchronous adjoining site marked with a. From these (limited) examples alone we
would infer that adjective adjoining happens half the time, and is positioned before the noun in English,
but after the noun in Arabic (thus the positioning of site a).

(d)
aQPb

IN↓1
⇐⇒ aXb

X↓1
(e)

aQP

IN↓1
⇐⇒ aX

X↓1
(f)

cQP

IN↓1
⇐⇒ Xc

X↓1
(seen once) (seen twice) (seen once)

Figure 6: For a low frequency rule, we may see only a few different adjoining patterns, but we want to
infer more.

decision. Conversion to a better known and ex-
plored formalism allows us to take advantage of
existing code and algorithms. Here we describe
the conversion process to xLNTs rules, though
conversion to STSG is similar.
Algorithm 1 describes the process of converting

one of our automatically learned STIG rules. On
each side of the rule, we traverse the tree in a top-
down, left-to-right order, recording words, substi-
tution sites, and adjoining sites in the order en-
countered (left adjoinings before the node’s chil-
dren and right adjoinings after). We make these
words and sites as the children under a single root
node. The substitution sites are given states made
up of a combination of their source and target la-
bels as are the roots of non-adjoining rules. Ad-
joining sites are labeled with a combination of the
rule id and a site id. Adjoining rule roots are la-
beled with a combination of the source and target
root labels and the direction class. To allow for the
adjoining/no-adjoining decision, two helper rules
are created for each adjoining site, their root state
a combination of the rule and site ids. One of these
rules has only epsilon leaf nodes (representing no
adjoining), while the other has leaf nodes and a
state that match with the corresponding adjoining
rule root (labeled with the site’s source and target
labels and the direction class).

For each rule, the algorithm generates one
main rule and pairs of helper rules to facilitate
adjoining/non-adjoining. For computational effi-
ciency reasons, our decoder supports neither ep-
silon rules nor non-binary rules. So we remove ep-
silons using an exponential expansion of the rules:
combine each main rule with an adjoining or non-
adjoining helper rule for each adjunction site, then
remove epsilon-only branches. For k adjunction
sites this could possibly results in 2k rules. But as
discussed previously (at the end of Section 3.2),
we only allow subsets of adjoining combinations
seen in training data, so this number is substan-
tially lower for large values of k.

5 Experiments

All experiments are trained with a subset (171,000
sentences or 4 million words) of the Arabic-
English training data from the constrained data
track of the NIST 2008 MT Evaluation, leav-
ing out LDC2004T18, LDC2007E07, and the UN
data. The training data is aligned using the LEAF
technique (Fraser and Marcu, 2007). The English
side of the training data is parsed with an imple-
mentation of Collins Model 2 (Collins, 2003)
then head-out binarized. The tuning data (1,178
sentences) and devtest data (1,298 sentences) are
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Input: Synchronous TIG rule r with j adjoining sites, S ↔ T , where S and T are trees
Output: a weakly equivalent xLNTs rule S′ ↔ t1 . . . tn, where S′ is a one-level tree, and 2 · j

helper rules for adjoining
Run time: O(|S| + |T |)
begin

rules← {}, lhs-state← concat(‘q’, get-root(S), get-root(T ))
site-and-word-list-s ← get-sites-and-words-in-order(S)
site-and-word-list-t ← get-sites-and-words-in-order(T )
if r is adjoining then lhs-state← concat(lhs-state, get-adjoin-dir(S), get-adjoin-dir(T ))
lhs← construct-LHS(lhs-state, get-root(S), site-and-word-list-s)
rhs← construct-RHS(add-states(id(r), site-and-word-list-t))
add(rules, ‘lhs↔ rhs’) /* main rule */
foreach adjoining site i ∈ 1 . . . k do

lhs-state← concat(‘q’, id(r), i), rhs-state← concat(‘q’, lhs-root)
lhs-root← concat(source-label(i), target-label(i), source-dir(i), target-dir(i))
lhs← construct-LHS(lhs-state, lhs-root, lhs-root)
rhs← construct-RHS({(rhs-state, lhs-root)})
rhs-eps← construct-RHS(ε)
add(rules, {‘lhs↔ rhs’, ‘lhs↔ rhs-eps’}) /* helper rules for site i */

return rules
end
function get-sites-and-words-in-order(node)

y ← {}
if node is substitution site or word then append site or word to y else

append left adjoining sites to y in outside-to-inside order
foreach child c of node do append result of get-yield(c) to y
append right adjoining sites to y in inside-to-outside order

return y

end
function add-states(ruld-id, node-list)
foreach substitution or adjunction site si and in node-list do
if si is substitution site then state = concat(‘q’, source-site-label(si ), target-site-label(si ))
else state = concat(‘q’, rule-id, i)
replace si with (state, si)

return modified node-list
end

Algorithm 1: Conversion from synchronous TIG rules to weakly equivalent xLNTs rules

BLEU
description DevTest NIST06

(1) baseline: all required (GHKM minimal, head-out binarized parse trees) 48.0 47.0
(2) joint adjoining prob model alone (only observed adjoining patterns) 48.0 46.6
(3) independent adjoining prob model alone (only observed adjoining patterns) 48.1 46.7
(4) independent adjoining prob model alone (with new adjoining patterns) 48.5 47.6
(5) independent model alone + features (adjoining pattern, direction) 48.4 47.7
(6) log-linear combination of joint & independent models + features 48.7 47.8

Table 1: End-to-end MT results show that the best adjoining model using a log-linear combination
of joint and independent models (line 6) outperforms the baseline (line 1) by +0.7 and +0.8 BLEU, a
statistically significant difference at the 95% confidence level.
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made up of newswire documents drawn from the
NIST MT evaluation data from 2004, 2005, and
2006 (GALE part). We use the newswire docu-
ments from the NIST part of the 2006 evaluation
data (765 sentences) as a held-out test set.
We train our feature weights using max-BLEU

(Och, 2003) and decode with a CKY-based de-
coder that supports language model scoring di-
rectly integrated into the search.
In addition to Psub, Padj , and Pifadj , we

use several other features in our log-linear
model during decoding, including: lexical and
phrase-based translation probabilities, a model
similar to conditional probability on the trees
(P (ftree(rule)|etree(rule))), a probability model
for generating the top tree non-terminal, a 5-gram
language model7, and target length bonus. We
also have several binary features—lexical rule,
rule with missing or spurious content words—and
several binary indicator features for specialized
rules: unknown word rules; name, number, and
date translation rules; and special fail-safe mono-
tone translation rules in case of parse failures and
extremely long sentences.
Table 1 shows the comparison between our

baseline model (minimal GHKM on head-out bi-
narized parse trees) and different models of ad-
joining, measured with case-insensitive, NIST-
tokenized BLEU (IBM definition). The top section
(lines 1–4) compares the joint adjoining probabil-
ity model to the independent adjoining probabil-
ity model and seen vs. unseen adjoining combi-
nations. While the joint model results in a BLEU
score at the same level as our baseline (line 2),
the independent model (line 4) improves BLEU by
+0.5 and +0.6, which are significant differences
at the 95% confidence level. Since with the in-
dependent model we introduce both new adjoin-
ing patterns and a different probability model for
adjoining (each site is independent), we also use
the independent model with only previously seen
adjoining patterns (line 3). The insignificant dif-
ference in BLEU between lines 2 and 3 leads us
to think that the new adjoining patterns are where
the improvement comes from, rather than the in-
dependent probability model alone.
We also test several other features and combi-

nations. First, we add binary features to indicate
a new adjoining combination vs. one previously

7The 5-gram LM was trained on 2 billion words of auto-
matically selected collections taken from the NIST 08 allow-
able data.

seen in data. We also add features to indicate the
direction class of adjoining to test if there is a sys-
tematic bias toward particular directions. These
features cause no significant difference in score
(line 5). We also add the joint-adjoining proba-
bility as a feature, allowing it to be combined in a
log-linear fashion with the independent probabil-
ity (line 6). This results in our best BLEU gain:
+0.7 and +0.8 over our non-adjoining baseline.

6 Conclusion
We have presented a novel method for learning
the rules and probabilities for a new statistical,
linguistically-informed, syntax-based MT model
that allows for adjoining. We have described a
method to translate using this model. And we have
demonstrated that linguistically-motivated adjoin-
ing improves the end-to-end MT results.
There are many potential directions for research

to proceed. One possibility is to investigate other
methods of making the required vs. optional de-
cision, either using linguistic resources such as
COMLEX or automatically learning the distinc-
tion using EM (as done for tree binarization by
Wang et al. (2007)). In addition, most ideas pre-
sented here are extendable to rules with linguistic
trees on both sides (using insights from Lavie et
al. (2008)). Also worth investigating is the direct
integration of bilingual dictionaries into the gram-
mar (as suggested by Shieber (2007)). Lastly, rule
composition and different amounts of lexicaliza-
tion (Galley et al., 2006; Marcu et al., 2006; De-
Neefe et al., 2007) or context modeling (Mariño et
al., 2006) have been successful with other mod-
els.
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based machine translation. Computational Linguis-
tics, 32(4).

Rebecca Nesson, Stuart M. Shieber, and Alexander
Rush. 2006. Induction of probabilistic synchronous
tree-insertion grammars for machine translation. In
Proc. AMTA.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proc. ACL.

Yves Schabes and Richard C. Waters. 1995. Tree
insertion grammar: A cubic-time, parsable formal-
ism that lexicalizes context-free grammar without
changing the trees produced. Computational Lin-
guistics, 21(4).

Stuart M. Shieber and Yves Schabes. 1990. Syn-
chronous tree-adjoining grammars. In Proc. COL-
ING.

Stuart M. Shieber. 2007. Probabilistic synchronous
tree-adjoining grammars for machine translation:
The argument from bilingual dictionaries. In Proc.
SSST Wkshp., NAACL-HLT.

Kumar Vijay-Shanker. 1987. A study of tree adjoining
grammars. Ph.D. thesis.

Wei Wang, Kevin Knight, and Daniel Marcu. 2007.
Binarizing syntax trees to improve syntax-basedma-
chine translation accuracy. In Proc. EMNLP and
CoNLL.

736



Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 737–745,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Word Buffering Models for Improved Speech Repair Parsing∗

Tim Miller

University of Minnesota – Twin Cities
tmill@cs.umn.edu

Abstract

This paper describes a time-series model

for parsing transcribed speech containing

disfluencies. This model differs from pre-

vious parsers in its explicit modeling of a

buffer of recent words, which allows it to

recognize repairs more easily due to the

frequent overlap in words between errors

and their repairs. The parser implement-

ing this model is evaluated on the stan-

dard Switchboard transcribed speech pars-

ing task for overall parsing accuracy and

edited word detection.

1 Introduction

Speech repair is a phenomenon in spontaneous

speech where a speaker interrupts the flow of

speech (at what’s called the interruption point),

backtracks some number of words (the reparan-

dum), and continues the utterance with material

meant to replace the reparandum (the alteration).1

The utterance can be rendered syntactically cor-

rect by excising all the words that the speaker

skipped over when backtracking. Speech with re-

pair is difficult for machines to process because in

addition to detecting repair, a system must know

what words are meant to be excised, and parsing

systems must determine how to form a grammat-

ical structure out of the set of words comprising

both the error speech and the correct speech.

Recent approaches to syntactic modeling of

speech with repairs have shown that significant

gains in parsing accuracy can be achieved by mod-

eling the syntax of repairs (Hale et al., 2006;

Core and Schubert, 1999). In addition, others

have shown that a parser based on a time-series

model that explicitly represents the incomplete

∗This research was supported by NSF CAREER award
0447685. The views expressed are not necessarily endorsed
by the sponsors .

1This terminology follows Shriberg (1994).

constituents in fluent and disfluent speech can also

improve parsing accuracy (Miller and Schuler,

2008). However, these parsing approaches are still

not as accurate at detecting reparanda as classifica-

tion systems which use a variety of features to de-

tect repairs (Charniak and Johnson, 2001; Johnson

and Charniak, 2004; Heeman and Allen, 1999).

One highly salient feature which classification

systems use to detect repair is the repetition of

words between the error and the repair. Johnson

and Charniak report that 60% of words in the al-

terations are copies of words in reparanda in the

Switchboard corpus. Typically, this information

is not available to a parser trained on context-free

grammars.

Meanwhile, psycholinguistic models suggest

that the human language system makes use of

buffers both to keep track of recent input (Bad-

deley et al., 1998) and to smooth out generation

(Levelt, 1989). These buffers are hypothesized

to contain representations of recent phonological

events, suggesting that there is a short window

where new input might be compared to recent in-

put. This could be represented as a buffer which

predicts or detects repeated input in certain con-

strained circumstances.

This paper describes a hybrid parsing sys-

tem operating on transcribed speech which com-

bines an incremental parser implemented as a

probabilistic time-series model, as in Miller and

Schuler, with a buffer of recent words meant to

loosely model something like a phonological loop,

which should better account for word repetition ef-

fects in speech repair.

2 Background

This work uses the Switchboard corpus (Godfrey

et al., 1992) for both training and testing. This

corpus contains transcribed and syntactically an-

notated conversations between human interlocu-

tors. The reparanda in speech repairs are ulti-
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mately dominated by the EDITED label, and in

cases where the reparandum ends with an unfin-

ished constituent, the lowest constituent label is

augmented with the -UNF tag. These annotations

provide necessary but not sufficient information

for parsing speech with repairs, and thus many im-

provements in performing this task come as the re-

sult of modifying these annotations in the training

data.

As mentioned above, both Hale and colleagues

(2006) and Miller and Schuler (2008) showed

that speech repairs contain syntactic regularities,

which can improve the parsing of transcribed

speech with repairs when modeled properly. Hale

et al. used ‘daughter annotation’, which adds the

label of an EDITED node’s child to the EDITED

label itself, and ‘-UNF propagation’, which la-

bels every node between an original -UNF node

and the EDITED with an -UNF tag. Miller and

Schuler used a ‘right-corner transform’ to convert

standard phrase structure trees of the Penn Tree-

bank into ‘right-corner trees’, which have highly

left-branching structure and non-standard tree cat-

egories representing incomplete constituents be-

ing recognized. These trees can be mapped into a

fixed-depth Hierarchical Hidden Markov Model to

achieve improved parsing and reparandum-finding

results over standard CYK parsers.

Work by Johnson and Charniak (2004; 2001)

uses much of the same structure, but is not a pars-

ing approach per se. In earlier work, they used a

boosting algorithm using word identity and cate-

gory features to classify individual words as part

of a reparandum or not, and achieved very im-

pressive accuracy. More recent work uses a tree-

adjoining grammar (TAG) to model the overlap in

words and part-of-speech tags between reparan-

dum and alteration as context sensitive syntax

trees. A parser is then used to rank the multiple

outputs of the TAG model with reparandum words

removed.

Another approach that makes use of the corre-

spondence between words in the reparandum and

alteration is Heeman and Allen (1999). This ap-

proach uses several sources of evidence, including

word and POS correspondence, to predict repair

beginnings and correct them (by predicting how

far back they are intended to retrace). This model

includes random variables between words that cor-

respond to repair state, and in a repair state, allows

words in the reparandum to ‘license’ words in the

. . .

. . .

. . .

. . .

f3
t−1

f2
t−1

f1
t−1

q1
t−1

q2
t−1

q3
t−1

ot−1

f3
t

f2
t

f1
t

q1
t

q2
t

q3
t

ot

Figure 1: Graphical representation of the depen-

dency structure in a standard Hierarchic Hidden

Markov Model with D = 3 hidden levels that

can be used to parse syntax. Circles denote ran-

dom variables, and edges denote conditional de-

pendencies. Shaded circles denote variables with

observed values.

alteration with high probability, accounting for the

high percentage of copied words and POS tags be-

tween reparandum and alteration.

3 Model Description

This work is based on a standard Hierarchical Hid-

den Markov Model parser (Schuler, 2009), with

the addition of two new random variables for

tracking the state of speech repair. The HHMM

framework is a desirable starting point for this

work for two reasons: First, its definition in terms

of a graphical model makes it easy to think about

and to add new random variables. Second, the

HHMM parser operates incrementally in a left-to-

right fashion on word input, which allows this sys-

tem to run in a single pass, conditioning current

words on a hypothesized buffer and interruption

point variable. The incremental nature of this sys-

tem is a constraint that other systems are not bound

by, but makes this model more psycholinguisti-

cally plausible. In comparison, a CYK parsing

framework attempting to use the same probabilis-

tic model of word dependency between reparanda

and alterations would need to do a second pass af-

ter obtaining the most likely parses, in order to tell

if a particular word’s generation probability in a

specific parse is influenced by a recent repair.

The graphical model representation of this

framework is illustrated in Figures 1 and 4. The

original model, shown in Figure 1, has complex

variables Q and F broken down into several qd
t

and fd
t for time step t and depth d. These ran-
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dom variables will be explained shortly, but for

now suffice it to say that in this work they are un-

altered from the original HHMM parsing frame-

work, while those labeled I and B (Figure 4) are

additions specific to the system described in this

paper. This section will next describe the stan-

dard HHMM parsing framework, before describ-

ing how this work augments it.

3.1 Right-corner Transform

The HHMM parser consists of stacks of a fixed

depth, which contain hypotheses of constituents

that are being processed. In order to minimize

the number of stack levels needed in processing,

the phrase structure trees in the training set are

modified using a ‘right-corner transform’, which

converts right expansion in trees to left expansion,

leaving heavily left-branching structure requiring

little depth. The right-corner transform used in

this paper is simply the left-right dual of a left-

corner transform (Johnson, 1998a).

The right-corner transform can be defined as

a recursive algorithm on phrase-structure trees in

Chomsky Normal Form (CNF). Trees are con-

verted to CNF first by binarizing using stan-

dard linguistically-motivated techniques (Klein

and Manning, 2003; Johnson, 1998b). Remaining

unbinarized structure is binarized in a brute force

fashion, creating right-branching structure by cre-

ating a single node which dominates the two right-

most children of a ‘super-binary’ tree, with the la-

bel being the concatenation of its children’s labels

(see Figure 2).

Taking this CNF phrase structure tree as input,

the right-corner transform algorithm keeps track

of two separate trees, the original and the new

right-corner tree it is building. This process be-

gins at the right-most preterminal of the original

tree, and works its way up along the right ‘spine’,

while building its way down a corresponding left

spine of the new right-corner tree. The trees be-

low shows the first step of the algorithm, with the

tree on the left being disassembled, the tree on the

right being built from its parts, and the working

positions in the trees shown in bold.

A

B

b

X

Y:Ψ Z

z

A

A/Z

·

Z

z

The bottom right corner of the original tree is

made the top right corner of the new tree, and the

left corner of the new tree is made the new working

position and given a ‘slash’ category A/Z. The

‘slash’ category label A/Z represents a tree that

is the start of a constituent of type A that needs

a right-child of type Z in order to complete. The

new right-corner of the original tree is the parent

(X) of the previous right corner, and its subtree is

now added to the right-corner derivation:

A

B

b

X

Y:Ψ

A

A/Z

A/X

·

Y:Ψ

Z

z

After the first step, the subtrees moved over to

the right-corner tree may have more complex sub-

structure than a single word (in this case, Ψ rep-

resents that possibly complex structure). After be-

ing attached to the right-corner tree in the correct

place, the algorithm is recursively applied to that

now right-branching substructure.

Again, the left child is given a new slash cat-

egory: The ‘active constituent’ (the left side of a

slash category) is inherited from the root, and the

‘awaited constituent’ (the right side of a slash cat-

egory) is taken from the constituent label of the

right-corner it came from.

This algorithm proceeds iteratively up the right

spine of the original tree, moving structure to the

right-corner tree and recursively transforming it as

it is added. The final step occurs when the original

root (A in this case) is reduced to having a single

child, in which case its child is added as a child

of the leftmost current branch of the right-corner

tree, and it is transformed recursively.

Figures 2 and 3 show an example tree from

the Switchboard corpus before and after the right-

corner transform is applied.
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S

INTJ

so

INTJ S

INTJ

uh

S

NP

you

VP

VBP

live

PP

IN

in

NP

dallas

Figure 2: Input to the right-corner transform. This

tree also shows an example of the ‘brute-force’ bi-

narization done on super-binary branches that can-

not be otherwise be binarized with linguistically-

motivated rules.

S

S/NP

S/PP

S/VP

S/S

S/INTJ S

INTJ

so

INTJ

uh

NP

you

VBP

live

IN

in

NP

dallas

Figure 3: Right-corner transformed version of the

tree in Figure 2.

3.2 Hierarchical Hidden Markov Model

A Hierarchical Hidden Markov Model is essen-

tially an HMM with a specific factorization that

is useful in many domains — the hidden state at

each time step is factored into d random variables

which function as a stack, and d additional ran-

dom variables which regulate the operations of the

stack through time. For the model of speech repair

presented here, an interruption point is identified

by one of these regulator variables firing earlier

than it would in fluent speech. This concept will

be formalized below. The stack regulating random

variables are typically marginalized out when per-

forming inference on a sequence.

While the vertical direction of the hidden sub-

states (at a fixed t) represents a stack at a sin-

gle point in time, the horizontal direction of the

hidden sub-states (at a fixed d) can be viewed as

a simple HMM at depth d, expanding the state

from the HMM above it across multiple time steps

and causing the HMM below it to expand its own

states. This interpretation will be useful when for-

mally defining the transitions between the stack el-

ements at different time steps below.

Formally, HMMs characterize speech or text as

a sequence of hidden states qt (which may con-

sist of speech sounds, words, and/or other hypoth-

esized syntactic or semantic information), and ob-

served states ot at corresponding time steps t (typ-

ically short, overlapping frames of an audio sig-

nal, or words or characters in a text processing

application). A most likely sequence of hidden

states q̂1..T can then be hypothesized given any se-

quence of observed states o1..T , using Bayes’ Law

(Equation 2) and Markov independence assump-

tions (Equation 3) to define a full P(q1..T | o1..T )
probability as the product of a Language Model

(ΘL) prior probability and an Observation Model

(ΘO) likelihood probability:

q̂1..T = argmax
q1..T

P(q1..T | o1..T ) (1)

= argmax
q1..T

P(q1..T ) · P(o1..T | q1..T ) (2)

def= argmax
q1..T

T∏
t=1

PΘL
(qt | qt–1)·PΘO

(ot | qt)

(3)

Language model transitions PΘL
(qt | qt−1) over

complex hidden states qt can be modeled us-

ing synchronized levels of stacked-up compo-

nent HMMs in a Hierarchic Hidden Markov

Model (HHMM) (Murphy and Paskin, 2001).

HHMM transition probabilities are calculated in

two phases: a ‘reduce’ phase (resulting in an in-

termediate, marginalized state ft), in which com-

ponent HMMs may terminate; and a ‘shift’ phase

(resulting in a modeled state qt), in which unter-

minated HMMs transition, and terminated HMMs

are re-initialized from their parent HMMs. Vari-

ables over intermediate ft and modeled qt states

are factored into sequences of depth-specific vari-

ables — one for each of D levels in the HMM hi-

erarchy:

ft = 〈f1
t . . . fD

t 〉 (4)

qt = 〈q1
t . . . qD

t 〉 (5)

Transition probabilities are then calculated as a

product of transition probabilities at each level, us-

ing level-specific ‘reduce’ ΘF and ‘shift’ ΘQ mod-
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els:

PΘL
(qt|qt–1) =

∑
ft

P(ft|qt–1)·P(qt|ft qt–1) (6)

def=
∑
f1..D

t

D∏
d=1

PΘF
(fd

t | fd+1
t qd

t–1q
d–1
t–1 )·

PΘQ
(qd

t |fd+1
t fd

t qd
t–1q

d–1
t )

(7)

with fD+1
t and q0

t defined as constants.

Shift and reduce probabilities are now defined

in terms of finitely recursive FSAs with probabil-

ity distributions over transition, recursive expan-

sion, and final-state status of states at each hierar-

chy level. In the HHMM used in this paper, each

intermediate state variable is a reduction state vari-

able fd
t ∈ G ∪ {0,1} (where G is the set of all

nonterminal symbols from the original grammar),

representing a reduction to the final syntactic state

in G, a horizontal transition to a new awaited cate-

gory, or a top-down transition to a new active cat-

egory. Each modeled state variable is a syntactic

element (qd
t ∈ G × G) with an active and awaited

category represented with the slash notation.

The intermediate variable fd
t is probabilistically

determined given a reduction at the stack level be-

low, but is deterministically 0 in the case of a non-

reduction at the stack level below. 2

PΘF
(fd

t | fd+1
t qd

t−1q
d−1
t−1 ) def={

if fd+1
t /∈ G : [fd

t =0]
if fd+1

t ∈ G : PΘF-Reduce
(fd

t | qd
t−1, q

d−1
t−1 )

(8)

where fD+1 ∈ G and q0
t = ROOT.

Shift probabilities at each level are defined

using level-specific transition ΘQ-T and expan-

sion ΘQ-E models:

PΘQ
(qd

t | fd+1
t fd

t qd
t−1q

d−1
t ) def=

if fd+1
t /∈G, fd

t /∈G : [qd
t = qd

t−1]
if fd+1

t ∈G, fd
t /∈G : PΘQ-T

(qd
t | fd+1

t fd
t qd

t−1q
d−1
t )

if fd+1
t ∈G, fd

t ∈G : PΘQ-E
(qd

t | qd−1
t )

(9)

where fD+1 ∈ G and q0
t = ROOT. This model

is conditioned on final-state switching variables at

and immediately below the current HHMM level.

If there is no final state immediately below the cur-

rent level (the first case above), it deterministically

2Here [·] is an indicator function: [φ] = 1 if φ is true, 0
otherwise.

copies the current HHMM state forward to the

next time step. If there is a final state immediately

below the current level (the second case above),

it transitions the HHMM state at the current level,

according to the distribution ΘQ-T. And if the state

at the current level is final (the third case above), it

re-initializes this state given the state at the level

above, according to the distribution ΘQ-E. The

overall effect is that higher-level HMMs are al-

lowed to transition only when lower-level HMMs

terminate. An HHMM therefore behaves like a

probabilistic implementation of a pushdown au-

tomaton (or ‘shift-reduce’ parser) with a finite

stack, where the maximum stack depth is equal to

the number of levels in the HHMM hierarchy.

All of the probability distributions defined

above can be estimated by training on a corpus of

right-corner transformed trees, by mapping tree el-

ements onto the random variables in the HHMM

and computing conditional probability tables at

each random variable. This process is described in

more detail in other work (Schuler et al., in press).

3.3 Interruption Point and Word Buffer

This paper expands upon this standard HHMM

parsing model by adding two new sub-models to

the hidden variables described above, an interrup-

tion point (I) variable, and a word buffer (B) .

This model is illustrated in Figure 4, which takes

Figure 1 as a starting point and adds random vari-

ables just mentioned.

Buffers are hypothesized to be used in the hu-

man language system to smooth out delivery of

speech (Levelt, 1989). In this work, a buffer of

that sort is placed between the syntax generating

elements and the observed evidence (words). Its

role in this model is not to smooth the flow of

speech, but to keep a short memory that enables

the speaker to conveniently and helpfully restart

when a repair is produced. This in turn gives as-

sistance to a listener trying to understand what the

speaker is saying, since the listener also has the

last few words in memory.

The I variable implements a state machine that

keeps track of the repair status at each time point.

The domain of this variable is {0,1,ET}, where

1 indicates the first word of an alteration, ET in-

dicates editing terms in between reparandum and

alteration, and 0 indicating no repair.3

3Actually, 0 can occur during an alteration, but in those
cases that fact is indicated by the state of the buffer.
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Figure 4: Extended HHMM parsing model with variables for interruption points (I) and a modeled word

buffer (B). Arrows within and between complex hidden variables F and Q have been removed for clarity.

The value of I is deterministically constrained

in this work by its inputs, but it can be conceived

as a conditional probability P(it | it−1, qt, qt−1, rt)
to allow footholds for future research.4 While

depending formally on many values, in practice

its dependencies are highly context-dependent and

constrained:

P(it | it−1, qt, qt−1, qt)
def=

if it−1 =1 : [it =0]
if it−1 =ET ∧ (INTJ ∨ PRN) ∈ qt : [it =ET]
if it−1 =ET : [it =1]
if it−1 =0 ∧ EDITED ∈ (qt−1 ∪ ft)

∧(INTJ ∨ PRN) ∈ qt : [it =ET]
if it−1 =0 ∧ EDITED ∈ (qt−1 ∪ ft) : [it =1]
if it−1 =0 : [it =0]

These conditions are meant to be evaluated in

a short-circuiting fashion, i.e., the first condition

which is true starting from the top is applied. The

default (last) case is most common, going from

non-repair to non-repair state. When the syntax

generated something with the category EDITED

at the last time step (as evidenced by either the

modeled state variable qt−1 or the reduction state

variable ft depending on the length of the reparan-

dum), the interruption point variable is triggered to

change, either to ET if an interjection (INTJ) or

4Most obviously, this variable could be made prior to its
conditions to be their cause, if a suitable model for the causa-
tion of interruption points was designed using prosodic cues.
For this work, it is simply an intermediary that is not strictly
necessary but makes the model design more intuitive.

parenthetical (PRN) followed, otherwise to 1 for

the first word of an alteration. The ET state con-

tinues as long as the syntax at the current level is

generating something containing INTJ or PRN.

The random variable for the word buffer is more

complex, containing at each time step t an integer

index for keeping track of a current position in the

buffer (ct ∈ 〈0, 1, . . . , n− 1〉 for buffer size n),

and an array of several recently generated words

(~wt). This can be represented as the following con-

ditional probability:

P(bt | bt−1, it, qt) = P(ct | ct−1, it)·
P(~wt | ~wt−1, ct) (10)

The operation of the buffer is governed by four

cases:

Case 1: During normal operation (i.e. for fluent

speech), the interruption point variable is 0 and

at the previous time step the buffer index points

at the end of the buffer (it =0 ∧ ct−1 = n−1). In

this simple case, the buffer pointer remains point-

ing at the end position in the buffer (ct = n− 1),

and the last n− 1 items in the buffer are determin-

istically copied backwards one position. A new

word is generated probabilistically to occupy the

last position in the buffer (where ct is pointing).

This probability is estimated empirically using the

same model used in a standard HHMM to gener-

ate words, by conditioning the word on the deepest

non-empty qt value in the stack.

Case 2: When an editing term is being gener-

ated, (it =ET), the buffer is not in use. Practi-
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cally, this means that the value of the index c and

all wj are just copied over from time t−1 to time

t. This makes sense psycholinguistically, because

a buffer used to smooth speech rates would by def-

inition not be used when speech is interrupted by

a repair. It also makes sense from a purely engi-

neering point of view, since words used as editing

terms are usually stock phrases and filled pauses

that are not likely to have much predictive value

for the alteration, and are thus not worth keeping in

the buffer. The probability of the actual observed

word is modeled the same way word probabilities

are modeled in a standard HHMM, conditioned on

the deepest non-empty qt value, and ignoring the

buffer.

Case 3: The alteration case applies to the first

word after the reparandum and optional editing

terms (it =1). In this case, the index ct for the cur-

rent position of the buffer is obtained by subtract-

ing a number of words to replace, with that num-

ber drawn from a prior distribution. This distribu-

tion is based on the function f(k) = 1.22 · 0.45k.

This function was taken from Shriberg (1996),

where it was estimated based on several differ-

ent training corpora, and provided a remarkable

fit to all of them. Since this model uses a fixed

size buffer, the values are precomputed and renor-

malized to form a probability distribution. With

a buffer size of only n = 4, approximately 96%

of the probability mass of the original function is

accounted for.

After the indices are computed, the buffer at po-

sition ct is given a word value. The model first

decides whether to substitute or copy the previous

word over. The probability governing this decision

is also determined empirically, by computing how

often the first word in a alteration in the Switch-

board training set is a copy of the first word it is

meant to replace. If the copy operation is selected,

the word is added to the buffer without further di-

luting its probability. If, however, the substitution

operation was selected, the word is added to the

buffer with probability distributed across all pos-

sible words.

Case 4: The final case to account for

is alterations of length greater than one

(it =0 ∧ ct−1 6= n−1). This occurs when the

current index was moved back more than one

position, and so even though i is set to 0, the

current index into the buffer is not pointing at the

end. In this case, again the index ct is selected

according to a prior probability distribution. The

value selected from the distribution corresponds

to different actions that may be selected when

retracing the words in the reparandum to generate

the alteration.

The first option is that the current index remains

in place, which corresponds to an insertion oper-

ation, where the alteration is given an extra word

relative to the reparandum at its current position.

Following an insertion, a new word is generated

and placed in the buffer at the current index, with

probability conditioned on the syntax at the most

recent time step. The second option is to continue

the alignment, moving the current index forward

one position in the buffer, and then either perform-

ing a substitution or copy operation in alignment

with a word from the alteration. Word probabil-

ities for the copy and substitution operations are

generated in the same way as for the first word of

an alteration. Finally, the current index may skip

forward more than one value, performing a dele-

tion operation. Deletion skips over words in the

reparandum that do not correspond to words in the

alteration. After the deletion moves the current in-

dex pointer forward, a word is again either copied

or substituted against the newly aligned word.

The prior probability distributions over align-

ment operations is estimated from data in the

Switchboard in a similar manner to Johnson and

Charniak (2004). Briefly, using the disfluency-

annotated section of the Switchboard corpus (.dps

files), a list of reparanda and alterations corre-

sponding to one another are compiled. For each

pair, the minimal cost alignment is computed,

where a copy operation has cost 0, substitution

has cost 4, and deletion and insertion each have

cost 7. Using these alignments, probabilities are

computed using relative frequency counts for both

the first word of an alteration, and for subsequent

operations. Copy and substitution are the most fre-

quent operations (copying gives information about

the repair itself, while substitution can correct the

reason for the error), insertion is somewhat less

frequent (presumably for specifying further infor-

mation), and deletion is relatively rare (usually a

repair is not made to remove information).

4 Evaluation

This model was evaluated on the Switchboard

corpus (Godfrey et al., 1992) of conversational

telephone speech between two human interlocu-
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System Precision Recall F-Score

Plain CYK 18.01 17.73 17.87

Hale et al. CYK 40.90 35.41 37.96

Hale et al. Lex. n/a n/a 70.0

TAG 82.0 77.8 79.7

Plain HHMM 43.90 47.36 45.57

HHMM-Back 44.12 57.49 49.93

HHMM-Retrace 48.82 59.41 53.59

Table 1: Table of results of edit-finding accuracy.

Italics indicate reported, rather than reproduced,

results.

System Configuration Parseval-F Edited-F

Plain CYK 71.03 17.9

Hale et al. CYK 68.47 37.96

Hale et al. Lex. 80.16 70.0

Plain HHMM 74.23 45.57

HHMM-Back 74.58 49.93

HHMM-Retrace 74.23 53.59

Table 2: Table of parsing results.

tors. The input to this system is the gold standard

word transcriptions, segmented into individual ut-

terances. The standard train/test breakdown was

used, with sections 2 and 3 used for training, and

subsections 0 and 1 of section 4 used for testing.

Several held-out sentences from the end of section

4 were used during development.

For training, the data set was first standardized

by removing punctuation, empty categories, ty-

pos, all categories representing repair structure,

and partial words – anything that would be diffi-

cult or impossible to obtain reliably with a speech

recognizer.

The two metrics used here are the standard Par-

seval F-measure, and Edit-finding F. The first takes

the F-score of labeled precision and recall of the

non-terminals in a hypothesized tree relative to the

gold standard tree. The second measure marks

words in the gold standard as edited if they are

dominated by a node labeled EDITED, and mea-

sures the F-score of the hypothesized edited words

relative to the gold standard.

Results are shown in Tables 1 and 2. Table 1

shows detailed results on edited word finding, with

two test systems and several related approaches.

The first two lines show results from a re-

implementation of Hale et al. parsers. In both

those cases, gold standard part-of-speech (POS)

tags were supplied to the parser. The follow-

ing two lines are reported results of a lexicalized

parser from Hale et al. and the TAG system of

Johnson and Charniak. The final three lines are

evaluations of HHMM systems. The first is an

implementation of Miller and Schuler, run with-

out gold standard POS tags as input. The second

HHMM result is a system much like that described

in this paper, but designed to approximate the best

result that can come from simply trying to match

the first word of an alteration with a recent word.

Levelt (1989) notes that in over 90% of repairs, the

first word of the alteration is either identical or a

member of the same category as the first word of

the reparandum, and this clue is enough for listen-

ers to understand what the alteration is meant to

replace. This implementation keeps the I variable

to model repair state, but rather than a modeled

buffer being part of the hidden state, it keeps an

observed buffer that simply tracks the last n words

seen (n = 4 in this experiment). This buffer is

used only to generate the first word of a repair, and

only when the syntactic state allows the word. Fi-

nally, the system described in Section 3 is shown

on the final line.

Table 2 shows overall parsing accuracy results,

with the same set of systems, with the exception

of the TAG system which did not report parsing

results.

5 Discussion and Conclusion

These results first show that the main contribution

of this paper, a model for a buffer of recent words

which influences speech repairs, results in drastic

improvements in the ability of an HHMM system

to discover edited words. This model does this in

a single pass through the observed words, incre-

mentally forming hypotheses about the state of the

syntactic process as well as the state of repair, just

as humans must recognize spontaneous speech.

Another interesting result is the relative effec-

tiveness of a buffer that is not modeled, but rather

just a collection of words used to condition the first

words of repair (‘HHMM-Back’). While this re-

sult is superior to the plain HHMM system, it still

falls well short of the retracing model using a mod-

eled buffer. This suggests that, though one word

is sufficient to align a reparandum and alteration

when the existence of a repair is given, more in-

formation is often necessary when the task is not

just alignment of repair but also detection of re-
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pair. A model that takes into account information

sources that identify the existence of repair, such

as prosodic cues (Hale et al., 2006; Lickley, 1996),

may thus result in improved performance for the

simpler unmodeled buffer.

These results also confirm that parsing sponta-

neous speech with an HHMM can be far superior

to a CKY parser, even when the CKY parser is

given the advantage of correct POS tags as input.

Second, even the baseline HHMM system also

improves over the CYK parser in finding edited

words, again without the advantage of correct POS

tags as input.

In conclusion, the model described here uses a

buffer inspired by the phonological loop used in

the human auditory system to keep a short mem-

ory of recent input. This model, when used to as-

sist in the detection and correction of repair, re-

sults in a large increase in accuracy in detection

of repair over other most basic parsing systems.

This system does not reach the performance lev-

els of lexicalized parsers, nor multi-pass classifi-

cation systems. Future work will explore ways to

apply additional features of these systems or other

sources of information to account for the remain-

der of the performance gap.
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Abstract

The recent availability of large corpora
for training N-gram language models has
shown the utility of models of higher or-
der than just trigrams. In this paper, we
investigate methods to control the increase
in model size resulting from applying stan-
dard methods at higher orders. We in-
troduce significance-based N-gram selec-
tion, which not only reduces model size,
but also improves perplexity for several
smoothing methods, including Katz back-
off and absolute discounting. We also
show that, when combined with a new
smoothing method and a novel variant of
weighted-difference pruning, our selection
method performs better in the trade-off be-
tween model size and perplexity than the
best pruning method we found for modi-
fied Kneser-Ney smoothing.

1 Introduction

Statistical language models are potentially useful
for any language technology task that produces
natural-language text as a final (or intermediate)
output. In particular, they are extensively used in
speech recognition and machine translation. De-
spite the criticism that they ignore the structure of
natural language, simple N-gram models, which
estimate the probability of each word in a text
string based on theN−1 preceding words, remain
the most widely-used type of model.

Until the late 1990s, N-gram language models
of order higher than trigrams were seldom used.
This was due, at least in part, to the fact the
amounts of training data available did not produce
significantly better results from higher-order mod-
els. Since that time, however, increasingly large
amounts of language model training data have be-
come available ranging from approximately one

billion words (the Gigaword corpora from the
Linguistic Data Consortium) to trillions of words
(Brants et al., 2007). With these larger resources,
the use of language models based on 5-grams to
7-grams is becoming increasingly common.

The problem we address here is that, even when
relatively modest amounts of training data are
used, high-order N-gram language models esti-
mated by standard techniques can be impractically
large. Hence, we investigate ways of building
high-order N-gram language models without dra-
matically increasing model size. This is, of course,
the same goal behind much previous work on lan-
guage model pruning, including that of Seymore
and Rosenfeld (1996), Stolcke (1998), and Good-
man and Gao (2000). We take a novel approach,
however, which we refer to as significance-based
N-gram selection. We reject a higher-order esti-
mate of the probability of a particular word in a
particular context whenever the distribution of ob-
servations for the higher-order estimate provides
no evidence that the higher-order estimate is bet-
ter than our backoff estimate.

Perhaps our most surprising result is that
significance-based N-gram selection not only re-
duces language model size, but it also improves
perplexity when applied to a number of widely-
used smoothing methods, including Katz backoff
and several variants of absolute discounting.1 In
contrast, experiments applying previous pruning
methods to Katz backoff (Seymore and Rosen-
feld, 1996; Stolcke, 1998) and absolute discount-
ing (Goodman and Gao, 2000) always found the
lowest perplexity model to be the unpruned model.

We tested significance-based selection on only
one smoothing method without obtaining im-
proved perplexity: modified Kneser-Ney (KN)

1For most of the standard smoothing methods mentioned
here, we refer the reader to the excellent comparative study
of smoothing methods by Chen and Goodman (1998). Refer-
ences to the original sources may be found there.
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smoothing (Chen and Goodman, 1998). This
is unfortunate, because modified KN smoothing
generally seems to have the lowest perplexity of
any known smoothing method for N-gram lan-
guage models; in our tests it had a lower perplex-
ity than any of the other models, with or with-
out significance-based N-gram selection. How-
ever, when we compared modified KN smooth-
ing to our best results applying N-gram selection
to other smoothing methods for multiple N-gram
orders, two of our models outperformed modified
KN in terms of perplexity for a given model size.

Of course, the trade-off between perplexity and
model size for modified KN can also be im-
proved by pruning. So, in a final set of ex-
periments we found the best combinations we
could for pruned modified KN models, and we did
the same for our best model using significance-
based selection. The best pruning method for
the latter turned out to be a novel modifica-
tion of weighted-difference pruning (Seymore and
Rosenfeld, 1996) that was especially convenient
to compute given our method for performing
significance-based N-gram selection. The final re-
sult is that our best model using significance-based
selection and modified weighted difference prun-
ing always had a better size/perplexity trade-off
than pruned modified KN, with up to about 8%
perplexity reduction for a given model size.

2 Significance-Based N-gram Selection

The idea of using a statistical test to decide
whether to use a higher- or lower-order estimate of
an N-gram probablity is not new. It was perhaps
first proposed by Ron, et al. (1996), who suggested
using a threshold on relative entropy (Kullback-
Liebler divergence) as an appropriate test to de-
cide whether to extend the context used to predict
the next token in a sequence. Stolcke (1998) used
the same metric in his work on language model
pruning, and he also pointed out that weighted dif-
ference pruning is, in fact, an approximation of
relative entropy pruning. However, while relative
entropy pruning is based on a statistical test, it is
not asignificancetest. The difference in probabil-
ity represented by a certain relative entropy value
can be statistically significant when measured on
a large corpus, but not significant when measured
on a small corpus.

The primary test we use to choose between
higher- or lower-order estimates of an N-gram

probablity is inspired by an insight of Jedynak and
Khudanpur (2005). They note that, given a set
of y observations of a multinomial distribution,
the observed counts will have the highest proba-
bilty of any possible set ofy observations for the
maximum likelihood estimate (MLE) model de-
rived from the relative frequencies of those obser-
vations. In general, however, the MLE model will
not be the only model for which this set of obser-
vations is the most probable set ofy observations.
Jedynak and Khudanpur call the set of such mod-
els the maximum likelihood set (MLS) for the ob-
servations.

Jedynak and Khudanpur argue that the obser-
vations alone do not support choosing the MLE
over other members of the MLS. The MLE may
assign the observations a higher probability than
other members of the MLS, but that may be an
accident of what outcomes are possible given the
number of observations. If we flip a coin9 times
and get5 heads, is there any reason to believe that
the probability of heads is closer to the MLE5/9
than it is to5/10? No, because5/9 is as close as
we can come to5/10, given9 observations.

We apply this insight to the problem of N-
gram selection as follows: For each wordwn

in a contextw1...wn−1 with a backoff estimate
for the probability of that word in that context
β p(wn|w2...wn−1),2 we do not include an explicit
estimate ofp(wn|w1...wn−1) in our model, if the
backoff estimate is within the MLS of the counts
for w1...wn andw1...wn−1.

This requires finding the MLS of a set of obser-
vations only for binomial distributions (rather than
the general multinomial distributions studied by
Jedynak and Khudanpur), which has a very sim-
ple solution:

MLS(x, y) =
{
p

∣∣∣∣ x

y + 1
≤ p ≤ x+ 1

y + 1

}
wherex is the count forw1...wn, y is the count for
w1...wn−1, andp is a possible backoff probabilty
estimate forp(wn|w1...wn−1). In this case, the
MLS is the set of binomial distributions that have
x successes as their mode giveny trials, which is
well-known to be specified by this formula.

We describe this method as “significance-
based” because we can consider our criterion as
a significance test in which we take the backoff

2p(wn|w2...wn−1) being the next lower-order estimate,
andβ being the backoff weight for the contextw1...wn−1.
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probability estimate as the null hypothesis for the
estimate in the higher-order model, and we set the
rejection threshold to the lowest possible value;
we reject the null hypothesis (the backoff probabil-
ity) if there areanyoutcomes for the given number
of trials that are more likely, according to the null
hypothesis, than the one we observed.

We make a few refinements to this basic idea.
First, we never add an explicit higher-order esti-
mate to our model, if the next lower-order estimate
is not explicitly stored in the model. This enables
us to keep only the next lower-order model avail-
able while performing N-gram selection.

Next, we observe that in some cases the higher-
order estimate forp(wn|w1...wn−1) may not fall
within the MLS for the observed counts, due to
smoothing. In this case, we prefer the backoff
probability estimate if it lies within the MLS or be-
tween the smoothed higher-order estimate and the
MLS. Otherwise, we would reject the backoff es-
timate for being outside the MLS, only to replace
it with a higher-order estimate even farther outside
the MLS.

Finally, we note that the backoff probability es-
timate for an N-gram not observed in the train-
ing data sometimes falls outside the corresponding
MLS, which in the 0-count case simplifies to

MLS(0, y) =
{
p

∣∣∣∣ 0 ≤ p ≤ 1
y + 1

}
When this happens, we include an explicit higher-
order estimatep(wn|w1...wn−1) = 1/(y + 1),
which is the upper limit of the MLS. This is similar
to Rosenfeld and Huang’s (1993) “confidence in-
terval capping” method for reducing unreasonably
high backoff estimates for unobserved N-grams.

In order to apply this treatment of 0-count N-
grams, we sort the explicitly-stored N-grams for
each backoff context by decreasing probability.
For each higher-order context, to find the 0-count
N-grams subject to the1/(y + 1) limit, we tra-
verse the sorted list of explicitly-stored N-grams
for its backoff context. When we encounter an N-
gram whose extension to the higher-order context
was not observed in the training data, we give it
an explicit probability of1/(y+1), if its weighted
backoff probability is greater than that. We stop
the traversal as soon as we encounter an N-gram
for the backoff context that has a weighted backoff
probability less than or equal to1/(y+1), which in
practice means we actually examine only a small
number of backoff probabilities for each context.

3 Finding Backoff Weights by Iterative
Search

The approach described above is very attractive
from a theoretical perspective, but it has one prac-
tical complication. To decide which N-grams for
each context to explicitly include in the higher-
order model, we need to know the backoff weight
for the context, but we cannot compute the backoff
weight until we know exactly which higher-order
N-grams are included in the model.

We address this problem by iteratively solving
for a backoff weight that yields a normalized prob-
ability distribution. For each context, we guess
an initial value for the backoff weight and keep
track of the sum of the probabilites resulting from
applying our N-gram selection method with that
backoff weight. If the sum is greater than 1.0, by
more than a convergence threshold, we reduce the
estimated backoff weight and iterate. If the sum
is less than 1.0, by more than the threshold, we
increase the estimated weight and iterate.

It is easy to see that, for all standard smooth-
ing methods, the function from backoff weights
to probability sums is piece-wise linear. Within
a region where no decision changes about which
N-grams to include in the model, the probability
sum is a linear function of the backoff weight. At
values of the backoff weight where the set of se-
lected N-grams changes, the function can be dis-
continous. With a little more effort, one can see
that the linear segments overlap with respect to the
probability sum in such a way that there will al-
ways be one or more values of the backoff weight
that make the probability sum equal 1.0, with one
specific exception.

The exception arises because of the capping of
backoff probabilites for unobserved N-grams. It
is possible for there to be a context for which
all observed N-grams are included in the higher-
order model, the probabilities for all unobserved
N-grams are either capped at1/(y + 1) or effec-
tively 0 due to arithmetic underflow, and the prob-
ability sum is less than 1.0. For some smoothing
methods, the probability sum cannot be increased
in this situation by increasing the backoff weight.
We check for this situation, and if it arises, we
increase the cap on the 0-count probability just
enough to make the probability sum equal 1.0.

That exception aside, we iteratively find back-
off weights as follows: For an initial estimate
of the backoff weight for a context, we compute
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what the backoff weight would be for the base
smoothing method without N-gram selection. If
that value is less than 1.0, we use it as our ini-
tial estimate, otherwise we use 1.0, which annec-
dotally seems to produce better models than ini-
tial estimates greater than 1.0, in situations where
there are multiple solutions. If the first iteration of
N-gram selection produces a probability sum less
than 1.0, we repeatedly double the estimated back-
off weight until we obtain a sum greater than or
equal to 1.0, or we encounter the special situation
previously described. If the initial probability sum
is greater than 1.0, we repeatedly halve the esti-
mated backoff weight until we obtain a sum less
than or equal to 1.0.

Once we have values for the backoff weight that
produce probability sums on both sides of 1.0, we
have a solution bracketed, and we can use standard
numerical search techniques to find that solution.
At every subsequent iteration, we try a value for
the backoff weight between the largest value we
have tried that produces a sum less than 1.0 and
the smallest value we have tried that produces a
sum greater than 1.0. We stop when the difference
between these values of the backoff weight is less
than a convergence threshold.

We use a combination of simple techniques to
choose the next value of the backoff weight to try.
The primary technique we use is called the “false
position method”, which basically solves the lin-
ear equation defined by the two current bracketing
values and corresponding probability sums. The
advantage of this method is that, if our bracket-
ing points lie on the same linear segment of our
function, we obtain a solution in one step. The
disadvantage of the method is that it sometimes
approaches the solution by a long sequence of tiny
steps from the same side.

We try to detect the latter situation by keeping
track of the number of consecutive iterations that
make a step in the same direction. If this num-
ber reaches 10, we take the next step by the bi-
section method, which simply tries the value of
the backoff weight halfway between our two cur-
rent bracketing values. In practice, this combined
search method works very well, taking an average
of less than four iterations per backoff weight.

4 Modified Weighted-Difference Pruning

While the N-gram selection method described
above considerably reduces the number of para-

meters in a high-order language model, we may
wish to reduce language model size even more.
The concept of significance-based N-gram selec-
tion to produce smaller models could be extended
by relaxing our criterion for using backoff distrib-
utions in place of explicit higher-order probability
estimates, but true significance tests at more re-
laxed thresholds that are accurate for small counts
are expensive to compute; so we resort to more
conventional language model pruning methods.

In our experiments, we tried four methods for
additional pruning: simple count cutoffs, relative
entropy pruning (REP) (Stolcke, 1998), and two
modified versions of Seymore and Rosenfeld’s
(1996) weighted-difference pruning (WDP). In the
notation we have been using, Seymore and Rosen-
feld’s WDP criterion for using a backoff estimate,
in place of an explicit higher-order estimate, is that
the quantity

K×(
log(p(wn|w1...wn−1))−
log(βu p(wn|w2...wn−1))

)

be less than a pruning threshold, where K is
the Good-Turing-discounted training set count for
w1...wn, andβu is the backoff weight for the un-
pruned model.

The first of our modified version of WDP uses
the following quantity instead:

p(w1...wn)×∣∣∣∣∣ log(p(wn|w1...wn−1))−
log(βp p(wn|w2...wn−1))

∣∣∣∣∣
wherep(w1...wn) is an estimate of the probability
of w1...wn andβp is the backoff weight for the
pruned model.

We make three modifications to WDP in this
formula. First, we follow a suggestion of Stol-
cke (1998) by replacing the discounted training
set countK of w1...wn with an estimate the joint
probability ofw1...wn, computed by chaining the
explicit probability estimates, according to our
model, for all N-gram lengths up ton.

The second modification to WDP is that we use
the absolute value of the difference of the log prob-
abilities. By using the signed difference of the log
probabilities, Seymore and Rosenfeld will always
prune a higher-order probability estimate if it is
less than the backoff estimate. But the backoff es-
timate may well be too high. Using the absolute
value of the difference avoids this problem.
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p(wn|w1 . . . wn−1) =


αw1...wn−1

C(w1...wn)−Dn,C(w1...wn)

C(w1...wn−1)

+ βw1...wn−1p(wn|w2 . . . wn−1) if C(w1 . . . wn) > 0

γw1...wn−1p(wn|w2 . . . wn−1) if C(w1 . . . wn) = 0

βw1...wn−1 = δ |{w
′|C(w1...wn−1w′)>0}|

C(w1...wn−1)

αw1...wn−1 = 1− βw1...wn−1

Figure 1: New language model smoothing method

The final modification is that we compute the
difference in log probability with respect to the
backoff weight for the pruned model rather than
the unpruned model, which we are able to do by
performing the pruning inside our iterative search
for the value of the backoff weight. We do this
because, if the backoff weight is changed signifi-
cantly by pruning, backoff estimates that meet the
pruning criterion with the old backoff weight may
no longer meet the criterion with the new back-
off weight, and vice versa. Since the new backoff
weight is the one that will be used in the pruned
model, that seems to be the one that should be used
to make pruning decisions.

Our second variant of modified WDP is like the
first, but it estimatesp(w1...wn) simply by divid-
ing Seymore and Rosenfeld’s discounted N-gram
countK by the total number of highest-order N-
grams in the training corpus. This is equivalent to
smoothing only the highest-order conditional N-
gram model in estimatingp(w1...wn), estimating
all the lower-order probabilities in the chain by the
corresponding MLE model. We refer to this joint
probability estimate as “partially-smoothed”, and
the one suggested by Stolcke as “fully-smoothed”.

5 Evaluation

We carried out three sets of evaluations to test
the new techniques described above. First we
compared the perplexity of full models and mod-
els reduced by significance-based N-gram selec-
tion for seven language model smoothing meth-
ods. For the best three results in that comparison,
we looked at the trade-off between perplexity and
model size over a range of N-gram orders. Finally,
we tried various pruning methods to further reduce
model size, and then compared the best result we
obtained using previous techniques with the best

result we obtained using our new techniques.

5.1 Data and Base Smoothing Methods

For training, parameter optimzation, and test data
we used English text from the WMT-06 Europarl
corpus (Koehn and Monz, 2006). We trained on
the designated 1,003,349 sentences (27,493,499
words) of English language model training data,
and used 2000 sentences each for testing and pa-
rameter optimization, from the English half of the
English-French dev and devtest data sets.

We conducted our experiments on seven lan-
guage model smoothing methods. Five of these
are well-known: (1) interpolated absolute dis-
counting with one discount per N-gram length, es-
timated according to the formula derived by Ney
et al. (1994); (2) Katz backoff with Good-Turing
discounts for N-grams occurring 5 times or less;
(3) backoff absolute discounting with Ney et al.
formula discounts; (4) backoff absolute discount-
ing with one discount used for all N-gram lengths,
optimized on held-out data; (5) modified interpo-
lated Kneser-Ney smoothing with three discounts
per N-gram length, estimated according to the for-
mulas suggested by Chen and Goodman (1998).

We also experimented with two variants of a
new smoothing method that we have recently de-
veloped. Full details of the new method are given
elsewhere (Moore and Quirk, 2009), but since it is
not well-known, we summarize the method here.
Smoothed N-gram probabilities are defined by the
formulas shown in Figure 1, for alln such that
N ≥ n ≥ 2,3 whereN is the greatest N-gram
length used in the model. The novelty of this
model is that, while it is an interpolated model, the
interpolation weightsβ for the lower-order model

3For n = 2, we take the expressionp(wn|w2 . . . wn−1)
to denote a unigram probability estimatep(w2).
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base select percent
Method PP PP change

1 interp-AD-fix 62.6 61.6 -1.6
2 Katz backoff 59.8 56.1 -7.9
3 backoff-AD-fix 59.9 54.3 -9.3
4 backoff-AD-opt 58.8 54.4 -7.5
5 KN-mod-fix 51.6 54.6 +5.8
6 new-fix 56.1 52.1 -7.1
7 new-opt 53.7 52.0 -3.3

Table 1: Perplexity results for N-gram selection

are not constrained to match the backoff weights
γ for the lower-order model. This allows the in-
terpolation weights to be set independently of the
discountsD, with the backoff weights being ad-
justed to normalize the resulting distributions.

The motivation for this is to let theD para-
meters correct for potential overestimation of the
probabilities for observed N-grams, while theδ
parameter (which determines theα andβ interpo-
lation parameters) somewhat independently cor-
rects for quantization errors caused by the fact that
only certain probabilities can be derived from in-
teger observed counts, even after discounting.δ is
interpretable as the estimated mean quantization
error for each distinct count for a given context.

We tested two variants of the new method, (6)
one in which theD parameters and theδ parameter
are set by fixed criteria, and (7) one in which a sin-
gle value for allD parameters and the value of the
δ parameter are optimized on held-out data. For
the fixed value ofδ, we assume that, since the dis-
tance between possible N-gram counts, after dis-
counting, is approximately 1.0, their mean quan-
tization error would be approximately 0.5. For
the fixed discount parameters, we use three values
for each N-gram length:D1 for N-grams whose
count is 1,D2 for N-grams whose count is 2, and
D3 for N-grams whose count is 3 or more. We
set these values to be the discounts for 1-counts,
2-counts, and 3-counts estimated by the Good-
Turing method. This yields the formula

Dr = r − (r + 1)
Nr+1

Nr
,

for 1 ≤ r ≤ 3, whereNr is the number of distinct
N-grams of the length in question occuringr times
in the training set.

In all experiments, the unigram language
model is an un-smoothed, closed-vocabulary MLE

model. We use this unigram model, because there
is no simple, principled way of assigning prob-
abilities to individual out-of-vocabulary (OOV)
words. The only principled solution to this prob-
lem that we are aware of is to use a character-
based model, but this seems overly complicated
for something that is orthogonal to the main points
of this study, and of minor practical importance.
Since we make no provision for OOV words in the
models, OOV words are also omitted from all per-
plexity measurements. Thus, the perplexity num-
bers are systematically lower than they would be
if OOVs were taken into account, but they are all
comparable in this regard.

5.2 Results for Significance-Based N-gram
Selection

Table 1 shows the minimum perplexity (with re-
spect to N-gram order) of language models up to
7-grams for each of the seven smoothing methods
discussed above, with and without significance-
based N-gram selection. N-gram selection im-
proved the perplexity of all models, except for
modified KN. The lowest overall perplexity re-
mains that of the base modified KN method, but
with N-gram selection, the two variants of the new
smoothing method come very close to it.

If we cared only about perplexity, that would be
the end of the story, but we also care about lan-
guage model size. The results in Table 1 were ob-
tained on models estimated using just the counts
needed to cover the parameter optimization and
test sets; so to accurately measure model size, we
trained full language models using base modifed
KN, and the two variants of the new method with
N-gram selection. The resulting sizes of the mod-
els represented in backoff form (in terms of total
number of probability and backoff parameters) are
shown in Figure 2 as function of N-gram length,
from trigrams up to 7-grams for KN and up to
10-grams for the two new models. We see that
beyond 4-grams the model sizes diverge dramati-
cally, with the new models incorporating N-gram
selection leveling off, but the modified KN model
(or any standard model) continuing to grow in size,
apparently linearly in the N-gram order.

In Figure 3, we show the relationship between
perplexity and model size for the same three
models, varying N-gram order. We see that be-
tween about 20 million and 45 million parameters,
both of the new models incorporating significance-
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based N-gram selection seem to outperform mod-
ified KN, and that the best of the three is, in fact,
the new model with fixed parameter values.

5.3 Results for Additional Pruning

We further tested modified KN smoothing, and our
new smoothing method with fixed parameter val-
ues and significance-based N-gram selection, with
additional pruning. We compared several pruning
methods on trigram models: count cutoffs, REP,4

and our two modified versions of WDP.
Figure 4 shows the resulting combinations of

perplexity and model size for REP and modified
WDP at various pruning thresholds, and for count
cutoffs of 1, 2, and 3 for both bigrams and trigrams
(n > 1) and for trigrams only (n > 2), applied to

4Thanks to Asela Gunawardana for the use of his REP
tool.

our new smoothing method with fixed parameter
values, together with significance-based N-gram
selection. Overall, modified WDP with fully-
smoothed joint probability estimates performs the
best. It is has lower perplexity than count cut-
offs at all model sizes tested, and is about equal
to REP at very severe pruning levels and superior
to REP with less pruning. Modified WDP with
fully-smoothed joint probabilities is about equal
to modified WDP with partially-smoothed joint
probabilities at the highest and lowest pruning lev-
els tested, but superior in between.

Figure 4 also shows the result of applying
modified WDP with fully-smoothed joint prob-
abilities to our new smoothing methodwith-
out significance-based N-gram selection, to test
whether the former subsumes the gains from the
latter. We see that modified WDP does not render
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N-gram selection redundant except at very severe
pruning levels, much like REP.

Figure 5 shows the results of applying the
same four pruning methods to KN smoothing.
Count cutoffs clearly perform the best with KN
smoothing. It is interesting to note, however,
that—contrary to the results for our new smooth-
ing method—with KN smoothing, modified WDP
with partially-smoothed joint probabilities is sig-
nificantly better than either REP or modified WDP
with fully-smoothed joint probabilities. We be-
lieve this is due to the fact that the latter two meth-
ods both estimate the joint probabilities by chain-
ing the lower-order conditional probabilities from
the fully-smoothed model, which in the case of
KN smoothing are designed specifically to cover
N-grams that have not been observed, and are poor
estimates for the probabilities of lower-order N-

grams that do occcur in the training data.

Finally, we compared the new smoothing
method with N-gram selection and modified WDP
with fully-smoothed joint probabilities against
modified KN smoothing with count cutoffs, us-
ing combinations of pruning parameter values and
N-gram order that yielded the best size/perplexity
trade-offs. The results are shown in Figure 6. At
all model sizes within the range of these experi-
ments, the new method with significance-based N-
gram selection and modified WDP had lower per-
plexity than modifed KN with count cutoffs—up
to about 8% lower at greater pruning levels.

This experiment also suggests that the
size/perplexity trade-off is easier to optimize
for our new combination of smoothing, N-gram
selection, and modified WDP, than for KN
smoothing with count cut-offs. Table 2 shows the
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PP N CC n >

69.9 3 4 1
64.7 4 4 1
62.1 4 3 1
59.0 4 2 1
56.5 4 2 2
54.4 4 1 2
53.6 5 1 2
53.4 6 1 2
53.3 7 1 2

Table 2: Optimal pruning parameters for KN-
mod-fix with count cutoffs

perplexity (PP), maximum N-gram length (N),
count cutoff (CC), and N-gram lengths to which
the count cutoffs are applied (n >) for the points
on the curve for pruned KN in Figure 6. Although
some tendencies are discernable, it seems clear
that a significant part of the space of combinations
of N, CC, and “n >” parameter values must be
searched to find the best points for trading off
perplexity against model size. Table 3 shows
maximum N-gram length and pruning threshold
values for the points on the corresponding curve
for our new approach. Here the situation is much
simpler. The best trade-off points are found by
varying the pruning threshold, and including
in the model all N-grams that pass the pruning
threshold, regardless of N-gram length.

6 Conclusions

We have shown that significance-based N-gram
selection can simultaneously reduce both model

PP N threshold
67.2 10 10−6.5

62.7 10 10−6.75

59.3 10 10−7.0

56.4 10 10−7.25

54.6 10 10−7.5

53.7 10 10−7.75

53.2 10 10−8.0

Table 3: Optimal pruning parameters for new-fix
with N-gram selection and modified WDP

size and perplexity when applied to a number of
language model smoothing methods, including the
widely-used Katz backoff and absolute discount-
ing methods. We are not aware of any other tech-
nique that does this. We also found that, when
combined with a new smoothing method and a
novel variant of weighted difference pruning, our
N-gram selection method outperformed modified
Kneser-Ney smoothing—using the best form of
pruning we found for that approach—with respect
to the trade-off between model size and model
quality.

As our next steps, first, we need to verify that
the results obtained on a moderate-sized train-
ing corpus are repeatable on much larger corpora.
Second, we plan to extend this work to incorpo-
rate language model size reduction by word clus-
tering, which has been shown by Goodman and
Gao (2000) to produce additional gains when com-
bined with previous methods of language model
pruning.
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Abstract

Randomised techniques allow very big
language models to be represented suc-
cinctly. However, being batch-based
they are unsuitable for modelling an un-
bounded stream of language whilst main-
taining a constant error rate. We present a
novel randomised language model which
uses an online perfect hashfunction
to efficiently deal with unbounded text
streams. Translation experiments over
a text stream show that our online ran-
domised model matches the performance
of batch-based LMs without incurring the
computational overhead associated with
full retraining. This opens up the possibil-
ity of randomised language models which
continuously adapt to the massive volumes
of texts published on the Web each day.

1 Introduction

Language models (LM) are an integral feature
of statistical machine translation (SMT) systems.
They assign probabilities to generated hypothe-
ses in the target language informing lexical selec-
tion. The most common form of LMs in SMT
systems are smoothedn-gram models which pre-
dict a word based on a contextual history ofn− 1
words. For some languages (such as English) tril-
lions of words are available for training purposes.
This fact, along with the observation that ma-
chine translation quality improves as the amount
of monolingual training material increases, has
lead to the introduction of randomised techniques
for representing large LMs in small space (Talbot
and Osborne, 2007; Talbot and Brants, 2008).

Randomised LMs (RLMs) solve the problem of
representing large, static LMs but they arebatch
oriented and cannot incorporate new data with-
out fully retraining from scratch. This property

makes current RLMs ill-suited for modelling the
massive volume of textual material published daily
on the Web. We present a novel RLM which is
capable of incremental (re)training. We use ran-
dom hash functions coupled with an online perfect
hashing algorithm to representn-grams in small
space. This makes it well-suited for dealing with
an unbounded stream of training material. To our
knowledge this is the first stream-based RLM re-
ported in the machine translation literature. As
well as introducing the basic stream-based RLM,
we also consider adaptation strategies. Perplex-
ity and translation results show that populating
the language model with material chronologically
close to test points yields good results. As with
previous randomised language models, our experi-
ments focus on machine translation but we also ex-
pect that our findings are general and should help
inform the design of other stream-based models.

Section 2 introduces the incrementally retrain-
able randomised LM and section 3 considers re-
lated work; Section 4 then considers the question
of how unbounded text streams should be mod-
elled. Sections 5 and 6 show stream-based trans-
lation results and properties of our novel data-
structure. Section 7 concludes the paper.

2 Online Bloomier Filter LM

Our online randomised LM (O-RLM) is based
on the dynamic Bloomier filter (Mortensen et al.,
2005). It is a variant of the batch-based Bloomier
filter LM of Talbot and Brants (2008) which we
refer to as the TB-LM henceforth. As with the
TB-LM, the O-RLM uses random hash functions
to representn-grams asfingerprintswhich is the
main source of space savings for the model.

2.1 Online Perfect Hashing

The key difference in our model as compared to
the TB-LM is we use anonline perfect hashing
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Figure 1: Inserting ann-gram into the dynamic Bloomier filter. Above: ann-gram is hashed to its target
bucket. Below: then-gram is transformed into a fingerprint and the same target bucket is scanned. If a
collision occurs thatn-gram is diverted to the overflow dictionary; otherwise the fingerprint is stored in
the bucket.

function instead of having to precompute the per-
fect hash offline prior to data insertion.

The online perfect hash function uses two data
structures:A andD. A is the main, randomised
data structure and is an array ofb dictionaries
A0, . . . , Ab−1. D is a lossless data structure which
handles collisions inA. Each of the dictionaries in
A is referred to as a ‘bucket’. In our implementa-
tion the buckets are equally sized arrays ofw-bit
cells. These cells hold the fingerprints and values
of n-grams (onen-gram-value pair per cell).

To insert an n-gram x and associated value
v(x) into the model, we select a bucketAi by
hashingx into the rangei → [0, . . . , b − 1].
Each bucket has an associated random hash func-
tion, hAi , drawn from a universal hash func-
tion (UHF) family h (Carter and Wegman, 1977),
which is then used to generate then-gram finger-
print: f(x) = hAi(x).

If the bucketAi is not full we conduct a scan of
its cells. If the fingerprintf(x) is not already en-
coded in the bucketAi we add the fingerprint and
value to the first empty cell available. We allocate
a preset number of the least significant bits of each
w-bit cell to holdv(x) and the remaining most sig-
nificant bits forf(x) but this is arbitrary. Any en-
coding scheme, such as the packed representation
of Talbot and Brants (2008), is viable here.

However, iff(x) ∈ Ai already (there is a colli-
sion) we store then-gramx and associated value
v(x) in the lossless overflow dictionaryD instead.
D also holds then-grams that were hashed to any

buckets that are already full.
To query for the value of ann-gram, we first

check if the gram is in the overflow dictionaryD.
If it is, we return the associated value. Otherwise
we queryA using the same hash functions and
procedure as insertion. If we find a matching fin-
gerprint in the appropriate bucketAi we have a
hit with high probability. Deletions andupdates
are symmetric to querying except we reset the cell
to the null value or update its value respectively.
As with other randomised models we construct
queries with the appropriatesanity checksto lower
the error rate efficiently (Talbot and Brants, 2008).

2.2 Data Insertion

Initially we seed the language model with a large
corpus S in the usual manner associated with
batch LMs. Then, when processing the stream,
we aggregaten-gram counts for some consecu-
tive portion, orepoch, of the input stream. We
can vary the size of stream window. For example
we might batch-up a day or week’s worth of mate-
rial. Intuitively, smaller windows produce results
that are sensitive to small variation in the stream,
while longer windows (corresponding to data over
a longer time period) average out local spikes. The
exact window size is a matter of experimentation.
In our MT experiments (section 5) we can com-
pute counts within the streaming window exactly
but randomised approaches (such as the approxi-
mate counting schemes from section 3) can easily
be employed instead.
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Thesen-grams and counts are then considered
for insertion into the online model. If we decide
to insert ann-gram, we either update the count of
thatn-gram if we previously inserted it or else we
insert it as a new entry. Note that there is some
probability we may encounter a false positive and
update some othern-gram in the model.

2.3 Properties

The online perfect hash succeeds by associating
eachn-gram with onlyone cell in A rather than
having it depend on cells (or bits) which may be
shared by othern-grams as with the TB-LM. Since
eachn-gram’s encoding in the model uses distinct
bits and is independent of all other events it can
not corrupt othern-grams when deleted.

Adding the overflow dictionaryD means that
we use more space than the TB-LM for the same
support. It is shown in Mortensen et al. (2005) that
the expected size ofD is a small fraction of the to-
tal number of events and its space usage comprises
less thanO(|S|) bits with high probability.

There is a nonzero probability for false posi-
tives. Since the overflow dictionaryD has no er-
rors, the expected error rate for our dynamic struc-
ture is the probability of a random collision in the
hash range of eachhAi for each bucket cell com-
pared. In our setup we have

Pr(falsepos) =
|Ai|

2|f(x)|

where|f(x)| is the number of bits of eachw-bit
cell used for the fingerprintf(x). w also primar-
ily governs space used in the model. The O-RLM
assumes only valid updates and deletions are per-
formed (i.e. we do not remove or update entries
that were never inserted prior).

The O-RLM takes time linear to the input size
for training and uses worst-case constant time for
querying and deletions where the constant is de-
pendent on the number of cells per bucket inA.
The number of bucket cells also effects the overall
error rate significantly since smaller ranges reduce
the probability of a collision. However, too few
cells per bucket will result in many full buckets
when the bucket hash function is not highly IID.

2.4 Basic RLM Comparisons

Table 1 compares expected versus observed false
positive rates for the Bloom filter, TB-LM, and O-
RLM obtained by querying a model of approxi-
mately 280M events with 100K unseenn-grams.

LM Expected Observed RAM
Lossless 0 0 7450MB
Bloom 0.0039 0.0038 390MB
TB-LM 0.0039 0.0033 640MB
O-RLM 0.0039 0.0031 705MB

Table 1: Example false postive rates and corre-
sponding memory usage for all randomised LMs.

We see the bit-based Bloom filter uses signifi-
cantly less memory than the cell-based alternatives
and the O-RLM consumes more memory than the
TB-LM for the same expected error rate.

3 Related Work

3.1 Randomised Language Models

Talbot and Osborne (2007) used aBloom filter
(Bloom, 1970) to encode a smoothed LM. A
Bloom filter (BF) represents a setS from arbitrary
domainU and supports membership queries such
as“Isx ∈ S?”. The BF uses an array ofm bits and
k independent UHFs each with range0, . . . ,m−1.
For insertion, each item is hashed through thek
hash functions and the resulting target bits are set
to one. During testing, an eventx ∈ U is passed
through the samek hash functions and if any bit
tested is zero thenx was not in the supportS.

The Bloomier filter directly represents key-
value pairs by using a table of cells and a family of
k associated hash functions (Chazelle et al., 2004).
Each key-value pair is associated withk cells in
the table via a perfect hash function. Talbot and
Brants (2008) used a Bloomier filter to encode a
LM. Before data can be added to the Bloomier fil-
ter, a greedy perfect hashing of all entries needs to
be computed in advance; this attempts to associate
each event in the support with one unique table cell
so no other entry collides with it. The procedure
can fail and might need to be repeated many times.

Neither of these two randomised language mod-
els are suitable for modelling a stream. Given the
fact that the stream is of unbounded size, we are
forced to delete items if we wish to maintain a
constant error rate and account for noveln-grams.
However, the Bloom filter LM nor the Bloomier
Filter LM support deletions. The bit sharing of the
Bloom filter (BF) LM (Talbot and Osborne, 2007)
means deletions may corrupt shared stored events.
The Bloomier filter LM (Talbot and Brants, 2008)
has a precomputed matching of keys shared be-
tween a constant number of cells in the filter array.
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Deleting items from a Bloomier Filter without re-
computing the perfect hash will corrupt it.

3.2 Probabilistic Counting

Concurrent work has used approximate counting
schemes based on Morris (1978) to estimate in
small space frequencies over a high volume in-
put text stream (Van Durme and Lall, 2009; Goyal
et al., 2009). The space savings are due to com-
pact storage of counts and retention of only a
small subset of the availablen-grams in the data
stream. Since the final LMs are still lossless (mod-
ulo counts), the resulting LM needs significant
space. It is trivial to use probabilistic counting
within our framework.

3.3 Compact Exact Language Models

Randomised algorithms are not the only com-
pact representation schemes. Church et al. (2007)
looked at Golomb Coding and Brants et al. (2007)
used tries in a distributed setting. These methods
are less succinct than randomised approaches.

3.4 Adaptive Language Models

There is a large literature on adaptive LMs from
the speech processing domain (Bellegarda, 2004).
The primary difference between the O-RLM and
other adaptive LMs is that we add and removen-
grams from the model instead of adapting only the
parameters of the current support set.

3.5 Domain adaptation in Machine
Translation

Within MT there has been a variety of approaches
dealing with domain adaption (for example (Wu
et al., 2008; Koehn and Schroeder, 2007). Typi-
cally LMs are interpolated with one another, yield-
ing good results. These models are usually stat-
ically trained, exact and unable to deal with an
unbounded stream of monolingual data. Domain
adaptation has similarities with streaming, in that
our stream may be non-stationary. A crucial dif-
ference however is that the stream is of unbounded
length, whereas domain adaptation usually as-
sumes some finite and fixed training set.

4 Stream-based translation

Streaming algorithms have numerous applications
in mainstream computer science (Muthukrishnan,
2003) but to date there has been very little aware-
ness of this field within computational linguistics.

Figure 2: Stream-based translation. The online
RLM uses data from the target stream and the last
test point in the source stream for adaptation.

A text streamcan be thought of as a unbounded
sequence of documents that are time-stamped and
we have access to them in strict chronological or-
der. The volume of the stream is so large we can
afford only a limited number of passes over the
data (typically one).

Text streams naturally arise on the Web when
millions of new documents are published each day
in many languages. For instance, 18 thousand
websites continuously publish news stories in 40
languages and there are millions of multilingual
blog postings per day. There are over 30 billion
e-mails sent daily and social networking sites, in-
cluding services such as Twitter, generate an adun-
dance of textual data in real time. Web crawlers
that spidered all these new documents would pro-
duce an unbounded input stream.

The stream-based translation scenario is as fol-
lows: we assume that each day we see a source
stream of many new newswire stories that need
translation. We also assume a stream of newswire
stories in the target language. Intuitively, since the
concurrent streams are from the same domain, we
can use the contexts provided in the target stream
to help with the translation of the source stream
(Figure 2). From a theoretical perspective, since
we cannot represent the entirety of the stream and
wish to maintain a constant error rate, we are
forced to throw some information away.

Given that the incoming text stream contains far
too much data to store in its entirety an immediate
question we would like to answer is: within our
LM, which subset of the target text stream should
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Perplexity decreases as we retrain LMs using data
chronologically closer to the (two) test dates.

we represent in our model?
Using perplexity, we investigated this question

using a text stream based on Reuter’s RCV1 text
collection (Rose et al., 2002). This contains 800k
time-stamped newswire stories from a full calen-
der year (8.20.1996 - 8.19.1997). We used the
SRILM (Stolcke, 2002) to construct an exact tri-
gram model built using all the RCV1 data with the
exception of the final week which we held out as
test data. This served as an oracle since we store
all of the stream.

We then trained multiple exact LMs of much
smaller sizes, coinedsubset LMs, to simulate
memory constraints. For a given date in the RCV1
stream, these subset LMs were trained using a
fixed window of previously seen documents up to
that data. Then we obtained perplexity results for
each subset LM against our test set.

Figure 3 shows an example. For this experiment
subset LMs were trained using a sliding window
of 20 weeks with the window advancing over a
period of three weeks each time. The two arcs
correspond to two different test sets drawn from
different days. The arcs show thatrecency has a
clear effect: populating LMs using material closer
to the test data date produces improved perplexity
performance. The LM chronologically closest to
a given test set has perplexity closest to the results
of the significantly larger baseline LM which uses
all the stream. As expected, using all of the data
yields the lowest perplexity.

We note that this is a robust finding, since we
also observe it in other domains. For example, we

Epoch Stream Window
1 08.20.1996 to 01.01.1997
2 01.02.1997 to 04.23.1997
3 04.24.1997 to 08.18.1997

Table 2: The stream timeline is divided into win-
dowed epochs for our recency experiments.

conducted the same tests over a stream of 18 bil-
lion tokens drawn from 80 million time-stamped
blog posts downloaded from the web with match-
ing results. The effect of recency on perplexity has
also been observed elsewhere (see, for example,
Rosenfeld (1995) and Whittaker (2001)).

Our experiments show that a possible way to
tackle stream-based translation is to always focus
the attention of the LM on the most recent part
of the stream. This means we remove data from
the model that came from the receding parts of the
stream and replace it with the present.

5 SMT Experiments

5.1 Experimental Setup

We used publicly available resources for all our
tests: for decoding we used Moses (Koehn and
Hoang, 2007) and our parallel data was taken from
the Spanish-English section of Europarl. For test
material, we translated 63 documents (800 sen-
tences) from three randomly selected dates spaced
throughout the RCV1 year (January 2nd, April
24, and August 19).1 This effectively divided the
stream into threeepochsbetween the test dates (
table 2). We held out 300 sentences for minimum
error rate training (MERT) (Och, 2003) and opti-
mised the parameters of the feature functions of
the decoder for each experimental run.

The RCV1 is not a large corpus when compared
to the entire web but it is multilingual, chronologi-
cal, and large enough to enable us to test the effect
of recency in a translation setting.

5.2 Adaption

We looked at a number of ways of adapting the
O-RLM:

1. (Random) Randomly sample the stream and
for each newn-gram encountered, insert

1As RCV1 is not a parallel corpus we translated the ref-
erence documents ourselves. This parallel corpus is available
from the authors.

760



Order Full Epoch 1 Epoch 3
1 1.25M 0.6M 0.7M
2 14.6 M 6.8M 7.0M
3 50.6 M 21.3M 21.7M
4 90.3 M 34.8M 35.4M
5 114.7M 41.8M 42.6M
Total 271.5M 105M 107.5M

Table 3: Distinctn-grams (in millions) encoun-
tered in the full stream and example epochs.

it and remove some previously insertedn-
gram, irrespective of whether it was ever re-
quested by the decoder or is a prefix.

2. (Conservative) For each newn-gram en-
countered in the stream, insert it in the filter
and remove one previously insertedn-gram
which was never requested by the decoder.
To preserve consistency we do not remove
lower-order grams that are needed to estimate
backoff probability for higher-order smooth-
ing. Counts are updated forn-grams already
in the model if the new count observed is
larger than the current one.

3. (Severe) Differs from the conservative ap-
proach only in that we deleteall unusedn-
grams (i.e. all those not requested by the de-
coder in the previous translation task) from
the O-RLM before adapting with data from
the stream. This means the data structure is
sparsely populated for all runs.

All the TB-LMs and O-RLMs were unpruned 5-
gram models and usedStupid-backoffsmoothing
(Brants et al., 2007)2 with the backoff parameter
set to0.4 as suggested. The number of distinctn-
grams encountered in the stream for two epochs is
shown in Table 3.

Table 6 shows translation results using these
adaption strategies. In practice, the random ap-
proach does not work while the conservative and
severe adaption techniques produce equivalent re-
sults due to the small proportion of data in the
model that is queried during decoding. All the MT
experiments that follow use the severe method and
the overflow dictionary always holds less than1%
of the total elements in the model.

2Smoothing text input data streams poses an interesting
problem we hope to investigate in the future.

Date Lossless TB-LM O-RLM
Jan 37.83 37.12 37.17
Apr 34.88 34.21 34.79
Aug 29.05 28.52 28.44
Avg 33.92 33.28 33.46

Table 4: Baseline translation results in BLEU us-
ing data from the first stream epoch with a lossless
LM (4.5GB RAM), the TB-LM and the O-RLM
(300MB RAM). All LMs are static.

5.3 Training Regimes

We now consider stream-based translation. Our
first naive approachis to continually add new data
from the stream to the training set without delet-
ing anything. Given a constant memory bound this
strategy only increases the error rate over time as
discussed. Our second, computationally demand-
ing approach is, before each test point, to rebuild
the TB-LM from scratch using the stream data
from the most recent epoch as the training set.
This is batch retraining. The final approach in-
crementally retrains online. This utilizes the same
training data as above (the stream data from the
last epoch) but instead of full retraining it replaces
n-grams currently in the model with unseenn-
grams and counts encountered in the data stream.

5.4 Streaming Translation Results

Each table shows translation results for the three
different test times in the stream. All results re-
ported use the case-sensitive BLEU score.

For our baselines we usestaticLMs trained on
the first epoch’s data to test all three translation
points in the source stream. This is the tradi-
tional approach. We trained an exact, modified
Kneser-Ney smoothed LM (here we do not en-
force a memory constraint) and also used the TB-
LM and O-RLM to verify our structures adequecy.
Results are shown in table 4. The exact model
gives better performance overall due to the more
sophisticated smoothing used.

Table 5 shows results for a set ofstream-based
LMs using the TB-LM and the O-RLM with mem-
ory bounds of 200MB and 300MB. As expected,
the naive models performance degrades over time
as we funnel more data into the TB-LM and the
error rises. The batch retrained TB-LMs and O-
RLMs have constant error rates of1

28 and 1
212 and

so outperform the naive approach. Since the train-
ing data is identical we see (approximately) equal
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Naive TB-LM Batch Retrained TB-LM O-RLM
Date 200MB 300MB 200MB 300MB 200MB 300MB
Jan 35.94 37.12 35.94 37.12 36.44 37.17
Apr 33.55 35.79 36.01 35.99 35.87 36.10
Aug 22.44 26.07 28.97 29.38 29.00 29.18
Avg 30.64 32.99 33.64 34.16 33.77 34.15

Table 5: Translation results for stream-based LMs in BLEU. Performance degrades with time using the
Naive approach. The batch retrained TB-LM and stream-basedO-RLM use constant error rates of128

and 1
212 .

performance from the batch retrained and online
models. We also see some improvement compared
to the static baselines when the LMs use the most
recent data from the target language stream with
respect to the current translation point.

The key difference is that each time we batch
retrain the TB-LM, we must compute a perfect
hashing of the new training set. This is computa-
tionally demanding since the perfect hashing algo-
rithm uses Monte Carlo randomisation which fails
routinely and must be repeated. To make the al-
gorithm tractable the training data set must be di-
vided into lexically sorted subsets as well. This
requires extra passes over the data which may not
be trivial in a streaming environment.

In contrast, the O-RLM is incrementally re-
trained online. This makes it more resource ef-
ficient since we find bits in the model for then-
grams dynamically without using more memory
than we intially set. Note that even though the O-
RLM is theoretically less space efficient than the
TB-LM, when using the same amount of memory
translation performance is comparable.

6 O-RLM Properties

The previous experiments confirm that the O-
RLM can be employed as a LM in an SMT setting
but it is useful to get insight into the intrinsic prop-
erties of the data structure. Many of the properties
of the model, such as the number of bits per fin-
gerprint, follow directly from the TB-LM but the
relationship between the overflow dictionary and
the randomised buckets is novel.

Figures 4 and 5 shows properties of the O-RLM
while varying only the number of cells in each
bucket and keeping all other model parameters
constant. We test membership ofn-grams in an
unseen corpus against those stored in the table.
Our tests were conducted over a larger stream of
1.25Bn-grams from the Gigaword corpus(Graff,

Date Severe Random Conservative
Jan 36.44 36.44 36.44
Apr 35.87 31.08 35.51
Aug 29.00 19.31 29.14
Avg 33.77 29.11 33.70

Table 6: Adaptation results measured in BLEU.
Random deletions degrade performance when
adapting a 200MB O-RLM.

2003). We set our space usage to match the 3.08
bytes pern-gram reported in Talbot and Brants
(2008) and held out just over 1M unseenn-grams
to test the error rates of our models.

In Figure 4 we see a direct correlation between
model error and cells per buckets. As the num-
ber of cells decreases the false positive rate drops
as well since fewer cells to compare against per
bucket means a lower chance of producing colli-
sions. If the range is decreased too much though
more data is diverted to the overflow dictionary
due to many buckets reaching capacity when in-
serting and adapting. Clearly this is less space ef-
ficient. Figure 5 shows the relationship between
the percent of data in the overflow dictionary and
the total cells per bucket.

7 Conclusions

Our experiments have shown that for stream-based
translation, using recent data can benefit perfor-
mance but simply adding entries to a randomised
representation will only reduce translation perfor-
mance over time. We have presented a novel ran-
domised language model based on dynamic per-
fect hashing that supports online insertions and
deletions. As a consequence, it is considerably
faster and more efficient than batch retraining.

While not advocating the idea that only small
amounts of data are needed for language mod-
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Figure 5: Too few cells per bucket causes a higher
percentage of the data to be stored in the overflow
dictionary due to full buckets.

elling, within a bounded amount of space our re-
sults show that it is better to have a low error rate
and store a wisely chosen fraction of the data than
having a high error rate and storing more of it.
Clearly tradeoffs will vary between applications.

This is the first stream-based randomised lan-
guage model and associated machine translation
system reported in the literature. Clearly there are
many interesting open questions for future work.
For example, can we use small randomised repre-
sentations calledsketchesto compactly represent
side-information on the stream telling us which as-
pects of it we should insert into our data? How
can we efficiently deal with smoothing in this set-
ting? Our adaptation scheme is simple and our
data stream is tractable. Currently we are con-

ducting tests over much larger, higher variance
text streams from crawled blog data. In the fu-
ture we will also consider randomised representa-
tions of other adaptive LMs in the literature using
a static background LM in conjunction with our
online one. We ultimately hope to deploy large-
scale LMs which continuously adapt to the vast
amount of material published on the Web without
incurring significant computational overhead.
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Abstract

While speaking spontaneously, speakers
often make errors such as self-correction
or false starts which interfere with the
successful application of natural language
processing techniques like summarization
and machine translation to this data. There
is active work on reconstructing this error-
ful data into a clean and fluent transcript
by identifying and removing these simple
errors.

Previous research has approximated the
potential benefit of conducting word-level
reconstruction of simple errors only on
those sentences known to have errors. In
this work, we explore new approaches
for automatically identifying speaker con-
struction errors on the utterance level, and
quantify the impact that this initial step has
on word- and sentence-level reconstruc-
tion accuracy.

1 Introduction

A system would accomplish reconstruction of its
spontaneous speech input if its output were to rep-
resent, in flawless, fluent, and content-preserving
text, the message that the speaker intended to con-
vey. While full speech reconstruction would likely
require a range of string transformations and po-
tentially deep syntactic and semantic analysis of
the errorful text (Fitzgerald, 2009), in this work we
will attempt only to resolve less complex errors,
correctable by deletion alone, in a given manually-
transcribed utterance.

The benefit of conducting word-level recon-
struction of simple errors only on those sen-
tences known to have errors was approximated in
(Fitzgerald et al., 2009). In the current work, we
explore approaches for automatically identifying
speaker-generated errors on the utterance level,

and calculate the gain in accuracy that this initial
step has on word- and sentence-level accuracy.

1.1 Error classes in spontaneous speech
Common simple disfluencies in sentence-like ut-
terances (SUs) include filler words (i.e., “um”, “ah”,
and discourse markers like “you know”), as well as
speaker edits consisting of a reparandum, an inter-
ruption point (IP), an optional interregnum (like “I
mean”), and a repair region (Shriberg, 1994), as
seen in Figure 1.

[that′s]︸ ︷︷ ︸
reparandum

IP︷︸︸︷
+ {uh}︸︷︷︸

interregnum

that′s︸ ︷︷ ︸
repair

a relief

Figure 1: Typical edit region structure.

These reparanda, or edit regions, can be classified
into three main groups:

1. In a repetition (above), the repair phrase is
approximately identical to the reparandum.

2. In a revision, the repair phrase alters reparan-
dum words to correct the previously stated
thought.

EX1: but [when he] + {i mean} when she put it
that way

EX2: it helps people [that are going to quit] + that
would be quitting anyway

3. In a restart fragment an utterance is aborted
and then restarted with a new train of thought.

EX3: and [i think he’s] + he tells me he’s glad he
has one of those

EX4: [amazon was incorporated by] {uh} well i
only knew two people there

In simple cleanup (a precursor to full speech re-
construction), all detected filler words are deleted,
and the reparanda and interregna are deleted while
the repair region is left intact. This is a strong ini-
tial step for speech reconstruction, though more
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1 he that ’s uh that ’s a relief
2 E E E FL - - - -
3 NC RC RC FL - - - -

Figure 2: Example of word class and refined word
class labels, where - denotes a non-error, FL de-
notes a filler, E generally denotes reparanda, and
RC and NC indicate rough copy and non-copy
speaker errors, respectively. Line 3 refines the la-
bels of Line 2.

complex and less deterministic changes may be
required for generating fluent and grammatical
speech text in all cases.

1.2 Related Work
Stochastic approaches for simple disfluency de-
tection use features such as lexical form, acous-
tic cues, and rule-based knowledge. State-of-
the-art methods for edit region detection such as
(Johnson and Charniak, 2004; Zhang and Weng,
2005; Kahn et al., 2005; Honal and Schultz, 2005)
model speech disfluencies as a noisy channel
model, though direct classification models have
also shown promise (Fitzgerald et al., 2009; Liu
et al., 2004). The final output is a word-level tag-
ging of the error condition of each word in the se-
quence, as seen in line 2 of Figure 2.

The Johnson and Charniak (2004) approach,
referred to in this document as JC04, combines
the noisy channel paradigm with a tree-adjoining
grammar (TAG) to capture approximately re-
peated elements. The TAG approach models the
crossed word dependencies observed when the
reparandum incorporates the same or very simi-
lar words in roughly the same word order, which
JC04 refer to as a rough copy. Line 3 of Figure
2 refines “edits” (E) into rough copies (RC) and
non-copies (NC).

As expected given the assumptions of the
TAG approach, JC04 identifies repetitions and
most revisions in spontaneous data, but is less
successful in labeling false starts and other
speaker self-interruptions without cross-serial cor-
relations. These non-copy errors hurt the edit de-
tection recall and overall accuracy.

Fitzgerald et al. (2009) (referred here as FHJ)
used conditional random fields (CRFs) and the
Spontaneous Speech Reconstruction (SSR) corpus
(Fitzgerald and Jelinek, 2008) corpus for word-
level error identification, especially targeting im-
provement of these non-copy errors. The CRF was

trained using features based on lexical, language
model, and syntactic observations along with fea-
tures based on JC04 system output.

Alternate experimental setup showed that train-
ing and testing only on SUs known from the la-
beled corpus to contain word-level errors yielded
a notable improvement in accuracy, indicating that
the described system was falsely identifying many
non-error words as errors.

Improved sentence-level identification of error-
ful utterances was shown to help improve word-
level error identification and overall reconstruction
accuracy. This paper describes attempts to extend
these efforts.

2 Approach

2.1 Data
We conducted our experiments on the recently re-
leased Spontaneous Speech Reconstruction (SSR)
corpus (Fitzgerald and Jelinek, 2008), a medium-
sized set of disfluency annotations atop Fisher
conversational telephone speech data (Cieri et al.,
2004)1. Advantages of the SSR data include

• aligned parallel original and cleaned sen-
tences
• several levels of error annotations, allowing

for a coarse-to-fine reconstruction approach
• multiple annotations per sentence reflecting

the occasional ambiguity of corrections

As reconstructions are sometimes non-
deterministic, the SSR provides two manual
reconstructions for each utterance in the data. We
use these dual annotations to learn complemen-
tary approaches in training and to allow for more
accurate evaluation.

The Spontaneous Speech Reconstruction cor-
pus is partitioned into three subcorpora: 17,162
training sentences (119,693 words), 2,191 sen-
tences (14,861 words) in the development set, and
2,288 sentences (15,382 words) in the test set. Ap-
proximately 17% of the total utterances contain a
reparandum-type error. In constructing the data,
two approaches were combined to filter out the
utterances considered most likely to be errorful
(6,384 in total) and only those SUs were manually
reconstructed. However the entire data set was in-
cluded in the distribution – and used in training for
this work – to maintain data balance.

1The Spontaneous Speech Reconstruction corpus can be
downloaded from http://www.clsp.jhu.edu/PIRE/ssr.
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The training of the TAG model for JC04, used
as a feature in this work, requires a very specific
data format, and thus is trained not with SSR but
with Switchboard (SWBD) data (Godfrey et al.,
1992). Key differences in these corpora, besides
the granularity and form of their annotations, in-
clude:

• SSR aims to correct speech output, while
SWBD edit annotation aims to identify
reparandum structures specifically. SSR only
marks those reparanda which annotators be-
lieve must be deleted to generate a grammat-
ical and content-preserving reconstruction.

• SSR includes more complex error identifi-
cation and correction, not considered in this
work.

While the SWBD corpus has been used in
some previous simple disfluency labeling work
(e.g., Johnson and Charniak, 2004; Kahn et al.,
2005), we consider the SSR for its fine-grained er-
ror annotations.

3 Identifying poor constructions

Prior to reconstruction, it is to our advantage to au-
tomatically identify poorly constructed sentences,
defined as being ungrammatical, incomplete, or
missing necessary sentence boundaries. Accu-
rately extracting ill-formed sentences prior to sub-
sentential error correction helps to minimize the
risk of information loss posed by unnecessarily
and incorrectly reconstructing well-formed text.

To evaluate the efforts described below, we
manually label each SU s in the SSR test set S
(including those not originally annotated with re-
constructions but still included in the SSR distri-
bution) as well-formed or poorly-formed, form-
ing the set of poorly constructed SUs P ⊂ S,
|P | = 531 and |S| = 2288 utterances.

To identify speaker errors on the sentence level,
we consider and combine a collection of features
into a single framework using a maximum entropy
model (implemented with the Daumé III (2004)
MEGA Model toolkit).

3.1 SU-level error features

Six feature types are presented in this section.

• Features #1 and #2 are the two methods in-
cluded in a similar though less exhaustive ef-
fort by (Fitzgerald and Jelinek, 2008) in error

filtering for the creation of the SSR corpus it-
self.

• Feature types #3 and #4 extract features from
automatic parses assigned to the given sen-
tence. It is expected that these parses will
contain some errors and the usefulness of
these features may be parser-specific. The
value of these features though is the con-
sistent, if not always accurate, treatment of
similar construction errores given a particu-
lar state-of-the-art parser.

• Feature type #5 investigates the relationship
between the probability of a SU-internal error
and the number of words it contains.

• Feature type #6 serves to bias the probabil-
ity against assigning a backchannel acknowl-
edgement SU as an error instance.

Feature #1 (JC04): Consider only sentences with
JC04 detected edit regions. This approach takes
advantage of the high precision, low recall JC04
disfluency detection approach described in Section
1.2. We apply the out-of-box JC04 system and
consider any sentence with one or more labeled
reparanda as a “poor” indicator. Since speakers re-
pairing their speech once are often under a higher
cognitive load and thus more likely to make more
serious speech errors (in other words, there is a
higher probability of making an error given that an
error has already been made (Bard et al., 2001)).
This is a reasonable first order approach for find-
ing deeper problems.

Feature #2 (HPSG): Use deep linguistic parsers
to confirm well-formedness. Statistical context-
free parsers are highly robust and, due to smooth-
ing, can assign a non-zero probability syntac-
tic structure even for text and part-of-speech se-
quences never seen during training. However,
sometimes no output is preferable to highly er-
rorful output. Hand-built rule-based parsers can
produce extremely accurate and context-sensitive
syntactic structures, but are also brittle and do not
adapt well to never before seen input. We use this
inflexibility to our advantage.

Head-driven Phrase Structure Grammar
(HPSG) is a deep-syntax phrase structure gram-
mar which produces rich, non-context-free
syntactic analyses of input sentences based on
a collection of carefully constructed rules and
lexical item structures (Pollard and Sag, 1994;
Wahlster, 2000). Each utterance is parsed using
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the PET deep parser produced by the inter-
institutional DELPH-IN group2. The manually
compiled English Resource Grammar (ERG)
(Flickinger, 2002) rules have previously been
extended for the Verbmobil (Wahlster, 2000)
project to allow for the parsing of basic conversa-
tional elements such as SUs with no verb or basic
backchannel acknowledgements like “last thursday”
or “sure”, but still produce strict HPSG parses
based on these rules. We use the binary result of
whether or not each SU is parsable by the HPSG
ERG as binary indicator functions in our models.

There has been some work on producing partial
parses for utterances for which a full HPSG analy-
sis is not deemed possible by the grammar (Zhang
et al., 2007). This work has shown early promise
for identifying coherent substrings within error-
ful SUs given subjective analysis; as this technol-
ogy progresses, HPSG may offer informative sub-
sentential features for word-level error analysis as
well.

Feature #3 (Rules): Mark unseen phrase rule ex-
pansions. Phrase-based parses are composed of
a recursive sequence of non-terminal (NT) rule ex-
pansions, such as those detailed for the example
parse shown in Figure 3. These rules are learned
from training data such as the Switchboard tree-
bank, where telephone conversation transcripts
were manually parsed. In many statistical parsers,
new structures are generated based on the relative
frequencies of such rules in the training treebank,
conditioned on the terminal words and some local
context, and the most probable parse (roughly the
joint probability of its rule expansions) is selected.

Because parsers are often required to produce
output for words and contexts never seen in the
training corpus, smoothing is required. The
Charniak (1999) parser accomplishes this in part
through a Markov grammar which works top-
down, expanding rules to the left and right of an
expansion head M of a given rule. The non-
terminal (NT) M is first predicted from the parent
P , then – in order –L1 throughLm (stopping sym-
bol ’#’) and R1 through Rn (again ’#’), as shown
in Equation 1.

parent P → #Lm . . . L1MR1 . . . Rn# (1)

In this manner, it is possible to produce rules
never before seen in the training treebank. While

2The DEep Linguistic Processing with HPSG INitiative
(see http://www.delph-in.net/)

this may be required for parsing grammatical sen-
tences with rare elements, this SU-level error pre-
diction feature indicates whether the automatic
parse for a given SU includes an expansion never
seen in the training treebank. If an expansion rule
in the one-best parse was not seen in training (here
meaning in the SWBD treebank after EDITED
nodes have been removed), the implication is that
new rule generation is an indicator of a speaker
error within a SU.

Feature #4 (C-comm): Mark unseen rule c-
commanding NTs. In X’ theory (Chomsky,
1970), lexical categories such as nouns and verbs
are often modified by a specifier (such as the DT “a”
modifying the NN “lot” in the NP3 phrase in Figure
3 or an auxiliary verb for a verb in a verb phrase
(VBZ for VP3) and a complement (such as the ob-
ject of a verb NP3 for VBG in the phrase VP3).

In each of these cases, an NT tree node A has
the following relationship with a second NT P :

• Neither does node A dominate P nor node P
dominateA, (i.e., neither is directly above the
other in the parse tree), and

• Node A immediately precedes P in the tree
(precedence is represented graphically in left-
to-right order in the tree).

Given these relationships, we say that A locally
c-commands P and its descendants. We further
extend this definition to say that, if node Â is the
only child of nodeA (a unary expansion) andA lo-
cally c-commands P , then Â locally c-commands
P (so both [SBAR→ S] and [S→ NP2 VP2] are
c-commanded by VBP). See Figure 3 for other ex-
amples of non-terminal nodes in c-commanding
relationships, and the phrase expansion rule they
c-command.

The c-command relationship is fundamental in
syntactic theory, and has uses such as predicting
the scope of pronoun antecedents. In this case,
however, we use it to describe two nodes which are
in a specifier–category relationship or a category–
complement relationship (e.g., subject–verb and
verb–object, respectively). This is valuable to us
because it takes advantage of a weakness of sta-
tistical parsers: the context used to condition the
probability of a given rule expansion generally
does not reach beyond dominance relationships,
and thus parsers rarely penalize for the juxtapo-
sition of A c-commanding P and its children as
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a) S

NP1

PRP

they

VP1

VBP

are

SBAR

S

NP2

DT

that

VP2

VBZ

is

VP3

VBG

saying

NP3

DT

a

NN

lot

b) Rules expansions:
S→ NP VP
NP1→ PRP
VP1→ VBP SBAR
SBAR→ S
S→ NP2 VP2

NP2→ DT
VP2→ VBZ VP
VP3→ VBG NP
NP3→ DT NN

c) Rule expansions + c-commanding NT:
S→ NP VP no local c-command
NP1→ PRP no local c-command
VP1→ V SBAR NP1

SBAR→ S VBP
S→ NP2 VP2 VBP
NP2→ DT no local c-command
VP2→ VBZ VP NP2

VP3→ VBG NP VBZ
NP3→ DT NN VBG

Figure 3: The automatically generated parse (a) for an errorful sentence-like unit (SU), with accompa-
nying rule expansions (b) and local c-commands (c). Non-terminal indices such as NP2 are for reader
clarification only and are not considered in the feature extraction process.

long as they have previously seen NT type A pre-
ceding NT type P . Thus, we can use the children
of a parent node P as a way to enrich a NT type P
and make it more informative.

For example, in Figure 3, the rule [S → NP2

VP2] is routinely seen in the manual parses of
the SWBD treebank, as is [VP1 → VBP SBAR].
However, it is highly unusual for VBP to immedi-
ately precede SBAR or S when this rule expands
to NP2 VP2. So, not only does SBAR/S comple-
ment VBP, but a very specific type of [SBAR/S
→ NP VP] is the complement of VBP. This con-
ditional infrequency serves as an indication of
deeper structural errors.

Given these category relationship observations,
we include in our maximum entropy model a fea-
ture indicating whether a given parse includes a
c-command relationship not seen in training data.

Feature #5 (Length): Threshold sentences based
on length. Empirical observation indicates that
long sentences are more likely to contain speaker
errors, while very short sentences tend to be
backchannel acknowledgments like “yeah” or “I
know” which are not considered errorful. Oviatt
(1995) quantifies this, determining that the dis-

fluency rate in human-computer dialog increases
roughly linearly with the number of words in an
utterance.

The length-based feature value for each sen-
tence therefore is defined to be the number of word
tokens in that sentence.

Feature #6 (Backchannel): Bias backchannel
acknowledgements as non-errors A backchan-
nel acknowledgement is a short sentence-like unit
(SU) which is produced to indicate that the speaker
is still paying attention to the other speaker, with-
out requesting attention or adding new content to
the dialog. These SUs include “uh-huh”, “sure”,
or any combination of backchannel acknowledge-
ments with fillers (ex. “sure uh uh-huh”).

To assign this feature, fifty-two common
backchannel acknowledgement tokens are consid-
ered. The indicator feature is one (1) if the SU in
question is some combination of these backchan-
nel acknowledgements, and zero (0) otherwise.

3.2 SU-level error identification results
We first observe the performance of each feature
type in isolation in our maximum entropy frame-
work (Table 1(a)). The top-performing individual
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Features included
Setup JC04 HPSG Rules C-comm Length Backchannel F1-score
a) Individual features

1
√

– – – – – 79.9
2 –

√
– – – – 77.1

5 – – – –
√

– 59.7
4 – – –

√
– – 42.2

3 – –
√

– – – 23.2
6 – – – – –

√
0.0

b) All features combined
7

√ √ √ √ √ √
83.3

c) All-but-one
8 –

√ √ √ √ √
78.4 (-4.9)

9
√ √ √

–
√ √

81.2 (-2.1)
10

√
–

√ √ √ √
81.3 (-2.0)

11
√ √

–
√ √ √

82.1 (-1.2)
12

√ √ √ √ √
– 82.9 (-0.4)

13
√ √ √ √

–
√

83.2 (-0.1)

Table 1: Comparison of poor construction identification features, tested on the SSR test corpus.

feature is the JC04 edit indicator, which is not sur-
prising as this is the one feature whose existence
was designed specifically to predict speaker errors.
Following JC04 in individual performance are the
HPSG parsability feature, length feature, and un-
seen c-command rule presence feature. Backchan-
nel acknowledgements had no predictive power on
their own. This was itself unsurprising as the fea-
ture was primarily meant to reduce the probability
of selecting these SUs as errorful.

Combining all rules together (Table 1(b)), we
note an F1-score gain of 3.4 as compared to the top
individual feature JC04. (JC04 has a precision of
97.6, recall of 67.6, and F of 79.9; the combined
feature model has a precision of 93.0, a recall of
75.3, and an F of 83.3, so unsurprisingly our gain
primarily comes from increased error recall).

In order to understand the contribution of an in-
dividual feature, it helps not only to see the pre-
diction results conditioned only on that feature,
but the loss in accuracy seen when only that fea-
ture is removed from the set. We see in Table 1(c)
that, though the c-command prediction feature was
only moderately accurate in predicting SU errors
on its own, it has the second largest impact after
JC04 (an F-score loss of 2.1) when removed from
the set of features. Such a change indicates the
orthogonality of the information within this fea-
ture to the other features studied. Length, on the
other hand, while moderately powerful as a sin-

gle indicator, had negligible impact on classifica-
tion accuracy when removed from the feature set.
This indicates that the relationship between error-
ful sentences and length can be explained away by
the other features in our set.

We also note that the combination of all features
excluding JC04 is competitive with JC04 itself.
Additional complementary features seem likely to
further compete with the JC04 prediction feature.

4 Combining efforts

The FHJ work shows that the predictive power of
a CRF model could greatly improve (given a re-
striction on only altering SUs suspected to contain
errors) from an F-score of 84.7 to as high as 88.7
for rough copy (RC) errors and from an F-score of
47.5 to as high as 73.8 for non-copy (NC) errors.

Now that we have built a model to predict con-
struction errors on the utterance level, we combine
the two approaches to analyze the improvement
possible for word-level identification (measured
again by precision, recall, and F-score) and for
SU-level correction (measured by the SU Match
metric defined in Section 4.2).

4.1 Word-level evaluation of error
identification, post SU filtering

We first evaluate edit detection accuracy on those
test SUs predicted to be errorful on a per-word ba-
sis. To evaluate our progress identifying word-
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level error classes, we calculate precision, recall
and F-scores for each labeled class c in each exper-
imental scenario. As usual, these metrics are cal-
culated as ratios of correct, false, and missed pre-
dictions. However, to take advantage of the double
reconstruction annotations provided in SSR (and
more importantly, in recognition of the occasional
ambiguities of reconstruction) we modified these
calculations slightly to account for all references.

Analysis of word-level label evaluation, post SU
filtering. Word-level F1-score results for error
region identification are shown in Table 2.

By first automatically selecting testing as de-
scribed in Section 3 (with a sentence-level F-score
of 83.3, Table 1(b)), we see in Table 2 some gain in
F-score for all three error classes, though much po-
tential improvement remains based on the oracle
gain (rows indicated as having “Gold errors” test-
ing data). Note that there are no results from train-
ing only on errorful data but testing on all data, as
this was shown to yield dramatically worse results
due to data mismatch issues.

Unlike in the experiments where all data was
used for testing and training, the best NC and RC
detection performance given the automatically se-
lected testing data was achieved when training a
CRF model to detect each class separately (RC
or NC alone) and not in conjunction with filler
word detection FL. As in FHJ, training RC and NC
models separately instead of in a joint FL+RC+NC
model yielded higher accuracy.

We notice also that the F-score for RC identi-
fication is lower when automatically filtering the
test data. There are two likely causes. The most
likely issue is that the automatic SU-error clas-
sifier filtered out some SUs with true RC errors
which had previously been correctly identified, re-
ducing the overall precision ratio as well as re-
call (i.e., we no longer receive accuracy credit for
some easier errors once caught). A second, related
possibility is that the errorful SUs identified by
the Section 3 method had a higher density of er-
rors that the current CRF word-level classification
model is unable to identify (i.e. the more difficult
errors are now a higher relative percentage of the
errors we need to catch). While the former pos-
sibility seems more likely, both causes should be
investigated in future work.

The F-score gain in NC identification from 42.5
to 54.6 came primarily from a gain in precision (in
the original model, many non-errorful SUs were

mistakenly determined to include errors). Though
capturing approximately 55% of the non-copy NC
errors (for SUs likely to have errors) is an im-
provement, this remains a challenging and un-
solved task which should be investigated further
in the future.

4.2 Sentence-level evaluation of error
identification and region deletion, post
SU identification

Depending on the downstream task of speech re-
construction, it may be imperative not only to
identify many of the errors in a given spoken ut-
terance, but indeed to identify all errors (and only
those errors), yielding the exact cleaned sentence
that a human annotator might provide.

In these experiments we apply simple cleanup
(as described in Section 1.1) to both JC04 out-
put and the predicted output for each experimental
setup, deleting words when their error class is a
filler, rough copy or non-copy.

Taking advantage of the dual annotations pro-
vided for each sentence in the SSR corpus, we
can report double-reference evaluation. Thus, we
judge that if a hypothesized cleaned sentence ex-
actly matches either reference sentence cleaned in
the same manner we count the cleaned utterance as
correct, and otherwise we assign no credit. We re-
port double-reference exact match evaluation be-
tween a given SU s and references r ∈ R, as de-
fined below.

SU match =
1
S

∑
s∈S

max
r∈R

δ(s, r) (2)

Analysis of sentence level evaluation, post SU
identification. Results from this second evalua-
tion of rough copy and non-copy error reconstruc-
tion can be seen in Table 3.

As seen in word-level identification results (Ta-
ble 2), automatically selecting a subset of testing
data upon which to apply simple cleanup recon-
struction does not perform at the accuracy shown
to be possible given an oracle filtering. While
measuring improvement is difficult (here, non-
filtered data is incomparable to filtered test data
results since a majority of these sentences require
no major deletions at all), we note again that our
methods (MaxEnt/FHJ-x) outperform the baseline
of deleting nothing but filled pauses like “eh” and
“um”, as well as the state-of-the-art baseline JC04.
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Class labeled Training SUs for Testing FL RC NC
All data All SU data 71.0 80.3 47.4

FL+RC+NC Errorful only Auto ID’d SU errors 87.9 79.9 49.0
Errorful only Gold SU errors 91.6 84.1 52.2

All data All SU data - - 42.5
NC Errorful only Auto ID’d SU errors - - 54.6

Errorful only Gold SU errors - - 73.8
All data All SU data 70.8 - 47.5

NC+FL Errorful only Auto ID’d SU errors 88.8 - 53.3
Errorful only Gold SU errors 90.7 - 69.8

All data All SU data - /84.2/ -
RC Errorful only Auto ID’d SU errors - 81.3 -

Errorful only Gold SU errors - 88.7 -
All data All SU data 67.8 /84.7/ -

RC+FL Errorful only Auto ID’d SU errors 88.1 80.5 -
Errorful only Gold SU errors 92.3 87.4 -

Table 2: Error predictions, post-SU identification: F1-score results. Automatically identified “SUs for
testing” were determined via the maximum entropy classification model described earlier in this paper,
and feature set #7 from Table 1. Filler (FL), rough copy error (RC) and non-copy error (NC) results are
given in terms of word-level F1-score. Bold numbers indicate the highest performance post-automatic
filter for each of the three classes. Italicized values indicate experiments where no filtering outperformed
automatic filtering (for RC errors).

# SUs # SUs that %
Setup Classed deleted Testing (filt/unfilt) match ref accuracy
Baseline-1 only filled pauses All data 2288 1800 78.7%
JC04-1 E+FL All data 2288 1858 81.2%
MaxEnt/FHJ-1 FL+RC+NC All data 2288 1922 84.0%
Baseline-2 only filled pauses Auto ID’d 430 84 19.5%
JC04-2 E+FL Auto ID’d 430 187 43.5%
MaxEnt/FHJ-2 FL+RC+NC Auto ID’d 430 223 51.9%
Baseline-3 only filled pauses Gold errors 281 5 1.8%
JC04-3 E+FL Gold errors 281 126 44.8%
MaxEnt/FHJ-3 FL+RC+NC Gold errors 281 156 55.5%

Table 3: Error predictions, post-SU identification: Exact Sentence Match Results.
For the baseline, we delete only filled pause filler words like “eh” and “um”. For JC04 output, we deleted
any word assigned the class E or FL. Finally, for the MaxEnt/FHJ models, we used the jointly trained
FL+RC+NC CRF model and deleted all words assigned any of the three classes.

5 Future Work

While some success and improvements for the
automatic detection and deletion of fillers and
reparanda (i.e., “simple cleanup”) have been
demonstrated in this work, much remains to be
done to adequately address the issues and criteria
considered here for full reconstruction of sponta-
neous speech.

Included features for both the word level and

SU-level error detection have only skimmed the
surface of potentially powerful features for spon-
taneous speech reconstruction. There should be
continued development of complementary parser-
based features (such as those from dependency
parsers or even deep syntax parsers such as im-
plementations of HPSG as well as additional syn-
tactic features based on automatic constituent or
context-free grammar based parsers). Prosodic
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features, though demonstrated to be unnecessary
for at least moderately successful detection of sim-
ple errors, also hold promise for additional gains.
Future investigators should evaluate the gains pos-
sible by integrating this information into the fea-
tures and ideas presented here.

6 Summary and conclusions

This work was an extension of the results in FHJ,
which showed that automatically determining
which utterances contain errors before attempting
to identify and delete fillers and reparanda has the
potential to increase accuracy significantly.

In Section 3, we built a maximum entropy clas-
sification model to assign binary error classes to
spontaneous speech utterances. Six features –
JC04, HPSG, unseen rules, unseen c-command re-
lationships, utterance length, and backchannel ac-
knowledgement composition – were considered.
The combined model achieved a precision of 93.0,
a recall of 75.3, and an F1-score of 83.3.

We then, in Section 4, cascaded the sentence-
level error identification system output into the
FHJ word-level error identification and simple
cleanup system. This combination lead to non-
copy error identification with an F1-score of 54.6,
up from 47.5 in the experiments conducted on all
data instead of data identified to be errorful, while
maintaining accuracy for rough copy errors and in-
creasing filler detection accuracy as well. Though
the data setup is slightly different, the true errors
are common across both sets of SUs and thus the
results are comparable.

This work demonstrates that automatically se-
lecting a subset of SUs upon which to imple-
ment reconstruction improves the accuracy of non-
copy (restart fragment) reparanda identification
and cleaning, though less improvement results
from doing the same for rough copy identification.
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Abstract
Strictly corpus-based measures of seman-
tic distance conflate co-occurrence infor-
mation pertaining to the many possible
senses of target words. We propose a
corpus–thesaurus hybrid method that uses
soft constraints to generate word-sense-
aware distributional profiles (DPs) from
coarser “concept DPs” (derived from a
Roget-like thesaurus) and sense-unaware
traditional word DPs (derived from raw
text). Although it uses a knowledge
source, the method is not vocabulary-
limited: if the target word is not in the
thesaurus, the method falls back grace-
fully on the word’s co-occurrence infor-
mation. This allows the method to access
valuable information encoded in a lexical
resource, such as a thesaurus, while still
being able to effectively handle domain-
specific terms and named entities. Exper-
iments on word-pair ranking by semantic
distance show the new hybrid method to
be superior to others.

1 Introduction

Semantic distance is a measure of the closeness
in meaning of two concepts. People are consis-
tent judges of semantic distance. For example, we
can easily tell that the concepts of “exercise” and
“jog” are closer in meaning than “exercise” and
“theater”. Studies asking native speakers of a lan-
guage to rank word pairs in order of semantic dis-
tance confirm this—average inter-annotator corre-
lation on ranking word pairs in order of semantic
distance has been repeatedly shown to be around
0.9 (Rubenstein and Goodenough, 1965; Resnik,
1999).

A number of natural language tasks such as ma-
chine translation (Lopez, 2008) and word sense
disambiguation (Banerjee and Pedersen, 2003;
McCarthy, 2006), can be framed as semantic
distance problems. Thus, developing automatic
measures that are in-line with human notions of
semantic distance has received much attention.
These automatic approaches to semantic distance
rely on manually created lexical resources such as
WordNet, large amounts of text corpora, or both.

WordNet-based information content measures
have been successful (Hirst and Budanitsky,
2005), but there are significant limitations on their
applicability. They can be applied only if a Word-
Net exists for the language of interest (which is
not the case for the “low-density” languages); and
even if there is a WordNet, a number of domain-
specific terms may not be encoded in it. On the
other hand, corpus-based distributional measures
of semantic distance, such as cosine and α-skew
divergence (Dagan et al., 1999), rely on raw text
alone (Weeds et al., 2004; Mohammad, 2008).
However, when used to rank word pairs in order
of semantic distance or correct real-word spelling
errors, they have been shown to perform poorly
(Weeds et al., 2004; Mohammad and Hirst, 2006).

Mohammad and Hirst (2006) and Patwardhan
and Pedersen (2006) argued that word sense ambi-
guity is a key reason for the poor performance of
traditional distributional measures, and they pro-
posed hybrid approaches that are distributional in
nature, but also make use of information in lexical
resources such as published thesauri and WordNet.
However, both these approaches can be applied to
estimate the semantic distance between two terms
only if both terms exist in the lexical resource they
rely on. We know lexical resources tend to have
limited vocabulary and a large number of domain-
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specific terms are usually not included.
It should also be noted that similarity values

from different distance measures are not compa-
rable (even after normalization to the same scale),
that is, a similarity score of .75 as per one distance
measure does not correspond to the same seman-
tic distance as a similarity score of .75 from an-
other distance measure.1 Thus if one uses two
independent distance measures, in this case: one
resource-reliant and one only corpus-dependent,
then these two measures are not comparable (and
hence cannot be used in tandem), even if both
rely—partially or entirely—on distributional cor-
pus statistics.

We propose a hybrid semantic distance method
that inherently combines the elements of a
resource-reliant measure and a strictly corpus-
dependent measure by imposing resource-reliant
soft constraints on the corpus-dependent model.
We choose the Mohammad and Hirst (2006)
method as the resource-reliant method and not
one of the WordNet-based measures because, un-
like the WordNet-based measures, the Moham-
mad and Hirst method is distributional in nature
and so lends itself immediately for combination
with traditional distributional similarity measures.
Our new hybrid method combines concept–word
co-occurrence information (the Mohammad and
Hirst distributional profiles of thesaurus concepts
(DPC)) with word–word co-occurrence informa-
tion, to generate word-sense-biased distributional
profiles. The “pure” corpus-based distributional
profile (a.k.a. co-occurrence vector, or word asso-
ciation vector), for some target word u, is biased
with soft constraints towards each of the concepts
c that list u in the thesaurus, to create a distribu-
tional profile that is specific to u in the sense that
is most related to the other words listed under c.

Thus, this method can make more fine-
grained distinctions than the Mohammad and Hirst
method, and yet uses word sense information.2

Our proposed method falls back gracefully to rely
only on word-word co-occurrence information if
any of the target terms is not listed in the lexical re-
source. Experiments on the word-pair ranking task

1All we can infer is that if w1 and w2 have a similarity
score of .75 and w3 and w4 have a score of .5 by the same
distance measure, then w1–w2 are closer in meaning than
w3–w4.

2Even though Mohammad and Hirst (2006) use thesaurus
categories as coarse concepts, their algorithm can be applied
using more finer-grained thesaurus word groupings (para-
graphs and semicolon units), as well.

on three different datasets show that the our pro-
posed hybrid measure outperforms all other com-
parable distance measures.

Mohammad and Hirst (2007) show that their
method can be used to compute semantic dis-
tance in a resource poor language L1 by com-
bining its text with a thesaurus in a resource-rich
language L2 using an L1–L2 bilingual lexicon to
create cross-lingual distributional profiles of con-
cepts, that is, L2 word co-occurrence profiles of
L1 thesaurus concepts. Since our method makes
use of the Mohammad and Hirst DPCs, it can just
as well make use of their cross-lingual DPCs, to
compute semantic distance in a resource-poor lan-
guage, just as they did. We leave that for future
work.

2 Background and Related Work

Strictly speaking, semantic distance/closeness is
a property of lexical units—a combination of the
surface form and word sense.3 Two terms are con-
sidered to be semantically close if there is a lex-
ical semantic relation between them. Such a re-
lation may be a classical relation such as hyper-
nymy, troponymy, meronymy, and antonymy, or
it may be what have been called an ad-hoc non-
classical relation, such as cause-and-effect (Mor-
ris and Hirst, 2004). If the closeness in meaning
is due to certain specific classical relations such as
hypernymy and troponymy, then the terms are said
to be semantically similar. Semantic relatedness
is the term used to describe the more general form
of semantic closeness caused by any semantic re-
lation (Hirst and Budanitsky, 2005). So the nouns
liquid and water are both semantically similar and
semantically related, whereas the nouns boat and
rudder are semantically related, but not similar.

The next three sub-sections describe three kinds
of automatic distance measures: (1) lexical-
resource-based measures that rely on a manually
created resource such as WordNet; (2) corpus-
based measures that rely only on co-occurrence
statistics from large corpora; and (3) hybrid mea-
sures that are distributional in nature, and that also
exploit the information in a lexical resource.

2.1 Lexical-resource-based measures
WordNet is a manually-created hierarchical net-
work of nodes (taxonomy), where each node in

3The notion of semantic distance can be generalized, of
course, to larger units such as phrases, sentences, passages,
and so on (Landauer et al., 1998).
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the network represents a fine-grained concept or
word sense. An edge between two nodes rep-
resents a lexical semantic relation such as hy-
pernymy and troponymy. WordNet-based mea-
sures consider two terms to be close if they occur
close to each other in the network (connected by
only a few arcs), if their definitions share many
terms (Banerjee and Pedersen, 2003; Patwardhan
and Pedersen, 2006), or if they share a lot of infor-
mation (Lin, 1998; Resnik, 1999). The length of
each arc/link (distance between nodes) can be as-
sumed a unit length, or can be computed from cor-
pus statistics. Within WordNet, the is-a hierarchy
is much more well-developed than that of other
lexical semantic relations. So, not surprisingly,
the best WordNet-based measures are those that
rely only on the is-a hierarchy. Therefore, they
are good at measuring semantic similarity (e.g.,
doctor–physician), but not semantic relatedness
(e.g., doctor–scalpel). Further, the measures can
only be used in languages that have a (sufficiently
developed) WordNet. WordNet sense information
has been criticized to be too fine grained (Agirre
and Lopez de Lacalle Lekuona, 2003; Navigli,
2006). See Hirst and Budanitsky (2005) for a com-
prehensive survey of WordNet-based measures.

2.2 Corpus-based measures

Strictly corpus-based measures of distributional
similarity rely on the hypothesis that words that
occur in similar context tend to be semantically
close (Firth, 1957; Harris, 1940). The set of
contexts of each target word u is represented by
its distributional profile (DP)—the set of words
that tend to co-occur with u within a certain dis-
tance, along with numeric scores signifying this
co-occurrence tendency with u. Then measures
such as cosine or α-skew divergence are used to
determine how close the DPs of the two target
words are. See Section 3 for more details and re-
lated work. These measures are very appealing
because they rely simply on raw text, but, as de-
scribed earlier, when used to rank word pairs in
order of semantic distance, or to correct real-word
spelling errors, they perform poorly, compared
to the WordNet-based measures. See Weeds et
al. (2004), Mohammad (2008), and Curran (2004)
for detailed surveys of distributional measures.

As Mohammad and Hirst (2006) point out, the
DP of a word u conflates information about the
potentially many senses of u. For example, con-

sider the following. The noun bank has two senses
“river bank” and “financial institution”. Assume
that bank, when used in the “financial institu-
tion” sense, co-occurred with the noun money 100
times in a corpus. Similarly, assume that bank,
when used in the “river bank” sense, co-occurred
with the noun boat 80 times. So the DP of bank
will have co-occurrence information with money
as well as boat:

DPW(bank):

money,100; boat,80; bond,70; fish,77; . . .

Assume that the DP of the word ATM is:

DPW(ATM):

money,120; boat,0; bond,90; fish,0; . . .

Thus the distributional distance of bank with ATM
will be some sort of an average of the seman-
tic distance between the “financial institution” and
“ATM” senses and the semantic distance between
the “river bank” and “ATM” senses. However, in
various natural language tasks, we need the se-
mantic distance between the intended senses of
bank and ATM, which often also tends to be the
semantic distance between their closest senses.

2.3 Hybrid measures
Both Mohammad and Hirst (2006) and Patward-
han and Pedersen (2006) proposed measures that
are not only distributional in nature but also rely
on a lexical resource to exploit the manually en-
coded information therein as well as to overcome
the sense-conflation problem (described in sec-
tion 2.2). Since we essentially combine the Mo-
hammad and Hirst method with a “pure” word-
based distributional measure to create our hybrid
approach, we briefly describe their method here.

Mohammad and Hirst (2006) generate separate
distributional profiles for the different senses of
a word, without using any sense-annotated data.
They use the categories in a Roget-style thesaurus
(Macquaries (Bernard, 1986)) as coarse senses or
concepts. There are about 1000 categories in a
thesaurus, and each category has on average 120
closely related words. A word may be found in
more than one category if it has multiple meaning.
They use a simple unsupervised algorithm to de-
termine the vector of words that tend to co-occur
with each concept and the corresponding strength
of association (a measure of how strong the ten-
dency to co-occur is). The target word u will be
assigned one DPC for each of the concepts that
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list u. Below are example DPCs of the two con-
cepts pertaining to bank:4

DPC(“fin. inst.”):
money,1000; boat,32; bond,705; fish,0; . . .

DPC(“river bank”):

money,5; boat,863; bond,0; fish,948; . . .

The distance between two words u, v is deter-
mined by calculating the closeness of each of the
DPCs of u to each of DPCs of v, and the closest
DPC-pair distance is chosen.

Mohammad and Hirst (2006) show that their ap-
proach performs better than other strictly corpus-
based approaches that they experimented with.
However, all those experiments were on word-
pairs that were listed in the thesaurus. Their ap-
proach is not applicable otherwise. In Sections 3
and 4 we show how cosine–log-likelihood-ratio
(or any comparable distributional measure) can be
combined with the Mohammad and Hirst DPCs to
form a hybrid approach that is not limited to the
vocabulary of a lexical resource.

Erk and Padó (2008) proposed a way of rep-
resenting a word sense in context by biasing the
target word’s DP according to the context sur-
rounding a target (specific) occurrence of the tar-
get word. They use dependency relations and se-
lectional preferences of the target word and com-
bine multiple DPs of words appearing in the con-
text of the target occurrence, in a manner so as
to give more weight to words co-occurring with
both the target word and the target occurrence’s
context words. The advantage of this approach
is that it does not rely on a thesaurus or Word-
Net. Its disadvantage is that it relies on depen-
dency relations and selectional preferences infor-
mation, and that the context information it uses in
order to determine the word sense is quite limited
(only the words surrounding a single occurrence
of the and hence the representation of that sense
might not be sufficiently accurate. Their approach
effectively assumes that each occurrence of a word
has a unique sense.

3 Distributional Measures with Soft
Semantic Constraints

Traditional distributional profiles of words (DPW)
give word–word co-occurrence frequencies. For
example, DPW(u) gives the number of times

4The relatively large co-occurrence frequency values for
DPCs as compared to DPWs is because a concept can be ref-
ered to by many words (on average 100).

the target word u co-occurs with with all other
words:5

DPW(u):

w1,f(u,w1); w2,f(u,w2); w3,f(u,w3); . . .

where f stands for co-occurrence frequency (and
can be generalized to stand for any strength
of association (SoA) measure such as the log-
likelihood ratio). Mohammad and Hirst create
concept–word co-occurrence vectors, “distribu-
tional profiles of concepts” (DPCs), from non-
annotated corpus. For example, DPC(c) gives the
number of times the concept (thesaurus category)
c co-occurs with all the words in a corpus.

DPC(c):

w1,f(c,w1); w2,f(c,w2); w3,f(c,w3); . . .

A target word u that appears under thesaurus con-
cepts c1, ..., cn would be assigned to DPC(c1), ...,
DPC(cn). Therefore, if a target word v also ap-
pears under some same concept c, the DPCs of u
and v would be indistinguishable.

We propose the creation of distributional pro-
files of word senses (DPWS(uc)) that approximate
the SoA of the target word u, when used in sense
c, with each of the words in the corpus:

DPWS(uc):

w1,f(uc,w1); w2,f(uc,w2); w3,f(uc,w3); . . .

In order to get exact counts, one needs sense-
annotated data. However, such data is expensive
to create, and is scarce. Therefore, we propose
estimating these counts from the DPW and DPC
counts:

f(uc, wi) = p(c|wi)× f(u,wi) (1)

where the conditional probability p(c|wi) is calcu-
lated from the co-occurrence frequencies in DPCs;
and the co-occurrence count f(u,wi) is calcu-
lated from DPWs. If the target word is not in
the thesaurus’s vocabulary, then we assume uni-
form distribution over all concepts, and in prac-
tice use a single sense, and take the conditional
probability to be 1. Since the method takes sense-
proportional co-occurrence counts, we will refer
to this method as the hybrid-sense-proportional-
counts method (or, hybrid-prop for short).

5The dimensions of the DP co-occurrence vector can be
defined arbitrarily, and do not have to correspond to the words
in the vocabulary. The most notable alternative representation
is the Latent Semantic Analysis and its variants (Landauer et
al., 1998; Finkelstein et al., 2002; Budiu et al., 2006).
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For example, below is the DPWS of bank in
the “financial institution” sense, calculated from
its DPW and DPCs:

DPW(bank):
money,100; boat,80; bond,70; fish,77; . . .

DPC(“fin. inst.”):
money,1000; boat,32; bond,705; fish,0; . . .

DPC(“river bank”):
money,5; boat,863; bond,0; fish,948; . . .

DPWS(bank“fin.inst.”):
money,( 1000

1000+5
× 100); boat,( 32

32+863
× 80);

bond,( 705
705+0

× 70); fish,( 0
0+948

× 77); . . .

Once the DPWS are calculated, any counts-
based SoA and distance measures can be ap-
plied. For example, in this work we use log-
likelihood ratio (Dunning, 1993) to determine
the SoA between a word sense and co-occurring
words, and cosine to determine the distance be-
tween two DPWS’s log likelihood vectors (Mc-
Donald, 2000). We also contrast this measure with
cosine of conditional probabilities vectors. Given
two target words, we determine the distance be-
tween each of their DPWS pairings and the closest
DPWS-pair distance is chosen.

3.1 The hybrid-sense-filtered-counts method

Since the DPCs are created in an unsupervised
manner, they are expected to be somewhat noisy.
Therefore, we also experimented with a variant of
the method proposed above, that simply makes use
of whether the conditional probability p(c|wi) is
greater than 0 or not:

f(uc, wi) =

{
f(u,wi) If p(c|wi) > 0
0 Otherwise

(2)

Since this method essentially filters out collocates
that are likely not relevant to the target sense c of
the target word u, we will refer to this method
as the hybrid-sense-filtered-counts method (or,
just hybrid-filt for short). Below is an example
hybrid-filtered DPWS of bank in the “financial in-
stitution” sense:

DPWS(bank“fin.inst.”:

money,100); boat,80; bond,70; . . .

Note that the collocate fish is now filtered out,
whereas bank’s co-occurrence counts with money,
boat, and bond are left as is (and not sense-
proportionally attenuated).

4 Evaluation

We evaluated various methods on the task of
ranking word pairs in order of semantic dis-
tance. These methods included our sense-biased
methods as well as several baselines: the Mo-
hammad and Hirst (2006) DPC-based methods,
the traditional word-based distributional similar-
ity methods, and several Latent Semantic Analysis
(LSA)-based methods. We used three testsets and
their corresponding human judgment gold stan-
dards: (1) the Rubenstein and Goodenough (1965)
set of 65 noun pairs—denoted RG-65; (2) the
WordSimilarity-353 (Finkelstein et al., 2002) set
of 353 noun pairs (which include the RG-65
pairs) of which we discarded of one repeating
pair—denoted WS-353; and (3) the Resnik and
Diab (2000) set of 27 verb pairs—denoted RD-00.

4.1 Corpora and Pre-processing

We generated distributional profiles (DPWs
and DPCs) from the British National Corpus
(BNC) (Burnard, 2000), which is a balanced cor-
pus. We lowercased the characters, and stripped
numbers, punctuation marks, and any SGML-like
syntactic tags, but kept sentence boundary mark-
ers. The BNC contained 102,100,114 tokens of
546,299 types (vocabulary size) after tokenization.
For the verb set, we also lemmatized this corpus.

We considered two words as co-occurring if
they occurred in a window of±5 words from each
other. We stoplisted words that co-occurred with
more than 2000 word types.

4.2 Results

The Spearman rank correlations of the automatic
rankings of the RG-65, WS353, and RD-00 test-
sets with the corresponding gold-standard human
rankings is listed in Table 1.6 The higher the
Spearman rank correlation, the more accurate is
the distance measure.

4.2.1 Results on the RG-65 testset
Baselines. We replicated the traditional word-
based distributional distance measure using co-
sine of vectors (DPs) containing conditional prob-
abilities (word-cos-cp). Its rank correlation of
.53 is close to the correlation of .54 reported in
Mohammad and Hirst (2006), hereafter MH06.
We replicated the MH06 concept-based approach

6Certain experiments were not pursued as they were re-
dundant in supporting our claims.
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Method RG-65 WS-353 RD-00
Baselines (replicated):

Traditional distributional measures
word-cos-cp .53 .31 .46
word-cos-ll .70 .54 .51
word-cos-pmi .62 .43 .57

Mohammad and Hirst methods and variants
concept-cos-cp .62 .38 .41
concept*-cos-cp .65 .33 .43
concept-cos-ll .60 .37 .43
concept*-cos-ll .64 .25 .27
concept*-cos-pmi .40 .19 .28

Other (LSA and variants)
LSA .56 .47 .55
GLSA-cos-pmi .18 n.p. n.p.
GLSA-cos-ll .47 n.p. .29

New methods:
hybrid-prop-cos-ll .72 .49 .53
hybrid-prop*-cos-ll .69 .46 .45
hybrid-filt-cos-ll .73 .54 .38
hybrid-filt*-cos-ll .77 .54 .39
hybrid-prop*-cos-pmi .58 .43 .71
hybrid-filt*-cos-pmi .61 .42 .64

Table 1: Spearman rank correlation on RG-65,
WS-353, and RD-00 testsets, trained on BNC.
‘*’ indicates the use of a smaller bootstrapped
concept–word co-occurrence matrix. ‘n.p.’ indi-
cates that the experiment was not pursued.

(concept-cos-cp), and its bootstrapped variant that
uses a smaller concept–word co-occurrence matrix
(concept*-cos-cp). The latter yielded a correla-
tion score .65, close to the .69 reported in MH06.

We also experimented with cosine of PMI vec-
tors (word-cos-pmi) which obtained a correlation
of .62. Log likelihood ratios (word-cos-ll) gave
best results among the baseline methods (.70), and
so we it more often in the implementations of our
hybrid method.

We conducted experiments with LSA and its
GLSA variants (Budiu et al., 2006) as additional
baselines. A limited vocabulary of the 33,000
most frequent words in the BNC and all test words
was used in these experiments. (A larger vocab-
ulary was computationally expensive and 33,000
is also the vocabulary size used by Budiu et
al. (2006) in their LSA experiments.)

New Methods: The hybrid method variants
proposed in this paper (hybrid-prop-cos-ll and
hybrid-filt-cos-ll) were the best performers on the
RG-65 test set. Particularly, they performed better
than both the traditional word-distance measures
(word-cos-ll), and our concept-based methods—
variants of the MH06 method that are used with
likelihood ratios (concept-cos-ll, concept*-cos-

ll). The -pmi methods were all poorer performers
than their -ll counterparts. The -pmi hybrid vari-
ants obtained higher scores than the concept-based
ones, but almost the same scores as the word-
based ones.

4.2.2 Results on WS-353 and RD-00 testsets
On WS-353, all our hybrid methods out-
performed their concept counterparts, and were
on par with their word-based counterparts. On
RD-00, word-cos-pmi out-performed all other
word-based methods, and the hybrid -pmi meth-
ods were best performers with scores of .64 and
.71. Our word-cos-ll, hybrid-prop-cos-ll, and
the two hybrid pmi results on RD-00 are better
than any non-WordNet results reported by Resnik
and Diab (2000), including their syntax-informed
methods—the variants of Lin (“distrib”, .43) and
Dorr (“LCS”, .39). In fact, our hybrid*-prop-cos-
pmi and hybrid*-filt-cos-pmi results reach corre-
lation levels of the WordNet-based methods re-
ported there (.66–.68). Also, on WS-353, our
hybrid sense-filtered variants and word-cos-ll ob-
tained a correlation score higher than published re-
sults using WordNet-based measures (Jarmasz and
Szpakowicz, 2003) (.33 to .35) and Wikipedia-
based methods (Ponzetto and Strube, 2006) (.19
to .48); and very close to the results obtained by
thesaurus-based (Jarmasz and Szpakowicz, 2003)
(.55) and LSA-based methods (Finkelstein et al.,
2002) (.56).

The lower correlation scores of all measures on
the WS-353 test set are possibly due to it hav-
ing politically biased word pairs (examples in-
clude: Arafat–peace, Arafat–terror, Jerusalem–
Palestinian) for which BNC texts are likely to in-
duce low correlation with the human raters of WS-
353. This testset also has disproportionately many
terms from the news domain.

The concept methods performed poorly on WS-
353 partly because many of the target words do
not exist in the thesaurus. For instance, there
were 17 such word types that occurred in 20 WS-
353 testset word pairs. When excluding these
pairs, concept-cos-cp goes up from .38 to .45, and
concept*-cos-pmi from .19 to .24. Interestingly,
results of the hybrid methods show that they were
largely unaffected by the out-of-vocabulary prob-
lem on the WS-353 dataset.

On the verbs dataset RD-00, while hybrid-prop-
cos-ll fared slightly better than word-cos-ll, using
the smaller matrix seemed to hurt performance of
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hybrid*-prop-cos-ll compared to word-cos-ll. But
results suggest that the -pmi methods might serve
as a better measure than -ll for verbs, although this
claim should be tested more rigorously.

Human judgments of semantic distance are less
consistent on verb-pairs than on noun-pairs, as re-
flected in inter-rater agreement measures in Resnik
and Diab (2000) and others). Thus, not surpris-
ingly, the scores of almost all measures are lower
for the verb data than the RG-65 noun data.

5 Discussion

The hybrid methods proposed in this paper ob-
tained higher accuracies than all other methods on
the RG-65 testset (all of whose words were in the
published thesaurus), and on the RD-00 testset,
and their performance was at least respectable on
the WS-353 testset (many of whose words were
not in the published thesaurus). This is in con-
trast to the concept-distance methods which suf-
fer greatly when the target words are not in the
lexical resource (here, the thesaurus) they rely on,
even though these methods can make use of co-
occurrence information of words not in the the-
saurus with concepts from the thesaurus.

Amongst the two hybrid methods proposed, the
sense-filtered-counts method performed better
using the smaller bootstrapped concept–word co-
occurrence matrix whereas the sense-proportional
method performed better using the larger concept–
word co-occurrence matrix. We believe this is be-
cause the bootstrapping method proposed in Mo-
hammad and Hirst (2006) has the effect of reset-
ting to 0 the small co-occurrence counts. The
noise from these small co-occurrence counts af-
fects the sense-filtered-counts method more ad-
versely (since any non-zero value will cause the
inclusion of the corresponding collocate’s full co-
occurrence count) and so the bootstrapped matrix
is more suitable for this method.

The results also show that the cosine of log-
likelihood ratios method mostly performs better
than cosine of conditional probabilities and the
pmi methods on the noun sets. This further
supports the claim by Dunning (1993) that log-
likelihood ratio is much less sensitive than pmi
to low counts. Interestingly, on the verb set, the
pmi methods, and especially hybrid*-prop-cos-
pmi, did extremely well. Further investigation is
needed in order to determine if pmi is indeed more
suitable for verb semantic similarity, and why.

6 Conclusion

Traditional distributional similarity conflates co-
occurrence information pertaining to the many
senses of the target words. Mohammad and
Hirst (2006) show how distributional measures
can be used to compute distance between very
coarse word senses or concepts (thesaurus cat-
egories), and even obtain better results than
traditional distributional similarity. However,
their method requires that the target words be
listed in the thesaurus, which is often not the
case for domain-specific terms and named enti-
ties. In this paper, we proposed hybrid meth-
ods (hybrid-sense-filtered-counts and hybrid-
sense-proportional-counts) that combine word–
word co-occurrence information (traditional dis-
tributional similarity) with word–concept co-
occurrence information (Mohammad and Hirst,
2006), with soft constraints in such a manner
that the method makes use of information en-
coded in the thesaurus when available, and de-
grades gracefully if the target word is not listed
in the thesaurus. Our method generates word-
sense-biased distributional profiles (DPs) from
non-annotated corpus-based word-based DPs and
coarser-grained aggregated thesaurus-based “con-
cept DPs” (DPCs). We showed that the hybrid
method correlates with human judgments of se-
mantic distance in most cases better than any of
the other methods we replicated.

We are now interested in improving seman-
tic distance measures for verb–verb, adjective–
adjective, and cross-part-of-speech pairs, by ex-
ploiting specific information pertaining to these
parts of speech in lexical resources in addition to
purely co-occurrence information.
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Abstract

In this paper, we first compare several
strategies to handle the newly proposed
three-way Recognizing Textual Entailment
(RTE) task. Then we define a new mea-
surement for a pair of texts, called Textual
Relatedness, which is a weaker concept
than semantic similarity or paraphrase. We
show that an alignment model based on the
predicate-argument structures using this
measurement can help an RTE system to
recognize the Unknown cases at the first
stage, and contribute to the improvement
of the overall performance in the RTE task.
In addition, several heterogeneous lexical
resources are tested, and different contri-
butions from them are observed.

1 Introduction

Recognizing Textual Entailment (RTE) (Dagan et
al., 2006) is a task to detect whether one Hypoth-
esis (H) can be inferred (or entailed) by a Text
(T). Being a challenging task, it has been shown
that it is helpful to applications like question an-
swering (Harabagiu and Hickl, 2006). The recent
research on RTE extends the two-way annotation
into three-way1 2, making it even more difficult,
but more linguistic-motivated.

The straightforward strategy is to treat it as a
three-way classification task, but the performance
suffers a significant drop even when using the
same classifier and the same feature model. In
fact, it can also be dealt with as an extension to the
traditional two-way classification, e.g., by identi-

1http://nlp.stanford.edu/RTE3-pilot/
2http://www.nist.gov/tac/tracks/2008/

rte/rte.08.guidelines.html

fying the Entailment (E) cases first and then fur-
ther label the Contradiction (C) and Unknown (U)
T-H pairs. Some other researchers also work on
detecting negative cases, i.e. contradiction, in-
stead of entailment (de Marneffe et al., 2008).
However, according to our best knowledge, the
detailed comparison between these strategies has
not been fully explored, let alone the impact of the
linguistic motivation behind the strategy selection.
This paper will address this issue.

Take the following example from the RTE-4 test
set (Giampiccolo et al., 2009) as an example,

T: At least five people have been killed in
a head-on train collision in north-eastern
France, while others are still trapped in the
wreckage. All the victims are adults.

H: A French train crash killed children.

This is a pair of two contradicting texts, the
mentioning of events (i.e. train crash) in both T
and H are assumed to refer the same event3. In
fact, the only contradicting part lies in the sec-
ond sentence of T against H, that is, whether
there are children among the victims. Therefore,
this pair could also be classified as a Known (K)
pair (=E∪C) against Unknown (U) pairs, instead
of being classified as a Non-entailment (N) case
(=C∪U) against E case in the traditional two-way
annotation.

Furthermore, many state-of-the-art RTE ap-
proaches which are based on overlapping informa-
tion or similarity functions between T and H, in
fact over-cover the E cases, and sometimes, cover
the C cases as well. Therefore, in this paper, we

3See more details about the annotation guideline at
http://www.nist.gov/tac/tracks/2008/rte/
rte.08.guidelines.html
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would like to test whether applying this style of
approaches to capture the K cases instead of E
cases is more effective. While in lexical seman-
tics, semantic relatedness is a weaker concept than
semantic similarity, there is no counterpart at the
sentence or text level. Therefore, in this paper, we
propose a Recognizing Textual Relatedness (RTR)
task as a subtask or the first step of RTE. By doing
so, we choose predicate-argument structure (PAS)
as the feature representation, which has already
been shown quite useful in the previous RTE chal-
lenges (Wang and Neumann, 2007).

In order to obtain the PAS, we utilize a Semantic
Role Labeling (SRL) system developed by Zhang
et al. (2008). Although SRL has been shown to be
effective for many tasks, e.g. information extrac-
tion, question answering, etc., it has not been suc-
cessfully used for RTE, mainly due to the low cov-
erage of the verb frame or semantic role resources
or the low performance of the automatic SRL sys-
tems. The recent CoNLL shared tasks (Surdeanu
et al., 2008; Hajič et al., 2009) have been focus-
ing on semantic dependency parsing along with
the traditional syntactic dependency parsing. The
PAS from the system output is almost ready for
use to build applications based on it. Therefore,
another focus of this paper will be to apply SRL to
the RTE task. In particular, it can improve the first
stage binary classification (K vs. U), and the final
result improves as well.

The rest of the paper will be organized as fol-
lows: Section 2 will give a brief literature review
on both RTE and SRL; Section 3 describes the se-
mantic parsing system, which includes a syntactic
dependency parser and an SRL system; Section 4
presents an algorithm to align two PASs to recog-
nize textual relatedness between T and H, using
several lexical resources; The experiments will be
described in Section 5, followed by discussions;
and the final section will conclude the paper and
point out directions to work on in the future.

2 Related Work

Although the term of Textual Relatedness has not
been widely used by the community (as far as
we know), many researchers have already incor-
porated modules to tackle it, which are usually
implemented as an alignment module before the
inference/learning module is applied. For exam-
ple, Pado et al. (2009) mentioned two alignment
modules, one is a phrase-based alignment system

called MANLI (MacCartney et al., 2008), and the
other is a stochastic aligner based on dependency
graphs. Siblini and Kosseim (2009) performed the
alignment on top of two ontologies. In this paper,
we would like to follow this line of research but on
another level of representation, i.e. the predicate-
argument structures (PAS), together with different
lexical semantic resources.

As for the whole RTE task, many people di-
rectly do the three-way classification with selec-
tive features (e.g. Agichtein et al. (2009)) or dif-
ferent inference rules to identify entailment and
contradiction simultaneously (e.g. Clark and Har-
rison (2009)); while other researchers also extend
their two-way classification system into three-way
by performing a second-stage classification after-
wards. An interesting task proposed by de Marn-
effe et al. (2008) suggested an alternative way to
deal with the three-way classification, that is, to
split out the contradiction cases first. However,
it has been shown to be more difficult than the
entailment recognition. Based on these previous
works and our experimental observations, we pro-
pose an alternative two-stage binary classification
approach, i.e. to identify the unknown cases from
the known cases (entailment and contradiction)
first. And the results show that due to the nature
of these approaches based on overlapping infor-
mation or similarity between T and H, this way of
splitting is more reasonable.

However, RTE systems using semantic role la-
belers has not shown very promising results, al-
though SRL has been successfully used in many
other NLP tasks, e.g. information extraction,
question answering, etc. According to our anal-
ysis of the data, there are mainly three reasons: a)
the limited coverage of the verb frames or predi-
cates; b) the undetermined relationships between
two frames or predicates; and c) the unsatisfy-
ing performance of an automatic SRL system.
For instance, Burchardt et al. (2007) attempted to
use FrameNet (Baker et al., 1998) for the RTE-3
challenge, but did not show substantial improve-
ment. With the recent CoNLL challenges, more
and more robust and accurate SRL systems are
ready for use, especially for the PAS identifica-
tion. For the lexical semantics, we also discover
that, if we relax the matching criteria (from simi-
larity to relatedness), heterougeous resources can
contribute to the coverage differently and then the
effectiveness of PAS will be shown as well.
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3 Semantic Parsing

In order to obtain the predicate-argument struc-
tures for the textual entailment corpus, we use the
semantic role labeler described in (Zhang et al.,
2008). The SRL system is trained on the Wall
Street Journal sections of the Penn Treebank us-
ing PropBank and NomBank annotation of ver-
bal and nominal predicates, and relations to their
arguments, and produces as outputs the semantic
dependencies. The head words of the arguments
(including modifiers) are annotated as a direct de-
pendent of the corresponding predicate words, la-
beled with the type of the semantic relation (Arg0,
Arg1 . . . , and various ArgMs). Note that for the
application of SRL in RTE task, the PropBank and
NomBank notation appears to be more accessible
and robust than the the FrameNet notation (with
much more detailed roles or frame elements bond
to specific verb frames).

As input, the SRL system requires syntactic
dependency analysis. We use the open source
MST Parser (McDonald et al., 2005), trained also
on the Wall Street Journal Sections of the Penn
Treebank, using a projective decoder with second-
order features. Then the SRL system goes through
a pipeline of 4-stage processing: predicate identifi-
cation (PI) identifies words that evokes a semantic
predicate; argument identification (AI) identifies
the arguments of the predicates; argument classifi-
cation (AC) labels the argument with the semantic
relations (roles); and predicate classification (PC)
further differentiate different use of the predicate
word. All components are built as maximal en-
tropy based classifiers, with their parameters es-
timated by the open source TADM system4, fea-
ture sets selected on the development set. Evalu-
ation results from previous years’ CoNLL shared
tasks show that the system achieves state-of-the-
art performance, especially for its out-domain ap-
plications.

4 Textual Relatedness

As we mentioned in the introduction, we break
down the three-way classification into a two-stage
binary classification. Furthermore, we treat the
first stage as a subtask of the main task, which
determines whether H is relevant to T. Similar to
the probabilistic entailment score, we use a relat-
edness score to measure such relationship. Due

4http://tadm.sourceforge.net/

to the nature of the entailment recognition that
H should be fully entailed by T, we also make
this relatedness relationship asymmetric. Roughly
speaking, this Relatedness function R(T,H) can
be described as whether or how relevant H is to
some part of T. The relevance can be realized as
string similarity, semantic similarity, or being co-
occurred in similar contexts.

Before we define the relatedness function for-
mally, let us look at the representation again. After
semantic parsing described in the previous section,
we obtain a PAS for each sentence. On top of it,
we define a predicate-argument graph (PAG), the
nodes of which are predicates, arguments or some-
times both, and the edges of which are labeled se-
mantic relations. Notice that each predicate can
dominate zero, one, or more arguments, and each
argument have one or more predicates which dom-
inate it. Furthermore, the graph is not necessar-
ily fully connected. Thus, the R(T,H) function
can be defined on the dependency representation
as follows: if the PAG of H is semantically rel-
evant to part of the PAG of T, H is semantically
relevant to T.

In order to compare the two graphs, we further
reduce the alignment complexity by breaking the
graphs into sets of trees. Two types of decomposed
trees are considered: one is to take each predicate
as the root of a tree and arguments as child nodes,
and the other is on the contrary, to take each ar-
gument as root and their governing predicates as
child nodes. We name them as Predicate Trees (P-
Trees) and Argument Trees (A-Trees) respectively.
To obtain the P-Trees, we enumerate each predi-
cate, find all the arguments which it directly dom-
inates, and then construct a P-Tree. The algorithm
to obtain A-Trees works in the similar way. Fi-
nally, we will have a set of P-Trees and a set of A-
Trees for each PAG, both of which are simple trees
with depth of one. Figure 1 shows an example of
such procedures. Notice that we do not consider
cross-sentential inference, instead, we simply take
the union of tree sets from all the sentences. Figure
2 illustrates the PAG for both T and H after seman-
tic parsing, and the resulting P-Trees and A-Trees
after applying the decomposition algorithm.

Formally, we define the relatedness function for
a T-H pair as the maximum value of the related-
ness scores of all pairs of trees in T and H (P-trees
and A-trees).
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R(T,H) = max
1≤i≤r,1≤j≤s

{
R(TreeTi , T reeHj )

}
In order to compare two P-Trees or A-Trees,

we further define each predicate-argument pair
contained in a tree as a semantic dependency
triple. Each semantic dependency triple con-
tains a predicate, an argument, and the seman-
tic dependency label in between, in the form
of 〈Predicate,Dependency,Argument〉. Then
we define the relatedness function between two
trees as the minimum value of the relatedness
scores of all the triple pairs from the two trees.

R(TreeT , T reeH) = min
1≤i≤n,1≤j≤m{

R(〈PT , DTi , ATi〉, 〈PH , DHj , AHj 〉)
}

For the relatedness function between two se-
mantic dependency triples, we define the follow-
ing two settings: the FULL match and the NOT-
FULL match. Either match requires that the pred-
icates are related at the first place. The former
means both the dependencies and the arguments
are related; while the latter only requires the de-
pendencies to be related.

R(〈PT , DT , AT 〉, 〈PH , DH , AH〉) =
Full R(PT ,PH)=R(DT ,DH)=R(AT ,AH)=1

NotFull R(PT ,PH)=R(DT ,DH)=1

Other Otherwise

Now, the only missing components in our defi-
nition is the relatedness functions between pred-
icates, arguments, and semantic dependencies.
Fortunately, many people have done research on

semantic relatedness in lexical semantics that we
could use. Therefore, these functions can be
realized by different string matching algorithms
and/or lexical resources. Since the meaning of rel-
evance is rather wide, apart from the string match-
ing of the lemmas, we also incorporate various
resources, from distributionally collected ones to
hand-crafted ontologies. We choose VerbOcean
(Chklovski and Pantel, 2004) to obtain the relat-
edness between predicates (after using WordNet
(Fellbaum, 1998) to change all the nominal pred-
icates into verbs) and use WordNet for the argu-
ment alignment. For the verb relations in Ver-
bOcean, we consider all of them as related; and
for WordNet, we not only use the synonyms, hy-
ponyms, and hypernyms, but antonyms as well.
Consequently, we simplify these basic relatedness
functions into a binary decision. If the correspond-
ing strings are matched or the relations mentioned
above exist, the two predicates, arguments, or de-
pendencies are related; otherwise, not.

In addition, the Normalized Google Distance
(NGD) (Cilibrasi and Vitanyi, 2007) is applied to
both cases5. As for the comparison between de-
pendencies, we simply apply the string matching,
except for modifier labels, which we treat them as
the same6. In all, the main idea here is to incorpo-
rate both distributional semantics and ontological
semantics in order to see whether their contribu-
tions are overlapping or complementary. In prac-
tice, we use empirical value 0.5 as the threshold.
Below the threshold means they are related, oth-

5You may find the NGD values of all the con-
tent word pairs in RTE-3 and RTE-4 datasets at
http://www.coli.uni-sb.de/˜rwang/
resources/RTE3_RTE4_NGD.txt.

6This is mainly because it is more difficult for the SRL
system to differentiate modifier labels than the complements.
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Figure 2: Predicate-argument graphs and corresponding P-Trees and A-trees of the T-H pair

erwise not. In order to achieve a better coverage,
we use the OR operator to connect all the related-
ness functions above, which means, if any of them
holds, the two items are related.

Notice that, although we define only the relat-
edness between T and H, in principle, the graph
representation can also be used for the entailment
relationship. However, since it needs more fine-
grained analysis and resources, we will leave it as
the future work.

5 Experiments

In order to evaluate our method, we setup several
experiments. The baseline system here is a simple
Naive Bayes classifier with a feature set contain-
ing the Bag-of-Words (BoW) overlapping ratio be-
tween T and H, and also the syntactic dependency
overlapping ratio. The feature model combines
two baseline systems proposed by previous work,
which gives out quite competitive performance.
Since the main goal of this paper is to show the
impact of the PAS-based alignment module, we
will not compare our results with other RTE sys-

tems (In fact, the baseline system already outper-
forms the average accuracy score of the RTE-4
challenge).

The main data set used for testing here is the
RTE-4 data set with three-way annotations (500
entailment T-H pairs (E), 150 contradiction pairs
(C), and 350 unknown pairs (U)). The results on
RTE-3 data set (combination of the development
set and test set, in all, 822 E pairs, 161 C pairs,
and 617 U pairs) is also shown, although the origi-
nal annotation is two-way and the three-way anno-
tation was done by different researchers after the
challenge7.

We will first show the performance of the base-
line systems, followed by the results of our PAS-
based alignment module and its impact on the
whole task. After that, we will also give more de-
tailed analysis of our alignment module, according
to different lexical relatedness measurements.

7The annotation of the development set was done by stu-
dents at Stanford, and the annotation of the test set was done
as double annotation by NIST assessors, followed by adjudi-
cation of disagreements. Answers were kept consistent with
the two-way decisions in the main task gold answer file.
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5.1 Baselines

The baseline systems used here are based on over-
lapping ratio of words and syntactic dependencies
between T and H. For the word overlapping ratio,
we calculate the number of overlapping tokens be-
tween T and H and normalize it by dividing it by
the number of tokens in H. The syntactic depen-
dency overlapping ratio works similarly: we cal-
culate the number of overlapping syntactic depen-
dencies and divide it by the number of syntactic
dependencies in H, i.e. the same as the number
of tokens. Enlightened by the relatedness func-
tion, we also allow either FULL match (meaning
both the dependencies and the parent tokens are
matched), and NOTFULL match (meaning only the
dependencies are matched). Here we only use
string match between lemmas and syntactic de-
pendencies. Table 1 presents the performance of
the baseline system.

The results show that, even with the same clas-
sifier and the same feature model, with a proper
two-stage strategy, it can already achieve better
results than the three-way classification. Note
that, the first strategy is not so successful, and
that is the traditional two-way annotation of the
RTE task. Our explanation here is that the BoW
method (even with syntactic dependency features)
is based on overlapping information shared by T
and H, which essentially means the more informa-
tion they share, the more relevant they are, instead
of being more similar or the same. Therefore, for
the “ECU → E/CU” setting, methods based on
overlapping information are not the best choice,
while for “ECU → U/EC”, they are more ap-
propriate.

In addition, the upper bound numbers show the
accuracy when the first-stage classification is per-
fect, which give us an indication of how far we
could go. The lower upper bound for the second
strategy is mainly due to the low proportion of the
C cases (15%) in the data set; while the other two
both show large space for improvement.

5.2 The PAS-based Alignment Module

In this subsection, we present a separate evalua-
tion of our PAS-based alignment module. As we
mentioned before (cf. Section 4), there are sev-
eral parameters to be tuned in our alignment algo-
rithm: a) whether the relatedness function between
P-Trees asks for the FULL match; b) whether the
function for A-Trees asks for the FULL match; and

c) whether both P-Trees and A-Trees being related
are required or either of them holds is enough.
Since they are all binary values, we use the 3-digit
code to represent each setting, e.g. [FFO]8 means
either P-Trees are FULL matched or A-Trees are
FULL matched. The performances of different set-
tings of the module are shown in the following
Precision-Recall figure 3,
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Figure 3: Precision and recall of different align-
ment settings

Since we will combine this module with the
baseline system and it will be integrated as the
first-stage classification, the F1 scores are not in-
dicative for selecting the best setting. Intuitively,
we may prefer higher precision than recall.

One limitation of our method we need to point
out here is that, if some important predicates or ar-
guments in H are not (correctly) identified by the
SRL system, fewer P-Trees and A-Trees are re-
quired to be related to some part of T, thus, the
relatedness of the whole pair could easily be satis-
fied, leading to false positive cases.

5.3 Impact on the Final Results

The best settings for RTE-3 data set is [NNA] and
for RTE-4 data set is [NFO], which are both in the
middle of the setting range shown in the previous
figure 3.

As for the integration of the PAS-based align-
ment model with our BoW-based baseline, we
only consider the third two-stage classification
strategy in Table 1. Other strategies would also be
interesting to try, however, the proposed alignment
algorithm exploits relatedness between T and H,
which might not be fine-grained enough to detect

8F stands for FULL, and O stands for OR. Other letters
are, N stands for NOTFULL, and A stands for AND.

789



Strategies Three-Way Two-Stage
E/C/U E/CU → E/C/U C/EU → C/E/U U/EC → U/E/C

Accuray 53.20% 50.00% 53.50% 54.20%
Upper Bound / 82.80% 68.70% 84.90%

Table 1: Performances of the Baselines

entailment or contradiction. New alignment algo-
rithm has to be designed to explore other strate-
gies. Thus, in this work, we believe that the align-
ment algorithm based on PAS (and other methods
based on overlapping information between T and
H) is suitable for the U/EC → U/E/C classifi-
cation strategy.

Table 2 shows the final results.
The first observation is that the improvement of

accuracy on the first stage of the classification can
be preserved to the final results. And our PAS-
based alignment module can help, though there
is still large space for improvement. Compared
with the significantly improved results on RTE-4,
the improvement on RTE-3 is less obvious, mainly
due to the relatively lower precision (70.33% vs.
79.67%) of the alignment module itself.

Also, we have to say that the improvement is not
as big as we expected. There are several reasons
for this. Besides the limitation of our approach
mentioned in the previous section, the predicates
and arguments themselves might be too sparse to
convey all the information we need for the en-
tailment detection. In addition, in some sense,
the baseline is quite strong for this comparison,
since the PAS-based alignment module relies on
the overlapping words at the first place, there are
quite a few pairs solved by both the main approach
and the baseline. Then, it would be interesting
to take a closer look at the lexical resources used
in the main system, which is another additional
knowledge it has, comparing with the baseline.

5.4 Impact of the Lexical Resources
We did an ablation test of the lexical resources
used in our alignment module. Recall that we
have applied three lexical resources, VerbOcean
for the predicate relatedness function, WordNet
for the argument relatedness function, and Nor-
malized Google Distance for both. Table 3 shows
the performances of the system without each of the
resources,

The results clearly show that each lexical re-
source does contribute some improvement to the
final performance of the system and it confirms
the idea of combining lexical resources being ac-

quired in different ways. For instance, at the
beginning, we expected that the relationship be-
tween “people” and “children” could be captured
by WordNet, but in fact not. Fortunately, the NGD
has a quite low value of this pair of words (0.21),
which suggests that they occur together quite of-
ten, or in other words, they are relevant.

One interesting future work on this aspect is to
substitute the OR connector between these lexical
resources with an AND operator. Thus, instead of
using them to achieve a higher coverage, whether
they could be filters for each other to increase the
precision will also be interesting to know.

6 Conclusion and Future Work

In this paper, we address the motivation and issues
of casting the three-way RTE problem into a two-
stage binary classification task. We apply an SRL
system to derive the predicate-argument structure
of the input sentences, and propose ways of cal-
culating semantic relatedness between the shallow
semantic structures of T and H. The experiments
show improvements in the first-stage classifica-
tion, which accordingly contribute to the final re-
sults of the RTE task.

For future work, we would like to see whether
the PAS can help the second-stage classification
as well, e.g. the semantic dependency of negation
(AM-NEG) could be helpful for the contraction
recognition. Furthermore, since the PAS is usu-
ally a bag of unconnected graphs, we could find
a way to joint them together, in order to consider
both inter- and intra- sentential inferences based
on it.

In addition, this approach has the potential to
be integrated with other RTE modules. For in-
stance, for the predicate alignment, we may con-
sider to use DIRT rules (Lin and Pantel, 2001)
or other paraphrase resources (Callison-Burch,
2008), and for the argument alignment, exter-
nal named-entity recognizer and anaphora resolver
would be very helpful. Even more, we also plan to
compare/combine it with other methods which are
not based on overlapping information between T
and H.
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Systems Baseline1 Baseline2 SRL+Baseline2 The First Stage
Data Sets Three-Way Two-Stage Two-Stage Baseline2 SRL+Baseline2 SRL

RTE-3 [NNA] 52.19% 52.50% 53.69%(2.87%↑) 59.50% 60.56%(1.78%↑) 70.33%
RTE-4 [NFO] 53.20% 54.20% 56.60%(6.39%↑) 67.10% 70.20%(4.62%↑) 79.67%

Table 2: Results on the Whole Datasets

Data Sets SRL+Baseline SRL+Baseline - VO SRL+Baseline - NGD SRL+Baseline - WN
RTE-3 [NNA] 53.69% 53.19%(0.93%↓) 53.50%(0.35%↓) 52.88%(1.51%↓)
RTE-4 [NFO] 56.60% 56.00%(1.06%↓) 56.10%(0.88%↓) 55.70%(1.59%↓)

Table 3: Impact of the Lexical Resources
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Abstract

Measuring the similarity between two
texts is a fundamental problem in many
NLP and IR applications. Among the ex-
isting approaches, the cosine measure of
the term vectors representing the origi-
nal texts has been widely used, where the
score of each term is often determined
by a TFIDF formula. Despite its sim-
plicity, the quality of such cosine similar-
ity measure is usually domain dependent
and decided by the choice of the term-
weighting function. In this paper, we pro-
pose a novel framework that learns the
term-weighting function. Given the la-
beled pairs of texts as training data, the
learning procedure tunes the model pa-
rameters by minimizing the specified loss
function of the similarity score. Com-
pared to traditional TFIDF term-weighting
schemes, our approach shows a significant
improvement on tasks such as judging the
quality of query suggestions and filtering
irrelevant ads for online advertising.

1 Introduction

Measuring the semantic similarity between two
texts is an important problem that has many use-
ful applications in both NLP and IR communi-
ties. For example, Lin (1998) defined a similar-
ity measure for automatic thesaurus creation from
a corpus. Mihalcea et al. (2006) developed sev-
eral corpus-based and knowledge-based word sim-
ilarity measures and applied them to a paraphrase
recognition task. In the domain of web search, dif-
ferent methods of measuring similarity between
short text segments have recently been proposed
for solving problems like query suggestion and al-
ternation (Jones et al., 2006; Sahami and Heilman,
2006; Metzler et al., 2007; Yih and Meek, 2007).

Among these similarity measures proposed in
various applications, the vector-based methods are
arguably the most widely used. In this approach,
the text being compared with is first represented
by a term vector, where each term is associated
with a weight that indicates its importance. The
similarity function could be cosine (i.e., the inner
product of two normalized unit term vectors, or
equivalently a linear kernel), or other kernel func-
tions such as the Gaussian kernel.

There are essentially two main factors that de-
cide the quality of a vector-based similarity mea-
sure. One is thevector operationthat takes as in-
put the term vectors and computes the final simi-
larity score (e.g., cosine). The other is how these
term vectors are constructed, including the term
selection process and how the weights are deter-
mined. For instance, a TFIDF scheme for mea-
suring document similarity may follow the bag-of-
words strategy to include all the words in the doc-
ument when constructing the term vectors. The
weight of each term is simply the product of its
term frequency (i.e., the number of occurrences
in the document) and inverse document frequency
(i.e., the number of documents in a collection that
contain this term).

Despite its simplicity and reasonable perfor-
mance, such approach suffers from several weak-
nesses. For instance, the similarity measure is not
domain-dependent and cannot be easily adjusted
to better fit the final objective, such as being a
metric value used for clustering or providing better
ranking results. Researchers often need to experi-
ment with variants of TFIDF formulas and differ-
ent term selection strategies (e.g., removing stop-
words or stemming) to achieve acceptable perfor-
mance (Manning et al., 2008). In addition, when
more information is available, such as the position
of a term in the document or whether a term is part
of an anchor text, incorporating it in the similarity
measure in a principled manner may not be easy.
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In this paper, we propose a generalterm-
weighting learning framework, TWEAK, that
learns the term-weighting function for the vector-
based similarity measures. Instead of using a
fixed formula to decide the weight of each term,
TWEAK uses a parametric function of features of
each term, where the model parameters are learned
from labeled data. Although the weight of each
term conceptually represents its importance with
respect to the document, tuning the model param-
eters to optimize for such objectives may not be
the best strategy due to two reasons. While the
label of whether a pair of texts is similar is not dif-
ficult to collect from human annotators1, the label
of whether a term in a document is important is
often very ambiguous and hard to decide. Even
if such annotation issue can be resolved, aligning
the term weights with thetrue importance of each
term may not necessarily lead to our real objec-
tive – deriving a better similarity measure for the
target application. Therefore, our learning frame-
work, TWEAK, assumes that we are given only the
labels of the pairs of texts being compared, such
as whether the two texts are considered similar by
human subjects.

TWEAK is flexible in choosing various loss
functions that are close to the true objectives,
while still maintaining the simplicity of the vector-
based similarity measures. For example, a system
that implements the TFIDF cosine measure can
easily replace the original term-weighting scores
with the ones output by TWEAK without changing
other portions of the algorithm. TWEAK is also
novel compared to other existing learning meth-
ods for similarity measures. For instance, we do
not learn the scores of all the terms in the vocab-
ulary directly, which is one of the methods pro-
posed by Bilenko and Mooney (2003). Because
the vocabulary size is typically large in the text
domain (e.g., all possible words in English), learn-
ing directly the term-weighting scores may suffer
from the data sparsity issue and cannot general-
ize well in practice. Instead, we focus on learning
the model parameters for features that each term
may have, which results in a much smaller fea-
ture space. TWEAK also differs from the model
combination approach proposed by Yih and Meek
(2007), where the output scores of different simi-
larity measures are combined via a learned linear

1As argued in (Sheng et al., 2008), low-cost labels may
nowadays be provided by outsourcing systems such as Ama-
zon’s Mechanical Turk or online ESP games.

function. In contrast, TWEAK effectively learns
a new similarity measure by tuning the term-
weighting function and can potentially be comple-
mentary to the model combination approach.

As will be demonstrated in our experiments, in
applications such as judging the relevance of dif-
ferent query suggestions and determining whether
a paid-search ad is related to the user query,
TWEAK can incorporate various kinds of term–
document information and learn a term-weighting
function that significantly outperforms the tradi-
tional TFIDF scheme in several evaluation met-
rics, when using the same vector operation (i.e.,
cosine) and the same set of terms.

We organize the rest of the paper as follows.
Sec. 2 first gives a high-level view of our term-
weighting learning framework. We then formally
define our model and present the loss functions
that can be optimized for in Sec. 3. Experiments
on target applications are presented in Sec. 4. Fi-
nally, we compare our approach with some related
work in Sec. 5 and conclude the paper in Sec. 6.

2 Problem Statement

To simplify the description, assume that the texts
we are comparing are two documents. A general
architecture of vector-based similarity measures
can be formally described as follows. Given two
documentsDp andDq, a similarity function maps
them to a real-valued number, where a higher
value indicates these two documents are seman-
tically more related, considered by the measure.

Suppose a pre-defined vocabulary setV =
{t1, t2, · · · , tn} consists of all possible terms (e.g.,
tokens, words) that may occur in the documents.
Each documentDp is represented by a term vector
of lengthn: vp = (s1

p, s
2
p, · · · , sn

p ), wheresi
p ∈ R

is the weight of termti, and is determined by the
term-weighting functiontw that depends on the
term and the document (i.e.,si

p ≡ tw(ti, Dp)).
The similarity between documentsDp and Dq

is then computed by a vector operation function
fsim : (vp,vq) → R, illustrated in Fig. 1.

Determining the specific functionsfsim andtw
effectively decides the final similarity measure.
For example, the functions that construct the tra-
ditional TFIDF cosine similarity can be:

fsim(vp,vq) ≡ vp · vq

||vp|| · ||vq|| (1)

tw(ti, Dp) ≡ tf(ti, Dp) · log
(

N

df(ti)

)
(2)
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Figure 1: A general architecture of vector-based
similarity measures

whereN is the size of the document collection for
deriving document frequencies,tf anddf are the
functions computing the term frequency and doc-
ument frequency, respectively.

In contrast, TWEAK also takes a specified vec-
tor functionfsim but assumes a parametric term-
weighting functiontww. Given the training data,
it learns the model parametersw that optimize for
the designated loss function.

3 Model

As a specific instantiation of our learning frame-
work, the term-weighting function used in this pa-
per is a linear combination of features extracted
from the input term and document. In particular,
the weight of termti with respect to documentDp

is

si
p = tww(ti, Dp) ≡

∑
j

wjφj(ti, Dp), (3)

whereφj is thej-th feature function andwj is the
corresponding model parameter.

As for the vector operation functionfsim, we
use the same cosine function (Eq. 1). Notice that
we choose these functional forms for their sim-
plicity and good empirical performance shown in
preliminary experiments. However, other smooth
functions can certainly be used.

The choice of loss function for training model
parameters depends on the true objective in the
target application. In this work, we consider two
different learning settings: learning directly the
similarity metric and learning thepreference or-
dering, and compare several loss functions exper-
imentally.

3.1 Learning Similarity Metric

In this setting, we assume that the learning al-
gorithm is given a set of document pairs. Each
of them is associated with a label that indicates
whether these two documents are similar (e.g., a
binary label where 1 means similar and 0 oth-
erwise) or the degree of similarity (e.g., a real-
valued label ranges from 0 to 1), considered by the
human subjects. A training set ofm examples can
be denoted as{(y1, (Dp1 , Dq1)), (y2, (Dp2 , Dq2)),
· · ·, (ym, (Dpm , Dqm))}, where yk is the label
and(Dpk

, Dqk
) is the pair of documents to com-

pare. Following the vector construction described
in Eq. 3, letvp1 ,vq1 , · · · ,vpm ,vqm be the corre-
sponding term vectors of these documents.

We consider two commonly used loss functions,
sum-of-squares errorandlog loss2:

Lsse(w) =
1
2

m∑
k

(yk − fsim(vpk
,vqk

))2 (4)

Llog(w) =
m∑
k

−yk log(fsim(vpk
,vqk

))

−(1− yk) log(1− fsim(vpk
,vqk

)) (5)

Eq. 4 and Eq. 5 can further be regularized by
adding α

2 ||w||2 in the loss function, which may
improve the performance empirically and also
constrain the range of the final term-weighting
scores. Learning the model parameters for min-
imizing these loss functions can be done us-
ing standard gradient-based optimization methods.
We choose the L-BFGS (Nocedal and Wright,
2006) method in our experiments for its guaran-
tee to find a local minimum and fast convergence.
The derivation of gradients is fairly straightfor-
ward, which we skip here.

Notice that other loss functions can also be used
in this framework. Interested readers can refer to,
say, (Bishop, 1995), for other loss functions and
their theoretical justifications.

3.2 Learning Preference Ordering

In many applications where the similarity measure
is applied, the goal is to obtain arankedlist of the
candidate elements. For example, in the task of

2Although in theory the cosine function may return a neg-
ative value and make the log-loss uncomputable, this can
be easily avoided in practice by selecting appropriate ini-
tial model parameters and by constraining the term-weighting
scores to be non-negative.
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filtering irrelevant ads, a good similarity measure
is expected to rank appropriate ads higher than
the irrelevant ones. A desired trade-off of false-
positive (mistakenly filtered good ads) and false-
negative (unfiltered bad ads) can be achieved by
selecting a decision threshold. The exact value
of the similarity measure, in this case, is not cru-
cial. For these applications, it is more important if
the model parameters can better predict thepair-
wise preference. Learning preference ordering is
also motivated by the observation that preference
annotations are generally more reliable than cat-
egorical similarity labels (Carterette et al., 2008)
and has been advocated recently by researchers
(e.g., Burges et al. (2005)).

In the setting of learning preference ordering,
we assume that each training example consists
of two pairs of documents, associated with a la-
bel indicating which pair of documents is consid-
ered more preferable. A training set ofm exam-
ples can be formally denoted as{(y1, (xa1 , xb1)),
(y2, (xa2 , xb2)), · · ·, (ym, (xam , xbm))}, where
xak

= (Dpak
, Dqak

) andxbk
= (Dpbk

, Dqbk
) are

two pairs of documents andyk ∈ {0, 1} indicates
the pairwise order preference, where1 meansxak

should be ranked higher thanxbk
and0 otherwise.

We use a loss function that is very similar to
the one proposed by Dekel et al. (2004) for label
ranking. Let∆k be the difference of the similarity
scores of these two document pairs. Namely,

∆k = fsim(vpak
,vqak

)− fsim(vpbk
,vqbk

)

The loss functionL, which can be shown to upper
bound the pairwise accuracy (i.e., the 0-1 loss of
the pairwise predictions), is:

L(w) =
m∑

k=1

log(1+exp(−yk·∆k−(1−yk)·(−∆k)))

(6)
Similarly, Eq. 6 can be regularized by adding
α
2 ||w||2 in the loss function.

4 Experiments

We demonstrate how to apply our term-weighting
learning framework, TWEAK, to measuring sim-
ilarity for short text segments and to judging
the relevance of an ad landing page given an
query. In addition, we compare experimentally the
performance of using different training settings,
loss functions and features against the traditional
TFIDF term-weighting scheme.

4.1 Similarity for Short Text Segments

Judging the similarity between two short text seg-
ments is a crucial problem for many search and on-
line advertising applications. For instance,query
reformulationor query substitutionneeds to mea-
sure the similarity between two queries. A prod-
uct keyword recommendation system needs to de-
termine whether the given product name and the
suggested keyword is related.

Because the length of the text segment is typi-
cally short, ranging from a single word to a dozen
words, naively applying methods based on word
overlapping such as the Jaccard coefficient leads
to poor results (Sahami and Heilman, 2006; Yih
and Meek, 2007). To overcome this difficulty, Sa-
hami and Heilman (2006) proposes a Web-kernel
function, which first expands the short text seg-
ment by issuing it to a search engine as the query,
and then collectes the snippets of the top results to
construct a pseudo-document. TFIDF term vectors
of the pseudo-documents are used to represent the
original short text segments and the cosine score
of these two vectors is used as the similarity mea-
sure.

In this section, we apply TWEAK to this
problem by replacing the TFIDF term-weighting
scheme with the learned term-weighting function,
when constructing the vectors from the pseudo-
documents. Our target application isquery sug-
gestion– automatically presenting queries that are
related to the one issued by the user. In particu-
lar, we would like to use our similarity measure
as a filter to determine whether queries suggested
by various algorithms and heuristics are indeed
closely related to the target query.

4.1.1 Task & Data

Our query suggestion dataset has been previously
used in (Metzler et al., 2007; Yih and Meek, 2007)
and is collected in the following way. From the
search logs of a commercial search engine, a ran-
dom sample of 363 thousand queries from the top
1 million most frequent queries in late 2005 were
first taken as the query and suggestion candidates.
Among them, 122 queries were chosen randomly
as our target queries; each of them had up to 100
queries used as suggestions, generated by various
query suggestion mechanisms.

Given these pairs of query and suggestions, hu-
man annotators judged the level of similarity using
a 4-point scale –Excellent, Good, Fair andBad,
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where Excellent and Good suggestions are consid-
ered clearly related to the query intent, while the
other two categories mean the suggestions are ei-
ther too general or totally unrelated. In the end,
4,852 query/suggestion pairs that had effective an-
notations were collected. The distribution of the
four labels is: Excellent - 5%, Good - 12%, Fair -
44% and Bad - 39%.

For the simplicity of both presentation and im-
plementation, query/suggestion pairs labeled as
Excellent or Good are treated as positive examples
and the rest as negative ones. Notice that TWEAK

is not restricted in using only binary labels. For
instance, the pairwise preference learning setting
only needs to know which pair of objects being
compared is more preferred. The model and algo-
rithm do not have to change regardless of whether
the label reflects the degree of similarity (e.g, the
original 4-scale labels) or binary categories. For
the metric learning setting, an ordinal regression
approach (e.g, (Herbrich et al., 2000)) can be ap-
plied for multi-category labels.

We used the same query expansion method as
described in (Sahami and Heilman, 2006). Each
query/suggestion was first issued to a commercial
search engine. The result page with up to 200
snippets (i.e., titles and summaries) was used as
the pseudo-document to create the term vector that
represents the original query/suggestion. As de-
scribed earlier in Eq. 3, the weight of each term
is a linear function of a set of predefined features,
which are described next.

4.1.2 Features

Because the pseudo-documents are constructed
using the search result snippets instead of regular
web documents, special formatting or link infor-
mation provided by HTML is not very meaning-
ful. Therefore, we focused on using features that
are available for plain-text documents, including:

• Bias: 1 for all examples.

• TF: We usedlog(tf + 1) as theterm fre-
quencyfeature, wheretf is the number of
times the term occurs in the original pseudo-
document.

• DF: We usedlog(df + 1) as thedocument
frequencyfeature, wheredf is the number of
documents in our collection that contain this
term.

• QF: The search engine query log reflects the
distribution of the words/phrases in which
people are interested (Goodman and Car-
valho, 2005; Yih et al., 2006). We took a log
file with the most frequent 7.5 million queries
and usedlog(qf + 1) as feature, whereqf is
the query frequency.

• Cap: A capitalized word may indicate being
part of a proper noun or being more impor-
tant. When the term is capitalized in at least
one occurrence in the pseudo-document, the
value of this feature is 1; otherwise, it is 0.

• Loc & Len: The beginning of a regular doc-
ument often contains a summary with impor-
tant words. In the pseudo-documents cre-
ated using search snippets, words that occur
in the beginning come from the top results,
which are potentially more relevant to the
original query/suggestion. We created two
specific features using this location informa-
tion. Letloc be the word position of the target
term andlen be the total number of words of
this pseudo-document. The logarithmic value
log(loc + 1) and the ratioloc/len were both
used as features. In order for the learning pro-
cedure to adjust the scaling, the logarithmic
value of the document length,log(len + 1),
was also used.

4.1.3 Results

We conducted the experiments using 10-fold
cross-validation. The whole query/suggestion
pairs were first split into 10 subsets of roughly
equal sizes. Pairs with the same target query were
put in the same subset. In each round, one subset
was used for testing. 95% of the remaining data
was used for training the model and 5% was used
as the development set. We trained six models
with different values of the regularization hyper-
parameterα ∈ {0.003, 0.01, 0.03, 0.1, 0.3, 1} and
determined which model to use based on its per-
formance on the development set, although the re-
sult actually did not vary a lot asα changed.

We compared three learning configurations
– metric learning with sum-of-squares error
(Metricsse) and log loss (Metriclog) and the
pairwise preference learning (Preference). The
learned term-weighting functions were used to
compare with the Web-kernel similarity function,
which implemented the TFIDF term-weighting
scheme using Eq. 2.
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Table 1: The AUC scores, mean averaged preci-
sion and precision at 3 of similarity measures us-
ing different term-weighting functions. The num-
bers with the† sign are statistically significantly
better compared to the Web-kernel method.

Method AUC MAP Prec@3

Web-kernel 0.732 0.540 0.556
Metricsse 0.775† 0.590 0.553
Metriclog 0.781† 0.585 0.545
Preference 0.782† 0.597† 0.570

We evaluated these models using three different
evaluation metrics: the AUC score, precision at
k and MAP (mean averaged precision). The area
under the ROC curve (AUC) is typically used to
judge the overall quality of a ranking function. It
has been shown equivalent to the averaged accu-
racy of the pairwise preference predictions of all
possible element pairs in the sequence, and can be
calculated by the the following Wilcoxon-Mann-
Whitney statistic (Cortes and Mohri, 2004):

A(f ;x,y) =
∑

i,j:yi>yj

If(xi)>f(xj)+
1
2
If(xi)=f(xj),

where f is the similarity measure,x is the se-
quence of compared elements andy is the labels.

Another metric that is commonly used in a rank-
ing scenario isprecision atk, which computes
the accuracy of the top-rankedk elements and ig-
nores the rest. We usedk = 3 in our task, which
means that for each target query, we selected three
suggestions with the highest similarity scores and
computed the averaged accuracy.

One issue of precision atk is that it does not
provide an overall quality measure of the ranking
function. Therefore, we also present MAP (mean
averaged precision), which is a single number that
summarizes the performance of the ranking func-
tion by considering both precision and recall, and
has been shown reliable in evaluating various in-
formation retrieval tasks (Manning et al., 2008).
Suppose there arem relevant elements in a se-
quence, wherer1, r2, · · · , rm are their locations.
The averaged precision is then:

AP =
1
m

m∑
j=1

Prec(rj),

wherePrec(rj) is the precision atrj . We com-
puted the averaged precision values of the 10 test

sets in our cross-validation setting and report their
mean value.

As shown in Table 1, all three learned term-
weighting functions lead to better similarity mea-
sures compared to the TFIDF scheme in terms of
the AUC and MAP scores, where the preference
order learning setting performs the best. However,
for the precision at 3 metric, only the preference
learning setting has a higher score than the TFIDF
scheme, but the difference is not statistically sig-
nificant3. This is somewhat understandable since
the design of our loss function focuses on the over-
all quality instead of only the performance of the
top ranked elements.

4.2 Query/Page Similarity

Measuring whether a page is relevant to a given
query is the main problem in information retrieval
and has been studied extensively. Instead of re-
trieving web pages that are relevant to the query
according to the similarity measure, our goal is
to implement a paid-search ad filter for commer-
cial search engines. In this scenario, textual ads
with bid keywords that match the query can en-
ter the auction and have a chance to be shown on
the search result page. However, as the advertisers
may bid on keywords that are not related to their
advertisements, it is important for the system to fil-
ter irrelevant ads to ensure that users only receive
useful information. For this purpose, we measure
the similarity between the query and the ad land-
ing page (i.e., the page pointed by the ad) and re-
move the ad when the score of its landing page is
below a pre-selected threshold4.

Given a pair of query and ad landing page,
while thequery term vector is constructed using
the same query expansion technique described in
Sec. 4.1, thepageterm vector can be created di-
rectly from the web page since it is a regular doc-
ument that contains enough content. As usual,
our goal is to produce a better similarity measure
by learning the term-weighting functions for these
two types of vectors jointly.

3We conducted a paired-t test on the 10 individual
scores from the cross-validation results of each learned term-
weighting function versus the Web-kernel method. The re-
sults are considered statistically significant when the p-value
is lower than 0.05.

4One may argue that the filter should measure the simi-
larity between the query and ad-text. However, an ad will
not provide useful information to the user if the final destina-
tion page is not relevant to the query, even if its ad-text looks
appealing.
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4.2.1 Data

We first collected a random sample of queries and
paid-search ads shown on a commercial search en-
gine during 2008, as well as the ad landing pages.
Judged by several human annotators, each page
was labeled as relevant or not compared to the is-
sued query. After removing some pairs where the
query intent was not clear or the landing page was
no longer available, we managed to collect 13,341
query/page pairs with reliable labels. Among
them, 8,309 were considered relevant and 5,032
were labeled irrelevant.

4.2.2 Features

In this experiment, we tested the effect of using
different features and experimented with three fea-
ture sets:TF&DF, Plain-textandHTML. TF&DF
contains onlylog(tf +1), log(df +1) and the bias
feature. The goal of using this feature set is to
test whether we can learn a better term-weighting
function given thesameamount of information as
the TFIDF scheme has. The second feature set,
Plain-text, consists of all the features described in
Sec. 4.1.2. As mentioned earlier, this set of fea-
tures can be used for regular text documents that
do not have special formatting information. Fi-
nally, feature setHTML is composed of all the
features used inPlain-textplus features extracted
from some special properties of web documents,
including:

• Hypertext: The anchor text in an HTML
document usually provides important infor-
mation. If there is at least one occurrence of
the term that appears in some anchor text, the
value of this feature is 1; otherwise, it is 0.

• URL: A web document has a uniquely useful
property – the name of the document, which
is its URL. If the term is a substring of the
URL, then the value of this feature is 1; oth-
erwise, it is 0.

• Title: The value of this feature is 1 when the
term is part of the title; otherwise, it is 0.

• Meta: Besides Title, several meta tags used
in the HTML header explicitly show the im-
portant words selected by the page author.
Specifically, whether the term is part of a
meta-keyword is used as a binary feature.
Whether the term is in the meta-description
segment is also used.

Table 2: The AUC scores, true-positive rates at
false-positive rates 0.1 and 0.2 of the ad filter
based on different term-weighting functions. The
difference between any pair of numbers of the
same evaluation metric is statistically significant.

Method AUC TPRfnr=0.1 TPRfnr=0.2

TFIDF 0.794 0.527 0.658
TF&DF 0.806 0.430 0.639

Plain-text 0.832 0.503 0.704
HTML 0.855 0.568 0.750

Because the term vector that represents the
query is created from the pseudo-document (i.e., a
collection of search snippets), the values of these
HTML-specific features are all 0 for the query
term vector. This set of features are only useful for
deciding the weights of the terms in a page term
vector.

4.2.3 Results

We split our data into 10 subsets and conducted
the experiments using the same 10-fold cross-
validation setting described in Sec. 4.1.3, includ-
ing how we used the development set to select the
regularization hyper-parameterα. The pairs that
have the same target query were again put in the
same subsets. We used only the preference or-
dering learning setting for its good performance
shown in the previous set of experiments. Models
compared here were learned from the three dif-
ferent sets of features, as well as the same fixed
TFIDF term-weighting formula (i.e., Eq. 2) used
in Sec. 4.1. Table 2 reports the averaged results
of the 10 testing sets in AUC, as well as the true-
positive rates at two low false-positive rate points
(FPR=0.1 and FPR=0.2). The difference between
any pair of numbers of the same evaluation metric
is statistically significant5.

As we can see from the table, having more fea-
tures does lead to a better term-weighting func-
tion. With all features (i.e.,HTML), the model
achieves the highest AUC score among all con-
figurations. Features available in plain-text doc-
uments (i.e.,Plain-text) other than term frequency
and document frequency can still improve the per-
formance significantly. When only the TF and DF
features are available, the learned term-weighting
function still outperforms the TFIDF scheme, al-

5We conduct paired-t tests as described in Sec. 4.1.3. All
the p-values after Bonferroni correction are less than 0.01.
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Figure 2: ROC Curves of the ad filters using dif-
ferent term-weighting functions
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though the improvement gain is much smaller
compared to the other two settings.

Notice that the behaviors of these models at dif-
ferent false-positive regions varies from the tra-
ditional TFIDF scheme. At a low false-positive
point (e.g., FPR=10%), only the model that uses
all features performs better than TFIDF. This phe-
nomenon can be clearly observed from the ROC
curves plotted in Fig. 2, where the models were
trained using half of the data and applied to the
other half to generate the similarity scores. If only
the performance at a very low false-positive rate
matters, TWEAK can still be easily adjusted by
modifying the loss function using techniques such
as training with utility (Domingos, 1999; Morik et
al., 1999).

5 Related Work

Our term-weighting learning framework can be
analogous to the “Siamese” architecture for learn-
ing jointly two neural networks that share the same
set of model weights (Bromley et al., 1993). For
instance, a term vector can be viewed as a very
large single-layer neural network, where each term
in the vocabulary is a node that takes as input the
features and outputs the learned term-weighting
score. Previous applications of this learning ma-
chine are typically problems in image processing
or computer vision. For example, Chopra et al.
(2005) designed an algorithm to learn a similar-
ity metric for face verification, which is based on
the difference between two vectors. In our earlier
experiments (not reported in this paper) of using
vector difference instead of cosine, we did not ob-
serve positive outcomes. We hypothesize that be-
cause the length of the term vector in our problem

can be extremely large (i.e., the size of the vocab-
ulary), a similarity measure based on vector differ-
ence can easily be affected by terms that do not oc-
cur in both documents, even when the co-occurred
terms have very large weights.

Learning similarity measures for text has also
been proposed by several researchers. For in-
stance, Bilenko and Mooney (2003) applied SVMs
to directly learn the weights of co-occurred words
in two text records, which are then used for
measuring similarity for duplicate detection. Al-
though this approach worked moderately well in
the database domain, it may not be suitable to han-
dle general text similarity problems for two rea-
sons. First, the vocabulary size is typically large,
which results in a very high dimensional feature
space for the learning problem. It is very likely
that some rarely used and yet important terms oc-
cur in the testing documents but not in the training
data. The weights of those terms may not be reli-
able or even be learned. Second, this learning ap-
proach can only learn the importance of the terms
from the labels of whether two texts are considered
similar, how to incorporate the basic information
of these terms such as the position or query log
frequency is not clear.

An alternative learning approach is to combine
multiple similarity measures with learned coeffi-
cients (Yih and Meek, 2007), or to apply the tech-
nique ofkernel alignment(Cristianini et al., 2002)
to combining a set of kernel functions for tun-
ing a more appropriate kernel based on labeled
data. This type of approaches can be viewed
as constructing an ensemble of different existing
similarity measures without modifying the term
weighting function, and may not generate math-
ematically equivalent similarity functions as de-
rived by TWEAK. Although learning in this ap-
proach is usually very fast due to the model form
and the small number of parameters to learn, its
improvement is limited by the quality of the in-
dividual similarity measures. In spite of the fun-
damental difference between our approach and
this combination method, it is worth noticing that
these two approaches are in fact complementary
to each other. Having a newly learned term-
weighting function effectively provides a new sim-
ilarity measure and therefore can be combined
with other measures.
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6 Conclusions

In this paper, we presented a novel term-weighting
learning framework, TWEAK, for improving sim-
ilarity measures based on term vectors. Given the
labels of text pairs for training, our method learns
the model parameters to calculate the score of each
term, optimizing the desired loss function that is
suitable for the target application. As we demon-
strated in the experiments, TWEAK with differ-
ent features and training settings significantly out-
performs the traditional TFIDF term-weighting
scheme.

TWEAK also enjoys several advantages com-
pared to existing methods. From an engineer-
ing perspective, adopting the new term-weighting
scores produced by our model is straightforward.
If a similarity measure has been implemented,
the algorithm need not be changed – only the
term vectors need to be updated. From the learn-
ing perspective, additional information regard-
ing each term with respect to the document can
now be incorporated easily via feature functions.
Weights (i.e., model parameters) of these features
are learned in a principled way instead of being
adjusted manually. Finally, TWEAK is potentially
complementary to other methods for improving
the similarity measure, such as model combination
of various types of similarity measures (Yih and
Meek, 2007) or different term vector construction
methods such as Latent Semantic Analysis (Deer-
wester et al., 1990).

In the future, we plan to explore more vector op-
erations other than the inner-product (i.e., cosine)
as well as different functional forms of the term-
weighting function (e.g. log-linear instead of lin-
ear). Designing new loss functions to better fit the
true objectives in various target applications and
studying the quality of a similarity measure based
on both term-weighting learning and model com-
bination are also on our agenda. In terms of appli-
cations, we would like to apply TWEAK in other
problems such as paraphrase recognition and near-
duplicate detection.
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Abstract
Semantic similarity is a central concept
that extends across numerous fields such
as artificial intelligence, natural language
processing, cognitive science and psychol-
ogy. Accurate measurement of semantic
similarity between words is essential for
various tasks such as, document cluster-
ing, information retrieval, and synonym
extraction. We propose a novel model
of semantic similarity using the semantic
relations that exist among words. Given
two words, first, we represent the seman-
tic relations that hold between those words
using automatically extracted lexical pat-
tern clusters. Next, the semantic similar-
ity between the two words is computed
using a Mahalanobis distance measure.
We compare the proposed similarity mea-
sure against previously proposed seman-
tic similarity measures on Miller-Charles
benchmark dataset and WordSimilarity-
353 collection. The proposed method out-
performs all existing web-based seman-
tic similarity measures, achieving a Pear-
son correlation coefficient of 0.867 on the
Millet-Charles dataset.

1 Introduction

Similarity is a fundamental concept in theories
of knowledge and behavior. Psychological ex-
periments have shown that similarity acts as an
organizing principle by which individuals clas-
sify objects, and make generalizations (Goldstone,
1994). For example, a biologist would classify
a newly found animal specimen based upon the
properties that it shares with existing categories
of animals. We can then make additional infer-
ences on the new specimen using the properties

∗Research Fellow of the Japan Society for the Promotion
of Science (JSPS)

known for the existing category. As the simi-
larity between two objects X and Y increases,
so does the probability of correctly inferring that
Y has the property T upon knowing that X has
T (Tenenbaum, 1999). Accurate measurement of
semantic similarity between lexical units such as
words or phrases is important for numerous tasks
in natural language processing such as word sense
disambiguation (Resnik, 1995), synonym extrac-
tion (Lin, 1998a), and automatic thesauri gener-
ation (Curran, 2002). In information retrieval,
similar or related words are used to expand user
queries to improve recall (Sahami and Heilman,
2006).

Semantic similarity is a context dependent and
dynamic phenomenon. New words are constantly
being created and existing words are assigned with
new senses on the Web. To decide whether two
words are semantically similar, it is important to
know the semantic relations that hold between the
words. For example, the words horse and cow can
be considered semantically similar because both
horses and cows are useful animals in agriculture.
Similarly, a horse and a car can be considered se-
mantically similar because cars, and historically
horses, are used for transportation. Semantic re-
lations such as X and Y are used in agriculture,
or X and Y are used for transportation, exist be-
tween two words X and Y in these examples. We
use bold-italics, X, to denote the slot of a word X
in a lexical pattern.

We propose a relational model to compute the
semantic similarity between two words. First, us-
ing snippets retrieved from a web search engine,
we present an automatic lexical pattern extraction
algorithm to represent the semantic relations that
exist between two words. For example, given two
words ostrich and bird, we extract X is a Y, X is
a large Y, and X is a flightless Y from the Web.
Using a set of semantically related words as train-
ing data, we evaluate the confidence of a lexical
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pattern as an indicator of semantic similarity. For
example, the pattern X is a Y is a better indica-
tor of semantic similarity between X and Y than
the pattern X and Y. Consequently, we would like
to emphasize the former pattern by assigning it a
higher confidence score. It is noteworthy that all
lexical patterns are not independent – multiple lex-
ical patterns can express the same semantic rela-
tion. For example, the pattern X is a large Y sub-
sumes the more general pattern X is a Y and they
both indicate a hypernymic relationship between
X and Y. By clustering the semantically related
patterns into groups, we can both overcome the
data sparseness problem, and reduce the number
of parameters during training. To identify seman-
tically related patterns, we use a sequential pattern
clustering algorithm that is based on the distribu-
tional hypothesis (Harris, 1954). We represent two
words by a feature vector defined over the clus-
ters of patterns. Finally, the semantic similarity
is computed as the Mahalanobis distance between
points corresponding to the feature vectors. By
using Mahalanobis distance instead of Euclidean
distance, we can account for the inter-dependence
between semantic relations.

2 Related Work

Geometric models, such as multi-dimensional
scaling has been used in psychological ex-
periments analyzing the properties of similar-
ity (Krumhansl, 1978). These models represent
objects as points in some coordinate space such
that the observed dissimilarities between objects
correspond to the metric distances between the re-
spective points. Geometric models assume that
objects can be adequately represented as points in
some coordinate space and that dissimilarity be-
haves like a metric distance function satisfying
minimality, symmetry, and triangle inequality as-
sumptions. However, both dimensional and metric
assumptions are open to question.

Tversky (1977) proposed the contrast model of
similarity to overcome the problems in geometric
models. The contrast model relies on featural rep-
resentation of objects, and it is used to compute the
similarity between the representations of two ob-
jects. Similarity is defined as an increasing func-
tion of common features (i.e. features in common
to the two objects), and as a decreasing function of
distinctive features (i.e. features that apply to one
object but not the other). The attributes of objects

are primal to contrast model and it does not ex-
plicitly incorporate the relations between objects
when measuring similarity.

Hahn et al. (2003) define similarity between
two representations as the complexity required to
transform one representation into the other. Their
model of similarity is based on the Representa-
tional Distortion theory, which aims to provide
a theoretical framework of similarity judgments.
Their experiments using pattern sequences and ge-
ometric shapes show an inverse correlation be-
tween the number of transformations required to
convert one pattern (or shape) to another, and the
perceived similarity ratings by human subjects.
How to represent an object, which transformations
are allowed on a representation, and how to mea-
sure the complexity of a transformation, are all
important decisions in the transformational model
of similarity. Although distance measures such as
edit distance have been used to find approximate
matches in a dictionary, it is not obvious how to
compute semantic similarity between words using
representational distortion theory.

Given a taxonomy of concepts, a straightfor-
ward method to calculate similarity between two
words (or concepts) is to find the length of the
shortest path connecting the two words in the tax-
onomy (Rada et al., 1989). If a word is polyse-
mous (i.e. has more than one sense) then multi-
ple paths might exist between the two words. In
such cases, only the shortest path between any two
senses of the words is considered for calculating
similarity. A problem that is frequently acknowl-
edged with this approach is that it relies on the
notion that all links in the taxonomy represent a
uniform distance. As a solution to this problem,
Schickel-Zuber and Faltings (2007) propose ontol-
ogy structure based similarity (OSS) between two
concepts in an ontology, which is an asymmetric
distance function.

Resnik (1995) proposed a similarity measure
using information content. He defined the similar-
ity between two concepts C1 and C2 in the taxon-
omy as the maximum of the information content of
all conceptsC that subsume bothC1 andC2. Then
the similarity between two words is defined as the
maximum of the similarity between any concepts
that the words belong to. He used WordNet as the
taxonomy; information content is calculated using
the Brown corpus.

Li et al., (2003) combined structural seman-
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tic information from a lexical taxonomy, and in-
formation content from a corpus, in a nonlinear
model. They proposed a similarity measure that
uses shortest path length, depth and local density
in a taxonomy. Their experiments reported a Pear-
son correlation coefficient of 0.8914 on the Miller-
Charles benchmark dataset (Miller and Charles,
1998). Lin (1998b) defined the similarity between
two concepts as the information that is in common
to both concepts and the information contained in
each individual concept.

Cilibrasi and Vitanyi (2007) proposed a distance
metric between words using page-counts retrieved
from a web search engine. The proposed metric is
named Normalized Google Distance (NGD) and is
defined as the normalized information distance (Li
et al., 2004) between two strings. They evaluate
NGD in a word classification task. Unfortunately
NGD only uses page-counts of words and ignores
the context in which the words appear. Therefore,
it produces inaccurate similarity scores when one
or both words between which similarity is com-
puted are polysemous.

Sahami and Heilman (2006) measured semantic
similarity between two queries using snippets re-
turned for those queries by a search engine. For
each query, they collect snippets from a search
engine and represent each snippet as a TF-IDF-
weighted term vector. Each vector is L2 normal-
ized and the centroid of the set of vectors is com-
puted. Semantic similarity between two queries
is then defined as the inner product between the
corresponding centroid vectors. They did not
compare their similarity measure with taxonomy-
based similarity measures.

Chen et al., (2006) propose a web-based double-
checking model to compute the semantic similar-
ity between words. For two words X and Y , they
collect snippets for each word from a web search
engine. Then they count the number of occur-
rences of X in the snippets for Y , and Y in the
snippets forX . The two values are combined non-
linearly to compute the similarity between X and
Y . This method heavily depends on the search en-
gine’s ranking algorithm. Although two words X
and Y may be very similar, there is no reason to
believe that one can find Y in the snippets for X ,
or vice versa. This observation is confirmed by the
experimental results in their paper which reports 0
similarity scores for many pairs of words in the
Miller-Charles dataset.

In our previous work (Bollegala et al., 2007),
we proposed a semantic similarity measure using
page counts and snippets retrieved from a Web
search engine. To compute the similarity between
two words X and Y , we queried a web search en-
gine using the query X AND Y and extract lex-
ical patterns that combine X and Y from snip-
pets. A feature vector is formed using frequen-
cies of 200 lexical patterns in snippets and four
co-occurrence measures: Dice coefficient, overlap
coefficient, Jaccard coefficient and pointwise mu-
tual information. We trained a two-class support
vector machine using automatically selected syn-
onymous and non-synonymous word pairs from
WordNet. This method reports a Pearson corre-
lation coefficient of 0.837 with Miller-Charles rat-
ings. However, it does not consider the relatedness
between patterns.

Gabrilovich and Markovitch (2007) represent
words using weighted vectors of Wikipedia-based
concepts, and define the similarity between words
as the cosine of the angle between the correspond-
ing vectors. Their method can be used to com-
pute similarity between words as well as between
texts. Although Wikipedia is growing in popular-
ity, not all concepts found on the Web have arti-
cles in Wikipedia. Specially, novel or not very
popular concepts are not adequately covered by
Wikipedia. Moreover, their method requires the
concepts to be independent. For non-independent,
hierarchical taxonomies such as open directory
project (ODP)1, their method produces suboptimal
results.

3 Relational Model of Similarity

We propose a model to compute the semantic sim-
ilarity between two words a and b using the set
of semantic relations R(a, b) that hold between a
and b. We call the proposed model the relational
model of semantic similarity and it is defined by
the following equation,

sim(a, b) = Ξ(R(a, b)). (1)

Here, sim(a, b) is the semantic similarity between
the two words a and b, and Ξ is a weighting
function defined over the set of semantic relations
R(a, b). Given that a particular set of semantic
relations are known to hold between two words,
the function Ξ expresses our confidence on those
words being semantically similar.

1http://www.dmoz.org
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A semantic relation can be expressed in a num-
ber of ways. For example, given a taxonomy of
words such as the WordNet, semantic relations
(i.e. hypernymy, meronymy, synonymy etc.) be-
tween words can be directly looked up in the tax-
onomy. Alternatively, the labels of the edges in
the path connecting two words can be used as
semantic relations. However, in this paper we
do not assume the availability of manually cre-
ated resources such as dictionaries or taxonomies.
We represent semantic relations using automati-
cally extracted lexical patterns. Lexical patterns
have been successfully used to represent various
semantic relations between words such as hyper-
nymy (Hearst, 1992), and meronymy (Berland and
Charniak, 1999). Following these previous ap-
proaches, we represent R(a, b) as a set of lexical
patterns. Moreover, we denote the frequency of a
lexical pattern r for a word pair (a, b) by f(r, a, b).

So far we have not defined the functional form
of Ξ. A straightforward approach is to use a lin-
early weighted combination of relations as shown
below,

Ξ(R(a, b)) =
∑

ri∈R(a,b)

wi × f(ri, a, b). (2)

Here, wi is the weight associated with the lexical
pattern ri and can be determined using training
data. However, this formulation has two funda-
mental drawbacks. First, the number of weight
parameters wi is equal to the number of lexical
patterns. Typically two words can co-occur in nu-
merous patterns. Consequently, we end up with a
large number of parameters in the model. Com-
plex models with a large number of parameters
are difficult to train because they tend to overfit to
the training data. Second, the linear combination
given in Equation 2 assumes the lexical patterns
to be mutually independent. However, in practice
this is not true. For example, both patterns X is a
Y and Y such as X indicate a hypernymic relation
between X and Y.

To overcome the above mentioned limitations,
we first cluster the lexical patterns to identify the
semantically related patterns. Our clustering algo-
rithm is detailed in section 3.2. Next, we define Ξ
using the formed clusters as follows,

Ξ(R(a, b)) = xT
abΛσ. (3)

Here, xab is a feature vector representing the
words a and b. Each formed cluster contributes

a feature in vector xab as described later in Sec-
tion 5. The vector σ is a prototypical vector rep-
resenting synonymous word pairs. We compute
σ as the centroid of feature vectors representing
synonymous word pairs. Λ is the inter-cluster cor-
relation matrix. The (i, j)-th element of matrix Λ
denotes the correlation between the two clusters ci
and cj . Matrix Λ is expected to capture the de-
pendence between semantic relations. Intuitively,
if two clusters i and j are highly correlated, then
the (i, j)-th element of Λ will be closer to 1. Equa-
tion 3 computes the similarity between a word pair
(a, b) and a set of synonymous word pairs. In-
tuitively, if the relations that exist between a and
b are typical relations that hold between synony-
mous word pairs, then Equation 3 returns a high
similarity score for a and b.

The proposed relational model of semantic sim-
ilarity differs from feature models of similarity,
such as the contrast model (Tversky, 1977), in
that it is defined over the set of semantic relations
that exist between two words instead of the set of
features for each word. Specifically, in contrast
model, the similarity S(a, b) between two objects
a and b is defined in terms of the features common
to a and b, A ∩ B, the features that are distinctive
to a, A−B, and the features that are distinctive to
b, B −A. The contrast model is formalized in the
following equation,

S(a, b) = θf(A ∩B)− αf(A−B)− βf(B −A). (4)

Here, the function f measures the salience of a
particular set of features, and non-negative param-
eters α, β, and θ determine the relative weights
assigned to the different components. However, in
the relational model of similarity we do not focus
on features of individual words but on relations be-
tween two words.

Modeling similarity as a phenomenon of rela-
tions between objects rather than features of indi-
vidual objects is central to computational models
of analogy-making such as the structure mapping
theory (SMT) (Falkenhainer et al., 1989). SMT
claims that an analogy is a mapping of knowl-
edge from one domain (base) into another (target)
which conveys that a system of relations known
to hold in the base also holds in the target. The
target objects do not have to resemble their corre-
sponding base objects. During the mapping pro-
cess, features of individual objects are dropped
and only relations are mapped. The proposed rela-
tional model of similarity uses this relational view
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Ostrich, a large, flightless bird that lives in the dry grass-
lands of Africa.

Figure 1: A snippet returned for the query “ostrich
* * * * * bird”.

of similarity to compute semantic similarity be-
tween words.

3.1 Extracting Lexical Patterns

To compute semantic similarity between two
words using the relational model (Equation 3),
we must first extract the numerous lexical pat-
terns from contexts in which those two words ap-
pear. For this purpose, we propose a pattern ex-
traction algorithm using snippets retrieved from
a web search engine. The proposed method re-
quires no language-dependent preprocessing such
as part-of-speech tagging or dependency parsing,
which can be both time consuming at Web scale,
and likely to produce incorrect results because of
the fragmented and ill-formed snippets.

Given two words a and b, we query a web search
engine using the wildcard query “a * * * * * b”
and download snippets. The “*” operator matches
one word or none in a web page. Therefore, our
wildcard query retrieves snippets in which a and
b appear within a window of seven words. We
attempt to approximate the local context of two
words using wildcard queries. For example, Fig-
ure 1 shows a snippet retrieved for the query “os-
trich * * * * * bird”.

For a snippet S, retrieved for a word pair (a, b),
first, we replace the two words a and b, respec-
tively, with two variables X and Y. We replace all
numeric values by D, a marker for digits. Next,
we generate all subsequences of words from S that
satisfy all of the following conditions.

(i). A subsequence must contain exactly one oc-
currence of each X and Y

(ii). The maximum length of a subsequence is L
words.

(iii). A subsequence is allowed to have gaps. How-
ever, we do not allow gaps of more than g
number of words. Moreover, the total length
of all gaps in a subsequence should not ex-
ceed G words.

(iv). We expand all negation contractions in a con-
text. For example, didn’t is expanded to did

not. We do not skip the word not when gen-
erating subsequences. For example, this con-
dition ensures that from the snippet X is not a
Y, we do not produce the subsequence X is a
Y.

Finally, we count the frequency of all generated
subsequences and only use subsequences that oc-
cur more than N times as lexical patterns.

The parameters L, g, G and N are set exper-
imentally, as explained later in Section 6. It is
noteworthy that the proposed pattern extraction al-
gorithm considers all the words in a snippet, and
is not limited to extracting patterns only from the
mid-fix (i.e., the portion of text in a snippet that
appears between the queried words). Moreover,
the consideration of gaps enables us to capture re-
lations between distant words in a snippet. We use
a modified version of the prefixspan algorithm (Pei
et al., 2004) to generate subsequences from a text
snippet. Specifically, we use the constraints (ii)-
(iv) to prune the search space of candidate sub-
sequences. For example, if a subsequence has
reached the maximum length L, or contains the
maximum number of gaps G, then we will not ex-
tend it further. By pruning the search space, we
can speed up the pattern generation process. How-
ever, none of these modifications affect the accu-
racy of the proposed semantic similarity measure
because the modified version of the prefixspan al-
gorithm still generates the exact set of patterns that
we would obtain if we used the original prefixspan
algorithm (i.e. without pruning) and subsequently
remove patterns that violate the above mentioned
constraints. For example, some patterns extracted
form the snippet shown in Figure 1 are: X, a large
Y, X a flightless Y, and X, large Y lives.

3.2 Clustering Lexical Patterns

A semantic relation can be expressed using more
than one pattern. By grouping the semantically
related patterns, we can both reduce the model
complexity in Equation 2, and consider the depen-
dence among semantic relations in Equation 3. We
use the distributional hypothesis (Harris, 1954) to
find semantically related lexical patterns. The dis-
tributional hypothesis states that words that occur
in the same context have similar meanings. If two
lexical patterns are similarly distributed over a set
of word pairs, then from the distributional hypoth-
esis it follows that the two patterns must be similar.

We represent a pattern p by a vector p in which
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the i-th element is the frequency f(ai, bi, p) of p in
a word pair (ai, bi). Given a set P of patterns and
a similarity threshold θ, Algorithm 1 returns clus-
ters of similar patterns. First, the function SORT
sorts the patterns in the descending order of their
total occurrences in all word pairs. The total oc-
currences of a pattern p is defined as µ(p), and is
given by,

µ(p) =
∑

(a,b)∈W

f(a, b, p). (5)

Here, W is the set of word pairs. Then the outer
for-loop (starting at line 3), repeatedly takes a pat-
tern pi from the ordered set P , and in the inner for-
loop (starting at line 6), finds the cluster, c∗ (∈ C)
that is most similar to pi. Similarity between pi

and the cluster centroid cj is computed using co-
sine similarity. The centroid vector cj of cluster cj
is defined as the vector sum of all pattern vectors
for patterns in that cluster (i.e. cj =

∑
p∈cj p).

If the maximum similarity exceeds the threshold
θ, we append pi to c∗ (line 14). Here, the op-
erator ⊕ denotes vector addition. Otherwise, we
form a new cluster {pi} and append it to C, the
set of clusters. After all patterns are clustered,
we compute the (i, j) element of the inter-cluster
correlation matrix Λ (Equation 3) as the inner-
product between the centroid vectors ci and cj of
the corresponding clusters i and j. The parame-
ter θ (∈ [0, 1]) determines the purity of the formed
clusters and is set experimentally in Section 5. Al-
gorithm 1 scales linearly with the number of pat-
terns. Moreover, sorting the patterns by their to-
tal word pair frequency prior to clustering ensures
that the final set of clusters contains the most com-
mon relations in the dataset.

4 Evaluation Procedure

Evaluating a semantic similarity measure is diffi-
cult because the notion of semantic similarity is
subjective. Miller-Charles (1998) dataset has been
frequently used to benchmark semantic similar-
ity measures. Miller-Charles dataset contains 30
word pairs rated by a group of 38 human subjects.
The word pairs are rated on a scale from 0 (no sim-
ilarity) to 4 (perfect synonymy). Because of the
omission of two word pairs in earlier versions of
WordNet, most researchers had used only 28 pairs
for evaluations. The degree of correlation between
the human ratings in the benchmark dataset and
the similarity scores produced by an automatic se-
mantic similarity measure, can be considered as a

Algorithm 1 Sequential pattern clustering algo-
rithm.
Input: patterns P = {p1, . . . ,pn}, threshold θ
Output: clusters C

1: SORT(P )
2: C ← {}
3: for pattern pi ∈ P do
4: max← −∞
5: c∗ ← null
6: for cluster cj ∈ C do
7: sim← cosine(pi, cj)
8: if sim > max then
9: max← sim

10: c∗ ← cj

11: end if
12: end for
13: if max ≥ θ then
14: c∗ ← c∗ ⊕ pi

15: else
16: C ← C ∪ {pi}
17: end if
18: end for
19: return C

measurement of how well the semantic similarity
measure captures the notion of semantic similar-
ity held by humans. In addition to Miller-Charles
dataset we also evaluate on the WordSimilarity-
353 (Finkelstein et al., 2002) dataset. In con-
trast to Miller-Charles dataset which has only 30
word pairs, WordSimilarity-353 dataset contains
353 word pairs. Each pair has 13-16 human judg-
ments, which were averaged for each pair to pro-
duce a single relatedness score. Following the pre-
vious work, we use both Miller-Charles dataset
and WordSimilarity-353 dataset to evaluate the
proposed semantic similarity measure.

5 Computing Semantic Similarity

To extract lexical patterns that express numer-
ous semantic relations, we first select synonymous
words from WordNet synsets. A synset is a set
of synonymous words assigned for a particular
sense of a word in WordNet. We randomly select
2000 synsets of nouns from WordNet. From each
synset, a pair of synonymous words is selected.
For polysemous nouns, we selected synonyms
from the dominant sense. To perform a fair evalu-
ation, we do not select any words that appear in the
Miller-Charles dataset or the WordSimilarity-353
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Figure 2: Average similarity vs. clustering thresh-
old θ
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Figure 3: Sparsity vs. clustering threshold θ

dataset, which are used later for evaluation pur-
poses. As we describe later, the clustering thresh-
old θ is tuned using this set of 2000 word pairs
selected from the WordNet.

We use the YahooBOSS API2 and download
1000 snippets for each of those word pairs. Ex-
perimentally, we set the values for the parameters
in the pattern extraction algorithm (Section 3.1):
L = 5, g = 2, G = 4, and extract 5, 238, 637
unique patterns. However, only 1, 680, 914 of
those patterns occur more than twice. Low fre-
quency patterns often contain misspellings and are
not suitable for training. Therefore, we selected
patterns that occur at least 10 times in the snip-
pet collection. Moreover, we remove very long
patterns (ca. over 20 characters). The final set
contains 140, 691 unique lexical patterns. The re-
mainder of the experiments described in the paper
use those patterns.

2http://developer.yahoo.com/search/boss/

We use the clustering Algorithm 1 to cluster the
extracted patterns. The only parameter in Algo-
rithm 1, the clustering threshold θ, is set as fol-
lows. We vary the value of theta θ from 0 to 1,
and use Algorithm 1 to cluster the extracted set
of patterns. We use the resultant set of clusters to
represent a word pair by a feature vector. We com-
pute a feature from each cluster as follows. First,
we assign a weight wij to a pattern pi that is in a
cluster cj as follows,

wij =
µ(pi)∑

q∈cj µ(q)
. (6)

Here, µ(q) is the total frequency of a pattern, and it
is given by Equation 5. Because we perform a hard
clustering on patterns, a pattern can belong to only
one cluster (i.e. wij = 0 for pi /∈ cj). Finally, we
compute the value of the j-th feature in the feature
vector for word pair (a, b) as follows,∑

pi∈cj

wijf(a, b, pi). (7)

For each set of clusters, we compute the element
Λij of the corresponding inter-cluster correlation
matrix Λ by the cosine similarity between the cen-
troid vectors for clusters ci and cj . The prototype
vector σ in Equation 3 is computed as the vector
sum of individual feature vectors for the synony-
mous word pairs selected from the WordNet as de-
scribed above. We then use Equation 3 to compute
the average of similarity scores for synonymous
word pairs we selected from WordNet.

We select the θ that maximizes the average
similarity score between those synonymous word
pairs. Formally, the optimal value of θ, θ̂ is given
by the following Equation,

θ̂ = argmaxθ∈[0,1]

(
1
|W |

∑
(a,b)∈W

sim(a, b)
)
. (8)

Here, W is the set of synonymous word pairs
(a, b), |W | is the total number of synonymous
word pairs (i.e. 2000 in our experiments), and
sim(a, b) is given by Equation 3. Because the av-
erages are taken over 2000 word pairs this proce-
dure gives a reliable estimate for θ. Moreover,
this method does not require negative training
instances such as, non-synonymous word pairs,
which are difficult to create manually. Average
similarity scores for various θ values are shown
in Figure 2. From Figure 2, we see that initially
average similarity increases when θ is increased.
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This is because clustering of semantically related
patterns reduces the sparseness in feature vectors.
Average similarity is stable within a range of θ val-
ues between 0.5 and 0.7. However, increasing θ
beyond 0.7 results in a rapid drop of average sim-
ilarity. To explain this behavior consider Figure
3 where we plot the sparsity of the set of clusters
(i.e. the ratio between singletons to total clusters)
against threshold θ. As seen from Figure 3, high θ
values result in a high percentage of singletons be-
cause only highly similar patterns will form clus-
ters. Consequently, feature vectors for different
word pairs do not have many features in common.
The maximum average similarity score of 1.303 is
obtained with θ = 0.7, corresponding to 17, 015
total clusters out of which 12, 476 are singletons
with exactly one pattern (sparsity = 0.733). For
the remainder of the experiments in this paper we
set θ to this optimal value and use the correspond-
ing set of clusters to compute semantic similarity
by Equation 3. Similarity scores computed us-
ing Equation 3 can be greater than 1 (see Figure
2) because of the terms corresponding to the non-
diagonal elements in Λ. We do not normalize the
similarity scores to [0, 1] range in our experiments
because the evaluation metrics we use are insensi-
tive to linear transformations of similarity scores.

6 Experiments

Table 1 compares the proposed method against
Miller-Charles ratings (MC), and previously pro-
posed web-based semantic similarity measures:
Jaccard, Dice, Overlap, PMI (Bollegala et al.,
2007), Normalized Google Distance (NGD) (Cili-
brasi and Vitanyi, 2007), Sahami and Heil-
man (SH) (2006), co-occurrence double checking
model (CODC) (Chen et al., 2006), and support
vector machine-based (SVM) approach (Bollegala
et al., 2007). The bottom row of Table 1 shows the
Pearson correlation coefficient of similarity scores
produced by each algorithm with MC. All similar-
ity scores, except for the human-ratings in Miller-
Charles dataset, are normalized to [0, 1] range for
the ease of comparison. It is noteworthy that the
Pearson correlation coefficient is invariant under a
linear transformation. All similarity scores shown
in Table 1 except for the proposed method are
taken from the original published papers.

The highest correlation is reported by the pro-
posed semantic similarity measure. The improve-
ment of the proposed method is statistically sig-

nificant (confidence interval [0.73, 0.93]) against
all the similarity measures compared in Table 1
except against the SVM approach. From Table 1
we see that measures that use contextual informa-
tion from snippets (e.g. SH, CODC, SVM, and
proposed) outperform the ones that use only co-
occurrence statistics (e.g. Jaccard, overlap, Dice,
PMI, and NGD) such as page-counts. This is be-
cause similarity measures that use contextual in-
formation are better equipped to compute the sim-
ilarity between polysemous words. Although both
SVM and proposed methods use lexical patterns,
unlike the proposed method, the SVM method
does not consider the relatedness between pat-
terns. The superior performance of the proposed
method is attributable to its consideration of relat-
edness of patterns.

Table 2 summarizes the previously proposed
WordNet-based semantic similarity measures. De-
spite the fact that the proposed method does not
use manually compiled resources such as Word-
Net for computing similarity, its performance is
comparable to similarity measures that use Word-
Net. We believe that the proposed method will
be useful to compute the semantic similarity be-
tween named-entities for which manually created
resources are either incomplete or do not exist.

We evaluate the proposed method using the
WordSimilarity-353 dataset. Experimental re-
sults are presented in Table 3. Following pre-
vious work, we use Spearman rank correlation
coefficient, which does not require ratings to be
linearly dependent, for the evaluations on this
dataset. Likewise with the Miller-Charles ratings,
we measure the correlation between the similar-
ity scores produced by the proposed method for
word pairs in the WordSimilarity-353 dataset and
the human ratings. A higher Spearman correla-
tion coefficient (value=0.504, confidence interval
[0.422, 0.578]) indicates a better agreement with
the human notion of semantic similarity. From Ta-
ble 3 we can see that the proposed method outper-
forms a wide variety of semantic similarity mea-
sures developed using numerous resources includ-
ing lexical resources such as WordNet and knowl-
edge sources such as Wikipedia (i.e. WikiRe-
late!). In contrast to the Miller-Charles dataset
which only contains common English words se-
lected from the WordNet, the WordSimilarity-353
dataset contains word pairs where one or both
words are named entities (e.g. (Maradona, foot-
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Table 1: Semantic similarity scores on Miller-Charles dataset
Word Pair MC Jaccrad Dice Overlap PMI NGD SH CODC SVM Proposed
automobile-car 3.920 0.650 0.664 0.831 0.427 0.466 0.225 0.008 0.980 0.918
journey-voyage 3.840 0.408 0.424 0.164 0.468 0.556 0.121 0.005 0.996 1.000
gem-jewel 3.840 0.287 0.300 0.075 0.688 0.566 0.052 0.012 0.686 0.817
boy-lad 3.760 0.177 0.186 0.593 0.632 0.456 0.109 0.000 0.974 0.958
coast-shore 3.700 0.783 0.794 0.510 0.561 0.603 0.089 0.006 0.945 0.975
asylum-madhouse 3.610 0.013 0.014 0.082 0.813 0.782 0.052 0.000 0.773 0.794
magician-wizard 3.500 0.287 0.301 0.370 0.863 0.572 0.057 0.008 1.000 0.997
midday-noon 3.420 0.096 0.101 0.116 0.586 0.687 0.069 0.010 0.819 0.987
furnace-stove 3.110 0.395 0.410 0.099 1.000 0.638 0.074 0.011 0.889 0.878
food-fruit 3.080 0.751 0.763 1.000 0.449 0.616 0.045 0.004 0.998 0.940
bird-cock 3.050 0.143 0.151 0.144 0.428 0.562 0.018 0.006 0.593 0.867
bird-crane 2.970 0.227 0.238 0.209 0.516 0.563 0.055 0.000 0.879 0.846
implement-tool 2.950 1.000 1.000 0.507 0.297 0.750 0.098 0.005 0.684 0.496
brother-monk 2.820 0.253 0.265 0.326 0.623 0.495 0.064 0.007 0.377 0.265
crane-implement 1.680 0.061 0.065 0.100 0.194 0.559 0.039 0.000 0.133 0.056
brother-lad 1.660 0.179 0.189 0.356 0.645 0.505 0.058 0.005 0.344 0.132
car-journey 1.160 0.438 0.454 0.365 0.205 0.410 0.047 0.004 0.286 0.165
monk-oracle 1.100 0.004 0.005 0.002 0.000 0.579 0.015 0.000 0.328 0.798
food-rooster 0.890 0.001 0.001 0.412 0.207 0.568 0.022 0.000 0.060 0.018
coast-hill 0.870 0.963 0.965 0.263 0.350 0.669 0.070 0.000 0.874 0.356
forest-graveyard 0.840 0.057 0.061 0.230 0.495 0.612 0.006 0.000 0.547 0.442
monk-slave 0.550 0.172 0.181 0.047 0.611 0.698 0.026 0.000 0.375 0.243
coast-forest 0.420 0.861 0.869 0.295 0.417 0.545 0.060 0.000 0.405 0.150
lad-wizard 0.420 0.062 0.065 0.050 0.426 0.657 0.038 0.000 0.220 0.231
cord-smile 0.130 0.092 0.097 0.015 0.208 0.460 0.025 0.000 0 0.006
glass-magician 0.110 0.107 0.113 0.396 0.598 0.488 0.037 0.000 0.180 0.050
rooster-voyage 0.080 0.000 0.000 0.000 0.228 0.487 0.049 0.000 0.017 0.052
noon-string 0.080 0.116 0.123 0.040 0.102 0.488 0.024 0.000 0.018 0.000
Correlation - 0.260 0.267 0.382 0.549 0.205 0.580 0.694 0.834 0.867

Table 2: Comparison with WordNet-based simi-
larity measures.

Method Correlation
Edge-counting 0.664
Jiang & Conrath (1998) 0.848
Lin (1998a) 0.822
Resnik (1995) 0.745
Li et al. (2003) 0.891

ball) and (Jerusalem, Israel)). Because the pro-
posed method use snippets retrieved from a web
search engine, it is capable of extracting expres-
sive lexical patterns that can explicitly state the re-
lationship between two entities.

If we must compare n objects using a feature
model of similarity, then we only need to define
features for each of those n objects. However, in
the proposed relational model we must define re-
lations between all pairs of objects. In the case
where all n objects are different, this requires us to
define relations for n(n−1)/2 object pairs. Defin-
ing relations for all pairs can be computationally
costly for large n values. Efficiently comparing n
objects using a relational model is an interesting
future research direction of the current work.

Table 3: Results on WordSimilarity-353 dataset.
Method Correlation
WordNet Edges (Jarmasz, 1993) 0.27
Hirst & St-Onge (1997) 0.34
Jiang & Conrath (1998) 0.34
WikiRelate! (Strube and Ponzetto, 2006) 0.19-0.48
Leacock & Chodrow (1998) 0.36
Lin (1998b) 0.36
Resnik (1995) 0.37
Proposed 0.504

7 Conclusion

We proposed a relational model to measure the
semantic similarity between two words. First, to
represent the numerous semantic relations that ex-
ist between two words, we extract lexical patterns
from snippets retrieved from a web search engine.
Second, we cluster the extracted patterns to iden-
tify the semantically related patterns. Third, us-
ing the pattern clusters we define a feature vector
to represent two words and compute the semantic
similarity by taking into account the inter-cluster
correlation. The proposed method outperformed
all existing web-based semantic similarity mea-
sures on two benchmark datasets.
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Abstract

This paper introduces a new parser eval-
uation corpus containing around 700 sen-
tences annotated with unbounded depen-
dencies, from seven different grammatical
constructions. We run a series of off-the-
shelf parsers on the corpus to evaluate how
well state-of-the-art parsing technology is
able to recover such dependencies. The
overall results range from 25% accuracy
to 59%. These low scores call into ques-
tion the validity of using Parseval scores
as a general measure of parsing capability.
We discuss the importance of parsers be-
ing able to recover unbounded dependen-
cies, given their relatively low frequency
in corpora. We also analyse the various er-
rors made on these constructions by one of
the more successful parsers.

1 Introduction

Statistical parsers are now obtaining Parseval
scores of over 90% on the WSJ section of the Penn
Treebank (Bod, 2003; Petrov and Klein, 2007;
Huang, 2008; Carreras et al., 2008). McClosky et
al. (2006) report an F-score of 92.1% using self-
training applied to the reranker of Charniak and
Johnson (2005). Such scores, in isolation, may
suggest that statistical parsing is close to becom-
ing a solved problem, and that further incremental
improvements will lead to parsers becoming as ac-
curate as POS taggers.

A single score in isolation can be misleading,
however, for a number of reasons. First, the single
score is an aggregate over a highly skewed distri-
bution of all constituent types; evaluations which
look at individual constituent or dependency types
show that the accuracies on some, semantically
important, constructions, such as coordination and
PP-attachment, are much lower (Collins, 1999).

Second, it is well known that the accuracy of
parsers trained on the Penn Treebank degrades
when they are applied to different genres and do-
mains (Gildea, 2001). Finally, some researchers
have argued that the Parseval metrics (Black et al.,
1991) are too forgiving with respect to certain er-
rors and that an evaluation based on syntactic de-
pendencies, for which scores are typically lower,
is a better test of parser performance (Lin, 1995;
Carroll et al., 1998).

In this paper we focus on the first issue, that the
performance of parsers on some constructions is
much lower than the overall score. The construc-
tions that we focus on are various unbounded de-
pendency constructions. These are interesting for
parser evaluation for the following reasons: one,
they provide a strong test of the parser’s knowl-
edge of the grammar of the language, since many
instances of unbounded dependencies are diffi-
cult to recover using shallow techniques in which
the grammar is only superficially represented; and
two, recovering these dependencies is necessary
to completely represent the underlying predicate-
argument structure of a sentence, useful for appli-
cations such as Question Answering and Informa-
tion Extraction.

To give an example of the sorts of constructions
we are considering, and the (in)ability of parsers
to recover the corresponding unbounded depen-
dencies, none of the parsers that we have tested
were able to recover the dependencies shown in
bold from the following sentences:

We have also developed techniques for recognizing and

locating underground nuclear tests through the waves in the

ground which they generate.

By Monday , they hope to have a sheaf of documents both

sides can trust.
By means of charts showing wave-travel times and depths

in the ocean at various locations , it is possible to estimate

the rate of approach and probable time of arrival at Hawaii

of a tsunami getting under way at any spot in the Pacific .
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The contributions of this paper are as follows.
First, we present the first set of results for the
recovery of a variety of unbounded dependen-
cies, for a range of existing parsers. Second, we
describe the creation of a publicly available un-
bounded dependency test suite, and give statistics
summarising properties of these dependencies in
naturally occurring text. Third, we demonstrate
that performing the evaluation is surprisingly dif-
ficult, because of different conventions across the
parsers as to how the underlying grammar is rep-
resented. Fourth, we show that current parsing
technology is very poor at representing some im-
portant elements of the argument structure of sen-
tences, and argue for a more focused construction-
based parser evaluation as a complement to exist-
ing grammatical relation-based evaluations. We
also perform an error-analysis for one of the more
successful parsers.

There has been some prior work on evaluating
parsers on long-range dependencies, but no work
we are aware of that has the scope and focus of
this paper. Clark et al. (2004) evaluated a CCG

parser on a small corpus of object extraction cases.
Johnson (2002) began the body of work on insert-
ing traces into the output of Penn Treebank (PTB)
parsers, followed by Levy and Manning (2004),
among others. This PTB work focused heavily
on the representation in the Treebank, evaluat-
ing against patterns in the trace annotation. In
this paper we have tried to be more “formalism-
independent” and construction focused.

2 Unbounded Dependency Corpus

2.1 The constructions

An unbounded dependency construction contains
a word or phrase which appears to have been
moved, while being interpreted in the position
of the resulting “gap”. An unlimited number
of clause boundaries may intervene between the
moved element and the gap (hence “unbounded”).

The seven constructions in our corpus were cho-
sen for being relatively frequent in text, compared
to other unbounded dependency types, and rela-
tively easy to identify. An example of each con-
struction, along with its associated dependencies,
is shown in Table 1. Here we give a brief descrip-
tion of each construction.

Object extraction from a relative clause is
characterised by a relative pronoun (a wh-word or
that) introducing a clause from which an argument

in object position has apparently been extracted:
the paper which I wrote. Our corpus includes
cases where the extracted word is (semantically)
the object of a preposition in the verb phrase: the
agency that I applied to.

Object extraction from a reduced relative
clause is essentially the same, except that there is
no overt relative pronoun: the paper I wrote; the
agency I applied to. We did not include participial
reduced relatives such as the paper written by the
professor.

Subject extraction from a relative clause is
characterised by the apparent extraction of an ar-
gument from subject position: the instrument that
measures depth. A relative pronoun is obligatory
in this construction. Our corpus includes passive
subjects: the instrument which was used by the
professor.

Free relatives contain relative pronouns with-
out antecedents: I heard what she said, where
what does not refer to any other noun in the sen-
tence. Free relatives can usually be paraphrased by
noun phrases such as the thing she said (a standard
diagnostic for distinguishing them from embedded
interrogatives like I wonder what she said). The
majority of sentences in our corpus are object free
relatives, but we also included some adverbial free
relatives: She told us how to do it.

Object wh-questions are questions in which the
wh-word is the semantic object of the verb: What
did you eat?. Objects of prepositions are included:
What city does she live in?. Also included are a
few cases where the wh-word is arguably adver-
bial, but is selected for by the verb: Where is the
park located?.

Right node raising (RNR) is characterised by
coordinated phrases from which a shared element
apparently moves to the right: Mary saw and Su-
san bought the book. This construction is unique
within our corpus in that the “raised” element can
have a wide variety of grammatical functions. Ex-
amples include: noun phrase object of verb, noun
phrase object of preposition (material about or
messages from the communicator), a combination
of the two (applied for and won approval), prepo-
sitional phrase modifier (president and chief exec-
utive of the company), infinitival modifier (the will
and the capacity to prevent the event), and modi-
fied noun (a good or a bad decision).

Subject extraction from an embedded clause
is characterised by a semantic subject which is ap-
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Object extraction from a relative clause
Each must match Wisman’s “pie” with the fragment that he carries with him.

dobj(carries, fragment)

Object extraction from a reduced relative clause
Put another way, the decline in the yield suggests stocks have gotten pretty rich in price relative to the

dividends they pay, some market analysts say.

dobj(pay, dividends)

Subject extraction from a relative clause
It consists of a series of pipes and a pressure-measuring chamber which record the rise and fall of the

water surface.

nsubj(record, series)
nsubj(record, chamber)

Free relative
He tried to ignore what his own common sense told him, but it wasn’t possible; her motives were too

blatant.

dobj(told, what)

Object wh-question
What city does the Tour de France end in?

pobj(in, city)

Right node raising
For the third year in a row, consumers voted Bill Cosby first and James Garner second in persuasiveness

as spokesmen in TV commercials, according to Video Storyboard Tests, New York.

prep(first, in)
prep(second, in)

Subject extraction from an embedded clause
In assigning to God the responsibility which he learned could not rest with his doctors, Eisenhower

gave evidence of that weakening of the moral intuition which was to characterize his administration
in the years to follow.

nsubj(rest, responsibility)

Table 1: Examples of the seven constructions in the unbounded dependency corpus.

parently extracted across two clause boundaries,
as shown in the following bracketing (where ∗
marks the origin of the extracted element): the
responsibility which [the government said [∗ lay
with the voters]]. Our corpus includes sentences
where the embedded clause is a so-called small
clause, i.e. one with a null copula verb: the plan
that she considered foolish, where plan is the se-
mantic subject of foolish.

2.2 The data

The corpus consists of approximately 100 sen-
tences for each of the seven constructions; 80 of

these were reserved for each construction for test-
ing, giving a test set of 560 sentences in total, and
the remainder were used for initial experimenta-
tion (for example to ensure that default settings for
the various parsers were appropriate for this data).
We did not annotate the full sentences, since we
are only interested in the unbounded dependencies
and full annotation of such a corpus would be ex-
tremely time-consuming.

With the exception of the question construc-
tion, all sentences were taken from the PTB, with
roughly half from the WSJ sections (excluding
2-21 which provided the training data for many
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of the parsers in our set) and half from Brown
(roughly balanced across the different sections).
The questions were taken from the question data
in Rimell and Clark (2008), which was obtained
from various years of the TREC QA track. We
chose to use the PTB as the main source because
the use of traces in the PTB annotation provides a
starting point for the identification of unbounded
dependencies.

Sentences were selected for the corpus by a
combination of automatic and manual processes.
A regular expression applied to PTB trees, search-
ing for appropriate traces for a particular con-
struction, was first used to extract a set of can-
didate sentences. All candidates were manually
reviewed and, if selected, annotated with one or
more grammatical relations representing the rel-
evant unbounded dependencies in the sentence.
Some of the annotation in the treebank makes
identification of some constructions straightfor-
ward; for example right node raising is explicitly
represented as RNR. Indeed it may have been pos-
sible to fully automate this process with use of
the tgrep search tool. However, in order to ob-
tain reliable statistics regarding frequency of oc-
currence, and to ensure a high-quality resource,
we used fairly broad regular expressions to iden-
tify the original set followed by manual review.

We chose to represent the dependencies as
grammatical relations (GRs) since this format
seemed best suited to represent the kind of seman-
tic relationship we are interested in. GRs are head-
based dependencies that have been suggested as a
more appropriate representation for general parser
evaluation than phrase-structure trees (Carroll et
al., 1998). Table 1 gives examples of how GRs
are used to represent the relevant dependencies.
The particular GR scheme we used was based on
the Stanford scheme (de Marneffe et al., 2006);
however, the specific GR scheme is not too crucial
since the whole sentence is not being represented
in the corpus, only the unbounded dependencies.

3 Experiments

The five parsers described in Section 3.2 were used
to parse the test sentences in the corpus, and the
percentage of dependencies in the test set recov-
ered by each parser for each construction was cal-
culated. The details of how the parsers were run
and how the parser output was matched against
the gold standard are given in Section 3.3. This

Construction WSJ Brown Overall

Obj rel clause 2.3 1.1 1.4
Obj reduced rel 2.7 2.8 2.8
Sbj rel clause 10.1 5.7 7.4
Free rel 2.6 0.9 1.3
RNR 2.2 0.9 1.2
Sbj embedded 2.0 0.3 0.4

Table 2: Frequency of constructions in the PTB

(percentage of sentences).

is essentially a recall evaluation, and so is open
to abuse; for example, a program which returns all
the possible word pairs in a sentence, together with
all possible labels, would score 100%. However,
this is easily guarded against: we simply assume
that each parser is being run in a “standard” mode,
and that each parser has already been evaluated on
a full corpus of GRs in order to measure precision
and recall across all dependency types. (Calculat-
ing precision for the unbounded dependency eval-
uation would be difficult since that would require
us to know how many incorrect unbounded depen-
dencies were returned by each parser.)

3.1 Statistics relating to the constructions

Table 2 shows the percentage of sentences in the
PTB, from those sections that were examined,
which contain an example of each type of un-
bounded dependency. Perhaps not surprisingly,
root subject extractions from relative clauses are
by far the most common, with the remaining con-
structions occurring in roughly between 1 and 2%
of sentences. Note that, although examples of
each individual construction are relatively rare, the
combined total is over 10% (assuming that each
construction occurs independently). Section 6
contains a discussion regarding the frequency of
occurrence of these events and the consequences
of this for parser performance.

Table 3 shows the average and maximum dis-
tance between head and dependent for each con-
struction, as measured by the difference between
word indices. This is a fairly crude measure of
distance but gives some indication of how “long-
range” the dependencies are for each construc-
tion. The cases of object extraction from a relative
clause and subject extraction from an embedded
clause provide the longest dependencies, on aver-
age. The following sentence gives an example of
how far apart the head and dependent can be in a
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Construction Avg Dist Max Dist

Obj rel clause 6.8 21
Obj reduced rel 3.4 8
Sbj rel clause 4.4 18
Free rel 3.4 16
Obj wh-question 4.8 9
RNR 4.8 23
Sbj embedded 7.0 21

Table 3: Distance between head and dependent.

subject embedded construction:
the same stump which had impaled the car of

many a guest in the past thirty years and which he
refused to have removed.

3.2 The parsers

The parsers that we chose to evaluate are the C&C

CCG parser (Clark and Curran, 2007), the Enju
HPSG parser (Miyao and Tsujii, 2005), the RASP

parser (Briscoe et al., 2006), the Stanford parser
(Klein and Manning, 2003), and the DCU post-
processor of PTB parsers (Cahill et al., 2004),
based on LFG and applied to the output of the
Charniak and Johnson reranking parser. Of course
we were unable to evaluate every publicly avail-
able parser, but we believe these are representative
of current wide-coverage robust parsing technol-
ogy.1

The C&C parser is based on CCGbank (Hock-
enmaier and Steedman, 2007), a CCG version of
the Penn Treebank. It is ideally suited for this eval-
uation because CCG was designed to capture the
unbounded dependencies being considered. The
Enju parser was designed with a similar motiva-
tion to C&C, and is also based on an automat-
ically extracted grammar derived from the PTB,
but the grammar formalism is HPSG rather than
CCG. Both parsers produce head-word dependen-
cies reflecting the underlying predicate-argument
structure of a sentence, and so in theory should be
straightforward to evaluate.

The RASP parser is based on a manually con-
structed POS tag-sequence grammar, with a sta-
tistical parse selection component and a robust

1One obvious omission is any form of dependency parser
(McDonald et al., 2005; Nivre and Scholz, 2004). However,
the dependencies returned by these parsers are local, and it
would be non-trivial to infer from a series of links whether a
long-range dependency had been correctly represented. Also,
dependency parsers are not significantly better at recovering
head-based dependencies than constituent parsers based on
the PTB (McDonald et al., 2005).

partial-parsing technique which allows it to re-
turn output for sentences which do not obtain a
full spanning analysis according to the grammar.
RASP has not been designed to capture many of the
dependencies in our corpus; for example, the tag-
sequence grammar has no explicit representation
of verb subcategorisation, and so may not know
that there is a missing object in the case of extrac-
tion from a relative clause (though it does recover
some of these dependencies). However, RASP is
a popular parser used in a number of applications,
and it returns dependencies in a suitable format for
evaluation, and so we considered it to be an appro-
priate and useful member of our parser set.

The Stanford parser is representative of a large
number of PTB parsers, exemplified by Collins
(1997) and Charniak (2000). The Parseval scores
reported for the Stanford parser are not the highest
in the literature, but are competitive enough for our
purposes. The advantage of the Stanford parser is
that it returns dependencies in a suitable format for
our evaluation. The dependencies are obtained by
a set of manually defined rules operating over the
phrase-structure trees returned by the parser (de
Marneffe et al., 2006). Like RASP, the Stanford
parser has not been designed to capture unbounded
dependencies; in particular it does not make use of
any of the trace information in the PTB. However,
we wanted to include a “standard” PTB parser in
our set to see which of the unbounded dependency
constructions it is able to deal with.

Finally, there is a body of work on inserting
trace information into the output of PTB parsers
(Johnson, 2002; Levy and Manning, 2004), which
is the annotation used in the PTB for representing
unbounded dependencies. The work which deals
with the PTB representation directly, such as John-
son (2002), is difficult for us to evaluate because it
does not produce explicit dependencies. However,
the DCU post-processor is ideal because it does
produce dependencies in a GR format. It has also
obtained competitive scores on general GR evalu-
ation corpora (Cahill et al., 2004).

3.3 Parser evaluation

The parsers were run essentially out-of-the-box
when parsing the test sentences. The one excep-
tion was C&C, which required some minor adjust-
ing of parameters, as described in the parser doc-
umentation, to obtain close to full coverage on the
data. In addition, the C&C parser comes with a
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Obj RC Obj Red Sbj RC Free Obj Q RNR Sbj Embed Total

C&C 59.3 62.6 80.0 72.6 (81.2) 27.5 49.4 22.4 (59.7) 53.6
Enju 47.3 65.9 82.1 76.2 32.5 47.1 32.9 54.4

DCU 23.1 41.8 56.8 46.4 27.5 40.8 5.9 35.7

Rasp 16.5 1.1 53.7 17.9 27.5 34.5 15.3 25.3
Stanford 22.0 1.1 74.7 64.3 41.2 45.4 10.6 38.1

Table 4: Parser accuracy on the unbounded dependency corpus; the highest score for each construction
is in bold; the figures in brackets for C&C derive from the use of a separate question model.

specially designed question model, and so we ap-
plied both this and the standard model to the object
wh-question cases.

The parser output was evaluated against each
dependency in the corpus. Due to the various GR

schemes used by the parsers, an exact match on the
dependency label could not always be expected.
We considered a correctly recovered dependency
to be one where the gold-standard head and depen-
dent were correctly identified, and the label was
an “acceptable match” to the gold-standard label.
To be an acceptable match, the label had to indi-
cate the grammatical function of the extracted el-
ement at least to the level of distinguishing active
subjects, passive subjects, objects, and adjuncts.
For example, we allowed an obj (object) relation
as a close enough match for dobj (direct object)
in the corpus, even though obj does not distin-
guish different kinds of objects, but we did not al-
low generic “relative pronoun” relations that are
underspecified for the grammatical role of the ex-
tracted element.

The differences in GR schemes were such that
we ended up performing a time-consuming largely
manual evaluation. We list here some of the key
differences that made the evaluation difficult.

In some cases, the parser’s set of labels was less
fine-grained than the gold standard. For example,
RASP represents the direct objects of both verbs
and prepositions as dobj (direct object), whereas
the gold-standard uses pobj for the preposition
case. We counted the RASP output as correctly
matching the gold standard.

In other cases, the label on the dependency
containing the gold-standard head and depen-
dent was too underspecified to be acceptable by
itself. For example, where the gold-standard
relation was dobj(placed,buckets), DCU

produced relmod(buckets,placed) with
a generic “relative modifier” label. However,

the correct label could be recovered from else-
where in the parser output, specifically a com-
bination of relpro(buckets,which) and
obj(placed,which). In this case we counted
the DCU output as correctly matching the gold
standard.

In some constructions the Stanford scheme,
upon which the gold-standard was based, makes
different choices about heads than other schemes.
For example, in the the phrase Honolulu, which is
the center of the warning system, the corpus con-
tains a subject dependency with center as the head:
nsubj(center,Honolulu). Other schemes,
however, treat the auxiliary verb is as the head of
the dependency, rather than the predicate nominal
center. As long as the difference in head selec-
tion was due solely to the idiosyncracies of the GR

schemes involved, we counted the relation as cor-
rect.

Finally, the different GR schemes treat coordi-
nation differently. In the corpus, coordinated ele-
ments are always represented with two dependen-
cies. Thus the phrase they may half see and half
imagine the old splendor has two gold-standard
dependencies: dobj(see,splendor) and
dobj(imagine,splendor). If a parser pro-
duced only the former dependency, but appeared
to have the coordination correct, then we awarded
two marks, even though the second dependency
was not explicitly represented.

4 Results

Accuracies for the various parsers are shown in Ta-
ble 4, with the highest score for each construction
in bold. Enju and C&C are the top performers,
operating at roughly the same level of accuracy
across most of the constructions. Use of the C&C

question model made a huge difference for the wh-
object construction (81.2% vs. 27.5%), showing
that adaptation techniques specific to a particular
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construction can be successful (Rimell and Clark,
2008).

In order to learn more from these results, in Sec-
tion 5 we analyse the various errors made by the
C&C parser on each construction. The conclusions
that we arrive at for the C&C parser we would also
expect to apply to Enju, on the whole, since the de-
sign of the two parsers is so similar. In fact, some
of the recommendations for improvement on this
corpus, such as the need for a better parsing model
to make better attachment decisions, are parser in-
dependent.

The poor performance of RASP on this corpus
is clearly related to a lack of subcategorisation in-
formation, since this is crucial for recovering ex-
tracted arguments. For Stanford, incorporating the
trace information from the PTB into the statistical
model in some way is likely to help. The C&C and
Enju parsers do this through their respective gram-
mar formalisms. Our informal impression of the
DCU post-processor is that it has much of the ma-
chinery available to recover the dependencies that
the Enju and C&C parsers do, but for some reason
which is unclear to us it performs much worse.

5 Analysis of the C&C Parser

We categorised the errors made by the C&C parser
on the development data for each construction. We
chose the C&C parser for the analysis because it
was one of the top performers and we have more
knowledge of its workings than those of Enju.

The C&C parser first uses a supertagger to as-
sign a small number of CCG lexical categories (es-
sentially subcategorisation frames) to each word in
the sentence. These categories are then combined
using a set of combinatory rules to build a CCG

derivation. The parser uses a log-linear probabil-
ity model to select the highest-scoring derivation
(Clark and Curran, 2007). In general, errors in de-
pendency recovery may occur if the correct lexical
category is not assigned by the supertagger for one
or more of the words in a sentence, or if an incor-
rect derivation is chosen by the parsing model.

For unbounded dependency recovery, one
source of errors (labeled type 1 in Table 5) is the
wrong lexical category being assigned to the word
(normally a verb or preposition) governing the ex-
traction site. In these testaments that I would sub-
mit here, if submit is assigned a category for an
intransitive rather than transitive verb, the verb-
object relation will not be recovered.

1a 1b 1c 1d 2 3 Errs Tot

ObjRC 6 5 2 13 20
ObjRed 2 1 1 1 3 8 23
SbjRC 8 1 9 43
Free 1 1 2 22
ObjQ 2 2 4 25
RNR 2 1 7 3 13 28
SbjEmb 3 2 1 4 10 13
Subtotal 6 2 12 4
Total 24 21 14 59 174

Table 5: Error analysis for C&C. Errs is the to-
tal number of errors for a construction, Tot is the
number of dependencies of that type in the devel-
opment data.

There are a number of reasons why the wrong
category may be assigned. First, the lexicon may
not contain enough information about possible
categories for the word (1a), or the necessary cat-
egory may not exist in the parser’s grammar at all
(1b). Even if the grammar contains the correct cat-
egory and the lexicon makes it available, the pars-
ing model may not choose it (1c). Finally, a POS-
tagging error on the word may mislead the parser
into assigning the wrong category (1d).2

A second source of errors (type 2) is attach-
ment decisions that the parser makes indepen-
dently of the unbounded dependency. In Morgan
. . . carried in several buckets of water from the
spring which he poured into the copper boiler, the
parser assigns the correct categories for the rela-
tive pronoun and verb, but chooses spring rather
than buckets as the head of the relativized NP (i.e.
the object of pour). Most attachment errors in-
volve prepositional phrases (PPs) and coordina-
tion, which have long been known to be areas
where parsers need improvement.

Finally, errors in unbounded dependency recov-
ery may be due to complex errors in the surround-
ing parse context (type 3). We will not comment
more on these cases since they do not tell us much
about unbounded dependencies in particular.

Table 5 shows the distribution of error types
across constructions for the C&C parser. Subject
relative clauses, for example, did not have any er-
rors of type 1, because a verb with an extracted

2We considered an error to be type 1 only when the cate-
gory error occurred on the word governing the extraction site,
except in the subject embedded sentences, where we also in-
cluded the embedding verb, since the category of this verb is
key to dependency recovery.
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subject does not require a special lexical category.
Most of the errors here are of type 2. For exam-
ple, in a series of pipes and a pressure-measuring
chamber which record the rise and fall of the wa-
ter surface, the parser attaches the relative clause
to chamber but not to series.

Subject embedded sentences show a different
pattern. Many of the errors can be attributed to
problems with the lexicon and grammar (1a and
1b). For example, in shadows that they imagined
were Apaches, the word imagined never appears in
the training data with the correct category, and so
the required entry is missing from the lexicon.

Object extraction from a relative clause had
a higher number of errors involving the parsing
model (1c). In the first carefree, dreamless sleep
that she had known, the transitive category is
available for known, but not selected by the model.

The majority of the errors made by the parser
are due to insufficient grammar coverage or weak-
ness in the parsing model due to sparsity of head
dependency data, the same fundamental problems
that have dogged automatic parsing since its in-
ception. Hence one view of statistical parsing is
that it has allowed us to solve the easy problems,
but we are still no closer to a general solution for
the recovery of the “difficult” dependencies. One
possibility is to create more training data target-
ing these constructions – effectively “active learn-
ing by construction” – in the way that Rimell and
Clark (2008) were able to build a question parser.
We leave this idea for future work.

6 Discussion

Unbounded dependencies are rare events, out in
the Zipfian “long tail”. They will always consti-
tute a fraction of a percent of the overall total of
head-dependencies in any corpus, a proportion too
small to make a significant impact on global mea-
sures of parser accuracy, when expressive parsers
are compared to those that merely approximate
human grammar using finite-state or context-free
covers. This will remain the case even when such
measures are based on dependencies, rather than
on parse trees.

Nevertheless, unbounded dependencies remain
highly significant in a much more important sense.
They support the constructions that are central to
those applications of parsing technology for which
precision is as important as recall, such as open-
domain question-answering. As low-power ap-

proximate parsing methods improve (as they must
if they are ever to be usable at all for such tasks),
we predict that the impact of the constructions we
examine here will become evident. No matter how
infrequent object questions like “What do frogs
eat?” are, if they are answered as if they were sub-
ject questions (“Herons”), users will rightly reject
any excuse in terms of the overall statistical distri-
bution of related bags of words.

Whether such improvements in parsers come
from the availability of more human-labeled data,
or from a breakthrough in unsupervised machine
learning, we predict an imminent “Uncanny Val-
ley” in parsing applications, due to the inability of
parsers to recover certain semantically important
dependencies, of the kind familiar from humanoid
robotics and photorealistic animation. In such ap-
plications, the closer the superficial resemblance
to human behavior gets, the more disturbing sub-
tle departures become, and the more they induce
mistrust and revulsion in the user.

7 Conclusion

In this paper we have demonstrated that current
parsing technology is poor at recovering some
of the unbounded dependencies which are crucial
for fully representing the underlying predicate-
argument structure of a sentence. We have also
argued that correct recovery of such dependen-
cies will become more important as parsing tech-
nology improves, despite the relatively low fre-
quency of occurrence of the corresponding gram-
matical constructions. We also see this more fo-
cused parser evaluation methodology — in this
case construction-focused — as a way of improv-
ing parsing technology, as an alternative to the
exclusive focus on incremental improvements in
overall accuracy measures such as Parseval.
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Abstract

We connect two scenarios in structured
learning: adapting a parser trained on
one corpus to another annotation style, and
projecting syntactic annotations from one
language to another. We propose quasi-
synchronous grammar (QG) features for
these structured learning tasks. That is, we
score a aligned pair of source and target
trees based on local features of the trees
and the alignment. Our quasi-synchronous
model assigns positive probability to any
alignment of any trees, in contrast to a syn-
chronous grammar, which would insist on
some form of structural parallelism.

In monolingual dependency parser adap-
tation, we achieve high accuracy in trans-
lating among multiple annotation styles
for the same sentence. On the more
difficult problem of cross-lingual parser
projection, we learn a dependency parser
for a target language by using bilin-
gual text, an English parser, and auto-
matic word alignments. Our experiments
show that unsupervised QG projection im-
proves on parses trained using only high-
precision projected annotations and far
outperforms, by more than 35% absolute
dependency accuracy, learning an unsu-
pervised parser from raw target-language
text alone. When a few target-language
parse trees are available, projection gives
a boost equivalent to doubling the number
of target-language trees.

∗The first author would like to thank the Center for Intel-
ligent Information Retrieval at UMass Amherst. We would
also like to thank Noah Smith and Rebecca Hwa for helpful
discussions and the anonymous reviewers for their sugges-
tions for improving the paper.

1 Introduction

1.1 Parser Adaptation

Consider the problem of learning a dependency
parser, which must produce a directed tree whose
vertices are the words of a given sentence. There
are many differing conventions for representing
syntactic relations in dependency trees. Say that
we wish to output parses in the Prague style and
so have annotated a small target corpus—e.g.,
100 sentences—with those conventions. A parser
trained on those hundred sentences will achieve
mediocre dependency accuracy (the proportion of
words that attach to their correct parent).

But what if we also had a large number of trees
in the CoNLL style (the source corpus)? Ide-
ally they should help train our parser. But unfor-
tunately, a parser that learned to produce perfect
CoNLL-style trees would, for example, get both
links “wrong” when its coordination constructions
were evaluated against a Prague-style gold stan-
dard (Figure 1).

If it were just a matter of this one construction,
the obvious solution would be to write a few rules
by hand to transform the large source training cor-
pus into the target style. Suppose, however, that
there were many more ways that our corpora dif-
fered. Then we would like to learn a statistical
model to transform one style of tree into another.

We may not possess hand-annotated training
data for this tree-to-tree transformation task. That
would require the two corpora to annotate some of
the same sentences in different styles.

But fortunately, we can automatically obtain a
noisy form of the necessary paired-tree training
data. A parser trained on the source corpus can
parse the sentences in our target corpus, yielding
trees (or more generally, probability distributions
over trees) in the source style. We will then learn
a tree transformation model relating these noisy
source trees to our known trees in the target style.
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Figure 1: Four of the five logically possible schemes for
annotating coordination show up in human-produced depen-
dency treebanks. (The other possibility is a reverse Mel’čuk
scheme.) These treebanks also differ on other conventions.

This model should enable us to convert the orig-
inal large source corpus to target style, giving us
additional training data in the target style.

1.2 Parser Projection

For many target languages, however, we do not
have the luxury of a large parsed “source cor-
pus” in the language, even one in a different style
or domain as above. Thus, we may seek other
forms of data to augment our small target corpus.
One option would be to leverage unannotated text
(McClosky et al., 2006; Smith and Eisner, 2007).
But we can also try to transfer syntactic informa-
tion from a parsed source corpus in another lan-
guage. This is an extreme case of out-of-domain
data. This leads to the second task of this paper:
learning a statistical model to transform a syntac-
tic analysis of a sentence in one language into an
analysis of its translation.

Tree transformations are often modeled with
synchronous grammars. Suppose we are given a
sentence w′ in the “source” language and its trans-
lation w into the “target” language. Their syn-
tactic parses t′ and t are presumably not indepen-
dent, but will tend to have some parallel or at least
correlated structure. So we could jointly model
the parses t′, t and the alignment a between them,
with a model of the form p(t, a, t′ | w,w′).

Such a joint model captures how t, a, t′ mu-
tually constrain each other, so that even partial
knowledge of some of these three variables can
help us to recover the others when training or de-
coding on bilingual text. This idea underlies a
number of recent papers on syntax-based align-
ment (using t and t′ to better recover a), grammar
induction from bitext (using a to better recover t
and t′), parser projection (using t′ and a to better

Figure 2: With the English tree and alignment provided by
a parser and aligner at test time, the Chinese parser finds the
correct dependencies (see §6). A monolingual parser’s incor-
rect edges are shown with dashed lines.

recover t), as well as full joint parsing (Smith and
Smith, 2004; Burkett and Klein, 2008).

In this paper, we condition on the 1-best source
tree t′. As for the alignment a, our models ei-
ther condition on the 1-best alignment or integrate
the alignment out. Our models are thus of the
form p(t | w,w′, t′, a) or, in the generative case,
p(w, t, a | w′, t′). We intend to consider other for-
mulations in future work.

So far, this is very similar to the monolingual
parser adaptation scenario, but there are a few key
differences. Since the source and target sentences
in the bitext are in different languages, there is
no longer a trivial alignment between the words
of the source and target trees. Given word align-
ments, we could simply try to project dependency
links in the source tree onto the target text. A
link-by-link projection, however, could result in
invalid trees on the target side, with cycles or dis-
connected words. Instead, our models learn the
necessary transformations that align and transform
a source tree into a target tree by means of quasi-
synchronous grammar (QG) features.

Figure 2 shows an example of bitext helping
disambiguation when a parser is trained with only
a small number of Chinese trees. With the help
of the English tree and alignment, the parser is
able to recover the correct Chinese dependen-
cies using QG features. Incorrect edges from
the monolingual parser are shown with dashed
lines. (The bilingual parser corrects additional er-
rors in the second half of this sentence, which has
been removed to improve legibility.) The parser
is able to recover the long-distance dependency
from the first Chinese word (China) to the last
(begun), while skipping over the intervening noun
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phrase that confused the undertrained monolin-
gual parser. Although, due to the auxiliary verb,
“China” and “begun” are siblings in English and
not in direct dependency, the QG features still
leverage this indirect projection.

1.3 Plan of the Paper

We start by describing the features we use to
augment conditional and generative parsers when
scoring pairs of trees (§2). Then we discuss in turn
monolingual (§3) and cross-lingual (§4) parser
adaptation. Finally, we present experiments on
cross-lingual parser projection in conditions when
no target language trees are available for training
(§5) and when some trees are available (§6).

2 Form of the Model

What should our model of source and target trees
look like? In our view, traditional approaches
based on synchronous grammar are problematic
both computationally and linguistically. Full in-
ference takes O(n6) time or worse (depending on
the grammar formalism). Yet synchronous mod-
els only consider a limited hypothesis space: e.g.,
parses must be projective, and alignments must de-
compose according to the recursive parse struc-
ture. (For example, two nodes can be aligned
only if their respective parents are also aligned.)
The synchronous model’s probability mass func-
tion is also restricted to decompose in this way,
so it makes certain conditional independence as-
sumptions; put another way, it can evaluate only
certain properties of the triple (t, a, t′).

We instead model (t, a, t′) as an arbitrary graph
that includes dependency links among the words
of each sentence as well as arbitrary alignment
links between the words of the two sentences.
This permits non-synchronous and many-to-many
alignments. The only hard constraint we impose
is that the dependency links within each sentence
must constitute a valid monolingual parse—a di-
rected projective spanning tree.1

Given the two sentences w,w′, our probabil-
ity distribution over possible graphs considers lo-
cal features of the parses, the alignment, and both
jointly. Thus, we learn what local syntactic con-
figurations tend to occur in each language and how
they correspond across languages. As a result, we
might learn that parses are “mostly synchronous,”
but that there are some systematic cross-linguistic

1Non-projective parsing would also be possible.

divergences and some instances of sloppy (non-
parallel or inexact) translation. Our model is thus a
form of quasi-synchronous grammar (QG) (Smith
and Eisner, 2006a). In that paper, QG was applied
to word alignment and has since found applica-
tions in question answering (Wang et al., 2007),
paraphrase detection (Das and Smith, 2009), and
machine translation (Gimpel and Smith, 2009).

All the models in this paper are conditioned on
the source tree t′. Conditionally-trained models
of adaptation and projection also condition on the
target string w and its alignment a to w′ and thus
have the form p(t | w,w′, t′, a); the unsupervised,
generative projection models in §5 have the form
p(w, t, a | w′, t′).

The score s of a given tuple of trees, words, and
alignment can thus be written as a dot product of
weights w with features f and g:

s(t, t′, a, w,w′) =
∑

i

wifi(t, w)

+
∑

j

wjgj(t, t′, a, w,w′)

The features f look only at target words and de-
pendencies. In the conditional models of §3 and
§6, these features are those of an edge-factored
dependency parser (McDonald et al., 2005). In
the generative models of §5, f has the form of a
dependency model with valence (Klein and Man-
ning, 2004). All models, for instance, have a fea-
ture template that considers the parts of speech of
a potential parent-child relation.

In order to benefit from the source language, we
also need to include bilingual features g. When
scoring a candidate target dependency link from
word x → y, these features consider the relation-
ship of their corresponding source words x′ and
y′. (The correspondences are determined by the
alignment a.) For instance, the source tree t′ may
contain the link x′ → y′, which would cause a fea-
ture for monotonic projection to fire for the x→ y
edge. If, on the other hand, y′ → x′ ∈ t′, a
head-swapping feature fires. If x′ = y′, i.e. x
and y align to the same word, the same-word fea-
ture fires. Similar features fire when x′ and y′ are
in grandparent-grandchild, sibling, c-command, or
none-of-the above relationships, or when y aligns
to NULL. These alignment classes are called con-
figurations (Smith and Eisner, 2006a, and follow-
ing). When training is conditioned on the target
words (see §3 and §6 below), we conjoin these
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configuration features with the part of speech and
coarse part of speech of one or both of the source
and target words, i.e. the feature template has from
one to four tags.

In conditional training, the exponentiated
scores s are normalized by a constant: Z =∑

t exp[s(t, t′, a, w,w′)]. For the generative
model, the locally normalized generative process
is explained in §5.3.4.

Previous researchers have written fix-up rules
to massage the projected links after the fact and
learned a parser from the resulting trees (Hwa et
al., 2005). Instead, our models learn the necessary
transformations that align and transform a source
tree into a target tree. Other researchers have tack-
led the interesting task of learning parsers from
unparsed bitext alone (Kuhn, 2004; Snyder et al.,
2009); our methods take advantage of investments
in high-resource languages such as English. In
work most closely related to this paper, Ganchev et
al. (2009) constrain the posterior distribution over
target-language dependencies to align to source
dependencies some “reasonable” proportion of the
time (≈ 70%, cf. Table 2 in this paper). This
approach performs well but cannot directly learn
regular cross-language non-isomorphisms; for in-
stance, some fixup rules for auxiliary verbs need
to be introduced. Finally, Huang et al. (2009)
use features, somewhat like QG configurations, on
the shift-reduce actions in a monolingual, target-
language parser.

3 Adaptation

As discussed in §1, the adaptation scenario is a
special case of parser projection where the word
alignments are one-to-one and observed. To test
our handling of QG features, we performed ex-
periments in which training saw the correct parse
trees in both source and target domains, and the
mapping between them was simple and regular.
We also performed experiments where the source
trees were replaced by the noisy output of a trained
parser, making the mapping more complex and
harder to learn.

We used the subset of the Penn Treebank from
the CoNLL 2007 shared task and converted it to
dependency representation while varying two pa-
rameters: (1) CoNLL vs. Prague coordination
style (Figure 1), and (2) preposition the head vs.
the child of its nominal object.

We trained an edge-factored dependency parser

(McDonald et al., 2005) on “source” domain data
that followed one set of dependency conventions.
We then trained an edge-factored parser with QG
features on a small amount of “target” domain
data. The source parser outputs were produced for
all target data, both training and test, so that fea-
tures for the target parser could refer to them.

In this task, we know what the gold-standard
source language parses are for any given text,
since we can produce them from the original Penn
Treebank. We can thus measure the contribution
of adaptation loss alone, and the combined loss
of imperfect source-domain parsing with adapta-
tion (Table 1). When no target domain trees are
available, we simply have the performance of the
source domain parser on this out-of-domain data.
Training a target-domain parser on as few as 10
sentences shows substantial improvements in ac-
curacy. In the “gold” conditions, where the target
parser starts with perfect source trees, accuracy
approaches 100%; in the realistic “parse” condi-
tions, where the target-domain parser gets noisy
source-domain parses, the improvements are quite
significant but approach a lower ceiling imposed
by the performance of the source parser.2

The adaptation problem in this section is a sim-
ple proof of concept of the QG approach; however,
more complex and realistic adaptation problems
exist. Monolingual adaptation is perhaps most ob-
viously useful when the source parser is a black-
box or rule-based system or is trained on unavail-
able data. One might still want to use such a parser
in some new context, which might require new
data or a new annotation standard.

We are also interested in scenarios where we
want to avoid expensive retraining on large rean-
notated treebanks. We would like a linguist to be
able to annotate a few trees according to a hy-
pothesized theory and then quickly use QG adap-
tation to get a parser for that theory. One example
would be adapting a constituency parser to pro-
duce dependency parses. We have concentrated
here on adapting between two dependency parse
styles, in order to line up with the cross-lingual
tasks to which we now turn.

2In the diagonal cells, source and target styles match, so
training the QG parser amounts to a “stacking” technique
(Martins et al., 2008). The small training size and overreg-
ularization of the QG parser mildly hurts in-domain parsing
performance.
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% Dependency Accuracy on Target
CoNLL-PrepHead CoNLL-PrepChild Prague-PrepHead Prague-PrepChild

Source 0 10 100 0 10 100 0 10 100 0 10 100
Gold CoNLL-PrepHead 100 99.6 99.6 79.5 96.9 97.8 90.5 95.0 98.1 71.0 92.7 95.4
Parse CoNLL-PrepHead 89.5 88.9 89.0 71.4 85.9 87.9 82.5 84.3 87.8 65.2 82.2 86.1
Gold CoNLL-PrepChild 79.5 96.6 97.3 100 99.6 99.6 71.0 91.3 95.5 89.9 94.5 97.9
Parse CoNLL-PrepChild 71.0 84.2 86.8 88.1 87.5 88.0 64.9 80.7 84.9 80.9 83.5 86.1
Gold Prague-PrepHead 90.5 95.5 96.7 71.0 92.0 94.2 100 99.6 99.6 79.6 97.4 98.1
Parse Prague-PrepHead 83.0 87.1 87.4 65.6 84.2 85.9 88.5 88.3 88.0 70.7 86.4 86.8
Gold Prague-PrepChild 71.0 91.6 93.8 89.9 95.6 96.4 79.6 96.0 97.1 100 99.6 99.6

Parse Prague-PrepChild 65.3 81.7 84.6 81.2 84.5 86.1 70.4 83.2 85.3 86.9 86.1 86.8

Table 1: Adapting a parser to a new annotation style. We learn to parse in a “target” style (wide column label) given some
number (narrow column label) of supervised target-style training sentences. As a font of additional features, all training and
test sentences have already been augmented with parses in some “source” style (row label): either gold-standard parses (an
oracle experiment) or else the output of a parser trained on 18k source trees (more realistic). If we have 0 training sentences, we
simply output the source-style parse. But with 10 or 100 target-style training sentences, each off-diagonal block learns to adapt,
mostly closing the gap with the diagonal block in the same column. In the diagonal blocks, source and target styles match, and
the QG parser degrades performance when acting as a “stacked” parser.

4 Cross-Lingual Projection: Background

As in the adaptation scenario above, many syn-
tactic structures can be transferred from one lan-
guage to another. In this section, we evaluate the
extent of this direct projection on a small hand-
annotated corpus. In §5, we will use a QG genera-
tive model to learn dependency parsers from bitext
when there are no annotations in the target lan-
guage. Finally, in §6,we show how QG features
can augment a target-language parser trained on a
small set of labeled trees.

For syntactic annotation projection to work at
all, we must hypothesize, or observe, that at least
some syntactic structures are preserved in transla-
tion. Hwa et al. (2005) have called this intuition
the Direct Correspondence Assumption (DCA,
with slight notational changes):

Given a pair of sentences w and w′ that
are translations of each other with syn-
tactic structure t and t′, if nodes x′ and
y′ of t′ are aligned with nodes x and y of
t, respectively, and if syntactic relation-
ship R(x′, y′) holds in t′, then R(x, y)
holds in t.

The validity of this assumption clearly depends
on the node-to-node alignment of the two trees.
We again work in a dependency framework, where
syntactic nodes are simply lexical items. This al-
lows us to use existing work on word alignment.

Hwa et al. (2005) tested the DCA under ide-
alized conditions by obtaining hand-corrected de-
pendency parse trees of a few hundred sentences
of Spanish-English and Chinese-English bitext.
They also used human-produced word alignments.

Corpus Prec.[%] Rec.[%]
Spanish 64.3 28.4
(no punc.) 72.0 30.8
Chinese 65.1 11.1
(no punc.) 68.2 11.5

Table 2: Precision and recall of direct dependency projection
via one-to-one links alone.

Since their word alignments could be many-to-
many, they gave a heuristic Direct Projection Al-
gorithm (DPA) for resolving them into component
dependency relations. It should be noted that this
process introduced empty words into the projected
target language tree and left words that are un-
aligned to English detached from the tree; as a re-
sult, they measured performance in dependency F-
score rather than accuracy. With manual English
parses and word alignments, this DPA achieved
36.8% F-score in Spanish and 38.1% in Chinese.
With Collins-model English parses and GIZA++
word alignments, F-score was 33.9% for Spanish
and 26.3% for Chinese. Compare this to the Span-
ish attach-left baseline of 31.0% and the Chinese
attach-right baselines of 35.9%. These discour-
agingly low numbers led them to write language-
specific transformation rules to fix up the projected
trees. After these rules were applied to the pro-
jections of automatic English parses, F-score was
65.7% for English and 52.4% for Chinese.

While these F-scores were low, it is useful to
look at a subset of the alignment: dependencies
projected across one-to-one alignments before the
heuristic fix-ups had a much higher precision, if
lower recall, than Hwa et al.’s final results. Us-
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ing Hwa et al.’s data, we calculated that the preci-
sion of projection to Spanish and Chinese via these
one-to-one links was ≈ 65% (Table 2). There is
clearly more information in these direct links than
one would think from the F-scores. To exploit this
information, however, we need to overcome the
problems of (1) learning from partial trees, when
not all target words are attached, and (2) learning
in the presence of the still considerable noise in the
projected one-to-one dependencies—e.g., at least
28% error for Spanish non-punctuation dependen-
cies.

What does this noise consist of? Some errors
reflect fairly arbitrary annotation conventions in
treebanks, e.g. should the auxiliary verb gov-
ern the main verb or vice versa. (Examples like
this suggest that the projection problem contains
the adaptation problem above.) Other errors arise
from divergences in the complements required of
certain head words. In the German-English trans-
lation pair, with co-indexed words aligned,

[an [den Libanon1]] denken2 ↔ remember2 Lebanon1

we would prefer that the preposition an attach
to denken, even though the preposition’s object
Libanon aligns to a direct child of remember.
In other words, we would like the grandparent-
parent-child chain of denken → an → Libanon
to align to the parent-child pair of remember →
Lebanon. Finally, naturally occurring bitexts con-
tain some number of free or erroneous transla-
tions. Machine translation researchers often seek
to strike these examples from their training cor-
pora; “free” translations are not usually welcome
from an MT system.

5 Unsupervised Cross-Lingual Projection

First, we consider the problem of parser projection
when there are zero target-language trees avail-
able. As in much other work on unsupervised
parsing, we try to learn a generative model that
can predict target-language sentences. Our novel
contribution is to condition the probabilities of the
generative actions on the dependency parse of a
source-language translation. Thus, our generative
model is a quasi-synchronous grammar, exactly as
in (Smith and Eisner, 2006a).3

When training on target sentences w, there-
fore, we tune the model parameters to maxi-
mize not

∑
t p(t, w) as in ordinary EM, but rather

3Our task here is new; they used it for alignment.

∑
t p(t, w, a | t′, w′). We hope that this condi-

tional EM training will drive the model to posit ap-
propriate syntactic relationships in the latent vari-
able t, because—thanks to the structure of the QG
model—that is the easiest way for it to exploit the
extra information in t′, w′ to help predict w.4 At
test time, t′, w′ are not made available, so we just
use the trained model to find argmaxt p(t | w),
backing off from the conditioning on t′, w′ and
summing over a.

Below, we present the specific generative model
(§5.1) and some details of training (§5.2). We will
then compare three approaches (§5.3):

§5.3.2 a straight EM baseline (which does not
condition on t′, w′ at all)

§5.3.3 a “hard” projection baseline (which naively
projects t′, w′ to derive direct supervision in
the target language)

§5.3.4 our conditional EM approach above (which
makes t′, w′ available to the learner for “soft”
indirect supervision via QG)

5.1 Generative Models

Our base models of target-language syntax are
generative dependency models that have achieved
state-of-the art results in unsupervised dependency
structure induction. The simplest version, called
Dependency Model with Valence (DMV), has been
used in isolation and in combination with other
models (Klein and Manning, 2004; Smith and Eis-
ner, 2006b). The DMV generates the right chil-
dren, and then independently the left children, for
each node in the dependency tree. Nodes corre-
spond to words, which are represented by their
part-of-speech tags. At each step of generation,
the DMV stochastically chooses whether to stop
generating, conditioned on the currently generat-
ing head; whether it is generating to the right or
left; and whether it has yet generated any chil-
dren on that side. If it chooses to continue, it then

4The contrastive estimation of Smith and Eisner (2005)
also used a form of conditional EM, with similar motiva-
tion. They suggested that EM grammar induction, which
learns to predict w, unfortunately learns mostly to predict lex-
ical topic or other properties of the training sentences that do
not strongly require syntactic latent variables. To focus EM
on modeling the syntactic relationships, they conditioned the
prediction of w on almost complete knowledge of the lexi-
cal items. Similarly, we condition on a source translation of
w. Furthermore, our QG model structure makes it easy for
EM to learn to exploit the (explicitly represented) syntactic
properties of that translation when predicting w.
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stochastically generates the tag of a new child,
conditioned on the head. The parameters of the
model are thus of the form

p(stop | head, dir, adj) (1)

p(child | head, dir) (2)

where head and child are part-of-speech tags,
dir ∈ {left, right}, and adj, stop ∈ {true, false}.
ROOT is stipulated to generate a single right child.

Bilingual configurations that condition on t′, w′

(§2) are incorporated into the generative process
as in Smith and Eisner (2006a). When the model
is generating a new child for word x, aligned to x′,
it first chooses a configuration and then chooses a
source word y′ in that configuration. The child y is
then generated, conditioned on its parent x, most
recent sibling a, and its source analogue y′.

5.2 Details of EM Training
As in previous work on grammar induction, we
learn the DMV from part-of-speech-tagged target-
language text. We use expectation maximization
(EM) to maximize the likelihood of the data. Since
the likelihood function is nonconvex in the unsu-
pervised case, our choice of initial parameters can
have a significant effect on the outcome. Although
we could also try many random starting points, the
initializer in Klein and Manning (2004) performs
quite well.

The base dependency parser generates the right
dependents of a head separately from the left de-
pendents, which allows O(n3) dynamic program-
ming for an n-word target sentence. Since the QG
annotates nonterminals of the grammar with sin-
gle nodes of t′, and we consider two nodes of t′

when evaluating the above dependency configura-
tions, QG parsing runs inO(n3m2) for anm-word
source sentence. If, however, we restrict candidate
senses for a target child c to come from links in
an IBM Model 4 Viterbi alignment, we achieve
O(n3k2), where k is the maximum number of
possible words aligned to a given target language
word. In practice, k � m, and parsing is not ap-
preciably slower than in the monolingual setting.

If all configurations were equiprobable, the
source sentence would provide no information to
the target. In our QG experiments, therefore,
we started with a bias towards direct parent–child
links and a very small probability for breakages
of locality. The values of other configuration pa-
rameters seem, experimentally, less important for
insuring accurate learning.

5.3 Experiments

Our experiments compare learning on target lan-
guage text to learning on parallel text. In the lat-
ter case, we compare learning from high-precision
one-to-one alignments alone, to learning from all
alignments using a QG.

5.3.1 Corpora
Our development and test data were drawn from
the German TIGER and Spanish Cast3LB tree-
banks as converted to projective dependencies for
the CoNLL 2007 Shared Task (Brants et al., 2002;
Civit Torruella and Martı́ Antonı́n, 2002).5

Our training data were subsets of the 2006
Statistical Machine Translation Workshop Shared
Task, in particular from the German-English
and Spanish-English Europarl parallel corpora
(Koehn, 2002). The Shared Task provided pre-
built automatic GIZA++ word alignments, which
we used to facilitate replicability. Since these
word alignments do not contain posterior proba-
bilities or null links, nor do they distinguish which
links are in the IBM Model intersection, we treated
all links as equally likely when learning the QG.
Target language words unaligned to any source
language words were the only nodes allowed to
align to NULL in QG derivations.

We parsed the English side of the bitext with the
projective dependency parser described by Mc-
Donald et al. (2005) trained on the Penn Treebank
§§2–20. Much previous work on unsupervised
grammar induction has used gold-standard part-
of-speech tags (Smith and Eisner, 2006b; Klein
and Manning, 2004; Klein and Manning, 2002).
While there are no gold-standard tags for the Eu-
roparl bitext, we did train a conditional Markov

5We made one change to the annotation conventions in
German: in the dependencies provided, words in a noun
phrase governed by a preposition were all attached to that
preposition. This meant that in the phrase das Kind (“the
child”) in, say, subject position, das was the child of Kind;
but, in für das Kind (“for the child”), das was the child of
für. This seems to be a strange choice in converting from the
TIGER constituency format, which does in fact annotate NPs
inside PPs; we have standardized prepositions to govern only
the head of the noun phrase. We did not change any other
annotation conventions to make them more like English. In
the Spanish treebank, for instance, control verbs are the chil-
dren of their verbal complements: in quiero decir (“I want to
say”=“I mean”), quiero is the child of decir. In German co-
ordinations, the coordinands all attach to the first, but in En-
glish, they all attach to the last. These particular divergences
in annotation style hurt all of our models equally (since none
of them have access to labeled trees). These annotation diver-
gences are one motivation for experiments below that include
some target trees.
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Dependency accuracy [%]
Baselines German Spanish
Modify prev. 18.2 28.5
Modify next 27.5 21.4
EM 30.2 25.6
Hard proj. 66.2 59.1
Hard proj. w/EM 58.6 53.0
QG w/EM 68.5 64.8

Table 3: Test accuracy with unsupervised training methods

model tagger on a few thousand tagged sentences.
This is the only supervised data we used in the tar-
get. We created versions of each training corpus
with the first thousand, ten thousand, and hundred
thousand sentence pairs, each a prefix of the next.
Since the target-language-only baseline converged
much more slowly, we used a version of the cor-
pora with sentences 15 target words or fewer.

5.3.2 Fully Unsupervised EM
Using the target side of the bitext as training data,
we initialized our model parameters as described
in §5.2 and ran EM. We checked convergence on
a development set and measured unlabeled depen-
dency accuracy on held-out test data. We com-
pare performance to simple attach-right and at-
tach left baselines (Table 3). For mostly head-
final German, the “modify next” baseline is bet-
ter; for mostly head-initial Spanish, “modify pre-
vious” wins. Even after several hundred iterations,
performance was slightly, but not significantly bet-
ter than the baseline for German. EM training did
not beat the baseline for Spanish.6

5.3.3 Hard Projection, Semi-Supervised EM
The simplest approach to using the high-precision
one-to-one word alignments is labeled “hard pro-
jection” in the table. We filtered the training cor-
pus to find sentences where enough links were
projected to completely determine a target lan-
guage tree. Of course, we needed to filter more
than 1000 sentences of bitext to output 1000
training sentences in this way. We simply per-
form supervised training with this subset, which
is still quite noisy (§4), and performance quickly

6While these results are worse than those obtained previ-
ously for this model, the experiments in Klein and Manning
(2004) and only used sentences of 10 words or fewer, without
punctuation, and with gold-standard tags. Punctuation in par-
ticular seems to trip up the initializer: since a sentence-final
periods appear in most sentences, EM often decides to make
it the head.

plateaus. Still, this method substantially improves
over the baselines and unsupervised EM.

Restricting ourselves to fully projected trees
seems a waste of information. We can also sim-
ply take all one-to-one projected links, impute ex-
pected counts for the remaining dependencies with
EM, and update our models. This approach (“hard
projection with EM”), however, performed worse
than using only the fully projected trees. In fact,
only the first iteration of EM with this method
made any improvement; afterwards, EM degraded
accuracy further from the numbers in Table 3.

5.3.4 Soft Projection: QG & Conditional EM
The quasi-synchronous model used all of the
alignments in re-estimating its parameters and per-
formed significantly better than hard projection.
Unlike EM on the target language alone, the QG’s
performance does not depend on a clever initial-
izer for initial model weights—all parameters of
the generative model except for the QG configura-
tion features were initialized to zero. Setting the
prior to prefer direct correspondence provides the
necessary bias to initialize learning.

Error analysis showed that certain types of de-
pendencies eluded the QG’s ability to learn from
bitext. The Spanish treebank treats some verbal
complements as the heads of main verbs and aux-
iliary verbs as the children of participles; the QG,
following the English, learned the opposite de-
pendency direction. Spanish treebank conventions
for punctuation were also a common source of er-
rors. In both German and Spanish, coordinations
(a common bugbear for dependency grammars)
were often mishandled: both treebanks attach the
later coordinands and any conjunctions to the first
coordinand; the reverse is true in English. Finally,
in both German and Spanish, preposition attach-
ments often led to errors, which is not surprising
given the unlexicalized target-language grammars.
Rather than trying to adjudicate which dependen-
cies are “mere” annotation conventions, it would
be useful to test learned dependency models on
some extrinsic task such as relation extraction or
machine translation.

6 Supervised Cross-Lingual Projection

Finally, we consider the problem of parser projec-
tion when some target language trees are available.
As in the adaptation case (§3), we train a condi-
tional model (not a generative DMV) of the target
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tree given the target sentence, using the monolin-
gual and bilingual QG features, including config-
urations conjoined with tags, outlined above (§2).

For these experiments, we used the LDC’s
English-Chinese Parallel Treebank (ECTB). Since
manual word alignments also exist for a part of
this corpus, we were able to measure the loss in
accuracy (if any) from the use of an automatic
English parser and word aligner. The source-
language English dependency parser was trained
on the Wall Street Journal, where it achieved 91%
dependency accuracy on development data. How-
ever, it was only 80.3% accurate when applied to
our task, the English side of the ECTB.7

After parsing the source side of the bitext, we
train a parser on the annotated target side, using
QG features described above (§2). Both the mono-
lingual target-language parser and the projected
parsers are trained to optimize conditional likeli-
hood of the target trees t′ with ten iterations of
stochastic gradient ascent.

In Figure 3, we plot the performance of the
target-language parser on held-out bitext. Al-
though projection performance is, not surprisingly,
better if we know the true source trees at training
and test time, even with the 1-best output of the
source parser, QG features help produce a parser
as accurate asq one trained on twice the amount
of monolingual data. In ablation experiments, we
included bilingual features only for directly pro-
jected links, with no features for head-swapping,
grandparents, etc. When using 1-best English
parses, parsers trained only with direct-projection
and monolingual features performed worse; when
using gold English parses, parsers with direct-
projection-only features performed better when
trained with more Chinese trees.

7 Discussion

The two related problems of parser adaptation and
projection are often approached in different ways.
Many adaptation methods operate by simple aug-
mentations of the target feature space, as we have
done here (Daume III, 2007). Parser projection, on
the other hand, often uses a multi-stage pipeline

7It would be useful to explore whether the techniques of
§3 above could be used to improve English accuracy by do-
main adaptation. In theory a model with QG features trained
to perform well on Chinese should not suffer from an inaccu-
rate, but consistent, English parser, but the results in Figure 3
indicate a significant benefit to be had from better English
parsing or from joint Chinese-English inference.

10 20 50 100 200 500 1000 2000

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Training examples

U
nl

ab
el

ed
 a

cc
ur

ac
y

Target only
+Gold alignments
+Source text
+Gold parses, alignments
+Gold parses

Figure 3: Parser projection with target trees. Using the true
or 1-best parse trees in the source language is equivalent to
having twice as much data in the target language. Note that
the penalty for using automatic alignments instead of gold
alignments is negligible; in fact, using Source text alone is
often higher than +Gold alignments. Using gold source trees,
however, significantly outperforms using 1-best source trees.

(Hwa et al., 2005). The methods presented here
move parser projection much closer in efficiency
and simplicity to monolingual parsing.

We showed that augmenting a target parser with
quasi-synchronous features can lead to significant
improvements—first in experiments with adapt-
ing to different dependency representations in En-
glish, and then in cross-language parser projec-
tion. As with many domain adaptation problems,
it is quite helpful to have some annotated tar-
get data, especially when annotation styles vary
(Dredze et al., 2007). Our experiments show that
unsupervised QG projection improves on parsers
trained using only high-precision projected anno-
tations and far outperforms, by more than 35%
absolute dependency accuracy, unsupervised EM.
When a small number of target-language parse
trees is available, projection gives a boost equiv-
alent to doubling the number of target trees.

The loss in performance from conditioning only
on noisy 1-best source parses points to some nat-
ural avenues for improvement. We are explor-
ing methods that incorporate a packed parse for-
est on the source side and similar representations
of uncertainty about alignments. Building on our
recent belief propagation work (Smith and Eis-
ner, 2008), we can jointly infer two dependency
trees and their alignment, under a joint distribu-
tion p(t, a, t′ | w,w′) that evaluates the full graph
of dependency and alignment edges.
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Abstract

We investigate the effectiveness of self-
training PCFG grammars with latent anno-
tations (PCFG-LA) for parsing languages
with different amounts of labeled training
data. Compared to Charniak’s lexicalized
parser, the PCFG-LA parser was more ef-
fectively adapted to a language for which
parsing has been less well developed (i.e.,
Chinese) and benefited more from self-
training. We show for the first time that
self-training is able to significantly im-
prove the performance of the PCFG-LA
parser, a single generative parser, on both
small and large amounts of labeled train-
ing data. Our approach achieves state-
of-the-art parsing accuracies for a single
parser on both English (91.5%) and Chi-
nese (85.2%).

1 Introduction

There is an extensive research literature on build-
ing high quality parsers for English (Collins, 1999;
Charniak, 2000; Charniak and Johnson, 2005;
Petrov et al., 2006), however, models for parsing
other languages are less well developed. Take Chi-
nese for example; there have been several attempts
to develop accurate parsers for Chinese (Bikel and
Chiang, 2000; Levy and Manning, 2003; Petrov
and Klein, 2007), but the state-of-the-art perfor-
mance, around 83% F measure on Penn Chinese
Treebank (achieved by the Berkeley parser (Petrov
and Klein, 2007)) falls far short of performance
on English (∼90-92%). As pointed out in (Levy
and Manning, 2003), there are many linguistic dif-
ferences between Chinese and English, as well as
structural differences between their corresponding
treebanks, and some of these make it a harder task
to parse Chinese. Additionally, the fact that the
available treebanked Chinese materials are more

limited than for English also increases the chal-
lenge of building high quality Chinese parsers.
Many of these differences would also tend to apply
to other less well investigated languages.

In this paper, we focus on English and Chinese
because the former is a language for which ex-
tensive parsing research has been conducted while
the latter is a language that has been less exten-
sively studied. We adapt and improve the Berke-
ley parser, which learns PCFG grammars with la-
tent annotations, and show through comparative
studies that this parser significantly outperforms
Charniak’s parser, which was initially developed
for English and subsequently ported to Chinese.
We focus on answering two questions: how well
does a parser perform across languages and how
much does it benefit from self-training?

The first question is of special interest when
choosing a parser that is designed for one language
and adapting it to another less studied language.
We improve the PCFG-LA parser by adding a
language-independent method for handling rare
words and adapt it to another language, Chinese,
by creating a method to better model Chinese un-
known words. Our results show that the PCFG-
LA parser performs significantly better than Char-
niak’s parser on Chinese, and is also somewhat
more accurate on English, although both parsers
have high accuracy.

The second question is important because la-
beled training data is often quite limited, espe-
cially for less well investigated languages, while
unlabeled data is ubiquitous. Early investigations
on self-training for parsing have had mixed re-
sults. Charniak (1997) reported no improvements
from self-training a PCFG parser on the standard
WSJ training set. Steedman et al. (2003) re-
ported some degradation using a lexicalized tree
adjoining grammar parser and minor improve-
ment using Collins lexicalized PCFG parser; how-
ever, this gain was obtained only when the parser
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was trained on a small labeled set. Reichart and
Rappoport (2007) obtained significant gains us-
ing Collins lexicalized parser with a different self-
training protocol, but again they only looked at
small labeled sets. McClosky et al. (2006) effec-
tively utilized unlabeled data to improve parsing
accuracy on the standard WSJ training set, but they
used a two-stage parser comprised of Charniak’s
lexicalized probabilistic parser with n-best pars-
ing and a discriminative reranking parser (Char-
niak and Johnson, 2005), and thus it would be bet-
ter categorized as “co-training” (McClosky et al.,
2008). It is worth noting that their attempts at self-
training Charniak’s lexicalized parser directly re-
sulted in no improvement. There are other suc-
cessful semi-supervised training approaches for
dependency parsing, such as (Koo et al., 2008;
Wang et al., 2008), and it would be interesting
to investigate how they could be applied to con-
stituency parsing.

We show in this paper, for the first time, that
self-training is able to significantly improve the
performance of the PCFG-LA parser, a single gen-
erative parser, on both small and large amounts of
labeled training data, for both English and Chi-
nese. With self-training, a fraction of the WSJ
or CTB6 treebank training data is sufficient to
train a PCFG-LA parser that is able to achieve or
even beat the accuracies obtained using a single
parser trained on the entire treebank without self-
training. We conjecture based on our comparison
of the PCFG-LA parser to Charniak’s parser that
the addition of self-training data helps the former
parser learn more fine-grained latent annotations
without over-fitting.

The rest of this paper is organized as follows.
We describe the PCFG-LA parser and several en-
hancements in Section 2, and discuss self-training
in Section 3. We then outline the experimental
setup in Section 4, describe the results in Sec-
tion 5, and present a detailed analysis in Section 6.
The last section draws conclusions and describes
future work.

2 Parsing Model

The Berkeley parser (Petrov et al., 2006; Petrov
and Klein, 2007) is an efficient and effective parser
that introduces latent annotations (Matsuzaki et
al., 2005) to refine syntactic categories to learn
better PCFG grammars. In the example parse tree
in Figure 1(a), each syntactic category is split into

multiple latent subcategories, and accordingly the
original parse tree is decomposed into many parse
trees with latent annotations. Figure 1(b) depicts
one of such trees. The grammar and lexical rules
are split accordingly, e.g., NP→PRP is split into
different NP-i→PRP-j rules. The expansion prob-
abilities of these split rules are the parameters of a
PCFG-LA grammar.

S

She

PRP

NP VP

VBD

heard DT

NP

NN

the noise

.

.

.

NP−2

VBD−5PRP−3

She heard DT−2

the noise

NN−6

NP−6

.−1

S−1

VP−4

(a) (b)

Figure 1: (a) original treebank tree, (b) after latent
annotation.

The objective of training is to learn a grammar
with latent annotations that maximizes the like-
lihood of the training trees, i.e., the sum of the
likelihood of all parse trees with latent annota-
tions. Since the latent annotations are not avail-
able in the treebank, a variant of the EM algo-
rithm is utilized to learn the rule probabilities for
them. The Berkeley parser employs a hierarchi-
cal split-merge method that gradually increases the
number of latent annotations and adaptively allo-
cates them to different treebank categories to best
model the training data. In this paper, we call a
grammar trained after n split-merge steps an n-
th order grammar. The order of a grammar is a
step (not continuous) function of the number of la-
tent annotations because the split-merge algorithm
first splits each latent annotation into two and then
merges some of the splits back based on their abil-
ity to increase training likelihood.

For this paper, we implemented1 our own ver-
sion of Berkeley parser. Updates include better
handling of rare words across languages, as well
as unknown Chinese words. The parser is able
to process difficult sentences robustly using adap-
tive beam expansion. The training algorithm was
updated to support a wide range of self-training
experiments (e.g., posterior-weighted unlabeled
data, introducing self-training in later iterations)
and to make use of multiple processors to paral-
lelize EM training. The parallelization is crucial

1A major motivation for this implementation was to sup-
port some algorithms we are developing. Most of our en-
hancements will be merged with a future release of the Berke-
ley parser.
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for training a model with large volumes of data in
a reasonable amount of time2.

We next describe the language-independent
method to handle rare words, which is impor-
tant for training better PCFG-LA grammars es-
pecially when the training data is limited in size,
and our unknown Chinese word handling method,
highlighting the importance of utilizing language-
specific features to enhance parsing performance.
As we will see later, both of these methods signif-
icantly improve parsing performance.

2.1 Rare Word Handling

Whereas rule expansions are frequently observed
in the treebank, word-tag co-occurrences are
sparser and more likely to suffer from over-fitting.
Although the lexicon smoothing method in the
Berkeley parser is able to make the word emis-
sion probabilities of different latent states of a
POS tag more alike, the EM training algorithm
still strongly discriminates among word identities.
Suppose word tag pairs 〈w1, t〉 and 〈w2, t〉 both
appear the same number of times in the training
data. In a PCFG grammar without latent annota-
tions, the probabilities of emitting these two words
given tag t would be the same, i.e., p(w1|t) =
p(w2|t). After introducing latent annotation x to
tag t, the emission probabilities of these two words
given a latent state tx may no longer be the same
because p(w1|tx) and p(w2|tx) are two indepen-
dent parameters that the EM algorithm optimizes
on. It is beneficial to learn subcategories of POS
tags to model different types of words, especially
for frequent words; however, it is not desirable to
strongly discriminate among rare words because it
could distract the model from learning about com-
mon phenomena.

To handle this problem, the probability of a la-
tent state tx generating a rare word w is forced
to be proportional to the emission probability of
word w given the surface tag t. This is achieved
by mapping all words with frequency less than
threshold3 λ to the unk symbol, and for each la-
tent state tx of a POS tag t, accumulating the word
tag statistics of these rare words to cr(tx, unk) =∑

w:c(w)<λ c(tx, w), and then redistributing them
among the rare words to estimate their emission

2The parallel version is able to train our largest grammar
on a 8-core machine within a week, while the non-parallel
version is not able to finish even after 3 weeks.

3The value of λ is tuned on the development set.

probabilities:

c(tx, w) = cr(tx, unk) · c(t, w)
cr(t, unk)

p(w|tx) = c(tx, w)/
∑

w
c(tx, w)

2.2 Chinese Unknown Word Handling
The Berkeley parser utilizes statistics associated
with rare words (e.g., suffix, capitalization) to esti-
mate the emission probabilities of unknown words
at decoding time. This is adequate for for English,
however, only a limited number of classes of un-
known words, such as digits and dates, are handled
for Chinese. In this paper, we develop a character-
based unknown word model inspired by (Huang
et al., 2007) that reflects the fact that characters in
any position (prefix, infix, or suffix) can be predic-
tive of the part-of-speech (POS) type for Chinese
words. In our model, the word emission proba-
bility, p(w|tx), of an unknown word w given the
latent state tx of POS tag t is estimated by the ge-
ometric average of the emission probability of the
characters ck in the word:

P (w|tx) = n

√∏
ck∈w,P (ck|t)6=0

P (ck|t)

where n = |{ck ∈ w|P (ck|t) 6= 0}|. Characters
not seen in the training data are ignored in the
computation of the geometric average. We back
off to use the rare word statistics regardless of
word identity when the above equation cannot be
used to compute the emission probability.

3 Parser Self-Training

Our hypothesis is that combining automatically la-
beled parses with treebank trees will help the EM
training of the PCFG-LA parser to make more in-
formed decisions about latent annotations and thus
generate more effective grammars. In this section,
we discuss how self-training is applied to train a
PCFG-LA parser.

There are several ways to automatically label
the data. A fairly standard method is to parse the
unlabeled sentences with a parser trained on la-
beled training data, and then combine the result-
ing parses with the treebank training data to re-
train the parser. This is the approach we chose
for self-training. An alternative approach is to run
EM directly on the labeled treebank trees and the
unlabeled sentences, without explicit parse trees
for the unlabeled sentences. However, because the
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brackets would need to be determined for the un-
labeled sentences together with the latent annota-
tions, this would increase the running time from
linear in the number of expansion rules to cubic in
the length of the sentence.

Another important decision is how to weight
the gold standard and automatically labeled data
when training a new parser model. Errors in the
automatically labeled data could limit the accu-
racy of the self-trained model, especially when
there is a much greater quantity of automatically
labeled data than the gold standard training data.
To balance the gold standard and automatically
labeled data, one could duplicate the treebank
data to match the size of the automatically la-
beled data; however, the training of the PCFG-
LA parser would result in redundant applications
of EM computations over the same data, increas-
ing the cost of training. Instead we weight the
posterior probabilities computed for the gold and
automatically labeled data, so that they contribute
equally to the resulting grammar. Our preliminary
experiments show that balanced weighting is ef-
fective, especially for Chinese (about 0.4% abso-
lute improvement) where the automatic parse trees
have a relatively lower accuracy.

The training procedure of the PCFG-LA parser
gradually introduces more latent annotations dur-
ing each split-merge stage, and the self-labeled
data can be introduced at any of these stages. In-
troduction of the self-labeled data in later stages,
after some important annotations are learned from
the treebank, could result in more effective learn-
ing. We have found that a middle stage introduc-
tion (after 3 split-merge iterations) of the automat-
ically labeled data has an effect similar to balanc-
ing the weights of the gold and automatically la-
beled trees, possibly due to the fact that both meth-
ods place greater trust in the former than the latter.
In this study, we introduce the automatically la-
beled data at the outset and weight it equally with
the gold treebank training data in order to focus
our experiments to support a deeper analysis.

4 Experimental Setup

For the English experiments, sections from the
WSJ Penn Treebank are used as labeled training
data: section 2-19 for training, section 22 for de-
velopment, and section 23 as the test set. We also

used 210k4 sentences of unlabeled news articles in
the BLLIP corpus for English self-training.

For the Chinese experiments, the Penn Chinese
Treebank 6.0 (CTB6) (Xue et al., 2005) is used
as labeled data. CTB6 includes both news articles
and transcripts of broadcast news. We partitioned
the news articles into train/development/test sets
following Huang et al. (2007). The broadcast news
section is added to the training data because it
shares many of the characteristics of newswire text
(e.g., fully punctuated, contains nonverbal expres-
sions such as numbers and symbols). In addi-
tion, 210k sentences of unlabeled Chinese news
articles are used for self-training. Since the Chi-
nese parsers in our experiments require word-
segmented sentences as input, the unlabeled sen-
tences need to be word-segmented first. As shown
in (Harper and Huang, 2009), the accuracy of au-
tomatic word segmentation has a great impact on
Chinese parsing performance. We chose to use
the Stanford segmenter (Chang et al., 2008) in
our experiments because it is consistent with the
treebank segmentation and provides the best per-
formance among the segmenters that were tested.
To minimize the discrepancy between the self-
training data and the treebank data, we normalize
both CTB6 and the self-training data using UW
Decatur (Zhang and Kahn, 2008) text normaliza-
tion.

Table 1 summarizes the data set sizes used
in our experiments. We used slightly modi-
fied versions of the treebanks; empty nodes and
nonterminal-yield unary rules5, e.g., NP→VP, are
deleted using tsurgeon (Levy and Andrew, 2006).

Train Dev Test Unlabeled

English 39.8k 1.7k 2.4k 210k
(950.0k) (40.1k) (56.7k) (5,082.1k)

Chinese 24.4k 1.9k 2.0k 210k
(678.8k) (51.2k) (52.9k) (6,254.9k)

Table 1: The number of sentences (and words in
parentheses) in our experiments.

We trained parsers on 20%, 40%, 60%, 80%,
and 100% of the treebank training data to evaluate

4This amount was constrained based on both CPU and
memory. We plan to investigate cloud computing to exploit
more unlabeled data.

5As nonterminal-yield unary rules are less likely to be
posited by a statistical parser, it is common for parsers trained
on the standard Chinese treebank to have substantially higher
precision than recall. This gap between bracket recall and
precision is alleviated without loss of parse accuracy by delet-
ing the nonterminal-yield unary rules. This modification sim-
ilarly benefits both parsers we study here.
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the effect of the amount of labeled training data on
parsing performance. We also compare how self-
training impacts the models trained with different
amounts of gold-standard training data. This al-
lows us to simulate scenarios where the language
has limited human-labeled resources.

We compare models trained only on the gold
labeled training data with those that utilize ad-
ditional unlabeled data. Self-training (PCFG-LA
or Charniak) proceeds in two steps. In the first
step, the parser is first trained on the allocated la-
beled training data (e.g., 40%) and is then used
to parse the unlabeled data. In the second step,
a new parser is trained on the weighted combina-
tion6 of the allocated labeled training data and the
additional automatically labeled data. The devel-
opment set is used in each step to select the gram-
mar order with the best accuracy for the PCFG-LA
parser and to tune the smoothing parameters for
Charniak’s parser.

5 Results

In this section, we first present the effect of un-
known and rare word handling for the PCFG-LA
parser, and then compare and discuss the perfor-
mance of the PCFG-LA parser and Charniak’s
parser across languages with different amounts
of labeled training, either with or without self-
training.

5.1 Rare and Unknown Word Handling

Table 2 reports the effect of unknown and rare
word handing for the PCFG-LA parser trained on
100%7 of the labeled training data. The rare word
handling improves the English parser by 0.68%
and the Chinese parser by 0.56% over the Berke-
ley parser. The Chinese unknown word handling
method alone improves the Chinese parser by
0.47%. The rare and unknown handling methods
together improve the Chinese parser by 0.92%. All
the improvements are statistically significant8.

We found that the rare word handling method
becomes more effective as the number of latent an-
notations increases, especially when there is not a

6We balance the size of manually and automatically la-
beled data by posterior weighting for the PCFG-LA parsers
and by duplication for Charniak’s parser.

7Greater improvements are obtained using smaller
amounts of labeled training data.

8We use Bikel’s randomized parsing evaluation compara-
tor to determine the significance (p < 0.05) of difference
between two parsers’ output.

English Chinese
PCFG-LA 89.95 83.23

+R 90.63 83.79
+U N/A 83.70

+R+U N/A 84.15

Table 2: Effects of rare word handling (+R) and
Chinese unknown handling (+U) on the test set.

sufficient amount of labeled training data. Shar-
ing statistics of the rare words during training re-
sults in more robust grammars with better pars-
ing performance. The unknown word handling
method also gives greater improvements on gram-
mars trained on smaller amounts of training data,
suggesting that it is quite helpful for modeling un-
seen words at decoding time. However, it tends to
be less effective when the number of latent anno-
tations increases, probably because the probability
estimation of unseen words based on surface tags
is less reliable for finer-gained latent annotations.

5.2 Labeled Data Only

When comparing the two parsers on both lan-
guages in Figure 2 with treebank training, it is
clear that they perform much better on English
than Chinese. While this is probably due in part
to the years of research on English, Chinese still
appears to be more challenging than English. The
comparison between the two parsing approaches
provides two interesting conclusions.

First, the PCFG-LA parser always performs sig-
nificantly better than Charniak’s parser on Chi-
nese, although both model English well. Ad-
mittedly Charniak’s parser has not been opti-
mized9 on Chinese, but neither has the PCFG-
LA parser10. The lexicalized model in Charniak’s
parser was first optimized for English and required
sophisticated smoothing to deal with sparseness;
however, the lexicalized model developed for Chi-
nese works less well. In contrast, the PCFG-LA
parser learns the latent annotations from the data,
without any specification of what precisely should
be modeled and how it should be modeled. This
flexibility may help it better model new languages.

Second, while both parsers benefit from in-
creased amounts of gold standard training data,
the PCFG-LA parser gains more. The PCFG-LA
parser is initially poorer than Charniak’s parser

9The Chinese port includes modification of the head table,
implementation of a Chinese punctuation model, etc.

10The PCFG-LA parser without the unknown word han-
dling method still outperforms Charniak’s parser on Chinese.

836



 87

 88

 89

 90

 91

 92

 0.2  0.4  0.6  0.8  1

F
 s

co
re

Number of Labeled WSJ Training Trees

x 39,832

PCFG-LA
PCFG-LA.ST

Charniak
Charniak.ST

(a) English

 76

 78

 80

 82

 84

 86

 0.2  0.4  0.6  0.8  1

F
 s

co
re

Number of Labeled CTB Training Trees

x 24,416

(b) Chinese

Figure 2: The performance of the PCFG-LA
parser and Charniak’s parser evaluated on the test
set, trained with different amounts of labeled train-
ing data, with and without self-training (ST).

when trained on 20% WSJ training data, proba-
bly because the training data is too small for it to
learn fine-grained annotations without over-fitting.
As more labeled training data becomes avail-
able, the performance of the PCFG-LA parser im-
proves quickly and finally outperforms Charniak’s
parser significantly. Moreover, performance of the
PCFG-LA parser continues to grow when more la-
beled training data is available, while the perfor-
mance of Charniak’s parser levels out at around
80% of the labeled data. The PCFG-LA parser im-
proves by 3.5% when moving from 20% to 100%
training data, compared to a 2.21% gain for Char-
niak’s parser. Similarly for Chinese, the PCFG-
LA parser also gains more (4.48% vs 3.63%).

5.3 Labeled + Self-Labeled

The PCFG-LA parser is also able to benefit more
from self-training than Charniak’s parser. On the
WSJ data set, Charniak’s parser benefits from self-
training initially when there is little labeled train-
ing data, but the improvement levels out quickly
as more labeled training trees become available.
In contrast, the PCFG-LA parser benefits consis-
tently from self-training11, even when using 100%

11One may notice that the self-trained PCFG-LA parser
with 100% labeled WSJ data has a slightly lower test accu-

of the labeled training set. Similar trends are also
found for Chinese.

It should be noted that the PCFG-LA parser
trained on a fraction of the treebank training data
plus a large amount of self-labeled training data,
which comes with little or no cost, performs com-
parably or even better than grammars trained with
additional labeled training data. For example, the
self-trained PCFG-LA parser with 60% labeled
data is able to outperform the grammar trained
with 100% labeled training data alone for both En-
glish and Chinese. With self-training, even 40%
labeled WSJ training data is sufficient to train a
PCFG-LA parser that is comparable to the model
trained on the entire WSJ training data alone. This
is of significant importance, especially for lan-
guages with limited human-labeled resources.

One might conjecture that the PCFG-LA parser
benefits more from self-training than Charniak’s
parser because its self-labeled data has higher ac-
curacy. However, this is not true. As shown in Fig-
ure 2 (a), the PCFG-LA parser trained with 40%
of the WSJ training set alone has a much lower
performance (88.57% vs 89.96%) than Charniak’s
parser trained on the full WSJ training set. With
the same amount of self-training data (labeled by
each parser), the resulting PCFG-LA parser ob-
tains a much higher F score than the self-trained
Charniak’s parser (90.52% vs 90.18%). Similar
patterns can also be found for Chinese.

English Chinese
PCFG-LA 90.63 84.15

+ Self-training 91.46 85.18

Table 3: Final results on the test set.

Table 3 reports the final results on the test set
when trained on the entire WSJ or CTB6 training
set. For English, self-training contributes 0.83%
absolute improvement to the PCFG-LA parser,
which is comparable to the improvement obtained
from using semi-supervised training with the two-
stage parser in (McClosky et al., 2006). Note that
their improvement is achieved with the addition
of 2,000k unlabeled sentences using the combi-
nation of a generative parser and a discriminative
reranker, compared to using only 210k unlabeled
sentences with a single generative parser in our
approach. For Chinese, self-training results in a

racy than the self-trained PCFG-LA parser with 80% labeled
WSJ data. This is due to the variance in parser performance
when initialized with different seeds and the fact that the de-
velopment set is used to pick the best model for evaluation.
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Figure 3: (a) The training/test accuracy of Charniak’s parser trained on varying amounts of labeled
WSJ training data, with and without self-training (ST). (b) The training/test accuracy and the number
of nonzero rules of the PCFG-LA grammars trained on 20% of the labeled WSJ training data, w/ and
w/o ST. (c) The training/test accuracy of the PCFG-LA parser trained on varying amount of labeled WSJ
training data, w/ and w/o ST; the numbers along the training curves indicate the order of the grammars.
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training data, w/ and w/o ST; the numbers along the training curves indicate the order of the grammars.

state-of-the-art parsing model with 85.18% accu-
racy (1.03% absolute improvement) on a represen-
tative test set. Both improvements are statistically
significant.

6 Analysis

In this section, we perform a series of analyses,
focusing on English (refer to Figure 3), to investi-
gate why the PCFG-LA parser benefits more from
additional data, most particularly automatically la-
beled data, when compared to Charniak’s parser.
Similar analyses have been done for Chinese with
similar results (refer to Figure 4).

Charniak’s parser is a lexicalized PCFG parser
that models lexicalized dependencies explicitly
observable in the training data and relies on

smoothing to avoid over-fitting. Although it is
able to benefit from more training data because of
broader lexicon and rule coverage and more robust
estimation of parameters, its ability to benefit from
the additional data is limited in the sense that it is
not able to generate additional predictive features
that are supported by this data. As shown in fig-
ure 3(a), the parsing accuracy of Charniak’s parser
on the test set improves as the amount of labeled
training data increases; however, the training accu-
racy12 degrades as more data is added. Note that
the training accuracy13 of Charniak’s parser also

12The parser is tested on the treebank labeled set that the
parser is trained on.

13The self-training data is combined with the labeled tree-
bank trees in a weighted manner; otherwise, the training ac-
curacy would be even lower.
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decreases after the addition of self-training data.
This is expected for models like Charniak’s parser
with fixed model parameters; it is harder to model
more data with greater diversity. The addition of
self-labeled data helps on the test set initially but it
provides little gain when the labeled training data
becomes relatively large.

In contrast, the PCFG-LA grammar is able to
model the training data with different granulari-
ties. Fewer latent annotations are employed when
the training set is small. As the size of the train-
ing data increases, it is able to allocate more latent
annotations to better model the data. As shown in
Figure 3 (b), for a fixed amount (20%) of labeled
training data, the accuracy of the model on train-
ing data continues to improve as the number of la-
tent annotation increases. Although it is important
to limit the number of latent annotations to avoid
over-fitting, the ability to model training data ac-
curately given sufficient latent annotations is desir-
able when more training data is available. When
trained on the labeled data (20%) alone, the 5-th
order grammar achieves its optimal generalization
performance (based on the development set) and
begins to degrade afterwords. With the addition of
self-training data, the 5-th order grammar achieves
an even greater accuracy on the test set and its per-
formance continues to increase14 when moving to
the 6-th or even 7-th order grammar.

Figure 3 (c) plots the training and test curves
of the English PCFG-LA parser with varying
amounts of labeled training data, with and with-
out self-training. This figure differs substantially
from Figure 3 (a). First, as mentioned earlier, the
PCFG-LA parser benefits much more from self-
training than Charniak’s parser with moderate to
large amounts of labeled training data. Second, in
contrast to Charniak’s parser for which training ac-
curacy degrades consistently as the amount of la-
beled training data increases, the training accuracy
of the PCFG-LA parser sometimes improves when
trained on more labeled training data (e.g., the best
model (at order 6) trained on 40%15 labeled train-

14Although the 20% self-trained grammar has a higher test
accuracy at the 7-th round than the 6-th round, the develop-
ment accuracy was better at the 6-th round, and thus we report
the test accuracy of the 6-th round grammar in Figure 3 (c).

15For models trained with greater amounts of labeled train-
ing data, although their training accuracy becomes lower (due
to greater diversity) for the grammars (all at order 6) selected
by the development set, their 7-th order grammars (not re-
ported in the figure) actually have both higher training and
test accuracies than the 6-th order grammar trained on less
training data.

ing data alone has a higher training accuracy than
the best model (at order 5) trained on 20% labeled
training data). Third, the addition of self-labeled
data supports more accurate PCFG-LA grammars
with higher orders than those trained without self-
training, as evidenced by scores on both the train-
ing and test data. This suggests that the self-
trained grammars are able to utilize more latent
annotations to learn deeper dependencies.
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Figure 5: The relative reduction of bracketing er-
rors for different span lengths, evaluated on the
test set. The baseline model is the PCFG-LA
parser trained on 20% of the WSJ training data.
The +Unlabeled curve corresponds to the parser
trained with the additional automatically labeled
data and the +Labeled curve corresponds to the
parser trained with additional 20% labeled training
data. The counts of the brackets are computed on
the gold reference. Span length ‘0’ is designated
for the effect on preterminal POS tags to differ-
entiate it from the non-terminal brackets spanning
only one word.

Figure 5 compares the effect of additional tree-
bank labeled and automatically labeled data on the
relative reduction of bracketing errors for different
span lengths. It is clear from the figure that the im-
provement in parsing accuracy from self-training
is the result of better bracketing across all span
lengths16. However, even though the automati-
cally labeled training data provides more improve-
ment than the additional treebank labeled data in
terms of parsing accuracy, this data is less effective
at improving tagging accuracy than the additional
treebank labeled training data.

So, how could self-training improve rule esti-
mation when training the PCFG-LA parser with
more latent annotations? One possibility is that the
automatically labeled data smooths the parameter

16There is a slight degradation in bracketing accuracy for
some spans longer than 16 words, but the effect is negligible
due to their low counts.
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estimates in the EM algorithm, enabling effective
training of models with more parameters to learn
deeper dependencies. Let p(a → b|e, t) be the
posterior probability of expanding subcategories a
to b given the event e, which is a rule expansion
on a treebank parse tree t. Tl and Tu are the sets
of gold and automatically labeled parse trees, re-
spectively. The update of the rule expansion prob-
ability p(a → b) in self-training (with weighting
parameter α) can be expressed as:

P
t∈Tl

P
e∈t

p(a→ b|e, t) + α
P
t∈Tu

P
e∈t

p(a→ b|e, t)P
b

(
P
t∈Tl

P
e∈t

p(a→ b|e, t) + α
P
t∈Tu

P
e∈t

p(a→ b|e, t))

Since the unlabeled data is parsed by a lower
order grammar (with fewer latent annotations),
the expected counts from the automatically la-
beled data can be thought of as counts from a
lower-order grammar17 that smooth the higher-
order (with more latent annotations) grammar.

We observe that many of the rule parameters of
the grammar trained on WSJ training data alone
have zero probabilities (rules with extremely low
probabilities are also filtered to zero), as was also
pointed out in (Petrov et al., 2006). On the one
hand, this is what we want because the grammar
should learn to avoid impossible rule expansions.
On the other hand, this might also be a sign of
over-fitting of the labeled training data. As shown
in Figure 3 (b), the grammar obtained with the ad-
dition of automatically labeled data contains many
more non-zero rules, and its performance contin-
ues to improve with more latent annotations. Sim-
ilar patterns also appear when using self-training
for other amounts of labeled training data. As is
partially reflected by the zero probability rules, the
addition of the automatically labeled data enables
the exploration of a broader parameter space with
less danger of over-fitting the data. Also note that
the benefit of the automatically labeled data is less
clear in the early training stages (i.e., when there
are fewer latent annotations), as can be seen in Fig-
ure 3 (b). This is probably because there is a small
number of free parameters and the treebank data is
sufficiently large for robust parameter estimation.

17We also trained models using only the automatically la-
beled data without combining it with human-labeled training
data, but they were no more accurate than those trained on
the human-labeled training data alone without self-training.

7 Conclusion

In this paper, we showed that PCFG-LA parsers
can be more effectively applied to languages
where parsing is less well developed and that they
are able to benefit more from self-training than
lexicalized generative parsers. We show for the
first time that self-training is able to significantly
improve the performance of a PCFG-LA parser, a
single generative parser, on both small and large
amounts of labeled training data.

We conjecture based on our analysis that the
EM training algorithm is able to exploit the in-
formation available in both gold and automati-
cally labeled data with more complex grammars
while being less affected by over-fitting. Bet-
ter results would be expected by combining the
PCFG-LA parser with discriminative reranking
approaches (Charniak and Johnson, 2005; Huang,
2008) for self training. Self-training should also
benefit other discriminatively trained parsers with
latent annotations (Petrov and Klein, 2008), al-
though training would be much slower compared
to using generative models, as in our case.

In future work, we plan to scale up the training
process with more unlabeled training data (e.g.,
gigaword) and investigate automatic selection of
materials that are most suitable for self-training.
We also plan to investigate domain adaptation and
apply the model to other languages with modest
treebank resources. Finally, it is also important to
explore other ways to exploit the use of unlabeled
data.
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Abstract

Applying statistical parsers developed for
English to languages with freer word-
order has turned out to be harder than
expected. This paper investigates the
adequacy of different statistical parsing
models for dealing with a (relatively)
free word-order language. We show
that the recently proposedRelational-
Realizational (RR) model consistently
outperforms state-of-the-artHead-Driven
(HD) models on the Hebrew Treebank.
Our analysis reveals a weakness of HD
models: their intrinsic focus on configu-
rational information. We conclude that the
form-function separation ingrained in RR
models makes them better suited for pars-
ing nonconfigurational phenomena.

1 Introduction

Parsing technology has come a long way since
Charniak (1996) demonstrated that a simple tree-
bank PCFG performs better than any other parser
(with F175 accuracy) on parsing the WSJ Penn
treebank (Marcus et al., 1993). Treebank Gram-
mars (Scha, 1990; Charniak, 1996) trained on
large corpora nowadays present the best available
means to parse natural language text.

The performance curve for parsing the WSJ was
a steep one at first, as the incorporation of no-
tions such ashead, distance, subcategorization
(Charniak, 1997; Collins, 1999) brought about
a dramatic increase in parsing accuracy to the
level of F188. Discriminative approaches, Data-
Oriented Parsing (‘all-subtrees’) approaches, and
self-training techniques brought further improve-
ments, and recent results are starting to level off at
aroundF192.1 (McClosky et al., 2008).

As the interest of the NLP community grows
to encompass more languages, we observe efforts

towards adapting an English parser for parsing
other languages (e.g., (Collins et al., 1999)), or
towards designing a language-independent frame-
work based on principles underlying the mod-
els for parsing English (Bikel, 2002). The per-
formance curve for parsing other languages with
these models looks rather different. A case in point
is Modern Standard Arabic. Since the initial ef-
fort of (Bikel, 2002) to parse the Arabic treebank
(Maamouri et al., 2004), which yieldedF175 ac-
curacy, four years and successive revisions have
led to no more thanF179 (Maamouri et al., 2008).

This pattern from Arabic is not peculiar. The
level of state-of-the-art results for other languages
still lags behind those for English, even after
putting considerable effort into the adaptation.1

Given that these languages are inherently differ-
ent from English and from one another, it appears
that we cannot avoid a question concerning thead-
equacyof the models used to parse them. That is,
given the properties of a language, which model-
ing strategy would be appropriate for parsing it?

Until recently, there has been practically
no computationally affordable alternative to the
Head-Driven (HD)approach in the development
of phrase-structure based statistical parsing mod-
els. Recently, we proposed theRelational-
Realizational (RR)approach that rests upon differ-
ent premises (Tsarfaty and Sima’an, 2008). The
question of how the RR model fares against the
HD models that have so far been predominantly
used has never been tackled. Yet, it is precisely
such a comparison that can shed new light on the
question of adequacy we posed above.

Empirically quantifying the effects of differ-
ent modeling choices has been addressed for En-
glish by, e.g., (Johnson, 1998; Klein and Manning,
2003), and for German by, e.g., (Dubey, 2004;

1Consider, e.g., “The PaGe shared task on parsing Ger-
man” (Kubler, 2008), reportingF175, F179, F183 for the
participating parsers.
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Rafferty and Manning, 2008). This paper provides
an empirical systematic comparison of conceptu-
ally different modeling strategies with respect to
parsing Hebrew. This comparison is intended to
provide a first answer to the question of parser ad-
equacy in the face of word-order freedom.

Our two empirical results are unequivocal.
Firstly, RR models significantly outperform HD
models (about 2 points absolute improvement in
F1) in parsing the Modern Hebrew treebank. In
particular, RR models show better performance
in identifying the constituents for which syntactic
positions are relatively free. Secondly, we show
a novel variation of the HD model, incorporating
theRelationalnotions of the RR model, on the hy-
pothesis that this might bridge the gap. The RR
model remains superior.

Our post-experimental analysis shows that HD
modeling is inherently problematic for parsing a
language with freer word-order because of the
hard-wiring of notions such asleft, right anddis-
tance from the head. RR models, taking a prin-
cipled approach towards capturing variable form-
function correspondence patterns, are better suited
for parsingnonconfigurationalphenomena.

2 The Data

This section describes some properties of Modern
Hebrew (henceforth, Hebrew) that make it signifi-
cantly different from English. These properties af-
fect the syntactic representations found in the He-
brew Treebank and the kind of syntactic phenom-
ena a parser for Hebrew has to cope with.

Modern Hebrew is a Semitic language with a
canonical SVO word-order pattern,2 yet it allows
considerable freedom in the placement of syntac-
tic constituents in a clause. For example, linguistic
elements of any kind may be fronted, triggering
an inversion familiar from Germanic languages
as in (1b) (Triggered Inversion (TI)in (Shlonsky,
1997)). Under some information structuring con-
ditions,Verb Initial (VI) constructions are also al-
lowed, as in (1c) (Melnik, 2002). All sentences
in (1) thus mean “Dani gave the present to Dina”,
despite their different word-ordering.

(1) a. dani natan et hamatana ledina
Dani gave ACC the-present to-Dina

b. et hamatana natan dani ledina
ACC the-present gave Dani to-Dina

2SVO is an abbreviation for the Subject-Verb-Object type
in thebasic word-ordertypology of (Greenberg, 1963).

Word Order Frequency Relative Frequency

SV 1612 41%
VS 1144 29%
No S 624 16%
No V 550 14%

Table 1: Modern Hebrew Predicative Clause-
Types in 3930 Predicative Matrix Clauses in the
Training Set of the Modern Hebrew Treebank.

c. natan dani et hamatana ledina
gave Dani ACC the-present to-Dina

A corpus study we conducted on a fragment of
the Modern Hebrew treebank reveals that although
there is a significant number of subjects preceding
verbs in simple (matrix) clauses (41%), there are
also a fair number of sentences for which this or-
der is reversed (29%), and there is evidence for
other configurations, such as empty realization of
subjects (16%) and non-verbal realization of pred-
icates (14%).

In the face of such lack of consistency in its
configurational position, the grammatical function
Objectin Hebrew is indicated byDifferential Ob-
ject Marking (DOM)(Aissen, 2003). NP objects
in Hebrew are marked foraccusativity(using the
markeret) if they are also marked fordefiniteness
(indicated by the prefixha). So, in contrast with
(2a)-(2b), the indefinite object renders (2c) un-
grammatical, and the missing accusativity renders
(2d) awkward. The fact that marking NP objects
involves the joint contribution of multiple surface
elements (et, ha) contributing features to the NP
constituent is referred to asextended exponence
(Matthews, 1993, p. 182).

(2) a. dani natan matana ledina
Dani gave present to-Dina
“Dani gave a present to Dina”

b. dani natan et hamatana ledina
Dani gave ACC the-present to-Dina
“Dani gave the present to Dina”

c. *dani natan et matana ledina
Dani gave ACC present to-Dina

d. ??dani natan hamatana ledina
Dani gave the-present to-Dina

These data pose a challenge to generative pars-
ing models, as they would be required to gener-
ate alternative word-order patterns while maintain-
ing a coherent pattern of object marking, encom-
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passing the contribution of multiple surface expo-
nents. The question this paper addresses is there-
fore what kind of modeling approach would be ad-
equate for modeling the interplay betweensyntax
andmorphologyin marking grammatical relations
in Hebrew, as reflected by the sentence-pair (3).
They both mean, roughly, “Dani gave the present
to Dina yesterday; their word-order vary, but the
pattern of object marking is retained.

(3) a. dani natan etmol et hamatana ledina
Dani gave yesterday ACC the-present
to-Dina

b. et hamatana natan etmol dani ledina
ACC the-present gave yesterday dani
to-dina

3 The Models

The different models we experiment with are all
trained on syntactic structures annotated in the
Modern Hebrew Treebank (Sima’an et al., 2001).
The native representation of clause-level cate-
gories in the Treebank employs flat structures.
This choice was made due to the lack of empirical
evidence in Hebrew for grouping freely positioned
syntactic elements to form a constituent.3 In order
to compensate for the ambiguity in theinterpreta-
tion of flat structures, additional information such
as morphological marking and grammatical func-
tion labels is added to the phrase-structure trees.

3.1 TheState-Splits Approach

The simplest way to encode grammatical func-
tions information on top of the phrase-structure
representation in the treebank is by decorating
non-terminal nodes with morphological or func-
tional features, similarly to the rich representation
format of syntactic categories in GPSG. This is
the approach taken by the annotators of the He-
brew treebank in which information about mor-
phological marking appears at multiple levels of
constituency (Guthmann et al., 2009), and func-
tional features (such assubject, object,etc.) deco-
rate phrase-level constituent labels (Sima’an et al.,
2001). The S-level representation of our example
sentences (3a)–(3b) then would be as we depict
in figure 1, which can be read off as feature-rich

3Such clauses are defined formally asexocentricin for-
mal theories of syntax, and are used to describe syntactic
structures in, e.g., Tagalog, Hungarian and Warlpiri (Bres-
nan, 2001, page 110). This flat representation format is char-
acteristic of treebanks for other languages with relatively-free
word-order as well, such as German (cf. (Kubler, 2008)).

PCFG productions. We refer to this approach as
theState-Splits (SP)approach, which serves as the
baseline for the rest of our investigation.

3.2 TheHead-Driven Approach

Following the linguistic wisdom that the inter-
nal organization of syntactic constituents revolves
around theirheads, Head-Driven (HD) models
have been proposed by (Magerman, 1995; Char-
niak, 1997; Collins, 1999). In a generative HD
model, the head daughter is generated first, con-
ditioned on properties of the mother node. Then,
sisters of the head daughter are generated condi-
tioned on the head, typically byleft andright gen-
eration processes. Overall, HD processes have the
modeling advantage that they capture structurally-
marked positions that characterize theargument
structureof the sentence. The simplest possible
process uses unigram probabilities, but (Klein and
Manning, 2003) show that usingverticalandhori-
zontalMarkovization improves parsing accuracy.4

An unlexicalized generative HD model will
generate our two example sentences as we illus-
trate in figure 2. The generation of the context-
free events in figure 1 is then broken down to
seven different context-free parameters each, en-
coding head-parent and head-sister structural rela-
tionships — the latter mediated with a structurally-
markeddelta function (∆i). The rich morpho-
logical representation of phrase-level NP objects
(+def/acc), for instance, is conditioned on the
headsister, itsdirection, and thedistance from the
head(check, e.g., nodes∆L1 ,∆R2).

3.3 TheRelational-Realizational Approach

The Relational-Realizational (RR)parsing model
of (Tsarfaty and Sima’an, 2008) similarly decom-
poses the generation of the context-free events in
figure 1 into multiple independent parameters, but
does so in a conceptually different way. Instead of
decomposing a context-free event toheadandsis-
ters, the RR model is best viewed as a generative
grammar that decomposes it toform andfunction.

The RR grammar first generates a set of gram-
matical functions depicting theRelational Net-
work (RN)(Perlmutter, 1982) of the clause. This

4The success of Head-Driven models (Charniak, 1997;
Collins, 2003) was initially attributed to the fact that they
were fully lexicalized, but (Klein and Manning, 2003) show
that an unlexicalized model combining Head-Driven Marko-
vian processes with linguistically motivated state-splits can
approach the performance of fully lexicalized models.
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(3a) S

NP-SBJ
Dani

VP-PRD
natan
gave

ADVP
etmol

yesterday

NP+D+ACC-OBJ
et-hamatana
the-present

PP-COM
le-dina
to-Dina

(3b) S

NP+D+ACC-OBJ
et-ha-matana
the-present

VP-PRD
natan
gave

ADVP
etmol

yesterday

NP-SBJ
Dani
Dani

PP-COM
le-dina
to-Dina

Figure 1: TheState-SplitsApproach for Ex. (3)

(3a) S

V P@S

L ,∆L1, V P@S

NP
Dani
Dani

HEAD ,V P@S

VP
natan
gave

R,∆R1, V P@S

ADVP
etmol

yesterday

R,∆R2, V P@S

NP+D+ACC

et-ha-matana
the-Present

R,∆R3, V P@S

PP
le-dina
to-Dina

(3b) S

V P@S

L ,∆L1, V P@S

NP+D+ACC

et-ha-matana
the-present

HEAD ,V P@S

VP
natan
gave

R,∆R1, V P@S

ADVP
etmol

yesterday

R,∆R2, V P@S

NP
Dani
Dani

R,∆R3, V P@S

PP
le-dina
to-Dina

Figure 2: TheHead-DrivenApproach for Ex. (3)

(3a) S

{SBJ,PRD,OBJ,COM}@S

SBJ@S

NP
Dani
Dani

PRD@S

VP
natan
gave

PRD : OBJ@S

ADVP
etmol

yesterday

OBJ@S

NP+D+ACC

et-hamatana
the-present

COM@S

PP
le-dina
to-Dina

(3b) S

{SBJ,PRD,OBJ,COM}@S

OBJ@S

NP+D+ACC

et-ha-matana
the-Present

PRD@S

VP
natan
gave

PRD : SBJ@S

ADVP@S
etmol

yesterday

SBJ@S

NP
Dani
Dani

COM@S

PP
le-dina
to-Dina

Figure 3: TheRelational-RealizationalApproach

RN provides an abstract set-theoretic representa-
tion of theargument structureof the clause.5 This
is called theprojection phase. Then an ordering
of the grammatical relations is generated, includ-
ing reserved contextual slots for adjunction and/or
punctuation marks. This is called theconfigura-
tion phase. Finally, each of the grammatical func-
tion labels and adjunction slots gets realized as a
morphosyntactic representation (a category label
plus dominated morphological features) of the re-
spective daughter constituent. This is called the
realizationphase.6

Figure 3 shows the generation of sentences
(3a)–(3b) following theprojection, configuration
and realization phases corresponding to the top-
down context-free layers of the tree. In both
cases, the same relational network is generated,
capturing the fact that they have the same argu-
ment structure. Then the different orderings of
the grammatical elements are generated, reserving
an adjunction slot for sentential modification (la-
beled by short context). Interestingly, the HD/RR
models for our sentences are of comparable size
(seven parameters) but the parameter types en-
code radically different notions. Illustrative of the
difference is the realization of a morphologically
marked NP object. In the RR model this is con-
ditioned on a grammatical relation (check, for in-
stance, node OBJ@S) and in the HD model it is
conditioned on linear ordering or configurational
notions such asleft, right anddistance.

4 Experiments

Goal We set out to compare the performance
of the different modeling approaches for pars-
ing Modern Hebrew. Considerable effort was de-
voted to making the models strictly comparable,
in terms of preparing the data, defining statistical
events, and unifying the rules determining cross-
cutting linguistic notions (e.g.,headsand predi-
cates, grammatical functionsandsubcat sets). We
spell out some of the setup considerations below.

Data We use the Modern Hebrew treebank
(MHTB) (Sima’an et al., 2001) consisting of 6501
sentences from news-wire texts, morphologically
analyzed and syntactically annotated as phrase-

5Unlike in HD models or dependency grammars, thehead
predicative element has no distinguished status here.

6Realization of adjunction slots (but not of function la-
bels) may generate multiple sisters adjoining at a single
position.
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GF Description Applicable to. . .

PRD Predicative Elements VP, PREDP
SBJ Grammatical Subjects NP, SBAR
OBJ Direct Objects NP
COM Indirect Objects NP, PP

FInite Complements SBAR
IC Infinitival Complements VP
CNJ A Conjunct within

a Conjunction Structure All

Table 2: Grammatical Functions in the MHTB

SP-PCFG Expansion P(Cln , . . . , Ch, . . . , Crn |P )

HD-PCFG Head P(Ch|P )
Left Branch? P(L :∆l1, H:∆h|Ch, P )
Right Branch? P(Ch, R:∆r1|∆h, Ch, P )
Left Arg/Mod P(Cli ,∆li+1

| L ,∆li , Ch, P )
Right Arg/Mod P(Cri ,∆ri+1| R ,∆ri , Ch, P )
Left Final? P(C1| L ,∆ln−1 , Ch, P )
Right Final? P(Cn| R ,∆rn−1 , Ch, P )

RR-PCFG Projection P({gr1, . . . , grm}|P )
Configuration P(〈gr1, . . . , grm〉|{gr1, . . . , grm}P )
Realization P(Cj|grj , P )
Adjunction P(Cj1, . . . , Cjn |grj : grj+1, P )

Table 3: PCFG Parameter Classes for All Models

structure trees. In our version of the MHTB,def-
initenessandaccusativityfeatures are percolated
from the PoS-tags level to phrase-level categories,
extending the procedure of (Guthmann et al.,
2009). For all models, we applied non-terminal
state-splits distinguishing finite from non-finite
verb forms and possessive from non-possessive
noun phrases. We head-annotated the treebank,
and based on the ‘subject’, ‘object’, ‘complement’
and ‘conjunction’ labels in the MHTB we devised
an automatic procedure to annotate all the gram-
matical functions indicated in table 2.7

Procedure For all models, we learn a PCFG by
reading off the parameters described in table 3,
in accordance with the trees depicted in figures
1–3.8 For all models, we use relative frequency
estimates. For lexical parameters, we use a sim-
ple smoothing procedure assigning probability to
unknown words using the per-tag distribution of
rare words (“rare” threshold set to< 2). The in-
put to our parser consists of morphologically seg-
mented surface forms, and the parser has to as-

7The enhanced corpus will be available atwww.
science.uva.nl/ ˜ rtsarfat/resources.htm .

8Our training procedure is strictly equivalent to the
transform-detransform methodology of (Johnson, 1998), but
we implement a tree-traverse procedure as in (Bikel, 2002)
collecting all parameters per event at once.

sign the syntactic as well as morphological anal-
ysis to the surface segments.9 We use the stan-
dard development/training/test split as in (Tsarfaty
and Sima’an, 2008). Since our goal is a detailed
comparison and fine-grained analysis of the results
we concentrate on the development set. We use
a general-purpose CKY parser (Schmid, 2004) to
exhaustively parse the sentences, and we strip off
all model-specific information prior to evaluation.

Evaluation We use standardParsevalmeasures
calculated for the original, flat, canonical repre-
sentation of the parse trees.10 We report Pre-
cision/Recallfor the coarse-grained non-terminal
categories. In addition to overall Parseval scores
we report the accuracy resultsPer Syntactic Cate-
gory. We further report model size in terms of the
number of parameters. As is well known in Ma-
chine Learning, models with more parameters re-
quire more data to learn, and are more vulnerable
to sparseness. In our evaluation we thus follow the
rule of thumb that (all else being equal) for mod-
els of equal size the better performing model is
preferred, and for models with equal performance,
the smaller one is preferred.

5 Results and Analysis

5.1 Overall Results

Table 4 shows the parsing results for theState-
Split (SP) PCFG, theHead-Driven (HD) PCFG
and the Relational-Realizational (RR) PCFG
models on parsing the Modern Hebrew Treebank,
with definitenessandaccusativitymarked on PoS-
tags as well as phrase-level categories. For all
models, we experiment with grandparent encod-
ing. For non-HD models, we also examine the
utility of a head-category split.11

9This setup is more difficult than, e.g., the Arabic parsing
setup of (Bikel, 2002), as they assume gold-standard pos-tags
as input. Yet it is easier than the setup of (Tsarfaty, 2006;
Goldberg and Tsarfaty, 2008) which uses unsegmented sur-
face forms as input. The decision to use segmented and un-
tagged forms was made to retain a realistic scenario. Mor-
phological analysis is known to be ambiguous, and we do
not assume that morphological features are known up front.
Morphological segmentation is also ambiguous, but for our
purposes it is unavoidable. When comparing different mod-
els on an individual sentence they may propose segmenta-
tion to sequences of different lengths, for which accuracy re-
sults cannot be faithfully compared. See (Tsarfaty, 2006) for
discussion.

10The flat canonical representation also allows for a fair
comparison that is not biased by the differing branching fac-
tors of the different models.

11In HD models, a head-tag is already assumed in the con-
ditioning context for sister nodes (Klein and Manning, 2003).
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SP-PCFG

Grand-Parent − − + +
Head-Tag − + − +
Prec/Rec 70.05/72.40 71.14/72.0374.66/74.35 71.99/72.17
(#Params) (4995) (8366) (7385) (11633)

HD-PCFG

Grand-Parent − − + +
Markov 0 1 0 1

Prec/Rec 66.87/71.64 70.40/74.35 73.04/71.9473.52/74.84
(#Params) (6678) (10015) (19066) (21399)

RR-PCFG

Grand-Parent − − + +
Head Tag − + − +

Prec/Rec 69.90/73.96 72.96/75.73 74.19/75.0376.32/76.51
(#Params) (3791) (7546) (7611) (13618)

Table 4: The Performance of Different Models
in Parsing Hebrew: Parsing Results Prec/Recall
for Sentences of Length≤ 40.

For all models, grandparent encoding is help-
ful. For HD models, a higher Markovian order im-
proves performance. This shows that even in He-
brew there are linear-precedence tendencies that
help steer the disambiguation in the right direc-
tion, which is in line with our observation that
word-order patterns in Modern Hebrew are not
completely free (cf. table 1).

The best SP model performs equally or better
than all HD models. This might be due to the
smaller size of SP grammars, resulting in more ro-
bust estimates. But it is remarkable that, given the
feature-rich representation, such a simple treebank
grammar provides better disambiguation capacity
than linguistically articulated HD models. We at-
tribute this to the fact that parent-daughter rela-
tions have a stronger association with grammati-
cal functions than relations between neighbouring
nodes. For Hebrew, such adjacency relations may
be arbitrary due to word-order variability.

Overall, RR models show the best performance
for the set of all models with parent encoding, and
for the set of all models without. Our best RR
model shows 6.6%/8.4% Prec/Rec error reduction
from the best SP model. The Recall improvement
shows that the RR model is much better in gener-
alizing, recovering successfully more of the con-
stituents found in the gold representation. The
best RR model also outperforms HD models with
8.7%/6.7% Prec/Rec error reduction from the best

In our SP or RR models, head-information is used as yet an-
other feature-value pair rather than an object with a distin-
guished status during generation.

Model / SP-PCFG HD-PCFG RR-PCFG
Category

NP 77.39 / 74.32 77.94 / 73.7578.96 / 76.11
PP 71.78 / 71.14 71.83 / 69.2474.4 / 72.02
SBAR 55.73 / 59.71 53.79 / 57.4957.97 / 61.67
ADVP 71.37 / 77.01 72.52 / 73.5673.57 / 77.59

ADJP 79.37 / 78.96 78.47 / 77.14 78.69 / 78.18
S 73.25 / 79.07 71.07 / 76.49 72.37 / 78.33

SQ 36.00 /32.14 30.77 / 14.29 55.56/ 17.86
PREDP 36.31 / 39.63 44.74/ 39.63 44.51 /46.95
VP 76.34 / 80.81 77.33 /82.51 78.59/ 81.18

Table 5: Per-Category Evaluation of Parsing
Performance for Different Models: Prec/Rec
Per Category Calculated for All Sentences.

HD model. The resulting precision improvement
of the RR relative to HD is larger than the im-
provement relative to SP, and the Recall improve-
ment pattern is reversed. So it seems that the HD
model generalizes better than the SP model, but
also gets generalizations wrong more often than
the SP model.

The RR model combines the generalization
advantage of breaking down context-free events
while it maintains the coherence advantage of
learning flat trees (cf. (Johnson, 1998)). The best
RR model obtains the best performance among
all models: F176.41. To put this result in con-
text, for the setting in which the Arabic parser of
(Maamouri et al., 2008) obtainsF178.1, — i.e.,
with gold standard feature-rich tags — the best
RR model obtainsF183.3 accuracy which is the
best parsing result reported for a Semitic language
so far. RR models also have the advantage of re-
sulting in more compact grammars, which makes
learning and parsing with them much more com-
putationally efficient.

5.2 Per-Category Break-Down Analysis

To understand better the merits of the different
models we conducted a break-down analysis of
performance-per-category for the best performing
models of each kind. The break-down results are
shown in table 5. We divided the table into three
sets of categories: those for which the RR model
gave the best performance, those for which the SP
model gave the best performance, and those for
which there is no clear trend.

The most striking outcome is that the RR model
identifies at higher accuracy precisely those syn-
tactic elements that are freely positioned with re-
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spect to the head: NPs, PPs, ADVPs and SBARs.
Adjectives, in contrast, have clear ordering con-
straints — they always appear after the noun. S
level elements, when embedded, always appear
immediately after a conjunction or a relativizer.
In particular, NPs and PPs realize arguments and
adjuncts that may occupy different positions rela-
tive to the head. The RR model is better than the
other models in identifying those elements partly
because morphological information helps to dis-
ambiguate syntactically relevant chunks and make
correct attachment decisions about them.

Remarkably, predicative (verb-less) phrases
(PREDP), which are characteristic of Semitic lan-
guages, are hard to parse, but here too the RR does
slightly better than the other two, as it allows for
variability in the means to realize a (verbal or verb-
less) predicate. Both RR and HD models outper-
form SP for VPs, which is due to the specific na-
ture of VPs in the MHTB – they existonly for
complement phrases with strict linear ordering.

6 Distances, Functions and
Subcategorization Frames

Markovian processes to theleft and to theright of
the head provide a first approximation of the pred-
icate’sargument structure, as they capture trends
in the co-occurrences of constituents reflected in
their pattern ofpositioning and adjacency. But
as our results so far show, such an approxima-
tion is empirically less rewarding for a language
in which grammatical relations are not tightly cor-
related with structural notions.12

Collins (2003) attempted a more abstract for-
mulation of argument-structure by articulating left
and rightsubcat-sets. Each set represents those
arguments that are expected to occur at each side
of the head. Argument sisters (“complements”)
are generated if and only if they are required, and
their generation ‘cancels’ the requirement in the
set. Adjuncts (“modifiers”) may be freely gener-
ated at any position.

At first glance, such a dissociation of configura-
tional positions and subcategorization sets seems
to be more adequate for parsing Hebrew, because
it allows for some variability in the order of gen-
eration. But here too, since the model uses sets of

12Conditioning based onadjacencyand distanceis also
common insidedependency parsingmodels, and we conjec-
ture that this is one of the reasons for their difficulty in coping
with freer word-order languages, a difficulty pointed out in
(Nivre et al., 2007).

(3a) S

V P@S

L ,{SBJ}, V P@S

NP
Dani
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H,V P@S

VP
natan
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R,{OBJ,COM}, V P@S

ADVP
etmol

yesterday

R,{OBJ,COM}, V P@S

NP+D+ACC
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the-Present

R,{COM}, V P@S

PP
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to-Dina

(3b) S

V P@S

L ,{OBJ}, V P@S

NP+D+ACC
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H,V P@S

VP
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R,{SBJ,COM}, V P@S

ADVP
etmol

yesterday

R,{SBJ,COM}, V P@S

NP
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PP
le-dina
to-Dina

Figure 4: TheRelational Head-DrivenApproach

constituent labels, it disambiguates the grammati-
cal functions of an NP solely based on the direc-
tion of the head, which is adequate for English but
not for Hebrew. In order to relax this association
further, we propose to replace constituent labels
in the subcat-sets with grammatical relations iden-
tical to the functional elements in the relational
network of the RR. This provides means to medi-
ate the cancellation of constituents in the sets with
their functions and correlate it with morphology.

To get an idea of the implications of such a
modeling strategy, let us consider our example
sentences in such a Relational-HD model as de-
picted in figure 4. Both representations share
the event of generating the verbal head. Sisters
are generated conditioned on the head and the
functional elements remaining to be “cancelled”.
Each of the two trees consists of an event real-
izing an “object”, one for an NP to the right of
the head, and the other for an NP to its left. In
both cases, an object constituent will be generated
jointly with the morphological features associated
with it. Evidently, when using sets of grammatical
relations instead of constituent-labels, correlation
of morphology and grammatical functions is more
straight-forward to maintain.
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Model SP-PCFG HD-PCFG HD-PCFG HD-PCFG HD-PCFG RR-PCFG

Type of Distance∆ Phrase-Level Intervening Left and Right Left and Right Left and Right Subcat Sets
or Subcategorization State-Splits Verb/Punc #Constituents Constituent Labels Function Labels Configuration

Precision/Recall 70.95/70.32 72.39 / 71.97 72.70 / 74.46 72.42 / 74.29 72.84/74.62 76.32/76.51
(#Params) (13884) (11650) (18058) (16334) (16460) (13618)

Table 6: Incorporating Distance and Grammatical Functions into Head-Driven Parsing Models
Reporting Precison/Recall (#Parameters) for Sentences Length< 40.

6.1 Results and Analysis

Table 6 reports the results of experimenting with
HD models with different instantiations of adis-
tance function, starting from the standard notion
of (Collins, 2003) and ending with our proposed,
relational, function sets. For all HD models, we
retain thehead, leftandright generation cycle and
only change the conditioning context (∆i) for sis-
ter generation.

As a baseline, we show the results of adding
grammatical function information as state-splits
on top of an SP-PCFG.13 This SP model presents
much lower performance than the RR model al-
though they are almost of the same size and they
start off with the same information. This result
shows that sophisticated modeling can blunt the
claws of the sparseness problem. One may ob-
tain the same number of parameters for two dif-
ferent models, but correlate them with more pro-
found linguistic notions in one model than in the
other. In our case, there is more statistical evi-
dence in the data for, e.g., case marking patterns,
than for association of grammatical relations with
structurally-marked positions.

For all HD variations, the RR model contin-
ues to outperform HD models. The function-set
variation performs slightly (but not significantly)
better than the category-set. What seems to be
still standing in the way of getting useful dis-
ambiguation cues for HD models is the fact that
the left and right direction of realization is hard-
wired in their representation. This breaks down a
coherent distribution over morphosyntactic repre-
sentations realizing grammatical relations to arbi-
trary position-dependent fragments, which results
in larger grammars and inferior performance.14

13The startegy of adding grammatical functions as state-
splits is used in, e.g., German (Rafferty and Manning, 2008).

14Due to the difference in the size of the grammars, one
could argue that smoothing will bridge the gap between
the HD and RR modeling strategies. However, the better
size/accuracy trade-off shown here for RR models suggests
that they provide a good bias/variance balancing point, es-
pecially for feature-rich models characterizing morphologi-

7 A Typological Detour

Hebrew, Arabic and other Semitic Languages are
known to be substantially different from English
in that English is stronglyconfigurational. In
configurational languages word-order is fixed, and
information about the grammatical functions of
constituents (e.g.,subjector object) is often cor-
related with structurally-marked positions inside
highly-nested constituency structures.Nonconfig-
urational languages (Hale, 1983), in contrast, al-
low for freedom in their word-ordering and infor-
mation about grammatical relations between con-
stituents is often marked by means ofmorphology.

Configurationalityis hardly a clear-cut notion.
The difference in the configurationality level of
different languages is often conceived as depicted
in figure 7. In linguistic typology, the branch
of linguistics that studies the differences between
languages (Song, 2001), the division of labor be-
tween linear ordering and morphological marking
in the realization of grammatical relations is of-
ten viewed as a continuum. Common wisdom has
it that the lower a language is on the configura-
tionality scale, the more morphological marking
we expect to be used (Bresnan, 2001, page 6).

For a statistical parser to cope with nonconfig-
urational phenomena as observed in, for instance,
Hebrew or German, it should allow for flexibil-
ity in the form of realization of the grammati-
cal functionswithin the phrase-structure represen-
tation of trees. Recent morphological theories
employ Form-Function separation as a widely-
accepted practice for enhancing the adequacy of
models describing variability in the realization of
grammaticalproperties. Our results suggest that
the adequacy of syntactic processing models is re-
lated to such typological insights as well, and is
enhanced by adopting a similar form-function sep-
aration for expressing grammaticalrelations.

cally rich languages. A promising strategy then would be to
smooth or split-and-merge (Petrov et al., 2006)) RR-based
models rather than to add an elaborate smoothing component
to configurationally-based HD models.
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configurational—————– nonconfigurational
Chinese>English>{German,Hebrew}>Warlpiri

Figure 5:The Configurationality Scale

The HD assumptions take the function of a con-
stituent to be transparently related to its formal
position, which entails word-order rigidity. Such
transparent relations between configurational po-
sitions and grammatical functions are assumed by
other kinds of parsing frameworks such as the ‘all-
subtrees’ approach of Data-Oriented Parsing, and
the distinction between left and right application
in CCG-based parsers.

The RR modeling strategy stipulates a strict
separation betweenform — parametrizing explic-
itly basic word-order (Greenberg, 1963) and mor-
phological realization (Greenberg, 1954) — and
function — parametrizing relational networks bor-
rowed from (Perlmutter, 1982) — which makes
it possible to statistically learn complex form-
function mapping reflected in the data. This is
an adequate means to capture, e.g., morphosyn-
tactic interactions, which characterize theless-
configurationallanguages on the scale.

8 Conclusion

In our comparison of the HD and RR modeling
approaches, the RR approach is shown to be em-
pirically superior and typologically more adequate
for parsing a language exhibiting word-order vari-
ation interleaved with extended morphology. HD
models are less accurate and more vulnerable to
sparseness as they assume transparent mappings
between form and function, based onleft andright
decompositions hard-wired in the HD representa-
tion. RR models, in contrast, employform and
function separation which allows the statistical
model to learn complex correspondance patterns
reflected in the data. In the future we plan to in-
vestigate how the different models fare against one
another in parsing different languages. In particu-
lar we wish to examine whether parsing different
languages should be pursued by different models,
or whether the RR strategy can effectively cope
with different languages types. Finally, we wish
to explore the implications of RR modeling for
applications that consider the form of expression
in multiple languages, for instanceStatistical Ma-
chine Translation (SMT).
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Abstract

Sets of lexical items sharing a significant
aspect of their meaning (concepts) are fun-
damental in linguistics and NLP. Manual
concept compilation is labor intensive, er-
ror prone and subjective. We present a
web-based concept extension algorithm.
Given a set of terms specifying a concept
in some language, we translate them to
a wide range of intermediate languages,
disambiguate the translations using web
counts, and discover additional concept
terms using symmetric patterns. We then
translate the discovered terms back into
the original language, score them, and ex-
tend the original concept by adding back-
translations having high scores. We eval-
uate our method in 3 source languages and
45 intermediate languages, using both hu-
man judgments and WordNet. In all cases,
our cross-lingual algorithm significantly
improves high quality concept extension.

1 Introduction

A concept (or lexical category) is a set of lex-
ical items sharing a significant aspect of their
meanings (e.g., types of food, tool names, etc).
Concepts are fundamental in linguistics and NLP,
in thesauri, dictionaries, and various applications
such as textual entailment and question answering.

Great efforts have been invested in manual
preparation of concept resources such as WordNet
(WN). However, manual preparation is labor in-
tensive, which means it is both costly and slow
to update. Applications needing data on some
very specific domain or on a recent news-related
event may find such resources lacking. In addition,
manual preparation is error-prone and susceptible
to subjective concept membership decisions, fre-
quently resulting in concepts whose terms do not

belong to the same level of granularity1. As a re-
sult, there is a need to find methods for automatic
improvement of concept coverage and quality.

The web is a huge up-to-date corpus covering
many domains, so using it for concept extension
has the potential to address the above problems.
The majority of web pages are written in a few
salient languages, hence most of the web-based in-
formation retrieval studies are done on these lan-
guages. However, due to the substantial growth of
the multilingual web2, languages in which concept
terms are expressed in the most precise manner
frequently do not match the language where in-
formation is needed. Moreover, representations of
the same concept in different languages may com-
plement each other.

In order to benefit from such cross-lingual in-
formation, concept acquisition systems should be
able to gather concept terms from many available
languages and convert them to the desired lan-
guage. In this paper we present such an algorithm.
Given a set of words specifying a concept in some
source language, we translate them to a range
of intermediate languages and disambiguate the
translations using web counts. Then we discover
additional concept terms using symmetric patterns
and translate the discovered terms back into the
original language. Finally we score the back-
translations using their intermediate languages’
properties, and extend the original concept by
adding back-translations having high scores. The
only language-specific resource required by the al-
gorithm are multilingual dictionaries, and its pro-
cessing times are very modest.

We performed thorough evaluation for 24 con-
cepts in 3 source languages (Hebrew, English and
Russian) and 45 intermediate languages. Concept
definitions were taken from existing WordNet sub-
trees, and the obtained new terms were manually

1See Section 5.1.1.
2http://www.internetworldstats.com/stats7.htm
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scored by human judges. In all cases we have sig-
nificantly extended the original concept set with
high precision. We have also performed a fully
automatic evaluation with 150 concepts, showing
that the algorithm can re-discover WN concepts
with high precision and recall when given only
partial lists as input.

Section 2 discusses related work, Section 3 de-
tails the algorithm, Section 4 describes the evalua-
tion protocol and Section 5 presents our results.

2 Related work

One of the main goals of this paper is the extension
or automated creation of lexical databases such
as WN. Due to the importance of WN for NLP
tasks, substantial research was done on direct or
indirect automated extension of the English WN
(e.g., (Snow et al., 2006)) or WN in other lan-
guages (e.g., (Vintar and Fišer, 2008)). The major-
ity of this research was done on extending the tree
structure (finding new synsets (Snow et al., 2006)
or enriching WN with new relationships (Cuadros
and Rigau, 2008)) rather than improving the qual-
ity of existing concept/synset nodes. Other re-
lated studies develop concept acquisition frame-
works for on-demand tasks where concepts are de-
fined by user-provided seeds or patterns (Etzioni et
al., 2005; Davidov et al., 2007), or for fully unsu-
pervised database creation where concepts are dis-
covered from scratch (Banko et al., 2007; Davi-
dov and Rappoport, 2006).

Some papers directly target specific applica-
tions, and build lexical resources as a side effect.
Named Entity Recognition can be viewed as an in-
stance of the concept acquisition problem where
the desired concepts contain words that are names
of entities of a particular kind, as done in (Fre-
itag, 2004) using co-clustering and in (Etzioni et
al., 2005) using predefined pattern types.

The two main algorithmic approaches to the
problem are pattern-based concept discovery and
clustering of context feature vectors. The latter
approach represents word contexts as vectors in
some space and uses similarity measures and au-
tomatic clustering in that space (Deerwester et al.,
1990). Pereira et al.(1993), Curran and Moens
(2002) and Lin (1998) use syntactic features in the
vector definition. Pantel and Lin (2002) improves
on the latter by clustering by committee. Cara-
ballo (1999) uses conjunction and appositive an-
notations in the vector representation. While great

effort has been made for improving the computa-
tional complexity of these methods (Gorman and
Curran, 2006), they still remain data and compu-
tation intensive.

The second major algorithmic approach is to
use lexico-syntactic patterns. Patterns have been
shown to produce more accurate results than fea-
ture vectors, at a lower computational cost on large
corpora (Pantel et al., 2004). In concept acquisi-
tion, pattern-based methods were shown to out-
perform LSA by a large margin (Widdows and
Dorow, 2002). Since (Hearst, 1992), who used a
manually prepared set of initial lexical patterns in
order to acquire relationships, numerous pattern-
based methods have been proposed for the discov-
ery of concepts from seeds (Pantel et al., 2004;
Davidov et al., 2007; Pasca et al., 2006). Most of
these studies were done for English, while some
show the applicability of their methods to other
languages, including Greek, Czech, Slovene and
French.

Most of these papers attempt to discover con-
cepts from data available in some specific lan-
guage. Recently several studies have proposed to
utilize a second language or several specified lan-
guages in order to extract or extend concepts (Vin-
tar and Fišer, 2008; van der Plas and Tiedemann,
2006) or paraphrases (Bosma and Callison-Burch,
2007). However, these methods usually require
the availability of parallel corpora, which limits
their usefulness. Most of these methods utilize
distributional measures, hence they do not possess
the advantages of the pattern-based framework.

Unlike in the majority of recent studies, where
the framework is designed with specific languages
in mind, in our task, in order to take advantage
of information from diverse languages, the algo-
rithm should be able to deal well with a wide va-
riety of possible intermediate languages without
any manual adaptations. Relying solely on mul-
tilingual dictionaries and the web, our algorithm
should be able to discover language-specific pat-
terns and concept terms. While some of the pro-
posed frameworks could potentially be language-
independent, little research has been done to con-
firm this. There are a few obstacles that may
hinder applying common pattern-based methods
to other languages. Many studies utilize parsing
or POS tagging, which frequently depend on the
availability and quality of language-specific tools.
Some studies specify seed patterns in advance, and
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it is not clear whether translated patterns can work
well on different languages. Also, the absence of
clear word segmentation in some languages (e.g.,
Chinese) can make many methods inapplicable.

A few recently proposed concept acquisition
methods require only a handful of seed words and
no pattern pre-specification (Davidov et al., 2007;
Pasca and Van Durme, 2008). While these studies
avoid some of the obstacles above, it still remains
open whether such methods are indeed language-
independent. In the translation to intermediate lan-
guages part of our framework, we adapt the algo-
rithms in (Davidov and Rappoport, 2006; Davi-
dov et al., 2007) to suit diverse languages (includ-
ing ones without explicit word segmentation). We
also develop a method for efficient automated dis-
ambiguation and translation of terms to and from
any available intermediate language.

Our study is related to cross-language infor-
mation retrieval (CLIR/CLEF) frameworks. Both
deal with information extracted from a set of lan-
guages. However, the majority of CLIR stud-
ies pursue different targets. One of the main
CLIR goals is the retrieval of documents based
on explicit queries, when the document lan-
guage is not the query language (Volk and Buite-
laar, 2002). These frameworks usually develop
language-specific tools and algorithms including
parsers and taggers in order to integrate multilin-
gual queries and documents (Jagarlamudi and Ku-
maran, 2007). Our goal is to develop a language-
independent method using cross-lingual informa-
tion, for the extension and improvement of con-
cepts rather than the retrieval of documents. Be-
sides, unlike in many CLIR frameworks, interme-
diate languages are not specified in advance and
the language of requested data is the same as the
language of request, while available information
may be found in many different intermediate lan-
guages.

3 The Algorithm

Our algorithm is comprised of the following
stages: (1) given a set of words in a source lan-
guage as a specification for some concept, we au-
tomatically translate them to a diverse set of inter-
mediate languages, using multilingual dictionar-
ies; (2) the translations are disambiguated using
web counts; (3) for each language, we retrieve a
set of web snippets where these translations co-
appear and apply a pattern-based concept exten-

sion algorithm for discovering additional terms;
(4) we translate the discovered terms back to the
source language, and disambiguate them; (5) we
score the back-translated terms using data on their
behavior in the intermediate languages, and merge
the sets obtained from different languages into a
single one, retaining terms whose score passes a
certain threshold. Stages 1-3 of the algorithm have
been described in (Davidov and Rappoport, 2009),
where the goal was to translate a concept given in
one language to other languages. The framework
presented here includes the new stages 4-5, and its
goal and evaluation methods are completely dif-
ferent.

3.1 Concept specification and translation
We start from a set of words denoting a concept in
a given source language. Thus we may use words
like (apple, banana, ...) as the definition of the
concept of fruit or (bear, wolf, fox, ...) as the def-
inition of wild animals. In order to reduce noise,
we limit the length (in words) of multiword ex-
pressions considered as terms. To calculate this
limit for a language, we randomly take 100 terms
from the appropriate dictionary and set a limit
as Limmwe = round(avg(length(w))) where
length(w) is the number of words in term w. For
languages like Chinese without inherent word seg-
mentation, length(w) is the number of characters
in w. While for many languages Limmwe = 1,
some languages like Vietnamese usually require
two or more words to express terms.

3.2 Disambiguation of translated terms
One of the problems in utilization of multilingual
information is ambiguity of translation. First, in
order to apply the concept acquisition algorithm,
at least some of the given concept terms must be
automatically translated to each intermediate lan-
guage. In order to avoid reliance on parallel cor-
pora, which do not exist or are extremely small for
most of our language pairs, we use bilingual dic-
tionaries. Such dictionaries usually provide many
translations, one or more for each sense, so this
translation is inherently fuzzy. Second, once we
acquire translated term lists for each intermedi-
ate language, we need to translate them back to
the source language and such back-translations are
also fuzzy. In both cases, we need to select the ap-
propriate translation for each term.

While our desire would be to work with as many
languages as possible, in practice, some or even
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most of the concept terms may be absent from the
appropriate dictionary. Such concept terms are ig-
nored.

One way to deal with ambiguity is by applying
distributional methods, usually requiring a large
single-language corpus or, more frequently, paral-
lel corpora. However, such corpora are not readily
available for many languages and domains. Ex-
tracting such statistical information on-demand is
also computationally demanding, limiting its us-
ability. Hence, we take a simple but effective
query-based approach. This approach, while be-
ing powerful as we show in the evaluation, only
relies on a few web queries and does not rely on
any language-specific resources or data.

We use the conjecture that terms of the same
concept tend to co-appear more frequently than
ones belonging to different concepts3. Thus, we
select a translation of a term co-appearing most
frequently with some translation of a different
term of the same concept. We estimate how well
translations of different terms are connected to
each other. Let C = {Ci} be the given seed
words for some concept. Let Tr(Ci, n) be the
n-th available translation of word Ci and Cnt(s)
denote the web count of string s obtained by a
search engine. We select a translation Tr(Ci)
according to:

F (w1, w2) =
Cnt(“w1 ∗ w2”)× Cnt(“w2 ∗ w1”)

Cnt(w1)× Cnt(w2)

Tr(Ci) =
argmax

si

(
max
sj

j 6=i
(F (Tr(Ci, si), T r(Cj , sj)))

)
We utilize the Y ahoo! “x * y”,“x * * y” wild-

cards that allow to count only co-appearances
where x and y are separated by a single word or
word pair. As a result, we obtain a set of disam-
biguated term translations. This method is used
both in order to translate from the source lan-
guage to each intermediate language and to back-
translate the newly discovered concept terms from
the intermediate to the source language.

The number of queries in this stage depends on
the ambiguity of the concept terms’ translations.
In order to decrease the amount of queries, if there
are more than three possible senses we sort them
by frequency4 and take three senses with medium
frequency. This allows us to skip the most ambigu-
ous and rare senses without any significant effect
on performance. Also, if the number of combina-

3Our results here support this conjecture.
4Frequency is estimated by web count for a given word.

tions is still too high (>30), we randomly sample
at most 30 of the possible combinations.

3.3 Pattern-based extension of concept terms
in intermediate languages

We first mine the web for contexts containing
the translations. Then we extract from the re-
trieved snippets contexts where translated terms
co-appear, and detect patterns where they co-
appear symmetrically. Then we use the detected
patterns to discover additional concept terms. In
order to define word boundaries, for each language
we manually specify boundary characters such as
punctuation/space symbols. This data, along with
dictionaries, is the only language-specific data in
our framework.

Web mining for translation contexts. In order
to get language-specific data, we need to restrict
web mining each time to the processed interme-
diate language. This restriction is straightforward
if the alphabet or term translations are language-
specific or if the search API supports restriction to
this language5. In case where there are no such
natural restrictions, we attempt to detect and add
to our queries a few language-specific frequent
words. Using our dictionaries, we find 1–3 of the
15 most frequent words in a desired language that
are unique to that language, and we ‘and’ them
with the queries to ensure proper language selec-
tion. This works well for almost all languages (Es-
peranto being a notable exception).

For each pairA,B of disambiguated term trans-
lations, we construct and execute the following
two queries: {“A * B”, “B * A”}6. When we
have 3 or more terms we also add {A B C D}-like
conjunction queries which include 3-5 words. For
languages with Limmwe > 1, we also construct
queries with several “*” wildcards between terms.
For each query we collect snippets containing text
fragments of web pages. Such snippets frequently
include the search terms. Since Y ahoo! Boss al-
lows retrieval of up to the 1000 first results (50 in
each query), we collect several thousands snippets.
For most of the intermediate languages, only a few
dozen queries (40 on the average) are required to
obtain sufficient data, and queries can be paral-
lelized. Thus the relevant data can be downloaded

5Yahoo! allows restriction for 42 languages.
6These are Yahoo! queries where enclosing words in “”

means searching for an exact phrase and “*” means a wild-
card for exactly one arbitrary word.
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in seconds. This makes our approach practical for
on-demand retrieval or concept verification tasks.

Meta-patterns. Following (Davidov et al.,
2007), we seek symmetric patterns to retrieve
concept terms. We use two meta-pattern types.
First, a Two-Slot pattern type constructed as
follows:

[Prefix] C1 [Infix] C2 [Postfix]

Ci are slots for concept terms. We allow up to
Limmwe space-separated7 words to be in a sin-
gle slot. Infix may contain punctuation, spaces,
and up to Limmwe × 4 words. Prefix and Post-
fix are limited to contain punctuation characters
and/or Limmwe words.

Terms of the same concept frequently co-appear
in lists. To utilize this, we introduce two additional
List pattern types8:

[Prefix] C1 [Infix] (Ci [Infix])+ (1)

[Infix] (Ci [Infix])+ Cn [Postfix] (2)

Following (Widdows and Dorow, 2002), we define
a pattern graph. Nodes correspond to terms and
patterns to edges. If term pair (w1, w2) appears
in pattern P , we add nodes Nw1 , Nw2 to the graph
and a directed edgeEP (Nw1 , Nw2) between them.

Symmetric patterns. We consider only sym-
metric patterns. We define a symmetric pat-
tern as a pattern where some concept terms
Ci, Cj appear both in left-to-right and right-to-
left order. For example, if we consider the
terms {apple, pineapple} we select a List pattern
“(one Ci, )+ and Cn.” if we find both “one apple,
one pineapple, one guava and orange.” and “one
watermelon, one pineapple and apple.”. If no such
patterns are found, we turn to a weaker definition,
considering as symmetric those patterns where the
same terms appear in the corpus in at least two dif-
ferent slots. Thus, we select a pattern “for C1 and
C2” if we see both “for apple and guava,” and “for
orange and apple,”.

Retrieving concept terms. We collect terms in
two stages. First, we obtain “high-quality” core
terms and then we retrieve potentially more noisy
ones. At the first stage we collect all terms9 that

7As before, for languages without space-based word sep-
aration Limmwe limits the number of characters instead.

8(E)+ means one or more instances of E.
9We do not consider as terms the 50 most frequent words.

are bidirectionally connected to at least two differ-
ent original translations, and call them core con-
cept terms Ccore. We also add the original ones as
core terms. Then we detect the rest of the terms
Crest that are connected to the core stronger than
to the remaining words, as follows:
Gin(c)={w∈Ccore|E(Nw, Nc) ∨ E(Nc, Nw)}
Gout(c)={w/∈Ccore|E(Nw, Nc) ∨ E(Nc, Nw)}
Crest={c||Gin(c)|>|Gout(c)|}

For the sake of simplicity, we do not attempt to
discover more patterns/instances iteratively by re-
querying the web. If we have enough data, we use
windowing to improve result quality. If we obtain
more than 400 snippets for some concept, we di-
vide the data into equal parts, each containing up
to 400 snippets. We apply our algorithm indepen-
dently to each part and select only the words that
appear in more than one part.

3.4 Back-translation and disambiguation

At the concept acquisition phase of our framework
we obtained sets of terms for each intermediate
language, each set representing a concept. In or-
der to be useful for the enhancement of the origi-
nal concept, these terms are now back-translated to
the source language. We disambiguate each back-
translated term using the process described in Sec-
tion 3.2. Having sets of back-translated terms for
each intermediate language, our goal is to combine
these into a single set.

3.5 Scoring and merging the back
translations

We do this merging using the following scoring
strategy, assigning for each proposed term t′ in
concept C the score S(t′, C), and selecting terms
with S(t′, C) > H where H is a predefined
threshold.

Our scoring is based on the two following con-
siderations. First, we assume that terms extracted
from more languages tend to be less noisy and
language-dependent. Second, we would like to fa-
vor languages with less resources for a given con-
cept, since noise empirically appears to be less
prominent in such languages10.

For language L and concept C = {t1 . . . tk}
we get a disambiguated set of translations
{Tr(t1, L) . . . T r(tk, L)}. We define relative lan-

10Preliminary experimentation, as well as the evaluation
results presented in this paper, support both of these consid-
erations.
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guage frequency by

LFreq(L,C) =

∑
ti∈C(Freq(Tr(ti, L)))∑

L′,ti∈C(Freq(Tr(ti, L′))

where Freq(Tr(ti, L)) is a frequency of term’s ti
translation to language L estimated by the num-
ber of web hits. Thus languages in which trans-
lated concept terms appear more times will get
higher relative frequency, potentially indicating a
greater concept translation ambiguity. Now, for
each new term t′ discovered through LNum(t′)
different languages L1 . . . LLNum(t′) we calculate
a term score 11 S(t′, C):

S(t′, C) = LNum(t′)·
(

1−
∑

i

LFreq(Li, C)

)
For each discovered term t′, S(t′, C) ∈

[0, LNum(t′)], while discovery of t′ in less fre-
quent languages will cause the score to be closer to
LNum(t′). So terms appearing in a greater num-
ber of infrequent languages will get higher scores.

After the calculation of score for each proposed
term, we retain terms whose scores are above the
predefined threshold H . In our experiments we
have used H = 3, usually meaning that acquisi-
tion of a term through 3-4 uncommon intermedi-
ate languages should be enough to accept it. The
same score measure can also be used to filter out
“bad” terms in an already existing concept.

4 Experimental Setup

We describe here the languages, concepts and dic-
tionaries we used in our experiments.

4.1 Languages and concepts
One of the main goals in this research is to take
advantage of concept data in every possible lan-
guage. As intermediate languages, we used 45 lan-
guages including major west European languages
like French or German, Slavic languages like Rus-
sian, Semitic languages as Hebrew and Arabic,
and diverse Asian languages such as Chinese and
Persian. To configure parameters we have used a
set of 10 concepts in Russian as a development set.
These concepts were not used in evaluation.

We examined a wide variety of concepts and for
each of them we used all languages with available
translations. Table 1 shows the resulting top 10
most utilized languages in our experiments.

11In this expression i runs only on languages with term t′

hence the summation is not 1.

English Russian Hebrew
German(68%) English(70%) English(66%)
French(60%) German(62%) German(65%)
Italian(60%) French(62%) Italian(61%)
Portuguese(57%) Spanish(58%) French(59%)
Spanish(55%) Italian(56%) Spanish(57%)
Turkish(51%) Portuguese(54%) Portuguese(57%)
Russian(50%) Korean(50%) Korean(48%)
Korean(46%) Turkish(49%) Russian(43%)
Chinese(45%) Chinese(47%) Turkish(43%)
Czech(42%) Polish (44%) Czech(40%)

Table 1: The ten most utilized intermediate languages in
our experiments. In parentheses we show the percentage of
new terms that these languages helped discover.

We have used the English, Hebrew (Ordan and
Winter, 2008) and Russian (Gelfenbeynand et al.,
2003) WordNets as sources for concepts and for
the automatic evaluation. Our concept set selec-
tion was based on English WN subtrees. To per-
form comparable experiments with Russian and
Hebrew, we have selected the same subtrees in
the Hebrew and Russian WN. Concept definitions
given to human judges for evaluation were based
on the corresponding WN glosses. For automated
evaluation we selected 150 synsets/subtrees con-
taining at least 10 single word terms (existing in
all three tested languages).

For manual evaluation we used a subset of 24
of these concepts. In this subset we tried to select
generic concepts manually, such that no domain
expert knowledge was required to check their cor-
rectness. Ten of these concepts were identical to
ones used in (Widdows and Dorow, 2002; Davi-
dov and Rappoport, 2006), which allowed us to
compare our results to recent work in case of En-
glish. Table 2 shows these 10 concepts along with
the sample terms. While the number of tested con-
cepts is not very large, it provides a good indica-
tion for the quality of our approach.

Concept Sample terms
Musical instruments guitar, flute, piano
Vehicles/transport train, bus, car
Academic subjects physics, chemistry, psychology
Body parts hand, leg, shoulder
Food egg, butter, bread
Clothes pants, skirt, jacket
Tools hammer, screwdriver, wrench
Places park, castle, garden
Crimes murder, theft, fraud
Diseases rubella, measles, jaundice

Table 2: Ten of the selected concepts with sample terms.
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4.2 Multilingual dictionaries

We developed tools for automatic access to a num-
ber of dictionaries. We used Wikipedia cross-
language links as our main source (> 60%) for
offline translation. These links include translation
of Wikipedia terms into dozens of languages. The
main advantage of using Wikipedia is its wide cov-
erage of concepts and languages. However, one
problem it has is that it frequently encodes too
specific senses and misses common ones (bear is
translated as family Ursidae, missing its common
“wild animal” sense). To overcome these difficul-
ties, we also used Wiktionary and complemented
these offline resources with automated queries to
several (25) online dictionaries. We start with
Wikipedia definitions, then Wiktionary, and then,
if not found, we turn to online dictionaries.

5 Evaluation and Results

Potential applications of our framework include
both the extension of existing lexical databases
and the construction of new databases from a small
set of seeds for each concept. Consequently, in
our evaluation we aim to check both the ability
to extend nearly complete concepts and the abil-
ity to discover most of the concept given a few
seeds. Since in our current framework we extend
a small subset of concepts rather than the whole
database, we could not utilize application-based
evaluation strategies such as performance in WSD
tasks (Cuadros and Rigau, 2008).

5.1 Human judgment evaluation

In order to check how well we can extend existing
concepts, we count and verify the quality of new
concept terms discovered by the algorithm given
complete concepts from WN. Performing an auto-
matic evaluation of such new terms is a challeng-
ing task, since there are no exhaustive term lists
available. Thus, in order to check how well newly
added terms fit the concept definition, we have to
use human judges.

We provided four human subjects with 24 lists
of newly discovered terms, together with original
concept definitions (written as descriptive natural
language sentences) and asked them to rank (1-10,
10 being best) how well each of these terms fits
the given definition. We have instructed judges to
accept common misspellings and reject words that
are too general/narrow for the provided definition.

We mixed the discovered terms with equal

amounts of terms from three control sets: (1) terms
from the original WN concept; (2) randomly se-
lected WN terms; (3) terms obtained by apply-
ing the single-language concept acquisition algo-
rithm described in Section 3.3 in the source lan-
guage. Kappa inter-annotator agreement scores
were above 0.6 for all tests below.

5.1.1 WordNet concept extension
The middle column of Table 3 shows the judge
scores and average amount of added terms for
each source language. In this case the algorithm
was provided with complete term lists as con-
cept definitions, and was requested to extend these
lists. We can see that while the scores for original
WN terms are not perfect (7/10), single-language
and cross-lingual concept extension achieve nearly
the same scores. However, the latter discovers
many more new concept terms without reducing
quality. The difference becomes more substan-
tial for Hebrew, which is a resource-poor source
language, heavily affecting the performance of
single-language concept extension methods.

The low ranks for WN reflect the ambiguity of
definition of some of its classification subtrees.
Thus, for the ‘body part’ concept defined in Word-
Net as “any part of an organism such as an or-
gan or extremity” (which is not supposed to re-
quire domain-specific knowledge to identify) low
scores were given (correctly) by judges to generic
terms such as tissue, system, apparatus and pro-
cess (process defined in WN as “a natural pro-
longation or projection from a part of an organ-
ism”), positioned in WN as direct hyponyms of
body parts. Low scores were also given to very
specific terms like “saddle” (posterior part of the
back of a domestic fowl) or very ambiguous terms
like “small” (the slender part of the back).

5.1.2 Seed-based concept extension
The rightmost column of Table 3 shows similar in-
formation to the middle column, but when only
the three most frequent terms from the original
WN concept were given as concept definitions.
We can see that even given three words as seeds,
the cross-lingual framework allows to discover
many new terms. Surprisingly, terms extracted by
the cross-lingual framework achieve significantly
higher scores not only in comparison to the single-
language algorithm but also in comparison to ex-
isting WN terms. Thus while the “native” WN
concept and single-language concept extension re-
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sults get a score of 7/10, terms obtained by the
cross-lingual framework obtain an average score
of nearly 9/10.

This suggests that our cross-lingual framework
can lead to better (from a human judgment point
of view) assignment of terms to concepts, even in
comparison to manual annotation.

Input
all terms 3 terms

English
WordNet 7.2 7.2
Random 1.8 1.8
SingleLanguage 7.0(10) 7.8(18)
Crosslingual 6.9(19) 8.8(26)

Russian
WordNet 7.8 7.8
Random 1.9 1.9
SingleLanguage 7.4(10) 8.1(16)
Crosslingual 7.6(21) 9.0(29)

Hebrew
WordNet 7.0 7.0
Random 1.3 1.3
SingleLanguage 6.5(4) 7.5(6)
Crosslingual 6.8(18) 8.9(24)

Table 3: Human judgment scores for concept extension in
three languages (1 . . . 10, 10 is best). The WordNet, Random
and SingleLanguage rows provide corresponding baselines.
Average count of newly added terms are shown in parenthe-
ses. Average original WN concept size in this set was 36 for
English, 32 for Russian and 27 for Hebrew.

5.2 WordNet-based evaluation
While human judgment evaluation provides a
good indication for the quality of our framework,
it has severe limitations. Thus terms in many con-
cepts require domain expertise to be properly la-
beled. We have complemented human judgment
evaluation with automated WN-based evaluation
with a greater (150) number of concepts. For each
of the 150 concepts, we have applied our frame-
work on a subset of the available terms, and esti-
mated precision and recall of the resulting term list
in comparison to the original WN term list. The
evaluation protocol and metrics were very simi-
lar to (Davidov and Rappoport, 2006; Widdows
and Dorow, 2002) which allowed us to do indirect
comparison to previous work.

Table 4 shows precision and recall for this task
comparing single-language concept extension and
the cross-lingual framework. We can see that
in all cases, utilization of the latter greatly im-
proves recall. It also significantly outperforms
the single-language pattern-based method intro-
duced by (Davidov and Rappoport, 2006), which
achieves average precision of 79.3 on a similar set

in English (in comparison to 86.7 in this study).
We can also see a decrease in precision when the
algorithm is provided with 50% of the concept
terms as input and had to discover the remaining
50%. However, careful examination of the results
shows that this decrease is due to discovery of ad-
ditional correct terms not present in WordNet.

Input
50% terms 3 terms

P R F P R F
English
SingleLanguage 89.2 75.9 82.0 80.6 15.2 25.6
CrossLingual 86.5 91.1 88.7 86.7 60.2 71.1
Russian
SingleLanguage 91.3 69.0 78.6 82.1 18.3 29.9
CrossLingual 84.9 86.2 85.5 85.3 62.1 71.9
Hebrew
SingleLanguage 93.8 38.6 54.7 90.2 5.7 10.7
CrossLingual 86.5 82.4 84.4 93.9 55.6 69.8

Table 4: WordNet-based precision (P) and recall (R) for
concept extension.

5.3 Contribution of each language
Each of the 45 languages we used influences the
score of at least 5% of the discovered terms. How-
ever, it is not apparent if all languages are indeed
beneficial or if only a handful of languages can
be used. In order to check this point we have per-
formed partial automated tests as described in Sec-
tion 5.2, removing one language at a time. We also
tried to remove random subsets of 2-3 languages,
comparing them to removal of one of them. We
saw that in each case removal of more languages
caused a consistent (while sometimes minor) de-
crease both in precision and recall metrics. Thus,
each language contributes to the system.

6 Discussion

We proposed a framework which given a set of
terms defining a concept in some language, uti-
lizes multilingual information available on the
web in order to extend this list. This method
allows to take advantage of web data in many
languages, requiring only multilingual dictionar-
ies. Our method was able to discover a substan-
tially greater number of terms than state-of-the-art
single language pattern-based concept extension
methods, while retaining high precision.

We also showed that concepts obtained by this
method tend to be more coherent in compari-
son to corresponding concepts in WN, a man-
ually prepared resource. Due to its relative
language-independence and modest data require-
ments, this framework allows gathering required
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concept information from the web even if it is scat-
tered among different and relatively uncommon or
resource-poor languages.
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Abstract 

Bilingual dictionaries are vital resources in 

many areas of natural language processing. 

Numerous methods of machine translation re-

quire bilingual dictionaries with large cover-

age, but less-frequent language pairs rarely 

have any digitalized resources. Since the need 

for these resources is increasing, but the hu-

man resources are scarce for less represented 

languages, efficient automatized methods are 

needed. This paper introduces a fully auto-

mated, robust pivot language based bilingual 

dictionary generation method that uses the 

WordNet of the pivot language to build a new 

bilingual dictionary. We propose the usage of 

WordNet in order to increase accuracy; we 

also introduce a bidirectional selection method 

with a flexible threshold to maximize recall. 

Our evaluations showed 79% accuracy and 

51% weighted recall, outperforming represen-

tative pivot language based methods. A dic-

tionary generated with this method will still 

need manual post-editing, but the improved 

recall and precision decrease the work of hu-

man correctors. 

1 Introduction 

In recent decades automatic and semi-automatic 

machine translation systems gradually managed 

to take over costly human tasks. This much wel-

comed change can be attributed not only to major 

developments in techniques regarding translation 

methods, but also to important translation re-

sources, such as monolingual or bilingual dic-

tionaries and corpora, thesauri, and so on. How-

ever, while widely used language pairs can fully 

take advantage of state-of-the-art developments 

in machine translation, certain low-frequency, or 

less common language pairs lack some or even 

most of the above mentioned translation re-

sources. In that case, the key to a highly accurate 

machine translation system switches from the 

choice and adaptation of the translation method 

to the problem of available translation resources 

between the chosen languages. 

One possible solution is bilingual corpus ac-

quisition for statistical machine translation 

(SMT). However, for highly accurate SMT sys-

tems large bilingual corpora are required, which 

are rarely available for less represented lan-

guages. Rule or sentence pattern based systems 

are an attractive alternative, for these systems the 

need for a bilingual dictionary is essential. 

Our paper targets bilingual dictionary genera-

tion, a resource which can be used within the 

frameworks of a rule or pattern based machine 

translation system. Our goal is to provide a low-

cost, robust and accurate dictionary generation 

method. Low cost and robustness are essential in 

order to be re-implementable with any arbitrary 

language pair. We also believe that besides high 

precision, high recall is also crucial in order to 

facilitate post-editing which has to be performed 

by human correctors. For improved precision, we 

propose the usage of WordNet, while for good 

recall we introduce a bidirectional selection 

method with local thresholds. 

Our paper is structured as follows: first we 

overview the most significant related works, af-

ter which we analyze the problems of current 

dictionary generation methods. We present the 

details of our proposal, exemplified with the 

Japanese-Hungarian language pair. We evaluate 

the generated dictionary, performing also a com-

parative evaluation with two other pivot-

language based methods. Finally we present our 

conclusions. 

2 Related works 

2.1 Bilingual dictionary generation 

Various corpus based, statistical methods with 

very good recall and precision were developed 

starting from the 1980’s, most notably using the 
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Dice-coefficient (Kay & Röscheisen, 1993), cor-

respondence-tables (Brown, 1997), or mutual 

information (Brown et al., 1998).  

As an answer to the corpus-based method’s 

biggest disadvantage, namely the need for a large 

bilingual corpus, in the 1990’s Tanaka and 

Umemura (1994) presented a new approach. As a 

resource, they only use dictionaries to and from a 

pivot language to generate a new dictionary. 

These so-called pivot language based methods 

rely on the idea that the lookup of a word in an 

uncommon language through a third, intermedi-

ated language can be automated. Tanaka and 

Umemura’s method uses bidirectional source-

pivot and pivot-target dictionaries (harmonized 

dictionaries). Correct translation pairs are se-

lected by means of inverse consultation, a 

method that relies on counting the number of 

pivot language definitions of the source word, 

through which the target language definitions can 

be identified (Tanaka and Umemura, 1994).  

Sjöbergh (2005) also presented an approach to 

pivot language based dictionary generation. 

When generating his English pivoted Swedish-

Japanese dictionary, each Japanese-to-English 

description is compared with each Swedish-to-

English description. Scoring is based on word 

overlap, weighted with inverse document fre-

quency; the best matches being selected as trans-

lation pairs.  

These two approaches described above are the 

best performing ones that are general enough to 

be applicable with other language pairs as well. 

In our research we used these two methods as 

baselines for comparative evaluation.  

There are numerous refinements of the above 

methods, but for various reasons they cannot be 

implemented with any arbitrary language pair. 

Shirai and Yamamoto (2001) used English to 

design a Korean-Japanese dictionary, but be-

cause the usage of language-specific information, 

they conclude that their method ‘can be consid-

ered to be applicable to cases of generating 

among languages similar to Japanese or Korean 

through English’. In other cases, only a small 

portion of the lexical inventory of the language is 

chosen to be translated: Paik et al. (2001) pro-

posed a method with multiple pivots (English 

and Kanji/Hanzi characters) to translate Sino-

Korean entries. Bond and Ogura describe a Japa-

nese-Malay dictionary that uses a novel tech-

nique in its improved matching through normali-

zation of the pivot language, by means of seman-

tic classes, but only for nouns (2007). Besides 

English, they also use Chinese as a second pivot.  

2.2 Lexical database in lexical acquisition 

Large lexical databases are vital for many areas 

in natural language processing (NLP), where 

large amount of structured linguistic data is 

needed. The appearance of WordNet (Miller et 

al., 1990) had a big impact in NLP, since not 

only did it provide one of the first wide-range 

collections of linguistic data in electronic format, 

but it also offered a relatively simple structure 

that can be implemented with other languages as 

well. In the last decades since the first, English 

WordNet, numerous languages adopted the 

WordNet structure, thus creating a potential large 

multilingual network. The Japanese language is 

one of the most recent ones added to the Word-

Net family (Isahara et al. 2008), but the Hungar-

ian WordNet is still under development 

(Prószéky et al. 2001; Miháltz and Prószéky 

2004). 

Multilingual projects, such as EuroWordNet 

(Vossen 1998; Peters et al. 1998), Balkanet 

(Stamou et al. 2002) or Multilingual Central Re-

pository (Agirre et al. 2007) aim to solve numer-

ous problems in natural language processing. 

EuroWordNet was specifically designed for 

word disambiguation purposes in cross-language 

information retrieval (Vossen 1998). The internal 

structure of the multilingual WordNets itself can 

be a good starting point for bilingual dictionary 

generation. In case of EuroWordNet, besides the 

internal design of the initial WordNet for each 

language, an Inter-Lingual-Index interlinks word 

meaning across languages is implemented (Pe-

ters et al. 1998). However, there are two limita-

tions: first of all, the size of each individual lan-

guage database is relatively small (Vossen 1998), 

covering only the most frequent words in each 

language, thus not being sufficient for creating a 

dictionary with a large coverage. Secondly, these 

multilingual databases cover only a handful of 

languages, with Hungarian or Japanese not being 

part of them. Adding a new language would re-

quire the existence of a WordNet of that lan-

guage.  

3 Problems of current pivot language 

based methods 

3.1 Selection method shortcomings 

Previous pivot language based methods generate 

and score a number of translation candidates, and 

the candidate’s scores that exceed a certain pre-

defined global threshold are selected as viable 

translation pairs. However, the scores highly de-
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pend on the entry itself or the number of transla-

tions in the pivot language, therefore there is a 

variance in what that score represents. For this 

reason, a large number of good entries are en-

tirely left out from the dictionary, because all of 

their translation candidates scored low, while 

faulty translation candidates are selected, be-

cause they exceed the global threshold. Due to 

this effect the recall value drops significantly. 

3.2 Dictionaries not enough as resource 

Regardless of the language pair, in most cases 

the meanings of the corresponding words are not 

identical; they only overlap to a certain extent. 

Therefore, the pivot language based dictionary 

generation problem can be defined as the identi-

fication of the common elements or the extent of 

the relevant overlapping in the source-to-pivot 

and target-to-pivot definitions.  

Current methods perform a strictly lexical 

overlap of the source-pivot and target-pivot en-

tries. Even if the meanings of the source and tar-

get head words are transferred to the pivot lan-

guage, this is rarely done with the same set of 

words or definitions. Thus, due to the different 

word-usage or paraphrases, even semantically 

identical or very similar head words can have 

different definitions in different dictionaries. As 

a result, performing only lexical overlap, current 

methods cannot identify the differences between 

totally different definitions resulted by unrelated 

concepts, and differences in only nuances re-

sulted by lexicographers describing the same 

concept, but with different words.  

4 Proposed method 

4.1 Specifics of our proposal 

For higher precision, instead of the familiar lexi-

cal overlap of the current methods we calculate 

the semantically expanded lexical overlap of the 

source-to-pivot and target-to-pivot translations. 

In order to do that, we use semantic information 

extracted from the WordNet of the pivot lan-

guage. 

To improve recall, we introduce bidirectional 

selection. As we stated above, the global thresh-

old eliminates a large number of good translation 

pairs, resulting in a low recall. As a solution, we 

can group the translations that share the same 

source or target entry, and set local thresholds 

for each head word. For example, for a source 

language head word entry_source there could be 

multiple target language candidates:  en-

try_target1, … ,entry_targetn. If the top scoring 

entry_targetk candidates are selected, we ensure 

that at least one translation will be available for 

entry_source, maintaining a high recall. Since we 

can group the entries in the source language and 

target language as well, we perform this selection 

twice, once in each direction. Local thresholds 

depend on the top scoring entry_target, being set 

to maxscore·c. Constant c varies between 0 and 1, 

allowing a small window not only for the maxi-

mum, but high scoring candidates as well. It is 

language and selection method dependent (see 

§5.1 for details). 

4.2 Translation resources 

As an example of a less-common language pair, 

we have chosen Japanese and Hungarian. For 

translation candidate generation, we have chosen 

two freely available dictionaries with English as 

the pivot language. The Japanese-English dic-

tionary had 197282, while the Hungarian-English 

contained 189331 1-to-1 entry pairs. The Japa-

nese-English dictionary had part-of-speech 

(POS) information as well, but to ensure robust-

ness, our method does not use this information.  

To select from the translation candidates, we 

mainly use WordNet (Miller et. al., 1990). From 

WordNet we consider four types of information: 

sense categorization, synonymy, antonymy and 

semantic categories provided by the tree struc-

ture of nouns and verbs.  

4.3 Dictionary generation method 

Our proposed method consists of two steps. In 

step 1 we generate a number of translation pair 

candidates, while in step 2 we score and select 

from them based on semantic information ex-

tracted from WordNet.  

Step 1: translation candidate generation 

Using the source-pivot and pivot-target diction-

aries, we connect the source and target entries 

that share at least one common translation in the 

pivot language. We consider each source-target 

pair a translation candidate. With our Japanese-

English and English-Hungarian dictionaries we 

accumulated 436966 Japanese-Hungarian trans-

lation candidates. 

Step 2: translation pair selection 

We examine the translation candidates one by 

one, looking up the source-pivot and target-pivot 

dictionaries, comparing the translations in the 

pivot language. There are six types of transla-

tions that we label A-F and explain below. First, 
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we perform a strictly lexical match based only on 

the dictionaries. Next, using information ex-

tracted from WordNet we attempt to identify the 

correct translation pairs.     

(a) Lexically unambiguous translation pairs 

Some of the translation candidates have exactly 

the same translations into in the pivot language; 

we consider these pairs as being correct by de-

fault. Also among the translation candidates we 

identified a number of source entries that had 

only one target translation; and a number of tar-

get entries that had only one source translation. 

Being the sole candidates for the given entries, 

we consider these pairs too as being correct. 

37391 Japanese-Hungarian translation pairs were 

retrieved with this method (type A pairs). 

(b) Using sense description 

For most polysemous words WordNet has de-

tailed descriptions with synonyms for each sense. 

We use these synonyms of WordNet’s sense de-

scriptions to disambiguate the meanings of the 

common translations. For a given source-target 

translation candidate (s,t) we look up the source-

pivot and target-pivot translations 

(s→I={s→i1,…,s→in} and 

t→I={t→i1,…,t→im}). We select the elements 

that are common in the two definitions 

(I’=(s→I)∩(t→I)) and we look up their respec-

tive senses from WordNet (sns(I’)). We identify 

the words’ senses comparing each synonym in 

the WordNet’s synonym description with each 

word from the dictionary definition. As a result, 

for each common word we arrive at a certain set 

of senses from the source-pivot definitions 

(sns((s→I’)) and a certain set of senses from the 

target-pivot definitions (sns((t→I’)). We mark 

scoreB(s,t) the maximum ratio of the identical 

and total number of identified senses (Jaccard 

coefficient). The higher the scoreB(s,t) is, the 

more probable is candidate (s,t) a valid transla-

tion. 

( )
( ) ( )

( ) ( )

( ) ( )''

''
max,

' itsnsissns

itsnsissns
tsscore

ItIsi
B

→∪→

→∩→

=

→∩→∈

 (1) 

For example, 正解 (seikai: correct, right, cor-

rect interpretation) and helyes (correct, proper, 

right, appropriate) have two common transla-

tions (I’={right, correct}), thus scoreB(s,t) can be 

performed with these two words. The adjective 

right has 13 senses according to WordNet, 

among them 4 were identified from the Japanese 

to English definition (sns(right)={#1, #3, #5, 
#10}, all identified through correct) and 5 from 

the Hungarian to English definition 

(sns(right)={#1, #3, #5, #6, #10}, through cor-

rect or proper). As a result, 4 senses are com-

mon, and 1 is different. Thus the adjective right’s 

score is 0.8 (scoreB(s,t)[right](正解,helyes)). The 

adjective correct has 4 senses, all of them are 

recognized by both definitions through right, 

therefore the score through correct is 1 

(scoreB(s,t)[correct](正解 ,helyes)). The maxi-

mum of the above scores is the final score: 

scoreB(s,t)(正解,helyes)=1. 

All translation candidates are verified based 

on all four POS available from WordNet. Since 

synonymy information is available for nouns (N), 

verbs (V), adjectives (A) and adverbs (R), four 

separate scores are calculated for each POS. 

Scores that pass a global threshold are consid-

ered correct. 33971 Japanese-Hungarian candi-

dates (type B translations) were selected, with 

these two languages the global threshold was set 

to 0.1. Even this low value ensures that at least 

one of ten meanings is shared by the two entries 

of the pair, thus being suitable as translation pair. 

(c) Using synonymy, antonymy and semantic 

categories 

We expand the source-to-pivot and target-to-

pivot definitions with information from WordNet 

(synonymy, antonymy and semantic category, 

respectively). Thus the similarity of the two ex-

panded pivot language descriptions gives a better 

indication on the suitability of the translation 

candidate. Using the three relations, the common 

versus total number of translations (Jaccard coef-

ficient) will define the appropriateness of the 

translation candidate. 

( )
( ) ( )

( ) ( )itextisext

itextisext
tsscore EDC

→∪→

→∩→

=,,,
 (2) 

Since the same word or concept’s translations 

into the pivot language also share the same se-

mantic value, the extension with synonyms 

(ext(l→i)=(l→i)∪syn(l→i), where l={s,t}) the 

extended translation should share more common 

elements.  

In case of antonymy, we expand the initial 

definitions with the antonyms of the antonyms 

(ext(l→i)=(l→i)∪ant(ant(l→i)), where l={s,t}). 
This extension is different from the synonymy 

extension, in most cases the resulting set of 

words being considerably larger. 

Along with synonymy, antonymy is also avail-

able for nouns, verbs, adjectives and adverbs, 

four separate scores are calculated for each POS. 
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Semantic categories are provided by the tree 

structure (hypernymy/hyponymy) of nouns and 

verbs of WordNet. We transpose each entry from 

the pivot translations to its semantic categories 

(ext(l→i)=Σsemcat(l→i), where l={s,t}). We as-

sume that the correct translation pairs share a 

high percentage of semantic categories. Accord-

ingly, the translations of semantically similar or 

identical entries should share a high number of 

common semantic categories. 

The scores based on these relations highly de-

pend on the number of pivot language transla-

tions; therefore we use the bidirectional selection 

method with local thresholds for each source and 

target head word. Local thresholds are set based 

on the best scoring candidate for a given entry. 

The thresholds were maxscore·0.9 for synonymy 

and antonymy; and maxscore·0.8 for the seman-

tic categories (see §5.1 for details). 

Using synonymy, 196775 candidate pairs 

(type C), with antonymy 99614 pairs (type D); 

while with semantic categories 195480 pairs 

(type E) were selected. 

(d) Combined semantic information 

The three separate lists of type C, D and E selec-

tion methods resulted in slightly different results, 

proving that they cannot be used as standalone 

selection methods (see §5.2 for details). 

Because of the multiple POS labelling of nu-

merous words in WordNet, many translation 

pairs can be selected up to four times based on 

separate POS information (noun, verb, adjective, 

adverb), all within one single semantic informa-

tion based methods. Since we use a bidirectional 

selection method, experiments showed that trans-

lation pairs that were selected during both direc-

tions, in most cases were the correct translations. 

Similarly, translation pairs selected during only 

one direction were less accurate. In other words, 

translation pairs whose target language transla-

tion was selected as a good translation for the 

source language entry; and whose source lan-

guage translation was also selected as a good 

translation for the target language entry, should 

be awarded with a higher score. In the same way, 

entries selected only during one direction should 

receive a penalty. For every translation candidate 

we select the maximum score from the several 

POS (noun, verb, adjective and adverb for syn-

onymy and antonymy relations; noun and verb 

for semantic category) based scores, multiplied 

by a multiplication factor (mfactor). The multi-

plication factor varies between 0 and 1, awarding 

the candidates that were selected both times dur-

ing the double directional selection; and punish-

ing when selection was made only in a single 

direction. The product gives the combined score 

(scoreF), c1, c2 and c3 are constants. In case of 

Japanese and Hungarian, these method scored 

best with the constants set to 1, 0.5 and 0.8, re-

spectively. The combined score also highly de-

pends on the word entry, therefore local thresh-

olds are used in this selection method as well, 

which were empirically set to maxscore·0.85 (see 

§5.1 for details). 
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As an example, for the Japanese entry 購入 

(kōnyū: buy, purchase) there are 10 possible 

Hungarian translations; using the above methods 

5 of them (#1, #7, #8, #9, #10) are selected as 

correct ones. Among these, only 1 of them (#1) 

is a correct translation, the rest have similar or 

totally different meanings. However, with the 

combined scores the faulty translations were 

eliminated and a new, correct, but previously 

average scoring translation (#2) was selected 

(Table 1). 

 

scoreC scoreD scoreE 
# translation candidate scoreF 

N V A R N V A R N V 

1 vétel (purchase) 2.012 0.193 0.096 0 0 0 0.500 0 0 0.154 0.500 

2 üzlet (business transaction) 1.387 0.026 0.030 0 0 0 0.250 0 0 0.020 0.077 

3 hozam (output, yield) 1.348 0.095 0.071 0 0 0 0 0 0 0.231 0.062 

4 emelőrúd (lever, purchase) 1.200 0.052 0.079 0 0 0 0 0 0 0.111 0.067 

5 előny (advantage, virtue) 1.078 0.021 0.020 0 0 0 0 0 0 0.054 0.056 

6 támasz (purchase, support) 1.053 0.014 0.015 0 0 0 0 0 0 0.037 0.031 

7 vásárlás (shopping) 0.818 0.153 0.285 0 0 0 0 0 0 0.273 0.200 

8 szerzemény (attainment) 0.771 0.071 0.285 0 0 0 0 0 0 0.136 0.200 

9 könnyítés (facilitation) 0.771 0.064 0.285 0 0 0 0 0 0 0.136 0.200 

10 emelőszerkezet (lever) 0.459 0.285 0.285 0 0 0 0 0 0 0.429 0.200 

Table 1: Translation candidate scoring for 購入: buy, purchase (above thresholds in bold) 
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161202 translation pairs were retrieved with 

this method (type F).  

During pre-evaluation type A and type B trans-

lations received a score of above 75%, while type 

C, type D and type E scored low (see §5.2 for 

details). However, type F translations scored 

close to 80%, therefore from the six translation 

methods presented above we chose only three 

(type A, B and F) to construct the dictionary, 

while the remaining three methods (type C, D 

and E) are used only indirectly for type F selec-

tion. 

With the described selection methods 187761 

translation pairs, with 48973 Japanese and 44664 

Hungarian unique entries was generated. 

5 Threshold settings and pre-evaluation 

5.1 Local threshold settings 

As development set we considered all translation 

candidates whose Hungarian entry starts with 

“zs” (IPA: ʒ). We assume that the behaviour of 

this subset of words reflects the behaviour of the 

entire vocabulary. 133 unique entries totalling 

515 translation candidates comprise this devel-

opment set. After this, we manually scored the 

515 translation candidates as correct (the transla-

tion conveys the same meaning, or the meanings 

are slightly different, but in a certain context the 

translation is possible) or wrong (the translation 

pair’s two entries convey a different meaning). 

The scoring was performed by one of the authors 

who is a native Hungarian and fluent in Japanese. 

273 entries were marked as correct. Next, we 

experimented with a number of thresholds to de-

termine which ones provide with the best F-

scores (Table 2). The F-scores were determined 

as follows: for example using synonymy infor-

mation (type C) in case of threshold=0.85%, 343 

of the 515 translation pairs were above the 

threshold. Among these, 221 were marked as 

correct by our manual evaluator, thus the preci-

sion being 221/343·100=64.43 and the recall be-

ing 221/273·100=80.95. F-score is the harmonic 

mean of precision and recall (71.75 in this case). 

 

threshold value (%) selection 

type 0.75 0.80 0.85 0.90 0.95 

C 70.27 70.86 71.75 72.81 66.95 

D 69.92 70.30 70.32 70.69 66.66 

E 73.71 74.90 72.52 71.62 65.09 

F 78.78 79.07 79.34 78.50 76.94 
Table 2: Selection type F-scores with varying thresh-

olds (best threshold values in bold) 

5.2 Selection method evaluation 

As a pre-evaluation of the above selection meth-

ods, we randomly selected 200 1-to-1 source-

target entries resulted by each method. The same 

evaluator scored the translation pairs as correct 

(the translation conveys the same meaning, or the 

meanings are slightly different, but in a certain 

context the translation is possible), undecided 

(the translation pair’s semantic value is similar, 

but a translation based on them would be faulty) 

or wrong (the translation pair’s two entries con-

vey a different meaning). 

 

evaluation score (%) selection 

type correct undecided wrong 

A 75.5 6.5 18 

B 83 7 10 

C 68 5.5 26.5 

D 60 9 31 

E 71 5.5 23.5 

F 79 5 16 
Table 3: Selection type evaluation 

The results showed that type A and type B selec-

tions scored higher than all order-based selec-

tions, with type C, type D and type E selections 

failing to deliver the desired accuracy (Table 3). 

6 Evaluation 

We performed three types of evaluation: 

(1) frequency-weighted recall evaluation 

(2) 1-to-1 entry precision evaluation 

(3) 1-to-multiple entry evaluation 

For comparative purposes we also performed 

each type of evaluation for two other pivot lan-

guage based methods whose characteristics per-

mit to be implementable with virtually any lan-

guage pair. In order to do so, we constructed two 

other Hungarian-Japanese dictionaries using the 

methods proposed by Tanaka & Umemura and 

Sjöbergh, using the same source dictionaries.  

6.1 Recall evaluation 

It is well known that one of the most challenging 

aspects of dictionary generation is word ambigu-

ity. It is relatively easy to automatically generate 

the translations of low-frequency keywords, be-

cause they tend to be less ambiguous. On the 

contrary, the ambiguity of the high frequency 

words is much higher than their low-frequency 

counterparts, and as a result conventional meth-

ods fail to translate a considerable number of 

them. However, this discrepancy is not reflected 

in the traditional recall evaluation, since each 
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word has an equal weight, regardless of its fre-

quency of use. As a result, we performed a fre-

quency weighted recall evaluation. We used a 

Japanese frequency dictionary (FD) generated 

from the Japanese EDR corpus (Isahara, 2007) to 

weight each Japanese entry. Setting the standard 

to the frequency dictionary (its recall value being 

100), we automatically search for each entry (w) 

from the frequency dictionary, looking whether 

or not it is included in the bilingual dictionary 

(WD). If it is recalled, we weight it with its fre-

quency from the frequency dictionary. 

( )

( )
100⋅=

∑

∑

∈

∈

D

D

Fw

Ww

w
wfrequency

wfrequency

recall  (4) 

method recall 

our method 51.68 

Sjöbergh method 37.03 

Tanaka method 30.76 

initial candidates 51.68 

Japanese-English(*) 73.23 
Table 4: Recall evaluation results (* marks a manu-

ally created dictionary) 

The frequency weighted recall value results 

show that our method’s dictionary (51.68) out-

scores every other automatically generated 

method’s dictionary (37.03, 30.76) with a sig-

nificant advantage. Moreover, it maintains the 

score of the initial translation candidates, there-

fore managing to maximize the recall value, ow-

ing to the bidirectional selection method with 

local thresholds. However, the recall value of a 

manually created Japanese-English dictionary is 

higher than any automatically generated diction-

ary’s value (Table 4). 

6.2 1-to-1 precision evaluation 

With 1-to-1 precision evaluation we determine 

the translation accuracy of our method, com-

pared with the two baseline methods. 200 ran-

dom pairs were selected from each of the three 

Hungarian-Japanese dictionaries, scoring them 

manually the same way as with selection type 

evaluation (correct, undecided, wrong) (Table 5). 

The manual scoring was performed by one of the 

authors, who is a native Hungarian and fluent in 

Japanese. Since no independent evaluator was 

available for these two languages, after a random 

identification code being assigned to each of the 

600 selected translation pairs (200 from each 

dictionary), they were mixed. Therefore the 

evaluator did not know the origin of the transla-

tion pairs, only after manual scoring the total 

score for each dictionary was available, after re-

grouping based on the initial identification codes. 

The process was repeated 10 times, 2000 pairs 

were manually checked from each dictionary. 

 

code 
Japanese 

entry 

Hungarian 

entry 
classification 

k9g6

n5d8 

報告 (hōkoku: 

information, re-

port) 

hír (report, infor-

mation, news) 
correct 

j8h0

k1x5 

初 (ubu: innocent, 

naive) 

zöld (green, ver-

dant) 
undecided  

a5b6

n8i3 

エントリ (entori: 

entry <a contest>) 

bejárat (entry, 

entrance) 
wrong 

Table 5: 1-to-1 precision evaluation examples 

evaluation score (%) 
method 

correct undecided wrong 

our method 79.15% 6.15% 14.70% 

Sjöbergh method 54.05% 9.80% 36.15% 

Tanaka method 62.50% 7.95% 29.55% 

Table 6: 1-to-1 precision evaluation results 

To rank the methods we only consider the cor-

rect translations. Our method performed best 

with an average of 79.15%, outscoring Tanaka 

method’s 62.50% and Sjöbergh method’s 

54.05% (Table 6). The maximum deviance of the 

correct translations during the 10 repetitions was 

less than 3% from the average. 

6.3 1-to-multiple evaluation 

While with 1-to-1 precision evaluation we esti-

mated the accuracy of the translation pairs, with 

1-to-multiple we calculate the true reliability of 

the dictionary, with the initial translation candi-

dates set as recall benchmark. When looking up 

the meanings or translations of a certain head 

word, the user, whether he’s a human or a ma-

chine, expects all translations to be accurate. 

Therefore we evaluated 200 randomly selected 

Japanese entries from the initial translation can-

didates, together with all of their Hungarian 

translations, scoring them as correct (all transla-

tions are correct), acceptable (the good transla-

tions are predominant, but there are up to 2 erro-

neous translations), wrong (the number or wrong 

translations exceeds 2) or missing (the translation 

is missing) (Table 7).  

The same type of mixed, manual evaluation 

was performed by the same author on samples of 

200 entries from each Japanese-Hungarian dic-

tionary. This evaluation was also repeated 10 

times. 

To rank the methods, we only consider the 

correct translations. Our method scored best with 
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71.45%, outperforming Sjöbergh method’s 

61.65% and Tanaka method’s 46.95% (Table 8). 

 

code 
Japanese 

entry 

Hungarian 

translations 
classification 

j4h8

m9x

5 

圧縮  

(asshuku: 

compres-

sion, 

squeeze) 

összenyomás (com-

pression, crush, 

squeeze: correct) 

összeszorítás (com-

pression, confinement: 

correct) 

zsugorítás (shrinkage: 

correct) 

correct 

h9j9l

3v1 

底面  

(teimen: 

base) 

alap (base, bottom, 

foundation: correct) 

alapzat (base, bed, 

bottom: correct) 

lúg (alkali, base: unde-

cided) 

támpont (base: correct) 

acceptable 

l0k6

m3n

7 

鳴らす  

(narasu: to 

sound, to 

ring, to beat) 

bekerít (to encircle, to 

enclose, to ring: 

wrong) 

cseng (to clang, to 

clank, to ring, to tinkle: 

correct) 

hangzik (to ring, to 

sound: correct) 

horkan (to snort: 

wrong) 

üt (to bang, to knock, 

to ring: wrong) 

wrong 

Table 7: 1-to-multiple entry evaluation examples 

evaluation score (%) 
method 

correct 
accept-

able 
wrong missing 

our method 71.45 13.85 14.70 0 

Sjöbergh method 61.65 11.30 15.00 12.05 

Tanaka method 46.95 3.35 9.10 40.60 

Table 8: 1-to-many evaluation results 

7 Discussion 

Based on the recall evaluations, the traditional 

methods showed their major weakness by losing 

substantially from the initial recall values, scored 

by the initial translation candidates. Our method 

maintains the same value with the translation 

candidates, but we cannot say that the recall is 

perfect. When compared with a manually created 

dictionary, our method also lost significantly.  

Precision evaluation also showed an im-

provement compared with the traditional meth-

ods, our method outscoring the other two meth-

ods with the 1-to-1 precision evaluation. 1-to-

multiple evaluation was also the highest, proving 

that WordNet based methods outperform dic-

tionary based methods. Discussing the weak-

nesses of our system, we have to divide the prob-

lems into two categories: recall problems deal 

with the difficulty in connecting the target and 

source entries through the pivot language, while 

precision problems discuss the reasons why erro-

neous pairs are produced. 

7.1 Recall problems 

We managed to maximize the recall of our initial 

translation candidates, but in many cases certain 

translation pairs still could not be generated be-

cause the link from the source language to the 

target language through the pivot language sim-

ply doesn’t exist. The main reasons are: the entry 

is missing from at least one of the dictionaries; 

translations in the pivot language are expressions 

or explanations; or there is no direct translation 

or link between the source and target entries. The 

entries that could not be recalled are mostly ex-

pressions, rare entries, words specific to a lan-

guage (ex: tatami: floor-mat, or gulyás: goulash). 

Moreover, a number of head words don’t have 

any synonym, antonym and/or hy-

pernymy/hyponymy information in WordNet, 

and as a result these words could not participate 

in the type B, C, D, E and F scoring. 

7.2 Precision problems 

We identified two types of precision problems. 

The most obvious reasons for erroneous transla-

tions are the polysemous nature of words and the 

meaning-range differences across languages. 

With words whose senses are clear and mostly 

preserved even through the pivot language, most 

of the correct senses were identified and cor-

rectly translated. Nouns, adjectives and adverbs 

had a relatively high degree of accuracy. How-

ever, verbs proved to be the most difficult POS 

to handle. Because semantically they are more 

flexible than other POS categories, and the 

meaning range is also highly flexible across lan-

guages, the identification of the correct transla-

tion is increasingly difficult. For this reason, the 

number of faulty translations and the number of 

meanings that are not translated was relatively 

high. 

One other source of erroneous translations is 

the quality of the initial dictionaries. Even the 

unambiguous type A translations fail to produce 

the desired accuracy, although they are the 

unique candidate for a given word entry. The 

main reason for this is the deficiency of the ini-

tial dictionaries, which contain a great number of 

irrelevant or low usage translations, shadowing 

the main, important senses of some words. In 

other cases the resource dictionaries don’t con-

tain translations of all meanings; homonyms are 

869



present as pivot entries with different meanings, 

sometimes creating unique, but faulty links. 

8 Conclusions 

We proposed a new pivot language based 

method to create bilingual dictionaries that can 

be used as translation resource for machine trans-

lation. In contrast to conventional methods that 

use dictionaries only, our method uses WordNet 

as a main resource of the pivot language to select 

the suitable translation pairs. As a result, we 

eliminate most of the weaknesses caused by the 

structural differences of dictionaries, while prof-

iting from the semantic relations provided by 

WordNet. We believe that because of the nature 

of our method it can be re-implemented with 

most language pairs.  

In addition, owing to features such as the bidi-

rectional selection method with local thresholds 

we managed to maximize recall, while maintain-

ing a precision which is better than any other 

compared method’s score. During exemplifica-

tion, we generated a mid-large sized Japanese-

Hungarian dictionary with relatively good recall 

and promising precision. 

The dictionary is freely available online 

(http://mj-nlp.homeip.net/mjszotar), being also 

downloadable at request. 

References  

Agirre, E., Alegria, I., Rigau, G, Vossen, P. 2007. 

MCR for CLIR, Procesamiento del lenguaje natu-

ral 38, pp 3-15. 

Bond, F., Ogura, K. 2007. Combining linguistic re-

sources to create a machine-tractable Japanese-

Malay dictionary, Language Resources and 

Evaluation, 42(2), pp. 127-136. 

Breen, J.W. 1995. Building an Electric Japanese-

English Dictionary, Japanese Studies Association 

of Australia Conference, Brisbane, Queensland, 

Australia. 

Brown, P., Cocke, J., Della Pietra, S., Della Pietra, V., 

Jelinek, F., Mercer, R., Roossin, P. 1998. A Statis-

tical Approach to Language Translation, Proceed-

ings of COLING-88, pp. 71-76. 

Brown, R.D. 1997. Automated Dictionary Extraction 

for Knowledge-Free Example-Based Translation, 

Proceedings of the 7th International Conference on 

Theoretical and Methodological Issues in Machine 

Translation, pp. 111-118. 

Isahara, H., Bond, F., Uchimoto, K., Uchiyama, M., 

Kanzaki, K. 2008. Development of Japanese 

WordNet, Proceedings of LREC-2008. 

Isahara, H. 2007. EDR Electronic Dictionary – pre-

sent status (EDR 電子化辞書の現状), NICT-EDR 

symposium, pp. 1-14. (in Japanese) 

Kay, M., Röscheisen, M. 1993. Text-Translation 

Alignment, Computational Linguistics, 19(1), pp. 

121-142. 

Miháltz, M., Prószéky, G. 2004. Results and Evalua-

tion of Hungarian Nominal WordNet v1.0, Pro-

ceedings of the Second Global WordNet Confer-

ence, pp. 175-180. 

Miller G.A., Beckwith R., Fellbaum C., Gross D., 

Miller K.J. (1990). Introduction to WordNet: An 

Online Lexical Database, Int J Lexicography 3(4), 

pp. 235-244. 

Paik, K., Bond, F., Shirai, S. 2001. Using Multiple 

Pivots to align Korean and Japanese Lexical Re-

sources, NLPRS-2001, pp. 63-70, Tokyo, Japan. 

Peters, W., Vossen, P., Díez-Orzas, P., Adriaens, G. 

1998. Cross-linguistic Alignment of Wordnets with 

an Inter-Lingual-Index, Computers and the Hu-

manities 32, pp. 221–251. 

Prószéky, G., Miháltz, M., Nagy, D. 2001. Toward a 

Hungarian WordNet, Proceedings of the NAACL 

2001 Workshop on WordNet and Other Lexical Re-

sources, Pittsburgh, June 2001. 

Sjöbergh, J. 2005. Creating a free Japanese-English 

lexicon, Proceedings of PACLING, pp. 296-300. 

Shirai, S., Yamamoto, K. 2001. Linking English 

words in two bilingual dictionaries to generate an-

other pair dictionary, ICCPOL-2001, pp. 174-179. 

Stamou, S., Oflazer, K., Pala, K., Christoudoulakis, 

D., Cristea, D., Tufiş, D., Koeva, S.,  Totkov, G., 

Dutoit, D., Grigoriadou, M. 1997. BalkaNet: A 

Multilingual Semantic Network for the Balkan 

Languages, In Proceedings of the International 

Wordnet Conference, Mysore, India. 

Tanaka, K., Umemura, K. 1994. Construction of a 

bilingual dictionary intermediated by a third lan-

guage, Proceedings of COLING-94, pp. 297-303. 

Vossen, P. 1998. Introduction to EuroWordNet. Com-

puters and the Humanities 32: 73-89 Special Issue 

on EuroWordNet. 

870



Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 871–879,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Multilingual Spectral Clustering
Using Document Similarity Propagation

Dani Yogatama and Kumiko Tanaka-Ishii
Graduate School of Information Science and Technology, University of Tokyo

13F Akihabara Daibiru, 1-18-13 Kanda Chiyoda-ku, Tokyo, Japan
yogatama@cl.ci.i.u-tokyo.ac.jp kumiko@i.u-tokyo.ac.jp

Abstract

We present a novel approach for multilin-
gual document clustering using only com-
parable corpora to achieve cross-lingual
semantic interoperability. The method
models document collections as weighted
graph, and supervisory information is
given as sets of must-linked constraints for
documents in different languages. Recur-
sive k-nearest neighbor similarity propa-
gation is used to exploit the prior knowl-
edge and merge two language spaces.
Spectral method is applied to find the best
cuts of the graph. Experimental results
show that using limited supervisory in-
formation, our method achieves promis-
ing clustering results. Furthermore, since
the method does not need any language
dependent information in the process, our
algorithm can be applied to languages in
various alphabetical systems.

1 Introduction

Document clustering is unsupervised classifica-
tion of text collections into distinct groups of sim-
ilar documents. It has been used in many in-
formation retrieval tasks, including data organiza-
tion (Siersdorfer and Sizov, 2004), language mod-
eling (Liu and Croft, 2004), and improving per-
formances of text categorization system (Aggar-
wal et al., 1999). Advance in internet technology
has made the task of managing multilingual docu-
ments an intriguing research area. The growth of
internet leads to the necessity of organizing docu-
ments in various languages. There exist thousands
of languages, not to mention countless minor ones.
Creating document clustering model for each lan-
guage is simply unfeasible. We need methods to
deal with text collections in diverse languages si-
multaneously.

Multilingual document clustering (MLDC) in-
volves partitioning documents, written in more
than one languages, into sets of clusters. Simi-
lar documents, even if they are written in differ-
ent languages, should be grouped together into
one cluster. The major challenge of MLDC is
achieving cross-lingual semantic interoperability.
Most monolingual techniques will not work since
documents in different languages are mapped into
different spaces. Spectral method such as Latent
Semantic Analysis has been commonly applied
for MLDC task. However, current techniques
strongly rely on the presence of common words
between different languages. This method would
only work if the languages are highly related, i.e.,
languages that share the same root. Therefore, we
need another method to improve the robustness of
MLDC model.

In this paper, we focus on the problem of bridg-
ing multilingual space for document clustering.
We are given text documents in different lan-
guages and asked to group them into clusters such
that documents that belong to the same topic are
grouped together. Traditional monolingual ap-
proach is impracticable since it is unable to pre-
dict how similar two multilingual documents are.
They have two different spaces which make con-
ventional cosine similarity irrelevant. We try to
solve this problem utilizing prior knowledge in
the form of must-linked constraints, gathered from
comparable corpora. Propagation method is used
to guide the language-space merging process. Ex-
perimental results show that the approach gives
encouraging clustering results.

This paper is organized as follows. In section 2,
we review related work. In section 3, we propose
our algorithm for multilingual document cluster-
ing. The experimental results are shown in section
4. Section 5 concludes with a summary.
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2 Related Work

Chen and Lin (2000) proposed methods to clus-
ter multilingual documents using translation tech-
nology, relying on cross-lingual dictionary and
machine-translation system. Multilingual ontol-
ogy, such as Eurovoc, is also popular for MLDC
(Pouliquen et al., 2004). However, such resources
are scarce and expensive to build. Several other
drawbacks of using this technique include dictio-
nary limitation and word ambiguity.

More recently, parallel texts have been used to
connect document collections from different lan-
guages (Wei et al., 2008). This is done by collaps-
ing columns in a term by document matrix that are
translations of each other. Nevertheless, building
parallel texts is also expensive and requires a lot of
works, hence shifting the paradigm of multilingual
works to comparable corpora.

Comparable corpora are collections of texts in
different languages regarding similar topics pro-
duced at the same time. The key difference be-
tween comparable corpora and parallel texts is that
documents in comparable corpora are not neces-
sarily translations of each other. They are easier
to be acquired, and do not need exhaustive works
to be prepared. News agencies often give informa-
tion in many different languages and can be good
sources for comparable corpora. Terms in com-
parable corpora, being about the same topic, up
to some point explain the same concepts in differ-
ent languages. Pairing comparable corpora with
spectral method such as Latent Semantic Analysis
has become prevalent, e.g. (Gliozzo and Strappar-
ava, 2005). They rely on the presence of common
words and proper nouns among various languages
to build a language-independent space. The per-
formance of such method is highly dependent on
the languages being used. Here, we present an-
other approach to exploit knowledge in compa-
rable corpora; using propagation method to aid
spreading similarity between collections of docu-
ments in different languages.

Spectral clustering is the task of finding good
clusters by using information contained in the
eigenvectors of a matrix derived from the data.
It has been successfully applied in many applica-
tions including information retrieval (Deerwester
et al., 2003) and computer vision (Meila and Shi,
2000). An in-depth analysis of spectral algo-
rithm for clustering problems is given in (Ng et
al., 2002). Zhang and Mao (2008) used a related

technique called Modularity Eigenmap to extract
community structure features from the document
network to solve hypertext classification problem.

Semi-supervised clustering enhances clustering
task by incorporating prior knowledge to aid clus-
tering process. It allows user to guide the cluster-
ing process by giving some feedback to the model.
In traditional clustering algorithm, only unlabeled
data is used to find assignments of data points
to clusters. In semi-supervised clustering, prior
knowledge is given to improve performance of the
system. The supervision is usually given as pair
of must-linked constraints and cannot link con-
straints, first introduced in (Wagstaff and Cardie,
2000). Kamvar et al. (2003) proposed spectral
learning algorithm that can take supervisory infor-
mation in the form of pairwise constraints or la-
beled data. Their algorithm is intended to be used
in monolingual context, while our algorithm is de-
signed to work in multilingual context.

3 Multilingual Spectral Clustering

There have been several works on multilingual
document clustering as mention previously in Sec-
tion 2. Our key contribution here is the propaga-
tion method to make spectral clustering algorithm
works for multilingual problems. The clustering
model exploits the supervisory information by de-
tecting k nearest neighbors of the newly-linked
documents, and propagates document similarity to
these neighbors. The model can be applied to any
multilingual text collections regardless of the lan-
guages. Overall algorithm is given in Section 3.1
and the method to merge multilingual spaces by
similarity propagation is given in Section 3.2.

3.1 Spectral Clustering Algorithm

Spectral clustering tries to find good clusters by
using top eigenvectors of normalized data affin-
ity matrix. The document set is being modeled as
undirected graph G(V,E,W ), where V , E, and
W denote the graph vertex set, edge set, and tran-
sition probability matrix, respectively. In graph
G, v ∈ V represents a document, and weight
wij ∈W represents transition probability between
document vi to vj . The transition probabilities
can be interpreted as edge flows in Markov ran-
dom walk over graph vertices (documents in col-
lections).

Algorithm to perform spectral clustering is
given in Algorithm 1. Let A be affinity matrix
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where element Aij is cosine similarity between
document vi and vj (Algorithm 1, line 1). It is
straightforward that documents belonging to dif-
ferent languages will have similarity zero. Rare
exception occurs when they have common words
because the languages are related one another.
As a consequence, the similarity matrix will have
many zeros. Our model amplifies prior knowledge
in the form of comparable corpora by perform-
ing document similarity propagation, presented in
Section 3.2 (Algorithm 1, line 4; Algorithm 2, ex-
plained in Section 3.2). After propagation, the
affinity matrix is post-processed (Algorithm 1, line
6, explained in Section 3.2) before being trans-
formed into transition probability matrix.

The transformation can be done using any nor-
malization for spectral methods. Define N =
D−1A, as in (Meila and Shi, 2001), where D is the
diagonal matrix whose elements Dij =

∑
j Aij

(Algorithm 1, line 7). Alternatively, we can define
N = D−1/2AD−1/2 (Ng et al., 2002), or N =
(A + dmaxI − D)/dmax (Fiedler, 1975), where
dmax is the maximum rowsum of A. For our ex-
periment, we use the first normalization method,
though other methods can be applied as well.

Meila and Shi (2001) show that probability tran-
sition matrix N with t strong clusters will have t
piecewise constant eigenvectors. They also sug-
gest using these t eigenvectors in clustering pro-
cess. We use the information contains in t largest
eigenvectors of N (Algorithm 1, line 8-11) and
perform K-means clustering algorithm to find the
data clusters (Algorithm 1, line 12).

3.2 Propagating Prior Knowledge

We use information obtained from comparable
corpora to merge multilingual language spaces.
Suppose we have text collections in L different
languages. We combine this collections with com-
parable corpora, also in L languages, that act as
our supervisory information. Comparable corpora
are used to gather prior knowledge by making
must-linked constraints for documents in different
languages that belong to the same topic in the cor-
pora, propagating similarity to other documents
while doing so.

Initially, our affinity matrix A represents cosine
similarity between all pairs of documents. Aij is
set to zero if j is not the top k nearest neighbors
of i and likewise. Next, set Aij and Aji to 1 if
document i and document j are different in lan-

Algorithm 1 Multilingual Spectral Clustering
Input: Term by document matrix M , pairwise
constraints
Output: Document clusters

1: Create graph affinity matrix A ∈ Rn×n where
each element Aij represents the similarity be-
tween document vi and vj .

2: for all pairwise constraints in comparable cor-
pora do

3: Aij ← 1, Aji ← 1.
4: Recursive Propagation (A,S, β, k, vi, vj).
5: end for
6: Post-process matrix A so that every value in
A is greater than δ and less than 1.

7: Form a diagonal matrix D, where Dii =∑
j Aij . Normalize N = D−1A.

8: Find x1, x2 · · · , xt, the t largest eigenvectors
of N.

9: Form matrix X = [x1, x2, · · · , xt] ∈ Rn×t.
10: Normalize row X to be unit length.
11: Project each document into eigen-space

spanned by the above t eigenvectors (by treat-
ing each row of X as a point in Rt, row i rep-
resents document vi).

12: ApplyK-means algorithm in this space to find
document clusters.

guage and belong to the same topic in our com-
parable corpora. This will incorporate the must-
linked constraint to our model. We can also give
supervisory information for pairs of document in
the same language, but this is optional. We also do
not use cannot-linked constraints since the main
goal is to merge multilingual spaces. In our exper-
iment we show that using only must-linked con-
straints with propagation is enough to achieve en-
couraging clustering results.

The supervisory information acquired from
comparable corpora only connects two nodes in
our graph. Therefore, the number of edges be-
tween documents in different languages is about
as many as the number of must-linked constraints
given. We argue that we need more edges between
pairs of documents in different languages to get
better results.

We try to build more edges by propagating sim-
ilarity to other documents that are most similar to
the newly-linked documents. Figure 1 gives an il-
lustration of edge-creation process when two mul-
tilingual documents (nodes) are connected. Sup-
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yx1 vi yx2

zx1 vj zx2

(a) Connect two nodes

yx1 vi yx2

zx1 vj zx2

(b) Effect on neighbor nodes

Figure 1: Pairing two multilingual documents af-
fect their neighbors. vi and vj are documents in
two different languages. yx and zx are neighbors
of vi and vj respectively.

pose that we have six documents in two differ-
ent languages. Initially, documents are only con-
nected with other documents that belong to the
same language. The supervisory information tells
us that two multilingual documents vi and vj
should be connected (Figure 1(a)). We then build
an edge between these two documents. Further-
more, we also use this information to build edges
between vi and neighbors of vj and likewise (Fig-
ure 1(b)).

This follows from the hypothesis that bringing
together two documents should also bring other
documents that are similar to those two closer in
our clustering space. Klein et al. (2002) stated
that a good clustering algorithm, besides satisfy-
ing known constraints, should also be able to sat-
isfy the implications of those constraints. Here,
we allow not only instance-level inductive impli-
cations, but utilize it to get higher-level inductive
implications. In other words, we alter similarity
space so that it can detect other clusters by chang-
ing the topology of the original space.

The process is analogous to shortening the dis-
tance between sets of documents in Euclidean
space. In vector space model, two documents that
are close to each other have high similarity, and
thus will belong to the same cluster. Pairing two
documents can be seen as setting the distance in
this space to 0, thus raising their similarity to 1.
While doing so, each document would also draw

sets of documents connected to it closer to the cen-
tre of the merge, which is equivalent to increasing
their similarities.

Suppose we have document vi and vj , and y and
z are sets of their respective k nearest neighbors,
where |y| = |z| = k. The propagation method
is a recursive algorithm with base S, the num-
ber of desired level of propagation. Recursive k-
nearest neighbor makes decision to give high sim-
ilarity between multilingual documents not only
determined by their similarity to the newly-linked
documents, but also their similarity to the k near-
est neighbors of the respective document. Several
documents are affected by a single supervisory in-
formation. This will prove useful when only lim-
ited amount of supervisory information given. It
uses document similarity matrix A, as defined in
the previous section.

1. For yx ∈ y we propagate βAviyx to Avjyx .
Set Ayxvj = Avjyx (Algorithm 2, line 5-6).
In other words, we propagate the similarity
between document vi and y nearest neighbors
of vi to document vj .

2. Similarly, for zx ∈ z we propagate βAvjzx
to Avizx . Set Azxvi = Avizx (Algorithm 2,
line 10-11). In other words, we propagate the
similarity between document vj and z nearest
neighbors of vj to document vi.

3. Propagate higher order similarity to k nearest
neighbors of y and z, discounting the similar-
ity quadratically, until required level of prop-
agation S is reached (Algorithm 2, line 7 and
12).

The coefficient β represents the degree of en-
forcement that the documents similar to a docu-
ment in one language, will also have high simi-
larity with other document in other language that
is paired up with its ancestor. On the other hand,
k represents the number of documents that are af-
fected by pairing up two multilingual documents.
After propagation, similarity of documents that
falls below some threshold δ is set to zero (Al-
gorithm 1, line 6). This post-processing step is
performed to nullify insignificant similarity values
propagated to a document. Additionally, if there
exists similarity of documents that is higher than
one, it is set to one.
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Algorithm 2 Recursive Propagation
Input: Affinity matrix A, level of propagation S,
β, number of nearest neighbors k, document vi
and vj
Output: Propagated affinity matrix

1: if S = 0 then
2: return
3: else
4: for all yx ∈ k-NN document vi do
5: Avjyx ← Avjyx + βAviyx
6: Ayxvj ← Avjyx
7: Recursive Propagation (A,S − 1,

β2, k, yx, vj)
8: end for
9: for all zx ∈ k-NN document vj do

10: Set Avizx ← Avizx + βAvjzx
11: Set Azxvi ← Avizx
12: Recursive Propagation (A,S − 1,

β2, k, vi, zx)
13: end for
14: end if

4 Performance Evaluation

The goals of empirical evaluation include (1) test-
ing whether the propagation method can merge
multilingual space and produce acceptable clus-
tering results; (2) comparing the performance to
spectral clustering method without propagation.

4.1 Data Description

We tested our model using Reuters Corpus Vol-
ume 2 (RCV2), a multilingual corpus contain-
ing news in thirteen different languages. For our
experiment, three different languages: English,
French, and Spanish; in six different topics: sci-
ence, sports, disasters accidents, religion, health,
and economy are used. We discarded documents
with multiple category labels.

We do not apply any language specific pre-
processing method to the raw text data. Mono-
lingual TFIDF is used for feature weighting. All
document vectors are then converted into unit vec-
tor by dividing by its length. Table 1 shows the
average length of documents in our corpus.

4.2 Evaluation Metric

For our experiment, we used Rand Index (RI)
which is a common evaluation technique for clus-
tering task where the true class of unlabeled data

English French Spanish Total
Science 290.10 165.10 213.45 222.88

Sports 182.55 156.83 189.75 176.37

Disasters 154.29 175.89 165.31 165.16

Religion 317.77 177.91 242.67 246.11

Health 251.19 233.70 227.25 237.38

Economy 266.89 192.55 306.11 255.08

Total 243.79 183.61 224.09 217.16

Table 1: Average number of words of documents
in the corpus. Each language consists of 600 doc-
uments, and each topic consists of 100 documents
(per language).

is known. Rand Index measures the percentage of
decisions that are correct, or simply the accuracy
of the model. Rand Index is defined as:

RI =
TP + TN

TP + FP + TN + FN

Rand Index penalizes false positive and false neg-
ative decisions during clustering. It takes into ac-
count decision that assign two similar documents
to one cluster (TP), two dissimilar documents to
different clusters (TN), two similar documents to
different clusters (FN), and two dissimilar docu-
ments to one cluster (FP). We do not include links
created by supervisory information when calculat-
ing true positive decisions and only consider the
number of free decisions made.

We also used Fα-measure, the weighted har-
monic mean of precision (P) and recall (R). Fα-
measure is defined as:

Fα =
(α2 + 1)PR
α2P +R

P =
TP

TP + FP

R =
TP

TP + FN

Last, we used purity to evaluate the accuracy of
assignments. Purity is defined as:

Purity =
1
N

∑
t

max
j
|ωt ∩ cj |

whereN is the number of documents, t is the num-
ber of clusters, j is the number of classes, ωt and
cj are sets of documents in cluster t and class j
respectively.
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Figure 2: Rand Index on the RCV2 task with (a) 1800 documents, 6 topics; and (b) 1200 documents, 4
topics as the proportion of supervisory information increases. k = 30, δ = 0.03, β = 0.5, t = number of
topics, and S = 2.
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Figure 3: Purity on the RCV2 task with (a) 1800 documents, 6 topics; and (b) 1200 documents, 4 topics
as the proportion of supervisory information increases. k = 30, δ = 0.03, β = 0.5, t = number of topics,
and S = 2.

4.3 Experimental Results

To prove the effectiveness of our clustering algo-
rithm, we performed the following experiments on
our data set. We first tested our algorithm on four
topics, science, sports, religion, and economy. We
then tested our algorithm using all six topics to
get an understanding of the performance of our
model in larger collections with more topics. We
used subset of our data as supervisory informa-
tion and built must-linked constraints from it. The
proportion of supervisory information provided to
the system is given in x-axis (Figure 2 - Figure
4.3). 0.2 here means 20% of documents in each
language are taken to be used as prior knowledge.
Since the number of documents in each language
for our experiment is the same, we have the same

numbers of documents in subset of English col-
lection, subset of French collection, and subset of
Spanish collection. We also ensure there are same
numbers of documents for a particular topic in all
three languages. We can build must-linked con-
straints as follows. For each document in the sub-
set of English collection, we create must-linked
constraints with one randomly selected document
from the subset of French collection and one ran-
domly selected document from the subset of Span-
ish collection that belong to the same topic with it.
We then create must-linked constraint between the
respective French and Spanish documents. The
constraints given to the algorithm are chosen so
that there are several links that connect every topic
in every language. Note that the class label in-
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Figure 4: F2-measure on the RCV2 task with (a) 1800 documents, 6 topics; and (b) 1200 documents, 4
topics as the proportion of supervisory information increases. k = 30, δ = 0.03, β = 0.5, t = number of
topics, and S = 2.

formation is only used to build must-linked con-
straints between documents, and we do not assign
the documents to a particular cluster.

Figure 2 shows the Rand Index as proportion
of supervisory information increases. Figure 3
and Figure 4.3 give purity and F2-measure for
the algorithm respectively. To show the impor-
tance of the propagation in multilingual space, we
give comparison with spectral clustering model
without propagation. Three lines in Figure 2 to
Figure 4.3 indicate: (1) results with propagation
(solid line); (2) results without propagation (long-
dashed line); and (3) results using Latent Se-
mantic Analysis(LSA)-based method by exploit-
ing common words between languages (short-
dashed line). For each figure, 6 plots are taken
starting from 0 in 0.2-point-increments. We con-
ducted the experiments three times for each pro-
portion of supervisory information and use the av-
erage values. As we can see from Figure 2, Fig-
ure 3, and Figure 4.3, the propagation method can
significantly improve the performance of spectral
clustering algorithm. For 1800 documents in 6
topics, we manage to achieve RI = 0.91, purity
= 0.84, and F2-measure = 0.76 with only 20% of
documents (360 documents) used as supervisory
information. Spectral clustering algorithm with-
out propagation can only achieve 0.69, 0.30, 0.28
for RI, purity, and F2-measure respectively. The
propagation method is highly effective when only
small amount of supervisory information given to
the algorithm. Obviously, the more supervisory in-
formation given, the better the performance is. As
the number of supervisory information increases,

the difference of the model performance with and
without propagation becomes smaller. This is
because there are already enough links between
multilingual documents, so we do not necessar-
ily build more links through similarity propagation
anymore. However, even when there are already
many links, our model with propagation still out-
performs the model without propagation.

We compare the performance of our algorithm
to LSA-based multilingual document clustering
model. We performed LSA to the multilingual
term by document matrix. We do not use paral-
lel texts and only rely on common words across
languages as well as must-linked constraints to
build multilingual space. The results show that ex-
ploiting common words between languages alone
is not enough to build a good multilingual se-
mantic space, justifying the usage of supervisory
information in multilingual document clustering
task. When supervisory information is introduced,
our method achieves better results than LSA-based
method. In general, the LSA-based method per-
forms better than the model without propagation.

We assess the sensitivity of our algorithm to
parameter β, the penalty for similarity propaga-
tion. We assess the sensitivity of our algorithm
to parameter β, the penalty for similarity prop-
agation. We tested our algorithm using various
β, starting from 0 to 1 in 0.2-point-increments,
while other parameters being held constant. Fig-
ure 5(a) shows that changing β to some extent af-
fects the performance of the algorithm. However,
after some value of reasonable β is found, increas-
ing β does not have significant impact on the per-
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Figure 5: Rand Index on the RCV2 task with 1800 documents and 6 topics as (a) β increases; (b)
k increases; and (c) t increases. δ = 0.03, S = 2, and 20% of documents are used as supervisory
information.

formance of the algorithm. We also tested our al-
gorithm using various k, starting from 0 to 100
in 20-point-increments. Figure 5(b) reveals that
the performances of the model with different k are
comparable, as long as k is not too small. How-
ever, using too large k will slightly decrease the
performance of the model. Too many propaga-
tions make several dissimilar documents receive
high similarity value that cannot be nullified by
the post-processing step. Last, we experimented
using various t ranging from 2 to 20. Figure 5(c)
shows that the method performs best when t = 10,
and for reasonable value of t the method achieves
comparable performance.

5 Conclusion

We present here a multilingual spectral cluster-
ing model that is able to work irrespective of the
languages being used. The key component of
our model is the propagation algorithm to merge
multilingual spaces. We tested our algorithm
on Reuters RCV2 Corpus and compared the per-
formance with spectral clustering model without

propagation. Experimental results reveal that us-
ing limited supervisory information, the algorithm
achieves encouraging clustering results.

References
Charu C. Aggarwal, Stephen C. Gates and Philip S.

Yu. 1999. On The Merits of Building Catego-
rization Systems by Supervised Clustering. In Pro-
ceedings of Conference on Knowledge Discovery in
Databases:352-356.

Hsin-Hsi Chen and Chuan-Jie Lin. 2000. A Mul-
tilingual News Summarizer. In Proceedings of
18th International Conference on Computational
Linguistics:159-165.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Lan-
dauer, George W. Furnas, and Richard A. Harsh-
man. 1990. Indexing by Latent Semantic Analy-
sis. Journal of the American Society of Information
Science:41(6):391-407.

Miroslav Fiedler. 1975. A Property of Eigenvectors of
Nonnegative Symmetric Matrices and its Applica-
tions to Graph Theory. Czechoslovak Mathematical
Journal, 25:619-672.

878



Alfio Gliozzo and Carlo Strapparava. 2005. Cross lan-
guage Text Categorization by acquiring Multilingual
Domain Models from Comparable Corpora. In Pro-
ceedings of the ACL Workshop on Building and Us-
ing Parallel Texts:9-16.

Sepandar D. Kamvar, Dan Klein, and Christopher D.
Manning. 2003. Spectral Learning. In Proceed-
ings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI).

Dan Klein, Sepandar D. Kamvar, and Christopher D.
Manning. 2002. From instance-level constraints to
space-level constraints: Making the most of prior
knowledge in data clustering. In The Nineteenth In-
ternational Conference on Machine Learning.

Xiaoyong Liu and W. Bruce Croft. 2004. Cluster-
based Retrieval using Language Models. In Pro-
ceedings of the 27th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval:186-193.
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Abstract
Topic models are a useful tool for analyz-
ing large text collections, but have previ-
ously been applied in only monolingual,
or at most bilingual, contexts. Mean-
while, massive collections of interlinked
documents in dozens of languages, such
as Wikipedia, are now widely available,
calling for tools that can characterize con-
tent in many languages. We introduce a
polylingual topic model that discovers top-
ics aligned across multiple languages. We
explore the model’s characteristics using
two large corpora, each with over ten dif-
ferent languages, and demonstrate its use-
fulness in supporting machine translation
and tracking topic trends across languages.

1 Introduction

Statistical topic models have emerged as an in-
creasingly useful analysis tool for large text col-
lections. Topic models have been used for analyz-
ing topic trends in research literature (Mann et al.,
2006; Hall et al., 2008), inferring captions for im-
ages (Blei and Jordan, 2003), social network anal-
ysis in email (McCallum et al., 2005), and expand-
ing queries with topically related words in infor-
mation retrieval (Wei and Croft, 2006). Much of
this work, however, has occurred in monolingual
contexts. In an increasingly connected world, the
ability to access documents in many languages has
become both a strategic asset and a personally en-
riching experience. In this paper, we present the
polylingual topic model (PLTM). We demonstrate
its utility and explore its characteristics using two
polylingual corpora: proceedings of the European
parliament (in eleven languages) and a collection
of Wikipedia articles (in twelve languages).

There are many potential applications for
polylingual topic models. Although research liter-
ature is typically written in English, bibliographic

databases often contain substantial quantities of
work in other languages. To perform topic-based
bibliometric analysis on these collections, it is
necessary to have topic models that are aligned
across languages. Such analysis could be sig-
nificant in tracking international research trends,
where language barriers slow the transfer of ideas.

Previous work on bilingual topic modeling
has focused on machine translation applications,
which rely on sentence-aligned parallel transla-
tions. However, the growth of the internet, and
in particular Wikipedia, has made vast corpora
of topically comparable texts—documents that are
topically similar but are not direct translations of
one another—considerably more abundant than
ever before. We argue that topic modeling is
both a useful and appropriate tool for leveraging
correspondences between semantically compara-
ble documents in multiple different languages.

In this paper, we use two polylingual corpora
to answer various critical questions related to
polylingual topic models. We employ a set of di-
rect translations, the EuroParl corpus, to evaluate
whether PLTM can accurately infer topics when
documents genuinely contain the same content.
We also explore how the characteristics of dif-
ferent languages affect topic model performance.
The second corpus, Wikipedia articles in twelve
languages, contains sets of documents that are not
translations of one another, but are very likely to
be about similar concepts. We use this corpus
to explore the ability of the model both to infer
similarities between vocabularies in different lan-
guages, and to detect differences in topic emphasis
between languages. The internet makes it possible
for people all over the world to access documents
from different cultures, but readers will not be flu-
ent in this wide variety of languages. By linking
topics across languages, polylingual topic mod-
els can increase cross-cultural understanding by
providing readers with the ability to characterize
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the contents of collections in unfamiliar languages
and identify trends in topic prevalence.

2 Related Work

Bilingual topic models for parallel texts with
word-to-word alignments have been studied pre-
viously using the HM-bitam model (Zhao and
Xing, 2007). Tam, Lane and Schultz (Tam et
al., 2007) also show improvements in machine
translation using bilingual topic models. Both
of these translation-focused topic models infer
word-to-word alignments as part of their inference
procedures, which would become exponentially
more complex if additional languages were added.
We take a simpler approach that is more suit-
able for topically similar document tuples (where
documents are not direct translations of one an-
other) in more than two languages. A recent ex-
tended abstract, developed concurrently by Ni et
al. (Ni et al., 2009), discusses a multilingual topic
model similar to the one presented here. How-
ever, they evaluate their model on only two lan-
guages (English and Chinese), and do not use the
model to detect differences between languages.
They also provide little analysis of the differ-
ences between polylingual and single-language
topic models. Outside of the field of topic mod-
eling, Kawaba et al. (Kawaba et al., 2008) use
a Wikipedia-based model to perform sentiment
analysis of blog posts. They find, for example,
that English blog posts about the Nintendo Wii of-
ten relate to a hack, which cannot be mentioned in
Japanese posts due to Japanese intellectual prop-
erty law. Similarly, posts about whaling often
use (positive) nationalist language in Japanese and
(negative) environmentalist language in English.

3 Polylingual Topic Model

The polylingual topic model (PLTM) is an exten-
sion of latent Dirichlet allocation (LDA) (Blei et
al., 2003) for modeling polylingual document tu-
ples. Each tuple is a set of documents that are
loosely equivalent to each other, but written in dif-
ferent languages, e.g., corresponding Wikipedia
articles in French, English and German. PLTM as-
sumes that the documents in a tuple share the same
tuple-specific distribution over topics. This is un-
like LDA, in which each document is assumed to
have its own document-specific distribution over
topics. Additionally, PLTM assumes that each
“topic” consists of a set of discrete distributions

D
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α θ
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z
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Figure 1: Graphical model for PLTM.

over words—one for each language l = 1, . . . , L.
In other words, rather than using a single set of
topics Φ = {φ1, . . . ,φT }, as in LDA, there are L
sets of language-specific topics, Φ1, . . . ,ΦL, each
of which is drawn from a language-specific sym-
metric Dirichlet with concentration parameter βl.

3.1 Generative Process
A new document tuplew = (w1, . . . ,wL) is gen-
erated by first drawing a tuple-specific topic dis-
tribution from an asymmetric Dirichlet prior with
concentration parameter α and base measurem:

θ ∼ Dir (θ, αm). (1)

Then, for each language l, a latent topic assign-
ment is drawn for each token in that language:

zl ∼ P (zl |θ) =
∏

n θzln
. (2)

Finally, the observed tokens are themselves drawn
using the language-specific topic parameters:

wl ∼ P (wl | zl,Φl) =
∏

n φ
l
wln|zln . (3)

The graphical model is shown in figure 1.

3.2 Inference
Given a corpus of training and test document
tuples—W and W ′, respectively—two possible
inference tasks of interest are: computing the
probability of the test tuples given the training
tuples and inferring latent topic assignments for
test documents. These tasks can either be accom-
plished by averaging over samples of Φ1, . . . ,ΦL

and αm from P (Φ1, . . . ,ΦL, αm |W ′, β) or by
evaluating a point estimate. We take the lat-
ter approach, and use the MAP estimate for αm
and the predictive distributions over words for
Φ1, . . . ,ΦL. The probability of held-out docu-
ment tuples W ′ given training tuples W is then
approximated by P (W ′ |Φ1, . . . ,ΦL, αm).

Topic assignments for a test document tuple
w = (w1, . . . ,wL) can be inferred using Gibbs
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sampling. Gibbs sampling involves sequentially
resampling each zl

n from its conditional posterior:

P (zl
n = t |w, z\l,n,Φ1, . . . ,ΦL, αm)

∝ φl
wln|t

(Nt)\l,n + αmt∑
tNt − 1 + α

, (4)

where z\l,n is the current set of topic assignments
for all other tokens in the tuple, while (Nt)\l,n is
the number of occurrences of topic t in the tuple,
excluding zl

n, the variable being resampled.

4 Results on Parallel Text

Our first set of experiments focuses on document
tuples that are known to consist of direct transla-
tions. In this case, we can be confident that the
topic distribution is genuinely shared across all
languages. Although direct translations in multi-
ple languages are relatively rare (in contrast with
comparable documents), we use direct translations
to explore the characteristics of the model.

4.1 Data Set
The EuroParl corpus consists of parallel texts in
eleven western European languages: Danish, Ger-
man, Greek, English, Spanish, Finnish, French,
Italian, Dutch, Portuguese and Swedish. These
texts consist of roughly a decade of proceedings
of the European parliament. For our purposes we
use alignments at the speech level rather than the
sentence level, as in many translation tasks using
this corpus. We also remove the twenty-five most
frequent word types for efficiency reasons. The
remaining collection consists of over 121 million
words. Details by language are shown in Table 1.

Table 1: Average document length, # documents, and
unique word types per 10,000 tokens in the EuroParl corpus.

Lang. Avg. leng. # docs types/10k
DA 160.153 65245 121.4
DE 178.689 66497 124.5
EL 171.289 46317 124.2
EN 176.450 69522 43.1
ES 170.536 65929 59.5
FI 161.293 60822 336.2
FR 186.742 67430 54.8
IT 187.451 66035 69.5
NL 176.114 66952 80.8
PT 183.410 65718 68.2
SV 154.605 58011 136.1

Models are trained using 1000 iterations of
Gibbs sampling. Each language-specific topic–
word concentration parameter βl is set to 0.01.

centralbank europæiske ecb s lån centralbanks 
zentralbank ezb bank europäischen investitionsbank darlehen 
τράπεζα τράπεζας κεντρική εκτ κεντρικής τράπεζες 
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banque centrale bce européenne banques monétaire 
banca centrale bce europea banche prestiti 
bank centrale ecb europese banken leningen 
banco central europeu bce bancos empréstimos 
centralbanken europeiska ecb centralbankens s lån 
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Figure 2: EuroParl topics (T=400)

The concentration parameter α for the prior over
document-specific topic distributions is initialized
to 0.01T , while the base measure m is initialized
to the uniform distribution. Hyperparameters αm
are re-estimated every 10 Gibbs iterations.

4.2 Analysis of Trained Models

Figure 2 shows the most probable words in all lan-
guages for four example topics, from PLTM with
400 topics. The first topic contains words relating
to the European Central Bank. This topic provides
an illustration of the variation in technical ter-
minology captured by PLTM, including the wide
array of acronyms used by different languages.
The second topic, concerning children, demon-
strates the variability of everyday terminology: al-
though the four Romance languages are closely
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related, they use etymologically unrelated words
for children. (Interestingly, all languages except
Greek and Finnish use closely related words for
“youth” or “young” in a separate topic.) The third
topic demonstrates differences in inflectional vari-
ation. English and the Romance languages use
only singular and plural versions of “objective.”
The other Germanic languages include compound
words, while Greek and Finnish are dominated by
inflected variants of the same lexical item. The fi-
nal topic demonstrates that PLTM effectively clus-
ters “syntactic” words, as well as more semanti-
cally specific nouns, adjectives and verbs.

Although the topics in figure 2 seem highly fo-
cused, it is interesting to ask whether the model
is genuinely learning mixtures of topics or simply
assigning entire document tuples to single topics.
To answer this question, we compute the posterior
probability of each topic in each tuple under the
trained model. If the model assigns all tokens in
a tuple to a single topic, the maximum posterior
topic probability for that tuple will be near to 1.0.
If the model assigns topics uniformly, the maxi-
mum topic probability will be near 1/T . We com-
pute histograms of these maximum topic prob-
abilities for T ∈ {50, 100, 200, 400, 800}. For
clarity, rather than overlaying five histograms, fig-
ure 3 shows the histograms converted into smooth
curves using a kernel density estimator.1 Although
there is a small bump around 1.0 (for extremely
short documents, e.g., “Applause”), values are
generally closer to, but greater than, 1/T .
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Figure 3: Smoothed histograms of the probability of the
most probable topic in a document tuple.

Although the posterior distribution over topics
for each tuple is not concentrated on one topic,
it is worth checking that this is not simply be-
cause the model is assigning a single topic to the

1We use the R density function.

tokens in each of the languages. Although the
model does not distinguish between topic assign-
ment variables within a given document tuple (so
it is technically incorrect to speak of different pos-
terior distributions over topics for different docu-
ments in a given tuple), we can nevertheless divide
topic assignment variables between languages and
use them to estimate a Dirichlet-multinomial pos-
terior distribution for each language in each tuple.
For each tuple we can then calculate the Jensen-
Shannon divergence (the average of the KL di-
vergences between each distribution and a mean
distribution) between these distributions. Figure 4
shows the density of these divergences for differ-
ent numbers of topics. As with the previous fig-
ure, there are a small number of documents that
contain only one topic in all languages, and thus
have zero divergence. These tend to be very short,
formulaic parliamentary responses, however. The
vast majority of divergences are relatively low (1.0
indicates no overlap in topics between languages
in a given document tuple) indicating that, for each
tuple, the model is not simply assigning all tokens
in a particular language to a single topic. As the
number of topics increases, greater variability in
topic distributions causes divergence to increase.
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Figure 4: Smoothed histograms of the Jensen-Shannon
divergences between the posterior probability of topics be-
tween languages.

4.3 Language Model Evaluation

A topic model specifies a probability distribution
over documents, or in the case of PLTM, docu-
ment tuples. Given a set of training document tu-
ples, PLTM can be used to obtain posterior esti-
mates of Φ1, . . . ,ΦL and αm. The probability of
previously unseen held-out document tuples given
these estimates can then be computed. The higher
the probability of the held-out document tuples,
the better the generalization ability of the model.
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Analytically calculating the probability of a set
of held-out document tuples given Φ1, . . . ,ΦL and
αm is intractable, due to the summation over an
exponential number of topic assignments for these
held-out documents. However, recently developed
methods provide efficient, accurate estimates of
this probability. We use the “left-to-right” method
of (Wallach et al., 2009). We perform five esti-
mation runs for each document and then calculate
standard errors using a bootstrap method.

Table 2 shows the log probability of held-out
data in nats per word for PLTM and LDA, both
trained with 200 topics. There is substantial varia-
tion between languages. Additionally, the predic-
tive ability of PLTM is consistently slightly worse
than that of (monolingual) LDA. It is important to
note, however, that these results do not imply that
LDA should be preferred over PLTM—that choice
depends upon the needs of the modeler. Rather,
these results are intended as a quantitative analy-
sis of the difference between the two models.

Table 2: Held-out log probability in nats/word. (Smaller
magnitude implies better language modeling performance.)
PLTM does slightly worse than monolingual LDA models,
but the variation between languages is much larger.

Lang PLTM sd LDA sd
DA -8.11 0.00067 -8.02 0.00066
DE -8.17 0.00057 -8.08 0.00072
EL -8.44 0.00079 -8.36 0.00087
EN -7.51 0.00064 -7.42 0.00069
ES -7.98 0.00073 -7.87 0.00070
FI -9.25 0.00089 -9.21 0.00065
FR -8.26 0.00072 -8.19 0.00058
IT -8.11 0.00071 -8.02 0.00058
NL -7.84 0.00067 -7.75 0.00099
PT -7.87 0.00085 -7.80 0.00060
SV -8.25 0.00091 -8.16 0.00086

As the number of topics is increased, the word
counts per topic become very sparse in mono-
lingual LDA models, proportional to the size of
the vocabulary. Figure 5 shows the proportion
of all tokens in English and Finnish assigned to
each topic under LDA and PLTM with 800 topics.
More than 350 topics in the Finnish LDA model
have zero tokens assigned to them, and almost all
tokens are assigned to the largest 200 topics. En-
glish has a larger tail, with non-zero counts in all
but 16 topics. In contrast, PLTM assigns a sig-
nificant number of tokens to almost all 800 top-
ics, in very similar proportions in both languages.
PLTM topics therefore have a higher granularity –
i.e., they are more specific. This result is impor-
tant: informally, we have found that increasing the

granularity of topics correlates strongly with user
perceptions of the utility of a topic model.
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Figure 5: Topics sorted by number of words assigned.
Finnish is in black, English is in red; LDA is solid, PLTM is
dashed. LDA in Finnish essentially learns a 200 topic model
when given 800 topics, while PLTM uses all 800 topics.

4.4 Partly Comparable Corpora

An important application for polylingual topic
modeling is to use small numbers of comparable
document tuples to link topics in larger collections
of distinct, non-comparable documents in multiple
languages. For example, a journal might publish
papers in English, French, German and Italian. No
paper is exactly comparable to any other paper, but
they are all roughly topically similar. If we wish
to perform topic-based bibliometric analysis, it is
vital to be able to track the same topics across all
languages. One simple way to achieve this topic
alignment is to add a small set of comparable doc-
ument tuples that provide sufficient “glue” to bind
the topics together. Continuing with the exam-
ple above, one might extract a set of connected
Wikipedia articles related to the focus of the jour-
nal and then train PLTM on a joint corpus consist-
ing of journal papers and Wikipedia articles.

In order to simulate this scenario we create a
set of variations of the EuroParl corpus by treat-
ing some documents as if they have no paral-
lel/comparable texts – i.e., we put each of these
documents in a single-document tuple. To do this,
we divide the corpusW into two sets of document
tuples: a “glue” set G and a “separate” set S such
that |G| / |W| = p. In other words, the proportion
of tuples in the corpus that are treated as “glue”
(i.e., placed in G) is p. For every tuple in S, we
assign each document in that tuple to a new single-
document tuple. By doing this, every document in
S has its own distribution over topics, independent
of any other documents. Ideally, the “glue” doc-
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uments in G will be sufficient to align the topics
across languages, and will cause comparable doc-
uments in S to have similar distributions over top-
ics even though they are modeled independently.

Table 3: The effect of the proportion p of “glue” tuples on
mean Jensen-Shannon divergence in estimated topic distribu-
tions for pairs of documents in S that were originally part of
a document tuple. Lower divergence means the topic distri-
butions distributions are more similar to each other.

p Mean JS # of pairs Std. Err.
0.01 0.83755 487670 0.00018
0.05 0.79144 467288 0.00021

0.1 0.70228 443753 0.00026
0.25 0.38480 369608 0.00029

0.5 0.29712 246380 0.00030

Table 4: Topics are meaningful within languages but di-
verge between languages when only 1% of tuples are treated
as “glue” tuples. With 25% “glue” tuples, topics are aligned.

lang Topics at p = 0.01
DE rußland russland russischen tschetschenien sicherheit
EN china rights human country s burma
FR russie tchétchénie union avec russe région
IT ho presidente mi perché relazione votato

lang Topics at p = 0.25
DE rußland russland russischen tschetschenien ukraine
EN russia russian chechnya cooperation region belarus
FR russie tchétchénie avec russe russes situation
IT russia unione cooperazione cecenia regione russa

We train PLTM with 100 topics on corpora with
p ∈ {0.01, 0.05, 0.1, 0.25, 0.5}. We use 1000 it-
erations of Gibbs sampling with β = 0.01. Hy-
perparameters αm are re-estimated every 10 it-
erations. We calculate the Jensen-Shannon diver-
gence between the topic distributions for each pair
of individual documents in S that were originally
part of the same tuple prior to separation. The
lower the divergence, the more similar the distri-
butions are to each other. From the results in fig-
ure 4, we know that leaving all document tuples
intact should result in a mean JS divergence of
less than 0.1. Table 3 shows mean JS divergences
for each value of p. As expected, JS divergence is
greater than that obtained when all tuples are left
intact. Divergence drops significantly when the
proportion of “glue” tuples increases from 0.01 to
0.25. Example topics for p = 0.01 and p = 0.25
are shown in table 4. At p = 0.01 (1% “glue” doc-
uments), German and French both include words
relating to Russia, while the English and Italian
word distributions appear locally consistent but

unrelated to Russia. At p = 0.25, the top words
for all four languages are related to Russia.

These results demonstrate that PLTM is appro-
priate for aligning topics in corpora that have only
a small subset of comparable documents. One area
for future work is to explore whether initializa-
tion techniques or better representations of topic
co-occurrence might result in alignment of topics
with a smaller proportion of comparable texts.

4.5 Machine Translation

Although the PLTM is clearly not a substitute for
a machine translation system—it has no way to
represent syntax or even multi-word phrases—it is
clear from the examples in figure 2 that the sets of
high probability words in different languages for a
given topic are likely to include translations. We
therefore evaluate the ability of the PLTM to gen-
erate bilingual lexica, similar to other work in un-
supervised translation modeling (Haghighi et al.,
2008). In the early statistical translation model
work at IBM, these representations were called
“cepts,” short for concepts (Brown et al., 1993).

We evaluate sets of high-probability words in
each topic and multilingual “synsets” by compar-
ing them to entries in human-constructed bilingual
dictionaries, as done by Haghighi et al. (2008).
Unlike previous work (Koehn and Knight, 2002),
we evaluate all words, not just nouns. We col-
lected bilingual lexica mapping English words to
German, Greek, Spanish, French, Italian, Dutch
and Swedish. Each lexicon is a set of pairs con-
sisting of an English word and a translated word,
{we, w`}. We do not consider multi-word terms.
We expect that simple analysis of topic assign-
ments for sequential words would yield such col-
locations, but we leave this for future work.

For every topic t we select a small number K
of the most probable words in English (e) and
in each “translation” language (`): Wte and Wt`,
respectively. We then add the Cartesian product
of these sets for every topic to a set of candidate
translations C. We report the number of elements
of C that appear in the reference lexica. Results
for K = 1, that is, considering only the single
most probable word for each language, are shown
in figure 6. Precision at this level is relatively
high, above 50% for Spanish, French and Italian
with T = 400 and 800. Many of the candidate
pairs that were not in the bilingual lexica were
valid translations (e.g. EN “comitology” and IT
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“comitalogia”) that simply were not in the lexica.
We also do not count morphological variants: the
model finds EN “rules” and DE “vorschriften,” but
the lexicon contains only “rule” and “vorschrift.”
Results remain strong as we increase K. With
K = 3, T = 800, 1349 of the 7200 candidate
pairs for Spanish appeared in the lexicon.
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Figure 6: Are the single most probable words for a given
topic in different languages translations of each other? The
number of such pairs that appear in bilingual lexica is shown
on the y-axis. For T = 800, the top English and Spanish
words in 448 topics were exact translations of one another.

4.6 Finding Translations

In addition to enhancing lexicons by aligning
topic-specific vocabulary, PLTM may also be use-
ful for adapting machine translation systems to
new domains by finding translations or near trans-
lations in an unstructured corpus. These aligned
document pairs could then be fed into standard
machine translation systems as training data. To
evaluate this scenario, we train PLTM on a set of
document tuples from EuroParl, infer topic distri-
butions for a set of held-out documents, and then
measure our ability to align documents in one lan-
guage with their translations in another language.

It is not necessarily clear that PLTM will be ef-
fective at identifying translations. In finding a low-
dimensional semantic representation, topic mod-
els deliberately smooth over much of the varia-
tion present in language. We are therefore inter-
ested in determining whether the information in
the document-specific topic distributions is suffi-
cient to identify semantically identical documents.

We begin by dividing the data into a training
set of 69,550 document tuples and a test set of
17,435 document tuples. In order to make the task
more difficult, we train a relatively coarse-grained
PLTM with 50 topics on the training set. We then
use this model to infer topic distributions for each
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Figure 7: Percent of query language documents for which
the target language translation is ranked at or above 1, 5, 10
or 20 by JS divergence, averaged over all language pairs.

of the 11 documents in each of the held-out doc-
ument tuples using a method similar to that used
to calculate held-out probabilities (Wallach et al.,
2009). Finally, for each pair of languages (“query”
and “target”) we calculate the difference between
the topic distribution for each held-out document
in the query language and the topic distribution for
each held-out document in the target language. We
use both Jensen-Shannon divergence and cosine
distance. For each document in the query language
we rank all documents in the target language and
record the rank of the actual translation.

Results averaged over all query/target language
pairs are shown in figure 7 for Jensen-Shannon
divergence. Cosine-based rankings are signifi-
cantly worse. It is important to note that the
length of documents matters. As noted before,
many of the documents in the EuroParl collection
consist of short, formulaic sentences. Restrict-
ing the query/target pairs to only those with query
and target documents that are both longer than 50
words results in significant improvement and re-
duced variance: the average proportion of query
documents for which the true translation is ranked
highest goes from 53.9% to 72.7%. Performance
continues to improve with longer documents, most
likely due to better topic inference. Results vary
by language. Table 5 shows results for all tar-
get languages with English as a query language.
Again, English generally performs better with Ro-
mance languages than Germanic languages.

5 Results on Comparable Texts

Directly parallel translations are rare in many lan-
guages and can be extremely expensive to pro-
duce. However, the growth of the web, and in par-
ticular Wikipedia, has made comparable text cor-
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Figure 8: Squares represent the proportion of tokens in each language assigned to a topic. The left topic, world ski km won,
centers around Nordic counties. The center topic, actor role television actress, is relatively uniform. The right topic, ottoman
empire khan byzantine, is popular in all languages but especially in regions near Istanbul.

Table 5: Percent of English query documents for which the
translation was in the top n ∈ {1, 5, 10, 20} documents by JS
divergence between topic distributions. To reduce the effect
of short documents we consider only document pairs where
the query and target documents are longer than 100 words.

Lang 1 5 10 20
DA 78.0 90.7 93.8 95.8
DE 76.6 90.0 93.4 95.5
EL 77.1 90.4 93.3 95.2
ES 81.2 92.3 94.8 96.7
FI 76.7 91.0 94.0 96.3
FR 80.1 91.7 94.3 96.2
IT 79.1 91.2 94.1 96.2
NL 76.6 90.1 93.4 95.5
PT 80.8 92.0 94.7 96.5
SV 80.4 92.1 94.9 96.5

pora – documents that are topically similar but are
not direct translations of one another – consider-
ably more abundant than true parallel corpora.

In this section, we explore two questions re-
lating to comparable text corpora and polylingual
topic modeling. First, we explore whether com-
parable document tuples support the alignment of
fine-grained topics, as demonstrated earlier using
parallel documents. This property is useful for
building machine translation systems as well as
for human readers who are either learning new
languages or analyzing texts in languages they do
not know. Second, because comparable texts may
not use exactly the same topics, it becomes cru-
cially important to be able to characterize differ-
ences in topic prevalence at the document level (do
different languages have different perspectives on
the same article?) and at the language-wide level
(which topics do particular languages focus on?).

5.1 Data Set
We downloaded XML copies of all Wikipedia ar-
ticles in twelve different languages: Welsh, Ger-
man, Greek, English, Farsi, Finnish, French, He-
brew, Italian, Polish, Russian and Turkish. These
versions of Wikipedia were selected to provide a
diverse range of language families, geographic ar-
eas, and quantities of text. We preprocessed the
data by removing tables, references, images and
info-boxes. We dropped all articles in non-English
languages that did not link to an English article. In
the English version of Wikipedia we dropped all
articles that were not linked to by any other lan-
guage in our set. For efficiency, we truncated each
article to the nearest word after 1000 characters
and dropped the 50 most common word types in
each language. Even with these restrictions, the
size of the corpus is 148.5 million words.

We present results for a PLTM with 400 topics.
1000 Gibbs sampling iterations took roughly four
days on one CPU with current hardware.

5.2 Which Languages Have High Topic
Divergence?

As with EuroParl, we can calculate the Jensen-
Shannon divergence between pairs of documents
within a comparable document tuple. We can then
average over all such document-document diver-
gences for each pair of languages to get an over-
all “disagreement” score between languages. In-
terestingly, we find that almost all languages in
our corpus, including several pairs that have his-
torically been in conflict, show average JS diver-
gences of between approximately 0.08 and 0.12
for T = 400, consistent with our findings for
EuroParl translations. Subtle differences of sen-
timent may be below the granularity of the model.
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Figure 9: Wikipedia topics (T=400).

Overall, these scores indicate that although indi-
vidual pages may show disagreement, Wikipedia
is on average consistent between languages.

5.3 Are Topics Emphasized Differently
Between Languages?

Although we find that if Wikipedia contains an ar-
ticle on a particular subject in some language, the
article will tend to be topically similar to the arti-
cles about that subject in other languages, we also
find that across the whole collection different lan-
guages emphasize topics to different extents. To
demonstrate the wide variation in topics, we cal-
culated the proportion of tokens in each language
assigned to each topic. Figure 8 represents the es-
timated probabilities of topics given a specific lan-
guage. Competitive cross-country skiing (left) ac-
counts for a significant proportion of the text in
Finnish, but barely exists in Welsh and the lan-
guages in the Southeastern region. Meanwhile,

interest in actors and actresses (center) is consis-
tent across all languages. Finally, historical topics,
such as the Byzantine and Ottoman empires (right)
are strong in all languages, but show geographical
variation: interest centers around the empires.

6 Conclusions

We introduced a polylingual topic model (PLTM)
that discovers topics aligned across multiple lan-
guages. We analyzed the characteristics of PLTM
in comparison to monolingual LDA, and demon-
strated that it is possible to discover aligned top-
ics. We also demonstrated that relatively small
numbers of topically comparable document tu-
ples are sufficient to align topics between lan-
guages in non-comparable corpora. Additionally,
PLTM can support the creation of bilingual lexica
for low resource language pairs, providing candi-
date translations for more computationally intense
alignment processes without the sentence-aligned
translations typically used in such tasks. When
applied to comparable document collections such
as Wikipedia, PLTM supports data-driven analysis
of differences and similarities across all languages
for readers who understand any one language.
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Abstract

We have designed, implemented and eval-
uated an end-to-end system spellcheck-
ing and autocorrection system that does
not require any manually annotated train-
ing data. The World Wide Web is used
as a large noisy corpus from which we
infer knowledge about misspellings and
word usage. This is used to build an er-
ror model and an n-gram language model.
A small secondary set of news texts with
artificially inserted misspellings are used
to tune confidence classifiers. Because
no manual annotation is required, our sys-
tem can easily be instantiated for new lan-
guages. When evaluated on human typed
data with real misspellings in English and
German, our web-based systems outper-
form baselines which use candidate cor-
rections based on hand-curated dictionar-
ies. Our system achieves 3.8% total error
rate in English. We show similar improve-
ments in preliminary results on artificial
data for Russian and Arabic.

1 Introduction

Spellchecking is the task of predicting which
words in a document are misspelled. These pre-
dictions might be presented to a user by under-
lining the misspelled words. Correction is the
task of substituting the well-spelled hypotheses
for misspellings. Spellchecking and autocorrec-
tion are widely applicable for tasks such as word-
processing and postprocessing Optical Character
Recognition. We have designed, implemented
and evaluated an end-to-end system that performs
spellchecking and autocorrection.

The key novelty of our work is that the sys-
tem was developed entirely without the use of
manually annotated resources or any explicitly

compiled dictionaries of well-spelled words. Our
multi-stage system integrates knowledge from sta-
tistical error models and language models (LMs)
with a statistical machine learning classifier. At
each stage, data are required for training models
and determining weights on the classifiers. The
models and classifiers are all automatically trained
from frequency counts derived from the Web and
from news data. System performance has been
validated on a set of human typed data. We have
also shown that the system can be rapidly ported
across languages with very little manual effort.

Most spelling systems today require some hand-
crafted language-specific resources, such as lex-
ica, lists of misspellings, or rule bases. Sys-
tems using statistical models require large anno-
tated corpora of spelling errors for training. Our
statistical models require no annotated data. In-
stead, we rely on the Web as a large noisy corpus
in the following ways. 1) We infer information
about misspellings from term usage observed on
the Web, and use this to build an error model. 2)
The most frequently observed terms are taken as
a noisy list of potential candidate corrections. 3)
Token n-grams are used to build an LM, which
we use to make context-appropriate corrections.
Because our error model is based on scoring sub-
strings, there is no fixed lexicon of well-spelled
words to determine misspellings. Hence, both
novel misspelled or well-spelled words are allow-
able. Moreover, in combination with an n-gram
LM component, our system can detect and correct
real-word substitutions, ie, word usage and gram-
matical errors.

Confidence classifiers determine the thresholds
for spelling error detection and autocorrection,
given error and LM scores. In order to train these
classifiers, we require some textual content with
some misspellings and corresponding well-spelled
words. A small subset of the Web data from news
pages are used because we assume they contain
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relatively few misspellings. We show that con-
fidence classifiers can be adequately trained and
tuned without real-world spelling errors, but rather
with clean news data injected with artificial mis-
spellings.

This paper will proceed as follows. In Section 2,
we survey related prior research. Section 3 de-
scribes our approach, and how we use data at each
stage of the spelling system. In experiments (Sec-
tion 4), we first verify our system on data with ar-
tificial misspellings. Then we report performance
on data with real typing errors in English and Ger-
man. We also show preliminary results from port-
ing our system to Russian and Arabic.

2 Related Work

Spellchecking and correction are among the oldest
text processing problems, and many different so-
lutions have been proposed (Kukich, 1992). Most
approaches are based upon the use of one or more
manually compiled resources. Like most areas
of natural language processing, spelling systems
have been increasingly empirical, a trend that our
system continues.

The most direct approach is to model the
causes of spelling errors directly, and encode them
in an algorithm or an error model. Damerau-
Levenshtein edit distance was introduced as a
way to detect spelling errors (Damerau, 1964).
Phonetic indexing algorithms such as Metaphone,
used by GNU Aspell (Atkinson, 2009), repesent
words by their approximate ‘soundslike’ pronun-
ciation, and allow correction of words that ap-
pear orthographically dissimilar. Metaphone relies
upon data files containing phonetic information.
Linguistic intuition about the different causes of
spelling errors can also be represented explicitly in
the spelling system (Deorowicz and Ciura, 2005).

Almost every spelling system to date makes use
of a lexicon: a list of terms which are treated as
‘well-spelled’. Lexicons are used as a source of
corrections, and also to filter words that should
be ignored by the system. Using lexicons in-
troduces the distinction between ‘non-word’ and
‘real-word’ errors, where the misspelled word is
another word in the lexicon. This has led to
the two sub-tasks being approached separately
(Golding and Schabes, 1996). Lexicon-based ap-
proaches have trouble handling terms that do not
appear in the lexicon, such as proper nouns, for-
eign terms, and neologisms, which can account for

a large proportion of ‘non-dictionary’ terms (Ah-
mad and Kondrak, 2005).

A word’s context provides useful evidence as
to its correctness. Contextual information can be
represented by rules (Mangu and Brill, 1997) or
more commonly in an n-gram LM. Mays et al
(1991) used a trigram LM and a lexicon, which
was shown to be competitive despite only allow-
ing for a single correction per sentence (Wilcox-
O’Hearn et al., 2008). Cucerzan and Brill (2004)
claim that an LM is much more important than
the channel model when correcting Web search
queries. In place of an error-free corpus, the Web
has been successfully used to correct real-word
errors using bigram features (Lapata and Keller,
2004). This work uses pre-defined confusion sets.

The largest step towards an automatically train-
able spelling system was the statistical model for
spelling errors (Brill and Moore, 2000). This re-
places intuition or linguistic knowledge with a
training corpus of misspelling errors, which was
compiled by hand. This approach has also been
extended to incorporate a pronunciation model
(Toutanova and Moore, 2002).

There has been recent attention on using Web
search query data as a source of training data, and
as a target for spelling correction (Yang Zhang and
Li, 2007; Cucerzan and Brill, 2004). While query
data is a rich source of misspelling information in
the form of query-revision pairs, it is not available
for general use, and is not used in our approach.

The dependence upon manual resources has
created a bottleneck in the development of
spelling systems. There have been few language-
independent, multi-lingual systems, or even sys-
tems for languages other than English. Language-
independent systems have been evaluated on Per-
sian (Barari and QasemiZadeh, 2005) and on Ara-
bic and English (Hassan et al., 2008). To our
knowledge, there are no previous evaluations of
a language-independent system across many lan-
guages, for the full spelling correction task, and
indeed, there are no pre-existing standard test sets
for typed data with real errors and language con-
text.

3 Approach

Our spelling system follows a noisy channel
model of spelling errors (Kernighan et al., 1990).
For an observed word w and a candidate correc-
tion s, we compute P (s|w) as P (w|s)× P (s).
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Figure 1: Spelling process, and knowledge sources used.

The text processing workflow and the data used
in building the system are outlined in Figure 1 and
detailed in this section. For each token in the in-
put text, candidate suggestions are drawn from the
term list (Section 3.1), and scored using an error
model (Section 3.2). These candidates are eval-
uated in context using an LM (Section 3.3) and
re-ranked. For each token, we use classifiers (Sec-
tion 3.4) to determine our confidence in whether
a word has been misspelled and if so, whether it
should be autocorrected to the best-scoring sug-
gestion available.

3.1 Term List

We require a list of terms to use as candidate cor-
rections. Rather than attempt to build a lexicon
of words that are well-spelled, we instead take the
most frequent tokens observed on the Web. We
used a large (> 1 billion) sample of Web pages,
tokenized them, and took the most frequently oc-
curring ten million tokens, with very simple filters
for non-words (too much punctuation, too short or
long). This term list is so large that it should con-
tain most well-spelled words, but also a large num-
ber of non-words or misspellings.

3.2 Error Model

We use a substring error model to estimate
P (w|s). To derive the error model, let R be
a partitioning of s into adjacent substrings, and
similarly let T be a partitioning of w, such that
|T | = |R|. The partitions are thus in one-to-one
alignment, and by allowing partitions to be empty,
the alignment models insertions and deletions of

substrings. Brill and Moore estimate P (w|s) as
follows:

P (w|s) ≈ max
R, T s.t. |T |=|R|

|R|∏
i=1

P (Ti|Ri) (1)

Our system restricts partitionings that have sub-
strings of length at most 2.

To train the error model, we require triples of
(intended word, observed word, count), which are
described below. We use maximum likelihood es-
timates of P (Ti|Ri).

3.2.1 Using the Web to Infer Misspellings
To build the error model, we require as train-
ing data a set of (intended word, observed word,
count) triples, which is compiled from the World
Wide Web. Essentially the triples are built by start-
ing with the term list, and a process that auto-
matically discovers, from that list, putative pairs
of spelled and misspelled words, along with their
counts.

We believe the Web is ideal for compiling this
set of triples because with a vast amount of user-
generated content, we believe that the Web con-
tains a representative sample of both well-spelled
and misspelled text. The triples are not used di-
rectly for proposing corrections, and since we have
a substring model, they do not need to be an ex-
haustive list of spelling mistakes.

The procedure for finding and updating counts
for these triples also assumes that 1) misspellings
tend to be orthographically similar to the intended
word; Mays et al (1991) observed that 80% of
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misspellings derived from single instances of in-
sertion, deletion, or substitution; and 2) words are
usually spelled as intended.

For the error model, we use a large corpus (up to
3.7×108 pages) of crawled public Web pages. An
automatic language-identification system is used
to identify and filter pages for the desired lan-
guage. As we only require a small window of con-
text, it would also be possible to use an n-gram
collection such as the Google Web 1T dataset.

Finding Close Words. For each term in the
term list (defined in Section 3.1), we find all
other terms in the list that are “close” to it. We
define closeness using Levenshtein-Damerau edit
distance, with a conservative upper bound that in-
creases with word length (one edit for words of
up to four characters, two edits for up to twelve
characters, and three for longer words). We com-
pile the term list into a trie-based data structure
which allows for efficient searching for all terms
within a maximum edit distance. The computa-
tion is ‘embarassingly parallel’ and hence easily
distributable. In practice, we find that this stage
takes tens to hundreds of CPU-hours.

Filtering Triples. At this stage, for each
term we have a cluster of orthographically similar
terms, which we posit are potential misspellings.
The set of pairs is reflexive and symmetric, e.g. it
contains both (recieve, receive) and (receive, re-
cieve). The pairs will also include e.g. (deceive,
receive). On the assumption that words are spelled
correctly more often than they are misspelled, we
next filter the set such that the first term’s fre-
quency is at least 10 times that of the second term.
This ratio was chosen as a conservative heuristic
filter.

Using Language Context. Finally, we use the
contexts in which a term occurs to gather direc-
tional weightings for misspellings. Consider a
term w; from our source corpus, we collect the
set of contexts {ci} in which w occurs. The defi-
nition of a context is relatively arbitrary; we chose
to use a single word on each side, discarding con-
texts with fewer than a total of ten observed occur-
rences. For each context ci, candidate “intended”
terms arew andw’s close terms (which are at least
10 times as frequent as w). The candidate which
appears in context ci the most number of times is
deemed to be the term intended by the user in that
context.

The resulting dataset consists of triples of the

original observed term, one of the “intended”
terms as determined by the above algorithm, and
the number of times this term was intended. For
a single term, it is possible (and common) to have
multiple possible triples, due to the context-based
assignment.

Inspecting the output of this training process
shows some interesting patterns. Overall, the
dataset is still noisy; there are many instances
where an obviously misspelled word is not as-
signed a correction, or only some of its instances
are. The dataset contains around 100 million
triples, orders of magnitude larger than any man-
ually compiled list of misspellings . The kinds of
errors captured in the dataset include stereotypi-
cal spelling errors, such as acomodation, but also
OCR-style errors. computationaUy was detected
as a misspelling of computationally where the ‘U’
is an OCR error for ‘ll’; similarly, Postmodem was
detected as a misspelling of Postmodern (an exam-
ple of ‘keming’).

The data also includes examples of ‘real-word’
errors. For example, 13% of occurrences of
occidental are considered misspellings of acci-
dental; contrasting with 89% of occurrences of
the non-word accidential. There are many ex-
amples of terms that would not be in a normal
lexicon, including neologisms (mulitplayer for
multiplayer), companies and products (Playsta-
ton for Playstation), proper nouns (Schwarznegger
for Schwarzenegger) and internet domain names
(mysapce.com for myspace.com).

3.3 Language Model
We estimate P (s) using n-gram LMs trained on
data from the Web, using Stupid Backoff (Brants
et al., 2007). We use both forward and back-
ward context, when available. Contrary to Brill
and Moore (2000), we observe that user edits of-
ten have both left and right context, when editing
a document.

When combining the error model scores with
the LM scores, we weight the latter by taking their
λ’th power, that is

P (w|s) ∗ P (s)λ (2)

The parameter λ reflects the relative degrees to
which the LM and the error model should be
trusted. The parameter λ also plays the additional
role of correcting our error model’s misestimation
of the rate at which people make errors. For exam-
ple, if errors are common then by increasing λ we
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can reduce the value of P (w|w) ∗ P (w)λ relative
to
∑

s 6=w P (s|w) ∗ P (s)λ.
We train λ by optimizing the average inverse

rank of the correct word on our training corpus,
where the rank is calculated over all suggestions
that we have for each token.

During initial experimentation, it was noticed
that our system predicted many spurious autocor-
rections at the beginnings and ends of sentences
(or in the case of sentence fragments, the end of
the fragment). We hypothesized that we were
weighting the LM scores too highly in such cases.
We therefore conditioned λ on how much context
was available, obtaining values λi,j where i, j rep-
resent the amount of context available to the LM
to the left and right of the current word. i and j are
capped at n, the order of the LM.

While conditioning λ in this way might at first
appear ad hoc, it has a natural interpretation in
terms of our confidence in the LM. When there is
no context to either side of a word, the LM simply
uses unigram probabilities, and this is a less trust-
worthy signal than when more context is available.

To train λi,j we partition our data into bins cor-
responding to pairs i, j and optimize each λi,j in-
dependently.

Training a constant λ, a value of 5.77 was ob-
tained. The conditioned weights λi,j increased
with the values of i and j, ranging from λ0,0 =
0.82 to λ4,4 = 6.89. This confirmed our hypoth-
esis that the greater the available context the more
confident our system should be in using the LM
scores.

3.4 Confidence Classifiers for Checking and
Correction

Spellchecking and autocorrection were imple-
mented as a three stage process. These em-
ploy confidence classifiers whereby precision-
recall tradeoffs could be tuned to desirable levels
for both spellchecking and autocorrection.

First, all suggestions s for a word w are ranked
according to their P (s|w) scores. Second, a
spellchecking classifier is used to predict whether
w is misspelled. Third, if w is both predicted to be
misspelled and s is non-empty, an autocorrection
classifier is used to predict whether the top-ranked
suggestion is correct.

The spellchecking classifier is implemented us-
ing two embedded classifiers, one of which is used
when s is empty, and the other when it is non-

empty. This design was chosen because the use-
ful signals for predicting whether a word is mis-
spelled might be quite different when there are no
suggestions available, and because certain features
are only applicable when there are suggestions.

Our experiments will compare two classifier
types. Both rely on training data to determine
threshold values and training weights.

A “simple” classifier which compares the value
of log(P (s|w)) − log(P (w|w)), for the original
word w and the top-ranked suggestion s, with a
threshold value. If there are no suggestions other
than w, then the log(P (s|w)) term is ignored.

A logistic regression classifier that uses five
feature sets. The first set is a scores feature
that combines the following scoring information
(i) log(P (s|w)) − log(P (w|w)) for top-ranked
suggestion s. (ii) LM score difference between
the original word w and the top suggestion s.
(iii) log(P (s|w)) − log(P (w|w)) for second top-
ranked suggestion s. (iv) LM score difference be-
tween w and second top-ranked s. The other four
feature sets encode information about case signa-
tures, number of suggestions available, the token
length, and the amount of left and right context.

Certain categories of tokens are blacklisted, and
so never predicted to be misspelled. These are
numbers, punctuation and symbols, and single-
character tokens.

The training process has three stages. (1) The
context score weighting is trained, as described
in Section 3.3. (2) The spellchecking classifier is
trained, and tuned on held-out development data.
(3) The autocorrection classifier is trained on the
instances with suggestions that the spellchecking
classifier predicts to be misspelled, and it too is
tuned on held-out development data.

In the experiments reported in this paper, we
trained classifiers so as to maximize the F1-score
on the development data. We note that the desired
behaviour of the spellchecking and autocorrection
classifiers will differ depending upon the applica-
tion, and that it is a strength of our system that
these can be tuned independently.

3.4.1 Training Using Artificial Data
Training and tuning the confidence classifiers re-
quire supervised data, in the form of pairs of mis-
spelled and well-spelled documents. And indeed
we posit that relatively noiseless data are needed
to train robust classifiers. Since these data are
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Language Sentences
Train Test

English 116k 58k
German 87k 44k
Arabic 8k 4k
Russian 8k 4k

Table 1: Artificial data set sizes. The development
set is approximately the same size as the training
set.

not generally available, we instead use a clean
corpus into which we artificially introduce mis-
spellings. While this data is not ideal, we show
that in practice it is sufficient, and removes the
need for manually-annotated gold-standard data.

We chose data from news pages crawled from
the Web as the original, well-spelled documents.
We chose news pages as an easily identifiable
source of text which we assume is almost entirely
well-spelled. Any source of clean text could be
used. For each language the news data were di-
vided into three non-overlapping data sets: the
training and development sets were used for train-
ing and tuning the confidence classifiers, and a test
set was used to report evaluation results. The data
set sizes, for the languages used in this paper, are
summarized in Table 1.

Misspelled documents were created by artifi-
cially introducing misspelling errors into the well-
spelled text. For all data sets, spelling errors
were randomly inserted at an average rate of 2 per
hundred characters, resulting in an average word
misspelling rate of 9.2%. With equal likelihood,
errors were either character deletions, transposi-
tions, or insertions of randomly selected charac-
ters from within the same document.

4 Experiments

4.1 Typed Data with Real Errors

In the absence of user data from a real application,
we attempted our initial evaluation with typed data
via a data collection process. Typed data with real
errors produced by humans were collected. We
recruited subjects from our coworkers, and asked
them to use an online tool customized for data
collection. Subjects were asked to randomly se-
lect a Wikipedia article, copy and paste several
text-only paragraphs into a form, and retype those
paragraphs into a subsequent form field. The sub-
jects were asked to pick an article about a favorite
city or town. The subjects were asked to type

at a normal pace avoiding the use of backspace
or delete buttons. The data were tokenized, au-
tomatically segmented into sentences, and manu-
ally preprocessed to remove certain gross typing
errors. For instance, if the typist omitted entire
phrases/sentences by mistake, the sentence was re-
moved. We collected data for English from 25
subjects, resulting in a test set of 11.6k tokens, and
495 sentences. There were 1251 misspelled tokens
(10.8% misspelling rate.)

Data were collected for German Wikipedia arti-
cles. We asked 5 coworkers who were German na-
tive speakers to each select a German article about
a favorite city or town, and use the same online
tool to input their typing. For some typists who
used English keyboards, they typed ASCII equiva-
lents to non-ASCII characters in the articles. This
was accounted for in the preprocessing of the ar-
ticles to prevent misalignment. Our German test
set contains 118 sentences, 2306 tokens with 288
misspelled tokens (12.5% misspelling rate.)

4.2 System Configurations

We compare several system configurations to in-
vestigate each component’s contribution.

4.2.1 Baseline Systems Using Aspell

Systems 1 to 4 have been implemented as base-
lines. These use GNU Aspell, an open source spell
checker (Atkinson, 2009), as a suggester compo-
nent plugged into our system instead of our own
Web-based suggester. Thus, with Aspell, the sug-
gestions and error scores proposed by the system
would all derive from Aspell’s handcrafted custom
dictionary and error model. (We report results us-
ing the best combination of Aspell’s parameters
that we found.)

System 1 uses Aspell tuned with the logistic
regression classifier. System 2 adds a context-
weighted LM, as per Section 3.3, and uses the
“simple” classifier described in Section 3.4. Sys-
tem 3 replaces the simple classifier with the logis-
tic regression classifier. System 4 is the same but
does not perform blacklisting.

4.2.2 Systems Using Web-based Suggestions

The Web-based suggester proposes suggestions
and error scores from among the ten million most
frequent terms on the Web. It suggests the 20
terms with the highest values of P (w|s) × f(s)
using the Web-derived error model.

895



Systems 5 to 8 correspond with Systems 1 to
4, but use the Web-based suggestions instead of
Aspell.

4.3 Evaluation Metrics
In our evaluation, we aimed to select metrics that
we hypothesize would correlate well with real per-
formance in a word-processing application. In
our intended system, misspelled words are auto-
corrected when confidence is high and misspelled
words are flagged when a highly confident sug-
gestion is absent. This could be cast as a simple
classification or retrieval task (Reynaert, 2008),
where traditional measures of precision, recall and
F metrics are used. However we wanted to fo-
cus on metrics that reflect the quality of end-to-
end behavior, that account for the combined ef-
fects of flagging and automatic correction. Es-
sentially, there are three states: a word could be
unchanged, flagged or corrected to a suggested
word. Hence, we report on error rates that mea-
sure the errors that a user would encounter if the
spellchecking/autocorrection were deployed in a
word-processor. We have identified 5 types of er-
rors that a system could produce:

1. E1: A misspelled word is wrongly corrected.

2. E2: A misspelled word is not corrected but is
flagged.

3. E3: A misspelled word is not corrected or
flagged.

4. E4: A well spelled word is wrongly cor-
rected.

5. E5: A well spelled word is wrongly flagged.

It can be argued that these errors have varying
impact on user experience. For instance, a well
spelled word that is wrongly corrected is more
frustrating than a misspelled word that is not cor-
rected but is flagged. However, in this paper, we
treat each error equally.
E1, E2, E3 and E4 pertain to the correction

task. Hence we can define Correction Error Rate
(CER):

CER =
E1 + E2 + E3 + E4

T

where T is the total number of tokens. E3 and E5

pertain to the nature of flagging. We define Flag-
ging Error Rate (FER) and Total Error Rate (TER):

FER =
E3 + E5

T

TER =
E1 + E2 + E3 + E4 + E5

T

For each system, we computed a No Good Sugges-
tion Rate (NGS) which represents the proportion
of misspelled words for which the suggestions list
did not contain the correct word.

5 Results and Discussion

5.1 Experiments with Artificial Errors

System TER CER FER NGS

1. Aspell, no LM, LR 17.65 6.38 12.35 18.3
2. Aspell, LM, Sim 4.82 2.98 2.86 18.3
3. Aspell, LM, LR 4.83 2.87 2.84 18.3
4. Aspell, LM, LR 22.23 2.79 19.89 16.3
(no blacklist)

5. WS, no LM, LR 9.06 7.64 6.09 10.1
6. WS, LM, Sim 2.62 2.26 1.43 10.1
7. WS, LM, LR 2.55 2.21 1.29 10.1
8. WS, LM, LR 21.48 2.21 19.75 8.9
(no blacklist)

Table 2: Results for English news data on an in-
dependent test set with artificial spelling errors.
Numbers are given in percentages. LM: Language
Model, Sim: Simple, LR: Logistic Regression,
WS: Web-based suggestions. NGS: No good sug-
gestion rate.

Results on English news data with artificial
spelling errors are displayed in Table 2. The sys-
tems which do not employ the LM scores per-
form substantially poorer that the ones with LM
scores. The Aspell system yields a total error rate
of 17.65% and our system with Web-based sug-
gestions yields TER of 9.06%.

When comparing the simple scorer with the lo-
gistic regression classifier, the Aspell Systems 2
and 3 generate similar performances while the
confidence classifier afforded some gains in our
Web-based suggestions system, with total error re-
duced from 2.62% to 2.55%. The ability to tune
each phase during development has so far proven
more useful than the specific features or classifier
used. Blacklisting is crucial as seen by our results
for Systems 4 and 8. When the blacklisting mech-
anism is not used, performance steeply declines.

When comparing overall performance for the
data between the Aspell systems and the Web-
based suggestions systems, our Web-based sug-
gestions fare better across the board for the news
data with artificial misspellings. Performance
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gains are evident for each error metric that was ex-
amined. Total error rate for our best system (Sys-
tem 7) reduces the error of the best Aspell sys-
tem (System 3) by 45.7% (from 4.83% to 2.62%).
In addition, our no good suggestion rate is only
10% compared to 18% in the Aspell system. Even
where no LM scores are used, our Web-based sug-
gestions system outperforms the Aspell system.

The above results suggest that the Web-based
suggestions system performs at least as well as
the Aspell system. However, it must be high-
lighted that results on the test set with artificial
errors does not guarantee similar performance on
real user data. The artificial errors were generated
at a systematically uniform rate, and are not mod-
eled after real human errors made in real word-
processing applications. We attempt to consider
the impact of real human errors on our systems in
the next section.

5.2 Experiments with Human Errors

System TER CER FER NGS

English Aspell 4.58 3.33 2.86 23.0
English WS 3.80 3.41 2.24 17.2

German Aspell 14.09 10.23 5.94 44.4
German WS 9.80 7.89 4.55 32.3

Table 3: Results for Data with Real Errors in En-
glish and German.

Results for our system evaluated on data with
real misspellings in English and in German are
shown in Table 3. We used the systems that per-
formed best on the artificial data (System 3 for As-
pell, and System 7 for Web suggestions). The mis-
spelling error rates of the test sets were 10.8% and
12.5% respectively, higher than those of the arti-
ficial data which were used during development.
For English, the Web-based suggestions resulted
in a 17% improvement (from 4.58% to 3.80%) in
total error rate, but the correction error rate was
slightly (2.4%) higher.

By contrast, in German our system improved to-
tal error by 30%, from 14.09% to 9.80%. Correc-
tion error rate was also much lower in our Ger-
man system, comparing 7.89% with 10.23% for
the Aspell system. The no good suggestion rates
for the real misspelling data are also higher than
that of the news data. Our suggestions are lim-
ited to an edit distance of 2 with the original, and
it was found that in real human errors, the aver-
age edit distance of misspelled words is 1.38 but

for our small data, the maximum edit distance is
4 in English and 7 in German. Nonetheless, our
no good suggestion rates (17.2% and 32.3%) are
much lower than those of the Aspell system (23%
and 44%), highlighting the advantage of not using
a hand-crafted lexicon.

Our results on real typed data were slightly
worse than those for the news data. Several fac-
tors may account for this. (1) While the news data
test set does not overlap with the classifier train-
ing set, the nature of the content is similar to the
train and dev sets in that they are all news articles
from a one week period. This differs substantially
from Wikipedia article topics that were generally
about the history and sights a city. (2) Second,
the method for inserting character errors (random
generation) was the same for the news data sets
while the real typed test set differed from the ar-
tificial errors in the training set. Typed errors are
less consistent and error rates differed across sub-
jects. More in depth study is needed to understand
the nature of real typed errors.
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Figure 2: Effect of corpus size used to train the
error model.

5.3 Effect of Web Corpus Size

To determine the effects of the corpus size on our
automated training, we evaluated System 7 using
error models trained on different corpus sizes. We
used corpora containing 103, 104, . . . , 109 Web
pages. We evaluated on the data set with real er-
rors. On average, about 37% of the pages in our
corpus were in English. So the number of pages
we used ranged from about 370 to about 3.7×108.
As shown in Figure 2, the gains are small after
about 106 documents.
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5.4 Correlation across data sets
We wanted to establish that performance improve-
ment on the news data with artificial errors are
likely to lead to improvement on typed data with
real errors. The seventeen English systems re-
ported in Table 3, Table 2 and Figure 2 were each
evaluated on both English test sets. The rank cor-
relation coefficient between total error rates on the
two data sets was high (τ = 0.92; p < 5× 10−6).
That is, if one system performs better than another
on our artificial spelling errors, then the first sys-
tem is very likely to also perform better on real
typing errors.

5.5 Experiments with More Languages

System TER CER FER NGS

German Aspell 8.64 4.28 5.25 29.4
German WS 4.62 3.35 2.27 16.5

Arabic Aspell 11.67 4.66 8.51 25.3
Arabic WS 4.64 3.97 2.30 15.9

Russian Aspell 16.75 4.40 13.11 40.5
Russian WS 3.53 2.45 1.93 15.2

Table 4: Results for German, Russian, Arabic
news data.

Our system can be trained on many languages
with almost no manual effort. Results for German,
Arabic and Russian news data are shown in Ta-
ble 4. Performance improvements by the Web sug-
gester over Aspell are greater for these languages
than for English. Relative performance improve-
ments in total error rates are 47% in German, 60%
in Arabic and 79% in Russian. Differences in no
good suggestion rates are also very pronounced
between Aspell and the Web suggester.

It cannot be assumed that the Arabic and Rus-
sian systems would perform as well on real data.
However the correlation between data sets re-
ported in Section 5.4 lead us to hypothesize that
a comparison between the Web suggester and As-
pell on real data would be favourable.

6 Conclusions

We have implemented a spellchecking and au-
tocorrection system and evaluated it on typed
data. The main contribution of our work is that
while this system incorporates several knowledge
sources, an error model, LM and confidence clas-
sifiers, it does not require any manually annotated
resources, and infers its linguistic knowledge en-
tirely from the Web. Our approach begins with a

very large term list that is noisy, containing both
spelled and misspelled words, and derived auto-
matically with no human checking for whether
words are valid or not.

We believe this is the first published system
to obviate the need for any hand labeled data.
We have shown that system performance improves
from a system that embeds handcrafted knowl-
edge, yielding a 3.8% total error rate on human
typed data that originally had a 10.8% error rate.
News data with artificially inserted spellings were
sufficient to train confidence classifiers to a sat-
isfactory level. This was shown for both Ger-
man and English. These innovations enable the
rapid development of a spellchecking and correc-
tion system for any language for which tokeniz-
ers exist and string edit distances make sense. We
have done so for Arabic and Russian.

In this paper, our results were obtained without
any optimization of the parameters used in the pro-
cess of gathering data from the Web. We wanted to
minimize manual tweaking particularly if it were
necessary for every language. Thus heuristics such
as the number of terms in the term list, the criteria
for filtering triples, and the edit distance for defin-
ing close words were crude, and could easily be
improved upon. It may be beneficial to perform
more tuning in future. Furthermore, future work
will involve evaluating the performance of the sys-
tem for these language on real typed data.
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Abstract

Models of language learning play a cen-
tral role in a wide range of applica-
tions: from psycholinguistic theories of
how people acquire new word knowledge,
to information systems that can automati-
cally match content to users’ reading abil-
ity. We present a novel statistical ap-
proach that can infer the distribution of
a word’s likely acquisition age automati-
cally from authentic texts collected from
the Web. We then show that combining
these acquisition age distributions for all
words in a document provides an effective
semantic component for predicting read-
ing difficulty of new texts. We also com-
pare our automatically inferred acquisition
ages with norms from existing oral stud-
ies, revealing interesting historical trends
as well as differences between oral and
written word acquisition processes.

1 Introduction

Word acquisition refers to the temporal process by
which children learn the meaning and understand-
ing of new words. Some words are acquired at
a very early age, some are acquired at early pri-
mary school grades, and some are acquired at high
school or even later in life as the individual under-
goes experiences related to that word. A related
concept to acquisition age is document grade level
readability which refers to the school grade level
of the document’s intended audience. It applies
in situations where documents are written with the
expressed intent of being understood by children
in a certain school grade. For example, textbooks
authored specifically for fourth graders are said to
have readability grade level four.

We develop and evaluate a novel statistical
model that draws a connection between document

grade level readability and age acquisition distri-
butions. Based on previous work in the area, we
define a model for document readability using a
logistic Rasch model and the quantiles of the ac-
quisition age distributions. We then proceed to in-
fer the age acquisition distributions for different
words from document readability data collected
by crawling the web.

We examine the inferred acquisition distribu-
tions from two perspectives. First, we analyze and
contrast them with previous studies on oral word
acquisition, revealing interesting historical trends
as well as differences between oral and written
word acquisition processes. Second, the inferred
acquisition distributions serve as parameters for
the readability model, which enables us to predict
the readability level of novel documents.

To our knowledge, this is the first published
study of a method to ‘reverse-engineer’ individ-
ual word acquisition statistics from graded texts.
By obtaining such a fine-grained model of how
language evolves over time, we obtain a new,
rich source of semantic features for a document.
The increasing amounts of content available from
the Web and other sources also means that these
flexible models of authentic usage can be eas-
ily adapted for different tasks and populations.
Our work serves to complement the growing body
of research using statistics and machine learn-
ing for language learning tasks, and has appli-
cations including predicting reading difficulty for
Web pages and other non-traditional documents,
reader-specific example and question generation
for lexical practice in intelligent tutoring systems,
and analysis tools for language learning research.

2 A Model for Document Readability
and Word Acquisition

For a fixed word and a fixed population of indi-
vidualsT the age of acquisition (AoA) distribu-
tion pw represents the age at which wordw was
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acquired by the population. Existing AoA norm
studies almost universally summarize AoA ratings
in terms of two parameters: mean and standard
deviation, ignoring higher-level moments such as
skew. For direct comparison with these studies we
follow this convention and thus our goal is to esti-
mate AoA for a wordw in terms of meanµw and
standard deviationσw parameters using the (trun-
cated) normal distribution

pw(t) ∝ N(t ; µw, σw) =
e−(t−µw)2/(2σ2

w)√
2πσ2

w

(1)

where the proportionality constant ensures that the
distribution is normalized over the range of ages
under consideration e.g.,t ∈ [6, 18] for school
grades. It is important to note that our model is
not restricted by the assumption of (1) and can be
readily extended to the Gamma family of distribu-
tions, if modeling asymmetric spread in the distri-
bution is appropriate.

For a fixed vocabularyV of distinct words the
age acquisition distributions for all wordsw ∈ V
are defined using2|V | parameters

{(µw, σw) : w ∈ V }. (2)

These parameters, which are the main objects of
interest, can in principle be estimated from data
using standard statistical techniques. Unfortu-
nately, data containing explicit acquisition ages is
very difficult to obtain reliably. Explicit word ac-
quisition data is based on interviewing adults re-
garding their age acquisition process during child-
hood and so may be unreliable and difficult to ob-
tain for a large representative group of people.

On the other hand, it is possible to reliably col-
lect large quantities of readability data defined as
pairs of documents and ages of intended audience.
As we demonstrate later in the paper, such data
may be automatically obtained by crawling spe-
cialized resources on the Web. We demonstrate
how to use such data to estimate the word acqui-
sition parameters (2) and to use the estimates to
predict future readability ages.

Traditionally, document readability has been
defined in terms of the school grade level at which
a large portion of the words have been acquired
by most children (Chall and Dale, 1995). We pro-
pose the following interpretation of that definition,
which is made appropriate for quantitative studies
by taking into account the inherent randomness in
the acquisition process.

Definition 1. A documentd = (w1, . . . , wm) is
said to have(1 − ǫ1, 1 − ǫ2)-readability levelt if
by aget no less than1− ǫ1 percent of the words in
d have been acquired each by no less than1 − ǫ2
percent of the population.

We denote byqw the quantile function of the cdf
corresponding to the acquisition distributionpw.
In other words,qw(r) represents the age at which
r percent of the populationT have acquired word
w. Despite the fact that it does not have a closed
form, it is a continuous and smooth function of the
parametersµw, σw in (1) (assumingT is infinite)
and can be tabulated before inference begins.

Following Definition 1 we define a logistic
Rasch readability model:

log
P (d is (s, r)-readable at aget)

1− P (d is (s, r)-readable at aget)
= θ(qd(s, r)− t) (3)

whereqd(s, r) is thes quantile of{qwi(r) : i =
1, . . . , m}. An equivalent formulation to (3) that
makes the probability model more explicit is

P (d is (s, r)-readable at aget)

=
exp(θ(qd(s, r)− t))

1 + exp(θ(qd(s, r)− t))
. (4)

In other words, the probability of a documentd
being(s, r)-readable increases exponentially with
qd(s, r) which is the age at whichs percent of the
words ind have been acquired each byr percent
of the population.

The parameterr = 1 − ǫ2 determines what it
means for a word to be acquired and is typically
considered to be a high value such as 0.8. The
parameters = 1 − ǫ1 determines how many of
the document words need to be acquired for it to
be readable. It can be set to a high value such as
0.9 if a very precise understanding is required for
readability but can be reduced when a more mod-
est definition of readability applies.

We note that due to the discreteness of the set
{qwi(r) : i = 1, . . . , m}, neitherqd(s, r) nor the
loglikelihood are differentiable in the parameters
(2). This raises some practical difficulties with
respect to the computational maximization of the
likelihood and subsequent estimation of (2). How-
ever, for long documents containing a large num-
ber of words,qd(s, r) is approximately smooth
which motivates a maximum likelihood procedure
using gradient descent on a smoothed version of
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qd(s). Alternative optimization techniques which
do not require smoothness may also be used.

In the case of a normal distribution (1) we have
that a word is acquired byr percent of the pop-
ulation at agew = µ + Φ−1(r)σ, whereΦ is
the cumulative distribution function (cdf) of the
normal distribution. To investigate the distribu-
tion of acquisition ages we assume that theµ, σ
parameters corresponding to different words in a
document are drawn from Gamma distributions
µ ∼ G(α1, β1) andσ ∼ G(α2, β2). The normal
and Gamma distributions are chosen in part be-
cause they are flexible enough to model many sit-
uations and also admit good statistical estimation
theory. Noting thatΦ−1(r)σ ∼ G(α2, Φ−1(r)β2),
we can write the distribution of the acquisition
ages as the following convolution

fW (w) =
wα1+α2−1e−w/β2

Γ(α1)Γ(α2)βα1
1 βα2

2

∗
∫ 1

0

tα1−1e
(β1−β2)tw

β1β2

(1− t)1−α2
dt

which reverts to a Gamma whenβ1 = β2.
The distribution of thes-percentile of fW ,

which amounts to(r, s)-readability of documents,
can be analyzed by combiningfW above with a
standard normal approximation of order statistics
(e.g., (David and Nagaraja, 2003))

X⌊mp⌋ ∼ N

(
F−1

W (p),
p(1− p)

m[fW (F−1
W (p))]2

)
wherem is the document length andFW is the cdf
corresponding tofW .

Figure 1 shows the relationship between docu-
ment length and confidence interval (CI) width in
readability prediction. It contrasts the CI widths
for model based intervals and empirical intervals.
In both cases, documents of lengths larger than
100 words provide CI widths shorter than 1 year.
This finding is also noteworthy as it provides
empirical support for the long-standing ‘rule-of-
thumb’ that readability measures become unreli-
able for passages of less than 100 words (Fry,
1990).

3 Experimental Results

Our experimental study is divided into three parts.
The first part examines the word acquisition dis-
tributions that were estimated based on readabil-
ity data. The second part compares the estimated
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Figure 1: A comparison of model (dashed) vs. em-
pirical (solid) 95% confidence interval widths as a
function of document length (r = 0.9 and s =
0.7). CI widths were computed using 1000 Monte
Carlo samples generated from thefW model fit to
the data and from the empirical distribution. Word
distributions correspond to a 1577 word document
written for a 7th grade audience taken from the
Web 1-12 corpus.

(written) acquisition ages with oral acquisition
ages obtained from interview studies reported in
the literature. The third part focuses on using the
estimated word acquisition distributions to predict
document readability. These three experimental
studies are described in the three subsections be-
low.

In our experiments we used three readability
datasets. The corpora were compiled by crawl-
ing web pages containing documents authored for
audiences of specific grade levels. The Web 1-
12 data contains 373 documents, with each doc-
ument written for a particular school grade level
in the range 1-12. The Weekly Reader (WR)
dataset, was obtained by crawling the commercial
website www.wrtoolkit.com after receiving spe-
cial permission. That dataset contains a total of
1780 documents, with 4 readability levels rang-
ing from 2 to 5 indicating the school grade lev-
els of the intended audience. A total of 788 doc-
uments with readability between grades 2 and 5
and having length greater than 50 words were se-
lected from 1780 documents. The Reading A-Z
dataset, contains a set of 215 documents was ob-
tained from Reading A-Z.com, spanning grade 1
through grade 6.

The grade levels in these three corpora, which
correspond to US school grades, were either ex-
plicitly specified by the organization or authors

902



who created the text, or implicit in the class-
room curriculum page where the document was
acquired. The pages were drawn from a wide
range of subject areas, including history, science,
geography, and fiction.

To reduce the possibility of overfitting, we used
a common feature selection technique of eliminat-
ing words appearing in less than 4 documents. In
the experiments we used maximum likelihood to
estimate the model parameters{(µw, σ2

w) : w ∈
V } for the Rasch model (3). The maximum likeli-
hood was obtained using a non-smooth coordinate
descent procedure.

3.1 Estimation of Word Acquisition
Distributions

Figure 2 displays the inferred age acquisition dis-
tributions and empirical word appearances of three
words: thought (left), multitude (middle),
andassimilate (right). In these plots, the em-
pirical cdf of word appearances is indicated by a
piecewise constant line while the probability den-
sity function of the estimated AoA distribution is
indicated by a dashed line. The vertical line in-
dicates the 0.8 quantile of the AoA distribution
which corresponds to the grade by which 80% of
the children have acquired the word.

The wordassimilation appears in 2 doc-
uments having 12th grade readability. The high
grade level of these documents results in a high es-
timated acquisition age and the paucity of observa-
tions leads to a large uncertainty in this estimate as
seen by the variance of the acquisition age distri-
bution. The wordthought appears several times
in multiple grades. It is first observed in the 1st
grade and not again until the 4th grade resulting in
an estimated acquisition age falling between the
two. The variance of this acquisition distribution
is relatively small due to the frequent use of this
word. The empirical cdf shows thatmultitude
is used in grades 6, 8, and 9. Relative tothought
andassimilation the wordmultitude was
used less and more frequently respectively, which
leads to an acquisition age distribution with a
larger variance than that ofthought and smaller
than that ofassimilation.

The relationship in Figure 2 between the em-
pirical word appearances and the age acquisition
distribution demonstrates the following behavior:
(a) The variance of the age acquisition distribu-
tion goes down as the word appears in more doc-

uments, and (b) the mean of the AoA distribution
tends to be lower than the mean of the empirical
word appearance distribution, and in many cases
even smaller than the first grade in which the word
appeared. This is to be expected as authors use
specific words only after they believe the words
were acquired by a large portion of the intended
audience.

3.2 Comparison with Oral Studies

Among the related work in the linguistic commu-
nity, are several studies concerning oral acquisi-
tions of words. These studies estimate the age
at which a word is acquired for oral use based
an interview processes with participating adults.
We focus specifically on the seminal study of ac-
quisition ages performed by Gilhooly and Logie
(GL) (1980) and made available through the MRC
database (Coltheart, 1981).

There are some substantial differences between
these previous studies and our approach. We an-
alyze the age acquisition process through docu-
ment readability which leads to a written, rather
than oral, notion of word acquisition. Further-
more, our estimates are based on documents writ-
ten with a specific audience in mind, while the pre-
vious studies are based on interviewing adults re-
garding their childhood word acquisition process
which is arguably less reliable due to the age dif-
ference between the acquisition and the interview.
Finally, the GL study was performed in the late
1970s while our study uses contemporary internet
data. Conceivably, the word acquisition process
changed over the past 3 decades.

Despite these differences, it is interesting to
contrast our inferred age acquisitions with the GL
study and consider the differences and similari-
ties. Figure 3 displays the relationship between
the GL age of acquisition (AoA) and the acquisi-
tion ages obtained from readability data based on
thes = 0.8 quantile. Some correlation is present
(r2 = 0.34) but the two measures differ consid-
erably. As expected, the acquisition ages obtained
from written readability data tend to be higher than
the oral studies. The distributions of differences
between the GL acquisition ages and the ones in-
ferred from the readability data appears in Fig-
ure 4.

Comparing the acquisition ages obtained from
readability data to the GL study results in a mean
absolute error of 0.9 to 1.5, depending on the spe-
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Figure 2: A comparison of empirical word appearances and AoA distributions for three words:
thought (left), multitude (middle), andassimilation (right). The empirical cdf of word ap-
pearances appears as a piecewise constant line and the estimated pdf is indicated by the dashed curve
with its 0.8 quantile indicated by a vertical line.

cific value of the Rasch parameterθ. Interestingly,
the tendency for the written acquisition age to ex-
ceed the oral one diminishes as the grade level in-
creases. This represents the notion that at higher
grades words are acquired in both oral and written
senses at the same age.

Predicted versus Oral Acquisition Age
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Figure 3: A scatter plot (s = 80, n = 50) of pre-
dicted age of acquisition versus Gilhooly and Lo-
gie’s values reveals the tendency for the written
estimate to exceed the oral estimate (r2 = 0.34).

A comparison to two more recent studies con-
firms relationships that are similar to those ob-
served with GL AoA. The Bristol Norm study
(Stadthagen-Gonzalez and Davis, 2006) was per-
formed in an identical way to the GL study and
comparing the lists of acquisition ages results
in a mean absolute error of approximately 0.5
which is much lower than the .9 to 1.5 relative to
GL. The recent AoA list of Cortese and Khanna
(2008) showed an increase in correlation relative
to the GL study (r2 = 0.43) potentially reflecting
change in the acquisition process due to temporal
effects.

Residual Distribution: Predicted AoA versus Oral AoA 
 S−percentile=80

Error (Predicted AoA − Actual AoA)

P
er

ce
nt

0

5

10

15

20

−4 −2 0 2 4

Figure 4: The difference distribution between
the GL and the inferred AoA from Web 1-12 is
skewed to the right as would be expected since
written AoA is higher than oral AoA. Relaxing
the definition of readability by decreasings re-
sults in higher inferred acquisition ages. Values
of s in [0.5, 0.9] produced reasonable results, with
s = 0.65 achieving smallest mean absolute error.

Those words that have the same written and
verbal acquisition age are partially attributable to
those words learned prior to first grade. Many
words are learned between the ages of 2 and 5,
while reading materials are typically not assigned
a grade level of less than 1 or age 6. Approxi-
mately 40% of the words assigned the same grade
level by both Gilhooly and our prediction had an
AoA of 1st grade.

In some cases, the ages of acquisition obtained
from readability data is actually lower than the
ages reported in the older oral studies. This phe-
nomenon is likely caused by a combination of
a shift in educational standards, a change in so-
cial standards, or estimation errors due to sample
size and modeling assumptions. Approximately
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30 years have passed since Gilhooly and Logie’s
study was conducted. Specifically, society has
made efforts to enhance the safety and health of
children and to increase the attention to science
education in very early grades. For example, the
word drug appeared in writing 0.94 grades ear-
lier than the age in which it was acquired orally
according to the GL study. The newer Bristol
Norm study confirms this observation as it pre-
dicts a decrease in grade level fordrug of 0.88
over GL as well. A similar decrease in acqui-
sition age relative to the GL norms was noted
for many other words such ashypothesis,
conclusion, engineer, diet, exercise,
andvitamin.

3.3 Global Readability Prediction

Once acquisition age distributions are available,
whether estimated statistically from data or ob-
tained from a survey, they may be used to predict
the grade level of novel documents. Specifically,
the model predicts readability levelt∗ for a novel
documentd if it is the minimal grade for which
readability is established:

t∗ = min{t : P (d is readable at aget) ≥ β(t)}
(5)

whereβ(t) is a parameter describing the strictness
of the readability requirement. Note that we allow
β(t) to vary as a function of time (grade level). We
discuss the justification for this below.

A critical issue for reading difficulty predic-
tion is how to handle words that appear in a new
document that have never been seen in the train-
ing/development texts. In a statistical approach,
the solution to this smoothing problem has two
steps. First, we must decide how much total proba-
bility mass to allocate to all unknown words. Sec-
ond, we must decide how to subdivide this total
mass for individual words or classes of words us-
ing word-specific priors.

Our experience suggests that the first step of
estimating total probability mass is particularly
important: the likelihood of seeing an unknown
word increases as a function of total vocabulary
size, which is continuously growing with time.
We model this by defining the following dynamic
threshold

β(t) =
exp(at− 0.5)

1 + exp(at− 0.5)
. (6)

We learn the growth rate parametera in (6) from
the data at the same time as we learn the read-
ability model’s quantile parameterss = 1 − ǫ1,
r = 1 − ǫ2. The range of the resultingβ(t) is
typically 0.5 in lower grades, increasing to 0.9 in
higher grades. We discuss fitting these parameters
and their optimal values further in Sec. 3.3.1. We
found that using any fixedβ value for all grades
was generally much less effective than a dynamic
β(t) threshold, and so we focus on the latter in our
evaluation.

For the second (word-specific) smoothing step,
we simply assign uniform probability across
grades, once the total unseen mass is determined.
More sophisticated word-specific priors incorpo-
rating word length, morphological features, se-
mantic clusters and so on are certainly possible
and an interesting direction for future work.

In the following section we conduct three exper-
iments involving readability prediction. First, we
confirm the effectiveness of the AoA-based model
compared to other predictive models. Second, we
examine how prediction effectiveness is affected
when our learned (written) acquisition ages are re-
placed with existing oral AoA norms. Third, we
examine the ability of our model to generalize to
new content by training and testing on different
(non-overlapping) corpora.

3.3.1 Effectiveness of Readability Prediction

In order to assess the effectiveness of our model
in predicting the readability grade levels of novel
documents we apply the model to two corpora.
First, we use the Web 1-12 corpus to learn opti-
mal parameter values fora , r, ands and then as-
sess prediction error using a test-training paradigm
for the proposed model, Naive Bayes, and support
vector regression. Second, the trained model is ap-
plied with to the Reader A-Z corpus and the results
are compared with alternative semantic variables.
Because corpora can vary significantly in text ho-
mogeneity, amount of noise, document size, and
other factors, training and testing across different
corpora – rather than relying on cross-validation
with a single pooled dataset – gives valuable in-
formation about how a prediction method might
be expected to perform on data with widely differ-
ent characteristics. This particular choice of Web
1-12 for training and ReadingA-Z for testing was
arbitrary.

To evaluate the best values for thea parameter
in (6) ands, r parameters in Definition 1 we gen-
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Readability Level Prediction: MAE and Correlation

S−th Percentile

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

1

2

3

0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
orrelation

Figure 5: Mean absolute error (MAE) and correla-
tion coefficient as functions of the quantile param-
eters at optimal levels ofa andr, averaged over
100 training/test samples. The MAE is displayed
as the solid line and is aligned with the left axis
while the correlation is displayed as a dashed line
and is aligned with the right axis. 90% bootstrap
confidence intervals are displayed.

erated 100 independent test and training samples
and computed the mean absolute prediction error
(MAE) and the correlation coefficient between the
predicted and actual levels. Figure 5 (left) shows
these two quantities: in each group of three lines,
the top and bottom lines delineate the upper and
lower 90% confidence bounds for the middle line.
Each middle line gives mean error or correlation
as a function of the quantile parameters at opti-
mal levels ofr anda, averaged over the 100 train-
ing/test samples. The optimal value ofs for both
quantities is around 0.6 (0.65 for the MAE). The
optimal value for parametera was approximately
1.55. The best MAE is 1.4 which compares favor-
ably to the 2.92 MAE obtained by always predict-
ing Grade 6 which is the optimal “dumb” classifier
in the sense that of all constant predictors it pro-
vides the smallest expected MSE over a uniform
grade distribution as is the case with the Web1-
12 corpus. Figure 6 is a scatter plot comparing
predicted grades vs. actual grades, with a strong
correlation of 0.89.

We compared the predictions of model (3) to
two standard classifiers: naive Bayes and support
vector regression (SVR). SVR was applied twice
using different sets of features - once with the doc-
ument word frequencies and once with the esti-
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Figure 6: The scatter plot demonstrates the strong
relationship between predicted and actual global
readability levels.

Prediction Rule MAE LB UB
Age of Acquisition 1.40 1.19 1.67

Naive Bayes 1.98 1.71 2.26

SVR (word frequency) 1.86 1.69 2.06

SVR (AoA percentiles) 1.36 1.22 1.58

Grade 6 2.92 - -

Figure 7: A comparison of mean absolute error
(MAE) across prediction algorithms shows the age
of acquisition model compares favorably. The
confidence bounds (LB,UB) were computed by re-
peating each model building procedure 100 times.

mated AoA percentiles for the document words.
The document word frequency vector is compa-
rable to the semantic component of the machine
learning approach used by (Heilman et al., 2008).
The 75-25 training-test model building paradigm
was used over documents from grades 1 to 12
to obtain predicted values. The MAE for these
predictors and their 90% confidence intervals are
shown in Figure 7. Predicting readability using
word frequencies had inferior performance, with
the naive Bayes model performing poorly and the
SVR and Rasch model obtaining MAE around 1.4.

In the second experiment, we compared our
model to published correlation results (Collins-
Thompson and Callan, 2005) for multiple alter-
native semantic variables using the same Reading
A-Z corpus, with the results shown in Fig. 8. De-
tails on these semantic variables, which have been
used in previous statistical learning approaches,
are available in the same study. Interestingly, the
correlation of the model was comparable to ex-
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Correlation Correlation

GL (Web) .65 UNK .78

GL (WR) .40 Type .86

Bristol (Web) .76 MLF .49

Bristol (WR) .57 FK .30

Inferred (Web) .59 Unigram .63

Figure 8: Comparison of the correlation of AoA
and other semantic variables with grade level for
the Reading A-Z corpus, showing the AoA model
with the dynamic threshold compares well to ex-
isting methods. The competitor methods used
are from (Collins-Thompson and Callan, 2005)
and comprise the Smoothed Unigram, UNK (rel-
ative to revised Dale-Chall), TYPE (number of
unique words), MLF (mean log frequency), and
FK (Flesch-Kincaid readability).

isting variables, but did vary depending upon the
source of AoA. Note that because the Reading A-Z
texts were assigned grades by their creators using
some of the same semantic variables (e.g. Type),
it is not surprising that those variables perform es-
pecially well on this dataset.

High quality readability prediction is a worth-
while result in itself; however, we can also use the
prediction mechanism to study the validity of Def-
inition 1 and the Rasch model. We do so by apply-
ing other predictive algorithms using the inferred
acquisition age distribution for each document as
the predictor variables and comparing the MAE
with the MAE obtained by the estimated Rasch
model. In particular, we examine the performance
of support vector regression (SVR) using the esti-
mated AoA percentiles for each document as pre-
dictor variables. The results displayed in Fig-
ure 7 show that SVR and the dynamic threshold
prediction rule perform similarly well, suggesting
that Definition 1 and the Rasch model are suitable
models for readability prediction.

3.3.2 Prediction with Existing Acquisition
Age Norms

We now examine how predicting readability of
novel documents using acquisition ages obtained
in surveys perform in comparison to the ages ob-
tained from the maximum likelihood estimation.

We use the GL and Bristol age of acquisition
norms. The intersection of AoA norm data and the
Web Corpus are 1217 and 1012 words respectively
for the GL and Bristol measure; additionally, the
highest grade level associated with these word sets

S-th Dynamic

Prediction Rule Percentile Threshold

Age of Acquisition 1.69 1.40

GL Norms 1.73 1.42

Bristol Norms 1.97 1.79

Figure 9: The Gilhooly and Logie AoA norms and
the Bristol norms are independent sources for ages
of acquisition. A comparison of the prediction
quality using these norms shows two things: 1) the
definition provides comparable prediction quality
using expert norms, and 2) the dynamic threshold
β(t) improves prediction over the static threshold
(optimals-th percentile) for the norms.

AoA Weekly

Source Web 1-12 Reader

Inferred (Weekly Reader) - .91

Inferred (Web 1-12) 1.89 -

GL 2.05 1.14

Bristol 1.57 1.34

Figure 10: The readability of WR documents was
predicted using 4 sources of AoA data. The pa-
rameters of the prediction model were fit using
only the Web data, or the WR data, or both sources
in the case of the GL and Bristol norms AoA data.

are eight and seven respectively. When applying
the prediction rule using AoA normsr is implic-
itly selected in the norming process as the result
is a single value instead of a distribution. Interest-
ingly, the optimal ranges ofs-percentile, from 92
to 100, were the same for both the GL and Bristol
norms. Table 9 shows that the prediction accuracy
obtained using the GL Norms was almost identical
to that obtained with the inferred AoA, while the
Bristol Norms performed as well as some of the
competitor procedures.

3.3.3 Prediction Effectiveness across
Different Corpora

To provide additional evidence for our model’s
ability to generalize to new corpora, we exam-
ine how the learnedr ands values vary when the
model is learned on one corpus and evaluated on
another, and how this affects the accuracy of the
readability prediction.

Figure 10 demonstrates the corpus used for tun-
ing the readability prediction has a large impact
on the quality of the prediction. Comparing the
MAE of the readability predictions on WR data
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when the age of acquisition is inferred from Web
data to the MAE when the AoA is inferred from
WR data shows the error rate more than doubles
from 0.90 to 1.89. The increase in error rate also
appears when the age of acquisition for WR data
is predicted using the AoA norm data. In this case
the prediction was performed using the parameters
identified when the model was trained on Web data
and when the model was trained on WR data. In
each case a tendency to overfit appears as the MAE
increases from 1.14 to 2.05 for the GL norms and
1.34 to 1.57 for the Bristol norms. Interestingly,
the Bristol norms perform better on WR data when
fit using the Web data, while the GL norms per-
form better when fit using the WR data.

4 Related Work

Age of acquisition for word reading and under-
standing has been extensively studied as a learn-
ing factor in the psycholinguistics literature, where
AoA norms have been obtained using surveys. Ex-
amples of relevant literature are (Gilhooly and Lo-
gie, 1980; Zevin and Seidenberg, 2002). Our ap-
proach differs by connecting AoA to readability
through Definition 1 and using readability data to
estimate AoA norms from large amounts of au-
thentic language data. A related study is that by
Crossley et al. (2007) who used AoA to help dis-
criminate between authentic and simplified texts
for second-language readers.

In the past decade, there has been renewed in-
terest in corpus-based statistical models for read-
ability prediction. One example is the popular
Lexile measure (Stenner, 1996) which uses word
frequency statistics from a large English corpus.
Collins-Thompson and Callan (2005) introduced a
new approach based on statistical language mod-
eling, treating a document as a mixture of lan-
guage models for individual grades. Further re-
cent refinements in methods for readability predic-
tion include using machine learning methods such
as Support Vector Machines (Schwarm and Os-
tendorf, 2005), log-linear models (Heilman et al.,
2008),k-NN classifiers and combining semantic
and grammatical features (Heilman et al., 2007).

The growing number of features investigated by
these machine learning approaches reflect the fact
that reading difficulty is a complex phenomenon
involving many factors, from semantic difficulty
(vocabulary) to syntax and discourse complex-
ity, reader background, and others. While a full-

featured comparison between previous approaches
that includes AoA features would be very inter-
esting, our goal in this study was to provide a
clear analysis of the most fundamental factor of
readability, semantic difficulty, which accounts for
80-90% of the variance in readability prediction
scores (Chall and Dale, 1995). Because AoA is
a semantic, vocabulary-based representation, we
compare its effectiveness with the correspond-
ing semantic componentsfrom previous machine-
learning approaches in Sec. 3.3.1.

5 Discussion

While there have been several recent studies re-
garding word acquisition and readability our work
is the first to provide a quantitative connection be-
tween these two concepts in a statistically mean-
ingful way. The core assumption that we make
is Definition 1 which is consistent with standard
readability definitions e.g., (Chall and Dale, 1995)
and states that document readability level is deter-
mined by most people understanding most words.

The connection between word acquisition and
readability is both intuitive and useful. It allows
two degrees of freedoms = 1− ǫ1 andr = 1− ǫ2
to handle situations where different readability no-
tions exist. Experiments validate the model and
demonstrate interesting trends in word acquisi-
tions as compared to older oral acquisition stud-
ies. Experimental results show that the proposed
model is also effective in terms of predicting read-
ability level of documents on multiple datasets.
It compares favorably to naive Bayes and sup-
port vector regression, the latter being one of the
strongest regression baselines.
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Abstract

This paper presents a supervised method
for resolving metonymies. We enhance
a commonly used feature set with fea-
tures extracted based on collocation in-
formation from corpora, generalized us-
ing lexical and encyclopedic knowledge
to determine the preferred sense of the
potentially metonymic word using meth-
ods from unsupervised word sense disam-
biguation. The methodology developed
addresses one issue related to metonymy
resolution – the influence of local context.
The method developed is applied to the
metonymy resolution task from SemEval
2007. The results obtained, higher for the
countries subtask, on a par for the compa-
nies subtask – compared to participating
systems – confirm that lexical, encyclo-
pedic and collocation information can be
successfully combined for metonymy res-
olution.

1 Introduction

Metonymies are a pervasive phenomenon in
language. They occur because in communicating,
we use words as pointers to a larger body of
knowledge, that encompasses various facets of the
concept evoked by a given word.

A listener need not understand the cello to
be moved by its playing, just as it is unnecessary
for a rider to understand technical jargon; all
that matters is sensation, and here theKawasaki
excels. Thecockpit is sensibly designed, with a
narrow front seat portion ...

Kawasakiis a company, it has an organization, fa-
cilities, employees, it makes specific products. In
the context above, the company name stands in
for its products – motorcycles. Motorcycles have

parts, thecockpitandfront seatare some of them,
and this provides the discourse links between the
two sentences. Constraints on the interpretation
of a wordw in context comes both from the local
and global context, and are applied to the infor-
mation/knowledge evoked byw. The local con-
straints come from the words with whichw is
(grammatically) related to. The global constraints
come from the domain/topic of the text, discourse
relations that span across sentences.

Metonymic words have a rather small num-
ber of possible interpretations (also called read-
ings) which occur frequently (Markert and Nissim,
2002). Idiosyncratic interpretations are also pos-
sible, but very rare. One can view the possible
interpretations of a potentially metonymic word
(PMW) as corresponding to the word’s possible
senses (Nissim and Markert, 2003), bringing the
task close to word sense disambiguation.

The approach to metonymy resolution pre-
sented here is supervised, with unsupervised fea-
ture enrichment. We apply techniques inspired by
unsupervised word sense disambiguation, which
allow us to go beyond the annotated data provided
in training, and quantify the restrictions imposed
on the interpretation of a PMW by its grammat-
ically related neighbours through collocation in-
formation extracted from corpora. The only anno-
tation required for the corpora are automatically
induced part-of-speech tags from which we ob-
tain grammatical relations through regular expres-
sion matching over sequences of parts-of-speech.
Collocation information is combined with lexical
resources – WordNet – and encyclopedic knowl-
edge extracted from Wikipedia to help us gener-
alize the collocations found to determine higher
level constraints on a word’s grammatical collo-
cates. In the example above,Kawasakiis gram-
matically related to the verbexcel– it is its sub-
ject. To determine the most likely interpretation
of Kawasakigiven that it is in the subject relation
with excelwe look at all the nouns in the corpora
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that appear as this verb’s subjects, and estimate
from this the preferencesexcelhas for its subjects.
Let us say the corpus contains the following col-
locations in subject position (with frequency in-
formation in parentheses):player (4), musician
(50), car (30), computer (12), camera (40), driver
(55), bike (20) .... The knowledge resources –
WordNet,isa relations extracted from Wikipedia
– will help generalize these collocations:player,
musician, driverto person and car, computer,
camera, biketo artifact. This together with
frequency of occurrence are used to estimate the
probability that the verbexceltakes aperson or
artifact-type subject. These areexcel’s se-
lectional preferences towards certain collocates,
and will help determine which possible interpre-
tation for the PMWKawasaki is appropriate in
this context –organization-for-people
or organization-for-product.

The paper continues with related work in Sec-
tion 2 and the description of the data in Section 3.
The representation used is introduced in Section
4. The results and the discussion are presented in
Section 5. The paper wraps up with conclusions
and future work.

2 Related Work

Analysis of metonymies as a linguistic phe-
nomenon dates back at least to the 1930s (Stern,
1931), and are increasingly recognized as an im-
portant phenomenon to tackle in the interest of
higher level language processing tasks, such as
anaphora resolution (Harabagiu, 1998; Markert
and Hahn, 2002), question answering (Stallard,
1993) or machine translation (Kamei and Wakao,
1992).

Until the early 90s, the main view about
metonymies was that they violate semantic con-
straints in their immediate context. To resolve
metonymies then amounts to detecting violated
constraints, usually from those imposed by the
verbs on their arguments (Pustejovsky, 1991;
Hobbs et al., 1993; Fass, 1991). Markert and
Hahn (2002) showed that this approach misses
metonymies which do not violate selectional re-
strictions. In this case referential cohesion re-
lations may indicate that the literal reading is
not appropriate and give clues about the intended
metonymic interpretation.

Markert and Nissim (2003) have combined
observations from the linguistic analysis of
metonymies with results of corpus studies. Lin-
guistic research has postulated that (i) conven-

tional metonymic readings are very systematic;
(ii) unconventional metonymies can be created on
the fly and their interpretation is context depen-
dent; (iii) metonymies are frequent. The fact
that most metonymic interpretations are system-
atic and correspond to a small set of possible read-
ings allow the metonymy resolution to be mod-
elled as a classifier learning task. Markert and Nis-
sim (2002) and Nissim and Markert (2003) have
shown that conventional metonymies can be effec-
tively resolved using a supervised machine learn-
ing approach. Moreover, grammatically related
words are crucial in determining the interpretation
of a PMW. The shortcoming is that manually an-
notated data is in short supply, and the approach
suffers from data sparseness. To address this prob-
lem, Nissim and Markert (2003) proposed a word
similarity-based method. They use Lin’s thesaurus
(Lin, 1998) to determine how close two lexical
heads are, and use this instead of the more re-
strictive identity constraint when comparing two
instances. This technique is complex, requiring
smoothing, multiple iterations over the thesaurus
and hybrid methods to allow a back-off to gram-
matical roles.

The supervised approach to resolving
metonymies was encouraged by the metonymy
resolution task at the semantic evaluation exercise
SemEval 2007 (Markert and Nissim, 2007). The
participating systems in this task were varied.
Most of them (four out of five) have used super-
vised machine learning techniques. The systems
that beat the baseline used either the grammatical
annotations provided by the organizers (Farkas
et al., 2007; Nicolae et al., 2007), or a robust
and deep (not freely available) parser (Brun et
al., 2007). These systems represented instances
in a manner similar to (Nissim and Markert,
2005). They used additional manually built
resources – WordNet, FrameNet, Levin’s verb
classes, manually built lists of “trigger” words
– to generalize the existing features. Brun et
al. (2007) also used the British National Corpus
(BNC) for computing the distance between words
based on their syntactic distribution.

While lexical resources and corpora are used
to estimate word similarity, all these systems rely
exclusively on the data provided by the organiz-
ers – instance representation captures only infor-
mation that can be derived from or between the
data points provided. The approach presented here
goes beyond the given data, and induces from cor-
pora measures that allow the system to determine
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what are the preferences of the words surround-
ing a PMW towards each of PMW’s possible read-
ings. The technique employed is adapted from
unsupervised word sense disambiguation (WSD).
In short, we use the local grammatical context
as it is commonly used in WSD approaches, to
guide the system in choosing the reading that fits
best. The benefits of using grammatical informa-
tion for automatic WSD were first explored by
Yarowsky (1995) and Resnik (1996) in unsuper-
vised approaches to disambiguating single words
in context. The method described here uses au-
tomatically induced selectional preferences, com-
puted from sense-untagged data, similar to Nas-
tase (2008).

3 Data

We work with the data from the metonymy reso-
lution task at SemEval 2007 (Markert and Nissim,
2007), generated based on a scheme developed by
Markert and Nissim (2003).

The metonymy resolution task at SemEval 2007
consisted of two subtasks – one for resolving
country names, the other for companies. For each
subtask there is a training and a test portion. Fig-
ure 1 shows the text fragment for one sample,
and Table 1 the data statistics. Thereadingcol-
umn shows the possible interpretations of a PMW
for countries and companies respectively. For ex-
ample,org-for-product would be the inter-
pretation of the PMWKawasakiin the example
shown in the introduction.

Occurrences of country and company names
were annotated with a small number of possi-
ble readings, as shown in Table 1. This reflects
previous analyses of the metonymy phenomenon,
which showed that there is a rather small number
of possible interpretations that appear more fre-
quently (Markert and Nissim, 2002). Special in-
terpretations are very rarely encountered.

Within the framework of the SemEval task,
metonymy resolution is evaluated on the
given test data, on three levels of granular-
ity: coarse – distinguish betweenliteral and
non-literal readings; medium – distinguish
betweenliteral, mixed andnon-literal
readings; fine – identify the specific reading of the
target word/words (potentially metonymic word -
PMW).

4 Representation

The method presented in this paper is a supervised
learning method, along the same general lines as

reading train test

locations 925 908
literal 737 721
mixed 15 20
othermet 9 11
obj-for-name 0 4
obj-for-representation 0 0
place-for-people 161 141
place-for-event 3 10
place-for-product 0 1

organizations 1090 842
literal 690 520
mixed 59 60
othermet 14 8
obj-for-name 8 6
obj-for-representation 1 0
org-for-members 220 161
org-for-event 2 1
org-for-product 74 67
org-for-facility 15 16
org-for-index 7 3

Table 1: Reading distributions

the systems which participated in the SemEval
competition. As such, it represents each PMW in
the data through features that describe its context
and some semantic characteristics. The minimum
set of necessary features is taken to be that pre-
sented by Nissim and Markert (2005), and proved
to be effective in solving metonymies. These
are theM&N features(Markert and Nissim fea-
tures). We expand on these features and estimate
preferences from words in a PMW’s context to-
wards specific PMW interpretations. These con-
stitute theselectional preference features. Finally,
Wikipedia is a source of facts which can be used
to derive information that can bias the decision to-
wards certain interpretations for a PMW. Each of
these features are described in more detail in the
following subsections.

4.1 M&N features

The features used by Nissim and Markert (2005)
are:

• grammatical role of PMW (subj, obj, ...);

• lemmatized head/modifier of PMW (an-
nounce, say, ...);

• determiner of PMW (def, indef, bare,
demonst, other, ...);
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XML tagged text
<sample id=”samp114”>
<bnc:title> Computergram international
</bnc:title>
<par>
LITTLE FEAR OF MICHELANGELO
The computer industry equivalent of “Small
earthquake in Chile” ...
The Michelangelo computer virus that received
worldwide attention last year is expected to cause
even fewer problems this Saturday than it did
when it struck last year, a team of<annot><org
reading=”literal”> IBM </org></annot> re-
searchers said.
</par>
</sample>

Grammatical annotations
SampleID|Lemma|PMW|GrRole|Reading
samp114|researcher|IBM |premod|literal
samp4|be|Williams Holdings|subj|literal
samp5|parent|Fujitsu Ltd|app|mixed
samp5|have|Fujitsu Ltd|subj|mixed
samp5|keep|Fujitsu Ltd|subj|mixed
samp8|against|IBM |pp|literal

POS tags
<bnc:s id=”samp114-bncCNJ-s341”> ...
<bnc:w id=”samp114-bncCNJ-s343-w29”
bnc:type=”NN0”> team</bnc:w> <bnc:w
id=”samp114-bncCNJ-s343-w30”
bnc:type=”PRF”> of </bnc:w> <annot> <org
reading=”literal”> <bnc:w possmeto=”yes”
id=”samp114-bncCNJ-s343-w31”
bnc:type=”NP0”> IBM </bnc:w> </org>
</annot> <bnc:w
id=”samp114-bncCNJ-s343-w32”
bnc:type=”NN2”> researchers</bnc:w> ...

Figure 1: Sample annotation

• grammatical number of PMW (sg, pl);

• number of grammatical roles in which the
PMW appears in its current context;

• number of words in PMW;

All these features can be extracted from the
grammatically annotated and POS tagged data
provided by the organizers.

4.2 Selectional preference features

The grammatical relations and the connected
words are important to describe the local context
of the target PMW. Because of the limited amount
of annotated data (a few thousand instances), lem-
mas of PMW’s grammatically related words will
make for very sparse data that a machine learn-
ing system would not be able to generalize over.
Nissim and Markert (2003) and the teams partici-
pating in the metonymy resolution task have then
supplemented their systems with Lin’s thesaurus,
WordNet, Beth Levin’s verb groups, FrameNet in-
formation, or manually designed lists of words to
generalize the grammatically related words and
thus find shared characteristics across instances of
metonymies in text.

The notion of selectional restrictions used in
metonymy resolution – meaning the restrictions
imposed on the interpretation of a PMW by its
context – is similar to the notion of selectional
preferences from word sense disambiguation –
meaning the preferences of a word for the senses
of the words in its context. We import this no-
tion, and compute selectional preferences for the
words in a PMW’s (grammatical) neighbourhood,
and allow them to influence the chosen reading for
the PMW. Applying methods from unsupervised
WSD allow us to estimate such preferences from
(sense/metonymy) untagged corpora.

A potentially metonymic word (or phrase) has
a small number of possible readings. These can
be viewed as possible senses, and the task is to
choose the one that fits best in the given context.
The preference for each possible sense can be
determined based on the PMW’s grammatically
related words. To estimate these sense preferences
we use grammatical collocations extracted from
the British National Corpus (BNC), detected
using regular expression matching over sequences
of POS using the Word Sketch Engine (Kilgarriff
et al., 2004). The scores are computed following
a technique similar to Nastase (2008), which is
illustrated using the following example:

The Kawasaki drives well, steers brilliantly
both under power and in tight corners ...

The PMWKawasakiis involved in the follow-
ing grammatical relations in the previous sentence:

(drive,subject,Kawasaki)
(steer,subject,Kawasaki)
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SampleID Lemma PMW GrRole Reading act animal artifact ... person ...
samp190 say Sun subj org-for-members0.00056 0.01171 0.01958 ... 0.61422 ...
samp190 claim Sun subj org-for-members0.00198 0.00099 0.00893 ... 0.50211 ...

Table 2: Grammatical annotation file enhanced with selectional preference estimates

The BNC provides the collocations
(drive,subject,X) and (steer,subject,Y), to de-
termine what kind of subjectdrive and steer
prefer, in “word-POS:frequency” format:

drive subject chauffeur-n:12, engine-
n:30, car-n:62, taxi-n:13,
motorist-n:10, disk-n:15,
truck-n:11, man-n:75, ...

steer subject power-n:6, car-n:3, sport-
n:2, firm-n:2, boy-n:2,
government-n:2, man-n:2,
people-n:2 ...

The target whose interpretation must be deter-
mined isKawasaki. If for a potentially metonymic
word representing a company name, there are the
following possible interpretations:company,
member/person, product/artifact,
facility, name, we compute the preference
for each of these interpretations based on the
extracted collocations. For the verbdrive for
example, the collocationsengine, car, taxi, truck
are all artifacts (according to WordNet), and
thus vote for theproduct/artifact reading,
while chauffeur, motorist, manare all person,
and vote for themember/person reading.
Preferences from different grammatical relation
for the same PMW are summed.

Formally, we choose the PMWs’ “senses” –
a set of words which are close to the possible
readings of metonymic words in the data. In
this work, these senses are the WordNet 3.0
supersenses:

S = { act, animal, artifact,
attribute, body, cognition,
communication, event, feeling,
food, group, location, motive,
object, person, phenomenon,
plant, possession, process,
quantity, relation, shape, state,
substance, time }.

Because none of these can be seen as a sense
for “company”, the list is supplemented with
company andorganization. Granted, there
is no 1:1 mapping from these supersenses to PMW

readings, but find such a strict correspondence is
not necessary because the context preferences for
each of these senses are used as features, and the
mapping to PMW readings is found through a su-
pervised learned model.

To compute the preference of a wordw in
the grammatical context of a PMWt (the target)
towards each oft’s possible senses, we consider
each relation(w, R, t), whereR is the grammati-
cal relation. The setC of word collocations are
extracted from the BNC

C = {(w, R, wj : fj)|(w, R, wj) ∈ BNC,
fj is the frequency of occurrence}

and used to compute a preference scorePsi

for each sensesi ∈ S:

Psi =

∑
(w,R,wi,j :fi,j)∈Csi

fi,j∑
(w,R,wj :fj)∈C fj

where

Csi = {(w, R, wj : fj)|(w, R, wj : fj) ∈ C;
supersense(wj , si) ‖ isa(wj , si)}.

supersense(wj , si) is true if si is a super-
sense of one ofwj ’s senses;

isa(wj , si) is true if si is a hypernym of one
of wj ’s senses in WordNet, or is a fact extracted
from Wikipedia.

To determine thesupersenseandisa relation we
use WordNet 3.0, and a set of 7,578,112isa rela-
tions extracted by processing the page and cate-
gory network of Wikipedia1 (Nastase and Strube,
2008). The collocations extracted from BNC con-
tain numerous named entities, most of which are
not part of WordNet. If anisa relation be-
tween a collocate from the corpuswj and a pos-
sible sense of a PMWsi cannot be established us-
ing supersense information (for the supersenses)
or through transitive closure in the hypernym-
hyponym hierarchy in WordNet (forcompany

1http://www/eml-research.de/nlp/
download/wikirelations.php
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andorganization) for any sense ofwj , it is
tried against the Wikipedia-based links.

This process transforms the grammatical anno-
tation file and enhances it with the collocation es-
timates, as shown in Table 2 (compare this with a
sample of the original file presented in Figure 1).

4.3 Product and event features

Farkas et al. (2007) observed that using the PMWs
themselves as features leads to improvement on
determining the reading for organization names,
and postulate that this is because some company
names are more likely to be used in a metonymic
way. This is often the case with companies that
make products which are commonly used (cars,
for example).

Brun et al. (2007) note that certain locations,
such asVietnam, are more likely to be used with
aneventreading than others locations. Generally,
locations strongly associated with events tend to
be used to refer to the event, and more often have
aplace-for-event interpretation rather than
aliteral one.

These two observations have lead us to mine for
these pieces of information in the Wikipedia rela-
tions, and to add two more features for a target
PMW:

has-product will take a value of 1 if any of the
PMW’s hypernyms (according to theisa re-
lations extracted from Wikipedia) contains
the stringmanufacturer, will have the value
0 otherwise;

has-event will have the value 1 if any of the
PMW’s hypernyms refers to an event (move-
ments/operations/riots), and value 0 other-
wise.

4.4 Data representation

As mentioned before, the representation built can
be seen as consisting of roughly three subsets of
features:

• the M&N features proposed by Nissim and
Markert (2005). To combine the grammati-
cal information from all relations, we trans-
form the grammatical relations into features
(as opposed to values). For a relationsubject
for example, we generate a binarysubject
feature that indicates whether for a given
target this grammatical relation is filled or
not, and asubject lemma feature , whose
value is the lemma of the grammatically re-
lated word.

• the selectional preference scores. Each of
these features corresponds to one of the ele-
ments ofS, presented above. These features
combine the selectional preferences of all the
grammatical relations for one target PMW.

• product and event information from
Wikipedia – has-product and has-event.

The grammatical annotation file consists of one
entry for each grammatical relation in which a
PMW appears. For the final representation, in-
formation about all relations of a given PMW is
compressed into one instance. Because the ba-
sic features were binarized, and instead of having
one grammatical rolefeature now each possible
grammatical relation has its own feature, combin-
ing several entries for one PMW is easy, as it only
implies setting the correct value for the grammati-
cal relations that are valid in the PMWs context.

The final representation consists of 63 features
+ class feature for the subset for company PMWs,
59 features + class feature for the subset contain-
ing countries PMWs. The sample ID and the
PMW itself were not part of this representation.

5 Results

The models for determining a PMW’s correct in-
terpretation are learned on the training data pro-
vided, and evaluated on the test portion, using
the answer keys and evaluation script provided
with the data. For learning the models we use
Weka (Witten and Frank, 2005), and select the
final learning algorithms based on 10-fold cross-
validation on the training data. We have settled on
support vector machines (SMO in Weka), and we
use the learner’s default settings.

Tables 3 and Table 4 show the results obtained,
and the baseline and the best results from the Sem-
Eval task for comparison (Markert and Nissim,
2007). The baseline in Table 3 corresponds to
classifying everything as the most frequent class
– literal interpretation. TheM&N feat. and
M&N feat.bin. correspond to datasets that con-
tain only the M&N features and the binarized
versions of these features, respectively.SemEval
bestgives the best results obtained on each task
in the SemEval 2007 task (Markert and Nissim,
2007).SMOwiki are the results obtained with the
complete feature set described in Section 4, and
SMOSP are the results obtained when only the
new features are used – only selectional prefer-
ence, has-product and has-event features (none of
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task↓ method→ baseline SemEval best SMOwiki SMOSP M&N feat. M&N feat.bin.
LOCATION-COARSE 79.4 85.2 86.1 82.8 79.4 83.4
LOCATION-MEDIUM 79.4 84.8 85.9 82.6 79.4 82.3
LOCATION-FINE 79.4 84.1 85.0 82.0 79.4 81.3
ORGANIZATION-COARSE 61.8 76.7 74.9 66.6 73.8 74.0
ORGANIZATION-MEDIUM 61.8 73.3 72.4 65.0 69.8 69.4
ORGANIZATION-FINE 61.8 72.8 71.0 64.7 68.4 68.5

Table 3: Accuracy scores

task↓ method→ base max SMOwiki SMO

LOCATION-COARSE

literal 79.4 91.2 91.6 91.6
non-literal 20.6 57.6 59.1 58.8
LOCATION-MEDIUM

literal 79.4 91.2 91.6 91.6
metonymic 18.4 58.0 61.5 61.5
mixed 2.2 8.3 16 8.7
LOCATION-FINE

literal 79.4 91.2 91.6 91.6
place-for-people 15.5 58.9 61.7 61.7
place-for-event 1.1 16.7 0 0
place-for-product 1.1 0 0 0
obj-for-name 0.4 66.7 0 0
obj-for-rep 0 0 0 0
othermet 1.2 0 0 0
mixed 2.2 8.3 16 8.7

ORGANIZATION-COARSE

literal 61.8 82.5 81.4 81.2
non-literal 38.2 65.2 61.6 60.7
ORGANIZATION-MEDIUM

literal 61.8 82.5 81.4 81.2
metonymic 31.0 60.4 58.7 58.1
mixed 7.2 30.8 26.8 28.9
ORGANIZATION-FINE

literal 61.8 82.6 81.4 81.2
org-for-members19.1 63.0 59.7 59.2
org-for-event 0.1 0 0 0
org-for-product 8.0 50.0 44.4 44
org-for-facility 2.0 22.2 36.3 38.1
org-for-index 0.3 0 0 0
org-for-name 0.7 80.0 58.8 58.8
org-for-rep 0 0 0 0
othermet 1.0 0 0 0
mixed 7.2 34.3 27.1 29.3

Table 4: Detailed F-scores

the M&N features). The baseline for detailed read-
ing results in Table 4 reflects the distribution of
the classes in the test file. Themaxcolumn shows
the best performance for each task in the SemEval
2007 competition (Markert and Nissim, 2007).
The SMO column shows the results of learning
when Wikipedia information is not used to com-
pute the values of the collocation, has-product and
has-event features.

Nissim and Markert (2003) have shown that
grammatical roles are very strong features. Exper-
iments on the data represented exclusively through
grammatical role features confirm this observa-
tion, as the results obtained using only the syn-
tactic features (no lexical head information) give
the same results as theM&N feat.bin.which does
include lexical information.

On the location metonymies, the current ap-
proach performs better on all evaluation types
(coarse, medium, fine) by 0.9, 1.1 and 0.9% points
respectively. The improvement comes from rec-
ognizing better the metonymic readings, as it is
apparent from the detailed F-score results in Ta-
ble 4. For the coarse readings, the F-score for
thenon-literal reading is 1.5% points higher
than the best performance at SemEval, and 2.5%
and 7.7% points respectively for themetonymic
and mixed readings for the medium and fine
coarseness. It is interesting that the learning is
quite successful even when only selectional pref-
erence and Wikipedia-based has-product and has-
event features are used – theSMOSP column in
Table 3. The grammatical role and the related
lemma were used to derive these collocation fea-
tures, but they do not appear as such in the repre-
sentation used for this batch of experiments.

For company metonymies the current approach
does not perform better than the state-of-the-art.
For these metonymies the syntactic information is
not as useful. This is evidenced by the lower per-
formance of the classifier that uses only syntactic
information (columnM&N feat.bin. in Table 3),
despite the fact that the training dataset for com-
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panies is larger than the one for countries. This
observation is further supported by the low results
when using only selectional preference features.
It indicates that for company metonymies the lo-
cal context does not provide as strong clues as it
does for locations. For such PMWs we should
explore the larger context. We have made a start
with the Wikipedia-based features built following
the observation about companies and their prod-
ucts made by Farkas et al. (2007) and Brun et
al. (2007). In future work we plan to analyse
this matter further, and find a method to derive
more such features, and without manually pro-
vided clues (such asmanufactureror riots).

Wikipedia derived information does not con-
tribute very much, but as expected it is helpful
to identify other classes than theliteral one.
It is helpful to detect themixed class – 16%
F-score when using Wikipedia information com-
pared to 8.7% for the countries data when we esti-
mate preferences using only WordNet. It also in-
creases the performance on thenon-literal,
metonymic and org-for-members classes
in coarse, medium and fine classification re-
spectively for both countries and companies.
There is a small improvement for recognizing the
org-for-product reading for organizations
when using Wikipedia-based features. It is an in-
dication that the has-product feature is useful. We
cannot draw conclusions about the has-event fea-
ture, as there are only 3 training instances for the
place-for-event reading. The results are en-
couraging, as we have just scraped the surface of
the information that Wikipedia can provide.

The corpus derived selectional preferences per-
form very well, especially for determining the
reading of locations. Analysis of the data and
the features gives some indication as to why this
happens: in the grammatical annotations provided,
when the PMW is a prepositional complement or
has a prepositional complement, the grammati-
cally related word is a preposition. We extract only
grammatical collocations for open-class words, re-
stricted by the grammatical relation of interest,
so we do not extract collocations for preposi-
tions. Location prepositions (in, at, from) are
less ambiguous than others (e.g.for), which are
more common for the organization data. We have
attempted to bypass this problem by generating
parses using the dependency output of the Stan-
ford Parser (de Marneffe et al., 2006), and bypass-
ing the preposition – incorporate it in the gram-
matical role (pp in, for example), and using as

lemma the head of the prepositional complement
or the constituent which dominates the preposi-
tional phrase, depending on the position of the
PMW. Now we can use the grammatical relation
and the associated open-class word to look for col-
locations. This approach did not lead to good re-
sults, because the quality of the automatic parses
is far from the manually provided information.

6 Conclusions

We have explored the use of selectional preference
scores derived from a sense untagged corpus as lo-
cal constrains for determining the interpretation of
potentially metonymic words. Such methods were
previously successfully used for word sense dis-
ambiguation, and transfer nicely to the metonymy
resolution task. Adding encyclopedic knowledge
to the mix improved the results further, by filling
in gaps for WordNet, and extracting information
particular to PMW. We plan to expand on this, and
find methods to extract more such features auto-
matically, without manually provided clues.

For a more comprehensive treatment of
metonymies one must take into consideration not
only local context but also discourse relations.
A possible avenue of research is to build upon
coreference resolution systems, and use the
mentions they detect and link to each other in a
manner similar to using grammatical information
and grammatically related words to determine
constraints from a larger context. Determining
the link between two mentions in a text can take
advantage of encyclopedic knowledge, and the
system’s ability to infer the connection between
the mentions.

There is much work on unsupervised word
sense disambiguation. Working with untagged
data gives a system access to a much larger in-
formation base. Since selectional preferences ac-
quired from sense-untagged corpora have worked
well for the metonymy resolution task, we plan to
push further towards unsupervised metonymy res-
olution, putting to use the lessons learned from un-
supervised WSD.
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Abstract

In the early days of email, widely-used
conventions for indicating quoted reply
content and email signatures made it easy
to segment email messages into their func-
tional parts. Today, the explosion of dif-
ferent email formats and styles, coupled
with the ad hoc ways in which people vary
the structure and layout of their messages,
means that simple techniques for identify-
ing quoted replies that used to yield 95%
accuracy now find less than 10% of such
content. In this paper, we describe Zebra,
an SVM-based system for segmenting the
body text of email messages into nine zone
types based on graphic, orthographic and
lexical cues. Zebra performs this task with
an accuracy of 87.01%; when the num-
ber of zones is abstracted to two or three
zone classes, this increases to 93.60% and
91.53% respectively.

1 Introduction

Email message bodies consist of different func-
tional parts such as email signatures, quoted re-
ply content and advertising content. We refer to
these asemail zones. Many language process-
ing tools stand to benefit from better knowledge
of this message structure, facilitating focus on rel-
evant content in specific parts of a message. In
particular, access to zone information would al-
low email classification, summarisation and anal-
ysis tools to separate or filter out ‘noise’ and focus
on the content in specific zones of a message that
are relevant to the application at hand. Email con-
tact mining tools such as that developed by Culotta
et al. (2004), for example, might access the email
signature zone, while tools that attempt to iden-
tify tasks or action items in email (e.g., (Bellotti
et al., 2003; Corston-Oliver et al., 2004; Bennett

and Carbonell, 2007; Lampert et al., 2007)) might
restrict themselves to the sender-authored and for-
warded content. Despite previous work on this
problem, there are no available tools that can re-
liably extract or identify the different functional
zones of an email message.

While there is no agreed standard set of email
zones, there are clearly different functional parts
within the body text of email messages. For ex-
ample, the content of an email disclaimer is func-
tionally different from the sender-authored content
and from the quoted reply content automatically
included from previous messages in the thread of
conversation. Of course, there are different dis-
tinctions that can be drawn between zones; in
this paper we explore several different categorisa-
tions based on our proposed set of nine underlying
email zones.

Although we focus on content in the body of
email messages, we recognise the presence of use-
ful information in the semi-structured headers, and
indeed make use of header information such as
sender and recipient names in segmenting the un-
structured body text.

Segmenting email messages into zones is a
challenging task. Accurate segmentation is ham-
pered by the lack of standard syntax used by dif-
ferent email clients to indicate different message
parts, and by the ad hoc ways in which people vary
the structure and layout of their messages. When
replying to a message, for example, it is often use-
ful to include all or part of the original message
that is being replied to. Different email clients in-
dicate quoted material in different ways. By de-
fault, some prefix every line of the quoted message
with a character such as ‘>’ or ‘|’, while others in-
dent the quoted content or insert the quoted mes-
sage unmodified, prefixed by a message header.
Sometimes the new content is above the quoted
content (a style known as ‘top-posting’); in other
cases, the new content may appear after the quoted

919



content (bottom-posting) or interleaved with the
quoted content (inline replying). Confounding the
issue further is that users are able to configure their
email client to suit their individual tastes, and can
change both the syntax of quoting and their quot-
ing style (top, bottom or inline replying) on a per-
message basis.

To address these challenges, in this paper we
describe Zebra, our email zone classification sys-
tem. First we describe how Zebra builds and im-
proves on previous work in Section 2. Section 3
then presents our set of email zones, along with
details of the email data we use for system train-
ing and experiments. In Section 4 we describe two
approaches to zone classification, one that is line-
based and one that is fragment-based. The perfor-
mance of Zebra across two, three and nine email
zone classification tasks is presented and analysed
in Section 5.

2 Related Work

Segmenting email messages into zones requires
both text segmentation and text classification. The
main focus of most work on text segmentation
is topic-based segmentation of news text (e.g.,
(Hearst, 1997; Beeferman et al., 1997)), but there
have been some previous attempts at identifying
functional zones in email messages.

Chen et al. (1999) looked at both linguistic and
two-dimensional layout cues for extracting struc-
tured content from email signature zones in email
messages. The focus of their work was on extract-
ing information from already identified signature
blocks using a combination of two-dimensional
structural analysis and one-dimensional grammat-
ical constraints; the intended application domain
was as a component in a system for email text-
to-speech rendering. The authors claim that their
system can be modified to also identify signature
blocks within email messages, but their system
performs this task with a recall of only 53%. No
attempt is made to identify functional zones other
than email signatures.

Carvalho and Cohen’s (2004) Jangada system
attempted to identify email signatures within plain
text email messages and to extract email signa-
tures and reply lines. Unfortunately, the 20 News-
groups corpus1 they worked with contains 15-
year-old Usenet messages which are much more
homogeneous in their syntax than contemporary

1http://people.csail.mit.edu/jrennie/20Newsgroups/

email, particularly in terms of how quoted text
from previous messages is indicated. As a result,
using a very simple metric (a line-initial ‘>’ char-
acter) to identify reply lines achieves more than
95% accuracy. In contrast, this same simple met-
ric applied to the Enron email data we annotated
detects less than 10% of actual reply or forward
lines.

Usenet messages are also markedly different
from contemporary email when it comes to email
signatures. Most Usenet clients produced mes-
sages which conformed to RFC3676 (Gellens,
2004), a standard that formalised a “long-standing
convention in Usenet news . . . of using two hy-
phens-- as the separator line between the body
and the signature of a message.” Unfortunately,
this convention has long since ceased to be ob-
served in email messages. Carvalho and Cohen’s
email signature detection approach also benefits
greatly from a simplifying assumption that signa-
tures are found in the last 10 lines of an email mes-
sage. While this holds true for their Usenet mes-
sage data, it is no longer the case for contemporary
email.

In attempting to use Carvalho and Cohen’s sys-
tem to identify signature blocks and reply lines
in our own work, we identified similar shortcom-
ings to those noted by Estival et al. (2007). In
particular, Jangada did not accurately identify for-
warded or reply content in email data from the
Enron email corpus. We believe that the use of
older Usenet-style messages to train Jangada is a
significant factor in the systematic errors the sys-
tem makes in failing to identify quoted reply, for-
warded and signature content in messages format-
ted in the range of message formats and styles pop-
ularised by Microsoft Outlook. These errors are
a fundamental problem with Jangada, especially
since Outlook is the most common client used to
compose messages in our annotated email collec-
tion drawn from the Enron corpus. More gen-
erally, we note that Outlook is the most popular
email client in current use, with an estimated 350–
400 million users worldwide,2 representing any-
where up to 40% of all email users.3

More recently, as part of their work on profiling

2Xobni Co-founder Adam Smith and former Engi-
neering VP Gabor Cselle have both published Outlook
user statistics. See http://www.xobni.com/asmith/archives/66
and http://gaborcselle.com/blog/2008/05/xobnis-journey-to-
right-product.html.

3http://www.campaignmonitor.com/stats/email-clients/
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authors of email messages, Estival et al. (2007)
classified email bodies into five email zones. Their
paper does not provide results for five-zone classi-
fication, but they report accuracy of 88.16% using
a CRF classifier to distinguish three zones: reply,
author and signature. We use their classification
scheme as the starting point for our own set of
email zones.

3 Email Zones

As noted earlier, we refer to the different func-
tional components of email messages asemail
zones. The zones we propose refine and extend
the five categories —Author Text, Signature, Ad-
vertisement(automatically appended advertising),
Quoted Text(extended quotations such as song
lyrics or poems), andReply Lines(including for-
warded and reply text) — identified by Estival et
al. (2007).

We consider that each line of text in the body
of an email message belongs to one of nine more
fine-grained email zones. We intend our nine
email zones to be abstracted and adapted to suit
different tasks. To illustrate, we present the
zones below abstracted into three classes: sender-
authored content, boilerplate content, and content
quoted from other conversations. This is the zone
partition we use to generate the three-zone results
reported in Section 5. This categorisation is use-
ful for problems such as finding action items in
email messages: such detection tools would look
in text from the sender-authored message zones
for new action item information, and could also
look in quoted conversation content to link new
action item information (such as reported comple-
tions) to previous action item content.

Our nine email zones can also be reduced to a
binary scheme to distinguish text authored by the
sender from text authored by others. This distinc-
tion is useful for problems such as author attribu-
tion or profiling tasks. In this two-class case, the
sender-authored zones would beAuthor, Greeting,
Signoff and Signature, while the other-authored
zones would beReply, Forward, Disclaimer, Ad-
vertising and Attachment. This is the partition
of zones we use in our two-zone experiments re-
ported in Section 5.

3.1 Sender Zones

Sender zones contain text written by the current
email sender. TheGreetingandSignoff zones are

sub-zones of theAuthor zone, usually appearing
as the first and last items respectively in theAuthor
zone. Thus, our proposed sender zones are:

1. Author: New content from the current email
sender. This specifically excludes any text
authored by the sender that is included from
previous messages.

2. Greeting: Terms of address and recipient
names at the beginning of a message (e.g.,
Dear/Hi/Hey Noam).

3. Signoff: The message closing (e.g.,
Thanks/Cheers/Regards, John).

3.2 Quoted Conversation Zones

Quoted conversation zones include both content
quoted in reply to previous messages in the same
conversation thread and forwarded content from
other conversations.4 Our quoted conversation
zones are:

4. Reply: Content quoted from a previous mes-
sage in the same conversation thread, includ-
ing any embedded signatures, attachments,
advertising, disclaimers, author content and
forwarded content. Content in a reply content
zone may include previously sent content au-
thored by the current sender.

5. Forward: Content from an email message
outside the current conversation thread that
has been forwarded by the current email
sender, including any embedded signatures,
attachments, advertising, disclaimers, author
content and reply content.

3.3 Boilerplate Zones

Boilerplate zones contain content that is reused
without modification across multiple email mes-
sages. Our proposed boilerplate zones are:

6. Signature: Content containing contact or
other information that is automatically in-
serted in a message. In contrast to disclaimer
or advertising content, signature content is
usually templated content written once by
the email author, and automatically or semi-
automatically included in email messages. A

4Although we recognise the need for theQuoted Textzone
proposed by Estival et al. (2007), no such data occurs in our
collection of annotated email messages. We therefore omit
this zone from our current set.
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user may also use aSignaturein place of a
Signoff; in such cases, we still mark the text
as aSignature.

7. Advertising: Advertising material in an
email message. Such material often appears
at the end of a message (e.g.,Do you Ya-
hoo!?), but may also appear prefixed or in-
line with the content of the message, (e.g., in
sponsored mailing lists).

8. Disclaimer: Legal disclaimers and privacy
statements, often automatically appended.

9. Attachment: Automated text indicating or
referring to attached documents, such as that
shown in line 16 of Figure 1. Note that this
zone does not apply to manually authored ref-
erence to attachments, nor to the actual con-
tent of attachments (which we do not clas-
sify).

3.4 Email Data and Annotation

The training data for our zone classifier consists of
11881 annotated lines from almost 400 email mes-
sages drawn at random from the Enron email cor-
pus (Klimt and Yang, 2004).5 We use the database
dump of the corpus released by Andrew Fiore and
Jeff Heer.6 This version of the corpus has been
processed to remove duplicate messages and to
normalise sender and recipient names, resulting in
just over 250,000 email messages. No attachments
are included. Following Estival et al. (2007), we
used only a single annotator since the task revealed
itself to be relatively uncontroversial. Each line in
the body text of selected messages was marked by
the annotator (one of the authors) as belonging to
one of the nine zones. After removing blank lines,
which we do not attempt to classify, we are left
with 7922 annotated lines as training data for Ze-
bra. The frequency of each zone within this anno-
tated dataset is shown in Table 3.

Figure 1 shows an example of an email mes-
sage with each line annotated with the appropriate
email zone. Two zone annotations are shown for
each line (in separate columns), one using the nine
fine-grained zones and the second using the ab-
stracted three-zone scheme described in Section 3.
Note, however, that not all of the nine fine-grained

5This annotated dataset is available from
http://zebra.thoughtlets.org/.

6http://bailando.sims.berkeley.edu/enron/enron.sql.gz

zones, nor all of the three abstracted zones, are ac-
tually present in this particular message.

4 Zone Segmentation and Classification

Our email zone classification system is based
around an SVM classifier using features that cap-
ture graphic, orthographic and lexical information
about the content of an email message.

To classify the zones in an email message, we
experimented with two approaches. The first em-
ploys a two-stage approach that segments a mes-
sage into zone fragments and then classifies those
fragments. Our second method simply classifies
lines independently, returning a classification for
each non-blank line in an email message. Our hy-
pothesis was that classifying larger text fragments
would lead to better performance due to the text
fragments containing more cues about the zone
type.

4.1 Zone Fragment Classification

Zone fragment classification is a two-step process.
First it predicts the zone boundaries using a simple
heuristic, then it classifies the resultingzone frag-
ments, the sets of content lines that lie between
these hypothesised boundaries.

In order to determine how well we can detect
zone boundaries, we first need to establish the cor-
rect zone boundaries in our collection of zone-
annotated email messages.

4.1.1 Zone Boundaries

A zone boundary is defined as a continuous collec-
tion of one or more lines that separate two differ-
ent email zones. Lines that separate two zones and
are blank, contain only whitespace or contain only
punctuation characters are calledbuffer lines.

Since classification of blank lines between
zones is often ambiguous, empty or whitespace-
only buffer lines are not included as content in any
zone, and thus are not classified. Instead, they are
treated as strictly part of the zone boundary. In
Figure 1, these lines are shown without any zone
annotation. Zone boundary lines that are included
as content in a zone have their zone annotation
styled in bold and underlined. The important point
here is that zone boundaries are specific to a zone
classification scheme. For nine-zone classifica-
tion of the message in Figure 1, there are six zone
boundaries: line 2, lines 10–11, line 12, line 15,
lines 17–20, and lines 30–33. For three-zone clas-
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Figure 1: An example email message marked with both nine- and three-zone annotations.

sification, the only zone boundary consists of line
12, separating the sender and boilerplate zones.

Based on these definitions, there are three dif-
ferent types of zone boundaries:

1. Blank boundaries contain only empty or
whitespace-only buffer lines. Lines in these
zone boundaries are strictly separate from the
zone content. An example is Line 12 in Fig-
ure 1, for both the three- and nine-zone clas-
sification.

2. Separator boundaries contain only
buffer lines, but must contain at least
one punctuation-character buffer line that is

retained as content in one or both zones. In
Figure 1, an example is the zone boundary
containing lines 17–20 that separates the
Attachmentand Disclaimer zones for nine-
zone classification, since line 20 is retained
as part of theDisclaimerzone content.

3. Adjoining boundaries consist of the last
content line of the earlier zone and the first
content line of the following zone. These
boundaries occur where no buffer lines ex-
ist between the two zones. An example is
the zone boundary containing lines 10 and 11
that separates theAuthorandSignoffzones in
Figure 1 for nine-zone classification.
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4.1.2 Hypothesising Zone Boundaries

To identify zone boundaries in unannotated email
data, we employ a very simple heuristic approach.
Specifically, we consider every line in the body of
an email message that matches any of the follow-
ing criteria to be a zone boundary:

1. A blank line;
2. A line containing only whitespace; or
3. A line beginning with four or more repeated

punctuation characters, optionally prefixed
by whitespace.

Our efforts to apply more sophisticated
machine-learning techniques to identifying zone
boundaries could not match the 90.15% recall
achieved by this simple heuristic. The boundaries
missed by the simple heuristic are alladjoining
boundaries, where two zones are not separated
by any buffer lines. An example of a boundary
that is not detected by our heuristic is the zone
boundary between theAuthor and Signoffzones
in Figure 1 formed by lines 10 and 11.

Obviously, our simple boundary heuristic de-
tects actual boundaries as well as spurious
boundaries that do not actually separate differ-
ent email zones. Unsurprisingly, the number of
spurious boundaries is large. The precision of
our simple heuristic across our annotated set of
email messages is 22.5%, meaning that less than
1 in 4 hypothesised zone boundaries is an actual
boundary. The underlying email zones average
more than 12 lines in length, including just over
8 lines of non-blank content. Due to the num-
ber of spurious boundaries, fragments contain less
than half this amount — approximately 3 lines of
non-blank content on average. One of the most
common types of spurious boundaries detected are
the blank lines that frequently separate paragraphs
within a single zone.

For three-zone classification, the set of pre-
dicted boundaries remains the same, but there are
less actual boundaries to find, so recall increases to
96.3%. However, because many boundaries from
the nine-zone classification are not boundaries for
the three-zone classification, precision decreases
to 14.7%.

4.1.3 Classifying Zone Fragments

Having segmented the email message into candi-
date zone fragments, we classify these fragments
using the SMO implementation provided by Weka

(Witten and Frank, 2005) with the features de-
scribed in Section 4.3.

Although our boundary detection heuristic has
better than 90% recall, the small number of ac-
tual boundaries that are not detected result in some
zone fragments containing lines from more than
one underlying email zone. In these cases, we con-
sider the mode of all annotation values for lines
in the fragment (i.e., the most frequent zone an-
notation) to be the gold-standard zone type for
the fragment. This, of course, may mean that we
somewhat unfairly penalise the accuracy of our au-
tomated classification when Zebra detects a zone
that is indeed present in the fragment, but is not
the most frequent zone.

4.2 Line Classification

Our line-based classification approach simply ex-
tracts all non-blank lines from an email message
and classifies lines one-by-one, using the same
features as for fragment-based classification. This
approach is the same as the signature and reply
line classification approach used by Carvalho and
Cohen (2004).

4.3 Classification Features

We use a variety of graphic, orthographic and lex-
ical features for classification in Zebra. The same
features are applied in both the line-based and the
fragment-based zone classification (to either indi-
vidual lines or zone fragments). In the description
of our features, we refer to both single lines and
zone fragments (collections of contiguous lines) as
text fragments.

4.3.1 Graphic Features

Our graphic features capture information about the
presentation and layout of text in an email mes-
sage, independent of the actual words used. This
information is a crucial source of information for
identifying zones. Such information includes how
the text is organised and ordered, as well as the
‘shape’ of the text. The specific features we em-
ploy are:

• the number of words in the text fragment;
• the number of Unicode code points (i.e.,

characters) in the text fragment;
• the start position of the text fragment (equal

to one for the first line in the message, two for
the second line and increasing monotonically
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through the message; we also normalise the
result for message length);

• the end position of the text fragment (calcu-
lated as above and again normalised for mes-
sage length);

• the average line length (in characters) within
the text fragment (equal to the line length for
line-based text fragments);

• the length of the text fragment (in characters)
relative to the previous fragment;

• the length of the text fragment (in characters)
relative to the following fragment;

• the number of blank lines preceding the text
fragment; and

• the number of blank lines following the text
fragment.

4.3.2 Orthographic Features

Our orthographic features capture information
about the use of distinctive characters or charac-
ter sequences including punctuation, capital let-
ters and numbers. Like our graphic features, or-
thographic features tend to be independent of the
words used in an email message. The specific or-
thographic features we employ include:

• whether all lines start with the same character
(e.g., ‘>’);

• whether a prior text fragment in the message
contains a quoted header;

• whether a prior text fragment in the message
contains repeated punctuation characters;

• whether the text fragment contains a URL;
• whether the text fragment contains an email

address;
• whether the text fragment contains a se-

quence of four or more digits;
• the number of capitalised words in the text

fragment;
• the percentage of capitalised words in the text

fragment;
• the number of non-alpha-numeric characters

in the text fragment;
• the percentage of non-alpha-numeric charac-

ters in the text fragment;
• the number of numeric characters in the text

fragment;
• the percentage of numeric characters in the

text fragment;
• whether the message subject line contains a

reply syntax marker such asRe: ; and

• whether the message subject line contains a
forward syntax marker such asFw:.

4.3.3 Lexical Features

Finally, our lexical features capture information
about the words used in the email text. We use
unigrams to capture information about the vocab-
ulary and word bigram features to capture short
range word order information. More specifically,
the lexical features we apply to each text fragment
include:

• each word unigram, calculated with a mini-
mum frequency threshold cutoff of three, rep-
resented as a separate binary feature;

• each word bigram, calculated with a mini-
mum frequency threshold cutoff of three, rep-
resented as a separate binary feature;

• whether the text fragment contains the
sender’s name;

• whether a prior text fragment in the message
contains the sender’s name;

• whether the text fragment contains the
sender’s initials; and

• whether the text fragment contains a recipi-
ent’s name.

Features that look for instances of sender or recip-
ient names are less likely to be specific to a par-
ticular business or email domain. These features
use regular expressions to find name occurrences,
based on semi-structured information in the email
message headers. First, we extract and normalise
the names from the email headers to identify the
relevant person’s given name and surname. Our
features then capture whether one or both of the
given name or surname are present in the current
text fragment. Features which detect user initials
make use of the same name normalisation code to
retrieve a canonical form of the user’s name, from
which their initials are derived.

5 Results and Discussion

Table 1 shows Zebra’s accuracy in classifying
email zones. The results are calculated using 10-
fold cross-validation. Accuracy is shown for three
tasks — nine-, three- and two-zone classification
— using both line and zone-fragment classifica-
tion. Performance is compared against a majority
class baseline in each case.

Zebra’s performance compares favourably with
previously published results. While it is difficult to
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2 Zones 3 Zones 9 Zones

Zebra Baseline Zebra Baseline Zebra Baseline

Lines 93.60% 61.14% 91.53% 58.55% 87.01% 30.94%
Fragments 92.09% 62.18% 91.37% 59.44% 86.45% 30.36%

Table 1: Classification accuracy compared against a majority baseline

2 Zones 3 Zones 9 Zones

Zebra Baseline Zebra Baseline Zebra Baseline

Lines 90.62% 61.14% 86.56% 58.55% 81.05% 30.94%
Fragments 91.14% 62.18% 89.44% 59.44% 82.55% 30.36%

Table 2: Classification accuracy, without word n-gram features, compared against a majority baseline

directly compare, since not all systems are freely
available and they are not trained or tested over the
same data, our three-zone classification (identify-
ing sender, boilerplate and quoted reply content) is
very similar to the three-zone task for which (Es-
tival et al., 2007) report 88.16% accuracy for their
system and 64.22% accuracy using Carvalho and
Cohen’s Jangada system. Zebra outperforms both,
achieving 91.53% accuracy using a line-based ap-
proach. In the two-zone task, where we attempt
to identify sender-authored lines, Zebra achieves
93.60% accuracy and an F-measure of 0.918, ex-
ceeding the 0.907 F-measure reported for Estival
et al.’s system tuned for exactly this task.

Interestingly, the line-based approach provides
slightly better performance than the fragment-
based approach for each of the two-zone, three-
zone and nine-zone classification tasks. As noted
earlier, our original hypothesis was that zone frag-
ments would contain more information about the
sequence and text shape of the original message,
and that this would lead to better performance for
fragment-based classification.

When we restrict our feature set to those that
look only at the text of the line or zone fragment,
the fragment-based approach does perform better
than the line-based one. Using only word uni-
gram features, for example, our fragment classi-
fier achieves 78.7% accuracy. Using the same fea-
tures, the line-based classifier achieves only 57.5%
accuracy. When we add further features that cap-
ture sequence and shape information from outside
the text fragment being classified (e.g., the length
of a text segment compared to the text segment
before and after, and whether a segment occurs

after another segment containing repeated punc-
tuation or the sender’s name), the line-based ap-
proach achieves a greater increase in accuracy than
the fragment-based approach. This presumably is
because individual lines intrinsically have less in-
formation about the message context, and so ben-
efit more from the information added by the new
features.

We also experimented with removing all word
unigram and bigram features to explore the classi-
fier’s portability across different domains. This re-
moved all vocabulary and word order information
from our feature set. In doing so, our feature set
was reduced to less than thirty features, consist-
ing of mostly graphic and orthographic informa-
tion. The few remaining lexical features captured
only the presence of sender and recipient names,
which are independent of any particular email do-
main. As expected, performance did drop, but not
dramatically. Table 2 shows that average perfor-
mance without n-grams (across two-, three- and
nine-zone tasks) for line-based classification drops
by 4.67%. In contrast, fragment-based classifica-
tion accuracy drops by less than half this amount
— an average of 2.26%. This suggests that, as we
originally hypothesised, there are additional non-
lexical cues in zone fragments that give informa-
tion about the zone type. This makes the zone
fragment approach potentially more portable for
use across email data from different enterprise do-
mains.

Of course, classification accuracy gives only a
limited picture of Zebra’s performance. Table 4
shows precision and recall results for each zone in
the nine-zone line-based classification task. Per-
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Total Author Signature Disclaim Advert Greet Signoff Reply Fwd Attach

Author 2415 2197 56 9 4 14 31 43 53 8
Signature 383 93 203 4 0 0 20 28 31 4
Disclaim 97 30 4 52 0 0 0 2 9 0
Advert 83 47 1 1 20 0 0 7 7 0
Greet 85 8 0 0 0 74 2 0 1 0
Signoff 195 30 5 0 0 0 147 11 2 0
Reply 2451 49 10 3 2 1 10 2222 154 0
Fwd 2187 72 13 7 8 1 3 125 1958 0
Attach 26 4 0 0 0 0 0 1 1 20

Table 3: Confusion Matrix for 9 Zone Line Classification

formance clearly varies significantly across the
different zones. ForAuthor, Greeting, Replyand
Forward zones, performance is good, with F-
measure> 0.8. This is encouraging, given that
many email tools, such as action-item detection
and email summarisation would benefit from an
ability to separate author content from reply con-
tent and forwarded content. TheAdvertising, Sig-
natureandDisclaimerzones show the poorest per-
formance, particularly in terms of Recall. The
AdvertisingandDisclaimerzones are almost cer-
tainly hindered by a lack of training data; they are
two of the smallest zones in terms of number of
lines of training data. The relatively poorSigna-
ture class performance is more interesting. Given
the potential confusion betweenSignoff content
andSignatures that function asSignoffs, one might
expect confusion betweenSignoffand Signature
zones, but Table 3 shows this is not the case.
Instead, there is significant confusion between
Signatureand Author content, with almost 25%
of Signaturelines misclassified asAuthor lines.
When word n-grams are removed from the fea-
ture set, the number of these misclassifications in-
creases to almost 50%. These results reinforce our
observation that the task of email signature extrac-
tion is much more difficult that it was in the days
of Usenet messages.

6 Conclusion

Identifying functional zones in email messages is
a challenging task, due in large part to the diver-
sity in syntax used by different email software, and
the dynamic manner in which people employ dif-
ferent styles in authoring email messages. Zebra,
our system for segmenting and classifying email
message text into functional zones, achieves per-

Zone Precision Recall F-Measure

Author 0.868 0.910 0.889
Signature 0.695 0.530 0.601
Disclaimer 0.684 0.536 0.601
Advertising 0.588 0.241 0.342
Greeting 0.822 0.871 0.846
Signoff 0.690 0.754 0.721
Reply 0.911 0.907 0.909
Forward 0.884 0.895 0.889
Attachment 0.625 0.769 0.690

Table 4: Precision and recall for nine-zone line
classification

formance that exceeds comparable systems, and
that is at a level to be practically useful to email
researchers and system builders. In addition to re-
leasing our annotated email dataset, the Zebra sys-
tem will also be available for others to use7.

Because we employ a non-sequential learn-
ing algorithm, we encode sequence information
into the feature set. In future work, we plan
to determine the effectiveness of using a sequen-
tial learning algorithm like Conditional Random
Fields (CRF). We note, however, that Carvalho
and Cohen (2004) demonstrate that using a non-
sequential learning algorithm with sequential fea-
tures, as we do, has the potential to meet or exceed
the performance of sequential learning algorithms.
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Abstract 

This paper presents a new method of devel-
oping a large-scale hyponymy relation data-
base by combining Wikipedia and other Web 
documents. We attach new words to the hy-
ponymy database extracted from Wikipedia 
by using distributional similarity calculated 
from documents on the Web. For a given tar-
get word, our algorithm first finds k similar 
words from the Wikipedia database. Then, 
the hypernyms of these k similar words are 
assigned scores by considering the distribu-
tional similarities and hierarchical distances 
in the Wikipedia database. Finally, new hy-
ponymy relations are output according to the 
scores. In this paper, we tested two distribu-
tional similarities. One is based on raw verb-
noun dependencies (which we call “RVD”), 
and the other is based on a large-scale clus-
tering of verb-noun dependencies (called 
“CVD”). Our method achieved an attachment 
accuracy of 91.0% for the top 10,000 rela-
tions, and an attachment accuracy of 74.5% 
for the top 100,000 relations when using 
CVD. This was a far better outcome com-
pared to the other baseline approaches. Ex-
cluding the region that had very high scores, 
CVD was found to be more effective than 
RVD. We also confirmed that most relations 
extracted by our method cannot be extracted 
merely by applying the well-known lexico-
syntactic patterns to Web documents. 

1 Introduction 

Large-scale taxonomies such as WordNet (Fell-
baum 1998) play an important role in informa-
tion extraction and question answering. However, 
extremely high costs are borne to manually en-
large and maintain such taxonomies. Thus, appli-
cations using these taxonomies tend to face the 

drawback of data sparseness. This paper presents 
a new method for discovering a large set of hy-
ponymy relations. Here, a word1 X is regarded as 
a hypernym of a word Y if Y is a kind of X or Y 
is an instance of X. We are able to generate 
large-scale hyponymy relations by attaching new 
words to the hyponymy database extracted from 
Wikipedia (referred to as “Wikipedia relation 
database”) by using distributional similarity cal-
culated from Web documents. Relations ex-
tracted from Wikipedia are relatively clean. On 
the other hand, reliable distributional similarity 
can be calculated using a large number of docu-
ments on the Web. In this paper, we combine the 
advantages of these two resources.  

Using distributional similarity, our algorithm 
first computes k similar words for a target word. 
Then, each k similar word assigns a score to its 
ancestors in the hierarchical structures of the 
Wikipedia relation database. The hypernym that 
has the highest score for the target word is se-
lected as the hypernym of the target word. Figure 
1 is an overview of the proposed approach. 

In the experiment, we extracted hypernyms for 
approximately 670,000 target words that are not 
included in the Wikipedia relation database but 
are found on the Web. We tested two distribu-
tional similarities: one based on raw verb-noun 
dependencies (RVD) and the other based on a 
large-scale clustering of verb-noun dependencies 
(CVD). The experimental results showed that the 
proposed methods were more effective than the 
other baseline approaches. In addition, we con-
firmed that most of the relations extracted by our 
method could not be extracted using the lexico-
syntactic pattern-based method.  

In the remainder of this paper, we first intro-

                                                 
1 In this paper, we use the term “word” for both “a 
single-word word” and “a multi-word word.” 

929



duce some related works in Section 2. Section 3 
describes the Wikipedia relation database. Sec-
tion 4 describes the distributional similarity cal-
culated by the two methods. In Section 5, we 
describe a method to discover an appropriate 
hypernym for each target word. The experimen-
tal results are presented in Section 6 before con-
cluding the paper in Section 7. 

2 Related Works 

Most previous researchers have relied on lex-
ico-syntactic patterns for hyponymy acquisition. 
Lexico-syntactic patterns were first used by 
Hearst (1992). The patterns used by her included 
“NP0 such as NP1,” in which NP0 is a hypernym 
of NP1. Using these patterns as seeds, Hearst dis-
covered new patterns by which to semi-
automatically extract hyponymy relations. Pantel 
et al. (2004a) proposed a method to automatical-
ly discover the patterns using a minimal edit dis-
tance. Ando et al. (2003) applied predefined lex-
ico-syntactic patterns to Japanese news articles. 
Snow et al. (2005) generalized these lexico-
syntactic pattern-based methods by using depen-
dency path features for machine learning. Then, 
they extended the framework such that this me-
thod was capable of making use of heterogenous 
evidence (Snow et al. 2006). These pattern-based 
methods require the co-occurrences of a target 
word and the hypernym in a document. It should 
be noted that the requirement of such co-
occurrences actually poses a problem when we 
extract a large set of hyponymy relations since 
they are not frequently observed (Shinzato et al. 
2004, Pantel et al. 2004b). 

Clustering-based methods have been proposed 
as another approach. Caraballo (1999), Pantel et 
al. (2004b), and Shinzato et al. (2004) proposed a 
method to find a common hypernym for word 
classes, which are automatically constructed us-
ing some measures of word similarities or hierar-
chical structures in HTML documents. Etzioni et 

al. (2005) used both a pattern-based approach 
and a clustering-based approach. The required 
amount of co-occurrences is significantly re-
duced due to class-based generalization 
processes. Note that these clustering-based me-
thods obtain the same hypernym for all the words 
in a particular class. This causes a problem for 
selecting an appropriate hypernym for each word 
in the case when the granularity or the construc-
tion of the classes is incorrect. Figure 2 shows 
the drawbacks of the existing approaches. 

Ponzetto et al. (2007) and Sumida et al. (2008) 
proposed a method for acquiring hyponymy rela-
tions from Wikipedia. This Wikipedia-based ap-
proach can extract a large volume of hyponymy 
relations with high accuracy. However, it is also 
true that this approach does not account for many 
words that usually appear in Web documents; 
this could be because of the unbalanced topics in 
Wikipedia or merely because of the incomplete 
coverage of articles on Wikipedia. Our method 
can target words that frequently appear on the 
Web but are not included in the Wikipedia rela-
tion database, thus making the results of the Wi-
kipedia-based approach richer and more ba-
lanced. Our approach uses distributional similari-

Figure 1: Overview of the proposed approach. 

hypernym : 

Target word:  Selected from the Web 
: word

k similar words

No direct co-occurrences of 
hypernym and hyponym in 
corpora are needed.

Selected from hypernyms in the 
Wikipedia relation database.

A hypernym is selected for 
each word independently.

Wikipedia relation database

Wikipedia-based approach
(Ponzetto et al. 2007 and 
Sumida et al. 2008)

Hyponymy relations are 
extracted using the layout 
information of Wikipedia.

Wikipedia

Figure 2: Drawbacks in existing approaches for hypo-
nymy acquisition. 

Pattern-based method
(Hearst 1992, Pantel et al. 
2004a, Ando et al. 2003, 
Snow et al. 2005, Snow et al. 
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ty, which is computed based on the noun-verb 
dependency profiles on the Web. The use of dis-
tributional similarity resembles the clustering-
based approach; however, our method can select 
a hypernym for each word independently, and it 
does not suffer from class granularity mismatch 
or the low quality of classes. In addition, our ap-
proach exploits the hierarchical structures of the 
Wikipedia hypernym relations.  

3 Wikipedia Relation Database 

Our Wikipedia relation database is based on the 
extraction method of Sumida et al. (2008). They 
proposed a method of automatically acquiring 
hyponymy relations by focusing on the hierar-
chical layout of articles on Wikipedia. By way of 
an example, Figure 3 shows part of the source 
code clipped from the article titled “Penguin.” 
An article has hierarchical structures composed 
of titles, sections, itemizations, etc. The entire 
article is divided into sections titled “Anatomy,” 
“Mating habits,” “Systematics and evolution,” 
“Penguins in popular culture,” and so on. The 
section “Systematics and evolution” has a sub-
section “Systematics,” which is further divided 
into “Aptenodytes,” “Eudyptes,” and so on. 
Some of these section-subsection relations can be 
regarded as valid hyponymy relations. In this 
article, relations such as the one between “Apte-
nodytes” and “Emperor Penguin” and that be-
tween “Book” and “Penguins of the World” are 
valid hyponymy relations.  

First, Sumida et al. (2008) extracted hypony-
my relation candidates from hierarchical struc-
tures on Wikipedia. Then, they selected proper 
hyponymy relations using a support vector ma-
chine classifier. They used several kinds of fea-
tures for the hyponymy relation candidate, such 
as a POS tag for each word, the appearance of 
morphemes of each word, the distance between 
two words in the hierarchical structures of Wiki-
pedia, and the last character of each word. As a 
result of their experiments, approximately 2.4 
million hyponymy relations in Japanese were 
extracted, with a precision rate of 90.1%.  

Compared to the traditional taxonomies, these 
extracted hyponymy relations have the following 
characteristics (Fellbaum 1998, Bond et al. 2008). 

(a) The database includes a more extensive 
vocabulary. 

(b)  The database includes a large number of 
named entities. 

Popular Japanese taxonomies GoiTaikei (Ike-
hara et al. 1997) and Bunrui-Goi-Hyo (1996) 

contain approximately 300,000 words and 
96,000 words, respectively. In contrast, the ex-
tracted hyponymy relations contain approximate-
ly 1.2 million hyponyms and are undoubtedly 
much larger than the existing taxonomies. 
Another difference is that since Wikipedia covers 
a large number of named entities, the extracted 
hyponymy relations also contain a large number 
of named entities.  

Note that the extracted relations have a hierar-
chical structure because one hypernym of a cer-
tain word may also be the hyponym of another 
hypernym. However, we observed that the depth 
of the hierarchy, on an average, is extremely 
shallow. To make the hierarchy appropriate for 
our method, we extended these into a deeper hie-
rarchical structure. The extracted relations in-
clude many compound nouns as hypernyms, and 
we decomposed a compound noun into a se-
quence of nouns using a morphological analyzer. 
Since Japanese is a head-final language, the suf-
fix of a noun sequence becomes the hypernym of 
the original compound noun if the suffix forms 
another valid compound noun. We extracted suf-
fixes of compound nouns and manually checked 
whether they were valid compound nouns; then, 
we constructed a hierarchy of compound nouns. 
The hierarchy can be extended such that it in-
cludes the hyponyms of the original hypernym 
and the resulting hierarchy constitutes a hierar-
chical taxonomy. We use this hierarchical tax-
onomy as a target for expansion.2  
                                                 
2  Note that this modification was performed as part of 
another project of ours aimed at constructing a large-scale 
and clean hypernym knowledge base by human annotation. 
We do not think this cost is directly relevant to the method 
proposed here. 

Figure 3: A part of source code clipped from the 
article “Penguin” in Wikipedia. 

'''Penguins''' are a group of 
[[Aquatic animal|aquatic]], 
[[flightless bird]]s. 
== Anatomy == 
== Mating habits == 
==Systematics and evolution== 
===Systematics=== 
* Aptenodytes 
**[[Emperor Penguin]] 
** [[King Penguin]] 
* Eudyptes 
== Penguins in popular culture == 
== Book == 
* Penguins 
* Penguins of the World 
== Notes == 
* Penguinone 
* the [[Penguin missile]] 
[[Category:Penguins]] 
[[Category:Birds]]
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4 Distributional Similarity 

The distributional hypothesis states that words 
that occur in similar contexts tend to be semanti-
cally similar (Harris 1985). In this section, we 
first introduce distributional similarity based on 
raw verb-noun dependencies (RVD). To avoid 
the sparseness problem of the co-occurrence of 
verb-noun dependencies, we also use distribu-
tional similarity based on a large-scale clustering 
of verb-noun dependencies (CVD). 

In the experiment mentioned in the following 
section, we used the TSUBAKI corpus (Shinzato 
et al. 2008) to calculate distributional similarity. 
This corpus provides a collection of 100 million 
Japanese Web pages containing 6 × 109

 
sentences. 

4.1 Distributional Similarity Based on RVD 

When calculating the distributional similarity 
based on RVD, we use the triple <v, rel, n>, 
where v is a verb, n is a noun phrase, and rel 
stands for the relation between v and n. In Japa-
nese, a relation rel is represented by postposi-
tions attached to n and the phrase composed of n 
and rel modifies v. Each triple is divided into two 
parts. The first is <v, rel> and the second is n. 
Then, we consider the conditional probability of 
occurrence of the pair <v, rel>: P(<v, rel>|n).  
P(<v, rel>|n) can be regarded as the distribution 
of the grammatical contexts of the noun phrase n. 
The distributional similarity can be defined as 
the distance between these distributions. There 
are several kinds of functions for evaluating the 
distance between two distributions (Lee 1999). 
Our method uses the Jensen-Shannon divergence. 
The Jensen-Shannon divergence between two 
probability distributions, )|( 1nP ⋅  and )|( 2nP ⋅ , 
can be calculated as follows:  
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where DKL indicates the Kullback-Leibler diver-
gence and is defined as follows: 
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Finally, the distributional similarity between 

two words, n1 and n2, is defined as follows: 
 

)).|(||)|((1),( 2121 nPnPDnnsim JS ⋅⋅−=  
 
This similarity assumes a value from 0 to 1. If 

two words are similar, the value will be close to 
1; if two words have entirely different meanings, 
the value will be 0.

 

In the experiment, we used 1,000,000 noun 
phrases and 100,000 pairs of verbs and postposi-
tions to calculate the probability P(<v, rel>|n) 
from the dependency relations extracted from the 
above-mentioned Web corpus (Shinzato et al. 
2008). The probabilities are computed using the 
following equation by modifying for the fre-
quency using the log function: 
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where f(<v, rel, n>) is the frequency of a triple 
<v, rel, n> and D is the set defined as { <v, rel > | 
f(<v, rel, n>) > 0 }. In the case of f(<v, rel, n>) = 
0, P(<v, rel>|n) is set to 0.  

Instead of using the observed frequency di-
rectly as in the usual maximum likelihood esti-
mation, we modified it as above. Although this 
might seems strange, this kind of modification is 
common in information retrieval as a term 
weighing method (Manning et al. 1999) and  it is 
also applied in some studies to yield better word 
similarities (Terada et al. 2006, Kazama et al. 
2009). We also adopted this idea in this study. 

4.2 Distributional Similarity Based on CVD 

Rooth et al. (1999) and Torisawa (2001) showed 
that EM-based clustering using verb-noun de-
pendencies can produce semantically clean noun 
clusters. We exploit these EM-based clustering 
results as the smoothed contexts for noun n. In 
Torisawa’s model (2001), the probability of oc-
currence of the triple <v, rel, n> is defined as 
follows: 

 

,)()|()|,(
),,(
∑ ∈ ><=
><
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where a denotes a hidden class of <v,rel> and n. 
In this equation, the probabilities P(<v,rel>|a), 
P(n|a), and P(a) cannot be calculated directly 
because class a is not observed in a given corpus. 
The EM-based clustering method estimates these 
probabilities using a given corpus. In the E-step, 
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the probability P(a|<v,rel>) is calculated. In the 
M-step, the probabilities P(<v,rel>|a), P(n|a), 
and P(a) are updated to arrive at the maximum 
likelihood using the results of the E-step. From 
the results of estimation of this EM-based clus-
tering method, we can obtain the probabilities 
P(<v,rel>|a), P(n|a), and P(a) for each <v, rel>, n, 
and a. Then, P(a|n) is calculated by the following 
equation: 

 

.
)()|(

)()|()|(
∑ ∈

=
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P(a|n) can be used to find the class of n. For 

example, the class that has the maximum P(a|n) 
can be regarded as the class to which n belongs. 
Noun phrases that occur with similar pairs 
<v,rel> tend to be classified in the same class. 

Kazama et al. (2008) proposed the paralleliza-
tion of this EM-based clustering with the aim of 
enabling large-scale clustering and using the re-
sulting clusters in named entity recognition. Ka-
zama et al. (2009) reported the calculation of 
distributional similarity using the clustering re-
sults. The distributional similarity was calculated 
by the Jensen-Shannon divergence, which was 
used in this paper. Similar to the case in Kazama 
et al., we performed word clustering using 
1,000,000 noun phrases and 2,000 classes. Note 
that the frequencies of dependencies were mod-
ified with the log function, as in RVD, described 
in the previous section. 

5 Discovering an Appropriate Hyper-
nym for a Target word 

In the Wikipedia relation database, there are 
about 95,000 hypernyms and about 1.2 million 
hyponyms. In both RVD and CVD, the words 
used were selected according to the number (the 
number of kinds, not the frequency) of <v, rel >s 
that n has dependencies in the data. As a result, 1 
million words were selected. The number of 
common words that are also included in the Wi-
kipedia relation database are as follows: 
 

Hypernyms     28,015 (common hypernyms) 
Hyponyms   175,022 (common hyponyms) 
 
These common hypernyms become candidates 

for hypernyms for a target word. On the other 
hand, the common hyponyms are used as clues 
for identifying appropriate hypernyms. 

In our task, the potential target words are 
about 810,000 in number and are not included in 

the Wikipedia relation database. These include 
some strange words or word phrases that are ex-
tracted due to the failure of morphological analy-
sis. We exclude these words using simple rules. 
Consequently, the number of target words for our 
process is reduced to about 670,000.  

In the following section, we outline the scor-
ing method that uses k similar words to discover 
an appropriate hypernym for a target word. We 
also explain several baseline approaches that use 
distributional similarity. 

5.1 Scoring with k similar Words 

In this approach, we first calculate the similari-
ties between the common hyponyms and a target 
word and select the k most similar common hy-
ponyms. Here, we use a similarity threshold val-
ue Smin to avoid the effect of words having lower 
similarities. If the similarity is less than the thre-
shold value, the word is excluded from the set of 
k similar words. Next, each k similar word votes 
a score to its ancestors in the hierarchical struc-
tures of the Wikipedia relation database. The 
score used to vote for a hypernym nhyper is as fol-
lows: 
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where ntrg is the target word, Desc(nhyper) is the 
descendant of the hypernym nhyper, ksimilar(ntrg) 
is the k similar word of ntrg, 1),( −hypohyper nnrd is a 
penalty that depends on the differences in the 
depth of hierarchy, d is a parameter for the penal-
ty value and has a value between 0 and 1, and 
r(ntrg, nhypo) is the difference in the depth of hie-
rarchy between ntrg and nhypo. sim(ntrg,nhypo) is a 
distributional similarity between ntrg and nhypo.  

As a result of scoring, each hypernym has a 
score for the target word. The hypernym that has 
the highest score for the target word is selected 
as its hypernym. The hyponymy relations thus 
produced are ranked according to the scores. 

Figure 4 shows an example of the scoring 
process. In this example, we use CitroenAX as the 
target word whose hypernym will be identified. 
First, the k similar words are extracted from the 
common hyponyms in the Wikipedia relation: 
Opel Astra, TVR Tuscan, Mitsubishi Minica, and 
Renault Lutecia are extracted. Next, each k simi-
lar word votes a score to its ancestors. The words 
Opel Astra, TVR Tuscan, and Renault Lutecia 
vote to their parent car and the word Mitsubishi 
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Minica votes to its parent mini-vehicle and its 
grandparent car with a small penalty. Finally, the 
hypernym car, which has the highest score, is 
selected as the hypernym of the target word Ci-
troenAX. 

5.2 Baseline Approaches 

Using distributional similarity, we can also de-
velop the following baseline approaches to dis-
cover hyponymy relations. 

 
Selecting the hypernym of the most similar hy-
ponym (baseline approach 1) 
We use the heuristics that similar words tend to 
have the same hypernym. In this approach, we 
first calculate the similarities between the com-
mon hyponyms and the target word. The com-
mon hyponym most similar to the target word is 
extracted. Then, the parent of the extracted 
common hyponym is regarded as the hypernym 
of the target word. This approach outputs several 
hypernyms when the most similar hyponym has 
several hypernyms. This approach can be consi-
dered to be the same as the scoring method using 
k similar words when k = 1. We use the distribu-
tional similarity between the target word and the 
most similar hyponym in the Wikipedia relation 
database as the score for the appropriateness of 
the resulting hyponymy. 

 
Selecting the most similar hypernym (baseline 
approach 2) 
The distributional similarity between the com-
mon hypernym and the target word is calculated. 
Then, the hypernym that has the highest distribu-
tional similarity is regarded as the hypernym of 
the target word. The similarity is used as the 
score of the appropriateness of the produced hy-
ponymy. 
 

Scoring based on the average similarity of the 
hypernym’s children (baseline approach 3) 
This approach uses the probabilistic distributions 
of the hypernym’s children. We define the prob-
ability )|( hyperchild nP ⋅ characterized by the children 
of the hypernym nhyper, as follows: 
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where Ch(nhyper) is a set of all children of nhyper. 
Then, distributional similarities between a com-
mon hypernym nhyper and the target word nhypo are 
calculated. The hypernym that has the highest 
distributional similarity is selected as the hyper-
nym of the word. This distributional similarity is 
used as the score of the appropriateness of the 
produced hyponymy. 

If a hypernym has only a few children, the re-
liability of the probabilistic distribution of 
hypernym defined here will be low because the 
Wikipedia relation database includes some incor-
rect relations. For this reason, we use the hyper-
nym only if the number of children it has is more 
than a threshold value.  

6 Experiments 

We evaluated our proposed methods by using it 
in experiments to discover hypernyms from the 
Wikipedia relation database for the target words 
extracted from about 670,000 noun phrases.  

6.1 Parameter Estimation by Preliminary 
Experiments 

In the proposed methods, there are several para-
meters. We performed parameter optimization by 
randomly selecting 694 words as development 
data in our preliminary experiments. The hyper-
nyms of these words were determined manually. 
We adjusted the parameters so that each method 
achieved the best performance for this develop-
ment data. 

The parameters in the scoring method with k 
similar words were adjusted as follows3:  

 (RVD) 
Number of similar words:         k = 100. 
Similarity threshold:            Smin = 0.05. 
Penalty value for ancestors:    d = 0.6. 

                                                 
3 We tested the parameter values k = {100, 200, 300, 400, 
500, 600, 700, 800, 900, 1000}, Smin={0, 0.05, 0.1, 0.15, 0.2, 
0.25, 0.3, 0.35, 0.4} and d={0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 
0.8, 0.85, 0.9, 0.95, 1.0}. 

Figure 4: Overview of the scoring process.
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(CVD) 
Number of similar words:         k = 200. 
Similarity threshold:                 Smin = 0.3. 
Penalty value for ancestors:    d = 0.6. 

 
The parameter in baseline approach 3 was ad-

justed as follows: 
Threshold for the number of children: 20. 

6.2 Evaluation of the Experimental Results 
on the Basis of Score Ranking 

Using the adjusted parameters, we conducted 
experiments to extract the hypernym of each tar-
get word with the help of the scoring method 
based on k similar words. In these experiments, 
two kinds of distributional similarity mentioned 
in Section 4 were exploited individually. The 
words that were used in the development data 
were excluded.  

We also conducted a comparative experiment 
in which the parameter value for the penalty of 
the hierarchal difference, d, was set to 0 to clari-
fy the ability of using hierarchal structures in the 
k similar words method. This means each k simi-
lar word votes only to their parent. 

We then judged the quality of each acquired 
hypernym. The evaluation data sets were sam-
pled from the top 1,000, 10,000, 100,000, and 
670,000 results that were ranked according to the 
score of each method. Then, against 200 samples 
that were randomly sampled from each set, one 
of the authors judged whether the hypernym ex-
tracted by each method for the target word was 
correct or not. In this evaluation, if the sentence 
“The target word is a kind of the hypernym” or 
“The target word is an instance of the hypernym” 
was consistent, the extracted hyponymy was 
judged as correct. It should be noted that the out-
puts of the compared methods are combined and 
shuffled to enable fair comparison. In addition, 
baseline approach 1 extracted several hypernyms 
for the target word. In this case, we judged the 
hypernym as correct when the case where one of 

the hypernyms was correct.  
The precision of each result is shown in Table 

1. The results of the k similar words method are 
far better than those of the other baseline me-
thods. In particular, the k similar words method 
with CVD outperformed the methods of the k 
similar words where the parameter value d was 
set to 0 and the method using RVD except for the 
top 1,000 results. This means that the use of hie-
rarchal structures and the clustering process for 
calculating distributional similarity are effective 
for this task. We confirmed the significant differ-
ences of the proposed method (CVD) as com-
pared with all the baseline approaches at the 1% 
significant level by the Fisher’s exact test (Hays 
1988). 

The precision of baseline approach 2 that se-
lected the most similar hypernym was the worst 
among all the methods. There were words that 
were similar to the target word among the hyper-
nyms extracted incorrectly. For example, the 
word semento-kojo (cement factory) was ex-
tracted for the hypernym of the word kuriningu-
kojo (dry cleaning plant). It is difficult to judge 
whether the word is a hypernym or just a similar 
word by using only the similarity measure. 

As for the results of baseline approach 1 using 
the most similar hyponym and baseline approach 
3 using the similarity of the set of hypernym’s 
children, the noise on the Wikipedia relation da-
tabase decreased the precision. Moreover, over-
specified hypernyms were extracted incorrectly 
by these methods. In contrast, the method of 
scoring based on the use of k similar words was 
robust against noise because it uses the voting 
approach for the similarities. Further, this me-
thod can extract hypernyms that are not over-
specific because it uses all descendants for scor-
ing.  

Table 2 shows some examples of relations ex-
tracted by the k similar words method using 
CVD. 

 

Table 1:  Precision of each approach based on the score ranking. CVD represents the method that uses the dis-
tributional similarity based on large-scale of clustering of verb-noun dependencies. RVD represents the 
one based on raw verb-noun dependencies. 

 k-similar words
(CVD) 

k-similar words
(RVD) 

k-similar words
(CVD, d = 0)

Baseline  
approach 1 

(CVD) 

Baseline  
approach 2 

(CVD) 

Baseline  
approach 3 

(CVD) 
1,000 0.940 1.000 0.850 0.730 0.290 0.630 

10,000 0.910 0.875 0.875 0.555 0.300 0.445 
100,000 0.745 0.710 0.730 0.500 0.280 0.435 
670,000 0.520 0.500 0.470 0.345 0.115 0.170 
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6.3 Investigation of the Extracted Relation 
Overlap with a Conventional Method 

We randomly sampled 300 hyponymy rela-
tions that were extracted correctly using the k 
similar words method exploiting CVD and inves-
tigated whether or not these relations can be ex-
tracted by the conventional method based on the 
lexico-syntactic pattern. The possible hyponymy 
relations were extracted using the pattern-based 
method (Ando et al. 2003) from the TSUBAKI 
corpus (Shinzato et al. 2008). From a comparison 
of these relations, we found only 57 common 
hyponymy relations. That is, the remaining 243 
hyponymy relations were not included in the 
possible hyponymy relations. This result indi-
cates that our method can acquire the hyponymy 
relations that cannot be extracted by the conven-
tional pattern-based method. 

6.4 Discussions 

We investigated the reason for the errors gener-
ated by the method of scoring using k similar 
words exploiting CVD. We conducted experi-
ments on hypernym extraction targeting 694 
words in the development data mentioned in Sec-
tion 6.1. Among these, 286 relations were ex-
tracted incorrectly. In these relations, there were 
some frequent hypernyms. For example, the 
word sakuhin (work) appeared 28 times and hon 

(book) appeared 20 times. As shown in Table 2, 
hon (book) was also extracted for the target word 
meru-seminah (mail seminar). It is really diffi-
cult even for a human to identify whether the 
title is that of the book or the event. If we can 
identify these difficult hypernyms in advance, we 
can improve precision by excluding them from 
the target hypernyms. This will be one of the top-
ics for future study. 

7 Conclusion 

In this paper, we proposed a method for disco-
vering hyponymy relations between nouns by 
fusing the Wikipedia relation database and words 
from the Web. We demonstrated that the method 
using k similar words has high accuracy. The 
experimental results showed the effectiveness of 
using hierarchal structures and the clustering 
process for calculating distributional similarity 
for this task. The experimental results showed 
that our method could achieve 91.0% attachment 
accuracy for the top 10,000 hyponymy relations 
and 74.5% attachment accuracy for the top 
100,000 relations when using the clustering-
based similarity. We confirmed that most rela-
tions extracted by the proposed method could not 
be handled by the lexico-syntactic pattern-based 
method. Future work will be to filter out difficult 
hypernyms for hyponymy extraction process to 
achieve higher precision. 
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Abstract 

Computing the pairwise semantic similarity 
between all words on the Web is a compu-
tationally challenging task. Parallelization 
and optimizations are necessary. We pro-
pose a highly scalable implementation 
based on distributional similarity, imple-
mented in the MapReduce framework and 
deployed over a 200 billion word crawl of 
the Web. The pairwise similarity between 
500 million terms is computed in 50 hours 
using 200 quad-core nodes. We apply the 
learned similarity matrix to the task of au-
tomatic set expansion and present a large 
empirical study to quantify the effect on 
expansion performance of corpus size, cor-
pus quality, seed composition and seed 
size. We make public an experimental 
testbed for set expansion analysis that in-
cludes a large collection of diverse entity 
sets extracted from Wikipedia. 

1 Introduction 

Computing the semantic similarity between terms 
has many applications in NLP including word clas-
sification (Turney and Littman 2003), word sense 
disambiguation (Yuret and Yatbaz 2009), context-
spelling correction (Jones and Martin 1997), fact 
extraction (Paşca et al. 2006), semantic role labe-
ling (Erk 2007), and applications in IR such as 
query expansion (Cao et al. 2008) and textual ad-
vertising (Chang et al. 2009). 

For commercial engines such as Yahoo! and 
Google, creating lists of named entities found on 
the Web is critical for query analysis, document 
categorization, and ad matching. Computing term 
similarity is typically done by comparing co-
occurrence vectors between all pairs of terms 
(Sarmento et al. 2007). Scaling this task to the 
Web requires parallelization and optimizations. 

In this paper, we propose a large-scale term si-
milarity algorithm, based on distributional similari-
ty, implemented in the MapReduce framework and 
deployed over a 200 billion word crawl of the 
Web. The resulting similarity matrix between 500 
million terms is applied to the task of expanding 
lists of named entities (automatic set expansion). 
We provide a detailed empirical analysis of the 
discovered named entities and quantify the effect 
on expansion accuracy of corpus size, corpus 
quality, seed composition, and seed set size. 

2 Related Work 

Below we review relevant work in optimizing si-
milarity computations and automatic set expansion. 
2.1 Computing Term Similarities 
The distributional hypothesis (Harris 1954), which 
links the meaning of words to their contexts, has 
inspired many algorithms for computing term simi-
larities (Lund and Burgess 1996; Lin 1998; Lee 
1999; Erk and Padó 2008; Agirre et al. 2009). 
Brute force similarity computation compares all 
the contexts for each pair of terms, with complexi-
ty O(n2m) where n is the number of terms and m is 
the number of possible contexts. More efficient 
strategies are of three kinds: 
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Smoothing: Techniques such as Latent Semantic 
Analysis reduce the context space by applying 
truncated Singular Value Decomposition (SVD) 
(Deerwester et al. 1990). Computing the matrix 
decomposition however does not scale well to 
web-size term-context matrices. Other currently 
unscalable smoothing techniques include Probabil-
istic Latent Semantic Analysis (Hofmann 1999), 
Iterative Scaling (Ando 2000), and Latent Dirichlet 
Allocation (Blei et al. 2003). 

Randomized Algorithms: Randomized tech-
niques for approximating various similarity meas-
ures have been successfully applied to term simi-
larity (Ravichandran et al. 2005; Gorman and Cur-
ran 2006). Common techniques include Random 
Indexing based on Sparse Distributed Memory 
(Kanerva 1993) and Locality Sensitive Hashing 
(Broder 1997). 

Optimizations and Distributed Processing: 
Bayardo et al. (2007) present a sparse matrix opti-
mization strategy capable of efficiently computing 
the similarity between terms which’s similarity 
exceeds a given threshold. Rychlý and Kilgarriff 
(2007), Elsayed et al. (2008) and Agirre et al. 
(2009) use reverse indexing and the MapReduce 
framework to distribute the similarity computa-
tions across several machines. Our proposed ap-
proach combines these two strategies and efficient-
ly computes the exact similarity (cosine, Jaccard, 
Dice, and Overlap) between all pairs. 
2.2 Entity extraction and classification 
Building entity lexicons is a task of great interest 
for which structured, semi-structured and unstruc-
tured data have all been explored (GoogleSets; 
Sarmento et al. 2007; Wang and Cohen 2007; Bu-
nescu and Mooney 2004; Etzioni et al. 2005; Paşca 
et al. 2006). Our own work focuses on set expan-
sion from unstructured Web text. Apart from the 
choice of a data source, state-of-the-art entity ex-
traction methods differ in their use of numerous, 
few or no labeled examples, the open or targeted 
nature of the extraction as well as the types of fea-
tures employed. Supervised approaches (McCal-
lum and Li 2003, Bunescu and Mooney 2004) rely 
on large sets of labeled examples, perform targeted 
extraction and employ a variety of sentence- and 
corpus-level features. While very precise, these 
methods are typically used for coarse grained enti-
ty classes (People, Organizations, Companies) for 
which large training data sets are available. Unsu-

pervised approaches rely on no labeled data and 
use either bootstrapped class-specific extraction 
patterns (Etzioni et al. 2005) to find new elements 
of a given class (for targeted extraction) or corpus-
based term similarity (Pantel and Lin 2002) to find 
term clusters (in an open extraction framework). 
Finally, semi-supervised methods have shown 
great promise for identifying and labeling entities 
(Riloff and Shepherd 1997; Riloff and Jones 1999; 
Banko et al. 2007; Downey et al. 2007; Paşca et al. 
2006; Paşca 2007a; Paşca 2007b; Paşca and Durme 
2008). Starting with a set of seed entities, semi-
supervised extraction methods use either class-
specific patterns to populate an entity class or dis-
tributional similarity to find terms similar to the 
seed set (Paşca’s work also examines the advan-
tages of combining these approaches). Semi-
supervised methods (including ours) are useful for 
extending finer grain entity classes, for which large 
unlabeled data sets are available. 
2.3 Impact of corpus on system performance 
Previous work has examined the effect of using 
large, sometimes Web-size corpora, on system per-
formance in the case of familiar NLP tasks. Banko 
and Brill (2001) show that Web-scale data helps 
with confusion set disambiguation while Lapata 
and Keller (2005) find that the Web is a good 
source of n-gram counts for unsupervised models. 
Atterer and Schutze (2006) examine the influence 
of corpus size on combining a supervised approach 
with an unsupervised one for relative clause and 
PP-attachment. Etzioni et al. (2005) and Pantel et 
al. (2004) show the advantages of using large 
quantities of generic Web text over smaller corpora 
for extracting relations and named entities. Overall, 
corpus size and quality are both found to be impor-
tant for extraction. Our paper adds to this body of 
work by focusing on the task of similarity-based 
set expansion and providing a large empirical 
study quantify the relative corpus effects. 
2.4 Impact of seeds on extraction performance 
Previous extraction systems report on the size and 
quality of the training data or, if semi-supervised, 
the size and quality of entity or pattern seed sets. 
Narrowing the focus to closely related work, Paşca 
(2007a; 2007b) and Paşca and Durme (2008) show 
the impact of varying the number of instances rep-
resentative of a given class and the size of the 
attribute seed set on the precision of class attribute 
extraction. An example observation is that good 
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quality class attributes can still be extracted using 
20 or even 10 instances to represent an entity class. 
Among others, Etzioni et al. (2005) shows that a 
small pattern set can help bootstrap useful entity 
seed sets and reports on the impact of seed set 
noise on final performance. Unlike previous work, 
empirically quantifying the influence of seed set 
size and quality on extraction performance of ran-
dom entity types is a key objective of this paper. 

3 Large-Scale Similarity Model 

Term semantic models normally invoke the distri-
butional hypothesis (Harris 1985), which links the 
meaning of terms to their contexts. Models are 
built by recording the surrounding contexts for 
each term in a large collection of unstructured text 
and storing them in a term-context matrix. Me-
thods differ in their definition of a context (e.g., 
text window or syntactic relations), or by a means 
to weigh contexts (e.g., frequency, tf-idf, pointwise 
mutual information), or ultimately in measuring 
the similarity between two context vectors (e.g., 
using Euclidean distance, Cosine, Dice). 

In this paper, we adopt the following methodol-
ogy for computing term similarity. Our various 
web crawls, described in Section 6.1, are POS-
tagged using Brill’s tagger (1995) and chunked 
using a variant of the Abney chunker (Abney 
1991). Terms are NP chunks with some modifiers 
removed; their contexts (i.e., features) are defined 
as their rightmost and leftmost stemmed chunks. 
We weigh each context f using pointwise mutual 
information (Church and Hanks 1989). Let PMI(w) 
denote a pointwise mutual information vector, con-
structed for each term as follows: PMI(w) = (pmiw1, 
pmiw2, …, pmiwm), where pmiwf is the pointwise 
mutual information between term w and feature f: 
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where cwf is the frequency of feature f occurring for 
term w, n is the number of unique terms and N is 
the total number of features for all terms. 

Term similarities are computed by comparing 
these pmi context vectors using measures such as 
cosine, Jaccard, and Dice. 

3.1 Large-Scale Implementation  

Computing the similarity between terms on a large 
Web crawl is a non-trivial problem, with a worst 
case cubic running time – O(n2m) where n is the 
number of terms and m is the dimensionality of the 
feature space. Section 2.1 introduces several opti-
mization techniques; below we propose an algo-
rithm for large-scale term similarity computation 
which calculates exact scores for all pairs of terms, 
generalizes to several different metrics, and is scal-
able to a large crawl of the Web. 

Our optimization strategy follows a generalized 
sparse-matrix multiplication approach (Sarawagi 
and Kirpal 2004), which is based on the well-
known observation that a scalar product of two 
vectors depends only on the coordinates for which 
both vectors have non-zero values. Further, we 
observe that most commonly used similarity scores 
for feature vectors xr  and yr , such as cosine and 
Dice, can be decomposed into three values: one 
depending only on features of xr, another depend-
ing only on features of yr, and the third depending 
on the features shared both by xr and yr. More for-
mally, commonly used similarity scores ( )yxF rr,  
can be expressed as: 

 ( ) ( ) ( ) ( )⎟
⎠

⎞
⎜
⎝

⎛
= ∑ yfxfyxffyxF

i
ii

rrrr
3210 ,,,,  

Table 1 defines f0, f1, f2, and f3 for some common 
similarity functions. For each of these scores, f2 = 
f3. In our work, we compute all of these scores, but 
report our results using only the cosine function. 

Let A and B be two matrices of PMI feature vec-
tors. Our task is to compute the similarity between 
all vectors in A and all vectors in B. In computing 
the similarity between all pairs of terms, A = B. 

Figure 1 outlines our algorithm for computing 
the similarity between all elements of A and B. Ef-
ficient computation of the similarity matrix can be 
achieved by leveraging the fact that ( )yxF rr,  is de-
termined solely by the features shared by xr and yr 
(i.e., f1(0,x) = f1(x,0) = 0 for any x) and that most of 

Table 1. Definitions for f0, f1, f2, and f3 for commonly used 
similarity scores. 
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the feature vectors are very sparse (i.e., most poss-
ible contexts never occur for a given term). In this 
case, calculating f1(x, y) is only required when both 
feature vectors have a shared non-zero feature, sig-
nificantly reducing the cost of computation. De-
termining which vectors share a non-zero feature 
can easily be achieved by first building an inverted 
index for the features. The computational cost of 
this algorithm is ∑ 2

iN , where Ni is the number of 
vectors that have a non-zero ith coordinate. Its 
worst case time complexity is O(ncv) where n is 
the number of terms to be compared, c is the max-
imum number of non-zero coordinates of any vec-
tor, and v is the number of vectors that have a non-
zero ith coordinate where i is the coordinate which 
is non-zero for the most vectors. In other words, 
the algorithm is efficient only when the density of 
the coordinates is low. On our datasets, we ob-
served near linear running time in the corpus size. 

Bayardo et al. (2007) described a strategy that 
potentially reduces the cost even further by omit-
ting the coordinates with the highest number of 
non-zero value. However, their algorithm gives a 
significant advantage only when we are interested 
in finding solely the similarity between highly sim-
ilar terms. In our experiments, we compute the ex-
act similarity between all pairs of terms. 

Distributed Implementation 
The pseudo-code in Figure 1 assumes that A can fit 
into memory, which for large A may be impossible. 
Also, as each element of B is processed indepen-
dently, running parallel processes for non-
intersecting subsets of B makes the processing 
faster. In this section, we outline our MapReduce 
implementation of Figure 1 deployed using Ha-
doop1, the open-source software package imple-
menting the MapReduce framework and distri-
buted file system. Hadoop has been shown to scale 
to several thousands of machines, allowing users to 
write simple “map” and “reduce” code, and to 
seamlessly manage the sophisticated parallel ex-
ecution of the code. A good primer on MapReduce 
programming is in (Dean and Ghemawat 2008). 

Our implementation employs the MapReduce 
model by using the Map step to start M×N Map 
tasks in parallel, each caching 1/Mth part of A as 
an inverted index and streaming 1/Nth part of B 
through it. The actual inputs are read by the tasks 
                                                 
1 Hadoop, http://lucene.apache.org/hadoop/ 

directly from HDFS (Hadoop Distributed File Sys-
tem). Each part of A is processed N times, and each 
part of B is processed M times. M is determined by 
the amount of memory dedicated for the inverted 
index, and N should be determined by trading off 
the fact that as N increases, more parallelism can 
be obtained at the increased cost of building the 
same inverse index N times. 

The similarity algorithm from Figure 1 is run in 
each task of the Map step of a MapReduce job. 
The Reduce step is used to group the output by bi. 

4 Application to Set Expansion 

Creating lists of named entities is a critical prob-
lem at commercial engines such as Yahoo! and 
Google. The types of entities to be expanded are 
often not known a priori, leaving supervised clas-
sifiers undesirable. Additionally, list creators typi-
cally need the ability to expand sets of varying 
granularity. Semi-supervised approaches are pre-
dominantly adopted since they allow targeted ex-
pansions while requiring only small sets of seed 
entities. State-of-the-art techniques first compute 
term-term similarities for all available terms and 
then select candidates for set expansion from 
amongst the terms most similar to the seeds (Sar-
mento et al. 2007). 

Input: Two matrices A and B of feature vectors. 
## Build an inverted index for A (optimiza- 
## tion for data sparseness) 
AA = an empty hash-table 
for i in (1..n): 
   F2[i] = f2(A[i]) ## cache values of f2(x) 
   for k in non-zero features of A[i]: 
      if k not in AA: AA[k] = empty-set 
      ## append <vector-id, feature-value> 
      ## pairs to the set of non-zero 
      ## values for feature k 
      AA[k].append( (i,A[i,k]) ) 
## Process the elements of B 
for b in B: 
   F1 = {} ## the set of Ai that have non-

zero similarity with b 
   for k in non-zero features of b: 
      for i in AA[k]: 
         if i not in sim: sim[i] = 0 
         F1[i] += f1( AA[k][i], b[k]) 
   F3 = f3(b) 
   for i in sim: 
      print i, b, f0( F1[i], F2[i], F3) 

Output: A matrix containing the similarity between 
all elements in A and in B. 

Figure 1. Similarity computation algorithm. 
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Formally, we define our expansion task as: 

Task Definition: Given a set of seed entities S = 
{s1, s2, …, sk} of a class C = {s1, s2, …, sk, …,, sn} and 
an unlabeled textual corpus T, find all members of 
the class C. 

For example, consider the class of Bottled Water 
Brands. Given the set of seeds S = {Volvic, San 
Pellegrino, Gerolsteiner Brunnen, Bling H2O}, our 
task is to find all other members of this class, such 
as {Agua Vida, Apenta, Culligan, Dasani, Ethos 
Water, Iceland Pure Spring Water, Imsdal, …} 

4.1 Set Expansion Algorithm 

Our goal is not to propose a new set expansion al-
gorithm, but instead to test the effect of using our 
Web-scale term similarity matrix (enabled by the 
algorithm proposed in Section 3) on a state-of-the-
art distributional set expansion algorithm, namely 
(Sarmento et al. 2007). 

We consider S as a set of prototypical examples 
of the underlying entity set. A representation for 
the meaning of S is computed by building a feature 
vector consisting of a weighted average of the fea-
tures of its seed elements s1, s2, …, sk, a centroid. For 
example, given the seed elements {Volvic, San Pel-
legrino, Gerolsteiner Brunnen, Bling H2O}, the 
resulting centroid consists of (details of the feature 
extraction protocol are in Section 6.1): 

brand, mineral water, monitor, 
lake, water, take over, … 

Centroids are represented in the same space as 
terms allowing us to compute the similarity be-
tween centroids and all terms in our corpus. A 
scored and ranked set for expansion is ultimately 
generated by sorting all terms according to their 
similarity to the seed set centroid, and applying a 
cutoff on either the similarity score or on the total 
number of retrieved terms. In our reported experi-
ments, we expanded over 22,000 seed sets using 
our Web similarity model from Section 3. 

5 Evaluation Methodology 

In this section, we describe our methodology for 
evaluating Web-scale set expansion. 

5.1 Gold Standard Entity Sets 

Estimating the quality of a set expansion algorithm 
requires a random sample from the universe of all 
entity sets that may ever be expanded, where a set 
represents some concept such as Stage Actors. An 
approximation of this universe can be extracted 
from the “List of” pages in Wikipedia2. 

Upon inspection of a random sample of the “List 
of” pages, we found that several lists were compo-
sitions or joins of concepts, for example “List of 
World War II aces from Denmark” and “List of 
people who claimed to be God”. We addressed this 
issue by constructing a quasi-random sample as 
follows. We randomly sorted the list of every noun 
occurring in Wikipedia2. Then, for each noun we 
verified whether or not it existed in a Wikipedia 
list, and if so we extracted this list. If a noun be-
longed to multiple lists, the authors chose the list 
that seemed most appropriate. Although this does 
not generate a perfect random sample, diversity is 
ensured by the random selection of nouns and rele-
vancy is ensured by the author adjudication. 

The final gold standard consists of 50 sets, in-
cluding: classical pianists, Spanish provinces, 
Texas counties, male tennis players, first ladies, 
cocktails, bottled water brands, and Archbishops of 
Canterbury. For each set, we then manually 
scraped every instance from Wikipedia keeping 
track also of the listed variants names. 

The gold standard is available for download at: 
http://www.patrickpantel.com/cgi-bin/Web/Tools/getfile.pl?type=data&id=sse-
gold/wikipedia.20071218.goldsets.tgz 

The 50 sets consist on average of 208 instances 
(with a minimum of 11 and a maximum of 1,116) 
for a total of 10,377 instances. 

5.2 Trials 

In order to analyze the corpus and seed effects on 
performance, we created 30 copies of each of the 
50 sets and randomly sorted each copy. Then, for 
each of the 1500 copies, we created a trial for each 
of the following 23 seed sizes: 1, 2, 5, 10, 20, 30, 
40, …, 200. Each trial of seed size s was created by 
taking the first s entries in each of the 1500 random 
copies. For sets that contained fewer than 200 
items, we only generated trials for seed sizes 

                                                 
2 In this paper, extractions from Wikipedia are taken 
from a snapshot of the resource in December 2008. 
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smaller than the set size. The resulting trial dataset 
consists of 20,220 trials3. 

5.3 Judgments 

Set expansion systems consist of an expansion al-
gorithm (such as the one described in Section 4.1) 
as well as a corpus (such as Wikipedia, a news 
corpus, or a web crawl). For a given system, each 
of the 20,220 trials described in the previous sec-
tion are expanded. In our work, we limited the total 
number of system expansions, per trial, to 1000. 

Before judgment of an expanded set, we first 
collapse each instance that is a variant of another 
(determined using the variants in our gold stan-
dard) into one single instance (keeping the highest 
system score)4. Then, each expanded instance is 
judged as correct or incorrect automatically 
against the gold standard described in Section 5.1. 

5.4 Analysis Metrics 

Our experiments in Section 6 consist of precision 
vs. recall or precision vs. rank curves, where: 
a) precision is defined as the percentage of correct 

instances in the expansion of a seed set; and 
b) recall is defined as the percentage of non-seed 

gold standard instances retrieved by the system. 
Since the gold standard sets vary significantly in 
size, we also provide the R-precision metric to 
normalize for set size: 
c) R-precision is defined as the average precision 

of all trials where precision is taken at rank R = 
{size of trial’s associated gold standard set}, 
thereby normalizing for set size. 

                                                 
3 Available for download at http://www.patrickpantel.com/cgi-

bin/Web/Tools/getfile.pl?type=data&id=sse-gold/wikipedia.20071218.trials.tgz. 
4 Note also that we do not allow seed instances nor their 
variants to appear in an expansion set. 

For the above metrics, 95% confidence bounds are 
computed using the randomly generated samples 
described in Section 5.2. 

6 Experimental Results 

Our goal is to study the performance gains on set 
expansion using our Web-scale term similarity al-
gorithm from Section 3. We present a large empir-
ical study quantifying the importance of corpus 
and seeds on expansion accuracy. 

6.1 Experimental Setup 

We extracted statistics to build our model from 
Section 3 using four different corpora, outlined in 
Table 2. The Wikipedia corpus consists of a snap-
shot of the English articles in December 20085. 
The Web100 corpus consists of an extraction from 
a large crawl of the Web, from Yahoo!, of over 
600 million English webpages. For each crawled 
document, we removed paragraphs containing 
fewer than 50 tokens (as a rough approximation of 
the narrative part of a webpage) and then removed 
all duplicate sentences. The resulting corpus con-
sists of over 200 billion words. The Web020 cor-
pus is a random sample of 1/5th of the sentences in 
Web100 whereas Web004 is a random sample of 
1/25th of Web100. 

For each corpus, we tagged and chunked each 
sentence as described in Section 3. We then com-
puted the similarity between all noun phrase 
chunks using the model of Section 3.1. 

6.2 Quantitative Analysis 

Our proposed optimization for term similarity 
computation produces exact scores (unlike rando-
mized techniques) for all pairs of terms on a large 
Web crawl. For our largest corpus, Web100, we 
computed the pairwise similarity between over 500 
million words in 50 hours using 200 four-core ma-
chines. Web004 is of similar scale to the largest 
reported randomized technique (Ravichandran et 
al. 2005). On this scale, we compute the exact si-
milarity matrix in a little over two hours whereas 
Ravichandran et al. (2005) compute an approxima-
tion in 570 hours. On average they only find 73% 

                                                 
5 To avoid biasing our Wikipedia corpus with the test 
sets, Wikipedia “List of” pages were omitted from our 
statistics as were any page linked to gold standard list 
members from “List of” pages. 

Table 2. Corpora used to build our expansion models.

CORPORA 
UNIQUE 

SENTENCES 
(MILLIONS) 

TOKENS 
(MILLIONS) 

UNIQUE 
WORDS 

(MILLIONS) 
Web100 5,201 217,940 542 

Web020† 1040 43,588 108 

Web004† 208 8,717 22 

Wikipedia6 30 721 34 
†Estimated from Web100 statistics. 
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of the top-1000 similar terms of a random term 
whereas we find all of them. 

For set expansion, experiments have been run on 
corpora as large as Web004 and Wikipedia (Sar-
mento et al. 2007), a corpora 300 times smaller 
than our Web crawl. Below, we compare the ex-
pansion accuracy of Sarmento et al. (2007) on Wi-
kipedia and our Web crawls. 

Figure 2 illustrates the precision and recall tra-
deoff for our four corpora, with 95% confidence 
intervals computed over all 20,220 trials described 
in Section 4.2. Table 3 lists the resulting R-
precision along with the system precisions at ranks 
25, 50, and 100 (see Figure 2 for detailed precision 
analysis). Why are the precision scores so low? 
Compared with previous work that manually select 
entity types for expansion, such as countries and 
companies, our work is the first to evaluate over a 
large set of randomly selected entity types. On just 
the countries class, our R-Precision was 0.816 us-
ing Web100. 

The following sections analyze the effects of 
various expansion variables: corpus size, corpus 
quality, seed size, and seed quality. 

6.2.1 Corpus Size and Corpus Quality Effect 

Not surprisingly, corpus size and quality have a 
significant impact on expansion performance. Fig-
ure 2 and Table 3 quantify this expectation. On our 
Web crawl corpora, we observe that the full 200+ 
billion token crawl (Web100) has an average R-
precision 13% higher than 1/5th of the crawl 
(Web020) and 53% higher than 1/25th of the crawl. 
Figure 2 also illustrates that throughout the full 
precision/recall curve, Web100 significantly out-
performs Web020, which in turn significantly out-
performs Web004. 

The higher text quality Wikipedia corpus, which 
consists of roughly 60 times fewer tokens than 

Web020, performs nearly as well as Web020 (see 
Figure 2). We omitted statistics from Wikipedia 
“List of” pages in order to not bias our evaluation 
to the test set described in Section 5.1. Inspection 
of the precision vs. rank graph (omitted for lack of 
space) revealed that from rank 1 thru 550, Wikipe-
dia had the same precision as Web020. From rank 
550 to 1000, however, Wikipedia’s precision 
dropped off significantly compared with Web020, 
accounting for the fact that the Web corpus con-
tains a higher recall of gold standard instances. The 
R-precision reported in Table 3 shows that this 
precision drop-off results in a significantly lower 
R-precision for Wikipedia compared with Web020. 

6.2.2  The Effect of Seed Selection 

Intuitively, some seeds are better than others. We 
study the impact of seed selection effect by in-
specting the system performance for several ran-
domly selected seed sets of fixed size and we find 
that seed set composition greatly affects perfor-
mance. Figure 3 illustrates the precision vs. recall 
tradeoff on our best performing corpus Web100 for 
30 random seed sets of size 10 for each of our 50 
gold standard sets (i.e., 1500 trials were tested.) 
Each of the trials performed better than the average 
system performance (the double-lined curve lowest 
in Figure 3). Distinguishing between the various 
data series is not important, however important to 
notice is the very large gap between the preci-
sion/recall curves of the best and worst performing 
random seed sets. On average, the best performing 
seed sets had 42% higher precision and 39% higher 
recall than the worst performing seed set. Similar 

Table 3. Corpora analysis: R-precision and Precision at var-
ious ranks. 95% confidence bounds are all below 0.005†. 

CORPORA R-PREC PREC@25 PREC@50 PREC@100 

Web100 0.404 0.407 0.347 0.278 
Web020 0.356 0.377 0.319 0.250 
Web004 0.264 0.353 0.298 0.239 

Wikipedia 0.315 0.372 0.314 0.253 
†95% confidence bounds are computed over all trials described in Section 5.2. 

Figure 2. Corpus size and quality improve performance. 
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Table 3. Corpora analysis: R-precision and Precision at var-
ious ranks. 95% confidence bounds are all below 0.005†. 

CORPORA R-PREC PREC@25 PREC@50 PREC@100 

Web100 0.404 0.407 0.347 0.278 

Web020 0.356 0.377 0.319 0.250 

Web004 0.264 0.353 0.298 0.239 

Wikipedia 0.315 0.372 0.314 0.253 
†95% confidence bounds are computed over all trials described in Section 5.2. 
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curves were observed for inspected seed sets of 
size 5, 20, 30, and 40. 

Although outside of the scope of this paper, we 
are currently investigating ways to automatically 
detect which seed elements are better than others in 
order to reduce the impact of seed selection effect. 

6.2.3 The Effect of Seed Size 

Here we aim to confirm, with a large empirical 
study, the anecdotal claims in (Paşca and Durme 
2008) that few seeds are necessary. We found that 
a) very small seed sets of size 1 or 2 are not suffi-
cient for representing the intended entity set; b) 5-
20 seeds yield on average best performance; and c) 
surprisingly, increasing the seed set size beyond 
20 or 30 on average does not find any new correct 
instances. 

We inspected the effect of seed size on R-
precision over the four corpora. Each seed size 
curve is computed by averaging the system per-
formance over the 30 random trials of all 50 sets. 
For each corpus, R-precision increased sharply 
from seed size 1 to 10 and the curve flattened out 

for seed sizes larger than 20 (figure omitted for 
lack of space). Error analysis on the Web100 cor-
pus shows that once our model has seen 10-20 
seeds, the distributional similarity model seems to 
have enough statistics to discover as many new 
correct instances as it could ever find. Some enti-
ties could never be found by the distributional si-
milarity model since they either do not occur or 
infrequently occur in the corpus or they occur in 
contexts that vary a great deal from other set ele-
ments. Figure 4 illustrates this behavior by plotting 
for each seed set size the rate of increase in discov-
ery of new correct instances (i.e., not found in 
smaller seed set sizes). 

We see that most gold standard instances are 
discovered with the first 5-10 seeds. After the 30th 
seed is introduced, no new correct instances are 
found. An important finding is that the error rate 
does not increase with increased seed set size (see 
Figure 5). This study shows that only few seeds 
(10-20) yield best performance and that adding 
more seeds beyond this does not on average affect 
performance in a positive or negative way. 

Figure 3. Seed set composition greatly affects system performance (with 30 different seed samples of size 10). 

Figure 4. Few new instances are discovered with more 
than 5-20 seeds on Web100 (with 95% confidence). 

Figure 5. Percentage of errors does not increase as 
seed size increases on Web100 (with 95% confidence).
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7 Conclusion  

We proposed a highly scalable term similarity al-
gorithm, implemented in the MapReduce frame-
work, and deployed over a 200 billion word crawl 
of the Web. The pairwise similarity between 500 
million terms was computed in 50 hours using 200 
quad-core nodes. We evaluated the impact of the 
large similarity matrix on a set expansion task and 
found that the Web similarity matrix gave a large  
performance boost over a state-of-the-art expan-
sion algorithm using Wikipedia. Finally, we re-
lease to the community a testbed for experimental-
ly analyzing automatic set expansion, which in-
cludes a large collection of nearly random entity 
sets extracted from Wikipedia and over 22,000 
randomly sampled seed expansion trials.  
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Abstract

Many algorithms extract terms from text to-
gether with some kind of taxonomic clas-
sification (is-a) link. However, the general
approaches used today, and specifically the
methods of evaluating results, exhibit serious
shortcomings. Harvesting without focusing on
a specific conceptual area may deliver large
numbers of terms, but they are scattered over
an immense concept space, making Recall
judgments impossible. Regarding Precision,
simply judging the correctness of terms and
their individual classification links may pro-
vide high scores, but this doesn’t help with the
eventual assembly of terms into a single coher-
ent taxonomy. Furthermore, since there is no
correct and complete gold standard to measure
against, most work invents some ad hoc evalu-
ation measure. We present an algorithm that is
more precise and complete than previous ones
for identifying from web text just those con-
cepts ‘below’ a given seed term. Comparing
the results to WordNet, we find that the algo-
rithm misses terms, but also that it learns many
new terms not in WordNet, and that it clas-
sifies them in ways acceptable to humans but
different from WordNet.

1 Collecting Information with Care

Over the past few years, many algorithms have been
published on automatically harvesting terms and
their conceptual types from the web and/or other
large corpora (Etzioni et al., 2005; Pasca, 2007;
Banko et al., 2007; Yi and Niblack, 2005; Snow et
al., 2005). But several basic problems limit the even-
tual utility of the results.

First, there is no standard collection of facts
against which results can be measured. As we show

in this paper, WordNet (Fellbaum, 1998), the most
obvious contender because of its size and popularity,
is deficient in various ways: it is neither complete
nor is its taxonomic structure inarguably perfect. As
a result, alternative ad hoc measures are invented
that are not comparable. Second, simply harvesting
facts about an entity without regard to its actual sub-
sequent organization inflates Recall and Precision
evaluation scores: while it is correct that ajaguar
is a animal, mammal, toy, sports-team, car-make,
andoperating-system, this information doesn’t help
to create a taxonomy that, for example, placesmam-
mal andanimal closer to one another than to some
of the others. ((Snow et al., 2005) is an exception
to this.) As a result, this work may give a mislead-
ing sense of progress. Third, entities are of differ-
ent formal types, and their taxonomic treatment is
consequently different: some are at the level of in-
stances (e.g.,Michelangelo was a painter) and some
at the level of concepts (e.g.,a painter is a human).

The goal of our research is to learn terms for en-
tities (objects) and their taxonomic organization si-
multaneously, from text. Our method is to use a
single surface-level pattern with several open posi-
tions. Filling them in different ways harvests differ-
ent kinds of information, and/or confirms this infor-
mation. We evaluate in two ways: against WordNet,
since that is a commonly available and popular re-
source, and also by asking humans to judge the re-
sults since WordNet is neither complete nor exhaus-
tively taxonomized.

In this paper, we describe experiments with two
rich and common portions of an entity taxonomy:
Animals and People. The claim of this paper is:It is
possible to learn terms automatically to populate a
targeted portion of a taxonomy (such as below An-
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imals or People) both at high precision compared
to WordNet and including additional correct ones as
well. We would like to also report on Recall rela-
tive to WordNet, but given the problems described
in Section 4, this turns out to be much harder than
would seem.

First, we need to define some basic terminology:
term: An English word (for our current purposes, a
noun or a proper name).
seed term:A word we use to initiate the algorithm.
concept:An item in the classification taxonomy we
are building. A concept may correspond to several
terms (singular form, plural form, the term’s syn-
onyms, etc.).
root concept: A concept at a fairly general (high)
level in the taxonomy, to which many others are
eventually learned to be subtypes/instances of.
basic-level concept:A concept at the ‘basic level’,
corresponding approximately to the Basic Level cat-
egories defined in Prototype Theory in Psychology
(Rosch, 1978). For our purposes, a concept corre-
sponding to the (proto)typical level of generality of
its type; that is, adog, not amammalor adachshund;
asinger, not ahumanor anopera diva.
instance: An item in the classification taxonomy
that is more specific than a concept; only one exam-
ple of the instance exists in ‘the real world’ at any
time. For example,Michelangelois an instance, as
well asMazda Miata with license plate 3HCY687,
while Mazda Miatais not.
classification link: We use a single relation, that,
depending on its arguments, is eitheris a type of
(when both arguments are concepts), oris an in-
stance ofor is an example of(when the first argu-
ment is an instance/example of the second).

Section 2 describes our method for harvesting;
Section 3 discusses related work; and Section 4 de-
scribes the experiments and the results.

2 Term and Relation Extraction using the
Doubly-Anchored Pattern

Our goal is to develop a technique that automatically
‘fills in’ the concept space in the taxonomy below
any root concept, by harvesting terms through re-
peated web queries. We perform this in two alter-
nating stages.

Stage 1: Basic-level/Instance concept collec-
tion: We use the Doubly-Anchored Pattern DAP de-
veloped in (Kozareva et al., 2008):

DAP: [SeedTerm1] such as [SeedTerm2] and<X>

which learns a list of basic-level concepts or in-
stances (depending on whether SeedTerm2 ex-
presses a basic-level concept or an instance).1 DAP
is very reliable because it is instantiated with ex-
amples at both ‘ends’ of the space to be filled (the
higher-level (root) concept SeedTerm1 and a basic-
level term or instance (SeedTerm2)), which mutu-
ally disambiguate each other. For example, “pres-
idents” for SeedTerm1 can refer to the leader of a
country, corporation, or university, and “Ford” for
SeedTerm2 can refer to a car company, an automo-
bile pioneer, or a U.S. president. But when the two
terms co-occur in a text that matches the pattern
“Presidents such as Ford and<X>” , the text will
almost certainly refer to country presidents.

The first stage involves a series of repeated re-
placements of SeedTerm2 by newly-learned terms
in order to generate even more seed terms. That is,
each new basic-level concept or instance is rotated
into the pattern (becoming a new SeedTerm2) in a
bootstrapping cycle that Kozareva et al. calledreck-
less bootstrapping. This procedure is implemented
as exhaustive breadth-first search, and iterates until
no new terms are harvested. The harvested terms are
incorporated in aHyponym Pattern Linkage Graph
(HPLG) G = (V, E), where each vertexv ∈ V is
a candidate term and each edge(u, v) ∈ E indi-
cates that termv was generated by termu. A term

u is ranked byOut-Degree(u) =
P
∀(u,v)∈E w(u,v)

|V |−1 ,
which represents the weighted sum ofu’s outgoing
edges normalized by the total number of other nodes
in the graph. Intuitively, a term ranks highly if it
is frequently discovering many different terms dur-
ing the reckless bootstrapping cycle. This method is
very productive, harvesting a constant stream of new
terms for basic-level concepts or instances when the
taxonomy below the initial root concept SeedTerm1
is extensive (such as for Animals or People).

1Strictly speaking, our lowest-level concepts can be in-
stances, basic-level concepts, or concepts below the basic level
(e.g.,dachsund). But for the sake of simplicity we will refer to
our lowest-level terms as basic-level concepts and instances.
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Stage 2: Intermediate level concept collection:
Going beyond (Kozareva et al., 2008), we next apply
the Doubly-Anchored Pattern in the ‘backward’ di-
rection (DAP−1), for any two seed terms represent-
ing basic-level concepts or instances:

DAP−1: <X> such as [SeedTerm1] and [SeedTerm2]

which harvests a set of concepts, most of them inter-
mediate between the basic level or instance and the
initial higher-level seed.

This second stage (DAP−1) has not yet been de-
scribed in the literature. It proceeds analogously.
For pairs of basic-level concepts or instances be-
low the root concept that were found during the first
stage, we instantiate DAP−1 and issue a new web
query. For example, if the term “cats” was harvested
by DAP in “Animals such as dogs and<X>” , then
the pair< dogs, cats > forms the new Web query
“ <X> such as dogs and cats”. We extract up to 2
consecutive nouns from the<X> position.

This procedure yields a large number of discov-
ered concepts, but they cannot all be used for fur-
ther bootstrapping. In addition to practical limita-
tions (such as limits on web querying), many of them
are too general–more general than the initial root
concept–and could derail the bootstrapping process
by introducing terms that stray every further away
from the initial root concept. We therefore rank the
harvested terms based on the likelihood that they
will be productive if they are expanded in the next
cycle. Ranking is based on two criteria: (1) the con-
cept should be prolific (i.e., produce many lower-
level concepts) in order to keep the bootstrapping
process energized, and (2) the concept should be
subordinate to the root concept, so that the process
stays within the targeted part of the search space.

To perform ranking, we incorporate both the har-
vested concepts and the basic-level/instance pairs
into aHypernym Relation Graph (HRG), which we
define as a bipartite graphHRG = (V, E) with two
types of vertices. One set of vertices represents the
concepts(the category vertices (Vc), and a second
set of vertices represents the basic-level/instance
pairs that produced the concepts (the member pair
vertices (Vmp)). We create an edgee(u, v) ∈ E
betweenu ∈ Vc and v ∈ Vmp when the con-
cept represented byu was harvested by the basic-
level/instance pair represented byv, with the weight

of the edge defined as the number of times that the
lower pair found the concept on the web.

We use the Hypernym Relation Graph to rank
the intermediate concepts based on each node’sIn-
Degree, which is the sum of the weights on the
node’s incoming edges. Formally,In-Degree(u) =∑

∀(u,v)∈E w(u, v). Intuitively, a concept will be
ranked highly if it was harvested by many different
combinations of basic-level/instance terms.

However, this scoring function does not deter-
mine whether a concept is more or less general than
the initial root concept. For example, when har-
vesting animal categories, the system may learn the
word “species”, which is a very common term asso-
ciated with animals, but also applies to non-animals
such as plants. To prevent the inclusion of over-
general terms and constrain the search to remain
‘below’ the root concept, we apply aConcept Posi-
tioning Test (CPT): We issue the following two web
queries:

(a)Concept such as RootConcept and<X>

(b) RootConcept such as Concept and<X>

If (b) returns more web hits than (a), then the con-
cept passes the test, otherwise it fails. The first (most
highly ranked) concept that passes CPT becomes the
new seed concept for the next bootstrapping cycle.
In principle, we could use all the concepts that pass
the CPT for bootstrapping2. However, for practical
reasons (primarily limitations on web querying), we
run the algorithm for 10 iterations.

3 Related Work

Many algorithms have been developed to automat-
ically acquire semantic class members using a va-
riety of techniques, including co-occurrence statis-
tics (Riloff and Shepherd, 1997; Roark and Char-
niak, 1998), syntactic dependencies (Pantel and
Ravichandran, 2004), and lexico-syntactic patterns
(Riloff and Jones, 1999; Fleischman and Hovy,
2002; Thelen and Riloff, 2002).

The work most closely related to ours is that of
(Hearst, 1992) who introduced the idea of apply-
ing hyponym patternsto text, which explicitly iden-
tify a hyponym relation between two terms (e.g.,

2The number of ranked concepts that pass CPT changes in
each iteration. Also, the wildcard * is important for counts, as
can be verified with a quick experiment using Google.
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“such authors as<X>” ). In recent years, sev-
eral researchers have followed up on this idea using
the web as a corpus. (Pasca, 2004) applies lexico-
syntactic hyponym patterns to the Web and use the
contexts around them for learning. KnowItAll (Et-
zioni et al., 2005) applies the hyponym patterns to
extract instances from the Web and ranks them by
relevance using mutual information. (Kozareva et
al., 2008) introduced a bootstrapping scheme using
the doubly-anchored pattern (DAP) that is guided
through graph ranking. This approach reported a
significant improvement from 5% to 18% over ap-
proaches using singly-anchored patterns like those
of (Pasca, 2004) and (Etzioni et al., 2005).

(Snow et al., 2005) describe a dependency path
based approach that generates a large number of
weak hypernym patterns using pairs of noun phrases
present in WordNet. They build a classifier using
the different hypernym patterns and find among the
highest precision patterns those of (Hearst, 1992).
Snow et al. report performance of 85% precision
at 10% recall and 25% precision at 30% recall for
5300 hand-tagged noun phrase pairs. (McNamee et
al., 2008) use the technique of (Snow et al., 2005)
to harvest the hypernyms of the proper names. The
average precision on 75 automatically detected cat-
egories is 53%. The discovered hypernyms were
intergrated in a Question Answering system which
showed an improvement of 9% when evaluated on a
TREC Question Answering data set.

Recently, (Ritter et al., 2009) reported hypernym
learning using (Hearst, 1992) patterns and manually
tagged common and proper nouns. All hypernym
candidates matching the pattern are acquired, and
the candidate terms are ranked by mutual informa-
tion. However, they evaluate the performance of
their hypernym algorithm by considering only the
top 5 hypernyms given a basic-level concept or in-
stance. They report 100% precision at 18% recall,
and 66% precision at 72% recall, considering only
the top-5 list. Necessarily, using all the results re-
turned will result in lower precision scores. In con-
trast to their approach, our aim is to first acquire au-
tomatically with minimal supervision the basic-level
concepts for given root concept. Thus, we almost
entirely eliminate the need for humans to provide
hyponym seeds. Second, we evaluate the perfor-
mance of our approach not by measuring the top-

ranked 5 hypernyms given a basic-level concept, but
considering all harvested hypernyms of the concept.

Unlike (Etzioni et al., 2005), (Pasca, 2007) and
(Snow et al., 2005), we learn both instances and con-
cepts simultaneously.

Some researchers have also worked on reorga-
nizing, augmenting, or extending semantic concepts
that already exist in manually built resources such
as WordNet (Widdows and Dorow, 2002; Snow et
al., 2005) or Wikipedia (Ponzetto and Strube, 2007).
Work in automated ontology construction has cre-
ated lexical hierarchies (Caraballo, 1999; Cimiano
and Volker, 2005; Mann, 2002), and learned seman-
tic relations such as meronymy (Berland and Char-
niak, 1999; Girju et al., 2003).

4 Evaluation

The root concepts discussed in this paper are An-
imals and People, because they head large taxo-
nomic structures that are well-represented in Word-
Net. Throughout these experiments, we used as the
initial SeedTerm2lions for Animals andMadonna
for People (by specifically choosing a proper name
for People we force harvesting down to the level of
individual instances). To collect data, we submitted
the DAP patterns as web queries to Google, retrieved
the top 1000 web snippets per query, and kept only
the unique ones. In total, we collected 1.1 GB of
snippets for Animals and 1.5 GB for People. The
algorithm was allowed to run for 10 iterations.

The algorithm learns a staggering variety of terms
that is much more diverse than we had antici-
pated. In addition to many basic-level concepts or
instances, such asdog and Madonnarespectively,
and many intermediate concepts, such asmammals,
pets, andpredators, it also harvested categories that
clearly seemed useful, such aslaboratory animals,
forest dwellers, andendangered species. Many other
harvested terms were more difficult to judge, includ-
ing bait, allergens, seafood, vectors, protein, and
pests. While these terms have an obvious relation-
ship to Animals, we have to determine whether they
are legitimate and valuable subconcepts of Animals.

A second issue involves relative terms that are
hard to define in an absolute sense, such asnative
animalsandlarge mammals.
A complete evaluation should answer the following
three questions:
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• Precision: What is the correctness of the har-
vested concepts? (How many of them are sim-
ply wrong, given the root concept?)

• Recall: What is the coverage of the harvested
concepts? (How many are missing, below a
given root concept?)

• How correct is the taxonomic structure
learned?

Given the number and variety of terms obtained,
we initially decided that an automatic evaluation
against existing resources (such as WordNet or
something similar) would be inadequate because
they do not contain many of our harvested terms,
even though many of these terms are clearly sensi-
ble and potentially valuable. Indeed, the whole point
of our work is to learn concepts and taxonomies that
go above and beyond what is currently available.

However, it is necessary to compare with
something, and it is important not to skirt the issue
by conducting evaluations that measure subsets of
results, or that perhaps may mislead. We therefore
decided to compare our results against WordNetand
to have human annotators judge as many results as
we could afford (to obtain a measure of Precision
and the legitimate extensions beyond WordNet).

Unfortunately, it proved impossible to measure
Recall against WordNet, because this requires as-
certaining the number of synsets in WordNet be-
tween the root and its basic-level categories. This
requires human judgment, which we could not af-
ford. We plan to address this question in future
work. Also, assessing the correctness of the learned
taxonomy structure requires the manual assessment
of each classification link proposed by the system
that is not already in WordNet, a task also beyond
our budget to complete in full. Some results—for
just basic-level terms and intermediate concepts, but
not among intermediate-level concepts–are shown in
Section 4.3.

We provide Precision scores using the following
measures, wheretermsrefers to the harvested terms:

PrWN =
#terms found in WordNet

#terms harvested by system

PrH =
#terms judged correct by human

#terms harvested by system

NotInWN = #terms judged correct by human but

not in WordNet

We conducted three sets of experiments.Ex-
periment 1 evaluates the results of using DAP to
learn basic-level concepts for Animals and instances
for People. Experiment 2 evaluates the results of
using DAP−1 to harvest intermediate concepts be-
tween each root concept and its basic-level concepts
or instances.Experiment 3 evaluates the taxonomy
structure that is produced via the links between the
instances and intermediate concepts.

4.1 Experiment 1: Basic-Level Concepts and
Instances

In this section we discuss the results of harvest-
ing the basic-level Animal concepts and People in-
stances. The bootstrapping algorithm ranks the har-
vested terms by theirOut-Degreescore and consid-
ers as correct only those withOut-Degree> 0. In
ten iterations, the bootstrapping algorithm produced
913 Animal basic-level concepts and1, 344 People
instances that passed thisOut-Degreecriterion.

4.1.1 Human Evaluation

The harvested terms were labeled by human
judges as either correct or incorrect with respect to
the root concept. Table 1 shows the Precision of the
top-rankedN terms, withN shown in increments
of 100. Overall, the Animal terms yielded 71%
(649/913) Precision and the People terms yielded
95% Precision (1,271/1,344). Figure 1 shows that
higher-ranked Animal terms are more accurate than
lower-ranked terms, which indicates that the scor-
ing function did its job. For People terms, accuracy
was very high throughout the ranked list. Overall,
these results show that the bootstrapping algorithm
generates a large number of correct instances of high
quality.

4.1.2 WordNet Evaluation

Table 1 shows a comparison of the harvested
terms against the terms present in WordNet.
Note that the Precision measured against WordNet
(PrWN ) for People is dramatically different from
the Precision based on human judgments (PrH ).
This can be explained by looking at theNotInWN
column, which shows that48 correct Animal terms
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Figure 1:Ranked Basic-Concepts and Instances.

and986 correct People instances are not present in
WordNet (primarily, for people, because WordNet
contains relatively few proper names). These results
show that there is substantial room for improvement
in WordNet’s coverage of these categories. For Ani-
mals, the precision measured against WordNet is ac-
tually higher than the precision measured by human
judges, which may indicate that the judges failed to
recognize some correct animal terms.

PrWN PrH NotInWN

Animal .79 .71 48
People .23 .95 986

Table 1:Instance Evaluation.

4.1.3 Evaluation against Prior Work

To assess how well our algorithm compares with
previous semantic class learning methods, we com-
pared our results to those of (Kozareva et al., 2008).
Our work was inspired by that approach–in fact, we
use that previous algorithm as the first step of our
bootstrapping process. The novelty of our approach
is the insertion of an additional bootstrapping stage
that iteratively learns new intermediate concepts us-
ing DAP−1 and the Concept Positioning Test, fol-
lowed by the subsequent use of the newly learned
intermediate concepts in DAP to expand the search
space beyond the original root concept. This leads
to the discovery of additional basic-level terms or in-
stances, which are then recycled in turn to discover
new intermediate concepts, and so on.

Consequently, we can compare the results pro-
duced by the first iteration of our algorithm (be-
fore intermediate concepts are learned) to those of
(Kozareva et al., 2008) for the Animal and People
categories, and then compare again after 10 boot-
strapping iterations of intermediate concept learn-
ing. Figure 2 shows the number of harvested con-
cepts for Animals and People after each bootstrap-
ping iteration. Bootstrapping with intermediate con-
cepts produces nearly 5 times as many basic-level
concepts and instances than (Kozareva et al., 2008)
obtain, while maintaining similar levels of precision.

The intermediate concepts help so much because
they steer the learning process into new (yet still cor-
rect) regions of the search space after each iteration.
For instance, in the first iteration, the pattern“ani-
mals such as lions and *”harvests about 350 basic-
level concepts, but only animals that are mentioned
in conjunction with lions are learned. Of these, an-
imals typically quite different from lions, such as
grass-eating kudu, are often not discovered.

However, in the second iteration, the intermediate
concept Herbivore is chosen for expansion. The pat-
tern “herbivore such as antelope and *”discovers
many additional animals, includingkudu, that co-
occur withantelopebut do not co-occur withlions.

Table 2 shows examples of the 10 top-ranked
basic-level concepts and instances that were learned
for 3 randomly-selected intermediate Animal and
People concepts (IConcepts) that were acquired dur-
ing bootstrapping. In the next section, we present an
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Figure 2:Learning Curves.

evaluation of the intermediate concept terms.

4.2 Experiment 2: Intermediate Concepts

In this section we discuss the results of harvesting
the intermediate-level concepts. Given the variety of
the harvested results, manual judgment of correct-
ness required an in-depth human annotation study.
We also compare our harvested results against the
concept terms in WordNet.

4.2.1 Human Evaluation

We hired 4 annotators (undergraduates at a dif-
ferent institution) to judge the correctness of the in-
termediate concepts. We created detailed annota-
tion guidelines that define 14 annotation labels for
each of the Animal and People classes, as shown
in Table 3. The labels are clustered into 4 major

PEOPLE
IConcept Instances
Dictators: Adolf Hitler, Joseph Stalin, Benito Mussolini, Lenin,

Fidel Castro, Idi Amin, Slobodan Milosevic,
Hugo Chavez, Mao Zedong, Saddam Hussein

Celebrities: Madonna, Paris Hilton, Angelina Jolie, Britney ,
Spears, Tom Cruise, Cameron Diaz, Bono,
Oprah Winfrey, Jennifer Aniston, Kate Moss

Writers : William Shakespeare, James Joyce, Charles Dickens,
Leo Tolstoy, Goethe, Ralph Waldo Emerson,
Daniel Defoe, Jane Austen, Ernest Hemingway,
Franz Kafka

ANIMAL
IConcept Basic-level Terms
Crustacean: shrimp, crabs, prawns, lobsters, crayfish, mysids,

decapods, marron, ostracods, yabbies
Primates: baboons, monkeys, chimpanzees, apes, marmosets,

chimps, orangutans, gibbons, tamarins, bonobos
Mammal: mice, whales, seals, dolphins, rats, deer, rabbits,

dogs, elephants, squirrels

Table 2:Learned People and Animals Terms.

types:Correct, Borderline, BasicConcept, and Not-
Concept. The details of our annotation guidelines,
the reasons for the intermediate labels, and the anno-
tation study can be found in (Kozareva et al., 2009).

ANIMAL
TYPE LABEL EXAMPLES
Correct GeneticAnimal reptile,mammal

BehavioralByFeeding predator, grazer
BehaviorByHabitat saltwater mammal
BehaviorSocialIndiv herding animal
BehaviorSocialGroup herd, pack
MorphologicalType cloven-hoofed animal
RoleOrFunction pet, parasite

Borderline NonRealAnimal dragons
EvaluativeTerm varmint, fox
OtherAnimal critter, fossil

BasicConcept BasicAnimal dog, hummingbird
NotConcept GeneralTerm model, catalyst

NotAnimal topic, favorite
GarbageTerm brates, mals

PEOPLE
TYPE LABEL EXAMPLES
Correct GeneticPerson Caucasian, Saxon

NonTransientEventRole stutterer, gourmand
TransientEventRole passenger, visitor
PersonState dwarf, schizophrenic
FamilyRelation aunt, mother
SocialRole fugitive, hero
NationOrTribe Bulgarian, Zulu
ReligiousAffiliation Catholic, atheist

Borderline NonRealPerson biblical figures
OtherPerson colleagues, couples

BasicConcept BasicPerson child, woman
RealPerson Barack Obama

NotConcept GeneralTerm image, figure
NotPerson books, events

Table 3:Intermediate Concept Annotation Labels

We measured pairwise inter-annotator agreement
across the four labels using the Fleiss kappa (Fleiss,
1971). Theκ scores ranged from 0.61–0.71 for
Animals (averageκ=0.66) and from 0.51–0.70 for
People (averageκ=0.60). These agreement scores
seemed good enough to warrant using these human
judgments to estimate the accuracy of the algorithm.

The bootstrapping algorithm harvested3, 549 An-
imal and4, 094 People intermediate concepts in ten
iterations. After In-Degree ranking was applied,
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we chose a random sample of intermediate concepts
with frequency over 1, which was given to four hu-
man judges for annotation. Table 4 summarizes the
labels assigned by the four annotators (A1 – A4).
The top portion of Table 4 shows the results for all
the intermediate concepts (437 Animal terms and
296 People terms), and the bottom portion shows the
results only for the concepts that passed the Concept
Positioning Test (187 Animal terms and139 People
terms). Accuracy is computed in two ways:Acc1 is
the percent of intermediate concepts labeled asCor-
rect; Acc2 is the percent of intermediate concepts
labeled as eitherCorrector Borderline.

Without the CPT, accuracies range from 53–66%
for Animals and 75–85% for People. After ap-
plying the CPT, the accuracies increase to 71–84%
for animals and 82–94% for people. These results
confirm that the Concept Positioning Test is effec-
tive at removing many of the undesirable terms.
Overall, these results demonstrate that our algorithm
produced many high-quality intermediate concepts,
with good precision.

Figure 3 shows accuracy curves based on the
rankings of the intermediate concepts (based on In-
Degree scores). The CPT clearly improves accu-
racy even among the most highly ranked concepts.
For example, theAcc1curves for animals show that
nearly 90% of the top 100 intermediate concepts
were correct after applying the CPT, whereas only
70% of the top 100 intermediate concepts were cor-
rect before. However, the CPT also eliminates many
desirable terms. For People, the accuracies are still
relatively high even without the CPT, and a much
larger set of intermediate concepts is learned.

Animals People
A1 A2 A3 A4 A1 A2 A3 A4

Correct 246 243 251 230 239 231 225 221
Borderline 42 26 22 29 12 10 6 4
BasicConcept 2 8 9 2 6 2 9 10
NotConcept 147 160 155 176 39 53 56 61
Acc1 .56 .56 .57 .53 .81 .78 .76 .75
Acc2 .66 .62 .62 .59 .85 .81 .78 .76

Animals after CPT People after CPT
A1 A2 A3 A4 A1 A2 A3 A4

Correct 146 133 144 141 126 126 114 116
Borderline 11 15 9 13 6 2 2 0
BasicConcept 2 8 9 2 0 1 7 7
NotConcept 28 31 25 31 7 10 16 16
Acc1 .78 .71 .77 .75 .91 .91 .82 .83
Acc2 .84 .79 .82 .82 .95 .92 .83 .83

Table 4:Human Intermediate Concept Evaluation.
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Figure 3:Intermediate Concept Precision at Rank N.

4.2.2 WordNet Evaluation

We also compared the intermediate concepts har-
vested by the algorithm to the contents of WordNet.
The results are shown in Table 5. WordNet contains
20% of the Animal concepts and 51% of the People
concepts learned by our algorithm, which confirms
that many of these concepts were considered to be
valuable taxonomic terms by the WordNet develop-
ers. However, our human annotators judged 57%
of the Animal and 84% of the People concepts to
be correct, which suggests that our algorithm gen-
erates a substantial number of additional concepts
that could be used to enrich taxonomic structure in
WordNet.
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PrWN PrH NotInWN

Animal .20 (88/437) .57 (248/437) 204
People .51 (152/296) .85 (251/296) 108

Table 5:WordNet Intermediate Concept Evaluation.

4.3 Experiment 3: Taxonomic Links

In this section we evaluate the classification (taxon-
omy) that is learned by evaluating the links between
the intermediate concepts and the basic-level con-
cept/instance terms. That is, when our algorithm
claims thatisa(X,Y), how often isX truly a subcon-
cept ofY? For example,isa(goat, herbivore)would
be correct, butisa(goat, bird)would not. Again,
since WordNet does not contain all the harvested
concepts, we conduct both a manual evaluation and
a comparison against WordNet.

4.3.1 Manual and WordNet Evaluations

Creating and evaluating the full taxonomic struc-
ture between the root and the basic-level or instance
terms is future work. Here we evaluate simply the
accuracy of the taxonomic links between basic-level
concepts/instances and intermediate concepts as har-
vested, but not between intermediate concepts. For
each pair, we extracted all harvested links and deter-
mined whether the same links appear in WordNet.
The links were also given to human judges. Table 6
shows the results.

ISA PrWN PrH NotInWN
Animal .47(912/1940) .88 (1716/1940) 804
People .23 (318/908) .94 (857/908) 539

Table 6:WordNet Taxonomic Evaluation.

The results show that WordNet lacks nearly half
of the taxonomic relations that were generated by
the algorithm: 804 Animal and 539 People links.

5 Conclusion

We describe a novel extension to the DAP approach
for discovering basic-level concepts or instances and
their superconcepts given an initial root concept. By
appropriate filling of different positions in DAP, the
algorithm alternates between ‘downward’ and ‘up-
ward’ learning. A key resulting benefit is that each
new intermediate-level term acquired restarts har-
vesting in a new region of the concept space, which
allows previously unseen concepts to be discovered
with each bootstrapping cycle.

We also introduce theConcept Positioning Test,
which serves to confirm that a harvested concept
falls into the desired part of the search space rela-
tive to either a superordinate or subordinate concept
in the growing taxonomy, before it is selected for
further harvesting using the DAP.

These algorithms can augment other term harvest-
ing algorithms recently reported. But in order to
compare different algorithms, it is important to com-
pare results to a standard. WordNet is our best can-
didate at present. But WordNet is incomplete. Our
results include a significantly large number of in-
stances of People (which WordNet does not claim
to cover), a number comparable to the results of (Et-
zioni et al., 2005; Pasca, 2007; Ritter et al., 2009).
Rather surprisingly, our results also include a large
number of basic-level and intermediate concepts for
Animals that are not present in WordNet, a category
WordNet is actually fairly complete about. These
numbers show clearly that it is important to conduct
manual evaluation of term harvesting algorithms in
addition to comparing to a standard resource.
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Abstract

Machine learning offers a range of tools
for training systems from data, but these
methods are only as good as the underly-
ing representation. This paper proposes to
acquire representations for machine learn-
ing by reading text written to accommo-
date human learning. We propose a novel
form of semantic analysis called read-
ing to learn, where the goal is to obtain
a high-level semantic abstract of multi-
ple documents in a representation that fa-
cilitates learning. We obtain this abstract
through a generative model that requires
no labeled data, instead leveraging repe-
tition across multiple documents. The se-
mantic abstract is converted into a trans-
formed feature space for learning, result-
ing in improved generalization on a rela-
tional learning task.

1 Introduction

Machine learning offers a range of powerful tools
for training systems to act in complex environ-
ments, but these methods depend on a well-chosen
representation for features. For learning to suc-
ceed the representation often must be crafted with
knowledge about the application domain. This
poses a bottleneck, requiring expertise in both ma-
chine learning and the application domain. How-
ever, domain experts often express their knowl-
edge through text; one direct expression is through
text designed to aid human learning. In this paper
we exploit text written by domain experts in or-
der to build a more expressive representation for
learning. We term this approach reading to learn.

The following scenario demonstrates the moti-
vation for reading to learn. Imagine an agent given
a task within its world/environment. The agent has
no prior knowledge of the task but can perceive the
world through low-level sensors. Learning directly
from the sensors may be difficult, as interesting

tasks typically require a complex combination of
sensors. Our goal is to acquire domain knowledge
through the semantic analysis of text, so as to pro-
duce higher-level relations through combinations
of sensors.

As a concrete example consider the problem of
learning how to make legal moves in Freecell soli-
taire. Relevant sensors may indicate if an object
is a card or a freecell, whether a card is a certain
value, and whether two values are in sequence.
Although it is possible to express the rules with
a combination of sensors, learning this combina-
tion is difficult. Text can facilitate learning by pro-
viding relations at the appropriate level of gen-
eralization. For example, the sentence: “You can
place a card on an empty freecell,” suggests not
only which sensors are useful together but also
how these sensors should be linked. Assuming the
sensors are represented as predicates, one possi-
ble relation this sentence suggests is: r(x, y) =
card(x) ∧ freecell(y) ∧ empty(y). Armed
with this new relation the agent’s learning task
may be simpler. Throughout the paper we refer to
low-level sensory input as sensor or predicate, and
to a higher level concept as a logical formula or re-
lation.

Our approach to semantic analysis does not re-
quire a complete semantic representation of the
text. We merely wish to acquire a semantic ab-
stract of a document or document collection, and
use the discovered relations to facilitate data-
driven learning. This will allow us to directly eval-
uate the contribution of the extracted relations for
learning.

We develop an approach to recover semantic ab-
stracts that uses minimal supervision: we assume
only a very small set of lexical glosses, which map
from words to sensors. This marks a substantial
departure from previous work on semantic pars-
ing, which requires either annotations of the mean-
ings of each individual sentence (Zettlemoyer and
Collins, 2005; Liang et al., 2009), or alignments
of sentences to grounded representations of the
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world (Chen and Mooney, 2008). For the purpose
of learning, this approach may be inapplicable, as
such text is often written at a high level of abstrac-
tion that permits no grounded representation.

There are two properties of our setting that
make unsupervised learning feasible. First, it is
not necessary to extract a semantic representation
of each individual sentence, but rather a summary
of the semantics of the document collection. Er-
rors in the semantic abstract are not fatal, as long
it guides the learning component towards a more
useful representation. Second, we can exploit rep-
etition across documents, which should generally
express the same underlying meaning. Logical for-
mulae that are well-supported by multiple docu-
ments are especially likely to be useful.

The rest of this paper describes our approach
for recovering semantic abstracts and outlines how
we apply and evaluate this approach on the Free-
cell domain. The paper contributes the following
key ideas: (1) Interpreting abstract “instructional”
text, written at a level that does not correspond
to concrete sensory inputs in the world, so that
no grounded representation is possible, (2) read-
ing to learn, a new setting in which extracted se-
mantic representations are evaluated by whether
they facilitate learning; (3) abstractive semantic
summarization, aimed at capturing broad seman-
tic properties of a multi-document dataset, rather
than a semantic parse of individual sentences; (4) a
novel, minimally-supervised generative model for
semantic analysis which leverages both lexical and
syntactic properties of text.

2 Approach Overview

We describe our approach to text analysis as mul-
tidocument semantic abstraction, with the goal of
discovering a compact set of logical formulae to
explain the text in a document collection. To this
end, we develop a novel generative model in which
natural language sentences (e.g., “You can always
place cards in empty freecells”) are stochastically
generated from logical formulae (e.g., card(x)∧
freecell(y) ∧ empty(y)). We formally define
a generative process that reflects our intuitions
about the relationship between formulae and sen-
tences (Section 3), and perform sampling-based
inference to recover the formulae most likely to
have generated the observed data (Section 4). The
top N such formulae can then be added as addi-
tional predicates for relational learning.

Our semantic representation consists of con-
junctions of literals, each of which includes a sin-
gle predicate (e.g., empty) and one or more vari-

ables (e.g., x). Predicates describe atomic seman-
tic concepts, while variables construct networks
of relationships between them. While the impor-
tance of the predicates is obvious, the variable
assignments also exert a crucial influence on the
semantics of the conjunction: modifying a sin-
gle variable in the formula above from empty(y)
to empty(x) yields a formula that is trivially
false for all groundings (since cards can never be
empty).

Thus, our generative model must account for the
influence of both predicates and variables on the
sentences in the documents. A natural choice is to
use the predicates to influence the lexical items,
while letting the variables determine the syntac-
tic structure. For example, the formula card(x)∧
freecell(y) ∧ empty(y) contains three pred-
icates and two variables. The predicates influence
the lexical items in a direct way: we expect that
sentences generated from this formula will include
a member of the gloss set for each predicate –
the sentence “Put the cards on the empty free-
cells” should be more likely than “Columns are
constructed by playing cards in alternating colors.”

The impact of the variables on the generative
process is more subtle. The sharing of the variable
y suggests a relationship between the predicates
freecell and empty. This should be realized
in the syntactic structure of the sentence. Model-
ing syntax using a dependency tree, we expect that
the glosses for predicates that share terms will ap-
pear in compact sub-trees, while predicates that do
not share terms should be more distant. One pos-
sible surface realization of this logical formula is
the sentence, “Put the card on the empty freecell,”
whose dependency parse is shown in the left tree
of Figure 1. The glosses empty and freecell are im-
mediately adjacent, while card is more remote.

We develop two metrics that quantify the com-
pactness of a set of variable assignments with
respect to a dependency tree: excess terms, and
shared terms. The number of excess terms in a
subtree is the number of unique terms assigned
to words in the subtree, minus the maximum arity
of any predicate in the subtree. Shared terms arise
whenever a node has multiple subtrees which each
contain the same variable. We will use the alterna-
tive alignments in Figure 1 to provide a more de-
tailed explanation. In each tree, the variables are
written in the nodes belonging to the associated
lexical items; variables are written over arrows to
indicate membership in some node in the subtree.

Excess Terms Alignment A of Fig-
ure 1, corresponding to the formula
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Figure 1: A dependency parse and four different variable assignments. Each literal is aligned to a word (a
node in the graph), and the associated variables are written in the box. Variables belonging to descendant
nodes are written over the arrows.

card(x)∧freecell(x)∧empty(x), has zero
excess terms in every subtree; there is a total of one
variable, and all the predicates are unary. In Align-
ment B, card(x) ∧ freecell(x) ∧ empty(y),
there are excess terms at the root, and in the top
two subtrees on the right-hand side. Alignment C
contains an excess term at only the root node.
Even though it contains the same number of
unique variables as Alignment B, it is not penal-
ized as harshly because the alignment of variables
better corresponds to the syntactic structure.
Alignment D contains the greatest number of
excess terms: two at the root of the tree, and one
in each of the top two subtrees on the right side.

Shared Terms According to the excess term
metric, the best choice is simply to introduce as
few variables as possible. For this reason, we also
penalize shared terms which occur when a node
has subtree children that share a variable. In Fig-
ure 1, Alignments A and B each contain a shared
term at the top node; Alignments C and D contain
no shared terms.

Overall, we note that Alignment B is penalized
on both metrics, as it contains both excess terms
and shared terms; the syntactic structure of the
sentence makes such a variable assignment rela-
tively improbable.

card(x) & freecell(y) & empty(y)

f(y)e(y)c(x)

f(y)e(y)c(x)

Put the card on the empty freecell

(a)

(b)

(c)

(d)

(e)

Figure 2: A graphical depiction of the generative
process by which sentences are produced from for-
mulae

3 Generative Model

These intuitions are formalized in a generative
account of how sentences are stochastically pro-
duced from a set of logical formulae. This gener-
ative story guides an inference procedure for re-
covering logical formulae that are likely to have
generated any observed set of texts, which is de-
scribed in Section 4.

The outline of the generative process is depicted
in Figure 2. For each sentence, we begin in step (a)
by drawing a formula f from a Dirichlet pro-
cess (Ferguson, 1973). The Dirichlet process de-
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fines a non-parametric mixture model, and has the
effect of adaptively selecting the appropriate num-
ber of formulae to explain the observed sentences
in the corpus.1 We then draw the sentence length
from some distribution over positive integers; as
the sentence length is always observed, we need
not define the distribution (step (b)). In step (c), a
dependency tree is drawn from a uniform distribu-
tion over spanning trees with a number of nodes
equal to the length of the sentence. In step (d) we
draw an alignment of the literals in f to nodes in
the dependency tree, written at(f). The distribu-
tion over alignments is described in Section 3.1.
Finally, the aligned literals are used to generate the
words at each slot in the dependency tree. A more
formal definition of this process is as follows:

• Draw λ, the expected number of literals per
formula, from a Gamma distribution G(u, v).
• Draw an infinite set of formulae f . For each

formula fi,

– Draw the formula length #|fi| from a
Poisson distribution, ni ∼ Poisson(λ).

– Draw ni literals from a uniform distri-
bution.

• Draw π, an infinite multinomial distribution
over formulae: π ∼ GEM(π0), where GEM
refers to the stick-breaking prior (Sethura-
man, 1994) and π0 = 1 is the concentra-
tion parameter. By attaching the multinomial
π to the infinite set of formulae f , we cre-
ate a Dirichlet process. This is conventionally
writtenDP (π0, G0), where the base distribu-
tionG0 encodes only the distribution over the
number of literals, Poisson(λ).

• For each of D documents, draw the number
of sentences T ∼ Poisson. For each of the T
sentences in the document,

– Draw a formula f ∼ DP (π0, G0) from
the Dirichlet Process described above.

– Draw a sentence length #|s| ∼ Poisson.
– Draw a dependency graph t (a spanning

tree of size #|s|) from a uniform distri-
bution.

– Draw an alignment at(f), an injective
mapping from literals in f to nodes in
the dependency structure t. The distribu-
tion over alignments is described in Sec-
tion 3.1.

1There are many recent applications of Dirichlet pro-
cesses in natural language processing, e.g. Goldwater et al.
(2006).

– Draw the sentence s from the formula
f and the alignment a(f). For each
word token wi ∈ s is drawn from
p(wi|at(f, i)), where at(f, i) indicates
the (possibly empty) literal assigned
to slot i in the alignment at(f) (Sec-
tion 3.2).

3.1 Distribution over Alignments
The distribution over alignments reflects our intu-
ition that when literals share variables, they will
be aligned to word slots that are nearby in the de-
pendency structure; literals that do not share vari-
ables should be more distant. This is formalized by
applying the concepts of excess terms and shared
terms defined in Section 2. After computing the
number of excess and shared terms in each sub-
tree ti, we can compute a local score (LS ) for that
subtree:

LS (at(f); ti) = α ·NShared(at(f), ti)
+ β ·NExcess(at(f), ti) · height(ti).

This scoring function can be applied recursively to
each subtree in t; the overall score of the tree is the
recursive sum,

score(at(f); t) = LS (at(f); t)+
n∑
i

score(at(f); ti),

(1)
where ti indicates the ith subtree of t. We hypoth-
esize a generative process that produces all possi-
ble alignments, scores them using score(at(f); t),
and selects an alignment with probability,

p(at(f)) ∝ exp{−score(at(f); t)}. (2)

In our experiments, we define the parameters α =
1, β = 1.

3.2 Generation of Lexical Items
Once the logical formula is aligned to the parse
structure, the generation of the lexical items in
the sentence is straightforward. For word slots to
which no literals are aligned, the lexical item is
drawn from a language model θ, estimated from
the entire document collection. For slots to which
at least one literal is aligned, we construct a lan-
guage model φ in which the probability mass is
divided equally among all glosses of aligned pred-
icates. The language model θ is used as a backoff,
so that there is a strong bias in favor of generating
glosses, but some probability mass is reserved for
the other lexical items.
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4 Inference

This section describes a sampling-based inference
procedure for obtaining a set of formulae f that
explain the observed text s and dependency struc-
tures t. We perform Gibbs sampling over the
formulae assigned to each sentence. Using the
Chinese Restaurant Process interpretation of the
Dirichlet Process (Aldous, 1985), we marginalize
π, the infinite multinomial over all possible for-
mulae: at each sampling step we select either an
existing formula, or stochastically generate a new
formula. After each full round of Gibbs sampling,
a set of Metropolis-Hastings moves are applied to
explore modifications of the formulae. This proce-
dure converges on a stationary Markov chain cen-
tered on a set of formulae that cohere well with the
lexical and syntactic properties of the text.

4.1 Assigning Sentences to Formulae

For each sentence si and dependency tree ti, a hid-
den variable yi indicates the index of the formula
that generates the text. We can resample yi using
Gibbs sampling. In the non-parametric setting, yi

ranges over all non-negative integers; the Chinese
Restaurant Process formulation marginalizes the
infinite-dimensional parameter π, yielding a prior
based on the counts for each “active” formula (to
which at least one other sentence is assigned), and
a pseudo-count representing all non-active formu-
lae. Given K formulae, the prior on selecting for-
mula j is:

p(yi = j|y−i, π0) ∝
{

n−i(j) j < K

π0 j = K,
(3)

where y−i refers to the assignments of all y other
than yi and n−i refers to the counts over these as-
signments. Each j < K identifies an existing for-
mula in f , to which at least one other sentence is
assigned. When j = K, this means a new formula
f∗ must be generated.

To perform Gibbs sampling, we draw from the
posterior distribution over yi,

p(yi|si, tif , f∗,y−i, π0) ∝
p(yi|y−i, π0)p(si, ti|yi, f , f∗),

where the first term is the prior defined in Equa-
tion 3 and the latter term is the likelihood of gener-
ating the parsed sentence 〈si, ti〉 from the formula
indexed by yi.

To compute the probability of a parsed sentence
given a formula, we sum over alignments,

p(s, t|f) =
∑
at(f)

p(s, t,at(f)|f)

=
∑
at(f)

p(s|at(f))p(t,at(f)|f)

=
∑
at(f)

p(s|at(f))p(at(f)|t, f)p(t|f),

(4)

applying the chain rule and independence assump-
tions from the generative model. The result is a
product of three terms: the likelihood of the lexi-
cal items given the aligned predicates (defined in
Section 3.2; the likelihood of the alignment given
the dependency tree and formula (defined in equa-
tion 2), and the probability of the dependency tree
given the formula, which is uniform.

Equation 4 takes a sum across alignments, but
most of the probability mass of p(s|at(f)) will
be concentrated on alignments in which predicates
cover words that gloss them. Thus, we can apply
an approximation,

p(s, t|f) ≈
N∑

at(f)

p(s|at(f))p(at(f)|t, f)p(t|f),

(5)

in which we draw N samples in which predicates
are aligned to their glosses whenever possible.

Similarly, Equation 2 quantifies the likelihood
of an alignment only to a constant of proportional-
ity; again, a sum over possible alignments is nec-
essary. We do not expect the prior on alignments
to be strongly peaked like the sentence likelihood,
so we approximate the normalization term by sam-
pling M alignments at random and extrapolating:

p(at(f)|t, f) ∝ q(at(f); t)

=
q(at(f); t)∑

a′t(f) q(a
′
t(f); t)

≈ #|a′t(f)|
M

q(at(f); t)∑M
a′t(f) q(a

′
t(f); t)

,

where q(at(f); t) = exp{−score(at(f); t)}, de-
fined in Equation 2. In our experiments, we set N
to at most 10, and M = 20. Drawing larger num-
bers of samples had no discernible effect on sys-
tem output.
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4.1.1 Generating new formulae
Chinese Restaurant Process sampling requires the
generation of new candidate formulae at each re-
sampling stage. To generate a new formula, we
first sample the number of literals. As described
in the generative story (Section 3), the number
of literals is drawn from a Poisson distribution
with parameter θ. We treat θ as unknown and
marginalize, using the Gamma hyperprior G(u, v).
Due to Poisson-Gamma conjugacy, this marginal-
ization can be performed analytically, yielding
a Negative-Binomial distribution with parameters
〈u+

∑
i #|fi|, (1+K+v)−1〉, where

∑
i #|fi| is

the sum of the number of literals in each formula,
and K is the number of formulae which generate
at least one sentence. In this sense, the hyperpriors
u and v act as pseudo counts. We set u = 3, v = 1,
reflecting a weak prior expectation of three literals
per predicate.

After drawing the size of the formula, the predi-
cates are selected from a uniform random distribu-
tion. Finally, the terms are assigned: at each slot,
we reuse a previous term with probability 0.5, un-
less none is available; otherwise a new term is gen-
erated.

4.2 Proposing changes to formulae

The assignment resampling procedure has the
ability to generate new formulae, thus exploring
the space of relational features. However, to ex-
plore this space more rapidly, we introduce four
Metropolis-Hastings moves that modify existing
formulae (Gilks, 1995): adding a literal, deleting
a literal, substituting a literal, and rearranging the
terms of the formula. For each proposed move, we
recompute the joint likelihood of the formula and
all aligned sentences. The move is stochastically
accepted based on the ratio of the joint likelihoods
of the new and old configurations, multiplied by a
Hastings correction.

The joint likelihood with respect to formula f
is computed as p(s, t, f) = p(f)

∏
i p(si, ti|f).

The prior on f considers only the number of liter-
als, using a Negative-Binomial distribution as de-
scribed in section 4.1.1. The likelihood p(si, ti|f)
is given in equation 4. The Hastings correction is
p̃(f ′ → f)/p̃(f → f ′), with p̃(f → f ′) indicat-
ing the probability of proposing a move from f
to f ′,and p̃(f ′ → f) indicating the probability of
proposing the reverse move. The Hastings correc-
tions depend on the arity of the predicates being
added and removed; the derivation is straightfor-
ward but tedious. We plan to release a technical
report with complete details.

4.3 Summary of inference
The final inference procedure iterates between
Gibbs sampling of assignments of formulae to
sentences, and manipulating the formulae through
Metropolis-Hastings moves. A full iteration com-
prises proposing a move to each formula, and then
using Gibbs sampling to reconsider all assign-
ments. If a formula no longer has any sentences
assigned to it, then it is dropped from the active
set, and can no longer be selected in Gibbs sam-
pling – this is standard in the Chinese Restaurant
Process.

Five separate Markov chains are maintained in
parallel. To allow the sampling procedure to con-
verge to a stationary distribution, each chain be-
gins with 100 iterations of “burn-in” sampling,
without storing the output. At this point, we per-
form another 100 iterations, storing the state at the
end of each iteration.2 All formulae are ranked ac-
cording to the cumulative number of sentences to
which they are assigned (across all five Markov
chains), aggregating the counts for multiple in-
stances of identical formulae. This yields a ranked
list of formulae which will be used in our frame-
work as features for relational learning.

5 Evaluation

Our experimental setup is designed to evaluate the
quality of the semantic abstraction performed by
our model. The logical formulae obtained by our
system are applied as features for relational learn-
ing of the rules of the game of Freecell solitaire.
We investigate whether these features enable bet-
ter generalization given varying number of train-
ing examples of Freecell game states. We also
quantify the specific role of syntax, lexical choice,
and feature expressivity in learning performance.
This section describes the details of this evalua-
tion.

5.1 Relational Learning
We perform relational learning using Inductive
Logic Programming (ILP), which constructs gen-
eralized rules by assembling smaller logical for-
mulae to explain observed propositional exam-
ples (Muggleton, 1995). The lowest level formu-
lae consist of basic sensors that describe the en-
vironment. ILP’s expressivity enables it to build
complex conjunctions of these building blocks,
but at the cost of tractability. Our evaluation asks
whether the logical formulae abstracted from text

2Sampling for more iterations was not found to affect per-
formance on development data, and the model likelihood ap-
peared stationary after 100 iterations.
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Predicate Glosses
card(x) card
tableau(x) column, tableau
freecell(x) freecell, cell
homecell(x) foundation, cell, homecell
value(x,y) ace, king, rank, 8, 3, 7, lowest,

highest
successor(x,y) higher, sequence, sequential
color(x,y) black, red, color
suit(x,y) suit, club, diamond, spade,

heart
on(x,y) onto
top(x,y) bottom, available, top
empty(x) empty

Table 1: Predicates in the Freecell world model,
with natural language glosses obtained from the
development set text.

can transform the representation to facilitate learn-
ing. We compare against both the sensor-level rep-
resentation as well as richer representations that do
not benefit from the full power of our model’s se-
mantic analysis.

The ALEPH3 ILP system, which is primarily
based on PROGOL (Muggleton, 1995), was used
to induce the rules of game. The search parame-
ters remained constant for all experiments.

5.2 Resources
There are four types of resources required to work
in the reading-to-learn setting: a world model, in-
structional text, a small set of glosses that map
from text to elements of the world model, and la-
beled examples of correct and incorrect actions
in the world. In our experiments, we consider
the domain of Freecell solitaire, a popular card
game (Morehead and Mott-Smith, 1983) in which
cards are moved between various types of loca-
tions, depending on their suit and rank. We now
describe the resources for the Freecell domain in
more detail.

World Model Freecell solitaire can be described
formally using first order logic; we consider a
slightly modified version of the representation
from the Planning Domain Definition Language
(PDDL), which is used in automatic game-playing
competitions. Specifically, there are 87 constants:
52 cards, 16 locations, 13 values, four suits, and
two colors. These constants are combined with a
fixed set of 11 predicates, listed in Table 1.

Instructional Text Our approach relies on text
that describes how to operate in the Freecell soli-
taire domain. A total of five instruction sets were

3Freely available from http://www.comlab.ox.
ac.uk/activities/machinelearning/Aleph/

obtained from the Internet. Due to the popular-
ity of the Microsoft implementation of Freecell,
instructions often contain information specific to
playing Freecell on a computer. We manually re-
moved sentences which did not focus on the card
aspects of Freecell (e.g., how to set up the board
and information regarding where to click to move
cards). In order to use our semantic abstraction
model, the instructions were part-of-speech tagged
with the Stanford POS Tagger (Toutanova and
Manning, 2000) and dependency parses were ob-
tained using Malt (Nivre, 2006).

Glosses Our reading to learn setting requires a
small set of glosses, which are surface forms com-
monly used to represent predicates from the world
model. We envision an application scenario in
which a designer manually specifies a few glosses
for each predicate. However, for the purposes of
evaluation, it would be unprincipled for the exper-
imenters to handcraft the ideal set of glosses. In-
stead, we gathered a development set of text and
annotated the lexical mentions of the world model
predicates in text. This annotation is used to ob-
tain glosses to apply to the evaluation text. This
approximates a scenario in which the designer has
a reasonable idea of how the domain will be de-
scribed in text, but no prior knowledge of the spe-
cific details of the text instructions. Our exper-
iments used glosses that occurred two or more
times in the instructions: this yields a total of 32
glosses for 11 predicates, as shown in Table 1.

Evaluation game data Ultimately, the seman-
tic abstraction obtained from the text is applied
to learning on labeled examples of correct and
incorrect actions in the world model. For evalu-
ation, we automatically generated a set of move
scenarios: game states with one positive example
(a legal move) and one negative example (an ille-
gal move). To avoid bias in the data we generate
an equal number of move scenarios from each of
three types: moves to the freecells, homecells, and
tableaux. For our experiments we vary the number
of move scenarios in the training set; the develop-
ment and test sets consist of 900 and 1500 move
scenarios respectively.

5.3 Evaluation Settings

We compare four different feature sets, which
will be provided to the ALEPH ILP learner. All
feature sets include the sensor-level predicates
shown in Table 1. The FULL-MODEL feature
set also includes the top logical formulae ob-
tained in our model’s semantic abstract (see Sec-
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tion 4.3). The NO-SYNTAX feature set is obtained
from a variant of our model in which the in-
fluence of syntax is removed by setting parame-
ters α, β = 0. The SENSORS-ONLY feature set
uses only the sensor-level predicates. Finally, the
RELATIONAL-RANDOM feature set is constructed
by replacing each feature in the FULL-MODEL set
with a randomly generated relational feature of
identical expressivity (each predicate is replaced
by a randomly chosen alternative with identical
arity; terms are also assigned randomly). This en-
sures that any performance gains obtained by our
model were not due merely to the greater expres-
sivity of its relational features. The number of fea-
tures included in each scenario is tuned on a de-
velopment set of test examples.

The performance metric assesses the ability
of the ILP learner to classify proposed Freecell
moves as legal or illegal. As the evaluation set
contains an equal number of positive and negative
examples, accuracy is the appropriate metric. The
training scenarios are randomly generated; we re-
peat each run 50 times and average our results. For
the RELATIONAL-RANDOM feature set – in which
predicates and terms are chosen randomly – we
also regenerate the formulae per run.

6 Results

Table 2 shows a comparison of the results
using the setup described above. Our FULL-
MODEL achieves the best performance at ev-
ery training set size, consistently outperforming
the SENSORS-ONLY representation by an abso-
lute difference of three to four percent. This
demonstrates the semantic abstract obtained by
our model does indeed facilitate machine learning
in this domain.

RELATIONAL-RANDOM provides a baseline of
relational features with equal expressivity to those
chosen by our model, but with the predicates and
terms selected randomly. We consistently outper-
form this baseline, demonstrate that the improve-
ment obtained over the sensors only representation
is not due merely to the added expressivity of our
features.

The third row compares against NO-SYNTAX,
a crippled version of our model that incorpo-
rates lexical features but not the syntactic struc-
ture. The results are stronger than the SENSORS-
ONLY and RELATIONAL-RANDOM baselines, but
still weaker than our full system. This demon-
strates the syntactic features incorporated by our
model result in better semantic representations of
the underlying text.

Features Number of training scenarios
15 30 60 120

SENSORS-ONLY 79.12 88.07 92.77 93.73
RELATIONAL-RANDOM 82.72 89.14 93.08 94.17
NO-SYNTAX 80.98 89.79 94.11 97.04
FULL-MODEL 82.89 91.00 95.23 97.45

Table 2: Results as number of training examples
varied. Each value represents the accuracy of the
induced rules obtained with the given feature set.

card(x1) ∧ tableau(x2)
card(x1) ∧ freecell(x2)
homecell(x1) ∧ value(x2,x3)
empty(x1) ∧ freecell(x1)
card(x1) ∧ top(x1,x2)
card(x1) ∧ homecell(x2)
freecell(x1) ∧ homecell(x2)
card(x1) ∧ tableau(x1)
card(x1) ∧ top(x2,x1)
homecell(x1)
card(x1) ∧ homecell(x1)
color(x1,x2) ∧ value(x3,x4)
suit(x1,x2) ∧ value(x3,x4)
value(x1,x2) ∧ value(x3,x4)
homecell(x1) ∧ successor(x2,x3)

Figure 3: The top 15 features recovered by the se-
mantic abstraction of our full model.

Figure 3 shows the top 15 formulae recovered
by the full model running on the evaluation text.
Features such as empty(x1) ∧ freecell(x1)
are useful because they reuse variables to ensure
that objects have key properties – in this case, en-
suring that a freecell is empty. Other features, such
as homecell(x1) ∧ value(x2, x3), help to fo-
cus the search on useful conjunctions of predicates
(in Freecell, the legality of playing a card on a
homecell depends on the value of the card). Note
that three of these 15 formulae are trivially use-
less, in that they are always false: e.g., card(x1)
∧ tableau(x1). This illustrates the importance
of term assignment in obtaining useful features
for learning. In the NO-SYNTAX system, which
ignores the relationship between term assignment
and syntactic structure, eight of the top 15 formu-
lae were trivially useless due to term incompatibil-
ity.

7 Related Work

This paper draws on recent literature on extract-
ing logical forms from surface text (Zettlemoyer
and Collins, 2005; Ge and Mooney, 2005; Downey
et al., 2005; Liang et al., 2009), interpreting lan-
guage in the context of a domain (Chen and
Mooney, 2008), and using an actionable domain
to guide text interpretation (Branavan et al., 2009).
We differentiate our research in several dimen-
sions:
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Language Interpretation Instructional text de-
scribes generalized statements about entities in
the domain and the way they interact, thus the
text does not correspond directly to concrete sen-
sory inputs in the world (i.e., a specific world
state). Our interpretation captures these general-
izations as first-order logic statements that can be
evaluated given a specific state. This contrasts to
previous work which interprets “directions” and
thus assumes a direct correspondence between text
and world state (Branavan et al., 2009; Chen and
Mooney, 2008).

Supervision Our work avoids supervision in the
form of labeled examples, using only a minimal
set of natural language glosses per predicate. Pre-
vious work also considered the supervision signal
obtained by interpreting natural language in the
context of a formal domain. Branavan et al. (2009)
use feedback from a world model as a supervi-
sion signal. Chen and Mooney (2008) use tempo-
ral alignment of text and grounded descriptions of
the world state. In these approaches, concrete do-
main entities are grounded in language interpreta-
tion, and therefore require only a propositional se-
mantic representation. Previous approaches for in-
terpreting generalized natural language statements
are trained from labeled examples (Zettlemoyer
and Collins, 2005; Lu et al., 2008).

Level of analysis We aim for an abstractive
semantic summary across multiple documents,
whereas other approaches attempt to produce log-
ical forms for individual sentences (Zettlemoyer
and Collins, 2005; Ge and Mooney, 2005). We
avoid the requirement that each sentence have a
meaningful interpretation within the domain, al-
lowing us to handle relatively unstructured text.

Evaluation We do not evaluate the representa-
tions obtained by our model; rather we assess
whether these representations improve learning
performance. This is similar to work on Geo-
Query (Wong and Mooney, 2007; Ge and Mooney,
2005), and also to recent work on following step-
by-step directions (Branavan et al., 2009). While
these evaluations are performed on the basis of in-
dividual sentences, actions, or system responses,
we evaluate the holistic semantic analysis obtained
by our system.

Model We treat surface text as generated from a
latent semantic description. Lu et al. (2008) ap-
ply a generative model, but require a complete
derivation from semantics to the lexical represen-
tation, while we favor a more flexible semantic

analysis that can be learned without annotation
and applied to noisy text. More similar is the work
of Liang et al. (2009), which models the gener-
ation of semantically-relevant fields using lexical
and discourse features. Our approach differs by
accounting for syntax, which enables a more ex-
pressive semantic representation that includes un-
grounded variables.
Relational learning The output of our semantic
analysis is applied to learning in a structured rela-
tional space, using ILP. A key difficulty with ILP
is that the increased expressivity dramatically ex-
pands the hypothesis space, and it is widely agreed
that some learning bias is required for ILP to be
tractable (Nédellec et al., 1996; Cumby and Roth,
2003). Our work can be viewed as a new method
for acquiring such bias from text; moreover, our
approach is not specialized for ILP and may be
used to transform the feature space in other forms
of relational learning as well (Roth and Yih, 2001;
Cumby and Roth, 2003; Richardson and Domin-
gos, 2006).

8 Conclusion
This paper demonstrates a new setting for seman-
tic analysis, which we term reading to learn. We
handle text which describes the world in gen-
eral terms rather than refereing to concrete enti-
ties in the domain. We obtain a semantic abstract
of multiple documents, using a novel, minimally-
supervised generative model that accounts for both
syntax and lexical choice. The semantic abstract
is represented as a set of predicate logic formu-
lae, which are applied as higher-order features for
learning. We demonstrate that these features im-
prove learning performance, and that both the lex-
ical and syntactic aspects of our model yield sub-
stantial contributions.

In the current setup, we produce an “overgener-
ated” semantic representation comprised of useful
features for learning but also some false positives.
Learning in our system can be seen as the process
of pruning this representation by selecting useful
formulae based on interaction with the training
data. In the future we hope to explore ways to in-
terleave semantic analysis with exploration of the
learning domain, by using the environment as a
supervision signal for linguistic analysis.
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Abstract

Traditional learning-based coreference re-
solvers operate by training amention-
pair classifier for determining whether two
mentions are coreferent or not. Two in-
dependent lines of recent research have
attempted to improve these mention-pair
classifiers, one by learning amention-
ranking model to rank preceding men-
tions for a given anaphor, and the other
by training an entity-mention classifier
to determine whether a preceding clus-
ter is coreferent with a given mention.
We propose a cluster-ranking approach to
coreference resolution that combines the
strengths of mention rankers and entity-
mention models. We additionally show
how our cluster-ranking framework natu-
rally allows discourse-new entity detection
to be learned jointly with coreference res-
olution. Experimental results on the ACE
data sets demonstrate its superior perfor-
mance to competing approaches.

1 Introduction

Noun phrase (NP) coreference resolution is the
task of identifying which NPs (ormentions) re-
fer to the same real-world entity or concept. Tra-
ditional learning-based coreference resolvers op-
erate by training a model for classifying whether
two mentions are co-referring or not (e.g., Soon
et al. (2001), Ng and Cardie (2002b), Kehler et al.
(2004), Ponzetto and Strube (2006)). Despite their
initial successes, thesemention-pair models have
at least two major weaknesses. First, since each
candidate antecedent for a mention to be resolved
(henceforth anactive mention) is considered inde-
pendently of the others, these models only deter-
mine how good a candidate antecedent is relative
to the active mention, but not how good a candi-
date antecedent is relative to other candidates. In

other words, they fail to answer the critical ques-
tion of which candidate antecedent is most prob-
able. Second, they have limitations in their ex-
pressiveness: the information extracted from the
two mentions alone may not be sufficient for mak-
ing an informed coreference decision, especially if
the candidate antecedent is a pronoun (which is se-
mantically empty) or a mention that lacks descrip-
tive information such as gender (e.g.,Clinton).

To address the first weakness, researchers have
attempted to train amention-ranking model for
determining which candidate antecedent is most
probable given an active mention (e.g., Denis and
Baldridge (2008)). Ranking is arguably a more
natural reformulation of coreference resolution
than classification, as a ranker allows all candidate
antecedents to be consideredsimultaneously and
therefore directly captures the competition among
them. Another desirable consequence is that there
exists a natural resolution strategy for a ranking
approach: a mention is resolved to the candidate
antecedent that has the highest rank. This con-
trasts with classification-based approaches, where
many clustering algorithms have been employed
to co-ordinate the pairwise coreference decisions
(because it is unclear which one is the best).

To address the second weakness, researchers
have investigated the acquisition ofentity-mention
coreference models (e.g., Luo et al. (2004), Yang
et al. (2004)). Unlike mention-pair models, these
entity-mention models are trained to determine
whether an active mention belongs to a preced-
ing, possibly partially-formed, coreference cluster.
Hence, they can employcluster-level features (i.e.,
features that are defined over any subset of men-
tions in a preceding cluster), which makes them
more expressive than mention-pair models.

Motivated in part by these recently developed
models, we propose in this paper acluster-
ranking approach to coreference resolution that
combines the strengths of mention-ranking mod-
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els and entity-mention models. Specifically, we
recast coreference as the problem of determining
which of a set of preceding coreferenceclusters
is the best to link to an active mention using a
learnedcluster ranker. In addition, we show how
discourse-new detection (i.e., the task of determin-
ing whether a mention introduces a new entity in
a discourse) can be learnedjointly with corefer-
ence resolution in our cluster-ranking framework.
It is worth noting that researchers typically adopt
a pipeline coreference architecture, performing
discourse-new detection prior to coreference res-
olution and using the resulting information to pre-
vent a coreference system from resolving men-
tions that are determined to be discourse-new (see
Poesio et al. (2004) for an overview). As a re-
sult, errors in discourse-new detection could be
propagated to the resolver, possibly leading to a
deterioration of coreference performance (see Ng
and Cardie (2002a)). Jointly learning discourse-
new detection and coreference resolution can po-
tentially address this error-propagation problem.

In sum, we believe our work makes three main
contributions to coreference resolution:

Proposing a simple, yet effective coreference
model. Our work advances the state-of-the-art
in coreference resolution by bringing learning-
based coreference systems to the next level of
performance. When evaluated on the ACE 2005
coreference data sets, cluster rankers outperform
three competing models — mention-pair, entity-
mention, and mention-ranking models — by a
large margin. Also, our joint-learning approach
to discourse-new detection and coreference reso-
lution consistently yields cluster rankers that out-
perform those adopting the pipeline architecture.
Equally importantly, cluster rankers are conceptu-
ally simple and easy to implement and do not rely
on sophisticated training and inference procedures
to make coreference decisions in dependent rela-
tion to each other, unlike relational coreference
models (see McCallum and Wellner (2004)).

Bridging the gap between machine-learning
approaches and linguistically-motivated ap-
proaches to coreference resolution. While ma-
chine learning approaches to coreference resolu-
tion have received a lot of attention since the mid-
90s, popular learning-based coreference frame-
works such as the mention-pair model are ar-
guably rather unsatisfactory from a linguistic point
of view. In particular, they have not leveraged

advances in discourse-based anaphora resolution
research in the 70s and 80s. Our work bridges
this gap by realizing in a new machine learn-
ing framework ideas rooted in Lappin and Leass’s
(1994) heuristic-based pronoun resolver, which in
turn was motivated by classic salience-based ap-
proaches to anaphora resolution.

Revealing the importance of adopting the right
model. While entity-mention models have pre-
viously been shown to be worse or at best
marginally better than their mention-pair counter-
parts (Luo et al., 2004; Yang et al., 2008), our
cluster-ranking models, which are a natural exten-
sion of entity-mention models, significantly out-
performed all competing approaches. This sug-
gests that the use of an appropriate learning frame-
work can bring us a long way towards high-
performance coreference resolution.

The rest of the paper is structured as follows.
Section 2 discusses related work. Section 3 de-
scribes our baseline coreference models: mention-
pair, entity-mention, and mention-ranking. We
discuss our cluster-ranking approach in Section 4,
evaluate it in Section 5, and conclude in Section 6.

2 Related Work

Heuristic-based cluster ranking. As men-
tioned previously, the work most related to ours is
Lappin and Leass (1994), whose goal is to perform
pronoun resolution by assigning an anaphoric pro-
noun to the highest-scored preceding cluster. Nev-
ertheless, Lappin and Leass’s work differs from
ours in several respects. First, they only tackle
pronoun resolution rather than the full coreference
task. Second, their algorithm is heuristic-based; in
particular, the score assigned to a preceding clus-
ter is computed by summing over the weights as-
sociated with the factors applicable to the cluster,
where the weights are determined heuristically,
rather than learned, unlike ours.

Like many heuristic-based pronoun resolvers
(e.g., Mitkov (1998)), they first apply a set of con-
straints to filter grammatically incompatible can-
didate antecedents and then rank the remaining
ones using salience factors. As a result, their
cluster-ranking model employs only factors that
capture the salience of a cluster, and can therefore
be viewed as a simple model of attentional state
(see Grosz and Sidner (1986)) realized by coref-
erence clusters. By contrast, our resolution strat-
egy is learned without applying hand-coded con-
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straints in a separate filtering step. In particular,
we attempt to determine the compatibility between
a cluster and an active mention, using factors that
determine not only salience (e.g., the distance be-
tween the cluster and the mention) but also lexical
and grammatical compatibility, for instance.

Entity-mention coreference models. Luo et al.
(2004) represent one of the earliest attempts to
investigate learning-based entity-mention models.
They use theANY predicate to generate cluster-
level features as follows: given a binary-valued
featureX defined over a pair of mentions, they
introduce anANY-X cluster-level feature, which
has the valueTRUE if X is true between the active
mention andany mention in the preceding clus-
ter under consideration. Contrary to common wis-
dom, this entity-mention model underperforms its
mention-pair counterpart in spite of the general-
ization from mention-pair to cluster-level features.

In Yang et al.’s (2004) entity-mention model, a
training instance is composed of an active men-
tion mk, a preceding clusterC, and a mention
mj in C that is closest in distance tomk in the
associated text. The feature set used to repre-
sent the instance is primarily composed of fea-
tures that describe the relationship betweenmj

and mk, as well as a few cluster-level features.
In other words, the model still relies heavily on
features used in a mention-pair model. In par-
ticular, the inclusion ofmj in the feature vector
representation to some extent reflects the authors’
lack of confidence that a strong entity-mention
model can be trained without mention-pair-based
features. Our ranking model, on the other hand, is
trained without such features. More recently, Yang
et al. (2008) have proposed another entity-mention
model trained by inductive logic programming.
Like their previous work, the scarcity of cluster-
level predicates (only two are used) under-exploits
the expressiveness of entity-mention models.

Mention ranking. The notion of ranking can-
didate antecedents can be traced back to center-
ing algorithms, many of which use grammatical
roles to rank forward-looking centers (see Grosz
et al. (1995), Walker et al. (1998), and Mitkov
(2002)). However, mention ranking has been
employed in learning-based coreference resolvers
only recently. As mentioned before, Denis and
Baldridge (2008) train a mention-ranking model.
Their work can be viewed as an extension of Yang
et al.’s (2003) twin-candidate coreference model,

which ranks only two candidate antecedents at a
time. Unlike ours, however, their model ranks
mentions rather than clusters, and relies on an
independently-trained discourse-new detector.

Discourse-new detection. Discourse-new de-
tection is often tackled independently of coref-
erence resolution. Pleonasticits have been de-
tected using heuristics (e.g., Kennedy and Bogu-
raev (1996)) and learning-based techniques such
as rule learning (e.g., M̈uller (2006)), kernels (e.g.,
Versley et al. (2008)), and distributional methods
(e.g., Bergsma et al. (2008)). Non-anaphoric defi-
nite descriptions have been detected using heuris-
tics (e.g., Vieira and Poesio (2000)) and unsu-
pervised methods (e.g., Bean and Riloff (1999)).
General discourse-new detectors that are applica-
ble to different types of NPs have been built using
heuristics (e.g., Byron and Gegg-Harrison (2004))
and modeled generatively (e.g., Elsner and Char-
niak (2007)) and discriminatively (e.g., Uryupina
(2003)). There have also been attempts to perform
joint inference for discourse-new detection and
coreference resolution using integer linear pro-
gramming (ILP), where a discourse-new classifier
and a coreference classifier are trainedindepen-
dently of each other, and then ILP is applied as a
post-processing step to jointly infer discourse-new
and coreference decisions so that they are consis-
tent with each other (e.g., Denis and Baldridge
(2007)). Joint inference is different from our joint-
learning approach, which allows the two tasks to
be learned jointly and not independently.

3 Baseline Coreference Models

In this section, we describe three coreference mod-
els that will serve as our baselines: the mention-
pair model, the entity-mention model, and the
mention-ranking model. For illustrative purposes,
we will use the text segment shown in Figure 1.
Each mentionm in the segment is annotated as
[m]cidmid, wheremid is the mention id andcid is
the id of the cluster to whichm belongs. As we
can see, the mentions are partitioned into four sets,
with Barack Obama, his, andhe in one cluster, and
each of the remaining mentions in its own cluster.

3.1 Mention-Pair Model

As noted before, a mention-pair model is a clas-
sifier that decides whether or not an active men-
tion mk is coreferent with a candidate antecedent
mj . Each instancei(mj , mk) representsmj and
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[Barack Obama]11 nominated [Hillary Rodham Clinton]22 as
[[his]13 secretary of state]34 on [Monday]45. [He]16 ...

Figure 1: An illustrative example

mk and consists of the 39 features shown in Ta-
ble 1. These features have largely been employed
by state-of-the-art learning-based coreference sys-
tems (e.g., Soon et al. (2001), Ng and Cardie
(2002b), Bengtson and Roth (2008)), and are com-
puted automatically. As can be seen, the features
are divided into four blocks. The first two blocks
consist of features that describe the properties of
mj andmk, respectively, and the last two blocks
of features describe the relationship betweenmj

andmk. The classification associated with a train-
ing instance is either positive or negative, depend-
ing on whethermj andmk are coreferent.

If one training instance were created from each
pair of mentions, the negative instances would
significantly outnumber the positives, yielding
a skewed class distribution that will typically
have an adverse effect on model training. As
a result, only a subset of mention pairs will
be generated for training. Following Soon et
al. (2001), we create (1) a positive instance for
each discourse-old mentionmk and its closest
antecedentmj ; and (2) a negative instance for
mk paired with each of the intervening mentions,
mj+1, mj+2, . . . , mk−1. In our running example
shown in Figure 1, three training instances will
be generated forHe: i(Monday, He), i(secretary
of state, He), and i(his, He). The first two of
these instances will be labeled as negative, and
the last one will be labeled as positive. To train a
mention-pair classifier, we use the SVM learning
algorithm from the SVMlight package (Joachims,
2002), converting all multi-valued features into an
equivalent set of binary-valued features.

After training, the resulting SVM classifier is
used to identify an antecedent for a mention in a
test text. Specifically, an active mentionmk se-
lects as its antecedent the closest preceding men-
tion that is classified as coreferent withmk. If mk

is not classified as coreferent with any preceding
mention, it will be considered discourse-new (i.e.,
no antecedent will be selected formk).

3.2 Entity-Mention Model

Unlike a mention-pair model, an entity-mention
model is a classifier that decides whether or not

an active mentionmk is coreferent with apar-
tial cluster cj that precedesmk. Each training
instance,i(cj , mk), representscj and mk. The
features for an instance can be divided into two
types: (1) features that describemk (i.e, those
shown in the second block of Table 1), and (2)
cluster-level features, which describe the relation-
ship betweencj and mk. Motivated by previ-
ous work (Luo et al., 2004; Culotta et al., 2007;
Yang et al., 2008), we create cluster-level fea-
tures from mention-pair features using four pred-
icates: NONE, MOST-FALSE, MOST-TRUE, and
ALL . Specifically, for each featureX shown in
the last two blocks in Table 1, we first convertX

into an equivalent set of binary-valued features if
it is multi-valued. Then, for each resulting binary-
valued featureXb, we create four binary-valued
cluster-level features: (1)NONE-Xb is true when
Xb is false betweenmk and each mention incj ; (2)
MOST-FALSE-Xb is true whenXb is true between
mk and less than half (but at least one) of the men-
tions incj ; (3) MOST-TRUE-Xb is true whenXb is
true betweenmk and at least half (but not all) of
the mentions incj ; and (4)ALL -Xb is true whenXb

is true betweenmk and each mention incj . Hence,
for eachXb, exactly one of these four cluster-level
features evaluates to true.

Following Yang et al. (2008), we create (1) a
positive instance for each discourse-old mention
mk and the preceding clustercj to which it be-
longs; and (2) a negative instance formk paired
with each partial cluster whose last mention ap-
pears betweenmk and its closest antecedent (i.e.,
the last mention ofcj). Consider again our run-
ning example. Three training instances will be
generated forHe: i({Monday}, He), i({secretary
of state}, He), and i({Barack Obama, his}, He).
The first two of these instances will be labeled as
negative, and the last one will be labeled as pos-
itive. As in the mention-pair model, we train an
entity-mention classifier using the SVM learner.

After training, the resulting classifier is used to
identify a preceding cluster for a mention in a test
text. Specifically, the mentions are processed in
a left-to-right manner. For each active mention
mk, a test instance is created betweenmk and
each of the preceding clusters formed so far. All
the test instances are then presented to the classi-
fier. Finally,mk will be linked to the closest pre-
ceding cluster that is classified as coreferent with
mk. If mk is not classified as coreferent with any
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Features describing mj , a candidate antecedent
1 PRONOUN 1 Y if mj is a pronoun; else N
2 SUBJECT 1 Y if mj is a subject; else N
3 NESTED 1 Y if mj is a nested NP; else N
Features describing mk, the mention to be resolved
4 NUMBER 2 SINGULAR or PLURAL, determined using a lexicon
5 GENDER 2 MALE , FEMALE, NEUTER, or UNKNOWN, determined using a list of common first names
6 PRONOUN 2 Y if mk is a pronoun; else N
7 NESTED 2 Y if mk is a nested NP; else N
8 SEMCLASS 2 the semantic class ofmk; can be one ofPERSON, LOCATION, ORGANIZATION, DATE, TIME,

MONEY, PERCENT, OBJECT, OTHERS, determined using WordNet and an NE recognizer
9 ANIMACY 2 Y if mk is determined asHUMAN or ANIMAL by WordNet and an NE recognizer; else N
10 PRO TYPE 2 the nominative case ofmk if it is a pronoun; else NA. E.g., the feature value forhim is HE

Features describing the relationship between mj , a candidate antecedent and mk, the mention to be resolved
11 HEAD MATCH C if the mentions have the same head noun; else I
12 STR MATCH C if the mentions are the same string; else I
13 SUBSTR MATCH C if one mention is a substring of the other; else I
14 PRO STR MATCH C if both mentions are pronominal and are the same string; else I
15 PN STR MATCH C if both mentions are proper names and are the same string; else I
16 NONPRO STR MATCH C if the two mentions are both non-pronominal and are the same string; elseI
17 MODIFIER MATCH C if the mentions have the same modifiers; NA if one of both of them don’t have a modifier;

else I
18 PRO TYPE MATCH C if both mentions are pronominal and are either the same pronoun or different only w.r.t.

case; NA if at least one of them is not pronominal; else I
19 NUMBER C if the mentions agree in number; I if they disagree; NA if the number for one or both

mentions cannot be determined
20 GENDER C if the mentions agree in gender; I if they disagree; NA if the gender for one or both mentions

cannot be determined
21 AGREEMENT C if the mentions agree in both gender and number; I if they disagree in bothnumber and

gender; else NA
22 ANIMACY C if the mentions match in animacy; I if they don’t; NA if the animacy for one orboth mentions

cannot be determined
23 BOTH PRONOUNS C if both mentions are pronouns; I if neither are pronouns; else NA
24 BOTH PROPERNOUNS C if both mentions are proper nouns; I if neither are proper nouns; elseNA
25 MAXIMALNP C if the two mentions does not have the same maximial NP projection; else I
26 SPAN C if neither mention spans the other; else I
27 INDEFINITE C if mk is an indefinite NP and is not in an appositive relationship; else I
28 APPOSITIVE C if the mentions are in an appositive relationship; else I
29 COPULAR C if the mentions are in a copular construction; else I
30 SEMCLASS C if the mentions have the same semantic class; I if they don’t; NA if the semantic class

information for one or both mentions cannot be determined
31 ALIAS C if one mention is an abbreviation or an acronym of the other; else I
32 DISTANCE binned values for sentence distance between the mentions
Additional features describing the relationship between mj , a candidate antecedent and mk, the mention to be resolved
33 NUMBER’ the concatenation of theNUMBER 2 feature values ofmj andmk. E.g., ifmj is Clinton and

mk is they, the feature value isSINGULAR-PLURAL, sincemj is singular andmk is plural
34 GENDER’ the concatenation of theGENDER 2 feature values ofmj andmk

35 PRONOUN’ the concatenation of thePRONOUN 2 feature values ofmj andmk

36 NESTED’ the concatenation of theNESTED 2 feature values ofmj andmk

37 SEMCLASS’ the concatenation of theSEMCLASS 2 feature values ofmj andmk

38 ANIMACY ’ the concatenation of theANIMACY 2 feature values ofmj andmk

39 PRO TYPE’ the concatenation of thePRO TYPE 2 feature values ofmj andmk

Table 1: The feature set for coreference resolution. Non-relationalfeatures describe a mention and in
most cases take on a value ofYES or NO. Relational features describe the relationship between the two
mentions and indicate whether they areCOMPATIBLE, INCOMPATIBLE or NOT APPLICABLE.

preceding cluster, it will be considered discourse-
new. Note that all partial clusters precedingmk

are formed incrementally based on the predictions
of the classifier for the firstk − 1 mentions.

3.3 Mention-Ranking Model

As noted before, a ranking model imposes a
ranking on all the candidate antecedents of an

active mentionmk. To train a ranker, we
use the SVM ranker-learning algorithm from the
SVMlight package. Like the mention-pair model,
each training instancei(mj , mk) representsmk

and a preceding mentionmj . In fact, the fea-
tures that represent the instance as well as the
method for creating training instances are identi-
cal to those employed by the mention-pair model.
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The only difference lies in the assignment of
class values to training instances. Assuming that
Sk is the set of training instances created for
anaphoric mentionmk, the class value for an in-
stancei(mj , mk) in Sk is the rank ofmj among
competing candidate antecedents, which is 2 if
mj is the closest antecedent ofmk, and 1 other-
wise.1 To exemplify, consider our running exam-
ple. As in the mention-pair model, three training
instances will be generated forHe: i(Monday, He),
i(secretary of state, He), i(his, He). The third in-
stance will have a class value of 2, and the remain-
ing two will have a class value of 1.

After training, the mention-ranking model is ap-
plied to rank the candidate antecedents for an ac-
tive mention in a test text as follows. Given an ac-
tive mentionmk, we follow Denis and Baldridge
(2008) and use an independently-trained classifier
to determine whethermk is discourse-new. If so,
mk will not be resolved. Otherwise, we create test
instances formk by pairing it with each of its pre-
ceding mentions. The test instances are then pre-
sented to the ranker, and the preceding mention
that is assigned the largest value by the ranker is
selected as the antecedent ofmk.

The discourse-new classifier used in the resolu-
tion step is trained with 26 of the 37 features2 de-
scribed in Ng and Cardie (2002a) that are deemed
useful for distinguishing between anaphoric and
non-anaphoric mentions. These features can be
broadly divided into two types: (1) features that
encode the form of the mention (e.g., NP type,
number, definiteness), and (2) features that com-
pare the mention to one of its preceding mentions.

4 Coreference as Cluster Ranking

In this section, we describe our cluster-ranking ap-
proach to NP coreference. As noted before, our
approach aims to combine the strengths of entity-
mention models and mention-ranking models.

4.1 Training and Applying a Cluster Ranker

For ease of exposition, we will describe in this
subsection how to train and apply a cluster ranker
when it is used in a pipeline architecture, where
discourse-new detection is performed prior to
coreference resolution. In the next subsection, we
will show how the two tasks can be learned jointly.

1A larger class value implies a better rank in SVMlight.
2The 11 features that we did not employ areCONJ,

POSSESSIVE, MODIFIER, POSTMODIFIED, SPECIAL NOUNS,
POST, SUBCLASS, TITLE, and the positional features.

Recall that a cluster ranker ranks a set of pre-
ceding clusters for an active mentionmk. Since
a cluster ranker is a hybrid of a mention-ranking
model and an entity-mention model, the way it is
trained and applied is also a hybrid of the two.
In particular, the instance representation employed
by a cluster ranker is identical to that used by
an entity-mention model, where each training in-
stancei(cj , mk) represents a preceding clustercj

and a discourse-old mentionmk and consists of
cluster-level features formed from predicates. Un-
like in an entity-mention model, however, in a
cluster ranker, (1) a training instance is created be-
tween each discourse-old mentionmk andeach of
its preceding clusters; and (2) since we are train-
ing a model for ranking clusters, the assignment of
class values to training instances is similar to that
of a mention ranker. Specifically, the class value of
a training instancei(cj , mk) created formk is the
rank ofcj among the competing clusters, which is
2 if mk belongs tocj , and 1 otherwise.

Applying the learned cluster ranker to a test text
is similar to applying a mention ranker. Specifi-
cally, the mentions are processed in a left-to-right
manner. For each active mentionmk, we first
apply an independently-trained classifier to deter-
mine if mk is discourse-new. If so,mk will not be
resolved. Otherwise, we create test instances for
mk by pairing it with each of its preceding clus-
ters. The test instances are then presented to the
ranker, andmk is linked to the cluster that is as-
signed the highest value by the ranker. Note that
these partial clusters precedingmk are formed in-
crementally based on the predictions of the ranker
for the firstk−1 mentions; no gold-standard coref-
erence information is used in their formation.

4.2 Joint Discourse-New Detection and
Coreference Resolution

The cluster ranker described above can be used
to determine which preceding cluster a discourse-
old mention should be linked to, but it cannot be
used to determine whether a mention is discourse-
new or not. The reason is simple: all the training
instances are generated from discourse-old men-
tions. Hence, to jointly learn discourse-new de-
tection and coreference resolution, we must train
the ranker using instances generated fromboth
discourse-old and discourse-new mentions.

Specifically, when training the ranker, we pro-
vide each active mention with the option to start
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a new cluster by creating an additional instance
that (1) contains features that solely describe the
active mention (i.e., the features shown in the sec-
ond block of Table 1), and (2) has the highest rank
value among competing clusters (i.e., 2) if it is
discourse-new and the lowest rank value (i.e., 1)
otherwise. The main advantage of jointly learning
the two tasks is that it allows the ranking model
to evaluateall possible options for an active men-
tion (i.e., whether to resolve it, and if so, which
preceding cluster is the best)simultaneously.

After training, the resulting cluster ranker pro-
cesses the mentions in a test text in a left-to-right
manner. For each active mentionmk, we create
test instances for it by pairing it with each of its
preceding clusters. To allow for the possibility that
mk is discourse-new, we create an additional test
instance that contains features that solely describe
the active mention (similar to what we did in the
training step above). All these test instances are
then presented to the ranker. If the additional test
instance is assigned the highest rank value by the
ranker, thenmk is classified as discourse-new and
will not be resolved. Otherwise,mk is linked to
the cluster that has the highest rank. As before,
all partial clusters precedingmk are formed incre-
mentally based on the predictions of the ranker for
the firstk − 1 mentions.

5 Evaluation

5.1 Experimental Setup

Corpus. We use the ACE 2005 coreference cor-
pus as released by the LDC, which consists of the
599 training documents used in the official ACE
evaluation.3 To ensure diversity, the corpus was
created by selecting documents from six different
sources: Broadcast News (bn), Broadcast Con-
versations (bc), Newswire (nw), Webblog (wb),
Usenet (un), and conversational telephone speech
(cts). The number of documents belonging to each
source is shown in Table 2. For evaluation, we par-
tition the 599 documents into a training set and a
test set following a 80/20 ratio, ensuring that the
two sets have the same proportion of documents
from the six sources.

Mention extractor. We evaluate each corefer-
ence model using bothtrue mentions (i.e., gold
standard mentions4) andsystem mentions (i.e., au-

3Since we did not participate in ACE 2005, we do not
have access to the official test set.

4Note that only mentionboundaries are used.

Dataset bn bc nw wl un cts
# of documents 60 226 106 119 49 39

Table 2: Statistics for the ACE 2005 corpus

tomatically identified mentions). To extract sys-
tem mentions from a test text, we trained a men-
tion extractor on the training texts. Following Flo-
rian et al. (2004), we recast mention extraction as
a sequence labeling task, where we assign to each
token in a test text a label that indicates whether it
begins a mention, isinside a mention, or isoutside
a mention. Hence, to learn the extractor, we create
one training instance for each token in a training
text and derive its class value (one ofb, i, ando)
from the annotated data. Each instance represents
wi, the token under consideration, and consists of
29 linguistic features, many of which are modeled
after the systems of Bikel et al. (1999) and Florian
et al. (2004), as described below.
Lexical (7): Tokens in a window of 7:
{wi−3, . . . , wi+3}.
Capitalization (4): Determine whether wi

IsAllCap, IsInitCap, IsCapPeriod, and
IsAllLower (see Bikel et al. (1999)).
Morphological (8): wi’s prefixes and suffixes of
length one, two, three, and four.
Grammatical (1): The part-of-speech (POS)
tag of wi obtained using the Stanford log-linear
POS tagger (Toutanova et al., 2003).
Semantic (1): The named entity (NE) tag ofwi

obtained using the Stanford CRF-based NE recog-
nizer (Finkel et al., 2005).
Gazetteers (8): Eight dictionaries containing
pronouns (77 entries), common words and words
that are not names (399.6k), person names (83.6k),
person titles and honorifics (761), vehicle words
(226), location names (1.8k), company names
(77.6k), and nouns extracted from WordNet that
are hyponyms ofPERSON(6.3k).

We employ CRF++5, a C++ implementation of
conditional random fields, for training the mention
detector, which achieves an F-score of 86.7 (86.1
recall, 87.2 precision) on the test set. These ex-
tracted mentions are to be used as system mentions
in our coreference experiments.
Scoring programs. To score the output of a
coreference model, we employ three scoring pro-
grams: MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998), andφ3-CEAF (Luo, 2005).

5Available from http://crfpp.sourceforge.net
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There is a complication, however. When scor-
ing a response (i.e., system-generated) partition
against akey (i.e., gold-standard) partition, a scor-
ing program needs to construct a mapping between
the mentions in the response and those in the key.
If the response is generated using true mentions,
then every mention in the response is mapped to
some mention in the key and vice versa; in other
words, there are notwinless (i.e., unmapped) men-
tions (Stoyanov et al., 2009). However, this is
not the case when system mentions are used. The
aforementioned complication does not arise from
the construction of the mapping, but from the fact
that Bagga and Baldwin (1998) and Luo (2005) do
not specify how to apply B3 and CEAF to score
partitions generated from system mentions.

We propose a simple solution to this problem:
we remove all and only those twinless system
mentions that are singletons before applying B3

and CEAF. The reason is simple: since the coref-
erence resolver has successfully identified these
mentions as singletons, it should not be penal-
ized, and removing them allows us to avoid such
penalty. Note that we only remove twinless (as op-
posed to all) system mentions that are singletons:
this allows us to reward a resolver for success-
ful identification of singleton mentions that have
twins, thus overcoming a major weakness of and
common criticism against the MUC scorer. Also,
we retain twinless system mentions that are non-
singletons, as the resolver should be penalized for
identifying spurious coreference relations. On the
other hand, we do not remove twinless mentions
in the key partition, as we want to ensure that the
resolver makes the correct (non-)coreference de-
cisions for them. We believe that our proposal ad-
dresses Stoyanov et al.’s (2009) problem of hav-
ing very low precision when applying the CEAF
scorer to score partitions of system mentions.

5.2 Results and Discussions

The mention-pair baseline. We train our first
baseline, the mention-pair coreference classifier,
using the SVM learning algorithm as implemented
in the SVMlight package (Joachims, 2002).6 Re-
sults of this baseline using true mentions and sys-
tem mentions, shown in row 1 of Tables 3 and 4,
are reported in terms of recall (R), precision (P),
and F-score (F) provided by the three scoring pro-

6For this and subsequent uses of the SVM learner in our
experiments, we set all parameters to their default values.

grams. As we can see, this baseline achieves F-
scores of 54.3–70.0 and 53.4–62.5 for true men-
tions and system mentions, respectively.

The entity-mention baseline. Next, we train
our second baseline, the entity-mention corefer-
ence classifier, using the SVM learner. Results of
this baseline are shown in row 2 of Tables 3 and
4. For true mentions, this baseline achieves an F-
score of 54.8–70.7. In comparison to the mention-
pair baseline, F-score rises insignificantly accord-
ing to all three scorers.7 Similar trends can be ob-
served for system mentions, where the F-scores
between the two models are statistically indistin-
guishable across the board. While the insignifi-
cant performance difference is somewhat surpris-
ing given the improved expressiveness of entity-
mention models over mention-pair models, similar
trends have been reported by Luo et al. (2004).

The mention-ranking baseline. Our third base-
line is the mention-ranking coreference model,
trained using the ranker-learning algorithm in
SVMlight. To identify discourse-new mentions,
we employ two methods. In the first method, we
adopt a pipeline architecture, where we train an
SVM classifier for discourse-new detection inde-
pendently of the mention ranker on the training set
using the 26 features described in Section 3.3. We
then apply the resulting classifier to each test text
to filter discourse-new mentions prior to corefer-
ence resolution. Results of the mention ranker are
shown in row 3 of Tables 3 and 4. As we can
see, the ranker achieves F-scores of 57.8–71.2 and
54.1–65.4 for true mentions and system mentions,
respectively, yielding a significant improvement
over the entity-mention baseline in all but one case
(MUC/true mentions).

In the second method, we perform discourse-
new detection jointly with coreference resolution
using the method described in Section 4.2. While
we discussed this joint learning method in the con-
text of cluster ranking, it should be easy to see
that the method is equally applicable to a men-
tion ranker. Results of the mention ranker using
this joint architecture are shown in row 4 of Ta-
bles 3 and 4. As we can see, the ranker achieves
F-scores of 61.6–73.4 and 55.6–67.1 for true men-
tions and system mentions, respectively. For both
types of mentions, the improvements over the cor-
responding results for the entity-mention baseline

7We use Approximate Randomization (Noreen, 1989) for
testing statistical significance, withp set to 0.05.

975



MUC CEAF B3

Coreference Model R P F R P F R P F
1 Mention-pair model 71.7 69.2 70.4 54.3 54.3 54.3 53.3 63.6 58.0
2 Entity-mention model 71.7 69.7 70.7 54.8 54.8 54.8 53.2 65.1 58.5
3 Mention-ranking model (Pipeline) 68.7 73.9 71.2 57.8 57.8 57.8 55.8 63.9 59.6
4 Mention-ranking model (Joint) 69.4 77.8 73.4 61.6 61.6 61.6 57.0 70.1 62.9
5 Cluster-ranking model (Pipeline) 71.7 78.2 74.8 61.8 61.8 61.8 58.2 69.1 63.2
6 Cluster-ranking model (Joint) 69.9 83.3 76.0 63.3 63.3 63.3 56.0 74.6 64.0

Table 3: MUC, CEAF, and B3 coreference results using true mentions.

MUC CEAF B3

Coreference Model R P F R P F R P F
1 Mention-pair model 70.0 56.4 62.5 56.1 51.0 53.4 50.8 57.9 54.1
2 Entity-mention model 68.5 57.2 62.3 56.3 50.2 53.1 51.2 57.8 54.3
3 Mention-ranking model (Pipeline) 62.2 68.9 65.4 51.6 56.7 54.1 52.3 61.8 56.6
4 Mention-ranking model (Joint) 62.1 73.0 67.1 53.0 58.5 55.6 50.4 65.5 56.9
5 Cluster-ranking model (Pipeline) 65.3 72.3 68.7 54.1 59.3 56.6 55.3 63.7 59.2
6 Cluster-ranking model (Joint) 64.1 75.4 69.3 56.7 62.6 59.5 54.4 70.5 61.4

Table 4: MUC, CEAF, and B3 coreference results using system mentions.

are significant, and suggest that mention ranking is
a precision-enhancing device. Moreover, in com-
parison to the pipeline architecture in row 3, we
see that F-score rises significantly by 2.2–3.8% for
true mentions, and improves by a smaller margin
of 0.3–1.7% for system mentions. These results
demonstrate the benefits of joint modeling.

Our cluster-ranking model. Finally, we evalu-
ate our cluster-ranking model. As in the mention-
ranking baseline, we employ both the pipeline ar-
chitecture and the joint architecture for discourse-
new detection. Results are shown in rows 5 and
6 of Tables 3 and 4, respectively, for the two ar-
chitectures. When true mentions are used, the
pipeline architecture yields an F-score of 61.8–
74.8, which represents a significant improvement
over the mention ranker adopting the pipeline ar-
chitecture. With the joint architecture, the clus-
ter ranker achieves an F-score of 63.3–76.0. This
also represents a significant improvement over the
mention ranker adopting the joint architecture, the
best of the baselines, and suggests that cluster
ranking is a better precision-enhancing model than
mention ranking. Moreover, comparing the re-
sults in these two rows reveals the superiority of
the joint architecture over the pipeline architec-
ture, particularly in terms of its ability to enhance
system precision. Similar performance trends can
be observed when system mentions are used.

6 Conclusions

We have presented a cluster-ranking approach that
recasts the mention resolution process as the prob-

lem of finding the best preceding cluster to link an
active mention to. Crucially, our approach com-
bines the strengths of entity-mention models and
mention-ranking models. Experimental results on
the ACE 2005 corpus show that (1) jointly learn-
ing coreference resolution and discourse-new de-
tection allows the cluster ranker to achieve bet-
ter performance than adopting a pipeline corefer-
ence architecture; and (2) our cluster ranker signif-
icantly outperforms the mention ranker, the best of
the three baseline coreference models, under both
the pipeline architecture and the joint architecture.
Overall, we believe that our cluster-ranking ap-
proach advances the state-of-the-art in coreference
resolution both theoretically and empirically.
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Abstract 

Knowledge of noun phrase anaphoricity might 
be profitably exploited in coreference resolu-
tion to bypass the resolution of non-anaphoric 
noun phrases. However, it is surprising to no-
tice that recent attempts to incorporate auto-
matically acquired anaphoricity information 
into coreference resolution have been some-
what disappointing. This paper employs a 
global learning method in determining the 
anaphoricity of noun phrases via a label 
propagation algorithm to improve learning-
based coreference resolution. In particular, 
two kinds of kernels, i.e. the feature-based 
RBF kernel and the convolution tree kernel, 
are employed to compute the anaphoricity 
similarity between two noun phrases. Experi-
ments on the ACE 2003 corpus demonstrate 
the effectiveness of our method in anaphoric-
ity determination of noun phrases and its ap-
plication in learning-based coreference resolu-
tion. 

1 Introduction 

Coreference resolution, the task of determining 
which noun phrases (NPs) in a text refer to the 
same real-world entity, has long been considered 
an important and difficult problem in natural 
language processing. Identifying the linguistic 
constraints on when two NPs can co-refer re-
mains an active area of research in the commu-
nity. One significant constraint on coreference, 
the anaphoricity constraint, specifies that a non-
anaphoric NP cannot be coreferent with any of 
its preceding NPs in a given text. Therefore, it is 
useful to skip over these non-anaphoric NPs 
rather than attempt an unnecessary search for an 
antecedent for them, only to end up with inaccu-
rate outcomes. Although many existing machine 
learning approaches to coreference resolution 
have performed reasonably well without explicit 
anaphoricity determination (e.g., Soon et al 2001; 

Ng and Cardie 2002b; Strube and Muller 2003; 
Yang et al 2003, 2008), anaphoricity determina-
tion has been studied fairly extensively in the 
literature, given the potential usefulness of NP 
anaphoricity in coreference resolution. One 
common approach involves the design of heuris-
tic rules to identify specific types of non-
anaphoric NPs, such as pleonastic pronouns (e.g. 
Paice and Husk 1987; Lappin and Leass 1994; 
Kennedy and Boguraev 1996; Denber 1998) and 
existential definite descriptions (e.g., Vieira and 
Poesio 2000). More recently, the problem has 
been tackled using statistics-based (e.g., Bean 
and Riloff 1999; Bergsma et al 2008) and learn-
ing-based (e.g. Evans 2001; Ng and Cardie 
2002a; Ng 2004; Yang et al 2005; Denis and 
Balbridge 2007) methods. Although there is em-
pirical evidence (e.g. Ng and Cardie 2002a, 
2004) that coreference resolution might be fur-
ther improved with proper anaphoricity informa-
tion, its contribution is still somewhat disap-
pointing and lacks systematic evaluation. 

This paper employs a label propagation (LP) 
algorithm for global learning of NP anaphoricity. 
Given the labeled data and the unlabeled data, 
the LP algorithm first represents labeled and 
unlabeled instances as vertices in a connected 
graph, then propagates the label information 
from any vertex to nearby vertices through 
weighted edges and finally infers the labels of 
unlabeled instances until a global stable stage is 
achieved. Here, the labeled data in this paper 
include all the NPs in the training texts with the 
anaphoricity labeled and the unlabeled data in-
clude all the NPs in a test text with the ana-
phoricity unlabeled. One major advantage of LP-
based anaphoricity determination is that the ana-
phoricity of all the NPs in a text can be deter-
mined together in a global way. Compared with 
previous methods, the LP algorithm can effec-
tively capture the natural clustering structure in 
both the labeled and unlabeled data to smooth 
the labeling function. In particular, two kinds of 
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kernels, i.e. the feature-based RBF kernel and 
the convolution tree kernel, are employed to 
compute the anaphoricity similarity between two 
NPs and weigh the edge between them. Experi-
ments on the ACE 2003 corpus show that our 
LP-based anaphoricity determination signifi-
cantly outperforms locally-optimized one, which 
adopts a classifier (e.g. SVM) to determine the 
anaphoricity of NPs in a text individually and 
significantly improves the performance of learn-
ing-based coreference resolution. It also shows 
that, while feature-based anaphoricity determi-
nation contributes much to pronoun resolution, 
its contribution on definite NP resolution can be 
ignored. In comparison, it shows that tree ker-
nel-based anaphoricity resolution contributes 
significantly to the resolution of both pronouns 
and definite NPs due to the inclusion of various 
kinds of syntactic structured information. 

The rest of this paper is organized as follows. 
In Section 2, we review related work in ana-
phoricity determination. Then, the LP algorithm 
is introduced in Section 3 while Section 4 de-
scribes different similarity measurements ex-
plored in the LP algorithm. Section 5 shows the 
experimental results. Finally, we conclude our 
work in Section 6.  

2 Related Work 

Given its potential usefulness in coreference 
resolution, anaphoricity determination has been 
studied fairly extensively in the literature and 
can be classified into three categories: heuristic 
rule-based (e.g. Paice and Husk 1987; Lappin 
and Leass 1994; Kennedy and Boguraev 1996; 
Denber 1998; Vieira and Poesio 2000), statis-
tics-based (e.g., Bean and Riloff 1999; Cherry 
and Bergsma 2005; Bergsma et al 2008) and 
learning-based (e.g. Evans 2001; Ng and Cardie 
2002a; Ng 2004; Yang et al 2005; Denis and 
Balbridge 2007). 

For the heuristic rule-based approaches, 
Paice and Husk (1987), Lappin and Leass (1994), 
Kennedy and Boguraev (1996), Denber (1998), 
and Cherry and Bergsma (2005) looked for par-
ticular constructions using certain trigger words 
to identify pleonastic pronouns while Vieira and 
Poesio (2000) recognized non-anaphoric definite 
NPs through the use of syntactic cues and case-
sensitive rules and found that nearly 50% of 
definite NPs are non-anaphoric. As a representa-
tive, Lappin and Leass (1994), and Kennedy and 
Boguraev (1996) looked for modal adjectives 
(e.g. “necessary”) or cognitive verbs (e.g. “It is 

thought that … ”) in a set of patterned construc-
tions.  

For the statistics-based approaches, Bean 
and Riloff (1999) developed a statistics-based 
method for automatically identifying existential 
definite NPs which are non-anaphoric. The intui-
tion behind is that many definite NPs are not 
anaphoric since their meanings can be under-
stood from general world knowledge. They 
found that existential NPs account for 63% of all 
definite NPs and 76% of them could be identi-
fied by syntactic or lexical means. Using 1600 
MUC-4 terrorism news documents as the train-
ing data, they achieved 87% in precision and 
78% in recall at identifying non-anaphoric defi-
nite NPs. Cherry and Bergsma (2005) extended 
the work of Lappin and Leass (1994) for large-
scale anaphoricity determination by additionally 
detecting non-anaphoric instances of it using 
Minipar’s pleonastic category Subj. This is done 
by both employing Minipar’s named entity rec-
ognition to identify time expressions, such as “it 
was midnight… ”, and providing a number of 
other linguistic patterns to match common non-
anaphoric it cases, such as in expressions “darn 
it” and don’t overdo it”. Bergsma et al (2008) 
proposed a distributional method in detecting 
non-anaphoric pronouns by first extracting the 
surrounding textual context of the pronoun, then 
gathering the distribution of words that occurred 
within that context from a large corpus and fi-
nally learning to classify these distributions as 
representing either anaphoric and non-anaphoric 
pronoun instances. Experiments on  the Science 
News corpus of It-Bank 1  in identifying non-
anaphoric pronoun it show that their distribu-
tional method achieved the performance of 
81.4%, 71.0% and 75.8 in precision, recall and 
F1-measure, respectively, compared with the 
performance of 93.4%, 21.0% and 34.3 in preci-
sion, recall and F1-measure, respectively using 
the rule-based approach as described in Lappin 
and Leass (1994), and  the performance of 
66.4%, 49.7% and 56.9 in precision, recall and 
F1-measure, respectively using the rule-based 
approach as described in Cherry and Bergsma 
(2005).  

Among the learning-based methods, Evans 
(2001) applied a machine learning approach on 
identifying the non-anaphoricity of pronoun it. 
Ng and Cardie (2002a) employed various do-
main-independent features in identifying ana-
phoric NPs and showed how such information 

                                                 
1 www.cs.ualberta.ca/~bergsma/ItBank/ 
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can be incorporated into a coreference resolution 
system. Experiments show that their method im-
proves the performance of coreference resolu-
tion by 2.0 and 2.6 to 65.8 and 64.2 in F1-
measure on the MUC-6 and MUC-7 corpora, 
respectively, due to much more gain in precision 
compared with the loss in recall. Ng (2004) ex-
amined the representation and optimization is-
sues in computing and using anaphoricity infor-
mation to improve learning-based coreference 
resolution systems. He used an anaphoricity 
classifier as a filter for coreference resolution. 
Evaluation on the ACE 2003 corpus shows that, 
compared with a baseline coreference resolution 
system of no explicit anaphoricity determination, 
their method improves the performance by 2.8, 
2.2 and 4.5 to 54.5, 64.0 and 60.8 in F1-measure 
(due to the gain in precision) on the NWIRE, 
NPAPER and BNEWS domains, respectively, 
via careful determination of an anaphoricity 
threshold with proper constraint-based represen-
tation and global optimization. However, he did 
not look into the contribution of anaphoricity 
determination on coreference resolution of dif-
ferent NP types, such as pronoun and definite 
NPs. Yang et al (2005) made use of non-
anaphors to create a special class of training in-
stances in the twin-candidate model (Yang et al 
2003) and thus equipped it with the non-
anaphoricity determination capability. Experi-
ments show that the proposed method improves 
the performance by 2.9 and 1.6 to 67.3 and 67.2 
in F1-measure on the MUC-6 and MUC-7 cor-
pora, respectively, due to much more gain in 
precision compared with the loss in recall. How-
ever, surprisingly, their experiments also show 
that eliminating non-anaphors using an ana-
phoricity determination module in advance 
harms the performance.  Denis and Balbridge 
(2007) employed an integer linear programming 
(ILP) formulation for coreference resolution 
which models anaphoricity and coreference as a 
joint task, such that each local model informs the 
other for final assignments. Experiments on the 
NWIRE, NPAPER and BNEWS domains of the 
ACE 2003 corpus shows that this joint ana-
phoricity-coreference ILP formulation improves 
the F1-measure by 0.7-1.0 over the coreference-
only ILP formulation. However, their experi-
ments assume true ACE mentions(i.e. all the 
ACE mentions are already known from the an-
notated corpus). Therefore, the actual effect of 
this joint anaphoricity-coreference ILP formula-
tion on fully-automatic coreference resolution is 
still unclear. 

3 Label Propagation  

In the LP algorithm (Zhu and Ghahramani 2002), 
the natural clustering structure in data is repre-
sented as a connected graph. Given the labeled 
data and unlabeled data, the LP algorithm first 
represents labeled and unlabeled instances as 
vertices in a connected graph, then propagates 
the label information from any vertex to nearby 
vertices through weighted edges and finally in-
fers the labels of unlabeled instances until a 
global stable stage is achieved. Figure 1 presents 
the label propagation algorithm. 
___________________________________________
Assume:  

Y : the rn * labeling matrix, where ijy  represents 

the probability of vertex )1( nixi K=  with 

label )1( rjr j K= ; 

LY : the top l  rows of 0Y . LY corresponds to the 
l  labeled instances; 

UY : the bottom u  rows of 0Y . UY corresponds to 
the u  unlabeled instances; 

T : a nn *  matrix, with ijt  is the probability 

jumping from vertex ix to vertex jx ; 
 

BEGIN (the algorithm) 
Initialization:  

1)  Set the iteration index 0=t ;  
2)  Let 0Y  be the initial soft labels attached to 

each vertex;  
3)  Let 0

LY  be consistent with the labeling in the 

labeled data, where 0
ijy = the weight of the 

labeled instance if ix  has the label jr  ;  

4)  Initialize 0
UY ; 

REPEAT 
Propagate the labels of any vertex to nearby ver-

tices by tt YTY =+1 ; 
Clamp the labeled data, that is, replace 1+t

LY  

with 0
LY ; 

UNTIL Y converges(e.g. 1+t
LY  converges to 0

LY ); 
Assign each unlabeled instance with a label: for 

)( nilxi ≤p , find its label with 

j
ijymaxarg ; 

END (the algorithm) 
___________________________________________ 

Figure 1: The LP algorithm 

Here, each vertex corresponds to an instance, 
and the edge between any two instances ix  and 

jx  is weighted by ijw  to measure their similar-
ity. In principle, larger edge weights allow labels 
to travel through easier. Thus the closer the in-
stances are, the more likely they have similar 
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labels. The algorithm first calculates the weight 

ijw  using a kernel, then transforms it 

to ∑
=

=→=
n

k
kjijij wwijpt

1

/)( , which meas-

ures the probability of propagating a label from 
instance jx to instance ix , and finally normal-

izes ijt row by row using ∑
=

=
n

k
ikijij ttt

1

/  to maintain 

the class probability interpretation of the label-
ing matrix Y .  

During the label propagation process, the la-
bel distribution of the labeled data is clamped in 
each loop using their initial weights and acts like 
forces to push out labels through the unlabeled 
data. With this push originating from the labeled 
data, the label boundaries will be pushed faster 
along edges with larger weights and settle in 
gaps along those with lower weights. Ideally, we 
can expect that ijw  across different classes 

should be as small as possible and ijw  within the 

same class as big as possible. In this way, label 
propagation tends to happen within the same 
class. This algorithm has been shown to con-
verge to a unique solution (Zhu and Ghahramani 
2002), which can be obtained without iteration 
in theory, and the initialization of YU

0 (the unla-
beled data) is not important since YU

0 does not 
affect its estimation. However, proper initializa-
tion of YU

0 actually helps the algorithm converge 
more rapidly in practice. In this paper, each row 
in YU

0 , i.e. the label distribution for each test 
instance, is initialized to the weighted similarity 
of the test instance with the labeled instances. 

4 Kernel-based Similarity  

The key issue in label propagation is how to 
compute the similarity ijw between two in-

stances ix  and jx . This paper examines two 

similarity measures: the feature-based RBF ker-
nel and the convolution tree kernel. 

Feature Type Feature Description 
IsPronoun 1 if current NP is a pronoun, else 0 
IsDefiniteNP 1 if current NP is a define NP, else 0 
IsDemonstrativeNP 1 if current NP is a demonstrative NP,  else 0 
IsArg0 1 if the semantic role of current NP is Arg0/agent, else 0 
IsArg0MainVerb 1 if current NP has the semantic role of Arg0/agent for the 

main predicate of the sentence, else 0 
IsArgs 0 if current NP has no semantic role, else 1 
IsSingularNP 1 if current NP is a singular noun, else 0 

Features  
related with  

current NP itself 

IsMaleFemalePronoun 1 if current NP is a male/female personal pronoun, else 0 
StringMatch 1 if there is a full string match between current NP and one 

of other phrases in the context, else 0 
NameAlias 1 if current NP and one of other phrases in the context is a 

name alias or abbreviation of the other, else 0 
Appositive 1 if current NP and one of other phrases in the context are 

in an appositive structure, else 0 
NPNested 1 if current NP is nested in another NP, else 0 
NPNesting 1 if current NP nests another NP, else 0 
WordSenseAgreement 1 if current NP and one of other phrases in the context agree 

in the WordNet sense, else 0 
IsFirstNPinSentence 1 if current NP is the first NP of this sentence, else 0 
BackwardDistance The distance between current NP and  the nearest backward 

clause, indicated by coordinating words (e.g. that,which). 

Features  
related with  

the local context 
surrounding 
current NP 

ForwardDistance The distance between the nearest forward clause, indicated 
by coordinating words (e.g. that, which), and current NP. 

Table 1: Features in anaphoricity determination of NPs. Note: the semantic role-related features are derived from 
an in-house state-of-the-art semantic role labeling system.

4.1 Feature-based Kernel 

In our feature-based RBF kernel to anaphoricity 
determination, an instance is represented by 17 
lexical, syntactic and semantic features, as 
shown in Table 1, which are specifically de-
signed for distinguishing anaphoric and non-

anaphoric NPs, according to common-sense 
knowledge and linguistic intuitions. Since the 
local context surrounding an NP plays a critical 
role in discriminating whether an NP is ana-
phoric or not, the features in Table 1 can be clas-
sified into two categories: (a) current NP (i.e. the 
NP in anaphoricity consideration) itself, e.g. 
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types and semantic roles of  current NP; (b) con-
textual information, e.g.  whether current NP is 
nested in another NP, the distance between cur-
rent NP and a clause structure, indicated by co-
ordinating words (e.g. that, this, which). 

4.2 Tree Kernel 

Given a NP in anaphoricity determination, a 
parse tree represents the local context surround-
ing current NP in a structural way and thus con-
tains much information in determining whether 
current NP is anaphoric or not. For example, the 
commonly used knowledge for anaphoricity de-
termination, such as the grammatical role of cur-
rent NP or whether current NP is nested in other 
NPs, can be directly captured by a parse tree 
structure.  

Given a parse tree and a NP in consideration, 
the problem is how to choose a proper parse tree 
structure to cover syntactic structured informa-
tion well in the tree kernel computation. Gener-
ally, the more a parse tree structure includes, the 
more syntactic structured information would be 
provided, at the expense of more 
noisy/unnecessary information. In this paper, we 
limit the window size to 5  chunks (either NPs or 
non-NPs), including previous two chunks, cur-
rent chunk (i.e. current NP) and following two 
chunks, and prune out the substructures outside 
the window.  Figure 2 shows the full parse tree 
for the sentence “Mary said the woman in the 
room hit her too”, using the Charniak parser 
(Charniak 2001), and the chunk sequence de-
rived from the parse tree using the Perl script2 
written by Sabine Buchholz from Tilburg Uni-
versity. 

Here, we explore four parse tree structures 
in NP anaphoricity determination: the common 
tree (CT), the shortest path-enclosed tree (SPT), 
the minimum tree (MT) and the dynamically 
extended tree (DET), motivated by Yang et al 
(2006) and Zhou et al (2008). Following are the 
examples of the four parse tree structures, corre-
sponding to the full parse tree and the chunk se-
quence, as shown in Figure 2, with the NP chunk 
“(NP (DT the) (NN woman))” in anaphoricity 
determination. 

Common Tree (CT) 
As shown in Figure 3(a), CT is the complete 
sub-tree rooted by the nearest common ancestor 
of the first chunk “(NP (NNP Mary))” and the 

                                                 
2 http://ilk.kub.nl/~sabine/chunklink/  

last chunk “(NP (DT the) (NN room))” of the 
five-chunk window.  

Shortest Path-enclosed Tree (SPT) 
As shown in Figure 3(b), SPT is  the smallest 
common sub-tree enclosed by the shortest path 
between the first chunk “(NP (NNP Mary))” and 
the last chunk “(NP (DT the) (NN room))” of the 
five-chunk window.  

 
(a) the full parse tree 

(NP (NNP Mary)) (VP (VBD said)) (NP-E (DT the) 
(NN woman)) (PP (IN in)) (NP (DT the) (NN room)) 
(VP (VBD hit)) (NP (PRP her)) (ADVP (RB too)) 

(b) the chunk sequence 

Figure 2: The full parse tree for the sentence “Mary 
said the woman in the room hit her too”, using the 
Charniak parser, and the corresponding chunk se-
quence derived from it. Here, the label “E” indicates 
the NP in consideration. 

 
(a) CT: Common Tree 

 
(b) SPT: Shortest Path-enclosed Tree 
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(c) MT: Minimum Tree 

 
(d) DET: Dynamically Extended Tree 

Figure 3: Examples of parse tree structures. 

Minimum Tree (MT) 
As shown in Figure 3(c), MT only keeps the root 
path from the NP in anaphoricity determination 
to the root node of SPT. 

Dynamically Extended Tree (DET),  
The intuitions behind DET are that the informa-
tion related with antecedent candidates (all the  
antecedent candidates compatible3 with current 
NP in anaphoricity consideration), predicates 4 
and right siblings plays a critical role in corefer-
ence resolution. Given a MT, this is done by:  
1)  Attaching all the compatible antecedent can-

didates and their corresponding paths. As 
shown in Figure 3(d), “Mary” is attached 
while “the room” is not since the former is 
compatible with the NP “the woman” and 
the latter is not compatible with the NP “the 
woman”. In this way, possible coreference 
between current NP and the compatible an-
tecedent candidates can be included in the 
parse tree structure. In some sense, this is a 
natural extension of the twin-candidate 

                                                 
3 With matched number, person and gender agreements. 
4 For simplicity, only verbal predicates are considered in 
this paper. However, this can be extended to nominal predi-
cates with automatic identification of nominal predicates. 

learning method proposed in Yang et al 
(2003), which explicitly models the compe-
tition between two antecedent candidates.  

2)  For each node in MT, attaching the path from 
the node to the leaf node of the correspond-
ing predicate, if it is predicate-headed, in the 
sense that such predicate-related information 
is useful in identifying certain kinds of ex-
pressions with non-anaphoric NPs, e.g. the 
non-anaphoric it in “darn it”. As shown in 
Figure 3(d), “said” and “hit” are attached.  

3)  Attaching the path to the head word of the 
first right sibling if the parent of current NP 
is a NP and current NP has one or more right 
siblings. Normally, the NP in anaphoricity 
consideration, NP-E, in the production of 
“NP->NP-E+PP” introduces a new entity 
and thus non-anaphoric. 

4)  Pruning those nodes (except POS nodes) 
with the single in-arc and the single out-arc 
and with its syntactic phrase type same as its 
child node.  
In this paper, the similarity between two 

parse trees is measured using a convolution tree 
kernel, which counts the number of common 
sub-trees as the syntactic structure similarity 
between two parse trees. For details, please refer 
to Collins and Duffy (2001). 

5 Experimentation  

We have systematically evaluated the label 
propagation algorithm on global learning of NP 
anaphoricity determination on the ACE 2003 
corpus, and its application in coreference resolu-
tion. 

5.1 Experimental Setting 

The ACE 2003 corpus contains three domains: 
newswire (NWIRE), newspaper (NPAPER), and 
broadcast news (BNEWS). For each domain, 
there exist two data sets, training and devtest, 
which are used for training and testing respec-
tively.  

As a baseline coreference resolution system, 
a  raw test text is first preprocessed automati-
cally by a pipeline of NLP components, includ-
ing sentence boundary detection, POS tagging, 
named entity recognition and phrase chunking, 
and then a training or test instance is formed by 
a anaphor and one of its antecedent candidates, 
similar to Soon et al (2001). Among them, 
named entity recognition, part-of-speech tagging 
and noun phrase chunking apply the same Hid-
den Markov Model (HMM)-based engine with 
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error-driven learning capability (Zhou and Su, 
2000 & 2002). During training, for each anaphor 
encountered, a positive instance is created by 
pairing the anaphor and its closest antecedent 
while a set of negative instances is formed by 
pairing the anaphor with each of the non-
coreferential candidates. Based on the training 
instances, a binary classifier is generated using a 
particular learning algorithm. In this paper, we 
use SVMLight developed by Joachims (1998). 
During resolution, an anaphor is first paired in 
turn with each preceding antecedent candidate to 
form a test instance, which is presented to a 
classifier. The classifier then returns a confi-
dence value indicating the likelihood that the 
candidate is the antecedent. Finally, the candi-
date with the highest confidence value is se-
lected as the antecedent. As a baseline, the NPs 
with mismatched number, person and gender 
agreements are filtered out. On average, an ana-
phor has ~7 antecedent candidates. In particular, 
the test corpus is resolved in document-level, i.e. 
one document by one document. 

For anaphoricity determination, we report 
the performance in Acc+ and Acc-, which meas-
ure the accuracies of identifying anaphoric NPs 
and non-anaphoric NPs, respectively. Obviously, 
higher Acc+ means that more anaphoric NPs 
would be identified correctly, while higher Acc- 
means that more non-anaphoric NPs would be 
filtered out. For coreference resolution, we re-
port the performance in terms of recall, precision, 
and F1-measure using the commonly-used 
model theoretic MUC scoring program (Vilain 
et al., 1995). For separate scoring of different 
NP types, a recognized reference is considered 
correct if the reconized antecedent is in the 
coreferential chain of the anaphor. To see 
whether an improvement is significant, we con-
duct significance testing using paired t-test. In 
this paper, ‘>>>’, ‘>>’ and ‘>’ denote p-values 
of an improvement smaller than 0.01, in-
between (0.01, 0,05] and bigger than 0.05, 
which mean significantly better, moderately 
better and slightly better, respectively.  

5.2 Experimental Results 

Table 2 shows the performance of LP-based ana-
phoricity determination using the feature-based 
RBF kernel. It shows that our method achieves 
the accuracies of 74.8/84.4, 76.2/81.3 and 
71.8/81.7 on identifying anaphoric/non-
anaphoric NPs in the NWIRE, NPAPER and 
BNEWS domains, respectively. This suggests 
that our approach can effectively filter out about 

82% of non-anaphoric NPs. However, it can 
only keep about 74% of anaphoric NPs. Table 2 
also shows the performance on different NP 
types. Considering the effectiveness of ana-
phoricity determination on indefinite NPs (due 
to that most of anaphoric indefinite NPs are in 
an appositive structure and thus can be easily 
captured by the IsAppositive feature) and that 
most of errors in anaphoricity determination on 
proper nouns are caused by the named entity 
recognition module in the preprocessing), it in-
dicates the difficulty of anaphoricity determina-
tion in filtering out non-anaphoric pronouns and 
identifying anaphoric definite NPs. As a com-
parison, Table 2 also shows the performance of 
locally-optimized anaphoricity determination 
using a classifier (SVM with the feature-based 
RBF kernel, as adopted in this paper) to deter-
mine the NPs in a text individually. It shows that 
the LP-based method systematically outperforms 
(>>>) the SVM-based method. This suggests the 
effectiveness of the LP algorithm in global mod-
eling of the natural clustering structure in ana-
phoricity determination. 

Table 3 shows the performance of LP-based 
anaphoricity determination using the convolu-
tion tree kernel on different parse tree structures. 
It shows that while MT performed worst due to 
its simple structure, DET outperforms MT(>>>), 
SPT(>>>) and CT(>>>) on all the three domains 
due to fine inclusion of necessary structural in-
formation, although inclusion of more informa-
tion in both CT and SPT also improves the per-
formance. It again verifies that LP-based ana-
phoricity determination outperforms (>>>) 
SVM-based one, using the tree kernel. Table 4 
further indicates that all the three kinds of struc-
tural information related with antecedent candi-
dates, predicates and right siblings in DET con-
tribute significantly (>>>). In addition, Table 5 
shows the detailed performance of LP-based 
anaphoricity determination on different anaphor 
types using DET. Compared with the feature-
based RBF kernel as shown in Table 2, it shows 
that the convolution tree kernel significantly 
outperforms (>>>) the feature-based RBF kernel 
in all the three domains, with much contribution 
due to performance improvement on both pro-
nouns and definite NPs, although the tree kernel 
performs moderately worse than the feature-
based RBF kernel due to the effectiveness of 
anaphoricity determination on proper nouns and 
indefinite NPs using the IsNameAlias and IsAp-
positive features respectively. 
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NWIRE NPAPER BNEWS Anaphor 
Type Acc+ 

(%) 
Acc-

(%) 
Acc+ 

(%) 
Acc-

(%) 
Acc+ 

(%) 
Acc-

(%) 
Pronoun 88.7 56.2 90.2 58.6 87.4 57.8 

ProperNoun 72.5 85.2 74.6 80.5 70.6 78.8 
DefiniteNP 66.6 83.1 72.1 77.5 65.3 81.5 

InDefiniteNP 95.4 93.7 90.5 95.8 87.2 97.3 
Overall 74.8 84.4 76.2 81.3 71.8 81.7 

Overall(SVM) 71.3 80.2 73.5 79.1 68.4 78.6 
Table 2: The performance of LP-based anaphoric-

ity determination using the feature-based RBF kernel  

Parse Tree structure  
Scheme 

NWIRE
( %)  

NPAPER
( %)  

BNEWS
( %)  

Acc+ 72.6 74.3 74.2 CT 
Acc- 82.1 80.2 72.3 
Acc+ 72.4 74.1 73.8 SPT Acc- 80.8 79.5 72.5 
Acc+ 71.4 70.5 66.9 MT Acc- 77.2 75.3 78.2 
Acc+ 79.2 81.2 76.5 DET Acc- 87.8 84.5 85.3 
Acc+ 76.5 78.9 74.3 DET(SVM) 
Acc- 82.3 81.6 83.2 

Table 3: The performance of LP-based anaphoric-
ity determination using the convolution tree kernel on 

different parse tree structures 

Performance Change 
NWIRE
( %)  

NPAPER
( %)  

BNEWS
( %)  

Acc+ -4.0 -3.8 -4.3 - antecedent 
candidates Acc- -5.2 -5.3 -4.5 

Acc+ -5.2 -4.8 -5.6 -predicate 
Acc- -4.3 -3.5 -4.9 
Acc+ -3.6 -4.1 -3.1 -first right 

sibling Acc- -4.8 -5.2 -4.4 
Table 4: The contribution of structural information 

in DET 

 

NWIRE NPAPER BNEWS Anaphor 
Type Acc+ 

(%) 
Acc-

(%) 
Acc+ 

(%) 
Acc-

(%) 
Acc+ 

(%) 
Acc-

(%) 
Pronoun 90.1 75.6 90.7 79.2 89.2 77.5 

ProperNoun 71.4 83.5 72.8 78.1 68.3 77.2 
DefiniteNP 74.6 89.1 77.3 85.5 75.3 88.7 

InDefiniteNP 93.2 92.1 90.2 94.2 89.4 95.5 
Overall 79.2 87.8 81.2 84.5 76.5 85.3 
Table 5: The performance of LP-based anaphoric-
ity determination using the tree kernel on DET 

Finally, we evaluate the effect of LP-based 
anaphoricity determination on coreference reso-
lution by including it as a preprocessing step to a 
baseline coreference resolution system without 
explicit anaphoricity determination, which em-
ploys the same set of features, as adopted in the 
single-candidate model of Yang et al (2003), 
using a SVM-based classifier and the feature-
based RBF kernel. It shows that anaphoricity 
determination with the feature-based RBF Ker-
nel much improves (>>>) the performance of 
coreference resolution with most of the contribu-
tion due to pronoun resolution while its contri-
bution on definite NPs can be ignored. It indi-
cates the usefulness of anaphoricity determina-
tion in filtering out non-anaphoric pronouns and 
the difficulty in identifying anaphoric definite 
NPs, using the feature-based RBF kernel. It also 
shows that tree kernel-based anaphoricity deter-
mination can not only improve (>>>) the per-
formance on pronoun resolution but also im-
prove (>>>) the performance on definite NP 
resolution due to the much better performance of 
tree kernel-based anaphoricity determination on 
definite NPs. This suggests the necessity of ex-
ploring structural information in identifying 
anaphoric definite NPs. 

NWIRE NPAPER BNEWS System 
R% P% F R% P% F R% P% F 

Pronoun 66.5 61.6 64.0 70.1 64.2 67.0 61.7 63.2 62.4 
DefiniteNP 26.9 80.3 40.2 34.5 62.4 44.4 30.5 71.4 42.9 BaseLine (No Anaphoricity) 

Overall 53.1 67.4 59.4 57.7 67.0 62.1 48.0 65.9 55.5 
Pronoun 64.1 67.9 66.0 67.3 72.4 69.8 59.5 75.7 66.6 

DefiniteNP 26.7 80.6 40.3 34.2 62.5 44.3 30.4 71.9 43.1 
+Anaphoricity determination  

with the feature-based RBF kernel 
Overall 50.6 75.4 60.7 54.4 77.1 63.8 45.9 76.9 57.4 
Pronoun 63.5 70.9 67.0 68 74.9 71.3 61.1 77.6 68.3 

DefiniteNP 28.5 82.4 42.1 36.2 65.3 46.1 32.3 73.1 44.2 
+Anaphoricity determination 

with the convolution tree kernel 
Overall 51.6 77.2 61.8 55.2 78.6 65.2 47.5 80.3 59.6 

Table 6: Employment of anaphoricity determination in coreference resolution 

6 Conclusion  

This paper systematically studies a global learn-
ing method in identifying the anaphoricity of 
noun phrases via a label propagation algorithm 

and the application of an explicit anaphoricity 
determination module in improving learning-
based coreference resolution. In particular, two 
kinds of kernels, i.e. the feature-based RBF ker-
nel and the convolution tree kernel, are em-
ployed to compute the anaphoricity similarity 
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between two NPs. Evaluation on the ACE 2003 
corpus indicates that LP-based anaphoricity de-
termination using both the kernels much im-
proves the performance of coreference resolu-
tion. It also shows the usefulness of various 
structural information, related with antecedent 
candidates, predicates and right siblings, in  tree 
kernel-based anaphoricity determination and in 
coreference resolution of both pronouns and 
definite NPs. 

To our knowledge, this is the first system-
atic exploration of both feature-based and tree 
kernel methods in anaphoricity determination 
and the application of an explicit anaphoricity 
determination module in learning coreference 
resolution.  
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Abstract 

In this paper, we employ the centering the-
ory in pronoun resolution from the seman-
tic perspective. First, diverse semantic role 
features with regard to different predicates 
in a sentence are explored. Moreover, given 
a pronominal anaphor, its relative ranking 
among all the pronouns in a sentence, ac-
cording to relevant semantic role informa-
tion and its surface position, is incorporated. 
In particular, the use of both the semantic 
role features and the relative pronominal 
ranking feature in pronoun resolution is 
guided by extending the centering theory 
from the grammatical level to the semantic 
level in tracking the local discourse focus. 
Finally, detailed pronominal subcategory 
features are incorporated to enhance the 
discriminative power of both the semantic 
role features and the relative pronominal 
ranking feature. Experimental results on the 
ACE 2003 corpus show that the centering-
motivated features contribute much to pro-
noun resolution.  

1 Introduction 

Coreference accounts for cohesion in a text and 
is, in a sense, the hyperlink for a natural lan-
guage. Especially, a coreference instance de-
notes an identity of reference and holds between 
two referring expressions, which can be named 
entities, definite noun phrases, pronouns and so 
on. Coreference resolution is the process of link-
ing together multiple referring expressions of a 
given entity in the world. The key in coreference 
resolution is to determine the antecedent for 
each referring expression in a text. The ability of 
linking referring expressions both within a sen-
tence and across the sentences in a text is critical 

to discourse and language understanding in gen-
eral. For example, coreference resolution is a 
key task in information extraction, machine 
translation, text summarization, and question 
answering. 

There is a long tradition of research on 
coreference resolution within computational lin-
guistics. While earlier knowledge-lean ap-
proaches heavily depend on domain and 
linguistic knowledge (Carter 1987; Carbonell 
and Brown 1988) and have significantly influ-
enced the research, the later approaches usually 
rely on diverse lexical, syntactic and semantic 
properties of referring expressions (Soon et al., 
2001;Ng and Cardie, 2002; Zhou et al., 2004). 
Current research has been focusing on exploiting 
semantic information in coreference resolution. 
For example, Yang et al (2005) proposed a tem-
plate-based statistical approach to compute the 
semantic compatibility between a pronominal 
anaphor and an antecedent candidate, and Yang 
and Su (2007) explored semantic relatedness 
information from automatically discovered pat-
terns, while Ng (2007) automatically induced 
semantic class knowledge from a treebank and 
explored its application in coreference resolution. 

Particularly, this paper focuses on the center-
ing theory (Sidner,1981;Grosz et al.,1995; 
Tetreault,2001), which reveals the significant 
impact of the local focus on referring expres-
sions in that the antecedent of a referring expres-
sion usually depends on the center of attention 
throughout the local discourse segment (Mit-
kov,1998). Although the centering theory has 
been considered as a critical theory and the driv-
ing force behind the coreferential phenomena 
since its proposal, its application in coreference 
resolution (in particular pronoun resolution) has 
been somewhat disappointing: it fails to improve 
or even harms the performance of the state-of-
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the-art coreference resolution systems in previ-
ous research (e.g. Yang et al. 2004). This may be 
due to that centering was originally proposed as 
a model of discourse coherence instead of 
coreference. 

The purpose of this paper is to employ the 
centering theory in pronoun resolution by ex-
tending it from the grammatical level to the se-
mantic level. The intuition behind our approach 
is that, via determining the semantic roles of 
referring expressions in a sentence, such as 
agent and patient, we can derive various center-
ing theory-motivated features in tracking the 
continuity or shift of the local discourse focus, 
thus allowing us to include document-level 
event descriptive information in resolving the 
coreferential relations between referring expres-
sions.  

To the best of our knowledge, this is the first 
research, which successfully applies the center-
ing theory in pronoun resolution from the se-
mantic perspective.  

The rest of this paper is organized as follows. 
Section 2 briefly describes related work in em-
ploying the centering theory and semantic in-
formation in coreference resolution. Then, the 
centering theory is introduced in Section 3 while 
Section 4 details how to employ the centering 
theory from the semantic perspective. Section 5 
reports and discusses the experimental results. 
Finally, we conclude our work in Section 6. 

2 Related Work 

This section briefly overviews the related work 
in coreference resolution from both the centering 
theory and semantic perspectives. 

2.1 Centering Theory 

In the literature, there has been much research in 
the centering theory and its application to 
coreference resolution. 

In the centering theory itself, since the origi-
nal work of Sidner (1979) on immediate focus-
ing of pronouns and the subsequent work of 
Joshi and Weinstein (1981) on centering and 
inferences, much research has been done, in-
cluding centering and linguistic realizations 
(Cote 1993; Prince and Walker 1995), empirical 
and psycholinguistic evaluation of centering 
predictions (Gordon et al  1993,1995; Brennan 
1995; Walker et al 1998; Kibble 2001), and the 
cross-linguistic work on centering (Ziv and 
Crosz1994). 

In applications of the centering theory to 
coreference resolution, representative work in-
cludes Brennan et al. (1987), Strube (1998), 
Tetreault (1999) and Yang et al. (2004). Brennan 
et al. (1987) presented a centering theory-based 
formalism in modeling the local focus structure 
in discourse and used it to track the discourse 
context in binding occurring pronouns to corre-
sponding entities. In particular, a BFP (Brennan, 
Friedman and Pollard) algorithm is proposed to 
extend the original centering model to include 
two additional transitions called smooth shift 
and rough shift. Strube (1998) proposed an S-list 
model, assuming that a referring expression pre-
fers a hearer-old discourse entity to other hearer-
new candidates. Tetreault (1999) further ad-
vanced the BFP algorithm by adopting a left-to-
right breadth first walk of the syntactic parse 
trees to rank the antecedent candidates. However, 
the above methods have not been systematically 
evaluated on large annotated corpora, such as 
MUC and ACE. Thus their effects are still un-
clear in real coreference resolution tasks. Yang 
et al (2004) presented a learning-based approach 
by incorporating several S-list model-based fea-
tures to improve the performance in pronoun 
resolution. It shows that, although including S-
list model-based features can slightly boost the 
performance in the ideal case (i.e. given the cor-
rect antecedents of anaphor’s candidates), it de-
teriorates the overall performance in F-measure 
with slightly higher precision but much lower 
recall, in real cases, where the antecedents of 
anaphor’s candidates are determined automati-
cally by a separate coreference resolution mod-
ule.  

2.2 Semantic Information 

It is well known that semantic information plays 
a critical role in coreference resolution. Besides 
the common practice of employing a thesaurus 
(e.g. WordNet) in semantic consistency check-
ing, much research has been done to explore 
various kinds of semantic information, such as 
semantic similarity (Harabagiu et al 2000), se-
mantic compatibility (Yang et al 2005, 2007), 
and semantic class information (Soon et al 2001; 
Ng 2007). Although these methods have been 
proven useful in coreference resolution, their 
contributions are much limited. For example, Ng 
(2007) showed that semantic similarity informa-
tion and semantic agreement information could 
only improve the performance of coreference 
resolution by 0.6 and 0.5 in F-measure respec-
tively, on the ACE 2003 NWIRE corpus.  
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3 Centering Theory 

The centering theory is a theory about the local 
discourse structure that models the interaction of 
referential continuity and the salience of dis-
course entities in the internal organization of a 
text. In natural languages, a given entity may be 
referred by different expressions and act as dif-
ferent grammatical roles throughout a text. For 
example, people often use pronouns to refer to 
the main subject of the discourse in focus, which 
can change over different portions of the dis-
course. One main goal of the centering theory is 
to track the focus entities throughout a text.  

The main claims of the centering theory can 
be formalized in terms of Cb (the backward-
looking center), Cf (a list of forward-looking 
centers for each utterance Un) and Cp (the pre-
ferred center, i.e. the most salient candidate for 
subsequent utterances). Given following two 
sentences: 1) Susani gave Betsyj a pet hamsterk; 
2) Shei reminded herj that such hamstersk were 
quite shy. We can have Ub, Uf and Up as follows: 
Ub= “Susan”; Uf={“Susan”, “Betsy”, “a pet 
hamster”}; Up= “Susan”. 

 Cb(Un)=Cb(Un-1)  
or Cb(Un-1) undefinedCb(Un)≠Cb(Un-1)

Cb(Un)=Cp(Un) Continue Smooth Shift
Cb(Un)≠Cp(Un) Retain Rough Shift

Table 1: Transitions in the centering theory 

Constraints 
C1. There is precisely one Cb. 
C2. Every element of Cf(Un) must be realized in Un. 
C3. Cb(Un) is the highest-ranked element of Cf(Un-1) 

that is realized in Un. 
Rules 
R1. If some element of Cf(Un-1) is realized as a pro-

noun in Un, then so is Cb(Un). 
R2.Transitions have the descending preference order 

of “Continue > Retain > Smooth Shift > Rough 
Shift”. 

Table 2: Constraints and rules in the centering theory 

Furthermore, several kinds of focus transi-
tions are defined in terms of two tests: whether 
Cb stays the same (i.e. Cb(Un+1)=Cb(Un)), and 
whether Cb is realized as the most prominent 
referring expression (i.e. Cb(Un=Cp(Un)). We 
refer to the first test as cohesion, and the second 
test as salience. Therefore, there are four possi-
ble combinations, which are displayed in Table 
1 and can result in four kinds of transitions, 
namely Continue, Retain, Smooth Shift, and 
Rough Shift. Obviously, salience, which chooses 
a proper verb form to make Cb prominent within 
a clause or sentence, is an important matter for 

sentence planning, while cohesion, which orders 
propositions in a text to maintain referential con-
tinuity, is an important matter for text planning.  

Finally, the centering theory imposes several 
constraints and rules over Cb/Cf and above tran-
sitions, as shown in Table 2. 

Given the centering theory as described above, 
we can draw the following conclusions: 
1) The centering theory is discourse-related and 

centers are discourse constructs.   
2) The backward-looking center Cb of Un de-

pends only on the expressions that constitute 
the utterance. That is, it is independent of its 
surface position and grammatical roles. 
Moreover, it is not constrained by any previ-
ous utterance in the segment. While the ele-
ments of Cf(Un) are partially ordered to 
reflect relative prominence in Un, grammati-
cal role information is often a major determi-
nant in ranking Cf, e.g. in the descending 
priority order of “Subject > Object > Others” 
in English (Grosz and Joshi, 2001).  

3) Psychological research (Gordon et al. 1993) 
and cross-linguistic research (Kameyama 
1986, 1988; Walker et al. 1990,1994) have 
validated that Cb is preferentially realized by 
a pronoun in English.  

4) Frequent rough shifts would lead to a lack of 
local cohesion. To keep local cohesion, peo-
ple tend to plan ahead and minimize the 
number of focus shifts. 

In this paper, we extend the centering theory 
from the grammatical level to the semantic level 
in attempt to better model the continuity or shift 
in the local discourse focus and improve the per-
formance of pronoun resolution via centering-
motivated semantic role features. 

4 Employing Centering Theory from  
Semantic Perspective 

In this section, we discuss how to employ the 
centering theory in pronoun resolution from the 
semantic perspective. In Subsection 4.1, we in-
troduce the semantic roles. In Subsection 4.2, we 
introduce how to employ the centering theory in 
pronoun resolution via semantic role features. 
Finally we compare our method with the previ-
ous work in Subsection 4.3. 

4.1 Semantic Role 

A semantic role is the underlying relationship 
that a participant has with a given predicate in a 
clause, i.e. the actual role a participant plays in 
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an event, apart from linguistic encoding of the 
situation. If, in some situation, someone named 
“John” purposely hits someone named “Bill”, 
then “John” is the agent and “Bill” is the patient 
of the hitting event. Therefore, given the predi-
cate “hit” in both of the following sentences, 
“John” has the same semantic role of agent and 
“Bill” has the same semantic role of patient: 1) 
John hit Bill. 2) Bill was hit by John.  

In the literature, labeling of such semantic 
roles has been well defined by the SRL (Seman-
tic Role Labeling) task, which first identifies the 
arguments of a given predicate and then assigns 
them appropriate semantic roles. During the last 
few years, there has been growing interest in 
SRL. For example, CoNLL 2004 and 2005 have 
made this problem a well-known shared task. 
However, there is still little consensus in the lin-
guistic and NLP communities about what set of 
semantic role labels are most appropriate. Typi-
cal semantic roles include core roles, such as 
agent, patient, instrument, and adjunct roles 
(such as locative, temporal, manner, and cause). 
For core roles, only agent and patient are consis-
tently defined across different predicates, e.g. in 
the popular PropBank (Palmer et al. 2005) and 
the derived version evaluated in the CoNLL 
2004 and 2005 shared tasks, as ARG0 and 
ARG1.  

In this paper, we extend the centering theory 
from the grammatical level to the semantic level 
for its better application in pronoun resolution 
via proper semantic role features due to three 
reasons:  

Sentence Grammatical Role Semantic Role
Bob opened the 
door with a key. 

Bob:  
SUBJECT 

Bob:  
AGENT 

The key opened 
the door. 

The key: 
SUBJECT 

The key : 
INSTRUMENT

The door opened. The door: 
SUBJECT 

The door: 
PATIENT 

Table 3: Relationship between grammatical roles and 
semantic roles: an example 

1) Semantic roles are conceptual notions, 
whereas grammatical roles are morph-
syntactic. While the original centering theory 
mainly builds from the grammatical perspec-
tive and grammatical roles do not always cor-
respond directly to semantic roles (Table 3 
shows an example of various semantic roles 
which a subject can play), there is a close re-
lationship between semantic roles and gram-
matical roles. The statistics in the CoNLL 
2004 and 2005 shared tasks (Shen and Lapata, 
2007) shows that the semantic roles of 

ARG0/agent and ARG1/patient account for 
85% of all arguments and most likely act as 
the centers of the local focus structure in dis-
course due to the close relationship between 
subject/object and agent/patient. Therefore, it 
is appropriate to model the centers of an ut-
terance from the semantic perspective via 
semantic roles. 

2) In a sense, semantic roles imply the informa-
tion of grammatical roles, especially for sub-
ject/object. For example, the position of an 
argument and the voice of the predicate verb 
play a central role in SRL. In intuition, an ar-
gument, which occurs before an active verb 
and has the semantic role of Arg0/agent, 
tends to be a subject. That is to say, semantic 
roles (e.g. Arg0/agent and Arg1/patient) can 
be mapped into their corresponding gram-
matical roles (e.g. subject and object), using 
some heuristic rules. Therefore, it would be 
interesting to represent the centers of the ut-
terances and employ the centering theory 
from the semantic perspective. 

3) Semantic role labeling has been well studied 
in the literature and there are good ready-to-
use toolkits available. For example, Pradhan 
(2005) achieved 82.2 in F-measure on the 
CoNLL 2005 version of the Propbank. In 
contrast, the research on grammatical role la-
beling is much less with the much lower 
state-of-the-art performance of 71.2 in F-
measure (Buchholz, 1999). Therefore, it may 
be better to explore the centering theory from 
the semantic perspective. 

4.2 Designing Centering-motivated Fea-
tures from  Semantic Perspective 

In this paper, the centering theory is employed in 
pronoun resolution via three kinds of centering-
motivated features: 
1) Semantic role features. They are achieved by 

checking possible semantic roles of referring 
expressions with regard to various predicates 
in a sentence. Due to the close relationship 
between subject/object and agent/patient, se-
mantic role information should be also a ma-
jor determinant in deciding the center of an 
utterance, which is likely to be the antecedent 
of a referring expression in the descending 
priority order of “Agent > Patient > Others” 
with regard to their semantic roles, corre-
sponding to the descending priority order of 
“Subject > Object > Others” with regard to 
their grammatical roles. 
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2) Relative pronominal ranking feature. Due to 
the predominance of pronouns in tracking the 
local discourse structure1, the relative rank-
ing of a pronoun among all the pronouns in a 
sentence should be useful in pronoun resolu-
tion. This is realized in this paper according 
to its semantic roles (with regard to various 
predicates in a sentence) and surface position 
(in a left-to-right order) by mapping each 
pronoun into 5 levels: a) rank 1 for pronouns 
with semantic role ARG0/agent of the main 
predicate; b) rank 2 for pronouns with seman-
tic role ARG1/patient of the main predicate; c) 
rank 3 for pronouns with semantic role 
ARG0/agent of other predicates; d) rank 4 for 
pronouns with semantic role ARG1/patient of 
other predicates; e) rank 5 for remaining pro-
nouns. Furthermore, for those pronouns with 
the same ranking level, they are ordered ac-
cording to their surface positions in a left-to-
right order, motivated by previous research 
on the centering theory (Grosz et al. 1995). 

3) Detailed pronominal subcategory features. 
Given a pronominal expression, its detailed 
pronominal subcategory features, such as 
whether it is a first person pronoun, second 
person pronoun, third person pronoun, neuter 
pronoun or others, are explored to enhance 
the discriminative power of both the semantic 
role features and the relative pronominal 
ranking feature, considering the predominant 
importance of pronouns in tracking the local 
focus structure in discourse.  

4.3 Comparison with Previous Work 

As a representative in explicitly employing se-
mantic role labeling in coreference resolution, 
Ponzetto and Strube (2006) explored two seman-
tic role features to capture the predicate-
argument structure information to benefit 
coreference resolution: I_SEMROLE, the predi-
cate-argument pairs of one referring expression, 
and J_SEMROLE, the predicate-argument pairs 
of another referring expression. Their experi-
ments on the ACE 2003 corpus shows that, 
while the two semantic role features much im-
prove the performance of common noun resolu-
tion by 3.8 and 2.7 in F-measure on the BNEWS 
and NWIRE domains respectively, they only 

                                                           
1 According to the centering theory, the backward-looking 
center Cb is preferentially realized by a pronoun in the sub-
ject position in natural languages, such as English, and 
people tend to plan ahead and minimize the number of 
focus shifts. 

slightly improve the performance of pronoun 
resolution by 0.4 and 0.3 in F-measure on the 
BNEWS and NWIRE domains respectively.  

In comparison, this paper proposes various 
kinds of centering-motivated semantic role fea-
tures in attempt to better model the continuity or 
shift in the local discourse focus by extending 
the centering theory from the grammatical level 
to the semantic level. For example, the 
CAARG0MainVerb feature (as shown in Table 
5) is designed to capture the semantic role of the 
antecedent candidate in the main predicate in 
modeling the discourse center, while, the AN-
PronounRanking feature (as shown in Table 5) is 
designed to determinate the relative priority of 
the pronominal anaphor in retaining the dis-
course center.  

Although both this paper and Ponzetto and 
Strube (2006) employs semantic role features, 
their ways of deriving such features are much 
different due to different driving 
forces/motivations behind. As a result, their con-
tributions on coreference resolution are different: 
while the semantic role features in Ponzette and 
Strube (2006) captures the predicate-argument 
structure information and contributes much to 
common noun resolution and their contribution 
on pronoun resolution can be ignored, the cen-
tering-motivated semantic role features in this 
paper contribute much in pronoun resolution. 
This justifies our attempt to better model the 
continuity or shift of the discourse focus in pro-
noun resolution by extending the centering the-
ory from the grammatical level to the semantic 
level and employing the centering-motivated 
features in pronoun resolution.. 

5 Experimentation and Discussion 

We have evaluated our approach of employing 
the centering theory in pronoun resolution from 
the semantic perspective on the ACE 2003 cor-
pus. 

5.1 Experimental Setting 

The ACE 2003 corpus contains three domains: 
newswire (NWIRE), newspaper (NPAPER), and 
broadcast news (BNEWS). For each domain, 
there exist two data sets, training and devtest, 
which are used for training and testing respec-
tively. Table 4 lists the pronoun distributions 
with coreferential relationships in the training 
data and the test data over pronominal subcate-
gories and sentence distances. Table 4(a) shows 
that third person pronouns occupy most and neu-
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tral pronouns occupy second while Table 4(b) 
shows that the antecedents of most pronouns 
occur within the current sentence and the previ-
ous sentence, with a little exception in the test 
data set of BNEWS.  

NWIRE NPAPER BNEWSPronoun  
Subcategory Train Test Train Test Train Test
First Person 263 103 283 120 455 258

Second Person 61 16 29 36 203 68
Third Person 618 179 919 263 736 158

Neuter 395 151 577 190 482 137
Reflexive 23 6 42 12 26 6

Other 0 0 2 0 2 3
(a) Distribution over pronominal subcategories 

NWIRE NPAPER BNEWSDistance 
Train Test Train Test Train Test

0 890 254 1281 347 1149 295
1 447 149 529 197 729 188
2 0 27 0 24 0 41

>2 0 19 0 41 0 100
Total 1337 449 1810 609 1878 624
(b) Distribution over sentence distances 

Table 4: Pronoun statistics on the ACE 2003 corpus 
For preparation, all the documents in the cor-

pus are preprocessed automatically using a pipe-
line of NLP components, including tokenization 
and sentence segmentation, named entity recog-
nition, part-of-speech tagging and noun phrase 
chunking. Among them, named entity recogni-
tion, part-of-speech tagging and noun phrase 
chunking apply the same Hidden Markov Model 
(HMM)-based engine with error-driven learning 
capability (Zhou and Su, 2000 & 2002). In par-
ticular for SRL, we use a state-of-the-art in-
house toolkit, which achieved the precision of 
87.07% for ARG0 identification and the preci-
sion of 78.97% for ARG1 identification, for easy 
integration. In addition, we use the SVM-light2 
toolkit with the radial basis kernel and default 
learning parameters. Finally, we report the per-
formance in terms of recall, precision, and F-
measure, where precision measures the percent-
age of correctly-resolved pronouns (i.e. correctly 
linked with any referring expression in the 
coreferential chain), recall measures the cover-
age of correctly-resolved pronouns, and F-
measure gives an overall figure on equal har-
mony between precision and recall. To see 
whether an improvement is significant, we also 
conduct significance testing using paired t-test. 
In this paper, ‘>>>’, ‘>>’ and ‘>’ denote p-
values of an improvement smaller than 0.01, in-
between (0.01, 0,05] and bigger than 0.05, 
                                                           
2 http://svmlight.joachims.org/ 

which mean significantly better, moderately 
better and slightly better, respectively. 

5.2 Experimental Results 

Table 5 details various centering-motivated fea-
tures from the semantic perspective, which are 
incorporated in our final system. For example, 
the CAARG0MainVerb feature is designed to 
capture the semantic role of the antecedent can-
didate in the main predicate in modeling the dis-
course center, while the ANPronounRanking 
feature is designed to determinate the relative 
priority of the pronominal anaphor in retaining 
the discourse center. As the baseline, we dupli-
cated the representative system with the same set 
of 12 basic features, as described in Soon et al 
(2001). Table 6 shows that our baseline system 
achieves the state-of-the-art performance of 62.3, 
65.3 and 59.0 in F-measure on the NWIRE, 
NPAPER and BNEWS domains, respectively. It 
also shows that the centering-motivated features 
(from the semantic perspective) significantly 
improve the F-measure by 3.6(>>>), 4.5(>>>) 
and 7.7(>>>) on the NWIRE, NPAPER and 
BNEWS domains, respectively. This justifies 
our attempt to model the continuity or shift of 
the discourse focus in pronoun resolution via 
centering-motivated features from the semantic 
perspective. For comparison, we also evaluate 
the performance of our final system from the 
grammatical perspective. This is done by replac-
ing semantic roles with grammatical roles in 
deriving centering-motivated features. Here, la-
beling of grammatical roles is achieved using a 
state-of-the-art toolkit, as described in Buchholz 
(1999). Table 6 shows that properly employing 
the centering theory in pronoun resolution from 
the grammatical perspective can also improve 
the performance. However, the performance im-
provement of employing the centering theory 
from the grammatical perspective is much lower, 
compared with that from the semantic perspec-
tive. This validates our attempt of employing the 
centering theory in pronoun resolution from the 
semantic perspective instead of from the gram-
matical perspective. This also suggests the great 
potential of applying the centering theory in 
pronoun resolution since the centering theory is 
a local coherence theory, which tells how subse-
quent utterances in a text link together.  

Table 7 shows the contribution of the seman-
tic role features and the relative pronominal 
ranking feature in pronoun resolution when the 
detailed pronominal subcategory features are 
included: 
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Feature category Feature Remarks 

CAARG0 1 if the semantic role of the antecedent candidate is 
ARG0/agent; else 0 

CAARG0MainVerb 1 if the antecedent candidate has the semantic role of 
ARG0/agent for the main predicate of the sentence; else 0 

Semantic Role-based  Fea-
tures 

ANCASameTarget 1 if the anaphor and the antecedent candidate share the same 
predicate with regard to their semantic roles; else 0 

Relative Pronominal Rank-
ing Feature ANPronounRanking Whether the pronominal anaphor is ranked highest among all 

the pronouns in the sentence 

ANPronounType Whether the anaphor is a first person, second person, third 
person, neuter pronoun or others Detailed Pronominal Sub-

category Features CAPronounType Whether the antecedent candidate is a first person, second 
person, third person, neuter pronoun or others 

Table 5: Centering-motivated features incorporated in our final system  
(with AN indicating the anaphor and CA indicating the antecedent candidate) 

NWIRE NPAPER BNEWS System Variation 
R% P% F R% P% F R% P% F 

Baseline System 57.0 68.6 62.3 61.1 70.1 65.3 49.0 73.9 59.0
Final System 

(from the semantic perspective) 
64.1 67.8 65.9 67.5 72.4 69.8 59.9 75.3 66.7

Final System  
(from the grammatical perspective, for comparison)

63.3 64 63.6 64.7 68.8 66.7 57.1 70.1 63.1

Table 6: Contributions of centering-motivated features in pronoun resolution 

NWIRE NPAPER BNEWS System Variation 
R% P% F R% P% F R% P% F 

Baseline System 57.0 68.6 62.3 61.1 70.1 65.3 49.0 73.9 59.0 
+SR and DC 64.8 67.8 66.3 67.2 72.9 69.9 59.1 75.3 66.3 
+PR and DC 61.5 65.4 63.4 64.9 72.1 68.3 57.4 73.5 64.5 

+SR, PR and DC (Final System) 64.1 67.8 65.9 67.5 72.4 69.8 59.9 75.3 66.7 
Table 7: Contribution of the semantic role features (SR) and the relative pronominal ranking feature (PR) in pro-

noun resolution when the detailed pronominal subcategory features are included 

1) The inclusion of the semantic role features 
improve the performance by 4.0(>>>), 
4.6(>>>) and 7.3(>>>) in F-measure on the 
NWIRE, NPAPER and BNEWS domains, re-
spectively. This suggests the impact of se-
mantic role information in determining the 
local discourse focus.  Since pronouns prefer-
entially occur in the subject position and tend 
to refer to the main subject (Ehrlich 1980; 
Brennan 1995; Walker et al. 1998; Cahn 
1995; Gordon and Searce 1995; Kibble et al. 
2001), this paper only applies semantic fea-
tures related with the semantic role of 
ARG0/agent, which is closely related with 
the grammatical role of subject, with regard 
to various predicates in a sentence. We have 
also explored features related with other se-
mantic roles. However, our preliminary ex-
perimentation shows that they do not improve 
the performance, even for ARG1/patient, and 
thus are not included in the final system. This 
may be due to that other semantic roles are 

not discriminative enough to make a differ-
ence in deciding the local discourse structure. 

2) It is surprising to notice that further inclusion 
of the relative pronominal ranking feature has 
only slight impact (slight positive impact on 
the BNEWS domain and slight negative im-
pact on the NWIRE and NPAPER domains) 
on the ACE 2003 corpus. This suggests that 
most of information in the relative pronomi-
nal ranking feature has been covered by the 
semantic role features. This is not surprising 
since the semantic role of ARG0/agent, 
which is explored to derive the semantic role 
features, is also applied to decide the relative 
pronominal ranking feature.  
The inclusion of the relative pronominal 

ranking feature improve the performance by 
1.1(>>>), 3.0(>>>) and 5.5(>>>) in F-measure. 
Our further evaluation reveals that the perform-
ance improvement difference among different 
domains of the ACE 2003 corpus is due to the 
distribution of pronouns’ antecedents occurring 
over different sentence distances, as shown in 
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Table 4. This suggests the usefulness of the rela-
tive pronominal ranking feature in resolving 
pronominal anaphors over longer distance. This 
is consistent with our observation that, as the 
percentage of pronominal anaphors referring to 
more distant antecedents increase, its impact 
turns gradually from negative to positive, when 
further including the relative pronominal ranking 
feature after the semantic role features. The rea-
son that we include the detailed pronominal sub-
category information is due to predominant 
importance of pronouns in tracking the local 
focus structure in discourse and that such de-
tailed pronominal subcategory information is 
discriminative in tracking different subcatego-
ries of pronouns. This suggests the usefulness of 
considering the distribution of the local dis-
course focus over detailed pronominal subcate-
gories. One interesting finding in our 
preliminary experimentation is that the inclusion 
of the detailed pronominal subcategory features 
alone even harms the performance. This may be 
due to the reason that the detailed pronominal 
subcategory features do not have the discrimina-
tive power themselves and that the semantic role 
features and the relative pronominal ranking fea-
ture provide an effective mechanism to explore 
the role of such detailed pronominal subcategory 
features in helping determine the local discourse 
focus. 

 Pronoun  
Subcategory 

NWIRE NPAPER BNEWS

First Person 55.7 55.9 56.6 
Second Person 54.6 60.4 44.0 
Third Person 72.6 80.9 75.7 

Neuter 41.5 50.4 50.2 
Reflexive 85.7 70.0 60.0 
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Total 62.3 65.3 59.0 
First Person 64.7 67.0 65.6 

Second Person 78.6 70.0 51.9 
Third Person 80.9 81.8 80.4 

Neuter 48.3 53.0 58.3 
Reflexive 71.4 66.7 80.0 Fi

na
l S

ys
te

m
 

Total 65.9 69.8 66.7 
Table 8: Performance comparison of pronoun resolu-

tion in F-measure over pronoun subcategories 

Table 8 shows the contribution of the center-
ing-motivated features over different pronoun 
subcategories. It shows that the centering-
motivated features contribute much to the reso-
lution of the four major pronoun subcategories 
(i.e. first person, second person, third person and 
neuter) while its negative impact on the minor 
pronoun subcategories (e.g. reflexive) can be 
ignored due to their much less frequent occur-

rence in the corpus.  In particular, the centering-
motivated features improve the performance on 
the major three pronoun subcategories of third 
person / neuter / first person, by 
8.3(>>>)/6.8(>>>)/9.0(>>>), 0.9(>>)/ 2.6 
(>>>)/11.1(>>>) and 4.7(>>>)/8.1(>>>)/9.0 
(>>>), on the NWIRE, NPAPER and BNEWS 
domains of the ACE 2003 corpus, respectively. 

 Distance NWIRE NPAPER BNEWS
<=0 61.6 64.5 68.7 
<=1 60.4 67.5 60.0 
<=2 62.9 67.4 63.7 B

as
el

in
e 

Sy
st

em
 

Total 62.3 65.3 59.0 
<=0 64.3 70.3 78.7 
<=1 66.8 72.3 72.5 
<=2 66.6 71.8 71.8 

Fi
na

l S
ys

-
te

m
 

Total 65.9 69.8 66.7 
Table 9: Performance comparison of pronoun resolu-

tion in F-measure over sentence distances 

Table 9 shows the contribution of the center-
ing-motivated features over different sentence 
distances. It shows that the centering-motivated 
features improve the performance of pronoun 
resolution on different sentence distances of 
0/1/2, by 2.7(>>>) / 5.8(>>>) / 10.0 (>>>), 
6.4(>>>) / 4.8(>>>) / 12.5(>>>) and 3.7 
(>>>)/4.4(>>>)/8.1(>>>), on the NWIRE, 
NPAPER and BNEWS domains of the ACE 
2003 corpus, respectively. This suggests that the 
centering-motivated features are helpful for both 
intra-sentential and inter-sentential pronoun 
resolution. 

6 Conclusion and Further Work 

This paper extends the centering theory from the 
grammatical level to the semantic level and 
much improves the performance of pronoun 
resolution via centering-motivated features from 
the semantic perspective. This is mainly realized 
by employing various semantic role features 
with regard to various predicates in a sentence, 
in attempt to model the continuity or shift of the 
local discourse focus. Moreover, the relative 
ranking feature of a pronoun among all the pro-
nouns is explored to help determine the relative 
priority of the pronominal anaphor in retaining 
the local discourse focus. Evaluation on the 
ACE 2003 corpus shows that both the centering-
motivated semantic role features and pronominal 
ranking feature much improve the performance 
of pronoun resolution, especially when the de-
tailed pronominal subcategory features of both 
the anaphor and the antecedent candidate are 
included. It is not surprising due to the predomi-
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nance of pronouns in tracking the local discourse 
structure in a text.   

To our best knowledge, this paper is the first 
research which successfully applies the center-
ing-motivated features in pronoun resolution 
from the semantic perspective. 

For future work, we will explore more kinds 
of semantic information and structured syntactic 
information in pronoun resolution. In particular, 
we will further employ the centering theory in 
pronoun resolution from both grammatical and 
semantic perspectives on more corpora. 
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Abstract 

The Person Cross Document Coreference sys-
tems depend on the context for making deci-
sions on the possible coreferences between 
person name mentions. The amount of context 
required is a parameter that varies from cor-
pora to corpora, which makes it difficult for 
usual disambiguation methods. In this paper 
we show that the amount of context required 
can be dynamically controlled on the basis of 
the prior probabilities of coreference and we 
present a new statistical model for the compu-
tation of these probabilities. The experiment 
we carried on a news corpus proves that the 
prior probabilities of coreference are an impor-
tant factor for maintaining a good balance be-
tween precision and recall for cross document 
coreference systems. 

1 Introduction 

The Person Cross Document Coreference 
(Grishman 1994) task, which requires that all and 
only the textual mentions of an entity of type 
Person be individuated in a large collection of 
text documents, is one of the challenging tasks 
for natural language processing systems. In the 
most general case the corpus itself is the only 
available source of information regarding the 
persons mentioned and we consider that this is 
the case in this paper. A PCDC system must be 
able to use the information existing in the corpus 
in order to assign to each personal name mention 
(PNM) a piece of context. The coreference of 
any two PNMs is decided mainly on the basis of 
the similarity of the pieces of contexts associated 
with them. A successful PCDC must accurately 
extract the relevant context for coreference. 

However, the context relevance is not abso-
lute. Whether the contextual information 
uniquely individuates a person is a matter of 

probability. This paper presents a statistical tech-
nique developed to provide a PCDC system with 
more information regarding the probability of a 
correct coreference. The reason for developing 
this technique is twofold: (i) the relevant corefer-
ence context depends on the corpus itself and (ii) 
valid coreferences require a large amount of in-
formation, which is unavailable in the majority 
of cases. 

The first reason is linked to a particularity of 
the CDC task that makes it more complex than 
other NLP tasks. Unlike in other disambiguation 
tasks, in the CDC tasks the relevant coreference 
context depends on the corpus itself. In word 
sense disambiguation, for instance, the distribu-
tion of the relevant context is mainly regulated 
by strong syntactic and semantic rules. The exis-
tence of such rules makes it possible for the dis-
ambiguation decisions to be made considering 
the local context. On the other hand, the distribu-
tion of the PNMs in a corpus is rather random 
and the relevant coreference context is a dynamic 
variable depending on the diversity of the corpus, 
that is, on how many different persons with the 
same name share a similar context. To exem-
plify, consider the name “John Smith” and an 
organization, say “U.N.”.  The extent to which 
“works for U.N.” in “John Smith works for 
U.N.” is a relevant coreference context depends 
on the diversity of the corpus itself. If in that 
corpus, among all the “John Smiths” there is 
only one person who works for “U.N.” then 
“works for U.N.” is a relevant coreference con-
text, but if there are many “John Smiths” work-
ing for U.N., then “works for U.N.” is not a rele-
vant coreference system; in this last case, more 
contextual evidence is needed in order to cor-
rectly corefer the “John Smith” PNMs. The rele-
vance of a context for coreference also depends 
on the corpus, not only on the specific relation-
ship that exists between “John Smith” and 
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“works for U.N.”. Thus, A PCDC system must 
have access to global information regarding the 
PNMs. 

The second reason comes from practical con-
siderations. The amount of information required 
to correctly infer PNMs coreferences is not pre-
sent in corpus in a computationally friendly way. 
In many cases the relevant coreference informa-
tion is embedded in semantic and ontological 
deep inferences, which are difficult to program 
In as much as 60% of the cases, two documents 
containing the same name, from a news corpus, 
lack contexts which are directly similar and big 
enough to correctly decide on the coreference.  

We propose a new method to control the 
amount of contextual coreference required for 
correct coreferences. Rather than having fixed 
rules deciding on the size of the context sur-
rounding a PNM, we propose a probabilistic ap-
proach that requires contextual evidence for 
coreference differentially, by considering the 
prior probability of the coreference of two 
PNMs; the higher this probability is, the less 
their correct coreference depends on the context 
and vice versa. We present a statistical model 
where the prior coreference probabilities are 
computed considering only the corpus itself, and 
we show how these probabilities are used by a 
PCDC system that dynamically revises the 
amount of context relevant for coreference.  

In Section 2 we review the CDC relevant lit-
erature. In section 3 we analyze the data from 
annotated coreference corpora and we individu-
ate a specific problem, setting up a working hy-
pothesis. In Section 4 we develop a statistical 
model for computing the prior coreference prob-
abilities and in Section 5 we present the results 
obtained by applying it to a large news corpus. In 
section 6 a direct evaluation on CDC is carried 
on a test corpus. In Section 7 we show how the 
proposed techniques extends naturally to a strat-
egy of construction relevant test corpora for 
CDC task. The paper ends with the Conclusion 
and the Future Research section.  

2 Related Work  

In a classical paper (Bagga and Baldwin 1998), a 
PCDC system based on the vector space model 
(VSM) is proposed. While there are many advan-
tages in representing the context as vectors on 
which a similarity function is applied, it has been 
shown that there are inherent limitations associ-
ated with the vectorial model (Popescu 2008). 
These problems, related to the density in the vec-

torial space (superposition) and to the discrimi-
native power of the similarity power (masking), 
become visible as more cases are considered.  

Testing the system on many names, (Gooi and 
Allan, 2004), it has been noted empirically that 
the accuracy of the results varies significantly 
from name to name. Indeed, considering just the 
sentence level context, which is a strong re-
quirement for establishing coreference, a PCDC 
system obtains a good score for “John Smith”. 
This happens because the prior probability of 
coreference of any two “John Smiths” mentions 
is low, as this is a very common name and none 
of the “John Smith” has an overwhelming num-
ber of mentions. But for other types of names the 
same system is not accurate. If it considers, for 
instance, “Barack Obama”, the same system ob-
tains a very low recall, as the probability of any 
two “Barack Obama” mentions to corefer is very 
high and the relevant coreference context is 
found very often beyond the sentence level. 
Without further adjustments, a vectorial model 
cannot resolve the problem of considering too 
much or too little contextual evidence in order to 
obtain a good precision for “John Smith” and 
simultaneously a good recall for “Barack 
Obama”.  

In an experiment using bigrams (Pederson et 
al. 2005) on a news corpus, it has been observed 
that the relationship between the amount of in-
formation given to a PCDC system and the per-
formances is not linear. If the system has re-
ceived in input the correct number of persons 
with the same name, the accuracy of the system 
has dropped. A typical case for this situation is 
when there is a person that is very often men-
tioned, and few other persons having few men-
tions; when the number of clusters is passed in 
the input, the clusters representing the persons 
who are rarely mentioned are wrongly enriched. 
However, this situation can be avoided if there is 
a measure of how probable it is to have a certain 
number of different persons with the same name, 
each being mentioned very often in a newspaper. 

Recently, there has been a major interest in the 
PCDC systems, and, in the last two years, three 
important evaluation campaigns have been orga-
nized: Web People Search-1 (Artiles et al. 2007), 
ACE 2008 (www.nist.gov/speech/tests/ace/). It 
has been noted that the data variance between 
training and test is very high (Lefever 2007). 
Rather than being a particularity of those cor-
pora, the problem is general. The performances 
of a bag of words VSM depends to a very high 
extent on the corpus diversity (see Section 3). 
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For reliable results, a PCDC system must have 
access to global information regarding the 
coreference space. 

Rich biographic facts have been shown to im-
prove the accuracy of PCDC (Mann and 
Yarowsky 2003). Indeed, when available, the 
birth date, the occupation etc. represent a rele-
vant coreference context because the probability 
that two different persons have the same name, 
the same birth date and the same occupation is 
negligible. However, it is equally unlikely to find 
this information in a news corpus a sufficient 
number of times. Even for a web corpus, where 
the amount of this kind of information is higher 
than in a news corpus, the extended biographic 
facts, including e-mail address, phones, etc., con-
tribute only with approximately 3% to the total 
number of coreferences (Elmacioglu et al. 2007).  

In order to improve the performances of the 
PCDC systems based on VSM, some authors 
have focused on methods that allow a better 
analysis of the context by extracting the depend-
ency chains (Ng 2007).  The special importance 
of pieces of context has been exploited by im-
plementing a cascade clustering technique (Wei 
2006). Other authors have relied on advanced 
clustering techniques (among others Han et al. 
2005, Chen 2006). However, these techniques 
rely on the precise analysis of the context, which 
is a time consuming process. It has been also 
noted that, in spite of deep analysis, the relevant 
coreference context is hard to find (Vu 2007).  

The technique we present in the next sections 
is complementary to these approaches. We pro-
pose a statistical model designed to offer to the 
PCDC systems information regarding the distri-
bution of PNMs in the corpus. This information 
is used to reduce the contextual data variation 
and to attain a good balance between precision 
and recall.  

3 Data Analysis 

In this Section we present the data analysis of the 
PNMs. We are interested in establishing a rela-
tionship between the distribution of the PNMs 
and the relevant context for coreference. As men-
tioned in the preceding sections, the amount of 
the relevant context for coreference cannot be 
decided prior to the investigation of that particu-
lar corpus. The performances of a bag of words 
VSM with a prior defined context approach will 
vary greatly from corpus to corpus. We have run 
the following experiment: we have considered 
the training and test corpora used in Web People 

Search-1 (WePS-1), which are web page corpora, 
and we have implemented a bag of word ap-
proach with two variants of clustering: agglom-
erative (A), and hierarchic (H). We have ran-
domly chosen a set of seven names from training 
and test (14 names in total) and we have com-
pared the results applying the two systems, A 
and H, on each set of names. In Figure 1 we pre-
sent the results obtained. The figures on the ver-
tical axes are computed using Fα=0.5 formula.

 
Figure 1. Variation between training and test 

We have noticed a great variation in the be-
havior of the two systems. In order to search for 
an explanation for this difference we have looked 
at the distribution in the two corpora of the 
Named Entities, of the words denoting profes-
sions and of the meta-contextual information - e-
mails, urls, phones, and addresses. It turns out 
that these types of contextual information are 
distributed between training and test approxi-
mately evenly. (see Table 1a,b). 

Profession training occ. test occ. 
Doctor 543 668 
Lawyer 277 385 
Professor 523 490 
Researcher 340 166 
Teacher 617 569 
Coach 467 471 
Actor 998 790 

Table 1a. Profession words in training and test 

 Address training occ. test occ. 
Phone 1,109 1,169 
Fax 606 426 
e-mail 3,134 2,186 

Table 1b. Meta-Context in training and test 

By manually investigating the training and test 
set of our experiment we have reached the con-
clusion that the reason for the difference is two 
fold: firstly, while the distribution of the words 
denoting profession is similar, in the test set the 
modifiers, for example “internist”, “neurosur-
geon” for “doctor”, are more frequent. Secondly, 
the number of different persons having the same 
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name is, on average, higher in test than in train-
ing. The results plotted in Figure 1 show that it is 
not a question of which algorithm is better, but 
rather that there are different cases where one 
approach is preferred over the other. The prob-
lem we face is deciding when it is appropriate to 
use one or the other. 

To induce from the corpus itself when a piece 
of context is or is not a relevant context requires 
deep ontological inferences and a very powerful 
tool of semantic analysis of the context. Consider 
for example two words denoting profession, 
“doctor” and “researcher”, and their possible 
modifiers “internist”, “neurosurgeon”, and “pro-
fessor” and “PhD”. In the first case it is certain 
that the coreference is not possible, while in the 
second the coreference is very probable. To find 
out such relationships is computationally very 
hard. However, the analysis carried out further 
shows that we can avoid making such computa-
tions in most of the cases.  

The number of different persons is a parame-
ter that cannot be known beforehand. However, 
not all the names behave alike with respect to 
coreference. There are noticeable differences 
between names; for example less than 5 000 first 
names cover approximately 96% of the total of 
first names, while for the same percentage of 
coverage more than 70 000 of last names must be 
considered (Popescu et al. 2007). Let us call per-
plexity of a name the number of different persons 
that carry it. The search space depends directly 
on the name perplexity. The bigger the perplex-
ity, the larger the amount of information required 
for the correct coreference must be. It seems 
natural that the amount of contextual evidence 
required by a PCDC depends on the name per-
plexity. 

In order to evaluate the relationships between 
the context and the name perplexity, we need an 
annotated corpus. We have used the I-CAB cor-
pus (Magnini et al. 2006), which is a four-day 
news corpus fully annotated, coreference rela-
tionships included. The documents in this corpus 
are entire pieces of news. For each PNM we have 
counted how many contexts containing specific 
information about the person carrying the respec-
tive name is present in that particular document. 
There are many types of contexts that refer to a 
person, but some of these types are very infre-
quent. We considered only those types of infor-
mation that are present at least 5% of the times in 
the context surrounding a PNM. Table 2 presents 
the results of this investigation. 

 occ. diff occ entities 
First Names 2299 676 1592 
Last Names 4173 1906 2191 
Middle Name 110 44 41 
Activity 973 322 569 
Affiliation 566 399 409 
Role 531 211 317 
Family Relation 133 46 94 

Table 2. Name perplexity and context  

On the second column the total number of oc-
currences is listed, on the third column how 
many of these occurrences have different values 
(no case sensitive string match), and on the 
fourth column the number of different persons 
(Entities) having that information. The entries 
“activity”, “affiliation”, and “role” represent 
pieces of context where the respective informa-
tion is directly expressed (no inferences). We call 
this type of context professional context and for 
approximately 30% of the PNMs, one of the 
above three types of professional contexts is pre-
sent. 

The perplexity of the first names, computed as 
the ratio between the fourth column and the third 
column is two times bigger than the perplexity of 
the last names. The lowest name perplexity is 
obtained by the names having a middle name - a 
name with at least three tokens – and it is very 
close to 1 (1.07). Comparatively, the highest per-
plexity of two tokens name is 3. The relationship 
between the number of tokens of a name and its 
perplexity is straightforward: for names with 
more than four tokens the perplexity is 1 in 
99,6% of the cases (the name by itself is a rele-
vant context for coreference). 

In approximately 74% of the cases there is just 
one entity corresponding to a two-token name. 
Considering any two PNMs of the same name 
the similarity of two of the professional contexts 
guarantees the correct coreference. However, 
two professional contexts are present in only 4% 
of the cases. There are just four cases when con-
sidering just one professional attribute was mis-
leading, and all these cases are high perplexity 
names. Moreover, in the case of many low per-
plexity names, the contexts could be minimally 
similar in order to correctly corefer any two 
PNMs of that respective name.  

This analysis shows that there is a direct rela-
tionship between the name perplexity and the 
relevant coreference context. However, the aver-
age figures are not very informative, as the vari-
ance of perplexity is very high. Rather than fo-
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cusing on the exact figure for name perplexity, 
we will try to partition the names according to 
their perplexity and to link each partition to a 
specific behavior with respect to coreference. 
The partitioning technique should ensure that the 
variance of the name perplexity within the same 
partition is low and that a specific amount of 
context should lead to the correct coreference 
decision for the great majority of names within 
that partition.  

Our working hypothesis is that we can esti-
mate the name perplexity within each partition 
and use this information to control the amount of 
contextual evidence required. Let us recall the 
“John Smith” and “Barack Obama” example 
from the previous section. Both “John” and 
“Smith” are American common first and last 
names. The chance that many different persons 
carry this name is high. On the other hand, as 
both “Barack” and “Obama” are rare American 
first and last names respectively, almost surely 
many mentions of this name refer only to one 
person. The argument above does not depend on 
the context, but just on the prior estimation of the 
usage of those names. Having an estimation of a 
name’s perplexity, we may decrease/increase the 
amount of contextual evidence needed.  

4 (p, γ) Statistical Model 

Let D be the set of all PNMs from a given corpus 
C and let DN be the set of corresponding names. 
We want to find a partition P of DN such that 
within each partition the name perplexity varies 
only within predicted margins. Let X be a ran-
dom variable with uniform distribution over DN 

and let Y be the random variable defined by X’s 
name perplexity. Let us suppose that we want P 
= {p1, p2, …, pm} to be a partition of DN, where 
the percentage of each partition class is pi: the 
first partition class contains p1 percentage of the 
name population, the second partition class con-
tains p2 percentage of the name population and 
the last partition class contains pm = 1 - Σpi per-
centage of the name population.  

If we knew the distribution function of Y, let’s 
call it F, we would simply determine ξi from 
equation 1, where Pi =Σpk , k ≤ i : 

ξi = F-1(Pi)⇔ F(Y<ξi) = Pi       (1) 

and we would know that in each partition pi the 
name perplexity is between ξi-1 and ξi, with ξ0 = 0. 
However we do not know F. Fortunately, we can 
estimate ξi.  

There is no restriction that may impose a par-
ticular form for F; for example, the normal dis-
tribution hypothesis of name perplexity is ruled 
out by a χ2 test with 96.5% confidence for the 14 
names chosen from WePS-1 (see Section 3, first 
paragraph). 

We are going to present a distributional free 
method for constructing the partition P. The ad-
vantage of this method is that it does not depend 
on any assumption about the PNMs distribution.  

Let us consider X1, X2, …, Xn a sample of in-
dependent and identical distributed names from 
DN. By rearranging the indexes, without losing the 
generality, let us suppose that Y1, Y2, …, Yn is 
ordered, that is Y1 ≤ Y2 ≤ … ≤ Yn. Even if we do 
not know what form F has, we can still use equa-
tion (1) in order to estimate ξi. The expected 
value of F(Yi) is (Hogg, Mckean, Craig 2006): 

E[F(Yi)] = i/(n+1)       (2) 

which is an estimation of how much mass prob-
ability is on the left of Yi. In our terms, we esti-
mate that E[F(Yi)] percentage of the name popu-
lation has a name perplexity lower than Yi.  

For a given number ξ, the percentage of the 
name population having the name perplexity at 
most ξ is determined by finding the smallest Yi 

greater than ξ and use the equation (2) to esti-
mate E[F(Yi)].  

In order to build the partition P we are inter-
ested in the percentage of the name population 
that has the perplexity between two given values. 
Let (Yi, Yj) be the smallest interval that includes 
these two values. We can estimate the percentage 
of the name population that has a perplexity be-
tween Yi and Yj. This estimate is simply F(Yj) –
F(Yi). We can use directly equation (2) to esti-
mate this difference. However, it is more impor-
tant to have a confidence interval for this esti-
mate, that is we want to know what the probabil-
ity is that the interval (F(Yi), F(Yj)) contains at 
least a given percentage of the population, p. The 
optimal partition P is the one that maximizes the 
confidence in the fact that within each of the par-
tition classes as many names as possible have the 
name perplexity in a given interval. 

Let p be a given real number between (0,1) 
representing the mass probability that goes into 
the interval (F(Yi), F(Yj)). Let γ = P(F(Yj) – 
F(Yi) ≥ p). Fortunately γ has a distribution that 
does not depend on F. More precisely, γ has a 
beta distribution given by the function in formula 
(3): 
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γ = P(F(Yj) – F(Yi) ≥ p) =    

∫p1  Γ(n+1)/( Γ(j-i)) Γ(n-j+i+1)xj-i-1(1-x)n-j+idx   (3) 

The Γ, called the gamma function, is the ex-
tension of the factorial, Γ(x) = ∫0∞ tx-1e-tdt. The 
gamma function has the property that Γ(x) = Γ(x-
1) Γ(x-2)…. Γ(1); for x an integer, as the argu-
ments in the formula (3) are, Γ(x) = (x-1)! 

The formula (3) gives us a method of building 
the partition P. Let us start with a set of perplex-
ity intervals: (ξ0, ξ1], (ξ1,ξ2], …(ξm-1, ξm]. We 
partition the names in DN such that we maximize 
the confidence γ that at least pi percentage of the 
name population has a name perplexity in (ξi-1, 
ξi]. We chose an independent and identical dis-
tributed sample X of names to which the ordered 
sample Y of name perplexity values corresponds. 
We start with the lowest perplexity interval and 
determine p1,γ1 and Y0, Yi1, such that Y0 ≤ ξ0 ≤ ξ1 

≤Yi1 and γ1 = P(F(Yi1) – F(Y0) ≥ p1). The ith in-
dex varies according to the desired γ1, when p1 is 
given, and vice-versa. We can choose i1 with m-
1 liberty grades. Once we are satisfied with the 
values (p1,γ1), we search for the i2th index such 
that Yi1 ≤ ξ1 ≤ ξ2 ≤Yi2 and (pi2,γi2) have the de-
sired value. The process continues till the penul-
timate (pm-1,γm-1). We have no liberty in choosing 
the (pm,γm).  

We can compute the size of the sample needed 
for guaranteeing a minimum γ and p.  

Let us give an example. Suppose that (ξ0, ξ1] = 
(0,2]. Thus we are interested in finding p, the 
percentage of the name population such that we 
can be γ sure that at least p names have a per-
plexity between 1 and 2 inclusive. We take a 
random sample of n = 30 and suppose the small-
est index i1 such that Yi ≥ 3 for all i > i1 is 17 .  
We want to compute the confidence γ that at 
least p = 60% of the name population has the 
name perplexity within (0,2]: 

γ = 1 - ∫0 
0.6 30!/(16!15!)x15(1-x14)dx = 

= 1 – k(∫0 
0.6 x15dx + ∫0 

0.6 x29dx) =  

= 1 – k[(1/16)(6/10)16 + (1/30)(6/10)30] 

≥ .965 

In practice we want to have optimal values for 
p and γ; a large p implies a small γ and vice-
versa. The optimality is determined by the accu-
racy of the CDC system: we want to have the 

largest possible percentage of names into each 
partition such that our confidence that the names 
inside each partition have the same perplexity.  

It is useful to work the equation (1) back-
wards. Suppose that we established the first par-
tition class of P - we have found the i1th index, 
p1, and γ1. Now we refer only to the names in the 
partition class. We can compute the probability 
that a certain percentage of the names within that 
particular partition class have a given name per-
plexity. That is, we consider a random sample 
inside the partition class, X, and its correspon-
dent random variable Y, as above. The confi-
dence that p1inside percentage of names have the 
name perplexity ξp within the interval (Y0, Yith) 
is: 

P(Y0 < ξp <Yi1) = Σk   (k
n) pk(1-p)n-k      (4) 

(k
n) represents the k-combinations of size n.  

By taking advantage of the bootstrapping 
method (Efron and Tibshirani 1993) we do not 
have to resample inside the partition class. We 
use the Y0, .., Yi1 values with replacement. Using 
(4) we obtain p1inside which shows us which per-
centage inside the partition class has the name 
perplexity within (Y0, Yi1]. And consequently we 
can compute γ1inside. Finally we are able to formu-
late the following statement about each partition 
class: 

In the ith partition class enter pi percent-
age of the name population with a confi-
dence γi. Inside this partition class we are 
γiinside confident that piinside percentage of 
the names have a name perplexity within 
(Yi1-1, Yi1]. 

The p and γ indicate the theoretical values 
that define the partition. In practice the exact 
distribution of the names into the subset is 
unknown, therefore each heuristics that 
computes the perplexity creates its own dis-
tribution. The values γiinside and piinside control 
how much a certain heuristics departs from 
the theoretical values. The optimal heuristics 
have very big figures for γiinside and piinside. 

In the next section we present an experi-
ment carried on a news corpus. We show 
how the above model leads to a stable parti-
tion of names and that inside each partition 
class reliable (p,γ) values can be computed.  
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5 Name Perplexity Partition 

For the experiment described in this section, we 
have used a two-year part of the seven-years Ital-
ian local newspaper corpus called Adige500k 
Corpus (Magnini 2006).  

We describe below how we compute the per-
plexity class for the one-token names and two-
tokens names respectively. As mentioned in sec-
tion 3, the name perplexity decreases rapidly for 
tree-token or more names. If desired, the same 
technique could also be applied for those names. 
In Adige500k there are 106, 187 different one-
token names; 429, 243 two-token names; 36, 773 
three-token names; 5, 152 four-token names, 940 
four token names and less than 300 different 
four-token or more names.  

An estimate of the name perplexity of the one-
token names is the size of the different one-token 
names with which it forms a complete PNM in 
the corpus. For example for the first name 
“John” the estimation of its perplexity is the size 
of the one-token last names it combines with in 
forming PNMs, like “Smith, Travolta, Kennedy” 
etc. The bigger the size of its complementary 
names, the higher is its name perplexity. In Table 
3 we present the figures of these estimates. 

occurrences (interval) average perplexity 
1-5 4.13 
6-20 8.34 
21-100 17.44 
101-1,000 68.54 
1,000-5,000 683.95 
5,000-31,091 478.23 

Table 3. Average perplexity one-token names 

We start with a five name perplexity classes: 
“very low” (VL) , “low” (L) , “medium”, (M) 
“high” (H) and “very high” (VH). The name per-
plexity of a two-token name is interpolated from 
the name perplexity of its components. We used 
the following heuristics: the name perplexity 
class is the average name perplexity classes of its 
one-token name. If the name perplexity classes 
are the same then the name perplexity class of 
the whole name is one class less (if possible). 

In order to compute the borderline be-
tween two consecutive classes we apply the 
(p, γ) method. We selected 25 two-tokens 
names and we manually investigate their oc-
currence in order to know their real name 
perplexity. The perplexity classes obtained 

after applying the (p, γ) technique are listed 
in Tables 4a and 4b respectively. 

perplexity class percentage 
very high (VH) 5.3% 
high (H) 8.7% 
medium (M) 20.9% 
low (L) 27.6% 
very low (VL) 37.5% 

Table 4a. First Name perplexity classes 

perplexity class percentage 
very high (VH) 1.8% 
high (H) 3.36% 
medium (M) 17.51% 
low (L) 20.31% 
very low (VL) 57.02% 

Table 4b. Last Name perplexity classes 

Tables 4a and 4b fully describe the partition 
for one-token names. Ordering the one token 
names according to their perplexity we  chose the 
first ones according to the  percentage listed 
above. The same process applies to the one-token 
last names. The values computed for two-token 
names are listed. 

 P γ pinside γinside 
VH 0.04% 70% 70% 80% 
H 2.53% 76% 70% 80% 
M 10.08% 87% 80% 82% 
L 27.97% 90% 99% 90% 
VL 59.38% 96.5% 99% 96.5% 

Table 5. (p, γ, pinside, γinside) values 

6 CDC with Name Perplexity Estimates 

The working hypothesis is that using the name 
partition obtained with the (p, γ) procedure we 
can effectively improve the accuracy of a 
CDC system by reducing/increasing the 
amount of contextual evidence required for 
coreferencing according to the perplexity 
class to each the name belong. 

To construct a test corpus we have 
adopted the following strategy: we chose 20 
two-token names such that both sets of one 
token-names, the first names and the last 
names respectively, cover the whole space in 
the perplexity partition. In Table 6a and 6b 
we present 5 first and last names used in test. 
As not all the 25 names formed by combin-
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ing the names in 6a and 6b are found in the 
corpus, we consider 11 other two-tokens 
names having the same distribution. On the 
first column the names are listed, on the sec-
ond column the computed perplexity (P), on 
the third column the number of occurrences 
as one-token name (O), on the fourth the 
number of occurrences in a two-token name 
(T) and on the last column the computed 
perplexity class (PC). 

Name P O T PC 
Dellai 7 31091 10722 VL 
Parolari 171 1,619 2207 H 
Prodi 52 9184 3382 M 
Ruini 15 554 203 L 
Rossi 753 7506 8356 VH 

Table 6a. Test Last Names  

Name P O T PC 
Camillo 276 664 1731 L 
Lorenzo 2088 2167 2198 H 
Paolo 5255 4001 51244 VH 
Romano 14 886 6414 M 
Varena 5 10 85 VH 

Table 6b. Test First Names 

We compare the results obtained by our 
CDC system using the name perplexity parti-
tion (S) against two baselines: one that con-
siders only the context at the sentence level 
and (BLS) one that considers the whole news 
(BLN). We obtain the following figures us-
ing the B-CUBED measure: S scores .72, 
BLS .59 and BLN .61. The gain in accuracy 
of more than 10% is due to the use of name 
perplexity classes. 

The great advantage of using the (p,γ) es-
timates can be seen in those case where the 
ratio between the number of mentions and 
the rank of the name is close to extremes: 
either big number of mentions and low name 
perplexity, or low number of mentions and 
high name perplexity. In the first case the 
contextual evidence for coreference may be 
very scarce and in the second case, the re-
quirement for strong contextual evidence is 
the best decision. Our results suggest that 
loosening the contextual requirements in the 
first case leads to an important gain in recall, 

up to 40%, while the lose in precision is less 
than 1.5%. The situation is best described by 
four panels of the five-number-summary 
plots of the test corpus. Panel A shows the 
distribution of the main five quantilies con-
sidering all the names together. Panel B 
shows the distribution for very low perplex-
ity class, Panel C for medium perplexity 
class and Panel D for the very high perplex-
ity class. The number of outliers in Panel A 
is high, which makes it difficult for any CDC 
system, but inside each perplexity class the 
variation is reduced. 

 

7 Constructing an Evaluation Corpus 

The (p, γ) technique could be used for construct-
ing a test corpus for the CDC task. The main 
problem faced in the construction of the test cor-
pus is data variation. The number of different 
entities mentioned with the same name is a ran-
dom variable with a big variance. The distribu-
tion of the number of entities is very skew. The 
average perplexity is 2.01%, but less than 18% of 
the total number of names have a perplexity 
greater than 3. In Figure 2 we plot a modified 
Lorenz curve (the vertical axis is not divided in 
percentage, as the values are discrete). 

 
Figure 2. Lorenz Curve names/no. entities 

The direct consequence of this situation is the 
fact that constructing an evaluation corpus by 
taking random names will result with a great 
probability in a very skew test corpus. Indeed, 
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the expectation is that in such corpus, the aver-
age perplexity is very low, and consequently, the 
great majority of cases can be coreferenced by a 
simple algorithm. Therefore, this test corpus may 
be largely ineffective in ranking the algorithms. 
In fact, we want to construct an evaluation cor-
pus that is able to promote the most effective 
algorithms. The discriminative power of a test 
corpus is directly related to the variance of the 
data. Moreover, if only certain names are consid-
ered for a test corpus, the variance can be very 
low; in particular, when the test corpus contains 
just one name the variance is zero. It is difficult 
to see the merits of different algorithms when 
tested on such corpora. 

In order to make more informative statements 
we need to construct an evaluation corpus that is 
less dependent on the data variance. A possible 
solution is to form a partition of the set of the 
PNMs, that is, to split the whole set of PNMs in 
mutual disjunctive groups. This type of method-
ology is called stratified sampling, mainly be-
cause each group is a stratum. The sampling 
strategy, the number of sampling elements, the 
variance and the sampling error can be calculated 
independently for each strata. 

The main advantages of stratified sampling 
are that we can concentrate on the special 
groups, that in general this strategy improves the 
accuracy of the estimation, and that the number 
of elements in each stratum can be conveniently 
chosen. The main disadvantages are related to 
the difficulty in finding a suitable partition of the 
population. The strata should be chosen prior to 
the sampling time, but the homogeneity inside 
the stratum should be guaranteed.  

Our proposal is to use the name perplexity in-
tervals. We argue that this proposal is four-fold 
sustainable. Firstly, the name perplexity is di-
rectly connected to the random variable whose 
distribution we estimate, namely the number of 
entities. Secondly, for free names it can be com-
puted off - line. Thirdly, it gives us an independ-
ent and formally correct way to make a partition. 
Fourthly, it easily allows a separation between 
the important and unimportant cases.  

To begin with, let us suppose we have a name 
that has n occurrences in the Adige 500K. If n is 
relatively large, than we can be sure that there 
are some dominant entities that may be repre-
sented by the majority of PNMs that have this 
name as value. However, it is unknown whether 
the n comes from the fact that there are indeed 
some dominant entities or whether the name by 
itself is a frequently used name. 

In order to deal with the differences between 
frequency vs. perplexity, we propose to build a 
matrix defined by the frequency classes as rows 
and perplexity classes as columns. In Figure 3 
we present this matrix. 

 
Figure 3. Frequency/Commonness strata ma-

trix. 

The number of different names in each of the 
cells of the matrix may differ according to the 
departure of the normal distribution of each stra-
tum. In general, if the real distribution is normal, 
then as much as ten examples are sufficient. Oth-
erwise, for not very skew distributions, which  
we expect most of the strata to have, an average 
of 30 examples should suffice. In same cases, as 
the normal distribution can be appropriately 
sampled when both Np and N(1-p) are grater than 
five – where p is the ratio perplexity/frequency 
and N the sample dimension – the number of 
elements in the cell may be around 200, by a 
maximal rough estimation. 

8 Conclusion and Further Research 

We have presented a distributional free statistical 
method to design a name perplexity system, such 
that each perplexity class maximizes the number 
of names for which the prior coreference prob-
ability belongs to the same interval. This infor-
mation helps the PCDC systems lower/increase 
adequately the amount of contextual evidence 
required for coreference. 

The approach presented here is effective in 
dealing with the problems raised by using a simi-
larity metrics on contextual vectors improving 
the overall accuracy with more than 10%. 

We would like to increase the number of cases 
considered in the sample required to delimit the 
perplexity classes. Equation (3) may be devel-
oped further in order to obtain exactly the num-
ber of required cases. 

The (p, γ) procedure is effective is dealing 
with the problems regarding the construction of 
an evaluation corpus. The technique presented in 
the last section could be extended further and  we 
are already working on a new series of experi-
ments whose results will be made available in the 
near future.  
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Abstract

We apply machine learning to the Lin-
ear Ordering Problem in order to learn
sentence-specific reordering models for
machine translation. We demonstrate that
even when these models are used as a mere
preprocessing step for German-English
translation, they significantly outperform
Moses’ integrated lexicalized reordering
model.

Our models are trained on automatically
aligned bitext. Their form is simple but
novel. They assess, based on features of
the input sentence, how strongly each pair
of input word tokens wi, wj would like
to reverse their relative order. Combining
all these pairwise preferences to find the
best global reordering is NP-hard. How-
ever, we present a non-trivial O(n3) al-
gorithm, based on chart parsing, that at
least finds the best reordering within a cer-
tain exponentially large neighborhood. We
show how to iterate this reordering process
within a local search algorithm, which we
use in training.

1 Introduction

Machine translation is an important but difficult
problem. One of the properties that makes it dif-
ficult is the fact that different languages express
the same concepts in different orders. A ma-
chine translation system must therefore rearrange
the source language concepts to produce a fluent
translation in the target language.

1This work is excerpted and adapted from the first au-
thor’s Ph.D. thesis (Tromble, 2009). Some of the ideas here
appeared in (Eisner and Tromble, 2006) without empirical
validation. The material is based in part upon work sup-
ported by the National Science Foundation under Grant No.
0347822.

Phrase-based translation systems rely heavily
on the target language model to ensure a fluent
output order. However, a target n-gram language
model alone is known to be inadequate. Thus,
translation systems should also look at how the
source sentence prefers to reorder. Yet past sys-
tems have traditionally used rather weak models of
the reordering process. They may look only at the
distance between neighboring phrases, or depend
only on phrase unigrams. The decoders also rely
on search error, in the form of limited reordering
windows, for both efficiency and translation qual-
ity.

Demonstrating the inadequacy of such ap-
proaches, Al-Onaizan and Papineni (2006)
showed that even given the words in the reference
translation, and their alignment to the source
words, a decoder of this sort charged with merely
rearranging them into the correct target-language
order could achieve a BLEU score (Papineni et
al., 2002) of at best 69%—and that only when
restricted to keep most words very close to their
source positions.

This paper introduces a more sophisticated
model of reordering based on the Linear Order-
ing Problem (LOP), itself an NP-hard permutation
problem. We apply machine learning, in the form
of a modified perceptron algorithm, to learn pa-
rameters of a linear model that constructs a matrix
of weights from each source language sentence.
We train the parameters on orderings derived from
automatic word alignments of parallel sentences.

The LOP model of reordering is a complete
ordering model, capable of assigning a different
score to every possible permutation of the source-
language sentence. Unlike the target language
model, it uses information about the relative posi-
tions of the words in the source language, as well
as the source words themselves and their parts of
speech and contexts. It is therefore a language-pair
specific model.
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We apply the learned LOP model as a prepro-
cessing step before both training and evaluation of
a phrase-based translation system, namely Moses.
Our methods for finding a good reordering un-
der the NP-hard LOP are themselves of interest,
adapting algorithms from natural language parsing
and developing novel dynamic programs.

Our results demonstrate a significant improve-
ment over translation using unreordered German.
Using Moses with only distance-based reordering
and a distortion limit of 6, our preprocessing im-
proves BLEU from 25.27 to 26.40. Furthermore,
that improvement is significantly greater than the
improvement Moses achieves with its lexicalized
reordering model, 25.55.

Collins et al. (2005) improved German-English
translation using a statistical parser and several
hand-written rules for preprocessing the German
sentences. This paper presents a similar improve-
ment using fully automatic methods.

2 A Linear Ordering Model

This section introduces a model of word reorder-
ing for machine translation based on the Linear
Ordering Problem.

2.1 Formalization
The input sentence is w = w1w2 . . . wn. To dis-
tinguish duplicate tokens of the same word, we as-
sume that each token is superscripted by its input
position, e.g., w = die1 Katze2 hat3 die4 Frau5

gekauft6 (gloss: “the cat has the woman bought”).
For a fixedw, a permutation π = π1π2 . . . πn is

any reordering of the tokens in w. The set Πn of
all such permutations has size n!. We would like to
define a scoring model that assigns a high score to
the permutationπ = die4 Frau5 hat3 gekauft6 die1

Katze2 (gloss: “the woman has bought the cat”),
since that corresponds well to the desired English
order.

To construct a function that scores permutations
of w, we first construct a pairwise preference ma-
trix Bw ∈ Rn×n, whose entries are

Bw[`, r] def= θ · φ(w, `, r), (1)

Here θ is a vector of weights. φ is a vector of
feature functions, each considering the entire word
sequencew, as well as any functions thereof, such
as part of speech tags.

We will hereafter abbreviate Bw as B. Its inte-
ger indices ` and r are identified with the input to-
kensw` andwr, and it can be helpful to write them

that way; e.g., we will sometimes write B[2, 5] as
B[Katze2,Frau5].

The idea behind our reordering model is
that B[Katze2,Frau5] > B[Katze5,Frau2] ex-
presses a preference to keep Katze2 before Frau5,
whereas the opposite inequality would express a
preference—other things equal—for permutations
in which their order is reversed. Thus, we define1

score(π) def=
∑

i,j: 1≤i<j≤n

B[πi, πj ] (2)

p(π) def=
1
Z

exp(γ · score(π)) (3)

π̂
def= argmax

π∈Πn

score(π) (4)

Note that i and j denote positions in π, whereas
πi, πj , `, and r denote particular input tokens such
as Katze2 and Frau5.

2.2 Discussion

To the extent that the costs B generally discour-
age reordering, they will particularly discourage
long-distance movement, as it swaps more pairs
of words.

We point out that our model is somewhat pecu-
liar, since it does not directly consider whether the
permutation π keeps die4 and Frau5 adjacent or
even close together, but only whether their order
is reversed.

Of course, the model could be extended to con-
sider adjacency, or more generally, the three-way
cost of interposing k between i and j. See (Eis-
ner and Tromble, 2006; Tromble, 2009) for such
extensions and associated algorithms.

However, in the present paper we focus on the
model in the simple form (2) that only considers
pairwise reordering costs for all pairs in the sen-
tence. Our goal is to show that these unfamiliar
pairwise reordering costs are useful, when mod-
eled with a rich feature set via equation (1). Even
in isolation (as a preprocessing step), without con-
sidering any other kinds of reordering costs or lan-
guage model, they can achieve useful reorderings

1For any ` < r, we may assume without loss of gener-
ality that B[r, `] = 0, since if not, subtracting B[r, `] from
bothB[`, r] andB[r, `] (exactly one of which appears in each
score(π)) will merely reduce the scores of all permutations
by this amount, leaving equations (3) and (4) unchanged.
Thus, in practice, we take B to be an upper triangular ma-
trix. We use equation (1) only to defineB[`, r] for ` < r, and
train θ accordingly. However, we will ignore this point in our
exposition.
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of German that complement existing techniques
and thus improve state-of-the-art systems. Our
positive results in even this situation suggest that
in future, pairwise reordering costs should proba-
bly be integrated into MT systems.

The probabilistic interpretation (3) of the
score (2) may be useful when thus integrating our
model with language models or other reordering
models during translation, or simply when train-
ing our model to maximize likelihood or minimize
expected error. However, in the present paper we
will stick to purely discriminative training and de-
coding methods that simply try to maximize (2).

2.3 The Linear Ordering Problem

In the combinatorial optimization literature, the
maximization problem (4) (with inputB) is known
as the Linear Ordering Problem. It has numer-
ous practical applications in fields including eco-
nomics, sociology, graph theory, graph drawing,
archaeology, and task scheduling (Grötschel et
al., 1984). Computational studies on real data
have often used “input-output” matrices represent-
ing resource flows among economic sectors (Schi-
avinotto and Stützle, 2004).

Unfortunately, the problem is NP-hard. Further-
more, it is known to be APX-complete, meaning
that there is no polynomial time approximation
scheme unless P=NP (Mishra and Sikdar, 2004).
However, there are various heuristic procedures
for approximating it (Tromble, 2009). We now
give an attractive, novel procedure, which uses a
CKY-parsing-like algorithm to search various sub-
sets of Πn in polynomial time.

3 Local Search

“Local search” refers to any hill-climbing proce-
dure that iteratively improves a solution by mak-
ing an optimal “local” change at each iteration.2

In this case, we start with the identity permutation,
find a “nearby” permutation with a better score (2),
and repeat until we have reached a local maximum
of the scoring objective.

This section describes a local search procedure
that uses a very generous definition of “local.” At
each iteration, it finds the optimal permutation in
a certain exponentially large neighborhood N(π)
of the current permutation π.

2One can introduce randomness to obtain MCMC sam-
pling or simulated annealing algorithms. Our algorithms ex-
tend naturally to allow this (cf. Tromble (2009)).

S → S0,n

Si,k → Si,j Sj,k

Si−1,i → πi

Figure 1: A grammar for a large neighborhood of
permutations, given one permutation π of length
n. The Si,k rules are instantiated for each 0 ≤
i < j < k ≤ n, and the Si−1,i rules for each
0 < i ≤ n.

We say that two permutations are neighbors iff
they can be aligned by an Inversion Transduction
Grammar (ITG) (Wu, 1997), which is a familiar
reordering device in machine translation. Equiva-
lently, π′ ∈ N(π) iff π can be transformed into
π′ by swapping various adjacent substrings of π,
as long as these swaps are properly nested. Zens
and Ney (2003) used a normal form to show that
the size of the ITG neighborhood N(π) is a large
Schröder number, which grows exponentially in
n. Asymptotically, the ratio between the size of
the neighborhood for n + 1 and the size for n ap-
proaches 3 + 2

√
2 ≈ 5.8.

We show that equation (2) can be optimized
within N(π) in O(n3) time, using dynamic pro-
gramming. The algorithm is based on CKY pars-
ing. However, a novelty is that the grammar
weights must themselves be computed by O(n3)
dynamic programming.

Our grammar is shown in Figure 1. Parsing
the “input sentence” π with this grammar simply
constructs all binary trees that yield the string π.
There is essentially only one nonterminal, S, but
we split it into O(n2) position-specific nontermi-
nals such as Si,j , which can only yield the span
πi+1πi+2 . . . πj . An example parse is shown in
Figure 2.

The important point is that we will place a
score on each binary grammar rule. The score
of the rule Si,k → Si,j Sj,k is max(0,∆i,j,k),
where ∆i,j,k is the benefit to swapping the sub-
strings πi+1πi+2 . . . πj and πj+1πj+2 . . . πk. The
rule is considered to be a “swap rule” if its
score is positive, showing that a swap will be
beneficial (independent of the rest of the tree).
If the parse in Figure 2 is the parse with
the highest total score, and its swap rules are
S0,5 → S0,1 S1,5 and S3,5 → S3,4 S4,5, then
our best permutation in the neighborhood of π
must be the (linguistically desirable) permutation
die4Frau5hat3gekauft6die1Katze2, obtained from
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S1,3

�� HH
S1,2

die4

S2,3

Frau5

S3,5

�� HH
S3,4

gekauft6

S4,5

hat3

S5,6

Katze2

Figure 2: One parse of the current permutation π.
In this example, π has somehow gotten the input
words into alphabetical order (owing to previous
hill-climbing steps). We are now trying to further
improve this order.

π by two swaps.
How do we find this solution? Clearly

the benefit (positive or negative) to swapping
πi+1πi+2 . . . πj with πj+1πj+2 . . . πk is

∆i,j,k =
j∑

`=i+1

k∑
r=j+1

B[πr, π`]−B[π`, πr] (5)

We can evaluate all O(n3) possible swaps in to-
tal time O(n3), using the dynamic programming
recurrence

∆i,j,k = ∆i,j,k−1 + ∆i+1,j,k −∆i+1,j,k−1 (6)

+B[πk, πi+1]−B[πi+1, πk]

with the base case ∆i,j,k = 0 if i = j or j = k.
This gives us the weights for the grammar rules,
and then we can use weighted CKY parsing to
find the highest-scoring (Viterbi) parse in O(n3)
time. Extracting our new and improved permuta-
tion π′ ∈ N(π) from this parse is a simple O(n)-
time algorithm.

Figure 3 gives pseudocode for our local search
algorithm, showing how to compute the quan-
tities (6) during parsing rather than beforehand.
β[i, k] holds the weight of the best permuta-
tion (in the neighborhood) of the subsequence
πi+1πi+1 . . . πk.3

3The use of β is intended to suggest an analogy to inside
probability—or more precisely, the Viterbi approximation to
inside probability (since we are maximizing rather than sum-
ming over parses).

The next two sections describe how to use our
local search algorithm to discriminatively learn the
weights of the parameters from Section 2, equa-
tion (1).

4 Features

Our objective function (2) works only to the extent
that we can derive a good pairwise preference ma-
trix Bw. We do this by using a rich feature set in
equation (1).

We adapt the features of McDonald et al.
(2005), introduced there for dependency parsing,
to the task of machine translation reordering. Be-
cause both models construct features for pairs of
words given the entire sentence, there is a close
correspondence between the two tasks, although
the output is quite different.

Each feature φ(w, `, r) in equation (1) is a bi-
nary feature that fires when (w, `, r) has some
conjunction of properties. The properties that are
considered include the words w` and wr, the parts
of speech of {w`−1, . . . , wr+1}, and the distance
r − `. Table 1 shows the feature templates.

We also tried features based on a dependency
parse of the German, with the idea of using LOP
features to reorder the dependents of each word,
and thus model syntactic movement. This did
produce better monolingual reorderings (as in Ta-
ble 2), but it did not help final translation into En-
glish (Table 3), so we do not report the details here.

5 Learning to Reorder

Ideally, we would have a large corpus of desir-
able reorderings of source sentences—in our case,
German sentences permuted into target English
word order—from which to train the parameters of
our model. Unfortunately, the alignments between
German and English sentences are only infre-
quently one-to-one. Furthermore, human-aligned
parallel sentences are hard to come by, and never
in the quantity we would like.

Instead, we make do with automatically-
generated word alignments, and we heuristi-
cally derive an English-like word order for
the German sentence based on the alignment.
We used GIZA++ (Och and Ney, 2003) to
align approximately 751,000 sentences from the
German-English portion of the Europarl corpus
(Koehn, 2005), in both the German-to-English and
English-to-German directions. We combined the
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1: procedure LOCALSEARCHSTEP(B,π, n)
2: for i← 0 to n− 1 do
3: β[i, i+ 1]← 0
4: for k ← i+ 1 to n do
5: ∆[i, i, k]← ∆[i, k, k]← 0
6: end for
7: end for
8: for w ← 2 to n do
9: for i← 0 to n− w do

10: k ← i+ w
11: β[i, k]← −∞
12: for j ← i+ 1 to k − 1 do
13: ∆[i, j, k]← ∆[i, j, k − 1] + ∆[i+ 1, j, k]−∆[i+ 1, j, k − 1] +B[πk, πi+1]−B[πi+1, πk]
14: β[i, k]← max(β[i, k], β[i, j] + β[j, k] + max(0, ∆[i, j, k]))
15: end for
16: end for
17: end for
18: return β[0, n]
19: end procedure

Figure 3: Pseudocode for computing the score of the best permutation in the neighborhood of π under
the Linear Ordering Problem specified by the matrix B. Computing the best neighbor is a simple matter
of keeping back pointers to the choices of max and ordering them as implied.

alignments using the “grow-diag-final-and” proce-
dure provided with Moses (Koehn et al., 2007).

For each of these German sentences, we derived
the English-like reordering of it, which we call
German′, by the following procedure. Each Ger-
man token was assigned an integer key, namely
the position of the leftmost of the English tokens
to which it was aligned, or 0 if it was not aligned
to any English tokens. We then did a stable sort of
the German tokens based on these keys, meaning
that if two German tokens had the same key, their
order was preserved.

This is similar to the oracle ordering used by
Al-Onaizan and Papineni (2006), but differs in the
handling of unaligned words. They kept unaligned
words with the closest preceding aligned word.4

Having found the German′ corresponding to
each German sentence, we randomly divided
the sentences into 2,000 each for development
and evaluation, and the remaining approximately
747,000 for training.

We used the averaged perceptron algorithm
(Freund and Schapire, 1998; Collins, 2002) to
train the parameters of the model. We ran the al-
gorithm multiple times over the training sentences,

4We tried two other methods for deriving English word
order from word alignments. The first alternative was to
align only in one direction, from English to German, with
null alignments disallowed, so that every German word was
aligned to a single English word. The second alternative
used BerkeleyAligner (Liang et al., 2006; DeNero and Klein,
2007), which shares information between the two alignment
directions to improve alignment quality. Neither alternative
produced improvements in our ultimate translation quality.

measuring the quality of the learned parameters by
reordering the held-out development set after each
iteration. We stopped when the BLEU score on
the development set failed to improve for two con-
secutive iterations, which occurred after fourteen
passes over the data.

Each perceptron update should compare the true
German′ to the German′ that would be predicted
by the model (2). As the latter is NP-hard to find,
we instead substitute the local maximum found by
local search as described in Section 3, starting at
the identity permutation, which corresponds to the
original German word order.

During training, we iterate the local search as
described earlier. However, for decoding, we only
do a single step of local search, thus restricting re-
orderings to the ITG neighborhood of the origi-
nal German. This restriction turns out to improve
performance slightly, even though it reduces the
quality of our approximation to the LOP prob-
lem (4). In other words, it turns out that reorder-
ings found outside the ITG neighborhood tend to
be poor German′ even if our LOP-based objective
function thinks that they are good German′.

This is not to say that the gold standard German′

is always in the ITG neighborhood of the original
German—often it is not. Thus, it might be bet-
ter in future work to still allow the local search to
take more than one step, but to penalize the second
step. In effect, score(π) would then include a fea-
ture indicating whether π is in the neighborhood
of the original German.
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t`−1 w` t` t`+1 tb tr−1 wr tr tr+1

× × × ×
× × ×
× × ×
× × ×
× × ×

× ×
× ×

× ×
× ×

×
×

×
×

× × ×
× × × ×
× × ×
× × × ×
× × ×

× × × ×
× × ×
× × × ×

× × ×
Table 1: Feature templates forB[`, r] (w` is the `th
word, t` its part of speech tag, and b matches any
index such that ` < b < r). Each of the above
is also conjoined with the distance between the
words, r − `, to form an additional feature tem-
plate. Distances are binned into 1, 2, 3, 4, 5, > 5,
and > 10.

The model is initialized at the start of train-
ing using log-odds of the parameters. Let Φm =
{(w, `, r) | φm(w, `, r) = 1} be the set of word
pairs in the training data for which feature m fires.
Let

→
Φm be the subset of Φm for which the words

stay in order, and
←
Φm the subset for which the

words reverse order. Then in this model,

θm = log
(∣∣∣→Φm

∣∣∣+
1
2

)
−log

(∣∣∣←Φm

∣∣∣+
1
2

)
. (7)

This model is equivalent to smoothed naı̈ve Bayes
if converted to probabilities. The learned model
significantly outperforms it on the monolingual re-
ordering task.

Table 2 compares the model after perceptron
training to the model at the start of training,
measuring BLEU score of the predicted German′

against the observed German′. In addition to these
BLEU scores, we can measure precision and re-
call of pairs of reordered words against the ob-

Ordering p2 p3 p4 BLEU
German 57.4 38.3 27.7 49.65
Log-odds 57.4 38.4 27.8 49.75
Perceptron 58.6 40.3 29.8 51.51

Table 2: Monolingual BLEU score on develop-
ment data, measured against the “true” German′

ordering that was derived from automatic align-
ments to known English translations. The table
evaluates three candidate orderings: the original
German, German reordered using the log-odds
initialized model, and German reordered using
the perceptron-learned model. In addition to the
BLEU score, the table shows bigram, trigram, and
4-gram precisions. The unigram precisions are al-
ways 100%, because the correct words are given.

served German′. On the held out test set, the pre-
dicted German′ achieves a recall of only 21%, but
a precision of 64%. Thus, the learned model is
too conservative, but makes moderately good de-
cisions when it does reorder.

6 Reordering as Preprocessing

This section describes experiments using the
model introduced in Section 2 and learned in Sec-
tion 5 to preprocess German sentences for trans-
lation into English. These experiments are similar
to those of Collins et al. (2005).

We used the model learned in Section 5 to gen-
erate a German′ ordering of the training, develop-
ment, and test sets. The training sentences are the
same that the model was trained on, and the devel-
opment set is the same that was used as the stop-
ping criterion for the perceptron. The test set was
unused in training.

We used the resulting German′ as the input to
the Moses training pipeline. That is, Moses re-
computed alignments of the German′ training data
to the English sentences using GIZA++, then con-
structed a phrase table. Moses used the develop-
ment data for minimum error-rate training (Och,
2003) of its small number of parameters. Finally,
Moses translated the test sentences, and we mea-
sured performance against the English reference
sentences. This is the standard Moses pipeline, ex-
cept German has been replaced by German′.

Table 3 shows the results of translation, both
starting with unreordered German, and starting
with German′, reordered using the learned Linear
Ordering Problems. Note that Moses may itself re-
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System Input Moses Reord. p1 p2 p3 p4 BLEU METEOR TER
baseline German Distance 59.6 31.4 18.8 11.6 25.27 54.03 60.60
(a) German Lexical 60.0 32.0 19.3 12.1 25.55 54.18 59.76
(b) German′ Distance 60.4 32.7 20.2 12.8 26.40 54.91 58.63
(a)+(b) German′ Lexical 59.9 32.4 20.0 12.8 26.44 54.61 59.23

Table 3: Machine translation performance of several systems, measured against a single English refer-
ence translation. The results vary both the preprocessing—either none, or reordered using the learned
Linear Ordering Problems—and the reordering model used in Moses. Performance is measured using
BLEU, METEOR (Lavie et al., 2004), and TER (Snover et al., 2006). (For TER, smaller values are
better.)

order whatever input that it receives, during trans-
lation into English. Thus, the results in the table
also vary the reordering model used in Moses, set
to either a single-parameter distance-based model,
or to the lexicalized bidirectional msd model. The
latter model has six parameters for each phrase
in the phrase table, corresponding to monotone,
swapped, or discontinuous ordering relative to the
previous phrase in either the source or target lan-
guage.

How should we understand the results? The
baseline system is Moses phrase-based translation
with no preprocessing and only a simple distance-
based reordering model. There are two ways to
improve this: (a) ask Moses to use the lexicalized
bidirectional msd reordering model that is pro-
vided with Moses and is integrated with the rest of
translation, or (b) keep the simple distance-based
model within Moses, but preprocess its training
and test data with our linear reordering model.
Note that the preprocessing in (b) will obviously
change the phrasal substrings that are learned by
Moses, for better or for worse.

First, remarkably, (b) is significantly better than
(a) on BLEU, with p < 0.0001 according to a
paired permutation test.

Second, combining (a) with (b) produced no im-
provement over (b) in BLEU score (the difference
between 26.40 and 26.44 is not significant, even
at p < 0.2, according to the same paired per-
mutation test). Lexicalized reordering in Moses
even degraded translation performance according
to METEOR and TER. The TER change is sig-
nificant according to the paired permutation test at
p < 0.001. (We did not perform a significance test
for METEOR.)

Our word-based model surpasses the lexical-
ized reordering in Moses largely because of long-
distance movement. The 518 sentences (26%) in
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Figure 4: Cumulative change in BLEU score of
(b) relative to the baseline and (a), aggregated by
the number of reordered word pairs in each sen-
tence. For those sentences where our model re-
orders fewer than five word pairs, the BLEU score
of translation degrades.

the test set for which our model moves a word
more than six words away from its starting posi-
tion account for more than 67% of the improve-
ment in BLEU from (a) to (b).

Figure 4 shows another view of the BLEU im-
provement. It shows that, compared to the base-
line, our preprocessing has basically no effect for
sentences where it does only a little reordering,
changing the relative order of fewer than five pairs
of words. Compared to Moses with lexicalized re-
ordering, these same sentences actually hurt per-
formance. This more than accounts for the differ-
ence between the BLEU scores of (b) and (a)+(b).

Going beyond preprocessing, our model could
also be integrated into a phrase-based decoder. We
briefly sketch that possibility here.
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Phrase-based decoders keep a source coverage
vector with every partial translation hypothesis.
That coverage vector allows us to incorporate the
scores from a LOP matrix B directly. Whenever
the decoder extends the hypothesis with a new
source phrase, covering wi+1wi+2 . . . wj , it adds

j−1∑
`=i+1

j∑
r=`+1

B[`, r] +
j∑

`=i+1

∑
r∈U

B[`, r].

The first term represents the phrase-internal score,
and the second the score of putting the words in the
phrase before all the remaining uncovered words
U .

7 Comparison to Prior Work

Preprocessing the source language to improve
translation is a common technique. Xia and Mc-
Cord (2004) improved English-French translation
using syntactic rewrite rules derived from Slot
Grammar parses. Collins et al. (2005) reported
an improvement from 25.2% to 26.8% BLEU
on German-English translation using six hand-
written rules to reorder the German sentences
based on automatically-generated phrase-structure
trees. Our work differs from these approaches in
providing an explicit model that scores all pos-
sible reorderings. In this paper, our model was
trained and used only for 1-best preprocessing, but
it could potentially be integrated into decoding as
well, where it would work together with the trans-
lation model and target language model to find a
congenial translation.

Costa-jussà and Fonollosa (2006) improved
Spanish-English and Chinese-English translation
using a two-step process, first reordering the
source language, then translating it, both using dif-
ferent versions of a phrase-based translation sys-
tem. Many others have proposed more explicit
reordering models (Tillmann, 2004; Kumar and
Byrne, 2005; Koehn et al., 2005; Al-Onaizan and
Papineni, 2006). The primary advantage of our
model is that it directly accounts for interactions
between distant words, leading to better treatment
of long-distance movement.

Xiong et al. (2006) proposed a constituent
reordering model for a bracketing transduction
grammar (BTG) (Wu, 1995), which predicts the
probability that a pair of subconstituents will re-
order when combined to form a new constituent.
The features of their model look only at the first

source and target word of each constituent, mak-
ing it something like a sparse version of our model.
However, because of the target word features, their
reordering model cannot be separated from their
translation model.

8 Conclusions and Future Work

We have presented an entirely new model of re-
ordering for statistical machine translation, based
on the Linear Ordering Problem, and shown that
it can substantially improve translation from Ger-
man to English.

The model is demonstrably useful in this pre-
processing setting—which means that it can be
very simply added as a preprocessing step to any
MT system. German-to-English is a particularly
attractive use case, because the word orders are
sufficiently different as to require a good reorder-
ing model that requires long-distance reordering.
Our preprocessing here gave us a BLEU gain
of 0.9 point over the best Moses-based result.
English-to-German would obviously be another
potential win, as would translating between En-
glish and Japanese, for example.

As mentioned in Section 6, our model could
also be integrated into a phrase-based, or a syntax-
based decoder. That possibility remains future
work, but it is likely to lead to further improve-
ments, because it allows the translation system to
consider multiple possible reorderings under the
model, as well as to tune the weight of the model
relative to the other parts of the system during
MERT.

Tromble (2009) covers this integration in more
detail, and proposes several other ways of integrat-
ing our reordering model into machine translation.
It also experiments with numerous other param-
eter estimation procedures, including some that
use the probabilistic interpretation of our model
from (3). It presents numerous additional neigh-
borhoods for search in the Linear Ordering Prob-
lem.

We mentioned several possible extensions to the
model, such as going beyond the scoring model
of equation (2), or considering syntax-based fea-
tures. Another extension would try to reorder not
words but phrases, following (Xiong et al., 2006),
or segment choice models (Kuhn et al., 2006),
which assume a single segmentation of the words
into phrases. We would have to define the pair-
wise preference matrix B over phrases rather than
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words (Eisner and Tromble, 2006). This would
have the disadvantage of complicating the feature
space, but might be a better fit for integration with
a phrase-based decoder.

Finally, we gave a novel algorithm for ap-
proximately solving the Linear Ordering Prob-
lem, interestingly combining dynamic program-
ming with local search. Another novel contri-
bution is that we showed how to parameterize a
function that constructs a specific Linear Order-
ing Problem instance from an input sentence w,
and showed how to learn those parameters from
a corpus of parallel sentences, using the percep-
tron algorithm. Likelihood-based training using
equation (3) would also be possible, with modifi-
cations to our algorithm, notably the use of normal
forms to avoid counting some permutations multi-
ple times (Tromble, 2009).

It would be interesting to compare the speed
and accuracy of our dynamic-programming local-
search method with an exact algorithm for solving
the LOP, such as integer linear programming with
branch and bound (cf. Charon and Hudry (2006)).
Exact solutions can generally be found in practice
for n ≤ 100.
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Abstract

Current statistical machine translation sys-
tems usually extract rules from bilingual
corpora annotated with 1-best alignments.
They are prone to learn noisy rules due
to alignment mistakes. We propose a new
structure calledweighted alignment matrix
to encode all possible alignments for a par-
allel text compactly. The key idea is to as-
sign a probability to each word pair to in-
dicate how well they are aligned. We de-
sign new algorithms for extracting phrase
pairs from weighted alignment matrices
and estimating their probabilities. Our ex-
periments on multiple language pairs show
that using weighted matrices achieves con-
sistent improvements over usingn-best
lists in significant less extraction time.

1 Introduction

Statistical machine translation (SMT) relies heav-
ily on annotated bilingual corpora. Word align-
ment, which indicates the correspondence be-
tween the words in a parallel text, is one of the
most important annotations in SMT. Word-aligned
corpora have been found to be an excellent source
for translation-related knowledge, not only for
phrase-based models (Och and Ney, 2004; Koehn
et al., 2003), but also for syntax-based models
(e.g., (Chiang, 2007; Galley et al., 2006; Shen
et al., 2008; Liu et al., 2006)). Och and Ney
(2003) indicate that the quality of machine transla-
tion output depends directly on the quality of ini-
tial word alignment.

Modern alignment methods can be divided into
two major categories:generative methods anddis-
criminative methods. Generative methods (Brown
et al., 1993; Vogel and Ney, 1996) treat word
alignment as a hidden process and maximize the
likelihood of bilingual training corpus using the

expectation maximization (EM) algorithm. In
contrast, discriminative methods (e.g., (Moore et
al., 2006; Taskar et al., 2005; Liu et al., 2005;
Blunsom and Cohn, 2006)) have the freedom to
define arbitrary feature functions that describe var-
ious characteristics of an alignment. They usu-
ally optimize feature weights on manually-aligned
data. While discriminative methods show supe-
rior alignment accuracy in benchmarks, genera-
tive methods are still widely used to produce word
alignments for large sentence-aligned corpora.

However, neither generative nor discriminative
alignment methods are reliable enough to yield
high quality alignments for SMT, especially for
distantly-related language pairs such as Chinese-
English and Arabic-English. The F-measures for
Chinese-English and Arabic-English are usually
around 80% (Liu et al., 2005) and 70% (Fraser
and Marcu, 2007), respectively. As most current
SMT systems only use 1-best alignments for ex-
tracting rules, alignment errors might impair trans-
lation quality.

Recently, several studies have shown that offer-
ing more alternatives of annotations to SMT sys-
tems will result in significant improvements, such
as replacing 1-best trees with packed forests (Mi
et al., 2008) and replacing 1-best word segmenta-
tions with word lattices (Dyer et al., 2008). Sim-
ilarly, Venugopal et al. (2008) usen-best align-
ments instead of 1-best alignments for translation
rule extraction. While they achieve significant im-
provements on the IWSLT data, extracting rules
from n-best alignments might be computationally
expensive.

In this paper, we propose a new structure named
weighted alignment matrix to represent the align-
ment distribution for a sentence pair compactly. In
a weighted matrix, each element that corresponds
to a word pair is assigned a probability to measure
the confidence of aligning the two words. There-
fore, a weighted matrix is capable of using a lin-
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Figure 1: An example of word alignment between
a pair of Chinese and English sentences.

ear space to encode the probabilities of exponen-
tially many alignments. We develop a new algo-
rithm for extracting phrase pairs from weighted
matrices and show how to estimate their relative
frequencies and lexical weights. Experimental re-
sults show that using weighted matrices achieves
consistent improvements in translation quality and
significant reduction in extraction time over using
n-best lists.

2 Background

Figure 1 shows an example of word alignment be-
tween a pair of Chinese and English sentences.
The Chinese and English words are listed horizon-
tally and vertically, respectively. The dark points
indicate the correspondence between the words in
two languages. For example, the first Chinese
word “zhongguo” is aligned to the fourth English
word “China”.

Formally, given a source sentencef = fJ
1 =

f1, . . . , fj, . . . , fJ and a target sentencee = eI
1 =

e1, . . . , ei, . . . , eI , we define a linkl = (j, i) to
exist if fj andei are translation (or part of trans-
lation) of one another. Then, an alignmenta is a
subset of the Cartesian product of word positions:

a ⊆ {(j, i) : j = 1, . . . , J ; i = 1, . . . , I} (1)

Usually, SMT systems only use the 1-best align-
ments for extracting translation rules. For exam-
ple, given a source phrasẽf and a target phrase
ẽ, the phrase pair(f̃ , ẽ) is said to beconsistent
(Och and Ney, 2004) with the alignment if and
only if: (1) there must be at least one word in-
side one phrase aligned to a word inside the other

phrase and (2) no words inside one phrase can be
aligned to a word outside the other phrase.

After all phrase pairs are extracted from the
training corpus, their translation probabilities can
be estimated asrelative frequencies (Och and Ney,
2004):

φ(ẽ|f̃) =
count(f̃ , ẽ)∑
ẽ′ count(f̃ , ẽ′)

(2)

wherecount(f̃ , ẽ) indicates how often the phrase
pair (f̃ , ẽ) occurs in the training corpus.

Besides relative frequencies,lexical weights
(Koehn et al., 2003) are widely used to estimate
how well the words inf̃ translate the words in
ẽ. To do this, one needs first to estimate a lexi-
cal translation probability distributionw(e|f) by
relative frequency from the same word alignments
in the training corpus:

w(e|f) =
count(f, e)∑
e′ count(f, e′)

(3)

Note that a special source NULL token is added
to each source sentence and aligned to each un-
aligned target word.

As the alignment̃a between a phrase pair(f̃ , ẽ)
is retained during extraction, the lexical weight
can be calculated as

pw(ẽ|f̃ , ã) =
|ẽ|∏
i=1

1
|{j|(j, i) ∈ ã}|

∑
w(ei|fj) (4)

If there are multiple alignments̃a for a phrase
pair (f̃ , ẽ), Koehn et al. (2003) choose the one
with the highest lexical weight:

pw(ẽ|f̃) = max
ã

{
pw(ẽ|f̃ , ã)

}
(5)

Simple and effective, relative frequencies and
lexical weights have become the standard features
in modern discriminative SMT systems.

3 Weighted Alignment Matrix

We believe that offering more candidate align-
ments to extracting translation rules might help
improve translation quality. Instead of usingn-
best lists (Venugopal et al., 2008), we propose a
new structure calledweighted alignment matrix.

We use an example to illustrate our idea. Fig-
ure 2(a) and Figure 2(b) show two alignments of
a Chinese-English sentence pair. We observe that
some links (e.g., (1,4) corresponding to the word
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Figure 2: (a) One alignment of a sentence pair; (b) another alignment of the same sentence pair; (c)
the resulting weighted alignment matrix that takes the two alignments as samples, of which the initial
probabilities are 0.6 and 0.4, respectively.

pair (“zhongguo”, “ China”)) occur in both align-
ments, some links (e.g., (2,3) corresponding to the
word pair (“de”,“ of”)) occur only in one align-
ment, and some links (e.g., (1,1) corresponding
to the word pair (“zhongguo”, “ the”)) do not oc-
cur. Intuitively, we can estimate how well two
words are aligned by calculating its relative fre-
quency, which is the probability sum of align-
ments in which the link occurs divided by the
probability sum of all possible alignments. Sup-
pose that the probabilities of the two alignments in
Figures 2(a) and 2(b) are 0.6 and 0.4, respectively.
We can estimate the relative frequencies for every
word pair and obtain a weighted matrix shown in
Figure 2(c). Therefore, each word pair is associ-
ated with a probability to indicate how well they
are aligned. For example, in Figure 2(c), we say
that the word pair (“zhongguo”, “ China”) is def-
initely aligned, (“zhongguo”, “the”) is definitely
unaligned, and (“de”, “ of”) has a 60% chance to
get aligned.

Formally, a weighted alignment matrixm is a
J × I matrix, in which each element stores alink
probability pm(j, i) to indicate how wellfj and
ei are aligned. Currently, we estimate link proba-
bilities from ann-best list by calculating relative
frequencies:

pm(j, i) =
∑

a∈N p(a)× δ(a, j, i)∑
a∈N p(a)

(6)

=
∑
a∈N

p(a)× δ(a, j, i) (7)

where

δ(a, j, i) =

{
1 (j, i) ∈ a
0 otherwise

(8)

Note thatN is ann-best list,p(a) is the probabil-
ity of an alignmenta in the n-best list,δ(a, j, i)
indicates whether a link(j, i) occurs in the align-
ment a or not. We assign 0 to any unseen
alignment. Asp(a) is usually normalized (i.e.,∑

a∈N p(a) ≡ 1), we remove the denominator in
Eq. (6).

Accordingly, the probability that the two words
fj andei are not aligned is

p̄m(j, i) = 1.0− pm(j, i) (9)

For example, as shown in Figure 2(c), the prob-
ability for the two words “de” and “of” being
aligned is 0.6 and the probability that they are not
aligned is 0.4.

Intuitively, the probability of an alignmenta is
the product of link probabilities. If a link(j, i)
occurs ina, we usepm(j, i); otherwise we use
p̄m(j, i). Formally, given a weighted alignment
matrix m, the probability of an alignmenta can
be calculated as

pm(a) =
J∏

j=1

I∏
i=1

(pm(j, i) × δ(a, j, i) +

p̄m(j, i) × (1− δ(a, j, i))) (10)

It proves that the sum of all alignment proba-
bilities is always 1:

∑
a∈A pm(a) ≡ 1, whereA
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1: procedure PHRASEEXTRACT(fJ
1 , eI

1, m, l)
2: R ← ∅
3: for j1 ← 1 . . . J do
4: j2 ← j1
5: while j2 < J ∧ j2 − j1 < l do
6: T ← {i|∃j : j1 ≤ j ≤ j2 ∧ pm(j, i) > 0}
7: il ← MIN(T )
8: iu ← MAX (T )
9: for n← 1 . . . l do

10: for i1 ← il − n + 1 . . . iu do
11: i2 ← i1 + n− 1
12: R ← R∪ {(f j2

j1
, ei2

i1
)}

13: end for
14: end for
15: j2 ← j2 + 1
16: end while
17: end for
18: returnR
19: end procedure

Figure 3: Algorithm for extracting phrase pairs
from a sentence pair〈fJ

1 , eI
1〉 annotated with a

weighted alignment matrixm.

is the set of all possible alignments. Therefore, a
weighted alignment matrix is capable of encoding
the probabilities of2J×I alignments using only a
J × I space.

Note thatpm(a) is not necessarily equal top(a)
because the encoding of a weighted alignment ma-
trix changes the alignment probability distribu-
tion. For example, while the initial probability of
the alignment in Figure 2(a) (i.e.,p(a)) is 0.6, the
probability of the same alignment encoded in the
matrix shown in Figure 2(c) (i.e.,pm(a)) becomes
0.1296 according to Eq. (10). It should be em-
phasized that a weighted matrix encodes all pos-
sible alignments rather than the inputn-best list,
although the link probabilities are estimated from
then-best list.

4 Phrase Pair Extraction

In this section, we describe how to extract phrase
pairs from the training corpus annotated with
weighted alignment matrices (Section 4.1) and
how to estimate their relative frequencies (Section
4.2) and lexical weights (Section 4.3).

4.1 Extraction Algorithm

Och and Ney (2004) describe a “phrase-extract”
algorithm for extracting phrase pairs from a sen-
tence pair annotated with a 1-best alignment.
Given a source phrase, they first identify the target
phrase that is consistent with the alignment. Then,
they expand the boundaries of the target phrase if
the boundary words are unaligned.

Unfortunately, this algorithm cannot be directly
used to manipulate a weighted alignment matrix,
which is a compact representation of all pos-
sible alignments. The major difference is that
the “tight” phrase that has both boundary words
aligned is not necessarily the smallest candidate
in a weighted matrix. For example, in Figure
2(a), the “tight” target phrase corresponding to
the source phrase “zhongguo de” is “ of China”.
According to Och’s algorithm, the target phrase
“China” breaks the alignment consistency and
therefore is not valid candidate. However, this is
not true for using the weighted matrix shown in
Figure 2(c). The target phrase “China” is treated
as a “potential” candidate1, although it might be
assigned only a small fractional count (see Table
1).

Therefore, we enumerate all potential phrase
pairs and calculate their fractional counts for
eliminating less promising candidates. Figure 3
shows the algorithm for extracting phrases from
a weighted matrix. The input of the algorithm
is a source sentencefJ

1 , a target sentenceeI
1, a

weighted alignment matrixm, and a phrase length
limit l (line 1). After initializingR that stores col-
lected phrase pairs (line 2), we identify the cor-
responding target phrases for all possible source
phrases (lines 3-5). Given a source phrasef j2

j1
, we

find the lower and upper bounds of target positions
(i.e., il and iu) that have positive link probabili-
ties (lines 6-8). For example, the lower bound is
3 and the upper bound is 5 for the source phrase
“zhongguo de” in Figure 2(c). Finally, we enu-
merate all target phrases that allow for unaligned
boundary words with varying phrase lengths (lines
9-14). Note that we need to ensure that1 ≤ i1 ≤ I
and1 ≤ i2 ≤ I in lines 10-11, which are omitted
for simplicity.

4.2 Calculating Relative Frequencies

To estimate the relative frequency of a phrase pair,
we need to estimate how often it occurs in the
training corpus. Given ann-best list, the fractional
count of a phrase pair is the probability sum of
the alignments with which the phrase pair is con-
sistent. Obviously, it is unrealistic for a weighted
alignment matrix to enumerate all possible align-
ments explicitly to calculate fractional counts. In-
stead, we resort to link probabilities to calculate

1By potential, we mean that the fractional count of a
phrase pair is positive. Section 4.2 describes how to calcu-
late fractional counts.
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Figure 4: An example of calculating fractional
count. Given the phrase pair (“zhongguo de”, “ of
China”), we divide the matrix into three areas: in-
side (heavy shading), outside (light shading), and
irrelevant (no shading).

counts efficiently. Equivalent to explicit enumera-
tion, we interpret the fractional count of a phrase
pair as the probability that it satisfies the two align-
ment consistency conditions (see Section 2).

Given a phrase pair, we divide the elements of
a weighted alignment matrix into three categories:
(1) inside elements that fall inside the phrase pair,
(2) outside elements that fall outside the phrase
pair while fall in the same row or the same col-
umn, and (3)irrelevant elements that fall outside
the phrase pair while fall in neither the same row
nor the same column. Figure 4 shows an exam-
ple. Given the phrase pair (“zhongguo de”, “ of
China”), we divide the matrix into three areas: in-
side (heavy shading), outside (light shading), and
irrelevant (no shading).

To what extent a phrase pair satisfies the align-
ment consistency is measured by calculatingin-
side andoutside probabilities. Although there are
the same terms in the parsing literature, they have
different meanings here. The inside probability in-
dicates the chance that there is at least one word
inside one phrase aligned to a word inside the
other phrase. The outside probability indicates the
chance that no words inside one phrase are aligned
to a word outside the other phrase.

Given a phrase pair(f j2
j1

, ei2
i1

), we denote the in-
side area asin(j1, j2, i1, i2) and the outside area
asout(j1, j2, i1, i2). Therefore, the inside proba-
bility of a phrase pair is calculated as

α(j1, j2, i1, i2) = 1−
∏

(j,i)∈in(j1,j2,i1,i2)

p̄m(j, i) (11)

target phrase α β count

of China 1.0 0.36 0.36
of China ’s 1.0 0.36 0.36

China ’s 1.0 0.24 0.24
China 1.0 0.24 0.24

’s economy 0.4 0 0

Table 1: Some candidate target phrases of the
source phrase “zhongguo de” in Figure 4, whereα
is inside probability,β is outside probability, and
count is fractional count.

For example, the inside probability for (“zhong-
guo de”, “ of China”) in Figure 4 is 1.0, which
means that there always exists at least one aligned
word pair inside.

Accordingly, the outside probability of a phrase
pair is calculated as

β(j1, j2, i1, i2) =
∏

(j,i)∈out(j1,j2,i1,i2)

p̄m(j, i) (12)

For example, the outside probability for
(“zhongguo de”, “ of China”) in Figure 4 is 0.36,
which means the probability that there are no
aligned word pairs outside is 0.36.

Finally, we use the product of inside and outside
probabilities as the fractional count of a phrase
pair:

count(f j2
j1

, ei2
i1

) = α(j1, j2, i1, i2)×
β(j1, j2, i1, i2) (13)

Table 1 lists some candidate target phrases of
the source phrase “zhongguo de” in Figure 4. We
also give their inside probabilities, outside proba-
bilities, and fractional counts.

After collecting the fractional counts from the
training corpus, we then use Eq. (2) to calculate
relative frequencies in two translation directions.

Often, our approach extracts a large amount of
phrase pairs from training corpus as we soften
the alignment consistency constraint. To main-
tain a reasonable phrase table size, we discard any
phrase pair that has a fractional count lower than
a thresholdt. During extraction, we first obtain
a list of candidate target phrases for each source
phrase, as shown in Table 1. Then, we prune the
list according to the thresholdt. For example, we
only retain the top two candidates in Table 1 if
t = 0.3. Note that we perform the pruning locally.
Although it is more reasonable to prune a phrase
table after accumulating all fractional counts from
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training corpus, such global pruning strategy usu-
ally leads to very large disk and memory require-
ments.

4.3 Calculating Lexical Weights

Recall that we need to obtain two translation prob-
ability tablesw(e|f) andw(f |e) before calculat-
ing lexical weights (see Section 2). Following
Koehn et al. (2003), we estimate the two distribu-
tions by relative frequencies from the training cor-
pus annotated with weighted alignment matrices.
In other words, we still use Eq. (3) but the way of
calculating fractional counts is different now.

Given a source wordfj, a target wordei, and
a weighted alignment matrix, the fractional count
count(fj, ei) is pm(j, i). For NULL words, the
fractional counts can be calculated as

count(fj, e0) =
I∏

i=1

p̄m(j, i) (14)

count(f0, ei) =
J∏

j=1

p̄m(j, i) (15)

For example, in Figure 4,count(de, of) is 0.6,
count(de,NULL) is 0.24, andcount(NULL,of) is
0.24.

Then, we adapt Eq. (4) to calculate lexical
weight:

pw(ẽ|f̃ ,m) =
|ẽ|∏
i=1

((
1

{j|pm(j, i) > 0} ×∑
∀j:pm(j,i)>0

p(ei|fj)× pm(j, i)
)

+

p(ei|f0)×
|f̃ |∏
j=1

p̄m(j, i)

)
(16)

For example, for the target word “of” in Figure
4, the sum of aligned and unaligned probabilities
is
1
2
× (p(of|de)× 0.6 + p(of|fazhan)× 0.4) +

p(of|NULL)× 0.24

Note that we take link probabilities into account
and calculate the probability that a target word
translates a source NULL token explicitly.

5 Experiments

5.1 Data Preparation

We evaluated our approach on Chinese-to-English
translation. We used the FBIS corpus (6.9M

+ 8.9M words) as the training data. For lan-
guage model, we used the SRI Language Mod-
eling Toolkit (Stolcke, 2002) to train a 4-gram
model on the Xinhua portion of GIGAWORD cor-
pus. We used the NIST 2002 MT evaluation test
set as our development set, and used the NIST
2005 test set as our test set. We evaluated the trans-
lation quality usingcase-insensitive BLEU metric
(Papineni et al., 2002).

To obtain weighted alignment matrices, we fol-
lowed Venugopal et al. (2008) to producen-
best lists via GIZA++. We first ran GIZA++
to produce 50-best lists in two translation direc-
tions. Then, we used the refinement technique
“grow-diag-final-and” (Koehn et al., 2003) to all
50 × 50 bidirectional alignment pairs. Suppose
thatps2t andpt2s are the probabilities of an align-
ment pair assigned by GIZA++, respectively. We
usedps2t × pt2s as the probability of the result-
ing symmetric alignment. As different alignment
pairs might produce the same symmetric align-
ments, we followed Venugopal et al. (2008) to
remove duplicate alignments and retain only the
alignment with the highest probability. Therefore,
there were 550 candidate alignments on average
for each sentence pair in the training data. We
obtainedn-best lists by selecting the topn align-
ments from the 550-best lists. The probability of
each alignment in then-best list was re-estimated
by re-normalization (Venugopal et al., 2008). Fi-
nally, thesen-best alignments served as samples
for constructing weighted alignment matrices.

After extracting phrase pairs fromn-best lists
and weighted alignment matrices, we ran Moses
(Koehn et al., 2007) to translate the development
and test sets. We used the simple distance-based
reordering model to remove the dependency of
lexicalization on word alignments for Moses.

5.2 Effect of Pruning Threshold

Our first experiment investigated the effect of
pruning threshold on translation quality (BLEU
scores on the test set) and the phrase table size (fil-
tered for the test set), as shown in Figure 5. To
save time, we extracted phrase pairs just from the
first 10K sentence pairs of the FBIS corpus. We
used 12 different thresholds: 0.0001, 0.001, 0.01,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Obvi-
ously, the lower the threshold is, the more phrase
pairs are extracted. Whent = 0.0001, the number
of phrase pairs used on the test set was 460,284
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Figure 5: Effect of pruning threshold on transla-
tion quality and phrase table size.

and the BLEU score was 20.55. Generally, both
the number of phrase pairs and the BLEU score
went down with the increase oft. However, this
trend did not hold within the range [0.1, 0.9]. To
achieve a good tradeoff between translation qual-
ity and phrase table size, we sett = 0.01 for the
following experiments.

5.3 N -best lists Vs. Weighted Matrices

Figure 6 shows the BLEU scores and aver-
age extraction time usingn-best alignments and
weighted matrices, respectively. We used the en-
tire training data for phrase extraction. When us-
ing 1-best alignments, Moses achieved a BLEU
score of 0.2826 and the average extraction time
was 4.19 milliseconds per sentence pair (see point
n = 1). The BLEU scores rose with the in-
crease ofn for using n-best alignments. How-
ever, the score went down slightly whenn = 50.
This suggests that including more noisy align-
ments might be harmful. These improvements
over 1-best alignments are not statistically signif-
icant. This finding failed to echo the promising
results reported by Venogopal et al. (2008). We
think that there are two possible reasons. First,
they evaluated their approach on the IWSLT data
while we used the NIST data. It might be easier
to obtain significant improvements on the IWSLT
data in which the sentences are shorter. Sec-
ond, they used the hierarchical phrase-based sys-
tem while we used the phrase-based system, which
might be less sensitive to word alignments because
the alignments inside the phrase pairs hardly have
an effect.

When using weighted alignment matrices, we
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Figure 6: Comparison ofn-best alignments and
weighted alignment matrices. We usem(n) to de-
note the matrices that taken-best lists as samples.

obtained higher BLEU scores than usingn-best
lists with much less extraction time. We achieved
a BLEU score of 0.2901 when using the weighted
matrices estimated from 10-best lists. The abso-
lute improvement of 0.75 over using 1-best align-
ments (from 0.2826 to 0.2901) is statistically sig-
nificant atp < 0.05 by using sign-test (Collins
et al., 2005). Although the improvements overn-
best lists are not always statistically significant,
weighted alignment matrices maintain consistent
superiority in both translation quality and extrac-
tion speed.

5.4 Comparison of Parameter Estimation

In theory, the set of phrase pairs extracted fromn-
best alignments is the subset of the set extracted
from the corresponding weighted matrices. In
practice, however, this is not true because we use
the pruning thresholdt to maintain a reasonable
table size. Even so, the phrase tables produced by
n-best lists and weighted matrices still share many
phrase pairs.

Table 2 gives some statistics. We usem(10)
to represent the weighted matrices estimated from
10-best lists. “all” denotes the full phrase table,
“shared” denotes the intersection of two tables,
and “non-shared” denotes the complement. Note
that the probabilities of “shared” phrase pairs are
different for the two approaches. We obtained
6.13M and 6.34M phrase pairs for the test set by
using 10-best lists and the corresponding matrices,
respectively. There were 4.58M phrase pairs in-
cluded by both tables. Note that the relative fre-
quencies and lexical weights for the same phrase
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shared non-shared all
method

phrases BLEU phrases BLEU phrases BLEU
10-best 4.58M 28.35 1.55M 12.32 6.13M 28.47
m(10) 4.58M 28.90 1.76M 13.21 6.34M 29.01

Table 2: Comparison of phrase tables learned fromn-best lists and weighted matrices. We usem(10)
to represent the weighted matrices estimated from 10-best lists. “all” denotes the full phrase table,
“shared” denotes the intersection of two tables, and “non-shared” denotes the complement. Note that the
probabilities of “shared” phrase pairs are different for the two approaches.
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Figure 7: Comparison ofn-best alignments and
weighted alignment matrices with varying training
corpus sizes.

pairs might be different in two tables. We found
that using matrices outperformed usingn-best lists
even with the same phrase pairs. This suggests that
our methods for parameter estimation make better
use of noisy data. Another interesting finding was
that using the shared phrase pairs achieved almost
the same results with using full phrase tables.

5.5 Effect of Training Corpus Size

To investigate the effect of training corpus size on
our approach, we extracted phrase pairs fromn-
best lists and weighted matrices trained on five
training corpora with varying sizes: 10K, 50K,
100K, 150K, and 239K sentence pairs. As shown
in Figure 7, our approach outperformed both 1-
best andn-best lists consistently. More impor-
tantly, the gains seem increase when more training
data are used.

5.6 Results on Other Language Pairs

To further examine the efficacy of the proposed ap-
proach, we scaled our experiments to large data
with multiple language pairs. We used the Eu-
roparl training corpus from the WMT07 shared

S↔E F↔E G↔E
Sentences 1.26M 1.29M 1.26M

Foreign words 33.16M 33.18M 29.58M
English words 31.81M 32.62M 31.93M

Table 3: Statistics of the Europarl training data.
“S” denotes Spanish, “E” denotes English, “F” de-
notes French, “G” denotes German.

1-best 10-best m(10)
S→E 30.90 30.97 31.03
E→S 31.16 31.25 31.34
F→E 30.69 30.76 30.82
E→F 26.42 26.65 26.54
G→E 24.46 24.58 24.66
E→G 18.03 18.30 18.20

Table 4: BLEU scores (case-insensitive) on the
Europarl data. “S” denotes Spanish, “E” denotes
English, “F” denotes French, “G” denotes Ger-
man.

task. 2 Table 3 shows the statistics of the train-
ing data. There are four languages (Spanish,
French, German, and English) and six transla-
tion directions (Foreign-to-English and English-
to-Foreign). We used the “dev2006” data in the
“dev” directory as the development set and the
“test2006” data in the “devtest” directory as the
test set. Both the development and test sets contain
2,000 sentences with single reference translations.

We tokenized and lowercased all the training,
development, and test data. We trained a 4-gram
language model using SRI Language Modeling
Toolkit on the target side of the training corpus for
each task. We ran GIZA++ on the entire train-
ing data to obtainn-best alignments and weighted
matrices. To save time, we just used the first 100K
sentences of each aligned training corpus to ex-
tract phrase pairs.

2http://www.statmt.org/wmt07/shared-task.html
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Table 4 lists the case-insensitive BLEU scores
of 1-best, 10-best, andm(10) on the Europarl
data. Using weighted packed matrices continued
to show advantage over using 1-best alignments on
multiple language pairs. However, these improve-
ments were very small and not significant. We at-
tribute this to the fact that GIZA++ usually pro-
duces high quality 1-best alignments for closely-
related European language pairs, especially when
trained on millions of sentences.

6 Related Work

Recent studies has shown that SMT systems
can benefit from making the annotation pipeline
wider: using packed forests instead of 1-best trees
(Mi et al., 2008), word lattices instead of 1-best
segmentations (Dyer et al., 2008), andn-best
alignments instead of 1-best alignments (Venu-
gopal et al., 2008). We propose a compact repre-
sentation of multiple word alignments that enables
SMT systems to make a better use of noisy align-
ments.

Matusov et al. (2004) propose “cost matrices”
for producing symmetric alignments. Kumar et al.
(2007) describe how to use “posterior probabil-
ity matrices” to improve alignment accuracy via
a bridge language. Although not using the term
”weighted matrices” directly, they both assign a
probability to each word pair.

We follow Och and Ney (2004) to develop
a new phrase extraction algorithm for weighted
alignment matrices. The methods for calculating
relative frequencies (Och and Ney, 2004) and lex-
ical weights (Koehn et al., 2003) are also adapted
for the weighted matrix case.

Many researchers (e.g., (Venugopal et al., 2003;
Deng et al., 2008)) observe that softening the
alignment consistency constraint help improve
translation quality. For example, Deng et al.
(2008) define a feature named “within phrase pair
consistency ratio” to measure the degree of consis-
tency. As each link is associated with a probability
in a weighted matrix, we use these probabilities to
evaluate the validity of a phrase pair.

We estimate the link probabilities by calculating
relative frequencies overn-best lists. Niehues and
Vogel (2008) propose a discriminative approach to
modeling the alignment matrix directly. The dif-
ference is that they assign a boolean value instead
of a probability to each word pair.

7 Conclusion and Future Work

We have presented a new structure called weighted
alignment matrix that encodes the alignment dis-
tribution for a sentence pair. Accordingly, we de-
velop new methods for extracting phrase pairs and
estimating their probabilities. Our experiments
show that the proposed approach achieves better
translation quality over usingn-best lists in less
extraction time. An interesting finding is that our
approach performs better than the baseline even
they use the same phrase pairs.

Although our approach consistently outper-
forms using 1-best alignments for varying lan-
guage pairs, the improvements are comparatively
small. One possible reason is that takingn-best
lists as samples sometimes might change align-
ment probability distributions inappropriately. A
more principled solution is to directly model the
weighted alignment matrices, either in a genera-
tive or a discriminative way. We believe that better
estimation of alignment distributions will result in
more significant improvements.

Another interesting direction is applying our ap-
proach to extracting translation rules with hierar-
chical structures such as hierarchical phrases (Chi-
ang, 2007) and tree-to-string rules (Galley et al.,
2006; Liu et al., 2006). We expect that these
syntax-based systems could benefit more from our
approach.
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Abstract

We present a new phrase-based con-
ditional exponential family translation
model for statistical machine translation.
The model operates on a feature repre-
sentation in which sentence level transla-
tions are represented by enumerating all
the known phrase level translations that
occur inside them. This makes the model
a good match with the commonly used
phrase extraction heuristics. The model’s
predictions are properly normalized prob-
abilities. In addition, the model automati-
cally takes into account information pro-
vided by phrase overlaps, and does not
suffer from reference translation reacha-
bility problems.

We have implemented an open source
translation system Sinuhe based on the
proposed translation model. Our experi-
ments on Europarl and GigaFrEn corpora
demonstrate that finding the unique MAP
parameters for the model on large scale
data is feasible with simple stochastic gra-
dient methods. Sinuhe is fast and mem-
ory efficient, and the BLEU scores ob-
tained by it are only slightly inferior to
those of Moses.

1 Introduction

In current phrase-based statistical machine transla-
tion systems such as Moses1 (Koehn et al., 2007),
the translation model is defined in terms of phrase
pairs (biphrases) extracted from a bilingual cor-
pus as follows. The corpus is first word-aligned
using a word alignment heuristic (Och and Ney,

1Throughout this paper, we refer to Moses for concrete-
ness, but most of the discussion applies to other standard
phrase-based statistical machine translation systems as well.

2003). The phrase extraction heuristic then ex-
tracts all the biphrases that are compatible with
the word alignment (Och et al., 1999). This way,
each sentence pair may generate any number of
potentially overlapping biphrases. However, when
defining the phrase-based sentence level transla-
tion model, phrase overlaps are explicitly disal-
lowed: The source sentence is segmented into dis-
joint phrases, which are translated independently
using conditional phrase-level translation models
that have been estimated from extracted biphrase
counts.

The disparity between the phrase extraction
heuristic and the use of the extracted biphrases
can be addressed in at least three ways. One
approach is to simply ignore the disparity as is
done, e.g., in Moses. While empirically succes-
ful, this approach is hard to justify theoretically,
and begs the question of whether more principled
methods might lead to better translation results.
The other extensively studied approach is to re-
place the phrase extraction heuristic with a method
that better matches the use of the extracted phrases
(see, e.g., (Marcu and Wong, 2002; DeNero et al.,
2008) and the references therein). While theo-
retically sound, this approach is computationally
challenging both in practice (DeNero et al., 2008)
and in theory (DeNero and Klein, 2008), may suf-
fer from reference reachability problems (DeNero
et al., 2006), and in the end may lead to inferior
translation quality (Koehn et al., 2003).

In this paper, we study a third alternative. We
propose a new translation model that is compati-
ble with the phrase extraction heuristic. The pro-
posed machine learning inspired translation model
takes the form of a conditional exponential family
probability distribution over a feature representa-
tion for word-aligned sentence pairs. The feature
representation represents a word-aligned sentence
pair by essentially enumerating the (multi)set of
biphrases that would have been extracted from it,
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together with the source positions at which the
biphrases occur. The model’s predictions are con-
ditional probabilities for such sets of biphrases
given the source sentence.

The chosen feature representation has many ad-
vantages. Since all word-aligned sentence pairs
can be represented, reference reachability prob-
lems are automatically circumvented. For exam-
ple, if the translation of a sentence consisted solely
of words that do not occur in the phrase table, then
the feature vector for the translation would be the
all zero vector. As the training data receives non-
zero probability, maximum likelihood or maxi-
mum a posteriori (MAP) parameters for the model
can be estimated in a principled way without re-
sorting to pseudo-references. The fact that the
model is not restricted to using disjoint biphrases
means that the information in biphrase overlaps is
automatically taken into account. This may help
in smoothing the model’s predictions on long and
rare phrases, and in enhancing fluency at places
that otherwise would be phrase boundaries. Also,
the model can be extended in a principled way by
introducing additional features (e.g., translations
from a dictionary, biphrases with gaps, biphrases
over POS tags,. . . ).

The proposed model has one parameter per
biphrase feature, so the total number of parame-
ters is easily millions or more. Still, the model
structure is designed so that feature expectations
and related quantities can be computed efficiently
by dynamic programming. It is thus feasible to
compute the gradient of the MAP objective, and
simple gradient ascent can be used to efficiently
find the globally optimal model parameters (with
respect to a suitably scaled Gaussian prior used for
regularization). Exact inference is also possible by
dynamic programming when translations are pre-
dicted by the translation model alone. When other
features like a language model are included, one
needs to resort to beam search type approximate
dynamic programming for decoding.

We have implemented a translation system
called Sinuhe based on the proposed translation
model. The system has been released under the
GPLv3 open source license (Kääriäinen, 2009).
Our experiments on Europarl and GigaFrEn cor-
pora demonstrate that the proposed translation
model scales well to large data, and offers trans-
lation quality that is only slightly worse than that
of the baseline system Moses. In terms of trans-

lation speed, Sinuhe is already clearly better.
The rest of this paper is organized as follows.

After briefly reviewing related work in Section 2,
we describe the proposed translation model in Sec-
tion 3. Finally, experimental results are presented
in Section 4, and conclusions in Section 5.

2 Related work

The proposed translation model is strongly influ-
enced by machine learning techniques for solv-
ing sequence prediction tasks, most notably the
work on conditional random fields (Lafferty et al.,
2001). The modelling task in machine translation
is, however, more complicated than sequence la-
belling (not one-to-one, reorderings), so the stan-
dard methods cannot be directly applied here.
The model we propose is also related to standard
phrase-based translation models through the use of
the same phrase-level translation features. How-
ever, the way we use the features is quite different.

There exists a number of discriminative ap-
proaches whose model structure, training crite-
ria, or both, are similar to ours. However, to our
knowledge, none of the other systems operates
directly on biphrase features, scales up to bilin-
gual corpora with millions of sentence pairs, and
achieves translation quality comparable to fully
tuned standard phrase-based systems. The ap-
proach most closely resembling ours is the in-
dependently developed global discriminative log-
linear model based on synchronous context-free
grammars (Blunsom and Osborne, 2008; Blun-
som et al., 2008). The version presented in (Blun-
som and Osborne, 2008) operates on millions of
rule count features analogous to our biphrase fea-
tures, and integrates a language model into train-
ing and decoding. The system can be trained on
tens of thousands of short sentences yielding bet-
ter translations than a baseline system Hiero on
this data. The version presented in (Blunsom et
al., 2008) scales to more than a hundred thousand
short training sentences, but does not integrate a
language model and thus has performance that im-
proves upon Hiero without a language model
only. Both versions deal with derivational ambi-
guity by treating derivations as a latent variables
that are integrated out to get conditional proba-
bilities for translations2. The downside of this

2In our translation model, coping with multiple deriva-
tions is not needed as there is just one derivation for each
word-aligned sentence pair. However, dealing with alterna-
tive word alignments might be beneficial, though as argued
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is that approximations are needed in computing
the maximum probability translation in decoding,
and also in computing model expectations in train-
ing when a language model is used. In addi-
tion, since the models operate directly on transla-
tions, using probabilistic training criteria for learn-
ing the model parameters is possible only if all
reference translations in the training data can be
generated by the model. In practice, this problem
can be circumvented by discarding the training
sentence pairs with unreachable reference transla-
tions, but this may mean a significant reduction in
the amount of training data (24% in (Blunsom et
al., 2008)).

Another closely related approach is the in-
dependently developed discriminative block bi-
gram prediction model presented in (Tillmann
and Zhang, 2007). This work proposes a global
phrase-based translation model very similar to
ours, but due to computational reasons, resorts to a
localized approximation thereof, and is restricted
to biphrases of length at most two. In (Liang et
al., 2006) a standard phrase-based model is aug-
mented with more than a million features whose
weights are trained discriminatively by a variant
of the perceptron algorithm. Reference reachabil-
ity is again a problem, and the method has not been
scaled up to use biphrase features directly.

3 The proposed translation model

3.1 Biphrase extraction

The biphrases used in Sinuhe are extracted from
the training data with the Moses phrase extraction
heuristics. The sentence-aligned training corpus S
is first word-aligned by running Giza++ in both
directions and then symmetrizing the alignments.
This maps the original aligned sentence pairs
(x, y) into word-aligned sentence pairs (x, a, y),
where a is a many-to-many alignment between the
words in x and y. Second, using a heuristic pro-
posed in (Och et al., 1999), all the aligned phrase
pairs (x′, a′, y′) satisfying the following criteria
are extracted: (1) x′ and y′ consist of consecutive
words of x and y, and both have length at most k,
(2) a′ is the alignment between words of x′ and y′

induced by a, (3) a′ contains at least one link, and
(4) there are no links in a that have just one end in
x′ or y′. Each aligned training sentence (x, a, y)
thus generates a number of potentially overlapping

in (DeNero et al., 2006), the ambiguity in word alignment is
less prevalent than in phrase segmentation.

aligned biphrase features (x′, a′, y′). In our exper-
iments, we chose k = 7 which is the default in
Moses. Unlike in Moses, we do not map the
aligned biphrases (x′, a′, y′) back to non-aligned
biphrases (x′, y′).

To reduce the number of extracted biphrases, for
each source phrase x′, only biphrases (x′, a′, y′)
whose occurrence count is among the top K = 20
in the training data are retained (rank ties bro-
ken by including all biphrases with rank equal to
the limit K). For technical reasons related to our
dynamic programming algorithms, we also drop
biphrases whose source phrase begins or ends with
unlinked words. Finally, we drop all biphrases
that occur only once in the training data. This can
be motivated by a leave-one-out argument (cf the
derivation of Good-Turing estimates): Dropping
the biphrases that occur only once in the train-
ing data means that the feature representation for
a training sentence pair (see Section 3.2) contains
only biphrases that occur also in other training ex-
amples. Without the leave-one-out pruning, the
feature vectors for training sentence pairs would
be maximally dense, whereas such feature density
cannot be expected on test data. Our system can
also be used without the leave-one-out pruning,
but according to our preliminary experiments this
has little effect on translation quality. An excep-
tion seems to be morphologically rich languages
with scarce training data on which pruning seems
to reduce translation quality.

All the pruning steps combined reduce the
phrase table size considerably, but in our experi-
ments, millions of biphrases per language pair still
remain (2-4 million for Europarl data and over 95
million for GigaFrEn data).

3.2 Features

Our primary feature representation is a binary fea-
ture vector that indicates which aligned biphrases
in the phrase table occur in an aligned sentence
pair and where. More specifically, a source sen-
tence x aligned to a target sentence y by an align-
ment a is represented by a binary feature vector
φ(x, a, y) whose component φ(x, a, y)(x′,a′,y′),i is
1 iff the aligned biphrase (x′, a′, y′) occurs at
source position i in (x, a, y), and 0 otherwise.
Here, (x′, a′, y′) occurs in (x, a, y) at source posi-
tion i iff the phrase extraction process described in
Section 3.1 would have extracted it from (x, a, y)
at source position i.
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The weights for the aligned biphrases are tied
together by mapping the binary feature vector φ
(indexed by pairs of an aligned biphrase and a
source position) to an integral feature vector φ̃ (in-
dexed by aligned biphrases only) using the for-
mula φ̃(x′,a′,y′) =

∑
i φ(x′,a′,y′),i. The “real” fea-

tures that drive the translation process are thus the
lowest level binary features φ, whereas the higher
level representation φ̃ is convenient in defining the
conditional probabilities given by the translation
model.

3.3 The model
Instead of modelling the conditional distribution
P (y|x) directly, we model the conditional dis-
tribution P (φ(x, a, y)|x) by the following condi-
tional exponential model:

P (φ(x, a, y)|x) =
exp(w · φ̃(x, a, y))∑

φ∈Φx
exp(w · φ̃)

.

Here, w is a parameter vector with one component
for each aligned biphrase feature in the phrase ta-
ble. The set Φx defines the set of possible predic-
tions given x, and includes all feature vectors φ
satisfying the following criteria:

1. There exists a translation y′ and an alignment
a′ such that all active features in φ occur in
(x, a′, y′)

2. Features corresponding to aligned biphrases
that occur inside aligned biphrases whose
features are active in φ are also active in φ.

Thus, the set Φx has a feature representation for
all possible aligned sentence pairs (x, a′, y′) that
have x as the source side, so all reference trans-
lations y′ word-aligned to x in any way a′ are
representable by features in Φx. By condition
1, the predictions given by the model never con-
tain conflicting biphrases, so given any prediction
of the model, there always exists a translation y′

where all the predicted biphrases do occur. How-
ever, since our dynamic programming algorithms
can only force active super-phrases implying ac-
tive sub-phrases (condition 2) but not active sub-
phrases implying active super-phrases, the set Φx

also contains some feature vectors in which the lat-
ter type of implications are not enforced. Having
such redundant representations for some transla-
tions is a waste of probability mass, but we hope it
has little effect in practice.

The choice of modelling P (φ(x, a, y)|x) in-
stead of modelling P (y|x) directly is crucial, both
from a modelling and from a computational per-
spective. From the modelling perspective, the cru-
cial point is that in our approach, any aligned sen-
tence pair (x, a, y) has an associated feature vec-
tor φ(x, a, y) ∈ Φx that is reachable (i.e., re-
ceives non-zero probability) by the model. This
means it is straightforward to use probabilistic cri-
teria in learning the model parameters. In con-
trast, systems modelling P (y|x) directly are often
plagued by the reference reachability problem. To
use probabilistic training criteria for such systems
one needs to circumvent the reference reachability
problem, e.g., by using pseudo-references or by
dropping out the non-reachable portion of training
data.

Working with the feature vectors φ(x, a, y) in-
stead of working with a and y directly means that
we model the ordering and choice of words in y
only partially. This way, when computing the nor-
malizing constants and feature expectations, we
can partition the unbounded set of potential trans-
lations y and alignments a into a smaller set of
equivalence classes given by φ(x, a, y). Though
the number of feature vectors φ ∈ Φx may be
large (exponential in length of x), all the necessary
computations can be done exactly and efficiently
by dynamic programming. For more details, see
Section 3.4.3.

3.4 Learning the model parameters

3.4.1 The objective
We use maximum a posteriori (MAP) estimation
to estimate the model parameters w. To con-
trol overfitting, we regularize the parameters by a
suitably scaled Gaussian prior. This can be also
viewed as L2 regularization. The prior guarantees
that the MAP parameters are unique, and mod-
els our belief that the observed feature occurrence
counts randomly deviate from their “true” values
roughly proportionally to the standard deviations
of the occurrence count distributions. The prior
variance σ2

(x′,a′,y′) for feature (x′, a′, y′) is given
by the formula σ2

(x′,a′,y′) = α/ρ(x′,a′,y′) , where
α > 0 is a free regularization parameter, and
ρ2
(x′,a′,y′) is an empirical estimate of the variance

of the occurrence count of (x′, a′, y′) in the train-
ing data. This is similar to (Chen and Rosenfeld,
2000), except that we use standard deviations in
place of variances. As the estimate for the vari-
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ance of a feature we use the occurrence count of
the corresponding biphrase in the training data.
This could be justified by assuming that the oc-
currence counts follow a Poisson distribution. We
have also run preliminary experiments with other
forms of regularization (different ways of comput-
ing σ(x′,a′,y′), exponential priors corresponding to
L1 regularization, no regularization), and it looks
like the system is not very sensitive to the chosen
prior.

Combining the prior with the model, we see that
the negative log-posteriorL(w) is given by the for-
mula

∑
(x′,a′,y′)

w2
(x′,a′,y′)

2σ2
(x′,a′,y′)

−
∑

(x,a,y)∈S

logP (φ(x, a, y)|x) + C,

where the sum over (x′, a′, y′) is understood to
go over all aligned biphrase features in the model.
This is our criterion for learning w.

3.4.2 Optimization

We solve the optimization problem related to
learning w by first order gradient ascent methods.
The gradient ∇L(w) of L(w) with respect to w
can be written as∑
(x′,a′,y′)

w(x′,a′,y′)

σ2
(x′,a′,y′)

−
∑

(x,a,y)∈S

[
φ̃(x, a, y)−Ew[φ̃|x]],

where Ew[φ̃|x] denotes the conditional expecta-
tion of the aligned biphrase occurrence count fea-
tures given x with respect to model parameters w.
Feature expectations can be computed by combin-
ing the results of a left-to-right and right-to-left
dynamic programming sweep over the source sen-
tence. For more details, see Section 3.4.3.

Inspired by the empirical results in (Vish-
wanathan et al., 2006), we use classic stochas-
tic gradient ascent to solve the optimization prob-
lem. At each step t, we sample with replacement
a batch St of b examples from S. We start from
w0 = 0, and use the update rule

wt+1 = wt − ηt∇Lt(wt), (1)

where ηt > 0 is the learning rate, and ∇Lt(w)
is the stochastic gradient of the negative log-

posterior

Lt(w) =
|St|
|S|

∑
i

w2
i

2σ2
i

−
∑

(x,a,y)∈St

logP (φ(x, a, y)|x)

restricted to batch St. The second term of the
stochastic gradient involves only biphrases whose
source sides match the source sentences in the
batch. Though the gradient of the regularizer is
non-zero for all non-zero biphrase features, the
updates of features that are not active in the sec-
ond term of the gradient can be postponed until
they become active again. Due to feature sparsity,
the number of features that are active in a small
batch is small, and thus also the updates are sparse.
Hence, it is possible to handle even feature vectors
that do not fit into memory.

Another advantage of the stochastic gradient
method is that many processes can apply updates
(1) to a weight vector asynchronously in parallel.
We have implemented two strategies for dealing
with this. The simpler one is to store the weight
vector in a database that takes care of the neces-
sary concurrency control. This way, no process
needs to store the entire weight vector in memory.
The downside is that all training processes must
be able to mmap() to the common file-system
due to limitations in the underlying Berkeley DB
database system. We have also implemented a
client-server architecture in which a server process
stores w in memory and manages read and update
requests to its components that come from train-
ing clients. In this approach, the degree of paral-
lelism is limited only by the number of available
machines and server capacity. The server could
be further distributed for managing models that do
not fit into the memory of a single server.

3.4.3 Computing gradients etc
The computationally most challenging part in
learning the model parameters is computing
∇ logP (φ(x, a, y)|x), i.e., the vector of differ-
ences between the observed occurrence counts of
biphrase features in (x, a, y) and their conditional
expectations under the current model parameters.

The conditional feature expectations can be
computed by a dynamic programming procedure
similar to the one used in training conditional ran-
dom fields. We combine the results of a left-
to-right and right-to-left dynamic programming
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sweep over x. In the left-to-right sweep, we
have for each biphrase feature (x′, a′, y′), i a state
s(x′,a′,y′),i for translations starting from the be-
ginning of x and ending in an occurrence of the
biphrase (x′, a′, y′) at source position i. This state
records the contribution of all partial translations
whose right-most active biphrase feature on the
source side is (x′, a′, y′), i to the conditional ex-
pectation of feature (x′, a′, y′), i (in log scale).
The score for sempty,0 = 0, and s(x′,a′,y′),i is ob-
tained from the recurrence

score
(
s(x′,a′,y′),i

)
=∑

(x′′,a′′,y′′),i′′∈A((x′,a′,y′),i)

[
score

(
s(x′′,a′′,y′′),i′′

)
+

∑
(x′′′,a′′′,y′′′),i′′′∈B

w(x′′′,a′′′,y′′′),i′′′
]

Here, A((x′, a′, y′), i) is the set of prede-
cessor states of s(x′,a′,y′),i and includes all
states s(x′′,a′′,y′′),i′′ such that a proper suffix of
(x′′, a′′, y′′), i′′ (i.e., a biphrase whose source and
target are proper suffices of x′′ and y′′ respec-
tively) is equal to a prefix of (x′, a′, y′), i. As
a special case, A includes all states s(x′′,a′′,y′′),i′′
for which (x′′, a′′, y′′), i′′ ends before or at posi-
tion i. This takes care of translation paths that
leave some words in x untranslated. Since the
starting position of a proper suffix of a biphrase
is always after the biphrase’s original starting po-
sition, going through the states in order of in-
creasing i guarantees that the scores for biphrases
in A((x′, a′, y′), i) are available when computing
score

(
s(x′,a′,y′),i

)
.

The set B that depends on ((x′, a′, y′), i) and
((x′′, a′′, y′′), i′′) is defined by the formula

B = sub
(
(x′, a′, y′), i

) \ sub
(
(x′′, a′′, y′′), i′′

)
,

where sub ((x′, a′, y′), i) denotes the set of sub-
biphrases of (x′, a′, y′), i (including the biphrase
(x′, a′, y′), i itself). Thus, summing over the
weights of biphrases in B adds the contribution of
features introduced by extending translation paths
ending in (x′′, a′′, y′′), i′′ by (x′, a′, y′), i′.

From the right-to-left dynamic programming,
we get analogously the contribution of right-to-
left partial translations whose left-most active
biphrase is (x′, a′, y′), i. The partition function
used for normalizing the expectations can be ob-
tained as a side product of either of the sweeps.

In conditional random fields, the (unnormal-
ized) expectations for the feature can be ob-
tained by multiplying the scores of the states
corresponding to the same feature in the left-
to-right and right-to-left dynamic programming
memories. In our case, combining the two val-
ues stored in the states for a feature (x′, a′, y′), i
only gives the contribution of the translation paths
where (x′, a′, y′), i is active but not covered by
any longer biphrase that extends (x′, a′, y′), i both
left and right. To include the contribution of
the remaining translation paths, we need to go
through states corresponding to super-biphrases of
(x′, a′, y′), i. Special care has to be taken in order
to include the contribution of all feature vectors
in which such super-biphrases are active exactly
once. An efficient way to do this is to process the
states for super-biphrases in topological order with
respect to biphrase inclusion, and to include only
the contributions of states for super-biphrases that
extend the previously included states both left and
right.

Another complication in the dynamic program-
ming is that a biphrase can extend the source side
of another overlapping biphrase to the right, but
the target side to the left, or visa versa. Such
overlaps are not directly covered by our dynamic
programming. To deal with them, we construct
new virtual biphrases that correspond to the re-
sults of such overlaps in a pre-processing step. The
number of such virtual combinations can in theory
grow exponentially, but in practice only a small
number of virtual biphrases seems to suffice.

3.5 Prediction with translation model alone
Prediction is done in two phases. First, we find (by
a dynamic programming procedure similar to the
one outlined in Section 3.4.3) the highest proba-
bility feature vector φ̂(x) defined by

φ̂(x) = arg max
φ∈Φx : x covered by biphrases in φ

P (φ|x).

Note that we restrict the search to feature vec-
tors that cover the whole of x, i.e., to feature vec-
tors φ(x, a, y) in which each word in x is covered
by at least one active aligned biphrase (x′, a′, y′).
This forces the system to translate all words in the
source sentence even if the translation model pre-
dicts that none of the translations are very likely.

To translate words that are not covered by any
aligned biphrase feature in the model, we use the
following strategy: If the word is found from an
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optional out-of-vocabulary dictionary, we use the
translation from the dictionary, and otherwise re-
sort to an implicit zero weight aligned biphrase
that copies the input word to the output as is.
In our experiments, the out-of-vocabulary dictio-
nary is constructed from the word translations that
occur once in the training data, so the out-of-
vocabulary dictionary only compensates for the
word translations lost in phrase table pruning. If
available, a real dictionary could be used as well.

The second step in predicting a translation is
solving the pre-image problem, i.e., constructing
a translation y from the predicted feature vector
φ̂(x). Since φ̂(x) ∈ Φx, there always exists an
alignment a and a translation y such that all the
aligned biphrases in φ̂(x) occur in φ(x, a, y), but
the a and y may not be unique. We choose the a
and y given by concatenating the target sides of the
biphrases active in φ̂(x) in the order induced by
their positions in the source sentence. Thus, there
is no phrase-level reordering, and the fluency of
the target language output is induced by the phrase
overlaps only.

3.6 Predicting with an integrated LM
The prediction strategy outlined in the previous
section is simple and conceptually clean. How-
ever, biphrase overlaps alone may not be enough to
enforce fluent output, especially given that bilin-
gual data is typically more scarce than monolin-
gual data. Also, the lack of a reverse transla-
tion model means the system is unable to iden-
tify phrase extraction errors in which rarely seen
source phrases are translated to common target
phrases by chance.

To address these shortcomings, we augment the
translation model with the following additional
features that have been observed to enhance trans-
lation quality in other SMT systems.

1. Language model: logP (y), where P (y) is
given by a smoothed n-gram language model

2. Lexical translation model (reverse direc-
tion): logP (x|y, a) given by a word-level re-
verse translation model

3. Translation length: number of words in y
4. Distortion: number of source words in

phrases with swapped translations

The final score driving the translation process
is given by a linear combination of the trans-
lation model score logP (φ(x, a, y)|x) and these

features. Besides the translation model, the lan-
guage model feature is clearly the most influential,
while the lexical translation feature has only a mi-
nor positive effect on translation quality.

We use an approximate dynamic program-
ming variant of the commonly used beam search
procedure to find the highest scoring candidate
translation. We compute the translation model
log-probability logP (φ(x, a, y)|x) incrementally
while building up the corresponding candidate
translation y and word alignment a from left to
right. We allow phrase-level distortions given
by swapping the order of translations of consec-
utive non-overlapping source phrases. Unlike in
Moses, our beam search is structured around state
transitions, not around states. This means that we
apply each biphrase (state transition) simultane-
ously to all applicable partial translations (states).
This strategy is in our experience more efficient,
does not rely on future score estimates, and is im-
plementationally very similar to the dynamic pro-
gramming procedures that we use in training the
model parameters and in prediction with a lan-
guage model alone.

The weights of the features are tuned by opti-
mizing the BLEU score of development set trans-
lations with amoeba search. This simplistic strat-
egy is feasible given our system’s fast translation
speed, and extends easily to cover non-linear fea-
ture combinations. The reason for using amoeba is
that it is simpler to implement — we do not believe
amoeba yields any better values for the parameters
in the end.

4 Experiments

4.1 Experimental setup

Our experiments are on the Europarl translation
tasks following the setup used in the shared trans-
lation task of the ACL 2008 Third Workshop on
Statistical Machine Translation (Callison-Burch et
al., 2008), and on the French-to-English transla-
tion task of the EACL 2009 Fourth Workshop on
Statistical Machine Translation (Callison-Burch et
al., 2009). The size of the Europarl training cor-
pora is about 1M sentence pairs per language pair,
while the larger GigaFrEn corpus contains about
22M sentence pairs. The corpora were used for
biphrase extraction and translation model training.
Decoder feature weights were tuned on the pro-
vided development sets. In case of Europarl, lan-
guage models were trained on the target sides of
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es-en en-es fr-en en-fr de-en en-de time
Sinuhe 31.38 30.94 31.50 28.91 25.03 19.26 338.0
Moses 32.18 31.88 32.63 29.92 27.30 20.57 3729.5
Sinuhetrans 29.14 27.12 28.74 26.06 22.38 17.14 44.2
Mosestrans 24.32 22.75 23.84 21.22 19.62 13.59 1321.5

Table 1: Left: The translation quality of the SMT systems as measured by the BLEU score. Translations
were detokenized but not recased before evaluating their quality against lowercased reference translations
by the mteval-v11b.pl script. Right: Average total translation time in seconds.

the bilingual corpora. In the GigaFrEn experi-
ments we used the provided monolingual news do-
main data. All data was tokenized and lowercased
using the tools in the Moses distribution.

We experimented with four translation sys-
tems: Sinuhetrans, Sinuhe, Mosestrans, and
Moses. Sinuhetrans uses only the translation
model in producing translations (see Section 3.5),
while the full system Sinuhe uses also a lan-
guage model and some additional features (see
Section 3.6). As a baseline, we used the Moses
translation system, which is known to be very
competitive on the Europarl translation tasks as
evidenced by the University of Edinburgh entries
in the translation challenge (Callison-Burch et al.,
2008). The other comparison point Mosestrans
was obtained from Moses by disabling distortions
and setting setting the weights of all features ex-
cept the forward translation model to 0. By com-
paring Sinuhetrans and Mosestrans, we hope to
indirectly compare the performance of the under-
lying translation models. A more direct compar-
ison was not possible as it is not feasible to nor-
malize the “probabilities” predicted by the Moses
translation model.

4.1.1 Training the models

We trained Moses exactly as suggested
in (Callison-Burch et al., 2008), except that
we used the -unk option for SRILM in training
the language models (both for Sinuhe and
Moses). The translation model for Sinuhe
(and Sinuhetrans) was built from the phrases
extracted by Moses as described in Section 3.1.
We chose α = 1.0 and set batch size to 1. The
learning rate was initially set to 0.1, and decayed
proportional to 1/t after 2M or 100M iterations
of training for Europarl and GigaFrEn tasks,
respectively. These choices may not be optimal
as we did not experiment with other choices
yet. In case of Europarl, training was run for

70-100M iterations using the Berkeley DB based
distribution strategy (4 CPU cores per language
pair). This took 10 days. For GigaFrEn, we
used the client-server architecture, and trained the
model for 620M stochastic gradient iterations on
about 200 CPUs. This took 2 days, which is a lot
less than the time needed to run (parallel) Giza
on this data. The number of biphrase features in
Sinuhe’s model was 2-4 million on the Europarl
tasks, and about 95 million on the GigaFrEn task.

The decoder parameters for Sinuhe were
tuned on the development sets by amoeba, and for
Moses by MERT. As both amoeba and MERT try
to solve the same optimization problem, we be-
lieve the difference in optimization methods has
little influence on the results.

4.1.2 Translation results

Europarl tasks The systems were tested on
the 2000 sentence Europarl domain develop-
ment test sets provided for the shared translation
task (Callison-Burch et al., 2008). The resulting
BLEU scores and total translation times averaged
over the datasets are reported in Table 1. While
Moses has the highest BLEU score for all the
language pairs, the BLEU score for Sinuhe is
worse by only at most 1.31 BLEU points except
on the de-en task, where the difference is 2.27.
Sinuhetrans is clearly inferior to Sinuhe but
equally clearly superior to Mosestrans.

It takes less than a minute to translate the
development test set by the fastest system
Sinuhetrans. The slowest system Moses needs
around an hour for the same task. Memory usage
follows a similar pattern. For example, Sinuhe
requires roughly one tenth of the memory used
by Moses. Thus, in terms of resource usage,
Sinuhetrans and Sinuhe seem clearly supe-
rior to Moses. The quantitative results would
change if the systems’ parameters were optimized
for speed rather than quality, but the differences
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are so clear that the general pattern would proba-
bly remain the same. For example, Moses with
no distortion is still clearly slower than Sinuhe.

GigaFrEn task The fr-en model was tested on
the 2525 sentence news domain test data used in
the preliminary evaluation of the translation chal-
lenge results. The BLEU scores for Sinuhe and
Moses were 26.32 and 26.98, respectively. The
total translation time was 13m 50s with Sinuhe,
whereas Moses needed 82m 28s. Thus, the pat-
tern that was observed on Europarl tasks is re-
peated here: The translation quality of Moses is
slightly better, but Sinuhe is significantly faster.
Surprisingly, both Sinuhe and Moses fare well
in comparison to the participants of the actual
challenge: According to the preliminary results
on the same test data we used (Koehn, 2009),
the Moses baseline would have been beaten only
by Google, and Sinuhe would have been sixth
among the 23 participating systems with a differ-
ence of only 0.57 BLEU points to the second best
entry. A partial explanation for the good relative
performance could be that the challenge partici-
pants had only a week to train their models on
the full version of GigaFrEn data, so they may not
have had time to take full advantage of it. On the
other hand, many of the top ranked systems relied
on external resources that were not available for
us.

Based on an informal human evaluation of the
outputs of Sinuhe and Moses, it looks like the
translations of Sinuhe are slightly more accu-
rate in conveying the meaning of the original sen-
tences, but especially the translations of long rare
expressions (e.g., multi-word names of institu-
tions) are less fluent. This hints that the parame-
ters for (rare) biphrases may have been regularized
too heavily — it looks like Sinuhe is underfitting
rather than overfitting. We will conduct more ex-
periments to see how much the translation quality
can be improved by a better choice of α or by us-
ing a different prior for regularization. Of course,
there is room for tuning elsewhere, too. For exam-
ple, it would be a surprise if the phrase extraction
pipeline that has been optimized for Moseswould
be optimal for Sinuhe.

5 Conclusions

In this paper, we have shown that phrase-based
SMT can be viewed as an instance of structural
prediction. The word alignment and phrase ex-

traction heuristics serve as a strategy for feature
extraction, and the translation task can be mod-
elled as a structural prediction problems over these
features. Our methods scale to large corpora and
are fast at predicting translations. While speed is
not the primary goal, the faster translation times
may be a key to success in applications where the
amount of text that needs to be translated is large.
In terms of BLEU scores, the results do not im-
prove the state-of-the-art so far. However, fine-
tuning the standard phrase-based approach over
the years has increased its performance signifi-
cantly, and we see no reason why the same would
not happen with the proposed approach, especially
if the model is augmented with additional features
like gapped biphrases and biphrases over POS
tags.

The fact that our translation model is a prop-
erly normalized conditional probability distribu-
tion opens up many new possibilities. For in-
stance, instead of predicting translations, it is pos-
sible to efficiently compute the expected num-
ber of times each word would appear in them.
Such output might be useful, e.g., if the transla-
tions are to be post-processed by models relying
on bag-of-words representation. Another research
direction we are currently looking into is train-
ing the proposed translation model in the reverse
direction, and then predicting translations using
the noisy channel approach, i.e., by maximizing
P (x|y)P (y). The key difference to previous work
here is that since P (x|y) is properly normalized,
the noisy channel approach would not in our case
suffer from the potentially negative effects caused
by ignoring the normalizer that depends on y. Be-
sides being a viable (though computationally de-
manding) alternative criterion for predicting trans-
lations, the noisy channel approach could easily be
used for, e.g., reranking n-best lists and for system
combination.
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Abstract 

In a linguistically-motivated syntax-based trans-
lation system, the entire translation process is 
normally carried out in two steps, translation 
rule matching and target sentence decoding us-
ing the matched rules. Both steps are very time-
consuming due to the tremendous number of 
translation rules, the exhaustive search in trans-
lation rule matching and the complex nature of 
the translation task itself. In this paper, we pro-
pose a hyper-tree-based fast algorithm for trans-
lation rule matching. Experimental results on 
the NIST MT-2003 Chinese-English translation 
task show that our algorithm is at least 19 times 
faster in rule matching and is able to help to 
save 57% of overall translation time over previ-
ous methods when using large fragment transla-
tion rules. 

1 Introduction 

Recently linguistically-motivated syntax-based 
translation method has achieved great success in 
statistical machine translation (SMT) (Galley et al., 
2004; Liu et al., 2006, 2007; Zhang et al., 2007, 
2008a; Mi et al., 2008; Mi and Huang 2008; 
Zhang et al., 2009). It translates a source sentence 
to its target one in two steps by using structured 
translation rules. In the first step, which is called 
translation rule matching step, all the applicable1 
translation rules are extracted from the entire rule 
set by matching the source parse tree/forest. The 
second step is to decode the source sentence into 
its target one using the extracted translation rules. 
Both of the two steps are very time-consuming 
due to the exponential number of translation rules 
and the complex nature of machine translation as 

                                                           
1 Given a source structure (either a parse tree or a parse 
forest), a translation rule is applicable if and only if the 
left hand side of the translation rule exactly matches a 
tree fragment of the given source structure. 

an NP-hard search problem (Knight, 1999). In the 
SMT research community, the second step has 
been well studied and many methods have been 
proposed to speed up the decoding process, such 
as node-based or span-based beam search with 
different pruning strategies (Liu et al., 2006; 
Zhang et al., 2008a, 2008b) and cube pruning 
(Huang and Chiang, 2007; Mi et al., 2008). How-
ever, the first step attracts less attention. The pre-
vious solution to this problem is to do exhaustive 
searching with heuristics on each tree/forest node 
or on each source span. This solution becomes 
computationally infeasible when it is applied to 
packed forests with loose pruning threshold or rule 
sets with large tree fragments of large rule height 
and width. This not only overloads the translation 
process but also compromises the translation per-
formance since as shown in our experiments the 
large tree fragment rules are also very useful.  

To solve the above issue, in this paper, we pro-
pose a hyper-tree-based fast algorithm for transla-
tion rule matching. Our solution includes two 
steps. In the first step, all the translation rules are 
re-organized using our proposed hyper-tree struc-
ture, which is a compact representation of the en-
tire translation rule set, in order to make the com-
mon parts of translation rules shared as much as 
possible. This enables the common parts of differ-
ent translation rules to be visited only once in rule 
matching. Please note that the first step can be 
easily done off-line very fast. As a result, it does 
not consume real translation time. In the second 
step, we design a recursive algorithm to traverse 
the hyper-tree structure and the input source forest 
in a top-down manner to do the rule matching be-
tween them. As we will show later, the hyper-tree 
structure and the recursive algorithm significantly 
improve the speed of the rule matching and the 
entire translation process compared with previous 
methods. 

With the proposed algorithm, we are able to 
carry out experiments with very loose pruning 

1037



thresholds and larger tree fragment rules effi-
ciently. Experimental results on the NIST MT-
2003 Chinese-English translation task shows that 
our algorithm is 19 times faster in rule matching 
and is able to save 57% of overall translation time 
over previous methods when using large fragment 
translation rules with height up to 5. It also shows 
that the larger rules with height of up to 5 signifi-
cantly outperforms the rules with height of up to 3 
by around 1 BLEU score. 

The rest of this paper is organized as follows. 
Section 2 introduces the syntax-based translation 
system that we are working on. Section 3 reviews 
the previous work. Section 4 explains our solution 
while section 5 reports the experimental results. 
Section 6 concludes the paper. 

2 Syntax-based Translation 

This section briefly introduces the forest/tree-
based tree-to-string translation model which 
serves as the translation platform in this paper. 

2.1 Tree-to-string model 

   

                                                    

 

                                                      

XNA declaration is related to some regulation 
 

Figure 1. A tree-to-string translation process. 
 

The tree-to-string model (Galley et al. 2004; Liu et 
al. 2006) views the translation as a structure map-

ping process, which first breaks the source syntax 
tree into many tree fragments and then maps each 
tree fragment into its corresponding target transla-
tion using translation rules, finally combines these 
target translations into a complete sentence. Fig. 1 
illustrates this process. In real translation, the 
number of possible tree fragment segmentations 
for a given input tree is exponential in the number 
of tree nodes.  

2.2 Forest-based translation 

To overcome parse error for SMT, Mi and Huang 
(2008) propose forest-based translation by using a 
packed forest instead of a single syntax tree as the 
translation input. A packed forest (Tomita 1987; 
Klein and Manning, 2001; Huang and Chiang, 
2005) is a compact representation of many possi-
ble parse trees of a sentence, which can be for-
mally described as a triple , where V is 
the set of non-terminal nodes, E is the set of hy-
per-edges and S is a sentence represented as an 
ordered word sequence. A hyper-edge in a packed 
forest is a group of edges in a tree which connects 
a father node to all its children nodes, representing 
a CFG-based parse rule. Fig. 2 is a packed forest 
incorporating two parse trees T1 and T2 of a sen-
tence as shown in Fig. 3 and Fig. 4. Given a hy-
per-edge e, let h be its father node, then we say 
that e is attached to h. 

A non-terminal node in a packed forest can be 
represented as “label [start, stop]”, where “label” 
is its syntax category and “[start, stop]” is the 
range of words it covers. For example, the node in 
Fig. 5 pointed by the dark arrow is labelled as 
“NP[3,4]”, where NP is its label and [3,4] means 
that it covers the span from the 3rd word to the 4th  
word. In forest-based translation, rule matching is 
much more complicated than the tree-based one.  

 

 
 

Figure 2. A packed forest 
 

Zhang et al. (2009) reduce the tree sequence 
problem into tree problem by introducing virtual 
node and related forest conversion algorithms, so 
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the algorithm proposed in this paper is also appli-
cable to the tree sequence-based models. 
 

     
 
Figure 3. Tree 1 (T1)      Figure 4. Tree 2 (T2) 

3 Matching Methods in Previous Work  

In this section, we discuss the two typical rule 
matching algorithms used in previous work. 

3.1 Exhaustive search by tree fragments 

This method generates all possible tree fragments 
rooted by each node in the source parse tree or 
forest, and then matches all the generated tree 
fragments against the source parts (left hand side) 
of translation rules to extract the useful rules 
(Zhang et al., 2008a).  

 

 
 

Figure 5. Node NP[3,4] in packed forest 
 

 
 

Figure 6. Candidate fragments on NP[3,4] 

For example, if we want to extract useful rules 
for node NP[3,4] in Fig 5, we have to generate all 
the tree fragments rooted at node NP[3,4] as 
shown in Fig 6, and then query each fragment in 
the rule set. Let  be a node in the packed forest, 

 represents the number of possible tree frag-
ments rooted at node , then we have: 

 
 

௜௖೔ ௜௦ ௧௛௘ ௜೟೓ ௖௛௜௟ௗ௥௘௡ ௡௢ௗ௘ ௜௡ ௘௘ ௜௦ ௔ ௛௬௣௘௥ି௘ௗ௚௘ ௔௧௧௔௖௛௘ௗ ௧௢ ௛  

 
 

The above equation shows that the number of 
tree fragments is exponential to the span size, the 
height and the number of hyper-edges it covers. In 
a real system, one can use heuristics, e.g. the max-
imum number of nodes and the maximum height 
of fragment, to limit the number of possible frag-
ments. However, these heuristics are very subjec-
tive and hard to optimize. In addition, they may 
filter out some “good” fragments.  

3.2 Exhaustive search by rules 

This method does not generate any source tree 
fragments. Instead, it does top-down recursive 
matching from each node one-by-one with each 
translation rule in the rule set (Mi and Huang 
2008). 

For example, given a translation rule with its 
left hand side as shown in Fig. 7, the rule match-
ing between the given rule and the node IP[1,4] in 
Fig. 2 can be done as follows.  

1. Decompose the left hand side of the transla-
tion rule as shown in Fig. 7 into a sequence of hy-
per-edges in top-down, left-to-right order as fol-
lows: 

IP => NP VP;  NP => NP NP;  NP => NN; 
NN => 声明 
 

 
 

Figure 7. The left hand side of a rule 
 

2. Pattern match these hyper-edges(rule) one-
by-one in top-down left-to-right order from node 
IP[1,4]. If there is a continuous path in the forest 
matching all of these hyper-edges in order, then 
we can say that the rule is useful and matchable 
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with the tree fragment covered by the continuous 
path. The following illustrates the matching steps: 

1. Match hyper-edge “IP => NP VP” with node 
IP[1,4]. There are two hyper-edges in the forest 
matching it: “IP[1,4] => NP[1,1] VP[2,4]” and 
“IP[1,4] => NP[1,2] VP [3,4]”, which generates 
two candidate paths. 

2. Since hyper-edge “NP => NP NP” fails to 
match NP[1,1], the path initiated with “IP[1,4] => 
NP[1,1] VP[2,4]” is pruned out. 

3.  Since there is a hyper-edge “NP[1,2] => 
NP[1,1] NP[2,2]” matching “NP => NP NP” on 
NP[1,2], then continue for further matching. 

4. Since “NP=>NN” on NP[2,2] matches 
“NP[2,2] => NN[2,2]”, then continue for further 
matching. 

5. “NN=>声明” on NN[2,2] matches “NN[2,2] 
=>声明” and it is the last hyper-edge in the input 
rules. Finally, there is one continuous path suc-
cessfully matching the left hand side of the input 
rule.  

This method is able to avoid the exponential 
problem of the first method as described in the 
previous subsection. However, it has to do one-by-
one pattern matching for each rule on each node. 
When the rule set is very large (indeed it is very 
large in the forest-based model even with a small 
training set), it becomes very slow, and even much 
slower than the first method. 

4 The Proposed Hyper-tree-based Rule 
Matching Algorithm 

In this section, we first explain the motivation why 
we re-organize the translation rule sets, and then 
elaborate how to re-organize the translation rules 
using our proposed hyper-tree structure. Finally 
we discuss the top-down rule matching algorithm 
between forest and hyper-tree.  

4.1 Motivation 

 
 

              Figure 8.  Two rules’ left hand side 
 

 
Figure 9. Common part of the two rules’ left hand  

sides in Figure 8 
 
Fig. 9 shows the common part of the left hand 
sides of two translation rules as shown in Fig. 8. 
In previous rule matching algorithm, the common 
parts are matched as many times as they appear in 
the rule set, which reduces the rule matching 
speed significantly. This motivates us to propose 
the hyper-tree structure and the rule matching al-
gorithm to make the common parts shared by mul-
tiple translation rules to be visited only once in the 
entire rule matching process. 

4.2 Hyper-node, hyper-path and hyper-tree 

A hyper-tree is a compact representation of a 
group of tree translation rules with common parts 
shared. It consists of a set of hyper-nodes with 
edges connecting different hyper-nodes into a big 
tree. A hyper-tree is constructed from the transla-
tion rule sets in two steps: 

1) Convert each tree translation rule into a hy-
per-path; 

2) Construct the hyper-tree by incrementally 
adding each individual hyper-path into the 
hyper-tree. 

A tree rule can be converted into a hyper-path 
without losing information. Fig. 10 demonstrates 
the conversion process:  

1) We first fill the rule tree with virtual nodes  
to make all its leaves have the same depth 
to the root; 

2) We then group all the nodes in the same 
tree level to form a single hyper-node, 
where we use a comma as a delimiter to 
separate the tree nodes with different father 
nodes; 

3) A hyper-path is a set of hyper-nodes linked 
in a top-down manner. 

The commas and virtual nodes  are introduced 
to help to recover the original tree from the hyper-
path. Given a tree node in a hyper-node, if there 
are n commas before it, then its father node is the 
(n+1)th tree node in the father hyper-node. If we 
could find father node for each node in hyper-
nodes, then it is straightforward to recover the 
original tree from the hyper-path by just adding 
the edges between original father and children 
nodes except the virtual node .  

1040



After converting each tree rule into a hyper-
path, we can organize the entire rule set into a big 
hyper-tree as shown in Figure 11. The concept of 
hyper-path and hyper-tree could be viewed as an 
extension of the "prefix merging" ideas for CFG 
rules (Klein and Manning 2001). 

 

         
 
 

 
 

Figure 10. Convert tree to hyper-path 
 

 
 

Figure 11. A hyper-tree example 
 

Algorithm 1 shows how to organize the rule set 
into a big hyper-tree. The general process is that 
for each rule we convert it into a hyper-path and 
then add the hyper-path into a hyper-tree incre-
mentally. However, there are many different hy-
per-trees generated given a big rule set. We then 
introduce a TOP label as the root node to link all 
the individual hyper-trees to a single big hyper-
tree. Algorithm 2 shows the process of adding a 
hyper-path into a hyper-tree. Given a hyper-path, 
we do a top-down matching between the hyper-
tree and the input hyper-path from root hyper-
node until a leaf hyper-node is reached or there is 
no matching hyper-node at some level found. 
Then we add the remaining unmatchable part of 
the input hyper-path as the descendants of the last 
matchable hyper-node. 

Please note that in Fig. 10 and Fig. 11, we ig-
nore the target side (right hand side) of translation 

rules for easy discussion. Indeed, we can easily 
represent all the complete translation rules (not 
only left hand side) in Fig. 11 by simply adding 
the corresponding rule target sides into each hy-
per-node as done by line 5 of Algorithm 1.  

Any hyper-path from the root to any hyper-
node (not necessarily be a leaf of the hyper-tree) 
in a hyper-tree can represent a tree fragment. As a 
result, the hyper-tree in Fig. 11 can represent up to 
6 candidate tree fragments. It is easy to understand 
that the maximum number of tree fragments that a 
hyper-tree can represent is equal to the number of 
hyper-nodes in it except the root. It is worth not-
ing that a hyper-node in a hyper-tree without any 
target side rule attached means there is no transla-
tion rule corresponding to the tree fragment repre-
sented by the hyper-path from the root to the cur-
rent hyper-node. The compact representation of 
the rule set by hyper-tree enables a fast algorithm 
to do translation rule matching. 
 
Algorithm 1. Compile rule set into hyper-tree 
Input: rule set 
Output: hyper-tree 
 

1.  Initialize hyper-tree as a TOP node  
2.  for  each rule in rule set  do 
3.          Convert the left hand side tree to a hyper-path p 
4.          Add hyper-path p into hyper-tree 
5. Add rule’s right hand side to the leaf hyper-node of  

a hyper-path in the hyper-tree  
6. end for 
 
Algorithm  2. Add hyper-path into hyper-tree 
Input: hyper-path p and hyper-tree t 
Notation:  

   h: the height of hyper-path p 
   p(i) : the hyper-node of ith level (top-down) of p 
   TN: the hyper-node in hyper-tree  

Output: updated hyper-tree t  
 

1. Initialize TN as TOP 
2. for  i := 1 to h  do 
3.       if there is a child c of TN has the same label as p(i)    
              then 
4.             TN := c 
5.       else  
6.             Add a child c to TN, label c as p(i) 
7.             TN := c 

4.3 Translation rule matching between forest 
and hyper-tree 

Given the source parse forest and the translation 
rules represented in the hyper-tree structure, here 
we present a fast matching algorithm to extract so-
called useful translation rules from the entire rule 
set in a top-down manner for each node of the for-
est.  

As shown in Algorithm 3, the general process 
of the matching algorithm is as follows: 
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Algorithm 3. Rule matching on one node  
Input: hyper-tree T, forest F, and node n 
Notation:   
      FP: a pair <FNS, TN>, FNS is the frontier nodes of      
             matched tree fragment,  
             TN is the hyper-tree node matching it 
      SFP: the queue of FP 
Output: Available rules on node n 
 

1. if there is no child c of TOP having the same label as n      
   then 

2.        Return failure. 
3. else  
4.      Initialize FP as <{n},c> and put it into SFP 
5.      for each FP in SFP do 
6.                 SFP  PropagateNextLevel(FP.FNS, FP.TN)  
7.      for each FP in SFP do 
8.          if the rule set attached to FP.TN is not empty   

         then 
9.               Add FP to result 

 
Algorithm 4. PropagateNextLevel  
Input: Frontier node sequence FNS, hyper-tree node TN 
Notation: 
           CT: a child node of TN 
                  the number of node sequence (separated by  
                  comma, see Fig 11) in CT is equal to the number  
                  of node in TN.   
           CT(i) : the ith node sequence in hyper-node CT 
           FNS(i): the ith node in FNS 
           TFNS: the temporary set of frontier node sequence 
           RFNS: the result set of frontier node sequence  
           FP:  a pair of frontier node sequence  
                   and hyper-tree node 
           RFP: the result set of FP 
Output: RFP  
 

1. for each child hyper-node CT of TN do 
2.        for i:= 1 to the number of node sequence in CT do 
3.              empty TFNS 
4.              if CT(i) ==  then 
5.                      Add FNS(i) to TFNS. 
6.              else 
7.                   for each hyper-edge e attached to FNS(i) do 
8.                         if e.children match CT(i) then 
9.                                Add e.children to TFNS 
10.              if TFNS is empty then 
11.                      empty RFNS 
12.                      break 
13.              else if i == 1 then  
14.                       RFNS := TFNS 
15.              else  
16.                       RFNS := RFNS  TFNS 
17.        for each FNS in RFNS do 
18.                add <FNS, CT > into RFP 

 
1) For each node n of the source forest if no 

child node of TOP in hyper-tree has the same label 
with it, it means that no rule matches any tree 
fragments rooted at the node n (i.e., no useful 
rules to be used for the node n) (line 1-2) 

2) Otherwise, we match the sub-forest starting 
from the node n against a sub-hyper-tree starting 
from the matchable child node of TOP layer by 
layer in a top-down manner. There may be many 
possible tree fragments rooted at node n and each 

of them may have multiple useful translation rules. 
In our implementation, we maintain a data struc-
ture of FP = <FNS, TN> to record the currently 
matched tree fragment of forest and its corres-
ponding hyper-tree node in the rule set, where 
FNS is the frontier node set of the current tree 
fragment and TN is the hyper-tree node. The data 
structure FP is used to help extract useful transla-
tion rules and is also used for further matching of 
larger tree fragments. Finally, all the FPs for the 
node n are kept in a queue. During the search, the 
queue size is dynamically increased. The matching 
algorithm terminates when all the FPs have been 
visited (line 5-6 and Algorithm 4). 

3) In the final queue, each element (FP) of the 
queue contains the frontier node sequence of the 
matched tree fragment and its corresponding hy-
per-tree node. If the target side of a rule in the hy-
per-tree node is not empty, we just output the 
frontier nodes of the matched tree fragment, its 
root node n and all the useful translation rules for 
later translation process. 

Algorithm 4 describes the detailed process of 
how to propagate the matching process down to 
the next level.  <FNS, TN> is the current level 
frontier node sequence and hyper-tree node. Given 
a child hyper-node CT of TN (line 1), we try to 
find the group of next level frontier node sequence 
to match it (line 2-18). As shown in Fig 11, a hy-
per-node consists of a sequence of node sequence 
with comma as delimiter. For the ith node se-
quence CT(i) in CT, If CT(i) is , that means 
FNS(i) is a leaf/frontier node in the matched tree 
fragment and thus no need to propagate to the next 
level (line 4-5). Otherwise, we try each hyper-
edge e of FNS(i) to see whether its children match 
CT(i), and put the children of the matched hyper-
edge into a temp set TFNS (line 7-9). If the temp 
set is empty, that means the current matching fails 
and no further expansion needs (line 10-12). Oth-
erwise, we integrate current matched children into 
the final group of frontier node sequence (line 13-
16) by Descartes Product ( ). Finally, we con-
struct all the <FNS, TN> pair for next level 
matching (line 17-18). 

It would be interesting to study the time com-
plexity of our Algorithm 3 and 4. Suppose the 
maximum number of children of each hyper-node 
in hyper-tree is N (line 1), the maximum number 
of node sequence in CT is M (line 2), the maxi-
mum number of hyper-edge in each node in 
packed forest is K (line 7), the maximum number 
of hyper-edge with same children representation 
in each node in packed forest is C (i.e. the maxi-
mum size of TFNS in line 16, and the maximum 
complexity of the Descartes Product in line 16 
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would be CM), then the time complexity upper-
bound of Algorithm 4 is O(NM(K+CM)). For Al-
gorithm 3, its time complexity is O(RNM(K+CM)), 
where R is the maximum number of tree fragment 
matched in each node.  

5 Experiment 

5.1 Experimental settings 

We carry out experiment on Chinese-English 
NIST evaluation tasks. We use FBIS corpus 
(250K sentence pairs) as training data with the 
source side parsed by a modified Charniak parser 
(Charniak 2000) which can output a packed forest. 
The Charniak Parser is trained on CTB5, tuned on 
301-325 portion, with F1 score of 80.85% on 271-
300 portion. We use GIZA++ (Och and Ney, 2003) 
to do m-to-n word-alignment and adopt heuristic 
“grow-diag-final-and” to do refinement. A 4-gram 
language model is trained on Gigaword 3 Xinhua 
portion by SRILM toolkit (Stolcke, 2002) with 
Kneser-Ney smoothing. We use NIST 2002 as 
development set and NIST 2003 as test set. The 
feature weights are tuned by the modified Koehn’s 
MER (Och, 2003, Koehn, 2007) trainer. We use 
case-sensitive BLEU-4 (Papineni et al., 2002) to 
measure the quality of translation result. Zhang et 
al. 2004’s implementation is used to do significant 
test. 

Following (Mi and Huang 2008), we use viterbi 
algorithm to prune the forest. Instead of using a 
static pruning threshold (Mi and Huang 2008), we 
set the threshold as the distance of the probabili-
ties of the nth best tree and the 1st best tree. It 
means the pruned forest is able to at least keep all 
the top n best trees. However, because of the shar-
ing nature of the packed forest, it may still contain 
a large number of additional trees. Our statistic 
shows that when we set the threshold as the 100th 
best tree, the average number of all possible trees 
in the forest is 1.2*105 after pruning. 

In our experiments, we compare our algorithm 
with the two traditional algorithms as discussed in 
section 3. For the “Exhaustive search by tree” al-
gorithm, we use a bottom-up dynamic program-
ming algorithm to generate all the candidate tree 
fragments rooted at each node. For the “Exhaus-
tive search by rule” algorithm, we group all rules 
with the same left hand side in order to remove the 
duplicated matching for the same left hand side 
rules. All these settings aim for fair comparison. 

5.2 Accuracy, speed vs. rule heights 

We first compare the three algorithms’ perfor-
mance by setting the maximum rule height from 1 

to 5. We set the forest pruning threshold to the 
100th best parse tree.  

Table 1 compares the speed of the three algo-
rithms. It clearly shows that the speed of both of 
the two traditional algorithms increases dramati-
cally while the speed of our hyper-tree based algo-
rithm is almost linear to the tree height. In the case 
of rule height of 5, the hyper-tree algorithm is at 
least 19 times (9.329/0.486) faster than the two 
traditional algorithms and saves 8.843(9.329 - 
0.486) seconds in rule matching for each sentence 
on average, which contributes 57% (8.843/(9.329 
+ 6.21)) speed improvement to the overall transla-
tion.  

 

H 

Rule Matching 

D Exhaus-
tive 

by tree 

Exhaus-
tive 

by rule 

Hyper- 
tree-
based 

1 0.043 0.077 0.083   2.96 
2 0.047 0.920 0.173   3.56 
3 0.237 9.572 0.358   4.02 
4 2.300 48.90 0.450   5.27 
5 9.329 90.80 0.486   6.21 

 

Table 1. Speed in seconds per sentence vs. rule 
height; “H” is rule height, “D” represents the de-

coding time after rule matching 
 
 

Height BLEU 
1 0.1646 
2 0.2498 
3 0.2824 
4 0.2874 
5 0.2925 

Moses 0.2625 
 

Table 2. BLEU vs. rule height 
 
Table 2 reports the BLEU score with different 

rule heights, where Moses, a state-of-the-art 
phrase-based SMT system, serves as the baseline 
system.  It shows the BLEU score consistently 
improves as the rule height increases. In addition, 
one can see that the rules with maximum height of 
5 are able to outperform the rules with maximum 
height of 3 by 1 BLEU score (p<0.05) and signifi-
cantly outperforms Moses by 3 BLEU score 
(p<0.01). To our knowledge, this is the first time 
to report the performance of rules up to height of 5 
for forest-based translation model.  
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We also study the distribution of the rules used 
in the 1-best translation output. The results are 
shown in Table 3; we could see something inter-
esting that is as the rule height increases, the total 
number of rules with that height decreases, while 
the percentage of partial-lexicalized increases 
dramatically. And one thing needs to note is the 
percentage of partial-lexicalized rules with height 
of 1 is 0, since there is no partial-lexicalized rule 
with height of 1 in the rule set (the father node of 
a word is a pos tag node).  

 

H Total 
Rule Type Percentage (%) 

F P U 
1 9814   76.58     0 23.42 
2 5289   44.99     46.40 8.60 
3 3925   18.39     77.25 4.35 
4 1810   7.90      87.68 4.41 
5 511    6.46 90.50 3.04 

 
Table 3. statistics of rules used in the 1-best trans-

lation output, “F” means full-lexicalized, “P” 
means partial-lexicalized, “U” means unlexiclaizd. 

5.3 Speed vs. forest pruning threshold 

This section studies the impact of the forest prun-
ing threshold on the rule matching speed when 
setting the maximum rule height to 5. 

 

Threshold 

Rule Matching  
Exhaus-

tive 
by tree 

Exhaus-
tive 

by rule 

Hyper- 
tree- 
based 

1 1.2 23.66 0.171 
10 3.1 36.42 0.234 
50 5.7 66.20 0.405 

100 9.3 90.80 0.486 
200 27.3 104.86 0.598 
500 133.6 148.54 0.873 

 

Table 4. Speed in seconds per sentence vs. for-
est  pruning threshold 

 
In Table 4, we can see that our hyper-tree based 

algorithm is the fastest among the three algorithms 
in all pruning threshold settings and even 150 
times faster than both of the two traditional algo-
rithms with threshold of 500th best. Table 5 shows 
the average number of parse trees embedded in a 
packed forest with different pruning thresholds per 
sentence. We can see that the number of trees in-
creases exponentially when the pruning threshold 

increases linearly. When the threshold is 500th best, 
the average number of trees per sentence is 
1.49*109. However, even in this extreme case, the 
hyper-tree based algorithm is still capable of com-
pleting rule matching within 1 second.  
 

Threshold Number of Trees  
1 1 
10 32 
50 5922 

100 128860 
200 2.75*106 
500 1.49*109 

 

Table 5. Average number of trees in packed 
forest with different pruning threshold. 

5.4 Hyper-tree compression rate 

As we describe in section 4.2, theoretically the 
number of tree fragments that a hyper-tree can 
represent is equal to the number of hyper-nodes in 
it. However, in real rule set, there is no guarantee 
that each tree fragment in the hyper-tree has cor-
responding translation rules. To gain insights into 
how effective the compact representation of the 
hyper-tree and how many hyper-nodes without 
translation rules, we define the compression rate 
as follows.  

 

 

 

 
Table 6 reports the different statistics on the 

rule sets with different maximum rule heights 
ranging from 1 to 5. The reported statistics are the 
number of rules, the number of unique left hand 
side (since there may be more than one rules hav-
ing the same left hand side), the number of hyper-
nodes and the compression rate.  

 
H n_rules n_LHS n_nodes c_rate 
1 21588 10779 10779 100% 
2 141632 51807 51903 99.8% 
3 1.73*106 491268 494919 99.2% 
4 8.65*106 2052731 2083296 98.5% 
5 1.89*107 3966742 4043824 98.1% 

 

Table 6. Statistics of rule set and hyper-tree. “H” 
is rule height, “n_rules” is the number of rules, 

“n_LHS” is the number of unique left hand side, 
“n_nodes” is the number of hyper-nodes in hyper-

tree and “c_rate” is the compression rate. 
 

Table 6 shows that in all the five cases, the 
compression rates of hyper-tree are all more than 
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98%. It means that almost all the tree fragments 
embedded in the hyper-tree have corresponding 
translation rules. As a result, we are able to use 
almost only one hyper-edge (i.e. only the frontier 
nodes of a tree fragment without any internal 
nodes) to represent all the rules with the same left 
hand side. This suggests that our hyper-tree is par-
ticularly effective in representing the tree transla-
tion rules compactly. It also shows that there are a 
lot of common parts among different translation 
rules. 

All the experiments reported in this section 
convincingly demonstrate the effectiveness of our 
proposed hyper-tree representation of translation 
rules and the hyper-tree-based rule matching algo-
rithm. 

6 Conclusion   

In this paper2, we propose the concept of hyper-
tree for compact rule representation and a hyper-
tree-based fast algorithm for translation rule 
matching in a forest-based translation system. We 
compare our algorithm with two previous widely-
used rule matching algorithms.  Experimental re-
sults on the NIST Chinese-English MT 2003 eval-
uation data set show the rules with maximum rule 
height of 5 outperform those with height 3 by 1.0 
BLEU and outperform MOSES by 3.0 BLEU. In 
the same test cases, our algorithm is at least 19 
times faster than the two traditional algorithms, 
and contributes 57% speed improvement to the 
overall translation. We also show that in a more 
challenging setting (forest containing 1.49*109 

trees on average) our algorithm is 150 times faster 
than the two traditional algorithms. Finally, we 
show that the hyper-tree structure has more than 
98% compression rate. It means the compact re-
presentation by the hyper-tree is very effective for 
translation rules. 
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Abstract
In this paper we investigate temporal pat-
terns of web search queries. We carry out
several evaluations to analyze the proper-
ties of temporal profiles of queries, reveal-
ing promising semantic and pragmatic re-
lationships between words. We focus on
two applications: query suggestion and
query categorization. The former shows
a potential for time-series similarity mea-
sures to identify specific semantic relat-
edness between words, which results in
state-of-the-art performance in query sug-
gestion while providing complementary
information to more traditional distribu-
tional similarity measures. The query cat-
egorization evaluation suggests that the
temporal profile alone is not a strong in-
dicator of broad topical categories.

1 Introduction

The temporal patterns of word occurrences in hu-
man communication carry an implicit measure of
their relationship to real-world events and behav-
ioral patterns. For example, when there is an event
affecting a given entity (such as a natural disaster
in a country), the entity name will turn up more
frequently in human conversation, newswire arti-
cles and web documents; and people will search
for it more often. Two entities that are closely
related in the real world, such as the name of a
country and a prominent region inside the coun-
try are likely to share common events and there-
fore be closely associated in human communica-
tion. Finally, two instances of the same class
are also likely to share common usage patterns.
For example, names of airlines or retail stores are
more likely to be used by day rather than by night
(Chien, 2005).

In this paper we explore the linguistic relation-
ship between phrases that are judged to be sim-

ilar based on their frequency time series correla-
tion in search query logs. For every phrase1 avail-
able in WordNet 3.02 (Miller, 1995), we have ob-
tained its temporal signature from query logs, and
calculated all their pairwise correlations. Next,
we study the relationship in the top-ranked pairs
with respect to their distribution in WordNet and a
human-annotated labelling.

We also discuss possible applications of this
data to solve open problems and present the results
of two experiments: one where time series corre-
lations turned out to be highly discriminative; and
another where they were not particularly informa-
tive but shed some light on the nature of temporal
semantics and topical categorization:
• Query suggestion, i.e. given a query, generate

a ranked list of alternative queries in which
the user may be interested.
• Query categorization, i.e. given a predefined

set of categories, find the top categories to
which the query can be assigned.

Finally, we illustrate with an example another ap-
plication of time series in solving information ex-
traction problems.

Although query logs are typically proprietary
data, there are ongoing initiatives, like the Lemur
toolbar3, which make this kind of information
available for research purposes. Other work
(Bansal and Koudas, 2007b; Bansal and Koudas,
2007a) shows that temporal information can also
be extracted from public data, such as blogs. More
traditional types of text, such as news, are also typ-
ically associated with temporal labels; e.g., dates
and timestamps.

This paper is structured in the following way:

1We use the term phrase to refer to any single word or
multi-word expression that belongs to a synset in WordNet.
Examples of phrases are person, causal entity or william
shakespeare. We focused on the nouns hierarchy only.

2http://wordnet.princeton.edu
3http://www.lemurproject.org/

querylogtoolbar/
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Section 2 summarizes the related work. Section 3
describes the correlation analysis between all pairs
of phrases from WordNet. Next, Section 4 de-
scribes the application to query suggestion, and
Section 5 the application to labelling queries in
topical categories. Section 7 summarizes the con-
clusions and outlines ideas for future research.

2 Related work

The study of query time series explores a particu-
lar instance of the so-called wisdom of the crowds
effect. Within this area, we can distinguish two
kinds of phenomena. Knowledge and resources
assembled by people explicitly, either individu-
ally, such as the case of blogs, or in a collabora-
tive way, as in forums or wikis. These resources
are valuable for human-consumption and can also
be exploited in order to learn computational re-
sources (Medelyan et al., 2008; Weld et al., 2008;
Zesch et al., 2008b; Zesch et al., 2008a). On
the other hand, it is possible to acquire useful re-
sources and knowledge from aggregating behav-
ioral patterns of large groups of people, even in
the absence of a conscious effort. There is exten-
sive ongoing research on the use of web search
usage patterns to develop knowledge resources.
Some examples are clustering co-click patterns to
learn semantically related queries (Beeferman and
Berger, 2000), combining co-click patterns with
hitting times (Mei et al., 2008), analyzing query
revisions made by users when querying search en-
gines (Jones et al., 2006), replacing query words
with other words that have the highest pointwise
mutual information (Terra and Clarke, 2004), or
using the temporal distribution of words in docu-
ments to improve ranking of search results (Jones
and Diaz, 2007).

Within this second category, an important area
is dedicated to the study of time-related features
of search queries. News aggregators use real-time
frequencies of user queries to detect spikes and
identify news shortly after the spikes occur (Mu-
rata, 2008). Web users’ query patterns have also
proved useful for building a real-time surveillance
system that accurately estimates region-by-region
influenza activity with a lag of one day (Ginsberg
et al., 2009). Search engines specifically devel-
oped for real-time searches, like Twitter search,
will most likely provide new use cases and sce-
narios for quickly detecting trends in user search
query patterns.

Figure 1: Time series obtained for the queries
[gazpacho] and [summertime] (normalized
scales).

Our study builds upon the work of Chien
(2005), who observed that queries with highly-
correlated temporal usage patterns are typically
semantically related, and described a procedure
for calculating the correlations efficiently. We
have extended the analysis described in this work,
by performing a more extensive evaluation of the
kinds of semantic relationships that we can find
among temporally-similar queries. We also pro-
pose, to our knowledge for the first time, areas
of applications in solving well-established prob-
lems which shed some light on the nature of time-
based semantic similarity. This work is also re-
lated to the analysis of temporal properties of
information streams in data mining (Kleinberg,
2006) and information retrieval from time series
databases (Agrawal et al., 1993).

3 Time-based similarities between
phrases

Similarly to the method described in Chien (2005),
we take a time interval, divide it into equally
spaced subintervals, and represent each phrase of
interest as the sequence of frequencies with which
the phrase was observed in the subintervals. In
our experiments, we have used as source data
the set of fully anonymized query logs from the
Google search engine between January 1st, 2004
and March 1st, 2009.4.

These data have been aggregated on a daily ba-
sis so that we have the daily frequency of the

4Part of this data is publicly available from http://
www.google.com/trends
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queries of interest for over five years. The frequen-
cies are then normalized with the total number of
queries that happened on that day. The normaliza-
tion is necessary to avoid daily and seasonal varia-
tions as there are typically more queries on week-
days than on weekends and fewer queries during
holiday seasons than in the rest of the year. It
also helps reducing the effect deriving from the
fact that the population with Internet access is still
monotonically growing, so we can expect that the
number of queries will become higher and higher
over time.

Given two phrases and their associated time se-
ries, the similarity metric used is the correlation
coefficient between the two series (Chien, 2005).
For illustration, Figure 1 shows the time series ob-
tained for two sample queries, gazpacho and sum-
mertime, whose time series yield a correlation of
0.92. Similar high correlations can be observed
with other queries related to phenomena that oc-
cur mainly in summer in the countries from which
most queries come, like summer rash.

3.1 WordNet-based evaluation

In this section, we describe a study carried out
with the purpose of discovering the traditional
lexico-semantic relationships which hold between
the queries that are most strongly related accord-
ing to their temporal profiles.

For this evaluation, we have taken the nomi-
nal phrases appearing in WordNet 3.0. Given that
users, when writing queries, typically do not pay
attention to punctuation and case, we have normal-
ized all phrases by lowercasing them and remov-
ing all punctuation. Next, we collected the time se-
ries for each phrase by computing the normalized
daily frequency of each of them as exact queries
in the query logs. The computation of the pair-
wise correlations was performed in parallel using
the MapReduce infrastructure running over 2048
cores with 500 MB of RAM each. The total ex-
ecution (including data shuffling and networking
time) took approximately three hours.

Next, we represented the data as a complete
graph where phrases are nodes and the edge be-
tween each pair of nodes is weighted by their time
series correlation. Using a simple graph-cut we
obtained clusters of related terms. A minimum
weight threshold equal to 0.9 was applied;5 thus,

5This threshold is the same used by Chien (2005), and was
confirmed after a manual inspection of a sample of the data

two phrases belong to the same cluster if there is
a path between them only via edges with weight
over 0.9.

The previous procedure produced a set of 604
clusters, with highly different sizes. The first ob-
servation is that 70% of the phrases in WordNet
do not have a correlation over 0.9 with any other
phrase, so they are placed alone in singleton clus-
ters. There are several reasons for this. The clus-
ters obtained are very specific: only phrases that
have a very strong temporal association have tem-
poral correlations exceeding the threshold. This is
combined with the fact that we are using a very
restricted vocabulary, namely the terms included
in WordNet, which is many orders of magnitude
smaller than the vocabulary of all possible queries
from the users. Few phrase pairs in WordNet
have a temporal association and popularity strong
enough to be clustered together. Finally, many of
the phrases in WordNet are rare, including scien-
tific names of animals and plants, genuses or fami-
lies, which are not commonly used. Therefore, the
clusters extracted here correspond to very salient
sets of phrases. If, instead of WordNet, we choose
a vocabulary from known user queries (cf. Sec-
tion 4), there would be many fewer singleton clus-
ters, as the options of similar phrases to choose
from would be much larger.

From the phrases that belong to clusters, 25%
of the WordNet phrases do not have strong daily
temporal profiles. The typical pattern for these
terms is an almost flat time series, usually with
small drops at summertime and Christmas (when
seasonal leisure-related queries dominate). There-
fore, these phrases were collected in just one clus-
ter containing them all. Typical examples of the
elements of this set are names of famous scientists
and mathematicians (Gauss, Isaac Newton, Al-
bert Einstein, Thomas Alva Edison, Hipprocrates,
Gregor Mendel, ...), common terms (fertilization,
famine, macroeconomics, genus, nationalism, ...),
numbers and common first names, among other
things. It is possible that using sub-day intervals
might help to discriminate within this cluster.

The items in this big cluster contrast with pe-
riodical events, which display recurring patterns
(e.g., queries related to elections or tax-returns),
and names of famous people and other entities
which appeared in the news in the past few years.
All of these are associated with irregular, spiky
time series. These constitute the final 5% of the
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Type Pairs Examples
Synonyms 283 (angel cake, angel food cake), (thames, river thames), (armistice day, Nov 11)
Hyponym/hyperonyms 86 (howard hughes, aviator), (muhammad, prophet), (olga korbut, gymnast)
Siblings in hyponym taxonomy 611 (hiroshima, nagasaki), (junior school, primary school), (aids, welt)
Meronym/holonyms 53 (tutsi, rwanda), (july 4, july), (pyongyang, north korea)
Siblings in meronymy taxonomy 7 (everglades, everglades national park), (mississipi, orleans)
Other paths 471 (maundy thursday, maundy money), (tap water, water tap), (gren party, liberal)
Not structurally related 1009 (poppy, veterans day), (olympic games, gimnast), (belmont park, horse racing)

Table 1: Relationships between pairs of WordNet phrases belonging to the same cluster.

phrases belonging to small, highly focused, clus-
ters.

Table 1 shows the relationships that hold be-
tween all pairs of phrases belonging to any of the
smaller clusters. Out of 2520 pairs, 283 belong
to the same synset, 697 are related via hyponymy
links, 60 via meronymy links, and 471 by alternat-
ing hyponymy and meronymy links in the path.
When the phrases were polysemous, the short-
est path between any of their meaning was used.
About 40% of the relations do not have a clear
structural interpretation in WordNet.

The majority of pairs are related via more or
less complex paths in the WordNet graph. Inter-
estingly, even the structurally unrelated terms are
characterized by transparent relations in terms of
world knowledge, as it is the case between poppy
and veteran day. Note as well that sometimes a
WordNet term is used with a meaning not present
in WordNet or in a different language, which may
explain why aids has a very high correlation with
welt (AIDS and welt are both hyponyms of health
problem, but the correlation may be explained bet-
ter by the AIDS World Day, Welt Aids Tag in Ger-
man), and it also has a very high correlation with
sida, defined in WordNet as a genus of tropical
herbs, but which is in fact the translation of AIDS
into Spanish. These observations motivated an ad-
ditional manual labelling of the extracted pairs.

3.2 Hand labelled evaluation

As can be seen in Table 2, most of the terms that
constitute a cluster are related to each other, al-
though the kinds of semantic relationships that
hold between them can vary significantly. Exam-
ples of the following kinds can be observed:
• True synonyms, as in the case of november

and nov, or architeuthis and giant squid.
• Variations of people names, especially if a

person’s first name or surname is typically
used to refer to that person, as in the case of
john lennon and lennon, or janis joplin and

joplin. Sometimes the variations include per-
sonal titles, as it is the case of president carter
and president nixon, which are highly corre-
lated with jimmy carter and richard nixon.
• Geographically-related terms, referring to

locations which are located close to each
other, as in the clusters {korea, north ko-
rean, south korea, pyongyang, north korea}
and {strasbourg, grenoble, toulouse, poitiers,
lyon, lille, nantes, reims}.
• Synonyms of location names, like bahrain

and bahrein.
• Derived words, like north korea and north

korean, or lebanese and lebanon.
• Generic word optionalizations, which hap-

pen when one word in a multi-word phrase
is very correlated to the phrase, as in the
case of spanish inquisition and inquisition,
or red bone marrow and red marrow, where
the most common interpretation for the short-
ened version of the phrase is the same as for
the long version.
• Word reordering, where the two related

phrases have the same words in a different or-
der, as in the case of maple sugar and sugar
maple, or oil palm and palm oil.
• Morphological variants: WordNet does not

contain many morphological variants in the
main dataset, but there are a few, like station
of the cross and stations of the cross.
• Acronyms, like federal emergency manage-

ment agency and fema.
• Hyperonym-hyponym, like fern and plant.
• Sibling terms in a taxonomy, as in the clus-

ter {lutheran, methodist, presbyterian, united
methodist church, lutheran church,methodist
church, presbyterian church,baptist, baptist
church}, which contains mostly names of
Christian denominations.
• Co-occurring events in time, as is the case

of hitch and pacifier, both titles of movies
which were launched at almost the same
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hydrant,fire hydrant
inauguration day,inauguration,swearing,investiture,inaugural address,inaugural,benediction,oath
indulgence,self indulgence
insulation,heating
interstate highway,interstate, intestine,small intestine
iq,iq test
irish people,irish,irish potato,irish gaelic,gaelic,irish soda bread,irish stew,st patrick,saint patrick,leprechaun,

march 17,irish whiskey,shillelagh
ironsides,old ironsides
james,joyce,james joyce
janis joplin,joplin
jesus christ,pilate,pontius pilate,passion of christ,passion,aramaic
jewish new year,rosh hashana,rosh hashanah,shofar
john lennon,lennon
julep,mint julep,kentucky derby,kentucky
keynote,keynote address
kickoff,time off
korea,north korean,south korea,pyongyang,north korea
l ron hubbard,scientology
leap,leap year,leap day,february 29
left brain,right brain
leftover,leftovers,turkey stew
linseed oil,linseed
listeria,listeriosis,maple leaf
lobster tail,lobster,tails
lohan,lindsay
loire,rhone,rhone alpes
looking,looking for
lutheran,methodist,presbyterian,united methodist church,lutheran church,methodist church,presbyterian church,

baptist,baptist church
mahatma gandhi,mahatma
malignant hyperthermia,hyperthermia
maple sugar,sugar maple
martin luther,martin luther king,luther,martin,martin luther king day
matzo,matzah,matzoh,passover,seder,matzo meal,pesach,haggadah,gefilte fish
mestizo,half blood,half and half
meteorology,weather bureau
moslem,muslim,prophet,mohammed,mohammad,muhammad,mahomet
movie star,star,revenge,film star,menace,george lucas
mt st helens,mount saint helens,mount st helens
myeloma,multiple myeloma
ness,loch ness,loch ness monster,loch,nessie
new guinea,papua new guinea,papua
november,nov
pacifier,hitch
papa,pope,vatican,vatican city,karol wojtyla,john paul ii,holy see,pius xii,papacy,paul vi,john xxiii,the holy see,

vatican ii,pontiff,gulp,pater,nostradamus,ii,pontifex
parietal lobe,glioma,malignant tumor
particle accelerator,atom smasher,hadron,large,tallulah bankhead,bankhead,tanner
pledge,allegiance
president carter,jimmy carter
president nixon,richard nixon,richard m nixon
sept 11,september 11,sep 11,twin towers,wtc,ground zero,world trade center
slum,millionaire,pinto
strasbourg,grenoble,toulouse,poitiers,lyon,lille,nantes,reims
valentine,valentine day,february 14,romantic
aeon,flux
alien,predator
anne hathaway,hathaway
architeuthis,giant squid
basal temperature,basal body temperature
execution,saddam hussein,hussein,saddam,hanging,husain
flood,flooding
george herbert walker bush,george walker bush
intifada,palestine
may 1,may day,maypole

Table 2: Sample of clusters obtained from the temporal correlations.
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Type Clusters
True synonyms 19
Variations of people names 42
People names with and without titles 4
First name and surname from the same person 4
Geographically-related terms 18
Synonyms of location names 4
Derived words 4
Word optionalizations 87
Word reordering 7
Morphological variants 1
Acronyms 1
Cross-language synonyms 3
Hyperonym/hyponym 10
Sibling terms 10
Co-ocurring events in time 8
Topically related 38
Unrelated 72

Table 3: Results of the manual annotation of 2-
item clusters.

time. A particular example of this is when
the two terms are part of a named entity, as in
the case of quantum and solace, which have
a similar correlation because they appear to-
gether in a movie title.
• Topically-related terms, as the cluster
{jesus christ, pilate, pontius pilate, passion of
christ, passion, aramaic}, or the cluster con-
taining popes and the Vatican. A similar ex-
ample, execution is highly correlated to sad-
dam hussein, because his execution attracted
more interest worldwide during this time pe-
riod than any other execution. Interestingly,
topical correlation emerges at very specific
granularity.

For the manual analysis of the results, we ran-
domly selected 332 clusters containing only two
items (so that 664 phrases were considered in to-
tal). Each of these pairs has been classified in one
of the previous categories. The results of this anal-
ysis are shown in Table 3.

4 Application to query suggestion

Query suggestion is a feature of search engines
that helps users reformulate queries in order to bet-
ter describe their information need with the pur-
pose of reducing the time needed to find the de-
sired information (Beeferman and Berger, 2000;
Kraft and Zien, 2004; Sahami and Heilman, 2006;
Cucerzan and White, 2007; Yih and Meek, 2008).
In this section, we explore the application of a sim-
ilarity metric based on time series correlations for
finding related queries to suggest to the users.

As a test set, we have used the query sugges-

Method P@1 P@3 P@5 mAP
Random 0.37 0.37 0.37 0.43
Web Kernel 0.51 0.47 0.42 0.51
Dist. simil. 0.72 0.63 0.60 0.64
Time series 0.74 0.63 0.53 0.67
Combination 0.79 0.68 0.60 0.69

Table 4: Results for the query suggestion task.

tion dataset from (Alfonseca et al., 2009). It con-
tains a set of 57 queries and an average of 22 can-
didate query suggestions for each of them. Each
suggestion was rated by two human raters using
the 5-point Likert scale defined in (Sahami and
Heilman, 2006), from irrelevant to highly relevant.
The task involves providing a ranking of the sug-
gestions that most closely resembles the human
scores. The evaluation is based on standard IR
metrics: precision at 1, 3 and 5, and mean average
precision. In order to compute the precision- and
recall-based metrics, we infer a binary distinction
from the ratings: related or not related. The inter-
annotator agreement for this dataset given the bi-
nary classification as computed by Cohen’s Kappa
is 0.6171.

We used three baselines: the average values that
would be produced by a random scorer of the can-
didate suggestions, Sahami and Heilman (2006)’s
system (based on calculating similarities between
the retrieved snippets), and a recent competitive
ranker based on calculating standard distributional
similarities (Alfonseca et al., 2009) between the
original query and the suggestion. Please refer to
the referenced work for details.

In order to produce the ranked lists of candi-
date suggestions for each query, due to the lack of
training data, we have opted for the unsupervised
procedure described in the previous section:

1. Collect the daily time series of each of the
queries and the candidate suggestions.

2. Calculate the correlation between the original
query and each of the candidate suggestions
provided for it, and use it as the candidate’s
score.

3. For each query, rank its candidate sugges-
tions in decreasing order of correlation.

Finally, taking into account that the source of
similarity is very different to the one used for dis-
tributional similarity, we tested the hypothesis that
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a combination of the two techniques would be ben-
eficial to capture different features of the queries
and suggestions. We have trained a linear mixture
model combining both scores (time series and dis-
tributional similarities), using 10-fold cross vali-
dation.

The results are displayed in Table 4. For eval-
uating the results, whenever a system produced a
tie between several suggestions, we generated 100
random orderings of the elements in the tie, and
report the average scores.

Using distributional similarities and the tempo-
ral series turned out to be indistinguishable for the
precision scores at 0.95 confidence, and both are
significantly better than the similarity metric based
on the web kernel. The combination produced an
improvement across all metrics, although not sta-
tistically significant at p=0.05.

This is quite a positive finding as the time series
method relies on stored information requiring only
simple and highly optimized lookups.

5 Application to query categorization

The results from the manual evaluation in Sec-
tion 3.2 support the conclusion that time series
from query logs provide powerful signals for clus-
tering at a fine-grained level, in some cases un-
covering synonyms (may 1st, may day) and even
causal relations (insulation, heating). A natural
question is if temporal information is correlated
with other types of categorizations. In this sec-
tion we carry out a preliminary exploration of the
relation between query time series and query cat-
egorization. To this extent we adapt the data from
the KDD 2005 CUP (Li et al., 2005), which pro-
vides a set of queries classified into 67 broad topi-
cal categories. Since the data is rather sparse (678
queries) we applied Fourier analysis to “smooth”
the time series.

5.1 The KDD CUP data

The KDD Cup 2005 6 introduced a query catego-
rization task and dataset consisting of 800,000 un-
labeled queries for unsupervised training, and an
evaluation set of 911 queries, 111 for development
and 800 for the final evaluation. The systems sub-
mitted for this task can be quite complex and made
full use of the large unlabeled set. Our goal here is
not to provide a comparative evaluation, but only

6http://www.sigkdd.org/kdd2005/kddcup.
html
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Figure 2: RDFT reconstruction for the query
“brush cutters” using the first 25 Fourier coeffi-
cients. The squares represent the original time
series datapoints, while the continuous line repre-
sents the reconstructed signal.

to use the labelled data7 in a simplified manner to
better understand the semantic properties of query
time series. Each query in the dataset is assessed
by three editors who can assign multiple topic la-
bels from a set of 67 categories belonging to seven
broad topics: Computers, Entertainment, Informa-
tion, Living, Online Community, Shopping and
Sports. We merged the KDD Cup development
and test set, out of the 911 queries we were able to
retrieve significant temporal information for 678
queries. We joined the sets of labels from each as-
sessor for each query. On average, each query is
assigned five labels.

5.2 DFT analysis

Assessing the similarity of data represented as
time series has been addressed mostly my means
of Fourier analysis; e.g., Agrawal et al. (1993) in-
troduce a method for efficiently retrieving time
series from databases based on Discrete Fourier
Transform (DFT). Several other methods have
been proposed, e.g., Discrete Wavelet Trans-
form (DWT), however DFT provide a competitive
benchmark approach (Wu et al., 2000).

We use DFT to generate the Fourier coefficients
of the time series and Reverse DFT (RDFT) to re-
construct the original signal using only a subset
of the coefficients. This analysis effectively com-
presses the time series producing a smoother ap-
proximate representation. DFT can be computed
efficiently via Fast Fourier Transform (FFT), with

7The KDD Cup dataset is probably the only public query
log providing topical categorization information.
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Method Accuracy ± std-err
Random 0.107 0.03
MostFrequent 0.490 0.07
DFT-c10 0.425 0.06
DFT-c50 0.456 0.05
DFT-c100 0.502 0.05
DFT-c200 0.456 0.04
DFT-c400 0.506 0.05
DFT-c600 0.481 0.06
DFT-c800 0.478 0.04
DFT-c1000 0.466 0.05

Table 5: Results of the KDD dataset exploration.

complexityO(n log n) where n is the length of the
sequence. The approximate representation is use-
ful not only to address sparsity but can also be used
to efficiently estimate the similarity of two time
series using only a small subset of coefficients as
in (Agrawal et al., 1993). As an example, Fig-
ure 2 shows the original time series for the query
“brush cutters” and its reconstructed signal using
only the first 25 Fourier coefficients. The recon-
structed signal captures the essence of the period-
icity of the query and highlights the yearly peaks
registered for the query in spring and summer.

5.3 Experiment and discussion

To explore the correlation between the structured
temporal representation of queries provided by the
time series and topical categorization we run the
following experiment. Each KDD Cup query was
reconstructed via RDFT using a variable number
of coefficients. The set of 679 queries was parti-
tioned in 10 sets and a 10-fold evaluation was per-
formed. For each fold we trained a classifier on the
remaining 9 folds. We used an average multi-class
perceptron (Freund and Schapire, 1999) adapted to
multi-label learning (Crammer and Singer, 2003).
Each model was trained on a fixed number of 10
iterations. The accuracy of each model was eval-
uated as the fraction of test items for which the
selected highest scoring class was in the gold stan-
dard set provided by the editors. As a lower bound
we estimated the accuracy of randomly choosing
a label for each test instance, and as a baseline we
used the most frequent label. The latter is a pow-
erful predictor: baselines based on class frequency
outperform most of the systems that participated in
the KDD Cup (Lin and Wu, 2009).

Table 5 reports the average accuracy over the

10 runs with relative standard errors. Each DFT-
based model is characterized by the number of co-
efficients used for the reconstruction. Two main
patterns are noticeable. First, none of the differ-
ences between the frequency-based baseline and
the DFT models is significant, this seems to indi-
cate that temporal structure alone is not a good dis-
criminator of topic, at least of broad categories. In
retrospect, this is somewhat predictable. The tem-
poral dimension is a basic semantic component of
lexical meaning and world knowledge which is not
necessarily associated with any broad, and to some
extent subjective, categorization. An inspection of
the patterns found in each category shows in fact
that similar patterns often emerge in different cat-
egories; e.g., “Halloween costume” and “cheese-
cake recipe” have a similar yearly periodical pat-
tern with spikes in early winter, while monotoni-
cally decaying patterns are shared across all cate-
gories; e.g., between computer hardware and kids
toys.

The second interesting finding is the trend of
the DFT system results, higher at low-intermediate
values, providing some initial promising evidence
that DFT analysis generates useful compressed
representations which could be indexed and ap-
plied efficiently. Notice that the sequences recon-
structed using 1,000 coefficients reproduce almost
identically the original signals.

6 Applications in information extraction

Time series from query logs are particularly rel-
evant for phrases that refer to entities which are
involved in recent events. Therefore, we expect
them to be useful for solving other applications
that require handling entities, such as named en-
tity recognition and classification, relation extrac-
tion or disambiguation.

To illustrate this point, we mention an example
of relation extraction between actors and movies:
movies usually have spikes when they are re-
leased, and then the frequency again drops sharply.
At the same times, when a movie is released, the
search engine users have a renewed interest in
their actors. Figure 3 displays the time series for
the five most recent movies by Jim Carrey (as of
march 2009), and the time series for Jim Carrey.
As can be seen, the spikes are at exactly the same
points in time. If we add up the series (a) through
(e) into a single series and calculate the correlation
with (f), it turns out to be very high (0.88).
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(a) (b) (c)

(d) (e) (f)

Figure 3: Time series obtained for the five most recent movies with Jim Carrey, and (f) time serie for the
query [jim carrey] (normalized scales).

System Precision Recall F-measure
Random 0.24 0.14 0.17
Time series 0.53 0.66 0.57

Table 6: Results for the query suggestion task.

To validate the hypothesis that this data should
be useful for identifying related entities, we have
performed a small experiment in the following
way: by choosing five popular actors8 and the cin-
ema movies in which they appear since the year
2004, obtained from IMDB9. Using the time se-
ries, for each actor we choose the combination of
movies such that, by adding up the time series of
those movies, we maximise the correlation with
the actor’s time series. It has been implemented
with a greedy beam search, with a beam size of
100. The results are shown in Table 6. The random
baseline randomly associates the movies from the
dataset with the five actors.

We do not believe this to be a perfect feature as,
for example, actors may have a peak in the time se-
ries related to their personal lives, not necessarily
to movies. However, the high correlations that can
be obtained when the pairing between actors and
movies is correct, and the improvement with re-
spect a random baseline, indicates this is a feature
which can probably be integrated with other re-
lation extraction systems when handling relation-
ships between entities that have big temporal de-
pendencies.

8Ben Stiller, Edward Norton, Jim Carrey, Leonardo Di-
caprio, and Tom Hanks.

9www.imdb.com.

7 Conclusions and future work

This paper explores the relationships between
queries whose associated time series obtained
from query logs are highly correlated. The use
of time series in semantic similarity has been dis-
cussed by Chien (2005), but only a very prelimi-
nary evaluation was described, and, to our knowl-
edge, they had never been applied and evaluated
in solving existing problems. Our results indicate
that, for a substantial percentage of phrases in a
thesaurus, it is possible to find other highly-related
phrases; and we have categorized the kind of se-
mantic relationships that hold between them.

We have found that in a query suggestion
task, somewhat surprisingly, results are compara-
ble with other state-of-the-art techniques based on
distributional similarities. Furthermore, informa-
tion obtained from time series seems to be com-
plementary with them, as a simple combination of
similarity metrics produces an important increase
in performance..

From an analysis on a query categorization task
the initial evidence suggests that there is no strong
correlation between broad topics and temporal
profiles. This agrees with the intuition that time
provides a fundamental semantic dimension possi-
bly orthogonal to broad topical classification. This
issue however deserves further investigation. An-
other issue which is worth a deeper investigation
is the application of Fourier transform methods
which offer tools for studying the periodic struc-
ture of the temporal sequences.
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Abstract
A large body of recent research has been
investigating the acquisition and applica-
tion of applied inference knowledge. Such
knowledge may be typically captured as
entailment rules, applied over syntactic
representations. Efficient inference with
such knowledge then becomes a funda-
mental problem. Starting out from a for-
malism for entailment-rule application we
present a novel packed data-structure and
a corresponding algorithm for its scalable
implementation. We proved the validity of
the new algorithm and established its effi-
ciency analytically and empirically.

1 Introduction

Applied semantic inference is concerned with de-
riving target meanings from texts. In the textual
entailment framework, this is reduced to infer-
ring a textual statement (the hypothesis h) from
a source text (t). Traditional formal semantics
approaches perform such inferences over logi-
cal forms derived from the text. By contrast,
most practical NLP applications operate over shal-
lower representations such as parse trees, possibly
supplemented with limited semantic information
about named entities, semantic roles etc.

Most commonly, inference over such represen-
tations is made by applying some kind of transfor-
mations or substitutions to the tree or graph rep-
resenting the text. Such transformations may be
generally viewed as entailment (inference) rules,
which capture semantic knowledge about para-
phrases, lexical relations such as synonyms and
hyponyms, syntactic variations etc. Such knowl-
edge is either composed manually, e.g. WordNet
(Fellbaum, 1998), or learned automatically.

A large body of work has been dedicated to
learning paraphrases and entailment rules, e.g.
(Lin and Pantel, 2001; Shinyama et al., 2002;
Szpektor et al., 2004; Bhagat and Ravichandran,
2008), identifying appropriate contexts for their
application (Pantel et al., 2007) and utilizing them
for inference (de Salvo Braz et al., 2005; Bar-
Haim et al., 2007). Although current avail-
able rule bases are still quite noisy and incom-
plete, the progress made in recent years suggests
that they may become increasingly valuable for
text understanding applications. Overall, applied
knowledge-based inference is a prominent line of
research gaining much interest, with recent exam-
ples including the series of workshops on Knowl-
edge and Reasoning for Answering Questions
(KRAQ)1 and the planned evaluation of knowledge
resources in the forthcoming 5th Recognizing Tex-
tual Entailment challenge (RTE-5)2.

While many applied systems utilize semantic
knowledge via such inference rules, their use is
typically limited, application-specific, and quite
heuristic. Formalizing these practices seems im-
portant for applied semantic inference research,
analogously to the role of well-formalized mod-
els in parsing and machine translation. Bar-Haim
et al. (2007) made a step in this direction by in-
troducing a generic formalism for semantic infer-
ence over parse trees. Their formalism uses entail-
ment rules as a unifying representation for various
types of inference knowledge, allowing unified in-
ference as well. In this formalism, rule application
has a clear, intuitive interpretation as generating a
new sentence parse (a consequent), semantically
entailed by the source sentence. The inferred con-
sequent may be subject to further rule applications

1http://www.irit.fr/recherches/ILPL/kraq09.html
2http://www.nist.gov/tac/2009/RTE/

1056



and so on. In their implementation, each conse-
quent was generated explicitly as a separate tree.

Following this line of work, our long-term re-
search goal is to investigate effective utilization
of entailment rules for inference. While the for-
malism of Bar-Haim et al. provides a princi-
pled framework for modeling such inferences,
its implementation using explicit generation of
consequents raises severe efficiency issues, since
the number of consequents may grow exponen-
tially in the number of rule applications. Con-
sider, for example, the sentence “Children are
fond of candies.”, and the following entailment
rules: ‘children→kids’, ‘candies→sweets’, and ‘X
is fond of Y→X likes Y’. The number of derivable
sentences (including the source sentence) would
be 23 as each rule can either be applied or not, in-
dependently. Indeed, we found that this exponen-
tial explosion leads to poor scalability in practice.
Intuitively, we would like that each rule applica-
tion would add just the entailed part (e.g. kids) to a
packed sentence representation. Yet, we still want
the resulting structure to represent a set of entailed
sentences, rather than some mixture of sentence
fragments whose semantics is unclear.

As discussed in section 5, previous work pro-
posed only partial solutions to this problem. In this
paper we present a novel data structure, termed
compact forest, and a corresponding inference al-
gorithm, which efficiently generate and represent
all consequents while preserving the identity of
each individual one (section 3). Our work is
inspired by previous work on packed represen-
tations in other fields, such as parsing, genera-
tion and machine translation (section 5). As
we follow a well-defined formalism, we could
prove that all inference operations of Bar-Haim
et al. are equivalently applied over the compact
forest. We compare inference cost over compact
forests to explicit consequent generation both the-
oretically (section 3.4), illustrating an exponential-
to-linear complexity ratio, and empirically (sec-
tion 4), showing improvement by orders of magni-
tude. These results suggest that our data-structure
and algorithm are both valid and scalable, open-
ing up the possibility to investigate large-scale en-
tailment rule application within a well-formalized
framework.

2 Inference Framework

This section briefly presents a (simplified) descrip-
tion of the tree transformations inference formal-
ism of Bar-Haim et al. (2007). Given a source text,
syntactically parsed, and a set of entailment rules
representing tree transformations, the formalism
defines the set of consequents derivable from the
text using the rules. Each consequent is obtained
through a sequence of rule applications, each gen-
erates an intermediate parse tree, similar to a proof
process in logic.

More specifically, sentences are represented as
dependency trees, where nodes are annotated with
lemma and part-of-speech, and edges are anno-
tated with dependency relation. A rule ‘L → R’
is primarily composed of two templates, termed
left-hand-side (L), and right-hand-side (R). Tem-
plates are dependency subtrees which may con-
tain POS-tagged variables, matching any lemma.
Figure 1(a) shows passive-to-active transforma-
tion rule, and (b) illustrates its application.

A rule application generates a derived tree d
from a source tree s through the following steps:

L matching: First, a match of L in the source
tree s is sought. In our example, the variable V is
matched in the verb see, N1 is matched in Mary
and N2 is matched in John.

R instantiation: Next, a copy of R is generated
and its variables are instantiated according to their
matching node in L. In addition, a rule may spec-
ify alignments, defined as a partial function from
L nodes to R nodes. An alignment indicates that
for each modifier m of the source node that is not
part of the rule structure, the subtree rooted at m
should also be copied as a modifier of the target
node. In addition to defining alignments explic-
itly, each variable in L is implicitly aligned to its
counterpart in R. In our example, the alignment
between the V nodes implies that yesterday (mod-
ifying see) should be copied to the generated sen-
tence, and similarly beautiful (modifying Mary) is
copied for N1.

Derived tree generation: Let r be the instanti-
ated R, along with its descendants copied from L
through alignment, and l be the subtree matched
by L. The formalism has two methods for gen-
erating the derived tree d: substitution and intro-
duction, as specified by the rule type. Substitution
rules specify modification of a subtree of s, leav-
ing the rest of s unchanged. Thus, d is formed by
copying s while replacing l (and the descendants
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Figure 1: An inference rule application. POS and relation labels are based on Minipar (Lin, 1998)

of l’s nodes) with r. This is the case for the pas-
sive rule, as well as for lexical rules such as ‘buy
→ purchase’. By contrast, introduction rules are
used to make inferences from a subtree of s, while
the other parts of s are ignored and do not affect d.
A typical example is inferring a proposition em-
bedded as a relative clause in s. In this case, the
derived tree d is simply taken to be r.

In addition to inference rules, the formalism in-
cludes annotation rules which add features to ex-
isting parse tree nodes. These rules have been used
for identifying contexts that affect the polarity of
predicates.

As shown by Bar-Haim et al., this concise, well
defined formalism allows unified representation of
diverse types of knowledge which are commonly
used for applied semantic inference.

3 Efficient Inference over Compact Parse
Forests

As shown in the introduction, explicit genera-
tion of consequents (henceforth explicit inference)
leads to an exponential explosion of the number
of generated trees. In this section we present our
efficient implementation for this formalism. Our
implementation is based on a novel data structure,
termed compact forest (Section 3.1), which com-
pactly represents a large set of trees. Each rule
application generates explicitly only the nodes of
the rule right-hand-side while the rest of the con-
sequent tree is shared with the source, which also

reduces the number of redundant rule applications.
As we shall see, this novel representation is based
primarily on disjunction edges, an extension of
dependency edges that specify a set of alterna-
tive edges of multiple trees. Section 3.2 presents
an efficient algorithm for inference over compact
forests, followed by a discussion of its correctness
and complexity (sections 3.3 and 3.4).

3.1 The Compact Forest Data Structure

A compact forestF represents a set of dependency
trees. Figure 2 shows an example of a compact
forest, containing both the source and derived sen-
tences of Figure 1. We first define a more general
data structure for directed graphs, and then narrow
the definition to the case of trees.

A Compact Directed Graph (cDG) is a pair
G = (V, E) where V is a set of nodes and E is a
set of disjunction edges (d-edges). Let D be a
set of dependency relations. A d-edge d is a triple
(Sd, reld, Td), where Sd and Td are disjoint sets
of source nodes and target nodes; reld : Sd → D
is a function specifying the dependency relation
corresponding to each source node. Graphically,
d-edges are shown as point nodes, with incoming
edges from source nodes and outgoing edges to
target nodes. For instance, let d be the bottom-
most d-edge in Figure 3. Then Sd = {of, like},
Td = {candy, sweet}, rel(of ) = pcomp-n, and
rel(like) = obj.

A d-edge represents, for each si ∈ Sd, a set of
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ROOT

i

John

see

by objbe mod

by

pcomp-n

beautiful

Mary

mod

be yesterday

see

subj

objmod

Figure 2: A compact forest containing both the
source and derived sentences of Figure 1. Parts
of speech are omitted.

alternative directed edges {(si, tj) : tj ∈ Td}, all
of which are labeled with the same relation given
by reld(si). Each of these edges, termed embed-
ded edge (e-edge), would correspond to a differ-
ent graph represented in G. In the previous exam-

ple, the e-edges are like
obj−−→candy, like

obj−−→sweet,
of

pcomp−n−−−−−−→candy and of
pcomp−n−−−−−−→sweet (notice

that the definition implies that all source nodes in
Sd have the same set of alternative target nodes
Td). d is called an outgoing d-edge of a node v if
v ∈ Sd and an incoming d-edge of v if v ∈ Td.
A Compact Directed Acyclic Graph (cDAG) is a
cDG that contains no cycles of e-edges.

A DAG G rooted in a node v ∈ V of a cDAG
G is embedded in G if it can be derived as follows:
we initialize G with v alone; then, we expand v
by choosing exactly one target node t ∈ Td from
each outgoing d-edge d of v, and adding t and the
corresponding e-edge (v, t) to G. This expansion
process is repeated recursively for each new node
added to G.

Each such set of choices results in a different
DAG with v as its only root. In Figure 2, we may
choose to connect the root either to the left see,
resulting in the source passive sentence, or to the
right see, resulting in the derived active sentence.

A Compact Forest F is a cDAG with a single
root r (i.e. r has no incoming d-edges) where all
the embedded DAGs rooted in r are trees. This set
of trees, termed embedded trees, comprise the set
of trees represented by F .

Figure 3 shows another example for a compact

ROOT

i

child

be

pred

fond

subjmod

of

pcomp-n

candy

like

subj

obj

kid

sweet

Figure 3: A compact forest representing the 23

sentences derivable from the sentence “children
are fond of candies” using the following three
rules: ‘children→kids’, ‘candies→sweets’, and ‘X
is fond of Y→X likes Y’.

forest efficiently representing the 23 sentences re-
sulting from three independently-applied rules.

3.2 The Inference Process
Next, we describe the algorithm implementing the
inference process of Section 2 over the compact
forest (henceforth, compact inference), illustrating
it through Figures 1 and 2.

Forest initialization F is initialized with the
set of dependency trees representing the text sen-
tences, with their roots connected under the forest
root as the target nodes of a single d-edge. Depen-
dency edges are transformed trivially to d-edges
with a single source and target. Annotation rules
are applied at this stage to the initial F . The black
part of Figure 2 corresponds to the initial forest.

Rule application comprises the following steps:
L matching: L is matched in F if there exists

an embedded tree t in F such that L is matched
in t, as in Section 2. We denote by l the subtree
of t in which L was matched. As in section 2, the
match in our example is (V,N1, N2)=(see, Mary,
John). Notice that this definition does not allow l
to be scattered over multiple embedded trees.

As the target nodes of a d-edge specify alterna-
tives for the same position in the tree, their parts-
of-speech are expected to be of substitutable types.
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In this paper we further assume that all target
nodes of the same d-edge have the same part-of-
speech3. Consequently, variables that are leaves in
L and may match a certain target node of a d-edge
d are mapped to the whole set of target nodes Td

rather than to a single node. This yields a compact
representation of multiple matches, and prevents
redundant rule applications. For instance, given
a compact representation of ‘{Children/kids} are
fond of {candies/sweeets}’ (cf. Figure 3), the rule
‘X is fond of Y→X likes Y’ will be matched and
applied only once, rather than four times (for each
combination of matching X and Y ).

Derived tree generation: A template r consist-
ing of R while excluding variables that are leaves
of both L and R (termed dual leaf-variables)4 is
generated and inserted into F . In case of a substi-
tution rule (as in our example), r is set as an alter-
native to l by adding r’s root to Td, where d is the
incoming d-edge of l’s root. In case of an intro-
duction rule, it is set as an alternative to the other
trees in the forest by adding r’s root to the target
node set of the forest root’s outgoing d-edge. In
our example, r is the gray node (still labeled with
the variable V ) , and it becomes an additional tar-
get node of the d-edge entering the original (left)
see.

Variable instantiation: Each variable in r (i.e.
a non-dual leaf) is instantiated according to its
match in L (as in Section 2), e.g. V is instantiated
with see. As specified above, if the variable is a
leaf in L is not a dual leaf then it is matched in a set
of nodes, and hence each of them should be instan-
tiated in r. This is decomposed into a sequence
of simpler operations: first, r is instantiated with a
representative from the set, and then we apply (ad-
hoc) lexical substitution rules for creating a new
node for each other node in the set5.

Alignment sharing: Modifiers of aligned nodes
are shared (rather than copied) as follows. Given
a node nL in l aligned to a node nR in r, and an
outgoing d-edge d of nL which is not part of l, we
share d between nL and nR by adding nR to Sd

3This is the case in our current implementation, which is
based on the coarse tag-set of Minipar (Lin, 1998).

4With the following exceptions: variables that are the
only node in R (and hence are both the root and a leaf), and
variables with additional alignments (other than the implicit
alignment between their occurrences in L and R) are not con-
sidered dual-leaves.

5Notice that these nodes, in addition to the usual align-
ment with their source nodes in l, share the same daughters
in r.

and setting reld(nR) = reld(nL). This is illus-
trated by the sharing of yesterday in Figure 2. We
also copy annotation features from nL to nR.

We note at this point that the instantiation of
variables that are not dual leaves (e.g. V in our
example) cannot be shared because they typically
have different modifiers at the two sides of the
rule. Yet, their modifiers which are not part of
the rule are shared through the alignment opera-
tion (recall that common variables are always con-
sidered aligned). Dual leaf variables, on the other
hand, might be shared, as described next, since the
rule doesn’t specify any modifiers for them.

Dual leaf variable sharing: This final step is
performed analogously to alignment sharing. Sup-
pose that a dual leaf variable X is matched in a
node v in l whose incoming d-edge is d. Then
we simply add the parent p of X in r to Sd and
set reld(p) to the relation between p and X (in
R). Since v itself is shared, its modifiers become
shared as well, implicitly implementing the align-
ment operation. The subtrees beautiful Mary and
John are shared this way for variables N1 and N2.

Applying the rule in our example added only
a single node and linked it to four d-edges, com-
pared to duplicating the whole tree in explicit in-
ference.

3.3 Correctness

In this section we present two theorems, which
prove that the inference algorithm is a valid imple-
mentation of the inference formalism of Section 2.
Due to space limitations, the proofs themselves
are omitted, and instead we outline their general
scheme.

We first argue that performing any sequence of
rule applications over the set of initial trees results
in a compact forest:

Theorem 1: The compact inference process
generates a compact forest.

Proof scheme: We prove by induction on the
number of rule applications. Initialization gen-
erates a single-rooted cDAG, whose embedded
DAGs are all trees, as required. We then prove that
if applying a rule on a compact forest creates a cy-
cle or an embedded DAG that is not a tree, then
such a cycle or a non-tree DAG already existed
prior to rule application, in contradiction with the
inductive assumption. A crucial observation for
this proof is that for any path from a node u to a
node v that passes through r, where u and v are
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outside r, there is also an analogous path from u
to v that passes through l instead, QED.

Next, we argue that the inference process over a
compact forest is complete and sound, i.e., it gen-
erates the set of consequents derivable from a text
according to the inference formalism.

Theorem 2: Given a rule base R and a set of
initial trees T , a tree t is embedded in a compact
forest derivable from T by the compact inference
process⇔ t is a consequent of T according to the
inference formalism.

Proof scheme: We first show completeness by
induction on the number of explicit rule applica-
tions. Let tn+1 be a tree derived from a tree tn
using the rule rn according to the inference for-
malism. The inductive assumption asserts that tn
is embedded in some derivable compact forest F .
It is easy to verify that applying rn to F will yield
a compact forest F ′ in which tn+1 is embedded.

Next, we show soundness by induction on the
number of rule applications over the compact for-
est. Let tn+1 be a tree represented in some derived
compact forest Fn+1. Fn+1 was derived from the
compact forest Fn, using the rule rn. It can be
shown that Fn represents a tree tn, such that ap-
plying rn on tn will yield tn+1 according to the
formalism. The inductive assumption asserts that
tn is a consequent in the inference formalism and
therefore tn+1 is a consequent as well, QED.

These two theorems guarantee that the compact
inference process is valid - i.e., it yields a compact
forest that represents the set of consequents deriv-
able from a given text by a given rule set.

3.4 Complexity

In this section we explain why compact inference
exponentially reduces the time and space com-
plexity in typical scenarios.

We consider a set of rule matches in a tree T
independent if their matched left-hand-sides (ex-
cluding dual-leaf variables) do not overlap in T ,
and their application over T can be chained in any
order. For example, the three rule matches pre-
sented in Figure 3 are independent.

Let us consider explicit inference first. Assume
we start with a single tree T with k independent
rules matched. Applying k rules will yield 2k

trees, since any subset of the rules might be ap-
plied to T . Therefore, the time and space com-
plexity of applying k independent rule matches is
Ω(2k). Applying more rules on the newly derived

Compact Explicit Ratio
Time (msec) 61 24,184 396
Rule applications 12 123 10
Node count 69 5,901 86
Edge endpoints 141 11,552 82

Table 1: Compact vs. explicit inference, us-
ing generic rules. Results are averaged per text-
hypothesis pair.

consequents behaves in a similar manner.

Next, we examine compact inference. Apply-
ing a rule using compact inference adds the right-
hand-side of the rule and shares with it existing
d-edges. Since that the size of the right-hand-side
and the number of outgoing d-edges per node are
practically bounded by low constants, applying k
rules on a tree T yields a linear increase in the size
of the forest. Thus, the resulting size is O(|T |+k),
as we can see from Figure 3.

The time complexity of rule application is com-
posed of matching the rule in the forest and apply-
ing the matched rule. Applying a matched rule is
linear in its size. Matching a rule of size r in a
forest F takes O(|F|r) time even when perform-
ing an exhaustive search for matches in the forest.
Since r tends to be quite small and can be bounded
by a low constant, this already gives polynomial
time complexity. In practice, indexing the forest
nodes, as well as the typical low connectivity of
the forest, result in a very fast matching procedure,
as illustrated in the empirical evaluation, described
next.

4 Empirical Evaluation

This section reports empirical evaluation of the ef-
ficiency of compact inference, tested in the recog-
nizing textual entailment setting using the RTE-3
and RTE-4 datasets (Giampiccolo et al., 2007; Gi-
ampiccolo et al., 2009). These datasets consist of
(text, hypothesis) pairs, which need to be classi-
fied as entailing/non entailing. Our first experi-
ment shows, using a small rule set, that compact
inference outperforms explicit inference by orders
of magnitude (Section 4.1). The second experi-
ment shows that compact inference scales well to
a full-blown RTE setting with several large-scale
rule bases, where up to hundreds of rules are ap-
plied for a text (Section 4.2).
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4.1 Compact vs. Explicit Inference

To compare explicit and compact inference we
randomly sampled 100 pairs from the RTE-3 de-
velopment set, and parsed the text in each pair
using Minipar (Lin, 1998). We used a set of
manually-composed entailment rules for inference
over generic linguistic phenomena such as pas-
sive, conjunction, relative clause, apposition, pos-
sessives, and determiners, which contains a few
dozens of rules. To make a fair comparison, we
aimed to make the explicit inference implementa-
tion reasonably efficient, e.g. by preventing gen-
eration of the same tree by different permutations
of the same rule applications. Both configurations
perform rule application iteratively, until no new
matches are found. In each iteration we first find
all rule matches and then apply all matching rules.
We compare run time, number of rule applications,
and the overall generated size of nodes and edges,
where edge size is represented by the sum of its
endpoints.

The results are summarized in Table 1. As ex-
pected, the results show that compact inference is
by orders of magnitude more efficient than explicit
inference. To avoid memory overflow, inference
was terminated after reaching 100,000 nodes. 3
out of the 100 pairs reached that limit with explicit
inference, while the maximal node count for com-
pact inference was only 268. The number of rule
applications is reduced thanks to the sharing of
common subtrees in the compact forest, by which
a single rule application operates simultaneously
over a large number of embedded trees. The re-
sults suggest that scaling to larger rule bases and
longer inference chains would be feasible for com-
pact inference, but prohibitive for explicit infer-
ence.

4.2 Application to an RTE System

Experimental setting The goal of the second
experiment was to assess that compact inference
scales well for broad entailment rule bases. In
this experiment we used the Bar-Ilan RTE system
(Bar-Haim et al., 2009). The system operates in
two primary stages: Inference, in which entail-
ment rules are applied to the initial compact forest
F , aiming to bring it closer to the hypothesis H,
and Classification, in which a set of features is ex-
tracted from the resulting F and from H and fed
into an SVM classifier, which determines entail-
ment.

The classification setting and its features are
quite typical for the RTE literature. They include
lexical and structural measures for the coverage of
H by F , where high coverage is assumed to cor-
relate with entailment, as well as features aiming
to detect inconsistencies between F and H such
as incompatible arguments for the same predicate
or incompatible verb polarity (see below). For a
complete feature description, see (Bar-Haim et al.,
2009).

Rule Bases In addition to the generic rules de-
scribed in Section 4.1, the following large-scale
sources for entailment rules were used: Wikipeda:
We used the lexical rulebase of Shnarch et al.
(2009), who extracted rules such as ‘Janis Joplin
→ singer’ from Wikipedia based on both its meta-
data (e.g. links and redirects) and text defini-
tions, using patterns such as ‘X is a Y’. Word-
Net: We extracted from WordNet (Fellbaum,
1998) lexical rules based on synonyms, hyper-
nyms and derivation relations. DIRT: The DIRT
algorithm (Lin and Pantel, 2001) learns from a
corpus entailment rules between binary predicates,
e.g. ‘X is fond of Y→X likes Y’. We used the
version described in (Szpektor and Dagan, 2007),
which learns canonical rule forms. Argument-
Mapped WordNet (AmWN): A resource for entail-
ment rules between verbal and nominal predicates
(Szpektor and Dagan, 2009), including their argu-
ment mapping, based on WordNet and NomLex-
plus (Meyers et al., 2004), verified statistically
through intersection with the unary-DIRT algo-
rithm (Szpektor and Dagan, 2008). In total, these
rule bases represent millions of rules. Polarity An-
notation Rules: We compiled a small set of anno-
tation rules for marking the polarity of predicates
as negative or unknown due to verbal negation,
modal verbs, conditionals etc. (Bar-Haim et al.,
2009).

Search In this work we focus on efficient rep-
resentation of the search space, leaving for future
work the complementary problem of devising ef-
fective search heuristics over our representation.
In the current experiment we implemented a sim-
ple search strategy, in the spirit of (de Salvo Braz
et al., 2005): first, we applied three exhaustive iter-
ations of generic rules. Since these rules have low
fan-out (few possible right-hand-sides for a given
left-hand-side) it is affordable to apply and chain
them more freely. We then perform a single itera-
tion of all other lexical and lexical-syntactic rules,
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applying them only if their L part was matched in
F and their R part was matched inH.

The system was trained over the RTE-3 devel-
opment set, and tested on both RTE-3 test set and
RTE-4 (which includes only a test set).

Results Table 2 provides statistics on rule appli-
cation using all rule bases, over the RTE-3 devel-
opment set and the RTE-4 dataset6. Overall, the
primary result is that the compact forest indeed ac-
commodates well extensive rule application from
large-scale rule bases. The resulting forest size is
kept small, even in the maximal cases which were
causing memory overflow for explicit inference.

The accuracies obtained in this experiment and
the overall contribution of rule-based inference are
shown in Table 3. The results on RTE-3 are quite
competitive: compared to our 66.4%, only 3 teams
out of the 26 who participated in RTE-3 scored
higher than 67%, and three more systems scored
between 66% and 67%. The results for RTE4 rank
9-10 out of 26, with only 6 teams scoring higher by
more than 1%. Overall, these results validate that
the setting of our experiment represents a state-of-
the-art system.

Inference over the rule bases utilized in our
experiment improved the accuracy on both test
sets. The contribution was more prominent for
the RTE-4 dataset. These results illustrate a typ-
ical contribution of current knowledge sources for
current RTE systems. This contribution is likely
to increase with current and near future research,
on topics such as extending and improving knowl-
edge resources, applying them only in seman-
tically suitable contexts, improved classification
features and broader search strategies. As for our
current experiment, we may conclude that the goal
of assessing the compact forest scalability in a
state-of-the-art setting was achieved 7.

Finally, Tables 4 and 5 illustrate the usage and
contribution of individual rule bases. Table 4
shows the distribution of rule applications over the
various rule bases. Table 5 presents ablation study
showing the marginal accuracy gain for each rule
base. These results show that each of the rule
bases is applicable for a large portion of the pairs,
and contributes to the overall accuracy.

6Running time is omitted since most of it was dedicated
to rule fetching, which was rather slow for our available im-
plementation of some resources. The elapsed time was a few
seconds per (t, h) pair.

7We note that common RTE research issues, such as im-
proving accuracy, fall out of the scope of the current paper.

RTE3-Dev RTE4
Avg. Max. Avg. Max.

Rule applications 14 275 15 110
Node count 71 606 80 357
Edge endpoints 155 1,741 173 1,062

Table 2: Application of compact inference to the
RTE-3 Dev. and RTE-4 datasets, using all rule
types.

Accuracy
Test set No inference Inference ∆
RTE3 64.6% 66.4% 1.8%
RTE4 57.5% 60.6% *3.1%

Table 3: Inference contribution to RTE perfor-
mance. The system was trained on the RTE-3 de-
velopment set. * indicates statistically significant
difference (at level p < 0.02, using McNemar’s
test).

Rule base RTE3-Dev RTE4
Rules App Rules App

WordNet 0.6 1.2 0.6 1.1
AmWN 0.3 0.4 0.3 0.4
Wikipedia 0.6 1.7 0.6 1.3
DIRT 0.5 0.7 0.5 1.0
Generic 4.7 10.4 5.4 11.5
Polarity 0.2 0.2 0.2 0.2

Table 4: Average number of rule applications per
(t, h) pair, for each rule base. App counts each rule
application, while Rules ignores multiple matches
of the same rule in the same iteration.

Rule base ∆Accuracy (RTE4)
WordNet 0.8%
AmWN 0.7%
Wikipedia 1.0%
DIRT 0.9%
Generic 0.4%
Polarity 0.9%

Table 5: Contribution of various rule bases. Re-
sults show accuracy loss on RTE-4, obtained for
removing each rule base (ablation tests).

5 Related Work

This section discusses related work on applying
knowledge-based transformations within RTE sys-
tems, as well as on using packed representations in
other NLP tasks.

RTE Systems Previous RTE systems usually re-
stricted both the type of allowed transformations
and the search space. Systems based on lexical
(word-based or phrase-based) matching of h in t
typically applied only lexical rules (without vari-
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ables), where both sides of the rule are matched
directly in t and h (Haghighi et al., 2005; Mac-
Cartney et al., 2008). The inference formalism
we use is more expressive, allowing also syntac-
tic and lexical-syntactic transformations as well as
rule chaining.

Hickl (2008) derived from a given (t, h) pair
a small set of discourse commitments, which are
quite similar to the kind of consequents we derive
by our syntactic and lexical-syntactic rules. The
commitments were generated by several different
tools and techniques, compared to our generic uni-
fied inference process, and commitment genera-
tion efficiency was not discussed.

Braz et al. (2005) presented a semantic infer-
ence framework which “augments” the text repre-
sentation with only the right-hand-side of an ap-
plied rule, and in this respect is similar to ours.
However, in their work, both rule application and
the semantics of the resulting “augmented” struc-
ture were not fully specified. In particular, the dis-
tinction between individual consequents was lost
in the augmented graph. By contrast, our com-
pact inference is fully formalized and is provably
equivalent to an expressive, well-defined formal-
ism operating over individual trees, and each in-
ferred consequent can be recovered from the com-
pact forest.

Packed representations Packed representations
in various NLP tasks share common principles,
which also underly our compact forest: factor-
ing out common substructures and representing
choice as local disjunctions. Applying this gen-
eral scheme to individual problems typically re-
quires specific representations and algorithms, de-
pending on the type of alternatives that should be
represented and the specified operations for creat-
ing them. In our work, alternatives are created by
rule application, where a newly derived subtree is
set as an alternative to existing subtrees. Alterna-
tives are specified locally using d-edges.

Packed chart representations for parse forests
were introduced in classical parsing algorithms
such as CYK and Earley (Jurafsky and Martin,
2008), and have been extended in later work
for various purposes (Maxwell III and Kaplan,
1991; Kay, 1996). Alternatives in the parse chart
stem from syntactic ambiguities, and are speci-
fied locally as the possible decompositions of each
phrase into its sub-phrases.

Packed representations have been utilized also

in transfer-based machine translation. Emele and
Dorna (1998) translated packed source language
representation to packed target language represen-
tation while avoiding unnecessary unpacking dur-
ing transfer. Unlike our rule application, in their
work transfer rules preserve ambiguity stemming
from source language, rather than generating new
alternatives. Mi et al.(2008) applied statistical ma-
chine translation to a source language parse forest,
rather than to the 1-best parse. Their transfer rules
are tree-to-string, contrary to our tree-to-tree rules,
and chaining is not attempted (rules are applied in
a single top-down pass over the source forest), and
thus their representation and algorithms are quite
different from ours.

6 Conclusion

This work addresses the efficiency of entailment
and paraphrase rule application. We presented a
novel compact data structure and a rule application
algorithm for it, which are provably a valid imple-
mentation of a generic inference formalism. We il-
lustrated inference efficiency both analytically and
empirically. Beyond entailment inference, we sug-
gest that the compact forest would also be use-
ful in generation tasks (e.g. paraphrasing). Our
efficient representation of the consequent search
space opens the way to future investigation of the
benefit of larger-scale rule chaining, and to the de-
velopment of efficient search strategies required to
support such inferences.
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Abstract
We present a discriminative substring de-
coder for transliteration. This decoder
extends recent approaches for discrimi-
native character transduction by allow-
ing for a list of known target-language
words, an important resource for translit-
eration. Our approach improves upon
Sherif and Kondrak’s (2007b) state-of-the-
art decoder, creating a 28.5% relative im-
provement in transliteration accuracy on
a Japanese katakana-to-English task. We
also conduct a controlled comparison of
two feature paradigms for discriminative
training: indicators and hybrid generative
features. Surprisingly, the generative hy-
brid outperforms its purely discriminative
counterpart, despite losing access to rich
source-context features. Finally, we show
that machine transliterations have a posi-
tive impact on machine translation quality,
improving human judgments by 0.5 on a
4-point scale.

1 Introduction

Transliteration occurs when a word is borrowed
into a language with a different character set.
The word is transcribed into the new character
set in such a way as to maintain rough phonetic
correspondence; for example, the English word
hip-hop becomes 2#7;#7 [hippuhoppu],
when transliterated into Japanese. A task fre-
quently of interest to the NLP community is back-
transliteration, where one seeks the original word,
given the borrowed form.

We investigate machine transliteration as a
method to handle out-of-vocabulary items in a
Japanese-to-English translation system. More
often than not, this will correspond to back-
transliteration. Our goal is to prevent the copy-
ing or deletion of Japanese words when they are

missing from our statistical machine translation
(SMT) system’s translation tables. This can have
a substantial impact on the quality of SMT output,
transforming translations of questionable useful-
ness, such as:

Avoid using a5J�A�K account.1

into the far more informative:

Avoid using a Freemail account.

Though the techniques we present here are
language-independent, we focus this study on
the task of Japanese katakana-to-English back-
transliteration. Katakana is one of the four char-
acter types used in the Japanese writing system
(along with hiragana, kanji and Roman alpha-
bet), consisting of about 50 syllabic characters.
It is used primarily to spell foreign loanwords
(e.g., !G�L�( [chokoreeto] — chocolate),
and names (e.g., �JS(S [kurinton] — Clin-
ton). Therefore, katakana is a strong indicator
that a Japanese word can be back-transliterated.
However, katakana can also be used to spell sci-
entific names of animals and plants (e.g., �B
[kamo] — duck), onomatopoeic expressions (e.g.,
0�C0�C [bashabasha] — splash) and for-
eign origin words that are not transliterations (e.g.,
;!
� [hochikisu] — stapler). These un-
transliterable cases constitute about 10% of the
katakana words in our data.

We employ a discriminative substring decoder
for machine transliteration. Following Sherif and
Kondrak (2007b), the decoder operates on short
source substrings, with each operation producing
one or more target characters, as shown in Fig-
ure 1. However, where previous approaches em-
ploy generative modeling, we use structured per-
ceptron training to discriminatively tune parame-
ters according to 0-1 transliteration accuracy. This

15J�A�K is romanized as [furiimeeru]
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ト ム ソン

tho m son

Figure 1: Example substring derivation

allows us to test novel methods for the use of tar-
get lexicons in discriminative character transduc-
tion, allowing our decoder to benefit from a list of
known target words. Perhaps more significantly,
our framework allows us to test two competing
styles of features:

• sparse indicators, designed to capture the
same channel and language modeling data
collected by previous generative models, and

• components of existing generative models,
used as real-valued features in a discrimina-
tively weighted, generative hybrid.

Note that generative hybrids are the norm in
SMT, where translation scores are provided by
a discriminative combination of generative mod-
els (Och, 2003). Substring-based transliteration
with a generative hybrid model is very similar to
existing solutions for phrasal SMT (Koehn et al.,
2003), operating on characters rather than words.
Unlike out-of-the-box phrasal SMT solutions, our
generative hybrid benefits from a target a lexicon.
As we will show, this is the difference between a
weak baseline and a strong competitor.

We demonstrate that despite recent successes in
discriminative character transduction using indi-
cator features (Jiampojamarn et al., 2008; Dreyer
et al., 2008), our generative hybrid performs sur-
prisingly well, producing our highest translitera-
tion accuracies. Researchers frequently compare
against a phrasal SMT baseline when evaluating a
new transduction technique (Freitag and Khadivi,
2007; Dreyer et al., 2008); however, we are careful
to vary only the features in our comparison. Con-
founding variables, such as alignment, decoder
and training method, are held constant.

We also include a human evaluation of
transliteration-augmented SMT output. Though
human evaluations are too expensive to allow a
comparison between transliteration systems, we
are able to show that adding our transliterations
to a production-level SMT engine results in a sub-
stantial improvement in translation quality.

2 Background

This work draws inspiration from previous work
in transliteration, which we divide into similarity
and transduction-based approaches. We also dis-
cuss recent successes in discriminative character
transduction that have influenced this work.

2.1 Similarity-based transliteration

In similarity-based transliteration, a character-
based, cross-lingual similarity metric is calculated
(or bootstrapped) from known transliteration pairs.
Given a source word s, its transliteration is the tar-
get word tmost similar to s, where t is drawn from
some pool of candidates. This approach may also
be referred to as transliteration discovery.

Brill et al. (2001) describe a katakana-to-
English approach with an EM-learned edit dis-
tance, which bootstraps from a small number of
examples to learn transliteration pairs from query
logs. Bilac and Tanaka (2005) harvest translitera-
tion candidates from comparable bilingual corpora
(conference abstracts in English and Japanese),
and use distributional as well as phonetic simi-
larity to choose among them. Sherif and Kon-
drak (2007a) also bootstrap a learned edit dis-
tance for Arabic named entities, with candidate
pairs drawn from sentence or document-aligned
parallel text. Klementiev and Roth (2006) boot-
strap an SVM classifier trained to detect true
transliteration-pairs. They draw candidates from
comparable news text, using date information to
provide further clues as to aligned named entities.
Bergsma and Kondrak (2007) extend the classifi-
cation approach with features derived from a char-
acter alignment. They train from bilingual dic-
tionaries and word-aligned parallel text, selecting
negative examples to target false-friends.

The work of Hermjakob et al. (2008) is par-
ticularly relevant to this paper, as they incorpo-
rate a similarity-based transliteration system into
an Arabic-to-English SMT engine. They employ
a hand-crafted cross-lingual similarity metric, and
use capitalized n-grams from the Google n-gram
corpus as candidates. With such a huge candidate
list, a cross-lingual indexing scheme is designed
for fast candidate look-up. Their work also ad-
dresses the question of when to transliterate (as
opposed to translate), a realistic concern when de-
ploying a transliteration component in SMT. This,
however, is not of so much concern for katakana,
as it is used primarily for loanwords.
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2.2 Transduction-based transliteration

The approach presented in this paper is an instance
of transduction-based transliteration, where the
source word is transformed into a target word us-
ing a sequence of character-level operations. The
parameters of the transduction process are learned
from a collection of transliteration pairs. These
systems do not require a list of candidates, but
many incorporate a target lexicon, favoring target
words that occur in the lexicon. This approach is
also known as transliteration generation.

The majority of transliteration generation ap-
proaches are based on the noisy channel model,
where a target t is generated according to
P (t|s) ∝ P (s|t)P (t). This approach is typi-
fied by finite-state transliteration, where the var-
ious stages of the channel model are represented
by finite state transducers and automata. Early
systems employed a complex channel, passing
through multiple phonetic representations (Knight
and Graehl, 1998; Bilac and Tanaka, 2004), but
later versions replaced characters directly (Al-
Onaizan and Knight, 2002). Sherif and Kondrak
(2007b) extend this approach with substring oper-
ations in the style of phrasal SMT, and show that
doing so improves both accuracy as well as space
and time efficiency. Note that it is possible to in-
corporate a target lexicon by making P (t) a word
unigram model with a character-based back-off.

Li et al. (2004) present an alternative to the
noisy channel with their joint n-gram model,
which calculates P (s, t). This formulation allows
operations to be conditioned on both source and
target context. However, the inclusion of a candi-
date list is more difficult in this setting, as P (t) is
not given its own model.

Zelenko and Aone (2006) investigate a purely
discriminative, alignment-free approach to
transliteration generation. The target word is
constructed one character at a time, with each
new character triggering a suite of features,
including indicators for near-by source and target
characters, as well a generative target language
model. Freitag and Khadivi (2007) propose a dis-
criminative, latent edit distance for transliteration.
In this case, training data need not be aligned in
advance, but a latent alignment is produced during
decoding. Again, the target word is constructed
one character at a time, using edit operations
that are scored according to source and target
context features. Both approaches train using a

structured perceptron, as we do here. However,
these models represent a dramatic departure from
the existing literature, while ours has clear analogs
to the well-known noisy-channel paradigm, which
allows for useful comparisons and insights into
the advantages of discriminative training.

2.3 Discriminative character transduction
While our chosen application is transliteration,
our decoder is influenced by recent successes in
general-purpose discriminative transduction. Ji-
ampojamarn et al. (2008) describe a discrimina-
tive letter-to-phoneme substring transducer, while
Dreyer et al. (2008) describe a discriminative char-
acter transducer with a latent derivation structure
for morphological transformations. Both models
are extremely effective, but both rely exclusively
on indicator features; they do not explore the use
of knowledge-rich generative models. Our indica-
tor system uses an extended version of the Jiampo-
jamarn et al. (2008) feature set.

3 Methods

We adopt a discriminative substring decoder for
our transliteration task. A structured percep-
tron (Collins, 2002) learns weights for our translit-
eration features, which are drawn from two broad
classes: indicator and hybrid generative features.

3.1 Structured perceptron
The decoder’s discriminative parameters are
learned with structured perceptron training. Let
a derivation d describe a substring operation se-
quence that transliterates a source word into a tar-
get word. Given an input training corpus of such
derivations D = d1 . . . dn, a vector feature func-
tion on derivations ~F (d), and an initial weight vec-
tor ~w, the perceptron performs two steps for each
training example di ∈ D:

• Decode: d̄ = argmaxd∈D(src(di))

(
~w · ~F (d)

)
• Update: ~w = ~w + ~F (di)− ~F (d̄)

where D(src(d)) enumerates all possible deriva-
tions with the same source side as d. To improve
generalization, the final feature vector is the aver-
age of all vectors found during learning (Collins,
2002). Accuracy on the development set is used
to select the number of times we pass through all
di ∈ D.

Given the above framework, we require training
derivations D, feature vectors ~F , and a decoder to
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carry out the argmax over all d reachable from a
particular source word. We describe each of these
components in turn below.

3.2 Training derivations

Note that the above framework describes a max-
derivation decoder trained on a corpus of gold-
standard derivations, as opposed to a max-
transliteration decoder trained directly on source-
target pairs. By building the entire system on the
derivation level, we side-step issues that can oc-
cur when perceptron training with hidden deriva-
tions (Liang et al., 2006), but we also introduce the
need to transform our training source-target pairs
into training derivations.

Training derivations can be learned unsu-
pervised from source-target pairs using char-
acter alignment techniques. Previously, this
has been done using an EM-learned edit dis-
tance (Ristad and Yianilos, 1998), or generaliza-
tions thereof (Brill and Moore, 2000; Jiampoja-
marn et al., 2007). We opt for an alternative align-
ment technique, similar to the word-aligner de-
scribed by Zhang et al. (2008). This approach
employs variational EM with sparse priors, along
with hard length limits, to reduce the length of
substrings operated upon. By doing so, we hope to
learn only non-compositional transliteration units.

Our aligner produces only monotonic align-
ments, and does not allow either the source or tar-
get side of an operation to be empty. The same
restrictions are imposed during decoding. In this
way, each alignment found by variational EM is
also an unambiguous derivation. We align our
training corpus with a maximum substring length
of three characters. The same derivations are used
to train all of the transliteration systems tested in
this paper.

3.3 Features

We employ two main types of features: indicators
and hybrid generative models. Indicators detect
binary events in a derivation, such as the presence
of a particular operation. Hybrid generative fea-
tures assign a real-valued probability to a deriva-
tion, based on statistics collected from training
derivations. There are few generative features and
each carries a substantial amount of information,
while indicators are sparse and knowledge-poor.

We treat these two classes of features as distinct.
We do so because researchers often use either one

approach or the other.2 Furthermore, it is not
clear how to optimally employ training derivations
when combining generative models and sparse in-
dicators: generative models need large amounts of
data to collect statistics and relatively little for per-
ceptron training,3 while sparse indicators require
only a large perceptron training set.

We can further divide feature space according
to the information required to calculate each fea-
ture. Both feature sets can be partitioned into the
following subtypes:

• Emission: How accurate are the operations
used by this derivation?

• Transition: Does the target string produced
by this derivation look like a well-formed tar-
get character sequence?

• Lexicon: Does the target string contain
known words from a target lexicon?

Indicator Features
Previous approaches to discriminative character
transduction tend to employ only sparse indica-
tors (Jiampojamarn et al., 2008; Dreyer et al.,
2008). This is because sparsity is not a major con-
cern in character-based domains, and sparse indi-
cators are extremely flexible.

Our emission and transition indicator features
follow Jiampojamarn et al. (2008). Emission indi-
cators are centered around an operation, such as
[( → tho]. Minimally, an indicator exists for
each operation. Many more source context fea-
tures can be generated by conjoining an operation
with source n-grams found within a fixed win-
dow ofC characters to either side of the operation.
These source context features have minimal com-
putational cost, and they allow each operator to ac-
count for large, overlapping portions of the source,
even when the substrings being operated upon are
small. Meanwhile, transition indicators stand in
for a character-based target language model. Indi-
cators are built for each possible target n-gram, for
n = 1 . . .K, allowing the perceptron to construct
a discriminative back-off model. Development ex-
periments lead us to select C = 3 and K = 5.

2Generative hybrids are often accompanied by a small
number of unsparse indicators, such as operation count.

3Perceptron training on the same data used for model
construction can lead to overconfidence in model quality.
One can address this problem by using a large number of
modeling-training folds (Collins et al., 2005), but we do not
do so here.
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Indicator lexicon features are novel to this work.
Given access to a target lexicon with type fre-
quencies, we opt to create features that indicate
the frequencies of generated target words accord-
ing to coarse bins. Experiments on our develop-
ment set lead to the selection of 5 frequency bins:
[< 2,000], [< 200], [< 20], [< 2], [< 1]. To keep
the model linear, these features are cumulative;
thus, generating a word with frequency 126 will
result in both the [< 2, 000] and [< 200] features
firing. Note that a single transliteration can po-
tentially generate multiple target words, and doing
so can have a major impact on how often the lex-
icon features fire. Thus, we employ another fea-
ture that indicates the introduction of a new word.
We expect these frequency indicators to be supe-
rior to a word-level unigram model, as they allow
the designer to select notable frequencies. In par-
ticular, the bins we have selected do not give any
advantage to extremely common words, as these
are generally less likely to be transliterated.

Hybrid Generative Features
We begin with the three components of the gener-
ative noisy channel employed by Sherif and Kon-
drak (2007b). Their transliteration probability is:

P (t|s) ∝ PE(s|t) ·max [PT (t), PL(t)] (1)

Inspired by the linear models used in SMT (Och,
2003), we can discriminatively weight the compo-
nents of this generative model, producing:

wE logPE(s|t) + wT logPT (t) + wL logPL(t)

with weights w learned by perceptron training.
These three models conveniently align with our

three feature subtypes. Emission information is
provided by PE(s|t), which is estimated by maxi-
mum likelihood on the operations observed in our
training derivations. Including source context is
difficult in such a model. To compensate for this,
all systems using PE(s|t) also use composed op-
erations, which are constructed from operation se-
quences observed in the training set. This removes
the length limit on substring operations.4 PT (t)
provides transition information through a charac-
ter language model, estimated on the target side

4Derivations built by our character aligner use opera-
tions on substrings of maximum length 3. To enable per-
ceptron training with composed operations, once PE(s|t)
has been estimated by counting composed operations in the
initial alignments, we re-align our training examples with
those composed operations to maximize PE(s|t), creating
new training derivations.

of the training derivations. In our implementation,
we employ a KN-smoothed 7-gram model (Kneser
and Ney, 1995). Finally, PL(t) is a unigram tar-
get word model, estimated from the same type fre-
quencies used to build our lexicon indicators.

Since we have adopted a linear model, we are
no longer constrained by the original generative
story. Therefore, we are free to incorporate other
SMT-inspired features: PE′(t|s), target character
count, and operation count.5

Feature summary
The indicator and hybrid-generative feature sets
each provide a discriminative version of the noisy
channel model. In the case of transition and lexi-
con features, both systems have access to the ex-
act same information, but encode that information
differently. The lexicon encoding is the most dra-
matic difference, with the indicators using a small
number of frequency bins, and the generative uni-
gram model providing a single, real-valued feature
that is proportional to frequency.

In the case of their emission features, the
two systems actually encode different information.
Both have access to the same training derivations,
but the indicator system provides source context
through n-gram indicators, while the generative
system does so using composed operations.

3.4 Decoder

Our decoder builds upon machine translation’s
monotone phrasal decoding (Zens and Ney, 2004),
or equivalently, the sequence tagging algorithm
used in semi-Markov CRFs (Sarawagi and Co-
hen, 2004). This dynamic programming (DP) de-
coder extends the Viterbi algorithm for HMMs
by operating on one or more source characters (a
substring) at each step. A DP block stores the
best scoring solution for a particular prefix. Each
block is subdivided into cells, which maintain the
context necessary to calculate target-side features.
We employ a beam, keeping only the 40 highest-
scoring cells for each block, which speeds up in-
ference at the expense of optimality. We found
that the beam had no major effect on perceptron
training, nor on the system’s final accuracy.

Previously, target lexicons have been used
primarily in finite-state transliteration, as they
are easily encoded as finite-state-acceptors (Al-
Onaizan and Knight, 2002; Sherif and Kondrak,

5Character and operation counts also fit in the indicator
system, but did not improve performance in development.
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2007b). It is possible to extend the DP decoder to
also use a target lexicon. By encoding the lexicon
as a trie, and adding the trie index to the context
tracked by the DP cells, we can provide access to
frequency estimates for words and word prefixes.
This has the side-effect of creating a new cell for
each target prefix; however, in the character do-
main, this remains computationally tractable.

4 Data

4.1 Wikipedia training and test data

Our katakana-to-English training data is de-
rived from bilingually-linked Wikipedia titles.
Any Japanese Wikipedia article with an entirely
katakana title and a linked English article results
in training pair. This results in 60K transliteration
pairs; we removed 2K pairs for development, and
2K for held-out testing.

The remaining 56K training pairs are quite
noisy. As mentioned earlier, roughly 10% of our
examples are simply not transliterable, but ap-
proximate Wikipedia title translations are an even
more substantial source of noise. For example,
�S4E����@ [konpyuutageemu] — com-
puter game is aligned with the English article
Computer and video games. We found it ben-
eficial, in terms of both speed and accuracy, to
do some coarse alignment-based pruning. After
alignment, the operations used by all derivations
are counted. Any operation that is used fewer than
three times is eliminated, along with any deriva-
tion using that operation. The goal is to eliminate
loose transliteration pairs from our data, where a
word or initial is included in one language but
not the other. This results in 40K training pairs.
Despite the noise in the Wikipedia data, there are
clear advantages in using it for training transliter-
ation models: it is available for any language pair,
it reflects recent trends and events, and the amount
of data increases daily. As we will see below, the
model trained on this data performs well on a test
set from a very different domain.

All systems use development set accuracy to
select their meta-parameters, such as the number
of perceptron iterations, the size of the source-
context window, and the n-gram length used in
character language modeling. The hybrid gener-
ative system further splits the training set, using
38K derivations for the calculation of its emission
and transition models, and 2K derivations for per-
ceptron training its model weights.

4.2 Machine translation test data
In order to see how effective our transliterator
is on out-of-domain test data, we also created
test data from a log of translation requests to
a web-based, Japanese-to-English translation ser-
vice.6 Out of 5,000 randomly selected transla-
tion requests, there are 312 cases where katakana
source words are out-of-vocabulary for the MT
system, and therefore remain untranslated. We
created a reference translation (not necessarily a
transliteration) for these katakana words by man-
ually selecting the corresponding English word(s)
in the sentence-level reference translation, which
was produced independently from this experiment.
This test set is quite divergent from the Wikipedia
titles: only 17 (5.5%) of its katakana words are
found in the Wikipedia training data, and six of
these did not agree on the English translation.

4.3 English lexicon
Our English lexicon is derived from two over-
lapping data sources: the English gigaword cor-
pus (LDC2003T05; GW) and the language model
training data for our SMT system, which contains
selections from Europarl, gigaword, and web-
harvested text. Both are lowercased. We com-
bine the unigram frequency counts from the two
sources by taking the max when they overlap. The
resulting lexicon has 5M types, 2.5M of which
have frequency 1.

5 Experiments

In this section, we summarize development exper-
iments, and then conduct a comparison on our two
transliteration test sets. We report 0-1 accuracy: a
transliteration is only correct if it exactly matches
the reference. For the comparison experiments,
we also report 10-best accuracy, where a system
is correct if it includes the correct transliteration
somewhere in its 10-best list.

5.1 Baselines
We compare our systems against a re-
implementation of Sherif and Kondrak’s (2007b)
noisy-channel substring decoder. This uses the
same PE , PT and PL models as our hybrid gen-
erative system, but employs a two-pass decoding
scheme to find the max transliteration according
to Equation 1. It represents a purely generative
solution using otherwise identical architecture.

6http://www.microsofttranslator.com
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Since our hybrid generative system implements
a model that is very similar to those used in phrasal
SMT, we also compare against a state-of-the-art
phrasal SMT system (Moore and Quirk, 2007).
This system is trained by applying the standard
SMT pipeline to our Wikipedia title pairs, treat-
ing characters as words, using a 7-gram character-
level language model, and disabling re-ordering.
Unfortunately, the decoder’s architecture does not
allow the use of a word-level unigram model, re-
ducing the usefulness of this baseline. Instead, we
include the target lexicon as a second character-
level language model. This baseline indicates the
level of performance one can expect by applying
phrasal SMT straight out of the box.

Comparing the two baselines qualitatively, both
use a combination of generative models inspired
by the noisy channel. Sherif and Kondrak em-
ploy a word-level unigram model without discrim-
inatively weighting the models, while the Phrasal
SMT approach uses weights derived from max-
BLEU training without word-level unigrams. The
obvious question of what happens when one does
both will be answered by our hybrid generative
system.

5.2 Development experiments

Table 1 shows development set accuracy for a
number of systems and feature types, along with
the model size of the corresponding systems,
where size is measured in terms of the number of
non-zero discriminatively-trained parameters. The
accuracy of the Sherif and Kondrak baseline is
shown as SK07. Despite its lack of discrimina-
tive training, word-level unigrams allow the SK07
baseline to outperform Phrasal SMT . In future ex-
periments, we compare only against SK07.

The indicator system was tested using only op-
eration indicators, with source context, transition
and lexicon indicators added incrementally. All
feature types have a substantial impact, with the
lexicon providing the boost needed to surpass the
baseline. Note that the inclusion of the five fre-
quency bins is sufficient to decrease the overall
feature count of the system by 600K, as much
fewer mistakes are made during training.

Development of the hybrid generative system
used the SK07 baseline as a starting point. The re-
sult of combining its three components into a flat
linear model, with all weights set to 1, is shown
in Table 1 as Linear SK07. This violation of

Table 1: Development accuracy and model size

System Acc. Size
Baseline Phrasal SMT 30.7 8

SK07 33.5 –
Indicator Operations only 3.6 6.8K

+ source context 23.9 2.8M
+ transition 28.6 3.1M
+ lexicon 44.2 2.5M
+ gen. lexicon 44.1 3.0M

Generative Linear SK07 31.7 –
+ perceptron 42.4 3
+ SMT features 44.1 6
+ ind. lexicon 44.3 12

conditional independence assumptions results in a
drop in accuracy. However, the + perceptron line
shows that setting the three weights with percep-
tron training results in a huge boost in accuracy,
nearly matching our indicator system. Adding fea-
tures inspired by SMT, such as PE′(t|s), elimi-
nates the gap between the two.

5.3 Development discussion
Considering their differences, the two systems’
proximity in score is quite surprising. Given the
character domain’s lack of sparsity, and the large
amount of available training data, we had expected
the hybrid generative system to behave only as
a strong baseline; instead, it matched the perfor-
mance of the indicator system. However, this
is not unprecedented: discriminatively weighted
generative models have been shown to outperform
purely discriminative competitors in various NLP
classification tasks (Raina et al., 2004; Toutanova,
2006), and remain the standard approach in statis-
tical translation modeling (Och, 2003).

Examining the development results on an
example-by-example basis, we see that the two
systems make mostly the same mistakes: for 87%
of examples, either both systems are right, or both
are wrong. The remainder represents a (relatively
small) opportunity to improve through system or
feature combination: an oracle that perfectly se-
lects between the two scores 50.6.

One opportunity for straight-forward combina-
tion is the target lexicon. Because lexicon frequen-
cies are drawn from an independent word list, and
not the transliteration training derivations, there is
no reason why both systems cannot use both lex-
icon representations. Unfortunately, doing so has
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Table 2: Test set comparisons

Wikipedia MT
System Acc. Top 10 Acc. Top 10
SK07 33.5 57.9 38.8 57.0
Generative 43.0 65.6 42.9 58.3
Indicator 42.5 63.5 43.6 57.7

little impact, as is shown in each system’s final row
in Table 1. Adding the word unigram model to
the indicator system results in slightly lower per-
formance, and a much larger model. Adding the
frequency bins to the generative system does im-
prove performance slightly, but attempts to com-
pletely replace the generative system’s word uni-
gram model with frequency bins resulted in a sub-
stantial drop in accuracy.7

5.4 Test set comparisons

Table 2 shows the accuracies of the systems se-
lected during development on our testing data. On
the held-out Wikipedia examples, the trends ob-
served during development remain the same, with
the generative system expanding its lead. Mov-
ing to 10-best accuracies changes little, except for
slightly narrowing the gap between SK07 and the
discriminative systems.

The second column of Table 2 compares the
systems on our MT test set. As discussed ear-
lier, this data is quite different from the Wikipedia
training set, and as a result, the systems’ differ-
ences are less pronounced. 1-best accuracy still
shows the discriminative systems having a definite
advantage, but at the 10-best level, those distinc-
tions are muted.

Compared with the previous work on katakana-
to-English transliteration, these accuracies do not
look particularly high: both Knight and Graehl
(1998) and Bilac and Tanaka (2004) report accu-
racies above 60% for 1-best transliteration. We
should emphasize that this is due to the difficulty
of our test data, and that we have tested against a
baseline that has been shown to outperform Knight
and Graehl (1998). The test data was not filtered
for noise, leaving untransliterable cases and loose
translations intact. The accuracies reported above
are under-estimates of real performance: many
transliterations not matching the reference may
still be useful to a human reader, such as differ-

7Lexicon replacement experiment is not shown in Table 1.

ences in inflection (e.g.,L!.�) [rechinoido]
— retinoids, transliterated as retinoid), and spac-
ing (e.g. ��IL
- [shierareone]— Sierra
Leone, transliterated as sierraleone).

6 Integration with machine translation

We used the transliterations from our indicator
system to augment a Japanese-to-English MT sys-
tem.8 This treelet-based SMT system (Quirk et
al., 2005) is trained on about 4.6M parallel sen-
tence pairs from diverse sources including bilin-
gual books, dictionaries and web publications.
Our goal is to measure the impact of machine
transliterations on end-to-end translation quality.

6.1 Evaluation method

We use the MT-log translation pairs described
in Section 4.2 as a sentence-level translation test
set. For each katakana word left untranslated by
the baseline SMT engine, we generated 10-best
transliteration candidates and added the katakana-
English pairs to the SMT system’s translation ta-
ble. Perceptron scores were exponentiated, then
normalized, to create probabilities, which were
given to the SMT system as P (source|target);9
all other translation features were set to log 1.

We translated the test set with and without the
augmented translation table. 120 sentences were
randomly selected from the cases where the trans-
lations output by the two SMT systems differed,
and were submitted for two types of human evalu-
ation. In the absolute evaluation, each SMT out-
put was assigned a score between 1 and 4 (1 =
completely useless; 4 = perfect translation); in the
relative evaluation, the evaluators were presented
with a pair of SMT outputs, with and without the
transliteration table, and were asked to judge if
they preferred one translation over the other. In
both evaluation settings, the machine-translated
sentences were evaluated by two native speakers
of English who have no knowledge of Japanese,
with access to a reference translation.

6.2 Results

The evaluation results show that our translitera-
tor does improve the quality of SMT. The BLEU

8The human evaluation was carried out before we discov-
ered the effectiveness of the hybrid generative system, but
recall that the performance of the two is similar.

9The perceptron scores are more naturally interpreted as
P (target |source), but the opposite direction is generally the
highest-weighted feature in the SMT system’s linear model.
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Table 3: Relative translation evaluation
evaluator 1 preference

eval2pref +translit equal baseline sum
+translit 95 0 2 97
equal 19 1 2 22
baseline 1 0 0 1
sum 115 1 4 120

score on the entire test set improved only slightly,
from 21.8 to 22.0. However, in the absolute hu-
man evaluation, the transliteration table increased
the average human judgement from 1.5 to 2 out of
a maximum score of 4. Table 3 shows the results
of the relative evaluation along with the judges’
sentence-level agreement. In 95 out of 120 cases,
both annotators agreed that the augmented table
produced a better translation than the baseline.

One might expect that any replacement of
katakana would improve the perception of MT
quality. This is not necessarily the case: it
can be more confusing to have a drastically
incorrect transliteration, such as transliterating
�#7M� [appurooda] — uploader incor-
rectly as applaud. Fortunately, Table 3 shows that
we make very few of these sorts of mistakes: the
baseline is preferred only rarely. Also note that,
according the MT 10-best accuracies in Table 2,
we would have expected to improve at most 60%
of cases, however, the human judgements indicate
that our actual rate of improvement is closer to
80%, which demonstrates that even an imperfect
transliteration is often useful.

7 Conclusion

We have presented a discriminative substring de-
coder for transliteration. Our decoder is based
on recent approaches for discriminative charac-
ter transduction, extended to provide access to a
target lexicon. We have presented a comparison
of indicator and hybrid generative features in a
controlled setting, demonstrating that generative
models perform surprisingly well when discrim-
inatively weighted. We have also shown our dis-
criminative models to be superior to a state-of-the-
art generative system. Finally, we have demon-
strated that machine transliteration is immediately
useful to end-to-end SMT.

As mentioned earlier, by focusing on katakana,
we bypass the problem of deciding when to
transliterate rather than translate; next, we plan to

combine our models with a classifier that makes
such a decision, allowing us to integrate transliter-
ation into SMT for other language pairs.
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Abstract

The design of practical language applica-
tions by means of statistical approaches
requires annotated data, which is one of
the most critical constraint. This is par-
ticularly true for Spoken Dialog Systems
since considerably domain-specific con-
ceptual annotation is needed to obtain ac-
curate Language Understanding models.
Since data annotation is usually costly,
methods to reduce the amount of data are
needed. In this paper, we show that bet-
ter feature representations serve the above
purpose and that structure kernels pro-
vide the needed improved representation.
Given the relatively high computational
cost of kernel methods, we apply them to
just re-rank the list of hypotheses provided
by a fast generative model. Experiments
with Support Vector Machines and differ-
ent kernels on two different dialog cor-
pora show that our re-ranking models can
achieve better results than state-of-the-art
approaches when small data is available.

1 Introduction

Spoken Dialog Systems carry out automatic
speech recognition and shallow natural language
understanding by heavily relying on statistical
models. These in turn need annotated data de-
scribing the application domain. Such annotation
is far the most expensive part of the system de-
sign. Therefore, methods reducing the amount of
labeled data can speed up and lower the overall
amount of work.

Among others, Spoken Language Understand-
ing (SLU) is an important component of the sys-
tems above, which requires training data to trans-
late a spoken sentence into its meaning repre-
sentation based on semantic constituents. These

are conceptual units instantiated by sequences of
words.

In the last decade two major approaches have
been proposed to automatically map words in con-
cepts: (i) generative models, whose parameters re-
fer to the joint probability of concepts and con-
stituents; and (ii) discriminative models, which
learn a classification function based on conditional
probabilities of concepts given words.

A simple but effective generative model is the
one based on Finite State Transducers. It performs
SLU as a translation process from words to con-
cepts using Finite State Transducers (FST). An ex-
ample of discriminative model used for SLU is the
one based on Support Vector Machines (SVMs)
(Vapnik, 1995), as shown in (Raymond and Ric-
cardi, 2007). In this approach, data is mapped into
a vector space and SLU is performed as a clas-
sification problem using Maximal Margin Clas-
sifiers (Vapnik, 1995). A relatively more recent
approach for SLU is based on Conditional Ran-
dom Fields (CRF) (Lafferty et al., 2001). CRFs
are undirected graphical and discriminative mod-
els. They use conditional probabilities to account
for many feature dependencies without the need of
explicitly representing such dependencies.

Generative models have the advantage to be
more robust to overfitting on training data, while
discriminative models are more robust to irrele-
vant features. Both approaches, used separately,
have shown good accuracy (Raymond and Ric-
cardi, 2007), but they have very different charac-
teristics and the way they encode prior knowledge
is very different, thus designing models that take
into account characteristics of both approaches are
particularly promising.

In this paper, we propose a method for SLU
based on generative and discriminative models:
the former uses FSTs to generate a list of SLU
hypotheses, which are re-ranked by SVMs. To
effectively design our re-ranker, we use all pos-
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sible word/concept subsequences with gaps of the
spoken sentence as features (i.e. all possible n-
grams). Gaps allow for encoding long distance de-
pendencies between words in relatively small se-
quences. Since the space of such features is huge,
we adopted kernel methods, i.e. sequence kernels
(Shawe-Taylor and Cristianini, 2004) and tree ker-
nels (Collins and Duffy, 2002; Moschitti, 2006a)
to implicitly encode them along with other struc-
tural information in SVMs.

We experimented with different approaches for
training the discriminative models and two differ-
ent corpora: the french MEDIA corpus (Bonneau-
Maynard et al., 2005) and a corpus made available
by the European project LUNA1 (Dinarelli et al.,
2009b). In particular, the new contents with re-
spect to our previous work (Dinarelli et al., 2009a)
are:

• We designed a new sequential structure
(SK2) and two new hierarchical tree struc-
tures (MULTILEVEL and FEATURES) for
re-ranking models (see Section 4.2). The lat-
ter combined with two different tree kernels
originate four new different models.

• We experimented with automatic speech
transcriptions thus assessing the robustness to
noise of our models.

• We compare our models against Conditional
Random Field (CRF) approaches described
in (Hahn et al., 2008), which are the cur-
rent state-of-the-art in SLU. Learning curves
clearly show that our models improve CRF,
especially when small data sets are used.

The remainder of the paper is organized as fol-
lows: Section 2 introduces kernel methods for
structured data, Section 3 describes the generative
model producing the initial hypotheses whereas
Section 4 presents the discriminative models for
re-ranking them. The experiments and results
are reported in Section 5 and the conclusions are
drawn in Section 6.

2 Feature Engineering via Structure
Kernels

Kernel methods are viable approaches to engi-
neer features for text processing, e.g. (Collins and
Duffy, 2002; Kudo and Matsumoto, 2003; Cumby

1Contract n. 33549

and Roth, 2003; Cancedda et al., 2003; Culotta
and Sorensen, 2004; Toutanova et al., 2004; Kudo
et al., 2005; Moschitti, 2006a; Moschitti et al.,
2007; Moschitti, 2008; Moschitti et al., 2008;
Moschitti and Quarteroni, 2008). In the follow-
ing, we describe structure kernels, which will be
used to engineer features for our discriminative re-
ranker.

2.1 String Kernels

The String Kernels that we consider count the
number of substrings containing gaps shared by
two sequences, i.e. some of the symbols of the
original string are skipped. We adopted the ef-
ficient algorithm described in (Shawe-Taylor and
Cristianini, 2004; Lodhi et al., 2000). More
specifically, we used words and markers as sym-
bols in a style similar to (Cancedda et al., 2003;
Moschitti, 2008). For example, given the sen-
tence: How may I help you ? sample substrings,
extracted by the Sequence Kernel (SK), are: How
help you ?, How help ?, help you, may help you,
etc.

2.2 Tree kernels

Tree kernels represent trees in terms of their sub-
structures (fragments). The kernel function detects
if a tree subpart (common to both trees) belongs to
the feature space that we intend to generate. For
such purpose, the desired fragments need to be de-
scribed. We consider two important characteriza-
tions: the syntactic tree (STF) and the partial tree
(PTF) fragments.

2.2.1 Tree Fragment Types
An STF is a general subtree whose leaves can
be non-terminal symbols (also called SubSet Tree
(SST) in (Moschitti, 2006a)). For example, Fig-
ure 1(a) shows 10 STFs (out of 17) of the sub-
tree rooted in VP (of the left tree). The STFs sat-
isfy the constraint that grammatical rules cannot
be broken. For example, [VP [V NP]] is an
STF, which has two non-terminal symbols, V and
NP, as leaves whereas [VP [V]] is not an STF.
If we relax the constraint over the STFs, we ob-
tain more general substructures called partial trees
fragments (PTFs). These can be generated by the
application of partial production rules of the gram-
mar, consequently [VP [V]] and [VP [NP]]
are valid PTFs. Figure 1(b) shows that the num-
ber of PTFs derived from the same tree as before
is still higher (i.e. 30 PTs).
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(a) Syntactic Tree fragments (STF) (b) Partial Tree fragments (PTF)

Figure 1: Examples of different classes of tree fragments.

2.3 Counting Shared Subtrees
The main idea of tree kernels is to compute the
number of common substructures between two
trees T1 and T2 without explicitly considering the
whole fragment space. To evaluate the above ker-
nels between two T1 and T2, we need to define a
set F = {f1, f2, . . . , f|F|}, i.e. a tree fragment
space and an indicator function Ii(n), equal to 1
if the target fi is rooted at node n and equal to 0
otherwise. A tree-kernel function over T1 and T2

is TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2),
where NT1 and NT2 are the sets of the T1’s
and T2’s nodes, respectively and ∆(n1, n2) =∑|F|

i=1 Ii(n1)Ii(n2). The latter is equal to the num-
ber of common fragments rooted in the n1 and n2

nodes.
The algorithm for the efficient evaluation of ∆

for the syntactic tree kernel (STK) has been widely
discussed in (Collins and Duffy, 2002) whereas its
fast evaluation is proposed in (Moschitti, 2006b),
so we only describe the equations of the partial
tree kernel (PTK).

2.4 The Partial Tree Kernel (PTK)
PTFs have been defined in (Moschitti, 2006a).
Their computation is carried out by the following
∆ function:

1. if the node labels of n1 and n2 are different
then ∆(n1, n2) = 0;

2. else ∆(n1, n2) =

1 +
∑

~I1,~I2,l(~I1)=l(~I2)

∏l(~I1)
j=1 ∆(cn1(~I1j), cn2(~I2j))

where ~I1 = 〈h1, h2, h3, ..〉 and ~I2 =
〈k1, k2, k3, ..〉 are index sequences associated with
the ordered child sequences cn1 of n1 and cn2 of
n2, respectively, ~I1j and ~I2j point to the j-th child
in the corresponding sequence, and, again, l(·) re-
turns the sequence length, i.e. the number of chil-
dren.

Furthermore, we add two decay factors: µ for
the depth of the tree and λ for the length of the

child subsequences with respect to the original se-
quence, i.e. we account for gaps. It follows that
∆(n1, n2) =

µ
(
λ2+

∑
~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏
j=1

∆(cn1(~I1j), cn2(~I2j))
)
,

(1)
where d(~I1) = ~I1l(~I1) − ~I11 and d(~I2) = ~I2l(~I2) −
~I21. This way, we penalize both larger trees and
child subsequences with gaps. Eq. 1 is more gen-
eral than the ∆ equation for STK. Indeed, if we
only consider the contribution of the longest child
sequence from node pairs that have the same chil-
dren, we implement STK.

3 Generative Model: Stochastic
Conceptual Language Model (SCLM)

The first step of our approach is to produce a list
of SLU hypotheses using a Stochastic Conceptual
Language Model. This is the same described in
(Raymond and Riccardi, 2007) with the only dif-
ference that we train the language model using the
SRILM toolkit (Stolcke, 2002) and we then con-
vert it into a Stochastic Finite State Transducer
(SFST). Such method allows us to use a wide
group of language models, backed-off or inter-
polated with many kind of smoothing techniques
(Chen and Goodman, 1998).

To exemplify our SCLM let us consider the
following input italian sentence taken from the
LUNA corpus along with its English translation:

Ho un problema col monitor.
(I have a problem with my screen).

A possible semantic annotation is:

null{ho} PROBLEM{un problema} HARD-
WARE{col monitor},
where PROBLEM and HARDWARE are two
domain concepts and null is the label used for
words not meaningful for the task. To associate
word sequences with concepts, we use begin
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(B) and inside (I) markers after each word of a
sequence, e.g.:

null{ho} PROBLEM-B{un} PROBLEM-
I{problema} HARDWARE-B{col} HARD-
WARE-I{monitor}
This annotation is automatically performed
by a model based on a combination of three
transducers:

λSLU = λW ◦ λW2C ◦ λSLM ,

where λW is the transducer representation of the
input sentence, λW2C is the transducer mapping
words to concepts and λSLM is the Stochastic
Conceptual Language Model trained with SRILM
toolkit and converted in FST. The SCLM repre-
sents joint probability of word and concept se-
quences by using the joint probability:

P (W,C) =
k∏

i=1

P (wi, ci|hi),

where W = w1..wk, C = c1..ck and hi =
wi−1ci−1..w1c1.

4 Discriminative re-ranking

Our discriminative re-ranking is based on SVMs
trained with pairs of conceptually annotated sen-
tences produced by the FST-based generative
model described in the previous section. An SVM
learn to classify which annotation has an error rate
lower than the others so that it can be used to sort
the m-best annotations based on their correctness.
While for SVMs details we remaind to the wide
literature available, for example (Vapnik, 1995) or
(Shawe-Taylor and Cristianini, 2004), in this sec-
tion we focus on hypotheses generation and on the
kernels used to implement our re-ranking model.

4.1 Generation of m-best concept labeling
Using the FST-based model described in Section
3, we can generate the list of m best hypotheses
ranked by the joint probability of the Stochastic
Conceptual Language Model (SCLM). The Re-
ranking model proposed in this paper re-ranks
such list.

After an analysis of the m-best hypothesis list,
we noticed that many times the first hypothesis
ranked by SCLM is not the most accurate, i.e.
the error rate evaluated with its Levenshtein dis-
tance from the manual annotation is not the low-
est among the m hypotheses. This means that re-

ranking hypotheses could improve the SLU ac-
curacy. Intuitively, to achieve satisfactory re-
sults, different features from those used by SCLM
should be considered to exploit in a different way
the information encoded in the training data.

4.2 Structural features for re-ranking

The kernels described in previous sections pro-
vide a powerful technology for exploiting features
of structured data. These kernels were originally
designed for data annotated with syntactic parse
trees. In Spoken Language Understanding the data
available are text sentences with their semantic
annotation based on basic semantic constituents.
This kind of data has a rather flat structure with
respect to syntactic parse trees. Thus, to exploit
the power of kernels, a careful design of the struc-
tures used to represent data must be carried out,
where the goal is to build tree-like annotation from
the semantic annotation. For this purpose, we
note that the latter is made upon sentence chunks,
which implicitly define syntactic structures as long
as the annotation is consistent in the corpus.

We took into account the characteristics of the
presented kernels and the structure of semantic an-
notated data. As a result we designed the tree
structures shown in figures 2(a), 2(b) and 3 for
STK and PTK and sequential structures for SK
defined in the following (where all the structures
refer to the same example presented in Section 3,
i.e. Ho un problema col monitor). The structures
used with SK are:

(SK1) NULL ho PROBLEM-B un
PROBLEM-I problema HARDWARE-B col
HARDWARE-I monitor

(SK2) NULL ho PROBLEM B un PROB-
LEM I problema HARDWARE B col HARD-
WARE I monitor,
For simplicity, from now on, the two structures
will be referred as SK1 and SK2 (String Kernel 1
and 2). They differer in the use of chunk mark-
ers B and I. In SK1, markers are part of the con-
cept, thus they increase the number of semantic
tags in the data whereas in SK2 markers are put
apart as separated words so that they can mark ef-
fectively the beginning and the end of a concept,
but for the same reason they can add noise in the
sentence. Notice that the order of words and con-
cepts is meaningful since each word is preceded
by its corresponding concepts.

The structures shown in Figure 2(a), 2(b) and 3
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have been designed for STK and PTK. They pro-
vide trees with increasing structure complexity as
described in the following.

The first structure (FLAT) is a simple tree
providing direct dependency between words and
chunked concepts. From it, STK and PTK can ex-
tract relevant features (tree fragments).

The second structure (MULTILEVEL) has one
more level of nodes and yields the same separation
of concepts and markers shown in SK1. Notice
that the same separation can be carried out putting
the markers B and I as features at the same level of
the words. This would increase exponentially (in
the number of leaves) the number of subtrees taken
into account by the STK computation. Since STK
doesn’t separate children, as described in Section
2.3, the structure we chose is lighter but also more
rigid.

The third structure (FEATURES) is a more
complex structure. It allows to use a wide num-
ber of features (like Word categories, POS tags,
morpho-syntactic features), which are commonly
used in this kind of task. As described above, the
use of features exponentially increases the num-
ber of subtrees taken into account by kernel com-
putations but they also increase the robustness of
the model. In this work we only used Word Cate-
gories as features. They are domain independent,
e.g. ”Months”, ”Dates”, ”Number” etc. or POS
tags, which are useful to generalize target words.
Note also that the features in common between
two trees must appear in the same child-position,
hence we sort them based on their indices, e.g.’F0’
for words and ’F1’ for word categories.

4.3 Re-ranking models using sequences

The FST generates the m most likely concept an-
notations. These are used to build annotation
pairs,

〈
si, sj

〉
, which are positive instances if si

has a lower concept annotation error than sj , with
respect to the manual annotation. Thus, a trained
binary classifier can decide if si is more accurate
than sj . Each candidate annotation si is described
by a word sequence with its concept annotation.
Considering the example in the previous section, a
pair of annotations

〈
si, sj

〉
could be

si: NULL ho PROBLEM-B un PROBLEM-
I problema HARDWARE-B col HARDWARE-I
monitor
sj : NULL ho ACTION-B un ACTION-I prob-

lema HARDWARE-B col HARDWARE-B moni-

tor
where NULL, ACTION and HARDWARE are
the assigned concepts. The second annotation is
less accurate than the first since problema is erro-
neously annotated as ACTION and ”col monitor”
is split in two different concepts.

Given the above data, the sequence kernel
is used to evaluate the number of common n-
grams between si and sj . Since the string ker-
nel skips some elements of the target sequences,
the counted n-grams include: concept sequences,
word sequences and any subsequence of words
and concepts at any distance in the sentence.

Such counts are used in our re-ranking function
as follows: let ek be the pair

〈
s1k, s

2
k

〉
we evaluate

the kernel:

KR(e1, e2) = SK(s11, s
1
2) + SK(s21, s

2
2) (2)

− SK(s11, s
2
2)− SK(s21, s

1
2)

This schema, consisting in summing four different
kernels, has been already applied in (Collins and
Duffy, 2002; Shen et al., 2003) for syntactic pars-
ing re-ranking, where the basic kernel was a tree
kernel instead of SK. It was also used also in (Shen
et al., 2004) to re-rank different candidates of the
same hypothesis for machine translation. Notice
that our goal is different from the one tackled in
such paper and, in general, it is more difficult: we
try to learn which is the best annotation of a given
input sentence, while in (Shen et al., 2004), they
learn to distinguish between ”good” and ”bad”
translations of a sentence. Even if our goal is more
difficult, our approach is very effective, as shown
in (Dinarelli et al., 2009a). It is more appropriate
since in parse re-ranking there is only one best hy-
pothesis, while in machine translation a sentence
can have more than one correct translations.

Additionally, in (Moschitti et al., 2006; Mos-
chitti et al., 2008) a tree kernel was applied to se-
mantic trees similar to the one introduced in the
next section to re-rank Semantic Role Labeling an-
notations.

4.4 Re-ranking models using trees
Since the aim of concept annotation re-ranking is
to exploit innovative and effective source of infor-
mation, we can use, in addition to sequence ker-
nels, the power of tree kernels to generate correla-
tion between concepts and word structures.

Figures 2(a), 2(b) and 3 describe the struc-
tural association between the concept and the word
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(a) FLAT Tree (b) MULTILEVEL Tree

Figure 2: Examples of structures used for STK and PTK

Figure 3: The FEATURES semantic tree used for STK or PTK

Corpus Train set Test set
LUNA words concepts words concepts
Dialogs 183 67
Turns 1.019 373
Tokens 8.512 2.887 2.888 984
Vocab. 1.172 34 - -
OOV rate - - 3.2% 0.1%

Table 1: Statistics on the LUNA corpus

Corpus Train set Test set
Media words concepts words concepts
Turns 12,922 3,518
# of tokens 94,912 43,078 26,676 12,022
Vocabulary 5,307 80 - -
OOV rate - - 0.01% 0.0%

Table 2: Statistics on the MEDIA corpus

level. This kind of trees allows us to engineer new
kernels and consequently new features (Moschitti
et al., 2008), e.g. their subparts extracted by STK
or PTK, like the tree fragments in figures 1(a) and
1(b). These can be used in SVMs to learn the clas-
sification of words in concepts.

More specifically, in our approach, we use tree
fragments to establish the order of correctness
between two alternative annotations. Therefore,
given two trees associated with two annotations, a
re-ranker based on tree kernel can be built in the
same way of the sequence-based kernel by substi-
tuting SK in Eq. 2 with STK or PTK. The major
advantage of using trees is the hierarchical depen-
dencies between its nodes, allowing for the use of
richer n-grams with back-off models.

5 Experiments

In this section, we describe the corpora, parame-
ters, models and results of our experiments on re-
ranking for SLU. Our baseline is constituted by the
error rate of systems solely based on either FST
or SVMs. The re-ranking models are built on the
FST output, which in turn is applied to both man-
ual or automatic transcriptions.

5.1 Corpora

We used two different speech corpora:
The LUNA corpus, produced in the homony-

mous European project, is the first Italian dataset
of spontaneous speech on spoken dialogs. It is
based on help-desk conversations in a domain
of software/hardware repairing (Dinarelli et al.,
2009b). The data is organized in transcriptions
and annotations of speech based on a new multi-
level protocol. Although data acquisition is still in
progress, 250 dialogs have been already acquired
with a WOZ approach and other 180 Human-
Human (HH) dialogs have been annotated. In this
work, we only use WOZ dialogs, whose statistics
are reported in Table 1.

The corpus MEDIA was collected within
the French project MEDIA-EVALDA (Bonneau-
Maynard et al., 2005) for development and evalu-
ation of spoken understanding models and linguis-
tic studies. The corpus is composed of 1257 di-
alogs (from 250 different speakers) acquired with
a Wizard of Oz (WOZ) approach in the context
of hotel room reservations and tourist information.
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Statistics on transcribed and conceptually anno-
tated data are reported in Table 2.

5.2 Experimental setup

Given the small size of LUNA corpus, we did not
carried out any parameterization thus we used de-
fault or a priori parameters. We experimented with
LUNA and three different re-rankers obtained with
the combination of SVMs with STK, PTK and SK,
described in Section 4. The initial annotation to be
re-ranked is the list of the ten best hypotheses out-
put by an FST model.

We point out that, on the large Media dataset the
processing time is considerably high2 so we could
not run all the models.

We trained all the SCLMs used in our experi-
ments with the SRILM toolkit (Stolcke, 2002) and
we used an interpolated model for probability es-
timation with the Kneser-Ney discount (Chen and
Goodman, 1998). We then converted the model in
an FST again with SRILM toolkit.

The model used to obtain the SVM baseline for
concept classification was trained using YamCHA
(Kudo and Matsumoto, 2001). As re-ranking
models based on structure kernels and SVMs,
we used the SVM-Light-TK toolkit (available at
disi.unitn.it/moschitti). For λ (see Section 3), cost-
factor and trade-off parameters, we used, 0.4, 1
and 1, respectively (i.e. the default parameters).
The number m of hypotheses was always set to 10.

The CRF model we compare with was
trained with the CRF++ tool, available at
http://crfpp.sourceforge.net/. The model is equiva-
lent to the one described in (Hahn et al., 2008). As
features, we used word and morpho-syntactic cat-
egories in a window of [-2, +2] with respect to the
current token, plus bigrams of concept tags (see
(Hahn et al., 2008) and the CRF++ web site for
more details).

Such model is very effective for SLU. In (Hahn
et al., 2008), it is compared with other four models
(Stochastic Finite State Transducers, Support Vec-
tor Machines, Machine Translation, Positional-
Based Log-linear model) and it is by far the best
on MEDIA. Additionally, in (Raymond and Ric-
cardi, 2007), a similar CRF model was compared
with FST and SVMs on ATIS and on a different

2The number of parameters of the models and the number
of training approaches make the exhaustive experimentation
very expensive in terms of processing time, which would be
roughly between 2 and 3 months of a typical workstation.

Structure STK PTK SK
FLAT 18.5 19.3 -
MULTILEVEL 20.6 19.1 -
FEATURES 19.9 18.4 -
SK1 - - 16.2
SK2 - - 18.5

Table 3: CER of SVMs using STK, PTK and SK
on LUNA (manual transcriptions). The Baselines,
FST and SVMs alone, show a CER of 23.2% and
26.3%, respectively.

Model MEDIA (CER) LUNA (CER)
FST 13.7% 23.2%
CRF 11.5% 20.4%
SVM-RR (PTK) 12.1% 18.4%

Table 4: Results of SLU experiments on MEDIA
and LUNA test set (manual transcriptions).

version of MEDIA, showing again to be very ef-
fective.

We ran SLU experiments on manual and auto-
matic transcriptions. The latter are produced by
a speech recognizer with a WER of 41.0% and
31.4% on the LUNA and the MEDIA test sets, re-
spectively.

5.3 Training approaches

The FST model generates the 10-best annotations,
i.e. the data used to train the re-ranker based on
SVMs. Different training approaches can be car-
ried out based on the use of the data. We divided
the training set in two parts. We train FSTs on
part 1 and generate the 10-best hypotheses using
part 2, thus providing the first chunk of re-ranking
data. Then, we re-apply these steps inverting part
1 with part 2 to provide the second data chunk.
Finally, we train the re-ranker on the merged data.

For classification, we generate the 10-best hy-
potheses of the whole test set using the FST
trained on all training data.

5.4 Re-ranking results

In Tables 3, 4 and 5 and Figures 4(a) and 4(b) we
report the results of our experiments, expressed in
terms of concept error rate (CER). CER is a stan-
dard measure based on the Levensthein alignment
of sentences and it is computed as the ratio be-
tween inserted, deleted and confused concepts and
the number of concepts in the reference sentence.

Table 3 shows the results on the LUNA cor-
pus using the different training approaches, ker-
nels and structures described in this paper. The
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(a) Learning Curve on MEDIA corpus using the RR model
based on SVMs and STK
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(b) Learning Curve on LUNA corpus using the RR model
based on SVMs and SK

Figure 4: Learning curves on MEDIA and LUNA corpora using FST, CRF and RR on the FST hypotheses

Model MEDIA (CER) LUNA (CER)
FST 28.6% 42.7%
CRF 24.0% 41.8%
SVM-RR (PTK) 25.0% 38.9%

Table 5: Results of SLU experiments on MEDIA
and LUNA test set (automatic transcriptions with
a WER 31.4% on MEDIA and 41% on LUNA)

dash symbol means that the structure cannot be
applied to the corresponding kernel. We note that
our re-rankers significantly improve our baselines,
i.e. 23.2% CER for FST and 26.3% CER for SVM
concept classifiers. For example, SVM re-ranker
using SK, in the best case, improves FST concept
classifier of 23.2-16.2 = 7 points.

Note also that the structures designed for trees
yield quite different results depending on which
kernel is used. We can see in Table 3 that the
best result using STK is obtained with the simplest
structure (FLAT), while with PTK the best result
is achieved with the most complex structure (FEA-
TURES). This is due to the fact that STK does
not split the children of each node, as explained in
Section 2.2, and so structures like MULTILEVEL
and FEATURES are too rigid and prevent the STK
to be effective.

For lack of space we do not report all the results
using different kernels and structures on MEDIA,
but we underline that as MEDIA is a more com-
plex task (34 concepts in LUNA, 80 in MEDIA),
the more complex structures are more effective to
capture word-concept dependencies and the best
results were obtained using the FEATURES tree.

Table 4 shows the results of the SLU exper-
iments on the MEDIA and LUNA test sets us-
ing the manual transcriptions of spoken sentences

and a re-ranker based on PTK and the FEATURES
structure (already reported in the previous table).
We used PTK since it is enough efficient to carry
out the computation on the much larger Media cor-
pus although as previously shown it is less accu-
rate than SK.

We note that on a big corpus like MEDIA, the
baseline models (FST and CRF) can be accurately
learned thus less errors can be ”corrected”. As
a consequence, our re-ranking approach does not
improve CRF but it still improves the FSTs base-
line of 1.6% points (11.7% of relative improve-
ment).

The same behavior is reproduced for the SLU
experiments on automatic transcriptions, shown in
Table 5. We note that, on the LUNA corpus, CRFs
are more accurate than FSTs (0.9% points), but
they are significantly improved by the re-ranking
model (2.9% points), which also improves the
FSTs baseline by 3.8% points. On the MEDIA
corpus, the re-ranking model is again very accu-
rate improving the FSTs baseline of 3.6% points
(12.6% relative improvement) on attribute anno-
tation, but the most accurate model is again CRF
(1% points better than the re-ranking model).

5.5 Discussion

The different behavior of the re-ranking model in
the LUNA and MEDIA corpora is due partially to
the task complexity, but it is mainly due to the fact
that CRFs have been deeply studied and experi-
mented (see (Hahn et al., 2008)) on MEDIA. Thus
CRF parameters and features have been largely
optimized. We believe that the re-ranking model
can be relevantly improved by carrying out param-
eter optimization and new structural feature de-
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sign.
Moreover, our re-ranking models achieve the

highest accuracy for automatic concept annota-
tion when small data sets are available. To show
this, we report in Figure 4(a) and 4(b) the learning
curves according to an increasing number of train-
ing sentences on the MEDIA and LUNA corpora,
respectively. To draw the first plot, we used a re-
ranker based on STK (and the FLAT tree), which
is less accurate than the other kernels but also the
most efficient in terms of training time. In the sec-
ond plot, we report the re-ranker accuracy using
SK applied to SK1 structure.

In these figures, the FST baseline performance
is compared with our re-ranking (RR) and a Con-
ditional Random Field (CRF) model. The above
curves clearly shows that for small datasets our
RR model is better than CRF whereas when the
data increases, CRF accuracy approaches the one
of the RR.

Regarding the use of kernels two main findings
can be derived:

• Kernels producing a high number of features,
e.g. SK, produce accuracy higher than ker-
nels less rich in terms of features, i.e. STK. In
particular STK is improved by 18.5-16.2=2.3
points (Table 3). This is an interesting re-
sult since it shows that (a) a kernel producing
more features also produces better re-ranking
models and (b) kernel methods give a remark-
able help in feature design.

• Although the training data is small, the re-
rankers based on kernels appear to be very
effective. This may also alleviate the burden
of annotating large amount of data.

6 Conclusions

In this paper, we propose discriminative re-
ranking of concept annotation to jointly exploit
generative and discriminative models. We im-
prove the FST-based generative approach, which
is a state-of-the-art model in LUNA, by 7 points,
where the more limited availability of annotated
data leaves a larger room for improvement. Our
re-ranking model also improves FST and CRF on
MEDIA when small data sets are used.

Kernel methods show that combinations of fea-
ture vectors, sequence kernels and other structural
kernels, e.g. on shallow or deep syntactic parse
trees, appear to be a promising future research

line3. Finally, the experimentation with automatic
speech transcriptions revealed that to test the ro-
bustness of our models to transcription errors.

In the future we would like to extend this re-
search by focusing on advanced shallow semantic
approaches such as predicate argument structures,
e.g. (Giuglea and Moschitti, 2004; Moschitti and
Cosmin, 2004; Moschitti et al., 2008). Addition-
ally, term similarity kernels, e.g. (Basili et al.,
2005; Bloehdorn et al., 2006), will be likely im-
prove our models, especially when combined syn-
tactic and semantic kernels are used, i.e. (Bloe-
hdorn and Moschitti, 2007a; Bloehdorn and Mos-
chitti, 2007b).
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Abstract
There have been increasing needs for task
specific rankings in web search such as
rankings for specific query segments like
long queries, time-sensitive queries, navi-
gational queries, etc; or rankings for spe-
cific domains/contents like answers, blogs,
news, etc. In the spirit of ”divide-and-
conquer”, task specific ranking may have
potential advantages over generic ranking
since different tasks have task-specific fea-
tures, data distributions, as well as feature-
grade correlations. A critical problem for
the task-specific ranking is training data
insufficiency, which may be solved by us-
ing the data extracted from click log. This
paper empirically studies how to appro-
priately exploit click data to improve rank
function learning in task-specific ranking.
The main contributions are 1) the explo-
ration on the utilities of two promising ap-
proaches for click pair extraction; 2) the
analysis of the role played by the noise
information which inevitably appears in
click data extraction; 3) the appropriate
strategy for combining training data and
click data; 4) the comparison of click data
which are consistent and inconsistent with
baseline function.

1 Introduction

Learning-to-rank approaches (Liu, 2008) have
been widely applied in commercial search en-
gines, in which ranking models are learned using
labeled documents. Significant efforts have been
made in attempt to learn a generic ranking model
which can appropriately rank documents for all
queries . However, web users’ query intentions are
extremely heterogeneous, which makes it difficult
for a generic ranking model to achieve best rank-
ing results for all queries. For this reason, there

have been increasing needs for task specific rank-
ings in web search such as rankings for specific
query segments like long queries, time-sensitive
queries, navigational queries, etc; or rankings
for specific domains/contents like answers, blogs,
news, etc. Therefore, a specific ranking task usu-
ally correspond to a category of queries; when
the search engine determines that a query is be-
longing to this category, it will call the ranking
function dedicated to this ranking task. The mo-
tivation of this divide-and-conquer strategy is that,
task specific ranking may have potential advan-
tages over generic ranking since different tasks
have task-specific features, data distributions, as
well as feature-grade correlations.

Such a dedicated ranking model can be trained
using the labeled data belonging to this query cat-
egory (which is called dedicated training data).
However, the amount of training data dedicated
to a specific ranking task is usually insufficient
because human labeling is expensive and time-
consuming, not to mention there are multiple rank-
ing tasks that need to be taken care of. To deal
with the training data insufficiency problem for
task-specific ranking, we propose to extract click-
through data and incorporate it with dedicated
training data to learn a dedicated model.

In order to incorporate click data to improve the
ranking for a dedicate query category, it is critical
to fully exploit click information. We empirically
explore the related approaches for the appropriate
click data exploitation in task-specific rank func-
tion learning. Figure 1 illustrates the procedures
and critical components to be studied.

1) Click data mining: the purpose is to extract
informative and reliable users’ preference infor-
mation from click log. We employ two promis-
ing approaches: one is heuristic rule approach, the
other is sequential supervised learning approach.

2) Sample selection and combination: with la-
beled training data and unlabeled click data, how
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Figure 1: Framework of incorporating click-
through data with training data to improve dedi-
cated model for task-specific ranking.

to select and combine them so that the samples
have the best utility for learning? As the data
distribution for a specific ranking task is differ-
ent from the generic data distribution, it is nat-
ural to select those labeled training samples and
unlabeled click preference pairs which belong to
this query category, so that the data distributions
of training set and testing set are consistent for
this category. On the other hand, we should keep
in mind that: a) non-dedicated data, i.e, the data
that does not belong the specific category, might
also have similar distribution as the dedicated data.
Such distribution similarity makes non-dedicated
data also useful for task-specific rank function
learning, especially for the scenario that dedicated
training samples is insufficient. b) The quality of
dedicated click data may be not as reliable as hu-
man labeled training data. In other words, there
are some extracted click preference pairs that are
inconsistent with human labeling while we regard
human labeling as correct labeling.

3) Rank function learning algorithm: we use
GBrank (Zheng et al., 2007) algorithm for rank
function learning, which has proved to be one
of the most effective up-to-date learning-to-rank
algorithms; furthermore, GBrank algorithm also
takes preference pairs as inputs, which will be il-
lustrated with more details in the paper.

2 Related work

Learning to rank has been a promising research
area which continuously improves web search rel-
evance (Burges et al., 2005) (Zha et al., 2006)

(Cao et al., 2007) (Freund et al., 1998) (Fried-
man, 2001) (Joachims, 2002) (Wang and Zhai,
2007) (Zheng et al., 2007). The ranking prob-
lem is usually formulated as learning a ranking
function from preference data. The basic idea
is to minimize the number of contradicted pairs
in the training data, and different algorithm cast
the preference learning problem from different
point of view, for example, RankSVM (Joachims,
2002) uses support vector machines; RankBoost
(Freund et al., 1998) applies the idea of boost-
ing from weak learners; GBrank (Zheng et al.,
2007) uses gradient boosting with decision tree;
RankNet (Burges et al., 2005) uses gradient boost-
ing with neural net-work. In (Zha et al., 2006),
query difference is taken into consideration for
learning effective retrieval function, which leads
to a multi-task learning problem using risk mini-
mization framework.

There are a few related works to apply multi-
ple ranking models for different query categories.
However, none of them takes click-through infor-
mation into consideration. In (Kang and Kim,
2003), queries are categorized into 3 types, infor-
mational, navigational and transactional, and dif-
ferent models are applied on each query category.

a KNN method is proposed to employ different
ranking models to handle different types of queries
(Geng et al., 2008). The KNN method is unsuper-
vised, and it targets to improve the overall ranking
instead of the rank-ing for a certain query cate-
gory. In addition, the KNN method requires all
feature vector to be the same.

Quite a few research papers explore how to ob-
tain useful information from click-through data,
which could benefit search relevance (Carterette
et al., 2008) (Fox et al., 2005) (Radlinski and
Joachims, 2007) (Wang and Zhai, 2007). The in-
formation can be expressed as pair-wise prefer-
ences (Chapelle and Zhang, 2009) (Ji et al., 2009)
(Radlinski et al., 2008), or represented as rank fea-
tures (Agichtein et al., 2006). Task-specific rank-
ing relies on the accuracy of query classification.
Query classification or query intention identifica-
tion has been extensively studied in (Beitzel et al.,
2007) (Lee et al., 2005) (Li et al., 2008) (Rose and
Levinson, 2004). How to combine editorial data
and click data is well discussed in (Chen et al.,
2008) (Zheng et al., 2007). In addition, how to use
click data to improve ranking are also exploited
in personalized or preference-based search (Coyle
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Table 1: Statistics of click occurrences for heuris-
tic rule approach.

imp impression, number of occurrence of the tuple

cc number of occurrence of the tuple where two

documents both get clicked

ncc number of occurrence of the tuple where url1
is not clicked but url2 is clicked

cnc number of occurrence of the tuple where url1
is clicked but url2 is not clicked

ncnc number of occurrence of the tuple where url1
and url2 are not clicked

and Smyth, 2007) (Glance, 2001) (R. Jin, 2008).

3 Technical approach

This section presents the related approaches in
Figure 1. In Section 4, we will make deeper anal-
ysis based on experimental results.

3.1 Click data mining

We use two approaches for click data mining,
whose outputs are preference pairs. A preference
pair is defined as a tuple {< xq, yq > |xq Â yq},
which means for the query q, the document xq is
more relevant than yq. We need to extract infor-
mative and reliable preference pairs which can be
used to improve rank function learning.

3.1.1 Heuristic rule approach
We use heuristic rules to extract skip-above pairs
and skip-next pairs, which are similar to Strategy
1 (click > skip above) and Strategy 5 (click > no-
click next) proposed in (Joachims et al., 2005). To
reduce the misleading effect of an individual click
behavior, click information from different query
sessions is aggregated before applying heuristic
rules. For a tuple (q, url1, url2, pos1, pos2) where
q is query, url1 and url2 are urls representing two
documents, pos1 and pos2 are ranking positions
for the two documents with pos1 ≺ pos2 mean-
ing url1 has higher rank than url2, the statistics for
this tuple are listed in Table 1.

Skip-above pair extraction: if ncc is much
larger than cnc, and cc

imp , ncnc
imp is much smaller

than 1, that means, when url1 is ranked higher than
url2 in query q, most users click url2 but not click
url1. In this case, we extract a skip-above pair, i.e.,
url2 is more relevant than url1. In order to have
highly accurate skip-above pairs, a set of thresh-

Table 2: Skip-above pairs count vs. human judge-
ments (e.g., the element in the third row and sec-
ond column means we have 40 skip-above pairs
with ”excellent” url1 and ”perfect” url2). P: per-
fect; E: excellent; G: good; F: fair; B: bad.

P E G F B
P 13 13 12 4 0
E 40 44 16 2 2
G 27 53 103 29 8
F 10 15 43 27 5
B 4 4 11 20 14

Table 3: Skip-next pairs vs. human judgements
(e.g., the element in the third row and second col-
umn means we have 10 skip-next pairs with ”ex-
cellent” url1 and ”perfect” url2 ). P: perfect; E:
excellent; G: good; F: fair; B: bad.

P E G F B
P 126 343 225 100 35
E 10 71 84 37 12
G 6 9 116 56 21
F 1 5 17 29 14
B 1 1 1 2 5

olds are applied to only extract the pairs that have
high impression and ncc is larger enough than cnc.

Skip-next pair extraction: if pos1 = pos2 − 1,
cnc is much larger than ncc, and cc

imp , ncnc
imp is much

smaller than 1, that means, in most of cases when
url2 is ranked just below url1 in query q, most
users click url1 but not click url2. In this case, we
regard this tuple as a skip-next pair.

To test the accuracy of preference pairs, we
ask editors to judge some randomly selected pairs
from skip-above pairs and skip-next pairs. Edi-
tors label each query-url pair using five grades ac-
cording to relevance: perfect, excellent, good, fair,
bad. Table 2 shows skip-above pair distribution.
The diagonal elements have high values, which
are for tied pairs labeled by editors but determined
as skip-above pairs from heuristic rules. Higher
values appear in the left-bottom triangle than in
the right-top triangle, because there are more skip-
above preferences agreed with editors than dis-
agreed with editors. Summing up the tied pairs,
agreed and disagreed pairs, 44% skip-above pref-
erence judgments agree with editors, 18% skip-
above preference judgments disagree with editors,
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and there are 38% skip-above pairs judged as tie
pairs by editors.

Table 3 shows skip-next pair distribution. Sum-
ming up the tied pairs, agreed and disagreed pairs,
70% skip-next preference judgments agree with
editors, 4% skip-next preference judgments dis-
agree with editors, and 26% skip-next pairs judged
as tie pairs by editors.

Therefore, skip-next pairs have much higher
accuracy than skip-above. That is because in a
search engine that already has a good ranking
function, it is much easier to find a correct skip-
next pairs which are consistent with the search en-
gine than to find a correct skip-above pairs which
are contradictory to the search engine. Skip-above
and skip-next preferences provide us two kinds of
users’s feedbacks which are complementary: skip-
above preferences provide us the feedback that the
user’s vote is contradictory to the current ranking,
which implies the current relative ranking should
be reversed; skip-next preferences shows that the
user’s vote is consistent with the current ranking,
which implies the current relative ranking should
be maintained with high confidence provided by
users’ vote.

3.1.2 Sequential supervised learning

The click modeling by sequential supervised
learning (SSL) was proposed in (Ji et al., 2009),
in which user’s sequential click information is
exploited to extract relevance information from
click-logs. This approach is reliable because 1)
the sequential click information embedded in an
aggregation of user clicks provides substantial rel-
evance information of the documents displayed in
the search results, and 2) the SSL is supervised
learning (i.e., human judgments are provided with
relevance labels for the training).

The SSL is formulated in the framework
of global ranking (Qin et al., 2008). Let
x(q) = {x(q)

1 , x
(q)
2 , . . . , x

(q)
n } represent the doc-

uments retrieved with a query q, and y(q) =
{y(q)

1 , y
(q)
2 , . . . , y

(q)
n } represent the relevance la-

bels assigned to the documents. Here n is the
number of documents retrieved with q. Without
loss of generality, we assume that n is fixed and
invariant with respect to different queries. The
SSL determines to find a function F in the form
of y(q) =F (x(q)) that takes all the documents as
its inputs, exploiting both local and global infor-
mation among the documents, and predict the rel-

evance labels of all the document jointly. This
is distinct to most of learning to rank methods
that optimize a ranking model defined on a sin-
gle document, i.e., in the form of y(q)

i =f(x(q)
i ),

∀ i = 1, 2, . . . , n. This formulation of the SSL
is important in extracting relevance information
from user click data since users’ click decisions
among different documents displayed in a search
session tend to rely not only on the relevance judg-
ment of a single document, but also on the relative
relevance comparison among the documents dis-
played; and the global ranking framework is well-
formulated to exploit both local and global infor-
mation from an aggregation of user clicks.

The SSL aggregates all the user sessions for
the same query into a tuple <query, n-document
list, and an aggregation of user clicks>. Fig-
ure 2 illustrates the process of feature extrac-
tion from an aggregated session, where x(q) =
{x(q)

1 , x
(q)
2 , . . . , x

(q)
n } denotes a sequence of fea-

ture vectors extracted from the aggregated ses-
sion, with x(q)

i representing the feature vector ex-
tracted for document i. Specifically, to form fea-
ture vector x(q)

i , first a feature vector x(q)
i,j is ex-

tracted from each user j’s click information, and
j ∈ {1, 2, . . . }, then x(q)

i is formed by averaging
over x(q)

i,j , ∀j ∈ {1, 2, . . . }, i.e., x(q)
i is actually an

aggregated feature vector for document i. Table
4 lists all the features used in the SSL modeling.
Note that some features are statistics independent
of temporal information of the clicks, such as “Po-
sition” and “Frequency”, while other features re-
ply on their surrounding documents and the click
sequences. We use 90,000 query-url pairs to train
the SSL model, and 10,000 query-url pairs for best
model selection.

With the sequential click modeling discussed
above, several sequential supervised algorithms,
including the conditional random fields (CRF)
(Lafferty et al., 2001), the sliding window method
and the recurrent sliding window method (Diet-
terich, 2002), are explored to find a global ranking
function F . We omit the details but refer one to
(Ji et al., 2009). The emphasis here is on the im-
portance to adapt these algorithms to the ranking
problem.

After training, the SSL model can be used to
predict the relevance labels of all the documents in
a new aggregated session, and thus pair-wise pref-
erence data can be extracted, with the score dif-
ference representing the confidence of preference
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Figure 2: An illustration of feature extraction for
an aggregated session for SSL approach. x(q) de-
notes an extracted sequence of feature vectors, and
y(q) denotes the corresponding label sequence that
is assigned by human judges for training.

Table 4: Click features used in SSL model.

Position Position of the document
in the result list

ClickRank Rank of 1st click of doc. in click seq.
Frequency Average number of clicks for this doc.
FrequencyRank Rank in the list sorted by num. of clicks
IsNextClicked 1 if next position is clicked, 0 otherwise
IsPreClicked 1 if previous position is clicked,

0 otherwise
IsAboveClicked 1 if there is a click above, 0 otherwise
IsBelowClicked 1 if there is a click below, 0 otherwise
ClickDuration Time spent on the document

prediction. For the reason of convenience, we also
call the preference pairs contradicting with pro-
duction ranking as skip-above pairs and those con-
sistent with production ranking as skip-next pairs,
so that we can analyze these two types of prefer-
ence pairs respectively.

3.2 Modeling algorithm

The basic idea of GBrank (Zheng et al., 2007)
is that if the ordering of a preference pair
by the ranking function is contradictory to this
preference, we need to modify the ranking
function along the direction by swapping this
prefence pair. Preferences pairs could be gen-
erated from labeled data, or could be extracted
from click data. For each preference pair <
x, y > in the available preference set S =
{< xi, yi > |xi Â yi, i = 1, 2, ..., N}, x should
be ranked higher than y. In GBrank algorithm, the
problem of learning ranking functions is to com-
pute a ranking function h , so that h matches the
set of preference, i.e, h(xi) ≥ h(yi) , if x Â y,

i = 1, 2, ..., N as many as possible. The following
loss function is used to measure the risk of a given
ranking function h.

R(h) =
1
2

N∑
i=1

(max{0, h(yi)−h(xi)+τ})2, (1)

where τ is the margin between the two documents
in the pair. To minimize the loss function, h(x) has
to be larger than h(y) with the margin τ , which can
be chosen as constant value, or as dynamic val-
ues varying with pairs. When pair-wise judgments
are extracted from editors’ labels with different
grades, pair-wise judgments can include grade dif-
ference, which can further be used as margin τ .
The GBrank algorithm is illustrated in Algorithm
1, and two parameters need to be determined: the
shrinkage factor η and the number of iteration.

Algorithm 1 GBrank algorithm.
Start with an initial guess h0, for m = 1, 2, ...
1. Construct a training set: for each< xi, yi >∈
S, derive (xi,max{0, hm−1(yi) − hm1(xi) +
τ}), and

(yi,−max{0, hm−1(yi)− hm1(xi) + τ}).
2. Fit hm by using a base regressor with the
above training set.
3. hm = hm−1+ηsmhm(x), where sm is found
by line search to minimize the object function,
η is shrinkage factor.

3.3 Sample selection and combination
We use a straightforward approach to learn rank-
ing model from the combined data, which is illus-
trated in Algorithm 2.

Algorithm 2 Learn ranking model by combining
editorial data and click preference pairs.

Input:
• Editorial absolute judgement data.
• Preference pairs from click data.
1. Extract preference pairs from labeled data
with absolute judgement.
2. Select and combine preference pairs from
click data and labeled data.
3. Learn GBrank model from the combined
preference pairs.

Absolute judgement on labeled data contains
(query, url) pairs with absolute grade values la-
beled by human. In Step 1, for each query with
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nq query-url pairs with corresponding grades, {<
query, urli, gradei > |i = 1, 2, . . . , nq}, its prefer-
ence pairs are extracted as
{< query, urli, urlj , gradei − gradej > |i, j =

1, 2, . . . , nq, i 6= j} .
When combining human-labeled pairs and click

preference pairs, we can give use different relative
weights for these two data sources. The loss func-
tion becomes

R(h) =
w

Nl

∑
i∈Labeled

(max{0, h(yi)− h(xi) + τ})2

1− w
Nc

∑
i∈Click

(max{0, h(yi)− h(xi) + τ})2,(2)

where w is used to control the relative weights be-
tween labeled training data and click data, Nl is
the number of training data pairs, and Nc is the
number of click pairs. The margin τ can be deter-
mined as grade difference for editor pairs, and be
a constant parameter for click pairs.

Step 2 is critical for the efficacy of the approach.
A few factors need to be considered:

1) data distribution: for the application of task-
specific ranking, our purpose is to improve ranking
for the queries belonging to this category. An im-
portant observation is that the relevance patterns
for the ranking within a specific category may
have some unique characteristics, which are differ-
ent from generic relevance ranking. Thus, it is rea-
sonable to consider only using dedicated labeled
training data and dedicated click preference data
for training. The reality is that dedicated training
data is usually insufficient, while it is possible that
non-dedicated data can also help the learning.

2) click pair quality: it is inevitable there exist
some incorrect pairs in the click preference pairs.
Such incorrect pairs may mislead the learning. So
overall, can the click preference pairs still help the
learning for task-specific ranking? By our study,
skip-above pairs usually contain more incorrect
pairs compared with skip-above pairs. Does this
mean skip-next pairs are always more helpful in
improving learning than skip-above pairs?

3) click pair utility: use labeled training data as
baseline, how much complimentary information
can click pairs bring? This is determined by the
methodology of click data mining approach.

While it is possible to achieve some learning
improvement for task-specific ranking by using
click pairs by a plausible method, we attempt to
empirically explore the above interweaving fac-

tors for deeper understanding, in order to apply the
most appropriate strategy to exploit click data on
real-world applications of task-specific ranking.

4 Experiments

4.1 Data set

Query category: in the experiments, we use long
query ranking as an example of task-specific rank-
ing, because it is commonly known that long query
ranking has some unique relevance patterns com-
pared with generic ranking. We define the long
queries as the queries containing at least three to-
kens. The techniques and analysis proposed in this
paper can be applied to other ranking tasks, such
as rankings for specific query segments like time-
sensitive queries, navigational queries, or rankings
for specific domains/contents like answers, blogs,
news, as long as the tasks have their own charac-
teristics of data distributions and discriminant rank
features.

Labeled training data: we do experiments
based on a data set for a commercial search en-
gine, for which there are 16,797 query-url pairs
(with 1,123 different queries) that have been la-
beled by editors. The proportion of long queries
is about 35% of all queries. The data distribution
of such long queries may be different from gen-
eral data distribution, as it will be validated in the
experiments below.

The human labeled data is randomly split into
two sets: training set (8,831 query-url pairs, 589
queries), and testing set (7,966 query-url pairs,
534 queries). The training set will be combined
with click preference pairs for rank function learn-
ing, and the testing set will be used to evaluate the
efficacy of the ranking function. In the training set,
there are 3,842 long query-url pairs (229 queries).
At testing stage, the learned rank functions are ap-
plied only to the long queries in the testing data,
as our concern in this paper is how to improve
task-specific ranking, i.e., long query ranking in
the experiment. In the testing data, there are 3,210
query-url pairs (193 queries) are long query data,
which will be used to test rank functions.

Click preference pairs: using the two ap-
proaches of heuristic rule approach and sequen-
tial supervised approach, we extract click prefence
pairs from the click log of the search engine. Each
approach yields both skip-next and skip-above
pairs, which are sorted by confidence descending
order respectively.
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Table 5: Use click data by heuristic rule approach
(Data Selection: ”N”: not use; ”D”: use dedicated
data; ”G”: use generic data. Data Source: ”T”:
training data; ”C”: click data)

(a) skip-next pairs
NT DT GT

NC n/a 0.7736 0.7813
DC 0.7822 0.7906 (1.2%) 0.7997(2.4%)
GC 0.7834 0.7908 (1.2%) 0.7950 (1.7%)

(b) skip-above pairs
NT DT GT

NC n/a 0.7736 0.7813
DC 0.6649 0.7676 (-1.6%) 0.7748 (-0.8%)
GC 0.6792 0.7656 (-2.0%) 0.7989 (2.2%)

4.2 Setup and measurements

We try different sample selection and combination
strategies to train rank functions using GBrank al-
gorithm. For the labeled training data, we either
use generic data or dedicated data. For the click
preference pairs, we also try these two options.
Furthermore, as more click preference pairs may
bring more useful information to help the learn-
ing while on the other hand, the more incorrect
pairs may be given so that they mislead the learn-
ing, we try different amounts of these prefence
pairs: 5,000, 10,000, 30,000, 50,000, 70,000 and
100,000 pairs.

We use NDCG to evaluate ranking model,
which is defined as

NDCGn = Zn
∑n

i=1
2r(i)−1
log(i+1)

where i is the position in the document list, r(i) is
the score of Document i, andZn is a normalization
factor, which is used to make the NDCG of ideal
list be 1.

4.3 Results

Table 5 and 6 show the NDCG5 results by using
heuristic rule approach and SSL approach respec-
tively. We do not present NDCG1 results due to
space limitation, but NDCG1 results have the sim-
ilar trends as NDCG5.

Baseline by training data: there are two base-
line functions by using training data sets 1) use
dedicated training data (DT), NDCG5 on the test-
ing set by the rank function is 0.7736; 2) use
generic training data (GT), NDCG5 is 0.7813. It
is reasonable that using generic training data is

Table 6: Use click data by SSL approach (Data
Selection: ”N”: not use; ”D”: use dedicated data;
”G”: use generic data. Data Source: ”T”: training
data; ”C”: click data)

(a) skip-next pairs
NT DT GT

NC n/a 0.7736 0.7813
DC 0.7752 0.7933 (1.5%) 0.7936 (1.5%)
GC 0.7624 0.7844 (0.4%) 0.7914 (1.2%)

(b) skip-above pairs
NT DT GT

NC n/a 0.7736 0.7813
DC 0.6756 0.7636 (-2.2%) 0.7784 (-0.3%)
GC 0.6860 0.7717 (-1.2%) 0.7774 (-0.5%)

better than only using dedicated training data, be-
cause the distributions of non-dedicated data and
dedicated data share some similarity. As the ded-
icated training data is insufficient, the adoption of
the extra non-dedicated data helps the learning.
We compare learning results with Baseline 2) (use
generic training data, the slot of NC + GT in the
tables), which is the higher baseline.

Baseline by click data: we then study the utili-
ties of click preference pairs by using them alone
for training without using labeled training data.
In Table 5 and 6, each of the NDCG5 results us-
ing click preference pairs is the highest NDCG5

value over the cases of using different amounts of
pairs (5000, 10,000, 30,000, 50,000, 70,000 and
100,000 pairs). The results regarding the pairs
amounts are illustrated in Figure 3, which will help
us to analyze the results more deeply.

If we only use click preference pairs for training
(the two table slots DC+NT and GC+NT, corre-
sponding to using dedicated click preference pairs
and generic click pairs respectively), the best case
is using skip-next pairs extracted by heuristic rule
approach (Table 5 (a) ). It is not surprising that
skip-next pairs outperform skip-above pairs be-
cause there are significantly lower percentage of
incorrect pairs in skip-next pairs compared with
skip-above pairs. It is a little bit surprising that
the case of DC+NT has no dominant advantage
over GC+NT as we expected. For example, in Ta-
ble 5 (a), the NDCG5 values (0.7822 and 0.7834)
are very close to each other. However, in Figure
3, we find that with the same amount of pairs,
when we use 30,000 or fewer pairs, using dedi-
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Figure 3: Incorporate different amounts of skip-
next pairs by heuristic rule approach with generic
training data.
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Figure 4: The effects of using different combin-
ing weights. Skip-next pairs by heuristic rule ap-
proach are combined with generic training data.

cated click pairs alone is always better than using
generic click pairs alone. With more click pairs
being used (> 30, 000), the noise rates become
higher in the pairs, which makes the distribution
factor less important.

Combine training data and click data: we
compare the four table slots, DC+DT, GC+DT,
DC+GT, GC+GT, in Table 5 and 6, and there are
quite a few interesting observations:

1) Skip-next vs. skip-above: overall, incorporat-
ing skip-next pairs with training data is better than
incorporating skip-above pairs, due to the reason
that there are more incorrect pairs in skip-above
pairs, which may mislead the learning. The only
exception is the slot GC+GT in Table 5 (b), whose
NDCG5 improvement is as high as 2.2%. We fur-

ther track this result, and find that this is the case
by using only 5,000 generic skip-above pairs. The
noise rate of these 5,000 pairs is low because they
have the highest pair extraction confidence values.
At the same time, these 5,000 pairs may provide
good complementary signals to the generic train-
ing data, so that the learning result is good. How-
ever, in general, skip-next pairs have better utilities
than skip-above pairs.

2) Dedicated training data vs. generic train-
ing data: using generic training data is gen-
erally better than only using dedicated training
data. If training data is insufficient, the extra
non-dedicated data provides useful information
for relevance pattern learning, and the distribu-
tion dissimilarity between dedicated data and non-
dedicated data is not the most important factor.

3) Dedicated click data vs. generic click data:
using dedicated click data is more effective than
using generic click data. From Figure 3, we ob-
serve that when 30,000 or fewer pairs are incorpo-
rated into training data, using dedicate click pairs
is always better than using generic click pairs.
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Figure 5: The effects of using different margin
values for click preference pairs. Skip-next pairs
by heuristic rule approach are incorporated with
generic training data.

4) Heuristic rule approach vs. SSL approach:
the preference pairs extracted by heuristic rule ap-
proach have better utilities than those extracted by
SSL approach.

5) GBrank parameters for combining training
data and click pairs: the relative weight w for
combining training data and click pairs in (2) may
also affect rank function learning. Figure 4 shows
the effects of using different combining weights,
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for which skip-next pairs by heuristic rule ap-
proach are combined with generic training data.
We observe that neither over-weighting training
data or over-weighting click pairs yields good re-
sults while the two data sources are best exploited
at certain weight values when there is good bal-
ance between them. Another concern is the ap-
propriate margin value τ for the click pairs in (2).
Figure 5 shows that τ = 1 consistently yields good
learning results, which suggests us that click pair
provides good information at τ = 1.

4.4 Discussions

we have defactorized the related approaches for
exploiting click data to improve task-specific rank
learning. The utility of click preference pairs de-
pends on the following factors:

1) Data distribution: if click pairs have good
quality, we should use dedicated click pairs in-
stead of generic click pairs, so that the samples
for training have similar distribution to the task of
task-specific ranking.

2) The amount of dedicated training data: the
more dedicated training data, the more reliable the
task-specific rank function is; thus, the less room
for learning improvement using click data. For the
case in the experiment that dedicated training is in-
sufficient, the non-dedicated training data can also
help the learning as non-dedicated training data
share relevance pattern similarity with the dedi-
cated data distribution.

3) The quality of click pairs: if we can extract
large amount of high-quality click pairs, the learn-
ing improvement will be significant. For example,
as shown in Figure 3, at the early stage with fewer
click pairs (5,000 and 10,000 pairs) being com-
bined with training data, the learning improvement
is best. With more click pairs are used, the noise
rate in the click pairs becomes higher so that the
learning misleading factor is more important than
information complementary factor. Thus, it is im-
portant to improve the reliability of the click pairs.

4) The utility of click pairs: by our study, the
quality of click pairs extracted by SSL approach
is comparable to those extracted by heuristic rule
approach. The possible reason that heuristic-rule-
based click pairs can bring more benefit is that
these pairs provide more complementary infor-
mation compared with SSL approach. As the
methodologies of these two click data extraction
approaches are totally different, in future we will

explore the concrete reason that causes such utility
difference.

5 Conclusions

By empirically exploring the related factors in
utilizing click-through data to improve dedicated
model learning for task-specific ranking, we have
better understood the principles of using click
preference pairs appropriately, which is impor-
tant for the real-world applications in commer-
cial search engines as using click data can sig-
nificantly save human labeling costs and makes
rank function learning more efficient. In the case
that dedicated training data is limited, while non-
dedicated training data is helpful, using dedicated
skip-next pairs is the most effective way to further
improve the learning. Heuristic rule approach pro-
vides more useful click pairs compared with se-
quential supervised learning approach. The qual-
ity of click pairs is critical for the efficacy of the
approach. Therefore, an interesting topic is how
to further reduce the inconsistency between skip-
above pairs and human labeling so that such data
may also be useful for task-specific ranking.

1094



References
E. Agichtein, E. Brill, and S. Dumais. 2006. Improv-

ing web search ranking by incorporating user behav-
ior information. Proc. of ACM SIGIR Conference.

S. M. Beitzel, E. C. Jensen, A. Chowdhury, and
O. Frieder. 2007. Varying approaches to topical
web query classification. Proceedings of ACM SI-
GIR conference.

C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. 2005.
Learning to rank using gradient descent. Proc. of
Intl. Conf. on Machine Learning.

Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. 2007.
Learning to rank: From pairwise approach to list-
wise. Proceedings of ICML conference.

B. Carterette, P. N. Bennett, D. M. Chickering, and S. T.
Dumais. 2008. Here or there: preference judgments
for relevance. Proc. of ECIR.

O. Chapelle and Y. Zhang. 2009. A dynamic bayesian
network click model for web search ranking. Pro-
ceedings of the 18th International World Wide Web
Conference.

K. Chen, Y. Zhang, Z. Zheng, H. Zha, and G. Sun.
2008. Adapting ranking functions to user prefer-
ence. ICDE Workshops, pages 580–587.

M. Coyle and B. Smyth. 2007. Supporting intelligent
web search. ACM Transaction Internet Tech., 7(4).

T. G. Dietterich. 2002. Machine learning for sequen-
tial data: a review. Lecture Notes in Computer Sci-
ence, (2396):15–30.

S. Fox, K. Karnawat, M. Mydland, S. Dumias, and
T. White. 2005. Evaluating implicit measures to
improve web search. ACM Trans. on Information
Systems, 23(2):147–168.

Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer.
1998. An efficient boosting algorithm for combin-
ing preferences. Proceedings of International Con-
ference on Machine Learning.

J. Friedman. 2001. Greedy function approximation: a
gradient boosting machine. Ann. Statist., 29:1189–
1232.

X. Geng, T. Liu, T. Qin, A. Arnold, H. Li, and H. Shum.
2008. Query dependent ranking with k nearest
neighbor. Proceedings of ACM SIGIR Conference.

N. S. Glance. 2001. Community search assistant. In-
telligent User Interfaces, pages 91–96.

S. Ji, K. Zhou, C. Liao, Z. Zheng, G. Xue, O. Chapelle,
G. Sun, and H. Zha. 2009. Global ranking by ex-
ploiting user clicks. In SIGIR’09, Boston, USA, July
19-23.

T. Joachims, L. Granka, B. Pan, and G Gay. 2005.
Accurately interpreting clickthough data as implicit
feedback. Proc. of ACM SIGIR Conference.

T. Joachims. 2002. Optimizing search engines using
clickthrough data. In Proceedings of the ACM Con-
ference on Knowledge Discovery and Data Mining
(KDD).

I. Kang and G. Kim. 2003. Query type classification
for web document retrieval. Proceedings of ACM
SIGIR Conference.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In ICML, pages
282–289.

U. Lee, Z. Liu, and J. Cho. 2005. Automatic identifi-
cation of user goals in web search. Proceedings of
International Conference on World Wide Web.

X. Li, Y.Y Wang, and A. Acero. 2008. Learning query
intent from regularized click graphs. Proceedings of
ACM SIGIR Conference.

T. Y Liu. 2008. Learning to rank for information re-
trieval. SIGIR tutorial.

T. Qin, T. Liu, X. Zhang, D. Wang, and H. Li. 2008.
Global ranking using continuous conditional ran-
dom fields. In NIPS.

H. Li R. Jin, H. Valizadegan. 2008. Ranking re-
finement and its application to information retrieval.
Proceedings of International Conference on World
Wide Web.

F. Radlinski and T. Joachims. 2007. Active exploration
for learning rankings from clickthrough data. Proc.
of ACM SIGKDD Conference.

F. Radlinski, M. Kurup, and T. Joachims. 2008. How
does clickthrough data reflect retrieval quality? Pro-
ceedings of ACM CIKM Conference.

D. E. Rose and D. Levinson. 2004. Understanding user
goals in web search. Proceedings of International
Conference on World Wide Web.

X. Wang and C. Zhai. 2007. Learn from web search
logs to organize search results. In Proceedings of
the 30th ACM SIGIR.

H. Zha, Z. Zheng, H. Fu, and G. Sun. 2006. Incor-
porating query difference for learning retrieval func-
tions in world wide web search. Proceedings of the
15th ACM Conference on Information and Knowl-
edge Management.

Z. Zheng, H. Zhang, T. Zhang, O. Chapelle, K. Chen,
and G. Sun. 2007. A general boosting method and
its application to learning ranking functions for web
search. NIPS.

1095



Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 1096–1104,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

The Feature Subspace Method for SMT System Combination 

 

Nan Duan
1
, Mu Li

2
, Tong Xiao

3
, Ming Zhou

2
 

  1
Tianjin University       

2
Microsoft Research Asia       

3
Northeastern University 

     Tianjin, China                    Beijing, China                     Shenyang, China 

{v-naduan,muli,v-toxiao,mingzhou}@microsoft.com 

 

 

Abstract 

Recently system combination has been shown 

to be an effective way to improve translation 

quality over single machine translation sys-

tems. In this paper, we present a simple and ef-

fective method to systematically derive an en-

semble of SMT systems from one baseline li-

near SMT model for use in system combina-

tion. Each system in the resulting ensemble is 

based on a feature set derived from the fea-

tures of the baseline model (typically a subset 

of it). We will discuss the principles to deter-

mine the feature sets for derived systems, and 

present in detail the system combination mod-

el used in our work. Evaluation is performed 

on the data sets for NIST 2004 and NIST 2005 

Chinese-to-English machine translation tasks. 

Experimental results show that our method can 

bring significant improvements to baseline 

systems with state-of-the-art performance. 

1 Introduction 

Research on Statistical Machine Translation 

(SMT) has shown substantial progress in recent 

years. Since the success of phrase-based methods 

(Och and Ney, 2004; Koehn, 2004), models 

based on formal syntax (Chiang, 2005) or lin-

guistic syntax (Liu et al., 2006; Marcu et al., 

2006) have also achieved state-of-the-art perfor-

mance. As a result of the increasing numbers of 

available machine translation systems, studies on 

system combination have been drawing more and 

more attention in SMT research. 

 There have been many successful attempts to 

combine outputs from multiple machine transla-

tion systems to further improve translation quali-

ty. A system combination model usually takes n-

best translations of single systems as input, and 

depending on the combination strategy, different 

methods can be used. Sentence-level combina-

tion methods directly select hypotheses from 

original outputs of single SMT systems (Sim et 

al., 2007; Hildebrand and Vogel, 2008), while 

phrase-level or word–level combination methods 

are more complicated and could produce new 

translations different from any translations in the 

input (Bangalore et al., 2001; Jayaraman and La-

vie, 2005; Matusov et al., 2006; Sim et al., 

2007). 

 Among all the factors contributing to the suc-

cess of system combination, there is no doubt 

that the availability of multiple machine transla-

tion systems is an indispensable premise. Al-

though various approaches to SMT system com-

bination have been explored, including enhanced 

combination model structure (Rosti et al., 2007), 

better word alignment between translations 

(Ayan et al., 2008; He et al., 2008) and improved 

confusion network construction (Rosti et al., 

2008), most previous work simply used the en-

semble of SMT systems based on different mod-

els and paradigms at hand and did not tackle the 

issue of how to obtain the ensemble in a prin-

cipled way. To our knowledge the only work 

discussed this problem is Macherey and Och 

(2007), in which they experimented with build-

ing different SMT systems by varying one or 

more sub-models (i.e. translation model or dis-

tortion model) of an existing SMT system, and 

observed that changes in early-stage model train-

ing introduced most diversities in translation 

outputs.  

In this paper, we address the problem of build-

ing an ensemble of diversified machine transla-

tion systems from a single translation engine for 

system combination. In particular, we propose a 

novel Feature Subspace method for the ensemble 

construction based on any baseline SMT model 

which can be formulated as a standard linear 

function. Each system within the ensemble is 

based on a group of features directly derived 

from the baseline model with minimal efforts 

(which is typically a subset of the features used 

in the baseline model), and the resulting system 

is optimized in the derived feature space accor-

dingly. 

We evaluated our method on the test sets for 

NIST 2004 and NIST 2005 Chinese-to-English 
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machine translation tasks using two baseline 

SMT systems with state-of-the-art performance. 

Experimental results show that the feature sub-

space method can bring significant improve-

ments to both baseline systems. 

The rest of the paper is organized as follows. 

The motivation of our work is described on Sec-

tion 2. In Section 3, we first give a detailed de-

scription about feature subspace method, includ-

ing the principle to select subspaces from all 

possible options, and then an n-gram consensus –

based sentence-level system combination method 

is presented. Experimental results are given in 

Section 4. Section 5 discusses some related is-

sues and concludes the paper. 

2 Motivation 

Our motivations for this work can be described 

in the following two aspects. 

The first aspect is related to the cost of build-

ing single systems for system combination. In 

previous work, the SMT systems used in combi-

nation differ mostly in two ways. One is the un-

derlying models adopted by individual systems. 

For example, using an ensemble of systems re-

spectively based on phrase-based models, hierar-

chical models or even syntax-based models is a 

common practice. The other is the methods used 

for feature function estimation such as using dif-

ferent word alignment models, language models 

or distortion models. For the first solution, build-

ing a new SMT system with different methodol-

ogy is by no means an easy task even for an ex-

perienced SMT researcher, because it requires 

not only considerable effects to develop but also 

plenty of time to accumulate enough experiences 

to fine tune the system. For the second alterna-

tive, usually it requires time-consuming re-

training for word alignment or language models. 

Also some of the feature tweaking in this solu-

tion is system or language specific, thus for any 

new systems or language pairs, human engineer-

ing has to be involved. For example, using dif-

ferent word segmentation methods for Chinese 

can generate different word alignment results, 

and based on which a new SMT system can be 

built. Although this may be useful to combina-

tion of Chinese-to-English translation, it is not 

applicable to most of other language pairs. 

Therefore it will be very helpful if there is a 

light-weight method that enables the SMT sys-

tem ensemble to be systematically constructed 

based on an existing SMT system. 

 

Source 

sentence 

中国 最大 规模 的 海水 淡化 

工程 落户 舟山 

Ref 

translation 

China's largest sea water desalini-

zation project settles in Zhoushan 

Default 

translation 

China 's largest desalination  

project in Zhoushan 

𝐹𝑆−𝑃𝐸𝐹  
translation 

China 's largest sea water  

desalination project in Zhoushan 

Table 1: An example of translations generated 

from the same decoder but with different feature 

settings. 

 Chinese English 𝑝 𝑒 𝑓  

1 海水 淡化 desalination 0.4000 

2 海水 sea water 0.1748 

3 淡化 desalination 0.0923 

Table 2: Parameters of related phrases for exam-

ples in Table 1. 

The second aspect motivating our work comes 

from the subspace learning method in machine 

learning literature (Ho, 1998), in which an en-

semble of classifiers are trained on subspaces of 

the full feature space, and final classification re-

sults are based on the vote of all classifiers in the 

ensemble. Lopez and Resnik (2006) also showed 

that feature engineering could be used to over-

come deficiencies of poor alignment. To illu-

strate the usefulness of feature subspace in the 

SMT task, we start with the example shown in 

Table 1. In the example, the Chinese source sen-

tence is translated with two settings of a hierar-

chical phrase-based system (Chiang, 2005). In 

the default setting all the features are used as 

usual in the decoder, and we find that the transla-

tion of the Chinese word 海水  (sea water) is 

missing in the output. This can be explained with 

the data shown in Table 2. Because of noises and 

word alignment errors in the parallel training 

data, the inaccurate translation phrase 

海水 淡化 ⇒ 𝑑𝑒𝑠𝑎𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛  is assigned with a 

high value of the phrase translation probability 

feature 𝑝(𝑒|𝑓). Although the correct translation 

can also be composed by two phrases 海水 ⇒

𝑠𝑒𝑎 𝑤𝑎𝑡𝑒𝑟 and 淡化 ⇒ 𝑑𝑒𝑠𝑎𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛, its over-

all translation score cannot beat the incorrect one 

because the combined phrase translation proba-

bility of these two phrases are much smaller 

than  𝑝(𝑑𝑒𝑠𝑎𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛|海水 淡化) . However, if 

we intentionally remove the 𝑝(𝑒|𝑓) feature from 

the model, the preferred translation can be gener-

ated as shown in the result of 𝐹𝑆−𝑃𝐸𝐹  because in 
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this way the bad estimation of 𝑝(𝑒|𝑓)  for this 

phrase is avoided. 

This example gives us the hint that building 

decoders based on subspaces of a standard model 

could help with working around some negative 

impacts of inaccurate estimations of feature val-

ues for some input sentences. The subspace-

based systems are expected to work similarly to 

statistical classifiers trained on subspaces of a 

full feature space – though the overall accuracy 

of baseline system might be better than any indi-

vidual systems, for a specific sentence some in-

dividual systems could generate better transla-

tions. It is expected that employing an ensemble 

of subspace-based systems and making use of 

consensus between them will outperform the 

baseline system. 

3 Feature Subspace Method for SMT 

System Ensemble Construction 

In this section, we will present in detail the me-

thod for systematically deriving SMT systems 

from a standard linear SMT model based on fea-

ture subspaces for system combination. 

3.1 SMT System Ensemble Generation 

Nowadays most of the state-of-the-art SMT sys-

tems are based on linear models as proposed in 

Och and Ney (2002). Let 𝑕𝑚 (𝑓, 𝑒) be a feature 

function, and 𝜆𝑚  be its weight, an SMT model 𝐷 

can be formally written as: 

𝑒∗ = argmax
𝑒

 𝜆𝑚𝑕𝑚 (𝑓, 𝑒)

𝑚

 (1) 

Noticing that Equation (1) is a general formu-

lation independent of any specific features, tech-

nically for any subset of features used in 𝐷 , a 

new SMT system can be constructed based on it, 

which we call a sub-system. 

Next we will use Ω to denote the full feature 

space defined by the entire set of features used 

in 𝐷, and 𝑠 ⊆ Ω is a feature subset that belongs 

to 𝜌(Ω), the power set of Ω. The derived sub-

system based on subset 𝑠 ⊆ Ω is denoted by 𝑑𝑠 . 

Although in theory we can use all the sub-

systems derived from every feature subset 

in 𝜌(Ω), it is still desirable to use only some of 

them in practice. The reasons for this are two-

fold. First, the number of possible sub-systems 

(2 Ω ) is exponential to the size of Ω. Even when 

the number of features in Ω is relatively small, 

i.e. 10, there will be up to 1024 sub-systems in 

total, which is a large number for combination 

task. Larger feature sets will make the system 

combination practically infeasible. Second, not 

every sub-system could contribute to the system 

combination. For example, feature subsets only 

containing very small number of features will 

lead to sub-systems with very poor performance; 

and the language model feature is too important 

to be ignored for a sub-system to achieve reason-

ably good performance. 

In our work, we only consider feature sub-

spaces with only one difference from the features 

in Ω. For each non- language model feature 𝑕𝑖 , a 

sub-system 𝑑𝑖  is built by removing 𝑕𝑖  from  Ω . 

Allowing for the importance of the language 

model (LM) feature to an SMT model, we do not 

remove any LM feature from any sub-system. 

Instead, we try to weaken the strength of a LM 

feature by lowering its n-gram order. For exam-

ple, if a 4-gram language model is used in the 

baseline system 𝐷, then a trigram model can be 

used in one sub-system, and a bigram model can 

be used in another. In this way more than one 

sub-system can be derived based on one LM fea-

ture. When varying a language model feature, the 

one-feature difference principle is still kept: if 

we lower the order of a language model feature, 

no other features are removed or changed.  

The remaining issue of using weakened LM 

features is that the resulting ensemble is no long-

er strictly based on subspace of Ω. However, this 

theoretical imperfection can be remedied by in-

troducing Ω′ , a super-space of Ω to include all 

lower-order LM features. In this way, an aug-

mented baseline system 𝐷′  can be built based 

on  Ω′ , and the baseline system 𝐷 itself can also 

be viewed as a sub-system of 𝐷′. We will show 

in the experimental section that 𝐷′  actually per-

forms even slightly better than the original base-

line system 𝐷, but results of sub-system combi-

nation are significantly better that both 𝐷 and 𝐷′ . 

After the sub-system ensemble is constructed, 

each sub-system tunes its feature weights inde-

pendently to optimize the evaluation metrics on 

the development set. 

Let 𝒟 = {𝑑1 , … , 𝑑𝑛} be the set of sub-systems 

obtained by either removing one non-LM feature 

or changing the order of a LM feature, and ℋ𝑖  be 

the n-best list produced by 𝑑𝑖 . Then ℋ(𝒟), the 

translation candidate pool to the system combi-

nation model can be written as: 

ℋ(𝒟) =  ℋ𝑖

𝑖

 (2) 

The advantage of this method is that it allows 

us to systematically build an ensemble of SMT 

systems at a very low cost. From the decoding 
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perspective, all the sub-systems share a common 

decoder, with minimal extensions to the baseline 

systems to support the use of specified subset of 

feature functions to compute the overall score for 

translation hypotheses. From the model training 

perspective, all the non-LM feature functions can 

be estimated once for all sub-systems. The only 

exception is the language model feature, which 

may be of different values across multiple sub-

systems. However, since lower-order models 

have already been contained in higher-order 

model for the purpose of smoothing in almost all 

statistical language model implementations, there 

is also no extra training cost. 

3.2 System Combination Scheme 

In our work, we use a sentence-level system 

combination model to select best translation hy-

pothesis from the candidate pool  ℋ(𝒟) . This 

method can also be viewed to be a hypotheses re-

ranking model since we only use the existing 

translations instead of performing decoding over 

a confusion network as done in the word-level 

combination method (Rosti et al., 2007). 

The score function in our combination model 

is formulated as follows: 

𝑒∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑒∈ℋ 𝒟 

𝜆𝐿𝑀𝑕𝐿𝑀 𝑒 + 𝜆𝑙𝐿 + 𝜓(𝑒, ℋ(𝒟)) 

(3) 

where 𝑕𝐿𝑀 𝑒  is the language model score for 𝑒, 

𝐿 is the length of 𝑒, and 𝜓(𝑒, ℋ(𝒟)) is a transla-

tion consensus –based scoring function. The 

computation of 𝜓(𝑒, ℋ(𝒟))  is further decom-

posed into weighted linear combination of a set 

of n-gram consensus –based features, which are 

defined in terms of the order of n-gram to be 

matched between current candidate and other 

translation in ℋ(𝒟). 

Given a translation candidate  𝑒 , the n-gram 

agreement feature between 𝑒  and other transla-

tions in the candidate pool is defined as: 

𝑕𝑛
+(𝑒, ℋ 𝒟 ) =  𝐺𝑛 𝑒, 𝑒 ′ 

𝑒 ′ ∈ℋ 𝒟 ,𝑒 ′≠𝑒

 (4) 

where the function  𝐺𝑛 𝑒, 𝑒 ′  counts the occur-

rences of n-grams of 𝑒 in 𝑒 ′ : 

𝐺𝑛 𝑒, 𝑒 ′ =  𝛿(𝑒𝑖
𝑖+𝑛−1, 𝑒 ′)

 𝑒 −𝑛+1

𝑖=1
 (5) 

    Here 𝛿(∙,∙)  is the indicator function - 

𝛿 𝑒𝑖
𝑖+𝑛−1 , 𝑒 ′  is 1 when the n-gram 𝑒𝑖

𝑖+𝑛−1  ap-

pears in 𝑒 ′ , otherwise it is 0. 

In order to give the combination model an op-

portunity to penalize long but inaccurate transla-

tions, we also introduce a set of n-gram disa-

greement features in the combination model: 

𝑕𝑛
−(𝑒, ℋ 𝒟 ) =  ( 𝑒 − 𝑛 + 1 − 𝐺𝑛(𝑒, 𝑒 ′))

𝑒 ′ ∈ℋ 𝒟 ,𝑒 ′≠𝑒

 

(6) 

Because each order of n-gram match introduc-

es two features, the total number of features in 

the combination model will be 2𝑚 + 2 if 𝑚 or-

ders of n-gram are to be matched in computing 

𝜓(𝑒, ℋ(𝒟)). Since we also adopt a linear scor-

ing function in Equation (3), the feature weights 

of our combination model can also be tuned on a 

development data set to optimize the specified 

evaluation metrics using the standard Minimum 

Error Rate Training (MERT) algorithm (Och 

2003). 

Our method is similar to the work proposed by 

Hildebrand and Vogel (2008). However, except 

the language model and translation length, we 

only use intra-hypothesis n-gram agreement fea-

tures as Hildebrand and Vogel did and use addi-

tional intra-hypothesis n-gram disagreement fea-

tures as Li et al. (2009) did in their co-decoding 

method. 

4 Experiments 

4.1 Data 

Experiments were conducted on the NIST evalu-

ation sets of 2004 (MT04) and 2005 (MT05) for 

Chinese-to-English translation tasks. Both corpo-

ra provide 4 reference translations per source 

sentence. Parameters were tuned with MERT 

algorithm (Och, 2003) on the NIST evaluation 

set of 2003 (MT03) for both the baseline systems 

and the system combination model. Translation 

performance was measured in terms of case-

insensitive NIST version of BLEU score which 

computes the brevity penalty using the shortest 

reference translation for each segment, and all 

the results will be reported in percentage num-

bers. Statistical significance is computed using 

the bootstrap re-sampling method proposed by 

Koehn (2004). Statistics of the data sets are 

summarized in Table 3. 

 

Data set #Sentences #Words 

MT03 (dev) 919 23,782 

MT04 (test) 1,788 47,762 

MT05 (test) 1,082 29,258 

Table 3: Data set statistics. 
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We use the parallel data available for the 

NIST 2008 constrained track of Chinese-to-

English machine translation task as bilingual 

training data, which contains 5.1M sentence 

pairs, 128M Chinese words and 147M English 

words after pre-processing. GIZA++ toolkit (Och 

and Ney, 2003) is used to perform word align-

ment in both directions with default settings, and 

the intersect-diag-grow method is used to gener-

ate symmetric word alignment refinement. The 

language model used for all systems is a 5-gram 

model trained with the English part of bilingual 

data and Xinhua portion of LDC English Giga-

word corpus version 3. In experiments, multiple 

language model features with the order ranging 

from 2 to 5 can be easily obtained from the 5-

gram one without retraining. 

4.2 System Description 

Theoretically our method is applicable to all li-

near model –based SMT systems. In our experi-

ments, two in-house developed systems are used 

to validate our method. The first one (SYS1) is a 

system based on the hierarchical phrase-based 

model as proposed in (Chiang, 2005). Phrasal 

rules are extracted from all bilingual sentence 

pairs, while hierarchical rules with variables are 

extracted from selected data sets including 

LDC2003E14, LDC2003E07, LDC2005T06 and 

LDC2005T10, which contain around 350,000 

sentence pairs, 8.8M Chinese words and 10.3M 

English words. The second one (SYS2) is a re-

implementation of a phrase-based decoder with 

lexicalized reordering model based on maximum 

entropy principle proposed by Xiong et al. 

(2006). All bilingual data are used to extract 

phrases up to length 3 on the source side. 

    In following experiments, we only consider 

removing common features shared by both base-

line systems for feature subspace generation. 

Rule penalty feature and lexicalized reordering 

feature, which are particular to SYS1 and SYS2, 

are not used. We list the features in consideration 

as follows: 

 PEF and PFE: phrase translation probabili-

ties 𝑝 𝑒 𝑓  and 𝑝 𝑓 𝑒  
 PEFLEX and PFELEX: lexical weights 

𝑝𝑙𝑒𝑥  𝑒 𝑓  and 𝑝𝑙𝑒𝑥  𝑓 𝑒  

 PP: phrase penalty 

 WP: word penalty 

 BLP: bi-lexicon pair counting how many 

entries of a conventional lexicon co-

occurring in a given translation pair 

 LM-n: language model with order n 

    Based on the principle described in Section 

3.1, we generate a number of feature subspaces 

for each baseline system as follows:  

 For non-LM features (PEF, PFE, PEFLEX, 

PFELEX, PP, WP and BLP), we remove one 

of them from the full feature space each 

time. Thus 7 feature subspaces are generated, 

which are denoted as  𝐹𝑆−𝑃𝐸𝐹 , 𝐹𝑆−𝑃𝐹𝐸 , 

𝐹𝑆−𝑃𝐸𝐹𝐿𝐸𝑋 , 𝐹𝑆−𝑃𝐹𝐸𝐿𝐸𝑋 , 𝐹𝑆−𝑃𝑃 , 𝐹𝑆−𝑊𝑃  and 

𝐹𝑆−𝐵𝐿𝑃  respectively. The 5-gram LM feature 

is used in each of them. 

 For LM features (LM-n), we change the or-

der from 2 to 5 with all the other non-LM 

features present. Thus 4 LM-related feature 

subspaces are generated, which are denoted 

as 𝐹𝑆𝐿𝑀−2, 𝐹𝑆𝐿𝑀−3 , 𝐹𝑆𝐿𝑀−4  and 𝐹𝑆𝐿𝑀−5 re-

spectively. 𝐹𝑆𝐿𝑀−5 is essentially the full fea-

ture space of  baseline system. 

   For each baseline system, we construct a total 

of 11 sub-systems by using above feature sub-

spaces. The baseline system is also contained 

within them because of using 𝐹𝑆𝐿𝑀−5. We call 

all sub-systems are non-baseline sub-systems 

except the one derived by using 𝐹𝑆𝐿𝑀−5. 

    By default, the beam size of 60 is used for all 

systems in our experiments. The size of n-best 

list is set to 20 for each sub-system, and for base-

line systems, this size is set to 220, which equals 

to the size of the combined n-best list generated 

by total 11 sub-systems. The order of n-gram 

agreement and disagreement features used in 

sentence-level combination model ranges from 

unigram to 4-gram. 

4.3 Evaluation of Oracle Translations 

We first evaluate the oracle performance on the 

n-best lists of baseline systems and on the com-

bined n-best lists of sub-systems generated from 

each baseline system. 

The oracle translations are obtained by using 

the metric of sentence-level BLEU score (Ye et 

al., 2007). Table 4 shows the evaluation results, 

in which Baseline stands for baseline system 

with a 5-gram LM feature, and FS stands for 11 

sub-systems derived from the baseline system.  

 

 SYS1 SYS2 

 BLEU/TER BLEU/TER 

MT04 
Baseline  49.68/0.6411 49.50/0.6349 

FS 51.05/0.6089 50.53/0.6056 

MT05 
Baseline 48.89/0.5946 48.37/0.5944 

FS 50.69/0.5695 49.81/0.5684 

Table 4: Oracle BLEU and TER scores on base-

line systems and their generated sub-systems. 
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For both SYS1 and SYS2, feature subspace 

method achieves higher oracle BLEU and lower 

TER scores on both MT04 and MT05 test sets, 

which gives the feature subspace method more 

potential to achieve higher performance than the 

baseline systems. 

We then investigate the ratio of translation 

candidates in the combined n-best lists of non-

baseline sub-systems that are not included in the 

baseline’s n-best list. Table 5 shows the statistics. 

 

 MT04 MT05 

SYS1 69.71% 69.69% 

SYS2 59.07% 58.54% 

Table 5: Ratio of unique translation candidates 

from non-baseline sub-systems. 

From Table 5 we can see that only less than 

half of the translation candidates of sub-systems 

overlap with those the of baseline systems. This 

result, together with the oracle BLEU and TER 

score estimation, helps eliminate the concern that 

no diversities or better translation candidates can 

be obtained by using sub-systems. 

4.4 Feature Subspace Method on Single 

SMT System 

Next we validate the effect of feature subspace 

method on single SMT systems. 

Figure 1 shows the evaluation results of dif-

ferent systems on the MT05 test set. From the 

figure we can see that the overall accuracy of 

baseline systems is better than any of their de-

rived sub-systems, and except the sub-system 

derived by using 𝐹𝑆𝐿𝑀−2, the performance of all 

the systems are fairly similar. 

 

 

Figure 1: Performances of different systems. 

We then evaluate the system combination me-

thod proposed in Section 3.2 with all the sub-

systems for each baseline system. Table 6 shows 

the results on both MT04 and MT05 data sets, in 

which FS-Comb denotes the system combination 

using 11 sub-systems.  

From Table 6 we can see that by using FS-

Comb we obtain about 1.1~1.3 points of BLEU 

gains over baseline systems. We also include in 

Table 6 the results for Baseline+mLM, which 

stands for the augmented baseline system as de-

scribed in Section 3.1 using a bunch of LM fea-

tures from bigram to 5-gram. It can be seen that 

both augmented baseline systems outperform 

their corresponding baseline systems slightly but 

consistently on both data sets. 

 

 MT04 MT05 

SYS1 

Baseline 39.07 38.72 

Baseline+mLM 39.34+ 39.14+ 

FS-Comb 40.43++ 39.79++ 

SYS2 

Baseline 38.84 38.30 

Baseline+mLM 38.95* 38.63+ 

FS-Comb 39.92++ 39.49++ 

Table 6: Translation results of Baseline, Base-

line+mLM and FS-Comb (+: significant better 

than baseline system with 𝑝 < 0.05; ++: signifi-

cant better than baseline system with 𝑝 < 0.01; *: 

no significant improvement). 

We also investigate the results when we in-

crementally add the n-best list of each sub-

system into a candidate pool to see the effects 

when different numbers of sub-systems are used 

in combination. In order to decide the sequence 

of sub-systems to add, we first evaluate the per-

formance of pair-wise combinations between 

each sub-system and its baseline system on the 

development set. That is, for each sub-system, 

we combine its n-best list with the n-best list of 

its baseline system and perform system combina-

tion for MT03 data set. Then we rank the sub-

systems by the pair-wise combination perfor-

mance from high to low, and use this ranking as 

the sequence to add n-best lists of sub-systems. 

Each time when a new n-best list is added, the 

combination performance based on the enlarged 

candidate pool is evaluated. Figure 2 shows the 

results on both MT04 and MT05 test sets, in 

which SYS1-fs and SYS2-fs denote the sub-

systems derived from SYS1 and SYS2 respec-

tively, and X-axis is the number of sub-systems 

used for combination each time and Y-axis is the 

BLEU score. From the figure we can see that 

although in some cases the performance slightly 

drops when a new sub-system is added, generally 

using more sub-systems always leads to better 

results.  

31
32
33
34
35
36
37
38
39

SYS1 SYS2

Baseline
FS-PEF
FS-PFE
FS-PEFLEX
FS-PFELEX
FS-PP
FS-WP
FS-BLP
FS-LM-2
FS-LM-3
FS-LM-4
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Next we examine the performance of baseline 

systems when different beam sizes are used in 

decoding. The results on MT05 test set are 

shown in Figure3, where X-axis is the beam size. 

In Figure 3, SYS1+mLM and SYS2+mLM de-

note augmented baseline systems of SYS1 and 

SYS2 with multiple LM features. 

From Figure 3 we can see that augmented 

baseline systems (with multiple LM features) 

outperform the baseline systems (with only one 

LM feature) for all beam sizes ranging from 20 

to 220. In this experiment we did not observe any 

significant performance improvements when us-

ing larger beam sizes than the default setting, but 

using more sub-systems in combination almost 

always bring improvements. 

 

 

Figure 2: Performances on different numbers of 

sub-systems.  

 

Figure 3: Performances on different beam sizes. 

 MT04 MT05 

SYS1-fs 44.63% 46.12% 

SYS2-fs 47.54% 44.73% 

Table 7: Ratio of final translations coming from 

non-baseline sub-systems. 

Finally, we investigate the ratio of final trans-

lations coming from the n-best lists of non-

baseline sub-systems only. Table 7 shows the 

results on both MT04 and MT05 test sets, which 

indicate that almost half of the final translations 

are contributed by the non-baseline sub-systems. 

4.5 The Impact of n-best List Size 

In order to find the optimal size of n-best list for 

combination, we compare the combination re-

sults of using list sizes from 10-best up to 500-

best for each sub-system. 

In this experiment, system combination was 

performed on the combined n-best list from total 

11 sub-systems with different list size each time. 

Figure 4 shows the results on the MT03 dev set 

and the MT04 and MT05 test sets for both SYS1 

and SYS2. X-axis is the n-best list size of each 

sub-system. 

 

 

Figure 4: Performances on different n-best sizes. 

    We can see from the figure that for all data 

sets the optimal n-best list size is around 50, but 

the improvements are not significant over the 

results when 20-best translations are used. The 

reason for the small optimal n-best list size could 

be that the low-rank hypotheses might introduce 

more noises into the combined translation candi-

date pool for sentence-level combination (Hasan 

et al., 2007; Hildebrand and Vogel, 2008).  

4.6 Feature Subspace Method on Multiple 

SMT Systems 

In the last experiment, we investigate the effect 

of feature subspace method when multiple SMT 

systems are used in system combination.  

Evaluation results are reported in Table 8. The 

system combination method described in Section 

3.2 is used to combine outputs from two baseline 

systems (with only one 5-gram LM feature) and 

sub-systems generated from both baseline sys-

tems (22 in total), with their results denoted as 

Baseline Comb (both) and FS Comb (both) re-

spectively. We also include the combination re-

sults of sub-systems based on one baseline sys-

tem for reference in the table. 
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On both MT04 and MT05 test sets, the results 

of system combination based on sub-systems are 

significantly better than those of baseline sys-

tems, which show that our method can also help 

with system combination when more than one 

system are used. We can also see that using mul-

tiple systems based on different SMT models and 

using our subspace based method can help each 

other: the best performance can only be achieved 

when both are employed. 

 

 MT04 MT05 

Baseline Comb (both) 39.98 39.43 

FS-Comb (SYS1) 40.43 39.79 

FS-Comb (SYS2) 39.92 39.49 

FS Comb (both) 40.96 40.38 

Table 8: Performances of sentence-level combi-

nation on multiple SMT systems. 

5 Conclusion 

In this paper, we have presented a novel and ef-

fective Feature Subspace method for the con-

struction of an ensemble of machine translation 

systems based on a baseline SMT model which 

can be formulated as a standard linear function. 

Each system within the ensemble is based on a 

subset of features derived from the baseline 

model, and the resulting ensemble can be used in 

system combination to improve translation quali-

ty. Experimental results on NIST Chinese-to-

English translation tasks show that our method 

can bring significant improvements to two base-

line systems with state-of-the-art performance, 

and it is expected that our method can be em-

ployed to improve any linear model -based SMT 

systems. There is still much room for improve-

ments in the current work. For example, we still 

use a simple one-feature difference principle for 

feature subspace generation. In the future, we 

will explore more possibilities for feature sub-

spaces selection and experiment with our method 

in a word-level system combination model. 
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Abstract

Current system combination methods usu-
ally use confusion networks to find consensus
translations among different systems. Requir-
ing one-to-one mappings between the words
in candidate translations, confusion networks
have difficulty in handling more general situa-
tions in which several words are connected to
another several words. Instead, we propose a
lattice-based system combination model that
allows for such phrase alignments and uses
lattices to encode all candidate translations.
Experiments show that our approach achieves
significant improvements over the state-of-
the-art baseline system on Chinese-to-English
translation test sets.

1 Introduction

System combination aims to find consensus transla-
tions among different machine translation systems.
It has been proven that such consensus translations
are usually better than the output of individual sys-
tems (Frederking and Nirenburg, 1994).

In recent several years, the system combination
methods based on confusion networks developed
rapidly (Bangalore et al., 2001; Matusov et al., 2006;
Sim et al., 2007; Rosti et al., 2007a; Rosti et al.,
2007b; Rosti et al., 2008; He et al., 2008), which
show state-of-the-art performance in benchmarks. A
confusion network consists of a sequence of sets of
candidate words. Each candidate word is associated
with a score. The optimal consensus translation can
be obtained by selecting one word from each set to
maximizing the overall score.

To construct a confusion network, one first need
to choose one of the hypotheses (i.e., candidate
translations) as the backbone (also called “skeleton”
in the literature) and then decide the word align-
ments of other hypotheses to the backbone. Hy-
pothesis alignment plays a crucial role in confusion-
network-based system combination because it has a
direct effect on selecting consensus translations.

However, a confusion network is restricted in
such a way that only 1-to-1 mappings are allowed
in hypothesis alignment. This is not the fact even
for word alignments between the same languages. It
is more common that several words are connected
to another several words. For example, “be capa-
ble of” and “be able to” have the same meaning.
Although confusion-network-based approaches re-
sort to inserting null words to alleviate this problem,
they face the risk of producing degenerate transla-
tions such as “be capable to” and “be able of”.

In this paper, we propose a new system combina-
tion method based on lattices. As a more general
form of confusion network, a lattice is capable of
describing arbitrary mappings in hypothesis align-
ment. In a lattice, each edge is associated with a
sequence of words rather than a single word. There-
fore, we select phrases instead of words in each
candidate set and minimize the chance to produce
unexpected translations such as “be capable to”.
We compared our approach with the state-of-the-art
confusion-network-based system (He et al., 2008)
and achieved a significant absolute improvement of
1.23 BLEU points on the NIST 2005 Chinese-to-
English test set and 0.93 BLEU point on the NIST
2008 Chinese-to-English test set.
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He feels likeapples

He prefer apples

He feels likeapples

He is fond of apples

(a) unidirectional alignments

He feels likeapples

He prefer apples

He feels likeapples

He is fond of apples

(b) bidirectional alignments

He feels like ε apples
ε prefer of

is fond

(c) confusion network

he feels like apples
ε prefer

is fond of

(d) lattice

Figure 1: Comparison of a confusion network and a lat-
tice.

2 Background

2.1 Confusion Network and Lattice

We use an example shown in Figure 1 to illustrate
our idea. Suppose that there are three hypotheses:

He feels like apples
He prefer apples
He is fond of apples

We choose the first sentence as the backbone.
Then, we perform hypothesis alignment to build a
confusion network, as shown in Figure 1(a). Note
that although “feels like” has the same meaning with
“ is fond of”, a confusion network only allows for
one-to-one mappings. In the confusion network
shown in Figure 1(c), several null wordsε are in-
serted to ensure that each hypothesis has the same
length. As each edge in the confusion network only
has a single word, it is possible to produce inappro-
priate translations such as “He is like of apples”.

In contrast, we allow many-to-many mappings
in the hypothesis alignment shown in Figure 2(b).
For example, “like” is aligned to three words: “is”,
“ fond”, and “of”. Then, we use a lattice shown in
Figure 1(d) to represent all possible candidate trans-

lations. Note that the phrase “is fond of” is attached
to an edge. Now, it is unlikely to obtain a translation
like “He is like of apples”.

A lattice G = 〈V,E〉 is a directed acyclic graph,
formally a weighted finite state automation (FSA),
whereV is the set of nodes andE is the set of edges.
The nodes in a lattice are usually labeled according
to an appropriate numbering to reflect how to pro-
duce a translation. Each edge in a lattice is attached
with a sequence of words as well as the associated
probability.

As lattice is a more general form of confusion
network (Dyer et al., 2008), we expect that replac-
ing confusion networks with lattices will further im-
prove system combination.

2.2 IHMM-based Alignment Method

Since the candidate hypotheses are aligned us-
ing Indirect-HMM-based (IHMM-based) alignment
method (He et al., 2008) in both direction, we briefly
review the IHMM-based alignment method first.
Take the direction that the hypothesis is aligned to
the backbone as an example. The conditional prob-
ability that the hypothesis is generated by the back-
bone is given by

p(e′1
J |eI

1) =
∑
aJ
1

J∏
j=1

[p(aj |aj−1, I)p(e′j |eaj )]l (1)

Where eI
1 = (e1, ..., eI) is the backbone,e′J1 =

(e′1, ..., e′J) is a hypothesis aligned toeI
1, andaJ

1 =
(a1, .., aJ ) is the alignment that specifies the posi-
tion of backbone word that each hypothesis word is
aligned to.

The translation probabilityp(e′j |ei) is a linear in-
terpolation of semantic similaritypsem(e′j |ei) and
surface similaritypsur(e′j |ei) andα is the interpo-
lation factor:

p(e′j |ei) = α·psem(e′j |ei)+(1−α)·psur(e′j |ei) (2)

The semantic similarity model is derived by using
the source word sequence as a hidden layer, so the
bilingual dictionary is necessary. The semantic sim-
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ilarity model is given by

psem(e′j |ei) =
K∑

k=0

p(fk|ei)p(e′j |fk, ei)

≈
K∑

k=0

p(fk|ei)p(e′j |fk)

(3)

The surface similarity model is estimated by calcu-
lating the literal matching rate:

psur(e′j |ei) = exp{ρ · [s(e′j , ei)− 1]} (4)

wheres(e′j , ei) is given by

s(e′j, ei) =
M(e′j , ei)

max(|e′j |, |ei|) (5)

whereM(e′j , ei) is the length of the longest matched
prefix (LMP) andρ is a smoothing factor that speci-
fies the mapping.

The distortion probabilityp(aj = i|aj−1 = i′, I)
is estimated by only considering the jump distance:

p(i|i′, I) =
c(i− i′)∑I
i=1 c(l − i′)

(6)

The distortion parametersc(d) are grouped into 11
buckets,c(≤ −4), c(−3), ...,c(0), ...,c(5), c(≥ 6).
Since the alignments are in the same language, the
distortion model favor monotonic alignments and
penalize non-monotonic alignments. It is given in
a intuitive way

c(d) = (1 + |d− 1|)−K , d = −4, ..., 6 (7)

whereK is tuned on held-out data.
Also the probabilityp0 of jumping to anull word

state is tuned on held-out data. So the overall distor-
tion model becomes

p(i|i′, I) =

{
p0 if i = null state

(1− p0) · p(i|i′, I) otherwise

3 Lattice-based System Combination
Model

Lattice-based system combination involves the fol-
lowing steps:

(1) Collect the hypotheses from the candidate sys-
tems.

(2) Choose the backbone from the hypotheses.
This is performed using a sentence-level Minimum
Bayes Risk (MBR) method. The hypothesis with the
minimum cost of edits against all hypotheses is se-
lected. The backbone is significant for it influences
not only the word order, but also the following align-
ments. The backbone is selected as follows:

EB = argmin
E′∈E

∑
E∈E

TER(E′, E) (8)

(3) Get the alignments of the backbone and hy-
pothesis pairs. First, each pair is aligned in both di-
rections using the IHMM-based alignment method.
In the IHMM alignment model, bilingual dictionar-
ies in both directions are indispensable. Then, we
apply a grow-diag-final algorithm which is widely
used in bilingual phrase extraction (Koehn et al.,
2003) to monolingual alignments. The bidirec-
tional alignments are combined to one resorting to
the grow-diag-final algorithm, allowingn-to-n map-
pings.

(4)Normalize the alignment pairs. The word or-
der of the backbone determines the word order of
consensus outputs, so the word order of hypotheses
must be consistent with that of the backbone. All
words of a hypotheses are reordered according to
the alignment to the backbone. For a word aligned
to null, an actualnull word may be inserted to the
proper position. Thealignment units are extracted
first and then the hypothesis words in each unit are
shifted as a whole.

(5) Construct the lattice in the light of phrase
pairs extracted on the normalized alignment pairs.
The expression ability of the lattice depends on the
phrase pairs.

(6) Decode the lattice using a model similar to the
log-linear model.

The confusion-network-based system combina-
tion model goes in a similar way. The first two steps
are the same as the lattice-based model. The differ-
ence is that the hypothesis pairs are aligned just in
one direction due to the expression limit of the con-
fusion network. As a result, the normalized align-
ments only contain1-to-1 mappings (Actualnull
words are also needed in the case of null alignment).
In the following, we will give more details about the
steps which are different in the two models.
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4 Lattice Construction

Unlike a confusion network that operates words
only, a lattice allows for phrase pairs. So phrase
pairs must be extracted before constructing a lat-
tice. A major difficulty in extracting phrase pairs
is that the word order of hypotheses is not consistent
with that of the backbone. As a result, hypothesis
words belonging to a phrase pair may be discon-
tinuous. Before phrase pairs are extracted, the hy-
pothesis words should be normalized to make sure
the words in a phrase pair is continuous. We call a
phrase pair before normalization aalignment unit.

The problem mentioned above is shown in Fig-
ure 2. In Figure 2 (a), although (e′1e′3, e2) should be
a phrase pair, but/e′10 and/e′30 are discontin-
uous, so the phrase pair can not be extracted. Only
after the words of the hypothesis are reordered ac-
cording to the corresponding words in the backbone
as shown in Figure 2 (b),/e′10 and/e′30 be-
come continuous and the phrase pair (e′1e

′
3, e2) can

be extracted. The procedure of reordering is called
alignment normalization

Eh: e′1 e′2 e′3

EB : e1 e2 e3

(a)

Eh: e′2 e′1 e′3

EB : e1 e2 e3

(b)

Figure 2: An example of alignment units

4.1 Alignment Normalization

After the final alignments are generated in the grow-
diag-final algorithm,minimum alignment units are
extracted. The hypothesis words of an alignment
unit are packed as a whole in shift operations.

See the example in Figure 2 (a) first. All mini-
mum alignment units are as follows: (e′2, e1), (e′1e′3,
e2) and (ε, e3). (e′1e′2e′3, e1e2) is an alignment unit,
but not a minimum alignment unit.

Let āi = (ē′i, ēi) denote a minimum alignment
unit, and assume that the word stringē′i covers words
e′i1 ,..., e′im on the hypothesis side, and the word
string ēi covers the consecutive wordsei1 ,...,ein on
the backbone side. In an alignment unit, the word
string on the hypothesis side can be discontinuous.
The minimum unitāi = (ē′i, ēi) must observe the
following rules:

EB: e1 e2 e3

Eh : e′1 e′2 (a)

e1 e2 e3

e′2 ε e′1

EB: e1 e2

Eh : e′1 e′2 e′3

e1 e2

e′1e
′
3

e′1e
′
2e
′
3

(b)

EB: e1 e2

Eh : e′1 e′2 e′3

e1 ε e2

e′1 e′2 e′3

(c)

Figure 3: Different cases ofnull insertion

• ∀ e′ik ∈ ē′i, ea′
ik
∈ ēi

• ∀ eik ∈ ēi, e′aik
= null or e′aik

∈ ē′i

• ∄ āj = (ē′j , ēj), ēj = ei1 , ..., eik or ēj =
eik , ..., ein , k ∈ [1, n]

Wherea′ik denotes the position of the word in the
backbone thate′ik is aligned to, andaik denotes the
position of the word in the hypothesis thateik is
aligned to.

An actualnull word may be inserted to a proper
position if a word, either from the hypothesis or from
the backbone, is aligned tonull. In this way, the
minimum alignment set is extended to an alignment
unit set, which includes not only minimum align-
ment units but also alignment units which are gener-
ated by addingnull words to minimum alignment
units. In general, the following three conditions
should be taken into consideration:

• A backbone word is aligned tonull. A null
word is inserted to the hypothesis as shown in
Figure 3 (a).

• A hypothesis word is aligned tonull and it is
between the span of a minimum alignment unit.
A new alignment unit is generated by insert-
ing the hypothesis word aligned to null to the
minimum alignment unit. The new hypothesis
string must remain the original word order of
the hypothesis. It is illustrated in Figure 3 (b).

• A hypothesis word is aligned tonull and it is
not between the hypothesis span of any mini-
mum alignment unit. In this case, anull word
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e1 e2 ε e3

ē′4 ē′5 ē′6

(a)

e1 ε e2 e3

ē′1 ē′2 ē′3

(b)

e1 ε e2 e3

ē′1 ē′2 ē′3

ē′4
(c)

e1 ε e2 ε e3

ē′1 ē′2
ē′3

ē′4 ē′5

(d)

e1 ε e2 ε e3

ē′1 ē′2
ē′3

ē′4 ē′5 ē′6

(e)

Figure 4: A toy instance of lattice construction

are inserted to the backbone. This is shown in
Figure 3 (c).

4.2 Lattice Construction Algorithm

The lattice is constructed by adding the normalized
alignment pairs incrementally. One backbone arc in
a lattice can only span one backbone word. In con-
trast, all hypothesis words in an alignment unit must
be packed into one hypothesis arc. First the lattice is
initialized with a normalized alignment pair. Then
given all other alignment pairs one by one, the lat-
tice is modified dynamically by adding the hypothe-
sis words of an alignment pair in a left-to-right fash-
ion.

A toy instance is given in Figure 4 to illustrate the
procedure of lattice construction. Assume the cur-
rent inputs are: an alignment pair as in Figure 4 (a),
and a lattice as in Figure 4 (b). The backbone words
of the alignment pair are compared to the backbone
words of the lattice one by one. The procedure is as
follows:

• e1 is compared withe1. Since they are the
same, the hypothesis arcē′4, which comes from
the same node withe1 in the alignment pair,
is compared with the hypothesis arcē′1, which
comes from the same node withe1 in the lat-
tice. The two hypothesis arcs are not the same,
so ē′4 is added to the lattice as shown in Figure
4(c). Both go to the next backbone words.

• e2 is compared withε. The lattice remains the
same. The lattice goes to the next backbone
worde2.

• e2 is compared withe2. There is no hypothesis
arc coming from the same node with the bone
arc e2 in the alignment pair, so the lattice re-
mains the same. Both go to the next backbone
words.

• ε is compared withe3. A null backbone arc is
inserted into the lattice betweene2 ande3. The
hypothesis arc̄e′5 is inserted to the lattice, too.
The modified lattice is shown in Figure 4(d).
The alignment pair goes to the next backbone
worde3.

• e3 is compared withe3. For they are the same
and there is no hypothesis arcē′6 in the lattice,
ē′6 is inserted to the lattice as in Figure 4(e).

• Both arrive at the end and it is the turn of the
next alignment pair.

When comparing a backbone word of the given
alignment pair with a backbone word of the lattice,
the following three cases should be handled:

• The current backbone word of the given align-
ment pair is anull word while the current back-
bone word of the lattice is not. Anull back-
bone word is inserted to the lattice.

• The current backbone word of the lattice is a
null word while the current word of the given
alignment pair is not. The currentnull back-
bone word of the lattice is skipped with nothing
to do. The next backbone word of the lattice is
compared with the current backbone word of
the given alignment pair.
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Algorithm 1 Lattice construction algorithm.
1: Input : alignment pairs{pn}Nn=1

2: L← p1

3: Unique(L)
4: for n← 2 .. N do
5: pnode = pn · first
6: lnode = L · first
7: while pnode · barcnext 6= NULL do
8: if lnode · barcnext = NULL or pnode ·

bword = null and lnode · bword 6= null then
9: INSERTBARC(lnode, null)

10: pnode = pnode · barcnext
11: else
12: if pnode · bword 6= null and lnode ·

bword = null then
13: lnode = lnode · barcnext
14: else
15: for eachharc of pnode do
16: if NotExist(lnode, pnode · harc)

then
17: INSERTHARC(lnode, pnode ·

harc)
18: pnode = pnode · barcnext
19: lnode = lnode · barcnext
20: Output: latticeL

• The current backbone words of the given align-
ment pair and the lattice are the same. Let
{harcl} denotes the set of hypothesis arcs,
which come from the same node with the cur-
rent backbone arc in the lattice, andharch de-
notes one of the corresponding hypothesis arcs
in the given alignment pair. In the{harcl},
if there is no arc which is the same with the
harch, a hypothesis arc projecting toharch is
added to the lattice.

The algorithm of constructing a lattice is illus-
trated in Algorithm 1. The backbone words of the
alignment pair and the lattice are processed one by
one in a left-to-right manner. Line 2 initializes the
lattice with the first alignment pair, and Line 3 re-
moves the hypothesis arc which contains the same
words with the backbone arc.barc denotes the back-
bone arc, storing one backbone word only, andharc
denotes the hypothesis arc, storing the hypothesis
words. For there may be many alignment units span
the same backbone word range, there may be more
than oneharc coming from one node. Line8 − 10
consider the condition1 and functionInsertBarc in

Line 9 inserts anull bone arc to the position right
before the current node. Line12−13 deal with con-
dition 2 and jump to the next backbone word of the
lattice. Line15−19 handle condition3 and function
InsertHarc inserts to the lattice aharc with the same
hypothesis words and the same backbone word span
with the current hypothesis arc.

5 Decoding

In confusion network decoding, a translation is gen-
erated by traveling all the nodes from left to right.
So a translation path contains all the nodes. While
in lattice decoding, a translation path may skip some
nodes as some hypothesis arcs may cross more than
one backbone arc.

Similar to the features in Rosti et al. (2007a), the
features adopted by lattice-based model are arc pos-
terior probability, language model probability, the
number ofnull arcs, the number of hypothesis arcs
possessing more than one non-null word and the
number of all non-null words. The features are com-
bined in a log-linear model with the arc posterior
probabilities being processed specially as follows:

log p(e/f) =
Narc∑
i=1

log (
Ns∑
s=1

λsps(arc))

+ ζL(e) + αNnullarc(e)
+ βNlongarc(e) + γNword(e)

(9)

where f denotes the source sentence,e denotes a
translation generated by the lattice-based system,
Narc is the number of arcs the path ofe covers,
Ns is the number of candidate systems andλs is the
weight of systems. ζ is the language model weight
andL(e) is the LM log-probability.Nnullarcs(e) is
the number of the arcs which only contain anull
word, andNlongarc(e) is the number of the arcs
which store more than one non-null word. The
above two numbers are gotten by counting both
backbone arcs and hypothesis arcs.α andβ are the
corresponding weights of the numbers, respectively.
Nword(e) is the non-null word number andγ is its
weight.

Each arc has different confidences concerned with
different systems, and the confidence of systems
is denoted byps(arc). ps(arc) is increased by
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1/(k+1) if the hypothesis ranking k in the systems
contains the arc (Rosti et al., 2007a; He et al., 2008).

Cube pruning algorithm with beam search is em-
ployed to search for the consensus output (Huang
and Chiang, 2005). The nodes in the lattice are
searched in a topological order and each node re-
tains a list of N best candidate partial translations.

6 Experiments

The candidate systems participating in the system
combination are as listed in Table 1: SystemA is a
BTG-based system using a MaxEnt-based reorder-
ing model; SystemB is a hierarchical phrase-based
system; SystemC is the Moses decoder (Koehn et
al., 2007); SystemD is a syntax-based system. 10-
best hypotheses from each candidate system on the
dev and test sets were collected as the input of the
system combination.

In our experiments, the weights were all tuned on
the NIST MT02 Chinese-to-English test set, includ-
ing 878 sentences, and the test data was the NIST
MT05 Chinese-to-English test set, including 1082
sentences, except the experiments in Table 2. A 5-
gram language model was used which was trained
on the XinHua portion of Gigaword corpus. The re-
sults were all reported in case sensitive BLEU score
and the weights were tuned in Powell’s method to
maximum BLEU score. The IHMM-based align-
ment module was implemented according to He et
al. (2008), He (2007) and Vogel et al. (1996). In all
experiments, the parameters for IHMM-based align-
ment module were set to: the smoothing factor for
the surface similarity model,ρ = 3; the controlling
factor for the distortion model,K = 2.

6.1 Comparison with
Confusion-network-based model

In order to compare the lattice-based system with
the confusion-network-based system fairly, we used
IHMM-based system combination model on behalf
of the confusion-network-based model described in
He et al. (2008). In both lattice-based and IHMM-
based systems, the bilingual dictionaries were ex-
tracted on the FBIS data set which included 289K
sentence pairs. The interpolation factor of the simi-
larity model was set toα = 0.1.

The results are shown in Table 1.IHMM stands
for the IHMM-based model andLattice stands for

the lattice-based model. On the dev set, the lattice-
based system was 3.92 BLEU points higher than the
best single system and 0.36 BLEU point higher than
the IHMM-based system. On the test set, the lattice-
based system got an absolute improvement by 3.73
BLEU points over the best single system and 1.23
BLEU points over the IHMM-based system.

System MT02 MT05
BLEU% BLEU%

SystemA 31.93 30.68
SystemB 32.16 32.07
SystemC 32.09 31.64
SystemD 33.37 31.26
IHMM 36.93 34.57
Lattice 37.29 35.80

Table 1: Results on the MT02 and MT05 test sets

The results on another test sets are reported in Ta-
ble 2. The parameters were tuned on the newswire
part of NIST MT06 Chinese-to-English test set, in-
cluding 616 sentences, and the test set was NIST
MT08 Chinese-to-English test set, including 1357
sentences. The BLEU score of the lattice-based sys-
tem is 0.93 BLEU point higher than the IHMM-
based system and 3.0 BLEU points higher than the
best single system.

System MT06 MT08
BLEU% BLEU%

SystemA 32.51 25.63
SystemB 31.43 26.32
SystemC 31.50 23.43
SystemD 32.41 26.28
IHMM 36.05 28.39
Lattice 36.53 29.32

Table 2: Results on the MT06 and MT08 test sets

We take a real example from the output of the
two systems (in Table 3) to show that higher BLEU
scores correspond to better alignments and better
translations. The translation of System C is selected
as the backbone. From Table 3, we can see that
because of 1-to-1 mappings, “Russia” is aligned to
“Russian” and “’s” to “ null” in the IHMM-based
model, which leads to the error translation “Russian
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Source: �ÛdIE�húi���ÛdIE�dúi?1Ü¿
SystemA: Russia merger of state-owned oil company and the state-run gas company in Russia
SystemB: Russia ’s state-owned oil company is working with Russia ’s state-run gas company mergers
SystemC: Russian state-run oil company is combined with theRussian state-run gas company
SystemD: Russia ’s state-owned oil companies are combined with Russia ’s state-run gas company

IHMM: Russian ’s state-owned oil company working with Russia ’s state-run gas company
Lattice: Russia ’s state-owned oil company is combined withthe Russian state-run gas company

Table 3: A real translation example

’s”. Instead, “Russia ’s” is together aligned to ”Rus-
sian” in the lattice-based model. Also due to 1-to-
1 mappings,null word aligned to “is” is inserted.
As a result, “is” is missed in the output of IHMM-
based model. In contrast, in the lattice-based sys-
tem, “is working with” are aligned to “is combined
with”, forming a phrase pair.

6.2 Effect of Dictionary Scale

The dictionary is important to the semantic similar-
ity model in IHMM-based alignment method. We
evaluated the effect of the dictionary scale by using
dictionaries extracted on different data sets. The dic-
tionaries were respectively extracted on similar data
sets: 30K sentence pairs, 60K sentence pairs, 289K
sentence pairs (FBIS corpus) and 2500K sentence
pairs. The results are illustrated in Table 4. In or-
der to demonstrate the effect of the dictionary size
clearly, the interpolation factor of similarity model
was all set toα = 0.1.

From Table 4, we can see that when the cor-
pus size rise from 30k to 60k, the improvements
were not obvious both on the dev set and on the
test set. As the corpus was expanded to 289K, al-
though on the dev set, the result was only 0.2 BLEU
point higher, on the test set, it was 0.63 BLEU point
higher. As the corpus size was up to 2500K, the
BLEU scores both on the dev and test sets declined.
The reason is that, on one hand, there are more noise
on the 2500K sentence pairs; on the other hand, the
289K sentence pairs cover most of the words appear-
ing on the test set. So we can conclude that in or-
der to get better results, the dictionary scale must be
up to some certain scale. If the dictionary is much
smaller, the result will be impacted dramatically.

MT02 MT05
BLEU% BLEU%

30k 36.94 35.14
60k 37.09 35.17
289k 37.29 35.80
2500k 37.14 35.62

Table 4: Effect of dictionary scale

6.3 Effect of Semantic Alignments

For the IHMM-based alignment method, the transla-
tion probability of an English word pair is computed
using a linear interpolation of the semantic similar-
ity and the surface similarity. So the two similarity
models decide the translation probability together
and the proportion is controlled by the interpolation
factor. We evaluated the effect of the two similarity
models by varying the interpolation factorα.

We used the dictionaries extracted on the FBIS
data set. The result is shown in Table 5. We got the
best result withα = 0.1. When we excluded the
semantic similarity model (α = 0.0) or excluded the
surface similarity model (α = 1.0), the performance
became worse.

7 Conclusion

The alignment model plays an important role in
system combination. Because of the expression
limitation of confusion networks, only1-to-1 map-
pings are employed in the confusion-network-based
model. This paper proposes a lattice-based system
combination model. As a general form of confusion
networks, lattices can expressn-to-n mappings. So
a lattice-based model processes phrase pairs while
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MT02 MT05
BLEU% BLEU%

α = 1.0 36.41 34.92
α = 0.7 37.21 35.65
α = 0.5 36.43 35.02
α = 0.4 37.14 35.55
α = 0.3 36.75 35.66
α = 0.2 36.81 35.55
α = 0.1 37.29 35.80
α = 0.0 36.45 35.14

Table 5: Effect of semantic alignments

a confusion-network-based model processes words
only. As a result, phrase pairs must be extracted be-
fore constructing a lattice.

On NIST MT05 test set, the lattice-based sys-
tem gave better results with an absolute improve-
ment of 1.23 BLEU points over the confusion-
network-based system (He et al., 2008) and 3.73
BLEU points over the best single system. On
NIST MT08 test set, the lattice-based system out-
performed the confusion-network-based system by
0.93 BLEU point and outperformed the best single
system by 3.0 BLEU points.
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Abstract

We present a scalable joint language
model designed to utilize fine-grain syn-
tactic tags. We discuss challenges such
a design faces and describe our solutions
that scale well to large tagsets and cor-
pora. We advocate the use of relatively
simple tags that do not require deep lin-
guistic knowledge of the language but pro-
vide more structural information than POS
tags and can be derived from automati-
cally generated parse trees – a combina-
tion of properties that allows easy adop-
tion of this model for new languages. We
propose two fine-grain tagsets and evalu-
ate our model using these tags, as well as
POS tags and SuperARV tags in a speech
recognition task and discuss future direc-
tions.

1 Introduction

In a number of language processing tasks, particu-
larly automatic speech recognition (ASR) and ma-
chine translation (MT), there is the problem of se-
lecting the best sequence of words from multiple
hypotheses. This problem stems from thenoisy
channelapproach to these applications. The noisy
channel model states that the observed data, e.g.,
the acoustic signal, is the result of some input
translated by some unknown stochastic process.
Then the problem of finding the best sequence of
words given the acoustic input, not approachable
directly, is transformed into two separate models:

argmax
wn

1

p(wn
1 |A) = argmax

wn
1

p(A|wn
1 ) · p(wn

1 )

(1)
whereA is the acoustic signal andwn

1 is a se-
quence ofn words.p(A|wn

1 ) is called an acoustic

model andp(wn
1 ) is the language model1.

Typically, these applications use language mod-
els that compute the probability of a sequence in a
generative way:

p(wn
1 ) =

n∏
i=1

p(wi|wi−1
1 )

Approximation is required to keep the parameter
space tractable. Most commonly the context is re-
duced to just a few immediately preceding words.
This type of model is called anngrammodel:

p(wi|wi−1
1 ) ≈ p(wi|wi−1

i−n+1)

Even with limited context, the parameter space can
be quite sparse and requires sophisticated tech-
niques for reliable probability estimation (Chen
and Goodman, 1996). While the ngram models
perform fairly well, they are only capable of cap-
turing very shallow knowledge of the language.

There is extensive literature on a variety of
methods that have been used to imbue models
with syntactic and semantic information in differ-
ent ways. These methods can be broadly catego-
rized into two types:

• The first method uses surface words within
its context, sometimes organizing them into
deterministic classes. Models of this type in-
clude: (Brown et al., 1992; Zitouni, 2007),
which use semantic word clustering, and
(Bahl et al., 1990), which uses variable-
length context.

• The other method adds stochastic variables
to express the ambiguous nature of surface
words2. To obtain the probability of the next

1Real applications useargmaxwn
1

p(A|wn
1 )·p(wn

1 )α·nβ

instead of Eq. 1, whereα andβ are set to optimize a heldout
set.

2These variables have to be predicted by the model.
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word we need to sum over all assignments of
the stochastic variables, as in Eq. 2.

p(wi|wi−1
1 ) =

∑
t1...ti

p(witi|wi−1
1 ti−1

1 ) (2)

=
∑

t1...ti p(witi|wi−1
1 ti−1

1 )p(wi−1
1 ti−1

1 )∑
t1...ti−1

p(wi−1
1 ti−1

1 )

Models of this type, which we calljoint
models since they essentially predict joint
events of words and some random vari-
able(s), include (Chelba and Jelinek, 2000)
which used POS tags in combination with
“parser instructions” for constructing a full
parse tree in a left-to-right manner; (Wang
et al., 2003) used SuperARVs (complex tu-
ples of dependency information) without re-
solving the dependencies, thus calledalmost
parsing; (Niesler and Woodland, 1996; Hee-
man, 1999) utilize part of speech (POS) tags.
Note that some models reduce the context by
making the following approximation:

p(witi|wi−1
1 ti−1

1 ) ≈ p(wi|ti)·p(ti|ti−1
1 ) (3)

thus, transforming the problem into a stan-
dard HMM application. However, these
models perform poorly and have only been
able to improve over the ngram model when
interpolated with it (Niesler and Woodland,
1996).

Although joint models have the potential
to better express variability in word usage
through the introduction of additional latent
variables, they do not necessarily perform
better because the increased dimensionality
of the context substantially increases the al-
ready complex problem of parameter estima-
tion. The complexity of the space also makes
computation of the probability a challenge
because of space and time constraints. This
makes the choice of the random variables a
matter of utmost importance.

The model presented in this paper has some el-
ements borrowed from prior work, notably (Hee-
man, 1999; Xu and Jelinek, 2004), while others
are novel.

1.1 Paper Outline

The message we aim to deliver in this paper can
be summarized in two theses:

• Use fine-grain syntactic tags in a joint LM.
We propose a joint language model that can
be used with a variety of tagsets. In Section
2, we describe those that we used in our ex-
periments. Rather than tailoring our model to
these tagsets, we aim for flexibility and pro-
pose an information theoretic framework for
quick evaluation for tagsets, thus simplifying
the creation of new tagsets. We show that
our model with fine-grain tagsets outperform
the coarser POS model, as well as the ngram
baseline, in Section 5.

• Address the challengesthat arise in a joint
language model with fine-grain tags. While
the idea of using joint language modeling is
not novel (Chelba and Jelinek, 2000; Hee-
man, 1999), nor is the idea of using fine-grain
tags (Bangalore, 1996; Wang et al., 2003),
none of prior papers focus on the issues that
arise from the combination of joint language
modeling with fine-grain tags, both in terms
of reliable parameter estimation and scalabil-
ity in the face of the increased computational
complexity. We dedicate Sections 3 and 4 to
this problem.

In Section 6, we summarize conclusions and lay
out directions for future work.

2 Structural Information

As we have mentioned, the selection of the ran-
dom variable in Eq. 2 is extremely important for
the performance of the model. On one hand, we
would like for this variable to provide maximum
information. On the other hand, as the number of
parameters grow, we must address reliable param-
eter estimation in the face of sparsity, as well as
increased computational complexity. In the fol-
lowing section we will compare the use of Super-
ARVs, POS tags, and other structural tags derived
from parse trees.

2.1 POS Tags

Part-of-speech tags can be easily obtained for
unannotated data using off-the-shelf POS taggers
or PCFG parsers. However, the amount of infor-
mation these tags typically provide is very limited,
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Figure 1: A parse tree example

e.g., while it is helpful to know whetherfly is a
verb or a noun, knowing thatyouis a personal pro-
noun does not carry the information whether it is
a subject or an object (given the Penn Tree Bank
tagset), which would certainly help to predict the
following word.

2.2 SuperARV

The SuperARV essentially organizes information
concerning one consistent set of dependency links
for a word that can be directly derived from its
syntactic parse. SuperARVs encode lexical in-
formation as well as syntactic and semantic con-
straints in a uniform representation that is much
more fine-grained than POS. It is a four-tuple
(C; F ; R+;D), whereC is the lexical category
of the word,F is a vector of lexical features for
the word,R+ is a set of governor and need labels
that indicate the function of the word in the sen-
tence and the types of words it needs, andD rep-
resents the relative position of the word and its de-
pendents. We refer the reader to the literature for
further details on SuperARVs (Wang and Harper,
2002; Wang et al., 2003).

SuperARVs can be produced from parse trees
by applying deterministic rules. In this work we
use SuperARVs as individual tags and do not clus-
ter them based of their structure. While Super-
ARVs are very attractive for language modeling,
developing such a rich set of annotations for a new
language would require a large amount of human
effort.

We propose two other types of tags which have
not been applied to this task, although similar in-
formation has been used in parsing.

2.3 Modifee Tag

This tag is a combination of the word’s POS
tag and the POS tag of its governor role. We

designed it to resemble dependency parse struc-
ture. For example, the sentence in Figure 1 would
be tagged:the/DT-NN black/JJ-NN cat/NN-VBD
sat/VBD-root. Henceforth, we will refer to this
kind of tag ashead.

2.4 Parent Constituent

This tag is a combination of the word’s POS tag
with its immediate parent in the parse tree, along
with the POS tag’s relative position among its sib-
lings. We refer to this type of tags asparent. The
example in Figure 1 will be tagged:the/DT-NP-
start black/JJ-NP-mid cat/NN-NP-end sat/VB-VP-
single. This tagset is designed to represent con-
stituency information.

Note that theheadandparent tagsets are more
language-independent (all they require is a tree-
bank) than the SuperARVs which, not only uti-
lized the treebank, but were explicitly designed by
a linguist for English only.

2.5 Information Theoretic Comparison of
Tags

As we have mentioned in Section 1, the choice of
the tagset is very important to the performance of
the model. There are two conflicting intuitions for
tags: on one hand they should be specific enough
to be helpful in the language model’s task; on the
other hand, they should be easy for the LM to pre-
dict.

Of course, in order to argue which tags are more
suitable, we need some quantifiable metrics. We
propose an information theoretic approach:

• To quantify how hard it is to predict a tag, we
compute the conditional entropy:

Hp(ti|wi) = Hp(tiwi)−Hp(wi)

=
∑
witi

p(tiwi) log p(ti|wi)

• To measure how helpful a tagset is in the LM
task, we compute the reduction of the condi-
tional cross entropy:

Hp̃,q(wi|wi−1ti−1) − Hp̃,q(wi|wi−1) =

−
∑

wi
i−1ti−1

p̃(wi
i−1ti−1) log q(wi|wi−1ti−1)

+
∑
wi

i−1

p̃(wi
i−1) log q(wi|wi−1)

= −
∑

wi
i−1ti−1

p̃(wi
i−1ti−1) log

q(wi|wi−1ti−1)

q(wi|wi−1)
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Note that in this case we use conditional
cross entropy because conditional entropy
has the tendency to overfit the data as we se-
lect more and more fine-grain tags. Indeed,
Hp(wi|wi−1ti−1) can be reduced to zero if
the tags are specific enough, which would
never happen in reality. This is not a prob-
lem for the former metric because the con-
text there,wi, is fixed. For this metric, we
use a smoothed distributioñp computed on
the training set3 and the test distributionq.
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Figure 2: Changes in entropy for different tagsets

The results of these measurements are presented
in Figure 2. POS tags, albeit easy to predict, pro-
vide very little additional information about the
following word, and therefore we would not ex-
pect them to perform very well. Theparenttagset
seems to perform somewhat better than Super-
ARVs – it provides 0.13 bits more information
while being only 0.09 bits harder to predict based
on the word. Theheadtagset is interesting: it pro-
vides 0.2 bits more information about the follow-
ing word (which would correspond to 15% per-
plexity reduction if we had perfect tags), but on
the other hand the model is less likely to predict
these tags accurately.

This approach is only a crude estimate (it uses
only unigram and bigram context) but it is very
useful for designing tagsets, e.g., for a new lan-
guage, because it allows us to assess relative per-
formance of tagsets without having to train a full
model.

3We usedone-countsmoothing (Chen and Goodman,
1996).

3 Language Model Structure

The size and sparsity of the parameter space of the
joint model necessitate the use of dimensionality
reduction measures in order to make the model
computationally tractable and to allow for accu-
rate estimation of the model’s parameters. We also
want the model to be able to easily accommodate
additional sources of information such as morpho-
logical features, prosody, etc. In the rest of this
section, we discuss avenues we have taken to ad-
dress these problems.

3.1 Decision Tree Clustering

Binary decision tree clustering has been shown to
be effective for reducing the parameter space in
language modeling (Bahl et al., 1990; Heeman,
1999) and other language processing applications,
e.g., (Magerman, 1994). Like any clustering algo-
rithm, it can be represented by a functionH that
maps the space of histories to a set of equivalence
classes.

p(witi|wi−1
i−n+1t

i−1
i−n+1) ≈ p(witi|H(wi−1

i−n+1t
i−1
i−n+1))

(4)

While the tree construction algorithm is fairly
standard – to recursively select binary questions
about the history optimizing some function – there
are important decisions to make in terms of which
questions to ask and which function to optimize.
In the remainder of this section, we discuss the de-
cisions we made regarding these issues.

3.2 Factors

The Factored Language Model (FLM) (Bilmes
and Kirchhoff, 2003) offers a convenient view of
the input data: it represents every word in a sen-
tence as a tuple of factors. This allows us to extend
the language model with additional parameters. In
an FLM, however, all factors have to be determin-
istically computed in a joint model; whereas, we
need to distinguish between the factors that are
given or computed and the factors that the model
must predict stochastically. We call these types
of factorsovert andhidden, respectively. Exam-
ples of overt factors include surface words, mor-
phological features such as suffixes, case informa-
tion when available, etc., and the hidden factors
are POS, SuperARVs, or other tags.

Henceforth, we will useword to represent the
set of overt factors andtag to represent the set of
hidden factors.
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3.3 Hidden Factors Tree

Similarly to (Heeman, 1999), we construct a bi-
nary tree where each tag is a leaf; we will refer
to this tree as theHidden Factors Tree(HFT). We
use Minimum Discriminative Information (MDI)
algorithm (Zitouni, 2007) to build the tree. The
HFT represents a hierarchical clustering of the tag
space. One of the reasons for doing this is to allow
questions about subsets of tags rather than individ-
ual tags alone4.

Unlike (Heeman, 1999), where the tree of tags
was only used to create questions, this representa-
tion of the tag space is, in addition, a key feature
of our decoding optimizations, which we discuss
in Section 4.

3.4 Questions

The context space is partitioned by means of bi-
nary questions. We use different types of ques-
tions for hidden and overt factors.

• Questions about surface words are con-
structed using the Exchange algorithm (Mar-
tin et al., 1998). This algorithm takes the set
of words that appear at a certain position in
the training data associated with the current
node in the history tree and divides the set
into two complementary subsets greedily op-
timizing some target function (we use the av-
erage entropy of the marginalized word dis-
tribution, the same as for question selection).
Note that since the algorithm only operates
on the words that appear in the training data,
we need to do something more to account for
the unseen words. Thus, to represent this type
of question, we create the history tree struc-
ture depicted in Fig. 4.

For other overt factors with smaller vocabu-
laries, such as suffixes, we use equality ques-
tions.

• As we mentioned in Section 3.3, we use the
Hidden Factors Tree to create questions about
hidden factors. Note that every node in a bi-
nary tree can be represented by a binary path
from the root with all nodes under an inner
node sharing the same prefix. Thus, a ques-
tion about whether a tag belongs to a subset

4Trying all possible subsets of tags is not feasible since
there are2|T | of them. The tree allows us to reduce the num-
ber to O(T ) of the most meaningful (as per the clustering
algorithm) subsets.

Figure 3: Recursive smoothing:̃pn = λnpn +
(1− λn)p̃n′

of tags dominated by a node can be expressed
as whether the tag’s path matches the binary
prefix.

3.5 Optimization Criterion and Stopping
Rule

To select questions we use the average entropy of
the marginalized word distribution. We found that
this criterion significantly outperforms the entropy
of the distribution of joint events. This is proba-
bly due to the increased sparsity of the joint distri-
bution and the fact that our ultimate metrics, i.e.,
WER and word perplexity, involve only words.

3.6 Distribution Representation

In a clusterHx, we factor the joint distribution as
follows:

p(witi|Hx) = p(wi|Hx) · p(ti|wi, Hx)

wherep(ti|wi, Hx) is represented in the form of
an HFT, in which each leaf has the probability of a
tag and each internal node contains the sum of the
probabilities of the tags it dominates. This repre-
sentation is designed to assist the decoding process
described in Section 4.

3.7 Smoothing

In order to estimate probability distributions at the
leaves of the history tree, we use the following re-
cursive formula:

p̃n(witi) = λnpn(witi) + (1− λn)p̃n′(witi) (5)

where n′ is the n-th node’s parent,pn(witi) is
the distribution at noden (see Figure 3). The

1118



root of the tree is interpolated with the distribu-
tion punif (witi) = 1

|V |pML(ti|wi)5. To estimate
interpolation parametersλn, we use the EM algo-
rithm described in (Magerman, 1994); however,
rather than setting aside a separate development
set of optimizingλn, we use 4-fold cross valida-
tion and take the geometric mean of the resulting
coefficients6. We chose this approach because a
small development set often does not overlap with
the training set for low-count nodes, leading the
EM algorithm to setλn = 0 for those nodes.

Let us consider one leaf of the history tree in
isolation. Its context can be represented by the
path to the root, i.e., the sequence of questions and
answersq1, . . . q(n′)′qn′ (with q1 being the answer
to the topmost question):

p̃n(witi) = p̃(witi|q1 . . . q(n′)′qn′)

Represented this way, Eq. 5 is a variant of Jelinek-
Mercer smoothing:

p̃(witi|q1 . . . qn′) = λnp(witi|q1 . . . qn′) +
(1− λn)p̃(witi|q1 . . . q(n′)′)

For backoff nodes (see Fig. 4), we use a lower
order model7 interpolated with the distribution at
the backoff node’s grandparent (see nodeA in Fig.
4):

p̃B(witi|wi−1
i−n+1t

i−1
i−n+1) =

αAp̃bo(witi|wi−1
i−n+2t

i−1
i−n+2) + (1 − αA)p̃A(witi)

How to computeαA is an open question. For this
study, we use a simple heuristic based on obser-
vation that the further nodeA is from the root
the more reliable the distributioñpA(witi) is, and
henceαA is lower. The formula we use is as fol-
lows:

αA =
1√

1 + distanceToRoot(A)
5We use this distribution rather than uniform joint distri-

bution 1
|V ||T | because we do not want to allow word-tag pairs

that have never been observed. The idea is similar to (Thede
and Harper, 1999).

6To avoid a large number of zeros due to the product, we
set a minimum forλ to be10−7.

7The lower order model is constructed by the same algo-
rithm, although with smaller context. Note that the lower or-
der model can back off on words or tags, or both. In this paper
we backoff both on words and tags, i.e.,p(witi|wi−1

i−2ti−1
i−2)

backs off top(witi|wi−1ti−1), which in turn backs off to the
unigramp(witi).

Figure 4: A fragment of the decision tree with a
backoff node.S ∪ S̄ is the set of words observed
in the training data at the nodeA. To account for
unseen words, we add the backoff nodeB.

4 Decoding

As in HMM decoding, in order to compute prob-
abilities fori-th step, we need to sum over|T |n−1

possible combinations of tags in the history, where
T is the set of tags andn is the order of the
model. With|T | predictions for thei-th step, we
haveO(|T |n) computational complexity per word.
Straightforward computation of these probabili-
ties is problematic even for a trigram model with
POS tags, i.e.,n = 3, |T | ≈ 40. A standard ap-
proach to limit computational requirements is to
use beam search where onlyN most likely paths
are retained. However, with fine-grain tags where
|T | ≈ 1, 500, a tractable beam size would only
cover a small fraction of the whole space, leading
to search errors such as pruning good paths.

Note that we have a history clustering function
(Eq. 4) represented by the decision tree, and we
should be able to exploit this clustering to elimi-
nate unnecessary computations involving equiva-
lent histories. Note that words in the history are
known exactly, thus we can create a projection of
the clustering functionH in Eq. 4 to the plane
wi−1

i−n+1 = const, i.e., where words in the context
are fixed to be whatever is observed in the history:

H(wi−1
i−n+1t

i−1
i−n+1) ⇒ Ĥwi−1

i−n+1=const(t
i−1
i−n+1)

(6)
The number of distinct clusters in the projection
Ĥ depends on the decision tree configuration and
can vary greatly for different wordswi−1

i−n+1 in the
history, but generally it is relatively small:

|Ĥwi−1
i−n+1=const(t

i−1
i−n+1)| ≪ |Tn−1| (7)
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Figure 5: Questions about hidden factors split
states (see Figure 6) in the decoding lattice rep-
resented by HFTs.

thus, the number of probabilities that we need to
compute is|Ĥwi−1

i−n+1=const| · |T |.
Our decoding algorithm works similarly to

HMM decoding with the exception that the set of
hidden states is not predetermined. Let us illus-
trate how it works in the case of a bigram model.
Recall that the set of tagsT is represented as a
binary tree (HFT) and the only type of questions
about tags is about matching a binary prefix in the
HFT. Such a question dissects the HFT into two
parts as depicted in Figure 5. The cost of this op-
eration isO(log |T |).

We represent states in the decoding lattice as
shown in the Figure 6, wherepS

in is the probability
of reaching the stateS:

pS
in =

∑
S′∈INS

pS′
in p(wi−2|HS′)

∑
t∈TS′

p(t|wi−2HS′)


where INS is the set of incoming links to the
stateS from the previous time index, andTS′ is
the set of tags generated from the stateS′ repre-
sented as a fragment of the HFT. Note, that since
we maintain the property that the probability as-
signed to an inner node of the HFT is the sum
of probabilities of the tags it dominates, the sum∑

t∈TS′ p(t|wi−2HS′) is located at the root ofTS′ ,
and therefore this is anO(1) operation.

Now given the stateS at timei − 1, in order to
generate tag predictions fori-th word, we apply
questions from the history clustering tree, start-
ing from the top. Questions about overt factors

Figure 6: A stateS in the decoding lattice.pS
in is

the probability of reaching the stateS through the
set of linksINS . The probabilities of generating
the tagsp(ti−1|wi−1, Hs), (ti−1 ∈ TS) are repre-
sented in the form of the HFT.

always follow either atrueor falsebranch, implic-
itly computing the projection in Eq. 6. Questions
about hidden factors, can split the stateS into two
statesStrue andSfalse, each retaining a part ofTS

as shown in the Figure 5.
The process continues until each fragment of

each state at the timei − 1 reaches the bottom of
the history tree, at which point new states for time
i are generated from the clusters associated with
leaves. The states ati− 1 that generate the cluster
HS̃ become the incoming links to the stateS̃.

Higher order models work similarly, except that
at each time we consider a stateS at time i − 1
along with one of its incoming links (to some
depth according to the size of the context).

5 Experimental Setup

To evaluate the impact of fine-grain tags on lan-
guage modeling, we trained our model with five
settings: In the first model, questions were re-
stricted to be about overt factors only, thus making
it a tree-based word model. In the second model,
we used POS tags. To evaluate the effect of fine-
grain tags, we train two models:headandparent
described in Section 2.3 and Section 2.4 respec-
tively. Since our joint model can be used with
any kind of tags, we also trained it with Super-
ARV tags (Wang et al., 2003). The SuperARVs
were created from the same parse trees that were
used to produce POS and fine-grain tags. All our
models, including SuperARV, use trigram context.
We include standard trigram, four-gram, and five-
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gram models for reference. The ngram models
were trained using SRILM toolkit with interpo-
lated modified Kneser-Ney smoothing.

We evaluate our model with an nbest rescoring
task using 100-best lists from the DARPA WSJ’93
and WSJ’92 20k open vocabulary data sets. The
details on the acoustic model used to produce the
nbest lists can be found in (Wang and Harper,
2002). Since the data sets are small, we com-
bined the 93et and 93dt sets for evaluation and
used 92et for the optimization8. We transformed
the nbest lists to match PTB tokenization, namely
separating possessives from nouns,n’t from auxil-
iary verbs in contractions, as well as contractions
from personal pronouns.

All language models were trained on the NYT
1994-1995 section of the English Gigaword cor-
pus (approximately 70M words). Since the New
York Times covers a wider range of topics than
the Wall Street Journal, we eliminated the most ir-
relevant stories based on their trigram coverage by
sections 00-22 of WSJ. We also eliminated sen-
tences over 120 words, because the parser’s per-
formance drops significantly on long sentences.
After parsing the corpus, we deleted sentences that
were assigned a very low probability by the parser.
Overall we removed only a few percent of the data;
however, we believe that such a rigorous approach
to data cleaning is important for building discrim-
inating models.

Parse trees were produced by an extended ver-
sion of the Berkeley parser (Huang and Harper,
2009). We trained the parser on a combination of
the BN and WSJ treebanks, preprocessed to make
them more consistent with each other. We also
modified the trees for the speech recognition task
by replacing numbers and abbreviations with their
verbalized forms. We pre-processed the NYT cor-
pus in the same way, and parsed it. After that, we
removed punctuation and downcased words. For
the ngram model, we used text processed in the
same way.

In head and parent models, tag vocabularies
contain approximately 1,500 tags each, while the
SuperARV model has approximately 1,400 dis-
tinct SuperARVs, most of which represent verbs
(1,200).

In these experiments we did not use overt fac-
tors other than the surface word because they split

8We optimized the LM weight and computed WER with
scripts in the SRILM and NIST SCTK toolkits.

Models WER

trigram (baseline) 17.5
four-gram 17.7
five-gram 17.8

Word Tree 17.3
POS Tags 17.0
HeadTags 16.8
ParentTags 16.7
SuperARV 16.9

Table 1: WER results, optimized on 92et set, eval-
uated on combined 93et and 93dt set. The Oracle
WER is 9.5%.

<unk>, effectively changing the vocabulary thus
making perplexity incomparable to models with-
out these factors, without improving WER notice-
ably. However, we do plan to use more overt
factors in Machine Translation experiments where
a language model faces a wider range of OOV
phenomena, such as abbreviations, foreign words,
numbers, dates, time, etc.

Table 1 summarizes performance of the LMs on
the rescoring task. Theparenttags model outper-
forms the trigram baseline model by 0.8% WER.
Note that four- and five-gram models fail to out-
perform the trigram baseline. We believe this is
due to the sparsity as well as relatively short sen-
tences in the test set (16 words on average).

Interestingly, whereas the improvement of the
POS model over the baseline is not statistically
significant (p < 0.10)9, the fine-grain models out-
perform the baseline much more reliably:p <
0.03 (SuperARV) andp < 0.007 (parent).

We present perplexity evaluations in Table 2.
The perplexity was computed on Section 23 of
WSJ PTB, preprocessed as the rest of the data we
used. Theheadmodel has the lowest perplexity
outperforming the baseline by 9%. Note, it even
outperforms the five-gram model, although by a
small 2% margin.

Although the improvements by the fine-grain
tagsets over POS are not significant (due to the
small size of the test set), the reductions in per-
plexity suggest that the improvements are not ran-
dom.

9For statistical significance, we used SCTK implementa-
tion of themapsswetest.
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Models PPL

trigram (baseline) 162
four-gram 152
five-gram 150

Word Tree 160
POS Tags 154
HeadTags 147
ParentTags 150
SuperARV 150

Table 2: Perplexity results on Section 23 WSJ
PTB

6 Conclusion and Future Work

In this paper, we presented a joint language mod-
eling framework. Unlike any prior work known
to us, it was not tailored for any specific tag set,
rather it was designed to accommodate any set
of tags, especially large sets (∼ 1, 000), which
present challenges one does not encounter with
smaller tag sets, such at POS tags. We discussed
these challenges and our solutions to them. Some
of the solutions proposed are novel, particularly
the decoding algorithm.

We also proposed two simple fine-grain tagsets,
which, when applied in language modeling, per-
form comparably to highly sophisticated tag sets
(SuperARV). We would like to stress that, while
our fine-grain tags did not significantly outperform
SuperARVs, the former use much less linguistic
knowledge and can be automatically induced for
any language with a treebank.

Because a joint language model inherently pre-
dicts hidden events (tags), it can also be used to
generate the best sequence of those events, i.e.,
tagging. We evaluated our model in the POS tag-
ging task and observed similar results: the fine-
grain models outperform the POS model, while
both outperform the state-of-the-art HMM POS
taggers. We refer to (Filimonov and Harper, 2009)
for details on these experiments.

We plan to investigate how parser accuracy and
data selection strategies, e.g., based on parser con-
fidence scores, impact the performance of our
model. We also plan on evaluating the model’s
performance on other genres of speech, as well as
in other tasks such as Machine Translation. We
are also working on scaling our model further to
accommodate amounts of data typical for mod-
ern large-scale ngram models. Finally, we plan to

apply the technique to other languages with tree-
banks, such as Chinese and Arabic.

We intend to release the source code of our
model within several months of this publication.
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Abstract

This paper investigates the effect of di-
rection in phrase-based statistial machine
translation decoding. We compare a typ-
ical phrase-based machine translation de-
coder using a left-to-right decoding strat-
egy to a right-to-left decoder. We also
investigate the effectiveness of a bidirec-
tional decoding strategy that integrates
both mono-directional approaches, with
the aim of reducing the effects due to lan-
guage specificity. Our experimental eval-
uation was extensive, based on 272 differ-
ent language pairs, and gave the surprising
result that for most of the language pairs,
it was better decode from right-to-left than
from left-to-right. As expected the rela-
tive performance of left-to-right and right-
to-left strategies proved to be highly lan-
guage dependent. The bidirectional ap-
proach outperformed the both the left-to-
right strategy and the right-to-left strategy,
showing consistent improvements that ap-
peared to be unrelated to the specific lan-
guages used for translation. Bidirectional
decoding gave rise to an improvement in
performance over a left-to-right decoding
strategy in terms of the BLEU score in
99% of our experiments.

1 Introduction

Human language production by its very nature is
an ordered process. That is to say, words are writ-
ten/uttered in a sequence. The current genera-
tion of phrase-based statistical machine translation
(SMT) systems also generate their target word se-
quences according to an order. Since the gener-
ation process is symmetrical, there are two pos-
sible strategies that could be used to generate the
target: from beginning to end; or from end to be-

ginning. Generating the target in the ‘wrong’ di-
rection (the opposite direction to the way in which
humans do) is counter intuitive, and possibly as a
result of this, SMT systems typically generate the
target word sequence in the same order as human
language production. However it is not necessar-
ily the case that this is most effective strategy for
all language pairs. In this paper we investigate the
effect of direction in phrase-based SMT decoding.

For the purposes of this paper, we will refer
to target word sequence generation that follows
the same order as human language production as
forward generation, and generation in the oppo-
site direction to human language production as re-
verse generation. These are often referred ”left-to-
right” and ”right-to-left” respectively in the litera-
ture, but we avoid this notation as many languages
are naturally written from right-to-left.

In earlier work (Watanabe and Sumita, 2002),
it was hypothesized that the optimal direction for
decoding was dependent on the characteristics of
the target language. Their results show that for
Japanese to English translation a reverse decod-
ing strategy was the most effective, whereas for
English to Japanese translation, a forward decod-
ing strategy proved superior. In addition they im-
plemented a bidirectional decoder, but their re-
sults were mixed. For English to Japanese transla-
tion, decoding bidirectionally gives higher perfor-
mance, but for Japanese to English translation they
were unable to improve performance by decod-
ing bidirectionally. Their experiments were per-
formed using a decoder based on IBM Model 4
using the translation techniques developed at IBM
(Brown et al., 1993).

This work is closely related to the techniques
proposed in (Watanabe and Sumita, 2002), but in
our case we decode within the framework of a
phrase-based SMT system, rather than the IBM
model. Our intention was to explore the effect of
direction in decoding within the context of a more

1124



contemporary machine translation paradigm, and
to experiment with a broader range of languages.
The underlying motivation for our studies however
remains the same. Languages have considerably
different structure, and certain grammatical con-
structs tend to occupy particular positions within
sentences of the same language, but different po-
sitions across languages. These differences may
make it easier to tackle the automatic translation
of a sentence in a given language from a partic-
ular direction. Our approach differs in that the
decoding process of a phrased-based decoder is
quite different from that used by (Watanabe and
Sumita, 2002) since decoding is done using larger
units making the re-ordering process much sim-
pler. In (Watanabe and Sumita, 2002) only one
language pair is considered, for our experiments
we extended this to include translation among 17
different languages including the Japanese and En-
glish pair used in (Watanabe and Sumita, 2002).
We felt that it was important to consider as many
languages as possible in this study, as intuition
and evidence from the original study suggests that
the effect of direction in decoding is likely to be
strongly language dependent.

The next section briefly describes the mecha-
nisms underlying phrase-based decoding. Then
we explain the principles behind the forward, re-
verse and bidirectional decoding strategies used in
our experiments. Section 3 presents the experi-
ments we performed. Section 4 gives the results
and some analysis. Finally in Section 5, we con-
clude and offer possible directions for future re-
search.

2 Phrase-based Translation

For our experiments we use the phrase-based ma-
chine translation techniques described in (Koehn,
2004) and (Koehn et al., 2007), integrating our
models within a log-linear framework (Och and
Ney, 2002).

One of the advantages of a log-linear model is
that it is possible to integrate a diverse set of fea-
tures into the model. For the decoders used in the
experiments in this paper, we included the follow-
ing feature functions:

• An n-gram language model over the target
word sequence

- Ensures the target word sequence is a
likely sequence of words in the target
language

• A phrase translation model

- Effects the segmentation of the source
word sequence, and is also responsible
for the transformation of source phrases
into target phrases.

• A target word sequence length model

- Controls the length of the target word
sequence. This is usually a constant
term added for each word in the trans-
lation hypothesis.

• A lexicalized distortion model

- Influences the reordering of the trans-
lated source phrases in the target word
sequence using lexical context on the
boundaries of the phrases being re-
ordered.

2.1 Decoding
In a phrase-based SMT decoder, the word se-
quence of the target language is typically gener-
ated in order in a forward manner. The words
at the start of the translation are generated first,
then the subsequent words, in order until the fi-
nal word of the target word sequence is gener-
ated. As the process is phrase-based, the trans-
lation is generated in a phrase-by-phrase manner,
rather word-by-word. The basic idea is to seg-
ment the source word sequence into subsequences
(phrases), then translate each phrase individually,
and finally compose the target word sequence by
reordering the translations of the source phrases.
This composition must occur in a particular order,
such that target words are generated sequentially
from the start (or end in the case of reverse de-
coding) of the sentence. The reason that the target
needs to be generated sequentially is to allow an
n-gram language model to be applied to the partial
target word sequence at each step of the decoding
process.

This process is illustrated in Figure 1. In the
decoding for both forward and reverse decoders
the source sentence is segmented into 2 phrases:
”where is” and ”the station” (although in this ex-
ample the segmentation is the same for both de-
coding strategies, it is not necessarily the case
since the search processes are different). In the
forward decoding process, first the English phrase
“the station” is translated into the Japanese phrase
“eki wa”. Initially the target sequence consists
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Left to right Right to left

where is the station

<s>

<s> eki wa

<s> eki wa doko </s>

</s>

doko </s>

<s> eki wa doko </s>

P(eki | <s> )

P(wa | eki, <s>)

P(doko | wa, eki, <s>)

P(</s> | doko, wa, eki, <s>)

PLM =

G
en

eratio
n

P(doko | </s> )

P(wa | doko, </s>)

P(eki | wa, doko, </s>)

P(<s> | eki, wa, doko, </s>)

PLM =

where is the station

Figure 1: The phrase-based decoding process for an English to Japanese translation, in both forward
and reverse directions. The n-gram language model probability calculation for the completed translation
hypotheses are also shown on the bottom of the figure. See Section 2.1 for a description of the decoding
process.

of only the start of sentence marker “〈s〉”. This
marker only serves as context to indicate the start
of the sequence for the benefit of the language
model. The first target phrase is separated into its
component words and each word is added in order
to the target word sequence. Each addition causes
an application of the language model, hence in
Figure 1 the first term of PLM is P (eki|〈s〉), the
second is P (wa|〈s〉) and so on. For reverse de-
coding, the target sentence is generated starting
from the end of sentence marker 〈/s〉 with the lan-
guage model context being to the right of the cur-
rent word. For the case of bidirectional decoding,
the model probability for the hypothesis is a linear
interpolation of the scores for both forward and re-
verse hypotheses.

2.2 Direction in Decoding

Direction in decoding influences both the models
used by the decoder and the search process itself.
The direction of decoding determines the order
in which target words are generated, the source
phrases being translated in any order, therefore it
is likely to be features of the target language rather
than those of the the source language that deter-
mine the effect that the decoding direction has on
decoder performance.

2.2.1 The Language Model
The fundamental difference between the language
models of a forward decoder and that of a reverse
decoder is the direction in which the model looks
for its context. The forward model looks back
to the start of the sentence, whereas the reverse
model looks forward to the end of the sentence.

2.2.2 The Search
Assuming a full search, a unigram language model
and no limitations on reordering, the forward and
reverse decoding processes are equivalent. When
these constraints are lifted, as is the case in the
experiments in this paper, the two search processes
diverge and can give rise to hypotheses that are
different in character.

The partial hypotheses from early in the search
process for forward decoding represent hypothe-
ses for the first few words of the target word se-
quence, whereas the early partial hypotheses of
a reverse decoder hold the last few words. This
has two consequences for the search. The first is
that (assuming a beam search as used in our ex-
periments), certain candidate word sequences in
the early stages of the search might be outside the
beam and be pruned. The consequence of this
is that sentences that start with (or end with in
the case of reverse decoding) the pruned word se-
quence will not be considered during the remain-
der of the search. The second is that word se-
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quences in the partial hypotheses are used in the
context of the models used in the subsequent de-
coding. Thus, correctly decoding the start (or end
for reverse decoding) of the sentence will benefit
the subsequent decoding process.

3 Experiments

3.1 Experimental Data

The experiments were conducted on all possi-
ble pairings among 17 languages. A key to the
acronyms used for languages together with in-
formation about their respective characteristics is
given in Table 1.

We used all of the first ATR Basic Travel Ex-
pression Corpus (BTEC1) (Kikui et al., 2003) for
these experiments. This corpus contains the kind
of expressions that one might expect to find in a
phrase-book for travelers. The corpus is similar in
character to the IWSLT06 Evaluation Campaign
on Spoken Language Translation (Paul, 2006) J-E
open track. The sentences are relatively short (see
Table 1) with a simple structure and a fairly narrow
range of vocabulary due to the limited domain.

The experiments were conducted on data that
contained no case information, and also no punc-
tuation (this was an arbitrary decision that we be-
lieve had no impact on the results).

We used a 1000 sentence development corpus
for all experiments, and the corpus used for eval-
uation consisted of 5000 sentences with a single
reference for each sentence.

3.2 Training

Each instance of the decoder is a standard phrase-
based machine translation decoder that operates
according to the same principles as the publicly
available PHARAOH (Koehn, 2004) and MOSES
(Koehn et al., 2007) SMT decoders. In these
experiments 5-gram language models built with
Witten-Bell smoothing were used along with a lex-
icalized distortion model. The system was trained
in a standard manner, using a minimum error-rate
training (MERT) procedure (Och, 2003) with re-
spect to the BLEU score (Papineni et al., 2001)
on held-out development data to optimize the log-
linear model weights. For simplicity, the MERT
procedure was performed on independently on the
forward and reverse decoders for the bidirectional
system, rather them attempting to tune the param-
eters for the full system.

3.3 Translation Engines

3.3.1 Forward
The forward decoding translation systems used in
these experiments represent the baseline of our ex-
periments. They consist of phrase-based, multi-
stack, beam search decoders commonly used in
the field.

3.3.2 Reverse
The reverse decoding translation systems used in
these experiments were exactly the same as the
forward decoding systems. The difference being
the that word sequences in the training, develop-
ment, and source side of the test corpora were re-
versed prior to training the systems. The final out-
put of the reverse decoders was reordered in a post
processing step before evaluation.

3.3.3 Bidirectional
The decoder used for the bidirectional decoding
experiments was modified in order to be able to
decode both forward and reverse in separate in-
stances of the decoder. Models for decoding in
forward and reverse directions are loaded, and two
decoding instances created. Scores for hypotheses
that share the same target word sequence from the
two decoders were combined at the end of the de-
coding process linearly using equal interpolation
weights. Hypotheses that were generated by only
one of the component decoders were not pruned.
The scores from these hypotheses only had a con-
tribution from the decoder that was able to gener-
ate them, the contribution from the other decoder
being zero.

3.4 Decoding Constraints

The experiments reported in this paper were con-
ducted with loose constraints on the decoding as
overconstraining the decoding process could lead
to differences between unidirectional and bidirec-
tional strategies. More specificially, the decod-
ing was done with a beam width of 100, no beam
thresholding and no constraints on the reordering
process. Figure 2 shows the effect of varying the
beam width (stack size) in the search for forward
decoder of the English to Japanese translation ex-
periment. At the beam width of 100 used in our
experiments, the gains from doubling the beam
with are small (0.07 BLEU percentage points).

It is also important to note that a future cost
identical to that used in the MOSES decoder
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Abbreviation Language #Words Avg. sent length Vocabulary Order
ar Arabic 806853 5.16 47093 SVO
da Danish 806853 5.16 47093 SVO
de German 907354 5.80 23443 SVO
en English 970252 6.21 12900 SVO
es Spanish 881709 5.64 18128 SVO
fr French 983402 6.29 17311 SVO
id Indonesian (Malay) 865572 5.54 15527 SVO
it Italian 865572 5.54 15527 SVO
ja Japanese 1149065 7.35 15405 SOV
ko Korean 1091874 6.98 17015 SOV
ms Malaysian (Malay) 873959 5.59 16182 SVO
nl Dutch 927861 5.94 19775 SVO
pt Portuguese 881428 5.64 18217 SVO
ru Russian 781848 5.00 32199 SVO
th Thai 1211690 7.75 6921 SVO
vi Vietnamese 1223341 7.83 8055 SVO
zh Chinese 873375 5.59 14854 SVO

Table 1: Key to the languages, corpus statistics and word order. SVO denotes a language that predomi-
nantly has subject-verb-object order, and SOV denotes a language that predominantly has subject-object-
verb order

Stack size BLEU Score

1 0.3954

2 0.4032

4 0.4075

8 0.4115

16 0.4149

32 0.4161

64 0.4181

128 0.4188
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1024 0.4197

0.39

0.398

0.406

0.414

0.422

0 256 512 768 1024

B
L
E

U
 S

c
o

re

Stack size

Figure 2: The performance of a forward decoder
(En-Ja) with increasing stack size.

(Koehn et al., 2007) was also included in the
scores for partial hypothesis during the decoding.

3.5 Computational Overhead

In the current implementation, bidirectional de-
coding takes twice as long as a mono-directional
system. However, in a multi-threaded environ-
ment, each instance of the decoder is able to run
on its own thread in parallel, and so this slowdown
can be mitigated in some circumstances. Future
generations of the bidirectional decoder will more
tightly couple the two decoders, and we believe

this will lead to faster and more effective search.

3.6 Evaluation
The results presented in this paper are given in
terms of the BLEU score (Papineni et al., 2001).
This metric measures the geometric mean of n-
gram precision of n-grams drawn from the output
translation and a set of reference translations for
that translation.

There are large number of proposed methods
for carrying out machine translation evaluation.
Methods differ in their focus of characteristics of
the translation (for example fluency or adequacy),
and moreover anomolous results can occur if a
single metric is relied on. Therefore, we also
carried out evaluations using the NIST (Dodding-
ton, 2002), METEOR (Banerjee and Lavie, 2005),
WER (Hunt, 1989), PER (Tillmann et al., 1997)
and TER (Snover et al., 2005) machine translation
evaluation techniques.

4 Results

The results of the experiments in terms of the
BLEU score are given in Tables ??, 5, 3 and
3. These results show the performance of the re-
verse and bidirectional decoding strategies relative
to the usual forward decoding strategy. The cells
in the tables that represent experiments in which
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ar da de en es fr id it ja ko ms nl pt ru th vi zh
ar - 47.8 48.8 51.7 48.8 47.3 46.5 49.2 29.8 27.8 46.9 49.0 49.0 47.8 39.7 43.0 27.8
da 58.3 - 58.7 63.0 58.6 55.7 53.5 58.5 37.5 35.1 54.4 59.6 59.0 55.4 48.1 51.7 35.2
de 53.8 55.5 - 59.4 55.9 51.9 50.3 55.3 34.2 32.0 50.8 57.0 55.9 51.2 45.7 48.9 32.7
en 63.6 65.8 64.8 - 67.0 61.0 58.4 65.8 41.1 38.7 59.1 67.6 66.7 58.7 52.8 57.7 38.6
es 57.6 58.2 58.0 65.6 - 56.6 54.2 61.1 38.3 36.4 54.3 59.6 62.6 55.1 47.6 51.3 36.0
fr 57.8 58.3 58.0 62.3 58.9 - 52.7 57.4 39.1 37.7 53.8 58.3 57.9 54.8 47.7 50.4 37.6
id 54.7 52.8 52.8 56.6 53.7 51.0 - 53.1 37.2 35.6 86.4 53.8 53.0 51.3 46.4 48.4 34.9
it 54.1 53.4 54.4 59.4 56.4 51.8 49.2 - 34.4 32.8 49.9 55.1 56.2 50.5 44.0 47.0 33.6
ja 38.2 39.2 38.6 41.9 39.9 40.2 40.7 39.5 - 69.4 40.4 39.5 39.7 37.8 37.3 37.2 52.1
ko 34.4 35.3 34.6 38.2 36.3 36.2 36.8 35.6 66.4 - 36.6 35.6 36.3 34.5 34.2 34.1 46.4
ms 54.5 52.7 52.6 56.2 53.4 50.6 82.5 53.2 36.8 34.9 - 53.6 53.4 51.3 46.7 49.2 34.8
nl 55.1 57.3 58.8 63.2 58.5 54.5 52.4 57.1 36.7 34.1 53.4 - 58.3 53.5 48.7 50.7 35.2
pt 56.8 57.7 57.6 63.8 62.0 55.5 52.7 59.7 37.8 36.4 53.4 58.7 - 54.2 47.1 50.6 35.8
ru 51.4 49.1 50.2 53.3 52.0 48.7 48.6 51.6 31.9 29.5 49.1 50.9 50.5 - 41.8 43.7 30.0
th 53.8 55.0 54.8 58.2 55.8 53.3 55.0 54.8 41.4 39.2 55.4 55.9 55.5 53.0 - 56.0 40.4
vi 53.6 53.6 54.2 57.4 54.2 51.4 52.3 53.3 37.6 35.8 53.3 54.6 54.4 51.7 50.3 - 36.2
zh 32.0 33.0 32.6 34.6 33.2 33.7 34.2 33.2 47.8 43.5 33.9 33.4 32.6 32.2 31.1 29.7 -

Table 2: Baseline BLEU scores for all systems. The figures represent the scores in BLEU percentage
points of the baseline left-to-right decoding systems. Source languages are indicated by the column
headers, the row headers denoting the target languages.

the forward strategy outperformed the contrasting
strategy are shaded in gray. The numbers in the
cells represent the difference in BLEU percentage
points for the systems being compared in that cell.

It is clear from Table 3 that for most of the lan-
guage pairs (67% of them for BLEU, and a simi-
lar percentage for all the other metrics except ME-
TEOR), better evaluation scores were achieved by
using a reverse decoding strategy than a forward
strategy. This is a surprising result because lan-
guage is produced naturally in a forward manner
(by definition), and therefore one might expect this
to also be the optimal direction for word sequence
generation in decoding.

4.1 Word Order Typography

Following (Watanabe and Sumita, 2002), to ex-
plain the effects we observe in our results we look
to the word order typography of the target lan-
guage (Comrie and Vogel, 2000). The word or-
der of a language is defined in terms of the order
in which you would expect to encounter the finite
verb (V) and its arguments, subject (S) and ob-
ject (O). In most languages S precedes O and V.
Whether or not O precedes or follows V defines
the two most prevalent word order types SOV and
SVO (Comrie and Vogel, 2000).

Two of the target languages in this study

(Japanese and Korean) have the SOV word type,
the remainder having the SVO word order type.
In Table 3 looking at the rows for ja and ko we
can see that for both of these languages reverse
decoding outperformed forward decoding in only
4 out of 12 experiments. Furthermore these two
languages were the two languages that benefited
the most (in terms of the number of experimental
cases) from forward decoding. The two languages
also agree on the best decoding direction for 12 of
the 16 language pairs. This apparent correlation
may reflect similarities between the two languages
(word order type, or other common features of the
languages).

Given this evidence, it seems plausible that
word order does account in part for the differences
in performance when decoding in differing direc-
tions, but this can only be part of the explanation
since there are 4 source languages for which re-
verse decoding yielded higher performance.

It should be noted that our results differ from
those of (Watanabe and Sumita, 2002) for En-
glish to Japanese translation, who observed gains
when decoding in the reverse direction for this lan-
guage pair. It is hard to compare our results di-
rectly with theirs however, due to the differences
in the decoders used in the experiments (ours be-
ing phrase-based, and theirs based on the IBM ap-
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ar da de en es fr id it ja ko ms nl pt ru th vi zh
ar - 0.87 0.34 1.30 0.93 1.63 0.66 0.58 0.12 0.36 0.85 0.33 0.88 0.22 1.33 1.04 0.88
da 0.25 - 0.41 0.71 0.56 0.70 1.10 0.31 0.46 0.07 0.96 0.13 0.62 0.17 1.28 0.71 0.29
de 0.41 0.04 - 0.38 0.52 0.15 0.80 0.01 0.47 0.72 0.60 0.25 0.21 0.05 0.47 0.68 0.20
en 0.04 0.05 0.21 - 0.05 0.13 0.58 0.02 0.73 0.35 0.39 0.07 0.52 0.05 0.67 0.63 0.29
es 0.14 0.19 0.05 0.35 - 0.68 0.01 0.08 0.25 0.31 0.25 0.25 0.17 0.07 0.43 0.44 0.78
fr 0.37 0.57 0.38 0.66 0.21 - 0.36 0.28 0.15 0.45 0.22 0.46 0.64 0.10 0.25 0.58 0.31
id 0.16 0.02 0.31 1.45 0.58 0.50 - 0.34 0.03 0.27 0.00 0.42 0.57 0.36 0.53 1.04 0.59
it 0.28 0.72 0.36 0.27 0.08 0.30 0.11 - 0.07 0.12 0.37 0.23 0.05 0.37 0.04 0.63 0.37
ja 0.36 0.22 0.03 0.03 0.22 0.13 0.64 0.36 - 0.21 0.57 0.46 0.08 0.33 0.08 0.83 0.70
ko 0.35 0.01 0.31 0.03 0.12 0.07 0.13 0.21 0.42 - 0.29 0.07 0.42 0.40 0.44 0.62 0.05
ms 0.06 0.49 0.53 1.38 0.99 0.71 0.47 0.34 0.11 0.32 - 0.62 0.27 0.10 0.83 0.99 0.11
nl 0.26 0.03 0.26 0.30 0.20 0.19 0.47 0.23 0.13 0.06 0.06 - 0.08 0.09 0.06 1.00 0.15
pt 0.03 0.34 0.06 0.51 0.07 0.17 0.06 0.18 0.13 0.65 0.08 0.10 - 0.06 0.09 0.85 0.35
ru 0.25 0.58 0.67 0.74 0.01 0.48 0.50 0.27 0.41 0.38 0.13 0.38 0.46 - 0.88 0.56 0.49
th 0.19 0.28 0.21 0.41 0.05 0.23 0.30 0.00 0.34 0.04 0.25 0.07 0.21 0.08 - 0.46 0.25
vi 0.21 0.34 0.24 0.65 0.72 0.34 0.06 0.59 0.24 0.22 0.19 0.12 0.11 0.18 0.63 - 0.15
zh 0.43 0.26 0.42 0.05 0.15 0.31 0.16 0.28 0.00 0.31 0.40 0.14 0.67 0.18 0.39 0.21 -

Table 3: Gains in BLEU score from reverse decoding over a forward decoding strategy The numbers
in the cells are the differences in BLEU percentage points between the systems. Shaded cells indicate
the cases where forward decoding give a higher score. Source languages are indicated by the column
headers, the row headers denoting the target languages.

Metric Bi>For Bi>Rev Rev>For
BLEU 98.90 84.93 67.65
NIST 98.53 78.31 75.00
METEOR 99.63 95.96 50.74
WER 99.26 92.85 66.18
PER 98.53 84.97 70.59
TER 99.63 91.18 68.75

Table 4: Summary of the results using several au-
tomatic metrics for evaluation. Numbers in the ta-
ble correspond to the percentage of experiments
in which the condition at the head of the column
was true (for example figure in the first row and
first column means that for 98.9 percent of the lan-
guage pairs the BLEU score for the bidirectional
decoder was better than that of the forward de-
coder)

proach (Brown et al., 1993)).
The results were the similar in character when

other MT evaluation methods were used. These
results are summarized in Table 3.

4.2 Bidirectional Decoding

Table 5 shows the performance of the bidirectional
decoder relative to a forward decoder. As can be

seen from the table, in 269 out of the 272 experi-
ments the bidirectional decoder outperformed the
unidirectional decoder. The gains ranged from a
maximum of 1.81 BLEU (translating from Thai
to Arabic) points, to a minimum of -0.04 BLEU
points (translating from Indonesian to Japanese)
with the average gain over all experiments being
0.56 BLEU points. It is clear from our experi-
ments that there is much to be gained from decod-
ing bidirectionally. Our results were almost unani-
mously positive, and in all three negative cases the
drop in performance was small.

5 Conclusion
In this paper we have investigated the effects on
phrase-based machine translation performance of
three different decoding strategies: forward, re-
verse and bidirectional. The experiments were
conducted on a large set of source and target lan-
guages consisting of 272 experiments representing
all possible pairings from a set of 17 languages.
These languages were very diverse in character
and included a broad selection of European and
Asian languages. The experimental results re-
vealed that for SVO word order languages it is
usually better to decode in a reverse manner, and in
contrast, for SOV word order languages it is usu-

1130



ar da de en es fr id it ja ko ms nl pt ru th vi zh
ar - 0.66 0.51 1.03 0.65 0.75 0.59 0.47 0.46 0.85 0.59 0.69 0.39 0.30 1.81 1.30 0.85
da 0.27 - 0.61 0.63 0.38 0.60 0.59 0.29 1.04 0.79 0.69 0.45 0.89 0.27 1.28 0.87 0.47
de 0.52 0.51 - 0.54 0.44 0.42 0.70 0.40 0.74 0.45 0.83 0.37 0.28 0.34 0.77 0.90 0.84
en 0.53 0.01 0.32 - 0.23 0.25 0.56 0.19 1.11 0.59 0.28 0.27 0.45 0.60 0.89 0.61 0.58
es 0.28 0.48 0.45 0.56 - 0.43 0.12 0.26 0.57 0.64 0.56 0.06 0.04 0.24 1.16 1.23 0.68
fr 0.70 0.33 0.54 0.66 0.46 - 0.49 0.57 0.24 0.13 0.11 0.43 0.33 0.55 0.91 1.09 0.57
id 0.24 0.32 0.36 0.93 0.70 0.65 - 0.35 0.75 0.77 0.11 0.46 0.69 0.57 0.99 0.85 0.47
it 0.13 0.55 0.32 0.43 0.47 0.51 0.64 - 0.65 0.42 0.77 0.51 0.51 0.69 0.85 0.98 0.58
ja 0.38 0.62 0.60 0.61 0.38 0.73 0.04 0.43 - 0.35 0.05 0.70 0.30 0.38 0.53 0.17 0.02
ko 0.49 0.62 0.90 0.40 0.34 0.57 0.47 0.47 0.02 - 0.23 0.52 0.20 0.83 0.70 0.44 0.83
ms 0.37 0.57 0.63 0.92 0.81 0.75 0.36 0.54 0.70 1.31 - 0.76 0.35 0.51 1.14 0.70 0.35
nl 0.35 0.14 0.54 0.33 0.30 0.46 0.68 0.69 0.77 0.63 0.44 - 0.42 0.67 0.71 1.13 0.55
pt 0.46 0.21 0.37 0.21 0.17 0.49 0.47 0.24 0.88 0.45 0.54 0.39 - 0.41 0.94 1.15 0.90
ru 0.69 0.63 0.69 0.77 0.26 0.50 0.79 0.52 0.69 0.90 0.66 0.69 0.40 - 1.19 1.23 0.47
th 0.90 0.49 0.53 0.77 0.64 0.38 0.21 0.60 0.37 0.96 0.38 0.63 0.68 0.72 - 0.33 0.45
vi 0.64 0.61 0.42 1.09 0.84 0.63 0.34 0.70 0.59 0.39 0.16 0.56 0.36 0.50 0.77 - 0.53
zh 0.23 0.48 0.96 0.33 0.49 0.32 0.27 0.43 0.43 0.69 0.31 0.97 0.85 0.23 0.40 0.50 -

Table 5: Gains in BLEU score from decoding bidirectionally over a forward decoding strategy. The
numbers in the cells are the differences in BLEU percentage points between the systems. Shaded cells
indicate the cases where forward decoding gave a higher score. Source languages are indicated by the
column headers, the row headers denoting the target languages.

ally better to decode in a forward direction. Our
main contribution has been to show that a bidirec-
tional decoding strategy is superior to both mono-
directional decoding strategies. It might be argued
that the gains arise simply from system combina-
tion. However, our systems are combined in a sim-
ple linear fashion, and gains will only arise when
the second system contributes novel and useful in-
formation to into the combination. Furthermore,
our systems are trained on two copies of the same
data, no additional data is required. The gains
from decoding bidirectionally were obtained very
consistently, with only loose constraints on the de-
coding. This can be seen clearly in Table 5 where
the results are almost unanimously positive. More-
over, these gains appear to be independent of the
linguistic characteristics of the source and target
languages.

In the future we would like to explore the pos-
sibilities created by more tightly coupling the for-
ward and reverse components of the bidirectional
decoder. Scores from partial hypotheses of both
processes could be combined and used at each
step of the decoding, making the search more in-
formed. Furthermore, forward partial hypotheses
and reverse hypotheses would ‘meet’ during de-
coding (when one decoding direction has covered

words in the source that the other has yet to cover),
and provide paths for each other to a final state in
the search.
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Abstract

We describe a process for automatically
detecting decision-making sub-dialogues
in multi-party, human-human meetings in
real-time. Our basic approach to decision
detection involves distinguishing between
different utterance types based on the roles
that they play in the formulation of a de-
cision. In this paper, we describe how this
approach can be implemented in real-time,
and show that the resulting system’s per-
formance compares well with other detec-
tors, including an off-line version.

1 Introduction

In collaborative and organized work environ-
ments, people share information and make de-
cisions through multi-party conversations, com-
monly referred to as meetings. The demand for
automatic methods that process, understand and
summarize information contained in audio and
video recordings of meetings is growing rapidly,
as evidenced by on-going projects which are fo-
cused on this goal, (Waibel et al., 2003; Janin et
al., 2004). Our research is part of a general effort
to develop a system that can automatically extract
and summarize information such as conversational
topics, action items, and decisions.

This paper concerns the development of a real-
time decision detector — a system which can de-
tect and summarize decisions as they are made
during a meeting. Such a system could provide
a summary of all of the decisions which have been
made up until the current point in the meeting,
and this is something which we expect will help
users to enjoy more productive meetings. Cer-
tainly, good decision-making relies on access to
relevant information, and decisions made earlier
in a meeting often have a bearing on the current

topic of discussion, and so form part of this rele-
vant information. However, in a long and winding
meeting, participants might not have these earlier
decisions at the forefront of their minds, and so
an accurate and succinct reminder, as provided by
a real-time decision detector, could potentially be
very useful. A record of earlier decisions could
also help users to identify outstanding issues for
discussion, and to therefore make better use of the
remainder of the meeting.

Our approach to decision detection uses an an-
notation scheme which distinguishes between dif-
ferent types of utterance based on the roles which
they play in the decision-making process. Such a
scheme facilitates the detection of decision discus-
sions (Fernández et al., 2008), and by indicating
which utterances contain particular types of infor-
mation, it also aids their summarization. To auto-
matically detect decision discussions, we use what
we refer to as hierarchical classification. Here, in-
dependent binary sub-classifiers detect the differ-
ent decision dialogue acts, and then based on the
sub-classifier hypotheses, a super-classifier deter-
mines which dialogue regions are decision discus-
sions. In this paper then, we address the chal-
lenges for applying this approach in real-time, and
produce a system which is able to detect decisions
soon after they are made, (for example within a
minute). We conduct tests and compare this sys-
tem’s performance with other detectors, including
an off-line equivalent.

The remainder of the paper proceeds as follows.
Section 2 describes related work, and Section 3 de-
scribes our annotation scheme for decision discus-
sions, and our experimental data. Next, Section
4 explains the hierarchical classification approach
in more detail, and Section 5 considers how it can
be applied in real-time. Section 6 describes the
experiments in which we test the real-time detec-
tor, and finally, Section 7 presents conclusions and
ideas for future work.
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2 Related Work

Decisions are one of the most important meet-
ing outputs. User studies (Lisowska et al., 2004;
Banerjee et al., 2005) have confirmed that meeting
participants consider this to be the case, and Whit-
taker et al. (2006) found that the development of
an automatic decision detection component is crit-
ical to the re-use of meeting archives. As a result,
with the new availability of substantial meeting
corpora such as the ISL (Burger et al., 2002), ICSI
(Janin et al., 2004) and AMI (McCowan et al.,
2005) Meeting Corpora, recent years have seen an
increasing amount of research on decision-making
dialogue.

This recent research has tackled issues such
as the automatic detection of agreement and dis-
agreement (Hillard et al., 2003; Galley et al.,
2004), and of the level of involvement of conver-
sational participants (Wrede and Shriberg, 2003;
Gatica-Perez et al., 2005). In addition, Verbree
et al. (2006) created an argumentation scheme in-
tended to support automatic production of argu-
ment structure diagrams from decision-oriented
meeting transcripts. Only very recent research has
specifically investigated the automatic detection of
decisions, namely (Hsueh and Moore, 2007) and
(Fernández et al., 2008).

Hsueh and Moore (2007) used the AMI Meeting
Corpus, and attempted to automatically identify
dialogue acts (DAs) in meeting transcripts which
are “decision-related”. Within any meeting, the
authors decided which DAs were decision-related
based on two different kinds of manually created
summary: the first was an extractive summary of
the whole meeting, and the second, an abstrac-
tive summary of the decisions which were made.
Those DAs in the extractive summary which sup-
port any of the decisions in the abstractive sum-
mary were manually tagged as decision-related.
Hsueh and Moore (2007) then trained a Maxi-
mum Entropy classifier to recognize this single
DA class, using a variety of lexical, prosodic, dia-
logue act and conversational topic features. They
achieved an F-score of 0.35, which gives an indi-
cation of the difficulty of this task.

Unlike Hsueh and Moore (2007), Fernández
et al. (2008) made an attempt at modelling the
structure of decision-making dialogue. They de-
signed an annotation scheme that takes account of
the different roles which different utterances play
in the decision-making process — for example,

their scheme distinguishes between decision DAs
(DDAs) which initiate a discussion by raising a
topic/issue, those which propose a resolution, and
those which express agreement for a proposed res-
olution and cause it to be accepted as a decision.
The authors applied the annotation scheme to a
portion of the AMI corpus, and then took what
they refer to as a hierarchical classification ap-
proach in order to automatically identify decision
discussions and their component DAs. Here, one
binary Support Vector Machine (SVM) per DDA
class hypothesized occurrences of that DDA class,
and then based on the hypotheses of these so-
called sub-classifiers, a super-classifier, (a further
SVM), determined which regions of dialogue rep-
resented decision discussions. This approach pro-
duced better results than the kind of “flat classi-
fication” approach pursued by Hsueh and Moore
(2007) where a single classifier looks for exam-
ples of a single decision-related DA class. Using
manual transcripts, and a variety of lexical, utter-
ance, speaker, DA and prosodic features for the
sub-classifiers, the super-classifier’s F1-score was
0.58 according to a lenient match metric. Note that
(Purver et al., 2007) had previously pursued the
same basic approach as Fernández et al. (2008) in
order to detect action items.

While both Hsueh and Moore (2007), and
Fernández et al. (2008) attempted off-line decision
detection, in this paper, we attempt real-time deci-
sion detection. We take the same basic approach
as Fernández et al. (2008), and make changes to
its implementation so that it can work effectively
in real-time.

3 Data

The AMI corpus (McCowan et al., 2005), is a
freely available corpus of multi-party meetings
containing both audio and video recordings, as
well as a wide range of annotated information
including dialogue acts and topic segmentation.
Conversations are all in English, but participants
can include non-native English speakers. All of
the meetings in our sub-corpus last around 30 min-
utes, and are scenario-driven, wherein four partic-
ipants play different roles in a company’s design
team: project manager, marketing expert, inter-
face designer and industrial designer. The discus-
sions concern how to design a remote control.

We used the off-line version of the Decipher
speech recognition engine (Stolcke et al., 2008) in
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order to obtain off-line ASR transcripts for these
17 meetings, and the real-time version, to ob-
tain real-time ASR transcripts. Decipher gener-
ates the transcripts by first producing Word Con-
fusion Networks (WCNs) and then extracting their
best paths. The real-time recognizer generates
“live” transcripts with 5 to 15 seconds of latency
for immediate display. In processing completed
meetings, the off-line system makes seven recog-
nition passes, including acoustic adaptation and
language model rescoring, in about 4.2 times real-
time (on a 4-score 2.6 GHz Opteron server). In
general usage with multi-party dialogue, the word
error rate (WER) for the off-line version of De-
cipher is approximately 23%, and for the real-
time version, approximately 35%1. Stolcke et al.
(2008) report a WER of 26.9% for the off-line ver-
sion on AMI meetings.

The real-time ASR transcripts for the 17 meet-
ings contain a total of 8440 utterances/dialogue
acts, (around 496 per meeting), and the off-line
ASR transcripts, 7495 utterances/dialogue acts,
(around 441 per meeting).

3.1 Modelling Decision Discussions

We use the same annotation scheme as
(Fernández et al., 2008) in order to model
decision-making dialogue. As stated in Section 2,
this scheme distinguishes between a small number
of dialogue act types based on the role which they
perform in the formulation of a decision. Recall
that using this scheme in conjunction with hierar-
chical classification produced better decision de-
tection than a “flat classification” approach with a
single “decision-related” DA class. Since it indi-
cates which utterances contain particular types of
information, such a scheme also aids the summa-
rization of decision discussions.

The annotation scheme (see Table 1 for a sum-
mary) is based on the observation that a decision
discussion contains the following main structural
components: (a) a topic or issue requiring resolu-
tion is raised, (b) one or more possible resolutions
are considered, (c) a particular resolution is agreed
upon, that is, it becomes the decision. Hence the
scheme distinguishes between three correspond-
ing decision dialogue act (DDA) classes: Issue (I),
Resolution (R), and Agreement (A). Class R is fur-
ther subdivided into Resolution Proposal (RP) and

1This information was obtained through personal commu-
nication.

Resolution Restatement (RR). Note that an utter-
ance can be assigned to more than one of these
DDA classes, and that within a decision discus-
sion, more than one utterance may correspond to a
particular DDA class.

Here we use the sample decision discussion
below in 1 in order to provide examples of the
different DDA types. I utterances introduce the
topic of the decision discussion, examples be-
ing “Are we going to have a backup?” and “But
would a backup really be necessary?” On the
other hand, R utterances specify the resolution
which is ultimately adopted as the decision. RP
utterances propose this resolution (e.g. “I think
maybe we could just go for the kinetic energy. . . ”),
while RR utterances close the discussion by con-
firming/summarizing the decision (e.g. “Okay,
fully kinetic energy”). Finally, A utterances agree
with the proposed resolution, so causing it to be
adopted as the decision, (e.g. “Yeah”, “Good”
and “Okay”.

(1) A: Are we going to have a backup?
Or we do just–

B: But would a backup really be necessary?
A: I think maybe we could just go for the

kinetic energy and be bold and innovative.
C: Yeah.
B: I think– yeah.
A: It could even be one of our selling points.
C: Yeah –laugh–.
D: Environmentally conscious or something.
A: Yeah.
B: Okay, fully kinetic energy.
D: Good.2

3.2 Experimental data for real-time decision
detection

Originally, two individuals used the annotation
scheme described above in order to annotate the
manual transcripts of 9 and 10 meetings respec-
tively. The annotators overlapped on two meet-
ings, and their kappa inter-annotator agreement
ranged from 0.63 to 0.73 for the four DDA classes.
The highest agreement was obtained for class RP,
and the lowest for class A. Although these kappa
values are not extremely high, if we used a single,
less homogeneous “decision-related” DA class
like Hsueh and Moore (2007), then its kappa score

2This example was extracted from the AMI dialogue
ES2015c and has been modified slightly for presentation pur-
poses.
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key DDA class description
I issue utterances introducing the issue or topic under discussion
R resolution utterances containing the resolution adopted as the decision
RP – proposal – utterances where the decision is originally proposed
RR – restatement – utterances where the decision is confirmed or restated
A agreement utterances explicitly signalling agreement with the decision

Table 1: Set of decision dialogue act (DDA) classes

would probably be significantly lower. The de-
cision discussion annotations used by Hsueh and
Moore (2007) are part of the AMI corpus, and are
for the manual transcriptions. The reader can find
a comparison between these annotations and our
own manual transcript annotations in (Fernández
et al., 2008).

After obtaining the new off-line and real-time
ASR transcripts, we transferred the DDA annota-
tions from the manual transcripts. In both sets of
ASR transcripts, each meeting contains on aver-
age around 26 DAs tagged with one or more of the
DDA sub-classes in Table 1. DDAs are thus very
sparse, corresponding to only 5.3% of utterances
in the real-time transcripts, and 6.0% in the off-
line. In the real-time transcripts, Issue utterances
make up less than 1.2% of the total number of ut-
terances in a meeting, while Resolution utterances
are around 1.6%: 1.2% are RP and less than 0.4%
are RR on average. Almost half of DDA utterances
(slightly over 2.6% of all utterances on average)
are tagged as belonging to class Agreement. In the
off-line transcripts, the percentages are fairly sim-
ilar: 1.6% of utterances are Issue DDAs, 2.0% are
RP, 0.5% are RR, and 2.4% are A.

We now move on to describe the hierarchical
classification approach which we use to try to au-
tomatically detect decision sub-dialogues and their
component DDAs.

4 Hierarchical Classification

Hierarchical classification is designed to exploit
the fact that within decision discussions, our
DDAs can be expected to co-occur in particular
types of patterns. It involves two different types of
classifier:

1. Sub-classifier: One independent binary sub-
classifier per DDA class classifies each utter-
ance.

2. Super-classifier: A sliding window shifts
through the meeting one utterance at a time,

and following each shift, a binary super-
classifier determines whether the region of
dialogue within the window is part of a de-
cision discussion.

In our decision detectors, the sub-classifiers run
in parallel in order to reduce processing time.
For each utterance, the sub-classifiers use fea-
tures which are derived from the properties of
that utterance in context. On the other hand,
the super-classifier’s features are the hypothesized
class labels and confidence scores for the utter-
ances within the window. In various experiments,
we have found that a suitable size for the window,
is the average length of a decision discussion in
our data in utterances. The super-classifier also
“corrects” the sub-classifiers. This means that if a
DA is classified as positive by a sub-classifier, but
does not fall within a region classified as part of
a decision discussion by the super-classifier, then
the sub-classifier’s hypothesis is changed to nega-
tive.

We now move on to consider how this basic ap-
proach to decision detection can be implemented
in a real-time system.

5 Design considerations for our real-time
system

A real-time decision detector should detect deci-
sions as soon after they are made as possible. It is
for this reason that we have set our real-time de-
tector to automatically run at frequent and regular
intervals during a meeting. An alternative would
be to give the user (a meeting participant) respon-
sibility for instructing the detector when to run.
However, a user may sometimes leave substantial
gaps between giving run commands. When this
happens, the detector will have to process a large
number of utterances in a single run, and so the
user may wait some time before being presented
with any results. In addition, giving the user re-
sponsibility for instructing the detector when to
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Figure 1: Decision discussion regions hypothesized by
consecutive runs overlap (D1 to D3 and D2 to D4) and so
are merged.

run means burdening the user with an extra task to
perform during the meeting, and this goes against
the general philosophy behind the system’s devel-
opment. The system is intended to be as unobtru-
sive as possible during the meeting, and to relieve
users of tasks which distract their attention away
from the current discussion (e.g. note-taking), not
to create new tasks, however small.

Obviously, on the first occasion that the detector
runs during a meeting, it can only process “new”
(previously unprocessed) utterances, but on sub-
sequent runs, it has the option to reprocess some
number of “old” utterances (utterances which it
has already processed in a previous run). Cer-
tainly, the detector should reprocess some of the
most recent old utterances because it is possible
that a decision discussion straddles these utter-
ances and new utterances. However, the number of
old utterances that are reprocessed should be lim-
ited. If the meeting has lasted a while already, then
the processing of a large portion of the earlier old
utterances is likely to be redundant — it will sim-
ply produce the same results for these utterances
as the previous run.

The fact that the real-time detector processes re-
cent old utterances means that consecutive runs
can produce hypotheses for decision discussion re-
gions which overlap, or which are duplicates. Fig-
ure 1 gives an example of the former. We deal with
overlapping hypotheses by merging them into one,
so forming a larger single decision discussion re-
gion. Figure 2 gives an example of duplicate hy-
potheses. Here, on run n, the detector hypothe-
sizes decision discussion D1 to D2, and then on
run n+1, since the bounds of this original hypoth-
esis are now wholly contained within the region of

Figure 2: Consecutive runs hypothesize the same decision
discussion region D1 to D2, and so one of the duplicates is
discarded.

old reprocessed utterances, the detector hypothe-
sizes a duplicate. We deal with such cases by dis-
carding the duplicate.

6 Experiments

We conducted various experiments related to real-
time decision detection, our goal being to produce
a system which:

• relative to alternative versions, detects deci-
sion discussions accurately,

• generates results for any portion of dialogue
very soon after that portion of dialogue has
ended.

The current version of our real-time detector is set
to process the same number of old and new utter-
ances on each run. Here, we refer to this value as i,
and hence on each run the system processes a total
of 2i utterances (i old and i new). Another of the
system’s characteristics is that runs take place ev-
ery i utterances, meaning that as we decrease i, the
system provides new results more frequently and
is hence “more real-time”. One of the things we
investigate here then, is what to set i to in order
to best satisfy the two design goals given above.
Having found this value, we compare the hierar-
chical real-time detector’s performance with alter-
native detectors, these being:

• an off-line detector applied to off-line ASR
transcripts,

• a flat real-time detector,

• an off-line detector applied to the real-time
ASR transcripts.
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Lexical unigrams after text normalization
Utterance length in words, duration in

word rate
Speaker speaker ID & AMI speaker role
Context features as above for utterances

u +/- 1. . .u +/- 5

Table 2: Features for decision DA detection

Note that the off-line detectors use hierarchical
classification, and that the flat real-time detec-
tor uses a single binary classifier which treats all
DDAs as members of a single merged DDA class.

6.1 Classifiers and features

All classifiers (sub and super-classifiers) in all de-
tectors are linear-kernel Support Vector Machines
(SVMs), produced using SVMlight (Joachims,
1999). For the sub-classifiers, we are obviously re-
stricted to using features which can be computed
in a very short period of time, and in the experi-
ments here, we use lexical, utterance and speaker
features. These are summarized in Table 2. An
utterance’s lexical features are the words in its
transcription, its utterance features are its dura-
tion, number of words, and word rate (number of
words divided by duration), and its speaker fea-
tures are the speaker’s role (see Section 3) and ID.
We also use lexical features for the previous and
where available, next utterances: the I, RP and RR
sub-classifiers use the lexical features for the pre-
vious/next utterance and the A sub-classifier, those
from the previous/next 5 utterances. These set-
tings produced the best results in preliminary ex-
periments. We do not use DA features because
we lack an automatic DA tagger, nor do we use
prosodic features because (Fernández et al., 2008)
was unable to derive any value from them with
SVMs.

6.2 Evaluation

We evaluate each of our decision detectors in 17-
fold cross validations, where in each fold, the de-
tector trains on 16 meetings and then tests on the
remaining one. Evaluation can be made at three
levels:

1. The sub-classifiers’ detection of each of the
DDA classes.

2. The sub-classifiers’ detection of each of the
DDA classes after correction by the super-
classifier.

Figure 3: The relationship between the number of old/new
utterances processed in a single run, and the super-classifier’s
F1-score. Here the sub-classifiers use only lexical features.

3. The super-classifier’s detection of decision
discussion regions.

For 1 and 2, we use the same lenient-match met-
ric as (Fernández et al., 2008; Hsueh and Moore,
2007), which allows a margin of 20 seconds pre-
ceding and following a hypothesized DDA. Note
that here we only give credit for hypotheses based
on a 1-1 mapping with the gold-standard labels.
For 3, we follow (Fernández et al., 2008; Purver et
al., 2007) and use a windowed metric that divides
the dialogue into 30-second windows and evalu-
ates on a per window basis.

6.3 Results and analysis

Here, Section 6.3.1 will present results for differ-
ent values of i, the number of old/new utterances
processed in a single run. Section 6.3.2 then com-
pares the performance of the real-time and off-line
systems, (and also real-time systems which use hi-
erarchical vs. flat classification), and Section 6.3.3
presents some feature analysis.

6.3.1 Varying the number of old/new
utterances processed in a run

Figure 3 shows the relationship between i, the set-
ting for the number of old/new utterances pro-
cessed in a single run, and the super-classifier’s
F1-score. Here, the sub-classifiers are using only
lexical features. We can see from the graph that
as i increases to 15, the super-classifier’s F1-score
also increases, but thereafter, it plateaus. Hence
15 is apparently the value which best satisfies the
two design goals given at the start of Section 6.
It should also be noted that 15 is the mean length
of a decision discussion in our data, and so per-
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sub-classifiers super
I RP RR A classifier

Re .73 .73 .84 .71 .82
Pr .08 .09 .03 .15 .40
F1 .15 .16 .06 .25 .54

Table 3: Results for the hierarchical real-time
decision detector, using lexical, utterance and
speaker features.

sub-classifiers super
I RP RR A classifier

Re .51 .51 .10 .63 .83
Pr .12 .11 .04 .15 .41
F1 .19 .19 .05 .24 .55

Table 4: Results for the hierarchical off-line de-
cision detector on off-line ASR transcripts, using
lexical, utterance and speaker features.

haps this is a transferable finding. The mean du-
ration of a run when i = 15 is approximately 4
seconds, while the mean duration of 15 utterances
in our data-set is approximately 60 seconds, mean-
ing that for the average case, the detector returns
the results for the current run, long before it is
due to make the next. Significant lee-way is per-
haps necessary here, because the final version of
the real-time detector will include a summariza-
tion component which extracts key phrases from
Issue/Resolution utterances, and its processing can
last some time, even for a single decision.

We should say then, that the system is not
strictly real-time because in general, it detects de-
cisions soon after they are made (for example
within a minute), rather than immediately after. In
the future we intend to modify the system so that
it can run more frequently than once every i ut-
terances. However it is important that runs do not
occur too frequently — for example, if i = 15 and
the system runs after every utterance, then the ex-
tra processing will cause it to gradually fall further
and further behind the meeting.

6.3.2 Real-time vs. off-line results
Table 3 shows the results achieved by a hierarchi-
cal real-time decision detector whose run settings
are as described above, and whose sub-classifiers3

use lexical, utterance and speaker features. These
results compare well with those of an equivalent

3In Tables 3 to 6, sub-classifier results are post-correction
(see Section 6.2).

sub-classifiers super
I RP RR A classifier

Re .50 .51 .09 .63 .83
Pr .11 .11 .03 .14 .41
F1 .19 .18 .05 .23 .55

Table 5: Results for the hierarchical off-line de-
tector on real-time ASR transcripts, using lexical,
utterance and speaker features.

sub-classifiers super
I RP RR A classifier

Re .67 .74 .84 .66 .85
Pr .07 .08 .03 .14 .41
F1 .13 .15 .05 .24 .55

Table 6: Results for the hierarchical real-time de-
cision detector, using lexical features only.

off-line detector, which are shown in Table 4. The
F1-scores for the real-time and off-line decision
super-classifiers are .54 and .55 respectively, and
the difference is not statistically significant. This
may indicate that the hierarchical classification ap-
proach is fairly robust to increasing ASR Word
Error Rates (WERs). Combining the output from
each of the independent sub-classifiers might com-
pensate somewhat for any decreases in their indi-
vidual accuracy, as there was here for the I and RP
sub-classifiers.

The hierarchical real-time detector’s F1-score is
also 10 points higher than a flat classifier (.54 vs.
.44). Hence, while Fernández et al. (2008) demon-
strated that the hierarchical classification approach
could improve off-line decision detection, we have
demonstrated here that it can also improve real-
time decision detection.

Table 5 shows the results when an off-line
detector is applied to real-time ASR transcripts.
Here, the super-classifier obtains an F1-score of
.55, one point higher than the real-time detector,
but again, the difference is not statistically signifi-
cant.

6.3.3 Feature analysis
We also investigated the contribution of the ut-
terance and speaker features. Table 6 shows the
results for the hierarchical real-time decision de-
tector when its sub-classifiers use only lexical fea-
tures. The sub-classifier F1-scores are all slightly
lower than when utterance and speaker features
are used (see Table 3), and the super-classifier
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score is only 1 point different. None of these dif-
ferences are statistically significant.

Since lexical features are important, we used in-
formation gain in order to investigate which words
are predictive of each DDA type. Due to differ-
ences in the transcripts, the predictive words for
the off-line and real-time systems are not the same,
but we can find commonalities, and these com-
monalities make sense given the DDA definitions.
Firstly in Resolution and particularly Issue DAs,
some of the most predictive words could be used
to define discussion topics, and so we might ex-
pect to find them in the meeting agenda. Exam-
ples are “energy”, and “color”. Predictive words
for Resolutions also include semantically-related
words which are key in defining the decision (“ki-
netic”,“green”). Additional predictive words for
RPs are the personal pronouns “I” and “we”,
and the verbs, “think” and “like”, and for RRs,
words which we would associate with summing
up (“consensus”, “definitely”, and “okay”). Un-
surprisingly, for Agreements, “yeah” and “okay”
both score very highly.

7 Conclusion

(Fernández et al., 2008) described an approach
to decision detection in multi-party meetings and
demonstrated how it could work relatively well in
an off-line system. The approach has two defining
characteristics. The first is its use of an annota-
tion scheme which distinguishes between differ-
ent utterance types based on the roles which they
play in the decision-making process. The second
is its use of hierarchical classification, whereby
binary sub-classifiers detect instances of each of
the decision DAs (DDAs), and then based on the
sub-classifier hypotheses, a super-classifier deter-
mines which regions of dialogue are decision dis-
cussions.

In this paper then, we have taken the same ba-
sic approach to decision detection as Fernández et
al. (2008), but changed the way in which it is im-
plemented so that it can work effectively in real-
time. Our implementation changes include run-
ning the detector at regular and frequent intervals
during the meeting, and reprocessing recent utter-
ances in case a decision discussion straddles these
and brand new utterances. The fact that the de-
tector reprocesses utterances means that on con-
secutive runs, overlapping and duplicate hypothe-
sized decision discussions are possible. We have

therefore added facilities to merge overlapping hy-
potheses and to remove duplicates.

In general, the resulting system is able to detect
decisions soon after they are made (for example
within a minute), rather than immediately after. It
has performed well in testing, achieving an F1-
score of .54, which is only one point lower than
an equivalent off-line system, and in any case, the
difference was not statistically significant. A flat
real-time detector achieved .44.

In future work, we plan to extend the decision
discussion annotation scheme and try to extract
supporting arguments for decisions. We will also
experiment with using sequential models in order
to try to exploit any sequential ordering patterns in
the occurrence of the DDAs.
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Abstract

We use the technique of SVM anchoring to
demonstrate that lexical features extracted
from a training corpus are not necessary to
obtain state of the art results on tasks such
as Named Entity Recognition and Chunk-
ing. While standard models require as
many as 100K distinct features, we derive
models with as little as 1K features that
perform as well or better on different do-
mains. These robust reduced models in-
dicate that the way rare lexical features
contribute to classification in NLP is not
fully understood. Contrastive error analy-
sis (with and without lexical features) in-
dicates that lexical features do contribute
to resolving some semantic and complex
syntactic ambiguities – but we find this
contribution does not generalize outside
the training corpus. As a general strat-
egy, we believe lexical features should not
be directly derived from a training corpus
but instead, carefully inferred and selected
from other sources.

1 Introduction

Common NLP tasks, such as Named Entity
Recognition and Chunking, involve the identifi-
cation of spans of words belonging to the same
phrase. These tasks are traditionally reduced to
a tagging task, in which each word is to be clas-
sified as either Beginning a span, Inside a span,
or Outside of a span. The decision is based on
the word to be classified and its neighbors. Fea-
tures supporting the classification usually include

∗Supported by the Lynn and William Frankel Center for
Computer Sciences, Ben Gurion University

the word forms themselves and properties derived
from the word forms, such as prefixes, suffixes,
capitalization information, and parts-of-speech.
While early approaches to the NP-chunking task
(Cardie and Pierce, 1998) relied on part-of-speech
information alone, it is widely accepted that lexi-
cal information (word forms) is crucial for build-
ing accurate systems for these tasks. Indeed,
all the better-performing systems in the CoNLL
shared tasks competitions for Chunking (Sang and
Buchholz, 2000) and Named Entity Recognition
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003) make extensive use of such
lexical information.

Is this belief justified? In this paper, we show
that the influence of lexical features on such se-
quence labeling tasks is more complex than is gen-
erally assumed. We find that exact word forms
aren’t necessary for accurate classification. This
observation is important because relying on the
exact word forms that appear in a training corpus
leads to over-fitting, as well as to larger models.

In this work, we focus on learning with Support
Vector Machines (SVMs) (Vapnik, 1995). SVM
classifiers can handle very large feature spaces,
and produce state-of-the-art results for NLP ap-
plications (see e.g. (Kudo and Matsumoto, 2000;
Nivre et al., 2006)). Alas, when trained on pruned
feature sets, in which rare lexical items are re-
moved, SVM models suffer a loss in classifica-
tion accuracy. It would seem that rare lexical
items are indeed crucial for SVM classification
performance. However, in Goldberg and Elhadad
(2007), we suggested that the SVM learner is us-
ing the rare lexical features for singling out hard
cases rather than for learning meaningful general-
izations. We provide further evidence to support
this claim in this paper.
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We show that by using a variant of SVM –
Anchored SVM Learning (Goldberg and Elhadad,
2007) with a polynomial kernel, one can learn
accurate models for English NP-chunking (Mar-
cus and Ramshaw, 1995), base-phrase chunking
(CoNLL 2000), and Dutch Named Entity Recog-
nition (CoNLL 2002), on a heavily pruned feature
space. Our models make use of only a fraction
of the lexical features available in the training set
(less than 1%), and yet provide highly-competitive
accuracies.

For the Chunking and NP-Chunking tasks, the
most heavily pruned experiments, in which we
consider only features appearing at least 100 times
in the training corpus, do show a small but signif-
icant drop in accuracy on the testing corpus com-
pared to the non-pruned models exposed to all
available features in the training data. We pro-
vide detailed error analysis of a development set
in Section 6, revealing the causes for these differ-
ences. We suggest one additional binary feature
in order to account for some of the performance
gap. Moreover, we show that the differences in
accuracy vanish when the lexicalized and unlexi-
calized models are tested on text from slightly dif-
ferent sources than the training corpus (Section 7).

This goes to show that with an appropriate
learning method, orthographic and structural (in
the form of POS tag sequences) information is suf-
ficient for achieving state-of-the-art performance
on these kind of sequence labeling tasks. This
does not mean semantic information is not needed
for these tasks. It does mean that current models
capture only a tiny amount of such semantic in-
formation through rare lexical features, and in a
manner that does not generalize well.

We believe this data motivates a different strat-
egy to incorporate lexical features into classifica-
tion models: instead of collecting the raw lexical
forms appearing in a training corpus, we should at-
tempt to actively construct a feature space includ-
ing lexical features derived from external sources.
The feature representation of (Collobert and We-
ston, 2008) could be a step in that direction. We
also believe that hard cases for sequence labeling
(POS ambiguity, coordination, long syntactic con-
structs) could be directly approached with special-
ized classifiers.

1.1 Related Work
This work complements a similar line of results
from the parsing literature. While it was ini-

tially believed that lexicalization of PCFG parsers
(Collins, 1997; Charniak, 2000) is crucial for
obtaining good parsing results, Gildea (2001)
demonstrated that the lexicalized Model-1 parser
of Collins (1997) does not benefit from bilexical
information when tested on a new text domain,
and only marginally benefits from such informa-
tion when tested on the same text domain as the
training corpora. This was followed by (Bikel,
2004) who showed that bilexical-information is
used in only 1.49% of the decisions in Collins’
Model-2 parser, and that removing this informa-
tion results in “an exceedingly small drop in per-
formance”. However, uni-lexical information was
still considered crucial. Klein and Manning (2003)
bridged the gap between lexicalized and unlexi-
calized parsing performance, providing a compet-
itive unlexicalized parsing model, relying on lex-
ical information for only a few closed-class lex-
ical items. This was recently followed by (Mat-
suzaki et al., 2005; Petrov et al., 2006) who intro-
duce state-of-the-art nearly unlexicalized PCFG
parsers.

Similarly for discriminative dependency pars-
ing, state-of-the-art parsers (McDonald, 2006;
Nivre et al., 2006) are highly lexicalized. How-
ever, the model analysis in (McDonald, 2006)
reveals that bilexical features hardly contribute
to the performance of a discriminative MST-
based dependency parser, while Kawahara and
Uchimoto (2007) demonstrate that minimally-
lexicalized shift-reduce based dependency parsers
can produce near state-of-the-art accuracy.

In this work, we address the same question of
determining the impact of lexical features on a dif-
ferent family of tasks: sequence labeling, as illus-
trated by named entity recognition and chunking.
As discussed above, all state-of-the-art published
methods rely on lexical features for such tasks
(Zhang et al., 2001; Sha and Pereira, 2003; Finkel
et al., 2005; Ratinov and Roth, 2009). Sequence
labeling includes both a structural aspect (bracket-
ing the chunks) and a tagging aspect (classifying
the chunks). While we expect the structural aspect
can benefit from techniques similar to those used
in the parsing literature, it is unclear whether the
tagging component could perform well without
detailed lexical information. We demonstrate in
this work that, indeed, lexical features are not nec-
essary to obtain competitive performance. Our ap-
proach consists in performing a detailed analysis
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of the role played by rare lexical features in SVM
models. We distinguish the information brought to
the model by such features from the role they play
in a specific learning method.

2 Learning with Less Features

We adopt the common feature representation in
which each data-point is represented as a sparse
D dimensional binary-valued vector f . Each of
the D possible features fi is an indicator func-
tion. The indicator functions look at properties of
the current or neighbouring words. An example
of such function fi is 1 iff the previous
word-form is DOG, 0 otherwise. The
lexical (word-form) features result in extremely
high-dimensional (yet very sparse) feature vectors
– each word-form in the vocabulary of the training
set correspond to (at-least) one indicator function.

Due to the Zipfian distribution of language data,
many of the lexical features are very rare, and ap-
pear only a couple times in the training set. Ide-
ally, we would like our classifiers to learn only
from robust features: consider only features that
appear at least k times in the training data (rare-
feature pruning). These features are more likely to
appear in unseen test data, and thus such features
can support more robust generalization.

However, we find empirically that performing
such feature pruning prior to learning SVM mod-
els hurts the performance of the learned models.
Our intuition is that this sensitivity to rare lexi-
cal features is not explained by the richness of in-
formation such rare features bring to the model.
Instead, we believe that rare lexical features help
the classifier because they make the data artifi-
cially more separable. To demonstrate this claim,
we experiment with anchored SVM, which intro-
duces artificial mechanical anchors into the model
to achieve separability, and make rare lexical fea-
tures unnecessary.

3 Learning Method

SVM are discriminative, max-margin, linear clas-
sifiers (Vapnik, 1995), which can be kernelized.
For the formulation of SVMs in the context of
NLP applications, see (Kudo and Matsumoto,
2001). SVMs with a polynomial kernel of degree
2 were shown to provide state-of-the-art perfor-
mance in many NLP application, see for example
(Kudo and Matsumoto, 2000; Nivre et al., 2006;
Isozaki and Kazawa, 2002; Goldberg et al., 2006).

SVMs cope with inseparable data by introduc-
ing a soft-margin – allowing some of the training
instances to be classified incorrectly subject to a
penalty, controlled by a parameter C.

Anchored SVM As we show in Section 5, the
soft-margin heuristic performs sub-optimally for
NLP tasks when the data is inseparable. We use in-
stead the Anchored Learning heuristic, introduced
in (Goldberg and Elhadad, 2007). The idea behind
anchored learning is that some training instances
are inherently ambiguous. This ambiguity stems
from ambiguity in language structure, which can-
not be resolved with a given feature representa-
tion. When a data-point cannot be classified, it
might be due to missing information, which is not
available in the data representation. Instead of al-
lowing ambiguous items to be misclassified during
training, we make the training data artificially sep-
arable. This is achieved by adding a unique feature
to each training example (an anchor). These an-
chor features cause each data-point to be slightly
more similar to itself than to any other data point.
At test time, we remove anchor features.
In terms of kernel-based learning, anchored learn-
ing can be achieved by redefining the dot product
between two vectors to take into account the iden-
tity of the vectors: xi ·anc xj = xi · xj + δij .

The classifier learned over the anchored data
takes into account the fine interactions between
the various inseparable data points. In our ex-
periments, SVM models over anchored data have
many more support vectors than soft-margin SVM
models. However, the anchored models generalize
much better when less features are available.

Relation to L2 SVM The classic soft-margin
SVM formulation uses L1-penalty for misclassi-
fied instances. Specifically, the objective of the
learner is to minimize 1

2 ||w||2 + C
∑
i ξi subject

to some margin constraints, where w is a weight
vector to be learned and ξi is the misclassification
error for instance i. This is equivalent to maximiz-
ing the dual problem:∑M
i=1 αi − 1

2

∑
i,j αiαjyiyjK(xi, xj)

Another variant is L2-penalty SVM (Koshiba
and Abe, 2003), in which there is a quadratic
penalty for misclassified instances.
Here, the learning objective is to minimize:
1
2 ||w||2 + 1

2C
∑
i ξ

2
i or alternatively maximize the

dual:
∑
i αi − 1

2

∑
i,j αiαjyiyj(K(xi, xj) + δij

C ).
Interestingly, for the linear kernel, SVM-
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anchoring reduces to L2-SVM with C=1. How-
ever, for the case of non-linear kernels, anchored
and L2-SVM produce different results, as the an-
choring is applied prior to the kernel expansion.
Specifically for the case of the second-degree
polynomial kernel, L2-SVM aims to maximize:∑

i αi − 1
2

∑
i,j αiαjyiyj((xi · xj + 1)2 + δij

C ),
while the anchored-SVM variant would maxi-

mizes:
∑
i αi− 1

2

∑
i,j αiαjyiyj(xi ·xj+δij+1)2.

In our experiments, as discussed in Section
5.4, we find that anchored-SVM and soft-margin
SVM with tuned C value both reach good re-
sults when we reduce the amount of lexical fea-
tures. Anchored-SVM, however, does not require
fine-tuning of the error-parameter C since it in-
sures separability. As a result, we learn anchored-
SVM models quickly (few hours) as opposed to
several days per model for C-tuned soft-margin
SVM. Anchored-SVMs also provide an easy ex-
planation of the role of features in terms of sepa-
rability. Therefore, we use anchored-SVMs in our
experiments as the learning method, but we expect
that other learning methods are capable of learning
with the same reduced feature sets.

4 Experiment Setup

How important are the rare lexical features for
learning accurate NLP models? To investigate
this question, we experiment with 3 different NLP
sequence-labeling tasks. For each task, we train a
sequence of polynomial kernel (d=2) SVM classi-
fiers, using both soft-margin (C=1) and anchored
SVM. Each classifier is trained on a pruned fea-
ture set, in which only features appearing at least
k times in the training data are kept. We vary the
pruning parameter k. Pruning is performed over
all the features in the model, but lexical features
are most affected by it.

For all the models, we use the B-I-O represen-
tation, and perform multiclass classification using
pairwise-voting. For our features, we consider
properties of tokens in a 5-token window centered
around the token to be classified, as well as the
two previous classifier predictions. Results are re-
ported as F-measure over labeled identified spans.
Polynomial vs. Linear models The polynomial
kernel of degree 2 allows us to efficiently and im-
plicitly include in our models all feature pairs.
Syntactic structure information as captured by
pairs of POS-tags and Word-POS pairs is certainly
important for such syntactic tasks as Chunking

and NER, as demonstrated by the many systems
described in (Sang and Buchholz, 2000; Tjong
Kim Sang, 2002). By using the polynomial ker-
nel, we can easily make use of this information
without intensive feature-tuning for the most suc-
cessful feature pairs.
L1-SVM, L2-SVM and the choice of the C pa-
rameter Throughout our experiments, we use the
“standard” variant of SVM, L1-penalty soft mar-
gin SVM, as implemented by the TinySVM1 soft-
ware package, with the default C value of 1. This
setting is shown to produce good results for se-
quence labeling tasks in previous work (Kudo and
Matsumoto, 2000), and is what most end-users of
SVM classifiers are likely to use. As we show
in Sect.5.4, fine-tuning the C parameter reaches
better accuracy than L1-SVM with C=1. How-
ever, as this fine-tuning is computationally expen-
sive, we first report the comparison L1-SVM/C=1
vs. anchored-SVM, which consistently reached
the best results, and was the quickest to train.
Feature Pruning vs. Feature Selection Our aim
in this set of experiments is not to find the optimal
set of lexical features, but rather to demonstrate
that most lexical items are not needed for accurate
classification in sequence labeling tasks. To this
end, we perform very crude frequency based fea-
ture pruning. We believe better motivated feature
selection technique taking into account linguistic
(e.g. prune only open-class words) or statistic in-
formation could result in slightly more accurate
models with even fewer lexical items.

5 Experiments and Results

5.1 Named Entity Recognition (NER)
We use the Dutch data set from the CoNLL 2002
shared task (Tjong Kim Sang, 2002). The aim is to
identify named entities (persons, locations, orga-
nizations and miscellaneous) in text. The task has
two stages: identification of the entities, and clas-
sification of the identified entities into their corre-
sponding types. We focus here on the identifica-
tion task.
Features: We use the following properties for
each of the relevant tokens: word-form, POS,
ORT, prefix1, prefix2, prefix3, suffix1, suffix2,
suffix3. The ORT feature can take one of the fol-
lowing values: {number, contains-digit, contains-
hyphen, capitalized, all-capitalized, URL, punctu-
ation, regular}.

1http://chasen.org/∼taku/software/TinySVM/
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PRUNING #FEATURES SOFT-MARGIN ANCHORED

0 186,421 90.92 90.78
100 5,804 90.73 90.75

1000 1,207 88.56 90.10
1500 821 85.92 89.29

Table 1: Named Entity Identification results (F-
score) on dev set, with various pruning thresholds.

Results are presented in Table 1. Without fea-
ture pruning, we achieve an F-score of 90.9. This
dataset proved to be quite resilient to feature prun-
ing. Pruning features appearing less than 100
times results in just a slight decrease in F-score.
Extremely aggressive pruning, keeping only fea-
tures appearing more than 1,000 or 1,500 times in
the training data, results in a big drop in F-score
for the soft-margin SVM (from about 91 to 86).
Much less so for the Anchored-SVM. Using An-
chored SVM we achieve an F-score of 90.1 after
pruning with k = 1, 000. This model has 1207 ac-
tive features, and 27 unique active lexical forms.

5.2 NP Chunking
The goal of this task (Marcus and Ramshaw, 1995)
is the identification of non-recursive NPs. We use
the data from the CoNLL 2000 shared task: NP
chunks are extracted from Sections 15-18 (train)
and 20 (test) of the Penn WSJ corpus. POS tagged
are automatically assigned by the Brill Tagger.
Features: We consider the POS and word-form of
each token.

PRUNING #FEATURES SOFT-MARGIN ANCHORED

0 92,805 94.12 94.08
1 46,527 93.78 94.09
2 32,583 93.58 94.00
5 18,092 93.42 94.01

10 10,812 93.00 93.98
20 5,952 92.48 93.92
50 2,436 92.33 93.96

100 1,168 91.94 93.83

Table 2: NP-Chunking results (F-score), with var-
ious pruning thresholds.

Results are presented in Table 2. Without fea-
ture pruning (k = 0), the soft-margin SVM per-
forms slightly better than the Anchored-SVM. Ei-
ther of the results are state-of-the-art for this task.
However, even modest pruning (k = 2) hurts
the soft-margin model significantly. Not so for
the anchored-SVM. Even with relatively aggres-
sive pruning (k = 100), the anchored model still
achieves an impressive F-score of 93.83. Remark-

ably, in that last model, there are only 1,168 active
features, and only 209 unique active lexical forms.

5.3 Chunking

The goal of the Chunking task (Sang and Buch-
holz, 2000) is the identification of an assortment
of linguistic base-phrases. We use the data from
the CoNLL 2000 shared task.
Features: We perform two experiments. In the
first experiment, we consider the POS and word-
form of each token. In this setting, feature pruning
resulted in a bigger loss in performance than in
the two previous tasks. Preliminary error analysis
revealed that many errors are due to tagger errors,
especially of the present participle forms. This led
us to the second experiment, in which we added as
features the 2- and 3- letter suffixes for the word to
be classified (but not for the surrounding words).
Results are presented in Tables 3 and 4. In the
first experiment (POS + Word), the non-pruned
soft-margin model is the same system as the top-
performing system in the original shared task,
and yields state-of-the-art results. Unlike the NP-
chunking case, here feature pruning has a rela-
tively large impact on the results even for the an-
chored models. However, the anchored models
are still far more robust than the soft-margin ones.
With k = 100 pruning, the soft-margin model suf-
fers a drop of 2.5 F points, while the anchored
model suffers a drop of only 0.84 F points. Even
after this drop, the anchored k = 100 model still
performs above the top-third system in the CoNLL
2000 shared task. This anchored k = 100 model
has 1,180 active features, and only 209 unique ac-
tive lexical features.

The second experiment (POS + word-form +
suffixes for main word) adds crude morphological
information to the learner, helping it to avoid com-
mon tagger mistakes. This additional information
is helpful: pruning with k = 100 leads to an ac-
curate anchored model (93.12 F) with only 209
unique lexical items. Note that with the addition
of the suffix features, the pruned model k = 20
beats the purely lexical model (no suffix features)
with no pruning (93.51 vs. 93.44) with 10 times
less features. When we combine suffixes and all
lexical forms, we still see a slight advantage to
the lexical model (93.73 vs. 93.12 with pruning
at k = 100).

Even less lexicalization How robust are the suf-
fixes? We performed a third experiment, in which
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PRUNING #FEATURES SOFT-MARGIN ANCHORED

0 92,837 93.44 93.40
1 46,557 93.20 93.32
2 32,614 93.10 93.31
5 18,126 92.89 93.29

10 10,834 92.73 93.23
20 5,975 92.18 93.16
50 2,463 91.80 92.89

100 1,180 90.94 92.56

Table 3: Chunking results (F), with various prun-
ing thresholds. Experiment 1. Features: POS,
Word.

PRUNING #FEATURES SOFT-MARGIN ANCHORED

0 104,304 93.73 93.69
1 72,228 93.56 93.68
2 57,578 93.50 93.64
5 37,210 93.35 93.62

10 23,968 93.26 93.56
20 14,060 92.84 93.51
50 6,326 92.28 93.37

100 3,340 91.83 93.12

Table 4: Chunking results (F), with various prun-
ing thresholds. Experiment 2. Features: POS,
Word, {Suff2, Suff3} of main Word.

we replaced any explicit word-forms by 2- and 3-
letter suffixes. This gives us the complete word
form of many function words, and a reasonable
amount of morphological marking. Results are
presented in Table 5. Surprisingly, this infor-
mation proves to be quite robust. Without fea-
ture pruning, both the anchored and soft-margin
model achieve near state-of-the-art performance
of 93.25F. Pruning with k = 100 hurts the re-
sult of the soft-margin model, but the anchored
model remains robust with an F-score of 93.18.
This last model has 2,563 active features. With
further pruning (k = 250), the result of the an-
chored model drops to 92.87F (still 3rd place in
the CoNLL shared task), with only 1,508 active
features in the model.

5.4 Fine-tuned soft-margin SVMs

For the sake of completeness, and to serve as a bet-
ter comparison to the soft-margin SVM, we report
results of some experiments with both L1 and L2
SVMs, with tuned C values. NP-chunking perfor-
mance with tuned C values and various pruning
thresholds is presented in Table 6.

For these results, the C parameter was tuned
on a development set using Brent’s 1-dimension
minimization method (Brent, 1973). While tak-
ing about 40 hours of computation to fit, the fi-

PRUNING #FEATURES SOFT-MARGIN ANCHORED

0 19,910 93.25 93.23
100 2,563 92.87 93.18
250 1,508 92.40 92.87

Table 5: Chunking results (F), with various prun-
ing thresholds. Experiment 3. Features: POS ,
Suff2, Suff3 .

K L1 (C) L2 (C) ANCHORED

0 94.12 (1.0001) 94.09 (2.6128) 94.08
50 93.79 (0.0524) 93.71 (0.0082) 93.96

100 93.72 (0.0567) 93.59 (0.0072) 93.83

Table 6: NP-Chunking results (F), with various
pruning thresholds K, for L1 and L2 SVMs with
tuned C values

nal results catch up with those of the anchored-
SVM but still remain slightly lower. This further
highlights our main point: accurate models can
be achieved also with mostly unlexicalized mod-
els, and the lexical features do not contribute sub-
stantial semantic information, but rather affect the
separability of the data. This is nicely demon-
strated by SVM-anchoring, in which lexical infor-
mation is practically replaced by artificial seman-
tically void indexes, but similar performance can
also be achieved by fine-tuning other learning pa-
rameters.

6 Error Analysis
Our experiments so far indicate that very aggres-
sive feature pruning hurts performance slightly (by
about 0.5F point). The feature-pruned models are
still accurate, indicating that lexical features con-
tribute little to the classification accuracy. We now
investigate the differences between the lexicalized
and pruned models, in order to characterize the
kind of information that is available to the lexi-
calized models but missing from the pruned ones.
In the next section, we also verify that pruned-
models are more stable than the fully lexicalized
ones when tested over different text genres and do-
mains.
We focus our analysis on the chunking task, which
is a superset of the NP-chunking task. We compare
the fully lexicalized soft-margin SVM model with
the POS+suffix2+suffix3 anchored-SVM model
with k = 100 pruning. We analyze the mod-
els’ respective performance on section 05 of the
WSJ corpus. This dataset is different than the of-
ficial test set. It is, however, part of the same an-
notated corpus as both the training and test sets.
On this dataset, the fully lexicalized SVM model
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achieves an F-score of 93.24, vs. 92.59 for the
suffix-based pruned anchored-SVM model. (The
pruned anchored-SVM model (k = 100) from ex-
periment 2, achieve a slightly higher F-score of
92.84)

We investigate only those chunks which are
identified correctly by one model but not by the
other. Overall, there are 440 chunks (363 unique)
which are identified correctly only by the lexical-
ized model, and 258 chunks (232 unique) only by
the pruned model.
Where the pruned model is always wrong
Some errors are unique to the pruned model.

Over 45 of the cases that are identified correctly
only in the lexicalized model (more than 10%) are
due to the words “including” (18 cases) and “If”
(9 cases), as well as other -ing forms such as “fol-
lowing”, “according”, “rising” and “suspecting.”

The word “including” appears 80 times in the
training data, always tagged as VBG and func-
tioning as a PP chunk, which is an odd chunk
for VBGs. The lexicalized model easily picked
up on this behaviour, while the pruned model
couldn’t. Similarly, the word “following/VBG”
appears 32 times, 20 of which as PP, and the
word “according/VBG” 53 times, all of them as
PP. The pruned model could not distinguish those
from the rest of the VBGs and tagged them as
VPs. What seems to happen in these cases, is
that certain verbal forms participate in idiomatic
constructions and behave syntactically as preposi-
tions. The POS tagger does not pick this ambigu-
ity in function and contributes only the most likely
tag for the words (VBG). Lexical models learn that
certain VBGs are “becoming” prepositions in the
observed dataset. These words do not appear as
specific features in the pruned models, and hence
these usage shifts are often misclassified. Interest-
ingly, the pruned model did learn that verbal forms
can sometimes be PPs: it made use of that infor-
mation by mis-identifying 11 verbal VBGs and 6
verbal VBNs as PPs.

The word “If/IN”, unlike most prepositions, it
always starts an SBAR rather than a PP chunk in
the corpus. The pruned model learned this be-
haviour correctly for the lower-cased “if/IN”, but
missed the upper-cased version appearing in 79
sentence initial locations in the corpus.

These cases are caused by a mismatch between
the POS tag and the syntactic function observed in
the chunked dataset.

Additional cases include the adverbs (Already,
Nearby, Soon, Maybe, Perhaps, once, Then): they
are sometimes not chunked as ADVP but are left
outside of any chunk. Some one-word ADJP
chunks being chunked as NPs (short, general, sure,
worse, . . . ) (6 cases) and some are chunked as
ADVPs (hard, British-born, . . . ) (4 cases).

There are 10 cases where the pruned model
splits an NP into ADVP and NP, such as:
[later] [this week], [roughly][18 more U.S. stores]. In
addition, the pruned model failed to learn the con-
struction “typical of”, resulting in 2 NP chunks
such as: [The more intuitive approach typical].

Some mistakes of the pruned model seem
like mistakes/pecularities of the annotated corpus,
which the lexicalized model found a way to work
around. Consider the following gold-standard
cases from the annotated corpus:

- [ VP seems ] [ ADVP rarely ] [ VP to cut ]

- [ ADVP just ] [ PP after ]

- [ VP is ] [ NP anything ] [ O but ] [ VP fixing ]

- [ ADJP as high ] [ PP as ] [ NP 8.3 % ]

- [ ADJP less ] [ PP than ] [ ADJP rosy ]

- [ NP 40 % ] [ PP to ] [ NP 45 % ]

Which were each identified as a single chunk by
the pruned model. It can be argued these are mis-
takes in the tagged dataset.
Where the lexical model is sometimes better
Both models fail on conjunctions, but the lexical-
ized model do slightly better. Conjunction error
types come in two main varieties, either chunking
[x][and][y] instead of [x and y] (pruned: 21 cases,
lex: 14 cases) or chunking [x and y] instead of
[x][and][y] (pruned: 26 cases, lex: 24 cases).

Joining VP and NP into an NP, due
to a verb/adj ambiguity. For exam-
ple chunking [NP fired six executives] in-
stead of [VP fired] [NP six executives],
or [NP keeping viewers] instead of
[VP keeping] [NP viewers]. 12 such cases are
resolved correctly only by the lexicalized model,
and 5 only by the pruned one.

SBAR/PP confusion for words such as:
“as”,“after”,“with”,“since” (both ways). 13 cases
for the pruned model, 6 for lexicalized one.
Where both model are similar
Merging back-to-back NPs: Both models tend
to erroneously join back-to-back NPs to a sin-
gle NP, e.g. : [NP Westinghouse this year], or
[NP themselves fashion enterprises]. No model is bet-
ter than the other on these cases, each model failed
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on 16 cases the other model succeeded on.

Joining NP and VP into an NP due to
Verb/Noun ambiguity and tagger mistakes:

- [NP the weekend] [VP making] → [NP the weekend making]

- [NP the competition] [VP can] → [NP the competition can]

(lexicalized: 6 errors, pruned: 8 errors)
And splitting some NPs to VP+NP due to the
same reasons:

- [VP operating] [NP profit]

- [VP improved] [NP average yield]

(lexicalized: 5 errors, pruned: 7 errors)
The word “that” is confused between SBAR and
NP (5 mistakes for each model)
Erroneously splitting range NPs, e.g. :
- [about $115][to][$125] (2 cases for each model).
Where the pruned model is better
There are some cases where the pruned models is
doing better than the lexicalized one:
VP wrongly split into VP and ADJP:

- [remains] [banned]

4 mistakes for lexicalized, 1 for pruned
VP wrongly split into VP and VP:

- [were scheduled] [to meet]

- [used] [to complain]

3 mistakes for lexicalized, 1 for pruned
VP wrongly split into ADVP and VP:

- [largly][reflecting]

- [selectively][leaking]

6 mistakes for lexicalized, 1 for pruned
PP and SBAR confusion:

- of, with, As, after
9 mistakes for lex, 5 for pruned

VP chunked as NP due to tagger mistake:
- [NP ruling], [NP drives], [NP cuts]

6 mistakes for lex, 2 for pruned
“that” tagged as NP instead of SBAR:

2 mistakes for lex, 0 for pruned

To conclude
Both the pruned and the fully lexicalized models
have problems dealing with non-local phenomena
such as coordination and relative clauses, as well
as verb/adjective ambiguities and VBG/Noun am-
biguities. They also perform poorly on embeded
syntactic constructions (such as an NP containing
an ADJP), and on identification of back-to-back
NPs, which often requires semantic knowledge.

Both models suffer from tagging mistakes of the
underlying tagger and systematic ambiguity be-
tween the morphological tag assigned by the tag-
ger and the syntactic tag in which the word oper-

ates (e.g., “including” used as a preposition).
The main advantage of the fully lexcialized

model is in dealing with:

• Some coordinated constructions.

• Some cases of verb/adjective ambiguities.

• Specific function words not seen much in
training.

• Idiomatic usages of some VBG/VBN forms
functioning as prepositions.

The first two items are semantic in nature, and hint
that lexical features do capture some semantic in-
formation. While this might be true on the spe-
cific corpus, we believe that such corpus-derived
semantic knowledge is very restricted, is not gen-
eralizable, and will not transfer well to other cor-
pora, even on the same genre. We provide evi-
dence for this claim in Section 7.

The last two items are syntactic. We address
them by introducing a slightly modified feature
model.

6.1 Another chunking Experiment
Based on the observations from the error analy-
sis, we performed another pruned-chunking exper-
iment, with the following features:
• Word and POS for a -2,+2 window around

the current token, and 2-and-3-letter suffixes
of the token to be classified (same as Experi-
ment 2 in Section 5.2 above).

• Features of words appearing as a preposi-
tion (IN) anywhere in the training set are
not pruned (this result in a model with 310
unique lexical items after k = 100 pruning).

• An additional binary feature indicating for
each token whether it can function as a PP.
The list of possible-PP forms is generated by
considering all tokens seen inside a PP in the
training corpus. It can be easily extended if
additional lexicographic resources are avail-
able, without retraining the model.

This last proposed feature incorporates important
lexical knowledge without relying on features for
specific lexical forms, and is more generalizable.
The accuracy of this new model on the develop-
ment and test set with various pruning thresholds
is presented in Table 7.

The addition of the CanBePrep feature im-
proves the fully-lexicalized model accuracy on the
development set (93.24 to 93.68), and does not af-
fect fully lexicalized result on the test set (93.71
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CORPUS SOURCE CONTENT #TOKENS

WSJ 4 articles from wsj.com business Magazine, business 2,671
Jaguar Wikipedia page on Jaguar Well edited text, animals 5,396

FreeWill Wikipedia page on Free Will Well edited text, philosophy 9,428
LJ-Life 4 LiveJournal posts Noisy teenage writing, life 870

Table 8: Corpus Variation Text Sources

PRUNING #FEATURES SOFT-MARGIN ANCHORED

Dev Set
0 92,989 93.71 –

100 4,066 – 93.22
Test Set

0 92,989 93.68 –
100 4,066 – 93.26

Table 7: Chunking results (F), with various prun-
ing thresholds. Experiment 4. Features: POS,
Word , Suff2, Suff3 for main word, CanBePrep .

vs. 93.73). The pruned model performance im-
proves in both cases, more so on the development
set (93.12 to 93.22 on the test set, 92.84 to 93.26
on the development set). The new model helps
bridging the gap between the fully lexicalized and
the pruned model, yet we still observe a lead of
0.4F for the fully lexicalized model. We now turn
to explore how meaningful this difference is in
real-world situation in which one does not operate
on the Penn-WSJ corpus.

7 Corpus Variation and Model
Performance

When tested on the exact same resource as the
models are trained on, the fully lexicalized model
still has a slight edge over the pruned ones. How
well does this lexical knowledge transfer to dif-
ferent text genres? We compare the models’ per-
formance on text from various genres, ranging
from very similar to the training material (re-
cent articles from the WSJ Business section) to a
well-edited but different domain text (“Featured-
content” wikipedia pages) to a non-edited noisy
text (live-journal blog posts from the “life” cate-
gory). As we do not have gold-annotated data for
these text genres, we analyze the few differences
between the models, manually inspecting the in-
stances on which the models disagree.

Table 8 describes our test corpora for this ex-
periment. We applied the fully-lexicalized and
the pruned (k = 100) anchored models described
in Section 6.1 to these texts, and compared the
chunking results. The results are presented in Ta-
ble 9.

When moving outside of the canonic training

TEXT #DIFF PRUNED LEX BOTH

CORRECT CORRECT WRONG

WSJ 13 9 4 0
Jaguar 45 20 20 7

FreeWill 118 51 38 29
LJ-Life 15 8 6 1

Table 9: Comparison of Models’ performance on
different text genres

corpus, the fully lexicalized model have no advan-
tage over the heavily pruned one. On the contrary,
the pruned models seem to have a small advantage
in most cases (though it is hard to tell if the differ-
ences are significant). This is true even for texts
in the very same domain, genre and editing guide-
lines as the training corpus was derived from.

8 Discussion
For all the sequence labeling tasks we analyzed,
the anchored-SVM proved to be robust to feature
pruning. The experiments support the claim that
rare lexical features do not provide substantial in-
formation to the model, but instead play a role in
maintaining separability. When this role is taken
over by anchoring, we can obtain the same level
of performance with very few robust lexical fea-
tures. Yet, we cannot conclude that lexical infor-
mation is not needed. There is a significant differ-
ence between the pruned and non-pruned models
for the chunking task. We showed that this dif-
ference can be bridged to some extent by a binary
feature relating to idiomatic word usage, and that
the difference vanishes when testing outside of the
annotated corpus. The high classification accura-
cies achieved with the heavily pruned anchored-
SVM models sheds new light on the actual role
of lexical features, and indicating that there is still
a lot to be learned regarding the effective incor-
poration of lexical and semantic information into
our models. It is our view that semantic knowl-
edge should not be expected to be learned by in-
spection of raw lexical counts from an annotated
text corpus, but instead collected from sources ex-
ternal to the annotated corpora – either based on
a very large unannotated corpora, or on manually
constructed lexical resources.
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Abstract
Coreference systems are driven by syntactic, se-
mantic, and discourse constraints. We present
a simple approach which completely modularizes
these three aspects. In contrast to much current
work, which focuses on learning and on the dis-
course component, our system is deterministic and
is driven entirely by syntactic and semantic com-
patibility as learned from a large, unlabeled corpus.
Despite its simplicity and discourse naivete, our
system substantially outperforms all unsupervised
systems and most supervised ones. Primary con-
tributions include (1) the presentation of a simple-
to-reproduce, high-performing baseline and (2) the
demonstration that most remaining errors can be at-
tributed to syntactic and semantic factors external
to the coreference phenomenon (and perhaps best
addressed by non-coreference systems).

1 Introduction

The resolution of entity reference is influenced by
a variety of constraints. Syntactic constraints like
the binding theory, the i-within-i filter, and appos-
itive constructions restrict reference by configura-
tion. Semantic constraints like selectional compat-
ibility (e.g. a spokesperson can announce things)
and subsumption (e.g. Microsoft is a company)
rule out many possible referents. Finally, dis-
course phenomena such as salience and centering
theory are assumed to heavily influence reference
preferences. As these varied factors have given
rise to a multitude of weak features, recent work
has focused on how best to learn to combine them
using models over reference structures (Culotta et
al., 2007; Denis and Baldridge, 2007; Klenner and
Ailloud, 2007).

In this work, we break from the standard view.
Instead, we consider a vastly more modular system
in which coreference is predicted from a determin-
istic function of a few rich features. In particu-
lar, we assume a three-step process. First, a self-
contained syntactic module carefully represents
syntactic structures using an augmented parser and
extracts syntactic paths from mentions to potential
antecedents. Some of these paths can be ruled in

or out by deterministic but conservative syntactic
constraints. Importantly, the bulk of the work in
the syntactic module is in making sure the parses
are correctly constructed and used, and this mod-
ule’s most important training data is a treebank.
Second, a self-contained semantic module evalu-
ates the semantic compatibility of headwords and
individual names. These decisions are made from
compatibility lists extracted from unlabeled data
sources such as newswire and web data. Finally,
of the antecedents which remain after rich syntac-
tic and semantic filtering, reference is chosen to
minimize tree distance.

This procedure is trivial where most systems are
rich, and so does not need any supervised corefer-
ence data. However, it is rich in important ways
which we argue are marginalized in recent coref-
erence work. Interestingly, error analysis from our
final system shows that its failures are far more
often due to syntactic failures (e.g. parsing mis-
takes) and semantic failures (e.g. missing knowl-
edge) than failure to model discourse phenomena
or appropriately weigh conflicting evidence.

One contribution of this paper is the exploration
of strong modularity, including the result that our
system beats all unsupervised systems and ap-
proaches the state of the art in supervised ones.
Another contribution is the error analysis result
that, even with substantial syntactic and semantic
richness, the path to greatest improvement appears
to be to further improve the syntactic and semantic
modules. Finally, we offer our approach as a very
strong, yet easy to implement, baseline. We make
no claim that learning to reconcile disparate fea-
tures in a joint model offers no benefit, only that it
must not be pursued to the exclusion of rich, non-
reference analysis.

2 Coreference Resolution

In coreference resolution, we are given a docu-
ment which consists of a set of mentions; each
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mention is a phrase in the document (typically
an NP) and we are asked to cluster mentions ac-
cording to the underlying referent entity. There
are three basic mention types: proper (Barack
Obama), nominal (president), and pronominal
(he).1 For comparison to previous work, we eval-
uate in the setting where mention boundaries are
given at test time; however our system can easily
annotate reference on all noun phrase nodes in a
parse tree (see Section 3.1.1).

2.1 Data Sets

In this work we use the following data sets:

Development: (see Section 3)

• ACE2004-ROTH-DEV: Dev set split of the ACE
2004 training set utilized in Bengston and
Roth (2008). The ACE data also annotates
pre-nominal mentions which we map onto
nominals. 68 documents and 4,536 mentions.

Testing: (see Section 4)

• ACE2004-CULOTTA-TEST: Test set split of the
ACE 2004 training set utilized in Culotta et
al. (2007) and Bengston and Roth (2008).
Consists of 107 documents.2

• ACE2004-NWIRE: ACE 2004 Newswire set to
compare against Poon and Domingos (2008).
Consists of 128 documents and 11,413 men-
tions; intersects with the other ACE data sets.

• MUC-6-TEST: MUC6 formal evaluation set
consisting of 30 documents and 2,068 men-
tions.

Unlabeled: (see Section 3.2)

• BLIPP: 1.8 million sentences of newswire
parsed with the Charniak (2000) parser. No
labeled coreference data; used for mining se-
mantic information.

• WIKI: 25k articles of English Wikipedia ab-
stracts parsed by the Klein and Manning
(2003) parser.3 No labeled coreference data;
used for mining semantic information.

1Other mention types exist and are annotated (such as pre-
nominal), which are treated as nominals in this work.

2The evaluation set was not made available to non-
participants.

3Wikipedia abstracts consist of roughly the first paragraph
of the corresponding article

2.2 Evaluation
We will present evaluations on multiple corefer-
ence resolution metrics, as no single one is clearly
superior:

• Pairwise F1: precision, recall, and F1 over
all pairs of mentions in the same entity clus-
ter. Note that this over-penalizes the merger
or separation of clusters quadratically in the
size of the cluster.

• b3 (Amit and Baldwin, 1998): For each men-
tion, form the intersection between the pre-
dicted cluster and the true cluster for that
mention. The precision is the ratio of the in-
tersection and the true cluster sizes and recall
the ratio of the intersection to the predicted
sizes; F1 is given by the harmonic mean over
precision and recall from all mentions.

• MUC (Vilain et al., 1995): For each true clus-
ter, compute the number of predicted clusters
which need to be merged to cover the true
cluster. Divide this quantity by true cluster
size minus one. Recall is given by the same
procedure with predicated and true clusters
reversed.4

• CEAF (Luo, 2005): For a similarity function
between predicted and true clusters, CEAF
scores the best match between true and pre-
dicted clusters using this function. We use
the φ3 similarity function from Luo (2005).

3 System Description

In this section we develop our system and re-
port developmental results on ACE2004-ROTH-

DEV (see Section 2.1); we report pairwise F1 fig-
ures here, but report on many more evaluation
metrics in Section 4. At a high level, our system
resembles a pairwise coreference model (Soon et
al., 1999; Ng and Cardie, 2002; Bengston and
Roth, 2008); for each mention mi, we select ei-
ther a single-best antecedent amongst the previ-
ous mentions m1, . . . ,mi−1, or the NULL men-
tion to indicate the underlying entity has not yet
been evoked. Mentions are linearly ordered ac-
cording to the position of the mention head with
ties being broken by the larger node coming first.

4The MUC measure is problematic when the system pre-
dicts many more clusters than actually exist (Luo, 2005;
Finkel and Manning, 2008); also, singleton clusters do not
contribute to evaluation.
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While much research (Ng and Cardie, 2002; Cu-
lotta et al., 2007; Haghighi and Klein, 2007; Poon
and Domingos, 2008; Finkel and Manning, 2008)
has explored how to reconcile pairwise decisions
to form coherent clusters, we simply take the tran-
sitive closure of our pairwise decision (as in Ng
and Cardie (2002) and Bengston and Roth (2008))
which can and does cause system errors.

In contrast to most recent research, our pair-
wise decisions are not made with a learned model
which outputs a probability or confidence, but in-
stead for each mentionmi, we select an antecedent
amongst m1, . . . ,mi−1 or the NULL mention as
follows:

• Syntactic Constraint: Based on syntac-
tic configurations, either force or disallow
coreference between the mention and an an-
tecedent. Propagate this constraint (see Fig-
ure 4).

• Semantic/Syntactic Filter: Filter the re-
maining possible antecedents based upon
compatibility with the mention (see Fig-
ure 2).

• Selection: Select the ‘closest’ mention from
the set of remaining possible antecedents (see
Figure 1) or the NULL antecedent if empty.

Initially, there is no syntactic constraint (im-
proved in Section 3.1.3), the antecedent com-
patibility filter allows proper and nominal men-
tions to corefer only with mentions that have the
same head (improved in Section 3.2), and pro-
nouns have no compatibility constraints (improved
in Section 3.1.2). Mention heads are determined
by parsing the given mention span with the Stan-
ford parser (Klein and Manning, 2003) and us-
ing the Collins head rules (Collins, 1999); Poon
and Domingos (2008) showed that using syntactic
heads strongly outperformed a simple rightmost
headword rule. The mention type is determined
by the head POS tag: proper if the head tag is NNP

or NNPS, pronoun if the head tag is PRP, PRP$, WP,
or WP$, and nominal otherwise.

For the selection phase, we order mentions
m1, . . . ,mi−1 according to the position of the
head word and select the closest mention that re-
mains after constraint and filtering are applied.
This choice reflects the intuition of Grosz et al.
(1995) that speakers only use pronominal men-
tions when there are not intervening compatible

S!!!!!!!
"""""""

NP#1
###

$$$
NP

NNP

Nintendo

PP
%%&&

IN

of

NP#2

NNP

America

VP
''''

((((
VBD

announced

NP#3
)))

***
NP#1

PRP$

its

NP
%%&&

JJ

new

NN

console

Figure 1: Example sentence where closest tree dis-
tance between mentions outperforms raw distance.
For clarity, each mention NP is labeled with the
underlying entity id.

mentions. This system yields a rather low 48.9
pairwise F1 (see BASE-FLAT in Table 2). There
are many, primarily recall, errors made choos-
ing antecedents for all mention types which we
will address by adding syntactic and semantic con-
straints.

3.1 Adding Syntactic Information

In this section, we enrich the syntactic represen-
tation and information in our system to improve
results.

3.1.1 Syntactic Salience
We first focus on fixing the pronoun antecedent
choices. A common error arose from the use of
mention head distance as a poor proxy for dis-
course salience. For instance consider the exam-
ple in Figure 1, the mention America is closest
to its in flat mention distance, but syntactically
Nintendo of America holds a more prominent syn-
tactic position relative to the pronoun which, as
Hobbs (1977) argues, is key to discourse salience.

Mapping Mentions to Parse Nodes: In order to
use the syntactic position of mentions to determine
anaphoricity, we must associate each mention in
the document with a parse tree node. We parse
all document sentences with the Stanford parser,
and then for each evaluation mention, we find the
largest-span NP which has the previously deter-
mined mention head as its head.5 Often, this re-
sults in a different, typically larger, mention span
than annotated in the data.

Now that each mention is situated in a parse
tree, we utilize the length of the shortest tree path
between mentions as our notion of distance. In

5If there is no NP headed by a given mention head, we
add an NP over just that word.
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S!!!!!!!!!
"""""""""

NP-ORG#1
###

$$$
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VP!!!!!!!!!!!
%%%%%
"""""""""""

VBP

regard

NP#2
###

$$$
NP
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PP
&&''

IN

as

NP#2
&&''

a shrine

SBAR(((((())
******

IN

because

PP
++,,

TO

to

NP#1

PRP

them

S
###

$$$
it is sacred

Figure 2: Example of a coreference decision fixed
by agreement constraints (see Section 3.1.2). The
pronoun them is closest to the site mention, but has
an incompatible number feature with it. The clos-
est (in tree distance, see Section 3.1.1) compatible
mention is The Israelis, which is correct

particular, this fixes examples such as those in
Figure 1 where the true antecedent has many em-
bedded mentions between itself and the pronoun.
This change by itself yields 51.7 pairwise F1 (see
BASE-TREE in Table 2), which is small overall, but
reduces pairwise pronoun antecedent selection er-
ror from 51.3% to 42.5%.

3.1.2 Agreement Constraints
We now refine our compatibility filtering to in-
corporate simple agreement constraints between
coreferent mentions. Since we currently allow
proper and nominal mentions to corefer only with
matching head mentions, agreement is only a con-
cern for pronouns. Traditional linguistic theory
stipulates that coreferent mentions must agree in
number, person, gender, and entity type (e.g. an-
imacy). Here, we implement person, number and
entity type agreement.6

A number feature is assigned to each mention
deterministically based on the head and its POS
tag. For entity type, we use NER labels. Ideally,
we would like to have information about the en-
tity type of each referential NP, however this in-
formation is not easily obtainable. Instead, we opt
to utilize the Stanford NER tagger (Finkel et al.,
2005) over the sentences in a document and anno-
tate each NP with the NER label assigned to that
mention head. For each mention, when its NP is
assigned an NER label we allow it to only be com-
patible with that NER label.7 For pronouns, we
deterministically assign a set of compatible NER
values (e.g. personal pronouns can only be a PER-

6Gender agreement, while important for general corefer-
ence resolution, did not contribute to the errors in our largely
newswire data sets.

7Or allow it to be compatible with all NER labels if the
NER tagger doesn’t predict a label.

gore president florida state
bush governor lebanese territory

nation people arafat leader
inc. company aol company

nation country assad president

Table 1: Most common recall (missed-link) errors
amongst non-pronoun mention heads on our de-
velopment set. Detecting compatibility requires
semantic knowledge which we obtain from a large
corpus (see Section 3.2).

S̀ ``̀    
NP#1

NNP

Wal-Mart

VPhhhh((((
VBZ

says

Shhhh((((
NP#2XXX���

NP

NNP

Gitano

,

,

NP-APPOS#2PP��
NP#1

PRP

its

JJ

top

NNS

brand

VPPP��
is underselling

Figure 4: Example of interaction between the ap-
positive and i-within-i constraint. The i-within-
i constraint disallows coreference between parent
and child NPs unless the child is an appositive.
Hashed numbers indicate ground truth but are not
in the actual trees.

SON, but its can be an ORGANIZATION or LOCA-

TION). Since the NER tagger typically does not
label non-proper NP heads, we have no NER com-
patibility information for nominals.

We incorporate agreement constraints by filter-
ing the set of possible antecedents to those which
have compatible number and NER types with the
target mention. This yields 53.4 pairwise F1, and
reduces pronoun antecedent errors to 42.5% from
34.4%. An example of the type of error fixed by
these agreement constraints is given by Figure 2.

3.1.3 Syntactic Configuration Constraints
Our system has so far focused only on improving
pronoun anaphora resolution. However, a plurality
of the errors made by our system are amongst non-
pronominal mentions.8 We take the approach that
in order to align a non-pronominal mention to an
antecedent without an identical head, we require
evidence that the mentions are compatible.

Judging compatibility of mentions generally re-
quires semantic knowledge, to which we return
later. However, some syntactic configurations

8There are over twice as many nominal mentions in our
development data as pronouns.
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NP
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Picasso
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,

NP#1%%%%%%
&&&&&&
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NP-PERS#1!!!!!!!!!""
#########

NP
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'''
NNP
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,
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))))))
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(a) (b)

Figure 3: NP structure annotation: In (a) we have the raw parse from the Klein and Manning (2003)
parser with the mentions annotated by entity. In (b), we demonstrate the annotation we have added. NER
labels are added to all NP according to the NER label given to the head (see Section 3.1.1). Appositive
NPs are also annotated. Hashes indicate forced coreferent nodes

guarantee coreference. The one exploited most
in coreference work (Soon et al., 1999; Ng and
Cardie, 2002; Luo et al., 2004; Culotta et al., 2007;
Poon and Domingos, 2008; Bengston and Roth,
2008) is the appositive construction. Here, we rep-
resent apposition as a syntactic feature of an NP
indicating that it is coreferent with its parent NP
(e.g. it is an exception to the i-within-i constraint
that parent and child NPs cannot be coreferent).
We deterministically mark a node as NP-APPOS

(see Figure 3) when it is the third child in of a par-
ent NP whose expansion begins with (NP , NP),
and there is not a conjunction in the expansion (to
avoid marking elements in a list as appositive).

Role Appositives: During development, we dis-
covered many errors which involved a variant of
appositives which we call ‘role appositives’ (see
painter in Figure 3), where an NP modifying the
head NP describes the role of that entity (typi-
cally a person entity). There are several challenges
to correctly labeling these role NPs as being ap-
positives. First, the NPs produced by Treebank
parsers are flat and do not have the required inter-
nal structure (see Figure 3(a)). While fully solving
this problem is difficult, we can heuristically fix
many instances of the problem by placing an NP
around maximum length sequences of NNP tags
or NN (and JJ) tags within an NP; note that this
will fail for many constructions such as U.S. Pres-
ident Barack Obama, which is analyzed as a flat
sequence of proper nouns. Once this internal NP
structure has been added, whether the NP immedi-
ately to the left of the head NP is an appositive de-
pends on the entity type. For instance, Rabbi Ashi
is an apposition but Iranian army is not. Again, a
full solution would require its own model, here we
mark as appositions any NPs immediately to the

left of a head child NP where the head child NP is
identified as a person by the NER tagger.9

We incorporate NP appositive annotation as a
constraint during filtering. Any mention which
corresponds to an appositive node has its set of
possible antecedents limited to its parent. Along
with the appositive constraint, we implement the
i-within-i constraint that any non-appositive NP
cannot be be coreferent with its parent; this con-
straint is then propagated to any node its parent
is forced to agree with. The order in which these
constraints are applied is important, as illustrated
by the example in Figure 4: First the list of pos-
sible antecedents for the appositive NP is con-
strained to only its parent. Now that all apposi-
tives have been constrained, we apply the i-within-
i constraint, which prevents its from having the NP
headed by brand in the set of possible antecedents,
and by propagation, also removes the NP headed
by Gitano. This leaves the NP Wal-Mart as the
closest compatible mention.

Adding these syntactic constraints to our system
yields 55.4 F1, a fairly substantial improvement,
but many recall errors remain between mentions
with differing heads. Resolving such cases will
require external semantic information, which we
will automatically acquire (see Section 3.2).

Predicate Nominatives: Another syntactic con-
straint exploited in Poon and Domingos (2008) is
the predicate nominative construction, where the
object of a copular verb (forms of the verb be) is
constrained to corefer with its subject (e.g. Mi-
crosoft is a company in Redmond). While much
less frequent than appositive configurations (there
are only 17 predicate nominatives in our devel-

9Arguably, we could also consider right modifying NPs
(e.g., [Microsoft [Company]1]1) to be role appositive, but we
do not do so here.
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Path Example
NP
!!!
"""

NP-NNP PRN-NNP
NP#####$$
%%%%%

NP-president CC NP-NNP

America Online Inc. (AOL)
NP
!!!

"""
NP-NNP PRN-NNP

NP#####$$
%%%%%

NP-president CC NP-NNP
[President and C.E.O] Bill Gates

Figure 5: Example paths extracted via semantic compatibility mining (see Section 3.2) along with exam-
ple instantiations. In both examples the left child NP is coreferent with the rightmost NP. Each category
in the interior of the tree path is annotated with the head word as well as its subcategorization. The
examples given here collapse multiple instances of extracted paths.

opment set), predicate nominatives are another
highly reliable coreference pattern which we will
leverage in Section 3.2 to mine semantic knowl-
edge. As with appositives, we annotate object
predicate-nominative NPs and constrain corefer-
ence as before. This yields a minor improvement
to 55.5 F1.

3.2 Semantic Knowledge

While appositives and related syntactic construc-
tions can resolve some cases of non-pronominal
reference, most cases require semantic knowledge
about the various entities as well as the verbs used
in conjunction with those entities to disambiguate
references (Kehler et al., 2008).

However, given a semantically compatible men-
tion head pair, say AOL and company, one
might expect to observe a reliable appositive
or predicative-nominative construction involving
these mentions somewhere in a large corpus.
In fact, the Wikipedia page for AOL10 has a
predicate-nominative construction which supports
the compatibility of this head pair: AOL LLC (for-
merly America Online) is an American global In-
ternet services and media company operated by
Time Warner.

In order to harvest compatible head pairs, we
utilize our BLIPP and WIKI data sets (see Sec-
tion 2), and for each noun (proper or common) and
pronoun, we assign a maximal NP mention node
for each nominal head as in Section 3.1.1; we then
annotate appositive and predicate-nominative NPs
as in Section 3.1.3. For any NP which is annotated
as an appositive or predicate-nominative, we ex-
tract the head pair of that node and its constrained
antecedent.

10http://en.wikipedia.org/wiki/AOL

The resulting set of compatible head words,
while large, covers a little more than half of the
examples given in Table 1. The problem is that
these highly-reliable syntactic configurations are
too sparse and cannot capture all the entity infor-
mation present. For instance, the first sentence of
Wikipedia abstract for Al Gore is:

Albert Arnold “Al” Gore, Jr. is an
American environmental activist who
served as the 45th Vice President of the
United States from 1993 to 2001 under
President Bill Clinton.

The required lexical pattern X who served as Y is
a general appositive-like pattern that almost surely
indicates coreference. Rather than opt to manu-
ally create a set of these coreference patterns as in
Hearst (1992), we instead opt to automatically ex-
tract these patterns from large corpora as in Snow
et al. (2004) and Phillips and Riloff (2007). We
take a simple bootstrapping technique: given a
set of mention pairs extracted from appositives
and predicate-nominative configurations, we ex-
tract counts over tree fragments between nodes
which have occurred in this set of head pairs (see
Figure 5); the tree fragments are formed by an-
notating the internal nodes in the tree path with
the head word and POS along with the subcatego-
rization. We limit the paths extracted in this way
in several ways: paths are only allowed to go be-
tween adjacent sentences and have a length of at
most 10. We then filter the set of paths to those
which occur more than a hundred times and with
at least 10 distinct seed head word pairs.

The vast majority of the extracted fragments are
variants of traditional appositives and predicate-
nominatives with some of the structure of the NPs
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MUC b3 Pairwise CEAF
System P R F1 P R F1 P R F1 P R F1

ACE2004-ROTH-DEV
BASIC-FLAT 73.5 66.8 70.0 80.6 68.6 74.1 63.6 39.7 48.9 68.4 68.4 68.4
BASIC-TREE 75.8 68.9 72.2 81.9 69.9 75.4 65.6 42.7 51.7 69.8 69.8 69.8

+SYN-COMPAT 77.8 68.5 72.9 84.1 69.7 76.2 71.0 43.1 53.4 69.8 69.8 69.8
+SYN-CONSTR 78.3 70.5 74.2 84.0 71.0 76.9 71.3 45.4 55.5 70.8 70.8 70.8
+SEM-COMPAT 77.9 74.1 75.9 81.8 74.3 77.9 68.2 51.2 58.5 72.5 72.5 72.5

ACE2004-CULOTTA-TEST
BASIC-FLAT 68.6 60.9 64.5 80.3 68.0 73.6 57.1 30.5 39.8 66.5 66.5 66.5
BASIC-TREE 71.2 63.2 67.0 81.6 69.3 75.0 60.1 34.5 43.9 67.9 67.9 67.9

+SYN-COMPAT 74.6 65.2 69.6 84.2 70.3 76.6 66.7 37.2 47.8 69.2 69.2 69.2
+SYN-CONSTR 74.3 66.4 70.2 83.6 71.0 76.8 66.4 38.0 48.3 69.6 69.6 69.6
+SEM-COMPAT 74.8 77.7 79.6 79.6 78.5 79.0 57.5 57.6 57.5 73.3 73.3 73.3

Supervised Results
Culotta et al. (2007) - - - 86.7 73.2 79.3 - - - - - -

Bengston and Roth (2008) 82.7 69.9 75.8 88.3 74.5 80.8 55.4 63.7 59.2 - - -

MUC6-TEST
+SEM-COMPAT 87.2 77.3 81.9 84.7 67.3 75.0 80.5 57.8 67.3 72.0 72.0 72.0

Unsupervised Results
Poon and Domingos (2008) 83.0 75.8 79.2 - - - 63.0 57.0 60.0 - - -

Supervised Results
Finkel and Manning (2008) 89.7 55.1 68.3 90.9 49.7 64.3 74.1 37.1 49.5 - - -

ACE2004-NWIRE
+SEM-COMPAT 77.0 75.9 76.5 79.4 74.5 76.9 66.9 49.2 56.7 71.5 71.5 71.5

Unsupervised Results
Poon and Domingos (2008) 71.3 70.5 70.9 - - - 62.6 38.9 48.0 - - -

Table 2: Experimental Results (See Section 4): When comparisons between systems are presented, the
largest result is bolded. The CEAF measure has equal values for precision, recall, and F1.

specified. However there are some tree fragments
which correspond to the novel coreference pat-
terns (see Figure 5) of parenthetical alias as well
as conjunctions of roles in NPs.

We apply our extracted tree fragments to our
BLIPP and WIKI data sets and extract a set of com-
patible word pairs which match these fragments;
these words pairs will be used to relax the seman-
tic compatibility filter (see the start of the section);
mentions are compatible with prior mentions with
the same head or with a semantically compatible
head word. This yields 58.5 pairwise F1 (see SEM-

COMPAT in Table 2) as well as similar improve-
ments across other metrics.

By and large the word pairs extracted in this
way are correct (in particular we now have cov-
erage for over two-thirds of the head pair recall
errors from Table 1.) There are however word-
pairs which introduce errors. In particular city-
state constructions (e.g. Los Angeles, California)
appears to be an appositive and incorrectly allows
our system to have angeles as an antecedent for
california. Another common error is that the %

symbol is made compatible with a wide variety of
common nouns in the financial domain.

4 Experimental Results

We present formal experimental results here
(see Table 2). We first evaluate our model
on the ACE2004-CULOTTA-TEST dataset used in
the state-of-the-art systems from Culotta et al.
(2007) and Bengston and Roth (2008). Both of
these systems were supervised systems discrimi-
natively trained to maximize b3 and used features
from many different structured resources includ-
ing WordNet, as well as domain-specific features
(Culotta et al., 2007). Our best b3 result of 79.0
is broadly in the range of these results. We should
note that in our work we use neither the gold men-
tion types (we do not model pre-nominals sepa-
rately) nor do we use the gold NER tags which
Bengston and Roth (2008) does. Across metrics,
the syntactic constraints and semantic compatibil-
ity components contribute most to the overall final
result.

On the MUC6-TEST dataset, our system outper-
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PROPER

NOMINAL

PRONOUN

NULL
TOTAL

PROPER 21/451 8/20 - 72/288 101/759
NOMINAL 16/150 99/432 - 158/351 323/933
PRONOUN 29/149 60/128 15/97 1/2 105/376

Table 3: Errors for each type of antecedent deci-
sion made by the system. Each row is a mention
type and the column the predicted mention type
antecedent. The majority of errors are made in the
NOMINAL category.

forms both Poon and Domingos (2008) (an un-
supervised Markov Logic Network system which
uses explicit constraints) and Finkel and Manning
(2008) (a supervised system which uses ILP in-
ference to reconcile the predictions of a pairwise
classifier) on all comparable measures.11 Simi-
larly, on the ACE2004-NWIRE dataset, we also out-
perform the state-of-the-art unsupervised system
of Poon and Domingos (2008).

Overall, we conclude that our system outper-
forms state-of-the-art unsupervised systems12 and
is in the range of the state-of-the art systems of Cu-
lotta et al. (2007) and Bengston and Roth (2008).

5 Error Analysis

There are several general trends to the errors made
by our system. Table 3 shows the number of
pairwise errors made on MUC6-TEST dataset by
mention type; note these errors are not equally
weighted in the final evaluations because of the
transitive closure taken at the end. The most er-
rors are made on nominal mentions with pronouns
coming in a distant second. In particular, we most
frequently say a nominal is NULL when it has an
antecedent; this is typically due to not having the
necessary semantic knowledge to link a nominal
to a prior expression.

In order to get a more thorough view of the
cause of pairwise errors, we examined 20 random
errors made in aligning each mention type to an
antecedent. We categorized the errors as follows:

• SEM. COMPAT: Missing information about
the compatibility of two words e.g. pay and
wage. For pronouns, this is used to mean that

11Klenner and Ailloud (2007) took essentially the same ap-
proach but did so on non-comparable data.

12Poon and Domingos (2008) outperformed Haghighi and
Klein (2007). Unfortunately, we cannot compare against Ng
(2008) since we do not have access to the version of the ACE
data used in their evaluation.

we incorrectly aligned a pronoun to a men-
tion with which it is not semantically com-
patible (e.g. he aligned to board).

• SYN. COMPAT: Error in assigning linguistic
features of nouns for compatibility with pro-
nouns (e.g. disallowing they to refer to team).

• HEAD: Errors involving the assumption that
mentions with the same head are always com-
patible. Includes modifier and specificity er-
rors such as allowing Lebanon and Southern
Lebanon to corefer. This also includes errors
of definiteness in nominals (e.g. the people
in the room and Chinese people). Typically,
these errors involve a combination of missing
syntactic and semantic information.

• INTERNAL NP: Errors involving lack of inter-
nal NP structure to mark role appositives (see
Section 3.1.3).

• PRAG. / DISC.: Errors where discourse salience
or pragmatics are needed to disambiguate
mention antecedents.

• PROCESS ERROR: Errors which involved a tok-
enization, parse, or NER error.

The result of this error analysis is given in Ta-
ble 4; note that a single error may be attributed to
more than one cause. Despite our efforts in Sec-
tion 3 to add syntactic and semantic information
to our system, the largest source of error is still
a combination of missing semantic information or
annotated syntactic structure rather than the lack
of discourse or salience modeling.

Our error analysis suggests that in order to im-
prove the state-of-the-art in coreference resolu-
tion, future research should consider richer syntac-
tic and semantic information than typically used in
current systems.

6 Conclusion

Our approach is not intended as an argument
against the more complex, discourse-focused ap-
proaches that typify recent work. Instead, we note
that rich syntactic and semantic processing vastly
reduces the need to rely on discourse effects or ev-
idence reconciliation for reference resolution. In-
deed, we suspect that further improving the syn-
tactic and semantic modules in our system may
produce greater error reductions than any other
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Mention Type SEM. COMPAT SYN. COMPAT HEAD INTENAL NP PRAG / DISC. PROCESS ERROR OTHER Comment
NOMINAL 7 - 5 6 2 2 1 2 general appos. patterns
PRONOUN 6 3 - 6 3 3 3 2 cataphora

PROPER 6 - 3 4 4 4 1

Table 4: Error analysis on ACE2004-CULOTTA-TEST data by mention type. The dominant errors are in
either semantic or syntactic compatibility of mentions rather than discourse phenomena. See Section 5.

route forward. Of course, a system which is rich
in all axes will find some advantage over any sim-
plified approach.

Nonetheless, our coreference system, despite
being relatively simple and having no tunable pa-
rameters or complexity beyond the non-reference
complexity of its component modules, manages
to outperform state-of-the-art unsupervised coref-
erence resolution and be broadly comparable to
state-of-the-art supervised systems.
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Abstract

In this paper, we provide descriptive and
empirical approaches to effectively ex-
tracting underlying dependencies among
parsing errors. In the descriptive ap-
proach, we define some combinations of
error patterns and extract them from given
errors. In the empirical approach, on the
other hand, we re-parse a sentence with
a target error corrected and observe er-
rors corrected together. Experiments on
an HPSG parser show that each of these
approaches can clarify the dependencies
among individual errors from each point
of view. Moreover, the comparison be-
tween the results of the two approaches
shows that combining these approaches
can achieve a more detailed error analysis.

1 Introduction

For any kind of technology, analyzing causes of
errors given by a system is a very helpful process
for improving its performance. In recent sophisti-
cated parsing technologies, the process has taken
on more and more important roles since critical
ideas for parsing performance have already been
introduced and the researches are now focusing on
exploring the rest of the pieces for making addi-
tional improvements.

In most cases for parsers’ error analysis, re-
searchers associate output errors with failures in
handling certain linguistic phenomena and attempt
to avoid them by adding or modifying correspond-
ing settings of their parsers. However, such an
analysis cannot been done so smoothly since pars-
ing errors sometimes depend on each other and the

underlying dependencies behind superficial phe-
nomena cannot be captured easily.

In this paper, we propose descriptive and em-
pirical approaches to effective extraction of de-
pendencies among parsing errors and engage in a
deeper error analysis with them. In our descriptive
approach, we define various combinations of error
patterns as organized error phenomena on the ba-
sis of linguistic knowledge, and then extract such
combinations from given errors. In our empirical
approach, on the other and, we re-parse a sentence
under the condition where a target error is cor-
rected, and errors which are additionally corrected
are regarded as dependent errors. By capturing de-
pendencies among parsing errors through system-
atic approaches, we can effectively collect errors
which are related to the same linguistic properties.

In the experiments, we applied both of our ap-
proaches to an HPSG parserEnju(Miyao and Tsu-
jii, 2005; Ninomiya et al., 2006), and then evalu-
ated the obtained error classes. After examining
the individual approaches, we explored the com-
bination of them.

2 Parser and its evaluation

A parser is a system which interprets structures
of given sentences from some grammatical or in
some cases semantical viewpoints, and interpreted
structures are utilized as essential information for
various natural language tasks such as informa-
tion extraction, machine translation, and so on.
In most cases, an output structure of a parser is
based on a certain grammatical framework such as
CFG, CCG (Steedman, 2000), LFG (Kaplan and
Bresnan, 1995) or HPSG (Pollard and Sag, 1994).
Since such a framework can usually produce more
than one probable structure for a sentence, a parser
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John aux_arg12

ARG1 ARG2

verb_arg1

ARG1

has : come :

Figure 1: Predicate argument relations

Abbr. Full Abbr. Full
aux auxiliary lgs logical subject
verb verb coord coordination
prep prepositional conj conjunction
det determiner argN1... take argument(s)
adj adjunction (N1th, ...)
app apposition mod modify a word

relative relative

Table 1: Descriptions for predicate types

often utilizes some kind of disambiguation model
for choosing the best one.

While various parsers take different manners
in capturing linguistic phenomena based on their
frameworks, they are at least required to obtain
some kinds of relations between the words in sen-
tences. On the basis of the requirements, a parser
is usually evaluated on how correctly it gives in-
tended linguistic relations. “Predicate argument
relation” is one of the most common evaluation
measurements for a parser since it is a very fun-
damental linguistic behavior and is less dependent
on parser systems. This measure divides linguis-
tic structural phenomena in a sentence into min-
imal predicative events. In one predicate argu-
ment relation, a word which represents an event
(predicate) takes some words as participants (argu-
ments). Although no fixed formulation exists for
the relations, there are to a large extent common
conceptions for them based on linguistic knowl-
edge among researchers.

Figure 1 shows an example of predicate argu-
ment relations given byEnju. In the sentence
“John has come.”, “ has” is a predicate of type
“aux arg12” and takes “John” and “come” as the
first and second arguments. “come” is also a pred-
icate of the type “verb arg1” and takes “John” as
the first and the only argument. In this formalism,
each predicate type is represented as a combina-
tion of “the grammatical nature of a word” and
“the arguments which it takes,” which are repre-
sented by the descriptions in Table 1. “aux arg12”
in Figure 1 indicates that it is an auxiliary word
and takes two arguments “ARG1” and “ARG2.”

In order to improve the performance of a parser,
analyzing parsing errors is very much worth the

I watched the girl on TV Correct answer:

ARG1 ARG2

ARG1 ARG2

I watched the girl on TV Parser output:

ARG1 ARG2

ARG1 ARG2

Obtain inconsistent outputs as errors

Error: I watched the girl on TV 

ARG1

ARG1 Error

Figure 2: An example of parsing errors

Error: The book on which read the shelf  I yesterday

ARG1
ARG2

ARG2
ARG1

Figure 3: Co-occurring parsing errors

effort. Since the errors are output according to
a given evaluation measurement such as “predi-
cate argument relation,” we researchers carefully
explore them and infer the linguistic phenom-
ena which cause the erroneous outputs. Figure 2
shows an example of parsing errors for sentence “I
watched the girl on TV.” Note that the errors are
based on predicate argument relations as shown
above and that the predicate types are abbreviated
in this figure. When we focus on the error output,
we can observe that “ARG1” of predicate “on”
was mistaken by the parser. In this case, “ARG1”
represents a modifiee of the preposition, and we
then conclude that the ill attachment of a prepo-
sitional phrase caused this error. By continuing
such error analysis, weak points of the parser are
revealed and can be useful clues for further im-
provements.

However, in most researches on parsing tech-
nologies, error analysis has been limited to narrow
and shallow explorations since there are various
dependencies behind erroneous outputs. In Fig-
ure 3, for example, two errors were given: wrong
outputs for “ARG1” of “which” and “ARG2” of
“ read.” Both of these two errors originated from
the fact that the relative clause took a wrong an-
tecedent “the shelf.” In this sentence, the former
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Error:

ARG1
ARG1

They completed the sale of for 

ARG1

ARG1

it to him $1,000 

Confliction

They completed the sale of for 

ARG1
ARG1

it to him $1,000 

Analysis 2: (Impossible)

They completed the sale of for 

ARG1
ARG1

it to him $1,000 

Analysis 1: (Possible)

Can each error occur independently?

ARG1

ARG1

ARG1 ARG1

Figure 4: Sketch of error propagation

“ARG1” directly corresponds to the antecedent
while the latter “ARG2” indirectly referred to the
same antecedent as the object of the verb “read.”
The two predicate argument relations thus took the
same word as their common arguments, and there-
fore the two errors co-occurred.

On the other hand, one-way inductive relations
also exist among errors. In Figure 4, “ARG1” of
“ for” and “to” were mistaken by a parser. We can
know that each of the errors was caused by an ill
attachment of a prepositional phrase with the same
analysis as shown in Figure 2. What is important
in this example is the manner in their occurrences.
The former error can appear by itself (Analysis 1)
while the latter cannot because of the structural
conflict with the former error (Analysis 2). The
appearance of the latter error thus induces that of
the former error. In error analysis, we have to cor-
rectly capture such various relations, which leads
us to a costly and less rewarding analysis.

In order to make advancements on this prob-
lem, we propose two types of approaches to real-
izing a deeper error analysis on parsing. In the ex-
periments, we examine our approaches for actual
errors which are given by the HPSG parserEnju
(Miyao and Tsujii, 2005; Ninomiya et al., 2006).
Enjuwas developed for capturing detailed syntac-
tic or semantic properties and relations for a sen-
tence with an HPSG framework (Pollard and Sag,
1994). In this research, we focus on error analysis
based on predicate argument relations, and in the
experiments withEnju, utilize the relations which

Erroneous phenomena Matched patterns
[Argument selection]
Prepositional attachment ARG1 of prep arg
Adjunction attachment ARG1 of adj arg
Conjunction attachment ARG1 of conj arg
Head selection for ARG1 of det arg

noun phrase
Coordination ARG1/2 ofcoord arg
[Predicate type selection]
Preposition/Adjunction prep arg / adj arg
Gerund acts as modifier/not verb modarg / verb arg
Coordination/conjunction coord arg / conj arg
# of arguments prep argX / prep argY

for preposition (X 6= Y )
Adjunction/adjunctive noun adj arg / nounarg
[More structural errors]
To-infinitive for see Figure 7

modifier/argument of verb
Subject for passive sentence see Figure 8

or not
[Others]
Comma any error around “,”
Relative clause attachment see Figure 9

Table 2: Patterns defined for descriptive approach

are represented in parsed tree structures.

3 Two approaches for error analysis

In this section, we propose two approaches for er-
ror analysis which enable us to capture underlying
dependencies among parsing errors. Our descrip-
tive approach matches the patterns of error com-
binations with given parsing errors and collects
matched erroneous participants. Our empirical ap-
proach, on the other hand, detects co-occurring
errors by re-parsing a sentence under a situation
where each of the errors is forcibly corrected.

3.1 Descriptive approach

Our descriptive approach for capturing dependen-
cies among parsing errors is to extract certain rep-
resentative structures of errors and collect the er-
rors which involve them. Parsing errors have a ten-
dency to occur with certain patterns of structures
representing linguistic phenomena. We first define
such patterns through observations with a part of
error outputs, and then match them with the rest.

Table 2 summarizes the patterns for erroneous
phenomena which we defined for matching in
the experiments. In the table, the patterns for
14 phenomena are given and classified into four
types according to their matching manners. Each
of the patterns for “Argument selection” examine
whether a focusedargumentfor a certainpredi-
cate typeis erroneous or not. Figure 5 shows the
pattern for “Prepositional attachment,” which col-
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prep_arg

ARG1 Error

Parser output: …

They completed the sale of for :

ARG1
ARG1

it to : him $1,000 

Pattern:

prep_arg12 prep_arg12

Correct output:

ARG1
ARG1

They completed the sale of for :it to : him $1,000 prep_arg12 prep_arg12

Parser output:

Example:

Figure 5: Pattern for “Prepositional attachment”

gerund:     verb_argParser output:

gerund: verb_mod_argCorrect answer:

(Patterns of correct answer and parser output can be interchanged)Pattern:

Example:

The customers walk the door

a   package   for   them

expecting: verb_mod_arg123 you to havein

ARG1

MOD ARG2

ARG3

Parser output:

Correct output:

The customers walk the door

a   package   for   them

expecting:     verb_arg123 you to havein

Not exist 

ARG2

ARG3

ARG1

(MOD)

Figure 6: Pattern for “Gerund acts as modifier or
not”

lects wrong ARG1 forpredicate type“prep arg”.
From the sentence in the figure, we can obtain
two errors for “Prepositional attachment” around
prepositions “to” and “for.” On the other hand,
each “Predicate type selection” pattern collects er-
rors around a word whosepredicate typeis erro-
neous. Figure 6 shows the pattern for “Gerund
acts as modifier or not,” which collects errors
around gerunds whosepredicate typesare erro-
neous. From the example sentence in the figure,
we can obtain an erroneous predicate type for “ex-
pecting” and collect errors around it for “Gerund
acts as modifier or not.”

We can implement more structural errors than
simpleargumentor predicate typeselections. Fig-
ures 7 and 8 show the patterns for “To-infinitive
for modifier/argument of verb” and “Subject for
passive sentence or not” respectively. The pat-
tern for the latter phenomenon collects errors on
recognitions of prepositional phrases which be-
have as subjects for passive expressions. The pat-
tern collects errors not only around prepositions
but also around the verbs which take the preposi-

Parser output: aux_arg12to :verb1 …
ARG3

verb2

Correct output: aux_mod_arg12

MOD

to :

ARG2

Unknown subject

ARG1
ARG1

verb1 … verb2

The  figures  … were  adjusted to : remove ...aux_arg12

Example:

Parser output:

Correct answer:

ARG3

The  figures  … were  adjusted to : remove ...aux_mod_arg12 

MOD ARG2

Unknown subject

ARG1
ARG1

Pattern: (Patterns of correct answer and parser output can be interchanged)

Figure 7: Pattern for “To-infinitive for modi-
fier/argument of verb”

Example:

Pattern:

Parser output: prep_arg12

Unknown subject

verb1 …
ARG1ARG1

…

Correct output: lgs_arg2
ARG2

verb1 … …

ARG1

A  50-state  study  released in  September  by : Friends  …

Unknown subject
ARG1ARG1

prep_arg12Parser output:

Correct answer: A  50-state  study  released in  September  by : Friends  …

ARG1ARG2

lgs_arg12
ARG2

(Patterns of correct answer and parser output can be interchanged)

Figure 8: Pattern for “Subject for passive sentence
or not”

tional phrases as a subject.
Since these patterns are based on linguistic

knowledge given by a human, the process could
provide a relatively precise analysis with a lower
cost than a totally manual analysis.

3.2 Empirical approach

Our empirical approach, on the other hand, briefly
traces the parsing process which results in each of
the target errors. We collect co-occurring errors
as strongly relevant ones, and then extract depen-
dencies among the obtained groups. Parsing errors
could originate from wrong processing at certain
stages in the parsing, and errors with a common
origin would by necessity appear together. We re-
parse a target sentence under the condition where a
certain error is forcibly corrected and then collect
errors which are corrected together as the “rela-
tive” ones. An error group where all errors are
relative to each other can be regarded as a “co-
occurring error group.” Errors in the same co-
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Example:

Pattern:

relative_arg1

ARG1

Parser output: ARG1/2

Error

Parser output:

Correct answer:

The book on relative_arg1 read 

ARG2

the shelf  I yesterday

ARG1

ARG2

ARG1

which :

The book on relative_arg1 read the shelf  I yesterdaywhich :

Figure 9: Pattern for “Relative clause attachment”

our work force

Error 1

Re-parse a sentence under the condition where
each error is forcibly corrected 

Error 1

Error 2

Error 3

Correct Error 2

Error 1

Error 1

Extract co-occurring error groups and inductive relations 

Error 4 Error 1

Error 4Error 3

Error 3Correct

Correct

Correct

corrected together

corrected together

corrected together

corrected together

,

,

,

Error 1 Error 2 Error 3 Error 4

today

ARG1

Correct answer:

It    has    no    bearing on

our work force todayon

Parser output:

ARG1 ARG1
ARG2

ARG2 ARG1 ARG1 ARG1

It    has    no    bearing

Error 2 Error 3 Error 4 Error 5

Error 5 Error 4Correct corrected togetherError 1 Error 3Error 2, , ,

Error 4,

Error 2 Error 4,,

Error 2 Error 3,,

Error 5
Induce

Co-occurring error group Co-occurring error group

Figure 10: An image of our empirical approach

occurring error group are expected to participate
in the same phenomenon. Dependencies among
errors are then expected to be summarized with in-
ductions among co-occurring error groups.

Figure 10 shows an image of this approach. In
this example, “today” should modify noun phrase
“our work force” while the parser decided that “to-
day” was also in the noun phrase. As a result, there
are five errors: three wrong outputs for “ARG2”
of “on” (Error 1) and “ARG1” of “our” (Error 2)
and “work” (Error 3), excess relation “ARG1” of
“ force” (Error 4), and missing relation “ARG1” for
“ today” (Error 5). By correcting each of the errors
1, 2, 3 and 4, all of these errors are corrected to-
gether, and therefore classified into the same co-
occurring error group. Although error 5 cannot
participate in the group, correcting error 5 can cor-
rect all of the errors in the group, and therefore an

# of
Error types Errors Patterns
· Analyzed 2,078 1,671

[Argument selection]
Prepositional attachment 579 579
Adjunction attachment 261 261
Conjunction attachment 43 40
Head selection for noun phrase 30 30
Coordination 202 184

[Predicate type selection]
Preposition/Adjunction 108 54
Gerund acts as modifier or not 84 31
Coordination/conjunction 54 27
# of arguments for preposition 51 17
Adjunction/adjunctive noun 13 13

[More structural errors]
To-infinitive for 120 22

modifier/argument of verb
Subject for passive sentence 8 3

or not
[Others]
Comma 444 372
Relative clause attachment 102 38

· Unanalyzed 2,631 −
Total 4,709 −

Table 3: Errors extracted with descriptive analysis

inductive relation is given from error 5 to the co-
occurring error group. We can then finally obtain
the inductive relations as shown at the bottom of
Figure 10. This approach can trace the actual be-
havior of the parser precisely, and can therefore
capture underlying dependencies which cannot be
found only by observing error outputs.

4 Experiments

We applied our approaches to parsing errors given
by the HPSG parserEnju, which was trained on
the Penn Treebank (Marcus et al., 1994) section
2-21. We first examined each approach, and then
explored the combination of the approaches.

4.1 Evaluation of descriptive approach

We examined our descriptive approach. We first
parsed sentences in the Penn Treebank section 22
with Enju, and then observed the errors. Based on
the observation, we next described the patterns as
shown in Section 3. After that, we parsed section
0 and then applied the patterns to the errors.

Table 3 summarizes the extracted errors. As the
table shows, with the 14 error patterns, we suc-
cessfully matched 1,671 locations in error outputs
and covered 2,078 of 4,709 errors, which com-
prised of more than 40% of the total errors. This
was the first step of the application of our ap-
proach, and in the future work we would like to
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Evaluated sentences (erroneous) 1,811 (1,009)
Errors (Correctable) 4,709 (3,085)
Co-occurring errors 1,978
Extracted inductive relations 501
F-score (LP/LR) 90.69 (90.78/93.59)

Table 4: Summary of our empirical approach
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Figure 11: Frequency of each size of co-occurring
error group

add more patterns for capturing more phenomena.
When we focused on individual patterns, we

could observe that the simple error phenomena
such as the attachments were dominant. The first
reason for this would be that such phenomena
were among minimal linguistic events. This would
make the phenomena components of other more
complex ones. The second reason for the dom-
inance would be that the patterns for these error
phenomena were easy to implement only with ar-
gument inconsistencies, and only one or a few pat-
terns could cover every probable error. Among
these dominant error types, the number of prepo-
sitional attachments was outstanding. The er-
ror types which required matching with predicate
types were fewer than the attachment errors since
the limited patterns on the predicate types would
narrow the possible linguistic behavior of the can-
didate words. When we focus on more structural
errors, the table shows that the rates of the partici-
pant errors to matched locations were much larger
than those for simpler pattern errors. Once our pat-
terns matches, they could collect many errors at
the same time.

4.2 Evaluation of empirical approach

Next, we applied our empirical approach in the
same settings as in the previous section. We first
parsed sentences in section 0 and then applied our
approach to the obtained errors. In the experi-
ments, some errors could not be forcibly corrected
by our approach. The parser “cut off” less proba-
ble parse substructures before giving the predicate

Sentence: The  asbestos  fiber  ,  crocidolite ,  is  unusually  resilient  once  it  enters the    

lungs  ,  with  even  brief  exposures  to  it  causing  symptoms  that  show  up  decades  later

,  researchers  said

(a)(b)

(c) (d)

(a)
fiber      ,: crocidoliteapp_arg12

fiber      ,: crocidolitecoord_arg12

Correct answer:

Parser output:

is     usually     resilient     … the     lungs        ,        with
(b)

symptoms    that     show : up    decades    later
(c)

Parser output:

Correct answer: verb_arg1

symptoms    that     show : up    decades    laterverb_arg12

(d)

ARG1 ARG2

ARG1 ARG2

ARG1 ARG1

ARG1 ARG2

ARG1
ARG1

Correct answer:

Parser output: is     usually     resilient     … the     lungs        ,        with

ARG1
ARG1

Correct answer:

Parser output:

It    causing    symptoms    that    show    up    decades    later
ARG1

It    causing    symptoms    that    show    up    decades    later

ARG1

Figure 12: Obtained co-occurring error groups

argument relation for reducing the cost of parsing.
In this research, we ignored the errors which were
subject to such “cut off” as “uncorrectable” ones,
and focused only on the remaining “correctable”
errors. In our future work, we would like to con-
sider the “uncorrectable” errors.

Table 4 shows the summary of the analysis with
our approach.Enju gave 4,709 errors for section
0. Among these errors, thecorrectableerrors were
3,085, and from these errors, we successfully ob-
tained 1,978 co-occurring error groups and 501 in-
ductive relations. Figure 11 shows the frequency
for each size of co-occurring groups. About a half
of the groups contains only single errors, which
would indicate that the errors could have only one-
way inductive relations with other errors. The rest
of this section explores examples of the obtained
co-occurring error groups and inductive relations.

Figure 12 shows an example of the extracted co-
occurring error groups. For the sentence shown at
the top of the figure,Enju gave seven errors. By
introducing our empirical approach, these errors
were definitely classified into four co-occurring er-
ror groups (a) to (d), and there were no inductive
relations detected among them. Group (a) contains
two errors on the comma’s local behavior as ap-
position or coordination. Group (b) contains the
errors on the words which gave almost the same
attachment behaviors. Group (c) contains the er-
rors on whether the verb “show” took “decades”
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Error types # of correctable errors # of independent errors Correction effect (errors)
[Argument selection]

Prepositional attachment 531 397 766
Adjunction attachment 196 111 352
Conjunction attachment 33 12 79
Head selection for noun phrase 22 0 84
Coordination 146 62 323

[Predicate type selection]
Preposition/Adjunction 72 30 114
Gerund acts as modifier or not 39 18 62
Coordination/conjunction 36 16 61
# of arguments for preposition 24 23 26
Adjunction/adjunctive noun 8 6 10

[More structural errors]
To-infinitive for 75 27 87

modifier/argument of verb
Subject for passive sentence or not 8 3 9

[Others]
Comma 372 147 723
Relative clause attachment 84 27 119

Total 1,646 979 −

Table 5: Induction relations between errors for each linguistic phenomenon and other errors

Sentence: She  says  she  offered  Mrs.  Yeargin a  quiet  resignation

and  thought  she  could  help  save  her  teaching  certificate
(a) (b)

Correcting (a) induced correcting (b)

(b) Correct answer:

Parser output:

… thought  she  could  help   save : her  teaching  certificateverb_arg123

… thought  she  could  help   save : her  teaching  certificateverb_arg12

ARG1 ARG2

ARG1

ARG1 ARG2 ARG3

(a) Correct answer:

Parser output:

… thought   she   could     help: save   her   teaching   certificateverb_arg12

… thought   she   could     help : save   her   teaching   certificateaux_arg12

ARG1 ARG2

ARG2
ARG2

ARG1 ARG2

ARG2ARG2

Figure 13: Inductive relation between obtained co-
occurring error groups

as its object or not. Group (d) contains an error on
the attachment of the adverb “later”. Regardless
of the overlap of the regions in the sentence for
(c) and (d), our approach successfully classified
the errors into the two independent groups. With
our approach, it would be empirically shown that
the errors in each group actually co-occurred and
the group was independent. This would enable us
to concentrate on each of the co-occurring error
groups without paying attention to the influences
from the errors in other groups.

Figure 13 shows another example of the anal-
ysis with our empirical approach. In this case, 8
errors for a sentence were classified into two co-

occurring error groups (a) and (b), and our ap-
proach showed that correction in group (a) re-
sulted in correcting group (b) together. The errors
in group (a) were on whether “help” behaved as an
auxiliary or pure verbal role. The errors in group
(b) were on whether “save” took only one object
“her teaching certificate,” or two objects “her” and
“ teaching certificate.” Between group (a) and (b),
no “structural” conflict could be found when cor-
recting only each of the groups. We could then
guess that the inductive relation between these two
groups was implicitly given by the disambigua-
tion model of the parser. By dividing the errors
into minimum units and clarifying the effects of
correcting a target error, error analysis with our
empirical approach could suggest some policy for
parser improvements.

4.3 Combination of two approaches

On the basis of the experiments shown in the pre-
vious sections, we would like to explore possibili-
ties for obtaining a more detailed analysis by com-
bining the two approaches.

4.3.1 Interactions between a target linguistic
phenomenon and other errors

Our descriptive approach could classify the pars-
ing errors according to the linguistic phenomena
they participated in. We then attempt to reveal how
such classified errors interacted with other errors
from the viewpoints of our empirical approach. In
order to enable the analysis by our empirical ap-
proach, we focused only on thecorrectableerrors.
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Sentence: It  invests  heavily  in  dollar-denominated  securities  overseas  and  is

currently  waiving  management  fees  ,  which  boosts  its  yield (a)

(b)

(a)

It  invests  heavily  in  dollar-denominated  securities    overseas : adj_arg1

“Adjunction attachment”

ARG1

ARG1

Pattern matched: 

is  currently  waiving  management  fees              ,         which           boosts   its  yield

(b)

“Comma” , “Relative clause attachment”Pattern matched: 

ARG1ARG1
ARG1

ARG1ARG1
ARG1

Error:

Error:

Figure 14: Combination of results given by de-
scriptive and empirical approaches (1)

Table 5 reports the degree to which the classi-
fied errors were related to other individual errors.
The leftmost numbers show the numbers ofcor-
rectableerrors, which were the focused errors in
the experiments. The central numbers show the
numbers of “independent” errors, that is, the errors
which could be corrected only by correcting them-
selves. The rightmost numbers show “correction
effects,” that is, the number of errors which would
consequently be corrected if all of the errors for
the focused phenomena were forcibly corrected.

“ Independent” errors are obtained by collecting
error phenomena groups which consist of unions
of co-occurring error groups and each error in
which is not induced by other errors. Figure 14
shows an example of “independent” errors. For
the sentence at the top of the figure, the parser had
four errors on ARG1 of “overseas,” the comma,
“which” and “boosts.” Our empirical approach
then classified these errors into two co-occurring
error groups (a) and (b), and there was no induc-
tive relation between the groups. Our descrip-
tive approach, on the other hand, matched all of
the errors with the patterns for “Adjunction at-
tachment,” “Comma” and “Relative clause attach-
ment.” Since the error for the “Adjunction attach-
ment” equals to a co-occurring group (a) and is not
induced by other errors, the error is “independent.”

Table 5 shows that, for “Prepositional attach-
ment”, “Adjunction attachments,” “# of argu-
ments for preposition” and “Adjunction/adjunctive
noun,” more than half of the errors for the focused
phenomena are “independent.” Containing many
“ independent” errors would mean that the parser
should handle these phenomena further more in-
tensively as an independent event.

Sentence: Clark  J.  Vitulli was  named  senior  vice  president  and  general  manager 

of  this  U.S.  sales  and  marketing  arm  of  Japanese  auto  Maker  Mazda  Motor  Corp

(b) (a)

(b)

(a)

senior  vice  president  and  general  manager  of  this  U.S.  sales   and : coord_arg12

“Coordination” (fragment)

ARG1

ARG1

Pattern matched: 

Correcting (a) induced correcting (b)

manager   of     this : U.S.   sales    and : marketing  arm  of

“Coordination” (fragment),
“Head selection of noun phrase”

Pattern matched: 

det_arg1 coord_arg12

ARG2ARG1ARG2
ARG1

ARG2 ARG1 ARG1 ARG1 ARG2

Error:

Error:

Figure 15: Combination of results given by de-
scriptive and empirical approaches (2)

The “correction effect” for a focused linguistic
phenomenon can be obtained by counting errors in
the union of thecorrectableerror set for the phe-
nomenon and the error sets which were induced by
the individual errors in the set. We would show an
example ofcorrection effectin Figure 15. In the
figure, the parser had six errors for the sentence
at the top: three false outputs for ARG1 of “and,”
“ this” and “U.S.,” two false outputs for ARG2 of
“of” and “and,” and missing output for ARG1 of
“sales.” Our empirical approach classified these
errors into two co-occurring error groups (a) and
(b), and extracted an inductive relation from (a) to
(b). Our descriptive approach, on the other hand,
matched two errors on “and” with pattern “Coor-
dination” and one error on “this” with “Head se-
lection for noun phrase.” When we focus on the
error for “Head selection of noun phrase” in co-
occurring group (a), the correction of the error in-
duced the rest of the errors in (a), and further in-
duced the error in (b) according to the inductive
relation from (a) to (b). Therefore, a “correction
effect” for the error results in six errors.

Table 5 shows that, for “Conjunction attach-
ment,” “Head selection for noun phrase” and “Co-
ordination,” each “correction effect” results in
more than twice the forcibly corrected errors. Im-
proving the parser so that it can resolve suchhigh-
correction-effecterroneous phenomena may ad-
ditionally improve the parsing performances to a
great extent. On the other hand, “Head selection
for noun phrase” contains no “independent” error,
and therefore could not be handled independently
of other erroneous phenomena at all. Consider-
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ing the effects from outer events might make the
treatment of “Head selection for noun phrase” a
more complicated process than other phenomena,
regardless of its high “correction effect.”

Table 5 would thus suggest which phenomenon
we should resolve preferentially from the three
points of view: the number of errors, the number
of “ independent” errors and its “correction effect.”
Considering these points, “Prepositional attach-
ment” seems most preferable for handling first.

4.3.2 Possibilities for further analysis

Since the errors for the phenomenon were system-
atically collected with our descriptive approach,
we can work on further focused error analyses
which would answer such questions as “Which
preposition causes most errors in attachments?”,
“Which pair of a correct answer and an erroneous
output for predicate argument relations can occur
most frequently?”, and so on. Our descriptive ap-
proach would enable us to thoroughly obtain such
analyses with more closely-defined patterns. In
addition, our empirical approach would clarify the
influences of the obtained error properties on the
parser’s behaviors. The results of the focused anal-
yses might reasonably lead us to the features that
can be captured as parameters for model training,
or policies for re-ranking the parse candidates.

The combination of our approaches would give
us interesting clues for planning effective strate-
gies for improving the parser. Our challenges for
combining the two approaches are now in the pre-
liminary stage and there would be many possibili-
ties for further detailed analysis.

5 Related work

Although there have been many researches which
analyzed errors on their own systems in the part of
the experiments, there have been few researches
which focused mainly on error analysis itself.

In the field of parsing, McDonald and Nivre
(2007) compared parsing errors between graph-
based and transition-based parsers. They observed
the accuracy transitions from various points of
view, and the obtained statistical data suggested
that error propagation seemed to occur in the
graph structures of parsing outputs. Our research
proceeded for one step in this point, and attempted
to reveal the way of the propagations. In exam-
ining the combination of the two types of pars-
ing, McDonald and Nivre (2007) utilized similar

approaches to our empirical analysis. They al-
lowed a parser to give only structures given by
the parsers. They implemented the ideas for eval-
uating the parser’s potentials whereas we imple-
mented the ideas for observing error propagations.

Dredze et al. (2007) showed the possibility
that many parsing errors in the domain adaptation
tasks came from inconsistencies between annota-
tion manners of training resources. Such findings
would further suggest that, comparing given errors
without considering the inconsistencies could lead
to the misunderstanding of what occurs in domain
transitions. The summarized error dependencies
given by our approaches would be useful clues for
extracting such domain-dependent error phenom-
ena.

Giménez and M̀arquez (2008) proposed an au-
tomatic error analysis approach in machine trans-
lation (MT) technologies. They were developing
a metric set which could capture features in MT
outputs at different linguistic levels with different
levels of granularity. As we considered the parsing
systems, they explored the way to resolve costly
and non-rewarding error analysis in the MT field.
One of their objectives was to enable researchers
to easily access detailed linguistic reports on their
systems and to concentrate only on analyses for
the system improvements. From this point of view,
our research might provide an introduction into
such rewarding analysis in parsing.

6 Conclusions

We proposed empirical and descriptive approaches
to extracting dependencies among parsing errors.
In the experiments, with each of our approaches,
we successfully obtained relevant errors. More-
over, the possibility was shown that the combina-
tion of our approaches would give a more detailed
error analysis which would bring us useful clues
for parser improvements.

In our future work, we will improve the per-
formance of our approaches by adding more pat-
terns for the descriptive approach and by handling
uncorrectableerrors for the empirical approach.
With the obtained robust information, we will ex-
plore rewarding ways for parser improvements.
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Abstract

Textual entailment recognition plays a
fundamental role in tasks that require in-
depth natural language understanding. In
order to use entailment recognition tech-
nologies for real-world applications, a
large-scale entailment knowledge base is
indispensable. This paper proposes a con-
ditional probability based directional sim-
ilarity measure to acquire verb entailment
pairs on a large scale. We targeted 52,562
verb types that were derived from 108

Japanese Web documents, without regard
for whether they were used in daily life
or only in specific fields. In an evaluation
of the top 20,000 verb entailment pairs ac-
quired by previous methods and ours, we
found that our similarity measure outper-
formed the previous ones. Our method
also worked well for the top 100,000 re-
sults.

1 Introduction

We all know that if you snored, you must have
been sleeping, that if you are divorced, you must
have been married, and that if you won a lawsuit,
you must have sued somebody. These relation-
ships between events where one is the logical con-
sequence of the other are called entailment. Such
knowledge plays a fundamental role in tasks that
require in-depth natural language understanding,
e.g., answering questions and using natural lan-
guage interfaces.

This paper proposes a novel method for verb
entailment acquisition. Using a Japanese Web
corpus (Kawahara and Kurohashi, 2006a) derived
from 108 Japanese Web documents, we automat-
ically acquired such verb pairs as snore → sleep
and divorce → marry, where entailment holds be-

tween the verbs in the pair.1 Our definition of “en-
tailment” is the same as that in WordNet3.0; v1
entails v2 if v1 cannot be done unless v2 is, or has
been, done.2

Our method follows the distributional similar-
ity hypothesis, i.e., words that occur in the same
context tend to have similar meanings. Just as in
the methods of Lin and Pantel (2001) and Szpek-
tor and Dagan (2008), we regard the arguments
of verbs as the context in the hypothesis. How-
ever, unlike the previous methods, ours is based
on conditional probability and is augmented with
a simple trick that improves the accuracy of verb
entailment acquisition. In an evaluation of the top
20,000 verb entailment pairs acquired by the pre-
vious methods and ours, we found that our similar-
ity measure outperformed the previous ones. Our
method also worked well for the top 100,000 re-
sults,

Since the scope of Natural Language Process-
ing (NLP) has advanced from a formal writing
style to a colloquial style and from restricted to
open domains, it is necessary for the language re-
sources for NLP, including verb entailment knowl-
edge bases, to cover a broad range of expressions,
regardless of whether they are used in daily life
or only in specific fields that are highly techni-
cal. As we will discuss later, our method can ac-
quire, with reasonable accuracy, verb entailment
pairs that deal not only with common and familiar
verbs but also with technical and unfamiliar ones
like podcast → download and jibe → sail.

Note that previous researches on entailment ac-
quisition focused on templates with variables or
word-lattices (Lin and Pantel, 2001; Szpektor and
Dagan, 2008; Barzilay and Lee, 2003; Shinyama

1Verb entailment pairs are described as v1 → v2 (v1 is
the entailing verb and v2 is the entailed one) henceforth.

2WordNet3.0 provides entailment relationships between
synsets like divorce, split up→marry, get married, wed, con-
join, hook up with, get hitched with, espouse.
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et al., 2002). Certainly these templates or word
lattices are more useful in such NLP applications
as Q&A than simple entailment relations between
verbs. However, our contention is that entailment
certainly holds for some verb pairs (like snore →
sleep) by themselves, and that such pairs consti-
tute the core of a future entailment rule database.
Although we focused on verb entailment, our
method can also acquire template-level entailment
pairs with a reasonable accuracy.

The rest of this paper is organized as follows.
In §2, related works are described. §3 presents our
proposed method. After this, an evaluation of our
method and the existing methods is presented in
Section 4. Finally, we conclude the paper in §5.

2 Related Work

Previous studies on entailment, inference rules,
and paraphrase acquisition are roughly classi-
fied into those that require comparable corpora
(Shinyama et al., 2002; Barzilay and Lee, 2003;
Ibrahim et al., 2003) and those that do not (Lin
and Pantel, 2001; Weeds and Weir, 2003; Geffet
and Dagan, 2005; Pekar, 2006; Bhagat et al., 2007;
Szpektor and Dagan, 2008).

Shinyama et al. (2002) regarded newspaper arti-
cles that describe the same event as a pool of para-
phrases, and acquired them by exploiting named
entity recognition. They assumed that named en-
tities are preserved across paraphrases, and that
text fragments in the articles that share several
comparable named entities should be paraphrases.
Barzilay and Lee (2003) also used newspaper ar-
ticles on the same event as comparable corpora
to acquire paraphrases. They induced paraphras-
ing patterns by sentence clustering. Ibrahim et al.
(2003) relied on multiple English translations of
foreign novels and sentence alignment to acquire
paraphrases. We decided not to take this approach
since using comparable corpora limits the scale
of the acquired paraphrases or entailment knowl-
edge bases. Although obtaining comparable cor-
pora has been simplified by the recent explosion
of the Web, the availability of plain texts is incom-
parably better.

Entailment acquisition methods that do not re-
quire comparable corpora are mostly based on the
distributional similarity hypothesis and use plain
texts with a syntactic parser. Basically, they parse
texts to obtain pairs of predicate phrases and their
arguments, which are regarded as features of the

predicates with appropriately assigned weights.
Lin and Pantel (2001) proposed a paraphrase ac-
quisition method (non-directional similarity mea-
sure) called DIRT which acquires pairs of binary-
templates (predicate phrases with two argument
slots) that are paraphrases of each other. DIRT em-
ploys the following similarity measure proposed
by Lin (1998):

Lin(l, r) =
∑

f∈Fl∩Fr
[wl(f) + wr(f)]∑

f∈Fl
wl(f) +

∑
f∈Fr

wr(f)

where l and r are the corresponding slots of two
binary templates, Fs is s’s feature vector (argu-
ment nouns), and ws(f) is the weight of f ∈ Fs

(PMI between s and f ). The intuition behind this
is that the more nouns two templates share, the
more semantically similar they are. Since we ac-
quire verb entailment pairs based on unary tem-
plates (Szpektor and Dagan, 2008) we used the
Lin formula to acquire unary templates directly
rather than using the DIRT formula, which is the
arithmetic-geometric mean of Lin’s similarities for
two slots in a binary template.

Bhagat et al. (2007) developed an algorithm
called LEDIR for learning the directionality of
non-directional inference rules like those pro-
duced by DIRT. LEDIR implements a Direction-
ality Hypothesis: when two binary semantic re-
lations tend to occur in similar contexts and the
first one occurs in significantly more contexts than
the second, then the second most likely implies the
first and not vice versa.

Weeds and Weir (2003) proposed a general
framework for distributional similarity that mainly
consists of the notions of what they call Precision
(defined below) and Recall:

Precision(l, r) =
∑

f∈Fl∩Fr
wl(f)∑

f∈Fl
wl(f)

where l and r are the targets of a similarity mea-
surement, Fs is s’s feature vector, and ws(f) is the
weight of f ∈ Fs. The best performing weight is
PMI. Precision is a directional similarity measure
that examines the coverage of l’s features by those
of r’s, with more coverage indicating more simi-
larity.

Szpektor and Dagan (2008) proposed a direc-
tional similarity measure called BInc (Balanced-
Inclusion) that consists of Lin and Precision, as

BInc(l, r) =
√

Lin(l, r)× Precision(l, r)
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where l and r are the target templates. For weight-
ing features, they used PMI. Szpektor and Dagan
(2008) also proposed a unary template, which is
defined as a template consisting of one argument
slot and one predicate phrase. For example, X take
a nap → X sleep is an entailment pair consisting
of two unary templates. Note that the slot X must
be shared between templates. Though most of the
previous entailment acquisition studies focused on
binary templates, unary templates have an obvi-
ous advantage over binary ones; they can handle
intransitive predicate phrases and those that have
omitted arguments. The Japanese language, which
we deal with here, often omits arguments, and thus
the advantage of unary templates is obvious.

As shown in §4, our method outperforms Lin,
Precision, and BInc in accuracy.

Szpector et al. (2004) addressed broad coverage
entailment acquisition. But their method requires
an existing lexicon to start, while ours does not.

Apart from the dichotomy of the compara-
ble corpora and the distributional similarity ap-
proaches, Torisawa (2006) exploited the structure
of Japanese coordinated sentences to acquire verb
entailment pairs. Pekar (2006) used the local
structure of coherent text by identifying related
clauses within a local discourse. Zanzotto et al.
(2006) exploited agentive nouns. For example,
they acquired win → play from “the player wins.”

Geffet and Dagan (2005) proposed the Distribu-
tional Inclusion Hypotheses, which claimed that if
a word v entails another word w, then all the char-
acteristic features of v are expected to appear with
w, and vice versa. They applied this to noun en-
tailment pair acquisition, rather than verb pairs.

3 Proposed Method

This section presents our method of verb entail-
ment acquisition. First, the basics of Japanese are
described. Then, we present the directional sim-
ilarity measure that we developed in §3.2. §3.3
describes the structure and acquisition of the web-
based data from which entailment pairs are de-
rived. Finally, we show how we acquire verb en-
tailment pairs using our proposed similarity mea-
sure and the web-based data in §3.4.

3.1 Basics of Japanese

Japanese explicitly marks arguments including the
subject and object by postpositions, and is a head-
final language. Thus, a verb phrase consisting of

an object hon (book) and a verb yomu (read), for
example, is expressed as hon-wo yomu (book-ACC

read) “read a book” with the accusative postpo-
sition wo marking the object.3 Accordingly, we
refer to a unary template as 〈p, v〉 hereafter, with
p and v referring to the postposition and a verb.
Also, we abbreviate a template-level entailment
〈pl, vl〉 → 〈pr, vr〉 as l → r for simplicity. We
define a unary template as a template consisting
of one argument slot and one predicate, following
Szpektor and Dagan (2008).

3.2 Directional Similarity Measure based on
Conditional Probability

The directional similarity measure that we devel-
oped and called Score is defined as follows:

Score(l, r) = Scorebase(l, r)× Scoretrick(l, r)

where l and r are unary templates, and Score in-
dicates the probability of l → r. Scorebase, which
is the base of Score, is defined as follows:

Scorebase(l, r) =
∑

f∈Fl∩Fr

P (r|f)P (f |l)

where Fs is s’s feature vector (nouns including
compounds). The intention behind the definition
of Scorebase is to emulate the conditional proba-
bility P (vr|vl)4 in a distributional similarity style
function. Note that P (vr|vl) should be 1 when en-
tailment vl → vr holds (i.e., vr is observed when-
ever vl is observed) and we have reliable proba-
bility values. Then, if we can directly estimate
P (vr|vl), it is reasonable to assume vl → vr if
P (vr|vl) is large enough. However, we cannot es-
timate P (vr|vl) directly since it is unlikely that we
will observe the verbs vr and vl at the same time.
(People do not usually repeat vr and vl in the same
document to avoid redundancy.) Thus, instead of
a direct estimation, we substitute Scorebase(l, r)
as defined above. In other words, we assume
P (vr|vl) ≈ P (r|l) ≈ Σf∈Fl∩FrP (f |l)P (r|f).

Actually, Scorebase originally had another mo-
tivation, inspired by Torisawa (2005), for which no
postposition but the instrumental postposition de
was relevant. In this discussion, all of the nouns
(fs) that are marked by the instrumental postposi-
tion are seen as “tools,” and P (f |l) is interpreted

3ACC represents an accusative postposition in Japanese.
Likewise, NOM, DAT, INS, and TOP are the symbols for the
nominative, dative, instrumental, and topic postpositions.

4Remember that vl and vr are the verbs of unary tem-
plates l and r.
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as a measure of how typically the tool f is used
to perform the action denoted by (the vl of) l; if
P (f |l) is large enough, f is a typical tool used in
l. On the other hand, P (r|f) indicates the proba-
bility of (the vr of) r being the purpose for using
the tool f . See (1) for an example.

(1) konro-de chouri-suru
cooking.stove-INS cook
‘cook (something) using a cooking stove.’

The purpose of using a cooking stove is to cook.
Torisawa (2005) has pointed out that when r ex-
presses the purpose of using a tool f , P (r|f) tends
to be large. This predicts that P (r|cooking stove)
is large, where r is 〈de, cook〉.

According to this observation, if f is a single
purpose tool and P (f |l), the probability of f be-
ing the tool by which l is performed, and P (r|f),
the probability of r being the purpose of using the
tool f , are large enough, then the typical perfor-
mance of the action vl should contain some ac-
tions that can be described by vr, i.e., the pur-
pose of using f . Moreover, if all the typical tools
(fs) used in vl are also used for vr, most perfor-
mances of the action vl should contain a part de-
scribed by the action vr. In summary, this means
that when Σf∈Fl∩FrP (r|f)P (f |l), Scorebase, has
a large value, we can expect vl → vr.

For example, let vl be deep-fry and vr be cook.
Note that vl → vr holds for this example. There
are many tools that are used for deep-frying,
such as cooking stove, pot, or pan. This means
that P (cooking stove|l), P (pot|l), or P (pan|l) are
large. On the other hand, the purpose of using all
of these tools is cooking, based on common sense.
Thus, probabilities such as P (r|cooking stove)
and P (r|pan) should have large values. Accord-
ingly, Σf∈Fl∩FrP (f |l)P (r|f), Scorebase, should
be relatively large for deep-fry → cook,

Actually, we defined Scorebase based on the
above assumption However, through a series of
preliminary experiments, we found that the same
score could be applied without losing the preci-
sion to the other postpositions. Thus, we gener-
alized the framework so that it could deal with
most postpositions, namely ga (NOM), wo (ACC),
ni (DAT), de (INS), and wa (TOP). Note that this
is a variation of the distributional inclusion hy-
pothesis (Geffet and Dagan, 2005), but that we do
not use mutual information as in previous works,
based on the hypothesis discussed above. Actu-
ally, as shown in §4, our conditional probability

based method outperformed the mutual informa-
tion based metrics in our experiments.

On the other hand, Scoretrick implements an-
other assumption that if only one feature con-
tributes to Scorebase and the contribution of the
other nouns is negligible, if any, the similarity is
unreliable. Accordingly, for Scoretrick, we uni-
formly ignore the contribution of the most domi-
nant feature from the similarity measurement.

Scoretrick(l, r)
= Scorebase(l, r)− max

f∈Fl∩Fr

P (r|f)P (f |l)

As shown in §4, this trick actually improved the
entailment acquisition accuracy.

We used maximum likelihood estimation to ob-
tain P (r|f) and P (f |l) in the above discussion.

Bannard and Callison-Burch (2005) and Fujita
and Sato (2008) also proposed directional simi-
larity measures based on conditional probability,
which are very similar to Scorebase, although ei-
ther their method’s prerequisites or the targets of
the similarity measurements were different from
ours. The method of Bannard and Callison-Burch
(2005) requires bilingual parallel corpora, and
uses the translations of expressions as its feature.
Fujita and Sato (2008) dealt with productive pred-
icate phrases, while our target is non-productive
lexical units, i.e., verbs. Thus, this is the first
attempt to apply a conditional probability based
similarity measure to verb entailment acquisition.
In addition, the trick implemented in Scoretrick is
novel.

3.3 Preparing Template-Feature Tuples

Our method starts from a dataset called template-
feature tuples, which was derived from the Web
in the following way: 1) Parse the Japanese Web
corpus (Kawahara and Kurohashi, 2006a) derived
from 108 Japanese Web documents with Japanese
dependency parser KNP (Kawahara and Kuro-
hashi, 2006b). 2) Extract triples 〈n, p, v〉 consist-
ing of nouns (n), postpositions (p), and verbs (v),
where an n marked by a p depends on a v from
the parsed Web text. 3) From the triple database,
construct template-feature tuples 〈n, 〈p, v〉〉 by re-
garding 〈p, v〉 as a unary template and n as one of
its features. 4) Convert the verbs into their canon-
ical forms as defined by KNP. 5) Filter out tuples
that fall into one of the following categories: 5-
1) Freq(〈p, v〉) < 20. 5-2) Its verb is passivized,
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causativized, or negated. 5-3) Its verb is semanti-
cally vague like be, do, or become. 5-4) Its post-
position is something other than ga (NOM), wo
(ACC), ni (DAT), de (INS), or wa (TOP).

The resulting unary template-feature tuples in-
cluded 127,808 kinds of templates that consisted
of 52,562 verb types and five kinds of postpo-
sitions. The verbs included compound words
like bosi-kansen-suru (mother.to.child-infection-
do) “infect from mothers to infants.”

3.4 Acquiring Entailment Pairs

We acquired verb entailment pairs using the fol-
lowing procedure: i) From the template-feature
tuples mentioned in §3.3, acquire unary template
pairs that exhibit an entailment relation between
them using the directional similarity measure in
§3.2. ii) Convert the acquired unary templates
〈p, v〉 into naked verbs v by stripping the postpo-
sitions p. iii) Remove the duplicated verb pairs
resulting from stripping ps. To be precise, when
we removed the duplicated pairs, we left the high-
est ranked one. iv) Retrieve N-best verb pairs as
the final output from the result of iii). That is, we
first acquired unary template pairs and then trans-
formed them into verb pairs.

Although this paper focuses on verb entailment
acquisition, we also evaluated the accuracy of
template-level entailment acquisition, in order to
show that our similarity measure works well, not
only for verb entailment acquisition, but also for
template entailment acquisition (See §4.4). we
created two kinds of unary templates: the “Scoring
Slots” template and the “Nom(inative) Slots” tem-
plate. The first is simply the result of the procedure
i); all of the templates have slots that are used for
similarity scoring. The second one was obtained
in the following way: 1) Only templates whose p
is not a nominative are sampled from the result of
the procedure i). 2) Their ps are all changed to a
nominative. Templates of the second kind are used
to show that the corresponding slots between tem-
plates (nominative, in this case) that are not used
for similarity scoring can be incorporated to re-
sulting template-level entailment pairs if the scor-
ing function really captures the semantic similarity
between templates.

Note that, for unary template entailment pairs
like (2) to be well-formed, the two unary slots (X-
wo) between templates must share the same noun
as the index i indicates. This is relevant in §4.4.

(2) Xi-wo musaborikuu → Xi-wo taberu
Xi-ACC gobble Xi-ACC eat

4 Evaluation

We compare the accuracy of our method with that
of the alternative methods in §4.1. §4.2 shows
the effectiveness of the trick. We examine the en-
tailment acquisition accuracy for frequent verbs in
§4.3, and evaluate the performance of our method
when applied to template-level entailment acquisi-
tion in §4.4. Finally, by showing the accuracy for
verb pairs obtained from the top 100,000 results,
we claim that our method provides a good start-
ing point from which a large-scale verb entailment
resource can be constructed in §4.5.

For the evaluation, three human annotators (not
the authors) checked whether each acquired entail-
ment pair was correct. The average of the three
Kappa values for each annotator pair was 0.579
for verb entailment pairs and 0.568 for template
entailment pairs, both of which indicate the mid-
dling stability of this evaluation annotation.

4.1 Experiment 1: Verb Pairs

We applied Score, BInc, Lin, and Precision to the
template-feature tuples (§3.3), obtained template
entailment pairs, and finally obtained verb entail-
ment pairs by removing the postpositions from the
templates as described in §3. As a baseline, we
created pairs from randomly chosen verbs.

Since we targeted all of the verbs that ap-
peared on the Web (under the condition of
Freq(〈p, v〉) ≥ 20), the annotators were con-
fronted with technical terms and slang that they
did not know. In such cases, they consulted dic-
tionaries (either printed or machine readable ones)
and the Web. If they still could not find the mean-
ing of a verb, they labeled the pair containing the
unknown verb as incorrect.

We used the accuracy = # of correct pairs
# of acquired pairs as

an evaluation measure. We regarded a pair as cor-
rect if it was judged correct by one (Accuracy-1),
two (Accuracy-2), or three (Accuracy-3) annota-
tors.

We evaluated 200 entailment pairs sampled
from the top 20,000 for each method (# of ac-
quired pairs = 200). For fairness, the evaluation
samples for each method were shuffled and placed
in one file from which the annotators worked. In
this way, they were unable to know which entail-
ment pair came from which method.
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Note that the verb entailment pairs produced
by Lin do not provide the directionality of en-
tailment. Thus, the annotators decided the direc-
tionality of these entailment pairs as follows: i)
Copy 200 original samples and reverse the order
of v1 and v2. ii) Shuffle the 400 Lin samples
(the original and reversed samples) with the other
ones. iii) Evaluate all of the shuffled pairs. Each
Lin pair was regarded as correct if either direction
was judged correct. In other words, we evaluated
the upper bound performance of the LEDIR algo-
rithm.

Table 1 shows the accuracy of the acquired
verb entailment pairs for each method. Figure 1

Method Acc-1 Acc-2 Acc-3
Score 0.770 0.660 0.460
BInc 0.450 0.255 0.125
Precision 0.725 0.545 0.385
Lin 0.590 0.370 0.160
Random 0.050 0.010 0.005

Table 1: Accuracy of verb entailment pairs.

shows the accuracy figures for the N-best entail-
ment pairs for each method, with N being 1,000,
2,000, . . ., or 20,000. We observed the following
points from the results. First, Score outperformed
all the other methods. Second, Score and Pre-
cision, which are directional similarity measures,
worked well, while Lin, which is a symmetric one,
performed poorly even though the directionality of
its output was determined manually.

Looking at the evaluated samples, Score suc-
cessfully acquired pairs in which the entailed
verbs generalized entailing verbs that were techni-
cal terms. (3) shows examples of Score’s outputs.

(3) a. RSS-haisin-suru → todokeru
RSS-feed-do deliver
“feed the RSS data”

b. middosippu-maunto-suru → tumu
midship-mounting-do mount
“have (engine) midship-mounted”

The errors made by DIRT (4) and BInc (5) in-
cluded pairs consisting of technical terms.

(4) kurakkingu-suru
software.cracking-do
‘crack a (security) system’
→ koutiku-hosyu-suru

building-maintenance-do
“build and maintain a system”
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Figure 1: Accuracy of verb entailment pairs.

(5) suisou-siiku-suru
tank-raising-do
“raise (fish) in a tank”
→ siken-houryuu-suru

test-discharge-do
“stock (with fish) experimentally”

These terms are related in some sense, but they
are not entailment pairs.

4.2 Experiment 2: Effectiveness of the Trick

Next, we investigated the effectiveness of the trick
described in §3. We evaluated Score, Scoretrick,
and Scorebase. Table 2 shows the accuracy figures
for each method. Figure 2 shows the accuracy fig-
ures for the N-best outputs for each method. The
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Method Acc-1 Acc-2 Acc-3
Score 0.770 0.660 0.460
Scoretrick 0.725 0.610 0.395
Scorebase 0.590 0.465 0.315

Table 2: Effectiveness of the trick.

results illustrate that introducing the trick signif-
icantly improved the performance of Scorebase,
and so did multiplying Scoretrick and Scorebase,
which is our proposal Score.

(6) shows an example of Scorebase’s errors.

(6) gazou-sakusei-suru → henkou-suru
image-making-do change-do
“make an image” “change”

This pair has only two shared nouns (f ∈ Fl∩Fr),
and more than 99.99% of the pair’s similarity re-
flects only one of the two. Clearly, the trick would
have prevented the pair from being highly ranked.

4.3 Experiment 3: Pairs of Frequent Verbs

We found that the errors made by Lin and BInc
in Experiment 1 were mostly pairs of infrequent
verbs such as technical terms. Thus, we con-
ducted the acquisition of entailment pairs targeting
more frequent verbs to see how their performance
changed. The experimental conditions were the
same as in Experiment 1, except that the templates
(〈p, v〉) used were all Freq(〈p, v〉) ≥ 200.

Table 3 shows the accuracy figures for each
method with the changes in accuracy from those
of the original methods in parentheses. The re-

Method Acc-1 Acc-2 Acc-3

Score
0.690 0.520 0.335

(−0.080) (−0.140) (−0.125)

BInc
0.455 0.295 0.160

(+0.005) (+0.040) (+0.035)

Precision
0.450 0.355 0.205

(−0.275) (−0.190) (−0.180)

Lin
0.635 0.385 0.205

(+0.045) (+0.015) (+0.045)

Table 3: Accuracy of frequent verb pairs.

sults show that the accuracies of Score and Pre-
cision (the two best methods in Experiment 1) de-
graded, while the other two improved a little. We
suspect that the performance difference between
these methods would get smaller if we further re-
stricted the target verbs to more frequent ones.
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Figure 2: Accuracy of verb entailment pairs ac-
quired by Score, Scoretrick, and Scorebase.

However, we believe that dealing with verbs com-
prehensively, including infrequent ones, is impor-
tant, since, in the era of information explosion, the
impact on applications is determined not only by
frequent verbs but also infrequent ones that consti-
tute the long tail of a verb-frequency graph. Thus,
this tendency does not matter for our purpose.

4.4 Experiment 4: Template Pairs

This section presents the entailment acquisition
accuracy for template pairs to show that our
method can also perform the entailment acqui-
sition of unary templates. We presented pairs
of unary templates, obtained by the procedure in
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§3.4, to the annotators. In doing so, we restricted
the correct entailment pairs to those for which en-
tailment always held regardless of what argument
filled the two unary slots, and the two slots had to
be filled with the same argument, as exemplified
in (2). We evaluated Score and Precision.

Table 4 shows the accuracy of the acquired pairs
of unary templates. Compared to verb entailment

Method Acc-1 Acc-2 Acc-3

Score
0.655 0.510 0.300

Scoring (−0.115) (−0.150) (−0.160)
Slots

Precision
0.565 0.430 0.265

(−0.160) (−0.115) (−0.120)

Score
0.665 0.515 0.315

Nom (−0.105) (−0.145) (−0.145)
Slots

Precision
0.490 0.325 0.215

(−0.235) (−0.220) (−0.170)

Table 4: Accuracy of entailment pairs of templates
whose slots were used for scoring.

acquisition, the accuracy of both methods dropped
by about 10%. This was mainly due to the evalua-
tion restriction exemplified in (2) which was not
introduced in the previous experiments; the an-
notators ignored the argument correspondence be-
tween the verb pairs in Experiment 1. Also note
that Score outperformed Precision in this experi-
ment, too.

(7) and (8) are examples of the Scoring Slots
template entailment pairs and (9) is that of the
Nom Slots acquired by our method.

(7) X-wo tatigui-suru → X-wo taberu
X-ACC standing.up.eating-do X-ACC eat
“eat X standing up” “eat X”

(8) X-de marineedo-suru → X-wo ireru
X-INS marinade-do X-ACC pour
“marinate with X” “pour X”

(9) X-ga NBA-iri-suru · · · (was X-de (INS))
X-NOM NBA-entering-do
‘X joins an NBA team’
→ X-ga nyuudan-suru · · · (was X-de)

X-NOM enrollment-do
“X joins a team”

4.5 Experiment 5: Verb Pairs form the Top
100,000

Finally, we examined the accuracy of the top
100,000 verb pairs acquired by Score and Preci-
sion. As Table 5 shows, Score outperformed Pre-

Method Acc-1 Acc-2 Acc-3
Score 0.610 0.480 0.300
Precision 0.470 0.295 0.190

Table 5: Accuracy of the top 100,000 verb pairs.

cision. Note also that Score kept a reasonable ac-
curacy for the top 100,000 results (Acc-2: 48%).
The accuracy is encouraging enough to consider
human annotation for the top 100,000 results to
produce a language resource for verb entailment,
which we actually plan to do.

Below are correct verb entailment examples
from the top 100,000 results of our method.

(10) The 121th pair
kaado-kessai-suru → siharau
card-payment-do pay
“pay by card” “pay”

(11) The 6,081th pair
saitei-suru → sadameru
adjudicate-do settle
“adjudicate” “settle”

(12) The 15,464th pair
eraa-syuuryou-suru → jikkou-suru
error-termination-do perform-do
“abend” “execute”

(13) The 30,044th pair
ribuuto-suru → kidou-suru
reboot-do start-do
“reboot” “boot”

(14) The 57,653th pair
rinin-suru → syuunin-suru
resignation-do accession-do
“resign” “accede”

(15) The 70,103th pair
sijou-tounyuu-suru → happyou-suru
market-input-do publication-do
“bring to the market” “publicize”

Below are examples of erroneous pairs from our
results. (16) is a causal relation but not an entail-
ment. (17) is a contradictory pair.

(16) The 5,475th pair
juken-suru → goukaku-suru
take.an.exam-do acceptance-do
“take an exam” “gain admission”
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(17) The 40,504th pair
ketujou-suru → syutujou-suru
not.take.part-do take.part-do
“not take part” “take part”

5 Conclusion

This paper addressed verb entailment acquisition
from the Web, and proposed a novel directional
similarity measure Score. Through a series of ex-
periments, we showed i) that Score outperforms
the previously proposed measures, Lin, Precision,
and BInc in large scale verb entailment acquisi-
tion, ii) that our proposed trick implemented in
Scoretrick significantly improves the accuracy of
verb entailment acquisition despite its simplicity,
iii) that Score worked better than the others even
when we restricted the target verbs to more fre-
quent ones, iv) that our method is also moder-
ately successful at producing template-level en-
tailment pairs, and v) that our method maintained
reasonable accuracy (in terms of human annota-
tion) for the top 100,000 results. As examples of
the acquired verb entailment pairs illustrated, our
method can acquire from an ocean of information,
namely the Web, a variety of verb entailment pairs
ranging from those that are used in daily life to
those that are used in very specific fields.
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Abstract

Recent syntactic extensions of statisti-
cal translation models work with a syn-
chronous context-free or tree-substitution
grammar extracted from an automatically
parsed parallel corpus. The decoders ac-
companying these extensions typically ex-
ceed quadratic time complexity.

This paper extends the Direct Transla-
tion Model 2 (DTM2) with syntax while
maintaining linear-time decoding. We
employ a linear-time parsing algorithm
based on an eager, incremental interpre-
tation of Combinatory Categorial Gram-
mar (CCG). As every input word is pro-
cessed, the local parsing decisions resolve
ambiguity eagerly, by selecting a single
supertag–operator pair for extending the
dependency parse incrementally. Along-
side translation features extracted from
the derived parse tree, we explore syn-
tactic features extracted from the incre-
mental derivation process. Our empiri-
cal experiments show that our model sig-
nificantly outperforms the state-of-the art
DTM2 system.

1 Introduction

Syntactic structure is gradually showing itself to
constitute a promising enrichment of state-of-the-
art Statistical Machine Translation (SMT) models.
However, it would appear that the decoding algo-
rithms are bearing the brunt of this improvement in
terms of time and space complexity. Most recent
extensions work with a synchronous context-free
or tree-substitution grammar extracted from an au-
tomatically parsed parallel corpus. While attrac-
tive in many ways, the decoders that are needed
for these types of grammars usually have time
and space complexities that are far beyond linear.

Leaving pruning aside, there is a genuine ques-
tion as to whether syntactic structure necessarily
implies more complex decoding algorithms. This
paper shows that this need not necessarily be the
case.

In this paper we extend the Direct Translation
Model (DTM2) (Ittycheriah and Roukos, 2007)
with target language syntax while maintaining
linear-time decoding. With this extension we
make three novel contributions to SMT. Our first
contribution is to define a linear-time syntactic
parser that works as incrementally as standard
SMT decoders (Tillmann and Ney, 2003; Koehn,
2004a). At every word position in the target lan-
guage string, this parser spansat most a single
parse-stateto augment the translation states in
the decoder. The parse state summarizes previ-
ous parsing decisions and imposes constraints on
the set of valid future extensions such that a well-
formed sequence of parse states unambiguously
defines a dependency structure. This approach
is based on anincremental interpretationof the
mechanisms of Combinatory Categorial Grammar
(CCG) (Steedman, 2000).

Our second contribution lies in extending the
DMT2 model with a novel set of syntactically-
oriented feature functions. Crucially, these feature
functions concern the derived (partial) dependency
structure as well as local aspects ofthe derivation
process, including such information as the CCG
lexical categories (supertag), the CCG operators
and the intermediate parse states. This accom-
plishment is interesting both from a linguistic and
technical point of view.

Our third contribution is the extension of the
standard phrase-based decoder with the syntactic
structure and definition of newgrammar-specific
pruning techniquesthat control the size of the
search space. Interestingly, because it is eager,
the incremental parser used in this work is hard
pushed to perform at a parsing level close to state-
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of-the-art cubic-time parsers. Nevertheless, the
parsing information it provides allows for signif-
icant improvement in translation quality.

We test the new model, called the Dependency-
based Direct Translation Model (DDTM), on stan-
dard Arabic–English translation tasks used in the
community, including LDC and GALE data. We
show that our DDTM system provides significant
improvements in BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) scores over the already
extremely competitive DTM2 system. We also
provide results of manual, qualitative analysis of
the system output to provide insight into the quan-
titative results.

This paper is organized as follows. Section 2
reviews the related work. Section 3 discusses the
DTM2 baseline model. Section 4 presents the gen-
eral workings of the incremental CCG parser lay-
ing the foundations for integrating it into DTM2.
Section 5 details our own DDTM, the dependency-
based extension of the DTM2 model. Section 6
reports on extensive experiments and their results.
Section 7 provides translation output to shed fur-
ther detailed insight into the characteristics of the
systems. Finally, Section 8 concludes, and dis-
cusses future work.

2 Related Work

In (Marcu et al., 2006), it is demonstrated that
‘syntactified’ target language phrases can im-
prove translation quality for Chinese–English. A
stochastic, top-down transduction process is em-
ployed that assigns a joint probability to a source
sentence and each of its alternative syntactified
translations; this is done by specifying a rewrit-
ing process of the target parse-tree into a source
sentence.

Likewise, the model in (Zollmann and Venu-
gopal, 2006) extends (Chiang, 2005) by augment-
ing the hierarchical phrases with syntactic cate-
gories derived from parsing the target side of a
parallel corpus. They use an existing parser to
parse the target side of the parallel corpus in or-
der to extract a syntactically motivated, bilingual
synchronous grammar as in (Chiang, 2005).

The above-mentioned approaches for incor-
porating syntax into Phrase-based SMT (Marcu
et al., 2006; Zollmann and Venugopal, 2006)
share common drawbacks. Firstly, they are
based on syntactic phrase-structure parse trees
incorporated into a Synchronous CFG or Tree-

Substitution Grammar, which makes for a diffi-
cult match with non-constituent phrases that are
common within Phrase-based SMT. These ap-
proaches usually resort to ad hoc solutions to
enrich the non-constituent phrases with syntactic
structures. Secondly, they deploy chart-based de-
coders with a high computational cost compared
with the phrase-based beam search decoders, e.g.,
(Tillmann and Ney, 2003; Koehn, 2004a). Thirdly,
due to the large parse space, some of the pro-
posed approaches are forced to employ small lan-
guage models compared to what is usually used
in phrase-based systems. To circumvent these
computational limitations, various pruning tech-
niques are usually needed, e.g., (Huang and Chi-
ang, 2007).

Other recent approaches, e.g., (Birch et al.,
2007; Hassan et al., 2007; Hassan et al., 2008a)
incorporate a linear-time supertagger into SMT to
take the role of a syntactic language model along-
side the standard language model. While these ap-
proaches share with our work the use of lexical-
ized grammars, they never seek to build a full de-
pendency tree or employ syntactic features in or-
der to directly influence the reordering probabili-
ties in the decoder. In the current work, we ex-
pand our previous work in (Hassan et al., 2007;
Hassan et al., 2008a) to introduce the capabilities
of building a full dependency structure and em-
ploying syntactic features to influence the decod-
ing process.

Recently, (Shen et al., 2008) introduced an ap-
proach for incorporating a dependency-based lan-
guage model into SMT. They proposed to extract
String-to-Dependency trees from the parallel cor-
pus. As the dependency trees are not constituents
by nature, they handle non-constituent phrases as
well. While this work is in the same general
direction as our work, namely aiming at incor-
porating dependency parsing into SMT, there re-
main three major differences. Firstly, (Shen et al.,
2008) resorted to heuristics to extract the String-
to-Dependency trees, whereas our approach em-
ploys the well formalized CCG grammatical the-
ory. Secondly, their decoder works bottom-up
and uses a chart parser with a limited language
model capability (3-grams), while we build on the
efficient, linear-time decoder commonly used in
phrase-based SMT. Thirdly, (Shen et al., 2008)
deploys the dependency language model to aug-
ment the lexical language model probability be-
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tween two head words but never seek a full de-
pendency graph. In contrast, our approach inte-
grates an incremental parsing capability, that pro-
duces the partial dependency structures incremen-
tally while decoding, and thus provides for better
guidance for the search of the decoder for more
grammatical output. To the best of our knowledge,
our approach is the first to incorporate incremental
dependency parsing capabilities into SMT while
maintaining the linear-time and -space decoder.

3 Baseline: Direct Translation Model 2

The Direct Translation Model (DTM) (Papineni
et al., 1997) employs thea posterioriconditional
distribution P (T |S) of a target sentenceT given
a source sentenceS, instead of the common in-
version intoP (S|T ) based on the source chan-
nel approach (Brown et al., 1990). DTM2, in-
troduced in (Ittycheriah and Roukos, 2007), ex-
presses the phrase-based translation task in a uni-
fied log-linear probabilistic framework consisting
of three components: (i) a prior conditional dis-
tribution P0(.|S), (ii) a number of feature func-
tionsφi() that capture the translation and language
model effects, and (iii) the weights of the features
λi that are estimated under MaxEnt (Berger et al.,
1996), as in (1):

P (T |S) =
P0(T, J |S)

Z
exp

∑
i

λiφi(T, J, S) (1)

HereJ is the skip reordering factor for the phrase
pair captured byφi() and represents the jump from
the previous source word, andZ is the per source
sentence normalization term. The prior probabil-
ity P0 is the prior distribution for the phrase prob-
ability which is estimated using the phrase nor-
malized counts commonly used in conventional
Phrase–based SMT systems, e.g., (Koehn et al.,
2003).

DTM2 differs from other Phrase–based SMT
models in that it extracts from a word-aligned par-
allel corpus only anon-redundantset ofminimal
phrasesin the sense that no two phrases overlap
with each other.

Baseline DTM2 Features: The baseline em-
ploys the following five types of features (beside
the language model):

• Lexical Micro Featuresexamining source
and target words of the phrases,

• Lexical Context Featuresencoding the
source and target phrase context (i.e. previ-
ous and next source and previous target),

• Source Morphological Featuresencoding
morphological and segmentation characteris-
tics of source words.

• Part-of-Speech Featuresencoding source and
target POS tags as well as the POS tags of the
surrounding contexts of phrases.

The DTM2 approach based on MaxEnt provides
a flexible framework for incorporating other avail-
able feature types as we demonstrate below.

DTM2 Decoder: The decoder for the baseline is
a beam search decoder similar to decoders used in
standard phrase-based log-linear systems such as
(Tillmann and Ney, 2003) and (Koehn, 2004a).
The main difference between the DTM2 decoder
and the standard Phrase–based SMT decoders is
that DTM2 deploys Maximum Entropy probabilis-
tic models to obtain the translation costs and var-
ious feature costs by deploying the features de-
scribed above in a discriminative MaxEnt fashion.

In the rest of this paper we adopt the DTM2 for-
malization of translation as a discriminative task,
and we describe the CCG-based incremental de-
pendency parser that we use for extending the
DTM2 decoder, and then list a new set of syntac-
tic dependency feature functions that extend the
DTM2 feature set. We also discuss pruning and
other details of the approach.

4 The Incremental Dependency Parser

As it processes an input sentence left-to-right
word-by-word, the incremental dependency model
builds—for each prefix of the input sentence—a
partial parse that is a subgraph of the partial parse
that it builds for a longer prefix. The dependency
graph is constructed incrementally, in that the sub-
graph constructed at a preceding step is never al-
tered or revised in any later steps. The following
schematic view in (2) exhibits the general work-
ings of this parser:

S0
o1

w1,st1
//S1

o2

w2,st2
//S2 Si

oi

wi,sti
//Si+1 Sn (2)

The syntactic process is represented by a sequence
of transitions between adjacent syntactic statesSi.
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A transition from stateSi−1 to Si scans the cur-
rent word wi and stochastically selects a com-
plex lexical descriptor/categorysti and an oper-
atoroi given the local context in the transition se-
quence. The syntactic stateSi summarizes all the
syntactic information about fragments that have
already been processed and registers the syntac-
tic arguments which are to be expected next. Only
an impoverished deterministic procedure (called a
‘State-Realizer’) is needed in order to compose a
stateSi with the previous statesS0 . . . Si−1 in or-
der to obtain afully connected intermediate depen-
dency structureat every position in the input.

To implement the incremental parsing scheme
described above we use the parser described in
(Hassan et al., 2008b; Hassan et al., 2009), which
is based on Combinatory Categorial Grammar
(CCG) (Steedman, 2000). We only briefly de-
scribe this parser as its full description is beyond
the scope of this paper. The notions of asupertag
as a lexical category and the process ofsupertag-
ging are both crucial here (Bangalore and Joshi,
1999). Fortunately, CCG specifies the desired kind
of lexical categories (supertags)sti for every word
and a small set of combinatory operatorsoi that
combine the supertagsti with a previous parse
stateSi−1 into the next parse stateSi. In terms
of CCG representations, the parse state is a CCG
composite category which specifies either a func-
tor and the arguments it expects to the right of the
current word, or is itself an argument for a functor
that will follow it to the right. At the first word in
the sentence, the parse state consists solely of the
supertag of that word.

Attacks rocked Riyadh

S0 NP (S\NP)/NP NP
> NOP

S1: NP
> TRFC

S2: S/NP
> FA

S3: S

Figure 1: A sentence and possible supertag-,
operator- and state-sequences. NOP: No Oper-
ation; TRFC: Type Raise-Forward Composition;
FA: Forward Application. The CCG operators
used show thatAttacks andRiyadh are both
dependents ofrocked.

Figure 1 exhibits an example of the workings of
this parser. Practically speaking, after POS tag-
ging the input sentence, the parser employs two
components:

• A Supertag-Operator Tagger which proposes
a supertag–operator pair for the current word,

• A deterministic State-Realizer, which real-
izes the current state by applying the current
operator to the previous state and the current
supertag.

The Supertag-Operator Tagger is a probablistic
component while the State-Realizer is a determin-
istic component. The generative model underlying
this component concerns the probabilityP (W,S)
of a word sequenceW = wn

1 and a parse-state
sequenceS = Sn

1 , with associated supertag se-
quenceST = stn1 and operator sequenceO = on

1 ,
which represents a possible derivation. Note that
given the choice of supertagssti and operatoroi,
the stateSi is calculated deterministically by the
State-Realizer.

A generative version of this model is described
in (3):

P (W,S) =
n∏

i=1

Word Predictor︷ ︸︸ ︷
P (wi|Wi−1Si−1)

.

Supertagger︷ ︸︸ ︷
P (sti|Wi) .

Operator Tagger︷ ︸︸ ︷
P (oi|Wi, Si−1, STi) (3)

In (3):

• P (W,S) represents the product of the pro-
duction probabilities at each parse-state and
is similar to the structured language model
representation introduced in (Chelba, 2000).

• P (wi|Wi−1Si−1) is the probability of wi

given the previous sequence of wordsWi−1

and the previous sequence of statesSi−1,

• P (sti|Wi): is the supertagsti probability
given the word sequenceWi up to the cur-
rent position. Basically, this represents a se-
quence tagger (a ‘supertagger’).

• P (oi|Wi, Si−1, STi) represents the probabil-
ity of the operatoroi given the previous
words, supertags and state sequences up to
the current position. This represents a CCG
operator tagger.

The different local conditional components (for
every i) in (3) are estimated as discriminative
MaxEnt submodels trained on a corpus ofincre-
mental CCG derivations. This corpus was ex-
tracted from the CCGbank (Hockenmaier, 2003)
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by transforming every normal form derivation into
strictly left-to-right CCG derivations, with the
CCG operators only slightly redesigned to allow
incrementality while still satisfying the dependen-
cies in the CCGbank (cf. (Hassan et al., 2008b;
Hassan et al., 2009)).

As mentioned before, the State-Realizer is a
deterministic function. Starting at the first word
with (obviously) a null previous state, the realizer
performs the following deterministic steps for
each word in turn: (i) set the current supertag
and operator to those of the current word; (ii) at
the current state, apply the current operator to the
previous state and current supertag; (iii) add edges
to the dependency graphs between words that are
linked as CCG arguments; and (iv) if not at the
end of the sentence, set the previous state to the
current one, then set the current word to the next
one, and iterate from (i).

It is worth noting that the proposed dependency
parser is deterministic in the sense that it maintains
only one parse state per word. This characteris-
tic is crucial for its incorporation into a large-scale
SMT system to avoid explosion of the translation
space during decoding.

5 Dependency-based DTM (DDTM)

In this section we extend the DTM2 model with
incremental target dependency-based syntax. We
call the resulting model the Dependency-based Di-
rect Translation Model (DDTM). This extension
takes place by (i) extracting syntactically enriched
minimal phrase pairs, (ii) including a new set of
syntactic feature functions among the exponen-
tial model features, and (iii) adapting the decoder
for dealing with syntax, including various pruning
strategies and enhancements. Next we describe
each extension in turn.

5.1 Phrase Table: Incremental Syntax

The target-side sentences in the word-aligned par-
allel corpus used for training are parsed using
the incremental dependency parser described in
section 4. This results in a word-aligned par-
allel corpus where the words of the target sen-
tences are tagged with supertags and operators.
From this corpus we extract the set of minimal
phrase pairs using the method described in (Itty-
cheriah and Roukos, 2007), extracting along with
every target phrase the associated sequences of su-

pertags and operators. As shown in (4), a source
phrases1, . . . , sn translates into a target phrase
w1, . . . , wm where every wordwi is labeled with
a supertagsti, and a possible parsing operatoroi

appearing with it in the parsed parallel corpus:

s1...sn
// [w1, st1, o1]...[wm, stm, om] (4)

Hence, our phrase table associates with every
target phrase anincremental parsing subgraph.
These subgraphs along with their probabilities
represent our phrase table augmented with incre-
mental dependency parsing structure.

This representation turns the complicated prob-
lem of MT with incremental parsing into a sequen-
tial classification problem in which the classifier
deploys various features from the source sentence
and the candidate target translations to specify a
sequence of decisions that finally results in an out-
put target string along with its associated depen-
dency graph. The classification decisions are per-
formed in sequence step-by-step while traversing
the input string to provide decisions on possible
words, supertags, operators and states. A beam
search decoder simultaneously decides which se-
quence is the most probable.

5.2 DDTM Features

The exponential model and the MaxEnt frame-
work used in DTM2 and DDTM enabled us to ex-
plore the utility of incremental syntactic parsing
within a rich feature space. In our DDTM sys-
tem, we implemented a set of features alongside
the baseline DTM2 features that were discussed in
Section 3. The features described here encode all
the probabilistic components in (3) within a log
linear interpretation along with some more empir-
ically intuitive features.

• Supertag-Word features: these features ex-
amine the target phrase words with their as-
sociated supertags and is related to the Su-
pertagger component in (3).

• Supertag sequence features: these features
encoden-gram supertags (equivalent to then-
gram supertags Language Model). This fea-
ture is related to the supertagger component
as well.

• Supertag-Operator features: these features
encode supertags and associated operators
which is related to the Operator Tagger com-
ponent in (3).
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• Supertag-State features: these features regis-
ter state and supertag co-occurrences.

• State sequence features: these features en-
code n-gram state features and are equiva-
lent to ann-gram Language Model over parse
state sequences which is related to the multi-
plication in (3).

• Word-State sequence features: these fea-
tures encode words and states co-occurrences
which is related to the Word Predictor com-
ponent in (3).

The exponential model and the MaxEnt frame-
work used in DTM2 and DDTM enable us to ex-
plore the utility of incremental syntactic parsing
with the use of minimal phrases within a rich fea-
ture space.

5.3 DDTM Decoder

In order to support incremental dependency pars-
ing, we extend the DTM2 decoder in three ways:
firstly, by constructing the syntactic states during
decoding; secondly, by extending the hypothesis
structures to incorporate the syntactic states and
the partial dependency derivations; and thirdly, by
modifying the pruning strategy to handle the large
search space.

At decoding time, each hypothesis state is as-
sociated with a parse-state which is constructed
while decoding using the incremental parsing ap-
proach introduced in ((Hassan et al., 2008b; Has-
san et al., 2009)). The previous state, the se-
quences of supertags and CCG incremental opera-
tors are deployed in a deterministic manner to re-
alize the parse-states as well as the intermediate
dependency graphs between words.

Figure 2 shows the DDTM decoder while de-
coding a sentence with the English translation “At-
tacks rocked Riyadh”. Each hypothesis is asso-
ciated with a parse-stateSi and a partial depen-
dency graph (shown for some states only). More-
over, each transition is associated with an opera-
tor o that combines the previous state and the cur-
rent supertagst to construct the next stateSi. The
decoder starts from a null stateS1 and then pro-
ceeds with a possible expansion with the word “at-
tacks”, supertagNP and operatorNOP to pro-
duce the next hypothesis with stateS2 and cate-
goryNP . Further expansion for that path with the
verb “rocked”, supertag ‘(S\NP )/NP and oper-
ator TRFC will produce the stateS5 with cat-

egory S/NP . The partial dependency graph for
stateS5 is shown above the state where a depen-
dency relation between the two words is estab-
lished. Furthermore, another expansion with the
word “Riyadh”, supertagNP and operatorFA
produces stateS7 with categoryS and a completed
dependency graph as shown above the state. An-
other path which spans the statesS1, S3 , S6 and
S8 ends with a state categoryS/NP and a partial
dependency graph as shown under stateS8 where
the dependency graph is still missing its object
(e.g. “Riyadh attacks rocked the Saudi Govt.”).

The addition of parse-states may result in a very
large search space due to the fact that the same
phrase/word may have many possible supertags
and many possible operators. Moreover, the same
word sequences may have many parse-state se-
quences and, therefore, many hypotheses that rep-
resent the same word sequence. The search space
is definitely larger than the baseline search space.
We adopt the following three pruning heuristics to
limit the search space.

5.3.1 Grammatical Pruning

Any hypothesis which does not constitute a valid
parse-state is discarded, i.e. if the previous parse-
state and the current supertag sequence cannot
construct a valid state using the associated oper-
ator sequence, then the expansion is discarded.
Therefore, this pruning strategy maintains only
fully connected graphs and discards any partially
connected graphs that might result during the de-
coding process.

As shown in Figure 2, the expansion from state
S1 to stateS4 (with the dotted line) is pruned and
not expanded further because the proposed expan-
sion is the verb “attacks”, supertag(S\NP )/NP
and operatorTRFC. Since the previous state is
NULL, it cannot be combined with the verb using
the TRFC operator. This would produce an un-
defined state and thus the hypothesis is discarded.

5.3.2 Supertags and Operators Threshold

We limit the supertag and operator variants per tar-
get phrase to a predefined number of alternatives.
We tuned this on the MT03 DevSet for the best
accuracy while maintaining a manageable search
space. The supertags limit was set to four alterna-
tives while the operators limit was set to three.

As shown in Figure 2, each word can have many
alternatives with different supertags. In this exam-
ple the word “attacks” has two forms, namely a
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e:
a : --------
P:1
S1:NULL

e: attacks
a: *----
P:=.162
ST=NP
S2=NP

e: attacks
a: *-------
P:=.092
ST=(S\NP)/NP
S4= UNDEF

O:TRFC

e: Riyadh
a: -*------
P:=.142
ST=NP/NP
S3=NP/NP

e: rocked
a: --*--
P:=.083
ST=(S\NP)/NP
S5=S/NP

O:NOP

O:NOP

O:TRFC

e: rocked
a: --*------
P:=.01
ST=(S\NP)/NP
S8=S/NP

attacks

attacks rocked

e: Riyadh
a: --*--
P:=.04
ST=NP
S7=S

O:FC

attacks rocked Riyadh

e: attacks
a: *-------
P:=.07
ST=NP
S6=NP

O:TRFC

Riyadh attacks rocked

O:FA

Figure 2: DDTM Decoder: each hypothesis has a parse state anda partial dependency structure.

noun and a verb, with different supertags and op-
erators. The proposed thresholds limit the possible
alternatives to a reasonable number.

5.3.3 Merging Hypotheses

Standard Phrase–based SMT decoders merge
translation hypotheses if they cover the same
source words and share the samen-gram lan-
guage model history. Similarly, DDTM decoder
merges translation hypotheses if they cover the
same source words, share the samen-gram lan-
guage model history and share the same parse-
state history. This helps in reducing the search
space by merging paths that will not constitute a
part of the best path.

6 Experiments

We conducted experiments on an Arabic-to-
English translation task using LDC parallel data
and GALE parallel data. We used the UN paral-
lel corpus and LDC news corpus together with the
GALE parallel corpus, totaling 7.8M parallel sen-
tences. The 5-gram Language Model was trained
on the English Gigaword Corpus and the English
part of the parallel corpus. Our baseline system is
similar to the system described in (Ittycheriah and
Roukos, 2007). We report results on NIST MT05
and NIST MT06 evaluations test sets using BLEU
and TER as automatic evaluation metrics.

To train the DDTM model, we use the incre-
mental parser introduced in (Hassan et al., 2008b;
Hassan et al., 2009) to parse the target side of the

parallel training data. Each sentence is associated
with supertag, operator and parse-state sequences.
We then train models with different feature sets.

Results: We compared the baseline DTM2 (It-
tycheriah and Roukos, 2007) with our DDTM sys-
tem with the features listed above. We examine
the effect of all features on system performance.
In this set of experiments we used LDC parallel
data only which is composed of 3.7M sentences
and the results are reported on MT05 test set. Each
of the examined systems deploys DTM2 features
in addition to a number of newly added syntactic
features. The systems examined are:

• DTM2: Direct Translation model 2 baseline.

• D-SW: DTM2 + Supertag-Word features.

• D-SLM: DTM2 + Supertag-Word and su-
pertagn-gram features.

• D-SO: DTM2+ Supertag-Operator features.

• D-SS : DTM2 + supertags and states features
with parse-state construction.

• D-WS : DTM2 + words and states features
with parse-state construction.

• D-STLM: DTM2 + state n-gram features
with parse-state construction.

• DDTM: fully fledged system with all fea-
tures that proved useful above which are:
Supertag-Word features, supertagn-gram
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features, supertags and states features and
staten-gram features .

System BLEU Score on MT05

DTM2-Baseline 52.24

D-SW 52.28
D-SLM 52.29
D-SO 52.01
D-SS 52.39
D-WS 52.03

D-STLM 52.53
DDTM 52.61

Table 1: DDTM Results with various features.

As shown in Table 1, the DTM baseline system
demonstrates a very high BLEU score, unsurpris-
ingly given its top-ranked performance in two re-
cent major MT evaluation campaigns. Among the
features we tried, supertags andn-gram supertags
systems (D-SW and D-SLM systems) give slight
yet statistically insignificant improvements. On
the other hand, the statesn-gram sequence features
(D-SS and DDTM systems) give small yet statis-
tically significant improvements (as calculated via
bootstrap resampling (Koehn, 2004b)). The D-WS
system shows a small degradation in performance,
probably due to the fact that the states-words inter-
actions are quite sparse and could not be estimated
with good evidence. Similarly, the D-SO system
shows a small degradation in performance. When
we investigated the features types, we found out
that all features that deploy the operators had bad
effect on the model. We think this is due to the fact
that the operator set is a small set with high evi-
dence in many training instances such that it has
low discriminative power on it is own. However,
it implicitly helps in producing the state sequence
which proved useful.

System DTM2-Baseline DDTM
MT05 (BLEU) 55.28 55.66
MT05 (TER) 38.79 38.48

MT06 (BLEU) 43.56 43.91
MT06 (TER) 49.08 48.65

Table 2: DDTM Results on MT05 and MT06.

We examined a combination of the best fea-
tures in our DDTM system on a larger training
data comprising 7.8M sentences from both NIST
and GALE parallel corpora. Table 2 shows the

results on both MT05 and MT06 test sets. As
shown, DDTM significantly outperforms the state-
of-the-art baseline system. It is worth noting that
DDTM outperforms this baseline even when very
large amounts of training data are used. Despite
the fact that the actual scores are not so different,
we found that the baseline translation output and
the DDTM translation outout are significantly dif-
ferent. We measured this by calculating the TER
between the baseline translation and the DDTM
translation for the MT05 test set, and found this
to be 25.9%. This large difference has not been
realized by the BLEU or TER scores in compari-
son to the baseline. We believe that this is due to
the fact that most changes that match the syntac-
tic constraints do not bring about the best match
where the automatic evaluation metrics are con-
cerned. Accordingly, in the next section we de-
scribe the outcome of a detailed manual analysis
of the output translations.

7 Manual Analysis of Results

Although the BLEU score does not mark a large
improvement by the dependency-based system
over the baseline system, human inspection of the
data gives us important insights into the pros and
cons of the dependency-based model. We ana-
lyzed a randomly selected set of 100 sentences
from the MT05 test set. In this sample, the base-
line and the DDTM system perform similarly in
68% of the sentences. The outputs of both system
are similar though not identical. In these cases,
the systems may choose equivalent paraphrases.
However, the translations using syntactic struc-
tures are rather similar. It is worth noting that the
DDTM system tends to produce more concise sys-
ntactic structures which may lead to less BLUE
score due to penalizing the translation length al-
though the translation might be equivelent to the
baseline if not better.

In 28% of the sentences, the DDTM system pro-
duces remarkably better translations. The exam-
ples here illustrate the behaviour of the baseline
and the DDTM systems which can be observed
consistently throughout the test set. We only high-
light some of the examples for illustration pur-
poses. DDTM manages to insert verbs which are
deleted by any standard phrase-based SMT sys-
tem. DDTM prefers to deploy verbs since they
have complex and more detailed syntactic struc-
tures which give better and more likely state se-
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quences. Furthermore, the DDTM system avoids
longer noun phrases and instead uses some prepo-
sitions in-between. Again, this is probably due to
the fact that like verbs, prepositions have a com-
plex syntactic description that give rise to more
likely state sequences.

On the other hand, the baseline produced better
translation in 8% of the analysis sample. We ob-
served that the baseline is doing better mainly in
two cases. The first when the produced translation
is very poor and producing poor sysntatctic struc-
ture due to out of vocabularies or hard to trans-
late sentences. The second case is with sentences
with long noun phrases, in such cases the DDTM
system prefres to introduce verbs or prepositions
in the middle of long noun phrase and thus the
baseline would produce better translations. This
is maybe due to the fact that noun phrases have
relatively simple structure in CCG such that it did
not help in constructing long noun phrases.

Source: �é£Qå��Ë � ZAJ.£� Yg� A �ë�Qk. � �HA�ñj 	®Ë ½Ë 	X YªK. © 	� 	kð
Reference: He then underwent medical examinations by a po-
lice doctor .

Baseline:He was subjected after that tests conducted by doc-
tors of the police .

DDTM : Then he underwent tests conducted by doctors of the
police .

Source: 	á�
�KPA J
��. 	àAÓñj. ë �ñJ
Ë � ZA�Ó 	�AK
Q Ë� 	Që Y �̄ð	á�
�J 	j� 	j 	®Ó
Reference: Riyadh was rocked tonight by two car bomb at-
tacks..

Baseline: Riyadh rocked today night attacks by two booby -
trapped cars.

DDTM : Attacks rocked Riyadh today evening in two car
bombs.

Figure 3: DDTM provides better syntactic struc-
ture with more concise translations.

Figure 3 shows two examples where DDTM
provides better and more concise syntactic struc-
ture. As we can see, there is not much agree-
ment between the reference and the proposed
translation. However, longer translations enhance
the possibility of picking more commonn-gram
matches via the BLEU score and so increases the
chance of better scores. This well-known bias
does not favour the more concise output derived
by our DDTM system, of course.

8 Conclusion and Future Work

In this paper, we presented a novel model of de-
pendency phrase-based SMT which integrates in-

cremental dependency parsing into the transla-
tion model while retaining the linear decoding as-
sumed in conventional Phrase–based SMT sys-
tems. To the best of our knowledge, this model
constitutes the first effective attempt at integrating
a linear-time dependency parser that builds a con-
nected tree incrementally into SMT systems with
linear-time decoding. Crucially, it turns out that
incremental dependency parsing based on lexical-
ized grammars such as CCG and LTAG can pro-
vide valuable incremental parsing information to
the decoder even if their output is imperfect. We
believe this robustness in the face of imperfect
parser output to be a property of the probabilistic
formulation and statistical estimation used in the
Direct Translation Model. A noteworthy aspect of
our proposed approach is that it integrates features
from the derivation process as well as the derived
tree. We think that this is possible due to the im-
portance of the notion of a derivation in linguistic
frameworks such as CCG and LTAG.

Future work will attempt further extensions of
our DDTM system to allow for the exploitation
of long-range aspects of the dependency struc-
ture. We will work on expanding the features
set of DDTM system to leverage features from
the constructed dependency structure itself. Fi-
nally, we will work on enabling the deployment
of source side dependency structures to influence
the construction of the target dependency structure
based on a bilingually enabled dependency pars-
ing mechanism using the discriminative modeling
capabilities.
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Abstract

In this paper, we address the task of cross-
lingual semantic relatedness. We intro-
duce a method that relies on the informa-
tion extracted from Wikipedia, by exploit-
ing the interlanguage links available be-
tween Wikipedia versions in multiple lan-
guages. Through experiments performed
on several language pairs, we show that
the method performs well, with a perfor-
mance comparable to monolingual mea-
sures of relatedness.

1 Motivation

Given the accelerated growth of the number of
multilingual documents on the Web and else-
where, the need for effective multilingual and
cross-lingual text processing techniques is becom-
ing increasingly important. In this paper, we
address the task of cross-lingual semantic relat-
edness, and introduce a method that relies on
Wikipedia in order to calculate the relatedness of
words across languages. For instance, given the
word factory in English and the word lavoratore
in Italian (En. worker), the method can measure
the relatedness of these two words despite the fact
that they belong to two different languages.

Measures of cross-language relatedness are use-
ful for a large number of applications, including
cross-language information retrieval (Nie et al.,
1999; Monz and Dorr, 2005), cross-language text
classification (Gliozzo and Strapparava, 2006),
lexical choice in machine translation (Och and
Ney, 2000; Bangalore et al., 2007), induction
of translation lexicons (Schafer and Yarowsky,
2002), cross-language annotation and resource
projections to a second language (Riloff et al.,
2002; Hwa et al., 2002; Mohammad et al., 2007).

The method we propose is based on a measure
of closeness between concept vectors automati-
cally built from Wikipedia, which are mapped via

the Wikipedia interlanguage links. Unlike previ-
ous methods for cross-language mapping, which
are typically limited by the availability of bilingual
dictionaries or parallel texts, the method proposed
in this paper can be used to measure the related-
ness of word pairs in any of the 250 languages for
which a Wikipedia version exists.

The paper is organized as follows. We first pro-
vide a brief overview of Wikipedia, followed by
a description of the method to build concept vec-
tors based on this encyclopedic resource. We then
show how these concept vectors can be mapped
across languages for a cross-lingual measure of
word relatedness. Through evaluations run on six
language pairs, connecting English, Spanish, Ara-
bic and Romanian, we show that the method is ef-
fective at capturing the cross-lingual relatedness of
words, with results comparable to the monolingual
measures of relatedness.

2 Wikipedia

Wikipedia is a free online encyclopedia, represent-
ing the outcome of a continuous collaborative ef-
fort of a large number of volunteer contributors.
Virtually any Internet user can create or edit a
Wikipedia webpage, and this “freedom of contri-
bution” has a positive impact on both the quantity
(fast-growing number of articles) and the quality
(potential errors are quickly corrected within the
collaborative environment) of this online resource.

The basic entry in Wikipedia is an article (or
page), which defines and describes an entity or
an event, and consists of a hypertext document
with hyperlinks to other pages within or outside
Wikipedia. The role of the hyperlinks is to guide
the reader to pages that provide additional infor-
mation about the entities or events mentioned in
an article. Articles are organized into categories,
which in turn are organized into hierarchies. For
instance, the article automobile is included in the
category vehicle, which in turn has a parent cate-
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Language Articles Users
English 2,221,980 8,944,947
German 864,049 700,980
French 765,350 546,009
Polish 579,170 251,608
Japanese 562,295 284,031
Italian 540,725 354,347
Dutch 519,334 216,938
Portuguese 458,967 503,854
Spanish 444,696 966,134
Russian 359,677 226,602

Table 1: Top ten largest Wikipedias

gory named machine, and so forth.
Each article in Wikipedia is uniquely referenced

by an identifier, consisting of one or more words
separated by spaces or underscores and occasion-
ally a parenthetical explanation. For example, the
article for bar with the meaning of “counter for
drinks” has the unique identifier bar (counter).

Wikipedia editions are available for more than
250 languages, with a number of entries vary-
ing from a few pages to two millions articles or
more per language. Table 1 shows the ten largest
Wikipedias (as of December 2008), along with
the number of articles and approximate number of
contributors.1

Relevant for the work described in this paper are
the interlanguage links, which explicitly connect
articles in different languages. For instance, the
English article for bar (unit) is connected, among
others, to the Italian article bar (unit́a di misura)
and the Polish article bar (jednostka). On average,
about half of the articles in a Wikipedia version
include interlanguage links to articles in other lan-
guages. The number of interlanguage links per ar-
ticle varies from an average of five in the English
Wikipedia, to ten in the Spanish Wikipedia, and as
many as 23 in the Arabic Wikipedia.

3 Concept Vector Representations using
Explicit Semantic Analysis

To calculate the cross-lingual relatedness of two
words, we measure the closeness of their con-
cept vector representations, which are built from
Wikipedia using explicit semantic analysis (ESA).

Encyclopedic knowledge is typically organized
into concepts (or topics), each concept being
further described using definitions, examples,

1http://meta.wikimedia.org/wiki/List of Wikipedias
#Grand Total

and possibly links to other concepts. ESA
(Gabrilovich and Markovitch, 2007) relies on the
distribution of words inside the encyclopedic de-
scriptions, and builds semantic representations for
a given word in the form of a vector of the encyclo-
pedic concepts in which the word appears. In this
vector representation, each encyclopedic concept
is assigned with a weight, calculated as the term
frequency of the given word inside the concept’s
article.

Formally, let C be the set of all the Wikipedia
concepts, and let a be any content word. We define
�a as the ESA concept vector of term a:

�a = {wc1, wc2 ...wcn} , (1)

where wci is the weight of the concept ci with re-
spect to a. ESA assumes the weight wci to be the
term frequency tfi of the word a in the article cor-
responding to concept ci.

We use a revised version of the ESA algorithm.
The original ESA semantic relatedness between
the words in a given word pair a − b is defined as
the cosine similarity between their corresponding
vectors:

Relatedness(a, b) =
�a ·�b

‖�a‖
∥∥∥�b∥∥∥ . (2)

To illustrate, consider for example the construc-
tion of the ESA concept vector for the word bird.
The top ten concepts containing this word, along
with the associated weight (calculated using equa-
tion 7), are listed in table 2. Note that the the ESA
vector considers all the possible senses of bird, in-
cluding Bird as a surname as in e.g., “Larry Bird.”

Weight Wikipedia concept
51.4 Lists Of Birds By Region
44.8 Bird
40.3 British Birds Rarities Committee
32.8 Origin Of Birds
31.5 Ornithology
30.1 List Of Years In Birding And Ornithology
29.8 Bird Vocalization
27.4 Global Spread Of H5n1 In 2006
26.5 Larry Bird
22.3 Birdwatching

Table 2: Top ten Wikipedia concepts for the word
“bird”

In our ESA implementation, we make three
changes with respect to the original ESA algo-
rithm. First, we replace the cosine similarity with
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a Lesk-like metric (Lesk, 1986), which places less
emphasis on the distributional differences between
the vector weights and more emphasis on the over-
lap (mutual coverage) between the vector features,
and thus it is likely to be more appropriate for the
sparse ESA vectors, and for the possible asymme-
try between languages. Let a and b be two terms
with the corresponding ESA concept vectors �A
and �B respectively. Let A and B represent the sets
of concepts with a non-zero weight encountered in
�A and �B respectively. The coverage of �A by �B is
defined as:

G( �B| �A) =
∑
i∈B

wai (3)

and similarly, the coverage of �B by �A is:

G( �A| �B) =
∑
i∈A

wbi
(4)

where wai and wbi represent the weight associ-
ated with concept ci in vectors �A and �B respec-
tively. By averaging these two asymmetric scores,
we redefine the relatedness as:

Relatedness(a, b) =
G( �B| �A) + G( �A| �B)

2
(5)

Second, we refine the ESA weighting schema
to account for the length of the articles describing
the concept. Since some concepts have lengthy
descriptions, they may be favored due to their high
term frequencies when compared to more compact
descriptions. To eliminate this bias, we calculate
the weight associated with a concept ci as follows:

wci = tfi × log(M/ |ci|), (6)

where tfi represents the term frequency of the
word a in concept ci, M is a constant representing
the maximum vocabulary size of Wikipedia con-
cepts, and |ci| is the size of the vocabulary used in
the description of concept ci.

Finally, we use the Wikipedia category graph
to promote category-type concepts in our feature
vectors. This is done by scaling the concept’s
weight by the inverse of the distance di to the
root category. The concepts that are not categories
are treated as leaves, and therefore their weight is
scaled down by the inverse of the maximum depth
in the category graph. The resulting weighting
scheme is:

wci = tfi × log(M/ |ci|)/di (7)

4 Cross-lingual Relatedness

We measure the relatedness of concepts in differ-
ent languages by using their ESA concept vector
representations in their own languages, along with
the Wikipedia interlanguage links that connect ar-
ticles written in a given language to their corre-
sponding Wikipedia articles in other languages.
For example, the English Wikipedia article moon

contains interlanguage links to � ��� in the Ara-
bic Wikipedia, luna in the Spanish Wikipedia, and
lună in the Romanian Wikipedia. The interlan-
guage links can map concepts across languages,
and correspondingly map concept vector represen-
tations in different languages.

Formally, let Cx and Cy be the sets of all
Wikipedia concepts in languages x and y, with
corresponding translations in the y and x lan-
guages, respectively. If trxy() is a translation
function that maps a concept ci ∈ Cx into the con-
cept c

′
i ∈ Cy via the interlanguage links, we can

write:

trxy(ci) = c
′
i, (8)

The projection of the ESA vector �t from lan-
guage x onto y can be written as:

trxy(�t) =
{
wtrxy(c1)...wtrxy(cn)

}
. (9)

Using equations 5, 7, and 9, we can calculate the
cross-lingual semantic relatedness between any
two content terms ax and by in given languages
x and y as:

sim(ax, by) =
G(tryx( �B)| �A) + G( �A|tryx( �B))

2
.

(10)

Note that the weights assigned to Wikipedia
concepts inside the concept vectors are language
specific. That is, two Wikipedia concepts from
different languages, mapped via an interlanguage
link, can, and often do have different weights.

Intuitively, the relation described by the inter-
language links should be reflective and transi-
tive. However, due to Wikipedia’s editorial pol-
icy, which accredits users with the responsibility
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of maintaining the articles, these properties are not
always met. Table 3 shows real cases where the
transitive and the reflective properties fail due to
missing interlanguage links.

Relation Exists
Reflectivity

Kafr-El-Dawwar Battle(en) �→ �� �	
� � � �
� ������(ar) Yes

�� �	
� � � �
� ������(ar) �→ Kafr-El-Dawwar Battle(en) No

Transitivity
Intifada(en) �→ Intifada(es) Yes

Intifada(es) �→ �� ��� ��
�� �� �(ar) Yes

Intifada(en) �→ �� ��� ��
�� �� �(ar) No

Table 3: Reflectivity and transitivity in Wikipedia

We solve this problem by iterating over the
translation tables and extracting all the missing
links by enforcing the reflectivity and the transi-
tivity properties. Table 4 shows the initial number
of interlanguage links and the discovered links for
the four languages used in our experiments. The
table also shows the coverage of the interlanguage
links, measured as the ratio between the total num-
ber of interlanguage links (initial plus discovered)
originating in the source language towards the tar-
get language, divided by the total number of arti-
cles in the source language.

Interlanguage links
Language pair Initial Discov. Cover.
English → Spanish 293,957 12,659 0.14
English → Romanian 86,719 4,641 0.04
English → Arabic 56,233 3,916 0.03
Spanish → English 294,266 7,328 0.58
Spanish → Romanian 39,830 3,281 0.08
Spanish → Arabic 33,889 3,319 0.07
Romanian → English 75,685 6,783 0.46
Romanian → Spanish 36,002 3,546 0.22
Romanian → Arabic 15,777 1,698 0.10
Arabic → English 46,072 3,170 0.33
Arabic → Spanish 28,142 3,109 0.21
Arabic → Romanian 15,965 1,970 0.12

Table 4: Interlanguage links (initial and discov-
ered) and their coverage in Wikipedia versions in
four languages.

5 Experiments and Evaluations

We run our experiments on four languages: En-
glish, Spanish, Romanian and Arabic. For each
of these languages, we use a Wikipedia down-
load from October 2008. The articles were pre-
processed using Wikipedia Miner (Milne, 2007)

to extract structural information such as general-
ity, and interlanguage links. Furthermore, arti-
cles were also processed to remove numerical con-
tent, as well as any characters not included in the
given language’s alphabet. The content words are
stemmed, and words shorter than three characters
are removed (a heuristic which we use as an ap-
proximation for stopword removal). Table 5 shows
the number of articles in each Wikipedia version
and the size of their vocabularies, as obtained af-
ter the pre-processing step.

Articles Vocabulary
English 2, 221, 980 1, 231, 609
Spanish 520, 154 406, 134
Arabic 149, 340 216, 317
Romanian 179, 440 623, 358

Table 5: Number of articles and size of vocabulary
for the four Wikipedia versions

After pre-processing, the articles are indexed
to generate the ESA concept vectors. From each
Wikipedia version, we also extract other features
including article titles, interlanguage links, and
Wikipedia category graphs. The interlanguage
links are further processed to recover any missing
links, as described in the previous section.

5.1 Data

For the evaluation, we build several cross-lingual
datasets based on the standard Miller-Charles
(Miller and Charles, 1998) and WordSimilarity-
353 (Finkelstein et al., 2001) English word relat-
edness datasets.

The Miller-Charles dataset (Miller and Charles,
1998) consists of 30-word pairs ranging from syn-
onymy pairs (e.g., car - automobile) to completely
unrelated terms (e.g., noon - string). The relat-
edness of each word pair was rated by 38 hu-
man subjects, using a scale from 0 (not-related)
to 4 (perfect synonymy). The dataset is avail-
able only in English and has been widely used
in previous semantic relatedness evaluations (e.g.,
(Resnik, 1995; Hughes and Ramage, 2007; Zesch
et al., 2008)).

The WordSimilarity-353 dataset (also known as
Finkelstein-353) (Finkelstein et al., 2001) consists
of 353 word pairs annotated by 13 human experts,
on a scale from 0 (unrelated) to 10 (very closely
related or identical). The Miller-Charles set is a
subset in the WordSimilarity-353 data set. Unlike
the Miller-Charles data set, which consists only of
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Word pair
English coast - shore car - automobile brother - monk
Spanish costa - orilla coche - automovil hermano - monje
Arabic ��� �� - ��� ��

��� �������� - ��� � �!���
 �� - "� #� ��
Romanian ţărm - mal maşfină - automobil frate - călugăr

Table 6: Word pair translation examples

single words, the WordSimilarity-353 set also fea-
tures phrases (e.g., “Wednesday news”), therefore
posing an additional degree of difficulty for a re-
latedness metric applied on this data.

Native speakers of Spanish, Romanian and Ara-
bic, who were also highly proficient in English,
were asked to translate the words in the two data
sets. The annotators were provided one word pair
at a time, and asked to provide the appropriate
translation for each word while taking into account
their relatedness within the word pair. The relat-
edness was meant as a hint to disambiguate the
words, when multiple translations were possible.

The annotators were also instructed not to use
multi-word expressions in their translations. They
were also allowed to use replacement words to
overcome slang or culturally-biased terms. For ex-
ample, in the case of the word pair dollar-buck,

annotators were allowed to use �������$2 as a transla-
tion for buck.

To test the ability of the bilingual judges to pro-
vide correct translations by using this annotation
setting, we carried out the following experiment.
We collected Spanish translations from five differ-
ent human judges, which were then merged into
a single selection based on the annotators’ trans-
lation agreement; the merge was done by a sixth
human judge, who also played the role of adjudi-
cator when no agreement was reached between the
initial annotators.

Subsequently, five additional human experts re-
scored the word-pair Spanish translations by using
the same scale that was used in the construction of
the English data set. The correlation between the

2Arabic for dinars – the commonly used currency in the
Middle East.

relatedness scores assigned during this experiment
and the scores assigned in the original English ex-
periment was 0.86, indicating that the translations
provided by the bilingual judges were correct and
preserved the word relatedness.

For the translations provided by the five human
judges, in more than 74% of the cases at least three
human judges agreed on the same translation for a
word pair. When the judges did not provide iden-
tical translations, they typically used a close syn-
onym. The high agreement between their trans-
lations indicates that the annotation setting was
effective in pinpointing the correct translation for
each word, even in the case of ambiguous words.

Motivated by the validation of the annotation
setting obtained for Spanish, we used only one hu-
man annotator to collect the translations for Arabic
and Romanian. Table 6 shows examples of trans-
lations in the three languages for three word pairs
from our data sets.

Using these translations, we create six cross-
lingual data sets, one for each possible language
pair (English-Spanish, English-Arabic, English-
Romanian, Spanish-Arabic, Spanish-Romanian,
Arabic-Romanian). Given a source-target lan-
guage pair, a data set is created by first using the
source language for the first word and the target
language for the second word, and then reversing
the order, i.e., using the source language for the
second word and the target language for the first
word. The size of the data sets is thus doubled
in this way (e.g., the 30 word pairs in the English
Miller-Charles set are transformed into 60 word
pairs in the English-Spanish Miller-Charles set).

5.2 Results

We evaluate the cross-lingual measure of related-
ness on each of the six language pairs. For com-
parison purposes, we also evaluate the monolin-
gual relatedness on the four languages.

For the evaluation, we use the Pearson (r)
and Spearman (ρ) correlation coefficients, which
are the standard metrics used in the past for the
evaluation of semantic relatedness (Finkelstein et
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al., 2001; Zesch et al., 2008; Gabrilovich and
Markovitch, 2007). While the Pearson correla-
tion is highly dependent on the linear relationship
between the distributions in question, Spearman
mainly emphasizes the ability of the distributions
to maintain their relative ranking.

Tables 7 and 8 show the results of the evalua-
tions of the cross-lingual relatedness, when using
an ESA concept vector with a size of maximum
10,000 concepts.3

English Spanish Arabic Romanian
Miller-Charles

English 0.58 0.43 0.32 0.50
Spanish 0.44 0.20 0.38
Arabic 0.36 0.32
Romanian 0.58

WordSimilarity-353
English 0.55 0.32 0.31 0.29
Spanish 0.45 0.32 0.28
Arabic 0.28 0.25
Romanian 0.30

Table 7: Pearson correlation for cross-
lingual relatedness on the Miller-Charles and
WordSimilarity-353 data sets

English Spanish Arabic Romanian
Miller-Charles

English 0.75 0.56 0.27 0.55
Spanish 0.64 0.17 0.32
Arabic 0.33 0.21
Romanian 0.61

WordSimilarity-353
English 0.71 0.55 0.35 0.38
Spanish 0.50 0.29 0.30
Arabic 0.26 0.20
Romanian 0.28

Table 8: Spearman correlation for cross-
lingual relatedness on the Miller-Charles and
WordSimilarity-353 data sets

As a validation of our ESA implementation, we
compared the results obtained for the monolingual
English relatedness with other results reported in
the past for the same data sets. Gabrilovich and
Markovitch (2007) reported a Spearman correla-
tion of 0.72 for the Miller-Charles data set and
0.75 for the WordSimilarity-353 data set, respec-

3The concepts are selected in reversed order of their
weight inside the vector in the respective language. Note that
the cross-lingual mapping between the concepts in the ESA
vectors is done after the selection of the top 10,000 concepts
in each language.

tively. Zesch et al. (2008) reported a Spear-
man correlation of 0.67 for the Miller-Charles set.
These values are comparable to the Spearman cor-
relation scores obtained in our experiments for the
English data sets (see Table 8), with a fairly large
improvement obtained on the Miller-Charles data
set when using our implementation.

6 Discussion

Overall, our method succeeds in capturing the
cross-lingual semantic relatedness between words.
As a point of comparison, one can use the mono-
lingual measures of relatedness as reflected by the
diagonals in Tables 7 and 8.

Looking at the monolingual evaluations, the re-
sults seem to be correlated with the Wikipedia size
for the corresponding language, with the English
measure scoring the highest. These results are not
surprising, given the direct relation between the
Wikipedia size and the sparseness of the ESA con-
cept vectors. A similar trend is observed for the
cross-lingual relatedness, with higher results ob-
tained for the languages with large Wikipedia ver-
sions (e.g., English-Spanish), and lower results for
the languages with a smaller size Wikipedia (e.g.,
Arabic-Spanish).

For comparison, we ran two additional experi-
ments. In the first experiment, we compared the
coverage of our cross-lingual relatedness method
to a direct use of the translation links available in
Wikipedia. The cross-lingual relatedness is turned
into a monolingual relatedness by using the in-
terlanguage Wikipedia links to translate the first
of the two words in a cross-lingual pair into the
language of the second word in the pair.4 From
the total of 433 word pairs available in the two
data sets, this method can produce translations
for an average of 103 word pairs per language
pair. This means that the direct Wikipedia inter-
language links allow the cross-lingual relatedness
measure to be transformed into a monolingual re-
latedness in about 24% of the cases, which is a
low coverage compared to the full coverage that
can be obtained with our cross-lingual method of
relatedness.

In an attempt to raise the coverage of the trans-
lation, we ran a second experiment where we used
a state-of-the-art translation engine to translate the
first word in a pair into the language of the sec-

4We use all the interlanguage links obtained by combining
the initial and the discovered links, as described in Section 4.
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ond word in the pair. We use Google Translate,
which is a statistical machine translation engine
that relies on large parallel corpora, to find the
most likely translation for a given word. Unlike
the previous experiment, this time we can achieve
full translation coverage, and thus we are able to
produce data sets of equal size that can be used
for a comparison between relatedness measures.
Specifically, using the translation produced by the
machine translation engine for the first word in a
pair, we calculate the relatedness within the space
of the language of the second word using a mono-
lingual ESA also based on Wikipedia. The results
obtained with this method are compared against
the results obtained with our cross-lingual ESA re-
latedness.

Using a Pearson correlation, our cross-lingual
relatedness method achieves an average score
across all six language pairs of 0.36 for the Miller-
Charles data set and 0.30 for the WordSimilarity-
353 data set,5 which is higher than the 0.33 and
0.28 scores achieved for the same data sets when
using a translation obtained with Google Trans-
late followed by a monolingual measure of re-
latedness. These results are encouraging, also
given that the translation-based method is limited
to those language pairs for which a translation en-
gine exists (e.g., Google Translate covers 40 lan-
guages), whereas our method can be applied to any
language pair from the set of 250 languages for
which a Wikipedia version exists.

To gain further insights, we also determined the
impact of the vector length in the ESA concept
vector representation, by calculating the Pearson
correlation for vectors of different lengths. Fig-
ures 1 and 2 show the Pearson score as a func-
tion of the vector length for the Miller-Charles
and WordSimilarity-353 data sets. The plots show
that the cross-lingual measure of relatedness is not
significantly affected by the reduction or increase
of the vector length. Thus, the use of vectors of
length 10,000 (as used in most of our experiments)
appears as a reasonable tradeoff between accuracy
and performance.

Furthermore, by comparing the performance of
the proposed Lesk-like model to the traditional
cosine-similarity (Figures 3 and 4), we note that
the Lesk-like model outperforms the cosine model
on most language pairs. We believe that this is

5This average considers all the cross-lingual relatedness
scores listed in Table 7; it does not include the monolingual
scores listed on the table diagonal.
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Figure 1: Pearson correlation vs. ESA vector
length on the Miller-Charles data set
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Figure 2: Pearson correlation vs. ESA vector
length on the WordSimilarity-353 data set

due to the stricter correlation conditions imposed
by the cosine-metric in such sparse vector-based
representations, as compared to the more relaxed
hypothesis used by the Lesk model.

Finally, we also looked at the relation between
the number of interlanguage links found for the
concepts in a vector and the length of the vector.
Figures 5 and 6 display the average number of in-
terlanguage links as a function of the concept vec-
tor length.

By analyzing the effect of the average number
of interlanguage links found per word in the given
datasets (Figures 5 and 6), we notice that these
links increase proportionally with the vector size,
as expected. However, this increase does not lead
to any significant improvements in accuracy (Fig-
ures 1 and 2). This implies that while the presence
of interlanguage links is a prerequisite for the mea-
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Figure 4: Lesk vs. cosine similarity for the
WordSimilarity-353 data set

sure of relatedness,6 their effect is only significant
for the top ranked concepts in a vector. Therefore,
increasing the vectors size to maximize the match-
ing of the projected dimensions does not necessar-
ily lead to accuracy improvements.

7 Related Work

Measures of word relatedness were found useful in
a large number of natural language processing ap-
plications, including word sense disambiguation
(Patwardhan et al., 2003), synonym identification
(Turney, 2001), automated essay scoring (Foltz et
al., 1999), malapropism detection (Budanitsky and
Hirst, 2001), coreference resolution (Strube and
Ponzetto, 2006), and others. Most of the work to
date has focused on measures of word relatedness
for English, by using methods applied on knowl-

6Two languages with no interlanguage links between
them will lead to a relatedness score of zero for any word
pair across these languages, no matter how strongly related
the words are.
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tor length for the Miller-Charles data set
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Figure 6: Number of interlanguage links vs. vec-
tor length for the WordSimilarity-353 data set

edge bases (Lesk, 1986; Wu and Palmer, 1994;
Resnik, 1995; Jiang and Conrath, 1997; Hughes
and Ramage, 2007) or on large corpora (Salton
et al., 1997; Landauer et al., 1998; Turney, 2001;
Gabrilovich and Markovitch, 2007).

Although to a lesser extent, measures of word
relatedness have also been applied on other lan-
guages, including German (Zesch et al., 2007;
Zesch et al., 2008; Mohammad et al., 2007), Chi-
nese (Wang et al., 2008), Dutch (Heylen et al.,
2008) and others. Moreover, assuming resources
similar to those available for English, e.g., Word-
Net structures or large corpora, the measures of
relatedness developed for English can be in prin-
ciple applied to other languages as well.

All these methods proposed in the past have
been concerned with monolingual word related-
ness calculated within the boundaries of one lan-
guage, as opposed to cross-lingual relatedness,
which is the focus of our work.

The research area closest to the task of cross-
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lingual relatedness is perhaps cross-language in-
formation retrieval, which is concerned with
matching queries posed in one language to docu-
ment collections in a second language. Note how-
ever that most of the approaches to date for cross-
language information retrieval have been based on
direct translations obtained for words in the query
or in the documents, by using bilingual dictionar-
ies (Monz and Dorr, 2005) or parallel corpora (Nie
et al., 1999). Such explicit translations can iden-
tify a direct correspondence between words in two
languages (e.g., they will find that fabbrica (It.)
and factory (En.) are translations of each other),
but will not capture similarities of a different de-
gree (e.g., they will not find that lavoratore (It.;
worker in En.) is similar to factory (En.).

Also related are the areas of word alignment
for machine translation (Och and Ney, 2000),
induction of translation lexicons (Schafer and
Yarowsky, 2002), and cross-language annotation
projections to a second language (Riloff et al.,
2002; Hwa et al., 2002; Mohammad et al.,
2007). As with cross-language information re-
trieval, these areas have primarily considered di-
rect translations between words, rather than an en-
tire spectrum of relatedness, as we do in our work.

8 Conclusions

In this paper, we addressed the problem of
cross-lingual semantic relatedness, which is a
core task for a number of applications, includ-
ing cross-language information retrieval, cross-
language text classification, lexical choice for ma-
chine translation, cross-language projections of re-
sources and annotations, and others.

We introduced a method based on concept vec-
tors built from Wikipedia, which are mapped
across the interlanguage links available between
Wikipedia versions in multiple languages. Ex-
periments performed on six language pairs, con-
necting English, Spanish, Arabic and Romanian,
showed that the method is effective at captur-
ing the cross-lingual relatedness of words. The
method was shown to be competitive when com-
pared to methods based on a translation using the
direct Wikipedia links or using a statistical trans-
lation engine. Moreover, our method has wide ap-
plicability across languages, as it can be used for
any language pair from the set of 250 languages
for which a Wikipedia version exists.

The cross-lingual data sets introduced

in this paper can be downloaded from
http://lit.csci.unt.edu/index.php/Downloads.
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Abstract 

System combination has emerged as a 

powerful method for machine translation 

(MT). This paper pursues a joint optimization 

strategy for combining outputs from multiple 

MT systems, where word alignment, ordering, 

and lexical selection decisions are made 

jointly according to a set of feature functions 

combined in a single log-linear model. The 

decoding algorithm is described in detail and a 

set of new features that support this joint 

decoding approach is proposed. The approach 

is evaluated in comparison to state-of-the-art 

confusion-network-based system combination 

methods using equivalent features and shown 

to outperform them significantly.   

1 Introduction 

System combination for machine translation 

(MT) has emerged as a powerful method of 

combining the strengths of multiple MT systems 

and achieving results which surpass those of 

each individual system (e.g. Bangalore, et. al., 

2001, Matusov, et. al., 2006, Rosti, et. al., 

2007a). Most state-of-the-art system combination 

methods are based on constructing a confusion 

network (CN) from several input translation 

hypotheses, and choosing the best output from 

the CN based on several scoring functions (e.g. 

Rosti et. al., 2007a, He et. al., 2008, Matusov et 

al. 2008). Confusion networks allow word-level 

system combination, which was shown to 

outperform sentence re-ranking methods and 

phrase-level combination (Rosti, et. al. 2007a). 

We will review confusion-network-based 

system combination with the help of the 

examples in Figures 1 and 2. Figure 1 shows 

translation hypotheses from three Chinese-to-

English MT systems. The general idea is to 

combine hypotheses in a representation such as 

the ones in Figure 2, where for each word 

position there is a set of possible words, shown 

in columns.
1
The final output is determined by 

choosing one word from each column, which can 

be a real word or the empty word ε. For example, 

the CN in Figure 2a) can generate eight distinct 

sequences of words, including e.g. “she bought 

the Jeep” and “she bought the SUV Jeep”. The 

choice is performed to maximize a scoring 

function using a set of features and a log-linear 

model (Matusov, et. al 2006, Rosti, et al. 2007a). 

We can view a confusion network as an 

ordered sequence of columns (correspondence 

sets). Each word from each input hypothesis 

belongs to exactly one correspondence set. Each 

correspondence set contains at most one word 

from each input hypothesis and contributes 

exactly one of its words (including the possible 

ε) to the final output. Final words are output in 

the order of correspondence sets. In order to 

construct such a representation, we need to solve 

the following two sub-problems:  arrange words 

from all input hypotheses into correspondence 

sets (alignment problem) and order 

correspondence sets (ordering problem).  After 

constructing the confusion network we need to 

solve a third sub-problem: decide which words to 

output from each correspondence set (lexical 

choice problem). 

In current state-of-the-art approaches, the 

construction of the confusion network is 

performed as follows: first, a backbone 

hypothesis is selected. The backbone hypothesis 

determines the order of words in the final system 

output, and guides word-level alignments for 

construction of columns of possible words at 

each position. Let us assume that for our 

example in Figure 1, the second hypothesis is 

selected as a backbone. All other hypotheses are 

aligned to the backbone such that these 

alignments are one-to-one; empty words are 

inserted where necessary to make one-to-one 

                                                 
1
 This representation is alternative to directed acyclic 

graph representations of confusion networks. 
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alignment possible. Words in all hypotheses are 

sorted by the position of the backbone word they 

align to and the confusion network is determined.  

It is clear that the quality of selection of the 

backbone and alignments has a large impact on 

the performance, because the word order is 

determined by the backbone, and the set of 

possible words at each position is determined by 

alignment. Since the space of possible 

alignments is extremely large, approximate and 

heuristic techniques have been employed to 

derive them. In pair-wise alignment, each 

hypothesis is aligned to the backbone in turn, 

with separate processing to combine the multiple 

alignments. Several models have been used for 

pair-wise alignment, starting with TER and 

proceeding with more sophisticated techniques 

such as HMM models, ITG, and IHMM (Rosti 

et. al 2007a, Matusov et al 2008, Krakos et al. 

2008, He et al. 2008). A major problem with 

such methods is that each hypothesis is aligned 

to the backbone independently, leading to sub-

optimal behavior. For example, suppose that we 

use a state-of-the-art word alignment model for 

pairs of hypotheses, such as the IHMM. Figure 1 

shows likely alignment links between every pair 

of hypotheses. If Hypothesis 1 is aligned to 

Hypothesis 2 (the backbone), Jeep is likely to 

align to SUV because they express similar 

Chinese content. Hypothesis 3 is separately 

aligned to the backbone and since the alignment 

is constrained to be one-to-one, SUV is aligned to 

SUV and Jeep to an empty word which is 

inserted after SUV. The network in Figure 2a) is 

the result of this process. An undesirable 

property of this CN is that the two instances of 

Jeep are placed in separate columns and cannot 

vote to reinforce each other. 

Incremental alignment methods have been 

proposed to relax the independence assumption 

of pair-wise alignment (Rosti et al. 2008, Li et al. 

2009). Such methods align hypotheses to a 

partially constructed CN in some order. For 

example, if in such method, Hypothesis 3 is first 

aligned to the backbone, followed by Hypothesis 

1, we are likely to arrive at the CN in Figure 2b) 

in which the two instances of Jeep are aligned. 

However, if Hypothesis 1 is aligned to the 

backbone first, we would still get the CN in 

Figure 2a).  Notice that the desirable output “She 

bought the Jeep SUV” cannot be generated from 

either of the confusion networks because a re-

reordering of columns would be required. 

A common characteristic of CN-based 

approaches is that the order of words (backbone) 

and the alignment of words (correspondence 

sets) are decided as greedy steps independently 

of the lexical choice for the final output. The 

backbone and alignment are optimized according 

to auxiliary scoring functions and heuristics 

which may or may not be optimal with respect to 

producing CNs leading to good translations. In 

some recent approaches, these assumptions are 

relaxed to allow each input hypothesis as a 

backbone. Each backbone produces a separate 

CN and the decision of which CN to choose is 

taken at a later decoding stage, but this still 

restricts the possible orders and alignments 

greatly (Rosti et al. 2008, Matusov et al. 2008). 

In this paper, we present a joint optimization 

method for system combination. In this method, 

the alignment, ordering and lexical selection sub-

problems are solved jointly in a single decoding 

framework based on a log-linear model. 

she

she

she

bought

bought

buys

the

the

the

Jeep

SUV

SUV Jeep

ε

ε ε

 
 Figure 1. Three MT system hypotheses with pair-

wise alignments. 

 

she bought the Jeep ε 

she buys the SUV ε 

she bought the SUV Jeep 

 

a) Confusion network with pair-wise alignment. 

 

she bought the ε Jeep 

she buys the SUV ε 

she bought the SUV Jeep 

 

b) Confusion network with incremental alignment. 

 

Figure 2. Correspondence sets of confusion networks 

under pair-wise and incremental alignment, using the 

second hypothesis as a backbone. 

2 Related Work 

There has been a large body of work on MT 

system combination. Among confusion-network-

based algorithms, most relevant to our work are 

state-of-the-art methods for constructing word 

alignments (correspondence sets) and methods 

for improving the selection of a backbone 

hypothesis. We have already reviewed such work 

in the introduction and will note relation to 
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specific models throughout the paper as we 

discuss specifics of our scoring functions. 

In confusion network algorithms which use 

pair-wise (or incremental) word-level alignment 

algorithms for correspondence set construction, 

problems of converting many-to-many 

alignments and handling multiple insertions and 

deletions need to be addressed. Prior work has 

used a number of heuristics to deal with these 

problems (Matusov, et. al., 2006, He et al 08). 

Some work has made such decisions in a more 

principled fashion by computing model-based 

scores (Matusov et al. 2008), but still special-

purpose algorithms and heuristics are needed and 

a single alignment is fixed.  

In our approach, no heuristics are used to 

convert alignments and no concept of a backbone 

is used. Instead, the globally highest scoring 

combination of alignment, order, and lexical 

choice is selected (subject to search error). 

Other than confusion-network-based 

algorithms, work most closely related to ours is 

the method of MT system combination proposed 

in (Jayaraman and Lavie 2005), which we will 

refer to as J&L. Like our method, this approach 

performs word-level system combination and is 

not limited to following the word order of a 

single backbone hypothesis; it also allows more 

flexibility in the selection of correspondence sets 

during decoding, compared to a confusion-

network-based approach. Even though their 

algorithm and ours are broadly similar, there are 

several important differences.   

Firstly, the J&L approach is based on pair-

wise alignments between words in different 

hypotheses, which are hard and do not have 

associated probabilities. Every word in every 

hypothesis is aligned to at most one word from 

each of the remaining hypotheses. Thus there is 

no uncertainty about which words should belong 

to the correspondence set of an aligned word w, 

once that word is selected to extend a partial 

hypothesis during search. If words do not have 

corresponding matching words in some 

hypotheses, heuristic matching to currently 

unused words is attempted.  

In contrast, our algorithm is based on the 

definition of a joint scoring model, which takes 

into account alignment uncertainty and combines 

information from word-level alignment models, 

ordering and lexical selection models, to address 

the three sub-problems of word-level system 

combination. In addition to the language model 

and word-voting features used by the J&L 

model, we incorporate features which measure 

alignment confidence via word-level alignment 

models and features which evaluate re-ordering 

via distortion models with respect to original 

hypotheses. While the J&L search algorithm 

incorporates a number of special-purpose 

heuristics to address phenomena of unused words 

lagging behind the last used words, the goal in 

our work is to minimize heuristics and perform 

search to jointly optimize the assignment of 

hidden variables (ordered correspondence sets) 

and observed output variables (words in final  

translations). 

Finally, the J&L method has not been 

evaluated in comparison to confusion-network-

based methods to study the impact of performing 

joint decoding for the three sub-problems. 

3 Notation 

Before elaborating the models and decoding 

algorithms, we first clarify the notation that will 

be used in the paper.  

We denote by 𝑯 =  𝑕1 , … , 𝑕𝑁 the set of 

hypotheses from multiple MT systems, where 𝑕𝑖  

is the hypothesis from the i-th system and 𝑕𝑖  is a 

word sequence 𝑤𝑖,1 , … , 𝑤𝑖,𝐿(𝑖)  with length 𝐿(𝑖) .  

For simplicity, we assume that each system 

contributes only its 1-best hypothesis for 

combination. Accordingly, the i-th hypothesis 𝑕𝑖  

will be associated with a weight 𝑊(𝑖) which is 

the weight of the i-th system. In the scenario that 

N-best lists are available from individual systems 

for combination, the weight of each hypothesis 

can be computed based on its rank in the N-best 

list (Rosti et. al. 2007a).  

Like in CN-based system combination, we 

construct a set of ordered correspondence sets 

(CS) from input hypotheses, and select one word 

from each CS to form the final output. A CS is 

defined as a set of (possibly empty) words, one 

from each hypothesis, that implicitly align to 

each other and that contributes exactly one of its 

words to the final output. A valid complete set of 

CS includes each non-empty word from each 

hypothesis in exactly one CS. As opposed to CN-

based algorithms, our ordered correspondence 

sets are constructed during a joint decoding 

process which performs lexical selection at the 

same time. 

To facilitate the presentation of our features, 

we define notation for ordered CS. A sequence 

of correspondence sets is denoted by 

C= 𝐶𝑆1, … , 𝐶𝑆𝑚 . Each correspondence set is 

specified by listing the positions of each of the 

words in the CS in their respective input 
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hypotheses. Each input hypothesis is assumed 

to have one special empty word ε at position 0. 

A CS is denoted by 𝐶𝑆 𝑙1 , … , 𝑙𝑁  
= 𝑤1,𝑙1

, … , 𝑤𝑁,𝑙𝑁  , where 𝑤𝑖,𝑙𝑖  is the li-th word in 

the i-th hypothesis and the word position vector                

𝑣 =  𝑙1 , … , 𝑙𝑁 𝑇  specifies the position of each 

word in its original hypothesis. Correspondingly, 

word 𝑤𝑖,𝑙𝑖  has the same weight 𝑊(𝑖)  as its 

original hypothesis𝑕𝑖 . As an example, the last 

two correspondence sets specified by the CN in 

Figure 2a) would be specified as 𝐶𝑆4 =
𝐶𝑆 4,4,4 = {𝐽𝑒𝑒𝑝, 𝑆𝑈𝑉, 𝑆𝑈𝑉}  and 𝐶𝑆5 =
𝐶𝑆 0,0,5 = {𝜀, 𝜀, 𝐽𝑒𝑒𝑝}. 

As opposed to the CS defined in a 

conventional CN, words that have the same 

surface form but come from different hypotheses 

are not collapsed to be one single candidate since 

they have different original word positions. We 

need to trace each of them separately during the 

decoding process.  

4 A Joint Optimization Framework For 

System Combination 

The joint decoding framework chooses optimal 

output according to the following log-linear 

model: 

 

𝑤∗ =  argmax
𝑤∈𝑾,𝑂∈𝑶,𝐶∈𝑪

𝑒𝑥𝑝   𝛼𝑖 ⋅ 𝑓𝑖(𝑤, 𝑂, 𝐶, 𝑯)

𝐹

𝑖=1

  

              

where we denote by C the set of all possible 

valid arrangements of CS, O the set of all 

possible orders of CS, W the set of all possible 

word sequences, consisting of words from the 

input hypotheses. {𝑓𝑖(𝑤, 𝑂, 𝐶, 𝑯)}  are the 

features and {𝛼𝑖} are the feature weights in the 

log-linear model, respectively. 

4.1 Features  

A set of features are used in this framework. 

Each of them models one or more of the 

alignment, ordering, and lexical selection sub-

problems. Features are defined as follows.  

 

Word posterior model:  

The word posterior feature is the same as the 

one proposed by Rosti et. al. (2007a). i.e.,  

𝑓𝑤𝑝  𝑤, 𝑂, 𝐶, 𝑯 =  𝑙𝑜𝑔 𝑃 𝑤𝑚  𝐶𝑆𝑚  

𝑀

𝑚=1

 

 

where the posterior of a single word in a CS is 

computed based on a weighted voting score: 

 

𝑃 𝑤𝑖,𝑙𝑖  𝐶𝑆 = 𝑃  𝑤𝑖,𝑙𝑖  𝐶𝑆 𝑙1 , … , 𝑙𝑁   

=  𝑊(𝑘)

𝑁

𝑘=1

𝛿(𝑤𝑘,𝑙𝑘 = 𝑤𝑖,𝑙𝑖 ) 

 

and M is the number of CS generated. Note 

that M may be larger than the length of the 

output word sequence w since some CS may 

generate empty words. 

 

Bi-gram voting model: 

 The second feature we used is a bi-gram 

voting feature proposed by Zhao and He (2009), 

i.e., for each bi-gram  𝑤𝑖 , 𝑤𝑖+1  , a weighted 

position-independent voting score is computed: 

𝑃  𝑤𝑖 , 𝑤𝑖+1  𝑯 =  𝑊(𝑘)

𝑁

𝑘=1

𝛿( 𝑤𝑖 , 𝑤𝑖+1 ∈ 𝑕𝑖) 

 

And the global bi-gram voting feature is 

defined as: 

𝑓𝑏𝑔𝑣  𝑤, 𝑂, 𝐶, 𝑯 =  𝑙𝑜𝑔 𝑃  𝑤𝑖 , 𝑤𝑖+1  𝑯  

|𝑤|−1

𝑖=1

 

 

Distortion model: 

Unlike in the conventional CN-based system 

combination, flexible orders of CS are allowed in 

this joint decoding framework. In order to model 

the distortion of different orderings, a distortion 

model between two CS is defined as follows: 

First we define the distortion cost between two 

words at a single hypothesis. Similarly to the 

distortion penalty in the conventional phrase-

based decoder (Koehn 2004b), the distortion cost 

of jumping from a word at position i to another 

word at position j, d(i,j), is proportional to the 

distance between i and j, e.g., |i-j|. Then, the 

distortion cost of jumping from one CS, which 

has a position vector recording the original 

position of each word in that CS, to another CS 

is a weighted sum of single-hypothesis-based 

distortion costs: 

𝑑(𝐶𝑆𝑚 , 𝐶𝑆𝑚+1)  =  𝑊(𝑘)

𝑁

𝑘=1

∙ |𝑙𝑚,𝑘 − 𝑙𝑚+1,𝑘 |  

 

where 𝑙𝑚,𝑘  and 𝑙𝑚+1,𝑘  are the k-th element of 

the word position vector of CSm and CSm+1, 

respectively. For the purpose of computing the 

distortion feature, the position of an empty 

word is taken to be the same as the position of 
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the last visited non-empty word from the same 

hypothesis. 

The overall ordering feature can then be 

computed based on 𝑑(𝐶𝑆𝑚 , 𝐶𝑆𝑚+1): 

 

𝑓𝑑𝑖𝑠 𝑤, 𝑂, 𝐶, 𝑯 = −  𝑑(𝐶𝑆𝑚 , 𝐶𝑆𝑚+1)

𝑀−1

𝑚=1

 

 

It is worth noting that this is not the only 

feature modeling the re-ordering behavior.  

Under the joint decoding framework, other 

features such as the language model and bi-gram 

voting affect the ordering as well.  

 

Alignment model: 

Each CS consists of a set of words, one from 

each hypothesis, that are implicitly aligned to 

each other. Therefore, a valid complete set of CS 

defines the word alignment among different 

hypotheses. In this paper, we derive an alignment 

score of a CS based on alignment scores of word 

pairs in that CS. To compute scores for word 

pairs, we perform pair-wise hypothesis alignment 

using the indirect HMM (He et al. 2008) for 

every pair of input hypotheses. Note that this 

involves a total of N by (N-1)/2 bi-directional 

hypothesis alignments. The alignment score for a 

pair of words  𝑤𝑗 ,𝑙𝑗  and  𝑤𝑘,𝑙𝑘  is defined as the 

average of posterior probabilities of alignment 

links in both directions and is thus direction 

independent: 

 

𝑝  𝑤𝑗 ,𝑙𝑗  , 𝑤𝑘,𝑙𝑘   =  

1

2
  𝑝(𝑎𝑙𝑗 = 𝑙𝑘 |𝑕𝑗 , 𝑕𝑘) +  𝑝(𝑎𝑙𝑘 = 𝑙𝑗 |𝑕𝑘 , 𝑕𝑗 )  

 

If one of the two words is ε, the posterior of 

aligning word ε to state j is computed as 

suggested by Liang et al. (2006), i.e., 

 

𝑝 𝑎0 = 𝑙𝑗  𝑕𝑘 , 𝑕𝑗  =   1 − 𝑝 𝑎𝑖 = 𝑙𝑗  𝑕𝑘 , 𝑕𝑗   

𝐿(𝑘)

𝑖=1

 

 

And 𝑝(𝑎𝑙𝑗 = 0|𝑕𝑗 , 𝑕𝑘) can be computed by the 

HMM directly.  

If both words are ε, then a pre-defined  𝑝𝜀𝜀  is 

assigned, i.e., 𝑝 𝑎0 = 0 𝑕𝑘 , 𝑕𝑗  = 𝑝𝜀𝜀 , where 𝑝𝜀𝜀  

can be optimized on a held-out validation set. 

For a CS of words, if we set the j-th word as 

an anchor word, the probability that all other 

words align to that word is: 

𝑝(𝑗|𝐶𝑆)  =   𝑝  𝑤𝑗 ,𝑙𝑗  , 𝑤𝑘,𝑙𝑘   

𝑁

𝑘=1
𝑘≠𝑗

 

 

The alignment score of the whole CS is a 

weighted sum of the logarithm of the above 

alignment probabilities, i.e., 

 

𝑆𝑎𝑙𝑛 (𝐶𝑆)  =  𝑊(𝑗)

𝑁

𝑗 =1

𝑙𝑜𝑔 𝑃(𝑗|𝐶𝑆)  

 

and the global alignment score is computed as: 

 

𝑓𝑎𝑙𝑛  𝑤, 𝑂, 𝐶, 𝑯 =  𝑆𝑎𝑙𝑛 (𝐶𝑆𝑚 )

𝑀

𝑚=1

 

 

Entropy model: 

In general, it is preferable to align the same 

word from different hypotheses into a common 

CS. Therefore, we use entropy to model the 

purity of a CS. The entropy of a CS is defined as: 

 

𝐸𝑛𝑡 𝐶𝑆 = 𝐸𝑛𝑡(𝐶𝑆 𝑙1 , … , 𝑙𝑁 )  = 

 𝑃 𝑤𝑖,𝑙𝑖  𝐶𝑆 𝑙𝑜𝑔𝑃 𝑤𝑖,𝑙𝑖  𝐶𝑆 

𝑁′

𝑖=1

 

 

where the sum is taken over all distinct words in 

the CS. Then the global entropy score is 

computed as: 

 

𝑓𝑒𝑛𝑡  𝑤, 𝑂, 𝐶, 𝑯 =  𝐸𝑛𝑡(

𝑀

𝑚=1

𝐶𝑆𝑚 ) 

 

Other features used in our log-linear model 

include the count of real words |w|, a n-gram 

language model, and the count M of CS sets. 

These features address one or more of the 

three sub-problems of MT system combination. 

By performing joint decoding with all these 

features working together, we hope to derive 

better decisions on alignment, ordering and 

lexical selection.  

5 Joint Decoding 

5.1 Core algorithm 

Decoding is based on a beam search algorithm 

similar to that of the phrase-based MT decoder 

(Koehn 2004b). The input is a set of translation 

hypotheses to be combined, and the final output 
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sentence is generated left to right. Figure 3 

illustrates the decoding process, using the 

example input hypotheses from Figure 1.  Each 

decoding state represents a partial sequence of 

correspondence sets covering some of the words 

in the input hypotheses and a sequence of words 

selected from the CS to form a partial output 

hypothesis. The initial decoding state has an 

empty sequence of CS and an empty output 

sequence. A state corresponds to a complete 

output candidate if its CS covers all input words.  
 

lm: … bought the

 
    a) a decoding state 

lm: … bought the lm: … bought the

 
     b)  seed states         

lm: … bought the lm: … bought the

 
    c) correspondence set states 

lm: … the Jeep lm: … the Jeep

 
    d) decoding states 

Figure 3. Illustration of the decoding process. 

 

In practice, because the features over 

hypotheses can be decomposed, we do not need 

to encode all of this information in a decoding 

state. It suffices to store a few attributes. They 

include positions of words from each input 

hypothesis that have been visited, the last two 

non-empty words generated (if a tri-gram LM is 

used), and an "end position vector (EPV)" 

recording positions of words in the last CS, 

which were just visited. In the figure, the visited 

words are shown with filled circles and the EPV 

is shown with a dotted pattern in the filled 

circles. Words specified by the EPV are 

implicitly aligned. In the state in Figure 3 a) the 

first three words of each hypothesis have been 

visited, the third word of each hypothesis is the 

last word visited (in the EPV), and the last two 

words produced are “bought the”. The states also 

record the decoding score accumulated so far and 

an estimated future score to cover words that 

have not been visited yet (not shown).  

The expansion from one decoding state to a 

set of new decoding states is illustrated in Figure 

3. The expansion is done in three steps with the 

help of intermediate states. Starting from a 

decoding state as shown in Figure 3a), first a set 

of “seed states” as shown in Figure 3b) are 

generated. Each seed state represents a choice of 

one of unvisited words, called a “seed word” 

which is selected and marked as visited. For 

example, the word Jeep from the first hypothesis 

and the word SUV from the second hypothesis 

are selected in the two seed states shown in 

Figure 3b), respectively. These seed states 

further expand into a set of "CS states" as shown 

in Figure 3c). I.e., a CS is formed by picking one 

word from each of the other hypotheses which is 

unvisited and has a valid alignment link to the 

seed word. Figure 3c) shows two CS states 

expanded from the first seed state of Figure 3b), 

using Jeep from the first hypothesis as a seed 

word. In one of them the empty word from the 

second hypothesis is chosen, and in the other, the 

word SUV is chosen. Both are allowed by the 

alignments illustrated in Figure 1. Finally, each 

CS state generates one or more complete 

decoding states, in which a word is chosen from 

the current CS and the EPV vector is advanced to 

reflect the last newly visited words. Figure 3d) 

shows two such states, descending from the 

corresponding CS states in 3c). After one more 

expansion the state in 3d) on the left can generate 

the translation “She bought the Jeep SUV”, 

which cannot be produced by either confusion 

network in Figure 2. 

5.2 Pruning 

The full search space of joint decoding is a 

product of the alignment, ordering, and lexical 

selection spaces. Its size is exponential in the 

length of the sentence and the number of 

hypotheses involved in combination. Therefore, 

pruning techniques are necessary to reduce the 

search space.  

First we will prune down the alignment space. 

Instead of allowing any alignment link between 
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arbitrary words of two hypotheses, only links 

that have alignment score higher than a threshold 

are allowed, plus links in the union of the Viterbi 

alignments in both directions. In order to prevent 

the garbage collection problem where many 

words align to a rare word at the other side 

(Moore, 2004), we further impose the limit that if 

one word is aligned to more than T words, these 

links are sorted by their alignment score and only 

the top T links are kept. Meanwhile, alignments 

between a real word and ε are always allowed.  

We then prune down the ordering space by 

limiting the expansion of new states. Only states 

that are adjacent to their preceding states are 

created. Two states are called adjacent if their 

EPVs are adjacent, i.e., given the EPV of the 

preceding state m as  𝑙𝑚,1 , … , 𝑙𝑚,𝑁 
𝑇

 and the 

EPV of the next state m+1 as 

 𝑙𝑚+1,1, … , 𝑙𝑚+1,𝑁 
𝑇

, if at least at one 

dimension k, 𝑙𝑚+1,𝑘  = 𝑙𝑚,𝑘 +1, then these two 

states are adjacent. When checking the 

adjacency of two states, the position of an 

empty word is taken to be the same as the 

position of the last visited non-empty word 

from the same hypothesis.  

The number of possible CS states expanded 

from a decoding state is exponential in the 

number of hypotheses. In decoding, these CS 

states are sorted by their alignment scores and 

only the top K CS states are kept.  

The search space can be further pruned down 

by the widely used technique of path 

recombination and by best-first pruning.  

Path recombination is a risk-free pruning 

method. Two paths can be recombined if they 

agree on a) words from each hypothesis that have 

been visited so far, b) the last two real words 

generated, and c) their EPVs. In such case, we 

only need to keep the path with the higher score. 

Best-first pruning can help to reduce the 

search space even further. In the decoding 

process we compare paths that have generated 

the same number of words (both real and empty 

words) and only keep a certain number of most 

promising paths. Pruning is based on an 

estimated overall score of each path, which is the 

sum of the decoding score accumulated so far 

and an estimated future score to cover the words 

that have not been visited. Next we discuss the 

future score computation. 

5.3 Computing the future score 

In order to estimate the future cost of an 

unfinished path, we treat the unvisited words of 

one input hypothesis as a backbone, and apply a 

greedy search for alignment based on it; i.e., for 

each word of this backbone, the most likely 

words (based on the alignment link scores) from 

other hypotheses, one word from each 

hypothesis, are collected to form a CS. These CS 

are ordered according to the word order of the 

backbone and form a CN. Then, a light decoding 

process with a search beam of size one is applied 

to decode this CN and find the approximate 

future path, with future feature scores computed 

during the decoding process. If there are leftover 

words not included in this CN, they are treated in 

the way described in section 5.4. Additionally, 

caching techniques are applied to speed up the 

computation of future scores further.   

Given the method discussed above, we can 

estimate a future score based on each input 

hypothesis, and the final future score is estimated 

as the best of these hypothesis-dependent scores.  

5.4  Dealing with leftover input words  

At a certain point a path will reach the end, i.e., 

no more states can be generated from it 

according to the state expansion requirement. 

Then it is marked as a finished path. However, 

sometimes the state may contain a few input 

words that have not been visited. An example of 

this situation is the second state in Figure 3d). 

The word SUV in the third input hypothesis is 

left unvisited and it cannot be selected next 

because there is no adjacent state that can be 

generated. For such cases, we need to compute 

an extra score of covering these leftover words. 

Our approach is to create a state that produces 

the same output translation, but also covers all 

remaining words. For each leftover word, we 

create a pseudo CS that contains just that word 

plus ε’s from all other hypotheses, and let it 

output ε. Moreover, that CS is inserted at a place 

such that no extra distortion cost is incurred. 

Figure 4 shows an example using the second 

state in Figure 3d). The last two words from the 

first two MT hypotheses “the Jeep” and “the 

SUV” align to the third and fifth words of the 

third hypothesis “the Jeep”; the word w3,4 from 

the third hypothesis is left unvisited. The original 

path has two CS and one left-over word w3,4. It is 

expanded to have three CS, with a pseudo CS 

inserted between the two CS.  

It is worth noting that the new inserted pseudo 

CS will not affect the word count feature and 

contextually dependent feature scores such as the 

LM and bi-gram voting, since it only generates 

an empty word. Moreover, it will not affect the 
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distortion score either. For example, as shown in 

Figure 4, the distortion cost of jumping from 

word w2,3  to ε2  and then to w2,4 is the same as  

the cost of jumping from w2,3  to w2,4 given the 

way we assign position to empty word and the 

fact that the distortion cost is proportional to the 

difference between word positions.  

Scores of other features for this pseudo CS 

such as word posterior (of ε), alignment score, 

CS entropy, and CS count are all local scores and 

can be computed easily. Unlike future scores 

which are approximate, the score computed in 

this process is exact. Adding this extra score to 

the existing score accumulated in the final state 

gives the complete score of this finished path. 

When all paths are finished, the one with the best 

complete score is returned as the final output 

sentence. 

 

w1,3 w1,4   w1,3 ε1 w1,4  

w2,3 w2,4  =>  w2,3  ε2  w2,4  

w3,3 w3,4 w3,5  w3,3 w3,4 w3,5  

Figure 4. Expanding a leftover word to a pseudo 

correspondence set. 

6 Evaluation  

6.1 Experimental conditions 

For the joint decoding method, the threshold for 

alignment-score-based pruning is set to 0.25 and 

the maximum number of words that can align to 

the same word is limited to 3. We call this the 

standard setting. The joint decoding approach is 

evaluated on the Chinese-to-English (C2E) test 

set of the 2008 NIST Open MT Evaluation 

(NIST 2008). Results are reported in case 

insensitive BLEU score in percentages 

(Papineni et. al., 2002).  

The NIST MT08 C2E test set contains 691 

and 666 sentences of data from two genres, 

newswire and web-data, respectively. Each test 

sentence has four references provided by human 

translators. Individual systems in our 

experiments belong to the official submissions of 

the MT08 C2E constraint-training track. Each 

submission provides 1-best translation of the 

whole test set. In order to train feature weights, 

the original test set is divided into two parts, 

called the dev and test set, respectively. The dev 

set consists of the first half of both newswire and 

web-data, and the test set consists of the second 

half of data of both genres.   

There are 20 individual systems available. We 

ranked them by their BLEU score results on the 

dev set and picked the top five systems, 

excluding systems ranked 5th and 6th since they 

are subsets of the first entry (NIST 2008). 

Performance of these systems on the dev and test 

sets is shown in Table 1.  

The baselines include a pair-wise hypothesis 

alignment approach using the indirect HMM 

(IHMM) proposed by He et al. (2008), and an 

incremental hypothesis alignment approach using 

the incremental HMM (IncHMM) proposed by 

Li et al. (2009). The lexical translation model 

used to compute the semantic similarity is 

estimated from two million parallel sentence-

pairs selected from the training corpus of MT08. 

The backbone for the IHMM-based approach is 

selected based on Minimum Bayes Risk (MBR) 

using a BLEU-based loss function. The various 

parameters of the IHMM and the IncHMM are 

tuned on the dev set. The same IHMM is used to 

compute the alignment feature score for the joint 

decoding approach.  

The final combination output can be obtained 

by decoding the CN with a set of features. The 

features used for the baseline systems are the 

same as the features used by the joint decoding 

approach. Some of these features are constant 

across decoding hypotheses and can be ignored. 

The non-constant features are word posterior, bi-

gram voting, language model score, and word 

count. They are computed in the same way as for 

the joint decoding approach.  

System weights and feature weights are 

trained together using Powell's search for the 

IHMM-based approach. Then the same system 

weights are applied to both IncHMM and Joint 

Decoding -based approaches, and the feature 

weights of them are trained using the max-BLEU 

training method proposed by Och (2003) and 

refined by Moore and Quirk (2008).  

Table 1: Performance of individual systems on 

the dev and test set 

System ID dev test 

System A 32.88 31.81 

System B 32.82 32.03 

System C 32.16 31.87 

System D 31.40 31.32 

System E 27.44 27.67 

6.2 Comparison against baselines 

Table 2 lists the BLEU scores achieved by the 

two baselines and the joint decoding approach. 

Both baselines surpass the best individual system 
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significantly. However, the gain of incremental 

HMM over IHMM is smaller than that reported 

in Li et al. (2009). One possible reason of such 

discrepancy could be that fewer hypotheses are 

used for combination in this experiment 

compared to that of Li et al. (2009), so the 

performance difference between them is 

narrowed accordingly. Despite that, the proposed 

joint decoding method outperforms both IHMM 

and IncHMM baselines significantly.  

Table 2: Comparison between the joint decoding 

approach and the two baselines 

method dev test 

IHMM 36.91 35.85 

IncHMM 37.32 36.38 

Joint Decoding 37.94 37.20
*
 

* The gains of Joint Decoding over IHMM and 

IncHMM are both with a statistical significance level > 

99%, measured based on the paired bootstrap re-

sampling method (Koehn 2004a) 

6.3 Comparison of alignment pruning  

The effect of alignment pruning is also studied. 

We tested with limiting the allowable links to 

just those that in the union of bi-directional 

Viterbi alignments.  

The results are presented in Table 3. 

Compared to the standard setting, allowing only 

links in the union of the bi-directional Viterbi 

alignments causes slight performance 

degradation. On the other hand, it still 

outperforms the IHMM baseline by a fair margin. 

This is because the joint decoding approach is 

effectively resolving the ambiguous 1-to-many 

alignments and deciding proper places to insert 

empty words during decoding. 

Table 3: Comparison between different settings 

of alignment pruning 

Setting Test 

standard settings 37.20 

union of Viterbi 36.88 

6.4 Comparison of ordering constraints 

In order to investigate the effect of allowing 

flexible word ordering, we conducted 

experiments using different constraints on the 

ordering of CS in the decoding process. In the 

first case, we restrict the order of CS to follow 

the word order of a backbone, which is one of 

the input hypotheses selected by MBR-BLEU. In 

the second case, the order of CS is constrained to 

follow the word order of at least one of the input 

hypotheses.  As shown in Table 4, in comparison 

to the standard setting that allows backbone-free 

word ordering, the constrained settings did not 

lead to significant performance degradation. This 

indicates that most of the gain due to the joint 

decoding approach comes from the joint 

optimization of alignment and word selection. It 

is possible, though, that if we lift the CS 

adjacency constraint during search, we might 

derive more benefit from flexible word ordering.  

Table 4: Effect of ordering constraints 

Setting test 

standard settings 37.20 

monotone w.r.t. backbone 37.22 

monotone w.r.t. any hyp. 37.12 

7 Discussion 

This paper proposed a joint optimization 

approach for word-level combination of 

translation hypotheses from multiple machine 

translation systems. Unlike conventional 

confusion-network-based methods, alignments 

between words from different hypotheses are not 

pre-determined and flexible word orderings are 

allowed. Decisions on word alignment between 

hypotheses, word ordering, and the lexical choice 

of the final output are made jointly according to 

a set of features in the decoding process. A new 

set of features to model alignment and re-

ordering behavior is also proposed. The method 

is evaluated against state-of-the-art baselines on 

the NIST MT08 C2E task. The joint decoding 

approach is shown to outperform baselines 

significantly. 

Because of the complexity of search, a 

challenge for our approach is combining a large 

number of input hypotheses. When N-best 

hypotheses from the same system are added, it is 

possible to pre-compute and fix the one-to-one 

word alignment among the same-system 

hypotheses; such pre-computation is reasonable 

given our observation that the disagreement 

among hypotheses from different systems is 

larger than that among hypotheses from the same 

system. This will reduce the alignment search 

space to be the same as that for 1-best case. We 

plan to study this setting in future work. 

To further improve the performance of our 

approach we see the biggest opportunity in 

developing better estimates of future scores and 

incorporating additional features. Beside 

potential performance improvement, they may 

help on more effective pruning and speed up the 

overall decoding process as well. 
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Abstract

We introduce an extension to CCG that al-
lows form and function to be represented
simultaneously, reducing the proliferation
of modifier categories seen in standard
CCG analyses.

We can then remove the non-combinatory
rules CCGbank uses to address this prob-
lem, producing a grammar that is fully lex-
icalised and far less ambiguous.

There are intrinsic benefits to full lexi-
calisation, such as semantic transparency
and simpler domain adaptation. The clear-
est advantage is a 52-88% improvement
in parse speeds, which comes with only a
small reduction in accuracy.

1 Introduction

Deep grammars return parses that map transpar-
ently to semantic analyses, allowing information
extraction systems to deal directly with content
representations. Usually, this mapping is lexically
specified, by linking lexical entries to semantic
analyses. This property, lexicalisation, is central to
some of the linguistic theories behind deep gram-
mars, particularly Combinatory Categorial Gram-
mar (Steedman, 2000) and Lexicalised Tree Ad-
joining Grammar (Joshi, 1999).

Lexicalisation can also help deep grammars
achieve satisfactory parse times. Lexicalised
grammars use few rules, which simply manipu-
late the lexical categories. The categories can be
quickly assigned in a supertagging pre-process,
dramatically reducing the search space the parser
must explore (Bangalore and Joshi, 1999).

Combinatory Categorial Grammar (CCG) is
well suited to this strategy, and Clark and Curran
(2007) have highlighted the division of labour be-
tween the parser and the supertagger as one of the

critical aspects of their approach to statistical CCG

parsing. In their system, the division is managed
with parameters that control how many categories
the parser’s chart is seeded with. But even if the
parser is only given one category per word, it still
has a lot of freedom — because the grammar it
uses is not fully lexicalised.

In a fully lexicalised CCG grammar, modifier
categories refer to the category of their head. This
category does not necessarily represent the head’s
constituent type. For instance, the category of an
adverb like still depends on whether it is modify-
ing a predicate verb (1), or a clausal adjunct (2):

(1) The lion
NP

was
VP/VP

lying
VP

still
VP\VP

(2) The lion
NP

waited,
VP

lying
VP\VP

still
(VP\VP)\(VP\VP)

Analyses like these are problematic because the
training data is unlikely to include examples of
each word in every syntactic environment that re-
quires a new category. Hockenmaier and Steed-
man’s (2007) solution was to add category spe-
cific phrase-structure rules to the grammar, which
disrupts the linguistic principles of the formalism,
and introduces over-generation and ambiguity as
shown in Figure 1.

This paper proposes a new way to balance lex-
ical and grammatical ambiguity in CCG. We in-
troduce an extension to the formalism that allows
type-changing rules to be lexically specified. The
extension adds a new field to the category objects,
and one additional rule to utilise it. This allows the
formalism to express type-changing operations in
a theoretically desirable way.

Lexically specifying the type-changing rules re-
duces the ambiguity in the grammar substantially,
which leads to substantial improvements in pars-
ing efficiency. After modifying the C&C parser and
CCGbank, the parser runs almost twice as quickly,
with only a 0.5% reduction in accuracy.
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Figure 1: Over-generation by CCGbank rules.

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is a lexicalised grammar formalism
based on categorial grammar (Bar-Hillel, 1953).
CCG can be distinguished from other CG exten-
sions, such as categorial type-logic (Moortgat,
1997) by its attention to linguistic minimalism.
One aim of the theory is to explain universal con-
straints on natural language syntax, so the genera-
tive power of the formalism is intended to closely
match what natural language seems to require.

Steedman and Baldridge (2007) argue that the
requirements can be fulfilled almost entirely by
two basic rule types: application and composition.
Direction specific instances of these types yields a
grammar that consists of just six rules.

Initially, it seemed that some of the rules
had to be restricted to certain contexts, particu-
larly in languages that did not allow scrambling.
Baldridge and Kruijff (2003) have since shown
that rules could be restricted lexically, using a hier-
archy of slash subtypes. This relieved the need for
any language specific meta-rules, allowing CCG to
offer a completely universal grammar, and there-
fore a theory of the innate human language faculty.

With a universal grammar, language specific
variation is confined to the lexicon. A CCG lexi-
cal category is either an atomic type, like N, or a
function that specifies an argument in a particular
direction, and a result, like S\NP (where S is the
result, NP the argument, and \ indicates the argu-
ment must be found to the left).

Hockenmaier and Steedman (2007) showed that
a CCG corpus could be created by adapting the
Penn Treebank (Marcus et al., 1993). CCGbank
has since been used to train fast and accurate CCG

parsers (Clark and Curran, 2007).

3 The Need for Type-changing in CCG

We argue that there is a clear need for some sort of
type-changing mechanism in CCG. The practical
need for this has been known since at least Hock-
enmaier (2003), who introduced a type-changing
mechanism into CCGbank in order to control the
problem referred to as modifier category prolifer-
ation. We briefly describe the problem, and then
the prominent solutions that have been proposed.

Unlike formalisms like LTAG and HPSG, CCG

does not use different grammatical rules for argu-
ments and adjuncts. Instead, modifier categories
take the form X1|X1, where X is the category of
the constituent being modified, and the subscript
indicates that the result should inherit from the ar-
gument via unification. The modifier can then use
the application rule to attach to its head, and return
the head unchanged:

(3) unusually
(S[adj]\NP)/(S[adj]\NP)

resilient
S[adj]\NP

unusually here modifies the predicative adjec-
tive resilient, attaching it as an argument using
forward application. This prevents resilient from
having to subcategorise for adjuncts, since they are
optional. The problem is that unusually must sub-
categorise for the function of its head. If resilient
changes function and becomes a noun modifier, its
modifiers must change category too:

(4) an
NP/N

unusually
(N/N)/(N/N)

resilient
N/N

strain
N

There is often a way to analyse around the need
for type-changing operations in CCG. However,
these solutions tend to cause new difficulties, and
the resulting category ambiguity is quite problem-
atic (Hockenmaier and Steedman, 2002). The fact
is that form-to-function coercions are quite com-
mon in English, so the grammar needs a way to
have a constituent be modified according to its
form, before undergoing a type-change to its func-
tion category.

One way to describe the problem is to say that
CCG categories have an over-extended domain of
locality (Joshi, 1999), the part of the derivation
that it describes. A category should specify all and
only the dependencies it governs, but CCG mod-
ifier categories are often forced to specify their
heads’ dependencies as well. These undesirable
notational dependencies can also prevent modi-
fier categories from factoring recursion away from
their domain of locality.
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Figure 2: CCGbank derivation showing PSG rules.

4 Problems with Existing Proposals

This section completes the motivation of the pa-
per by arguing that the existing proposals for type-
changing are linguistically unsatisfactory, practi-
cally difficult, or a combination of the two.

4.1 Problems with PSG Rules
Hockenmaier and Steedman (2002) includes a
brief discussion of the modifier category prolif-
eration problem, and introduces unary phrase-
structure rules to address the situation. Figure 2
shows two such rules. The <S[dcl]→ NP\NP>1

rule allows the reduced relative clause, it has hap-
pened, to be analysed as a modifier without affect-
ing the category any modifiers that might attach to
it. The other PSG type-changing rule in the deriva-
tion,<, NP→ S\S> enables the extraposition, us-
ing the punctuation to make the rule more precise.

One alternative to type-changing rules here
would be to have time subcategorise for the clause,
with a category like NP/S[dcl]. This would cap-
ture the constraint that only a restricted subset of
nouns can be extracted as adjuncts in this way.
The problem is that the extra argument would in-
terfere with the attachment of adjuncts like this
week to the NP, because the NP\NP category can-
not be allowed to participate in backwards cross-
composition rules (Baldridge and Kruijff, 2003).

There are 204 type-changing PSG rules in the
training partition of CCGbank. 53 of the frequent
rules transform produce modifier categories, 48
of them transforming verbal categories. The PSG

1Phrase-structure rules are presented in bottom-up notation.

rules also handle a variety of other constructions,
such as form/function discrepancies like gerund
nominals. By far the most frequent rule, with
115,333 occurrences, is<N→NP>, which trans-
forms bare nominals into noun phrases.

Steedman and Baldridge (2007) describes the
CCG grammar as consisting of just 6 language uni-
versal combinatory rules, plus two lexical opera-
tions (type raising). Not only do the 204 category
specific type-changing rules in CCGbank make
the grammar ambiguous, they also run contrary to
the design principles of the formalism.

CCG is a linguistically motivated formalism,
which means it is not only interested in providing a
convenient, computable notation for grammar de-
velopment. In addition, it constitutes a hypothesis
about the nature of the human language faculty.
Like other lexicalised formalisms, part of the the-
ory is that it is the grammar that is innate, and the
lexicon is acquired.

If the grammar is innate, it must be language
universal, confining all language specific varia-
tion to the lexicon. Baldridge and Kruijff (2003)
described how the remaining language specific
grammatical constraints described by Steedman
(2000) could be controlled in the lexicon, using
multi-modal slashes that have since become inte-
grated into the main body of the theory (Steedman
and Baldridge, 2007).

In addition to being linguistically undesirable,
the PSG rules in CCGbank produce practical dif-
ficulties. Every additional rule increases ambigu-
ity, motivating the C&C system to choose to im-
plement only the most frequent. This decreases
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the parser’s coverage, and introduces another di-
mension of domain sensitivity. For instance, the
type-changing rule that allows gerund nominals,
<S[ng]\NP→ NP>, occurs roughly 300 times in
the training data. The parser does not implement
this rule, so if it is ported to a new domain, where
the construction is frequent, the rule will have to
be added. Presumably, the parser would also ben-
efit from the removal of rules which are infrequent
in some new, target domain.

The restricted set of PSG rules the parser does
implement results in considerable added ambigu-
ity to the grammar. Figure 1 shows how the rules
interact to produce over-generation.

The PSG rules are also a barrier to the semantic
transparency of the theory, one of its most attrac-
tive properties for natural language engineering.
CCG derivations are isomorphic to semantic analy-
ses, because the derivation instantiates dependen-
cies between CCG categories that can be paired
with semantic categories. This isomorphism is
disrupted by the addition of PSG rules, since the
grammar is no longer lexicalised. Often, the rules
can be semantically annotated, restoring the iso-
morphism; but sometimes, this cannot be done.

For instance, the extraposition rule in Figure 2
transforms the NP category into S\S. There is no
syntactic argument on the NP category to map the
dependency to, so the dependency cannot be cre-
ated (and is in fact missing from CCGbank).

4.2 Lexical Rules and Zero Morphemes
The CCGbank PSG extension is closely related to
the zero morpheme categories proposed by Aone
and Wittenburg (1990), which they suggest be
compiled into unary type-changing rules for pro-
cessing. At first glance, it seems that conceptual-
ising the rules as zero morphemes offers a way to
locate them in the lexicon, avoiding the linguistic
difficulties of having a language-specific grammar.
However, CCG aims to provide a transparent inter-
face between the surface form and the semantic
analysis, so epsilon categories, traces, movement
rules and other unrealised structures are explicitly
banned (Steedman, 2000).

From a processing standpoint, if zero mor-
pheme categories are not compiled into phrase-
structure rules, then they will complicate the cate-
gory assignment phase considerably, since we can
no longer assume that exactly one category will be
assigned per word. We are not aware of any pro-

posal for how this difficulty might be overcome.
Carpenter (1992) provides a different sugges-

tion for how sparse modifier categories can be ac-
commodated. His solution is to use meta-rules
that systematically expand the lexicon, much like
the lexical rules used in HPSG (Flickinger, 1987),
which exploit structural regularities to ensure that
the lexicon is more complete.

The problem with this is that it does not actu-
ally make the category set less sparse, so the su-
pertagger’s task is just as difficult. The only ad-
vantage is that its dictionary will be more com-
plete. This is important, but does not solve the
underlying inefficiency in the grammar: CCG cat-
egories have an over-extended domain of locality,
because they cannot represent form and function
simultaneously. This is why some type-changing
mechanism is required.

5 Lexically Specified Type-Changing

This section describes our mechanism for lexi-
cally specifying the PSG rules in CCGbank. Figure
3 shows an example of a reduced relative clause
analysed using our extension, hat categories.

CCGbank deploys a solution that achieves form
transparency at the expense of type transparency,
by allowing type-changing rules that are not lexi-
cally specified. One way to recover the lost type
transparency would be to demand that lexical cat-
egories specify what type changing rule (if any)
the category can eventually undergo. For instance,
imagine we have two type-changing rules we wish
to include in our grammar:

a) S[ng]\NP⇒ NP\NP

b) S[ng]\NP⇒ VP\VP2

With these two rules, there will be three ways
the S[ng]\NP category might behave in a deriva-
tion. What we need are two extra categories to
control this:

1. S[ng]\NP only allows combinatory rules.

2. (S[ng]\NP)a allows rule a, but not rule b.

3. (S[ng]\NP)b allows rule b, but not rule a.

Instead of encoding a reference to a rule, we
encode the production rule itself in the category.

2S\NP is occasionally abbreviated as VP.
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asbestos once used in cigarette filters

NNP VP/VP (S[pss]\NP)(NP\NP) (VP\VP)/NP N/N NNP
H > >

NP (S[pss]\NP)(NP\NP) N
H

NP
>

VP\VP
<

S[pss](NP\NP)
H

NP\NP
<

NP

Figure 3: Analysis of a reduced relative clause with lexicalised type-changing.



CAT (S[ng]\NP)NP\NP/NP

RES



CAT (S[ng]\NP)NP\NP
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[
CAT S
FEAT ng

]
ARG NP1

DIR \
HAT NP\NP1


ARG NP
DIR /

HAT [-]


Figure 4: AVM of a hat category.

This allows us to remove the rule from the gram-
mar. Since the bottom of the production will al-
ways be the category itself, we can just specify
how the category can be rewritten:

1. S[ng]\NP can be combined, but not rewritten.

2. (S[ng]\NP)NP\NP can be rewritten as NP\NP.

3. (S[ng]\NP)VP\VP can be rewritten as VP\VP.

We refer to the superscript category as a hat cat-
egory, as a reference to the notation, but also to
denote the fact that it allows the category to per-
form a different function, or put a different ‘hat’
on. Categories that have a hat specified are re-
ferred to as hatted categories.

5.1 Changes to Category Objects
Figure 4 shows an AVM representation of the
(S[ng]\NP)NP\NP/NP category. A field, labelled
hat, has been added to store the destination cate-
gory of the result, NP\NP. The NP argument in
the hat category is co-indexed with the NP argu-
ment in the hatted category. The NP argument is
also co indexed with the result of the destination

category, reflecting the fact that the NP\NP cate-
gory is a modifier, whose head will be the head of
its argument.

Hat categories are handled the same as any other
field during unification. If the two hat fields can-
not be unified, unification fails; and if one hat field
has an empty value, it inherits the value of the hat
field of the other category when unification suc-
ceeds. CCG already requires a unification process
for agreement features (Hockenmaier and Steed-
man, 2007); the hat categories we have introduced
behave identically.

As Figure 4 shows, hat categories can be added
to inner results, allowing arguments to be applied
before the type-changing rule. We add a restriction
that prevents categories with an outermost hat field
from applying arguments — essentially equiva-
lent to stipulating that the slash in a category like
S[ng]\NP must have a null mode.

We also stipulate that only adjuncts may ap-
ply hatted arguments, which can also be lexically
represented by assuming that all non-adjunct cate-
gories have a null value in their hat field, causing
unification with a hatted category to fail.

Together, these restrictions ensure that the unary
rule is used. The hatted category cannot function
as a non-hatted category, because it cannot use its
own arguments, and cannot be used as an argu-
ment of another category. This prevents hat cate-
gories from forming categories that are function-
ally disjunctive: the notation cannot be used to
simulate something like an optional argument.

5.2 The Type-Change Rule
To replace the 204 PSG rules in CCGbank, we only
need to introduce one extra schematic rule into the
grammar:

XY ⇒ Y (5)

This rule simply unpacks the category, performing
the lexically specified type-change.
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5.3 Generative Power
Because hat fields are only transmitted when cate-
gories are successfully unified, there is no way to
produce a novel X⇒ Y unary production during a
derivation. This means that any derivation that can
be produced using the schematic type-change rule
we have added to the grammar can be produced by
adding a set of unary phrase-structure rules instead
— ensuring that we do not require any extra gen-
erative power than is required to parse CCGbank.

The hat categories do increase the strong gen-
erative power of a CCG grammar that does
not include the CCGbank type-changing rules.
We suggest that this is desirable, in line with
Joshi’s (1999) argument that formalisms should be
designed to have the maximum expressivity while
maintaining the minimum weak generative power
necessary to produce the constructions that have
been observed in natural language.

6 Lexicalising Type-raising

So far, we have focused on replacing the phrase-
structure rules added to CCGbank, which are not
part of the CCG linguistic theory. However, the
theory does include some type-changing rules, re-
ferred to as type-raising. Forward and backward
type-raising are used to transform a category X
into the logically equivalent categories T/(T\X)
and T\(T/X) respectively.

Type-raising is generally described as a lexical
operation, rather than a grammatical rule, because
only certain language specific combinations of T
and X produce valid type-raise categories. How-
ever, no specific mechanism for controlling type-
raising has been proposed.

Hat categories are an obvious candidate for this,
so we perform an additional set of experiments
which lexicalise the type-raising rules in CCG-
bank, in addition to the PSG rules.

7 Adapting CCGbank

This section describes how we converted CCG-
bank’s PSG rules into analyses that used hat cat-
egories. Most of the PSG rules are unary, which
meant that our changes were limited to adding hat
categories to the child of the unary production and
its subtree. The binary PSG rules that we con-
verted effectively just used punctuation as a cue
for a unary type-change, as seen in the extrapo-
sition rule in Figure 2. These were handled by

adding an extra node for the punctuation applica-
tion, leaving a unary production:

S\S
ee%%

, NP

−→ S\S
ee%%

, S\S

NP

(6)

An alternative analysis would be to assign the
punctuation mark a category to perform the type-
change — in this case, (S\S)/NP. However, this
analysis will be unreliable for many genres, where
punctuation is used inconsistently, so we preferred
that hat category analysis, which we found pro-
duced slightly better results.

We used the same method to convert cases
where CCGbank used conjunctions to cue a type-
change, where the Penn Treebank conversion pro-
cess produced a derivation where two sides of a
coordination had different categories. There were
90 such conjunction coercion rules, which we have
not counted amongst the 204 PSG rules, since they
are ultimately caused by conversion noise.

The main complication when adapting CCG-
bank was the fact that CCG node labels are inter-
dependent through a derivation. If one node label
is changed, its immediate children have to change
node label too, and the changes must be propa-
gated further from there.

Since the dependency between the parent and its
two children is different for each combinator, our
node change rules determine the rule used for the
original production, and then invoke the appropri-
ate replacement rule. In general, the rules find the
result (Ar) and argument (Aa) of the original parent
A and replace them with the appropriate part of the
new parent B. If one of the children is an adjunct
category, a different rule is used. The node change
rules for forward combinators are:

App A/Y Y ⇒ B/Y Y
Comp Ar/Y Y/Aa ⇒ Br/Y Y/Ba
Adj. app A/A A ⇒ B/B B
Adj. comp Ar/Ar Ar/Aa ⇒ Br/Br Br/Ba

The translation rules for backward and crossed
combinators are directly analogous, with the
slashes permuted appropriately.

8 Adapting the CCG Parser

We took the standard 1.02 release of the C&C

parser Clark and Curran (2007) and implemented
the changes required for lexically specified type-
changing.
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Section 00 Section 23
LP LR LF LFauto sent cat cov LP LR LF LFauto sent cat cov

CCGbank derivs 87.18 86.31 86.74 84.78 35.15 94.04 99.06 87.76 86.99 87.38 84.84 37.03 94.26 99.63
Hat derivs 86.64 86.91 86.77 84.44 35.03 93.27 99.53 86.94 87.26 87.10 84.76 36.62 93.35 99.71
Hat+TR derivs 86.58 86.87 86.73 84.16 34.47 93.10 99.63 86.83 87.16 87.00 84.67 36.73 93.17 99.75
CCGbank hybrid 88.07 86.49 87.27 85.30 35.94 94.16 99.06 88.36 87.02 87.68 85.27 36.74 94.33 99.63
Hat hybrid 87.30 86.94 87.12 84.85 35.40 93.31 99.53 87.26 87.03 87.15 84.79 36.25 93.24 99.71
Hat+TR hybrid 85.79 85.30 85.55 83.13 31.90 92.48 99.63 85.93 85.65 85.79 83.39 32.03 92.46 99.75

Table 1: Labelled Precision, Recall and F-measure, coverage results on Section 00 and Section 23.

The most significant change was building hat
passing and unification into the existing unifica-
tion engine. For many parsers, this would have
been straightforward since they already support
unification with complex feature structures. How-
ever, one of the advantages of CCGbank is that
the unification required is quite simple, which is
one of the reasons why the C&C parser is very fast.
We would estimate that adding hat passing dou-
bled the complexity of the unification engine.

The second step was to add support for hat pass-
ing to all of the existing combinators, because they
do not use the unification engine to construct the
result category. Since each of the combinators
is hard-coded for speed, this was time-consuming
and error prone. However, we created a detailed
set of regression tests for the new versions which
greatly reduced our development time.

Finally, we needed to turn off the existing unary
rules in the parser, and add the simple additional
type-change rule.

9 Setting Dictionary Thresholds

The main parameterisation we performed on the
development section was to tune the K parame-
ter of the parser, which controls the frequency at
which a word’s tag dictionary is used during su-
pertagging. For words more frequent than K, the
supertagger is restricted to choosing between cat-
egories that have been assigned to the word in the
training data. Otherwise, the POS dictionary is
used instead. The K parameter has multiple val-
ues, because the supertagger and parser are inte-
grated such that the supertagger initially supplies
only a narrow beam of categories to the parser,
which is widened if parsing fails.

Since we have made the category set larger, the
default values of K = 20,20,20,20,150 produces
poor performance, up to 1.5% lower than the fig-
ures we report in Table 1. We set the K parameter

Section 00 Section 23
Training Gold Auto Gold Auto
CCGbank derivs 399 413 639 544
Hat derivs 552 566 1070 827
Hat+TR derivs 718 677 1072 906
CCGbank hybrid 369 379 564 480
Hat hybrid 505 513 921 678
Hat+TR hybrid 645 601 913 785

Table 2: Parse speeds in words per second.

Original Hat
Types Frequency Types Frequency

Binary CCG 2,714 1,097,809 3,840 1,097,358
Type-raise 52 3,998 52 3,996
Unhat 0 0 241 161,069
Binary PSG 215 1,615 74 172
Unary PSG 157 159,663 0 0

Table 3: Production types and frequencies.

to 50,300,80,80,3000. We investigated the effect
of this setting on the original model, and found
that it had little effect, so we continued using the
default values for the original model.

We also experimented with altering the β values
for the hat parser, which did not improve the per-
formance of the state-of-the-art parsing models.

10 Parsing Results

The left side of Table 1 shows our performance
on the development data, Section 00. All of the
dependency results we report refer to the original
dependencies distributed with CCGbank. To en-
sure our results were comparable, we produced a
mapping table of dependency labels from sections
02-21, used for parser training. The table maps
the dependency labels in our corpus to the most
frequent label assigned to matching dependencies
in CCGbank. The correct label is assigned 99.94%
of the time. The hat categories move to the the lex-
icon information that used to be represented in the
grammar, resulting in a larger, more informative
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category set, making the category accuracies (the
cat column in the table) not comparable.

We experimented with two of the parsing mod-
els described by Clark and Curran (2007). The
derivs model uses features calculated over the
derivations, while the hybrid model uses features
calculated on the dependency structures. How-
ever, unlike the deps model Clark and Curran
(2007) describe, the hybrid model uses two sets
of derivation-based constraints. One set are the
normal form constraints, as described by Eisner
(1996). It also uses constraints that prevent the
parser from using productions that were not seen
in the training data. The hybrid model is slightly
more accurate, but also slightly slower, because
the dependency-based decoding is less efficient.

All of the systems were within 0.5% in accuracy
on the development set, with one exception. The
HAT+TR version performed very poorly with the
hybrid model, while its performance with the de-
rivs model was comparable to the other systems.
The same drop in performance occurs on the eval-
uation set. We do not currently have a convincing
explanation for this, but we presume it is the re-
sult of some unforeseen interaction between the
removal of the type-raising rules from the gram-
mar and the dependency-based features.

The accuracy results on the test data, Section
23, saw similar trends, except that the gap be-
tween the hat systems and the original CCGbank
increased slightly. The CCGbank hybrid model
was only 0.1% more accurate than the HAT hybrid
model on Section 00, but is 0.5% more accurate
on Section 23.

Table 2 compares the parse speeds for the lexi-
calised hat corpora against a parser trained on the
original CCGbank, using the two models. Exactly
the same settings were used to obtain parse times
as were used in the accuracy experiments. The
experiments were all performed on a single core
2.6GHz Pentium 4 Xeon. Speeds are reported as
words parsed per second.

On both Section 00 and Section 23, with both
the derivs and hybrid models, the HAT system was
substantially faster than the original parser. The
HAT+TR system was faster than the HAT system
using automatic POS tags, and slightly faster on
Section 00.

The hat categories allow quite favourable trade-
offs between speed and accuracy to be made. The
original models allow us to parse with automatic

POS tags at 480 words per second with 85.27%
accuracy with the hybrid model, or at 544 words
per second with 84.86% accuracy using the derivs
model. Using the HAT derivs model, we could in-
stead parse at 827 words per second with 84.76%
accuracy, or at 906 words per second and 84.67%
accuracy using the HAT+TR system.

In summary, the HAT and CCGbank derivs mod-
els are equivalent in accuracy, but the HAT ver-
sion is 52% faster. The CCGbank hybrid model
remains the most accurate, but there will also be
many tasks where the 88% improvement in speed
will make it worth using the HAT+TR derivs parser
instead of the CCGbank hybrid model, at a cost of
0.6% accuracy.

11 Corpus Statistics

Table 3 shows the number of types and the number
of occurrences of CCG combinatory rules and PSG

rules occurred in CCGbank and the hat corpus.
The hat corpus removes almost all unlicensed

productions, leaving only a long tail of rare pro-
ductions that are the result of noisy derivations.
These productions are generally symptomatic of
problematic analyses, and are difficult to address
automatically because they do not conform to any
consistent pattern. We have omitted the hat+TR
corpus in these figures, because it only differs
from the the hat corpus with respect to type-raising
productions.

Lexicalising the corpus increases the number of
categories required substantially. There are 407
categories that occur 10 or more times in the train-
ing section of CCGbank. The equivalent figure for
the HAT corpus is 507, and for the HAT+TR corpus
it is 540.

12 Cleaner Analyses with Hat Categories

The lexicalised type-changing scheme we have
proposed offers many opportunities for favourable
analyses, because it allows form and function to
be represented simultaneously. However, we have
limited our changes to replacing the existing CCG-
bank non-combinatory rules. This allows us to
compare the two strategies for controlling modi-
fier category proliferation more closely, but still
offers some improved analyses.

The most frequent unary production in CCG-
bank, the N⇒NP rule, ensures that nominals can
always take the N category, so adjectives sel-
dom need to be assigned NP/NP. Because ad-
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jectives and nouns are open class, and bare noun
phrases are fairly common, this reduction in cate-
gory sparseness is quite important.

Lexicalising the type changing rule forces the
head noun to acquire a different category, but does
ensure that its modifiers can attach at the N level
— which is also more linguistically desirable:

service lift maintenance contracts

N/N NN/N NN/N N
>

NN/N

H
N/N

>

NN/N

H
N/N

>
N

This analysis also prevents the extreme category
proliferation problem caused by left-branching
noun phrases:

service lift maintenance contracts
((N/N)...(N/N)) (N/N)/(N/N) N/N N

>
(N/N)/(N/N)

>
N/N

>
N

Figure 3 shows a more typical example of an
improved analysis. The non-finite clause is func-
tioning as an adnominal, but its modifier is able to
select its canonical category.

One of the advantages of the CCGbank phrase-
structure rules is that they allow the corpus to in-
clude derivations for which no valid CCG parse can
be formed. The C&C parser has difficulty taking
advantage of these extra sentences, however, be-
cause only so many of the arbitrary binary PSG

rules can be added to the grammar without making
it too ambiguous. Once these rules are lexicalised,
the categories that produce them can be added to
the lexicon as unexceptional, albeit rare, cases.

13 Conclusion

Lexicalised grammars represent most of the infor-
mation in a derivation with a sequence of lexi-
cal categories. Traditional CCG analyses require
redundancy between categories whenever there
is nested modification, which suggests that such
analyses will encounter sparse data problems.

While the addition of phrase-structure rules pre-
vents this proliferation of modifier categories, it
does so at a high price. The bulk of the type-
changing rules in CCGbank are not implemented

in the C&C parser, because to do so would increase
the ambiguity in the grammar enormously.

CCG parsers must carefully manage ambiguity,
because there are many ways to bracket the same
CCG derivation. Even with a restricted set of PSG

rules, the C&C parser experiences very large chart
sizes. In addition to making the grammar more
ambiguous, the PSG rules make it less theoreti-
cally sound, and more difficult to produce seman-
tic analyses from the parser’s output.

We have show how CCG analyses can be fully
lexicalised in a way that closely mirrors the in-
troduction of phrase-structure rules. The result is
a corpus that produces faster, accurate parsers, is
well suited for domain adaptation, and allows for
more transparent semantic analysis. We can also
use the same mechanism to lexically specify type-
raising, the first concrete proposal to handle type-
raising as a lexical transformation we are aware of.

From an immediate, empirical perspective, we
have substantially improved the parsing speed of
what is already the fastest deep parser available.
Improvements in parsing efficiency are important
in making parsing a practical technology, since the
volume of text we have available for processing is
growing even faster than the processing resources
we have available.
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Abstract

Jointly parsing two languages has been
shown to improve accuracies on either or
both sides. However, its search space is
much bigger than the monolingual case,
forcing existing approaches to employ
complicated modeling and crude approxi-
mations. Here we propose a much simpler
alternative,bilingually-constrained mono-
lingual parsing, where a source-language
parser learns to exploit reorderings as ad-
ditional observation, butnot bothering to
build the target-side tree as well. We show
specifically how to enhance a shift-reduce
dependency parser with alignment fea-
tures to resolve shift-reduce conflicts. Ex-
periments on the bilingual portion of Chi-
nese Treebank show that, with just 3 bilin-
gual features, we can improve parsing ac-
curacies by 0.6% (absolute) for both En-
glish and Chinese over a state-of-the-art
baseline, with negligible (∼6%) efficiency
overhead, thus much faster than biparsing.

1 Introduction

Ambiguity resolution is a central task in Natu-
ral Language Processing. Interestingly, not all lan-
guages are ambiguous in the same way. For exam-
ple, prepositional phrase (PP) attachment is (no-
toriously) ambiguous in English (and related Eu-
ropean languages), but is strictly unambiguous in
Chinese and largely unambiguous Japanese; see

(1a) I [ saw Bill ] [ with a telescope ].

wo [ yong wangyuanjin] [kandao le Bi’er].

“I used a telescope to see Bill.”

(1b) I saw [ Bill [ with a telescope ] ].

wo kandao le[ [ na wangyuanjin] de Bi’er].

“I saw Bill who had a telescope at hand.”

Figure 1: PP-attachment is unambiguous in Chi-
nese, which can help English parsing.

Figure 1 for an example.1 It is thus intuitive to use
two languages for better disambiguation, which
has been applied not only to this PP-attachment
problem (Fossum and Knight, 2008; Schwartz et
al., 2003), but also to the more fundamental prob-
lem of syntactic parsing which subsumes the for-
mer as a subproblem. For example, Smith and
Smith (2004) and Burkett and Klein (2008) show
that joint parsing (or reranking) on a bitext im-
proves accuracies on either or both sides by lever-
aging bilingual constraints, which is very promis-
ing for syntax-based machine translation which re-
quires (good-quality) parse trees for rule extrac-
tion (Galley et al., 2004; Mi and Huang, 2008).

However, the search space of joint parsing is in-
evitably much bigger than the monolingual case,

1Chinese uses word-order to disambiguate the attachment
(see below). By contrast, Japanese resorts to case-markers
and the unambiguity is limited: it works for the “V or N”
attachment ambiguities like in Figure 1 (see (Schwartz et al.,
2003)) but not for the “N1 or N2” case (Mitch Marcus, p.c.).
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forcing existing approaches to employ compli-
cated modeling and crude approximations. Joint
parsing with a simplest synchronous context-free
grammar (Wu, 1997) isO(n6) as opposed to the
monolingualO(n3) time. To make things worse,
languages arenon-isomorphic, i.e., there is no 1-
to-1 mapping between tree nodes, thus in practice
one has to use more expressive formalisms such
as synchronous tree-substitution grammars (Eis-
ner, 2003; Galley et al., 2004). In fact, rather than
joint parsing per se, Burkett and Klein (2008) re-
sort to separate monolingual parsing andbilingual
rerankingover k2 tree pairs, which covers a tiny
fraction of the whole space (Huang, 2008).

We instead propose a much simpler alterna-
tive,bilingually-constrained monolingual parsing,
where a source-language parser is extended to ex-
ploit the reorderings between languages as addi-
tional observation, butnotbothering to build a tree
for the target side simultaneously. To illustrate the
idea, suppose we are parsing the sentence

(1) I saw Bill [PP with a telescope ].

which has 2 parses based on the attachment of PP:

(1a) I [ saw Bill ] [PP with a telescope ].

(1b) I saw [ Bill [PP with a telescope ]].

Both are possible, but with a Chinese translation
the choice becomes clear (see Figure 1), because
a Chinese PP always immediately precedes the
phrase it is modifying, thus making PP-attachment
strictly unambiguous.2 We can thus use Chinese to
help parse English, i.e., whenever we have a PP-
attachment ambiguity, we will consult the Chinese
translation (from a bitext), and based on the align-
ment information, decide where to attach the En-
glish PP. On the other hand, English can help Chi-
nese parsing as well, for example in deciding the
scope of relative clauses which is unambiguous in
English but ambiguous in Chinese.

This method is much simpler than joint pars-
ing because it remainsmonolingualin the back-
bone, with alignment information merely as soft
evidence, rather than hard constraints since auto-
matic word alignment is far from perfect. It is thus

2to be precise, in Fig. 1(b), the English PP is translated
into a Chinese relative clause, but nevertheless all phrasal
modifiers attach to the immediate right in Mandarin Chinese.

straightforward to implement within a monolin-
gual parsing algorithm. In this work we choose
shift-reduce dependency parsing for its simplicity
and efficiency. Specifically, we make the following
contributions:

• we develop a baseline shift-reduce depen-
dency parser using the less popular, but clas-
sical, “arc-standard” style (Section 2), and
achieve similar state-of-the-art performance
with the the dominant but complicated “arc-
eager” style of Nivre and Scholz (2004);

• we propose bilingual features based on word-
alignment information to prefer “target-side
contiguity” in resolving shift-reduce conflicts
(Section 3);

• we verify empirically that shift-reduce con-
flicts are the major source of errors, and cor-
rect shift-reduce decisions strongly correlate
with the above bilingual contiguity condi-
tions evenwith automatic alignments (Sec-
tion 5.3);

• finally, with just three bilingual features,
we improve dependency parsing accuracy
by 0.6% for both English and Chinese over
the state-of-the-art baseline with negligible
(∼6%) efficiency overhead (Section 5.4).

2 Simpler Shift-Reduce Dependency
Parsing with Three Actions

The basic idea of classical shift-reduce parsing
from compiler theory (Aho and Ullman, 1972) is
to perform a left-to-right scan of the input sen-
tence, and at each step, choose one of the two ac-
tions: eithershift the current word onto the stack,
or reducethe top two (or more) items on the stack,
replacing them with their combination. This idea
has been applied to constituency parsing, for ex-
ample in Sagae and Lavie (2006), and we describe
below a simple variant for dependency parsing
similar to Yamada and Matsumoto (2003) and the
“arc-standard” version of Nivre (2004).

2.1 The Three Actions

Basically, we just need to split the reduce ac-
tion into two symmetric (sub-)actions, reduceL

and reduceR, depending on which one of the two
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stack queue arcs
previous S wi|Q A

shift S|wi Q A

previous S|st−1|st Q A
reduceL S|st Q A ∪ {(st, st−1)}
reduceR S|st−1 Q A ∪ {(st−1, st)}

Table 1: Formal description of the three actions.
Note that shift requires non-empty queue while
reduce requires at least two elements on the stack.

items becomes the head after reduction. More for-
mally, we describe a parser configuration by a tu-
ple 〈S, Q, A〉 whereS is the stack,Q is the queue
of remaining words of the input, andA is the set
of dependency arcs accumulated so far.3 At each
step, we can choose one of the three actions:

1. shift: move the head of (a non-empty) queue
Q onto stackS;

2. reduceL : combine the top two items on the
stack, st and st−1 (t ≥ 2), and replace
them withst (as the head), and add a left arc
(st, st−1) to A;

3. reduceR: combine the top two items on the
stack,st andst−1 (t ≥ 2), and replace them
with st−1 (as the head), and add a right arc
(st−1, st) to A.

These actions are summarized in Table 1. The
initial configuration is always〈∅, w1 . . . wn, ∅〉
with empty stack and no arcs, and the final con-
figuration is〈wj , ∅, A〉 wherewj is recognized as
the root of the whole sentence, andA encodes a
spanning tree rooted atwj . For a sentence ofn
words, there are exactly2n − 1 actions:n shifts
andn − 1 reductions, since every word must be
pushed onto stack once, and every word except the
root will eventually be popped in a reduction. The
time complexity, as other shift-reduce instances, is
clearlyO(n).

2.2 Example of Shift-Reduce Conflict

Figure 2 shows the trace of this paradigm on the
example sentence. For the first two configurations

3a “configuration” is sometimes called a “state” (Zhang
and Clark, 2008), but that term is confusing with the states in
shift-reduce LR/LL parsing, which are quite different.

0 - I saw Bill with a ...
1 shift I saw Bill with a ...
2 shift I saw Bill with a ...
3 reduceL saw Bill with a ...

I
4 shift saw Bill with a ...

I

5a reduceR saw with a ...
I Bill

5b shift saw Bill with a ...
I

Figure 2: A trace of 3-action shift-reduce on the
example sentence. Shaded words are on stack,
while gray words have been popped from stack.
After step (4), the process can take either (5a)
or (5b), which correspond to the two attachments
(1a) and (1b) in Figure 1, respectively.

(0) and (1), only shift is possible since there are
not enough items on the stack for reduction. At
step (3), we perform a reduceL , making word “I”
a modifier of “saw”; after that the stack contains
a single word and we have to shift the next word
“Bill” (step 4). Now we face ashift-reduce con-
flict: we can either combine “saw” and “Bill” in
a reduceR action (5a), or shift “Bill” (5b). We will
use features extracted from the configuration to re-
solve the conflict. For example, one such feature
could be a bigramst ◦ st−1, capturing how likely
these two words are combined; see Table 2 for the
complete list of feature templates we use in this
baseline parser.

We argue that this kind of shift-reduce conflicts
are the major source of parsing errors, since the
other type of conflict, reduce-reduce conflict (i.e.,
whether left or right) is relatively easier to resolve
given the part-of-speech information. For exam-
ple, between a noun and an adjective, the former
is much more likely to be the head (and so is a
verb vs. a preposition or an adverb). Shift-reduce
resolution, however, is more non-local, and often
involves a triple, for example, (saw, Bill, with) for
a typical PP-attachment. On the other hand, if we
indeed make a wrong decision, a reduce-reduce
mistake just flips the head and the modifier, and
often has a more local effect on the shape of the
tree, whereas a shift-reduce mistake always leads
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Type Features
Unigram st T (st) st ◦ T (st)

st−1 T (st−1) st−1 ◦ T (st−1)
wi T (wi) wi ◦ T (wi)

Bigram st ◦ st−1 T (st) ◦ T (st−1) T (st) ◦ T (wi)
T (st) ◦ st−1 ◦ T (st−1) st ◦ st−1 ◦ T (st−1) st ◦ T (st) ◦ T (st−1)
st ◦ T (st) ◦ st−1 st ◦ T (st) ◦ st−1 ◦ T (st−1)

Trigram T (st) ◦ T (wi) ◦ T (wi+1) T (st−1) ◦ T (st) ◦ T (wi) T (st−2) ◦ T (st−1) ◦ T (st)
st ◦ T (wi) ◦ T (wi+1) T (st−1) ◦ st ◦ T (wi)

Modifier T (st−1) ◦ T (lc(st−1)) ◦ T (st) T (st−1) ◦ T (rc(st−1)) ◦ T (st) T (st−1) ◦ T (st) ◦ T (lc(st))
T (st−1) ◦ T (st) ◦ T (rc(st)) T (st−1) ◦ T (lc(st−1)) ◦ st T (st−1) ◦ T (rc(st−1)) ◦ st

T (st−1) ◦ st ◦ T (lc(st))

Table 2: Feature templates of the baseline parser.st, st−1 denote the top and next to top words on the
stack;wi and wi+1 denote the current and next words on the queue.T (·) denotes the POS tag of a
given word, andlc(·) andrc(·) represent the leftmost and rightmost child. Symbol◦ denotes feature
conjunction. Each of these templates is further conjoined with the 3 actions shift, reduceL , and reduceR.

to vastly incompatible tree shapes with crossing
brackets (for example, [saw Bill] vs. [Bill with a
telescope]). We will see in Section 5.3 that this
is indeed the case in practice, thus suggesting us
to focus on shift-reduce resolution, which we will
return to with the help of bilingual constraints in
Section 3.

2.3 Comparison with Arc-Eager

The three action system was originally described
by Yamada and Matsumoto (2003) (although their
methods require multiple passes over the input),
and then appeared as “arc-standard” in Nivre
(2004), but was argued against in comparison to
the four-action “arc-eager” variant. Most subse-
quent works on shift-reduce or “transition-based”
dependency parsing followed “arc-eager” (Nivre
and Scholz, 2004; Zhang and Clark, 2008), which
now becomes the dominant style. But we argue
that “arc-standard” is preferable because:

1. in the three action “arc-standard” system, the
stack always contains a list ofunrelatedsub-
trees recognized so far, with no arcs between
any of them, e.g. (I← saw) and (Bill) in step
4 of Figure 2), whereas the four action “arc-
eager” style can have left or right arrows be-
tween items on the stack;

2. the semantics of the three actions are atomic
and disjoint, whereas the semantics of 4 ac-
tions arenot completely disjoint. For exam-
ple, their Left action assumes an implicit Re-
duce of the left item, and their Right ac-
tion assumes an implicit Shift. Furthermore,

these two actions have non-trivial precondi-
tions which also causes the next problem (see
below). We argue that this is rather compli-
cated to implement.

3. the “arc-standard” scan always succeeds,
since at the end we can always reduce with
empty queue, whereas the “arc-eager” style
sometimes goes into deadends where no ac-
tion can perform (prevented by precondi-
tions, otherwise the result will not be a well-
formed tree). This becomes parsing failures
in practice (Nivre and Scholz, 2004), leaving
more than one fragments on stack.

As we will see in Section 5.1, this simpler
arc-standard system performs equally well with
a state-of-the-art arc-eager system (Zhang and
Clark, 2008) on standard English Treebank pars-
ing (which is never shown before). We argue
that all things being equal, this simpler paradigm
should be preferred in practice.4

2.4 Beam Search Extension

We also enhance deterministic shift-reduce pars-
ing with beam search, similar to Zhang and Clark
(2008), wherek configurations develop in paral-
lel. Pseudocode 1 illustrates the algorithm, where
we keep an agendaV of the current active con-
figurations, and at each step try to extend them by
applying one of the three actions. We then dump
the bestk new configurations from the buffer back

4On the other hand, there are also arguments for “arc-
eager”, e.g., “incrementality”; see (Nivre, 2004; Nivre, 2008).
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Pseudocode 1beam-search shift-reduce parsing.
1: Input : POS-tagged word sequencew1 . . . wn

2: start ← 〈∅, w1 . . . wn, ∅〉 ⊲ initial config: empty stack,
no arcs

3: V← {start} ⊲ initial agenda
4: for step ← 1 . . . 2n− 1 do
5: BUF← ∅ ⊲ buffer for new configs
6: for eachconfig in agendaV do
7: for act ∈ {shift, reduceL , reduceR} do
8: if act is applicable toconfig then
9: next ← applyact to config

10: insertnext into bufferBUF
11: V← topk configurations ofBUF

12: Output: the tree of the best config inV

into the agenda for the next step. The complexity
of this algorithm isO(nk), which subsumes the
determinstic mode as a special case (k = 1).

2.5 Online Training

To train the parser we need an “oracle” or gold-
standard action sequence for gold-standard depen-
dency trees. This oracle turns out to benon-unique
for the three-action system (also non-unique for
the four-action system), because left dependents
of a head can be reduced either before or after all
right dependents are reduced. For example, in Fig-
ure 2, “I” is a left dependent of “saw”, and can in
principle wait until “Bill” and “with” are reduced,
and then finally combine with “saw”. We choose
to use the heuristic of “shortest stack” that always
prefers reduceL over shift, which has the effect that
all left dependents are first recognized inside-out,
followed by all right dependents, also inside-out,
which coincides with the head-driven constituency
parsing model of Collins (1999).

We use the popular online learning algorithm
of structured perceptron with parameter averag-
ing (Collins, 2002). Following Collins and Roark
(2004) we also use the “early-update” strategy,
where an update happens whenever the gold-
standard action-sequence falls off the beam, with
the rest of the sequence neglected. As a special
case, for the deterministic mode, updates always
co-occur with the first mistake made. The intuition
behind this strategy is that future mistakes are of-
ten caused by previous ones, so with the parser on
the wrong track, future actions become irrelevant
for learning. See Section 5.3 for more discussions.

(a) I
:::::::::
saw Bill with a telescope .

wo yong wangyuanjinkandaole Bi’er.

c(st−1, st) =+; reduce is correct

(b) I
:::::::::
saw Bill with a telescope .

wo kandaole nawangyuanjindeBi’er.

c(st−1, st) =−; reduce is wrong

(c) I saw
:::::::::::
Bill with

:::
a

::::::::::
telescope

:
.

wo kandao lenawangyuanjindeBi’er.

cR(st, wi) =+; shift is correct

(d) I saw
:::::::::
Bill with

:::
a

::::::::::
telescope

:
.

wo yongwangyuanjinkandaole Bi’er.

cR(st, wi) =−; shift is wrong

Figure 3: Bilingual contiguity featuresc(st−1, st)
andcR(st, wi) at step (4) in Fig. 2 (facing a shift-
reduce decision). Bold words are currently on
stack while gray ones have been popped. Here the
stack tops arest = Bill , st−1 = saw, and the queue
head iswi = with; underlined texts mark the source
and target spans being considered, and wavy un-
derlines mark theallowed spans(Tab. 3). Red bold
alignment links violate contiguity constraints.

3 Soft Bilingual Constraints as Features

As suggested in Section 2.2, shift-reduce con-
flicts are the central problem we need to address
here. Our intuition is, whenever we face a deci-
sion whether to combine the stack topsst−1 and
st or to shift the current wordwi, we will consult
the other language, where the word-alignment in-
formation would hopefully provide a preference,
as in the running example of PP-attachment (see
Figure 1). We now develop this idea intobilingual
contiguity features.
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3.1 A Pro-Reduce Featurec(st−1, st)

Informally, if the correct decision is a reduction,
then it is likely that the corresponding words of
st−1 andst on the target-side should also form a
contiguous span. For example, in Figure 3(a), the
source span of a reduction is [saw .. Bill], which
maps onto [kandao. . .Bi’er] on the Chinese side.
This target span is contiguous, because no word
within this span is aligned to a source word out-
side of the source span. In this case we say feature
c(st−1, st) =+, which encourages “reduce”.

However, in Figure 3(b), the source span is still
[saw .. Bill], but this time maps onto a much
longer span on the Chinese side. This target span
is discontiguous, since the Chinese wordsna and
wangyuanjinare alinged to English “with” and
“telescope”, both of which fall outside of the
source span. In this case we say featurec(st−1, st)
=−, which discourages “reduce” .

3.2 A Pro-Shift FeaturecR(st, wi)

Similarly, we can develop another feature
cR(st, wi) for the shift action. In Figure 3(c),
when considering shifting “with”, the source
span becomes [Bill .. with] which maps to [na
.. Bi’er] on the Chinese side. This target span
looks like discontiguous in the above definition
with wangyuanjinaligned to “telescope”, but we
tolerate this case for the following reasons. There
is a crucial difference between shift and reduce:
in a shift, we do not know yet the subtree spans
(unlike in a reduce we are always combining two
well-formed subtrees). The only thing we are
sure of in a shift action is thatst andwi will be
combinedbeforest−1 andst are combined (Aho
and Ullman, 1972), so we can tolerate any target
word aligned to source word still in the queue,
but do not allow any target word aligned to an
already recognized source word. This explains
the notational difference betweencR(st, wi) and
c(st−1, st), where subscript “R” means “right
contiguity”.

As a final example, in Figure 3(d), Chinese
word kandaoaligns to “saw”, which is already
recognized, and this violates the right contiguity.
SocR(st, wi) =−, suggesting that shift is probably
wrong. To be more precise, Table 3 shows the for-
mal definitions of the two features. We basically

source target allowed
featuref spansp spantp spanap
c(st−1, st) [st−1..st] M(sp) [st−1..st]
cR(st, wi) [st..wi] M(sp) [st..wn]
f = + iff. M−1(M(sp)) ⊆ ap

Table 3: Formal definition of bilingual features.
M(·) is maps a source span to the target language,
andM−1(·) is the reverse operation mapping back
to the source language.

map a source spansp to its target spanM(sp),
and check whether its reverse image back onto the
source languageM−1(M(sp)) falls inside the al-
lowed spanap. For cR(st, wi), the allowed span
extends to the right end of the sentence.5

3.3 Variations and Implementation

To conclude so far, we have got two alignment-
based features,c(st−1, st) correlating with reduce,
and cR(st, wi) correlating with shift. In fact, the
conjunction of these two features,

c(st−1, st) ◦ cR(st, wi)

is another feature with even stronger discrimina-
tion power. If

c(st−1, st) ◦ cR(st, wi) = + ◦ −

it is strongly recommending reduce, while

c(st−1, st) ◦ cR(st, wi) = − ◦+

is a very strong signal for shift. So in total we got
three bilingual feature (templates), which in prac-
tice amounts to 24 instances (after cross-product
with {−, +} and the three actions). We show in
Section 5.3 that these features do correlate with
the correct shift/reduce actions in practice.

The naive implemention of bilingual feature
computation would be ofO(kn2) complexity
in the worse case because when combining the
largest spans one has to scan over the whole sen-
tence. We envision the use of a clever datastructure
would reduce the complexity, but leave this to fu-
ture work, as the experiments (Table 8) show that

5Our definition implies that we only considerfaithful
spans to be contiguous (Galley et al., 2004). Also note that
source spans include all dependents ofst andst−1.
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the parser is only marginally (∼6%) slower with
the new bilingual features. This is because the ex-
tra work, with just 3 bilingual features, is not the
bottleneck in practice, since the extraction of the
vast amount of other features in Table 2 dominates
the computation.

4 Related Work in Grammar Induction

Besides those cited in Section 1, there are some
other related work on using bilingual constraints
for grammar induction (rather than parsing). For
example, Hwa et al. (2005) use simple heuris-
tics to project English trees to Spanish and Chi-
nese, but get discouraging accuracy results learned
from those projected trees. Following this idea,
Ganchev et al. (2009) and Smith and Eisner (2009)
use constrained EM and parser adaptation tech-
niques, respectively, to perform more principled
projection, and both achieve encouraging results.

Our work, by constrast, never uses bilingual
tree pairs not tree projections, and only uses word
alignment alone to enhance a monolingual gram-
mar, which learns to prefer target-side contiguity.

5 Experiments

5.1 Baseline Parser

We implement our baseline monolingual parser (in
C++) based on the shift-reduce algorithm in Sec-
tion 2, with feature templates from Table 2. We
evaluate its performance on the standard Penn En-
glish Treebank (PTB) dependency parsing task,
i.e., train on sections 02-21 and test on section 23
with automatically assigned POS tags (at 97.2%
accuracy) using a tagger similar to Collins (2002),
and using the headrules of Yamada and Mat-
sumoto (2003) for conversion into dependency
trees. We use section 22 as dev set to deter-
mine the optimal number of iterations in per-
ceptron training. Table 4 compares our baseline
against the state-of-the-art graph-based (McDon-
ald et al., 2005) and transition-based (Zhang and
Clark, 2008) approaches, and confirms that our
system performs at the same level with those state-
of-the-art, and runs extremely fast in the determin-
istic mode (k=1), and still quite fast in the beam-
search mode (k=16).

parser accuracy secs/sent
McDonald et al. (2005) 90.7 0.150
Zhang and Clark (2008) 91.4 0.195

our baseline atk=1 90.2 0.009
our baseline atk=16 91.3 0.125

Table 4: Baseline parser performance on standard
Penn English Treebank dependency parsing task.
The speed numbers are not exactly comparable
since they are reported on different machines.

Training Dev Test
CTB Articles 1-270 301-325 271-300

Bilingual Paris 2745 273 290

Table 5: Training, dev, and test sets from bilingual
Chinese Treebank̀a la Burkett and Klein (2008).

5.2 Bilingual Data

The bilingual data we use is the translated por-
tion of the Penn Chinese Treebank (CTB) (Xue
et al., 2002), corresponding to articles 1-325 of
PTB, which have English translations with gold-
standard parse trees (Bies et al., 2007). Table 5
shows the split of this data into training, devel-
opment, and test subsets according to Burkett and
Klein (2008). Note that not all sentence pairs could
be included, since many of them are not one-
to-one aligned at the sentence level. Our word-
alignments are generated from the HMM aligner
of Liang et al. (2006) trained on approximately
1.7M sentence pairs (provided to us by David Bur-
kett, p.c.). This aligner outputs “soft alignments”,
i.e., posterior probabilities for each source-target
word pair. We use a pruning threshold of 0.535 to
remove low-confidence alignment links,6 and use
the remaining links as hard alignments; we leave
the use of alignment probabilities to future work.

For simplicity reasons, in the following exper-
iments we always supply gold-standard POS tags
as part of the input to the parser.

5.3 Testing our Hypotheses

Before evaluating our bilingual approach, we need
to verify empirically the two assumptions we
made about the parser in Sections 2 and 3:

6and also removing notoriously bad links in{the, a, an}×
{de, le} following Fossum and Knight (2008).
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sh⊲ re re⊲ sh sh-re re-re
# 92 98 190 7
% 46.7% 49.7% 96.4% 3.6%

Table 6: [Hypothesis 1] Error distribution in the
baseline model (k = 1) on English dev set.
“sh ⊲ re” means “should shift, but reduced”. Shift-
reduce conflicts overwhelmingly dominate.

1. (monolingual) shift-reduce conflict is the ma-
jor source of errors while reduce-reduce con-
flict is a minor issue;

2. (bilingual) the gold-standard decisions of
shift or reduce should correlate with contigu-
ities of c(st−1, st), and ofcR(st, wi).

Hypothesis 1 is verified in Table 6, where we
count all thefirst mistakesthe baseline parser
makes (in the deterministic mode) on the En-
glish dev set (273 sentences). In shift-reduce pars-
ing, further mistakes are often caused by previ-
ous ones, so only the first mistake in each sen-
tence (if there is one) is easily identifiable;7 this
is also the argument for “early update” in apply-
ing perceptron learning to these incremental pars-
ing algorithms (Collins and Roark, 2004) (see also
Section 2). Among the 197 first mistakes (other
76 sentences have perfect output), the vast ma-
jority, 190 of them (96.4%), are shift-reduce er-
rors (equally distributed between shift-becomes-
reduce and reduce-becomes-shift), and only 7
(3.6%) are due to reduce-reduce conflicts.8 These
statistics confirm our intuition that shift-reduce de-
cisions are much harder to make during parsing,
and contribute to the overwhelming majority of er-
rors, which is studied in the next hypothesis.

Hypothesis 2 is verified in Table 7. We take
the gold-standard shift-reduce sequence on the En-
glish dev set, and classify them into the four cat-
egories based on bilingual contiguity features: (a)
c(st−1, st), i.e. whether the top 2 spans on stack
is contiguous, and (b)cR(st, wi), i.e. whether the

7to be really precise one can define“independent mis-
takes” as those not affected by previous ones, i.e., errors
made after the parserrecoversfrom previous mistakes; but
this is much more involved and we leave it to future work.

8Note that shift-reduce errors include those due to the
non-uniqueness of oracle, i.e., between some reduceL and
shift. Currently we are unable to identify “genuine” errors
that would result in an incorrect parse. See also Section 2.5.

c(st−1, st) cR(st, wi) shift reduce
+ − 172 ≪ 1,209
− + 1,432 > 805
+ + 4,430 ∼ 3,696
− − 525 ∼ 576

total 6,559 = 6,286

Table 7: [Hyp. 2] Correlation ofgold-standard
shift/reduce decisions with bilingual contiguity
conditions (on English dev set). Note there is al-
ways one more shift than reduce in each sentence.

stack top is contiguous with the current wordwi.
According to discussions in Section 3, when (a) is
contiguous and (b) is not, it is a clear signal for
reduce (to combine the top two elements on the
stack) rather than shift, and is strongly supported
by the data (first line: 1209 reduces vs. 172 shifts);
and while when (b) is contiguous and (a) is not,
it should suggest shift (combiningst andwi be-
forest−1 andst are combined) rather than reduce,
and is mildly supported by the data (second line:
1432 shifts vs. 805 reduces). When (a) and (b) are
both contiguous or both discontiguous, it should
be considered a neutral signal, and is also consis-
tent with the data (next two lines). So to conclude,
this bilingual hypothesis is empirically justified.

On the other hand, we would like to note that
these correlations are done withautomaticword
alignments (in our case, from the Berkeley aligner)
which can be quite noisy. We suspect (and will fin-
ish in the future work) that usingmanualalign-
ments would result in a better correlation, though
for the main parsing results (see below) we can
only afford automatic alignments in order for our
approach to be widely applicable toanybitext.

5.4 Results

We incorporate the three bilingual features (again,
with automatic alignments) into the baseline
parser, retrain it, and test its performance on the
English dev set, with varying beam size. Table 8
shows that bilingual constraints help more with
larger beams, from almost no improvement with
the deterministic mode (k=1) to +0.5% better with
the largest beam (k=16). This could be explained
by the fact that beam-search is more robust than
the deterministic mode, where in the latter, if our
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baseline +bilingual
k accuracy time (s) accuracy time (s)
1 84.58 0.011 84.67 0.012
2 85.30 0.025 85.62 0.028
4 85.42 0.040 85.81 0.044
8 85.50 0.081 85.95 0.085
16 85.57 0.158 86.07 0.168

Table 8: Effects of beam sizek on efficiency and
accuracy (on English dev set). Time is average
per sentence (in secs). Bilingual constraints show
more improvement with larger beams, with a frac-
tional efficiency overhead over the baseline.

English Chinese
monolingual baseline 86.9 85.7
+bilingual features 87.5 86.3

improvement +0.6 +0.6
signficance level p < 0.05 p < 0.08
Berkeley parser 86.1 87.9

Table 9: Final results of dependency accuracy (%)
on the test set (290 sentences, beam sizek=16).

bilingual features misled the parser into a mistake,
there is no chance of getting back, while in the
former multiple configurations are being pursued
in parallel. In terms of speed, both parsers run pro-
portionally slower with larger beams, as the time
complexity is linear to the beam-size. Computing
the bilingual features further slows it down, but
only fractionally so (just 1.06 times as slow as the
baseline atk=16), which is appealing in practice.
By contrast, Burkett and Klein (2008) reported
their approach of “monolingualk-best parsing fol-
lowed by bilingualk2-best reranking” to be “3.8
times slower” than monolingual parsing.

Our final results on the test set (290 sentences)
are summarized in Table 9. On both English
and Chinese, the addition of bilingual features
improves dependency arc accuracies by +0.6%,
which is mildly significant using the Z-test of
Collins et al. (2005). We also compare our results
against the Berkeley parser (Petrov and Klein,
2007) as a reference system, with the exact same
setting (i.e., trained on the bilingual data, and test-
ing using gold-standard POS tags), and the result-
ing trees are converted into dependency via the
same headrules. We use 5 iterations of split-merge

grammar induction as the 6th iteration overfits the
small training set. The result is worse than our
baseline on English, but better than our bilingual
parser on Chinese. The discrepancy between En-
glish and Chinese is probably due to the fact that
our baseline feature templates (Table 2) are engi-
neered on English not Chinese.

6 Conclusion and Future Work

We have presented a novel parsing paradigm,
bilingually-constrained monolingual parsing,
which is much simpler than joint (bi-)parsing, yet
still yields mild improvements in parsing accuracy
in our preliminary experiments. Specifically,
we showed a simple method of incorporating
alignment features as soft evidence on top of a
state-of-the-art shift-reduce dependency parser,
which helped better resolve shift-reduce conflicts
with fractional efficiency overhead.

The fact that we managed to do this with only
three alignment features is on one hand encour-
aging, but on the other hand leaving the bilingual
feature space largely unexplored. So we will en-
gineer more such features, especially with lexical-
ization and soft alignments (Liang et al., 2006),
and study the impact of alignment quality on pars-
ing improvement. From a linguistics point of view,
we would like to see howlinguistics distance
affects this approach, e.g., we suspect English-
French would not help each other as much as
English-Chinese do; and it would be very interest-
ing to see what types of syntactic ambiguities can
be resolved across different language pairs. Fur-
thermore, we believe this bilingual-monolingual
approach can easily transfer to shift-reduce con-
stituency parsing (Sagae and Lavie, 2006).

Acknowledgments

We thank the anonymous reviewers for pointing to
us references about “arc-standard”. We also thank
Aravind Joshi and Mitch Marcus for insights on
PP attachment, Joakim Nivre for discussions on
arc-eager, Yang Liu for suggestion to look at man-
ual alignments, and David A. Smith for sending
us his paper. The second and third authors were
supported by National Natural Science Foundation
of China, Contracts 60603095 and 60736014, and
863 State Key Project No. 2006AA010108.

1230



References

Alfred V. Aho and Jeffrey D. Ullman. 1972.The
Theory of Parsing, Translation, and Compiling, vol-
ume I: Parsing ofSeries in Automatic Computation.
Prentice Hall, Englewood Cliffs, New Jersey.

Ann Bies, Martha Palmer, Justin Mott, and Colin
Warner. 2007. English chinese translation treebank
v1.0. LDC2007T02.

David Burkett and Dan Klein. 2008. Two languages
are better than one (for syntactic parsing). InPro-
ceedings of EMNLP.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. InProceed-
ings of ACL.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine
translation. InProceedings of ACL, pages 531–540,
Ann Arbor, Michigan, June.

Michael Collins. 1999.Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. InProceedings
of EMNLP.

Jason Eisner. 2003. Learning non-isomorphic tree
mappings for machine translation. InProceedings
of ACL (poster), pages 205–208.

Victoria Fossum and Kevin Knight. 2008. Using bilin-
gual chinese-english word alignments to resolve pp-
attachment ambiguity in english. InProceedings of
AMTA Student Workshop.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proceedings of HLT-NAACL, pages 273–280.

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induction
via bitext projection constraints. InProceedings of
ACL-IJCNLP.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. InProceedings of
the ACL: HLT, Columbus, OH, June.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein,
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Abstract

There have been considerable attempts
to incorporate semantic knowledge into
coreference resolution systems: different
knowledge sources such as WordNet and
Wikipedia have been used to boost the per-
formance. In this paper, we propose new
ways to extract WordNet feature. This
feature, along with other features such as
named entity feature, can be used to build
an accurate semantic class (SC) classifier.
In addition, we analyze the SC classifica-
tion errors and propose to use relaxed SC
agreement features. The proposed accu-
rate SC classifier and the relaxation of SC
agreement features on ACE2 coreference
evaluation can boost our baseline system
by 10.4% and 9.7% using MUC score and
anaphor accuracy respectively.

1 Introduction

Coreference resolution is used to determine which
noun phrases (including pronouns, proper names,
and common nouns) refer to the same entities in
documents. Much work on coreference resolution
is based on (Soon et al., 2001), which built a de-
cision tree classifier to label pairs of mentions as
coreferent or not. Recent work aims to improve
the performance from two aspects: new models
and new features. The former cast the pair wise
mention classifications into various forms such as
the best path in a Bell tree (Luo et al., 2004), the
best graph cut (Nicolae and Nicolae, 2006), in-
teger linear programming (Denis and Baldridge,
2007) and graph partition based conditional model
(McCallum and Wellner, 2004). The latter de-
velop and investigate new linguistic features for
the problem. For instance, WordNet (Poesio et al.,
2004), Wikipedia (Ponzetto and Strube, 2006), se-
mantic neighbor words (Ng, 2007a), and pattern
based features (Yang and Su, 2007) have been ex-
tensively studied.

Deeper linguistic knowledge is required to en-
able the coreference resolution to reach a higher
level of performance (Kehler et al., 2004). An im-
portant type of semantic knowledge that has been
employed in coreference resolution system is the
semantic class (SC) of an NP, which can be used
to filter out the coreference between semantically
incompatible NPs. However, the difficulty is to
accurately compute the semantic class features. In
this paper, we show that the WordNet may not be
efficiently employed in the traditional way such
as (Soon et al., 2001; Ng, 2007a; Ponzetto and
Strube, 2006) to compute the semantic class fea-
tures. We introduce new ways to use the WordNet
and the experiments show its effectiveness in de-
termining the semantic classes for noun phrases.
In addition, we analyze the classification errors of
the SC classifier and propose to use relaxed SC
agreement features. With these proposed features
and other standard syntactic features (which are
commonly employed in existing coreference sys-
tems), our coreference resolution system can ob-
tain an increase of 10.4% for MUC score and 9.7%
for anaphor accuracy from the baseline in ACE2
evaluation.

2 Related Work

WordNet (Fellbaum, 1998) as an important knowl-
edge source has been widely employed in previ-
ous coreference resolution work. For example,
Harabagiu et al. (2001) have used WordNet rela-
tions such as synonym and is-a to mine the pat-
terns of WordNet paths for pairs of antecedents
and anaphors. Due to the nature of the rule based
coreference system (in contrast to machine learn-
ing based), the weights of relations may not be
accurately estimated. Vieira and Poesio (2000)
and Markert and Nissim (2005) have used Word-
Net synonym and hyponym etc. to determine if
an anaphor semantically relates to one previous
NP. Ponzetto and Strube (2006) have used Word-
Net semantic similarity and relatedness scores be-
tween antecedents and candidate anaphors. Their
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work is different to this work in the following: 1)
Their work involves various relations such as hy-
ponyms and meronyms while ours only makes use
of hypernyms; and 2) Their work focuses on in-
vestigating if two NPs have particular WordNet re-
lations or not, while ours focuses on using Word-
Net hypernyms for their SC classification and then
testing their SC compatibility. In doing so, we can
directly model the accuracy of semantic class clas-
sification and test its impact on coreference reso-
lution.

While the SC of a proper name is computed
fairly accurately using a named entity (NE) recog-
nizer, many coreference resolution systems sim-
ply assign to a common noun the first (i.e., most
frequent) WordNet synset as its SC (Soon et al.,
2001; Markert and Nissim, 2005). This heuris-
tics, apparently, did not lead to good performance.
The best reported ACE2 coreference resolution
system (Ng, 2007a; Ng, 2007b) has proposed an
accurate SC classifier which used heterogeneous
semantic knowledge sources. WordNet is just
one of the several knowledge sources which have
been utilized. However, the WordNet based fea-
tures is not informative compared to other features
such as the semantic neighbor feature. Similarly,
Ponzetto and Strube (2006) have discovered that
the WordNet feature is no more informative than
the community-generated Wikipedia feature. In
this paper, we focus on the investigation of vari-
ous usages of WordNet for the SC classification
task. The work which is directly comparable to
ours would be (Ng, 2007a; Ng, 2007b).

Other similar work includes the mention detec-

tion (MD) task (Florian et al., 2006) and joint
probabilistic model of coreference (Daumé III and
Marcu, 2005). The MD task identifies the bound-
ary of a mention, its mention type (e.g., pronoun,
name), and its semantic type (e.g., person, orga-
nization). Unlike them, we do not perform the
boundary detection, as we make use of the noun
phrases directly from the noun phrase chunker and
NE recognizer. The joint probabilistic model mod-
els the MD and coreference simultaneously, while
our work focuses on them separately.

3 Semantic Class Classification

In this section, we describe how we compile the
training corpus and extract features using Word-
Net. We report our results on the ACE coreference
corpus due to that it has been commonly used and
it was annotated SCs of six types.1 As in (Ng,

1Person, organization, gpe, location and facility are ex-
plicitly annotated. The rest noun phrases are other type.

2007a), we first train a classifier to predict the SC
of an NP. This SC information is used later in the
coreference resolution stage. For example, the au-

dience is classified as SC of person, and it thus
should not be coreferent with the security industry,
which is usually classified as organization. This
task is by no means trivial. First, while the classi-
fication of Tom Hanks being SC of person can be
accurately achieved by an NE recognizer, the as-
sociation of audience and person requires seman-
tic language source such as WordNet. Second, the
same noun phrase can be annotated with different
SCs under different context. For example, the au-

thorities is usually annotated as person, but it is
sometimes as organization. Even worse, the same
noun phrases are sometimes annotated with one of
the five explicitly annotated classes while some-
times are not annotated at all (thus falling into the
other SC). For example, people is annotated as
person SC explicitly 20 times and is not annotated
at all 21 times in the ACE2 testset. This inconsis-
tent annotation adversely affects the performance
of an SC classifier. And this in turn would cause
errors during coreference stage. In section 4.3, we
show how to relax the strict SC agreement feature
to address this.

3.1 Training instance creation

We use ACE Phase 2 Coreference corpus to train
the SC classifier. Each noun phrase which is iden-
tified by the noun phrase chunker or NE recognizer
is used to create a training instance. Each instance
is represented by a set of lexical, syntactic and se-
mantic features, as described below. If the NP un-
der consideration is annotated as one of the five
ACE SCs in the corpus, then the classification of
the associated training instance is the ACE SC of
the NP. Otherwise, the instance is labeled as other.

ACE 2 corpus has a training set and a test set
which comprise of 422 and 97 texts respectively.
We divide the training set into a new training and a
development set: the former consists of 90% ran-
domly generated and stratified original training in-
stances and the latter consists of the rest 10% in-
stances. The test set remains the same as in ACE2
corpus. The size of each dataset and its SC dis-
tributions are shown in Table 1. Note that the
training and development datasets have exactly the
same distributions of SCs due to the stratification
procedure. That is, each class has the same pro-
portion in training and development datasets. We
tune the feature parameters against development
set and report performance on both development
set and test set.
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Table 1: Distributions of SCs in ACE2 corpus.
Size PER ORG GPE FAC LOC OTH

Train 55629 20.29 7.30 8.42 0.61 0.55 62.80
Dev 6181 20.29 7.30 8.42 0.61 0.55 62.80
Test 15360 20.48 7.57 6.90 0.85 0.41 63.79

3.2 Lexical features

Each instance is represented as a bag of features
and is fed into a classifier in training stage. We
present four binary lexical feature sets as follows.

Word unigrams and bigrams: An N-gram is
a sub-sequence of N words from a given noun
phrase. Unigram forms the bag of words feature,
and bigram forms the pairs of words feature, and
so forth. We have considered word unigram and
bigram features in our experiments.

First and last words: This feature extracts the
first and last words of an NP. For example, the first
word the and the last word store are extracted from
the NP the main store. This feature does not only
coarsely models the influence of the first word, for
example, a or the, but also models the head word,
since the head word usually is the last word in the
NP.

Head word: We use Collins style rules
(Collins, 1999) to extract the head words for given
NPs. These features should be most informative
if the training corpus is large enough.2 For exam-
ple, the head word company of the NP the com-

pany immediately determines its SC being organi-

zation. However, due to the sparseness of training
data, its potential importance is adversely affected.

3.3 Semantic features

NE feature is extracted from Stanford named en-
tity recognizer (NER) (Finkel et al., 2005). Three
types of named entities: person, location and or-
ganization can be recognized for a given NP. This
feature is primarily useful for SC classification of
proper nouns.

WordNet is a large English lexicon in which se-
mantically related words are connected via cogni-
tive synonyms (synsets). The WordNet is a use-
ful tool for word semantics analysis and has been
widely used in natural language processing appli-
cations. In WordNet, synsets are organized into hi-
erarchies with hypernym/hyponym relationships:
Y is a hypernym of X if every X is a (kind of) Y
(X is called a hyponym of Y in this case).

The WordNet is employed in (Ng, 2007a) as
following to create the WN CLASS feature. For
each keyword w as shown in the right column of

2It, however, is mostly useful for nominal noun phrase and
not for the pronoun and proper noun phrases.

Table 2, if the head noun of a given NP is a hy-
ponym of w in WordNet,3 then the word w be-
comes a feature for such NP. It is explained that
these keywords are correlated with the ACE SCs
and they are obtained via experimentation with
WordNet and the ACE SCs of the NPs in the ACE
training data. However, it is likely that these hand-
crafted keywords have poor coverage for general
cases. As a result, it may not make full use of
WordNet semantic knowledge. This will be shown
in our individual feature contribution experiment
in Section 3.5.

Table 2: List of keywords used in WordNet seman-
tic feature in (Ng, 2007a).

ACE SC Keywords
PER person
ORG social group
FAC establishment, construction, building,

facility, workplace
GPE country, province, government, town, city,

administration, society, island, community
LOC dry land, region, landmass, body of water

geographical area, geological formation

There are other ways of using WordNet for se-
mantic feature extraction. For example, Ponzetto
and Strube (2006) have employed WordNet sim-
ilarity measure for coreference resolution. The
difference is that they created the feature di-
rectly at the coreference resolution stage, ie, us-
ing the WordNet similarity between the antecedent
and anaphor to determine if they are coreferent,
while we focus on using this feature to classify
an NP into a particular SC. For comparison, we
implemented a WordNet similarity based feature
(WN SIM) as follows: for a given NP head word
and a key word as listed in Table 2, the WordNet
similarity package (Seco et al., 2004) models the
length of path traveling from the head word to the
key word over the WordNet network. It then com-
putes the semantic similarity based on the path.
For example, the similarity between company and
social group is 0.77, while the similarity between
company and person is 0.59. The key word which
receives the highest similarity to the head word is
marked as a feature.

The WN CLASS feature may suffer from the
coverage problem and the WN SIM feature is
heavily dependent on the definition of similarity
metric which may turn out to be inappropriate for
coreference resolution task. To make better use of
WordNet knowledge, we attempt to directly intro-
duce hypernyms for the NP head words (we denote

3Only the first synset of the NP is used.
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it as WN HYP feature). The most similar work
to ours is (Daumé III and Marcu, 2005), in which
two most common synsets from WordNet for all

words in an NP and their hypernyms are extracted
as features. We avoid augmenting the hypernyms
for non-head words in the NP to prevent introduc-
ing noisy information, which may potentially cor-
rupt the hypernym feature space.

Considering a WordNet hypernym structure as
shown in Fig. 1 for the word company, its first
synset (an institution created to conduct business)
has a unique id of 08058098 and can also be rep-
resented by a set of description words (company
in this case). Its third synset (the state of being
with someone) has an id of 13929588 and descrip-
tion words of company, companionship, fellow-
ship, society. Each synset can be extended by its
hypernym synsets. For example, the direct hyper-
nym of the first synset is the synset of 08053576
which can be described as institution, establish-
ment. The augmentation of hypernyms for NP
head words can introduce useful information, but
can also bring noise if the head word or the synset
of head word are not correctly identified. For an
optimal use of WordNet hypernyms, four ques-
tions shall be addressed: 1) how many depths are
required to tradeoff the generality (thus more in-
formative) and the specificity (thus less noisy)? 2)
which synset of the given word is needed to be
augmented? 3) which representation (synset id or
synset word) is better? and 4) is it helpful to en-
code the hypernym depth into the hypernym fea-
ture?4 These four questions provide the guideline
to search the optimal use of WordNet. We will de-
sign experiments in Section 3.5 to determine the
optimal configuration of WN HYP feature.

state

(08008335)

(13931145)

(13928668)

(08053576)

(07950920)

company

depth 2

depth 3

depth 4

depth 1

social group

institution,establishment

organization,organisation

(00024720)

friendship,friendlyrelationship

fellowship,society
(13929588)(08058098)

company, companionship,
company

relationship

Figure 1: WordNet hypernym hierarchy for the
word company.

4For example, we encode the synset 08053576 as
08053576-1, with the last digit 1 indicating the depth of hy-
pernym with regard to the entry word company.

3.4 Learning algorithm

Maximum entropy (ME) models (Berger et al.,
1996; Manning and Klein, 2003), also known as
log-linear and exponential learning models, has
been adopted in the SC classification task. Max-
imum entropy models can integrate features from
many heterogeneous information sources for clas-
sification. Each feature corresponds to a constraint
on the model. Given a training set of (C, D),
where C is a set of class labels and D is a set
of feature represented data points, the maximum
entropy model attempts to maximize the log like-
lihood

log P (C|D, λ) =
∑

(c,d)∈(C,D)

log
exp

∑
i
λifi(c, d)∑

c′ exp
∑

j
λjfi(c, d)

(1)

where fi(c, d) are feature indicator functions and
λi are the parameters to be estimated. We use ME
models for both SC classification and mention pair
classification.

3.5 SC classification evaluation

We design three experiments to test the accuracy
of our classifiers. The first experiment evalu-
ates the individual contribution of different fea-
ture sets to SC classification accuracy. In par-
ticular, a ME model is trained on the 55,629
training instances using the following feature sets
separately: 1) unigram, 2) bigram, 3) first-last
word, 4) head word (HW), 5) named entities
(NE), 6) HW+WN CLASS, 7) HW+WN SIM,
and 8) variants of HW+WN HYP. Note that
HW+WN CLASS is the semantic feature used in
(Ng, 2007a), HW+WN SIM is the semantic fea-
ture using WordNet similarity measure (Seco et
al., 2004), and variants of HW+WN HYP are the
work proposed in this paper. We combine head
word and the semantic features due to the fact that
WordNet features are dependent on head words
and they could be treated as units. In the second
experiment, features are fed into the ME model
incrementally until all features have been used.5

Finally, we perform the feature ablation experi-
ments. That is, we remove one feature at a time
from the entire feature set and test the accuracy
loss. The SC classification performance is mea-
sured by accuracy, i.e., the proportion of the cor-
rectly classified instances among all test instances.

Individual feature contribution Table 3 shows
the SC classification accuracy of all NPs (all)
and non-pronoun NPs (non-PN) on the develop-
ment and test datasets using individual feature

5The optimal of HW+WN HYP configuration is used.
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sets. Among all the lexical features, unigram fea-

Table 3: SC classification accuracy of ME using
individual feature sets for development and test
ACE2 datasets.

Feature type dev test
all non-PN all non-PN

unigram 81.3 81.6 72.4 71.9
bigram 32.5 36.4 26.3 28.4
first-last word 80.1 80.2 71.6 71.0
HW 78.2 78.0 68.3 67.1
NE 74.0 82.8 73.1 81.9
HW+WN CLASS 79.5 79.4 70.3 69.5
HW+WN SIM 81.2 81.4 73.8 73.6
HW+WN HYP (1) 82.6 83.1 74.8 74.7
HW+WN HYP (3) 82.8 83.4 75.2 75.2
HW+WN HYP (6) 83.1 83.7 75.6 75.7
HW+WN HYP (9) 83.0 83.6 75.7 75.7
HW+WN HYP (∞) 83.1 83.7 75.8 75.9
HW+WN HYP (6) 82.8 83.3 75.6 75.7
word form
HW+WN HYP (6) 82.9 83.5 75.4 75.4
depth encoded
HW+WN HYP (6) 83.0 83.6 76.4 76.6
first synset

ture performs the best (81.3%) for all NPs over the
development dataset. The bigram feature performs
poorly due to the sparsity problem: NPs usually
consist of one to three words. The first-last word
feature effectively models the prefix words (such
as a and the) and the head words and thus obtains a
reasonably high accuracy of 80.1%. As mentioned
before, the head word feature may suffer from the
sparsity and it results in the accuracy of 78.2%.
We also list the accuracies for non-pronoun NP
SC classification, which are slightly different com-
pared to all NP SC classification except for bi-
gram, in which the accuracy has increased 3.9%.

Although Stanford NER performs well on
named entity recognition task, it results in ac-
curacy of 74.0% for all NP SC classification,
due to its inability to deal with pronouns such
as he and common nouns such as the govern-

ment. The removal of pronouns significantly
boosts its accuracy to 82.8%. The introduc-
tion of semantic feature HW+WN CLASS boosts
the performance to 79.5% compared to the head
word alone of 78.2%. This conforms to (Ng,
2007a) that only small gain can be achieved us-
ing WN CLASS feature. The HW+WN SIM
feature outperforms HW+WN CLASS and the
accuracy reaches 81.2%. For the variants of
HW+WN HYP, we first search the optimal depth.
This is performed by using all synsets for NP head
word, encoding the feature using synset id (rather
than synset word), and no hypernym depth is en-
coded in the features. We try various depths of

1, 3, 6, 9 and ∞, with ∞ signifies that no depth
constraint is imposed. The optimal depth of 6 is
obtained with the accuracy of 83.1% over the de-
velopment dataset. We then fix the depth of 6 to try
using synset word as features, using synset id with
depth encoded as features, and using first synset
only. The results show that the optimum is to en-
code the features using hypernym synset id with-
out hypernym depth information and all synsets
are considered for hypernym extraction. This is
slightly different from the previous finding (Soon
et al., 2001; Lin, 1998b) that a coreference res-
olution system employing only the first WordNet
synset performs slightly better than that employ-
ing more than one synset.6 The best result reaches
the accuracy of 83.1%. Although the best seman-
tic feature only outperforms the best lexical fea-
ture by 1.8% on the development dataset, its gain
in the test dataset is more significant (3.2%, from
72.4% to 75.6%).

Incremental feature contribution Once we
use the training and development datasets to find
the optimal configuration of HW+WN HYP se-
mantic feature, we use all lexical features and the
optimal HW+WN HYP feature incrementally to
train an ME model over the combination of train-
ing and development datasets. Table 4 shows
the SC classification accuracy of all NPs (all)
and non-pronoun NPs (non-PN) on the train-
ing+development (we refer it as training hereafter)
and test datasets.

Table 4: SC classification accuracy of ME using
incremental feature sets for training and test ACE2
datasets.

Feature type train test
all non-PN all non-PN

HW 87.8 89.0 68.6 67.6
+WN HYP 87.8 89.0 75.7 75.8
+unigram 91.5 93.3 77.7 78.1
+bigram 93.1 95.2 78.7 79.2
+first-last word 93.2 95.3 78.8 79.3
+NE 93.4 95.6 83.1 84.4
Ng 2007a - 85.0 - 83.3

Note that the significant higher accuracies in
training compared to test are due to the overfit-
ting problem. The interesting evaluation thus re-
mains on the test data. As can be seen, the in-
clusion of more features results in higher perfor-
mance. This is more obvious in the test dataset
than in the training dataset. The inclusion of the

6In fact, the accuracy of the test data supports their claims.
The accuracy using the first synset compared to using all
synsets results in the accuracy increase from 75.6% to 76.4%
for all NPs over the test dataset.
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optimized WN HYP feature (ie, using all synsets’
hypernyms up to 6 depth and with synset id encod-
ing) results in 7.1% increase for all NP SC classifi-
cation over test data. This shows the effectiveness
of the WN HYP features to overcome the sparsity
of head word feature. The unigram, bigram and
first-last word features offer reasonable accuracy
gain, and the final inclusion of NE boosts the over-
all performance to 83.1% for all NP and 84.4% for
non pronoun NPs over test data. This result can
be directly compared to the SC classification ac-
curacy as reported in (Ng, 2007a), in which the
highest accuracy is 83.3% for non pronoun NPs.7

The large difference between the highest training
accuracies is due to that our classifier is trained di-
rectly on the ACE2 training dataset, while their SC
classifier was trained on BBN Entity Type Corpus
(Weischedel and Brunstein, 2005), which is five
times larger than the ACE2 corpus used by us. In
addition to WordNet, they have adopted multiple
knowledge sources which include BBN’s Identi-
Finder (this is equivalent to the Stanford NER in
our work), BLLIP corpus and Reuters Corpus,8

and dependency based thesaurus (Lin, 1998a). It
is remarkable that our SC classifier can achieve
even higher accuracy only using WordNet hyper-
nym and NE features. It is worth noting that the
small accuracy gain is indeed hard to achieve con-
sidering that the test data size is large (15360).

Feature ablation experiment We now perform
the feature ablation experiments to further deter-
mine the importance of individual features. We re-
move one feature at a time from the entire feature
set. Table 5 shows the SC classification accuracy
of all NPs (all) and non-pronoun NPs (non-PN) on
the training and test datasets respectively.

Table 5: SC classification accuracy of ME by re-
moving one feature at a time for training and test
ACE2 datasets.

Feature type train test
all non-PN all non-PN

overall 93.4 95.6 83.1 84.4
-HW 93.4 95.5 82.9 84.2
-WN HYP 93.4 95.5 82.6 83.8
-HW+WN HYP 93.4 95.5 82.3 83.5
-unigram 93.4 95.5 82.9 84.2
-bigram 92.5 94.5 82.7 84.0
-first-last word 93.4 95.5 82.9 84.1
-NE 93.2 95.3 78.8 79.3

Again, the significant higher accuracies in train-
ing compared to test are due to overfitting. The re-

7All NP accuracy was not reported as they excluded the
pronouns in creating their training and test data.

8They use these corpus to extract patterns to induce SC of
common nouns.

moval of NE feature results in the largest accuracy
loss of 4.3% (from 83.1% to 78.8%) for all nouns
on test data. It follows WN HYP (0.5% loss) and
the bigram (0.4%). If we treat HW+WN HYP as
one feature, the removal of it results in accuracy
loss of 0.8% for all nouns on test data. The un-
igram, first-last word and head word each results
in the loss of 0.2%. The reason that the removal
of NE results in a much significant loss is due to
the fact that the NE feature is quite different from
other features. Its strength is to distinguish SCs for
proper names, while other features are more sim-
ilar (their targets are common nouns). The pro-
posed use of HW+WN HYP can bring 0.8% gain
on top of other features, higher than other informa-
tive lexical features including unigram and first-
last word.

3.6 Error analysis

A closer look at the errors produced by our SC
classifier reveals that the second probable label is
very likely to be the actual labels if the first proba-
ble one is wrong. In fact, if we allow the classifier
to predict two most probable labels and the clas-
sification is judged to be true if the actual label is
one of the two predictions, then the classification
accuracy increases from 83.1% to 96.4%. This
is because that the same noun phrases are some-
times annotated with one of the five explicitly an-
notated classes while sometimes are not annotated
at all (thus falling into the other SC). Again for
the example of people. It is annotated as person

SC 20 times and is not annotated at all 21 times.
Given the same feature set for this instance, the
best the classifier can do is to classify it to other

semantic class. To address this annotation incon-
sistency issue, we relax the SC agreement feature
from the strict match in designing coreference res-
olution features. For example, if the first probable
SC of an NP matches the second probable SC of
another NP, we still give some partial match credit.

4 Application to Coreference Resolution

We can now incorporate the NP SC classifier into
our ME based coreference resolution system. This
section examines how our WordNet hypernym fea-
tures help improve the coreference resolution per-
formance.

4.1 Experimental setup

We use the ACE-2 (version 1.0) coreference cor-
pus. Each raw text in this corpus was prepro-
cessed automatically by a pipeline of NLP com-
ponents, including sentence boundary detection,
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POS-tagging and text chunking. The statistics of
corpus and mention extraction are shown in Table
6, where g-mention is the automatically extracted
mentions which contain the annotated (gold) men-
tions. The recalls of gold mentions are 95.88%
and 95.93% for training and test data respectively.

Table 6: Statistics for corpus and extracted men-
tions.

text# mention# g-mention# gold# recall(%)
train 422 61810 22990 23977 95.88
test 97 15360 5561 5797 95.93

Our coreference system uses Maximum En-
tropy model to determine whether two NPs are
coreferent. As in (Soon et al., 2001; Ponzetto and
Strube, 2006), we generate training instances as
follows: a positive instance is created for each
anaphoric NP, NPj , and its closest antecedent,
NPi; and a negative instance is created for NPj

paired with each of the intervening NPs, NPi+1,
NPi+2, ..., NPj−1. Each instance is represented
by syntactic or semantic features described as fol-
lows. All training data are used to train a maxi-
mum entropy model. In the test stage,we select the
closest preceding NP that is classified as corefer-
ent with NPj as the antecedent of NPj . If no such
NP exists, no antecedent is selected for NPj .

Unlike other natural language processing tasks
such as information extraction which have de facto
evaluation metrics, it is an open question which
evaluation is the most suitable one. The evalu-
ation becomes more complicated when automat-
ically extracted mentions (in contrast to the gold
mentions) are used. To facilitate the comparison
with previous work, we report performance us-
ing two different scoring metrics: the commonly-
used MUC scorer (Vilain et al., 1995) and the ac-

curacy of the anaphoric references (Ponzetto and
Strube, 2006). An anaphoric reference is correctly
resolved if it and its closest antecedent are in the
same coreference chain in the resulting partition.

4.2 Baseline features

We briefly review the baseline features used in
this paper as follows. More detailed information
and implementations can be found at (Soon et al.,
2001; Versley et al., 2008). For example, the
ALIAS feature takes values of true or false. The
value of true means that the antecedent and the
anaphor refer to the same entity (date, person, or-
ganization or location). The ALIAS feature de-
tection works differently depending on the named
entity type. For date, the day, month, and year

values are extracted and compared. For person,
the last words of the noun phrases are compared.
For organization names, the alias detection checks
for acronym match such as IBM and International

Business Machines Corp.

Lexical features STRING MATCH: true if
NPi and NPj have the same spelling after remov-
ing article and demonstrative pronouns, false oth-
erwise. ALIAS: true if NPj is the alias of NPi.

Grammatical features I PRONOUN: true if
NPi is a pronoun; J PRONOUN: true if NPj

is pronoun; J REFL PRONOUN: true if NPj is
reflexive pronoun; J PERS PRONOUN: true if
NPj is personal pronoun; J POSS PRONOUN:
true if NPj is possessive pronoun; J PN: true
if NPj is proper noun; J DEF: true if NPj

starts with the; J DEM: true if NPj starts with
this, that, these or those; J DEM NOMINAL:
true if NPj is a demonstrative nominal noun;
J DEM PRONOUN: true if NPj is a demonstra-
tive pronoun; PROPER NAME: true if both NPi

and NPj are proper names; NUMBER: true if
NPi and NPj agree in number; GENDER: true
if NPi and NPj agree in gender; APPOSITIVE:
true if NPi and NPj are appositions.

Distance feature DISTANCE: how many sen-
tences NPi and NPj are apart.

Semantic feature SEMCLASS: This feature is
implemented from (Soon et al., 2001). Its possible
values are true, false, or unknown. First the fol-
lowing semantic classes are defined: female, male,
person, organization, location, date, time, money,
percent, and object. Each of these defined seman-
tic classes is then mapped to a WordNet synset.
Then the semantic class determination module de-
termines the semantic class for every NP as the
first synset of the head noun of the NP. If such
synset is a hyponym of defined semantic class,
then such semantic class is assigned to the NP.
Otherwise, unknown class is assigned. Finally, the
agreement of semantic classes of NPi and NPj is
unknown if either assigned class is unknown; true
if their assigned class are the same, false other-
wise. Notice that the WordNet use in (Ng, 2007a)
and this feature apply in the same principle except
that 1) the former is used in SC classification while
the latter is used directly for coreference resolu-
tion, and 2) they have different semantic class cat-
egories.

4.3 Proposed WordNet agreement features

For each instance which consists of NPi and NPj ,
we apply our SC classifier to label them, say li and
lj respectively. We then use these two induced la-
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bels to propose the SC agreement feature for NPi

and NPj . In particular, SC STRICT is true if li
and lj are the same and they are not of other type,
false otherwise; SC COARSE is true if both li and
lj are not of other type; In addition, we propose
two other SC agreement features to cope with the
SC classification errors. SC RELAX1 is true if the
first probable of NPi, li1, is not other type and is
the same as the second probable of Nj , lj2, or vice
visa. SC RELAX2 is true if the second probable
of NPi, li2, is not other type and is the same as the
second probable label of NPj , lj2. The purpose in
using SC RELAX1 and SC RELAX2 features is
to relax the strict SC agreement feature in the hope
that partial SC match is useful for coreference res-
olution.

4.4 Coreference results

Table 7 shows the MUC score for ACE2 corpus
and its three partitions: bnews, npaper, and nwire
using baseline and the proposed semantic features.
It also shows the accuracy of resolving anaphors
for all nouns in ACE2 corpus. SC STRICT is
the configuration that uses the baseline features
with the SEMCLASS (Soon et al., 2001) replaced
by SC STRICT, and SC COARSE, SC RELAX1,
and SC RELAX2 are incrementally included into
the SC STRICT feature set.

As can be seen, the SC STRICT significantly
boosts the performance: it improves the MUC
F score and anaphor accuracy of baseline from
57.7% to 65.7% and 37.7% to 46.3% respectively.
It is remarkable that the new use of WordNet can
obtain such significant gain in both MUC score
and anaphor accuracy. The large improvement
of the precision from 58.1% to 73.3% for all
NPs shows that the SC STRICT feature can ef-
fectively filter out the semantic incompatible pairs
of antecedents and anaphors. In accordance with
our hypothesis, the relaxation of strict SC agree-
ment by including SC COARSE, SC RELAX1
and SC RELAX2 help improve the performance
further, which is reflected by both MUC score and
anaphor accuracy. For example, compared to the
baseline, the use of all proposed four SC agree-
ment features results in the maximal accuracy gain
of 9.7% (from 37.7% to 47.4%) and the use of
SC STRICT, SC COARSE, and SC RELAX1 re-
sults in the maximal MUC score gain of 10.4%
(from 57.7% to 68.1%).

Our best MUC score is 68.1% which outper-
forms the MUC score of 64.6% as reported in
(Ng, 2007a) by 3.5%, while our best accuracy
of anaphor is 47.4%, which is 4.1% less than

the accuracy of 51.5% in (Ng, 2007a). Note
that, unlike (Ng, 2007a) which performed exten-
sive experiments using different machine learn-
ing algorithms, alternative use of features (either
constraint or normal features), and heterogeneous
knowledge sources, this paper simply uses one
learning classifier (ME model) and only employs
WordNet and Stanford NER semantic sources.

The different MUC and accuracy scores reflect
the non-trivial cases of evaluating coreference sys-
tems. While we leave out the discussion of which
evaluation is more appropriate, we focus on show-
ing that the proposed SC classifier can bring sig-
nificant boost from the baseline using both MUC
and accuracy metrics.

5 Conclusion

We have showed that the traditional use of Word-
Net in coreference resolution may not effectively
exploit the WordNet semantic knowledge. We pro-
posed new ways to extract WordNet feature. This
feature, along with other features such as named
entity feature, can be used to build an accurate se-

mantic class (SC) classifier. In addition, we ana-
lyzed the classification errors of the SC classifier
and relaxed SC agreement features to cope with
part of the classification errors. The proposed ac-
curate SC classifier and the relaxation of SC agree-
ment features can boost our baseline coreference
resolution system by 10.4% and 9.7% using MUC
score and anaphor accuracy respectively.
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Abstract

We present a method for detecting and
correcting multiple real-word spelling er-
rors using the Google Web 1T 3-gram data
set and a normalized and modified ver-
sion of the Longest Common Subsequence
(LCS) string matching algorithm. Our
method is focused mainly on how to im-
prove the detection recall (the fraction of
errors correctly detected) and the correc-
tion recall (the fraction of errors correctly
amended), while keeping the respective
precisions (the fraction of detections or
amendments that are correct) as high as
possible. Evaluation results on a standard
data set show that our method outperforms
two other methods on the same task.

1 Introduction

Real-word spelling errors are words in a text that
occur when a user mistakenly types a correctly
spelled word when another was intended. Errors
of this type may be caused by the writer’s igno-
rance of the correct spelling of the intended word
or by typing mistakes. Such errors generally go
unnoticed by most spellcheckers as they deal with
words in isolation, accepting them as correct if
they are found in the dictionary, and flagging them
as errors if they are not. This approach would
be sufficient to detect the non-word error myss in
“It doesn’t know what the myss is all about.” but
not the real-word error muss in “It doesn’t know
what the muss is all about.” To detect the latter,
the spell-checker needs to make use of the sur-
rounding context such as, in this case, to recog-
nise that fuss is more likely to occur than muss in
the context of all about. Ironically, errors of this
type may even be caused by spelling checkers in
the correction of non-word spelling errors when
the auto-correct feature in some word-processing

software sometimes silently change a non-word to
the wrong real word (Hirst and Budanitsky, 2005),
and sometimes when correcting a flagged error,
the user accidentally make a wrong selection from
the choices offered (Wilcox-O’Hearn et al., 2008).

An extensive review of real-word spelling cor-
rection is given in (Pedler, 2007; Hirst and Budan-
itsky, 2005) and the problem of spelling correction
more generally is reviewed in (Kukich, 1992).

The Google Web 1T data set (Brants and Franz,
2006), contributed by Google Inc., contains En-
glish word n-grams (from unigrams to 5-grams)
and their observed frequency counts calculated
over 1 trillion words from web page text col-
lected by Google in January 2006. The text was
tokenised following the Penn Treebank tokenisa-
tion, except that hyphenated words, dates, email
addresses and URLs are kept as single tokens.
The sentence boundaries are marked with two spe-
cial tokens <S> and </S>. Words that occurred
fewer than 200 times were replaced with the spe-
cial token <UNK>. Table 1 shows the data sizes
of the Web 1T corpus. The n-grams themselves

Table 1: Google Web 1T Data Sizes
Number of Number Size on disk

(in KB)
Tokens 1,024,908,267,229 N/A
Sentences 95,119,665,584 N/A
Unigrams 13,588,391 185,569
Bigrams 314,843,401 5,213,440
Trigrams 977,069,902 19,978,540
4-grams 1,313,818,354 32,040,884
5-grams 1,176,470,663 33,678,504

must appear at least 40 times to be included in the
Web 1T corpus1. It is expected that this data will
be useful for statistical language modeling, e.g.,

1Details of the Google Web 1T data set can be found at
www.ldc.upenn.edu/Catalog/docs/LDC2006T13/readme.txt

1241



for machine translation or speech recognition, as
well as for other uses.

In this paper, we present a method for detecting
and correcting multiple real-word spelling errors
using the Google Web 1T 3-gram data set, and a
normalized and modified version of the Longest
Common Subsequence (LCS) string matching al-
gorithm (details are in section 3.1). By multiple er-
rors, we mean that if we have n words in the input
sentence, then we try to detect and correct at most
n-1 errors. We do not try to detect and correct an
error, if any, in the first word as it is not compu-
tationally feasible to search in the Google Web 1T
3-grams while keeping the first word in the 3-gram
as a variable. Our intention is to focus on how to
improve the detection recall (the fraction of errors
correctly detected) or correction recall (the frac-
tion of errors correctly amended) while maintain-
ing the respective precisions (the fraction of de-
tections or amendments that are correct) as high as
possible. The reason behind this intention is that if
the recall for any method is around 0.5, this means
that the method fails to detect or correct around 50
percent of the errors. As a result, we can not com-
pletely rely on these type of methods, for that we
need some type of human interventions or sugges-
tions to detect or correct the rest of the undetected
or uncorrected errors. Thus, if we have a method
that can detect or correct almost 80 percent of the
errors, even generating some extra candidates that
are incorrect is more helpful to the human.

This paper is organized as follow: Section 2
presents a brief overview of the related work. Our
proposed method is described in Section 3. Eval-
uation and experimental results are discussed in
Section 4. We conclude in Section 5.

2 Related Work

Work on real-word spelling correction can roughly
be classified into two basic categories: methods
based on semantic information or human-made
lexical resources, and methods based on machine
learning or probability information. Our proposed
method falls into the latter category.

2.1 Methods Based on Semantic Information

The ‘semantic information’ approach first pro-
posed by Hirst and St-Onge (1998) and later devel-
oped by Hirst and Budanitsky (2005) detected se-
mantic anomalies, but was not restricted to check-
ing words from predefined confusion sets. This

approach was based on the observation that the
words that a writer intends are generally seman-
tically related to their surrounding words, whereas
some types of real-word spelling errors are not,
such as (using Hirst and Budanitsky’s example),
“It is my sincere hole (hope) that you will recover
swiftly.” Such “malapropisms” cause “a pertur-
bation of the cohesion (and coherence) of a text.”
Hirst and Budanitsky (2005) use semantic distance
measures in WordNet (Miller et al., 1993) to de-
tect words that are potentially anomalous in con-
text - that is, semantically distant from nearby
words; if a variation in spelling results in a word
that was semantically closer to the context, it is
hypothesized that the original word is an error (a
“malapropism”) and the closer word is its correc-
tion.

2.2 Methods Based on Machine Learning
Machine learning methods are regarded as lexical
disambiguation tasks and confusion sets are used
to model the ambiguity between words. Normally,
the machine learning and statistical approaches
rely on pre-defined confusion sets, which are sets
(usually pairs) of commonly confounded words,
such as {their, there, they’re} and {principle, prin-
cipal}. The methods learn the characteristics of
typical context for each member of the set and de-
tect situations in which one member occurs in con-
text that is more typical of another. Such meth-
ods, therefore, are inherently limited to a set of
common, predefined errors, but such errors can in-
clude both content and function words. Given an
occurrence of one of its confusion set members,
the spellchecker’s job is to predict which mem-
ber of that confusion set is the most appropriate in
the context. Golding and Roth (1999), an exam-
ple of a machine-learning method, combined the
Winnow algorithm with weighted-majority voting,
using nearby and adjacent words as features. An-
other example of a machine-learning method is
that of Carlson et al. (2001).

2.3 Methods Based on Probability
Information

Mays et al. (1991) proposed a statistical method
using word-trigram probabilities for detecting and
correcting real-word errors without requiring pre-
defined confusion sets. In this method, if the
trigram-derived probability of an observed sen-
tence is lower than that of a sentence obtained by
replacing one of the words with a spelling varia-
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tion, then we hypothesize that the original is an
error and the variation is what the user intended.

Wilcox-O’Hearn et al. (2008) analyze the ad-
vantages and limitations of Mays et al. (1991)’s
method, and present a new evaluation of the al-
gorithm, designed so that the results can be com-
pared with those of other methods, and then con-
struct and evaluate some variations of the algo-
rithm that use fixed-length windows. They con-
sider a variation of the method that optimizes over
relatively short, fixed-length windows instead of
over a whole sentence (except in the special case
when the sentence is smaller than the window),
while respecting sentence boundaries as natural
breakpoints. To check the spelling of a span of
d words requires a window of length d+4 to ac-
commodate all the trigrams that overlap with the
words in the span. The smallest possible window
is therefore 5 words long, which uses 3 trigrams
to optimize only its middle word. They assume
that the sentence is bracketed by twoBoS and two
EoS markers (to accommodate trigrams involving
the first two and last two words of the sentence).
The window starts with its left-hand edge at the
first BoS marker, and the Mays et al. (1991)’s
method is run on the words covered by the tri-
grams that it contains; the window then moves d
words to the right and the process repeats until all
the words in the sentence have been checked. As
Mays et al. (1991)’s algorithm is run separately in
each window, potentially changing a word in each,
Wilcox-O’Hearn et al. (2008)’s method as a side-
effect also permits multiple corrections in a single
sentence.

Wilcox-O’Hearn et al. (2008) show that
the trigram-based real-word spelling-correction
method of Mays et al. (1991) is superior in per-
formance to the WordNet-based method of Hirst
and Budanitsky (2005), even on content words
(“malapropisms”), especially when supplied with
a realistically large trigram model. Wilcox-
O’Hearn et al. (2008) state that their attempts to
improve the method with smaller windows and
with multiple corrections per sentence were not
successful, because of excessive false positives.

Verberne (2002) proposed a trigram-based
method for real-word errors without explicitly us-
ing probabilities or even localizing the possible er-
ror to a specific word. This method simply as-
sumes that any word trigram in the text that is
attested in the British National Corpus (Burnard,

2000) is correct, and any unattested trigram is a
likely error. When an unattested trigram is ob-
served, the method then tries the spelling varia-
tions of all words in the trigram to find attested
trigrams to present to the user as possible correc-
tions. The evaluation of this method was carried
out on only 7100 words of the Wall Street Journal
corpus, with 31 errors introduced (i.e., one error
in every approximately 200 words) obtaining a re-
call of 0.33 for correction, a precision of 0.05 and
a F-measure of 0.086.

3 Proposed Method

The proposed method first tries to determine some
probable candidates and then finds the best one
among the candidates or sorts them based on some
weights. We consider a string similarity function
and a normalized frequency value function in our
method. The following sections present a detailed
description of each of these functions followed by
the procedure to determine some probable candi-
dates along with the procedure to sort the candi-
dates.

3.1 Similarity between Two Strings

We use the longest common subsequence (LCS)
(Allison and Dix, 1986) measure with some nor-
malization and small modifications for our string
similarity measure. We use the same three differ-
ent modified versions of LCS that we (Islam and
Inkpen, 2008) used, along with another modified
version of LCS, and then take a weighted sum of
these2. Kondrak (2005) showed that edit distance
and the length of the longest common subsequence
are special cases of n-gram distance and similarity,
respectively. Melamed (1999) normalized LCS by
dividing the length of the longest common subse-
quence by the length of the longer string and called
it longest common subsequence ratio (LCSR). But
LCSR does not take into account the length of the
shorter string which sometimes has a significant
impact on the similarity score.

Islam and Inkpen (2008) normalized the longest
common subsequence so that it takes into account
the length of both the shorter and the longer string
and called it normalized longest common subse-

2We (Islam and Inkpen, 2008) use modified versions be-
cause in our experiments we obtained better results (precision
and recall) for schema matching on a sample of data than
when using the original LCS, or other string similarity mea-
sures.
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quence (NLCS) which is:

v1 = NLCS(si, sj) =
len(LCS(si, sj))

2

len(si)× len(sj)
(1)

While in classical LCS, the common subse-
quence needs not be consecutive, in spelling cor-
rection, a consecutive common subsequence is im-
portant for a high degree of matching. We (Is-
lam and Inkpen, 2008) used maximal consecutive
longest common subsequence starting at charac-
ter 1, MCLCS1 and maximal consecutive longest
common subsequence starting at any character n,
MCLCSn. MCLCS1 takes two strings as input
and returns the shorter string or maximal consec-
utive portions of the shorter string that consecu-
tively match with the longer string, where match-
ing must be from first character (character 1) for
both strings. MCLCSn takes two strings as in-
put and returns the shorter string or maximal con-
secutive portions of the shorter string that con-
secutively match with the longer string, where
matching may start from any character (char-
acter n) for both of the strings. We normal-
ized MCLCS1 and MCLCSn and called it nor-
malized MCLCS1 (NMCLCS1) and normalized
MCLCSn (NMCLCSn), respectively.

v2 =NMCLCS1(si, sj) =
len(MCLCS1(si, sj))

2

len(si)× len(sj)
(2)

v3 =NMCLCSn(si, sj) =
len(MCLCSn(si, sj))

2

len(si)× len(sj)
(3)

Islam and Inkpen (2008) did not consider consecu-
tive common subsequences ending at the last char-
acter, though MCLCSn sometimes covers this,
but not always. We argue that the consecutive
common subsequence ending at the last character
is as significant as the consecutive common sub-
sequence starting at the first character. So, we
introduce the maximal consecutive longest com-
mon subsequence ending at the last character,
MCLCSz (Algorithm 1). Algorithm 1, takes two
strings as input and returns the shorter string or the
maximal consecutive portions of the shorter string
that consecutively matches with the longer string,
where matching must end at the last character for
both strings. We normalize MCLCSz and call it
normalized MCLCSz (NMCLCSz).

v4 =NMCLCSz(si, sj) =
len(MCLCSz(si, sj))

2

len(si)× len(sj)
(4)

We take the weighted sum of these individual
values v1, v2, v3, and v4 to determine string simi-
larity score, where α1, α2, α3, α4 are weights and
α1 +α2 +α3 +α4 = 1. Therefore, the similarity
of the two strings, S ∈ [0, 1] is:

S(si, sj) = α1v1 + α2v2 + α3v3 + α4v4 (5)

We heuristically set equal weights for our ex-
periments3. Theoretically, v3 ≥ v2 and v3 ≥ v4.
To give an example, consider si = albastru and
sj = alabasteru, then
LCS(si, sj) = albastru

MCLCS1(si, sj) = al

MCLCSn(si, sj) = bast

MCLCSz(si, sj) = ru

NLCS(si, sj) = 82/(8× 10) = 0.8
NMCLCS1(si, sj) = 22/(8× 10) = 0.05
NMCLCSn(si, sj) = 42/(8× 10) = 0.2
NMCLCSz(si, sj) = 22/(8× 10) = 0.05

The string similarity, S = α1v1+α2v2+α3v3+
α4v4 = 0.25× 0.8 + 0.25× 0.05 + 0.25× 0.2 +
0.25× 0.05 = 0.275

3.2 Normalized Frequency Value

We determine the normalized frequency value of
each candidate word for a single position with re-
spect to all other candidates for the same position.
If we find n replacements of a word wi which are
{wi1, wi2, · · · , wij , · · · , win}, and their frequen-
cies {fi1, fi2, · · · , fij , · · · , fin}, where fij is the
frequency of a 3-gram (where any candidate word
wij is a member of the 3-gram), then we determine
the normalized frequency value of any candidate
word wij , represented as F (wij) ∈ (0, 1], as the
frequency of the 3-gram havingwij over the maxi-
mum frequency among all the candidate words for
that position:

F (wij) =
fij

max(fi1, fi2, · · · , fij , · · · , fin)
(6)

3.3 Determining Candidate Words

Our task is to correct real-word spelling error
from an input text using Google Web 1T 3-gram
data set. Let us consider an input text W which

3We use equal weights in several places in this paper in
order to keep the system unsupervised. If development data
would be available, we could adjust the weights.
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Algorithm 1: MCLCSz ( Maximal Consec-
utive LCS ending at the last character)

input : si, sj /* si and sj are input
strings where |si| ≤ |sj | */

output: str /* str is the Maximal
Consecutive LCS ending at
the last character */

str ←NULL1

c← 12

while |si| ≥ c do3

x← SubStr(si,−c, 1) /* returns4

cth character of si from the
end */
y ← SubStr(sj ,−c, 1) /* returns5

cth character of sj from the
end */
if x = y then6

str ← SubStr(si,−c, c)7

else8

return str9

end10

increment c11

end12

after tokenization4 has m words, i.e., W =
{w1, w2, . . . , wm}. Our method aims to correct
m-1 spelling errors, for all m-1 word positions,
except for the first word position, as we do not try
to correct the first word. We use a slight differ-
ent way to correct the first word (i.e., w2) and the
last word (i.e., wm) among those m-1 words, than
for the rest of the words. First, we discuss how
we find the candidates for a word (say wi, where
2<i<m) which is not either w2 or wm. Then, we
discuss the procedure to find the candidates for ei-
ther w2 or wm. Our method could have worked
for the first word too. We did not do it here due

4We need to tokenize the input sentence to make the 3-
grams formed using the tokens returned after the tokeniza-
tion consistent with the Google 3-grams. The input sentence
is tokenized in a manner similar to the tokenization of the
Wall Street Journal portion of the Penn Treebank. Notable
exceptions include the following:

- Hyphenated word are usually separated, and hyphen-
ated numbers usually form one token.

- Sequences of numbers separated by slashes (e.g., in
dates) form one token.

- Sequences that look like urls or email addresses form
one token.

to efficiency reasons. Google 3-grams are sorted
based on the first word, then the second word, and
so on. Based on this sorting, all Google 3-grams
are stored in 97 different files. All the 97 Google
3-gram files could have been needed to access a
single word, instead of accessing just one 3-gram
file as we do for any other words. This is because
when the first word needs to be corrected, it might
be in any file among those 97 Google 3-gram files.
No error appears in the first position among 1402
inserted malapropisms. The errors start appearing
from the second position till the last position.

3.3.1 Determining Candidate Words for wi

(2 < i < m)
We use the following steps:

1. We define the term cut off frequency for word
wi or word wi+1 as the frequency of the 3-
gram wi−1 wi wi+1 in the Google Web 1T 3-
grams, if the said 3-gram exists. Otherwise,
we set the cut off frequency of wi as 0. The
intuition behind using the cut off frequency
is the fact that, if the word is misspelled,
then the correct one should have a higher fre-
quency than the misspelled one. Thus, using
the cut off frequency, we isolate a large num-
ber of candidates that we do not need to pro-
cess.

2. We find all the 3-grams (where only wi

is changed while wi−1 and wi+1 are un-
changed) having frequency greater than the
cut off frequency of wi (determined in
step 1). Let us consider that we find
n replacements of wi which are R1 =
{wi1, wi2, · · · , win} and their frequencies
F1 = {fi1, fi2, · · · , fin} where fij is the fre-
quency of the 3-gram wi−1 wij wi+1.

3. We determine the cut off frequency for word
wi−1 or word wi as the frequency of the 3-
gram wi−2 wi−1 wi in the Google Web 1T 3-
grams, if the said 3-gram exists. Otherwise,
we set the cut off frequency of wi as 0.

4. We find all the 3-grams (where only wi

is changed while wi−2 and wi−1 are un-
changed) having frequency greater than the
cut off frequency of wi (determined in
step 3). Let us consider that we find
n replacements of wi which are R2 =
{wi1, wi2, · · · , win} and their frequencies
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F2 = {fi1, fi2, · · · , fin} where fij is the fre-
quency of the 3-gram wi−2 wi−1 wij .

5. For each wij ∈ R1, we calculate the string
similarity between wij and wi using equation
(5) and then assign a weight using the follow-
ing equation (7) only to the words that return
the string similarity value greater than 0.5.

weight = βS(wi, wij)+(1−β)F (wij) (7)

Equation (7) is used to ensure a balanced
weight between the string similarity function
and the normalized frequency value function
where β refers to how much importance we
give to the string similarity function with re-
spect to the normalized frequency value func-
tion5.

6. For each wij ∈ R2, we calculate the string
similarity between wij and wi using equa-
tion (5), and then assign a weight using the
equation (7) only to the words that return the
string similarity value greater than 0.5.

7. We sort the words found in step 5 and in step
6 that were given weights, if any, in descend-
ing order by the assigned weights and keep
only one word as candidate word6.

3.3.2 Determining Candidate Words for w2

We use the following steps:

1. We determine the cut off frequency for word
w2 as the frequency of the 3-gram w1 w2 w3

in the Google Web 1T 3-grams, if the said
3-gram exists. Otherwise, we set the cut off
frequency of w2 as 0.

2. We find all the 3-grams (where only w2 is
changed while w1 and w3 are unchanged)
having frequency greater than the cut off fre-
quency of w2 (determined in step 1). Let us
consider that we find n replacements of w2

which are R1 = {w21, w22, · · · , w2n}, and
their frequencies F1 = {f21, f22, · · · , f2n},

5We give more importance to string similarity function
with respect to frequency value function throughout the sec-
tion of ‘determining candidate words’ to have more candidate
words so that the chance of including the target word into the
set of candidate words gets higher. For this reason, we heuris-
tically set β=0.85 in equation (7) instead of setting β=0.5.

6Sometimes the top candidate word might be either a plu-
ral form or a past participle form of the original word. Or
even it might be a high frequency function word (e.g., the).
We omit these type of words from the candidacy.

where f2j is the frequency of the 3-gram w1

w2j w3.

3. For each w2j ∈ R1, we calculate the string
similarity between w2j and w2 using equa-
tion (5), and then assign a weight using the
following equation only to the words that re-
turn the string similarity value greater than
0.5.

weight = βS(w2, w2j) + (1− β)F (w2j)

4. We sort the words found in step 3 that were
given weights, if any, in descending order by
the assigned weights and keep only one word
as candidate word.

3.3.3 Determining Candidate Words for wm

We use the following steps:

1. We determine the cut off frequency for word
wm as the frequency of the 3-gram wm−2

wm−1 wm in the Google Web 1T 3-grams,
if the said 3-gram exists. Otherwise, we set
the cut off frequency of wm as 0.

2. We find all the 3-grams (where only wm

is changed while wm−2 and wm−1 are un-
changed) having frequency greater than the
cut off frequency of wm (determined in
step 1). Let us consider that we find
n replacements of wm which are R2 =
{wm1, wm2, · · · , wmn} and their frequencies
F2 = {fm1, fm2, · · · , fmn}, where fmj is
the frequency of the 3-gram wm−2 wm−1

wmj .

3. For each wmj ∈ R2, we calculate the string
similarity between wmj and wm using equa-
tion (5) and then assign a weight using the
following equation only to the words that re-
turn the string similarity value greater than
0.5.

weight = βS(wm, wmj) + (1− β)F (wmj)

4. We sort the words found in step 3 that were
given weights, if any, in descending order by
the assigned weights and keep only one word
as the candidate word.
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4 Evaluation and Experimental Results

We used as test data the same data that Wilcox-
O’Hearn et al. (2008) used in their evaluation of
Mays et al. (1991) method, which in turn was a
replication of the data used by Hirst and St-Onge
(1998) and Hirst and Budanitsky (2005) to evalu-
ate their methods.

The data consisted of 500 articles (approxi-
mately 300,000 words) from the 1987−89 Wall
Street Journal corpus, with all headings, identi-
fiers, and so on removed; that is, just a long stream
of text. It is assumed that this data contains no er-
rors; that is, the Wall Street Journal contains no
malapropisms or other typos. In fact, a few typos
(both non-word and real-word) were noticed dur-
ing the evaluation, but they were small in number
compared to the size of the text.

Malapropisms were randomly induced into this
text at a frequency of approximately one word in
200. Specifically, any word whose base form was
listed as a noun in WordNet (but regardless of
whether it was used as a noun in the text; there was
no syntactic analysis) was potentially replaced by
any spelling variation found in the lexicon of the
ispell spelling checker7. A spelling variation was
defined as any word with an edit distance of 1 from
the original word; that is, any single-character in-
sertion, deletion, or substitution, or the transposi-
tion of two characters, that results in another real
word. Thus, none of the induced malapropisms
were derived from closed-class words, and none
were formed by the insertion or deletion of an
apostrophe or by splitting a word. The data con-
tained 1402 inserted malapropisms.

Because it had earlier been used for evaluat-
ing Mays et al. (1991)’s trigram method, which
operates at the sentence level, the data set had
been divided into three parts, without regard
for article boundaries or text coherence: sen-
tences into which no malapropism had been in-
duced; the original versions of the sentences
that received malapropisms; and the malapropized
sentences. In addition, all instances of num-
bers of various kinds had been replaced by tags
such as <INTEGER>, <DOLLAR VALUE>,

7Ispell is a fast screen-oriented spelling checker that
shows you your errors in the context of the original file, and
suggests possible corrections when it can figure them out.
The original was written in PDP-10 assembly in 1971, by
R. E. Gorin. The C version was written by Pace Willisson
of MIT. Geoff Kuenning added the international support and
created the current release.

and <PERCENTAGE VALUE>. Actual (ran-
dom) numbers or values were restored for these
tags. Some spacing anomalies around punctuation
marks were corrected. A detailed description of
this data can be found in (Hirst, 2008; Wilcox-
O’Hearn et al., 2008).

SUCCESSFUL CORRECTION:
The Iran revelations were particularly disturbing

to the Europeans because they came on the heels
of the Reykjavik summit between President Rea-
gan and Soviet reader → leader [leader] Mikhail
Gorbachev.

Even the now sainted Abraham Lincoln was of-
ten reviled while in officer→ office [office], some-
times painted by cartoonists and editorial writers
as that baboon in the White House.
FALSE POSITIVE:
· · · by such public displays of interest in Latinos
→ Latin [Latinos], many undocumented · · ·

The southeast Asian nation was one reported
contributor → contribution [contributor] to the
Nicaraguans.
FALSE NEGATIVE:

Kevin Mack, Geldermann president and chief
executive officer, didn’t return calls for comment
on the Clayton purchaser [purchase].

U.S. manufactures [manufacturers], in short,
again are confronting a ball game in which they
will be able to play.
TRUE POSITIVE DETECTION, FALSE POSI-
TIVE CORRECTION:

Hawkeye also is known to rear → reader [fear]
that a bankruptcy-law filing by the parent com-
pany, which theoretically shouldn’t affect the op-
erations of its member banks, would spark runs on
the banks that could drag down the whole entity.

The London Daily News has quoted sources
saying as many as 23 British mercenaries were en-
listed by KMS to lid→ slide [aid] the Contras.

Table 2: Examples of successful and unsuccessful
corrections. Italics indicate observed word, arrow
indicates correction, square brackets indicate in-
tended word.

Some examples of successful and unsuccessful
corrections using our proposed method are shown
in Table 2.

Table 3 shows our method’s results on the de-
scribed data set compared with the results for the
trigram method of Wilcox-O’Hearn et al. (2008)
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Detection correction
R P F1 R P F1

Lexical cohesion
(Hirst and Budanitsky, 2005)

0.306 0.225 0.260 0.281 0.207 0.238
Trigrams

(Wilcox-O’Hearn et al., 2008)
0.544 0.528 0.536 0.491 0.503 0.497

Multiple 3-grams
0.890 0.445 0.593 0.763 0.381 0.508

Table 3: A comparison of recall, precision, and F1

score for three methods of malapropism detection
and correction on the same data set.

and the lexical cohesion method of Hirst and Bu-
danitsky (2005). The data shown here for tri-
gram method are not from (Wilcox-O’Hearn et al.,
2008), but rather are later results following some
corrections reported in (Hirst, 2008). We have not
tried optimizing our adjustable parameters: β and
αs, because the whole data set was used as test-
ing set by the other methods we compare with. To
keep the comparison consistent, we did not use
any portion of the data set for training purpose.
Having optimized parameters could lead to a bet-
ter result. The performance is measured using Re-
call (R), Precision (P ) and F1:

R =
true positives

true positives + false negatives

P =
true positives

true positives + false positives

F1 =
2PR
P +R

The fraction of errors correctly detected is the de-
tection recall and the fraction of detections that
are correct is the detection precision. Again, the
fraction of errors correctly amended is the correc-
tion recall and the fraction of amendments that
are correct is the correction precision. To give
an example, consider a sentence from the data set:
“The Philippine president, in her commencement
address at the academy, complained that the U.S.
was living→ giving [giving] advice instead of the
aid → said [aid] it pledged.”, where italics indi-
cate the observed word, arrow indicates the correc-
tion and the square brackets indicate the intended
word. The detection recall of this sentence is 1.0
and the precision is 0.5. The correction recall of
this sentence is 1.0 and the precision is 0.5. For

both cases, the F1 score is 0.667.
We loose some precision because our method

tries to detect and correct errors for all the words
(except the first word) in the input sentence, and,
as a result, it generates more false positives than
the other methods. Even so, we get better F1

scores than the other competing methods. Ac-
cepting 8.3 percents extra incorrect detections, we
get 34.6 percents extra correct detections of errors,
and similarly, accepting 12.2 percents extra incor-
rect amendments, we get 27.2 percents extra cor-
rect amendments of errors compared with the tri-
grams method (Wilcox-O’Hearn et al., 2008)8.

5 Conclusion

The Google 3-grams proved to be very useful in
detecting real-word errors, and finding the correc-
tions. We did not use the 4-grams and 5-grams
because of data sparsity. When we tried with 5-
grams the results were lower than the ones pre-
sented in Section 4. Having sacrificed a bit the
precision score, our proposed method achieves a
very good detection recall (0.89) and correction
recall (0.76). Our attempts to improve the detec-
tion recall or correction recall, while maintaining
the respective precisions as high as possible are
helpful to the human correctors who post-edit the
output of the real-word spell checker. If there is
no postediting, at least more errors get corrected
automatically. Our method could also detect and
correct misspelled words, not only malapropisms,
without any modification. In future work, we plan
to extend our method to allow for deleted or in-
serted words, and to find the corrected strings in
the Google Web 1T n-grams. In this way we
will be able to correct grammar errors too. We
also plan more experiments using the 5-grams, but
backing off to 4-grams and 3-grams when needed.
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Abstract

In this paper, we present a semi-supervised
method for automatic speech act recogni-
tion in email and forums. The major chal-
lenge of this task is due to lack of labeled
data in these two genres. Our method
leverages labeled data in the Switchboard-
DAMSL and the Meeting Recorder Dia-
log Act database and applies simple do-
main adaptation techniques over a large
amount of unlabeled email and forum data
to address this problem. Our method uses
automatically extracted features such as
phrases and dependency trees, called sub-
tree features, for semi-supervised learn-
ing. Empirical results demonstrate that
our model is effective in email and forum
speech act recognition.

1 Introduction

Email and online forums are important social me-
dia. For example, thousands of emails and posts
are created daily in online communities, e.g.,
Usenet newsgroups or the TripAdvisor travel fo-
rum1, in which users interact with each other us-
ing emails/posts in complicated ways in discus-
sion threads. To uncover the rich interactions in
these email exchanges and forum discussions, we
propose to apply speech act recognition to email
and forum threads.

Despite extensive studies of speech act recogni-
tion in many areas, developing speech act recogni-
tion for online forms of conversation is very chal-
lenging. A major challenge is that emails and
forums usually have no labeled data for training
statistical speech act recognizers. Fortunately, la-
beled speech act data are available in other do-
mains (i.e., telephone and meeting conversations

∗This work was conducted during the author’s internship
at Microsoft Research Asia.

1http://tripadvisor.com/

in this paper) and large unlabeled data sets can be
collected from the Web. Thus, we focus on the
problem of how to accurately recognize speech
acts in emails and forums by making maximum
use of data from existing resources.

Recently, there are increasing interests in
speech act recognition of online text-based con-
versations. Analysis of speech acts for online
chat and instant messages and have been studied
in computer-mediated communication (CMC) and
distance learning (Twitchell et al., 2004; Nastri et
al., 2006; Rosé et al., 2008). In natural language
processing, Cohen et al. (2004) and Feng et al.
(2006) used speech acts to capture the intentional
focus of emails and discussion boards. However,
they assume that enough labeled data are available
for developing speech act recognition models.

A main contribution of this paper is that we ad-
dress the problem of learning speech act recog-
nition in a semi-supervised way. To our knowl-
edge, this is the first use of semi-supervised speech
act recognition in emails and online forums. To
do this, we make use of labeled data from spo-
ken conversations (Jurafsky et al., 1997; Dhillon
et al., 2004). A second contribution is that our
model learns subtree features that constitute dis-
criminative patterns: for example, variable length
n-grams and partial dependency structures. There-
fore, our model can capture both local features
such as n-grams and non-local dependencies. In
this paper, we extend subtree pattern mining to the
semi-supervised learning problem.

This paper is structured as follows. Section 2
reviews prior work on speech act recognition and
Section 3 presents the problem statement and our
data sets. Section 4 describes a supervised method
of learning subtree features that shows the effec-
tiveness of subtree features on labeled data sets.
Section 5 proposes semi-supervised learning tech-
niques for speech act recognition and Section 6
demonstrates our method applied to email and on-
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line forum thread data. Section 7 concludes this
paper with future work.

2 Related Work

Speech act theory is fundamental to many stud-
ies in discourse analysis and pragmatics (Austin,
1962; Searle, 1969). A speech act is an illo-
cutionary act of conversation and reflects shal-
low discourse structures of language. Recent re-
search on spoken dialog processing has investi-
gated computational speech act models of human-
human and human-computer conversations (Stol-
cke et al., 2000) and applications of these mod-
els to CMC and distance learning (Twitchell et al.,
2004; Nastri et al., 2006; Rosé et al., 2008).

Our work in this paper is closely related to prior
work on email and forum speech act recognition.
Cohen et al. (2004) proposed the notion of ‘email
speech act’ for classifying the intent of an email
sender. They defined verb and noun categories
for email speech acts and used supervised learn-
ing to recognize them. Feng et al. (2006) pre-
sented a method of detecting conversation focus
based on the speech acts of messages in discus-
sion boards. Extending Feng et al. (2006)’s work,
Ravi and Kim (2007) applied speech act classifi-
cation to detect unanswered questions. However,
none of these studies have focused on the semi-
supervised speech act recognition problem and ex-
amined their methods across different genres.

The speech processing community frequently
employs two large-scale corpora for speech act
annotation: Switchboard-DAMSL (SWBD) and
Meeting Recorder Dialog Act (MRDA). SWBD is
an annotation scheme and collection of labeled di-
alog act2 data for telephone conversations (Juraf-
sky et al., 1997). The main purpose of SWBD is
to acquire stochastic discourse grammars for train-
ing better language models for automatic speech
recognition. More recently, an MRDA corpus has
been adapted from SWBD but its tag set for la-
beling meetings has been modified to better reflect
the types of interaction in multi-party face-to-face
meetings (Dhillon et al., 2004). These two corpora
have been extensively studied, e.g., (Stolcke et al.,
2000; Ang et al., 2005; Galley et al., 2004). We
also use these for our experiments.

2A dialog act is the meaning of an utterance at the level
of illocutionary force (Austin, 1962), and broadly covers the
speech act and adjacency pair (Stolcke et al., 2000). In this
paper, we use only the term ‘speech act’ for clarity.

This paper focuses on the problem of semi-
supervised speech act recognition. The goal of
semi-supervised learning techniques is to use aux-
iliary data to improve a model’s capability to rec-
ognize speech acts. The approach in Tur et al.
(2005) presented semi-supervised learning to em-
ploy auxiliary unlabeled data in call classification,
and is closely related to our work. However, our
approach uses the most discriminative subtree fea-
tures, which is particularly attractive for reducing
the model’s size. Our problem setting is closely re-
lated to the domain adaptation problem (Ando and
Zhang, 2005), i.e., we seek to obtain a model that
analyzes target domains (emails and forums) by
adapting a method that analyzes source domains
(SWBD and MRDA). Recently, this type of do-
main adaptation has become an important topic in
natural language processing.

3 Problem Definition

3.1 Problem Statement

We define speech act recognition to be the task
that, given a sentence, maps it to one of the speech
act types. Figure 1 shows two examples of our
email and forum speech act recognition. E1∼6 are
all sentences in an email message. F1∼3, F4∼5,
and F6 are three posts in a forum thread. A sen-
tence interacts alone or with others, for example,
F6 agrees with the previous post (F4∼5). To gain
insight into our work, it is useful to consider that
E2, 3 and F1, 4, 6 are summaries of two dis-
courses. In particular, F1 denotes a question and
F4 and F6 are corresponding answers. More re-
cently, using speech acts has become an appealing
approach in summarizing the discussions (Galley
et al., 2004; McKeown et al., 2007).

Next, we define speech act category based on
MRDA. Dhillon et al. (2004) included definitions
of speech acts for colloquial style interactions
(e.g., backchannel, disruption, and floorgrabber),
but these are not applicable in emails and forums.
After removing these categories, we define 12 tags
(Table 1). Dhillon et al. (2004) provides detailed
descriptions of each tag. We note that our tag set
definition is different from (Cohen et al., 2004;
Feng et al., 2006; Ravi and Kim, 2007) for two
reasons. First, prior work primarily interested in
the domain-specific speech acts, but our work use
domain-independent speech act tags. Second, we
focus on speech act recognition on the sentence-
level.
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E1: I am planning my schedule at CHI 2003 (http://www.chi2003.org/) S
E2: - will there be anything happening at the conference related to this W3C User interest group? QY
E3: I do not see anything on the program yet, but I suspect we could at least have an informal SIG S
E4: - a chance to meet others and bring someone like me up to speed on what is happening. S
E5: There will be many competing activities, so the sooner we can set this up the more likely I can attend. S
E6: Keith S
F1: If given a choice, should I choose Huangpu area, or should I choose Pudong area? QR
F2: Both location are separated by a Huangpu river, not sure which area is more convenient for sight seeing? QW
F3: Thanks in advance for reply! P
F4: Stay on the Puxi side of the Huangpu river and visit the Pudong side by the incredible tourist tunnel. AC
F5: If you stay on the Pudong side add half an hour to visit the majority of the tourist attractions. S
F6: I definitely agree with previous post. AA

Figure 1: Examples of speech act recognition in emails and online forums. Tags are defined in Table 1.

Table 1: Tags used to describe components of
speech acts

Tag Description
A Accept response

AA Acknowledge and appreciate
AC Action motivator
P Polite mechanism

QH Rhetorical question
QO Open-ended question
QR Or/or-clause question
QW Wh-question
QY Yes-no question
R Reject response
S Statement
U Uncertain response

The goal of semi-supervised speech act recogni-
tion is to learn a classifier using both labeled and
unlabeled data. We formally define our problem
as follows. Let x = {xj} be a forest, i.e., a set of
trees that represents a natural language structure,
for example, a sequence of words and a depen-
dency parse tree. We will describe this in more
detail in Section 4. Let y be a speech act. Then,
we define DL = {xi, yi}ni=1 as the set of labeled
training data, and DU = {xi}li=n+1 as the set of
unlabeled training data where l = n+m and m is
the number of unlabeled data instances. Our goal
is to find a learning method to minimize the clas-
sification errors in DL and DU .

3.2 Data Preparation

In this paper, we separate labeled (DL) and un-
labeled data (DU ). First we use SWBD3 and
MRDA4 as our labeled data. We automatically

3LDC Catalog No. LDC97S62
4http://www.icsi.berkeley.edu/∼ees/dadb/

map original annotations in SWBD and MRDA to
one of the 12 speech acts.5 Inter-annotator agree-
ment κ in both data sets is ∼ 0.8 (Jurafsky et al.,
1997; Dhillon et al., 2004). For evaluation pur-
poses, we divide labeled data into three sets: train-
ing, development, and evaluation sets (Table 2).
Of the 1,155 available conversations in the SWBD
corpus, we use 855 for training, 100 for devel-
opment, and 200 for evaluation. Among the 75
available meetings in the MRDA corpus, we ex-
clude two meetings of different natures (btr001
and btr002). Of the remaining meetings, we use
59 for training, 6 for development, and 8 for eval-
uation. Then we merge multi-segments utterances
that belong to the same speaker and then divide all
data sets into sentences.

As stated earlier, our unlabeled data consists
of email (EMAIL) and online forum (FORUM)
data. For the EMAIL set, we selected 22,391
emails from Enron data6 (discussion threads,
all documents, and calendar folders). For the FO-
RUM set, we crawled 11,602 threads and 55,743
posts from the TripAdvisor travel forum site (Bei-
jing, Shanghai, and Hongkong forums). As our
evaluation sets, we used 40 email threads of the
BC3 corpus7 for EMAIL and 100 threads selected
from the same travel forum site for FORUM. Ev-
ery sentences was automatically segmented by the
MSRA sentence boundary detector (Table 2). An-
notation was performed by two human annotators,
and inter-annotator agreements were κ = 0.79 for
EMAIL and κ = 0.73 for FORUM.

Overall performance of automatic evaluation
measures usually depends on the distribution of
tags. In both labeled and unlabeled sets, the most

5Our mapping tables are available at
http://home.postech.ac.kr/∼stardust/acl09/.

6http://www.cs.cmu.edu/∼enron/
7http://www.cs.ubc.ca/nest/lci/bc3.html
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Table 2: Number of sentences in labeled and unlabeled data
Set SWBD MRDA
Training 96,553 50,865
Development 12,299 8,366
Evaluation 24,264 10,492

Set EMAIL FORUM
Unlabeled 122,125 297,017
Evaluation 2,267 3,711

Figure 2: Distribution of speech acts in the evaluation sets. Tags are defined in Table 1.

frequent tag is the statement (S) tag (Figure 2).
Distributions of tags are similar in training and de-
velopment sets of SWBD and MRDA.

4 Speech Act Recognition

Previous work in speech act recognition used a
large set of lexical features, e.g., bag-of-words,
bigrams and trigrams (Stolcke et al., 2000; Co-
hen et al., 2004; Ang et al., 2005; Ravi and Kim,
2007). However, these methods create a large
number of lexical features that might not be nec-
essary for speech act identification. For example,
a Wh-question “What site should we use to book a
Beijing-Chonqing flight?” can be predicted by two
discriminative features, “(<s>, WRB) → QW”
and “(?, </s>) → QW” where <s> and </s>
are sentence start and end symbols, and WRB is
a part-of-speech tag that denotes a Wh-adverb.
In addition, useful features could be of various
lengths, i.e. not fixed length n-grams, and non-
adjacent. One key idea of this paper is a novel use
of subtree features to model these for speech act
recognition.

4.1 Exploiting Subtree Features
To exploit subtree features in our model, we use
a subtree pattern mining method proposed by
Kudo and Matsumoto (2004). We briefly intro-
duce this algorithm here. In Section 3.1, we de-
fined x = {xj} as the forest that is a set of trees.
More precisely, xj is a labeled ordered tree where
each node has its own label and is ordered left-
to-right. Several types of labeled ordered trees

Figure 3: Representations of tree: (a) bag-of-
words, (b) n-gram, (c) word pair, and (d) depen-
dency tree. A node denotes a word and a directed
edge indicates a parent-and-child relationship.

are possible (Figure 3). Note that S-expression
can be used instead for computation, for example
(a(b(c(d)))) for the n-gram (Figure 3(b)).
Moreover, we employ a combination of multiple
trees as the input of the subtree pattern mining al-
gorithm.

We extract subtree features from the forest set
{xi}. A subtree t is a tree if t ⊆ x. For exam-
ple, (a), (a(b)), and (b(c(d))) are subtrees
of Figure 3(b). We define the subtree feature as a
weak learner:

f(y, t,x) ,
{

+y t ⊆ x,
−y otherwise,

(1)

where we assume a binary case y ∈ Y =
{+1,−1} for simplicity. Even though the ap-
proach in Kudo and Matsumoto (2004) and ours
are simiar, there are two clear distinctions. First,
our method employs multiple tree structures, and
uses different constraints to generate subtree can-
didates. In this paper, we only restrict generating
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the dependency subtrees which should have 3 or
more nodes. Second, our method is of interest
for semi-supervised learning problems. To learn
subtree features, Kudo and Matsumoto (2004) as-
sumed supervised data {(xi, yi)}. Here, we de-
scribe the supervised learning method and will de-
scribe our semi-supervised method in Section 5.

4.2 Supervised Boosting Learning
Given training examples, we construct a ensem-
ble learner F (x) =

∑
k λkf(yk, tk,x), where λk

is a coefficient for linear combination. A final
classifier h(x) can be derived from the ensemble
learner, i.e., h(x) , sgn (F (x)). As an optimiza-
tion framework (Mason et al., 2000), the objective
of boosting learning is to find F such that the cost
of functional

C(F ) =
∑
i∈D

αiC[yiF (xi)] (2)

is minimized for some non-negative and monoton-
ically decreasing cost function C : R → R and
the weight αi ∈ R+. In this paper, we use the
AdaBoost algorithm (Schapire and Singer, 1999);
thus the cost function is defined as C(z) = e−z .

Constructing an ensemble learner requires that
the user choose a base learner, f(y, t,x), to
maximize the inner product −〈∇C(F ), f〉 (Ma-
son et al., 2000). Finding f(y, t,x) to maxi-
mize −〈∇C(F ), f〉 is equivalent to searching for
f(y, t,x) to minimize 2

∑
i:f(y,t,xi)6=yi

wi − 1,
where wi for i ∈ DL, is the empirical data dis-
tribution w(k)

i at step k. It is defined as:

w
(k)
i = αi · e−yiF (xi). (3)

From Eq. 3, a proper base learner (i.e., subtree)
can be found by maximizing weighted gain, where

gain(t, y) =
∑
i∈DL

yiwif(y, t,xi). (4)

Thus, subtree mining is formulated as the prob-
lem of finding (t̂, ŷ) = arg max

(t,y)∈X×Y
gain(t, y). We

need to search with respect to a non-monotonic
score function (Eq. 4), thus we use the monotonic
bound, gain(t, y) ≤ µ(t), where

µ(t) = max

 2
∑

wi

{i|yi=+1,t⊆xi}
−

n∑
i=1

yif(y, t,xi),

2
∑

wi

{i|yi=−1,t⊆xi}
+

n∑
i=1

yif(y, t,xi)

 . (5)

Table 3: Result of supervised learning experiment;
columns are micro-averaged F1 score with macro-
averaged F1 score in parentheses. MAXENT:
maximum entropy model; BOW: bag-of-words
model; NGRAM: n-gram model; +POSTAG,
+DEPTREE, +SPEAKER indicate that the com-
ponents were added individually onto NGRAM.
‘?’ indicates results significantly better than the
NGRAM model (p < 0.001).

Model SWBD MRDA
MAXENT 92.76 (63.54) 82.48 (57.19)
BOW 91.32 (54.47) 82.17 (55.42)
NGRAM 92.60 (58.43) 83.30 (57.53)
+POSTAG 92.69 (60.07) 83.60 (58.46)
+DEPTREE 92.67 (61.75) ?83.57 (57.45)
+SPEAKER ?92.86 (63.13) 83.40 (58.20)
ALL ?92.87 (63.77) 83.49 (59.04)

The subtree set is efficiently enumerated using a
branch-and-bound procedure based on µ(t) (Kudo
and Matsumoto, 2004).

After finding an optimal base leaner, f(ŷ, t̂,x),
we need to set the coefficient λk to form a new en-
semble, F (xi) ← F (xi) + λkf(t̂, ŷ,xi). In Ad-
aBoost, we choose

λk =
1
2

log
(

1 + gain(t̂, ŷ)
1− gain(t̂, ŷ)

)
. (6)

After K iterations, the boosting algorithm returns
the ensemble learner F (x) which consists of a set
of appropriate base learners f(y, t,x).

4.3 Evaluation on Labeled Data

We verified the effectiveness of using subtree fea-
tures on the SWBD and MRDA data sets. For
boosting learning, one typically assumes αi = 1.
In addition, the number of iterations, which relates
to the number of patterns, was determined by a
development set. We also used a one-vs.-all strat-
egy for the multi-class problem. Precision and re-
call were computed and combined into micro- and
macro-averaged F1 scores. The significance of our
results was evaluated using the McNemar paired
test (Gillick and Cox, 1989), which is based on in-
dividual labeling decisions to compare the correct-
ness of two models. All experiments were imple-
mented in C++ and executed in Windows XP on a
PC with a Dual 2.1 GHz Intel Core2 processor and
2.0 Gbyte of main memory.
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Figure 4: Comparison of different trees (SWBD)

We show that use of subtree features is ef-
fective to solve the supervised speech act recog-
nition problem. We also compared our model
with the state-of-the-art maximum entropy classi-
fier (MAXENT). We used bag-of-words, bigram
and trigram features for MAXENT, which mod-
eled 702k (SWBD) and 460k (MRDA) parameters
(i.e., patterns), and produced micro-averaged F1

scores of 92.76 (macro-averaged F1 = 63.54) for
SWBD and 82.48 (macro-averaged F1 = 57.19)
for MRDA. In contrast, our method generated ap-
proximately 4k to 5k patterns on average with sim-
ilar or greater F1 scores (Table 3); hence, com-
pared to MAXENT, our model requires fewer cal-
culations and is just as accurate.

The n-gram model (NGRAM) performed signif-
icantly better than the bag-of-words model (Mc-
Nemar test; p < 0.001) (Table 3). Unlike MAX-
ENT, NGRAM automatically selects a relevant set
of variable length n-gram features (i.e., phrase
features). To this set, we separately added two
syntax type features, part-of-speech tag n-gram
(POSTAG) and dependency parse tree (DEPTREE)
automatically parsed by Minipar8, and one dis-
course type feature, speaker n-gram (SPEAKER).
Although some micro-averaged F1 are not statisti-
cally significant between the original NGRAM and
the models that include POSTAG, DEPTREE or
SPEAKER, macro-averaged F1 values indicate that
minor classes can take advantage of other struc-
tures. For example, in the result of SWBD (Fig-
ure 4), DEPTREE and SPEAKER models help to
predict uncertain responses (U), whereas NGRAM

and POSTAG cannot do this.

5 Semi-supervised Learning

Our goal is to eventually make maximum use
of existing resources in SWBD and MRDA for

8http://www.cs.ualberta.ca/∼lindek/minipar.htm

email/forum speech act recognition. We call the
model trained on the mixed data of these two cor-
pora BASELINE. We use ALL features in con-
structing the BASELINE for the semi-supervised
experiments. While this model gave promising re-
sults using SWBD and MRDA, language used in
emails and forums differs from that used in spo-
ken conversation. For example, ‘thanx’ is an ex-
pression commonly used as a polite mechanism
in online communications. To adapt our model to
understand this type of difference between spoken
and online text-based conversations, we should in-
duce new patterns from unlabeled email and fo-
rum data. We describe here two methods of semi-
supervised learning.

5.1 Method 1: Bootstrapping

First, we bootstrap the BASELINE model using au-
tomatically predicted unlabeled examples. How-
ever, using all of the unlabeled data results in noisy
models; therefore filtering or selecting data is very
important in practice. To this end, we only select
similar examples by criterion, d(xi,xj) < r or k
nearest neighbors where xi ∈ DL and xj ∈ DU .
In practice, r or k are fixed. In our method, exam-
ples are represented by trees; hence we use a “tree
edit distance” for calculating d(xi,xj) (Shasha
and Zhang, 1990). Selected examples are evalu-
ated using BASELINE, and using subtree pattern
mining runs on the augmented data (i.e. unla-
beled). We call this method BOOTSTRAP.

5.2 Method 2: Semi-supervised Boosting

Our second method is based on a principle of
semi-supervised boosting learning (Bennett et al.,
2002). Because we have no supervised guidance
for DU , our objective functional to find F is de-
fined as:

C(F ) =
∑
i∈DL

αiC[yiF (xi)] +
∑

i∈DU
βiC[|F (xi)|]

(7)

This cost functional is non-differentiable. To
solve it, we introduce pseudo-labels ỹ where ỹ =
sgn(F (x)) and |F (x)| = ỹF (x). Using the same
derivation in Section 4.2, we obtain the following

1255



gain function and update rules:

gain(t, y) =
∑
i∈DL

yiwif(y, t,xi)

+
∑

i∈DU
ỹiwif(y, t,xi), (8)

wi =

{
αi · e−yiF (xi) i ∈ DL,

βi · e−ỹiF (xi) i ∈ DU .
(9)

Intuitively, an unlabeled example that has a
high-confidence |F (x)| at the current step, will
probably receive more weight at the next step.
That is, similar instances become more impor-
tant when learning and mining subtrees. This
semi-supervised boosting learning iteratively gen-
erates pseudo-labels for unlabeled data and finds
the value of F that minimizes training errors (Ben-
nett et al., 2002). Also, the algorithm infers new
features from unlabeled data, and these features
are iteratively re-evaluated by the current ensem-
ble learner. We call this method SEMIBOOST.

6 Experiment

6.1 Setting
We describe specific settings used in our exper-
iment. Because we have no development set,
we set the maximum number of iterations K at
10,000. At most K patterns can be extracted, but
this seldom happens because duplicated patterns
are merged. Typical settings for semi-supervised
boosting are αi = 1 and βi = 0.5, that is, we
penalize the weights for unlabeled data.

For efficiency, BASELINE model used 10% of
the SWBD and MRDA data, selected at random.
We observed that this data set does not degrade the
results of semi-supervised speech act recognition.
For BOOTSTRAP and SEMIBOOST, we selected
k = 100 nearest neighbors of unlabeled exam-
ples for each labeled example using tree edit dis-
tance, and then used 24,625 (SWBD) and 54,961
(MRDA) sentences for the semi-supervised set-
ting.

All trees were combined as described in Section
4.3 (ALL model). In EMAIL and FORUM data we
added different types of discourse features: mes-
sage type (e.g., initial or reply posts), authorship
(e.g., an identification of 2nd or 3rd posts written
by the same author), and relative position of a sen-
tence. In Figure 1, for example, F1∼3 is an initial
post, and F4∼5 and F6 are reply posts. Moreover,
F1, F4, and F6 are the first sentence in each post.

Table 4: Results of speech act recognition on on-
line conversations; columns are micro-averaged
F1 score with macro-averaged scores in parenthe-
ses. ‘?’ indicates that the result is significantly bet-
ter than BASELINE (p < 0.001).

Model EMAIL FORUM
BASELINE 78.87 (37.44) 78.93 (35.57)
BOOTSTRAP ?83.11 (44.90) 79.09 (44.38)
SEMIBOOST ?82.80 (44.64) ?81.76 (44.21)
SUPERVISED 90.95 (75.71) 83.67 (40.68)

These features do not occur in SWBD or MRDA
because these are utterance-by-utterance conver-
sations.

6.2 Result and Discussion

First, we show that our method of semi-supervised
learning can improve modeling of the speech
act of emails and forums. As our baseline,
BASELINE achieved a micro-averaged F1 score
of ∼ 79 for both data sets. This implies that
SWBD and MRDA data are useful for our prob-
lem. Using unlabeled data, semi-supervised meth-
ods BOOTSTRAP and SEMIBOOST perform bet-
ter than BASELINE (Table 4; Figure 5). To verify
our claim, we evaluated the supervised speech act
recognition on EMAIL and FORUM evaluation
sets with 5-fold cross validation (SUPERVISED in
Table 4). In particular, our semi-supervised speech
act recognition is competitive with the supervised
model in FORUM data.

The difference in performance between super-
vised results in EMAIL and FORUM seems to
indicate that the latter is a more difficult data
set. However, our SEMIBOOST method were able
to come close to the supervised FORUM results
(81.76 vs. 83.67). This is also close to the range of
supervised MRDA data set (F1 = 83.49 for ALL,
Table 3). Moreover, we analyzed a main reason of
why transfer results were competitive in the FO-
RUM but not in the EMAIL. This might be due
to the mismatch in the unlabeled data, that is, we
used different email collections, the BC3 corpus
(email communication of W3C on w3.org sites),
for evaluation while used Enron data for adaption.
We also conjecture that the discrepancy between
EMAIL and FORUM is probably due to the more
heterogeneous nature of the FORUM data where
anyone can post and reply while EMAIL (Enron or
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(a) EMAIL (b) FORUM

Figure 5: Result of the semi-supervised learning method

BC3) might have a more fix set of participants.
The improvement of less frequent tags is promi-

nent, for example 25% for action motivator (AC),
40% for polite mechanism (P), and 15% for rhetor-
ical question (QR) error rate reductions were
achieved in FORUM data (Figure 5(b)). There-
fore, the semi-supervised learning method is more
effective with small amounts of labeled data (i.e.,
less frequent annotations). We believe that despite
their relative rarity, these speech acts are more im-
portant than the statement (S) in some applica-
tions, e.g., summarization.

Next, we give a qualitative analysis for better
interpretation of our problem and results. Due to
limited space, we focus on FORUM data, which
can potentially be applied to many applications.
Of the top ranked patterns extracted by SEMI-
BOOST (Figure 6(a)), subtree patterns of n-gram,
part-of-speech, dependency parse trees are most
discriminative. The patterns from unlabeled data
have relatively lower ranks, but this is not surpris-
ing. This indicates that BASELINE model provides
the base knowledge for semi-supervised speech
act recognition. Also, unlabeled data for EMAIL
and FORUM help to induce new patterns or ad-
just the model’s parameters. As a result, the semi-
supervised method is better than the BASELINE

when an identical number of patterns is modeled
(Figure 6(b)). For this result, we conclude that our
method successfully transfers knowledge from a
source domain (i.e., SWBD and MRDA) to a tar-
get domain (i.e., EMAIL and FORUM); hence it
can be a solution to the domain adaption problem.

Finally, we determine the main reasons for error
(in SEMIBOOST), to gain insights that may allow
development of better models in future work (Fig-
ure 6(c)). We sorted speech act tags by their se-
mantics and partitioned the confusion matrix into
question type (Q*) and statement, which are two

high-level speech acts. Most errors occur in the
similar categories, that is, language usage in ques-
tion discourse is definitely distinct from that in
statement discourse. From this analysis, we be-
lieve that more advanced techniques (e.g. two-
stage classification and learning with hierarchy-
augmented loss) can improve our model.

7 Conclusion

Despite the increasing interest in online text-based
conversations, no study to date has investigated
semi-supervised speech act recognition in email
and forum threads. This paper has addressed the
problem of learning to recognize speech acts us-
ing labeled and unlabeled data. We have also con-
tributed to the development of a novel applica-
tion of boosting subtree mining. Empirical results
have demonstrated that semi-supervised learning
of speech act recognition with subtree features im-
proves the performance in email and forum data
sets. An attractive future direction is to exploit
prior knowledge for semi-supervised speech act
recognition. Druck et al. (2008) described gen-
eralized expectation criteria in which a discrimi-
native model can employ the labeled features and
unlabeled instances. Using prior knowledge, we
expect that our model will effectively learn useful
patterns from unlabeled data.

As work progresses on analyzing online text-
based conversations such as emails, forums, and
online chats, the importance of developing models
for discourse without annotating much new data
will become more important. In the future, we
plan to explore other related problems such as ad-
jacency pairs (Levinson, 1983) and discourse pars-
ing (Soricut and Marcu, 2003) for large-scale on-
line forum data.
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Abstract 

This paper employs morphological struc-
tures and relations between sentence seg-
ments for opinion analysis on words and 
sentences.  Chinese words are classified 
into eight morphological types by two 
proposed classifiers, CRF classifier and 
SVM classifier.  Experiments show that 
the injection of morphological information 
improves the performance of the word po-
larity detection.  To utilize syntactic struc-
tures, we annotate structural trios to repre-
sent relations between sentence segments.  
Experiments show that considering struc-
tural trios is useful for sentence opinion 
analysis.  The best f-score achieves 0.77 
for opinion word extraction, 0.62 for opin-
ion word polarity detection, 0.80 for opin-
ion sentence extraction, and 0.54 for opin-
ion sentence polarity detection. 

1 Introduction 

Sentiment analysis has attracted much attention 
in recent years because a large scale of subjective 
information is disseminated through various plat-
forms on the web.  Sentiment information can be 
applied to a wide variety of fields, including 
product recommendation, review summarization, 
public polling, and so on. 

Opinion dictionaries are important resources 
for identifying subjective information.  Several 
approaches were proposed to collect such re-
sources.  Wiebe (2000) learned subjective adjec-
tives from corpora.  Takamura et al. (2005) ex-
tracted semantic orientations of words.  Ku et al. 
(2007) measured sentiment degrees of Chinese 
words by averaging the sentiment scores of the 

composing characters.  When the opinion words 
are available, the polarities of sentences and 
documents can be determined by them.  Riloff 
and Wiebe (2003) learned the extraction patterns 
for subjective expressions.  Kim and Hovy (2004) 
found the polarity of subjective expressions.  
Pang et al. (2002) and Dave et al. (2003) ex-
plored various techniques at document level. 

Morphological information has been widely 
used in classifying words, telling the meanings, 
and doing other in-depth analysis (Tzeng and 
Chen, 2002).  However, morphological informa-
tion was seldom applied either in Chinese opin-
ion extraction, or in solving the coverage prob-
lem of opinion dictionary.  Instead of bag-of-
characters approach (Ku et al., 2007), this paper 
employs morphological structures of words to 
extract opinion words.   

Relations between sentence segments are also 
defined by linguistics in the Chinese language.  
These are similar to morphological structures 
between Chinese characters. Based on parsing 
trees of sentences, we identify these relations and 
utilize them for opinion analysis on sentences. 

As the experimental corpus, some researchers 
managed to generate annotated materials and 
gold standards under many constraints.  Ku set a 
standard for generating final answers from anno-
tations of multiple annotators (Ku et al., 2007), 
and Somasundaran annotated discourse informa-
tion from meeting dialogs to train a sentiment 
model (Somasundaran et al., 2007).  For multi-
lingual issues, researchers concerned mainly 
about the applicability of corpus and algorithms 
from the native language to foreign languages 
(Banea et al., 2008; Bautin et al., 2008). 

Several opinion analysis systems have been 
developed so far.  OASYS (Cesarano et al., 2007) 
and CopeOpi (Ku et al., 2007) allow users input 
their queries and select preferred data sources, 
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and then track opinions in a time zone.  For both 
systems, extracting opinions is the main focus, 
while holders and targets are identified implicitly 
when retrieving relevant documents.  Carenini’s 
team proposed a graphical user interface for 
evaluative texts (2006), in which color blocks 
were used to present the evaluations for compo-
nents of products.  Fair News Reader, a Japanese 
news Web system, incorporates sentiment infor-
mation insensibly in an interesting way (Kawai 
et al., 2007).   It provides readers “balanced” re-
ports by analyzing the sentiment in news articles 
which readers have read, and suggests them new 
articles according to the analysis results.  It leads 
the application of opinion analysis to the direc-
tion of personalization. 

2 Chinese Morphological Structures 

In the Chinese language, a word is composed of 
one or more Chinese characters, and its meaning 
can be interpreted in terms of its composite char-
acters.  The morphological structures of Chinese 
words are formulated by three major processes in 
linguistics: compounding, affixation, and conver-
sion.  Compounding is a complex word-
formation process.  In most cases, two or more 
morphemes together are formed as a lexical item 
by this process.  Affixation is a morphological 
process, by which grammatical or lexical infor-
mation is added to a base form.  By the conver-
sion process, a word is changed from one part of 
speech into another without the addition or dele-
tion of any morphemes.   

Compounding is the most productive way to 
construct a Chinese word.  Mostly, a Chinese 
character itself carries meanings, so that a mor-
pheme can function as a character and has its 
own part of speech.  In some cases, a Chinese 
morpheme may carry no specific meaning and 
just makes a word more readable.  Cheng and 
Tian (1992) divided Chinese words into five 
morphological types based on the relations be-
tween the morphemes in compounding words.  
(1) Parallel Type: Two morphemes play coordi-
nate roles in a word.  For example, the mor-
phemes “財” (money) and “富” (wealth) are par-
allel in the word “財富” (money-wealth). 
 

(2) Substantive-Modifier Type: A modified 
morpheme follows a modifying morpheme.  For 
example, the morpheme “哭” (cry) is modified 
by “痛” (bitterly) in the word ”痛哭” (bitterly-
cry). 
 

(3) Subjective-Predicate Type: One morpheme 
is an expresser and the other one is described.  
The structure is like a subject-verb sentence con-
densed in one word.  For example, the morpheme 
“心” (heart) is a subject of the predicate “疼” 
(hurt) in the word “心疼” (heart-hurt). 
 

(4) Verb-Object Type: The first morpheme is 
usually a verb which governs the second one, 
making this word similar to a verb followed by 
its object.  For example, the morpheme “控” 
(control) serves as the object of the verb “失” 
(lose) in the word ”失控” (lose-control). 
 

(5) Verb-Complement Type: The first mor-
pheme is usually a verb but sometimes can be an 
adjective, and the second morpheme explains the 
first one from different aspects.  For example, the 
morpheme “清” (clearly) expresses the aspects of 
the action “看” (look). 
 

Chinese words constructed by affixation proc-
ess can be one of the two cases – say, morpheme 
and morpheme, or morpheme and non-morpheme.  
In the case of morpheme and morpheme, the af-
fixation word belongs to one of the above 5 types 
if the prefix and the suffix are neither negations 
nor confirmations.  Types 6 and 7 defined below 
represent the affixation words whose prefix or 
suffix is a negation or a confirmation.  The af-
fixation words whose prefix or suffix characters 
are not morphemes are classified into type 8. 
 

(6) Negation Type: There is at least one nega-
tion character in words of this type.  For example, 
the prefix “無” (no) is the negation morpheme in 
the word ”無法” (no-method). 

 

(7) Confirmation Type: There is at least one 
confirmation character in words of this type.  For 
example, the prefix  “有” (do) is a confirmation 
in the word “有賴” (do-depend on). 
 

(8) Others: Those words that do not belong to 
the above seven types are assigned to this type, 
such as words whose meanings are not a function 
of their composite characters, words whose com-
posite characters are not morphemes, such as “姪
子” (nephew-suffix) and “薄荷” (peppermint). 

3 Opinion Scores of Chinese Words  

The bag-of-characters approach proposed by Ku 
et al. (2007) considers the observation probabili-
ties of characters in Chinese opinion words.  It 
calculates the observation probabilities of char-
acters from a set of seeds first, then dynamically 
enlarges the set and adjusts their probabilities.  In 

1261



this approach, the opinion score of a word is de-
termined by the combination of the observation 
probabilities of its composite characters defined 
by Formulas (1) and (2). 
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where C is an arbitrary Chinese character, f(C, 

polarity) counts the observed frequency of C in a 
set of Chinese words whose opinion polarity is 
positive (pos) or negative (neg); P(C, pos) and 
P(C, neg) denote the observation probabilities of 
C as a positive and a negative character, and n 
and m denote total number of unique characters 
in positive and negative words.  The difference 
of P(C, pos) and P(C, neg) in Formula (3) de-
termines the sentiment score of character C, de-
noted by S(C).  Formula (4) computes the opin-
ion score of a word of l characters C1C2…Cl by 
averaging their scores. 

Instead of counting the weights as in the bag-
of-characters approaches, we consider the word 
structures and propose a scoring function for 
each morphological type.  According to the Fre-
quency Dictionary of Modern Chinese, 96.5% of 
Chinese words are unigrams and bigrams (Chen, 
et al., 1997).  In the following functions, S(C1C2) 
computes the opinion scores of words with char-
acters C1 and C2.  SIGN(s) returns -1 if polarity 
degree s is smaller than 0, i.e., negative, and re-
turns 1 when positive. 

 

(1) Parallel Type: Since the two composite 
characters of a word of this type are homogene-
ous, the opinion score is the average score of two 
characters’ opinion scores.   
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(2) Substantive-Modifier Type: The first mor-
pheme of a word of this type modifies the second 
one, so that its opinion weight comes from the 
absolute opinion score of the first character, 
while the opinion polarity is determined by the 
occurrence of negative opinion characters.  If at 
least one negative opinion character appears, the 

word is negative, else it is positive.  For example, 
the word “痛哭” (bitterly cry) is composed of 
“痛” (bitterly, negative) and “哭” (cry, negative).  
Negative characters make this word negative and 
its opinion strength, i.e., the absolute value of the 
score, is decided by the first character for the 
degree of crying. 
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(3) Subjective-Predicate Type: The first mor-
pheme of a word of this type is a subject and the 
second morpheme is the action it performs, so 
that the action decides the opinion score of the 
word.  If the action is not an opinion or it is neu-
tral, the subject determines the opinion score of 
this word.  For example, the word “山崩” (mud-
slide, negative) is composed of “山” (mountain, 
non-opinion) and “崩” (collapse, negative). Its 
opinion score depends only on the second char-
acter “崩” (collapse) since the first character is a 
subject and usually bears no opinions. 
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(4) Verb-Object Type: The first morpheme of 
words of this type acts upon the second mor-
pheme.  The effect depends not only on the ac-
tion but on the target.  The weight is determined 
by the action, but the polarity is the multiplica-
tion of the signs of the two morphemes.  For ex-
ample, the word “避暑” (to go away for the 
summer, positive) is composed of “避” (hide, 
negative) and “暑” (hot summer, negative).  Its 
strength depends on the strength of “避” (hide) 
and polarity is positive from the multiplication of 
two negatives.  
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(5) Verb-Complement Type: The scoring func-
tion for words of this type is defined the same as 
that of a Subjective-Predicate type in Formula 
(7).  The complement morpheme is the deciding 
factor of the opinion score.  For example, the 
word “提高” (raise, positive) is composed of 
“提” (carry or lift, non-opinion) and “高” (high, 
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positive).  The complement morpheme “ 高 ” 
(high) describes the resulting state of the verb 
morpheme “提” (raise), so both strength and po-
larity depend on the morpheme “高” (high). 

 

(6) Negation Type: A negative character speci-
fied in a predefined set NC has a negation effect 
on the opinion score of the other character.  The 
strength depends on the modified morpheme 
while the polarity of the word is the negation of 
the polarity of the modified morpheme. 
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(7) Confirmation Type: A positive character 
specified in a predefined set PC ensures that the 
opinion score of a word only comes from the 
other character.  Therefore, the opinion score of 
this word is determined by the modified mor-
pheme. 
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(8) Others: Since words of this type contain no 
clear cues for their morphological structures, we 
postulate that both characters have the same con-
tribution, and adopt Formula (5).  

4 Identification of Morphological Types 

To compute the opinion score of a word accord-
ing to formulae in Section 3, we must know its 
morphological type from the morphological 
structure, i.e., the parts of speech of the compos-
ite morphemes.  Currently, part of speech tag-
ging is performed at the word level rather than 
the morpheme level, and morpheme-tagging cor-
pus is not available.  We consider an on-line 
Chinese dictionary, Dictionary of Chinese Words 
by Ministry of Education, Taiwan (MOEDCW), 
as a corpus, and compute the statistics of each 
morpheme in it. 

Two classifiers, CRF classifier and SVM clas-
sifier are proposed to recognize morphological 
types (1)-(5).  Morphological types (6) to (8) are 
determined by rules such as whether two com-
posite characters are morphemes; whether there 
are confirmation/negation morphemes; and so on. 

4.1 MOEDCW Corpus 

MOEDCW corpus provides possible parts of 
speech for each morpheme by treating it as a uni-
gram word, and possible senses under each part 
of speech.  In each entry, there are a sense defini-

tion and some example words.  Figures 1 and 2 
show the specifications of two morphemes “冒” 
and “汗”.  The morpheme “冒”  has three parts 
of speech (verb, adverb and noun) and includes 3, 
1, and 1 senses.  There are 3, 3, and 2 example 
words listed under the three verb senses. 

We can find the correct parts of speech of the 
composite characters of a word when it is an ex-
ample word in the dictionary.  However, not all 
words are listed in the corpus.  Consider the 
word “冒汗” (sweat, verb).  Figure 1 shows that 
“冒汗” (sweat) is an example word listed under 
the verb sense of the character “冒” (perspire), 
thus the character “冒” (perspire) in the word “冒
汗” (sweat) functions as a verb.  However, “冒
汗” (sweat) is not an example for the character 
“汗” (sweat).  Figure 2 show that there are two 
possible parts of speech, noun and verb, for the 
character “汗” (sweat).  We then show how to 
identify its function in the word “冒汗”.   

 

1

Goes out from the button to the top or 
from inside to outside.  For example, 
fume, smoking, and sweat. 由下往上或

往外透出、發散。如：「冒煙」、

「冒氣」、「冒汗」。 

2

Burst into or regardless of.  For example, 
take risk, to offend, and offense.  衝
犯、不顧。如：「冒險」、「冒

犯」、「衝冒」。… 

verb 

3
Fake or on the pretext of.  For example, 
personate and to pretend to be. 假稱、

假託。如：「冒名」、「假冒」。 

ad-
verb 1

Crude or rash.  For example, offensively 
and advance rashly.  鹵莽、莽撞。

如：「冒犯」、「冒進」。 
noun 1 Family name. 姓。 

Figure 1: Specification of “冒” in MOEDCW 

1

Sweat.  For example, cold sweat, night 
sweat, sweatiness, and to drip with 
sweat. 由動物皮膚的毛細孔所排泄出

的液體。如：「冷汗」、「盜汗」、

「汗流浹背」、「揮汗如雨」。… 

noun

2 Family name 姓。 
verb 1 To sweat 流汗、使出汗。 

Figure 2: Specification of  “汗” in MOEDCW 

)( )( POS,CnsesNumberOfSePOS,CT =  (11)
 

The number of possible meanings one charac-
ter can bear when it functions as a certain part of 

1263



speech is employed to estimate how often this 
part of speech is used.  The function T(C, POS) 
shown in Formula (11) defines the score of a 
character C functioning as a particular part of 
speech POS.  Here, POS may be noun (N), adjec-
tive (ADJ), verb (V), adverb (ADV), auxiliary 
(AUX), conjunction (CONJ), pronoun (PRON), 
preposition (PREP), and interjection (INT).  In 
Figure 2, T(汗<sweat>, N) = 2 and  T(汗<sweat>, 
V) = 1. 

4.2 Features for Classifiers 

Features for training SVM and CRF classifiers 
include the pronunciation and the tone of the 
word, parts of speech of the first and the second 
characters of training words, and the position 
information of the composite characters.  The 
tone of the word is acquired from MOEDCW.  
The parts of speech are estimated by Formula 
(11).   f(C, POS, k, start/end) counts the number 
of k-grams (k=2, 3, 4).  In Figures 1 and 2, f(冒, 
V, 2, start)=6, f(冒, V, 2, end)= 2, f(冒, ADV, 2, 
start) = 2, and f(冒, ADV, 2, end)=0.  This ex-
ample shows that when the character “冒” func-
tions as a verb or an adverb, it serves as the start-
ing character more often than the ending charac-
ter. 

4.3 CRF and SVM Classifier  

CRF and SVM are both common used algorithms 
for building classifiers (Lafferty et al., 2001).  
We adopted CRF++1 and libSVM (Chang and 
Lin, 2001) to develop our classifiers.  The fea-
tures for training our CRF and SVM classifiers 
include the input word W, the tone of W, the first 
and the second characters C1 and C2, T(C1, POS), 
T(C2, POS),  f(C1, POS, k, start), f(C1, POS, k, 
end), f(C2, POS, k, start), and f(C2, POS, k, end).  
POS denotes one of nine parts of speech in 
MOEDCW, and k equals to 2, 3 or 4. 

Using SVM is straightforward.  To classify a 
word into one of the morphological structure 
types, we construct the word's feature vector and 
input the vector into SVM.  When using CRF, a 
different approach is taken.  When predicting the 
classes of two successive instances, CRF takes 
the predicted class of the first instance into ac-
count when predicting the second instance's class.  
Here is how we exploit this capability.  In a nut-
shell, we perform classification at the character 
level instead of the word level.  Let W be a word 
composed of the two characters C1 and C2.  Let v 

                                                 
1 http://crfpp.sourceforge.net/ 

be the feature vector of W.  Let t be the morpho-
logical structure type of W.  We define C1's fea-
ture vector to be composed of the features in v 
which are related to C1, e.g., T(C1, verb).  Simi-
larly, C2's feature vector is composed of the fea-
tures in v which are related to C2.  C1's class and 
C2's class are defined as t_1 and t_2, respectively.  
Since t has five possible values, there are 10 
character classes. 

To determine a word W's morphological struc-
ture type, we first apply CRF on W's constituent 
characters C1 and C2's feature vectors.  For C1, 
CRF will return a set of probabilities P(C1,t_q), 
where q ∈ {1, 2}, indicating the likelihood of C1 
being an instance of class t_q.  Similarly, a set of 
probabilities P(C2,t_q) is returned for C2.  W's 
morphological structure type is defined as the 
value of t which maximizes the product of 
P(C1,t_1) and P(C2,t_2). 

Though CRF is mostly used for sequential la-
beling, the idea of using CRF is to tail this classi-
fication questions into a labeling question in or-
der to utilizing the position information of char-
acters.  As mentioned, if a word W of two char-
acters C1C2 is of type 1, CRF will label C1 1_1 
(type1_1st char) and C2 1_2 (type1_2nd char).  
The labeling of each character considers both the 
previous character's features and the next charac-
ter's features.  That is, if the current character is 
the first character, its previous character is an 
empty character (which is used for segmenting 
sequences in CRF); if the current character is the 
second character, its next character is an empty 
character. Hence the position information will be 
considered by CRF. 

5 Experiments and Discussion  

Experiments verify whether the morphological 
types benefit opinion polarity detection on words.  
The relation between the performance of mor-
phological classifiers and opinion polarity detec-
tion is discussed. 

5.1 Experimental Setup  

To compare the bag-of-characters approach (Ku 
et al., 2007) with our morphological structure 
approach, we adopt the same evaluation data set 
containing 836 words.  To evaluate the perform-
ance of our two morphological classifiers, we 
prepare two sets of words, including the testing 
set of 836 words for word-level opinion predic-
tion (abbreviated as OP), and a set of 8,186 
words selected from words in MOEDCW corpus 
and news documents except those can be classi-
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fied by patterns (abbreviated as TRAIN set), all 
with their morphological types annotated.  Table 
1 lists the distributions of morphological types in 
OP and TRAIN sets. 

The polarity of words is predicted by their 
opinion scores ranging between -1 to 1.  We set a 
positive threshold.  Those words with scores 
above it are considered as positive while those 
below this threshold multiplied by (-1) are re-
garded as negative.  The words with non-zero 
scores falling between the positive and negative 
thresholds are neutral.  Fifty grids from 0 to 0.5 
are searched for the best threshold.  Since the 
opinion extraction at word level concerns only 
word structure, no retraining for the best thresh-
old is need when domain shifts, which is a supe-
riority of our method. 

5.2 Morphological Type Classification and 
Polarity Detection  

The performances of CRF and SVM classifiers 
on each morphological type are listed in Table 2.  
We perform four-fold cross validation on the 
TRAIN set.  Results show that CRF classifier 
achieves better performance than SVM classifier 
in this task.  The accuracy of CRF classifier 
(0.70) is 8% higher than that of SVM classifier 
(0.62).  Note those type 8 words which could be 
extracted by rules are excluded from classifica-
tion experiment. The remaining type 8 words are 
usually proper names.  It is difficult for both 
classifiers to identify such words. 

Table 3 further shows the performance of po-
larity prediction using morphological types de-

termined by CRF classifier and SVM classifier.  
The performance of polarity detection is evalu-
ated by the f-score defined in Formula (12). 

The f-scores of polarity detection using CRF 
classified types and SVM classified types are 
0.5806 and 0.5938, respectively.  Both of them 
outperform baseline’s f-score 0.5455, i.e., the 
bag-of-characters approach (Ku et al., 2007).  
Experiments show that adopting morphological 
types annotated by two classifiers for polarity 
prediction has little difference.  In other words, 
CRF and SVM classifiers have an 8% f-score 
difference in their best performance of classifica-
tion, while the performance gap in word polarity 
prediction using morphological types provided 
by these two classifiers is around 1.3% only 
(0.5806 vs. 0.5938).  The reason may be that we 
define scoring functions of each morphological 
type in a straightforward way.  If they are not the 
best scoring functions, the benefit of considering 
the morphological type information could be re-
stricted.  Nevertheless, experimental results show 
that morphological type information is useful for 
word polarity detection (with p-value less than 
0.05). 
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set/type 1 2 3 4 5 6 7 8 
TRAIN 26.15 44.97 1.64 15.14 9.22 0 0 2.88 

OP 45.8 24.4 1.3 7.9 8.0 2.3 0.5 9.8 

Table 1: The Percentage of distribution for morphological types in TRAIN and OP sets 

MorphoType 1 2 3 4 5 8 Accuracy 
CRF 0.63 0.78 0.41 0.66 0.78 0.17 0.70 
SVM 0.49 0.73 0.22 0.52 0.55 0 0.62 

Table 2: The f-score of CRF and SVM classifiers 

We further examine how well our polarity de-
tection method works in combination with a 
word sentiment dictionary.  We use the NTUSD2 
word sentiment dictionary.  If a word appears in 
NTUSD, then the word's polarity is the one 
specified in NTUSD.  If a word does not appear 
in NTUSD, then the word's polarity is deter-
mined using our morphological type method. 

                                                 
2 http://nlg18.csie.ntu.edu.tw:8080/opinion/ 

After introducing a sentiment dictionary 
NTUSD3, CRF and SVM classifiers both achieve 
the f-score 0.77 for opinion word extraction, and 
achieve f-scores 0.61 and 0.62 for polarity detec-
tion, respectively.  Note that if only NTUSD is 
used to extract opinion words by string matching, 
the f-score is only 0.44. 

 

                                                 
3 http://nlg18.csie.ntu.edu.tw:8080/opinion/ 
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Polarity f-score Without NTUSD With NTUSD 
Ku 0.5455 0.5789 

CRF type 0.5806 0.6100 
SVM type 0.5938 0.6246 

 

Table 3: Prediction with Morphological Types 

We further analyze the improvement of polar-
ity prediction for each morphological type.  We 
find that the f-scores of polarity prediction of all 
morphological types are improved in different 
degrees, and among them the performance of 
type 2 words are improved the most.  We have 
shown that our method can assign an opinion 
score to an arbitrary word without any word 
thesauri by considering its morphological infor-
mation.  Moreover, since the Substantive-
Modifier (type 2) is the most common way to 
form a new word in the Chinese language 
(Cheng and Tian, 1992), the result presents the 
strength of our method in solving the coverage 
problem. 

6 Syntactic Structure for Chinese Opin-
ion Analysis 

As mentioned, the relations introduced in Section 
2 exist not only within words, but also between 
sentence segments.  Relations between sentence 
segments are represented by structural trios here-
after and will be introduced in next section.  We 
have already shown that morphological types are 
useful when extracting opinion words and would 
like to further testify whether structural trios also 
benefit the opinion analysis on sentences.  We 
annotate these relations manually, propose a 
method to identify these relations, and compare 
results of experimental settings using structural 
trios with those not using structural trios. 

6.1 Structural Trio 

Each node in a parsing tree dominates a word 
string in a sentence.  Linguistics have shown that 
there are also five relations between sentence 
segments: Parallel, Substantive-Modifier, Sub-
jective-Predicate, Verb-Object, and Verb-
Complement, same as morphological types (1) to 
(5).  Because parsing trees have hierarchical 
structures, we define a structural trio to represent 
a relation between two nodes as follows: 

(1) A structure trio contains two children 
nodes which bear a relation. 

(2) A structure trio contains one head node 
which is the nearest common parent of two 
children nodes in (1). 

 

 
Figure 3: Example of structural trios 

Figure 3 shows an example of a structure trio.  
It is a part of a parsing tree containing words “取
得” (obtain), “可喜” (happy), “成果” (results).  
Two structural trios are shown in this example.  
The lower one contains two children nodes “可
喜” (happy) and “成果” (results), and is labeled 
as Substantive-Modifier (S-M (2)) in their near-
est common parent node, while the upper one 
contains two children nodes “取得” (obtain) and 
“可喜成果” (happy results), and is labeled as 
Verb-Object (V-O (4)). 

6.2 Experimental Corpus 

To experiment with structural trios, we need the 
parsing trees of all experimental sentences.  For 
this purpose, we adopted Chinese Treebank 5.14 
as the experimental materials.  Chinese Treebank 
contains raw Chinese news documents together 
with their segmented, part of speech tagged, and 
parsed versions.  The parsed documents are 
adopted in experiments utilizing structural trios, 
and the part of speech tagged documents are used 
in experiments not utilizing structural trios. 

In Chinese Treebank, a unique ID is labeled 
on each sentence.  For each sentence, we had 
three annotators label their opinions and then we 
generate the gold standard following NTCIR 5 
MOAT protocol (Seki et al., 2008).  We also 
annotated structure trios in Chinese Treebank.  A 
total of 17,159 sentences are obtained after drop-
ping some faulty sentences such as empty sen-
tences and sentences composed of more than one 
parsing tree.  The statistics of opinion sentences 
and structural trios in the constructed experimen-
tal materials are shown in Table 4 and Table 5. 

 
 

                                                 
4 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp? 

catalogId=LDC2005T01 
5 http://research.nii.ac.jp/ntcir/index-en.html 
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Opinion Non-Opinion 
Positive Neutral Negative 
6,380 1,537 1,714 # 

9,631 
7,528 

66.24 15.96 17.80 % 
56.13 

43.87 

Table 4: Statistics of opinion sentences 

Trio Type Number Percentage % 
2 18,483 36.85 
3 13,687 27.29 
4 15,970 31.84 
5 965 1.92 

Others 1,054 2.10 
Total 50,159 100.00 

Table 5: Statistics of structural trios 

6.3 Experiment Setup 

The aim of our experiments is to know how 
opinion analysis approach performs when mor-
phological and syntactic structures are incorpo-
rated.  They are compared with the bag-of-
character and bag-of-word approaches. We im-
plemented the bag-of-word approach proposed 
by Ku et al. (2007) to show its performance on 
Chinese Treebank.  In their approach, the opin-
ion scores of words are summed to generate the 
opinion scores of sentences, and the negation 
words will negate the closest opinion words.  
Based on this approach, we further consider 
structural trios to experiment whether syntactic 
structures of sentences are beneficial for opinion 
analysis.  Because the scoring functions may not 
be straight forward as those we have adopted for 
opinion word extraction, we did not design scor-
ing functions for utilizing all types of structural 
trios.  Instead, we emphasize their original opin-
ion scores by multiplying a variable alpha to see 
whether these structures are important.  In this 
paper, alpha equals five. 

We have shown that word morphological 
structures benefit the word opinion extraction.  
When we experiment on sentences, we also in-
corporate the word morphological structures to 
see whether they are also useful for opinion 
analysis on sentences.  Five experimental set-
tings are listed as below:  

(1) bag[w]-bag[s]: structural information is 
not considered for both words and sen-
tences.  The bag-of-character approach 
is used to calculate the opinion scores of 
words, and the bag-of-word approach 
sentences. 

(2) struc[w]-bag[s]: morphological struc-
tures are utilized to calculate word opin-
ion scores, but structural trios are not 
considered. The bag-of-word approach 
is used to calculate the opinion scores of 
sentences. 

(3) bag[w]-struc[s]: structural trios are con-
sidered for calculating sentence opinion 
scores, while the bag-of-character ap-
proach is used to calculate the opinion 
scores of words. 

(4) struc[w]-(m)struc[s]: both word mor-
phological structures and manually la-
beled structural trios are adopted. 

(5) struc[w]-struc[s]: both morphological 
structure of words and system labeled 
structural trios are adopted. 

As we have shown that NTUSD is beneficial 
to the opinion analysis at word level, it is used as 
described in section 5.2 by default. 

Our system adopted CRF algorithm to label 
structural trios for setting (5).  The content string 
and the part of speech of the current node, its 
parent node, its offspring nodes in the next three 
generations, together with the depth of the cur-
rent node in the Chinese Treebank, are used as 
the features for each node in CRF.  The co-
occurrence of the current node and all its siblings 
are defined in CRF’s template file.  CRF will 
label whether the current node is the first child or 
the second child of a certain relation in a struc-
tural trio, or it is not part of any structural trios.  
A four-fold experiment is performed for the 
learning and testing of this labeling  process by 
CRF. 

6.4 Results and Discussion 

Table 6 shows the statistics of manually labeled 
structural trios in Chinese Treebank and identifi-
cation performance of CRF.  Table 7 shows the 
performance of five experiment settings de-
scribed in Section 6.3.  The experiment results 
show that the morphological structures of words 
do not have a large contribution for opinion sen-
tence analysis (setting 1 vs. setting 2; setting 3 vs. 
setting 4).  However, considering the structural 
trios improve the performance.   
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Trio Type Number Percentage f-Score
2 18,483 36.85% 0.4883
3 13,687 27.29% 0.4944
4 15,970 31.84% 0.6360
5 965 1.92% 0.2034

Others 1,054 2.10% 
Total 50159 100% 

 

Table 6: Statistics and Results of Identifying 
Structural Trios 

Setting Word 
[w] 

Sentence 
 [s] 

f-Score 
(opinion) 

f-Score 
(polarity)

1 bag bag 0.7073 0.4988 
2 struc bag 0.7162 0.5117 
3 bag struc 0.8000 0.5361 
4 struc (m)struc 0.7922 0.5297 
5 struc struc 0.7993 0.5187 

Table 7: Results of Opinion Extraction  
on Chinese Treebank 

By summarizing the experimental results in 
Section 5 and this section, we can conclude that 
considering the word morphological structures 
benefits the opinion polarity detection, but in the 
current approach its assistance to words does not 
propagate to sentences.  Considering the syntac-
tic structures, however, do help in opinion analy-
sis both for the opinion sentence extraction and 
the polarity detection.  The performance of opin-
ion extraction boosts to an f-score 0.80 and the 
performance of polarity detection an f-score 0.54.   

However, the utilization of structure trios 
needs the parsing tree of sentences as the prior 
knowledge.  Hence these two kinds of structural 
information may be suitable for different applica-
tions: structural trios for well written sentences 
such as those in the news articles, while the mor-
phological structures for casually written sen-
tences such as those appear in SMS messages or 
articles with limit length on the Web. 

Because there are no opinion experiments per-
formed on Chinese Treebank, we mention the 
performance of Ku’s approach (setting (1)) for 
opinion sentence extraction, f-score 0.6846, in 
NTCIR-7 MOAT task, on news articles, as a re-
sult for comparison.  Their approach was ranked 
the second in this task, and the best team 
achieved an f-score 0.7453. 

7 Conclusion and Future Work  

This paper considers morphological and syntac-
tic structures in analyzing Chinese opinion words 
and sentences.  For morphological structures, 
eight Chinese morphological types are defined. 

CRF classifier and SVM classifier for morpho-
logical type classification are proposed.  Experi-
ments show that CRF classifier achieves the best 
accuracy 0.70 in type classification, which is 8% 
better than SVM classifier.  We further show that 
word morphological structures benefit the opin-
ion word extraction significantly.  With the help 
of the sentiment dictionary NTUSD, the f-score 
of opinion word extraction achieves 0.77 and the 
f-score of the word polarity detection achieves 
0.62 when the word morphological types are 
provided by the SVM classifier.  They are com-
parably better than bag-of-character approach 
and the dictionary based approach. 

We defined structural trios to represent the re-
lations between sentence segments and also ex-
tract these relations using CRF algorithm.  Re-
sults show that considering structural trios bene-
fits the opinion analysis on sentences.  An f-
score 0.80 for opinion extraction and an f-score 
0.54 for polarity detection are achieved, which is 
a great improvement.  

The opinion scoring functions for morphologi-
cal types and structural trios are critical for polar-
ity detection, and scoring functions for words 
determine the scoring functions for sentences.  
Now we define these functions intuitively based 
on linguistic rules, but learning methods like re-
gression will be investigated in the future.  Ex-
amining the interaction of cues from word and 
sentence levels on the opinion sentence extrac-
tion and the opinion polarity detection is our next 
goal. 
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Abstract

We present a system that finds short def-
initions of terms on Web pages. It em-
ploys a Maximum Entropy classifier, but it
is trained on automatically generated ex-
amples; hence, it is in effect unsupervised.
We use ROUGE-W to generate training ex-
amples from encyclopedias and Web snip-
pets, a method that outperforms an alter-
native centroid-based one. After training,
our system can be used to find definitions
of terms that are not covered by encyclo-
pedias. The system outperforms a compa-
rable publicly available system, as well as
a previously published form of our system.

1 Introduction

Definitions of terms are among the most com-
mon types of information users search for on the
Web. In the TREC 2001 QA track (Voorhees,
2001), where the distribution of question types re-
flected that of real user logs, 27% of the ques-
tions were requests for definitions (e.g., “What is
gasohol?”, “Who was Duke Ellington?”). Conse-
quently, some Web search engines provide special
facilities (e.g., Google’s “define:” query prefix)
that seek definitions of user-specified terms in on-
line encyclopedias or glossaries; to save space, we
call both “encyclopedias”. There are, however, of-
ten terms that are too recent, too old, or less widely
used to be included in encyclopedias. Their defi-
nitions may be present on other Web pages (e.g.,
newspaper articles), but they may be provided in-
directly (e.g., “He said that gasohol, a mixture of
gasoline and ethanol, has been great for his busi-
ness.”) and they may be difficult to locate with
generic search engines that may return dozens of
pages containing, but not defining the terms.

We present a system to find short definitions
of user-specified terms on Web pages. It can be
used as an add-on to generic search engines, when
no definitions can be found in on-line encyclope-
dias. The system first invokes a search engine us-

ing the (possibly multi-word) term whose defini-
tion is sought, the target term, as the query. It
then scans the top pages returned by the search
engine to locate 250-character snippets with the
target term at their centers; we call these snippets
windows. The windows are candidate definitions
of the target term, and they are then classified as
acceptable (positive class) or unacceptable (nega-
tive class) using supervised machine learning. The
system reports the windows for which it is most
confident that they belong in the positive class. Ta-
ble 1 shows examples of short definitions found by
our system. In our experiments, we allow the sys-
tem to return up to five windows per target term,
and the system’s response is counted as correct if
any of the returned windows contains an accept-
able short definition of the target. This is similar
to the treatment of definition questions in TREC

2000 and 2001 (Voorhees, 2000; Voorhees, 2001),
but the answer is sought on the Web, not in a given
document collection of a particular genre.

More recent TREC QA tracks required definition
questions to be answered by lists of complemen-
tary text snippets, jointly providing required or op-
tional information nuggets (Voorhees, 2003). In
contrast, we focus on locating single snippets that
include self-contained short definitions. Despite
its simpler nature, we believe the task we address
is of practical use: a list of single-snippet defini-
tions from Web pages accompanied by the source
URLs is a good starting point for users seeking
definitions of terms not covered by encyclopedias.
We also note that evaluating multi-snippet defini-
tions can be problematic, because it is often dif-
ficult to agree which information nuggets should
be treated as required, or even optional (Hilde-
brandt et al., 2004). In contrast, earlier experimen-
tal results we have reported (Androutsopoulos and
Galanis, 2005) show strong inter-assessor agree-
ment (K > 0.8) for single-snippet definitions (Eu-
genio and Glass, 2004). The task we address also
differs from DUC’s query focused summarization
(Dang, 2005; Dang, 2006). Our queries are sin-
gle terms, whereas DUC queries are longer topic
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Target term: Babesiosis
(...) Babesiosis is a rare, severe and sometimes fatal tick-
borne disease caused by various types of Babesia, a micro-
scopic parasite that infects red blood cells. In New York
state, the causative parasite is babesia microti. Who gets
Babesiosis? Babesiosis (...)
Target term: anorexia nervosa
(...) anorexia nervosa is an illness that usually occurs in
teenage girls, but it can also occur in teenage boys, and adult
women and men. People with anorexia are obsessed with
being thin. They lose a lot of weight and are terrified of
gaining weight. The (...)
Target term: Kinabalu
(...) one hundred and thirty eight kilometers from Kota Kin-
abalu, the capital of the Malaysian state of Sabah, rises the
majestic mount Kinabalu. With its peak at 4,101 meters
(and growing), mount Kinabalu is the highest mountain in
south-east Asia. This (...)
Target term: Pythagoras
(...) Pythagoras of Samos about 569 BC - about 475
BC click the picture above to see eleven larger pictures
Pythagoras was a Greek philosopher who made important
developments in mathematics, astronomy, and the theory of
music. The theorem now known as (...)
Target term: Sacajawea
(...) Sacajawea was a Shoshone Indian princess. The
Shoshone lived from the rocky mountains to the plains.
They lived primarily on buffalo meat. The shoshone trav-
eled for many days searching for buffalo. They hunted on
horseback using the buffalo for food (...)
Target term: tale of Genji
(...) the tale of Genji This site aims to promote a wider
understanding and appreciation of the tale of Genji - the
11th century Japanese classic written by a Heian court lady
known as Murasaki Shikibu. It also serves as a kind of travel
guide to the world (...)
Target term: Jacques Lacan
(...) who is Jacques Lacan? John Haber in New York
city a primer for pre-post-structuralists Jacques Lacan is a
Parisian psychoanalyst who has influenced literary criticism
and feminism. He began work in the 1950s, in the Freudian
society there. It was a (...)

Table 1: Definitions found by our system.

descriptions, often entire paragraphs; furthermore,
we do not attempt to compose coherent and cohe-
sive summaries from several snippets.

The system we present is based on our ear-
lier work (Miliaraki and Androutsopoulos, 2004),
where an SVM classifier (Cristianini and Shawe-
Taylor, 2000) was used to separate acceptable win-
dows from unacceptable ones; the SVM also re-
turned confidence scores, which were used to rank
the acceptable windows. On datasets from the
TREC 2000 and 2001 QA tracks, our earlier sys-
tem clearly outperformed the methods of Joho and
Sanderson (2000; 2001) and Prager et al. (2001;
2002), as reported in previous work (Miliaraki
and Androutsopoulos, 2004). To train the SVM,
however, thousands of training windows were re-
quired, each tagged as a positive or negative exam-

ple. Obtaining large numbers of training windows
is easy, but manually tagging them is very time-
consuming. In the TREC 2000 and 2001 datasets,
it was possible to tag the training windows auto-
matically by using training target terms and ac-
companying regular expression patterns provided
by the TREC organizers. The regular expressions
covered all the known acceptable definitions of the
corresponding terms that can be extracted from the
datasets. When the training windows, however,
are obtained from the Web, it is impossible to con-
struct manually regular expressions for all the pos-
sible phrasings of the acceptable definitions in the
training windows.

In subsequent work (Androutsopoulos and
Galanis, 2005), we developed ATTW (automatic
tagging of training windows), a technique that pro-
duces arbitrarily large collections of training win-
dows from the Web with practically no manual
effort, in effect making our overall system unsu-
pervised. ATTW uses training terms for which
several encyclopedia definitions are available, and
compares each Web training window (each win-
dow extracted from the pages the search engine
returned for a training term) to the corresponding
encyclopedia definitions. Web training windows
that are very similar (or dissimilar) to the corre-
sponding encyclopedia definitions are tagged as
positive (or negative) examples; if the similarity is
neither too high nor too low, the window is not in-
cluded in the classifier’s training data. Previously
reported experiments (Androutsopoulos and Gala-
nis, 2005) showed that ATTW leads to significantly
better results, compared to training the classifier
on all the available TREC windows, for which reg-
ular expressions are available, and then using it to
classify Web windows.

Note that in ATTW the encyclopedia definitions
are used only during training. Once the classifier
has been trained, it can be used to discover defini-
tions on arbitrary Web pages. In fact, during test-
ing we discard windows originating from on-line
encyclopedias, simulating the case where we seek
definitions of terms not covered by encyclopedias;
we also ignore windows from on-line encyclope-
dias during training. Also, note that the classifier
is trained on Web windows, not directly on ency-
clopedia definitions, which allows it to avoid rely-
ing excessively on phrasings that are common in
encyclopedia definitions, but uncommon in more
indirect definitions of arbitrary Web pages. Fur-
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thermore, training the classifier directly on ency-
clopedia definitions would not provide negative
examples.

In our previous work with ATTW (Androut-
sopoulos and Galanis, 2005) we used a mea-
sure constructed by ourselves to assess the sim-
ilarity between Web windows and encyclopedia
definitions. Here, we use the more established
ROUGE-W measure (Lin, 2004) instead. ROUGE-
W and other versions of ROUGE have been used in
summarization to measure how close a machine-
authored summary is to multiple human sum-
maries of the same input. We use ROUGE-W in
a similar setting, to measure how close a training
window is to multiple encyclopedia definitions of
the same term. A further difference from our pre-
vious work is that we also use ROUGE-W when
computing the features of the windows to be clas-
sified. Previously, the SVM relied, among others,
on Boolean features indicating if the target term
was preceded or followed in the window to be
classified by a particular phrase indicating a def-
inition (e.g., “target, a kind of”, “such as target”).
The indicative phrases are selected automatically
during training, but now the corresponding fea-
tures are not Boolean; their values are the ROUGE-
W similarity scores between an indicative phrase
and the context of the target term in the window.
This allows the system to soft-match the phrases
to the windows (e.g., encountering “target, another
kind of”, instead of “target, a kind of”).1

In our new system we also use a Maximum En-
tropy (MAXENT) classifier (Ratnaparkhi, 1997) in-
stead of an SVM, because much faster implemen-
tations of the former are available.2 We present
experimental results showing that our new sys-
tem significantly outperforms our previously pub-
lished one. The use of the MAXENT classifier by it-
self improved slightly our results, but the improve-
ments come mostly from using ROUGE-W.

Apart from presenting an improved version of
our system, the main contribution of this paper is a
detailed experimental comparison of our new sys-
tem against Cui et al.’s (2004; 2005; 2006; 2007).
The latter is particularly interesting, because it
is well published, it includes both an alterna-
tive, centroid-based technique to automatically tag
training examples and a soft-matching classifier,

1We also experimented with other similarity measures
(e.g., edit distance) and ROUGE variants, but we obtained the
best results with ROUGE-W.

2We use Stanford’s classifier; see http://nlp.stanford.edu/.

and it is publicly available.3 We show that ATTW

outperforms Cui et al.’s centroid-based technique,
and that our overall system is also clearly better
than Cui et al.’s in the task we address.

Section 2 discusses ATTW with ROUGE-W, Cui
et al.’s centroid-based method to tag training ex-
amples, and experiments showing that ATTW is
better. Section 3 describes our new overall system,
the system of Cui et al., and the baselines. Sec-
tion 4 reports experimental results showing that
our system is better than Cui et al.’s, and better
than our previously published system. Section 5
discusses related work; and section 6 concludes.

2 Tagging training windows

During both training and testing, for each tar-
get term we keep the r most highly ranked Web
pages the search engine returns. We then extract
the first f windows of the target term from each
page, since early occurrences of the target terms
on pages are more likely to be definitions. We,
thus, obtain r · f windows per term.4 When test-
ing, we return the k windows of the target term
that the classifier is most certain they belong in the
positive class. In our experiments, r = 10, f = 5,
k = 5. During training, we train the classifier on
the q · r · f windows we obtain for q training tar-
get terms; in our experiments, q ranged from 50 to
1500. Training requires tagging first the training
windows as positive or negative, possibly discard-
ing windows that cannot be tagged automatically.

2.1 ATTW with ROUGE-W similarity

To tag a training window w of a training term t
with ATTW and ROUGE-W, we obtain a set Ct of
definitions of t from encyclopedias.5 Stop-words,
punctuation, and non-alphanumeric characters are
removed from Ct and w, and a stemmer is ap-
plied; the testing windows undergo the same pre-
processing.6 For each definition d ∈ Ct, we find
the longest common word subsequence of w and
d. If w is the word sequence 〈A,B, F,C,D,E〉

3See http://www.cuihang.com/software.html. The soft-
ware and a demo of our system, and the datasets we used
are also freely available; see http://nlp.cs.aueb.gr/.

4We used Altavista in our experiments. We remove HTML
tags and retain only the plain text of the pages.

5The training terms were randomly selected from the in-
dex of http://www.encyclopedia.com/. We used Google’s
“define:” to obtain definitions from other encyclopedias.

6We use the 100 most frequent words of the BNC corpus
(http://www.natcorp.ox.ac.uk/) as the stop-list, and Porter’s
stemmer (http://tartarus.org/∼martin/PorterStemmer/).
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and d = 〈A,B,E,C,G,D〉, the longest com-
mon subsequence is 〈A,B,C,D〉. The longest
common subsequence is divided into consecutive
matches, producing in our example 〈A,B|C|D〉.
We then compute the following score (weighted
longest common subsequence), where m is the
number of consecutive matches, ki is the length
of the i-th consecutive match, and f is a weight-
ing function. We use f(k) = ka, where a > 1 is a
parameter we tune experimentally.

WLCS (w, d) =
∑m

i=0 f(ki)

We then compute the following quantities, where
|·| is word length, and f−1 is the inverse of f .

P (w, d) = f−1(WLCS(w,d)
f(|w|) )

R(w, d) = f−1(WLCS(w,d)
f(|d|) )

F (w, d) = (1+β2)·R(w,d)·P (w,d)
R(w,d)+β2·P (w,d)

In effect, P (w, d) examines how close the
longest common substring is to w and R(w, d)
how close it is to d. Following Lin (2004), we use
β = 8, assigning greater importance toR(w, d). If
R(w, d) is high, the longest common substring is
very similar to d; then w (which also includes the
longest common substring) intuitively contains al-
most all the information of d, i.e., all the informa-
tion of a known acceptable definition (high recall).
If P (w, d) is high, the longest common substring
is very similar to w; then d (which also includes
the longest common substring) contains almost all
the information of w, i.e., w does not contain any
(redundant) information not included in a known
acceptable definition, something we care less for.

The ROUGE-W similarity sim(w,Ct) between
w and Ct is the maximum F (w, d), for all d ∈
Ct. Training windows with sim(w,Ct) > T+ are
tagged as positive; if sim(w,Ct) < T−, they are
tagged as negative; and if T− ≤ sim(w,Ct) ≤
T+, they are discarded. We tune the thresholds T+

and T− experimentally, as discussed below.

2.2 The centroid-based tagging approach

This method is used in the system of Cui et al.
(2004; 2005; 2006; 2007). For each training target
term, we construct a “centroid” pseudo-text con-
taining the words that co-occur most frequently
with the target term. We then compute the similar-
ity between each training window and the centroid
of its target term. If it exceeds a threshold, the win-
dow is tagged as positive; Cui et al. produce only
positive examples.

The centroid of a training target term t is con-
structed as follows. For each word u in t’s training
windows, we compute the centrality score defined
below, where SF t is the number of t’s training
windows, SFu is the number of u’s windows that
can be extracted from the retained Web pages the
search engine returned for t, SF t∩u is the number
of windows on the same pages that contain both
t and u, and idf(u) is the inverse document fre-
quency of w.7 Centrality scores are pointwise mu-
tual information with an extra idf (u) factor.

centrality(u) = −log( SF t∩u
SF t+SFu

) · idf (u)

The words u whose centrality scores exceed the
mean by at least a standard deviation are added
to the centroid of t. Before computing the cen-
trality scores, stop-words, punctuation, and non-
alphanumeric characters are removed, and a stem-
mer is applied, as in ATTW. The similarities be-
tween training windows and centroids are then
computed using cosine similarity, after turning the
centroids and windows into binary vectors that
show which words they contain.

2.3 Comparing the tagging approaches

To evaluate the two methods that tag training win-
dows, we selected randomly q = 200 target terms,
different from those used for training and testing.
We collected the q · r · f = 200 · 10 · 5 windows
from the corresponding Web pages, we selected
randomly 400 from the collected 10,000 windows,
and tagged them manually as positive or negative.

Figure 1 plots the positive precision of the two
methods against their positive recall, and figure 2
shows negative precision against negative recall.
For different values of T+, we obtain a different
point in figure 1; similarly for T− and figure 2.
Positive precision is TP/(TP +FP), positive re-
call is TP/(TP + FN ), and likewise for nega-
tive precision and recall; TP (true positives) are
the positive training windows the method has cor-
rectly tagged as positive, FP are the negative win-
dows the method has tagged as positives etc.

For very high (strict) T+ values, the methods tag
very few (or none) training windows as positive;
hence, both TP and TP + FP approach (or be-
come) zero; we take positive precision to be zero
in that case. Positive recall also approaches (or be-
comes) zero, which is why both positive recall and

7We obtained idf (u) from BNC. Cui et al. use sentences
instead of windows, reducing the risk of truncating defini-
tions. We used windows in all systems, to compare fairly.
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Figure 1: Results of generating positive examples.

Figure 2: Results of generating negative examples.

precision reach zero in the left of figure 1. Simi-
lar comments apply to figure 2, though both meth-
ods always tagged correctly at least a few training
windows as negative, for the T− values we tried;
hence, negative precision was never zero.

Positive precision shows how certain we can be
that training windows tagged as positive are in-
deed positive; whereas positive recall is the per-
centage of true positive examples that we manage
to tag as such. Figure 1 shows that when using
ATTW, we need to settle for a low positive recall,
i.e., miss out many positive examples, in order to
obtain a reasonably high precision. It also shows
that the centroid method is clearly worse when tag-
ging positive examples; its positive precision is al-
most always less than 0.3. Figure 2 shows that
both methods achieve high negative precision and
recall; they manage to assign trustworthy nega-
tive labels without missing many negative exam-
ples. However, ATTW is significantly better when
tagging positive examples, as shown in figure 1;
hence, it is better than the centroid method.8

8We tried different values of ROUGE-W’s a parameter in

When using ATTW in practice, we need to se-
lect T+ and T−. We assign more importance to
selecting a T+ (a point of ATTW’s curve in figure
1) that yields high positive precision; the choice of
T− (point in figure 2) is less important, because
ATTW’s negative precision is always reasonably
high. Based on figure 1, we set T+ to 0.58, which
corresponds to positive precision 0.66 and posi-
tive recall 0.16. By tuning the two thresholds we
can control the number of positively or negatively
tagged examples we produce (and their ratio), and
the number of examples we discard. Having set
T+, we set T− to 0.30, a value that maintains the
ratio of truly positive to truly negative windows
of the 400 manually tagged windows (0.2 to 1),
since this is approximately the ratio the classifier
will confront during testing; we also experimented
with a 1 to 1 ratio, but the results were worse. This
T− value corresponds negative precision 0.70 and
negative recall 0.02. Thus, both positive and neg-
ative precision is approximately 0.7, which means
that approximately 30% of the tags we assign to
the examples are incorrect. Our experiments, how-
ever, indicate that the classifier is able to general-
ize well over this noise.

3 Finding new definitions

We now present our overall system, the system of
Cui et al., and the baselines.

3.1 Our system

Given a target term, our system extracts r · f =
10 · 5 windows from the pages returned by the
search engine, and uses the MAXENT classifier to
separate them into acceptable and unacceptable
definitions.9 It then returns the k = 5 windows
the classifier is most confident they are acceptable.
The classifier is trained on windows tagged as pos-
itive or negative using ATTW. It views each win-
dow as a vector of the following features:10

SN: The ordinal number of the window on the
page it originates from (e.g., second window of the
target term from the beginning of the page). Early
mentions of a term are more likely to define it.
RK: The ranking of the Web page the window
originates from, as returned by the search engine.

the interval (1, 2]. We use a = 1.4, which was the value with
the best results on the 400 windows. We did not try a > 2, as
the results were declining as a approached 2.

9We do not discuss MAXENT classifiers, since they are a
well documented in the literature.

10SN and WC originate from Joho and Sanderson (2000).

1274



WC: We create a simple centroid of the window’s
target term, much as in section 2.2. The centroid’s
words are chosen based on their frequency in the r·
f windows of the target term; the 20 most frequent
words are chosen. WC is the percentage of the 20
words that appear in the vector’s window.
Manual patterns: 13 Boolean features, each sig-
naling if the window matches a different manually
constructed lexical pattern (e.g., “target, a/an/the”,
as in “Tony Blair, the British prime minister”).
The patterns are those used by Joho and Sander-
son (2000), and four more introduced in our pre-
vious work (Androutsopoulos and Galanis, 2005)
and (Miliaraki and Androutsopoulos, 2004). They
are intended to perform well across text genres.
Automatic patterns: m numeric features, each
showing the degree to which the window matches
a different automatically acquired lexical pattern.
The patterns are word n-grams (n ∈ {1, 2, 3}) that
must occur directly before or after the target term
(e.g., “target which is”). The patterns are acquired
as follows. First, all the n-grams directly before
or after any target term in the training windows
are collected. The n-grams that have been en-
countered at least 10 times are candidate patterns.
From those, the m patterns with the highest pre-
cision scores are retained, where precision is the
number of positive training windows the pattern
matches over the total number of training windows
it matches; we use m = 300 in our experiments,
based on the results of our previous work. The au-
tomatically acquired patterns allow the system to
detect definition contexts that are not captured by
the manual patterns, including genre-specific con-
texts. The value of each feature is the ROUGE-W

score between a pattern and the left or right con-
text of the target term in the window.

3.2 Cui et al.’s system

Given a target term t, Cui et al. (2004; 2005; 2006;
2007) initially locate sentences containing t in rel-
evant documents. We use the r·f = 10·5 windows
from the pages returned by the search engine, in-
stead of sentences. Cui et al. then construct the
centroid of t, and compute the cosine similarity of
each one of the r · f windows to the centroid, as
in section 2.2. The 10 windows that are closer to
the centroid are considered candidate answers. All
candidate answers are then processed by a part-of-
speech (POS) tagger and a chunker. The words
of the centroid are replaced in all the candidate

answers by their POS tags; the target term, noun
phrases, forms of the verb “to be”, and articles
are replaced by special tags (e.g., TARGET, NP),
while adjectives and adverbs are removed. The
candidate answers are then cropped to L tokens
to the left and right of the target term, producing
two subsequences (left and right) per candidate an-
swer; we set L = 3, which is Cui et al.’s default.

Cui et al. experimented with two approaches to
rank the candidate answers, called Bigram Model
and Profile Hidden Markov Model (PHMM). Both
are learning components that produce soft pat-
terns, though PHMM is much more complicated. In
their earlier work, Cui et al. (2005) found the Bi-
gram Model to perform better than PHMM; in more
recent experiments with more data (Cui, 2006; Cui
et al., 2007) they found PHMM to perform better,
but the difference was not statistically significant.
Given these results and the complexity of PHMM,
we experimented only with the Bigram Model.

In the Bigram Model, the left and right subse-
quences of each candidate answer are considered
separately. Below S1, . . . , SL refer to the slots
(word positions) of a (left or right) subsequence,
and t1, . . . , tL to the particular words in the slots.
For each subsequence 〈S1 = t1, . . . , SL = tL〉 of
a candidate answer, we first estimate:

P (ti|Si) =
|Si(ti)|+ δ∑

t′ |Si(ti)|+ δ ·N
P (ti|ti−1) =

|Si(ti) ∧ Si−1(ti−1)|
|Si(ti)|

P (ti|Si) is the probability that ti will appear in
slot Si of a left or right subsequence (depending on
the subsequence considered) of an acceptable can-
didate answer. P (ti|ti−1) is the probability that
ti will follow ti−1 in a (left or right) subsequence
of an acceptable candidate answer. Cui et al. use
only positive training examples, generated by the
centroid-based approach of section 2.2. |Si(ti)| is
the number of times ti appeared in Si in the (left
or right) subsequences of the training examples.
t′ ranges over all the words that occurred in Si in
the training examples. |Si(ti) ∧ Si−1(ti−1)| is the
number of times ti and ti−1 co-occurred in the cor-
responding slots in the training examples. N is the
number of different words that occurred in the (left
or right) training subsequences, and δ is a constant
set to 2, as in Cui et al.’s experiments. Following
Cui et al., if ti is a POS or other special tag then
the probabilities above are estimated by counting
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only the tags of the training examples. Similarly,
if ti is an actual word, only the actual words (not
tags) of the training examples are considered.

The probability of each subsequence could then
be estimated as:

P (t1, . . . , tL) = P (t1|S1) ·
L∏

i=2

(λ · P (ti|ti−1) + (1− λ) · P (ti|Si))

Instead, Cui et al. use the following scoring mea-
sure, which also accounts for the fact that some
subsequences may have length l < L. They tune
λ by Expectation Maximization.

Pnorm(t1, . . . , tL) =
1
l
· [logP (t1|S1) +

L∑
i=2

log(λ · P (ti|ti−1) + (1− λ) · P (ti|Si))]

The overall score of a candidate answer is then:

P = (1− α) · Pnorm(left) + α · Pnorm(right)

Again, Cui et al. tune a by Expectation Maximiza-
tion. Instead, we tuned λ and α by a grid search
in [0, 1] × [0, 1], with step 0.1 for both parame-
ters. For the tuning, we trained Cui et al.’s system
on 2,000 randomly selected target terms, exclud-
ing terms used for other purposes. We used 160
manually tagged windows to evaluate the system’s
performance with the different values of λ and α;
the 160 windows were selected randomly from the
10,000 windows of section 2.3, after excluding the
400 manually tagged windows of that section. The
resulting values for λ and α were 0.7 and 0.6, re-
spectively. Apart from the modifications we men-
tioned, we use Cui et al.’s original implementation.

3.3 Baseline methods
The first baseline selects the first window of each
one of the five highest ranked Web pages, as re-
turned by the search engine, and returns the five
windows. The second baseline returns five win-
dows chosen randomly from the r · f = 10 · 5
available ones. The third baseline (centroid base-
line) creates a centroid of the r · f windows, as in
section 2.2, and returns the five windows with the
highest cosine similarity to the centroid.11

11We also reimplemented the definitions component of
Chu-Carroll et al. (2004; 2005), but its performance was
worse than our centroid baseline.

Figure 3: Correct responses, 5 answers/question.

4 Evaluation of systems

We used q training target terms in the experi-
ments of this section, with q ranging from 50 to
1500, and 200 testing terms, with no overlap be-
tween training and testing terms, and excluding
terms that had been used for other purpose.12 We
had to use testing terms for which encyclopedia
definitions were also available, to judge the ac-
ceptability of the systems’ responses, since many
terms are highly technical. We discarded, how-
ever, windows extracted from encyclopedia pages
when testing, simulating the case where the target
terms are not covered by encyclopedias.

As already mentioned, for each target term we
extract r · f = 10 · 5 windows (or fewer, if fewer
are available) from the pages the search engine re-
turns. We then provide these windows to each of
the systems, allowing them to return up to k = 5
windows, ordered by decreasing confidence. If
any of the k windows contains an acceptable short
definition of the target term, as judged by a hu-
man evaluator, the system’s response is counted as
correct. We also calculate the Mean Reciprocal
Rank (MRR) of each system’s responses, as in the
TREC QA track: if the first acceptable definition of
a response is in the j-th position (1 ≤ j ≤ k), the
response’s score is 1/j; MRR is the mean of the re-
sponses’ scores, i.e., it rewards systems that return
acceptable definitions higher in their responses.

Figures 3 and 4 show the results of our experi-
ments as percentage of correct responses and MRR,
respectively; the error bars of figure 3 correspond
to 95% confidence intervals. Our system clearly
outperforms Cui et al.’s, despite the fact that the

12The reader is reminded that all terms were selected ran-
domly from the index of an on-line encyclopedia.
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Figure 4: MRR scores, 5 answers per question.

latter uses more linguistic resources (a POS tag-
ger and a chunker). Both systems outperform the
baselines, of which the centroid baseline is the
best, and both systems perform better as the size
of the training set increases. The baselines con-
tain no learning components; hence, their curves
are flat. We also show the results (Base-Attrs)
of our system when the features that correspond
to automatically acquired patterns are excluded.
Clearly, these patterns help our system achieve
significantly better results; however, our system
outperforms Cui et al.’s even without them. With-
out the automatic patterns, our system also shows
signs of saturation as the training data increase.

Figures 5 and 6 show the performance of our
new system against our previously published one
(Androutsopoulos and Galanis, 2005); the new
system clearly outperforms the old one. Addi-
tional experiments we conducted with the old sys-
tem replacing the SVM by the MAXENT classifier
(without using ROUGE-W) indicate that the use of
MAXENT by itself also improved slightly the re-
sults, but the differences are too minor to show; the
improvement is mostly due to the use of ROUGE-
W instead of our previous measure.

5 Related work

Xu et al. (2004) use an information extraction en-
gine to extract linguistic features from documents
relevant to the target term. The features are mostly
phrases, such as appositives, and phrases express-
ing relations. The features are then ranked by their
type and similarity to a centroid, and the most
highly ranked ones are returned. Xu et al. seem
to aim at generating multi-snippet definitions, un-
like the single-snippet definitions we seek.

Blair-Goldensohn et al. (2003; 2004) extract
sentences that may provide definitional informa-

Figure 5: Correct responses of our new and previ-
ous system, allowing 5 answers per question.

Figure 6: MRR of our new and previous system.

tion from documents retrieved for the target term;
a decision tree learner and manually tagged train-
ing data are used. The sentences are then matched
against manually constructed patterns, which op-
erate on syntax trees, to detect sentences ex-
pressing the target term’s genus, species, or both
(genus+species). The system composes its an-
swer by placing first the genus+species sentence
that is closer to the centroid of the extracted sen-
tences. The remaining sentences are ranked by
their distance from the centroid, and the most
highly ranked ones are clustered. The system then
selects iteratively the cluster that is closer to the
centroid of the extracted sentences and the most
recently used cluster. The cluster’s most repre-
sentative sentence, i.e., the sentence closest to the
centroid of the cluster’s sentences, is added to the
response. The iterations stop when a maximum re-
sponse length is reached. Multi-snippet definitions
are generated.

Han et al. (2004; 2006) parse a definition ques-
tion to locate the head word of the target term.
They also use a named entity recognizer to deter-
mine the target term’s type (person, organization,
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etc.). They then extract from documents relevant
to the target term sentences containing its head
word, as well as sentences the extracted ones refer
to (e.g., via pronouns). The resulting sentences are
matched against manually constructed syntactic
patterns to detect phrases conveying definitional
information. The resulting phrases are ranked by
criteria like the degree to which the phrase con-
tains words common in definitions of the target
term’s type, and the highest ranked phrases are in-
cluded in a multi-snippet summary. Other mecha-
nisms discard phrases duplicating information.

Xu et al. (2005) aim to extract all the definitions
in a document collection. They parse the docu-
ments to detect base noun phrases (without em-
bedded noun phrases). Base noun phrases are pos-
sible target terms; the paragraphs containing them
are matched against manually constructed patterns
that look for definitions. An SVM then separates
the remaining paragraphs into good, indifferent,
and bad definitions. Redundant paragraphs, iden-
tified by edit distance similarity, are removed.

6 Conclusions and future work

We presented a freely available system that finds
short definitions of user-specified terms on Web
pages. It employs a MAXENT classifier, which
is trained on automatically generated examples;
hence, the system is in effect unsupervised. We
use ROUGE-W to generate training examples from
Web snippets and encyclopedias, a method that
outperforms an alternative centroid-based one.
Once our system has been trained, it can find short
definitions of terms that are not covered by ency-
clopedias. Experiments show our system outper-
forms a comparable well-published system and a
previously published form of our system.

Our system does not require linguistic process-
ing tools, such as named entity recognizers, POS

taggers, chunkers, parsers; hence, it can be easily
used in languages where such tools are unavail-
able. It could be improved by exploiting the HTML

markup of Web pages and the Web’s hyperlinks.
For example, the target term is sometimes written
in italics in definitions, and some definitions are
provided on pages (e.g., pop-up windows) that oc-
currences of the target term link to.

The work reported here was conducted in the
context of project INDIGO, where an autonomous
robotic guide for museum collections is being de-
veloped (Galanis et al., 2009). The guide engages

the museum’s visitors in spoken dialogues, and it
describes the exhibits the visitors select by gen-
erating spoken natural language descriptions from
an ontology. Among other requests, the visitors
can ask follow up questions, and we have found
that the most common kind of follow up questions
are requests to define terms (e.g., names of per-
sons, events, architectural terms, etc.) mentioned
in the generated exhibit descriptions. Some of
these definition requests can be handled by gener-
ating new texts from the ontology, but some times
the ontology contains no information for the target
terms. We are, thus, experimenting with the possi-
bility of obtaining short definitions from the Web,
using the system we presented.
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Abstract 

This paper explores Chinese semantic role la-
beling (SRL) for nominal predicates. Besides 
those widely used features in verbal SRL, 
various nominal SRL-specific features are 
first included. Then, we improve the perform-
ance of nominal SRL by integrating useful 
features derived from a state-of-the-art verbal 
SRL system. Finally, we address the issue of 
automatic predicate recognition, which is es-
sential for a nominal SRL system. Evaluation 
on Chinese NomBank shows that our research 
in integrating various features derived from 
verbal SRL significantly improves the per-
formance. It also shows that our nominal SRL 
system much outperforms the state-of-the-art 
ones. 

1. Introduction 

Semantic parsing maps a natural language sen-
tence into a formal representation of its meaning. 
Due to the difficulty in deep semantic parsing, 
most of previous work focuses on shallow se-
mantic parsing, which assigns a simple structure 
(such as WHO did WHAT to WHOM, WHEN, 
WHERE, WHY, HOW) to each predicate in a 
sentence. In particular, the well-defined seman-
tic role labeling (SRL) task has been drawing 
more and more attention in recent years due to 
its importance in deep NLP applications, such as 
question answering (Narayanan and Harabagiu, 
2004), information extraction (Surdeanu et al., 
2003), and co-reference resolution (Ponzetto and 
Strube, 2006). Given a sentence and a predicate 
(either a verb or a noun) in it, SRL recognizes 
and maps all the constituents in the sentence into 
their corresponding semantic arguments (roles) 

of the predicate. According to the predicate 
types, SRL could be divided into SRL for verbal 
predicates (verbal SRL, in short) and SRL for 
nominal predicates (nominal SRL, in short). 

During the past few years, verbal SRL has 
dominated the research on SRL with the avail-
ability of FrameNet (Baker et al., 1998), Prop-
Bank (Palmer et al., 2005), and the consecutive 
CoNLL shared tasks (Carreras and Màrquez, 
2004 & 2005) in English language. As a com-
plement to PropBank on verbal predicates, 
NomBank (Meyers et al., 2004) annotates nomi-
nal predicates and their corresponding semantic 
roles using similar semantic framework as 
PropBank. As a representative, Jiang and Ng 
(2006) pioneered the exploration of various 
nominal SRL-specific features besides the tradi-
tional verbal SRL-related features on NomBank. 
They achieved the performance of 72.73 and 
69.14 in F1-measure on golden and automatic 
syntactic parse trees, respectively, given golden 
nominal predicates. 

For SRL in Chinese, Sun and Jurafsky (2004) 
and Pradhan et al. (2004) pioneered the research 
on Chinese verbal and nominal SRLs, respec-
tively, on small private datasets. Taking the ad-
vantage of recent release of Chinese PropBank 
(Xue and Palmer, 2003) and Chinese NomBank 
(Xue, 2006a), Xue and his colleagues (Xue and 
Palmer 2005; Xue 2006b; Xue, 2008) pioneered 
the exploration of Chinese verbal and nominal 
SRLs, given golden predicates. Among them, 
Xue and Palmer (2005) studied Chinese verbal 
SRL using Chinese PropBank and achieved the 
performance of 91.3 and 61.3 in F1-measure on 
golden and automatic syntactic parse trees, re-
spectively. Xue (2006b) extended their study on 
Chinese nominal SRL and attempted to improve 
the performance of nominal SRL by simply in-
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cluding the Chinese PropBank training instances 
into the training data for nominal SRL on Chi-
nese NomBank. However, such integration was 
empirically proven unsuccessful due to the dif-
ferent nature of certain features for verbal and 
nominal SRLs. Xue (2008) further improved the 
performance on both verbal and nominal SRLs 
with a better syntactic parser and new features. 
Ding and Chang (2008) focused on argument 
classification for Chinese verbal predicates with 
hierarchical feature selection strategy. They 
achieved the classification precision of 94.68% 
on golden parse trees on Chinese PropBank. 

This paper focuses on Chinese nominal SRL. 
This is done by adopting a traditional verbal 
SRL architecture to handle Chinese nominal 
predicates with additional nominal SRL-specific 
features. Moreover, we significantly enhance the 
performance of nominal SRL by properly inte-
grating various features derived from verbal 
SRL. Finally, this paper investigates the effect of 
automatic nominal predicate recognition on the 
performance of Chinese nominal SRL. Although 
previous research (e.g. CoNLL’2008) in English 
nominal SRL reveals the importance of auto-
matic predicate recognition, there has no re-

ported research on automatic predicate 
recognition in Chinese nominal SRL. 

The rest of this paper is organized as follows: 
Section 2 introduces Chinese NomBank while 
the baseline nominal SRL system is described in 
Section 3 with traditional and nominal SRL-
specific features. Then, the baseline nominal 
SRL system is improved by integrating useful 
features derived from verbal SRL (Section 4) 
and extended with automatic recognition of 
nominal predicates (Section 5). Section 6 gives 
experimental results and discussion. Finally, 
Section 7 concludes the paper.    

2. Chinese NomBank 

Chinese NomBank (Xue, 2006a) adopts similar 
semantic framework as NomBank, and focuses 
on Chinese nominal predicates with their argu-
ments in Chinese TreeBank. The semantic ar-
guments include:  
1) Core arguments: Arg0 to Arg5. Generally, 

Arg0 and Arg1 denotes the agent and the 
patient, respectively, while arguments from 
Arg2 to Arg5 are predicate-specific.  

2) Adjunct arguments, which are universal to 
all predicates, e.g. ArgM-LOC for locative, 
and ArgM-TMP for temporal. 

 
All the arguments are annotated on parse tree 

nodes with their boundaries aligning with the 
spans of tree nodes. Figure 1 gives an example 
with two nominal predicates and their respective 
arguments, while the nominal predicate “投资

/investment” has two core arguments, “NN(外商

/foreign businessman)” as Arg0 and “NN(银行
/bank)” as Arg1, and the other nominal predicate 
“ 贷 款 /loan” also has two core arguments, 
“NP(中国银行 /Bank of China)” as Arg1 and 

Figure 1: Two nominal predicates and their arguments in the style of NomBank. 
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NN NN NN
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“PP(向外商投资银行 /to Foreign Investment 
Bank)” as Arg0,  and 1 adjunct argument, 
“NN(人民币/RMB)” as ArgM-MNR, denoting 
the manner of loan. It is worth noticing that 
there is a (Chinese) NomBank-specific label in 
Figure 1, Sup (support verb) (Xue, 2006a), in 
helping introduce the arguments, which occur 
outside the nominal predicate-headed noun 
phrase. This is illustrated by the nominal predi-
cate “贷款/loan”, whose Arg0 and Arg1 are both 
realized outside the nominal predicate-headed 
noun phrase, NP(四十亿人民币贷款/4 billion 
RMB loan). Normally, a verb is marked as a 
support verb only when it shares some argu-
ments with the nominal predicate. 

3. Baseline: Chinese Nominal SRL 

Popular SRL systems usually formulate SRL as 
a classification problem, which annotates each 
constituent in a parse tree with a semantic role 
label or with the non-argument label NULL. Be-
sides, we divide the system into three consecu-
tive phases so as to overcome the imbalance 
between the training instances of the NULL 
class and those of any other argument classes.  

Argument pruning. Here, several heuristic 
rules are adopted to filter out constituents, which 
are most likely non-arguments. According to the 
argument structures of nominal predicates, we 
categorize arguments into two types: arguments 
inside NP (called inside arguments) and argu-
ments introduced via a support verb (called out-
side arguments), and handle them separately. 
For the inside arguments, the following three 
heuristic rules are applied to find inside argu-
ment candidates: 

 All the sisters of the predicate are candi-
dates. 

 If a CP or DNP node is a candidate, its chil-
dren are candidates too. 

 For any node X, if its parent is an ancestral 
node of the predicate, and the internal 
nodes along the path between X and the 
predicate are all NPs, then X is a candidate. 

For outside arguments, we look for the sup-
port verb of the focus nominal predicate, and 
then adopt the rules as proposed in Xue and 
Palmer (2005) to find the candidates for the sup-
port verb, since outside argument candidates are 
introduced via this support verb. That to say, the 
argument candidates of the support verb are re-
garded as outside argument candidates of the 
nominal predicate. However, as support verbs 
are not annotated explicitly in the testing phase, 

we identify intervening verbs as alternatives to 
support verbs in both training and testing phases 
with the path between the nominal predicate and 
intervening verb in the form of 
“VV<VP>[NP>]+NN”, where “[NP>]+” denotes 
one or more NPs.  Our statistics on Chinese 
NomBank shows that 51.96% of nominal predi-
cates have no intervening verb while 48.04% of 
nominal predicates have only one intervening 
verb. 

Taken the nominal predicate “贷款/loan” in 
Figure 1 as an example, NN(人民币/RMB) and 
QP(四十亿 /4 billion) are identified as inside 
argument candidates, while PP(向外商投资银

行/to Foreign Investment Bank) and NP(中国银

行/Bank of China) are identified as outside ar-
gument candidates via the support verb VV(提
供/provide). 

Argument identification. A binary classifier 
is applied to determine the candidates as either 
valid arguments or non-arguments. It is worth 
pointing out that we only mark those candidates 
that are most likely to be NULL (with probabil-
ity > 0.90) as non-arguments. Our empirical 
study shows that this little trick much benefits 
nominal SRL, since argument identification for 
nominal predicates is much more difficult than 
that for verbal predicates and thus many argu-
ments would have been falsely marked as non-
arguments if the threshold is set as 0.5. 

Argument classification. A multi-class classi-
fier is employed to label identified arguments 
with specific argument labels (including the 
NULL class for non-argument). 

In the following, we first adapt some tradi-
tional features, which have been proven effec-
tive in verbal SRL, to nominal SRL, and then 
introduce several nominal SRL-specific features. 

3.1. Traditional Features 

Using the feature naming convention as adopted 
in Jiang and Ng (2006), Table 1 lists the tradi-
tional features, where “I” and “C” indicate the 
features for argument identification and classifi-
cation, respectively. Among them, the predicate 
class (b2) feature was first introduced in Xue 
and Palmer (2005) to overcome the imbalance of 
the predicate distribution in that some predicates 
can be only found in the training data while 
some predicates in the testing data are absent 
from the training data. In particular, the verb 
class is classified along three dimensions: the 
number of arguments, the number of framesets 
and selected syntactic alternations. For example, 
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the verb class of “C1C2a” means that it has two 
framesets, with the first frameset having one 
argument and the second having two arguments. 
The symbol “a” in the second frameset repre-
sents a type of syntactic alternation. 
 
Feature Remarks: b1-b5(C, I), b6-b7(C) 
b1 Predicate: the nominal predicate itself. (贷款

/loan) 
b2 Predicate class: the verb class that the predi-

cate belongs to. (C4a) 
b3 Head word (b3H) and its POS (b3P).  (银行

/bank, NN) 
b4 Phrase type: the syntactic category of the 

constituent. (NP) 
b5 Path: the path from the constituent to the 

nominal predicate. 
 (NP<IP>VP>VP>NP>NP>NN) 

b6 Position: the positional relationship of the 
constituent with the predicate. “left” or 
“right”. (left) 

b7 First word (b7F) and last word (b7L) of the 
focus constituent. (中国/China, 银行/bank) 

Combined features: b11-b14(C, I), b15(C) 
b11: b1&b4;       b12: b1&b3H;       b13: b2&b4;  
b14: b2&b3H;    b15: b5&b6 
Table 1: Traditional features and their instantiations 
for argument identification and classification, with 
NP(中国银行/Bank of China)  as the focus constitu-
ent and NN(贷款/loan) as the nominal predicate, re-
garding Figure 1. 

3.2. Nominal SRL-specific Features 

To capture more useful information in the predi-
cate-argument structure, we also study addi-
tional features which provide extra information. 
Statistics on Chinese NomBank show that about 
40% of pruned inside candidates are arguments. 
Since inside arguments usually locate near to the 
nominal predicate, its surroundings are expected 
to be helpful in SRL. Table 2 shows the features 
in better capturing the details between inside 
arguments and nominal predicates. Specially, 
features ai6 and ai7 are sister-related features, 
inspired by the features related with the 
neighboring arguments in Jiang and Ng (2006). 

Statistics on NomBank and Chinese Nom-
Bank show that about 20% and 22% of argu-
ments are introduced via a support verb, 
respectively. Since a support verb pivots outside 
arguments and the nominal predicate on its two 
sides, support verbs play an important role in 
labeling these arguments. Here, we also identify 
intervening verbs as alternatives to support verbs 
since support verbs are not explicitly in the test-
ing phase. Table 3 lists the intervening verb-

related features (ao1-ao4, ao11-ao14) employed 
in this paper. 
 
Feature Remarks 
ai1 Whether the focus constituent is adjacent to 

the predicate. Yes or No. (Yes) 
ai2 The headword (ai2H) and pos (ai2P) of the 

predicate’s nearest right sister. (银行/bank, 
NN) 

ai3 Whether the predicate has right sisters. Yes 
or No. (Yes) 

ai4 Compressed path of b5: compressing se-
quences of identical labels into one. 
(NN<NP>NN) 

ai5 Whether the predicate has sisters. Yes or 
No. (Yes) 

ai6 For each sister of the focus constituent, 
combine b3H&b4&b5&b6. ( 银 行
/bank&NN & NN<NP>NN&right) 

ai7 Coarse version of ai6, b4&b6. (NN&right) 
Table 2: Additional features and their instantiations  
for inside argument candidates, with “NN( 外 商
/foreign businessman)” as the focus constituent and 
“NN(投资 /investment)” as the nominal predicate, 
regarding Figure1. 

 
Feature Remarks 
ao1 Intervening verb itself. (提供/provide) 
ao2 The verb class that the intervening verb 

belongs to. (C3b) 
ao3 The path from the focus constituent to the 

intervening verb. (NP<IP>VP>VP>VV) 
ao4 The compressed path of ao3: compressing 

sequences of identical labels into one. 
(NP<IP>VP>VV) 

Combined features: ao11-ao14 
ao11: ao1&ao3;      ao12: ao1&ao4;    
ao13: ao2&ao3;      ao14: ao2&ao4. 
Table 3: Additional features and their instantiations 
for outside argument candidates, with “NP(中国银行

/Bank of China)” as the focus constituent and “贷款
/loan” as the nominal predicate, regarding Figure1. 

Feature selection. Some Features proposed 
above may not be effective in tasks of identifica-
tion and classification. We adopt the greedy fea-
ture selection algorithm as described in Jiang 
and Ng (2006) to pick up positive features em-
pirically and incrementally according to their 
contributions on the development data. The al-
gorithm repeatedly selects one feature each time 
which contributes most, and stops when adding 
any of the remaining features fails to improve 
the performance. As far as the SRL task con-
cerned, the whole feature selection process could 
be done as follows: 1). Feature selection for ar-
gument identification: run the selection algo-
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rithm with the basic set of features (b1-b5, b11-
b14) to pick up effective features from (ai1-ai7, 
ao1-ao4, ao11-ao14); 2). Feature selection for 
argument classification: fix the output returned 
in step1 as the feature set of argument identifica-
tion, and run the selection algorithm with the 
basic set of features (b1-b7, b11-b15) to select 
positive features from (ai1-ai7, ao1-ao4, ao11-
ao14) for argument classification. 

4. Integrating Features derived from 
Verbal SRL 

Since Chinese PropBank and NomBank are an-
notated on the same data set with the same lexi-
cal guidelines (e.g. frame files), it may be 
interesting to investigate the contribution of 
Chinese verbal SRL on the performance of Chi-
nese nominal SRL. In the frame files, argument 
labels are defined with regard to their semantic 
roles to the predicate, either a verbal or nominal 
predicate. For example, in the frame file of 
predicate “贷款/loan”, the borrower is always 
labeled with Arg0 and the lender labeled with 
Arg1. This can be demonstrated by the follow-
ing two sentences: “贷款/loan” is annotated as a 
nominal and a verbal predicate in S1 and S2, 
respectively. 
S1 [Arg1 中国银行/Bank of China] [Arg0 向外商

投资银行/to Foreign Investment Bank] 提供

/provide [Rel 贷款/loan] 
S2  [Arg0 中国银行/Bank of China] [Arg1 向外商

投资银行/from Foreign Investment Bank] [Rel 
贷款/loan] 

Therefore, it is straightforward to augment 
nominal training instances with verbal ones. 
However, Xue (2006b) found that simply adding 
the training instances for verbal SRL to the 
training data for nominal SRL and indiscrimi-
nately extracting the same features in both ver-
bal and nominal SRLs hurt the performance. 
This may be due to that certain features (e.g. the 
path feature) are much different for verbal and 
nominal SRLs. This can be illustrated in sen-
tences S1 and S2: the verbal instances in S2 are 
negative for semantic role labeling of the nomi-
nal predicate “贷款/loan” in S1, since “中国银

行/Bank of China” takes opposite roles in S1 
and S2. So does “向外商投资银行/(from/to) 
Foreign Investment Bank”. 

Although several support verb-related features 
(ao1-ao4, ao11-ao14) have been proposed, one 
may still ask how large the role support verbs 
can play in nominal SRL. It is interesting to note 

that outside arguments and the highest NP 
phrase headed by the nominal predicate are also 
annotated as arguments of the support verb in 
Chinese PropBank. For example, Chinese Prop-
Bank marks “中国银行/Bank of China” as Arg0 
and “四十亿人民币贷款/4 billion RMB loan” 
as Arg1 for verb “提供/provide” in Figure1. Let 
OA be the outside argument, VV be the support 
verb, and NP be the highest NP phrase headed 
by the nominal predicate NN, then there exists a 
pattern “OA VV NN” in the sentence, where the 
support verb VV plays a certain role in trans-
ferring roles between OA and NN. For example, 
if OA is the agent of VV, then OA is also the 
agent of phrase VP(VV NN). Like the example 
in Figure1, supposing a NP is the agent of sup-
port verb “提供/provide” as well as VP phrase 
(“提供四十亿人民币贷款 /provide 4 billion 
RMB loan”), we can infer that the NP is the 
lender of the nominal predicate “贷款/loan” in-
dependently on any other information, such as 
the NP content and the path from the NP to the 
nominal predicate “贷款/loan”.  

Let C be the focus constituent, V be the inter-
vening verb, and NP be the highest NP headed 
by the nominal predicate. Table 4 shows the fea-
tures (ao5-ao8, p1-p7) derived from verbal SRL. 
In this paper, we develop a state-of-the-art Chi-
nese verbal SRL system, similar to the one as 
shown in Xue (2008), to achieve the goal. Based 
on golden parse trees on Chinese PropBank, our 
Chinese verbal SRL system achieves the per-
formance of 92.38 in F1-measure, comparable to 
Xue (2008) which achieved the performance of 
92.0 in F1-measure. 
 
Feature Remarks 
ao5 Whether C is an argument for V. Yes or No
ao6 The semantic role of C for V. 
ao7 Whether NP is an argument for V. Yes or No
ao8 The semantic role of NP for V. 
Combined features: p1-p7 
p1: ao1&ao5;         p2: ao1&ao6;    p3: ao1&ao5&b1; 
p4: ao1&ao6&b1;  p5: ao1&apo7;  p6: ao1&ao8;  
p7: ao5&ao7. 
Table 4: Features derived from verbal SRL. 

5. Automatic Predicate Recognition 

Unlike Chinese PropBank where almost all the 
verbs are annotated as predicates, Chinese Nom-
Bank only marks those nouns having arguments 
as predicates. Statistics on Chinese NomBank 
show that only 17.5% of nouns are marked as 
predicates. It is possible that a noun is a predi-
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cate in some cases but not in others. Previous 
Chinese nominal SRL systems (Xue, 2006b; 
Xue, 2008) assume that nominal predicates have 
already been manually annotated and thus are 
available. To our best knowledge, there is no 
report on addressing automatic recognition of 
nominal predicates on Chinese nominal SRL. 

Automatic recognition of nominal predicates 
can be cast as a binary classification (e.g., Predi-
cate vs. Non-Predicate) problem. This paper 
employs the convolution tree kernel, as proposed 
in Collins and Duffy (2001), on automatic rec-
ognition of nominal predicates. 

Given the convolution tree kernel, the key 
problem is how to extract a parse tree structure 
from the parse tree for a nominal predicate can-
didate. In this paper, the parse tree structure is 
constructed as follows: 1) starting from the 
predicate candidate’s POS node, collect all of its 
sister nodes (with their headwords); 2). recur-
sively move one level up and collect all of its 
sister nodes (with their headwords) till reaching 
a non-NP node. Specially, in order to explicitly 
mark the positional relation between a node and 
the predicate candidate, all nodes on the left side 
of the candidate are augmented with tags 1 and 2 
for nodes on the right side. Figure 2 shows an 
example of the parse tree structure with regard 
to the predicate candidate “贷款/loan” as shown 
in Figure 1. 

In our extra experiments we found global sta-
tistic features (e.g. g1-g5) about the predicate 
candidate are helpful in a feature vector-based 
method for predicate recognition. Figure 2 
makes an attempt to utilize those features in ker-
nel-based method. We have explored other ways 
to include those global features. However, the 
way in Figure 2 works best.  

 
 

Let the predicate candidate be w0, and its left 
and right neighbor words be w-1 and w1, respec-
tively. The five global features are defined as 
follows. 
g1 Whether w0 is ever tagged as a verb in the 

training data? Yes or No. 

g2 Whether w0 is ever annotated as a nominal 
predicate in the training data? Yes or No. 

g3 The most likely label for w0 when it occurs 
together with w-1 and w1. 

g4 The most likely label for w0 when it occurs 
together with w-1. 

g5 The most likely label for w0 when it occurs 
together with w1. 

6. Experiment Results and Discussion 

We have evaluated our Chinese nominal SRL 
system on Chinese NomBank with Chinese 
PropBank 2.0 as its counterpart. 

6.1. Experimental Settings 

This version of Chinese NomBank consists of 
standoff annotations on the files (chtb_001 to 
1151.fid) of Chinese Penn TreeBank 5.1. Fol-
lowing the experimental setting in Xue (2008), 
648 files (chtb_081 to 899.fid) are selected as 
the training data, 72 files (chtb_001 to 040.fid 
and chtb_900 to 931.fid) are held out as the test 
data, and 40 files (chtb_041 to 080.fid) as the 
development data, with 8642, 1124, and 731 
propositions, respectively. 

As Chinese words are not naturally segmented 
in raw sentences, two Chinese automatic parsers 
are constructed: word-based parser (assuming 
golden word segmentation) and character-based 
parser (with automatic word segmentation). 
Here, Berkeley parser (Petrov and Klein, 2007)1 
is chosen as the Chinese automatic parser. With 
regard to character-based parsing, we employ a 
Chinese word segmenter, similar to Ng and Low 
(2004), to obtain the best automatic segmenta-
tion result for a given sentence, which is then 
fed into Berkeley parser for further syntactic 
parsing. Both the word segmenter and Berkeley 
parser are developed with the same training and 
development datasets as our SRL experiments. 
The word segmenter achieves the performance 
of 96.1 in F1-measure while the Berkeley parser 
gives a performance of 82.5 and 85.5 in F1-
measure on golden and automatic word segmen-
tation, respectively2.  

人民币 1 In addition, SVMLight with the tree kernel 
function (Moschitti, 2004) 3  is selected as our 
classifier. In order to handle multi-classification 
                                                           
1 Berkeley Parser. http://code.google.com/p/berkeleyparser/ 
2 POSs are not counted in evaluating the performance of 
word-based syntactic parser, but they are counted in evalu-
ating the performance of character-based parser. Therefore 
the F1-measure for the later is higher than that for the for-
mer. 
3 SVM-LIGHT-TK. http://dit.unitn.it/~moschitt/ 

Figure 2: Semantic sub-tree for nominal predicate
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problem in argument classification, we apply the 
one vs. others strategy, which builds K classifi-
ers so as to separate one class from all others. 
For argument identification and classification, 
we adopt the linear kernel and the training pa-
rameter C is fine-tuned to 0.220. For automatic 
recognition of nominal predicates, the training 
parameter C and the decay factor λ  in the con-
volution tree kernel are fine-tuned to 2.0 and 0.2, 
respectively. 

6.2. Results with Golden Parse Trees and 
Golden Nominal Predicates 

Effect of nominal SRL-specific features 
 
 Rec.(%) Pre.(%) F1 
traditional features 62.83 73.58 67.78 
+nominal SRL-specific  
features 

69.90 75.11 72.55 

Table 5: The performance of nominal SRL on the 
development data with golden parse trees and golden 
nominal predicates 

After performing the greedy feature selection 
algorithm on the development data, features 
{ao1, ai6, ai2P, ai5, ao2, ao12, ao14}, as pro-
posed in Section 3.2, are selected consecutively 
for argument identification, while features {ai7, 
ao1, ai1, ao2, ai5, ao4} are selected for argument 
classification. Table 5 presents the SRL results 
on the development data. It shows that nominal 
SRL-specific features significantly improve the 
performance from 67.78 to 72.55 ( ) 
in F1-measure. 

05.0;2 <pχ

Effect of features derived from verbal SRL 
 

Features Rec.(%) Pre.(%) F1 
baseline 67.86 73.63 70.63  
+ao5 68.15 73.60 70.77 (+0.14)
+ao6 67.66 72.80 70.14 (-0.49)
+ao7 68.20 75.41 71.62 (+0.99)
+ao8 68.30 75.39 71.67 (+1.04)
+p1 67.91 74.40 71.00 (+0.37)
+p2 67.76 74.20 70.83 (+0.20)
+p3 67.96 74.69 71.16 (+0.53)
+p4 68.01 74.18 70.96 (+0.33)
+p5 68.01 75.01 71.39 (+0.76)
+p6 68.20 75.12 71.49 (+0.86)
+p7 68.40 75.70 71.87 (+1.24)

Table 6: Effect of features derived from verbal SRL 
on the performance of nominal SRL on the test data 
with golden parse trees and golden nominal predi-
cates. The first row presents the performance using 
traditional and nominal SRL-specific features. 
 
 

 Rec.(%) Pre.(%) F1 
baseline  67.86 73.63 70.63 
+features derived 
from verbal SRL

68.40 77.51 72.67 

Xue (2008) 66.1 73.4 69.6 
Table 7: The performance of nominal SRL on the test 
data with golden parse trees and golden nominal 
predicates 
 
Table 6 shows the effect of features derived 
from verbal SRL in an incremental way. It 
shows that only the feature ao6 has negative ef-
fect due to its strong relevance with intervening 
verbs and thus not included thereafter. Table 7 
shows the performance on the test data with or 
without using the features derived from the ver-
bal SRL system. It shows these features signifi-
cantly improve the performance ( ) 
on nominal SRL. Table 7 also shows our system 
outperforms Xue (2008) by 3.1 in F1-measure. 

05.0;2 <pχ

6.3. Results with Automatic Parse Trees 
and Golden Nominal Predicates 

In previous section we have assumed the avail-
ability of golden parse trees during the testing 
process. Here we conduct experiments on auto-
matic parse trees, using the Berkeley parser. 
Since arguments come from constituents in 
parse trees, those arguments, which do not align 
with any syntactic constituents, are simply dis-
carded. Moreover, for any nominal predicate 
segmented incorrectly by the word segmenter, 
all its arguments are unable to be labeled neither. 
Table 8 presents the SRL performance on the 
test data by using automatic parse trees. It shows 
that the performance drops from 72.67 to 60.87 
in F1-measure when replacing golden parse trees 
with word-based automatic ones, partly due to 
the absence of 6.9% arguments in automatic 
trees, and wrong POS tagging of nominal predi-
cates. Table 8 also compares our system with 
Xue (2008). It shows that our system also out-
performs Xue (2008) on Chinese NomBank. 

 Rec. (%) Pre. (%) F1 
This paper 56.95(53.55) 66.74(66.69) 60.87(59.40)
Xue (2008) 53.1 (52.9) 62.9 (62.3) 57.6 (57.3) 
Table 8: The performance of nominal SRL on the test 
data with automatic parse trees and golden predicates. 
Here, the numbers outside the parentheses indicate 
the performance using a word-based parser, while the 
numbers inside indicate the performance using a 
character-based parser4. 

                                                           
4 About 1.6% nominal predicates are mistakenly segmented 
by the character-based parser, thus their arguments are 
missed directly. 
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6.4. Results with Automatic Nominal Predi-
cates 

So far nominal predicates are assumed to be 
manually annotated and available. Here we turn 
to a more realistic scenario in which both the 
parse tree and nominal predicates are automati-
cally obtained. In the following, we first report 
the results of automatic nominal predicate rec-
ognition and then the results of nominal SRL on 
automatic recognition of nominal predicates. 

Results of nominal predicate recognition 
Parses g1-g5 Rec.(%) Pre.(%) F1 

no 91.46 88.93 90.18 golden 
yes 92.62 89.36 90.96 

word-based yes 86.39 81.80 84.03 
character-based yes 84.79 81.94 83.34 
Table 9: The performance of automatic nominal 
predicate recognition on the test data 
 
Table 9 lists the predicate recognition results, 
using the parse tree structure, as shown in Sec-
tion 5, and the convolution tree kernel, as pro-
posed in Collins and Duffy (2001). The second 
column (g1-g5) indicates whether the global fea-
tures (g1-g5) are included in the parse tree struc-
ture. We have also defined a simple rule that 
treats a noun which is ever a verb or a nominal 
predicate in the training data as a nominal predi-
cate. Based on golden parse trees, the rule re-
ceives the performance of 81.40 in F1-measure. 
This suggests that our method significantly out-
performs the simple rule-based one. Table 9 also 
shows that: 

 As a complement to local structural informa-
tion, global features improve the performance 
of automatic nominal predicate recognition 
by 0.78 in F1-measure. 

 The word-based syntactic parser decreases 
the F1-measure from 90.96 to 84.03, mostly 
due to the POSTagging errors between NN 
and VV, while the character-based syntactic 
parser further drops the F1-measure by 0.69, 
due to automatic word segmentation. 

Results with automatic predicates 
 
Parses Predicates Rec.(%) Pre.(%) F1 

golden 68.40 77.51 72.67 golden 
automatic 65.07 74.65 69.53 
golden 55.95 66.74 60.87 word-

based automatic 52.67 59.56 55.90 
golden 53.55 66.69 59.40 character-

based automatic 50.66 59.60 54.77 
Table 10: The performance of nominal SRL on the 
test data with the choices of golden/automatic parse 
trees and golden/automatic predicates 

In order to have a clear performance comparison 
among nominal SRL on golden/automatic parse 
trees and golden/automatic predicates, Table 10 
lists all the results in those scenarios. 

6.5. Comparison 

Chinese nominal SRL vs. Chinese verbal SRL 
Comparison with Xue (2008) shows that the per-
formance of Chinese nominal SRL is about 20 
lower (e.g. 72.67 vs. 92.38 in F1-measure) than 
that of Chinese verbal SRL, partly due to the 
smaller amount of annotated data (about 1/5) in 
Chinese NomBank than that in Chinese Prop-
Bank. Moreover, according to Chinese Nom-
Bank annotation criteria (Xue 2006a), even 
when a noun is a true deverbal noun, not all of 
its modifiers are legitimate arguments or ad-
juncts of this predicate. Only arguments that can 
co-occur with both the nominal and verbal forms 
of the predicate are considered in the NomBank 
annotation. This means that the judgment of ar-
guments is semantic rather than syntactic. These 
facts may also partly explain the lower nominal 
SRL performance, especially the performance of 
argument identification. This can be illustrated 
by the statistics on the development data that 
96% (40%) of verbal (nominal) predicates’ sis-
ters are annotated as arguments. Finally, the 
predicate-argument structure of nominal predi-
cates is more flexible and complicated than that 
of verbal predicates as illustrated in Xue (2006a). 

Chinese nominal SRL vs. English nominal 
SRL 
Liu and Ng (2007) reported the performance of 
77.04 and 72.83 in F1-measure on English Nom-
Bank when golden and automatic parse trees are 
used, respectively. Taking into account that Chi-
nese verbal SRL achieves comparable perform-
ance with English verbal SRL on golden parse 
trees, the performance gap between Chinese and 
English nominal SRL (e.g. 72.67 vs. 77.04 in 
F1-measure) presents great challenge for Chi-
nese nominal SRL. Moreover, while automatic 
parse trees only decrease the performance of 
English nominal SRL by about 4.2 in F1-
measure, automatic parse trees significantly de-
crease the performance of Chinese nominal SRL 
by more than 12 in F1-measure due to the much 
lower performance of Chinese syntactic parsing. 

7. Conclusion 

In this paper we investigate nominal SRL in 
Chinese language. In particular, some nominal 
SRL-specific features are included to improve 
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the performance. Moreover, various features 
derived from verbal SRL are properly integrated 
into nominal SRL. Finally, a convolution tree 
kernel is adopted to address the issue of auto-
matic nominal predicates recognition, which is 
essential in a nominal SRL system.  

To our best knowledge, this is the first re-
search on 
1) Exploring Chinese nominal SRL on auto-

matic parse trees with automatic predicate 
recognition; 

2) Successfully integrating features derived 
from Chinese verbal SRL into Chinese nomi-
nal SRL with much performance improve-
ment. 
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Abstract

Virtual evidence (VE), first introduced
by (Pearl, 1988), provides a convenient
way of incorporating prior knowledge into
Bayesian networks. This work general-
izes the use of VE to undirected graph-
ical models and, in particular, to condi-
tional random fields (CRFs). We show
that VE can be naturally encoded into a
CRF model as potential functions. More
importantly, we propose a novel semi-
supervised machine learning objective for
estimating a CRF model integrated with
VE. The objective can be optimized us-
ing the Expectation-Maximization algo-
rithm while maintaining the discriminative
nature of CRFs. When evaluated on the
CLASSIFIEDS data, our approach signif-
icantly outperforms the best known solu-
tions reported on this task.

1 Introduction

Statistical approaches to sequential labeling prob-
lems rely on necessary training data to model the
uncertainty of a sequence of events. Human’s
prior knowledge about the task, on the other hand,
often requires minimum cognitive load to spec-
ify, and yet can provide information often com-
plementary to that offered by a limited amount of
training data. Whenever prior knowledge becomes
available, it is desired that such information is in-
tegrated to a probabilistic model to improve learn-
ing.

Virtual evidence (VE), first introduced by Pearl
(1988), offers a principled and convenient way of
incorporating external knowledge into Bayesian
networks. In contrast tostandard evidence (also

known as observed variables), VE expresses a
prior belief over values of random variables. It
has been shown that VE can significantly extend
the modeling power of Bayesian networks without
complicating the fundamental inference method-
ology (Bilmes, 2004; Reynolds and Bilmes,
2005).

This work extends the use of VE to undi-
rected graphical models and, in particular, to con-
ditional random fields (CRFs). We show that
VE can be naturally encoded into an undirected
graphical model as potential functions. More im-
portantly, we discuss a semi-supervised machine
learning setting for estimating CRFs with the pres-
ence of VE. As the conditional likelihood objec-
tive of CRFs is not directly maximizable with re-
spect to unlabeled data, we propose a novel semi-
supervised learning objective that can be opti-
mized using the Expectation-Maximization (EM)
algorithm while maintaining the discriminative
nature of CRFs.

We apply our model to the CLASSIFIEDS data
(Grenager et al., 2005). Specifically, we use VE to
incorporate into a CRF model two types of prior
knowledge specified in previous works. The first
is defined based on the notion ofprototypes, i.e.,
example words for a given label; and the other as-
sumes that adjacent tokens tend to have the same
label. When unlabeled data becomes available,
we further extend the sparse prototype informa-
tion to other words based on distributional similar-
ity. This results in so-calledcollocation lists, each
consisting of a relatively large number of noisy
“prototypes” for a label. Given the fact that these
noisy prototypes are often located close to each
other in an input sequence, we create a new type
of VE based on word collocation to reduce ambi-
guity.
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We compare our CRF model integrated with VE
with two state-of-the-art models,i.e., constraint-
driven learning (Chang et al., 2007) and gener-
alized expectation criteria (Mann and McCallum,
2008). Experiments show that our approach leads
to sequential labeling accuracies superior to the
best results reported on this task in both supervised
and semi-supervised learning.

2 Related work

There have been various works that make use
of prior knowledge in sequential labeling tasks.
Grenager et al. (2005) explicitly constrain the
transition matrix of a hidden Markov model
(HMM) to favor self transitions, assuming that
fields tend to consist of consecutive runs of the
same label.

Prototype-drive learning (Haghighi and Klein,
2006) specifies prior knowledge by providing a
few prototypes (i.e., canonical example words) for
each label. This sparse prototype information is
then propagated to other words based on distri-
butional similarity. The relation between words
and their prototypes are then used as features in
a Markov random field (MRF) model. Since an
MRF model aims to optimize the joint probability
p(x,y) of input and state sequences, it is possible
to apply the EM algorithm for unsupervised/semi-
supervised learning.

Constraint-driven learning (Chang et al., 2007)
expresses several kinds of constraints in a unified
form. In inference, a new decision function is pro-
posed to penalize the violation of the desired con-
straints as follows,

argmax
y

λ · F (x,y) −
∑

k

ρkd(y, 1Ck
(x)) (1)

Hereλ · F (x,y) is a linear decision function ap-
plicable to a number of sequential models, such
as HMMs, MRFs and CRFs. Functiond is imple-
mented as the Hamming distance (or its approx-
imation) between a hypothesis sequence and the
space of state sequences that satisfy the constraint
Ci. Due to the nature of the distance function,
their work approximates EM training by finding
the topK hypothesis sequences and using them as
newly labeled instances to update the model. This
process is repeated for a number of iterations in a
self-training fashion (Yarowsky, 1995).

Generalized expectation criteria (Mann and
McCallum, 2008) represent prior knowledge asla-

beled features, and use such information to reg-
ularize semi-supervised learning for CRFs. For-
mally, their learning objective consists of the stan-
dard CRF training objective, plus a Gaussian prior
on model parameters and an additional regulariza-
tion term:1∑

i

log pλ(y(i)|x(i))− 1
2σ2

‖λ‖2−ρD(p̂||p̃λ) (2)

In the last term,̂p andp̃λ both refer to conditional
distributions of labels given a feature. While the
former is specified by prior knowledge, and the
latter is estimated from unlabeled data.

Our approach incorporates prior knowledge as
virtual evidence to express preferences over the
values of a set of random variables. The no-
tion of VE was first introduced by Pearl (1998)
and further developed by Bilmes (2004), both in
the context of Bayesian networks. Different from
constraint-driven learning, VE can be formally en-
coded as part of a graphical model. The funda-
mental inference methodology, therefore, does not
need to be altered. Moreover, VE has the flexibil-
ity of representing various kinds of prior knowl-
edge. For example, Reynolds and Bilmes (2005)
use VE that explicitly favors self transitions in dy-
namic Bayesian networks.

This work extends the use of VE to CRFs. In
essence, VE herein can be viewed as probabilistic
constraints in an undirected graph that allow exact
inference. One of the biggest challenges of such a
model lies in the semi-supervised machine learn-
ing setting. Since the entire state sequence of an
unlabeled instance remains hidden, the conditional
likelihood objective of CRFs is not directly opti-
mizable. There have been a number of works that
address this problem for conditional models. For
example,minimum entropy regularization (Grand-
valet and Bengio, 2004; Jiao et al., 2006), aims
to maximize the conditional likelihood of labeled
data while minimizing the conditional entropy of
unlabeled data:∑

i

log pλ(y(i)|x(i))− 1
2σ2

‖λ‖2− ρH(y|x) (3)

This approach generally would result in “sharper”
models which can be data-sensitive in practice.

Another approach (Suzuki and Isozaki, 2008)
embeds a joint probability model (HMM in their

1We slightly modify the notation here to be consistent
with the rest of the paper.
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case) into a CRF model as a new potential func-
tion. Semi-supervised learning is then conducted
by iteratively (1) fixing the HMM and updating
CRF parameters on labeled data and (2) fixing the
CRF model and updating the HMM on unlabeled
data.

Additionally, when unlabeled instances have
partial labeling information, it is possible to op-
timize a marginal distribution of the conditional
likelihood, i.e., pλ(y(i)

o |x), on unlabeled data.

Herey(i)
o is a subvector ofy(i) that denotes the set

of observed state variables. The optimization can
be done in a similar fashion as training a hidden-
state CRF model (Quattoni et al., 2007).

3 Task

We consider the problem of extracting fields from
free-text advertisements. We use the CLASSI-
FIEDS data (Grenager et al., 2005) which consists
of 8767 ads for apartment rental. 302 of the ads
in the CLASSIFIEDS data have been manually-
labeled with 12 fields, includingsize, rent, neigh-
borhood and so on. The labeled data has been di-
vided into train/dev/test sets with 102/100/100 ads
respectively. The evaluation metric is the token-
level accuracy where tokens include both words
and punctuations.

Our goal in this work is two folds: (1) lever-
age both the training data and the prior knowledge
specified for this task for supervised learning, and
(2) additionally use the unlabeled data for semi-
supervised learning. We exploit two types of prior
knowledge:

• K1: label consistency with prototypes;

• K2: label consistency within a sentence.

K1 involves a set of prototype lists. Each list is
attached with a label and consists of a set of ex-
ample words for that label. In this work, we use
the prototype lists originally defined by Haghighi
and Klein (2006) (HK06) and subsequently used
by Chang et al. (2005) (CRR07) and Mann and
McCallum (2008) (MM08). The labels as well as
their prototypes are shown in the first two columns
of Table 1. Our model is desired to be consistent
with such prototype information. Secondly, K2
means that tokens tend to have consistent labels
within a sentence. A similar type of prior knowl-
edge is implemented by CRR07 as a constraint in
inference.

4 Conditional Random Fields

Conditional random fields are a probabilistic
model that directly optimizes the conditional prob-
ability of a state (label) sequence given an input
sequence (Lafferty et al., 2001). Formally, we let
x = (x1, x2, . . . , xT ) denote an input sequence
of T tokens, andy = (y1, y2, . . . , yT ) the cor-
responding state sequence. We further augment
y with two special states,Start and End,2 repre-
sented byy0 andyT+1 respectively. A linear-chain
CRF model is an undirected graphical model as
depicted in Figure 1(a), with the conditional prob-
ability given by

pλ(y|x) =
1

Zλ(x)

∏
t

ψ
(t)
λ (x, yt−1, yt) (4)

The partition functionZλ(x) normalizes the expo-

nential form to be a probability distribution.ψ(t)
λ

are a set of potential functions defined on themax-
imum cliques of the graph,i.e., (x, yt−1, yt) in the
case of a linear-chain CRF model. The potential
functions are typically in the form of

ψ
(t)
λ (x, yt−1, yt) = exp

(
λ · f(x, yt−1, yt, t)

)
(5)

whereλ is a weight vector andf is a feature vector
of arbitrary functions of the corresponding clique.

Given a set of labeled examples
{x(i),y(i))}m

i=1, we can estimate model pa-
rameters in a supervised machine learning setting.
The objective is to estimateλ that maximizes
the conditional likelihood while regularizing the
model size:

L1 =
m∑

i=1

log pλ(y(i)|x(i))− 1
2σ2

‖λ‖2 (6)

In this work, we optimizeL1 using stochastic gra-
dient descent and use the accuracy on the develop-
ment set as the stopping criterion.

5 CRFs with Virtual Evidence

A canonical way of using virtual evidence (VE)
in Bayesian networks is to have a directed edge
from a hidden variableh to a VE variablev. The
variablev will always be observed with a partic-
ular value,e.g., v = 1, but the actual value itself
does not matter. The prior knowledge abouth is

2Start andEnd are with regard to a document, which are
different from start and end of a sentence.
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x

yT EndStart y1 y2

(a)

(b)

x

yT
EndStart y1 y2

vT=1v1=1 v2=1 vT+1=1

Figure 1: Graphical model representations of (a) a
CRF model and (b) a CRF model integrated with
virtual evidence. Solid and empty nodes denote
observed and hidden variables respectively.

expressed via the conditional probabilityp(v =
1|h). For example, by settingp(v = 1|h = a) >
p(v = 1|h = b), we know thath = a is more
likely a event thanh = b. This conditional distri-
bution is not learned from data, Instead, it is pre-
defined in such a way that reflects a prior belief
over the value ofh.

VE can be encoded in an undirected graphical
model in a similar fashion. For our task, we mod-
ify the structure of a linear-chain CRF model as
depicted in Figure 1(b) — we create a sequence
of VE variables, denoted byv1, v2, . . . , vT+1, in
parallel to the state variables. Eachvt is assigned
a constant 1 (one), and is connected withyt−1

and yt, forming a new set of maximum cliques
(yt−1, yt, vt), t = 1, . . . , T + 1. We create cliques
of size 3 because it is the minimum size required to
represent the prior knowledge used in our task, as
will be discussed shortly. However, it is possible
to have a different graph structure to incorporate
other types of prior knowledge,e.g., using large
cliques to represent constraints that involve more
variables.

Next, in analogy to Equation (5), we define the

corresponding potential functions as follows,

φ(t)(yt−1, yt, vt) = exp
(
ω · s(yt−1, yt, vt, t)

)
(7)

s is a vector of VE feature functions andω is the
corresponding weight vector with pre-defined val-
ues. Given the new graphical model in Figure 1(b).
It is natural to model the conditional probability
of the state sequence givenboth the standard evi-
dence and the VE as follows,

pλ(y|x,v)

=
1

Zλ(x,v)

∏
t

ψ
(t)
λ (x, yt−1, yt)φ(t)(yt−1, yt, vt)

(8)
Analogous to usingp(v = 1|h) in Bayesian net-

works, we can utilizeφ(t)(yt−1, yt,v = 1) to ex-
press preferences over state hypotheses in a CRF
model. In general, the function form ofφ(t) may
or may not depend on the inputx. Even whenφ(t)

does depend onx, the relation is completely deter-
mined by external knowledge/systems (as opposed
to by data). Thus we do not explicitly connectv
with x in the graph.

5.1 Incorporating prior knowledge

Now we show how to represent the prior knowl-
edge introduced in Section 3 using the VE fea-
ture functions. Unless otherwise stated, we as-
sumevt = 1 for all t = 1, . . . , T and simply use
vt instead ofvt = 1 in all equations. First, we
define a VE functions1 that represents K1:label
consistency with prototypes. We letPl denote a
prototype list associated with the labell. If xt be-
longs toPl, we should preferyt = l as opposed to
other values. To this end, for cases wherext ∈ Pl,
we sets1 as

s1(yt, vt, t) =
{

1 if yt = l
0 otherwise

(9)

On the other hand, ifxt is not a prototype, we will
always haves1(yt, vt, t) = 0 for all hypotheses
of yt. The impact of this prior knowledge is con-
trolled by the weight ofs1, denote byω1. At one
extreme whereω1 = 0, the prior knowledge is
completely ignored in training. At the other ex-
treme whereω1 → +∞, we constrain the values
of state variables to agree with the prior knowl-
edge. Note that althoughs1 is implicitly related to
x, we do not writes1 as a function ofx for consis-
tency with the general definition of VE.
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To represent K2:label consistency within a sen-
tence, we define a second VE feature functions2
with weight ω2. Assume that we have an exter-
nal system that detects sentence boundaries. If it
is determined thatxt is not the start of a sentence,
we sets2 as

s2(yt−1, yt, vt, t) =
{

1 if yt−1 = yt

0 otherwise
(10)

It is easy to see that this would penalize state tran-
sitions within a sentence. On the other hand, ifxt

is a sentence start, we sets2(yt−1, yt, vt, t) = 0 for
all possible(yt−1, yt) pairs. In this work, we use
a simple heuristics to detect sentence boundaries:
we determine thatxt is the start of a sentence if its
previous tokenxt−1 is a period (.), a semi-colon
(;) or an acclamation mark (!),and if xt is not a
punctuation.

5.2 Semi-supervised learning

When a large amount of unlabeled data is avail-
able, it is often helpful to leverage such data
to improve learning. However, we cannot di-
rectly optimizep(y|x,v) since the correct state
sequences of the unlabeled data are hidden. One
heuristic approach is to adapt theself-training al-
gorithm (Yarowsky, 1995) to our model. More
specifically, for each input in the unlabeled dataset
{x(i)}n

i=m+1, we decode the best state sequence,

ŷ(i) = argmax
y(i)

p(y(i)|x(i),v(i)) (11)

Then we use{(x(i), ŷ(i))}n
i=m+1 in addition to the

labeled data to train a supervised CRF model. This
approach, however, does not have a theoretical
guarantee on optimality unless certain nontrivial
conditions are satisfied (Abney, 2004).

On the other hand, it is well known that unla-
beled data can be naturally incorporated using a
generative approach that models a joint probabil-
ity (Nigam et al., 2000). This is achieved by max-
imizing a marginal distribution of the joint proba-
bility over hidden variables. Inspired by the gen-
erative approach, we propose to explicitly model
p(y,v|x). In contrast to Equation (8), here we
jointly model y andv but the probability is still
conditioned onx. This “joint” distribution should
be chosen such that it results in the same condi-
tional distributionp(y|x,v) as defined in Equa-

tion (8). To this end, we definepλ(y,v|x) as

pλ(y,v|x)

=
1

Z ′
λ(x)

∏
t

ψ
(t)
λ (x, yt−1, yt)φ(t)(yt−1, yt, vt)

(12)
HereZ ′

λ(x) is a normalization function obtained
by summing the numerator over bothy and v.
By applying the Bayes rule, it is easy to see that
p(y|x,v) is exactly equal to Equation (8).

Given unlabeled data{x(i)}n
i=m+1, we aim to

optimize the following objective,3

L2 =
m+n∑
i=1

log pλ(v(i)|x(i))− 1
2σ2

‖λ‖2 (13)

This is essentially the marginal distribution of
p(y,v|x) over hidden variablesy. Here we ig-
nore the labels of the dataset{(x(i),y(i))}m

i=1, but
we do use the label information in initializing the
model which will described in Section 6. To op-
timize such an objective, we apply the EM algo-
rithm in the same fashion as is used in a generative
approach. In other words, we iteratively optimize
Q(λ) =

∑
y pλg(y|x,v) log pλ(y,v|x) whereλg

denotes the model estimated from the previous it-
eration. The gradient of theQ function is straight-
forward to compute with the result given by

∂Q(λ)
∂λk

=
∑

t

∑
yt−1,yt

fk(yt−1, yt,x, t)·(
pλ(yt−1, yt|x,v) − pλ(yt−1, yt|x)

) (14)

We keep two sets of accumulators in running the
Forward-Backward algorithm, one for comput-
ing pλ(yt−1, yt|x,v) and the other for computing
pλ(yt−1, yt|x). Loosely speaking, the model will
converge to a local optimum if the difference be-
tween these two posterior probabilities becomes
trivial.

5.3 Collocation based virtual evidence

Prior knowledge represented by prototypes is typ-
ically sparse. This sparse information, however,
can be propagated across all data based on dis-
tributional similarity (Haghighi and Klein, 2006).
Following the same idea, we extend the prototype
lists as follows. (1) We merge all prototypes in
Pl into a single word typewl. (2) For each word

3In Equation (13), the fact thatv is assigned a constant 1
does not meanp(v = 1|x) = 1 (Bilmes, 2004)
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Label Prototype lists of HK06 Collocation lists (top examples)

ADDRESS address carlmont [4-digit] street [3-digit] streets
AVAILABLE immediately begin cheaper available
CONTACT [phone] call [time] [email] appointment email see today ...
FEATURES kitchen laundry parking room new covered building garage ...
NEIGHBORHOOD close near shopping transportation center located restaurants ...
PHOTOS pictures image link [url] click view photos
RENT $ month [amount] lease deposit security year agreement ...
RESTRICTIONS pets smoking dog ok sorry please allowed negotiable ...
ROOMMATES roommate respectful drama
SIZE [1-digit] br sq [4-digit] [3-digit] ft bath ba ...
UTILITIES utilities pays electricity water included owner garbage paid

Table 1: Field labels (exceptother) for the CLASSIFIEDS task, their respective prototype lists specified
by prior knowledge, and collocation lists mined from unlabeled data.

in the corpus, we collect a context vector of the
counts of all words (excluding stop words) that
occur within a window of sizek in either direc-
tion, where the window is applied only within sen-
tence boundaries. (3) Latent semantic analysis
(Deerwester et al., 1990) is performed on the con-
structed context vectors. (4) In the resulting latent
semantic space, all words (except stop words) that
have a high enough dot product withwl will be
grouped to form a new set, denoted asCl, which
is a superset ofPl. In this regard,Cl can be viewed
as lists of noisy “prototypes”. As observed in
HK06, another consequence of this method is that
many neighboring tokens will share the same pro-
totypes.

Differently from previous works, we useCl

directly as virtual evidence. We could apply
s1 in Equation (9) whenxt ∈ Cl (as opposed
to whenxt ∈ Pl). This, however, would con-
taminate our model sinceCl are often noisy.
For example, “water” is found to be distribu-
tionally similar to the prototypes ofutilities.
Although in most cases “water” indeed means
utilities, it can mean features in the context
of “water front view”. To maximally reduce
ambiguity, we propose to applys1 in Equa-
tion (9) if both of the following conditions hold,
(1) xt ∈ Cl

(2) There existsτ s.t. |τ − t| < k, andxτ ∈ Cl

In other words, we will impose a non-uniform
prior on yt if xt ∈ Cl “collocates”, within k
tokens, with another word that belongs toCl.
Based on K2, it is reasonable to believe that
neighboring tokens tend to share the same label.
Therefore, knowing that two tokens close to each

other both belong toCl would strengthen our
belief that either word is likely to have labell.
We thus refer to this type of virtual evidence
as collocation-based VE, and refer toCl as
collocation lists.

6 Evaluation

We use the CLASSIFIEDS data provided by
Grenager et al. (2005) and compare with re-
sults reported by CRR07 (Chang et al., 2007) and
MM08 (Mann and McCallum, 2008) for both su-
pervised and semi-supervised learning. Following
all previous works conducted on this task, we to-
kenized both words and punctuations, and created
a number of regular expression tokens for phone
numbers, email addresses, URLs, dates, money
amounts and so on. However, we did not tokenize
newline breaks, as CRR07 did, which might be
useful in determining sentence boundaries. Based
on such tokenization, we extractn-grams,n =
1, 2, 3, from the corpus as features for CRFs.

As described in Section 3, we integrate the prior
knowledge K1 and K2 in our CRF model. The
prototypes that represent K1 are given in Table 1.
CRR07 used the same two kinds of prior knowl-
edge in the form of constraints, and they imple-
mented another constraint on the minimum num-
ber of words in a field chunk. MM08 used almost
the same set of prototypes as labeled features, but
they exploited two sets of 33 additional features
for some experiments. In this regard, the compar-
ison between CRR07, MM08 and the method pre-
sented here cannot be exact. However, we show
that while our prior knowledge is no more than
that used in previous works, our approach is able
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# labeled examples
Supervised model 10 25 100

CRR07: HMM 61.6 70.0 76.3
+ Constr in decoding 66.1 73.7 80.4
MM08: CRF 64.6 72.9 79.4

CRF 62.3 71.4 79.1
+ VE in decoding 68.9 74.6 81.1
CRF + VE (auto weights) 48.0 54.8 59.8
+ VE in decoding 66.0 72.5 80.9

Table 2: Token-level accuracy of supervised learn-
ing methods; “+ VE” refers to the cases where
both kinds of prior knowledge, K1 and K2, are in-
corporated as VE in the CRF model.

to achieve the state-of-art performance.

6.1 Decoding settings

Depending on whether VE is used at test time, we
explore two decoding settings in all experiments:

1. Findy that maximizespλ(y|x) as in standard
CRF decoding, ignoring virtual evidence.

2. Findy that maximizesp(y|x,v). We use “+
VE in decoding” to represent this setting.

These two scenarios are analogous to those in
CRR07 which conducted HMM decoding with-
out/with constraints applied. We use “+ constr. in
decoding” to represent the latter scenario of their
work. MM08, on the other hand, found no accu-
racy improvement when adding constraints at test
time.

Note that in our second decoding setting, the
weights for the VE feature functions,i.e., ω1 and
ω2, are tuned on the development set. This is done
by a greedy search that first finds the bestω1, and
then finds the bestω2 while fixing the value ofω1,
both with a step size 0.5.

6.2 Supervised learning results

First, we experimented with a standard CRF
model with VE applied neither in training nor in
decoding. As shown in Table 2, our CRF imple-
mentation performed slightly worse than the im-
plementation by MM08, probably due to slight
difference in tokenization. Secondly, we used the
same CRF model but additionally applied VE in
decoding, corresponding to the second setting in
Section 6.1. This method gave a significant boost
to the tagging performance, yielding the best su-
pervised learning results (shown as bolded in the

# labeled examples
Semi-supervised models 10 25 100

CRR07: HMM + Constr 70.9 74.8 78.6
+ Constr in decoding 74.7 78.5 81.7
MM08: CRF + GE 72.6 76.3 80.1

CRF + VE (Self-train) 69.0 74.2 81.4
+ VE in decoding 69.1 75.2 81.2
CRF + Col-VE (Self-train) 73.1 76.4 81.8
+ Col-VE in decoding 75.7 77.6 82.9
CRF + Col-VE (EM) 78.3 79.1 82.7
+ Col-VE in decoding 78.8 79.5 82.9

Table 3: Token-level accuracy of semi-supervised
learning methods. “+ Col-VE” refers to cases
where collocation-based VE is integrated in the
CRF model in addition to the VE representing K1
and K2.

table). This proves that the prior knowledge is in-
deed complementary to the information offered by
the training data.

Similar to the second decoding setting that in-
corporates VE, we can have a counterpart setting
at training time. In other words, we can optimize
pλ(y|x,v) instead ofpλ(y|x) during learning. In
decidingω = (ω1, ω2), it is possible to learnω
from data in the same way as how we learnλ.
This, however, might undermine the role of other
useful features since we do not always have suffi-
cient training data to reliably estimate the weight
of prior knowledge. As shown in Table 2, we ex-
perimented with learningω automatically (shown
as “auto weights”). While applying VE with such
weights in both training and decoding worked rea-
sonably well, applying VE only in training but not
in decoding yielded very poor performance (prob-
ably due to excessively large estimates ofω1 and
ω2). Additionally, we repeated the above experi-
ment with manually specified weights, but did not
find further accuracy improvement over the best
supervised learning results.

6.3 Semi-supervised learning results

One natural way of leveraging the unlabeled data
(more than 8K examples) is to perform semi-
supervised learning in a self-training fashion. To
this end, we used our best supervised model in Ta-
ble 2 to decode the unlabeled examples as well
as the test-set examples (by treating them as un-
labeled). Note that by doing this our comparison
with CRR07 and MM08 cannot be exact as they
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sampled the unlabeled examples, with different
rates, for semi-supervised learning, while we used
as much data as possible. We applied the sameω
that was used for the supervised model, and then
combined the newly labeled examples, in addition
to the manually labeled ones, as training data to
learn a supervised CRF model. On this particu-
lar dataset, we did not find it helpful by selecting
automatically labeled data based on a confidence
threshold. We simply used all data available in
self-training. This paradigm is referred to as “CRF
+ VE (self-train)” in Table 3. When no VE is ap-
plied at test time, this semi-supervised CRF model
significantly outperformed the best model in Ta-
ble 2. When applying VE at test time, however,
the improvement over its supervised counterpart
became trivial.

Next, following Section 5.3, we collected con-
text vectors on the unlabeled data using a win-
dow sizek = 3, and extracted the top 50 singular
vectors therefrom.4 We created collocation lists
that contain words close to the merged prototype
words in the latent semantic space. Some exam-
ples are given in the last column of Table 1. We
then augmented the prototype-based VE based on
the following rules: Ifxt belongs to any prototype
list Pl, we directly applys1 in Equation (9); oth-
erwise, we applys1 if xt and at least one neigh-
bor (within 3 tokens fromxt) belong to the same
collocation listCl. In our experiments, we let
“Col-VE” represent such collocation-based VE.
We conducted self-training using a CRF model in-
tegrated with Col-VE, whereω was tuneda pri-
ori by testing the same model on the develop-
ment set. As shown in the table, “CRF + Col-VE
(self-train)” gave significant accuracy improve-
ment over “CRF + VE”, while adding Col-VE at
test time further boosted the performance. The ac-
curacies were already on par with the best results
previously reported on this task.

Finally, we implemented the EM algorithm pro-
posed in Section 5.2 that iteratively optimizes
p(v|x) on all data. The model was initial-
ized by the one obtained from “CRF + Col-VE
(self-train)”. After the model was initialized,
we performed the EM algorithm until the model
reached a maximum accuracy on the develop-
ment set. Note that in some cases, we observed
a development-set accuracy degradation after the
first iteration of the EM, but the accuracy quickly

4The same configuration is used in HK06.

recovered from the second iteration and kept in-
creasing until a maximum accuracy was reached.5

As shown in the last two rows in Table 3, this
method is clearly advantageous over self-training,
leading to the best tagging accuracies in both de-
coding settings. Our model achieved2.6%−5.7%
absolute accuracy increases in the three training
settings compared with MM08 which had the best
results without using any constraints in decoding.
When applying VE at test time, our model was
1.2% − 4.1% better than CRR07 which had the
best overall results. Additionally, when compared
with supervised learning results, our best semi-
supervised model trained on only 10 labeled ex-
amples performed almost as well as a standard su-
pervised CRF model trained on 100 labeled exam-
ples.

7 Conclusions

We have presented the use of virtual evidence as
a principled way of incorporating prior knowledge
into conditional random fields. A key contribu-
tion of our work is the introduction of a novel
semi-supervised learning objective for training a
CRF model integrated with VE. We also found it
useful to create so-called collocation-based VE,
assuming that tokens close to each other tend to
have consistent labels. Our evaluation on the
CLASSIFIEDS data showed that the learning ob-
jective presented here, combined with the use of
collocation-based VE, yielded remarkably good
accuracy performance. In the future, we would
like to see the application of our approach to other
tasks such as (Li et al., 2009).
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Abstract

This paper proposes a novel method to
refine the grammars in parsing by utiliz-
ing semantic knowledge from HowNet.
Based on the hierarchical state-split ap-
proach, which can refine grammars au-
tomatically in a data-driven manner, this
study introduces semantic knowledge into
the splitting process at two steps. Firstly,
each part-of-speech node will be anno-
tated with a semantic tag of its termi-
nal word. These new tags generated in
this step are semantic-related, which can
provide a good start for splitting. Sec-
ondly, a knowledge-based criterion is used
to supervise the hierarchical splitting of
these semantic-related tags, which can al-
leviate overfitting. The experiments are
carried out on both Chinese and English
Penn Treebank show that the refined gram-
mars with semantic knowledge can im-
prove parsing performance significantly.
Especially with respect to Chinese, our
parser achieves an F1 score of 87.5%,
which is the best published result we are
aware of.

1 Introduction

At present, most high-performance parsers are
based on probabilistic context-free grammars
(PCFGs) in one way or another (Collins, 1999;
Charniak and Johnson, 2005; Petrov and Klein,
2007). However, restricted by the strong context-
free assumptions, the original PCFG model which
simply takes the grammars and probabilities off a
treebank, does not perform well. Therefore, a va-
riety of techniques have been developed to enrich
and generalize the original grammar, ranging from
lexicalization to symbol annotation.

∗Corresponding author: Xihong Wu.

Lexicalized PCFGs use the structural features
on the lexical head of phrasal node in a tree, and
get significant improvements for parsing (Collins,
1997; Charniak, 1997; Collins, 1999; Charniak,
2000). However, they suffer from the problem of
fundamental sparseness of the lexical dependency
information. (Klein and Manning, 2003).

In order to deal with this limitation, a variety
of unlexicalized parsing techniques have been pro-
posed. Johnson (1998) annotates each node by
its parent category in a tree, and gets significant
improvements compared with the original PCFGs
on the Penn Treebank. Then, some manual and
automatic symbol splitting methods are presented,
which get comparable performance with lexical-
ized parsers (Klein and Manning, 2003; Matsuzaki
et al., 2005). Recently, Petrov et al. (2006) in-
troduces an automatic hierarchical state-split ap-
proach to refine the grammars, which can alter-
nately split and merge the basic nonterminals by
the Expectation-Maximization (EM) algorithm. In
this method, the nonterminals are split to differ-
ent degrees, as appropriate to the actual complex-
ity in the data. The grammars refined in this way
are proved to be much more accurate and compact
than previous work on automatic annotation. This
data-driven method still suffers from the overfit-
ting problem, which may be improved by integrat-
ing other external information.

In this paper, we propose a novel method that
combines the strengths of both data-driven and
knowledge-driven strategies to refine grammars.
Based on the work proposed by Petrov et al.
(2006), we use the semantic knowledge from
HowNet (Dong and Dong, 2000) to supervise
the hierarchical state-split process at the part-of-
speech(POS) level. At first, we define the most
general hypernym in HowNet as the semantic class
of a word, and then use this semantic class to ini-
tialize the tag of each POS node. In this way, a
new set of semantic-related tags is generated, and
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a good starting annotation is provided to reduce
the search space for the EM algorithm in the split-
ting process. Then, in order to mitigate the overfit-
ting risk, the hierarchical hypernym-hyponym re-
lation between hypernyms in HowNet is utilized
to supervise the splitting of these new semantic-
related tags. By introducing a knowledge-based
criterion, these new tags are decided whether or
not to split into subcategories from a semantic per-
spective. To investigate the effectiveness of the
presented approach, several experiments are con-
duced on both Chinese and English. They reveal
that the semantic knowledge is potentially useful
to parsing.

The remainder of this paper is organized as
follows. Section 2 reviews some closely related
works, including the lexical semantic related pars-
ing and the hierarchical state-split unlexicalized
parsing. In section 3, the presented method for
grammar refining is described in detail, and sev-
eral experiments are carried out for evaluation in
Section 4. Conclusions are drawn in Section 5.

2 Background

This paper tries to refine the grammars through
an improved hierarchical state-split process in-
tegrated with semantic knowledge. The related
works are reviewed as follows.

2.1 Lexical Semantic Related Parsing

Semantic knowledge is useful to resolving syntac-
tic ambiguities, and a variety of researches focus
on how to utilize it. Especially in recent years,
a conviction arose that semantic knowledge could
be incorporated into the lexicalized parsing.

Based on the lexicalized grammars, Bikel
(2000) attempts at combining parsing and word
sense disambiguation in a unified model, using a
subset of SemCor (Miller et al., 1994). Bikel
(2000) evaluates this model in a parsing context
with sense information from WordNet, but does
not get improvements on parsing performance.

Xiong et al. (2005) combines word sense from
CiLin and HowNet (two Chinese semantic re-
sources) in a generative parsing model, which gen-
eralizes standard bilexical dependencies to word-
class dependencies, and indeed help to tackle the
sparseness problem in lexicalized parsing. The
experiments show that the parse model combined
with word sense and the most special hypernyms
achieves a significant improvement on Penn Chi-

nese Treebank. This work only considers the most
special hypernym of a word, rather than other
hypernyms at different levels of the hypernym-
hyponym hierarchy.

Then, Fujita et al. (2007) uses the Hinoki tree-
bank as training data to train a discriminative parse
selection model combining syntactic features and
word sense information. Instead of utilizing the
most special hypernym, the word sense informa-
tion in this model is embodied with more general
concepts. Based on the hand-craft sense informa-
tion, this model is proved to be effective for parse
selection.

Recently, Agirre et al. (2008) train two lexical-
ized models (Charniak, 2000; Bikel, 2004) on pre-
processed inputs, where content words are substi-
tuted with semantic classes from WordNet. By in-
tegrating the word semantic classes into the pro-
cess of parser training directly, these two models
obtain significant improvements in both parsing
and prepositional phrase attachment tasks. Zhang
(2008) does preliminary work on integrating POS
with semantic class of words directly, which can
not only alleviate the confusion in parsing, but also
infer syntax and semantic information at the same
time.

2.2 The Hierarchical State-split Parsing

In order to alleviate the context-free assumptions,
Petrov et al. (2006) proposes a hierarchical state-
split approach to refine and generalize the orig-
inal grammars, and achieves state-of-the-art per-
formance. Starting with the basic nonterminals,
this method repeats the split-merge (SM) cycle to
increase the complexity of grammars. That is, it
splits every symbol into two, and then re-merges
some new subcategories based on the likelihood
computation.

Splitting

In each splitting stage, the previous syntactic sym-
bol is split into two subcategories, and the EM al-
gorithm is adopted to learn probability of the rules
for these latent annotations to maximize the like-
lihood of trees in the training data. Finally, each
symbol generates a series of new subcategories in
a hierarchical fashion. With this method, the split-
ting strategy introduces more context information,
and the refined grammars cover more linguistic in-
formation which helps resolve the syntactic ambi-
guities.
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However, it is worth noting that the EM algo-
rithm does not guarantee a global optimal solution,
and often gets stuck in a suboptimal configuration.
Therefore, a good starting annotation is expected
to help alleviate this problem, as well as reduce the
search space for EM.

Merging

It is obvious that using more derived subcategories
can increase accuracy, but the refined grammars fit
tighter to the training data, and may lead to over-
fitting to some extent. In addition, different sym-
bols should have their specific numbers of subcat-
egories. For example, the comma POS tag should
have only one subcategory, as it always produces
the terminal comma. On the contrary, the noun
POS tag and the verb POS tag are expected to have
much more subcategories to express their context
dependencies. Therefore, it is not reasonable to
split them in the same way.

The symbol merging stage is introduced to al-
leviate this defect. This approach splits symbols
only where needed, and it is implemented by split-
ting each symbol first and then measure the loss in
likelihood incurred when removing this subcate-
gory. If the loss is small, it means that this subcate-
gory does not take enough information and should
be removed. In general it is hard to decide the
threshold of the likelihood loss, and this merging
stage is often executed by removing a certain pro-
portion of subcategories, as well as giving priority
to the most informative subcategories.

By splitting and merging alternately, this
method can refine the grammars step by step to
mitigate the overfitting risk to some extent. How-
ever, this data-driven method can not solve this
problem completely, and we need to find other ex-
ternal information to improve it.

Analysis

The hierarchical state-split approach is used to
split all the symbols in the same way. Table 1 cites
the subcategories for several POS tags, along with
their two most frequent words. Results show that
the words in the same subcategory of POS tags are
semantic consistent in some cases. Therefore, it
is expected to optimize the splitting and merging
process at the POS level with semantic knowledge.

NR
NR-0 大甲溪(Daja river) 尼泊尔(Nepal)

NR-1 新力(Sony) 伯乐网(Bole Co.)

NR-2 华诚(C. Hua) 文天祥(T. Wen)

NR-3 乐绍延(S. Yue) 商(Shang)

LC
LC-0 当中(middle) 右侧(right)

LC-1 以前(before) 以来(since)

LC-2 开始(start) 止(end)

LC-3 为止(till) 末(end)

P
P-0 每当(whenever) 至于(as for)

P-1 犹如(like) 仿佛(as)

P-2 朝着(look to) 照着(according to)

P-3 傍(be close to) 比照(contrast)

Table 1: The two most frequent words in the sub-
categories of several POS tag.

3 Integration with Semantic Knowledge

In this paper, the semantic knowledge is used to re-
fine grammars by improving the automatic hierar-
chical state-split approach. At first, in order to pro-
vide good starting annotations to reduce the search
space for the EM algorithm, we try to annotate the
tag of each POS node with the most general hyper-
nym of its terminal word. In this way, we generate
a new set of semantic-related tags. And then, in-
stead of splitting and merging all symbols together
automatically, we propose a knowledge-based cri-
terion with hierarchical semantic knowledge to su-
pervise the splitting of these new semantic-related
tags.

3.1 HowNet

The semantic knowledge resource we use is
HowNet, which is a common sense knowledge
base unveiling concepts and inter-conceptual re-
lations in Chinese and English.

As a knowledge base of graph structure,
HowNet is devoted to demonstrating the proper-
ties of concepts through sememes and relations
between sememes. Broadly speaking, a sememe
refers to the smallest basic semantic unit that can-
not be reduced further, which can be represented
in English and their Chinese equivalents, such as
the sememe institution|机构. The relations expli-
cated in HowNet include hypernym-hyponym re-
lations, location-event relations, time-event rela-
tions and so on. In this work, we mainly focus on
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vitality

is full ofThe goveronmentThe goveronment is full of

.

IP

NP VP PU

NN VV NP

NN

vitality

a. IP

NP VP PU

NN-Entity VV-Event NP

NN-Attribute

b.

Figure 1: The two syntax trees of the sentence "The government is full of vitality". a. is the original
syntax tree, b. is the syntax tree in which each tag of the POS node is annotated with the most general
hypernym of its terminal word.

the hypernym-hyponym relations. Take the word
政府(government) as an example, its hypernyms with
the hierarchical hypernym-hyponym relations are
listed below from speciality to generality, which
we call hierarchical semantic information in this
paper.

institution|机构→group|群体→thing|万物→entity|实体

It is clear that this word 政府(government) has hy-
pernyms from the most special hypernym institu-

tion|机构 to the most general hypernym entity|实体

in a hierarchical way.
In HowNet(Update 2008), there are 173535

concepts, with 2085 sememes. The sememes are
categorized into entity, event, attribute, attribute
value, etc., each corresponding to a sememe hi-
erarchy tree.

3.2 Annotating the Training Data

One of the original motivations for the grammar
refinement is that the original symbols, especially
the POS tags, are usually too general to distin-
guish the context dependencies. Take the sentence
in Figure 1 for example, the word 政府(government)

should have different context dependencies com-
pared with the word 活力(vitality), although both of
them have the same POS tag "NN". In fact, the
two words are defined in HowNet with different
hypernyms. The word 政府(government) is defined
as a kind of objective things, while the word 活
力(vitality) is defined as a property that is often used
to describe things. It is obvious that the different
senses can represent their different syntax struc-
tures, and we expect to refine the POS tags with
semantic knowledge.

In the automatic hierarchical state-split ap-
proach introduced above, the EM algorithm is

used to search for the maximum of the likelihood
during the splitting process, which can generate
subcategories for POS tags to express the context
dependencies. However, this method often gets
stuck in a suboptimal configuration, which varies
depending on the start point. Therefore, a good
start of the annotations is very important. As it is
displayed in Figure 1, we annotate the tag of each
POS node with the hypernym of its terminal word
as the starting annotation. There are two problems
that we have to consider in this process: a) how to
choose the appropriate semantic granularity, and
b) how to deal with the polysemous words.

As mentioned above, the semantic information
of each word can be represented as hierarchi-
cal hypernym-hyponym relations among its hyper-
nyms. In general, it is hard to decide the appro-
priate level of granularity to represent the word.
The semantic class is only used as the starting an-
notations of POS tags to reduce the search space
for EM in our method. It is followed by the hi-
erarchical state-split process to further refine the
starting annotations based on the structural infor-
mation. If more special kinds of semantic classes
are chosen, it will make the structural information
weaker. As annotations with the special hyper-
nym always defeat some of the advantage of au-
tomatically latent annotations learning, we anno-
tate the training data with the most general hyper-
nym. For example, as shown in Figure 1, the POS
tag "NN" of 政府(government) is annotated as "NN-
Entity", and "NN" of 活力(energy) is annotated as
"NN-Attribute".

Another problem is how to deal with the polyse-
mous words in HowNet. In fact, when we choose
the most general hypernym as the word’s semantic
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(beast)

(insect)

(banana) 

(orange)

(noon) 

(forenoon)

(north)

(south)

noon forenoon 

north south

noon forenoon north southbeast insect banana orange

entity|

thing| time| direction|

animal| fruit|

Continue Splitting...

Having hyponyms...

NN-Entity HowNet

beast insect

banana orange

Figure 2: A schematic figure for the hierarchical state-split process of the semantic-related tag "NN-
Entity". Each subcategory of this tag has its own word set, and corresponds to one hypernym at the
appropriate level in HowNet.

representation, this problem has been alleviated to
a large extent. In this paper we adopt the first sense
option as our word sense disambiguation (WSD)
strategy to determine the sense of each token in-
stance of a target word. That is to say, all token in-
stances of a given word are tagged with the sense
that occurs most frequently in HowNet. In addi-
tion, we keep the tag of the POS node whose ter-
minal word is not defined in HowNet unchanged.

3.3 Supervising the Hierarchical State-split
Process

With the method proposed above, we can produce
a good starting annotation with semantic knowl-
edge, which is of great use to constraining the au-
tomatic splitting process. Our parser is trained on
the good starting annotations with the automatic
hierarchical state-split process, and gets improve-
ments compared with the original training data.
However, during this process, only the most gen-
eral hypernyms are used as the semantic repre-
sentation of words, and the hierarchical semantic
knowledge is not explored. In addition, the auto-
matic process tries to refine all symbols together
through a data-driven manner, which suffers the
overfitting risk.

After annotating the training data with hyper-
nyms, a new set of semantic-related tags such as
"NN-Entity" is produced. We treat the refining
process of these semantic-related tags as the spe-
cializing process of hypernym with hierarchical

semantic knowledge. Each subcategory of these
tags corresponds to a appropriate special level of
hypernym in the HowNet. For example, every sub-
category of "NN-Entity" could corresponds to a
appropriate hyponym of entity|实体.

We integrate the hierarchical semantic knowl-
edge into the original hierarchical state-split pro-
cess to refine these semantic-related tags. First
of all, it is necessary to establish the mapping
from each subcategory of these semantic-related
tags to the hypernym at the appropriate level in
HowNet. Then, instead of likelihood judgment, a
knowledge-based criterion is proposed, to decide
whether or not to remove the new subcategories
of these tags. That is to say, once the parent tag
of this new subcategory is mapped onto the most
special hypernym without any hyponym, it should
be removed immediately.

The schematic Figure 2 demonstrates this se-
mantically supervised splitting process. The left
part of this figure is the subcategories of the
semantic-related tag "NN-Entity", which is split
hierarchically. As expressed by the dashed line,
each subcategory corresponds to one hypernym in
the right part of this figure. If the hypernym node
has no hyponym, the corresponding subcategory
will stop splitting.

The mapping from each subcategory of these
semantic-related tags to the hypernym at the ap-
propriate level is implemented with the word set
related to this subcategory. As it is shown in Fig-
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DataSet Chinese English

Xue et al. (2002) Marcus et al. (1993)
TrainSet Art. 1-270,400-1151 Sections 2-21

DevSet Articles 301-325 Section 22

TestSet Articles 271-300 Section 23

Table 2: Experimental setup.

ure 2, the original tag "NN-Entity" treats all the
words it products as its word set. Once the orig-
inal category is split into two subcategories, its
word set is also split, through forcedly dividing
each word in the word set into one subcategory
which is most frequent with this word. And then,
each subcategory is mapped onto the most specific
hypernym that contains its related word set en-
tirely in HowNet. On this basis, a new knowledge-
based criterion is introduced to enrich and gener-
alize these semantic-related tags, with purpose of
fitting to the hierarchical semantic structure rather
than the training data.

4 Experiments

In this section, we designed several experiments to
investigate the validity of refining grammars with
semantic knowledge.

4.1 Experimental Setup

We did experiments on Chinese and English. In
order to make a fair comparison with previous
works, we split the standard corpora as shown
in Table 2. Our parsers were evaluated by the
EVALB parseval reference implementation1. The
Berkeley parser2 was used to train the models with
the original automatic hierarchical state-split pro-
cess. The semantic resource we used to improve
parsing was HowNet, which has been introduced
in Subsection 3.1. Statistical significance was
checked using Dan Bikel’s randomized parsing
evaluation comparator with the default setting of
10,000 iterations3.

4.2 Semantic Representation Experiments

First of all, we ran experiments with different se-
mantic representation methods on Chinese. The
polysemous words in the training set were anno-
tated with the WSD strategy of first sense option,

1http://nlp.cs.nyu.edu/evalb/.
2http://code.google.com/p/berkeleyparser/.
3http://www.cis.upenn.edu/ dbikel/software.html.

which was proved to be useful in Agirre et al.
(2008).

As mentioned in Subsection 3.1, the semantic
information of each word can be represented as
a hierarchical relation among its hypernyms from
specialty to generalization in HowNet. In order to
choose the appropriate level of granularity to rep-
resent words, we annotated the training set with
different levels of granularity as semantic repre-
sentation. In our experiments, the automatic hier-
archical state-split process is used to train models
on these training sets with different level of seman-
tic representation.

We tried two kinds of semantic representations,
one is using the most general hypernym, and the
other is using the most special hypernym. Results
in Figure 3 proved the effectiveness of our method
in Subsection 3.2. When we annotated the tag of
each POS node with the most general hypernym of
its terminal word, the parser performs much bet-
ter than both the baseline and the one annotated
with the most special hypernym. Moreover, the F1

score starts dropping after 3 training iterations on
the training set annotated with the most special hy-
pernyms, while it is still improving with the most
general one, indicating overfitting.
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Figure 3: Performances on Chinese with different
semantic representations: the training set without
semantic representation, the training set annotated
with the most special hypernyms, and the training
set annotated with the most general hypernyms.

When the training set was annotated with the
most general hypernyms, there were only 57 new
semantic-related tags such as "NN-Entity", "NN-
Attribute" and so on. However, when the train-
ing set was annotated with the most special hyper-
nyms, 4313 new tags would be introduced. Ob-

1303



viously, it introduces too many tags at once and is
difficult to refine appropriate grammars in the sub-
sequent step starting with this over-splitting train-
ing set.

4.3 Grammar Refinement Experiments

Several experiments were carried out on Chinese
and English to verify the effectiveness of refining
grammars with semantic knowledge. We took the
most general hypernym as the semantic represen-
tation, and the polysemous words in the training
set were annotated with the WSD strategy of first
sense option.

In our experiments, three kinds of method were
compared. The baseline was trained on the raw
training set with the automatic hierarchical state-
split approach. Then, we improved it with the se-
mantic annotation, which annotated the raw train-
ing set with the most general hypernyms as se-
mantic representations, while keeping the train-
ing approach used in the baseline unchanged.
Further, our knowledge-based criterion was in-
troduced to supervise the automatic hierarchical
state-split process with semantic knowledge.

In this section, since most of the parsers (includ-
ing the baseline parser and our advanced parsers)
had the same behavior on development set that the
accuracy continued increasing in the five begin-
ning iterations and then dropped at the sixth iter-
ation, we chose the results at the fifth iteration as
our final test set parsing performance.

Performances on Chinese

Figure 4 shows that refining grammars with se-
mantic knowledge can help improve parsing per-
formance significantly on Chinese (sentences of
length 40 or less). Benefitting from the good start-
ing annotations, our parser achieved significant
improvements compared with the baseline (86.8%
vs. 86.1%, p<.08). It proved that the good start-
ing annotations with semantic knowledge were ef-
fective in the splitting process. Further, we su-
pervised the splitting of the new semantic-related
tags from the semantic annotations, and achieved
the best results at the fifth iteration. The best F1

score reached 87.5%, with an error rate reduction
of 10.1%, relative to the baseline (p<.004).

Table 3 compared our methods with the best
previous works on Chinese. The result showed
that refining grammars integrated with semantic
knowledge could resolve syntactic ambiguities re-
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Evaluation Criterion

 Baseline
 Semantic Annotation
 Semantic Annotation & Knowledge-based Criterion

87.3

Figure 4: Performances at the fifth iteration on
Chinese (sentences of length 40 or less) with three
methods: the baseline, the parser trained on the
semantic annotations with automatic method, and
the parser trained on the semantic annotations with
knowledge-based criterion.

Parser
≤ 40 words all

LP LR F1 LP LR F1

Chiang and
81.1 78.8 79.9 78.0 75.2 76.6

Bikel (2002)

Petrov and
86.9 85.7 86.3 84.8 81.9 83.3

Klein (2007)

This Paper 88.9 86.0 87.5 86.0 83.1 84.5

Table 3: Our final parsing performance compared
with the best previous works on Chinese.

markably and achieved the state-of-the-art perfor-
mance on Chinese.

Performances on English

In order to verify the effectiveness of our method
on other languages, we carried out some experi-
ments on English. HowNet is a common sense
knowledge base in Chinese and English, there-
fore, it was still utilized as the knowledge source
in these experiments.

The same three methods were compared on En-
glish (sentences of length 40 or less), and the re-
sults were showed in Table 4. Compared with the
baseline (90.1%), the parsers trained with the se-
mantic annotation, while using different splitting
methods introduced in Section 3, achieved an F1

score of 90.2% and 90.3% respectively. The re-
sults showed that our methods could get a small
but stable improvements on English (p<.08).
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Subcategory Refined from the Original Training Set

PN-0
援援援外外外(aid foreign),叔婶(aunt),自家(self),汝(you),予予予(donate),那些(those),相貌(appearence),

自个儿(self),咱们(we),彼(that),以上(the above),那边(there),其他(other),以下(below)
Subcategories Fefined from the Good Starting Annotations

PN-0 叔婶(aunt),自家(self),自个儿(self),咱们(we),汝(you)

PN-Event-0 援援援外外外(aid foreign),予予予(donate)
PN-AttributeValue-2 以上(the above),那些(those),彼(that),其他(other),以下(below)

Table 5: Several subcategories that generated from the original training set and the good starting annota-
tions respectively.

Method F1

Baseline 90.1

Semantic Annotations 90.2

Semantic Annotations & 90.3
Knowledge-based Criterion

Table 4: Performances at the fifth iteration on En-
glish (sentences of length 40 or less) with three
methods: the baseline, the parser trained on the
semantic annotations with automatic method, and
the parser trained on the semantic annotations with
knowledge-based criterion.

These results on English were preliminary, and
we did not introduce any language dependent op-
eration such as morphological processing. Since
only the lemma of English words can be found
in HowNet, we just annotated two kinds of POS
tags "VB"(Verb, base form) and "NN"(Noun, sin-
gular or mass) with semantic knowledge, on the
contrary, we annotated almost all POS tags whose
corresponding words could be found in HowNet
on Chinese. This might be the reason that the
improvement on the English Treebank was much
smaller than that of Chinese. It is expected to
achieve more improvements through some mor-
phological analysis in the future.

4.4 Results and Analysis

So far, a new strategy has been introduced to re-
fine the grammars in two steps, and achieved sig-
nificant improvements on parsing performance. In
this section, we analyze the grammars learned at
different steps, attempting to explain how the se-
mantic knowledge works.

It is hard to inspect all the grammars by hand.
Since the semantic knowledge is mainly used for
generating and splitting new semantic-related tags
in our method, we focus on the refined subcate-

gories of these tags.
First, we examine the refined subcategories of

POS tags, which are generated from the original
training set and the good starting annotations re-
spectively. Several subcategories are listed and
compared in Table 5, along with their frequent
words. It can be seen that the subcategories refined
with semantic knowledge are more consistent than
the previous one. For example, the subcategory
"PN-0", which is refined from the original training
set, produces a lot of words without semantic con-
sistence. In contrast, we refine the subcategories
"PN-0", "PN-Event-0" and "PN-AttributeValue-2"
from the good starting annotations. Each of them
produces a small but semantic consistent word set.

In order to inspect the difference between the
automatic splitting process and the semantic based
one, we compare the numbers of subcategories re-
fined in these two processes. Since it is hard to list
all the semantic-related tags here, three parts of
the semantic-related tags were selected and listed
in Table 6, along with the number of their subcat-
egories. The first part is the noun and verb related
tags, which are most heavily split in both two pro-
cesses. It is clear that the semantic based split-
ting process can generate more subcategories than
the automatic one, because the semantic structures
of noun and verb are sophisticated. The second
part lists the tags that have much more subcate-
gories (≥ 4) from the automatic splitting process
than the semantic based one, and the third part
vice verse. It can be seen that most of the sub-
categories in the second part are functional cate-
gories, while most of the subcategories in the third
part are content categories. It means that the se-
mantic based splitting process is prone to generat-
ing less subcategory for the functional categories,
but more subcategories for the content categories.
This tendency is in accordance with the linguis-
tic intuition. We believe that it is the main effect
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Semantic-related Automatic split Semantic based

tag number split numebr

NN-Attribute 30 30

NN-AttributeValue 25 27
NN-Entity 32 32

NN-Event 31 30

VV-Attribute 2 2

VV-AttributeValue 27 27

VV-Entity 22 26
VV-Event 29 32

BA-event 13 5

CS-AttributeValue 29 16

CS-entity 22 15

OD-Attribute 13 7

PN-Attribute 26 22

AS-AttributeValue 2 7
JJ-event 4 8

NR-AttributeValue 9 13
NT-event 12 18

VA-AttributeValue 22 27
VA-event 7 11

Table 6: The number of subcategories learned
from two approaches: the automatic hierarchical
state-splitting, and the semantic based splitting.

of our knowledge-based criterion, because it ad-
justs the splitting results dynamically with seman-
tic knowledge, which can alleviate the overfitting
risk.

5 Conclusions

In this paper, we present a novel approach to in-
tegrate semantic knowledge into the hierarchical
state-split process for grammar refinement, which
yields better accuracies on Chinese than previ-
ous methods. The improvements are mainly ow-
ing to two aspects. Firstly, the original treebank
is initialized by annotating the tag of each POS
node with the most general hypernym of its ter-
minal word, which reduces the search space for
the EM algorithm and brings an initial restrict to
the following splitting step. Secondly, the splitting
process is supervised by a knowledge-based crite-
rion with the new semantic-related tags. Benefit-
ting from the hierarchical semantic knowledge, the
proposed approach alleviates the overfitting risk in
a knowledge-driven manner. Experimental results
reveal that the semantic knowledge is of great use
to syntactic disambiguation. The further analysis

on the refined grammars shows that, our method
tends to split the content categories more often
than the baseline method and the function classes
less often.
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Abstract

We examine the problem of overcoming
noisy word-level alignments when learn-
ing tree-to-string translation rules. Our
approach introduces new rules, and re-
estimates rule probabilities using EM. The
major obstacles to this approach are the
very reasons that word-alignments are
used for rule extraction: the huge space
of possible rules, as well as controlling
overfitting. By carefully controlling which
portions of the original alignments are re-
analyzed, and by using Bayesian infer-
ence during re-analysis, we show signifi-
cant improvement over the baseline rules
extracted from word-level alignments.

1 Introduction

Non-parametric Bayesian methods have been suc-
cessfully applied to directly learn phrase pairs
from a bilingual corpus with little or no depen-
dence on word alignments (Blunsom et al., 2008;
DeNero et al., 2008). Because such approaches di-
rectly learn a generative model over phrase pairs,
they are theoretically preferable to the standard
heuristics for extracting the phrase pairs from the
many-to-one word-level alignments produced by
the IBM series models (Brown et al., 1993) or
the Hidden Markov Model (HMM) (Vogel et al.,
1996). We wish to apply this direct, Bayesian ap-
proach to learn better translation rules for syntax-
based statistical MT (SSMT), by which we specif-
ically refer to MT systems using Tree-to-String
(TTS) translation templates derived from syntax
trees (Liu et al., 2006; Huang et al., 2006; Gal-
ley et al., 2006; May and Knight, 2007), as op-
posed to formally syntactic systems such as Hi-
ero (Chiang, 2007). The stumbling block pre-
venting us from taking this approach is the ex-
tremely large space of possible TTS templates

when no word alignments are given. Given a sen-
tence pair and syntax tree over one side, there
are an exponential number of potential TTS tem-
plates and a polynomial number of phrase pairs.
In this paper, we explore methods for restricting
the space of possible TTS templates under con-
sideration, while still allowing good templates to
emerge directly from the data as much as possible.
We find an improvement in translation accuracy
through, first, using constraints to limit the number
of new templates, second, using Bayesian methods
to limit which of these new templates are favored
when re-analyzing the training data with EM, and,
third, experimenting with different renormaliza-
tion techniques for the EM re-analysis.

We introduce two constraints to limit the num-
ber of TTS templates that we extract directly from
tree/string pairs without using word alignments.
The first constraint is to limit direct TTS tem-
plate extraction to the part of the corpus where
word alignment tools such as GIZA++ do poorly.
There is no reason not to re-use the good align-
ments from GIZA++, which holds a very compet-
itive baseline performance. As already mentioned,
the noisy alignments from GIZA++ are likely
to cross the boundaries of the tree constituents,
which leads to comparatively big TTS templates.
We use this fact as a heuristic to roughly distin-
guish noisy from good word alignments.1 Here
we define big templates as those with more than
8 symbols in their right hand sides (RHSs). The
word alignments in big templates are considered
to be noisy and will be recomposed by extracting
smaller TTS templates. Another reason to do ex-
traction on big templates is that the applicability
of big templates to new sentences is very limited
due to their size, and the portion of the training
data from which they are extracted is effectively
wasted. The second constraint, after choosing the

1Precisely differentiating the noisy/good word alignments
is as hard as correctly aligning the words.
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extraction site, is to extract the TTS templates all
the way down to the leaves of the hosting tem-
plates. This constraint limits the number of possi-
ble left hand sides (LHSs) to be equal to the num-
ber of tree nodes in the hosting templates. The
entire extraction process can be summarized in 3
steps:

1. Compute word alignments using GIZA++,
and generate the basic TTS templates.

2. Select big templates from the basic TTS tem-
plates in step 1, and extract smaller TTS tem-
plates all the way down to the bottom from
big templates, without considering the pre-
computed word alignments.

3. Combine TTS templates from step 1 and step
2 and estimate their probabilities using Vari-
ational Bayes with a Dirichlet Process prior.

In step 2, since there are no constraints from the
pre-computed word alignments, we have complete
freedom in generating all possible TTS templates
to overcome noisy word alignments. We use vari-
ational EM to approximate the inference of our
Bayesian model and explore different normaliza-
tion methods for the TTS templates. A two-stage
normalization is proposed by combining LHS-
based normalization with normalization based on
the root of the LHS, and is shown to be the best
model when used with variational EM.

Galley et al. (2006) recompose the TTS tem-
plates by inserting unaligned target words and
combining small templates into bigger ones. The
recomposed templates are then re-estimated using
the EM algorithm described in Graehl and Knight
(2004). This approach also generates TTS tem-
plates beyond the precomputed word alignments,
but the freedom is only granted over unaligned tar-
get words, and most of the pre-computed word
alignments remain unchanged. Other prior ap-
proaches towards improving TTS templates fo-
cus on improving the word alignment performance
over the classic models such as IBM series mod-
els and Hidden Markov Model (HMM), which do
not consider the syntactic structure of the align-
ing languages and produce syntax-violating align-
ments. DeNero and Klein (2007) use a syntax-
based distance in an HMM word alignment model
to favor syntax-friendly alignments. Fossum et al.
(2008) start from the GIZA++ alignment and in-
crementally delete bad links based on a discrim-

S

NP VP

… NN …AUX

issue has

事件 已经… …

S

NP VP

… NN …AUX

issue has

事件 已经… …

Figure 1: 5 small TTS templates are extracted based on the
correct word alignments (left), but only 1 big TTS template
(right) can be extracted when the cross-boundary noisy align-
ments are added in.

inative model with syntactic features. This ap-
proach can only find a better subset of the GIZA++
alignment and requires a parallel corpus with gold-
standard word alignment for training the discrim-
inative model. May and Knight (2007) factorize
the word alignment into a set of re-orderings rep-
resented by the TTS templates and build a hierar-
chical syntax-based word alignment model. The
problem is that the TTS templates are generated
by the word alignments from GIZA++, which lim-
its the potential of the syntactic re-alignment. As
shown by these prior approaches, directly improv-
ing the word alignment either falls into the frame-
work of many-to-one alignment, or is substantially
confined by the word alignment it builds upon.

The remainder of the paper focuses on the
Bayesian approach to learning TTS templates and
is organized as follows: Section 2 describes the
procedure for generating the candidate TTS tem-
plates; Section 3 describes the inference methods
used to learn the TTS templates; Section 4 gives
the empirical results, Section 5 discusses the char-
acteristics of the learned TTS templates, and Sec-
tion 6 presents the conclusion.

2 Extracting Phrasal TTS Templates

The Tree-to-String (TTS) template, the most im-
portant component of a SSMT system, usually
contains three parts: a fragment of a syntax tree
in its left hand side (LHS), a sequence of words
and variables in its right hand side (RHS), and
a probability indicating how likely the template
is to be used in translation. The RHS of a TTS
template shows one possible translation and re-
ordering of its LHS. The variables in a TTS tem-
plate are further transformed using other TTS tem-
plates, and the recursive process continues until
there are no variables left. There are two ways
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S

NP VP

NP1 PP ADJAUX

in isNP3

of

NP3 的 NP1 很美

beautiful

2

1

3 4

Figure 2: Examples of valid and invalid templates extracted
from a big Template. Template 1, invalid, doesn’t go all the
way down to the bottom. Template 2 is valid. Template 3, in-
valid, doesn’t have the same set of variables in its LHS/RHS.
Template 4, invalid, is not a phrasal TTS template.

that TTS templates are commonly used in ma-
chine translation. The first is synchronous pars-
ing (Galley et al., 2006; May and Knight, 2007),
where TTS templates are used to construct syn-
chronous parse trees for an input sentence, and
the translations will be generated once the syn-
chronous trees are built up. The other way is
the TTS transducer (Liu et al., 2006; Huang et
al., 2006), where TTS templates are used just as
their name indicates: to transform a source parse
tree (or forest) into the proper target string. Since
synchronous parsing considers all possible syn-
chronous parse trees of the source sentence, it is
less constrained than TTS transducers and hence
requires more computational power. In this paper,
we use a TTS transducer to test the performance of
different TTS templates, but our techniques could
also be applied to SSMT systems based on syn-
chronous parsing.

2.1 Baseline Approach: TTS Templates
Obeying Word Alignment

TTS templates are commonly generated by de-
composing a pair of aligned source syntax tree
and target string into smaller pairs of tree frag-
ments and target string (i.e., the TTS templates).
To keep the number of TTS templates to a manage-
able scale, only the non-decomposable TTS tem-
plates are generated. This algorithm is referred to
as GHKM (Galley et al., 2004) and is widely used
in SSMT systems (Galley et al., 2006; Liu et al.,
2006; Huang et al., 2006). The word alignment
used in GHKM is usually computed independent
of the syntactic structure, and as DeNero and Klein
(2007) and May and Knight (2007) have noted,

Ch-En En-Ch Union Heuristic
28.6% 33.0% 45.9% 20.1%

Table 1: Percentage of corpus used to generate big templates,
based on different word alignments

9-12 13-20 ≥21
Ch-En 18.2% 17.4% 64.4%
En-Ch 15.9% 20.7% 63.4%
Union 9.8% 15.1% 75.1%

Heuristic 24.6% 27.9% 47.5%

Table 2: In the selected big templates, the distribution of
words in the templates of different sizes, which are measured
based on the number of symbols in their RHSs

is not the best for SSMT systems. In fact, noisy
word alignments cause more damage to a SSMT
system than to a phrase based SMT system, be-
cause the TTS templates can only be derived from
tree constituents. If some noisy alignments happen
to cross over the boundaries of two constituents,
as shown in Figure 2, a much bigger tree frag-
ment will be extracted as a TTS template. Even
though the big TTS templates still carry the orig-
inal alignment information, they have much less
chance of getting matched beyond the syntax tree
where they were extracted, as we show in Sec-
tion 4. In other words, a few cross-boundary noisy
alignments could disable a big portion of a training
syntax tree, while for a phrase-based SMT system,
their effect is limited to the phrases they align. As
a rough measure of how the training corpus is af-
fected by the big templates, we calculated the dis-
tribution of target words in big and non-big TTS
templates. The word alignment is computed using
GIZA++2 for the selected 73,597 sentence pairs in
the FBIS corpus in both directions and then com-
bined using union and heuristic diagonal growing
(Koehn et al., 2003). Table 1 shows that big
templates consume 20.1% to 45.9% of the training
corpus depending on different types of word align-
ments. The statistics indicate that a significant
portion of the training corpus is simply wasted,
if the TTS templates are extracted based on word
alignments from GIZA++. On the other hand, it
shows the potential for improving an SSMT sys-
tem if we can efficiently re-use the wasted train-
ing corpus. By further examining the selected big
templates, we find that the most common form of
big templates is a big skeleton template starting

2GIZA++ is available at
http://www.fjoch.com/GIZA++.html
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from the root of the source syntax tree, and hav-
ing many terminals (words) misaligned in the bot-
tom. Table 2 shows, in the selected big templates,
the distribution of words in the templates of differ-
ent sizes (measured based on the number of sym-
bols in their RHS). We can see that based on ei-
ther type of word alignment, the most common
big templates are the TTS templates with more
than 20 symbols in their RHSs, which are gen-
erally the big skeleton templates. The advantage
of such big skeleton templates is that they usually
have good marginal accuracy3 and allow accurate
smaller TTS templates to emerge.

2.2 Liberating Phrasal TTS Templates From
Noisy Word Alignments

To generate better TTS templates, we use a more
direct way than modifying the underlying word
alignment: extract smaller phrasal TTS tem-
plates from the big templates without looking at
their pre-computed word alignments. We define
phrasal TTS templates as those with more than
one symbol (word or non-terminal) in their LHS.
The reason to consider only phrasal TTS tem-
plates is that they are more robust than the word-
level TTS templates in addressing the complicated
word alignments involved in big templates, which
are usually not the simple type of one-to-many or
many-to-one. Abandoning the pre-computed word
alignments in big templates, an extracted smaller
TTS template can have many possible RHSs, as
long as the two sides have the same set of vari-
ables. Note that the freedom is only given to the
alignments of the words; for the variables in the
big templates, we respect the pre-computed word
alignments. To keep the extracted smaller TTS
templates to a manageable scale, the following two
constraints are applied:

1. The LHS of extracted TTS templates should
go all the way down to the bottom of the LHS
of the big templates. This constraint ensures
that at most N LHSs can be extracted from
one big Template, where N is the number of
tree nodes in the big Template’s LHS.

2. The number of leaves (including both words
and variables) in an extracted TTS template’s
LHS should not exceed 6. This constraint
limits the size of the extracted TTS templates.

3Here, marginal accuracy means the correctness of the
TTS template’s RHS corresponding to its LHS.

( VP ( AUX is ) ( ADJ  beautiful ) )         很美

( PP ( IN of )  NP
3 
)          NP

3  
的

( NP NP
1
 ( PP ( IN of )  NP

3 
) )          NP

3  
的 NP

1

( NP NP
1
 ( PP ( IN of )  NP

3 
) )          NP

3  
的 NP

1  
很美

Figure 3: All valid templates that can be extracted from the
example in Figure 2.1

for all template t do
if size(t.rhs) > 8 then

for all tree node s in t.lhs do
subt = subtree(s, t.lhs);
if leaf num(subt) ≤ 6 then

for i=1:size(t.rhs) do
for j=i:size(t.rhs) do

if valid(subt, i, j) then
create template(subt, i, j);

Figure 4: Algorithm that liberates smaller TTS Templates
from big templates

As we show in Section 4, use of bigger TTS
templates brings very limited performance
gain.

Figure 2.2 describes the template liberating algo-
rithm running in O(NM2), where N denotes the
number of tree nodes in the LHS of the input big
Template andM denotes the length of the RHS. In
the algorithm, function valid returns true if there
are the same set of variables in the left/right hand
side of an extracted TTS template; subtree(x, y)
denotes the sub-tree in y which is rooted at x and
goes all the way down to y’s bottom. Figure 2.1
shows valid and invalid TTS templates which can
be extracted from an example hosting TTS tem-
plate. Note that, in order to keep the example
simple, the hosting TTS template only has 4 sym-
bols in its RHS, which does not qualify as a big
template according to our definition. Figure 2.2
shows the complete set of valid TTS templates
which can be extracted from the example TTS
template. The subscripts of the non-terminals are
used to differentiate identical non-terminals in dif-
ferent positions. The extraction process blindly
releases smaller TTS templates from the big tem-
plates, among which only a small fraction are cor-
rect TTS templates. Therefore, we need an infer-
ence method to raise the weight of the correct tem-
plates and decrease the weight of the noisy tem-
plates.
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3 Estimating TTS Template Probability

The Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) can be used to estimate
the TTS templates’ probabilities, given a genera-
tive model addressing how a pair of source syn-
tax tree and target string is generated. There are
two commonly used generative models for syntax-
based MT systems, each of which corresponds to
a normalization method for the TTS templates.
The LHS-based normalization (LHSN) (Liu et al.,
2006; Huang et al., 2006), corresponds to the
generative process where the source syntax sub-
tree is first generated, and then the target string
is generated given the source syntax subtree. The
other one is normalization based on the root of
the LHS (ROOTN) (Galley et al., 2006), corre-
sponding to the generative process where, given
the root of the syntax subtree, the LHS syntax sub-
tree and the RHS string are generated simultane-
ously. By omitting the decomposition probability
in the LHS-based generative model, the two gen-
erative models share the same formula for comput-
ing the probability of a training instance:

Pr(T, S) =
∑
R

Pr(T, S,R) =
∑
R

(∏
t∈R

Pr(t)

)
where T and S denote the source syntax tree and
target string respectively, R denotes the decompo-
sition of (T, S), and t denotes the TTS template.
The expected counts of the TTS templates can then
be efficiently computed using an inside-outside-
like dynamic programming algorithm (May and
Knight, 2007).

LHSN, as shown by Galley et al. (2006), cannot
accurately restore the true conditional probabili-
ties of the target sentences given the source sen-
tences in the training corpus. This indicates that
LHSN is not good at predicting unseen sentences
or at translating new sentences. But this deficiency
does not affect its ability to estimate the expected
counts of the TTS templates, because the posteri-
ors of the TTS templates only depend on the com-
parative probabilities of the different derivations
of a training instance (a pair of tree and string).
In fact, as we show in Section 4, LHSN is bet-
ter than ROOTN in liberating smaller TTS tem-
plates out of the big templates, since it is less bi-
ased to the big templates in the EM training.4 Be-
cause the two normalization methods have their

4Based on LHSN, the difference between the probabil-
ity of a big Template and the product of the probabilities of

E-step:
for all pair of syntax tree T and target string S do

for all TTS Template t do
EC(t)+ =

P
R:t∈R Pr(T,S,R)βP

R′ Pr(T,S,R′)β ;

Increase β;

M-step:
for all TTS Template t do

if it is the last iteration then
Pr(t) = EC(t)P

t′:t′.root=t.root EC(t′) ;
else

Pr(t) = EC(t)P
t′:t′.lhs=t.lhs EC(t′) ;

Figure 5: EM Algorithm For Estimating TTS Templates

own strength and weakness, both of them are used
in our EM algorithm: LHSN is used in all EM
iterations except the last one to compute the ex-
pected counts of the TTS templates, and ROOTN
is used in the last EM iteration to compute the final
probabilities of the TTS templates. This two-stage
normalization method is denoted as MIXN in this
paper.

Deterministic Annealing (Rose et al., 1992) is
is used in our system to speed up the training
process, similar to Goldwater et al. (2006). We
start from a high temperature and gradually de-
crease the temperature to 1; we find that the ini-
tial high temperature can also help small templates
to survive the initial iterations. The complete EM
framework is sketched in Figure 3, where β is the
inverse of the specified temperature, and EC de-
notes the expected count.

3.1 Bayesian Inference with the Dirichlet
Process Prior

Bayesian inference plus the Dirichlet Process (DP)
have been shown to effectively prevent MT mod-
els from overfitting the training data (DeNero et
al., 2008; Blunsom et al., 2008). A similar ap-
proach can be applied here for SSMT by consider-
ing each TTS template as a cluster, and using DP
to adjust the number of TTS templates according
to the training data. Note that even though there
is a size limitation on the liberated phrasal TTS
templates, standard EM will still tend to overfit
the training data by pushing up the probabilities of
the big templates from the noisy word alignments.
The complete generative process, integrating the
DP prior and the generative models described in

its decomposing TTS templates is much less than the one
based on ROOTN, thus LHSN gives comparably more ex-
pected counts to the smaller TTS templates than ROOTN.
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for all TTS Template t do
if it is the last iteration then

Pr(t) = exp(ψ(EC(t)+αG0(t)))

exp(ψ((
P

t′:t′.root=t.root EC(t′))+α))
;

else
Pr(t) = exp(ψ(EC(t)+αG0(t)))

exp(ψ((
P

t′:t′.lhs=t.lhs EC(t′))+α))
;

Figure 6: M-step of the Variational EM

Section 3.1, is given below:

θr | {αr, G
r
0} ∼ DP (αr, G

r
0)

t | θt.root ∼ θt.root

(T, S) | {SG, {t}, θ} ∼ SG({t}, θ)
where G0 is a base distribution of the TTS tem-
plates, t denotes a TTS template, θt.root denotes
the multinomial distribution over TTS templates
with the same root as t, SG denotes the generative
model for a pair of tree and string in Section 3.1,
and α is a free parameter which adjusts the rate at
which new TTS templates are generated.

It is intractable to do exact inference under the
Bayesian framework, even with a conjugate prior
such as DP. Two methods are commonly used
for approximate inference: Markov chain Monte
Carlo (MCMC) (DeNero et al., 2008), and Vari-
ational Bayesian (VB) inference (Blunsom et al.,
2008). In this paper, the latter approach is used be-
cause it requires less running time. The E-step of
VB is exactly the same as standard EM, and in the
M-step the digamma function ψ and the base dis-
tributionG0 are used to increase the uncertainty of
the model. Similar to standard EM, both LHS- and
root-based normalizations are used in the M-step,
as shown in Figure 3.1. For the TTS templates,
which are also pairs of subtrees and strings, a natu-
ral choice ofG0 is the generative models described
in Section 3.1. BecauseG0 estimates the probabil-
ity of the new TTS templates, the root-based gen-
erative model is superior to the LHS-based gener-
ative model and used in our approach.

3.2 Initialization
Since the EM algorithm only converges to a lo-
cal minimum, proper initializations are needed to
achieve good performance for both standard EM
and variational EM. For the baseline templates
derived from word alignments, the initial counts
are set to the raw counts in the training corpus.
For the templates blindly extracted from big tem-
plates, the raw count of a LHS tree fragment is
distributed among their RHSs based on the like-
lihood of the template, computed by combining

for all big template t do
for all template g extracted from t do

g.count = g.lhs.count = 0;
for all template g extracted from t do

g.count += w in(g)×w out(g, t);
g.lhs.count += w in(g)×w out(g, t);

for all template g extracted from t do
g.init += g.count

g.lhs.count
;

Figure 7: Compute the initial counts of the liberated TTS
templates

the word-based inside/outside scores. The algo-
rithm is sketched in Figure 3.2, where the inside
score w in(g) is the product of the IBM Model 1
scores in both directions, computed based on the
words in g’s LHS and RHS. The outside score
w out(g, t) is computed similarly, except that the
IBM Model 1 scores are computed based on the
words in the hosting template t’s LHS/RHS ex-
cluding the words in g’s LHS/RHS. The initial
probabilities of the TTS templates are then com-
puted by normalizing their initial counts using
LHSN or ROOTN.

4 Experiments

We train an English-to-Chinese translation sys-
tem using the FBIS corpus, where 73,597 sentence
pairs are selected as the training data, and 500 sen-
tence pairs with no more than 25 words on the Chi-
nese side are selected for both the development
and test data.5 Charniak (2000)’s parser, trained
on the Penn Treebank, is used to generate the En-
glish syntax trees. Modified Kneser-Ney trigram
models are trained using SRILM (Stolcke, 2002)
upon the Chinese portion of the training data. The
trigram language model, as well as the TTS tem-
plates generated based on different methods, are
used in the TTS transducer. The model weights
of the transducer are tuned based on the develop-
ment set using a grid-based line search, and the
translation results are evaluated based on a single
Chinese reference6 using BLEU-4 (Papineni et al.,
2002). Huang et al. (2006) used character-based
BLEU as a way of normalizing inconsistent Chi-
nese word segmentation, but we avoid this prob-
lem as the training, development, and test data are
from the same source.

5The total 74,597 sentence pairs used in experiments are
those in the FBIS corpus whose English part can be parsed
using Charniak (2000)’s parser.

6BLEU-4 scores based on a single reference are much
lower than the ones based on multiple references.

1313



E2C C2E Union Heuristic
w/ Big 13.37 12.66 14.55 14.28
w/o Big 13.20 12.62 14.53 14.21

Table 3: BLEU-4 scores (test set) of systems based on
GIZA++ word alignments

≤ 5 ≤ 6 ≤ 7 ≤ 8 ≤ ∞
BLEU-4 14.27 14.42 14.43 14.45 14.55

Table 4: BLEU-4 scores (test set) of the union alignment, us-
ing TTS templates up to a certain size, in terms of the number
of leaves in their LHSs

4.1 Baseline Systems

GHKM (Galley et al., 2004) is used to generate
the baseline TTS templates based on the word
alignments computed using GIZA++ and different
combination methods, including union and the di-
agonal growing heuristic (Koehn et al., 2003). We
also tried combining alignments from GIZA++
based on intersection, but it is worse than both
single-direction alignments, due to its low cover-
age of training corpus and the incomplete transla-
tions it generates. The baseline translation results
based on ROOTN are shown in Table 4.1. The first
two columns in the table show the results of the
two single direction alignments. e2c and c2e de-
note the many English words to one Chinese word
alignment and the many Chinese words to one En-
glish word alignment, respectively. The two rows
show the results with and without the big tem-
plates, from which we can see that removing the
big templates does not affect performance much;
this verifies our postulate that the big templates
have very little chance of being used in the trans-
lation. Table 4.1, using the union alignments as
the representative and measuring a template’s size
by the number of leaves in its LHS, also demon-
strates that using big TTS templates brings very
limited performance gain.

The result that the union-based combination
outperforms either single direction alignments and
even the heuristic-based combination, combined
with the statistics of the disabled corpus in Sec-
tion 2.2, shows that more disabled training cor-
pus actually leads to better performance. This can
be explained by the fact that the union alignments
have the largest number of noisy alignments gath-
ered together in the big templates, and thus have
the least amount of noisy alignments which lead
to small and low-quality TTS templates.

 17
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Figure 8: BLEU-4 scores (development set) of annealing EM
and annealing VB in each iteration.

4.2 Learning Phrasal TTS Templates

To test our learning methods, we start with the
TTS templates generated based on e2c, c2e, and
union alignments using GHKM. This gives us
0.98M baseline templates. We use the big tem-
plates from the union alignments as the basis
and extract 10.92M new phrasal TTS templates,
which, for convenience, are denoted by NEW-
PHR. Because based on Table 1 and Table 2
the union alignment has the greatest number of
alignment links and therefore produces the largest
rules, this gives us the greatest flexibility in re-
aligning the input sentences. The baseline TTS
templates as well as NEW-PHR are initialized us-
ing the method in Section 3.3 for both annealing
EM and annealing VB. To simplify the experi-
ments, the same Dirichlet Process prior is used for
all multinomial distributions of the TTS templates
with different roots. G0 in the Dirichlet prior is
computed based on the 1-level TTS templates se-
lected from the baseline TTS templates, so that the
big templates are efficiently penalized. The train-
ing algorithms follow the same annealing sched-
ule, where the temperature parameter β is initial-
ized to 0.1, and gradually increased to 1.

We experiment with the two training algo-
rithms, annealing EM and annealing VB, with dif-
ferent normalization methods. The experimental
results based on the development data are shown
in Figure 4.2, where the free parameter α of an-
nealing VB is set to 1, 100, and 100 respec-
tively for ROOTN, LHSN, and MIXN. The re-
sults verify that LHSN is worse than ROOTN in
predicting the translations, since MIXN outper-
forms LHSN with both annealing EM and VB.
ROOTN is on par with MIXN and much better
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Max Likelihood Annealing EM Annealing VB
w/o new-phr with new-phr w/o new-phr with new-phr w/o new-phr with new-phr

LHSN 14.05 13.16 14.31 15.33 14.82 16.15
ROOTN 14.50 13.49 14.90 16.06 14.76 16.12
MIXN NA NA 14.82 16.37 14.93 16.84

Table 5: BLEU-4 scores (test set) of different systems.

Initial Template Final Template
number new-phr% number new-phr%

ROOTN 11.9M 91.8% 408.0K 21.9%
LHSN 11.9M 91.8% 557.2K 29.8%
MIXN 11.9M 91.8% 500.5K 27.6%

Table 6: The total number of templates and the percentage of
NEW-PHR, in the beginning and end of annealing VB

than LHSN when annealing EM is used; but with
annealing VB, it is outperformed by MIXN by
a large margin and is even slightly worse than
LHSN. This indicates that ROOTN is not giv-
ing large expected counts to NEW-PHR and leaves
very little space for VB to further improve the re-
sults. For all the normalization methods, anneal-
ing VB outperforms annealing EM and maintains
a longer ascending path, showing better control of
overfitting for the Bayesian models. Figure 4.2
shows the optimized results of the development
set based on annealing VB with different α. The
best performance is achieved as α approaches 1,
100, and 100 for ROOTN, LHSN and MIXN re-
spectively. The α parameter can be viewed as a
weight used to balance the expected counts and
the probabilities from G0. Thus it is reasonable
for LHSN and MIXN to have bigger optimal α
than ROOTN, since ROOTN gives lower expected
counts to NEW-PHR than LHSN and MIXN do.

To see the contribution of the phrasal template
extraction in the performance gain, MT experi-
ments are conducted by turning this component
on and off. Results on the test set, obtained by
using parameters optimized on the development
set, are shown in Table 4.2. The template counts
used in the Max-Likelihood training are the same
as the ones used in the initialization of anneal-
ing EM and VB. Results show that for annealing
EM and VB, use of NEW-PHR greatly improves
performance, while for the Max-Likelihood train-
ing, use of NEW-PHR hurts performance. This
is not surprising, because Max-Likelihood train-
ing cannot efficiently filter out the noisy phrasal
templates introduced in the initial NEW-PHR. An-
other observation is that annealing VB does not al-
ways outperform annealing EM. With NEW-PHR

 19.8
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 21
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Figure 9: BLEU-4 scores (development set) of annealing VB
with different α.

turned on, annealing VB shows consistent supe-
riority over annealing EM; while without NEW-
PHR, it only outperforms annealing EM based on
LHSN and MIXN, and the improvement is not as
big as when NEW-PHR is turned on. This indi-
cates that without NEW-PHR, there is less need
to use VB to shrink down the size of the tem-
plate set. Table 4.2 shows the statistics of the ini-
tial template set including NEW-PHR and the final
TTS template set after annealing VB is conducted,
where we can see annealing VB efficiently re-
duces NEW-PHR to a relatively small size and re-
sults in much more compact systems than the sys-
tem based on the baseline templates from GIZA++
alignments. Comparing with the best GIZA++-
based system union, our best system, utilizing
NEW-PHR and the two-stage template normaliza-
tion, demonstrates the strength of annealing VB
by an absolute improvement of 2.29% in BLEU-
4 score, from 14.55 to 16.84. This improvement
is significant at p < 0.005 based on 2000 itera-
tions of paired bootstrap re-sampling of the test
set (Koehn, 2004).

5 Discussion

Our experimental results are obtained based on
a relatively small training corpus, the improved
performance may be questionable when a larger
training corpus is used. Someone may wonder if
the performance gain primarily comes from the
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Many-to-one Alignment
( VP ( VB make ) ( NP ( DT a ) ( JJ complete ) ( NN statement ) ) ) 充分陈述

( S ( VP VBG ( NP ( DT the ) ( NN mass ) ( NN line ) ) PP ) ) PP VBG 群众路线

( PP ( TO to ) ( NP ( DT the ) ( JJS greatest ) ( NN extent ) ) ) 最大限度 地

( PP ( IN of ) ( NP ( JJ peaceful ) ( NNP coexistence ) ) ) 和平共处

Many-to-many Alignment
( VP ( VBN based ) ( PP ( IN on ) ( NP ( JJ actual ) ( NNS needs ) ) ) ) 从 实际 出发

( PP ( IN into ) ( NP ( NP ( DT the ) ( NNS hands ) ) PP ) ) 掌握 在 PP 手上

( VP ( VBP exercise ) ( NP ( JJ strict ) ( NN self-discipline ) ) ) 严 以 律 己

( SBAR ( S ( NP ( DT the ) ( VBG aging ) NN ) ( VP ( aux is ) NP ) ) ) NN 老 龄 化 是 NP

( NP NP1 PP ( , , ) ( VP ( VBN centered ) ( PP ( IN around ) NP2 ) ) ) 以 NP2 为 核心 的 NP1 PP

Allowance of Bad Word Segmentation
( NP ( NP ( NNP japan ) ( POS 's ) ) ( NNP sdf ) ( NNP navy ) ) 日本海 上 自卫队

( NP ( PDT all ) ( NP ( NNS people ) ( POS 's ) ) ( NNS organizations ) ) 各人 民团 体

Figure 10: Examples of the learned TTS templates

reduced out of vocabulary (OOV) ratio. We ex-
amined the OOV ratio of the test set with/without
the learned TTS templates, and found the differ-
ence was very small. In fact, our method is de-
signed to learn the phrasal TTS templates, and ex-
plictly avoids lexical pairs. To further understand
the characteristics of the learned TTS templates,
we list some representative templates in Figure 4.2
classified in 3 groups. The group Many-to-one
Alignment and Many-to-many Alignment show the
TTS templates based on complicated word align-
ments, which are difficult to compute based on the
existing word alignment models. These templates
do not have rare English words, whose translation
cannot be found outside the big templates. The
difficulty lies in the non-literal translation of the
source words, which are unlikely to learnt by soly
increasing the size of the training corpus. One
other interesting observation is that our learning
method is tolerant to noisy Chinese word segmen-
tation, as shown in group Allowance of Bad Word
Segmentation.

6 Conclusion

This paper proposes a Bayesian model for extract-
ing the Tree-to-String templates directly from the
data. By limiting the extraction to the big tem-
plates from the pre-computed word alignments

and applying a set of constraints, we restrict the
space of possible TTS templates under consider-
ation, while still allowing new and more accurate
templates to emerge from the training data. The
empirical results demonstrate the strength of our
approach, which outperforms the GIZA++-based
systems by a large margin. This encourages a
move from word-alignment-based systems to sys-
tems based on consistent, end-to-end probabilistic
modeling. Because our Bayesian model employs
a very simple prior, more sophisticated generative
models provide a possible direction for further ex-
perimentation.
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Abstract 

This paper connects two research areas: auto-
matic tagging on the web and statistical key-
phrase extraction. First, we analyze the quality 
of tags in a collaboratively created folksonomy 
using traditional evaluation techniques. Next, 
we demonstrate how documents can be tagged 
automatically with a state-of-the-art keyphrase 
extraction algorithm, and further improve per-
formance in this new domain using a new al-
gorithm, “Maui”, that utilizes semantic infor-
mation extracted from Wikipedia. Maui out-
performs existing approaches and extracts tags 
that are competitive with those assigned by the 
best performing human taggers. 

1 Introduction 

Tagging is the process of labeling web resources 
based on their content. Each label, or tag, corre-
sponds to a topic in a given document. Unlike 
metadata assigned by authors, or by professional 
indexers in libraries, tags are assigned by end-
users for organizing and sharing information that 
is of interest to them. The organic system of tags 
assigned by all users of a given web platform is 
called a folksonomy.  

In contrast to traditional taxonomies painstak-
ingly constructed by experts, a user can add any 
tags to a folksonomy. This leads to the greatest 
downside of tagging, inconsistency, which origi-
nates in the synonymy and polysemy of human 
language, as well as in the varying degrees of 
specificity used by taggers (Golder and Huber-
man, 2006). In traditional libraries, consistency is 
the primary evaluation criterion of indexing 
(Rolling, 1981). Much work has been done on 
describing the statistical properties of folksono-
mies, such as tag distribution and co-occurrences 
(Halpin et al., 2007; Sigurbjörnsson et al., 2008; 
Sood et al., 2007), but to our knowledge there 
has been none on assessing the actual quality of 

tags. How well do human taggers perform? How 
consistent are they with each other?  

One potential solution to inconsistency in 
folksonomies is to use suggestion tools that 
automatically compute tags for new documents 
(e.g. Mishne, 2006; Sood et al., 2007; Heymann 
et al., 2008). Interestingly, the blooming research 
on automatic tagging has so far not been con-
nected to work on keyphrase extraction (e.g. 
Frank et al., 1999; Turney, 2003; Hulth, 2004), 
which can be used as a tool for the same task 
(note: we use tag and keyphrase as synonyms). 
Instead of simple heuristics based on term fre-
quencies and co-occurrence of tags, keyphrase 
extraction methods apply machine learning to 
determine typical distributions of properties 
common to manually assigned phrases, and can 
include analysis of semantic relations between 
candidate tags (Turney, 2003). How well do 
state-of-the-art keyphrase extraction systems per-
form compared to simple tagging techniques? 
How consistent are they with human taggers? 
These are questions we address in this paper. 

Until now, keyphrase extraction methods have 
primarily been evaluated using a single set of 
keyphrases for each document, thereby largely 
ignoring the subjective nature of the task. 
Collaboratively tagged documents, on the other 
hand, offer multiple tag assignments by inde-
pendent users, a unique basis for evaluation that 
we capitalize upon in this paper.  

The experiments reported in this paper fill 
these gaps in the research on automatic tagging 
and keyphrase extraction. First, we analyze tag-
ging consistency on the CiteULike.org platform 
for organizing academic citations. Methods tradi-
tionally used for the evaluation of professional 
indexing will provide insight into the quality of 
this folksonomy. Next, we extract a high quality 
corpus from CiteULike, containing documents 
that have been tagged consistently by the best 
human taggers.  
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Following that, our goal is to build a system 
that matches the performance of these taggers. 
We first apply an existing approach proposed by 
Brooks and Montanez (2006) and compare it to 
the keyphrase extraction algorithm Kea (Frank et 
al., 1999). Next we create a new algorithm, 
called Maui, that enhances Kea’s successful ma-
chine learning framework with semantic knowl-
edge retrieved from Wikipedia, new features, and 
a new classification model. We evaluate Maui 
using tag sets assigned to the same documents by 
several users and show that it is as consistent 
with CiteULike users as they are with each other.  

Most of the computation required for auto-
matic tagging with this method can be performed 
offline. In practice, it can be used as a tag sug-
gestion tool that provides users with tags describ-
ing the main topics of newly added documents, 
which can then be corrected or enhanced by per-
sonal tags if required. This will improve consis-
tency in the folksonomy without compromising 
its flexibility. 

2 Collaboratively-tagged Data  

CiteULike.org is a bookmarking service that re-
sembles the popular del.icio.us, but concentrates 
on scholarly papers. Rather than replicating the 
full text of tagged papers it simply points to them 
on the web (e.g. PubMed, CiteSeer, ScienceDi-
rect, Amazon) or in journals (e.g. HighWire, Na-
ture). This avoids violating copyright but means 
that the full text of articles is not necessarily 
available. When entering new resources, users 
are encouraged to assign tags describing their 
content or reflecting their own grouping of the 
information. However, the system does not sug-
gest tags. Moreover, users do not see other users’ 
tags and are thus not biased in their tag choices. 

2.1 Extracting a high quality tagged corpus 

The CiteULike data set is freely available and 
contains information about which documents 
were tagged with what tags by which users (al-
though identities are not provided).  

CiteULike’s 22,300 users have tagged 713,600 
documents with 2.4M “tag assignments”— sin-
gle applications of a tag by a user to a document. 
The two most popular tags, bibtex-import and 
no-tag, indicate an information source and a 
missing tag respectively. Most of the remainder 
describe particular concepts relevant to the 
documents. We exclude non-content tags from 
our experiments, e.g. personal tags like to-read 
or todo. Note that spam entries have been elimi-
nated from the data set.  

Because CiteULike taggers are not profes-
sional indexers, high quality of the assigned top-
ics cannot be guaranteed. In fact, manual as-
sessment of users’ tags by human evaluators 
shows precision of 59% (Mishne, 2006) and 49% 
(Sood et al., 2006). However, why is the opinion 
of human evaluators valued more than the opin-
ion of taggers? We propose an alternative way of 
determining ground truth using an automatic ap-
proach to determine reliable tags: We concen-
trate on a subset of CiteULike containing docu-
ments that have been indexed with at least three 
tags on which at least two users have agreed.  

In order to be able to measure the tagging con-
sistency between the users, and then compare it 
to the algorithm’s consistency, we need taggers 
who have tagged documents that some others 
had tagged. We say that two users are “co-
taggers” if they have both tagged at least one 
common document. As well as restricting the 
document set, we only include taggers who have 
at least two co-taggers.  

Figure 1 shows the proportions of CiteULike 
documents that are discarded in order to produce 
our high quality data set. The final set contains 
only 2,100 documents (0.3% of the original). 
Unfortunately, many of these are unavailable for 
download—for example, books at Amazon.com 
and ArXiv.org references cannot be crawled. We 
further restrict attention to two sources: High-
Wire and Nature, both of which provide easily-
accessible PDFs of the full text.  

The result is a set of 180 documents indexed 
by 332 taggers. A total of 4,638 tags were as-
signed by all taggers to documents in this set; 
however, the number of tags on which at least 
two users agreed is significantly smaller, namely 
946. Still, this results in accurate tag sets that 
contain an average of five tags per document. 

 
Figure 1. Quality control of CiteULike data 

 

1319



Note that traditionally much smaller data sets are 
used to assess consistency of human indexers, 
because such sets need to be created specifically 
for the experiment. Collaborative tagging plat-
forms like CiteULike can be mined for large col-
lections of this kind in natural settings.  

Most documents in the extracted set relate to 
the area of bioinformatics. To give an example, a 
document entitled Initial sequencing and com-
parative analysis of the mouse genome was 
tagged by eight users with a total of 22 tags. Four 
of them agreed on the tag mouse, but one used 
the broader term rodents. Three agreed on the tag 
genome, but one added genome paper, and an-
other used the more specific comparative genom-
ics. There are also cases when tags are written 
together, e.g. genomepaper, or with a prefix key 
genome, or in a different grammatical form: se-
quence vs. sequencing. This example shows that 
many inconsistencies in tags are not caused by 

personalized tag choices as Chirita et al. (2007) 
suggest, but rather stem from the lack of guide-
lines and uniform tag suggestions that a book-
marking service could provide. 

2.2 Measuring tagging consistency 

Traditional indexers aim for consistency, on the 
basis that this will enhance document retrieval 
(Leonard, 1975). Consistency is measured using 
experiments in which several people index the 
same documents—usually a small set of a few 
dozen documents. It is computed for pairs of in-
dexers, by formulae such as Rolling’s (1981):  

 , 

where C is the number of tags (index terms) in-
dexers I1 and I2 have in common and A and B is 
the size of their tag sets respectively.  

In our experiments, before computing the 
number of terms in common, we stem each tag 
with the Porter (1980) stemmer. For example, the 
overlap C between the tag sets {complex systems, 
network, small world} and {theoretical, small 
world, networks, dynamics} consist of the two 
tags {network, small world}, and the consistency 
is 2×2/(3+4) = 0.57.  

To compute the overall consistency of a par-
ticular indexer, this figure is averaged over all 
documents and co-indexers. There were no cases 
where the same user reassigned tags to the same 
articles, so computing intra-tagger consistency, 
although interesting, was not impossible. 

To our knowledge, traditional indexing consis-
tency metrics have not yet been applied to col-
laboratively tagged data. However, experiments 
on determining tagging quality do follow the 
same idea. For example, Xu et al. (2006) define 
an authority metric that assigns high scores to 
those users who match other users’ choices on 
the same documents, in order to eliminate 
spammers. 

2.3 Consistency of CiteULike taggers 

In the collection of 180 documents tagged by 332 
users described in Section 3.1, each tagger has 18 
co-taggers on average, ranging from 2 to 129, 
and has indexed 1 to 25 documents. For each 
user we compute the consistency with all other 
users who tagged the same document. Consis-
tency is then averaged across documents. We 
found that the distribution of per-user consis-
tency resembles a power law with a few users 
achieving high consistency values and a long tail 
of inconsistent taggers. The maximum consis-

tagger co-taggers documents consistency 
1 1 5 71.4 
2 1 5 71.4 
3 6 5 57.9 
4 6 6 51.0 
5 11 12 50.4 
6 2 5 50.1 
7 4 6 48.3 
8 8 8 47.1 
9 13 16 45.4 

10 12 8 44.4 
11 7 6 43.5 
12 7 6 41.7 
13 8 5 40.9 
14 7 6 39.7 
15 9 13 38.8 
16 4 5 38.4 
17 12 9 37.3 
18 4 14 36.1 
19 9 8 35.9 
20 10 11 33.7 
21 7 6 33.1 
22 6 5 33.0 
23 7 10 32.1 
24 11 16 31.7 
25 8 13 30.6 
26 6 8 30.6 
27 9 6 29.8 
28 10 12 29.0 
29 8 6 28.8 
30 9 10 27.9 
31 10 8 26.7 
32 8 7 26.3 
33 10 5 25.6 
34 8 7 21.0 
35 9 9 18.3 
36 3 6 7.9 

average 7.5 8.1 37.7 

Table 1. Consistency of the most prolific and 
most consistent taggers 
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tency in this group is 92.3% and the average is 
18.5%. The average consistency of the most pro-
lific 70 indexers—those who have indexed at 
least five documents—is in the same range, 
namely 18.4%. The consistency of traditional 
approaches to free indexing is reported to be be-
tween 4% and 67%, with an average of 27% de-
pending on what aids are used (Leininger, 2000).  

It is instructive to consider the group of best 
taggers. We define these as the ones who (a) ex-
hibit greater than average consistency with all 
others, and (b) are sufficiently prolific, i.e. have 
tagged at least five documents. There are 36 such 
taggers; Table 1 lists their consistency within this 
group. The average consistency they achieve as a 
group is 37.7%, which is the similar to the aver-
age consistency of professionals (Leininger, 
2000). 

The above consistency analysis provides in-
sight into the tagging quality of the best 
CiteULike users, based on HighWire and Nature 
articles. For the purposes of this paper, it shows 
how the tagging community can be restricted to a 
best-performing group of taggers by measuring 
their consistency. This is helpful for testing the 
performance of automatic tagging (Section 4.4).  

3 Automatic tagging with Maui  

Maui is a general algorithm for automatic topical 
indexing based on the Kea system (Frank et al., 
1999).1 It works in two stages: candidate selec-
tion and machine learning based filtering. In this 
paper, we apply it to automatic tagging. In the 
candidate selection stage, Maui first determines 
textual sequences defined by orthographic 
boundaries and splits these sequences into to-
kens. Then all n-grams up to a maximum length 
of 3 words that do not begin or end with a stop-
word are extracted as candidate tags. To reduce 
the number of candidates, all those that appear 
only once are discarded. This speeds up the train-
ing and the extraction process without impacting 
the results. In the filtering stage several features 
are computed for each candidate, which are then 
input to a machine learning model to obtain the 
probability that the candidate is indeed a tag.  

Maui’s architecture resembles that of many 
other supervised keyphrase extraction systems 
(Turney, 2000; Hulth 2004; Medelyan et al., 
2008). However, this architecture has not previ-
ously been applied to the task of automatic tag-
ging.  
                                                 
1 Maui is open-source and available for download  
at http://maui-indexer.googlecode.com 

3.1 Features indicating significance 

We now describe the features used in the classi-
fication model to determine whether a phrase is 
likely to be a tag. We begin with three baseline 
features used in Kea (Frank et al., 1999), and 
extend the set with three features that have been 
found useful in previous work. We also add three 
new features that have not been evaluated before: 
spread, semantic relatedness and inverse 
Wikipedia linkage. All Wikipedia-based features 
are computed using the WikipediaMiner toolkit.2  

1. TF×IDF combines the frequency of a 
phrase in a particular document with its inverse 
occurrence frequency in general use (Salton and 
McGill, 1983). This score is high for rare phrases 
that appear frequently in a document and there-
fore are more likely to be significant. 

2. Position of the first occurrence is com-
puted as the relative distance of the first occur-
rence of the candidate tag from the beginning of 
the document. Candidates with very high or very 
low values are likely to be tags, because they 
appear either in the opening document parts such 
as title, abstract, table of contents, and introduc-
tion, or in the document’s final sections such as 
conclusion and reference lists. 

3. Keyphraseness quantifies how often a can-
didate phrase appears as a tag in the training cor-
pus. Automatic tagging approaches utilize the 
same information: Mishne (2006) and Sood et al. 
(2006) automatically suggest tags previously as-
signed to similar documents. However, in Maui 
(as in Kea) this feature is just one component of 
the overall model. Thus if a candidate never ap-
pears as a keyphrase in the training corpus, it can 
still be extracted if its other feature values are 
significant enough.  

4. Phrase length is measured in words. Gen-
erally speaking, the longer the phrase, the more 
specific it is. Training captures and quantifies the 
specificity preference in a given training corpus.  

5. Node degree quantifies the semantic relat-
edness of a candidate tag to other candidates. 
Turney (2003) computes semantic relatedness 
using search engine statistics. Instead, following 
Medelyan et al. (2008), we utilize Wikipedia 
hyperlinks for this task. We first map each can-
didate phrase to its most common Wikipedia 
page. For example, the word Jaguar appears as a 
link anchor in Wikipedia 927 times. In 466 cases 
it links to the article Jaguar cars, thus the com-
monness of this mapping is 0.5. In 203 cases it 
links to the animal description, a commonness of 

                                                 
2 http://wikipedia-miner.sourceforge.net/ 
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0.22. We compute the node degree of the corre-
sponding Wikipedia article as the number of 
hyperlinks that connect it to other Wikipedia 
pages that have been identified for other candi-
date tags from the same document. A document 
that describes a particular topic will cover many 
related concepts, so high node degree—which 
indicates strong connectivity to other phrases in 
the same document—means that a candidate is 
more likely to be significant. 

6. Wikipedia-based keyphraseness is the 
likelihood of a phrase being a link in the 
Wikipedia corpus. It divides the number of 
Wikipedia pages in which the phrase appears in 
the anchor text of a link by the total number of 
Wikipedia pages containing it. We multiply this 
number by the phrase’s document frequency. 

The new features proposed in this paper are 
the following: 

7. Spread of a phrase is the distance between 
its first and last occurrences in a document. Both 
values are computed relative to the length of the 
document (see feature 2). High values help to 
determine phrases that are mentioned both in the 
beginning and at the end of a document.  

8. Semantic relatedness of a phrase has al-
ready been captured as the node degree (see fea-
ture 5). However, recent research allows us to 
compute semantic relatedness with better tech-
niques than mere hyperlink counts. Milne and 
Witten (2008) propose an efficient Wikipedia 
based approach that is nearly as accurate as hu-
man subjects at quantifying the relationship be-
tween two given concepts. Given a set of candi-
date phrases we determine the most likely 
Wikipedia articles that describe them (as ex-
plained in feature 5), and then determine the total 
relatedness of a given phrase to all other candi-
dates. The higher the value, the more likely is the 
phrase to be a tag. 

9. Inverse Wikipedia linkage is another fea-
ture that utilizes Wikipedia as a source of lan-
guage usage statistics. Here, again given the 
most likely Wikipedia article for a given phrase, 
we count the number of other Wikipedia articles 
that link to it and normalize this value as in in-
verse document frequency:   

 
where linksTo(AP) is the number of incoming 
links to the article A representing the candidate 
phrase P, and N is the total number of links in 
our Wikipedia snapshot (52M). This feature 
highlights those phrases that refer to concepts 
commonly used to describe other concepts.  

3.2 Machine learning in Maui 

In order to build the model, we use the subset of 
the CiteULike collection described in Section 
3.1. For each document we know a set of tags 
that at least two users have agreed on. This is 
used as ground truth for building the model. For 
each training document, candidate phrases (i.e. 
n-grams) are identified and their feature values 
are calculated as described above.  

Each candidate is then marked as a positive or 
negative example, depending on whether users 
have assigned it as a tag to the corresponding 
document. The machine-learning model is con-
structed automatically from these labeled train-
ing examples using the WEKA machine learning 
workbench. Kea (Frank et al., 1999) uses the 
Naïve Bayes classifier, which implicitly assumes 
that the features are independent of each other 
given the classification. However, Kea uses only 
two or three features, whereas Maui combines 
nine features amongst which there are many ob-
vious relationships, e.g. first occurrence and 
spread, or node degree and semantic relatedness. 
Consequently, we also consider bagged decision 
trees, which can model attribute interactions and 
do not require parameter tuning to yield good 
results. Bagging learns an ensemble of classifiers 
and uses them in combination, thereby often 
achieving significantly better results than the in-
dividual classifiers (Breiman, 1996). Different 
trees are generated by sampling from the original 
dataset with replacement. Like Naïve Bayes, 
bagged trees yield probability estimates that can 
be used to rank candidates. 

To select tags from a new document, Maui de-
termines candidate phrases and their feature val-
ues, and then applies the classifier built during 
training. This classifier determines the probabil-
ity that a candidate is a tag based on relative fre-
quencies observed from the training data.  

4 Evaluation 

Here we describe the data used in the experi-
ments and the results obtained, addressing the 
following questions:  
1. How does a state-of-the-art keyphrase ex-

traction method perform on collaboratively 
tagged data, compared to a baseline auto-
matic tagging method?  

2. What is the performance of Maui with old 
and new features?  

3. How consistent are Maui’s tags compared to 
those assigned by human taggers? 
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4.1 Evaluation method 

The evaluation was performed using a set of 180 
documents, described in Section 3.1, each tagged 
with at least three tags on which two users have 
agreed. In the following, unless explicitly stated 
otherwise, these are the only tags we use. We 
consider them to be ground truth. There are on 
average five such tags per document, and our 
goal is to extract tag sets that contain them all.  

We regard a predicted tag as “correct” if it 
matches one of the ground truth tags after using 
the Porter stemmer. We measure performance by 
computing Precision (the percentage of correct 
extracted tags out of all extracted), Recall (the 
percentage of correct extracted tags out of all 
correct) and F-Measure (the harmonic mean of 
the two). Given the set {yeast (4), network (3), 
regulation (2), metabolic (2)} of ground truth 
tags, where the numbers in parenthesis show how 
many users have assigned each one, and the set 
{network, metabolic, regulatory, ChIP-chip, 
transcription} of predicted tags, three out of five 
predicted terms are correct, yielding a precision 
of 60%, and three out of four ground-truth terms 
are extracted, a recall of 75%. The F-measure 
combining the two values is 67%. 

The reported precision and recall values are 
averaged over all test documents. We use 10-fold 
cross-validation for evaluation, which allows us 
to use all 180 documents as test documents with-
out introducing optimistic bias in the perform-
ance measures obtained. 

The results obtained in Sections 4.2 and 4.3 
using this evaluation provide answers to the first 
two questions above. To answer the third we 
compare the indexing consistency of Maui to that 
of CiteULike users in Section 4.4. Here, we con-
sider the assigned tag sets individually and com-
pute the consistency of Maui with each tagger as 
described in Section 3.2. We compare Maui both 
to all 332 users who tagged these documents, and 
to the 36 best taggers identified in Section 3.3. 

4.2 Keyphrase extraction vs. auto-tagging  

As noted earlier, Brooks and Montanez (2006) 
automatically determine tags by extracting terms 
with the highest TF×IDF values for each post 
and argue that their quality is perhaps better than 

that of manual tags. Note that they only use one-
word tags. We evaluate this approach using our 
180 test documents and cross-validation, and 
compare the top five extracted tags with those 
assigned manually. Comparing the first two rows 
of Table 2 shows that using multi-word phrases 
as candidate tags (Section 4) is less accurate than 
using single words, which gives an overall F-
Measure of 17%. Multi-words have higher 
TF×IDF values, but single words are the majority 
among the users’ tags. The length feature applied 
in the next section helps to capture this character-
istic, without compromising Maui’s ability to 
assign correct multi-words tags. 

Adding a second feature, the position of the 
first occurrence, and using Kea’s Naïve Bayes 
model to learn their conditional distribution, im-
proves the results by 5 percentage points (row 3). 
Adding the keyphraseness feature (row 4) nearly 
doubles the F-Measure, from 21.3 to 42.1%. This 
shows that CiteULike users tend to re-assign ex-
isting tags.  

4.3 Maui with additional features 

To evaluate Maui let us first consider the indi-
vidual performance of old and new features, as 
shown in Table 3. Rows 1 to 3 evaluate the stan-
dard features used by Frank et al. (1999); Rows 4 
to 6 evaluate features that were previously used 
in Kea for controlled indexing (Medelyan et al., 
2006) and which we have adapted in Maui for 
free indexing. Rows 7 to 9 evaluate the three new 
features of Maui. The values can be compared to 
keyphrase extraction by chance (F-Measure = 
1%) and to the multi-word TF×IDF baseline in 
Table 2, row 2 (F-Measure = 15.2%). The 
strength of these features varies from 2.1 to 
25.5% (F-Measure). The strongest ones are key-
phraseness, Wikipedia keyphraseness, TF×IDF 
and spread.  

Table 4 demonstrates Maui’s performance 
when the features are combined and shows how 
the two different classifiers, Naïve Bayes (left) 
and bagged decision trees (right), compare to 

   P R F 
1 Top words based on TF×IDF  16.8 17.3 17.0 
2 Top phrases based on TF×IDF  14.4 16.0 15.2 
3 Kea (TF×IDF, 1st occur) 20.4 22.3 21.3 
4 Kea (+keyphraseness) 41.1 43.1 42.1 

Table 2. Baseline auto-tagging approach vs. Kea 

 
 

   P R F 
1 TFxIDF 14.4 16 15.2 
2 1st occurrence 5.4 5.4 5.4 
3 Keyphraseness 25.2 26.3 25.5 
4 Length 2.1 2.1 2.1 
5 Node degree 8.3 9.0 8.6 
6 Wikipedia keyphraseness 16.9 18.3 17.6 
7 Spread 12.1 13.0 12.5 
8 Semantic relatedness 7.1 7.3 7.2 
9 Inverse Wikipedia linkage 7.3 6.8 7.0 

Table 3. Evaluation of individual features 
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each other. The baseline in row 1 (left) shows 
Kea’s performance, using TF×IDF, first occur-
rence, keyphraseness and Naïve Bayes to com-
bine them (same as row 4 in Table 2). Using de-
cision trees with these three features does not 
improve the performance (row 1, right). The fol-
lowing row combines the three original features 
with length, node degree and Wikipedia-based 
keyphraseness. In contrast to previous research 
(Medelyan et al., 2008), in this setting we do not 
observe an improvement with either Naïve Bayes 
or bagged decision trees. In row 3 we combine 
the three original features with the three new 
ones introduced in this work. While Naïve 
Bayes’ values are lower than the baseline, with 
bagged decision trees Maui’s F-Measure im-
proves from 41.2 to 44.9%. The best results are 
obtained by combining all nine features, again 
using bagged decision trees, giving in row 4 
(right) a notably improved F-Measure of 47.1%. 
The recall of 48.6% shows that we match nearly 
half of all tags on which at least two human tag-
gers have agreed.  

Given this best combination of features, we 
eliminate each feature one by one starting from 
the individually weakest feature, in order to de-
termine the contribution of each feature to this 
overall result. Table 5 compares the values and 
only bagged decision trees are used this time. 
The ‘Difference’ column quantifies the differ-
ence between the best F-Measure achieved with 
all 9 features and excluding the one that is exam-
ined in that row. Interestingly, one of the strong-
est features, TF×IDF, is the one that contributes 
the least when all features are combined, while 

the contribution of the strongest feature—
keyphraseness—is, as expected, the highest, add-
ing 16.9 points. The second most important fea-
ture is Wikipedia keyphraseness, contributing 4 
percentage points to the overall result. 

Since some of the features in the best perform-
ing combination rely on Wikipedia as a knowl-
edge source, it is interesting to determine 
Wikipedia’s exact contribution. The last row of 
Table 5 combines the following features: 
TF×IDF, first occurrence, keyphraseness, length 
and spread. The F-Measure is 5.4 points lower 
than that of Maui with all 9 features combined. 
Therefore, the contribution of Wikipedia-based 
features is significant. 

4.4 Maui’s consistency with human taggers 

In Section 2.3 we discussed the indexing consis-
tency of CiteULike users on our data. There are a 
total of 332 taggers and their consistency with 
each other is 18.5%. Now, we use results ob-
tained with Maui during the cross-validation, 
when all 9 features and bagged decision trees are 
used (Table 4, row 4, right; see examples in Ta-
ble 5), and compute how consistent Maui is with 
each human user, based on whatever document 
this user has tagged. Then we average the results 
to obtain the overall consistency with all 332 
users. 

Maui’s consistency with the 332 human tag-
gers ranges from 0 to 80%, with an average of 
23.8%. The only cases where very low consis-
tency was achieved are those where the human 
has only assigned a few tags per document (one 
to three), or has some idiosyncratic tagging be-
havior (for example, one tagger adds the word 
key in front of most tags). Still, with an average 
of 23.8%, Maui’s performance is over 5 points 
higher than that of an average CiteULike tagger 
(18.5%)—and note this group only includes tag-
gers who have at least two co-taggers. 

In Section 2.3 we were also able to determine 
a smaller group of users who perform best and 
are most prolific. This group consists of 36 tag-
gers whose consistency exceeds the average of 
the original 332 users. These 36 taggers have 
tagged a total of 143 documents with an average 
consistency of 37.6%. Maui’s consistency with 

  Naïve Bayes Bagged decision trees 
  P R F P R F 
1 Features 1 – 3 41.1 43.1 42.1 40.3 42.2 41.2 
2 Features 1 – 6 38.9 41.1 40.0 40.3 42.6 41.4 
3 Features 1 – 3, 7 – 9 39.3 41.1 40.2 43.7 46.2 44.9 
4 Features 1 – 9 37.6 39.6 38.6 45.7 48.6 47.1 

Table 4. Combining all features in Maui  
 

Features F-Measure Difference 
All 9 Features 47.1  
– Length 45 2.1 
– 1st occurrence 45.6 1.5 
– Inverse Wikip linkage 45.1 2 
– Semantic relatedness 45.4 1.7 
– Node degree 46 1.1 
– Spread 46.4 0.7 
– TFxIDF 46.8 0.3 
– Wikip keyphraseness 43.1 4 
– Keyphraseness 30.2 16.9 
Non-Wikip features 41.7 5.4 

Table 5. Evaluation using feature elimination  
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these taggers ranges from 11.5% to 56%, with an 
average of 35%. This places it only 2.6 percent-
age points behind the average performance of the 
best CiteULike taggers. In fact, it outperforms 17 
of them (cf. Table 1). 

4.5 Examples 

Table 6 compares Maui with some of 
CiteULike’s best human taggers on four ran-
domly chosen test documents. Boldface in the 
taggers’ row indicates a tag that has been chosen 
by at least two other human taggers; the remain-
ing tags have been chosen by just one human. 
Boldface in Maui’s row shows tags that match 
human tags. For each document Maui extracts 
several tags assigned by at least two humans. 
The other tags it chooses are generally chosen by 
at least one human tagger, and even if not, they 
are still related to the main theme of the docu-
ment. 

5 Discussion and related work 

It is possible to indirectly compare the results of 
several previously published automatic tagging 
approaches with Maui’s. For each paper, we 
compute Maui’s results in settings closest to the 
reported ones. 

Brooks and Montanez (2006) extract terms 
with the highest TF×IDF values as tags for posts 
on technorati.com. They do not report precision 
and recall values for their system, but our re-
implementation resulted in precision of 16.8% 
and recall of 17.3% for the top five assigned 
tags, compared to those agreed to by at least two 
CiteULike users on 180 documents. Adding 
eight additional features and combining them 
using machine learning gives a clear improve-
ment—Maui achieves 45.7% and 48.7% preci-
sion and recall respectively. 

Mishne (2006) uses TF×IDF-weighted terms 
as full-text queries to retrieve posts similar to the 
one being analyzed. Tags assigned to these posts 
are analyzed to retrieve the best ones using clus-
tering and heuristic ranking; tags assigned by the 
given user receive extra weight. Mishne per-
forms manual evaluation on 30 short articles and 
reports precision and recall for the top ten tags of 
38% and 47% respectively. We matched Maui’s 
top ten terms to all tags assigned to 180 docu-
ments automatically and obtained precision and 
recall of 44% and 29% respectively. (We believe 
that manual rather than automatic evaluation 
would be likely to give a far more favorable as-
sessment of our system.) 

Chirita et al. (2007) aim to extract personal-
ized tags. Given a web page, they first retrieve 

Document 86865. Neural correlates 
of decision variables in 
parietal cortex. Platt and 
Glimcher. Nature 400,15 
(1999) 

44. Exploring complex 
networks. Strogatz. Nature 
410, 8 (2001) 

353537. Computational 
roles for dopamine in 
behavioural control. Mon-
tague et al. Nature 431, 
14 (2004) 

101. Network motifs: 
simple building blocks 
of complex networks. 
Milo et al. Science 298, 
824 (2002)  

Tags 
assigned 
by 
CiteULike 
taggers 

decision making 
decisionmaking 
lip 
monkey 
neurophysiology 
reward 

Idiosyncratic: brain, 
choice, cortex, decision, 
electrophysiology, eye-
movements, limitations, 
monkeys, neuroecono-
mics, neurons, neuro-
science, other, ppc, quals, 
reinforcementlearning 

complex 
complexity 
complex networks 
graph 
networks 
review 
small world 
social networks 
survey 

Idiosyncratic: 2001, adap-
tive systems, bistability, 
coupled oscillator, graph 
mining, graphs, explorig, 
network biological, neu-
rons, strogatz 

dopamine 
neuroscience 
reinforcement learning 
review  

Idiosyncratic: 
action selection, attention, 
behavior, behavioral con-
trol, cognitive control, 
learning, network, rein-
forcementlearning, re-
ward, td model 

applied math 
combinatorics  
complexity 
motifs 
network 
original  
sub graph pattern 

Idiosyncratic: 2002, 
datamining, data min-
ing, graphs, link analy-
sis, modularity, net 
paper, patterns, protein, 
science, sysbio, web 
characterization, web 
graph 

Tags 
assigned 
by 
Maui 

cortex 
decision 
lip 
monkey 
visual 

complex networks  
networks 
review 
synchronization 
graph 

dopamine 
learning 
neuroscience 
review 
reward 
 

complex networks 
network 
motifs 
gene 
complex 

Table 6. Tags assigned by CiteULike taggers and Maui to four sample documents 
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similar documents stored on the user’s desktop 
and then determine keywords for these docu-
ments. They evaluate different term scoring 
techniques, such as term and document fre-
quency, lexical dispersion, sentence scoring, and 
term co-occurrence. Like the Kea algorithm, the 
best formula combines term frequency with the 
position of the first occurrence of the term, nor-
malized by page length. It yields a precision of 
80% for the top four tags assigned to 30 large 
websites (32Kbytes), again evaluated manually. 
Our documents are considerably longer 
(47Kbytes) and thus more difficult to work with, 
nevertheless Maui achieves only slightly lower 
values, from 66% to 80%, when evaluating 
automatically against user-assigned tags. (The 
above caveat regarding automatic and manual 
assessment applies here too.) 

Budura et al. (2008) develop a scoring for-
mula that combines three features (tag frequency, 
tag co-occurrence and document similarity) and 
manually evaluate it on ten CiteULike docu-
ments. Their precision for the top three to five 
tags ranges from 66% to 77%, slightly worse 
than in our paper (66% to 80%). 

The only reported automatic evaluation of tags 
was found in Sood et al. (2006), where TagAssist 
was tested on 1000 blog posts. This algorithm is 
similar to Mishne’s (2006), but uses centroid-
based clustering. Exact matching of TagAssist’s 
tags against existing ones yielded precision and 
recall of 13.1% and 22.8% respectively. This is 
substantially lower than Maui’s 45.75% and 
48.7% obtained with best settings (Section 4.3). 

Note that this indirect comparison does not re-
veal the true ranking of approaches, because their 
task definitions and test sets are slightly differ-
ent. It would be interesting to compare other sys-
tems on the multiple tagger set described in this 
paper, as we believe this would more objectively 
reflect the performance of humans and algo-
rithms. 

6 Conclusions 

This paper has introduced a systematic way of 
evaluating automatic tagging techniques without 
the need for manual inspection. We have shown 
how documents with multiple tag sets can be 
used in conjunction with a standard consistency 
measure to identify a robust test corpus for these 
techniques. Based on the evaluation methodol-
ogy developed, we have shown that machine-
learning-based automatic keyphrase extraction 
produces tag sets that exhibit consistency on a 

par with that achieved by the best human taggers. 
Our results also show a substantial improvement 
on an existing automatic tagging approach based 
on TF×IDF, and the results compare well to 
other systems.  

The success of automatic keyphrase extraction 
depends primarily on the quality of the features 
that are provided to the machine learning algo-
rithm involved. In this paper we have evaluated 
nine different features, including two novel 
Wikipedia-based semantic features, and found 
that their combination used in conjunction with 
bagged decision trees produces the best perform-
ance. 
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Abstract

The work presented in this paper explores
a supervised method for learning a prob-
abilistic model of a lexicon of VerbNet
classes. We intend for the probabilis-
tic model to provide a probability dis-
tribution of verb-class associations, over
known and unknown verbs, including pol-
ysemous words. In our approach, train-
ing instances are obtained from an ex-
isting lexicon and/or from an annotated
corpus, while the features, which repre-
sent syntactic frames, semantic similarity,
and selectional preferences, are extracted
from unannotated corpora. Our model
is evaluated in type-level verb classifica-
tion tasks: we measure the prediction ac-
curacy of VerbNet classes for unknown
verbs, and also measure the dissimilarity
between the learned and observed proba-
bility distributions. We empirically com-
pare several settings for model learning,
while we vary the use of features, source
corpora for feature extraction, and disam-
biguated corpora. In the task of verb clas-
sification into all VerbNet classes, our best
model achieved a 10.69% error reduction
in the classification accuracy, over the pre-
viously proposed model.

1 Introduction

Lexicons are invaluable resources for semantic
processing. In many cases, lexicons are neces-
sary to restrict a set of semantic classes to be as-
signed to a word. In fact, a considerable number of
works on semantic processing implicitly or explic-
itly presupposes the availability of a lexicon, such
as in word sense disambiguation (WSD) (Mc-
Carthy et al., 2004), and in token-level verb class
disambiguation (Lapata and Brew, 2004; Girju et

al., 2005; Li and Brew, 2007; Abend et al., 2008).
In other words, those methods are heavily de-
pendent on the availability of a semantic lexicon.
Therefore, recent research efforts have invested in
developing semantic resources, such as WordNet
(Fellbaum, 1998), FrameNet (Baker et al., 1998),
and VerbNet (Kipper et al., 2000; Kipper-Schuler,
2005), which greatly advanced research in seman-
tic processing. However, the construction of such
resources is expensive, and it is unrealistic to pre-
suppose the availability of full-coverage lexicons;
this is the case because unknown words always ap-
pear in real texts, and word-semantics associations
may vary (Abend et al., 2008).

This paper explores a method for the supervised
learning of a probabilistic model for the VerbNet
lexicon. We target the automatic classification of
arbitrary verbs, including polysemous verbs, into
all VerbNet classes; further, we target the esti-
mation of a probabilistic model, which represents
the saliences of verb-class associations for polyse-
mous verbs. In our approach, an existing lexicon
and/or an annotated corpus are used as the training
data. Since VerbNet classes are designed to rep-
resent the distinctions in the syntactic frames that
verbs can take, features, representing the statistics
of syntactic frames, are extracted from the unan-
notated corpora. Additionally, as the classes rep-
resent semantic commonalities, semantically in-
spired features, like distributionally similar words,
are used. These features can be considered as a
generalized representation of verbs, and we ex-
pect that the obtained probabilistic model predicts
VerbNet classes of the unknown words.

Our model is evaluated in two tasks of type-
level verb classification: one is the classification
of monosemous verbs into a small subset of the
classes, which was studied in some previous works
(Joanis and Stevenson, 2003; Joanis et al., 2008).
The other task is the classification of all verbs into
the full set of VerbNet classes, which has not yet
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been attempted. In the experiments, training in-
stances are obtained from VerbNet and/or Sem-
Link (Loper et al., 2007), while features are ex-
tracted from the British National Corpus or from
Wall Street Journal. We empirically compare sev-
eral settings for model learning by varying the
set of features, the source domain and the size
of a corpus for feature extraction, and the use of
the token-level statistics obtained from a manually
disambiguated corpus. We also provide the anal-
ysis of the remaining errors, which will lead us to
further improve the supervised learning of a prob-
abilistic semantic lexicon.

Supervised methods for automatic verb classifi-
cation have been extensively investigated (Steven-
son et al., 1999; Stevenson and Merlo, 1999;
Merlo and Stevenson, 2001; Stevenson and Joa-
nis, 2003; Joanis and Stevenson, 2003; Joanis et
al., 2008). However, their focus has been lim-
ited to a small subset of verb classes, and a lim-
ited number of monosemous verbs. The main con-
tributions of the present work are: i) to provide
empirical results for the automatic classification
of all verbs, including polysemous ones, into all
VerbNet classes, and ii) to empirically explore the
effective settings for the supervised learning of a
probabilistic lexicon of verb semantic classes.

2 Background

2.1 Verb lexicon

Levin’s (1993) work on verb classification has
broadened the field of computational research that
concerns the relationships between the syntactic
and semantic structures of verbs. The principal
idea behind the work is that the meanings of verbs
can be identified by observing possible syntactic
frames that the verbs can take. In other words,
with the knowledge of syntactic frames, verbs can
be semantically classified. This idea provided the
computational linguistics community with crite-
ria for the definition and the classification of verb
semantics; it has subsequently resulted in the re-
search of the induction of verb classes (Korhonen
and Briscoe, 2004), and the construction of a verb
lexicon based on Levin’s criteria.

VerbNet (Kipper et al., 2000; Kipper-Schuler,
2005) is a lexicon of verbs organized into classes
that share the same syntactic behaviors and seman-
tics. The design of classes originates from Levin
(1993), though the design has been considerably
reorganized and extends beyond the original clas-

43 Emission
43.1 Light Emission

beam, glow, sparkle, . . .
43.2 Sound Emission

blare, chime, jangle, . . .
. . .

44Destroy
annihilate, destroy, ravage, . . .

45 Change of State
. . .

47 Existence
47.1Exist

exist, persist, remain, . . .
47.2 Entity-Specific Modes Being

bloom, breathe, foam, . . .
47.3 Modes of Being with Motion

jiggle, sway, waft, . . .
. . .

Figure 1: VerbNet classes

43.2 Sound Emission
Theme V
Theme V P:loc Location
P:loc Location V Theme
there V Theme P:loc Location
Agent V Theme
Theme V Oblique
Location V with Theme

47.3 Modes of Being with Motion
Theme V
Theme V P:loc Location
P:loc Location V Theme
there V Theme
Agent V Theme

Figure 2: Syntactic frames for VerbNet classes

sification. The classes therefore cover more En-
glish verbs, and the classification should be more
consistent (Korhonen and Briscoe, 2004; Kipper
et al., 2006).

The current version of VerbNet includes 270
classes.1 Figure 1 shows a part of the classes of
VerbNet. The top-level categories, e.g.Emis-
sion and Destroy, represent a coarse classifica-
tion of verb semantics. They are further classi-
fied into verb classes, each of which expresses
a group of verbs sharing syntactic frames. Fig-
ure 2 shows an excerpt from VerbNet, which rep-
resents the possible syntactic frames for theSound
Emission class, including “chime” and “jangle,”
and theModes of Being with Motion class, in-
cluding “jiggle” and “waft.” In this figure, each
line represents a syntactic frame, whereAgent ,

1Throughout this paper, we refer to VerbNet 2.3. Sub-
classes are ignored in this work, following the setting of
Abend et al. (2008).
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. . . the walls still shook;VN=47.3 and an evacuation
alarm blared;VN=43.2 outside.

Suddenly the woman begins;VN=55.1 swaying
;VN=47.3 and then . . .

Figure 3: An excerpt from SemLink

Theme, and Location indicate the thematic
roles,V denotes a verb, andP specifies a prepo-
sition. P:loc defines locative prepositions such
as: “in” and “at.” For example, the second syn-
tactic frame ofSound Emission, i.e., Theme V
P:loc Location , corresponds to the follow-
ing sentence:

1. The coinsjangledin my pocket.

Themecorresponds to “the coins,” V to “jangled,”
P:loc to “in,” andLocation to “my pocket.”

While VerbNet provides associations between
verbs and semantic classes, SemLink (Loper et
al., 2007) additionally provides mappings among
VerbNet, FrameNet (Baker et al., 1998), PropBank
(Palmer et al., 2005), and WordNet (Fellbaum,
1998). Since FrameNet and PropBank include an-
notated instances of sentences, SemLink can be
considered as a corpus annotated with VerbNet
classes. Figure 3 presents some annotated sen-
tences obtained from SemLink. For example, the
annotation “blared;VN=43.2 ” indicates that the
occurrence of “blare” in this context is classified
asSound Emission.

2.2 Related work

There has been much research effort invested in
the automatic classification of verbs into lexical
semantic classes, in a supervised or unsupervised
way. The present work inherits the spirit of the su-
pervised approaches to verb classification (Steven-
son et al., 1999; Stevenson and Merlo, 1999;
Merlo and Stevenson, 2001; Stevenson and Joanis,
2003; Joanis and Stevenson, 2003; Joanis et al.,
2008). Our learning framework basically follows
the above listed works: features are obtained from
an unannotated (automatically parsed) corpus, and
gold verb-class associations are used as training
instances for machine learning classifiers, such as
decision trees and support vector machines. How-
ever, those works targeted a small subset of Levin
classes, and a limited number of monosemous
verbs; for example, Merlo and Stevenson (2001)
studied three classes and 59 verbs, and Joanis et al.

(2008) focused on 14 classes and 835 verbs. Al-
though these works provided a theoretical frame-
work for supervised verb classification, their re-
sults were not readily available for practical ap-
plications, because of the limitation in the cover-
age of the targeted classes/verbs on real texts. On
the contrary, we target the classification of arbi-
trary verbs, including polysemous verbs, into all
VerbNet classes (270 in total). In this realistic sit-
uation, we will empirically compare settings for
model learning, in order to explore effective con-
ditions to obtain better models.

Another difference from the aforementioned
works is that we aim at obtaining a probabilis-
tic model, which representssaliencesof classes
of polysemous verbs. Lapata and Brew (2004)
and Li and Brew (2007) focused on this issue,
and described methods for inducing probabilities
of verb-class associations. The obtained proba-
bilistic model was intended to be incorporated into
a token-level disambiguation model. Their meth-
ods claimed to be unsupervised, meaning that the
induction of a probabilistic lexicon did not re-
quire any hand-annotated corpora. In fact, how-
ever, their methods relied on the existence of a
full-coverage lexicon, both in training and running
time. In their methods, a lexicon was necessary
for restricting possible classes to which each word
belongs. Since most verbs are associated with
only a couple of classes, such a restriction signif-
icantly reduces the search space, and the problem
becomes much easier to solve. This presupposi-
tion is implicitly or explicitly used in other seman-
tic disambiguation tasks (McCarthy et al., 2004),
but it is unrealistic for practical applications.

Clustering methods have also been extensively
researched for verb classification (Stevenson and
Merlo, 1999; Schulte im Walde, 2000; McCarthy,
2001; Korhonen, 2002; Korhonen et al., 2003;
Schulte im Walde, 2003). The extensive research
is in large part due to the intuition that the set of
classes could not be fixed beforehand. In partic-
ular, it is often problematic to define a static set
of semantic classes. However, it is reasonable to
assume that the set of VerbNet classes is fixed, be-
cause Levin-type classes are more static than on-
tological classes, like in WordNet synsets. There-
fore, we can apply supervised classification meth-
ods to our task. It is true that the current VerbNet
classes are imperfect and require revisions, but in
this work we adopt them as they are, because as
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time advances, more stable classifications will be-
come available.

The problem focused in this work has a close re-
lationship with automatic thesaurus/ontology ex-
pansion. In fact, we evaluate our method in the
task of automatic verb classification, which can
be considered as lexicon expansion. The most
prominent difference of the present work from the-
saurus/ontology expansion is that the number of
classes is much smaller in our problem, and the set
of verb classes can be assumed to be fixed. These
characteristics indicate that our problem is easier
and more well-defined than is the case for auto-
matic thesaurus/ontology expansion.

Supervised approaches to token-level verb class
disambiguation have recently been addressed
(Girju et al., 2005; Abend et al., 2008), largely ow-
ing to SemLink. Their approaches fundamentally
follow traditional supervised WSD methods: ex-
tracting features representing the context in which
the target word appears, and training a classifica-
tion model with an annotated corpus. While those
works achieved an impressive accuracy (more than
95%), the results may not necessarily indicate the
method’s effectiveness; rather, it may imply the
importance of a lexicon. In fact, these works re-
strict their target to verb tokens, in which the cor-
rect class exists in a given lexicon, and they only
consider candidate classes that are registered in the
lexicon. This setting reduces the ambiguity signif-
icantly, and the problem becomes much easier to
handle; for example, approximately half of verb
tokens are monosemous in their setting. Thus, a
simple baseline achieves very high accuracy fig-
ures. However, in our preliminary experiment
on token-level verb classification with unknown
verbs, we found that the accuracy for unknown
verbs (i.e., lemmas not included in the VerbNet
lexicon) is catastrophically low. This indicates
that VerbNet and SemLink are insufficient for un-
known verbs, and that we cannot expect the avail-
ability of a full-coverage lexicon in the real world.
Instead of a static lexicon, our probabilistic model
is intended to be used as a prior distribution for the
token-level disambiguation, as in Lapata and Brew
(2004)’s model.

3 A probabilistic model for verb
semantic classes

In this work, supervised learning is applied to the
probabilistic modeling of a lexicon of verb seman-

tic classes. We do not presuppose the existence of
a full-coverage lexicon; instead, we use an existing
lexicon for the training data. Combined with fea-
tures extracted from unannotated corpora, a proba-
bilistic model is learned from the existing lexicon.
Like other supervised learning applications, our
probabilistic lexicon can predict classes for words
that are not included in the original lexicon.

Our model is defined in the following way. We
assume that the set,C, of verb classes is fixed,
while a set of verbs is unfixed. With this assump-
tion, probabilistic modeling can be reduced to a
classification problem. Specifically, the goal is to
obtain a probability distribution,p(c|v), of verb
classc ∈ C for a given verb (lemma)v. We
can therefore apply well-known supervised learn-
ing methods to estimatep(c|v).

This probability is modeled in the form of a log-
linear model.

p(c|v) =
1
Z

exp

(∑
i

λifi(c, v)

)
,

wherefi(c, v) are features that represent charac-
teristics ofc andv, andλi are model parameters
that express weights of the corresponding features.

Model parameters can be estimated whentrain-
ing instances, i.e., pairs 〈c, v〉, and features,
fi(c, v), for each instance are given. Therefore,
what we have to do is to prepare the training in-
stances〈c, v〉, and effective featuresfi(c, v) that
contribute to the better estimation of probabili-
ties. In token tagging tasks, both training instances
and features are extracted from annotated corpora.
However, since our goal is the probabilistic mod-
eling of a lexicon, we have to determine how to
derive the training instances and features for lexi-
con entries, to be discussed in the next section.

For the parameter estimation of log-linear mod-
els, we applied the stochastic gradient descent
method. A hyperparameter forl2-regularization
was tuned to minimize the KL-divergence (see
Section 4.4) for the development set.

4 Experiment design

In this work, we empirically compare several set-
tings for the learning of the above probabilistic
model, in the two tasks of automatic verb classi-
fication. In what follows, we explain the train-
ing/test data, corpora for extracting features, and
the design of the features and evaluation tasks.
The measures for evaluation are also introduced.
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1 sound_emission-43.2 chime
0.5 sound_emission-43.2 blare
0.5 manner_speaking-37.3 blare
0.5 modes_of_being_with_motion-47.3 sway
0.5 urge-58.1 sway

1 sound_emission-43.2 chime
0.7 sound_emission-43.2 blare
0.3 manner_speaking-37.3 blare
0.6 modes_of_being_with_motion-47.3 sway
0.4 urge-58.1 sway

Figure 4: Training instances obtained from Verb-
Net (upper) and VerbNet+SemLink (lower)

4.1 Data

As our goal is the supervised learning of a lexicon
of verb semantic classes, VerbNet is used as the
training/test data. In addition, since we aim at rep-
resenting the saliences of verb-class associations
with probabilities, the gold probabilities are nec-
essary. For this purpose, we count the occurrences
of each verb-class association in the VerbNet-
PropBank token mappings in the subset of the
SemLink corresponding to sections 2 through 21
of Penn Treebank (Marcus et al., 1994). Fre-
quency counts are normalized for each lemma,
with the Laplace smoothing (the parameter is 0.5).

In this work, we compare the two settings for
creating training instances. By comparing the re-
sults of these settings, we evaluate the necessity
of an annotated corpus for learning a probabilistic
lexicon of verb semantic classes.

VerbNet We collect all〈c, v〉 pairs registered in
VerbNet. For eachv, all of the associated
classes are assigned equal weights (see the
upper part of Figure 4).

VerbNet+SemLink Each pair〈c, v〉 in VerbNet
is weighted by the normalized frequency ob-
tained from SemLink (see the lower part of
Figure 4).

Because VerbNet classes represent groups of
syntactic frames, and it is impossible to guess the
verb class by referring to only one occurrence in
a text, it is necessary to have statistics over a suf-
ficient amount of a corpus. Hence, features are
extracted from a large unannotated corpus. In this
paper, we use the following two corpora:

WSJ Wall Street Journal newspaper articles
(around 40 million words).

BNC British National Corpus, which is a bal-
anced corpus of around 100 million words.

In addition to the variance of the corpus domains,
we vary the size of the corpus to observe the ef-
fect of increasing the corpus size. These corpora
are automatically parsed by Enju 2.3.1 (Miyao and
Tsujii, 2008), and the features are extracted from
the parsing results.

4.2 Features

Levin-like classes, including VerbNet, are de-
signed to represent distinctions in syntactic frames
and alternations. Hence, if we were given the per-
fect knowledge of the possible syntactic frames,
verbs can be classified into the correct classes al-
most perfectly (Dorr and Jones, 1996). Previ-
ous works thus proposed features that express the
corpus statistics of syntactic frames. However,
class boundaries are subtle in some cases; several
classes share syntactic frames with each other to a
large extent.

For example, the classes shown in Figure 2 have
very similar syntactic frames. The difference is in-
dicated in the last two frames ofSound Emission,
although they appear much less frequently in real
texts. Therefore, it is difficult to accurately capture
the distinctions between these classes, if we are
only provided with the statistics of the syntactic
frames that appear in real texts. In this case, how-
ever, it is easy to observe that the verbs of these
classes have different selectional preferences; that
is, the Theme of Sound Emissionverbs would
be objects that make sounds, while theTheme of
Modes of Being with Motion is likely to be ob-
jects that move.2 Although Levin’s classification
initially focused on syntactic alternations, the re-
sulting classes represent some semantic common-
alities. Hence, it would be reasonable to design
features that capture such semantic characteristics.

In this work, we re-implemented the following
features proposed by Joanis et al. (2008) as the
starting point.

Syntactic slot Features to count the occurrences
of each syntactic slot, such as subject, ob-
ject, and prepositional phrases. For the sub-
ject slot, we also count its transitive and in-
transitive usages separately. Additionally, we
count the appearances of reflexive pronouns
and semantically empty constituents (it and

2Syntactic frames in VerbNet include specifications of se-
lectional preferences, such asanimateand place, although
we do not explicitly use them, because it is not apparent to
determine the members of these semantic classes.
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Syntactic slot subj:0.885
intrans-subj:0.578

Slot overlap overlap-subj-obj:0.299
overlap-obj-in:0.074

Tense, voice, aspect pos-VBG:0.307
pos-VBD:0.290

Animacy anim-subj:0.244
anim-obj:0.057

Slot POS subj-PRP:0.270
subj-NN:0.270

Syntactic frame NP_V:0.326
NP_V_NP:0.307

Similar word sim-rock:0.090
sim-swing:0.083

Slot class subj-C82:0.219
obj-C12:0.081

Figure 5: Example of features for “sway”

there). Differently from Joanis et al. (2008),
we consider non-nominal arguments, such as
sentential and adjectival complements.

Slot overlap Features to measure the overlap in
words (lemmas) between two syntactic slots
of the verb. They are intended to approxi-
mate argument alternations, such as the erga-
tive alternation. For example, for the alter-
nation “The sky cleared”/“ The clouds cleared
from the sky,” a feature to indicate the overlap
between the subject slot and thefrom slot is
added (Joanis et al., 2008). The value of this
feature is computed by the method of Merlo
and Stevenson (2001).

Tense, voice, aspectFeatures to approximate the
tendency of the tense, voice, and aspect of
the target verb. The Penn Treebank POS tags
for verbs (VB, VBP, VBZ, VBG, VBD, and
VBN) are counted. In addition, included are
the frequency of the co-occurrences with an
adverb or an auxiliary verb, and the count of
usages as a noun or an adjective.

Animacy Features to measure the frequency of
animate arguments for each syntactic slot.
Personal pronouns exceptit are counted as
animate, following Joanis et al. (2008), while
named entity recognition was not used.

Examples of these features are shown in Figure 5.
For details, refer to Joanis et al. (2008).

The above features mainly represent syntactic
behaviors of target verbs. Since our target classes
are broader than in the previous works, we further
enhance the syntactic features. Additionally, as
discussed above, semantically motivated features

may present strong clues to distinguish among
syntactically similar classes. We therefore include
the following four types of feature; the first two
are syntactic, while the other two are intended to
capture semantic characteristics:

Slot POS In addition to the syntactic slot fea-
tures, we add features that represent a com-
bination of a syntactic slot and the POS of
its head word. Since VerbNet includes ex-
tended classes that take verbal and adjecti-
val arguments, the POSs of arguments would
provide a strong clue to discriminate among
these syntactic frames.

Syntactic frame The number of arguments and
their syntactic categories. This feature was
mentioned as a baseline in Joanis et al.
(2008), but we include it in our model.

Similar word Similar words (lemmas) to the tar-
get verb. Similar words are automatically
obtained from a corpus (the same corpus as
used for feature extraction) by Lin (1998)’s
method. This feature is motivated by the
hypothesis that distributionally similar words
tend to be classified into the same class. Be-
cause Lin’s method is based on the similar-
ity of words in syntactic slots, the obtained
similar words are expected to represent a verb
class that share selectional preferences.

Slot classSemantic classes of the head words of
the arguments. This feature is also intended
to approximate selectional preferences. The
semantic classes are obtained by clustering
nouns, verbs, and adjectives into 200, 100,
and 50 classes respectively, by using thek-
medoid method with Lin (1998)’s similarity.

Figure 5 shows an example of the features for
“sway,” extracted from the BNC corpus.3 Feature
values are defined as relative frequencies for each
lemma; while, for similar word features, feature
values are weighted by Lin’s similarity measure.

4.3 Tasks

We evaluate our model in the tasks of auto-
matic verb classification (a.k.a. lexicon expan-
sion): given gold verb-class associations for some
set of verbs, we predict the classes for unknown

3“C82” and “C12” are automatically assigned cluster
names.
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Verb class Levin class number
Recipient 13.1, 13.3
Admire 31.2
Amuse 31.1
Run 51.3.2
Sound Emission 43.2
Light and Substance Emission 43.1, 43.4
Cheat 10.6
StealandRemove 10.5, 10.1
Wipe 10.4.1, 10.4.2
Spray/Load 9.7
Fill 9.8
Other Verbs of Putting 9.1–6
Change of State 45.1–4
Object Drop 26.1, 26.3, 26.7

Table 1: 14 classes used in Joanis et al. (2008) and
their corresponding Levin class numbers

verbs. While our main target is the full set of Verb-
Net classes, we also show results for the task stud-
ied in the previous work.

14-class taskThe task to classify (almost)
monosemous verbs into 14 classes. Refer to
Table 1 for the definition of the 14 classes.
Following Joanis et al. (2008)’s task def-
inition, we removed verbs that belong to
multiple classes in these 14 classes, and also
removed overly polysemousverbs (in our
experiment, verb-class associations that have
the relative frequency that is less than 0.5
in SemLink are removed). For each class,
member verbs are randomly split into 50%
(training), 25% (development), and 25%
(final test) sets.

All-class task The task to classify all target verbs
into 268 classes.4 Any verbs that did not
occur at least 100 times in the BNC cor-
pus were removed.5 The remaining verbs
(2517 words) are randomly split into 80%
(training), 10% (development), and 10% (fi-
nal test) sets, under the constraint that at least
one instance for each class is included in the
training set.6

4.4 Evaluation measures

For the 14-class task, we simply measure the clas-
sification accuracy. However, the evaluation in the

4Two classes (Being DressedandDebone) are not used in
the experiments because no lemmas belonged to these classes
after filtering by the frequency in BNC.

5This is the same preprocessing as Joanis et al. (2008),
although we use VerbNet, while Joanis et al. (2008) used the
original Levin classifications.

6Because polysemous verbs belong to multiple classes,
the class-wise data split was not adopted for the all-class task.

all-class task is not trivial, because verbs may be
assigned multiple classes.

Since our purpose is to obtain a probabilistic
model rather than to classify monosemous verbs,
the evaluation criterion should be sensitive to the
probabilistic distribution on the test data. In this
paper, we adopt two evaluation measures. One
is the top-N weighted accuracy; we count the
number of correct pairs〈c, v〉 in theN -best out-
puts from the model (whereN is the number of
gold classes for each lemma), where each count is
weighted by the relative frequency (i.e., the counts
in SemLink) of the pair in the test set. For exam-
ple, in the case for “blare” in Figure 4, if the model
states thatSound Emissionhas the largest prob-
ability, we get 0.7 points. IfManner Speaking
has the largest probability, we instead obtain 0.3
points. Intuitively, the score is higher when the
model presents larger probabilities to classes with
higher relative frequencies. This measure is simi-
lar to the top-N precision in information retrieval;
it evaluates the ranked output by the model. It
is intuitively interpretable, but is insufficient for
evaluating the quality of probability distributions.

The other measure isKL-divergence, which is
popularly used for measuring the dissimilarity be-
tween two probability distributions. This is de-
fined as follows:

KL(p||q) =
∑
x

p(x) log(p(x))− p(x) log(q(x)).

In the experiments, this measure is applied, with
the assumption thatp is the relative frequency
of 〈c, v〉 in the test set, and thatq is the esti-
mated probability distribution. Although the KL-
divergence is not a true distance metric, it is suf-
ficient for measuring the fitting of the estimated
model to the true distribution. We report the
KL-divergence averaged over all verbs in the test
set. Since this measure indicates a dissimilarity, a
smaller value is better. Whenp andq are equiva-
lent,KL(p||q) = 0.

5 Experimental results

Table 2 shows the accuracy obtained for the 14-
class task. The first column denotes the incorpo-
rated features (“Joanis et al.’s features” or “All fea-
tures”), and the sources of the features (“WSJ” or
“BNC”). The two baseline results are also given:
“Baseline (random)” indicates that classes are ran-
domly output, and “Baseline (majority)” indicates
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Accuracy
Baseline (random) 7.14
Baseline (majority) 26.47
Joanis et al.’s features/WSJ 56.86
Joanis et al.’s features/BNC 64.22
All features/WSJ 60.29
All features/BNC 68.14

Table 2: Accuracy for the 14-class task

Accuracy KL
Baseline (random) 0.37 —
Baseline (majority) 8.69 —
Joanis et al.’s features/WSJ 30.26 3.65
Joanis et al.’s features/BNC 35.66 3.32
All features/WSJ 34.07 3.37
All features/BNC 42.54 2.99

Table 3: Accuracy and KL-divergence for the all-
class task (the VerbNet+SemLink setting)

that the majority class (i.e., the class that has the
largest number of member verbs) is output to every
lemma. While these figures cannot be compared
directly to the previous works due to the difference
in the preprocessing, Joanis et al. (2008) achieved
58.4% accuracy for the 14-class task. Table 3 and
4 present the results for the all-class task. Table 3
gives the accuracy and KL-divergence achieved
by the model trained with the VerbNet+SemLink
training instances, while Table 4 presents the same
measures by the training instances created from
VerbNet only.

Our models performed substantially better on
both tasks than the baseline models. The results
also proved that the features we proposed in this
paper contributed to the further improvement of
the model from Joanis et al. (2008). In the all-class
task with the VerbNet+SemLink setting, our fea-
tures achieved 10.69% error reduction in the accu-
racy over Joanis et al. (2008)’s features. Another
interesting fact is that the model with BNC con-
sistently outperformed the model with WSJ. This
outcome is somewhat surprising, provided that the
relative frequencies in the training/test sets are cre-
ated from the WSJ portion of SemLink. The rea-
son for this is independent of the corpus size, as
will be shown below. When comparing Table 3
and 4, we can see that using SemLink statistics
resulted in a slightly better model. This result
is predictable, because the evaluation measures
are sensitive to the relative frequencies estimated
from SemLink. However, the difference remained
small. In both of the tasks and the evaluation mea-
sures, the best model was achieved when we use

Accuracy KL
Baseline (random) 0.37 —
Baseline (majority) 8.69 —
Joanis et al.’s features/WSJ 29.65 3.67
Joanis et al.’s features/BNC 35.78 3.34
All features/WSJ 34.53 3.40
All features/BNC 42.38 3.02

Table 4: Accuracy and KL-divergence for the all-
class task (the VerbNet only setting)
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Figure 6: Corpus size vs. accuracy

all the features extracted from BNC, and create
training instances from VerbNet+SemLink.

Figure 6 and 7 plot the accuracy and KL-
divergence against the size of the unannotated cor-
pus used for feature extraction. The result clearly
indicates that the learning curve still grows at the
corpus size with 100 million words (especially for
the all features + BNC setting), which indicates
that better models are obtained by increasing the
size of the unannotated corpora.

Therefore, we can claim that the differences be-
tween the domains and the size of the unannotated
corpora are more influential than the availability of
the annotated corpora. This indicates that learning
only from a lexicon would be a viable solution,
when a token-disambiguated corpus like SemLink
is unavailable.

Table 5 shows the contribution of each feature
group. BNC is used for feature extraction, and
VerbNet+SemLink is used for the creation of train-
ing instances. The results demonstrated the effec-
tiveness of the slot POS features, and in particular,
for the all-class task, most likely because Verb-
Net covers verbs that take non-nominal arguments.
Additionally, the similar word features contributed
equally or more in both of the tasks. This result
suggests that we were reasonable in hypothesizing
that distributionally similar words tend to be clas-
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Figure 7: Corpus size vs. KL-divergence

14-classes All classes
Accuracy Accuracy KL

Baseline (random) 7.14 0.37 —
Baseline (majority) 26.47 8.69 —
Joanis et al.’s features 64.22 35.66 3.32

+ Slot POS 66.67 38.77 3.18
+ Syntactic frame 64.71 35.99 3.29
+ Similar word 68.14 37.88 3.10
+ Slot class 64.71 36.51 3.26

All features 68.14 42.54 2.99

Table 5: Contribution of features

sified into the same class. Slot classes also con-
tributed to a slight improvement, indicating that
selectional preferences are effective clues for pre-
dicting VerbNet classes. The result of the “All fea-
tures” model for the all-class task attests that these
features worked collaboratively, and using them
all resulted in a considerably better model.

From the analysis of the confusion matrix for
the outputs by our best model, we identified sev-
eral reasons for the remaining misclassification er-
rors. A major portion of the errors were caused by
confusing the classes that take the same preposi-
tions. Examples of these errors include:

• Other Change of Stateverbs were misclas-
sified into theButter class: “embalm,” “lam-
inate.” (they take “with” phrases)

• Judgementverbs were misclassified into the
Characterize class: “acclaim,” “hail.” (they
take “as” phrases)

Since prepositions are strong features for auto-
matic verb classification (Joanis et al., 2008), the
classes that take the same prepositions remained
confusing. The discovery of the features to dis-
criminate among these classes would be crucial for
further improvement.

Another major error is in classifying verbs into
Other Change of State. Examples include:

• Amuseverbs: “impair,” “recharge.”

• Herd verbs: “aggregate,” “mass.”

BecauseOther Change of State is one of the
biggest classes, supervised learning tends to place
a high probability to this class. Therefore, when
strong clues do not exist, verbs tend to be mis-
classified into this class. In addition, this class is
not syntactically/semantically homogeneous, and
is likely to introduce noise in the machine learn-
ing classifier. A possible solution to this problem
would be to exclude this class from the classifica-
tion, and to process the class separately.

6 Conclusions

We presented a method for the supervised learn-
ing of a probabilistic model for a lexicon of Verb-
Net classes. By combining verb-class associa-
tions from VerbNet and SemLink, and features ex-
tracted from a large unannotated corpus, we could
successfully train a log-linear model in a super-
vised way. The experimental results attested to
our success that features proposed in this paper
worked effectively in obtaining a better probabil-
ity distribution. Not only syntactic features, but
also semantic features were shown to be effective.
While each of these features could increase the ac-
curacy, they collaboratively contributed to a large
improvement. In the all-class task, we obtained
10.69% error reduction in the classification accu-
racy over Joanis et al. (2008)’s model. We also ob-
served the trend that a larger corpus for feature ex-
traction led to a better model, indicating that a bet-
ter model will be obtained by increasing the size of
an unannotated corpus.

We could identify the effective features and set-
tings for this problem, but the classification into
all VerbNet classes remained challenging. One
possible direction for this research topic would be
to use our model for the semi-automatic construc-
tion of verb lexicons, with the help of human cura-
tion. However, there is also a demand for explor-
ing other types of features that can discriminate
among confusing classes.

Acknowledgments

This work was partially supported by Grant-in-
Aid for Specially Promoted Research and Grant-
in-Aid for Young Scientists (MEXT, Japan).

1336



References

Omri Abend, Roi Reichart, and Ari Rappoport. 2008.
A supervised algorithm for verb disambiguation into
VerbNet classes. InProceedings of COLING 2008,
pages 9–16.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. InProceed-
ings of COLING-ACL 1998.

Bonnie J. Dorr and Doug Jones. 1996. Role of word
sense disambiguation in lexical acquisition: Predict-
ing semantics from syntactic cues. InProceedings
of COLING-96, pages 322–327.

Christiane Fellbaum, editor. 1998.WordNet: An Elec-
tronic Lexical Database. MIT Press, Cambridge,
Massachusetts.

Roxana Girju, Dan Roth, and Mark Sammons. 2005.
Token-level disambiguation of VerbNet classes. In
The Interdisciplinary Workshop on Verb Features
and Verb Classes.

Eric Joanis and Suzanne Stevenson. 2003. A general
feature space for automatic verb classification. In
Proceedings of EACL 2003, pages 163–170.

Eric Joanis, Suzanne Stevenson, and David James.
2008. A general feature space for automatic
verb classification.Natural Language Engineering,
14(3):337–367.

Karin Kipper, Hoa Trang Dang, and Martha Palmer.
2000. Class-based construction of a verb lexicon.
In Proceedings of 17th National Conference on Ar-
tificial Intelligence.

Karin Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2006. Extending VerbNet with
novel verb classes. InProceedings of LREC 2006.

Karin Kipper-Schuler. 2005. VerbNet: A broad-
coverage, comprehensive verb lexicon. Ph.D. the-
sis, Computer and Information Science Department,
University of Pennsylvania.

Anna Korhonen and Ted Briscoe. 2004. Extended
lexical-semantic classification of English verbs. In
Proceedings of the HLT/NAACL Workshop on Com-
putational Lexical Semantics.

Anna Korhonen, Yuval Krymolowski, and Zvika
Marx. 2003. Clustering polysemic subcategoriza-
tion frame distributions semantically. InProceed-
ings of ACL 2003.

Anna Korhonen. 2002. Semantically motivated
subcategorization acquisition. InProceedings of
the Workshop on Unsupervised Lexical Acquisition,
pages 51–58.

Mirella Lapata and Chris Brew. 2004. Verb class
disambiguation using informative priors.Computa-
tional Linguistics, 30(1):45–75.

Beth Levin. 1993. English Verb Classes and Alter-
nations: A Preliminary Investigation. University of
Chicago Press, Chicago.

Juanguo Li and Chris Brew. 2007. Disambiguating
Levin verbs using untagged data. InProceedings of
RANLP 2007.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. InProceedings of COLING-ACL
1998.

Edward Loper, Szu ting Yi, and Martha Palmer. 2007.
Combining lexical resources: Mapping between
PropBank and VerbNet. InProceedings of the 7th
International Workshop on Computational Linguis-
tics, Tilburg, the Netherlands.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated
corpus of English: The Penn Treebank.Computa-
tional Linguistics, 19(2):313–330.

Diana McCarthy, Rob Koeling, Julie Weeds, and John
Carroll. 2004. Finding predominant senses in un-
tagged text. InProceedings of ACL 2004.

Diana McCarthy. 2001. Lexical Acquisition at the
Syntax-Semantics Interface: Diathesis Alternations,
Subcategorization Frames and Selectional Prefer-
ences. Ph.D. thesis, University of Sussex.

Paola Merlo and Suzanne Stevenson. 2001. Auto-
matic verb-classification based on statistical distri-
bution of argument structure.Computational Lin-
guistics, 27(3):373–408.

Yusuke Miyao and Jun’ichi Tsujii. 2008. Feature for-
est models for probabilistic HPSG parsing.Compu-
tational Linguistics, 34(1):35–80.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus
of semantic roles.Computational Linguistics, 31(1).

Sabine Schulte im Walde. 2000. Clustering verbs se-
mantically according to their alternation behavior.
In Proceedings of COLING 2000, pages 747–753.

Sabine Schulte im Walde. 2003. Experiments on the
choice of features for learning verb classes. InPro-
ceedings of EACL 2003, pages 315–322.

Suzanne Stevenson and Eric Joanis. 2003. Semi-
supervised verb class discovery using noisy features.
In Proceedings of CoNLL 2003, pages 71–78.

Suzanne Stevenson and Paola Merlo. 1999. Automatic
verb classification using grammatical features. In
Proceedings of EACL 1999, pages 45–52.

Suzanne Stevenson, Paola Merlo, Natalia Kariaeva,
and Kamin Whitehouse. 1999. Supervised learning
of lexical semantic verb classes using frequency dis-
tributions. InProceedings of SigLex99: Standardiz-
ing Lexical Resources, pages 15–22.

1337



Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 1338–1347,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

A Study on the Semantic Relatedness of Query and Document Terms in
Information Retrieval

Christof Müller and Iryna Gurevych
Ubiquitous Knowledge Processing (UKP) Lab

Computer Science Department
Technische Universität Darmstadt, Hochschulstraße 10

D-64289 Darmstadt, Germany
http://www.ukp.tu-darmstadt.de/

Abstract
The use of lexical semantic knowledge in
information retrieval has been a field of ac-
tive study for a long time. Collaborative
knowledge bases like Wikipedia and Wik-
tionary, which have been applied in com-
putational methods only recently, offer
new possibilities to enhance information
retrieval. In order to find the most bene-
ficial way to employ these resources, we
analyze the lexical semantic relations that
hold among query and document terms
and compare how these relations are repre-
sented by a measure for semantic related-
ness. We explore the potential of different
indicators of document relevance that are
based on semantic relatedness and com-
pare the characteristics and performance
of the knowledge bases Wikipedia, Wik-
tionary and WordNet.

1 Introduction

Today we face a rapidly growing number of elec-
tronic documents in all areas of life. This demands
for more effective and efficient ways of searching
these documents for information. Especially user-
generated content on the web is a growing source
of huge amounts of data that poses special diffi-
culties to IR. The precise wording is often difficult
to predict and current information retrieval (IR)
systems are mainly based on the assumption that
the meaning of a document can be inferred from
the occurrence or absence of terms in it. In or-
der to yield a good retrieval performance, i.e., re-
trieving all relevant documents without retrieving
non-relevant documents, the query has to be for-
mulated by the user in an appropriate way. Blair
and Maron (1985) showed that with larger grow-
ing document collections, it gets impossible for
the user to anticipate the terms that occur in all
relevant documents, but not in non-relevant ones.

The use of semantic knowledge for improving
IR by compensating non-optimal queries has been
a field of study for a long time. First experi-
ments on query expansion by Voorhees (1994) us-
ing lexical-semantic relations extracted from a lin-
guistic knowledge base (LKB), namely WordNet
(Fellbaum, 1998), showed sginificant improve-
ments in performance only for manually selected
expansion terms. The combination of Word-
Net with thesauri built from the underlying doc-
ument collections by Mandala et al. (1998) im-
proved the performance on several test collec-
tions. Mandala et al. (1998) identified missing
relations, especially cross part of speech relations
and insufficient lexical coverage as reasons for the
low performance improvement when using only
WordNet.

In recent work, collaborative knowledge bases
(CKB) like Wikipedia have been used in IR for
judging the document relevance by computing the
semantic relatedness (SR) of queries and docu-
ments (Gurevych et al., 2007; Egozi et al., 2008;
Müller and Gurevych, 2008) and have shown
promising results. These resources have a high
coverage of general and domain-specific terms.
They are employed in several SR measures such
as Explicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007) that allow the cross part of
speech computation of SR and are not restricted to
standard lexical semantic relations.

The goal of this paper is to shed light on the
role of lexical semantics in IR and the way it
can improve the performance of retrieval systems.
There exist different kinds of resources for lexi-
cal semantic knowledge and different ways to em-
bed this knowledge into IR. Wikipedia and Wik-
tionary, which have been applied in computational
methods only recently, offer new possibilities to
enhance IR. They have already shown an excel-
lent performance in computing the SR of word
pairs (Strube and Ponzetto, 2006; Gabrilovich and
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Markovitch, 2007; Zesch et al., 2008). However,
it is not yet clearly understood, what the most ben-
eficial method is to employ SR using these re-
sources in IR. We therefore perform a compara-
tive study on an IR benchmark. We particularly
analyze the contribution of SR of query and docu-
ment terms to this task. To motivate those exper-
iments we first prove that there exists a vocabu-
lary gap in the test collection between queries and
documents and show that the gap can be reduced
by using lexical semantic knowledge. As the vo-
cabulary coverage of knowledge bases is a crucial
factor for being effective in IR, we compare the
coverage of Wikipedia, Wiktionary and WordNet.
We then analyze the lexical semantic relations that
hold among query and document terms and how
they are represented by the values of a SR mea-
sure. Finally, we explore the potential of different
SR-based indicators of document relevance.

The remainder of this paper is structured as fol-
lows: In Section 2 we give a short overview of the
LKBs and CKBs and the measure of SR we em-
ploy in this paper. The test collection we use in
our experiments is described in Section 3. In Sec-
tion 4 we analyze the vocabulary of the test collec-
tion and determine the coverage of the knowledge
bases. This is followed by the examination of lex-
ical semantic relations and the analysis of the SR
of query terms in relevant and non-relevant docu-
ments in Section 5.

2 Knowledge Sources and Semantic
Relatedness Measure

2.1 Linguistic Knowledge Bases
LKBs are mainly created by trained linguists fol-
lowing clearly defined guidelines. Therefore, their
content is typically of high quality. This labor and
cost intensive approach, however, yields a number
of disadvantages for LKBs:

• their coverage and size are limited;

• they lack domain-specific vocabulary;

• continuous maintenance is often not feasible;

• the content can quickly be out-dated;

• only major languages are typically supported.

The most common types of LKBs are (i) dic-
tionaries, which alphabetically list words and their
senses of a certain language along with their def-
initions and possibly some additional information

and (ii) thesauri, which group words with similar
meaning together and define further semantic rela-
tions between the words, e.g., antonymy. The most
widely used LKB is WordNet, which is a com-
bination of dictionary and thesaurus. Since the
hypernym and hyponym relations between noun
groups form an is-a hierarchy, WordNet can also
be seen as an ontology. The current version 3.0 of
WordNet, which we use in our experiments, con-
tains over 155,000 English words organized into
almost 118,000 so called synsets, i.e., groups of
synonymous words. WordNet covers mainly gen-
eral vocabulary terms and its strongest part is the
noun hierarchy.

2.2 Collaborative Knowledge Bases

Enabled by the development of Web 2.0 technol-
ogy and created by communities of volunteers,
CKBs have emerged as a new source of lexical
semantic knowledge in recent years. In contrast
to LKBs, they are created by persons with di-
verse personal backgrounds and fields of exper-
tise. CKBs have the advantage of being freely
available unlike many LKBs. However, the con-
tent of CKBs is mainly semi- or unstructured text
which initially requires the extraction of explicit
knowledge that can then be used in computational
methods.

One of the CKBs we use in this paper is
Wikipedia, a freely available encyclopedia. It cur-
rently contains more than 12 million articles in
265 languages. Besides articles, Wikipedia also
offers other forms of knowledge that can be used
in computational methods. This includes the hi-
erarchy of article categories (Strube and Ponzetto,
2006; Zesch et al., 2007) and links between ar-
ticles in the same language (Milne and Witten,
2008) and across languages (Schönhofen et al.,
2007; Potthast et al., 2008; Sorg and Cimiano,
2008; Müller and Gurevych, 2008). Due to its
encyclopedic character, Wikipedia contains many
named entities and domain-specific terms which
are not found in WordNet. In our experiments we
used the Wikipedia dump of February 6th, 2007.

The second CKB we use is Wiktionary which is
a multilingual dictionary and an affiliated project
of Wikipedia. It resembles WordNet by containing
synonym and hyponym information. It also con-
tains information usually not found in LKBs like
abbreviations, compounds, contractions, and the
etymology of words. The 171 language-specific
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editions of Wiktionary contain more than 5 mil-
lion entries. Note that each language-specific edi-
tion contains not only entries for words of that
particular language, but also for words of for-
eign languages. Wiktionary has been used in
IR (Müller and Gurevych, 2008; Bernhard and
Gurevych, 2009) and other tasks like sentiment
analysis (Chesley et al., 2006) or ontology learn-
ing (Weber and Buitelaar, 2006). In our experi-
ments we used the Wiktionary dump of Oct 16,
2007.

2.3 Semantic Relatedness Measure

A wide range of methods for measuring the SR of
term pairs are discussed in the literature. In our
experiments, we employ ESA as it can be used
with all three knowledge bases in our experiments
and has shown an excellent performance in re-
lated work. ESA was introduced by Gabrilovich
and Markovitch (2007) employing Wikipedia as
a knowledge base. Zesch et al. (2008) explored
its performance using Wiktionary and WordNet as
knowledge bases.

The idea of ESA is to express a term’s mean-
ing by computing its relation to Wikipedia articles.
Each article title in Wikipedia is referred to as a
concept and the article’s text as the textual repre-
sentation of this concept. A term is represented
as a high dimensional concept vector where each
value corresponds to the term’s frequency in the
respective Wikipedia article. The SR of two terms
is then measured by computing the cosine between
the respective concept vectors. When applying
ESA to Wiktionary and WordNet, each word and
synset entry, respectively, is referred to as a dis-
tinct concept, and the entry’s information1 is used
as the textual representation of the concept.

In our experiments, we apply pruning meth-
ods as proposed by Gabrilovich and Markovitch
(2007) with the goal of reducing noise and com-
putational costs. Wikipedia concepts are not taken
into account where the respective Wikipedia arti-
cles have less than 100 words or fewer than 5 in- or
outlinks. For all three knowledge bases, concepts
are removed from a term’s concept vector if their
normalized values are below a predefined thresh-
old (empirically set to 0.01).

1For WordNet, the glosses and example sentences of the
synsets are used. Wiktionary does not contain glosses for all
entries due to instance incompleteness. Therefore, a concate-
nation of selected information from each entry is used. See
Zesch et al. (2008) for details.

Documents
Number of documents 319115
Number of unique terms 400194
Ave. document length 256.23

Queries
Number of queries 50
Number of unique terms 117
Ave. query length 2.44

Table 1: Statistics of the test data (after prepro-
cessing).

3 Data

For our study we use parts of the data from
the HARD track at the TREC 2003 conference2.
The document collection consists of newswire text
data in English from the year 1999, drawn from
the Xinhua News Service (People’s Republic of
China), the New York Times News Service, and
the Associated Press Worldstream News Service.3

As we did not have access to the other document
collections in the track, we restrict our experi-
ments to the newswire text data.

From the 50 available topics of that track, we
use only the title field, which consists of a few
keywords describing the information need of a
user. Table 1 shows some descriptive statistics of
the documents and topics. The topics cover gen-
eral themes like animal protection, Y2K crisis or
Academy Awards ceremony. For the preprocess-
ing of topics and documents we use tokenization,
stopword removal and lemmatization employing
the TreeTagger (Schmid, 1994). In our study, we
rely on the relevance assessments performed at
TREC to distinguish between relevant and non-
relevant documents for each topic.

4 Vocabulary Mismatch

To confirm the intuition that there exists a vocab-
ulary mismatch between queries and relevant doc-
uments, we computed the overlap of the terms in
queries and relevant documents. The results are
shown in the column String-based in Table 2. Av-
eraged over all 50 topics, 35.5% of the relevant
documents do contain all terms of the query, and
86.5% contain at least one of the query terms.
However, this means that 13.5% of the relevant
documents do not contain any query term and

2http://trec.nist.gov/
3AQUAINT Corpus, Linguistic Data Consortium (LDC)

catalog number LDC2002T31
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Measure String-based SR-Wikipedia SR-Wiktionary SR-WordNet
Threshold 0.0 0.05 0.0 0.05 0.0 0.05
Ave. number of documents where all 35.5 91.2 72.2 82.6 65.2 74.8 50.8
query terms are matched (in %)
Ave. number of documents where at 86.5 100.0 99.1 97.7 97.2 94.9 92.9
least one query term is matched (in %)
Ave. number of query terms 55.8 95.6 84.0 87.0 76.8 79.2 65.7
matched per document (in%)

Table 2: Statistics about the matching of the terms of queries and relevant documents.

cannot be retrieved by simple string-matching re-
trieval methods. In average, each relevant docu-
ment matches 55.8% of the query terms. With an
average query length of 2.44 (see Table 1), this
means that in general, only one of two query terms
occurs in the relevant documents which signifi-
cantly lowers the probability of these documents
to have a high ranking in the retrieval result.

In a second experiment, we proved the effec-
tiveness of the SR measure and knowledge bases
in reducing the vocabulary gap by counting the
number of query terms that match the terms in
the relevant documents as string or are seman-
tically related to them. The results are shown
in Table 2 for the different knowledge bases in
the columns SR-Wikipedia, SR-Wiktionary and SR-
WordNet. In order to analyse the performance of
the SR measure when excluding very low SR val-
ues that might be caused by noise, we additionally
applied a threshold of 0.05, i.e. only values above
this threshold were taken into account. The SR
values range between 0 and 1. However, the ma-
jority of SR values lie between 0 and 0.1.

Without threshold, using Wikipedia as knowl-
edge base, in 91.2% of the relevant documents all
query terms were matched. For Wiktionary with
82.6% and WordNet with 74.8% the number is
lower, but still more than twice as high as for the
string-based matching. Wikipedia matches in all
relevant documents at least one query term. The
average number of query terms matched per doc-
ument is also increased for all three knowledge
bases. Applying a threshold of 0.05, the values de-
crease, but are still above the ones for string-based
matching.

The sufficient coverage of query and document
terms is crucial for the effectiveness of knowledge
bases in IR. It was found that LKBs do not nec-
essarily provide a sufficient coverage (Mandala et
al., 1998). Table 3 shows the amount of terms
in queries and documents that are contained in
Wikipedia, Wiktionary and WordNet. Wikipedia

SR- SR- SR-
Wikipedia Wiktionary WordNet

Queries
Percentage of queries where 98.0 78.0 62.0
all terms are covered

Percentage of 99.2 89.3 80.3
covered terms

Percentage of covered 99.1 88.9 80.3
unique terms

Ave. percentage of covered 99.6 89.2 80.1
terms per query

Ave. percentage of covered 99.6 89.2 80.1
unique terms per query

Documents
Percentage of documents where 7.9 0.3 0.2
all terms are covered

Percentage of 96.5 88.5 84.3
covered terms

Percentage of covered 34.5 12.9 10.0
unique terms

Ave. Percentage of terms 97.4 91.8 88.8
covered per document

Ave. percentage of covered 96.3 88.0 83.6
unique terms per document

Table 3: Statistics about the coverage of the
knowledge bases.

contains almost all query terms and also shows the
best coverage for the document terms, followed
by Wiktionary and WordNet. The values for all
three knowledge bases are all higher than 80% ex-
cept for the percentage of queries or documents
where all terms are covered and the number of
covered unique terms. The low percentage of cov-
ered unique document terms for even Wikipedia is
mostly due to named entities, misspellings, identi-
fication codes and compounds.

Judging from the number of covered query
and document terms alone, one would expect
Wikipedia to yield a better performance when ap-
plied in IR than Wiktionary and especially Word-
Net. The higher coverage of Wikipedia is due to its
nature of being an encyclopedia featuring arbitrar-
ily long articles whereas entries in WordNet, and
also Wiktionary, have a rather short length follow-
ing specific guidelines. The high coverage alone
is however not the only important factor for the ef-
fectiveness of a resource. It was shown by Zesch et
al. (2008) that Wiktionary outperforms Wikipedia
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in the task of ranking word pairs by their seman-
tic relatedness when taking into account only word
pairs that are covered by both resources.

5 Comparison of Semantic Relatedness
in Relevant and Non-Relevant
Documents

We have shown in Section 4 that a mismatch be-
tween the vocabulary of queries and relevant doc-
uments exists and that the SR measure and knowl-
edge bases can be used to address this gap. In or-
der to further study the SR of query and document
terms with the goal to find SR-based indicators for
document relevance, we created sets of relevant
and non-relevant documents and compared their
characteristic values concerning SR.

5.1 Document Selection

For analysing the impact of SR in the retrieval pro-
cess, we compare relevant and non-relevant docu-
ments that were assigned similar relevance scores
by a standard IR system. For the document selec-
tion we followed a method employed by Vechto-
mova et al. (2005). We created two sets of docu-
ments for each topic: one for relevant and one for
non-relevant documents. We first retrieved up to
1000 documents for the topic using the BM25 IR
model4 (Spärck Jones et al., 2000) as implemented
by Terrier5. The relevant retrieved documents con-
stituted the first set. For the second set we se-
lected for each relevant retrieved document a non-
relevant document which had the closest score to
the relevant document. After selecting an equal
number of relevant and non-relevant documents,
we computed the mean average and the standard
deviation for the scores of each set. If there was a
substantial difference between the values of more
than 20%, the sets were rearranged by exchang-
ing non-relevant documents or excluding pairs of
relevant and non-relevant documents. If this was
not possible, we excluded the corresponding topic
from the experiments.

Table 4 shows the statistics for the final sets.
From the original 50 topics, 13 were excluded for
the above stated reasons or because no relevant
documents were retrieved. The average length of
about 345 terms for relevant documents is almost
40% larger than the length of non-relevant docu-

4We used the default values for the constants of the model
(k1 = 1.2, b = 0.75).

5http://ir.dcs.gla.ac.uk/terrier/

Rel. Nonrel. Diff. (%)
Number of queries 37 37 0
Number of documents 1771 1771 0
Mean BM25 6.388 6.239 2.39
document score
Stdev BM25 1.442 1.288 12.00
document score
Ave. query length 2.32 2.32 0
Ave. document length 345.22 248.89 38.70
Ave. query term in- 6.93 4.64 49.35
stances in documents

Table 4: Data characteristics that are independent
of the chosen knowledge base and threshold.

ments. Also the average number of query term in-
stances is 6.93 in cotrast to 4.64 for non-relevant
documents. The large difference of average doc-
ument length and query term instances suggests a
larger difference of the average relevance scores
than 20%. However, in the BM25 model the rele-
vance score is decreased with increasing document
length and additional occurrences of a query term
have little impact after three or four occurrences.

5.2 Types of Lexical Semantic Relations

The most common classical lexical semantic re-
lations between words are synonymy, hyponymy
and a couple of others. In order to analyze the
importance of these relations in the retrieval pro-
cess, we automatically annotated the relations that
hold between query and document terms using
WordNet. Table 5 shows the percentage of lex-
ical semantic relations between query and docu-
ment terms (normalized by the number of query
and document terms). The table also shows the
coverage of the relations by the SR measure, i.e.
the percentage of annotated relations for which
the SR measure computed a value above 0 or the
threshold 0.05, respectively. The percentage of re-
lation types in general is higher for relevant doc-
uments. Cohyponymy and synonymy are by far
the most frequently occurring relation types with
up to almost 6%. Hypernyms and hyponyms have
both a percentage of less than 1%. Holonymy and
meronymy do almost not occur.

When applying no threshold, the SR measure
covers up to 21% of the synonyms and cohy-
ponyms and up to 12% of the hyper- and hy-
ponyms in relevant documents. Using Wiktionary
as knowledge base, the SR measure shows a bet-
ter coverage than with Wikipedia. This is con-
sistent with the findings in Zesch et al. (2008).
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SR-Wikipedia SR-Wiktionary SR-WordNet
Relation Type Percentage 0.0 0.05 0.0 0.05 0.0 0.05

Relevant Documents
synonymy 3.61 17.81 13.13 18.33 13.78 15.28 12.18
hypernymy 0.86 8.57 2.30 12.18 3.02 11.69 2.26
hyponymy 0.88 5.72 1.28 6.33 1.67 6.54 1.02
cohyponymy 5.64 19.49 10.49 21.04 10.05 16.85 8.14
holonymy 0.02 0.61 0.17 0.74 0.17 0.53 0.00
meronymy 0.07 1.94 0.78 2.23 0.74 1.88 0.76
non-classical — 58.80 6.62 23.22 3.13 12.77 2.56

Non-Relevant Documents
synonymy 3.41 15.84 12.41 16.46 12.90 14.19 11.44
hypernymy 0.56 6.10 1.95 9.43 2.10 8.93 1.57
hyponymy 0.74 4.77 1.00 6.35 1.40 5.90 0.78
cohyponymy 5.42 17.42 9.91 19.23 9.71 15.38 7.66
holonymy 0.02 0.39 0.09 0.49 0.09 0.32 0.00
meronymy 0.10 1.88 0.55 1.84 0.65 1.57 0.57
non-classical — 57.33 5.54 21.92 2.59 11.77 2.15

Table 5: Percentage of lexical semantic relations between query and document terms and their coverage
by SR scores above threshold 0.00 and 0.05 in percent.

The reason for this is the method for construct-
ing the textual representation of the concepts in
the SR measure, where synonyms and other re-
lated words are concatenated. Also SR-WordNet
outperforms Wikipedia for hypernymy and hy-
ponymy. In contrast to Wiktionary, no direct in-
formation about related words is used to construct
the textual representation of concepts. However,
the very short and specific representations are built
from glosses and examples which often contain
hypernym-hyponym pairs. As WordNet is used for
both, the automatic annotation of lexical seman-
tic relations and the computation of SR values, its
lower term coverage in general has not much im-
pact on this experiment, as only the relations be-
tween terms contained in WordNet are annotated.

More than half of the SR values using
Wikipedia are computed for term pairs which were
not annotated with a classical relation. This is de-
picted in Table 5 as non-classical relation. These
non-classical relations can be for example func-
tional relations (pencil and paper) (Budanitsky
and Hirst, 2006). However, as WordNet covers
only a small part of the terms in the test collec-
tion, some of the SR values refered to as non-
classical relations might actually be classical re-
lations. For Wiktionary and WordNet, the num-
ber of non-classical relations is much lower, due
to their smaller size and the way the textual rep-
resentations of concepts are constructed. In gen-
eral, the average number of SR scores for classical
and non-classical relations are almost consistently
higher for relevant documents which suggests that
the comparison of SR scores could be beneficial in

SR-Wikipedia SR-Wiktionary SR-WordNet
Relation Type 0.0 0.05 0.0 0.05 0.0 0.05

Relevant Documents
synonymy 0.362 0.371 0.372 0.374 0.366 0.368
hypernymy 0.021 0.021 0.021 0.019 0.016 0.019
hyponymy 0.017 0.021 0.008 0.012 0.007 0.015
cohyponymy 0.270 0.334 0.315 0.353 0.312 0.363
holonymy 0.001 0.000 0.001 0.000 0.000 0.000
meronymy 0.004 0.003 0.003 0.002 0.003 0.002
non-classical 0.045 0.356 0.098 0.491 0.205 0.599

Non-Relevant Documents
synonymy 0.344 0.348 0.349 0.350 0.343 0.344
hypernymy 0.027 0.030 0.025 0.029 0.022 0.028
hyponymy 0.019 0.029 0.012 0.023 0.009 0.025
cohyponymy 0.250 0.295 0.277 0.312 0.295 0.334
holonymy 0.001 0.000 0.000 0.000 0.000 0.000
meronymy 0.003 0.002 0.002 0.002 0.003 0.002
non-classical 0.041 0.374 0.103 0.538 0.222 0.643

Table 6: Average values of SR scores correspond-
ing to lexical semantic relations between query
and document terms above threshold 0.00 and 0.05
in percent.

the IR process.

When applying a threshold of 0.05, the most
visible effect is that the percentage of non-
classical relations is decreasing much stronger
than the percentage of classical relations. The
comparison of the average SR values for each re-
lation type in Table 6 confirms that this is due to
the fact that the SR measure assigns on average
higher values to the classical relations than to the
non-classical relations. After applying a thresh-
old of 0.05 the average SR values corresponding
to non-classical relations increase and are equal to
or higher than the values for classical relations.
The values for classical relations are in general
higher for relevant documents, whereas the values
for non-classical relations are lower.
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5.3 SR-based Indicators for Document
Relevance

For each topic and document in one of the sets we
computed the SR between the query and document
terms. We then computed the arithmetic mean of
the following characteristic values for each set: the
sum of SR scores, the number of SR scores, the
number of terms which are semantically related to
a query term and the average SR score. In order
to eliminate the difference in document length and
average number of query term instances between
the relevant and non-relevant sets, we normalized
all values, except for the average SR score, by the
document length and excluded the SR scores of
query term instances.

Figure 1 shows the average difference of these
values between relevant and non-relevant docu-
ment sets for SR-thresholds from 0 to 0.6 (step-
size=0.01). As the majority of the SR scores have
a low value, there is not much change for thresh-
olds above 0.5.

Except for the average SR score, the differences
have a peak at thresholds between 0.01 and 0.09
and decrease afterwards to a constant value. The
SR scores computed using Wikipedia show the
highest differences. Wiktionary and WordNet per-
form almost equally, but show lower differences
than Wikipedia, especially for the sum of scores.
All three knowledge bases show higher differences
for the number of scores and number of related
terms than for the sum of scores. The differences
at the peaks are statistically significant6, except for
the differences of the sum of scores for Wiktionary
and WordNet.

For the average SR score, the differences are
mostly negative at low thresholds and increase to a
low positive value for higher thresholds. A higher
number of very low SR values is computed for the
relevant documents, which causes the average SR
score to be lower than for the non-relevant docu-
ments at low thresholds.

Additionally, Figure 2 shows the percentage of
topics where the mean value of the relevant docu-
ment set is higher than the one of the non-relevant
document set. Wikipedia shows the highest per-
centage with about 86% for the number of scores
and the number of related terms. Wiktionary and
WordNet have a low percentage for the sum of
scores, but reach up to 75% for the number of
scores and the number of related terms.

6We used the Wilcoxon test at a significance level of 0.05.

The analysis of the SR of query and document
terms shows that there are significant differences
for relevant and non-relevant documents that can
be measured by computing SR scores with any of
the three knowledge bases. Especially when us-
ing Wiktionary and WordNet, the number of SR
scores and the number of related terms might be
better indicators for the document relevance than
the sum of SR scores.

6 Conclusions

The vocabulary mismatch of queries and docu-
ments is a common problem in IR, which becomes
even more serious the larger the document collec-
tion grows. CKBs like Wikipedia and Wiktionary,
which have been applied in computational meth-
ods only recently, offer new possibilities to tackle
this problem. In order to find the most beneficial
way to employ these resources, we studied the se-
mantic relatedness of query and document terms
of an IR benchmark and compared the character-
istics and performance of the CKBs Wikipedia and
Wiktionary to the LKB WordNet.

We first proved that there exists a vocabulary
gap in the test collection between queries and doc-
uments and that it can be reduced by employing a
concept vector based measure for SR with any of
the three knowledge bases. Using WordNet to au-
tomatically annotate the lexical semantic relations
of query and document terms, we found that cohy-
ponymy and synonymy are the most frequent clas-
sical relation types. Although the percentage of
annotated relations for which also the SR measure
computed values above a predefined threshold was
at best 21%, the average number of SR scores for
classical and non-classical relations were almost
consistently higher for relevant documents.

Comparing the number and the value of SR
scores of query and document terms, a significant
difference between relevant and non-relevant doc-
uments was observed by using any of the three
knowledge bases. Although Wikipedia had the
best coverage of collection terms and showed the
best perfomance in our experiments, Wiktionary
and Wikipedia also seem to have a sufficient
size for being beneficial in IR. In comparison to
our previous work where the sum of SR scores
was used as an indicator for document relevance
(Müller and Gurevych, 2008), the results suggest
that the number of SR scores and the number of
related terms might show a better performance, es-
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Figure 1: Differences between mean values of relevant and non-relevant document sets.

Figure 2: Percentage of topics where the mean value of the relevant document sets is higher than the one
of the non-relevant document sets.

1345



pecially for Wiktionary and WordNet.
In our future work, we plan to extend our analy-

sis to other test collections and to query expansion
methods in order to generalize our conclusions.
As the problem of language ambiguity has a high
impact on the use of SR measures, we will also
consider word sense disambiguation in our future
experiments.
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Abstract

In this research we aim to detect sub-
jective sentences in multimodal conversa-
tions. We introduce a novel technique
wherein subjective patterns are learned
from both labeled and unlabeled data, us-
ing n-gram word sequences with vary-
ing levels of lexical instantiation. Ap-
plying this technique to meeting speech
and email conversations, we gain signifi-
cant improvement over state-of-the-art ap-
proaches. Furthermore, we show that cou-
pling the pattern-based approach with fea-
tures that capture characteristics of gen-
eral conversation structure yields addi-
tional improvement.

1 Introduction

Conversations are rich in subjectivity. Conversa-
tion participants agree and disagree with one other,
argue for and against various proposals, and gen-
erally take turns expressing their private states.
Being able to separate these subjective utterances
from more objective utterances would greatly fa-
cilitate the analysis, mining and summarization of
a large number of conversations.

Two of the most prevalent conversational me-
dia are meetings and emails. Face-to-face meet-
ings enable numerous people to exchange a large
amount of information and opinions in a short pe-
riod of time, while emails allow for concise ex-
changes between potentially far-flung participants.
Meetings and emails can also feed into one an-
other, with face-to-face meetings occurring at reg-
ular intervals and emails continuing the conver-
sations in the interim. This poses several inter-
esting questions, such as whether subjective utter-
ances are more or less likely to be found in email
exchanges compared with meetings, and whether
the ratios of positive and negative subjective utter-
ances differ between the two modalities.

In this paper we describe a novel approach for
predicting subjectivity, and test it in two sets of
experiments on meetings and emails. Our ap-
proach combines a new general purpose method
for learning subjective patterns, with features that
capture basic characteristics of conversation struc-
ture across modalities. The subjective patterns are
essentially n-gram sequences with varying levels
of lexical instantiation, and we demonstrate how
they can be learned from both labeled and un-
labeled data. The conversation features capture
structural characteristics of multimodal conversa-
tions as well as participant information.

We test our approach in two sets of experi-
ments. The goal of the first set of experiments is to
discriminate subjective from non-subjective utter-
ances, comparing the novel approach to existing
state-of-the-art techniques. In the second set of
experiments, the goal is to discriminate positive-
subjective and negative-subjective utterances, es-
tablishing their polarity. In both sets of experi-
ments, we assess the impact of features relating
to conversation structure.

2 Related Research

Raaijmakers et al. (2008) have approached
the problem of detecting subjectivity in meeting
speech by using a variety of multimodal features
such as prosodic features, word n-grams, charac-
ter n-grams and phoneme n-grams. For subjec-
tivity detection, they found that a combination of
all features was best, while prosodic features were
less useful for discriminating between positive and
negative utterances. They found character n-grams
to be particularly useful.

Riloff and Wiebe (2004) presented a method for
learning subjective extraction patterns from a large
amount of data, which takes subjective and non-
subjective text as input, and outputs significant
lexico-syntactic patterns. These patterns are based
on syntactic structure output by the Sundance shal-
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low dependency parser (Riloff and Phillips, 2004).
They are extracted by exhaustively applying syn-
tactic templates such as< subj > passive-verb
and active-verb < dobj > to a training cor-
pus, with an extracted pattern for every instan-
tiation of the syntactic template. These patterns
are scored according to probability of relevance
given the pattern and frequency of the pattern. Be-
cause these patterns are based on syntactic struc-
ture, they can represent subjective expressions that
are not fixed word sequences and would therefore
be missed by a simple n-gram approach.

Riloff et al. (2006) explore feature subsumption
for opinion detection, where a given feature may
subsume another feature representationally if the
strings matched by the first feature include all of
the strings matched by the second feature. To give
their own example, the unigramhappy subsumes
the bigramvery happy. The first feature willbe-
haviorally subsume the second if it representa-
tionally subsumes the second and has roughly the
same information gain, within an acceptable mar-
gin. They show that they can improve opinion
analysis results by modeling these relations and
reducing the feature set.

Our approach for learning subjective patterns
like Raaijmakers et al. relies on n-grams, but like
Riloff et al. moves beyond fixed sequences of
words by varying levels of lexical instantiation.

Yu and Hatzivassiloglou (2003) addressed three
challenges in the news article domain: discrimi-
nating between objective documents and subjec-
tive documents such as editorials, detecting sub-
jectivity at the sentence level, and determining po-
larity at the sentence level. They found that the
latter two tasks were substantially more difficult
than classification at the document level. Of par-
ticular relevance here is that they found that part-
of-speech (POS) features were especially useful
for assigning polarity scores, with adjectives, ad-
verbs and verbs comprising the best set of POS
tags. This work inspired us to look at generaliza-
tion of n-grams based on POS.

On the slightly different task of classifying the
intensity of opinions, Wilson et al. (2006) em-
ployed several types of features including depen-
dency structures in which words can be backed off
to POS tags. They found that this feature class im-
proved the overall accuracy of their system.

Somasundaran et al. (2007) investigated subjec-
tivity classification in meetings. Their findings in-

dicate that both lexical features (list of words and
expressions) and discourse features (dialogue acts
and adjacency pairs) can be beneficial. In the same
spirit, we effectively combine lexical patterns and
conversational features.

The approach to predicting subjectivity we
present in this paper is a novel contribution to the
field of opinion and sentiment analysis. Pang and
Lee (2008) give an overview of the state of the art,
discussing motivation, features, approaches and
available resources.

3 Subjectivity Detection

In this section we describe our approach to sub-
jectivity detection. We begin by describing how
to learn subjective n-gram patterns with varying
levels of lexical instantiation. We then describe a
set of features characterizing multimodal conver-
sation structure which can be used to supplement
the n-gram approach. Finally, we describe the
baseline subjectivity detection approaches used
for comparison.

3.1 Partially Instantiated N-Grams

Our approach to subjectivity detection and polar-
ity detection is to learn significant patterns that
correlate with the subjective and polar utterances.
These patterns are word trigrams, but with varying
levels of lexical instantiation, so that each unit of
the n-gram can be either a word or the word’s part-
of-speech (POS) tag. This contrasts, then, with
work such as that of Raaijmakers et al. (2008)
who include trigram features in their experiments,
but where their learned trigrams are fully instanti-
ated. As an example, while they may learn that a
trigramreally great idea is positive, we may addi-
tionally find thatreally great NN andRB great NN
are informative patterns, and these patterns may
sometimes be better cues than the fully instanti-
ated trigrams. To differentiate this approach from
the typical use of trigrams, we will refer to it as the
VIN (varying instantiation n-grams) method.

In some respects, our approach to subjectiv-
ity detection is similar to Riloff and Wiebe’s
work cited above, in the sense that their extrac-
tion patterns are partly instantiated. However,
the AutoSlog-TS approach relies on deriving syn-
tactic structure with the Sundance shallow parser
(Riloff and Phillips, 2004). We hypothesize that
our trigram approach may be more robust to dis-
fluent and fragmented meeting speech and emails
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1 2 3
really great idea
really great NN
really JJ idea
RB great idea
really JJ NN
RB great NN
RB JJ idea
RB JJ NN

Table 1: Sample Instantiation Set

on which syntactic parsers may perform poorly.
Also, our learned trigram patterns range from fully
instantiated to completely uninstantiated. For ex-
ample, we might find that the patternRB JJ NN
is a very good indicator of subjective utterances
because it matches a variety of scenarios where
people are ascribing qualities to things, e.g.re-
ally bad movie, horribly overcooked steak. Notice
that we do not see our approach and AutoSlog-TS
as mutually exclusive, and indeed we demonstrate
through these experiments that they can be effec-
tively combined.

Our approach begins by running the Brill POS
tagger (Brill, 1992) over all sentences in a doc-
ument. We then extract all of the word trigrams
from the document, and represent each trigram us-
ing every possible instantiation. Because we are
working at the trigram level, and each unit of the
trigram can be a word or its POS tag there are
23 = 8 representations in each trigram’s instantia-
tion set. To continue the example from above, the
instantiation set for the trigramreally great idea is
given in Table 1. As we scan down the instanti-
ation set, we can see that the level of abstraction
increases until it is completely uninstantiated. It is
this multilevel abstraction that we are hypothesiz-
ing will be useful for learning new subjective and
polar cues.

All trigrams are then scored according to their
prevalence in relevant versus irrelevant documents
(e.g. subjective vs. non-subjective sentences),
following the scoring methodology of Riloff and
Wiebe (2003). We calculate the conditional prob-
ability p(relevance|trigram) using the actual tri-
gram counts in relevant and irrelevant text. For
learning negative-subjective patterns, we treat all
negative sentences as the relevant text and the re-
mainder of the sentences as irrelevant text, and
conduct the same process for learning positive-
subjective patterns. We consider significant pat-
terns to be those where the conditional proba-

bility is greater than 0.65 and the pattern occurs
more than five times in the entire document set
(slightly higher thanprobability >= 0.60 and
frequency >= 2 used by Riloff and Wiebe
(2003)).

We possess a fairly small amount of conversa-
tional data annotated for subjectivity and polarity.
The AMI meeting corpus and BC3 email corpus
are described in more detail in Section 4.1. To ad-
dress this shortfall in annotated data, we take two
approaches to learning patterns. In the first, we
learn a set of patterns from the annotated conversa-
tion data. In the second approach, we complement
those patterns by learning additional patterns from
unannotated data that are typically overwhelm-
ingly subjective or objective in nature. We de-
scribe these two approaches here in turn.

3.1.1 Supervised Learning of Patterns from
Conversation Data

The first learning strategy is to apply the above-
described methods to the annotated conversation
data, learning the positive patterns by compar-
ing positive-subjective utterances to all other ut-
terances, and learning the negative patterns by
comparing thenegative-subjective utterances to
all other utterances, using the described methods.
This results in 759 significant positive patterns and
67 significant negative patterns. This difference in
pattern numbers can be explained by negative ut-
terances being less common in the AMI meetings,
as noted by Wilson (2008). It may be that people
are less comfortable in expressing negative sen-
timents in face-to-face conversations, particularly
when the meeting participants do not know each
other well (in the AMI scenario meetings, many
participants were meeting each other for the first
time). But there may be a further explanation for
why we learn many more positive than negative
patterns. When conversation participantsdo ex-
press negative sentiments, they may couch those
sentiments in more euphemistic or guarded terms
compared with positive sentiments. Table 2 gives
examples of significant positive and negative pat-
terns learned from the labeled meeting data. The
last two rows in Table 2 show how two patterns
in the same instantiation set can have substantially
different probabilities.
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POS p(r|t) NEG p(r|t)
you MD change 1.0 VBD not RB 1.0
should VBP DT 1.0 doesn’t RB VB 0.875
very easy to 0.88 a bit JJ 0.66
we could VBP 0.78 think PRP might 0.66
NNS should VBP 0.71 be DT problem 0.71
PRP could do 0.66 doesn’t really VB 0.833
it could VBP 83 doesn’t RB VB 0.875

Table 2: Example Pos. and Neg. Patterns (AMI)

3.1.2 Unsupervised Learning of Patterns
from Blog Data

The second pattern learning strategy we take to
learning subjective patterns is to use a relevant,
but unannotated corpus. We focus on weblog
(blog) data for several reasons. First, blog posts
share many characteristics with both meetings and
emails: they are conversational, informal and the
language can be very ungrammatical. Second,
blog posts are known for being subjective; blog-
gers post on issues that are passionate to them, of-
fering arguments, opinions and invective. Third,
there is a huge amount of available blog data. But
because we do not possess blog data annotated
for subjectivity, we take the following approach
to learning subjective patterns from this data. We
work on the assumption that a great many blog
posts are inherently subjective, and that compar-
ing this data to inherentlyobjective text such as
newswire articles, treating the latter as our irrele-
vant text, should lead to the detection of many new
subjective patterns and greatly increase our cover-
age. While the patterns learned will be noisy, we
hypothesize that the increased coverage will im-
prove our subjectivity detection overall.

For our blog data, we use the BLOG06 Corpus1

that was featured as training and testing data for
the Text Analysis Conference (TAC) 2008 track
on summarizing blog opinions. The portion used
totals approximately 4,000 documents on all man-
ner of topics. Treating that dataset as our rele-
vant, subjective data, we then learn the subjec-
tive trigrams by comparing with theirrelevant
TAC/DUC newswire data from the 2007 and 2008
update summarization tasks. To try to reduce the
amount of noise in our learned patterns, we set the
conditional probability threshold at 0.75 (vs. 0.65
for annotated data), and stipulate that all signif-
icant patterns must occur at least once in the ir-
relevant text. This last rule is meant to prevent

1http://ir.dcs.gla.ac.uk/testcollections/blog06info.html

Pattern p(r|t)
can not VB 0.99
i can RB 0.99
i have not 0.98
do RB think 0.97
RB think that 0.95
RB agree with 0.95
IN PRP opinion 0.95

Table 3: Example Subjective Patterns (BLOG06)

us from learning completely blog-specific patterns
such asposted by NN or linked to DT. In the end,
more than 20,000 patterns were learned from the
blog data. While manual inspection does show
that many undesirable patterns were extracted,
among the highest-scoring patterns are many sen-
sible subjective trigrams such as those indicated in
Table 3.

This approach is similar in spirit to the work of
Biadsy et al. (2008) on unsupervised biography
production. Without access to labeled biographi-
cal data, the authors chose to use sentences from
Wikipedia biographies as their positive set and
sentences from newswire articles as their negative
set, on the assumption that most of the Wikipedia
sentences would be relevant to biographies and
most of the newswire sentences would not.

3.2 Deriving VIN Features

For our machine learning experiments, we derive,
for each sentence, features indicating the presence
of the significant VIN patterns. Patterns are binned
according to their conditional probability range
(i.e., 0.65 <= p < 0.75, 0.75 <= p < 0.85,
0.85 <= p < 0.95, and0.95 <= p). There are
three bins for the blog patterns, since the proba-
bility cutoff is 0.75 For each bin, there is a feature
indicating the count of its patterns in the given sen-
tence. When attempting to match these trigram
patterns to sentences, we allow up to two wild-
card lexical items between the trigram units. In
this way a sentence can match a learned pattern
even if the units of the n-gram are not contiguous
(Raaijmakers et al. (2008) similarly include an n-
gram feature allowing such intervening material).

A key reason for counting the number of
matched patterns for each probability range as just
described, rather than including a feature for each
individual pattern, is to maintain the same level
of dimensionality in our machine learning exper-
iments when comparing the VIN approach to the
baseline approaches described in Section 3.4.
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3.3 Conversational Features

While we hypothesize that the general pur-
pose pattern-based approach described above will
greatly aid subjectivity and polarity detection, we
also recognize that there are many additional fea-
tures specific for characterizing multimodal con-
versations that may correlate well with subjectiv-
ity and polarity. Such features include structural
characteristics like the position of a sentence in a
turn and the position of a turn in the conversation,
and participant features relating to dominance or
leadership. For example, it may be that subjective
sentences are more likely to come at the end of a
conversation, or that a person who dominates the
conversation may utter more negative sentences.

We use the feature set provided by Murray and
Carenini (2008), which they used for automatic
summarization of conversations and which are
shown in Table 4. Many of the features are based
on so-calledSprob andTprob term-weights, the
former of which weights words based on their dis-
tributions across conversation participants and the
latter of which similarly weights words based on
their distributions across conversation turns. Other
features include word entropy of the candidate
sentence, lexical cohesion of the sentence with the
greater conversation, and structural features indi-
cating position of the candidate sentence in the
turn and in the conversation, such as the elapsed
time since the beginning of the conversation.

3.4 Baseline Approaches

There are two baselines in particular to which
we are interested in comparing the VIN ap-
proach. As stated earlier, we are hypothesiz-
ing that the increasing levels of abstraction found
with partially instantiated trigrams will lead to im-
proved classification compared with using only
fully instantiated trigrams. To test this, we
also run the subjective/non-subjective and posi-
tive/negative experiments usingonly fully instan-
tiated trigrams. There are 71 such positive tri-
grams and 5 such negative trigrams learned from
the AMI data. There are just over 1200 fully in-
stantiated trigrams learned from the unannotated
BLOG06 data.

Believing that the current approach may offer
benefits over state-of-the-art pattern-based subjec-
tivity detection, we also implement the AutoSlog-
TS method of Riloff and Wiebe (2003) for extract-
ing subjective extraction patterns. In AutoSlog-

Feature ID Description
MXS maxSprob score
MNS meanSprob score
SMS sum ofSprob scores
MXT maxTprob score
MNT meanTprob score
SMT sum ofTprob scores
TLOC position in turn
CLOC position in conv.
SLEN word count, globally normalized
SLEN2 word count, locally normalized
TPOS1 time from beg. of conv. to turn
TPOS2 time from turn to end of conv.
DOM participant dominance in words
COS1 cosine of conv. splits, w/Sprob
COS2 cosine of conv. splits, w/Tprob
PENT entropy of conv. up to sentence
SENT entropy of conv. after the sentence
THISENT entropy of current sentence
PPAU time btwn. current and prior turn
SPAU time btwn. current and next turn
BEGAUTH is first participant (0/1)
CWS rough ClueWordScore (cohesion)
CENT1 cos. of sentence & conv., w/Sprob
CENT2 cos. of sentence & conv., w/Tprob

Table 4: Features Key

TS, once all of the patterns are extracted using
the Sundance parser, the scoring methodology is
much the same as desribed in Section 3.1. Con-
ditional probabilities are calculated by comparing
pattern occurrences in the relevant text with oc-
currences in all text, and we again use a thresh-
old of p >= 0.65 andfrequency >= 5 for sig-
nificant patterns. For the BLOG06 data, we use
a probability cutoff of 0.75 as before. For deriv-
ing the features used in our machine learning ex-
periments, the patterns are similarly grouped ac-
cording to conditional probability. From the anno-
tated data, 48 patterns are learned in total, 46 pos-
itive and only 2 negative. From the BLOG06 data,
more than 3000 significant patterns are learned.
Among significant patterns learned from the AMI
corpus are< subj > BE good, change < dobj >,
< subj > agree andproblem with < NP >.

To gauge the effectiveness of the various feature
types, for both sets of experiments we build multi-
ple models on a variety of feature combinations:
fully instantiated trigrams (TRIG), varying in-
stantiation n-grams (VIN), AutoSlog-TS (SLOG),
conversational structure features (CONV), and the
set of all features.

4 Experimental Setup

In this section we describe the corpora used, the
relevant subjectivity annotation, and the statistical
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classifiers employed.

4.1 Corpora

We use two annotated corpora for these experi-
ments. The AMI corpus (Carletta et al., 2005) con-
sists of meetings in which participants take part in
role-playing exercises concerning the design and
development of a remote control. Participants are
grouped in fours, and each group takes part in a
sequence of four meetings, bringing the remote
control from design to market. The four members
of the group are assigned roles of project man-
ager, industrial designer, user interface designer,
and marketing expert. In total there are 140 such
scenario meetings, with individual meetings rang-
ing from approximately 15 to 45 minutes.

The BC3 corpus (Ulrich et al., 2008) contains
email threads from the World Wide Web Consor-
tium (W3C) mailing list. The threads feature a va-
riety of topics such as web accessibility and plan-
ning face-to-face meetings. The annotated portion
of the mailing list consists of 40 threads.

4.2 Subjectivity Annotation

Wilson (2008) has annotated 20 AMI meetings for
a variety of subjective phenomena which fall into
the broad classes ofsubjective utterances, objec-
tive polar utterances andsubjective questions. It
is this first class in which we are primarily in-
terested here. Two subclasses of subjective utter-
ances arepositive subjective andnegative subjec-
tive utterances. Such subjective utterances involve
the expression of a private state, such as a posi-
tive/negative opinion, positive/negative argument,
and agreement/disagreement. The 20 meetings
were labeled by a single annotator, though Wilson
(2008) did conduct a study of annotator agreement
on two meetings, reporting aκ of 0.56 for detect-
ing subjective utterances. Of the roughly 20,000
dialogue acts total in the 20 AMI meetings, nearly
4000 are labeled aspositive-subjective and nearly
1300 asnegative-subjective. For the first exper-
imental task, we consider the subjective class to
be the union of positive-subjective and negative-
subjective dialogue acts. For the second experi-
mental task, the goal is to discriminate positive-
subjective from negative-subjective.

For the BC3 emails, annotators were initially
asked to create extractive and abstractive sum-
maries of each thread, in addition to labeling a
variety of sentence-level phenomena, including
whether each sentence was subjective. In a second

round of annotations, three different annotators
were asked to go through all of the sentences pre-
viously labeled as subjective and indicate whether
each sentence waspositive, negative, positive-
negative, or other. The definitions for positive and
negative subjectivity mirrored those given by Wil-
son (2008). For the purpose of these experiments,
we consider a sentence to be subjective if at least
two of the annotators labeled it as subjective, and
similarly consider a subjective sentence to be pos-
itive or negative if at least two annotators label it
as such. Using this majority vote labeling, 172
of 1800 sentences are considered subjective, with
44% of those labeled aspositive-subjective and
37% asnegative-subjective, showing that there is
much more of a balance between positive and neg-
ative sentiment in these email threads compared
with meeting speech (note that some subjective
sentences are not positive or negative). Theκ for
labeling subjective sentences in the email corpus
is 0.32. The lower annotator agreement on emails
compared with meetings suggests that subjectiv-
ity in email text may be manifested more subtly or
conveyed somewhat amibiguously.

4.3 Classifier and Experimental Setup

For these experiments we use a maximum entropy
classifier using theliblinear toolkit2 (Fan et al.,
2008). Feature subset selection is carried out by
calculating the F-statistic for each feature, ranking
the features according to the statistic, and train-
ing on increasingly smaller subsets of feature in
a cross-validation procedure, ultimately choosing
the feature set with the highest balanced accuracy
during cross-validation.

Because the annotated portions of our corpora
are fairly small (20 meetings, 40 email threads),
we employ a leave-one-out method for training
and testing rather than using dedicated training
and test sets. For the polarity labeling task ap-
plied to the BC3 corpus, we pool all of the sen-
tences and perform 10-fold cross-validation at the
sentence level.

4.4 Evaluation Metrics

We employ two sets of metrics for evaluating all
classifiers: precision/recall/f-measure and the re-
ceiver operator characteristic (ROC) curve. The
ROC curve plots the true-positive/false-positive
ratio while the posterior threshold is varied, and

2http://www.csie.ntu.edu.tw/ cjlin/liblinear/
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we report the area under the curve (AUROC) as the
measure of interest. Random performance would
feature an AUROC of approximately 0.5, while
perfect classification would yield an AUROC of
1. The advantage of the AUROC score compared
with precision/recall/f-measure is that it evaluates
a given classifier across all thresholds, indicating
the classifier’s overall discriminating power. This
metric is also known to be appropriate when class
distributions are skewed (Fawcett, 2003), as is our
case. For completeness we report both AUROC
and p/r/f, but our discussions focus primarily on
the AUROC comparisons.

5 Results

In this section we describe the experimental re-
sults, first for the subjective/non-subjective clas-
sification task, and subsequently for the positive-
negative classification task.

5.1 Subjective / Non-Subjective Classification

For the subjectivity detection task, the results on
the AMI and BC3 data closely mirrored each
other, with the VIN approach constituting a very
effective feature set, outperforming both baselines.
We report the results on meeting and emails in
turn.

5.1.1 AMI corpus

For the subjectivity task with the AMI corpus, we
first report the precision, recall and f-measure re-
sults in Table 5 where the various classifiers are
compared with a lower bound (LB) in which the
positive class is always predicted, leading to per-
fect recall. It can be seen that the novel systems
exhibit substantial improvement in precision and
f-measure over this lower-bound. While the VIN
approach yields the best precision scores, the full
feature set achieves the highest f-measure.

As shown in Figure 1, the average AUROC with
the VIN approach is 0.69, compared with 0.61 for
AutoSlog-TS, a significant difference according to
paired t-test (p<0.01). The VIN approach is also
significantly better than the standard fully instan-
tiated trigram pattern approach (p<0.01). This
latter result suggests that the increased level of
abstraction found in the varying instantiation n-
grams does improve performance.

The conversational features alone give compa-
rable performance to the VIN method (no signifi-
cant difference), and the best results are found us-
ing the full feature set, which gives an average AU-

Sys Precision Recall F-Measure
AMI Corpus
LB 26 100 41
Trig 25 63 36
Slog 39 48 43
VIN 41 58 48
Conv 36 73 49
All Feas 38 70 49
BC3 Corpus
LB 10 100 17
Trig 27 10 14
Slog 24 13 17
VIN 27 22 24
Conv 25 29 27
All Feas 33 34 33

Table 5: P/R/F Results, Subjectivity Task
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Figure 1: AUROCs on Subjectivity Task for AMI
and BC3 corpora

ROC of 0.71, a significant improvement over VIN
only (p<0.05).

5.1.2 BC3 corpus

For the subjectivity task with the BC3 corpus, the
best precision and f-measure scores are found by
combining all features, as displayed in Table 5.
The f-measure for the VIN approach is ten points
higher than for the standard trigram approach.

The average AUROC with the VIN approach is
0.77, compared with 0.70 for AutoSlog-TS (sig-
nificant at p<0.05). The varying instantiation ap-
proach is significantly better than the standard tri-
gram pattern approach (p<0.01), where the aver-
age AUROC is 0.66. We again find that conver-
sational features are very useful for this task, and
that the best overall results utilize the entire fea-
ture set. These results are displayed in Figure 1.

5.1.3 Impact of Blog Data

An interesting question is whether our use of the
BLOG06 data was worthwhile. We can measure
this by comparing the VIN AUROC results re-
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Sys Precision Recall F-Measure
AMI Corpus
LB 76 100 86
Trig 87 8 14
Slog 75 46 57
VIN 83 60 70
Conv 82 47 60
All Feas 83 56 67
BC3 Corpus
LB 54 100 70
Trig 50 84 63
Slog 58 56 57
VIN 53 84 65
Conv 63 80 71
All Feas 60 76 67

Table 6: P/R/F Results, Polarity Task

ported above with the VIN AUROC scores using
only the annotated data for learning the significant
patterns. The finding is that the blog data was
very helpful, as the VIN approach averages only
0.66 on the BC3 data and 0.63 on the AMI data
when the blog patterns arenot used, both signif-
icantly lower (p<0.01). Figure 2 shows the ROC
curves for the VIN approach with and without blog
patterns applied to the AMI subjectivity detection
task, illustrating the impact of the unsupervised
pattern-learning strategy.
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Figure 2: Effect of Blog Patterns on AMI Subjec-
tivity Task

5.2 Positive / Negative Classification

For the polarity classification task, the results dif-
fer between the two corpora. We describe the re-
sults on meetings and emails in turn.

5.2.1 AMI corpus

The p/r/f results for the AMI polarity task are pre-
sented in Table 6, with the scores pertaining to
the positive-subjective class. The VIN classifier
and full features classifier achieve the highest pre-

cision, but the f-measures are below the lower-
bound.

Comparing AUROC results, the VIN approach
is again significantly better than AutoSlog-TS,
averaging 0.65 compared with 0.56, and signifi-
cantly better than the standard trigram approach
(p<0.01 in both cases). The results are dis-
played in Figure 3. The conversational features are
significantly less effective than the VIN features
(p<0.05), and the best overall results are found by
utilizing all features, with significant improvement
over VIN only at p<0.05 and significant improve-
ment over AutoSlog-TS only at p<0.01.

5.2.2 BC3 corpus

The results of the polarity task on the BC3 cor-
pus are markedly different from the other exper-
imental results. In this case, neither VIN nor
AutoSlog-TS are particularly good for discrimi-
nating between positive and negative sentences,
and the best strategy is to use features relating to
conversational structure. According to p/r/f (Ta-
ble 6), the only method outperforming the lower-
bound in terms of f-measure is the conversational
features classifier. According to AUROC scores
shown in Figure 3, the conversational features by
themselves are significantly better than the VIN
approach (p<0.01 for non-paired t-test). So for
emails, we are more likely to correctly classify
positive and negative sentence by looking at fea-
tures such as position in the turn and participant
dominance than by matching our learned patterns.
While we showed previously that pattern-based
approaches perform well for the subjectivity task
on this dataset, there was less success in using the
patterns to discern the polarity of email sentences.

We are again interested in whether the use of the
BLOG06 data was beneficial. For the BC3 data,
there is very little difference between the VIN ap-
proach with and without the blog patterns, as they
both perform poorly, but with the AMI corpus, the
blog patterns yield significant improvement in po-
larity classification, increasing from an average of
0.56 without the blog patterns to 0.65 with them
(p<0.01).

6 Discussion and Future Work

A key difference between the AMI and BC3 data
with regards to subjectivity is that negative ut-
terances are much more common in the BC3
email threads. Additionally, the pattern-based ap-
proaches fared worst in discriminating between
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Figure 3: AUROCs on Polarity Task for AMI and
BC3 corpora

negative and positive utterances in that corpus.
Positive and negative email sentences are more
easily recognized via features relating to conver-
sation structure and participant status than through
the learned lexical patterns.

The use of patterns learned from unlabeled blog
data significantly improved performance. We are
currently developing further techniques for learn-
ing subjective and polar patterns from such raw,
natural text.

A potential area of improvement is to reduce the
feature set by eliminating some of the subjective
patterns. In Section 2, we briefly described the
work of Riloff et al. (2006) on feature subsump-
tion relationships. In our case, in a VIN instantia-
tion set a given trigram instantiation subsumes the
less abstract instantiations in the set, so the most
abstract instantiation (i.e. completely uninstanti-
ated trigram) representationally subsumes the rest.
Eliminating some of the representationally sub-
sumed instantiations when they are also behav-
iorally subsumed may improve our results.

It is difficult to compare our results directly with
those of Raaijmakers et al. (2008) as they used a
smaller set of AMI meetings for their experiments,
and because for the first experiment we consider
the subjective class to be the union of positive-
subjective and negative-subjective dialogue acts
whereas they additionally include subjective ques-
tions and dialogue acts expressing uncertainty.
These differences are reflected by the substantially
differing scores reported for majority-vote base-
lines on each task. However, their success with
character n-gram features suggests that we could
improve our system by incorporating a variety of
character features. Character n-grams were the

best single feature class in their experiments.
The VIN representation is a general one and

may hold promise for learning patterns relevant to
other interesting conversation phenomena such as
decision-making and action items. We plan to ap-
ply the methods described here to these other ap-
plications in the near future.

7 Conclusion

In this work we have shown that learning subjec-
tive trigrams with varying instantiation levels from
both annotated and raw data can improve subjec-
tivity detection and polarity labeling for meeting
speech and email threads. The novel pattern-based
approach was significantly better than standard tri-
grams for three of the four tasks, and was signif-
icantly better than a state-of-the-art syntactic ap-
proach for those same tasks. We also found that
features relating to conversational structure were
beneficial for all tasks, and particularly for polar-
ity labeling in email data. Interestingly, in three
out of four cases combining all the features pro-
duced the best performance.
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Abstract

We propose a novel language-independent
approach for improving statistical ma-
chine translation for resource-poor lan-
guages by exploiting their similarity to
resource-rich ones. More precisely, we
improve the translation from a resource-
poor source language X1 into a resource-
rich language Y given a bi-text contain-
ing a limited number of parallel sentences
for X1-Y and a larger bi-text for X2-Y
for some resource-rich language X2 that
is closely related to X1. The evaluation
for Indonesian→English (using Malay)
and Spanish→English (using Portuguese
and pretending Spanish is resource-poor)
shows an absolute gain of up to 1.35 and
3.37 Bleu points, respectively, which is an
improvement over the rivaling approaches,
while using much less additional data.

1 Introduction

Recent developments in statistical machine trans-
lation (SMT), e.g., the availability of efficient im-
plementations of integrated open-source toolkits
like Moses (Koehn et al., 2007), have made it pos-
sible to build a prototype system with decent trans-
lation quality for any language pair in a few days
or even hours. In theory. In practice, doing so
requires having a large set of parallel sentence-
aligned bi-lingual texts (a bi-text) for that lan-
guage pair, which is often unavailable. Large high-
quality bi-texts are rare; except for Arabic, Chi-
nese, and some official languages of the European
Union (EU), most of the 6,500+ world languages
remain resource-poor from an SMT viewpoint.

While manually creating a small bi-text could
be relatively easy, building a large one is hard,
e.g., because of copyright. Most bi-texts for SMT
come from parliament debates and legislation of

multi-lingual countries (e.g., French-English from
Canada, and Chinese-English from Hong Kong),
or from international organizations like the United
Nations and the European Union. For exam-
ple, the Europarl corpus of parliament proceed-
ings consists of about 1.3M parallel sentences (up
to 44M words) per language for 11 languages
(Koehn, 2005), and the JRC-Acquis corpus pro-
vides a comparable amount of European legisla-
tion in 22 languages (Steinberger et al., 2006).

The official languages of the EU are especially
lucky in that respect; while this includes such
“classic SMT languages” like English and French,
and some important international ones like Span-
ish and Portuguese, most of the rest have a limited
number of speakers and were resource-poor until
recently; this is changing quickly because of the
increasing volume of EU parliament debates and
the ever-growing European legislation. Thus, be-
coming an official language of the EU has turned
out to be an easy recipe for getting resource-rich in
bi-texts quickly. Of course, not all languages are
that ‘lucky’, but many can still benefit.

In this paper, we propose using bi-texts for
resource-rich language pairs to build better SMT
systems for resource-poor ones by exploiting the
similarity between a resource-poor language and a
resource-rich one.

The proposed method allows non-EU languages
to benefit from being closely related to one or
more official languages of the EU, the most
obvious candidates being Norwegian (related to
Swedish), Moldavian1 (related to Romanian), and
Macedonian2 (related to Bulgarian). After Croa-
tia joins the EU, Serbian, Bosnian and Montene-
grin will be able to benefit from Croatian gradually
turning resource-rich (all four split from Serbo-
Croatian after the breakup of Yugoslavia). The
newly-made EU-official (and thus not as resource-

1Not recognized by Romania.
2Not recognized by Bulgaria and Greece.
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rich) Czech and Slovak are another possible pair
of candidates. As we will see below, even such
resource-rich languages like Spanish and Por-
tuguese can benefit from the proposed method. Of
course, many pairs of closely related languages
can be also found outside of Europe, Malay and
Indonesian being just one such example we will
experiment with.

The remainder of the present paper is organized
as follows: Section 2 presents our method, Sec-
tion 3 describes the experiments, and Section 4
discusses the results and the general applicability
of the approach. Section 5 provides an overview
of the related work. Finally, Section 6 concludes
and suggests possible directions for future work.

2 Method

We propose a novel language-independent ap-
proach for improving statistical machine trans-
lation for resource-poor languages by exploiting
their similarity to resource-rich ones. More pre-
cisely, we improve the translation from a resource-
poor source language X1 into a resource-rich tar-
get language Y given a bi-text containing a limited
number of parallel sentences forX1-Y and a much
larger bi-text forX2-Y for some resource-rich lan-
guage X2 that is closely related to X1.

Our method exploits the similarity between re-
lated languages with respect to word order, syntax,
and, most importantly, vocabulary overlap – re-
lated languages share a large number of cognates.

Before we present the method, we will describe
two simple strategies for integrating the bi-text for
X2-Y into a phrase-based SMT system for X1-Y .

2.1 Merging Bi-texts

We can simply concatenate the bi-texts for X1-Y
and X2-Y into one large bi-text and use it to train
an SMT system.

This offers several advantages. First, it can
yield improved word alignments for the sentences
that came from the X1-Y bi-text, e.g., since the
additional sentences can provide new contexts for
the rare words in that bi-text; rare words are
hard to align, which could have a disastrous ef-
fect on the subsequent phrase extraction stage.
Second, it can provide new source-language side
translation options, thus increasing the lexical
coverage and reducing the number of unknown
words at translation time; it can also provide new
useful non-compositional phrases on the source-

language side, thus yielding more fluent transla-
tion output. Third, it can offer new target-language
side phrases for known source phrases, which
could improve fluency by providing more trans-
lation options for the language model (LM) to
choose from. Fourth, bad phrases including words
from X2 that do not exist in X1 will be effectively
ignored at translation time since they could never
possibly match the input, while bad new target-
language translations still have the chance to be
filtered out by the language model.

However, simple concatenation can be problem-
atic. First, when concatenating the small bi-text
for X1-Y with the much larger one for X2-Y , the
latter will dominate during word alignment and
phrase extraction, thus hugely influencing both
lexical and phrase translation probabilities, which
can yield poor performance. This can be counter-
acted by repeating the small bi-text several times
so that the large one does not dominate. Sec-
ond, since the bi-texts are merged mechanically,
there is no way to distinguish between phrases ex-
tracted from the bi-text for X1-Y (which should
be good), from those coming from the bi-text for
X2-Y (whose quality might be questionable).

2.2 Combining Phrase Tables

An alternative way of making use of the additional
bi-text for X2-Y to train an improved SMT sys-
tem for X1 → Y is to build separate phrase ta-
bles from X1-Y and X2-Y , which can then be
(a) used together, e.g., as alternative decoding
paths, (b) merged, e.g., using one or more extra
features to indicate the bi-text each phrase came
from, or (c) interpolated, e.g., using simple linear
interpolation.

Building two separate phrase tables offers sev-
eral advantages. First, the good phrases from the
bi-text forX1-Y are clearly distinguished from (or
given a higher weight in the linear interpolation
compared to) the potentially bad ones from the
X2-Y bi-text. Second, the lexical and the phrase
translation probabilities are combined in a princi-
pled manner. Third, using an X2-Y bi-text that is
much larger than that for X1-Y is not problematic
any more. Fourth, as with bi-text merging, there
are many additional source- and target-language
phrases, which offer new translation options.

On the negative side, the opportunity is lost
to obtain improved word alignments for the sen-
tences in the X1-Y bi-text.
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2.3 Proposed Method
Taking into account the potential advantages and
disadvantages of the above strategies, we pro-
pose a method that tries to get the best of both:
(i) increased lexical coverage by using additional
phrase pairs independently extracted from X2-Y ,
and (ii) improved word alignments for X1-Y by
biasing the word alignment process with addi-
tional sentence pairs from X2-Y (possibly also re-
peating X1-Y several times). A detailed descrip-
tion of the method follows:

1. Build a bi-text Bcat that is a concatenation
of the bi-texts for X1-Y and X2-Y . Gener-
ate word alignments forBcat, extract phrases,
and build a phrase table Tcat.

2. Build a bi-text Brep from the X1-Y bi-text
repeated k times followed by one copy of the
X2-Y bi-text. Generate word alignments for
Brep, then truncate them, only keeping word
alignments for one copy of the X1-Y bi-text.
Use these word alignments to extract phrases,
and build a phrase table Trep trunc.

3. Produce a phrase table Tmerged by combin-
ing Tcat and Trep trunc, giving priority to the
latter, and use it in an X1 → Y SMT system.

2.4 Transliteration
As we mentioned above, our method relies on the
existence of a large number of cognates between
related languages. While linguists define cognates
as words derived from a common root3 (Bickford
and Tuggy, 2002), computational linguists typi-
cally ignore origin, defining them as words in dif-
ferent languages that are mutual translations and
have a similar orthography (Bergsma and Kon-
drak, 2007; Mann and Yarowsky, 2001; Melamed,
1999). In this paper, we adopt the latter definition.

Cognates between related languages often ex-
hibit minor spelling variations, which can be sim-
ply due to different rules of orthography, (e.g.,
senhor vs. señor in Portuguese and Spanish), but
often stem from real phonological differences. For
example, the Portuguese suffix -ção corresponds
to the Spanish suffix -ción, e.g., evolução vs.
evolución. Such correspondences can be quite fre-
quent and thus easy to learn automatically4. Even

3E.g., Latin tu, Old English thou, Spanish tú, Greek sú and
German du are all cognates meaning ‘2nd person singular’.

4Not all such differences are systematic; many apply to a
particular word only, e.g., kerana vs. karena in Malay and
Indonesian, or dizer vs. decir in Portuguese and Spanish.

more frequent can be the inflectional variations.
For example, in Portuguese and Spanish respec-
tively, verb endings like -ou vs. -ó (for 3rd person
singular, simple past tense), e.g., visitou vs. visitó,
or -ei vs. -é (for 1st person singular, simple past
tense), e.g., visitei vs. visité.

If such systematic differences exist between the
languages X1 and X2, it might be useful to learn
and to use them as a pre-processing step in order
to transliterate the X2 side of the X2-Y bi-text
and thus increase its vocabulary overlap with the
source language X1.

We will describe our approach to automatic
transliteration in more detail in Section 3.4 below.

3 Experiments

3.1 Language Pairs

We experimented with two language pairs: the
closely related Malay and Indonesian and the more
dissimilar Spanish and Portuguese.

Malay and Indonesian are mutually intelligible,
but differ in pronunciation and vocabulary. An ex-
ample follows5:

• Malay: Semua manusia dilahirkan bebas
dan samarata dari segi kemuliaan dan hak-
hak.

• Indonesian: Semua orang dilahirkan
merdeka dan mempunyai martabat dan
hak-hak yang sama.

Spanish and Portuguese also exhibit a notice-
able degree of mutual intelligibility, but differ in
pronunciation, spelling, and vocabulary. Unlike
Malay and Indonesian, however, they also differ
syntactically and have a high degree of spelling
differences as demonstrated by the following ex-
amples6:

• Spanish: Señora Presidenta, estimados cole-
gas, lo que está sucediendo en Oriente Medio
es una tragedia.

• Portuguese: Senhora Presidente, caros cole-
gas, o que está a acontecer no Medio Oriente
é uma tragédia.

5In English: All human beings are born free and equal in
dignity and rights. (from Article 1 of the Universal Declara-
tion of Human Rights)

6In English: Madam President, ladies and gentlemen, the
events in the Middle East are a real tragedy.
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3.2 Datasets
In our experiments, we used the following number
of training sentence pairs (number of words shown
in parentheses) for English (en), Indonesian (in),
Malay (ml), Portuguese(pt), and Spanish (es):

• Indonesian-English (in-en):

– 28,383 pairs (0.8M, 0.9M words);
– monolingual English enin: 5.1M words.

• Malay-English (ml-en):

– 190,503 pairs (5.4M, 5.8M words);
– monoling. English enml: 27.9M words.

• Spanish-English (es-en):

– 1,240,518 pairs (35.7M, 34.6M words);
– monolingual English enes:pt: 45.3M

words (the same as for pt-en).

• Portuguese-English (pt-en):

– 1,230,038 pairs (35.9M, 34.6M words).
– monolingual English enes:pt: 45.3M

words (the same as for es-en).

All of the above datasets contain sentences with
up to 100 tokens. In addition, for each of the
four language pairs, we have a development and
a testing bi-text, each with 2,000 parallel sentence
pairs. We made sure the development and the test-
ing bi-texts shared no sentences with the training
bi-texts; we further excluded from the monolin-
gual English data all sentences from the English
sides of the training and the development bi-texts.

The training bi-text datasets for es-en and pt-en
were built from release v.3 of the Europarl corpus,
excluding the Q4/2000 portion out of which we
created our testing and development datasets.

We built the in-en bi-texts from texts that we
downloaded from the Web. We translated the In-
donesian texts to English using Google Translate,
and we matched7 them against the English texts
using a cosine similarity measure and heuristic
constraints based on document length in words
and in sentences, overlap of numbers, words in
uppercase, and words in the title. Next, we ex-
tracted pairs of sentences from the matched doc-
ument pairs using competitive linking (Melamed,
2000), and we retained the ones whose similarity
was above a pre-specified threshold. The ml-en
was built in a similar manner.

7Note that the automatic translations were used for match-
ing only; the final bi-text contained no automatic translations.

3.3 Baseline SMT System

In the baseline, we used the following setup: We
first tokenized and lowercased both sides of the
training bi-text. We then built separate directed
word alignments for English→X andX→English
(X∈{Indonesian, Spanish}) using IBM model 4
(Brown et al., 1993), combined them using the in-
tersect+grow heuristic (Och and Ney, 2003), and
extracted phrase-level translation pairs of maxi-
mum length seven using the alignment template
approach (Och and Ney, 2004). We thus obtained
a phrase table where each pair is associated with
five parameters: forward and reverse phrase trans-
lation probabilities, forward and reverse lexical
translation probabilities, and phrase penalty.

We then trained a log-linear model using stan-
dard SMT feature functions: trigram language
model probability, word penalty, distance-based8

distortion cost, and the parameters from the phrase
table. We set all weights by optimizing Bleu (Pap-
ineni et al., 2002) using minimum error rate train-
ing (MERT) (Och, 2003) on a separate develop-
ment set of 2,000 sentences (Indonesian or Span-
ish), and we used them in a beam search decoder
(Koehn et al., 2007) to translate 2,000 test sen-
tences (Indonesian or Spanish) into English. Fi-
nally, we detokenized the output, and we evaluated
it against a lowercased gold standard using Bleu9.

3.4 Transliteration

As was mentioned in Section 2, transliteration can
be helpful for languages with regular spelling dif-
ferences. Thus, we built a system for translitera-
tion from Portuguese into Spanish that was trained
on a list of automatically extracted likely cognates.
The system was applied on the Portuguese side of
the pt-en training bi-text.

Classic approaches to automatic cognate extrac-
tion look for non-stopwords with similar spelling
that appear in parallel sentences in a bi-text (Kon-
drak et al., 2003). In our case, however, we need to
extract cognates between Spanish and Portuguese
given pt-en and es-en bi-texts only, i.e., without
having a pt-es bi-text. Although it is easy to con-
struct a pt-es bi-text from the Europarl corpus,
we chose not to do so since, in general, synthe-

8We also tried lexicalized reordering (Koehn et al., 2005).
While it yielded higher absolute Bleu scores, the relative im-
provement for a sample of our experiments was very similar
to that achieved with distance-based re-ordering.

9We used version 11b of the NIST scoring tool:
http://www.nist.gov/speech/tools/
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sizing a bi-text for X1-X2 would be impossible:
e.g., it cannot be done for ml-in given our training
datasets for in-en and ml-en since the English sides
of these bi-texts have no sentences in common.

Thus, we extracted the list of likely cognates be-
tween Portuguese and Spanish from the training
pt-en and es-en bi-texts using English as a pivot as
follows: We started with IBM model 4 word align-
ments, from which we extracted four conditional
lexical translation probabilities: Pr(pj |ei) and
Pr(ei|pj) for Portuguese-English, and Pr(sk|ei)
and Pr(ei|sk) for Spanish-English, where pj , ei
and sk stand for a Portuguese, an English and
a Spanish word respectively. Following Wu and
Wang (2007), we then induced conditional lexical
translation probabilities Pr(pj |sk) and Pr(sk|pj)
for Portuguese-Spanish as follows:

Pr(pj |sk) =
∑

i Pr(pj |ei, sk)Pr(ei|sk)

Assuming pj is conditionally independent of sk

given ei, we can simplify the above expression:

Pr(pj |sk) =
∑

i Pr(pj |ei)Pr(ei|sk)

Similarly, for Pr(sk|pj), we obtain

Pr(sk|pj) =
∑

i Pr(sk|ei)Pr(ei|pj)

We excluded all stopwords, words of length less
than three, and those containing digits. We further
calculated Prod(pj , sk) = Pr(pj |sk)Pr(sk|pj),
and we excluded all Portuguese-Spanish word
pairs (pj , sk) for which Prod(pj , sk) < 0.01.
From the remaining pairs, we extracted likely cog-
nates based on Prod(pj , sk) and on the ortho-
graphic similarity between pj and sk.

Following Melamed (1995), we measured the
orthographic similarity using the longest common
subsequence ratio (LCSR), defined as follows:

LCSR(s1, s2) = |LCS(s1,s2)|
max(|s1|,|s2|)

where LCS(s1, s2) is the longest common subse-
quence of s1 and s2, and |s| is the length of s.

We retained as likely cognates all pairs for
which LCSR was 0.58 or higher; that value was
found by Kondrak et al. (2003) to be optimal for a
number of language pairs in the Europarl corpus.

Finally, we performed competitive linking
(Melamed, 2000), assuming that each Portuguese
wordform had at most one Spanish best cognate
match. Thus, using the values of Prod(pj , sk),
we induced a fully-connected weighted bipartite
graph. Then, we performed a greedy approxima-
tion to the maximum weighted bipartite match-
ing in that graph (i.e., competitive linking) as fol-

lows: First, we accepted as cognates the cross-
lingual pair (pj , sk) with the highest Prod(pj , sk)
in the graph, and we discarded pj and sk from fur-
ther consideration. Then, we accepted the next
highest-scored pair, and we discarded the involved
wordforms and so forth. The process was repeated
until there were no matchable pairs left.

As a result of the above procedure, we ended
up with 28,725 Portuguese-Spanish cognate pairs,
9,201 (or 32%) of which had spelling differences.
For each pair in the list of cognate pairs, we added
spaces between any two adjacent letters for both
wordforms, and we further appended the start and
the end characters ˆ and $. For example, the cog-
nate pair evolução – evolución became

ˆ e v o l u ç ã o $ — ˆ e v o l u c i ó n $

We randomly split the resulting list into a train-
ing (26,725 pairs) and a development dataset
(2,000 pairs), and trained and tuned a character-
level phrase-based monotone SMT system similar
to (Finch and Sumita, 2008) to transliterate a Por-
tuguese wordform into a Spanish wordform. We
used a Spanish language model trained on 14M
word tokens (obtained from the above-mentioned
45.3M-token monolingual English corpus after ex-
cluding punctuation, stopwords, words of length
less than three, and those containing digits): one
per line and character-separated with added start
and end characters as in the above example. We set
both the maximum phrase length and the language
model order to ten; this value was found by tun-
ing on the development dataset. The system was
tuned using MERT, and the feature weights were
saved. The tuning Bleu was 95.22%, while the
baseline Bleu, for leaving the Portuguese words
intact, was 87.63%. Finally, the training and the
tuning datasets were merged, and a new training
round was performed. The resulting system was
used with the saved feature weights to transliterate
the Portuguese side of the training pt-en bi-text,
which yielded a new ptes-en training bi-text.

We did the same for Malay into Indonesian. We
extracted 5,847 cognate pairs, 844 (or 14.4%) of
which had spelling differences, and we trained a
transliteration system. The highest tuning Bleu
was 95.18% (for maximum phrase size and LM
order of 10), but the baseline was 93.15%. We
then re-trained the system on the combination of
the training and the development datasets, and we
transliterated the Malay side of the training ml-en
bi-text, obtaining a new mlin-en training bi-text.
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# Train LM Dev Test 10K 20K 40K 80K 160K 320K 640K 1230K
1 ml-en enml ml-en ml-en 44.93 46.98 47.15 48.04 49.01 – – –
2 mlin-en enml ml-en ml-en 38.99 40.96 41.02 41.88 42.81 – – –
3 ml-en enml ml-en in-en 13.69 14.58 14.76 15.12 15.84 – – –
4 ml-en enml in-en in-en 13.98 14.75 14.91 15.51 16.27 – – –
5 ml-en enin in-en in-en 15.56 16.38 16.52 17.04 17.90 – – –
6 mlin-en enin in-en in-en 16.44 17.36 17.62 18.14 19.15 – – –
7 pt-en enes:pt pt-en pt-en 21.28 23.11 24.43 25.72 26.43 27.10 27.78 27.96
8 ptes-en enes:pt pt-en pt-en 10.91 11.56 12.16 12.50 12.83 13.27 13.48 13.71
9 pt-en enes:pt pt-en es-en 4.40 4.77 4.57 5.02 4.99 5.32 5.08 5.34

10 pt-en enes:pt es-en es-en 4.91 5.12 5.64 5.82 6.35 6.87 6.44 7.10
11 ptes-en enes:pt es-en es-en 8.18 9.03 9.97 10.66 11.35 12.26 12.69 13.79

Table 1: Cross-lingual SMT experiments (shown in bold). Columns 2-5 present the bi-texts used for
training, development and testing, and the monolingual data used to train the English language model.
The following columns show the resulting Bleu (in %s) for different numbers of training sentence pairs.

3.5 Cross-lingual Translation

In this subsection, we study the similarity between
the original and the additional source languages.

First, we measured the vocabulary overlap be-
tween Spanish and Portuguese, which was fea-
sible since our training pt-en and es-en bi-texts
are from the same time span in the Europarl cor-
pus and their English sides largely overlap. We
found 110,053 Portuguese and 121,444 Spanish
word types, and 44,461 (or 36.6%) of them were
identical. Unfortunately, we could not do the same
for Malay and Indonesian since the English sides
of the in-en and ml-en bi-texts do not overlap.

Second, following the setup of the baseline sys-
tem, we performed cross-lingual experiments. The
results are shown in Table 1. As we can see, this
yielded a huge decrease in Bleu compared to the
baseline – three to five times – even for very large
training datasets, and even when a proper English
LM and development dataset were used: compare
line 1 to lines 3-6, and line 7 to lines 9-11.

Third, we tried transliteration. Bleu doubled for
Spanish (see lines 10-11), but improved far less for
Indonesian (lines 5-6). Training on the translit-
erated data and testing on Malay and Portuguese
yielded about 10-12% relative decrease for Malay
(lines 1-2) but 50% for Portuguese (lines 7-
8).10 Thus, unlike Spanish and Portuguese, there
were far less systematic spelling variations be-
tween Malay and Indonesian. A closer inspec-
tion confirmed this: many extracted likely Malay-
Indonesian cognate pairs with spelling differences
were in fact forms of a word existing in both lan-
guages, e.g., kata and berkata (‘to say’).

10However, as lines 8 and 11 show, a system trained on
1.23M ptes-en sentence pairs, performs equally well when
translating Portuguese and Spanish text: 13.71% vs. 13.79%.

3.6 Using an Additional Language

We performed various experiments combining the
original and an additional training bi-text:

Two-tables: We built two separate phrase tables
for the two bi-texts, and we used them in the alter-
native decoding path model of Birch et al. (2007).

Interpolation: We built two separate phrase
tables for the original and for the additional bi-
text, and we used linear interpolation to com-
bine the corresponding conditional probabilities:
Pr(e|s) = αProrig(e|s) + (1 − α)Prextra(e|s).
We optimized the value of α on the development
dataset, trying .5, .6, .7, .8 and .9; we used the
same α for all four conditional probabilities.

Merge: We built separate phrase tables, Torig

and Textra, for the original and for the additional
training bi-text. We then concatenated them giv-
ing priority to Torig: We kept all phrase pairs from
Torig, adding to them those ones from Textra that
were not present in Torig. For each phrase pair
added, we retained its associated conditional prob-
abilities and the phrase penalty. We further added
three additional features to each entry in the new
table: F1, F2 and F3. The value of F1 was 1 if
the phrase pair came from Torig, and 0.5 other-
wise. Similarly, F2=1 if the phrase pair came from
Textra, and F2=0.5 otherwise. The value of F3

was 1 if the pair came from both Torig and Textra,
and 0.5 otherwise. We experimented using (1)
F1 only, (2) F1 and F2, (3) F1, F2, and F3. We set
all feature weights using MERT, and we optimized
the number of features on the development set.11

11In theory, we should have also re-normalized the proba-
bilities since they may not sum to one. In practice, this was
not that important since the log-linear SMT model does not
require that the features be probabilities at all (e.g., the phrase
penalty), and we had extra features whose impact was bigger.
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Concat×k: We concatenated k copies of the
original and one copy of the additional training bi-
text; we then trained and tuned an SMT system as
for the baseline. The value for k was optimized on
the development dataset.

Concat×k:align: We concatenated k copies of
the original and one copy of the additional train-
ing bi-text. We then generated IBM model 4 word
alignments, and we truncated them, only keeping
them for one copy of the original training bi-text.
Next, we extracted phrase pairs, thus buildng a
phrase table, and we tuned an SMT system as for
the baseline.

Our Method: Our method was described in
Section 2. We used merge to combine the phrase
tables for concat×k:align and concat×1, consid-
ering the former as Torig and the latter as Textra.
We had two parameters to tune: k and the number
of extra features in the merged phrase table.

Figure 1: Impact of k on Bleu for concat×k for
different number of extra ml-en sentence pairs
in Indonesian→English SMT.

4 Results and Discussion

First, we studied the impact of k on concat×k
for Indonesian→English SMT using Malay as an
additional language. We tried all values of k
such that 1≤k≤16 with 10000n extra ml-en sen-
tence pairs, n∈{1,2,4,8,16}. As we can see in
Figure 1, the highest Bleu scores are achieved
for (n; k)∈{(1;2),(2;2),(4;4),(8;7),(16;16)}, i.e.,
when k ≈ n. In order to limit the search space,
we used this relationship between k and n in our
experiments (also for Portuguese and Spanish).

Table 2 shows the results for experiments on
improving Indonesian→English SMT using 10K,
20K, . . ., 160K additional ml-en pairs of paral-
lel sentences. Several observations can be made.

First, using more additional sentences yields bet-
ter results. Second, with one exception, all ex-
periments yield improvements over the baseline.
Third, the improvements are always statistically
significant for our method, according to (Collins
et al., 2005)’s sign test. Overall, among the dif-
ferent bi-text combination strategies, our method
performs best, followed by concat×k, merge, and
interpolate, which are very close in performance;
these three strategies are the only ones to consis-
tently yield higher Bleu as the number of addi-
tional ml-en sentence pairs grows. Methods like
concat×1, concat×k:align and two-tables are
somewhat inconsistent in that respect. The latter
method performs worst and is the only one to go
below the baseline (for 10K ml-en pairs).

Table 3 shows the results when using pt-en data
to improve Spanish→English SMT. Overall, the
results and the conclusions that can be made are
consistent with those for Table 2. We can further
observe that, as the size of the original bi-text in-
creases, the gain in Bleu decreases, which is to be
expected. Note also that here transliteration is very
important: it doubles the absolute gain in Bleu.

Finally, Table 4 shows a comparison to the piv-
oting technique of Callison-Burch et al. (2006).
for English→Spanish SMT. Despite using just
Portuguese, we achieve an improvement that is, in
five out of six cases, much better than what they
achieve with eight pivot languages (which include
not only Portuguese, but also two other Romance
languages, French and Italian, which are closely
related to Spanish). Moreover, our method yields
improvements for very large original datasets –
1.2M pairs, while theirs stops improving at 160K.
However, our improvements are only statistically
significant for 160K original pairs or less. Finally,
note that our translation direction is reversed.

Based on the experimental results, we can make
several conclusions. First, we have shown that us-
ing bi-text data from related languages improves
SMT: we achieved up to 1.35 and 3.37 improve-
ment in Bleu for in-en (+ml-en) and es-en (+pt-
en) respectively. Second, while simple concate-
nation can help, it is problematic when the ad-
ditional sentences out-number the ones from the
original bi-text. Third, concatenation can work
very well if the original bi-text is repeated enough
times so that the additional bi-text does not dom-
inate. Fourth, merging phrase tables giving prior-
ity to the original bi-text and using additional fea-
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in-en ml-en Baseline Two tables Interpol. Merge concat×1 concat×k concat×k:align Our method
28.4K 10K 23.80< ≥23.79< 23.89<(.9) 23.97<(3) 24.29< 24.29<(1) 24.01<(1)

<24.51(2;1) (+0.72)
28.4K 20K 23.80< 24.24< 24.22<(.8)

≤24.46<(3) 24.37< ≤24.48(2)
<24.35<(2)

<24.70(2;2) (+0.90)
28.4K 40K 23.80< 24.27< 24.27<(.8) 24.43≤(3) 24.38≤ ≤24.54(4)

<24.39<(4)
<24.73(4;2) (+0.93)

28.4K 80K 23.80< 24.11< ≤24.46<(.8)
<24.67(3) 24.17< ≤24.65<(8) 24.18<(8)

<24.97(8;3) (+1.17)
28.4K 160K 23.80< <24.58< <24.58<(.8)

<24.79≤(3)
≤24.43< <25.00(16)

≤24.27<(16)
<25.15(16;3) (+1.35)

Table 2: Improving Indonesian→English SMT using ml-en data. Shown are the Bleu scores (in %s)
for different methods. A subscript shows the best parameter value(s) found on the development set and
used on the test set to produce the given result. Bleu scores that are statistically significantly better than
the baseline/our method are marked on the left/right side by < (for p < 0.01) or ≤ (for p < 0.05).

es-en pt-en Transl. Baseline Two tables Interpol. Merge concat×1 concat×k concat×k:align Our method
10K 160K no 22.87< <23.81 <23.73(.5)

<23.60(2)
<23.54< <23.83<(16) 22.93<(16)

<23.98(16;3) (+1.11)
yes 22.87< <25.29≤ <25.22<(.5)

<25.16<(2)
<25.26 <25.42(16)

<23.31<(16)
<25.73(16;3) (+2.86)

20K 160K no 24.71< <25.22 ≤25.02<(.5)
<25.32≤(3)

<25.19< <25.29<(8) 24.91<(8)
<25.65(8;2) (+0.94)

yes 24.71< <26.07≤ <26.07(.7)
<26.04<(3)

<26.16≤ <26.18≤(8) 24.88<(8)
<26.36(8;3) (+1.65)

40K 160K no 25.80< 25.96< 26.15<(.6) 25.99<(3) 26.24< 25.92<(4) 25.99<(4)
<26.49(4;2) (+0.69)

yes 25.80< <26.68 <26.43(.7)
<26.64(3)

<26.78 <26.93(4) 25.88<(4)
<26.95(4;3) (+1.15)

80K 160K no 27.08≤ ≥26.89< 27.04<(.8) 27.02<(3) 27.23 27.09<(2) 27.01<(2)
≤27.30(2;2) (+0.22)

yes 27.08< 27.20< 27.42(.5) 27.29≤(3) 27.26< ≤27.53(2) 27.09<(2)
<27.49(2;3) (+0.41)

160K 160K no 27.90 27.99 27.72(.5) 27.95(2) 27.83< 27.83<(1) 27.94(1) 28.05(1;3) (+0.15)
yes 27.90 28.11 ≤28.13(.6)

≤28.17(2)
≤28.14 ≤28.14(1) 28.06(1) 28.16(1;2) (+0.26)

Table 3: Improving Spanish→English SMT using 160K additional pt-en sentence pairs. Column
three shows whether transliteration was used; the following columns list the Bleu scores (in %s) for
different methods. A small subscript shows the best parameter value(s) found on the development set
and used on the test set to produce the given result. Bleu scores that are statistically significantly better
than the baseline/our method are marked on the left/right side by < (for p < 0.01) or ≤ (for p < 0.05).

tures is a good strategy. Fifth, part of the improve-
ment when combining bi-texts is due to increased
vocabulary coverage because of cognates, but an-
other part comes from improved word alignments.
Sixth, the best results are achieved when the latter
two sources are first isolated and then combined
(our method). Finally, transliteration can help a lot
in case of systematic spelling variations between
the original and the additional source languages.

5 Related Work

In this section, we describe two general lines of
related previous research: using cognates between
the source and the target language, and source-
language side paraphrasing with a pivot language.

5.1 Cognates

Many researchers have used likely cognates to
obtain improved word alignments and thus build
better SMT systems. Al-Onaizan et al. (1999)
extracted such likely cognates for Czech-English
using one of the variations of LCSR (Melamed,

1995) described in (Tiedemann, 1999) as a simi-
larity measure. They used these cognates to im-
prove word alignments with IBM models 1-4 in
three different ways: (1) by seeding the parameters
of IBM model 1, (2) by constraining the word co-
occurrences when training IBM models 1-4, and
(3) by adding the cognate pairs to the bi-text as
additional “sentence pairs”. The last approach per-
formed best and was later used by Kondrak et al.
(2003) who demonstrated improved SMT for nine
European languages.

Unlike these approaches, which extract cog-
nates between the source and the target language,
we use cognates between the source and some
other related language that is different from the
target. Moreover, we only implicitly rely on the
existence of such cognates; we do not try to ex-
tract them at all, and we leave them in their origi-
nal sentence contexts.12

12However, in some of our experiments, we extract cog-
nates for training a transliteration system from the resource-
rich source language X2 into the resource-poor one X1.
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Direction System 10K 20K 40K 80K 160K 320K 1,230K
en→es baseline 22.6 25.0 26.5 26.5 28.7 30.0 –

pivoting (+8 languages × ∼1.3M pairs) 23.3 26.0 27.2 28.0 29.0 30.0 –
improvement +0.7 +1.0 +0.7 +1.5 +0.3 +0.0 –

es→en baseline 22.87 24.71 25.80 27.08 27.90 28.46 29.90
our method (+1 language × 160K pairs) 23.98∗ 25.65∗ 26.49∗ 27.30� 28.05 28.52 29.87
improvement +1.11∗ +0.94∗ +0.69∗ +0.22� +0.15 +0.06 -0.03
our method (translit., +1 lang. × 160K) 25.73∗ 26.36∗ 26.95∗ 27.49∗ 28.16 28.43 29.94
improvement +2.86∗ +1.65∗ +1.15∗ +0.41∗ +0.26 -0.03 +0.04
our method (+1 language × 1.23M pairs) 24.23∗ 25.70∗ 26.78∗ 27.49 28.22� 28.58 29.84
improvement +1.36∗ +0.99∗ +0.98∗ +0.41 +0.32� +0.12 -0.06
our method (translit., +1 lang. × 1.23M) 26.24∗ 26.82∗ 27.47∗ 27.85∗ 28.50∗ 28.70 29.99
improvement +3.37∗ +2.11∗ +1.67∗ +0.77∗ +0.60∗ +0.24 +0.09

Table 4: Comparison to the pivoting technique of Callison-Burch et al. (2006) for English→Spanish.
Shown are Bleu scores (in %s) and absolute improvement over the baseline for training bi-texts with
different numbers of parallel sentences (10K, 20K, . . ., 1230K) and fixed amount of additional data:
(1) about 1.3M sentence pairs for each of eight additional languages in Callison-Burch et al. (2006)’s
pivoting, and (2) 160K and 1,230K pairs for one language (Portuguese) for our method. Statistically
significant improvements over the baseline are marked with a ∗ (for p < 0.01) and with a � (for p < 0.05).

5.2 Paraphrasing with a Pivot-Language

Another relevant line of research is on using multi-
lingual parallel corpora to improve SMT using ad-
ditional languages as pivots.

Callison-Burch et al. (2006) improved
English→Spanish and English→French SMT
using source-language paraphrases extracted with
the pivoting technique of Bannard and Callison-
Burch (2005) and eight additional languages from
the Europarl corpus (Koehn, 2005). For example,
using German as a pivot, they extracted English
paraphrases from a parallel English-German
corpus by looking for English phrases that were
aligned to the same German phrase: e.g., if under
control and in check were aligned to unter con-
trolle, they were hypothesized to be paraphrases
with some probability. Such (English) paraphrases
were added as additional entries in the phrase
table of an English→Spanish/English→French
phrase-based SMT system and paired with the
foreign (Spanish/French) translation of the origi-
nal (English) phrase. The system was then tuned
with MERT using an extra feature penalizing
low-probability paraphrases; this yielded up to
1.8% absolute improvement in Bleu.

Other important publications about pivoting ap-
proaches for machine translation include (Wu and
Wang, 2007), (Utiyama and Isahara, 2007), (Hajič
et al., 2000) and (Habash and Hu, 2009).

Unlike pivoting, which can only improve
source-language lexical coverage, we augment
both the source- and the target-language sides.
Second, while pivoting ignores context when ex-

tracting paraphrases, we take it into account.
Third, by using as an additional language one that
is related to the source, we are able to get increase
in Bleu that is comparable and even better than
what pivoting achieves with eight pivot languages.
On the negative side, our approach is limited in
that it requires that X2 be related to X1, while the
pivoting language Z does not need to be related to
X1 nor to Y . However, we only need one addi-
tional parallel corpus (for X2-Y ), while pivoting
needs two: one for X1-Z and one for Z-Y . Fi-
nally, note that our approach is orthogonal to piv-
oting, and thus the two can be combined.

6 Conclusion and Future Work

We have proposed a novel method for improving
SMT for resource-poor languages by exploiting
their similarity to resource-rich ones.

In future work, we would like to extend that ap-
proach in several interesting directions. First, we
want to make better use of multi-lingual parallel
corpora, e.g., while we had access to a Spanish-
Portuguese-English corpus, we used it as two
separate bi-texts Spanish-English and Portuguese-
English. Second, we would like to exploit multi-
ple auxiliary resource-rich languages the resource-
poor source language is related to. Third, we could
also experiment with using auxiliary languages
that are related to the target language.
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Abstract

This paper presents an investigation of the
relation between words and their gender in
two gendered languages: German and Ro-
manian. Gender is an issue that has long
preoccupied linguists and baffled language
learners. We verify the hypothesis that
gender is dictated by the general sound
patterns of a language, and that it goes
beyond suffixes or word endings. Exper-
imental results on German and Romanian
nouns show strong support for this hypoth-
esis, as gender prediction can be done with
high accuracy based on the form of the
words.

1 Introduction

For speakers of a language whose nouns have no
gender (such as modern English), making the leap
to a language that does (such as German), does
not come easy. With no or few rules or heuris-
tics to guide him, the language learner will try to
draw on the “obvious” parallel between grammat-
ical and natural gender, and will be immediately
baffled to learn thatgirl – Mädchen– is neuter in
German. Furthermore, one may refer to the same
object using words with different gender:car can
be called(das) Auto(neuter) or(der) Wagen(mas-
culine). Imagine that after hard work, the speaker
has mastered gender in German, and now wishes
to proceed with a Romance language, for example
Italian or Spanish. He is now confronted with the
task of relearning to assign gender in these new
languages, made more complex by the fact that
gender does not match across languages: e.g.sun
– feminine in German (die Sonne), but masculine
in Spanish (el sol), Italian (il sole) and French (le
soleil); moon– masculine in German (der Mond),
but feminine in Spanish (la luna), Italian (la luna)
and French (la lune). Gender doesn’t even match

within a single language family:travel – mascu-
line in Spanish (el viage) and Italian (il viaggio),
but feminine in Portuguese (a viagem).

Grammatical gender groups nouns in a lan-
guage into distinct classes. There are languages
whose nouns are grouped into more or less than
three classes. English for example has none, and
makes no distinction based on gender, although
Old English did have three genders and some
traces remain (e.g.blonde, blond).

Linguists assume several sources for gender: (i)
a first set of nouns which have natural gender and
which have associated matching grammatical gen-
der; (ii) nouns that resemble (somehow) the nouns
in the first set, and acquire their grammatical gen-
der through this resemblance. Italian and Roma-
nian, for example, have strong and reliable phono-
logical correlates (Vigliocco et al., 2004b, for Ital-
ian). (Doca, 2000, for Romanian). In Romanian
the majority of feminine nouns end in̆a or e. Some
rules exists for German as well (Schumann, 2006),
for example nouns ending in-tät, -ung, -e, -enz,
-ur, -keit, -in tend to be feminine. Also, when
specific morphological processes apply, there are
rules that dictate the gender of the newly formed
word. This process explains whyFrau (woman) is
feminine in German, whileFräulein(little woman,
miss) is neuter –Fräulein = Frau + lein. The ex-
isting rules have exceptions, and there are numer-
ous nouns in the language which are not derived,
and such suffixes do not apply.

Words are names used to refer to concepts. The
fact that the same concept can be referred to using
names that have different gender – as is the case
for car in German – indicates that at least in some
cases, grammatical gender is in the name and not
the concept. We test this hypothesis – that the gen-
der of a noun is in its word form, and that this goes
beyond word endings – using noun gender data
for German and Romanian. Both Romanian and
German have 3 genders: masculine, feminine and
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neuter. The models built using machine learning
algorithms classify test nouns into gender classes
based on their form with high accuracy. These re-
sults support the hypothesis that in gendered lan-
guages, the word form is a strong clue for gender.
This supplements the situation when some con-
cepts have natural gender that matches their gram-
matical gender: it allows for an explanation where
there is no such match, either directly perceived,
or induced through literary devices.

The present research has both theoretical and
practical benefits. From a theoretical point of
view, it contributes to research on phonology and
gender, in particular in going a step further in un-
derstating the link between the two. From a practi-
cal perspective, such a connection between gender
and sounds could be exploited in advertising, in
particular in product naming, to build names that
fit a product, and which are appealing to the de-
sired customers. Studies have shown that espe-
cially in the absence of meaning, the form of a
word can be used to generate specific associations
and stimulate the imagination of prospective cus-
tomers (Sells and Gonzales, 2003; Bedgley, 2002;
Botton et al., 2002).

2 Gender

What is the origin of grammatical gender and how
does it relate to natural gender? Opinions are split.
Historically, there were two main, opposite, views:
(i) there is a semantic explanation, and natural
gender motivated the category (ii) the relationship
between natural and grammatical gender is arbi-
trary.

Grimm (1890) considered that grammatical
gender is an extension of natural gender brought
on by imagination. Each gender is associated
with particular adjectives or other attributes, and in
some cases (such as forsunandmoon) the assign-
ment of gender is based on personification. Brug-
mann (1889) and Bloomfield (1933) took the po-
sition that the mapping of nouns into genders is
arbitrary, and other phenomena – such as deriva-
tions, personification – are secondary to the estab-
lished agreement. Support for this second view
comes also from language acquisition: children
who learn a gendered language do not have a nat-
ural gender attribute that they try to match onto
the newly acquired words, but learn these in a sep-
arate process. Any match or mapping between
natural and grammatical gender is done after the
natural gender “feature” is acquired itself. Ki-

larski (2007) presents a more detailed overview
of currents and ideas about the origin of gender.
Unterbeck (1999) contains a collection of papers
that investigate grammatical gender in several lan-
guages, aspects of gender acquisition and its rela-
tion with grammatical number and agreement.

There may be several reasons for the polemic
between these two sides. One may come from the
categorization process, the other from the relation
between word form and its meaning. Let us take
them each in turn, and see how they influenced
gender.

Grammatical gender separates the nouns in a
language into disjoint classes. As such, it is a cat-
egorization process. The traditional – classical –
theory of categorization and concepts viewed cat-
egories and concepts as defined in terms of a set
of common properties that all its members should
share. Recent theories of concepts have changed,
and view concepts (and categories) not necessar-
ily as “monolithic” and defined through rules, but
rather as clusters of members that may resemble
each other along different dimensions (Margolis
and Laurence, 1999).

In most linguistic circles, the principle of ar-
bitrariness of the association between form and
meaning, formalized by de Saussure (1916) has
been largely taken for granted. It seems however,
that it is hard to accept such an arbitrary relation,
as there have always been contestants of this prin-
ciple, some more categorical than others (Jakob-
son, 1937; Jespersen, 1922; Firth, 1951). It is pos-
sible that the correlation we perceive between the
word form and the meaning is something that has
arisen after the word was coined in a language, be-
ing the result of what Firth called “phonetic habit”
through “an attunement of the nervous system”,
and that we have come to prefer, or select, cer-
tain word forms as more appropriate to the con-
cept they name – “There is no denying that there
are words which we feel instinctively to be ade-
quate to express the ideas they stand for. ... Sound
symbolism, we may say, makes some words more
fit to survive” (Jespersen, 1922).

These two principles relate to the discussion
on gender in the following manner: First of all,
the categories determined by grammatical gen-
der need not be homogeneous, and their mem-
bers need not all respect the same member-
ship criterion. This frees us from imposing a
matching between natural and grammatical gen-
der where no such relation is obvious or pos-
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sible through literary devices (personification,
metaphor, metonymy). Nouns belonging to the
same gender category may resemble each other
because of semantic considerations, lexical deriva-
tions, internal structure, perceived associations
and so on. Second, the fact that we allow for the
possibility that the surface form of a word may
encode certain word characteristics or attributes,
allows us to hypothesize that there is a surface,
phonological, similarity between words grouped
within the same gender category, that can supple-
ment other resemblance criteria in the gender cat-
egory (Zubin and K̈opcke, 1986).

Zubin and K̈opcke (1981), Zubin and K̈opcke
(1986) have studied the relation between seman-
tic characteristics and word form with respect to
gender for German nouns. Their study was mo-
tivated by two observations: Zipf (1935) showed
that word length is inversely correlated with fre-
quency of usage, and Brown (1958) proposed that
in choosing a name for a given object we are more
likely to use a term corresponding to a “basic”
level concept. For example,chair, dog, apple
would correspond to the basic level, whilefurni-
ture, animal, fruitand recliner, collie, braeburn
apple correspond to a more general or a more
specific level, respectively. Their study of gen-
der relative to these levels have shown that basic
level terms have masculine, feminine, and rarely
neuter genders, while the more undifferentiated
categories at the superordinate level are almost ex-
clusively neuter.

In psycholinguistic research, Friederici and Ja-
cobsen (1999) adopt the position that a lexical
entry consists of two levels: form and seman-
tic and grammatical properties to study the influ-
ence of gender priming – both from a form and
semantic perspective – on language comprehen-
sion. Vigliocco et al. (2004a) study gender prim-
ing for German word production. While this re-
search studies the influence of the word form on
the production of nouns with the same or different
grammatical gender, there is no study of the rela-
tion between word forms and their corresponding
gender.

In recent studies we have found on the rela-
tion between word form and its associated gender,
the only phonological component of a word that
is considered indicative is the ending. Spalek et
al. (2008) experiment on French nouns, and test
whether a noun’s ending is a strong clue for gen-
der for native speakers of French. Vigliocco et al.

(2004b) test cognitive aspects of grammatical gen-
der of Italian nouns referring to animals.

Cucerzan and Yarowsky (2003) present a boot-
strapping process to predict gender for nouns in
context. They show that context gives accurate
clues to gender (in particular through determiners,
quantifiers, adjectives), but when the context is not
useful, the algorithm can fall back successfully on
the word form. Cucerzan and Yarowsky model
the word form for predicting gender using suffix
trie models. When a new word is encountered, the
word is mapped onto the trie starting from the last
letter, and it is assigned the gender that has the
highest probability based on the path it matches in
the trie. In context nouns appear with various in-
flections – for number and case in particular. Such
morphological derivations are gender specific, and
as such are strong indicators for gender.

The hypothesis tested here is that gender comes
from the general sound of the language, and is dis-
tributed throughout the word. For this, the data
used should not contain nouns with “tell tale” in-
flections. The data will therefore consist of nouns
in the singular form, nominative case. Some nouns
are derived from verbs, adverbs or adjectives, or
other nouns through morphological derivations.
These derivations are regular and are identifiable
through a rather small number of regular suffixes.
These suffixes (when they are indicative of gen-
der) and word endings will be used as baselines
to compare the accuracy of prediction on the full
word with the ending fragment.

3 Data

We test our gender-language sounds connection
through two languages from different language
families. German will be the representative of the
Germanic languages, and Romanian for the Ro-
mance ones. We first collect data in the two lan-
guages, and then represent them through various
features – letters, pronunciation, phonetic features.

3.1 Noun collections

German data For German we collect nouns and
their grammatical gender from a German-English
dictionary, part of the BEOLINGUS multi-lingual
dictionary1. In the first step we collected the Ger-
man nouns and their gender from this dictionary.
In step 2, we filter out compounds. The reason
for this step is that a German noun compound will

1http://dict.tu-chemnitz.de/
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have the gender of its head, regardless of its nom-
inal modifiers. For the lack of a freely available
tool to detect and split noun compounds, we resort
to the following algorithm:

1. initialize the list of nounsLN to the empty
list;

2. take each nounn in the dictionaryD, and

(a) if ∃ni ∈ LN such thatn is an end sub-
string of ni, then addn to LN and re-
moveni from LN ;

(b) if ∃ni ∈ LN such thatni is a end sub-
string ofn, skipn;

Essentially, we remove from the data all nouns
that include another noun as the end part (which
is the head position in German noun compounds).
This does not filter examples that have suffixes
added to form the feminine version of a masculine
noun, for example:(der) Lehrer– (die) Lehrerin
(teacher). The suffixes are used in one of the base-
lines for comparison with our learning method.

We obtain noun pronunciation information from
the Bavarian Archive for Speech Signals2. We fil-
ter again our listLN to keep nouns for which we
have pronunciation information. This allows us to
compare the learning results when letter or pro-
nunciation information is used.

After collecting the nouns and their pronunci-
ation, we map the pronunciation onto lower level
phonetic features, following the IPA encoding of
sounds for the German language. The mapping
between sounds and IPA features was manually
encoded following IPA tables.

Romanian data We extract singular nomina-
tive forms of nouns from the Romanian lexical
database (Barbu, 2008). The resource contains
the proper word spelling, including diacritics and
special characters. Because of this and the fact
that there is a straightforward mapping between
spelling and pronunciation in Romanian, we can
use the entire data extracted from the dictionary
in our experiments, without special pronunciation
dictionaries. Following the example for the Ger-
man language, we encode each sound through
lower level phonological features using IPA guide-
lines.

As in Italian, in Romanian there are strong
phonological cues for nouns, especially those hav-
ing the feminine gender: they end in̆a and e.

2http://www.phonetik.uni-muenchen.de/
Bas/

To determine whether the connection between a
word form and gender goes beyond this superfi-
cial rule, we generate a dataset in which the nouns
are stripped of their final letter, and their represen-
tation is built based on this reduced form.

Table 1 shows the data collected and the distri-
bution in the three classes.

German Romanian
masc. 565 32.64% 7338 15.14%
fem. 665 38.42% 27187 56.08%
neut. 501 28.94% 13952 28.78%
total 1731 48477

Table 1: Data statistics

Because for Romanian the dataset is rather
large, we can afford to perform undersampling
to balance our classes, and have a more straight-
forward evaluation. We generate a perfectly bal-
anced dataset by undersampling the feminine and
the neuter classes down to the level of the mascu-
line class. We work then with a dataset of 22014
instances, equally distributed among the three gen-
ders.

3.2 Data representation

For each word in our collections we produce three
types of representation: letters, phonemes and
phonological features. Table 2 shows examples
for each of these representations. The letter and
phoneme representations are self-explanatory. We
obtain the pronunciation corresponding to each
word from a pronunciation dictionary, as men-
tioned in Section 3.1, which maps a word onto a
sequence of phonemes (phones). For Romanian
we have no such resource, but me make without
since in most part the pronunciation matches the
letter representation3.

German
letter abend (m) a b e n d
phoneme a: b @ n d

Romanian
letter sear̆a (f) s e a r̆a

Table 2: Data representation in terms of letters and
phonemes for the German and Romanian forms of
the wordevening. For Romanian, the letter and
phoneme representation is the same.

3The exceptions are the diphthongs and a few groups of
letters: ce, ci, che, chi, oa, and the letter x.
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Phonemes, the building blocks of the phonetic
representation, can be further described in terms
of phonological features – “configurations” of
the vocal tract (e.g tongue and lips position),
and acoustic characteristics (e.g. manner of
air flow). We use IPA standards for mapping
phones in German and Romanian onto these
phonological features. We manually construct
a map between phones and features, and then
automatically binarize this representation and
use it to generate a representation for each
phone in each word in the data. For the word
abend (de) / seara (ro) (evening)in Figure 2, the
phonological feature representation for German is:

0000100000001000010000000001
0001000100000000000010000000
0000100000000100000000010001
1000000100000010000000000000
1000000100000000000010000000,

with the feature base:

< alveolar, approximant, back, bilabial, cen-
tral, close, closemid, consonant, fricative, front,
glottal, labiodental, long, mid, nasal, nearclose,
nearopen, open, openmid, palatal, plosive,
postalveolar, rounded, short, unrounded, uvular,
velar, vowel>.

For Romanian, the phonological feature base
is:

< accented, affricate, approximant, back, bi-
labial, central, close, consonant, dental, fricative,
front, glottal, labiodental, mid, nasal, open,
plosive, postalveolar, rounded, trill, unrounded,
velar, voiced, voiceless, vowel>,

and the phonological feature representation
of the word changes accordingly.

4 Kernel Methods and String Kernels

Our hypothesis that the gender is in the name is
equivalent to proposing that there are sequences of
letters/sounds/phonological features that are more
common among nouns that share the same gender
or that can distinguish between nouns under differ-
ent genders. To determine whether that is the case,
we use a string kernel, which for a given string (se-
quence) generates a representation that consists of
all its substrings of length less than a parameterl.

The words are represented as strings with bound-
aries marked with a special character (’#’). The
high dimensional representation generated by the
string kernel is used to find a hyperplane that sep-
arates instances of different classes. In this section
we present in detail the kernel we use.

Kernel-based learning algorithms work by em-
bedding the data into a feature space (a Hilbert
space), and searching for linear relations in that
space. The embedding is performed implicitly,
that is by specifying the inner product between
each pair of points rather than by giving their co-
ordinates explicitly.

Given an input setX (the space of examples),
and an embedding vector spaceF (feature space),
let φ : X → F be an embedding map called fea-
ture map.

A kernelis a functionk, such that for allx, z ∈
X , k(x, z) =< φ(x), φ(z) >, where< ., . >
denotes the inner product inF .

In the case of binary classification problems,
kernel-based learning algorithms look for a dis-
criminant function, a function that assigns+1 to
examples belonging to one class and−1 to exam-
ples belonging to the other class. This function
will be a linear function in the spaceF , that means
it will have the form:

f(x) = sign(< w, φ(x) > +b),

for some weight vectorw. The kernel can be
exploited whenever the weight vector can be ex-
pressed as a linear combination of the training

points,
n∑

i=1
αiφ(xi), implying that f can be ex-

pressed as follows:

f(x) = sign(
n∑

i=1

αik(xi, x) + b)

.
Various kernel methods differ in the way in

which they find the vectorw (or equivalently the
vectorα). Support Vector Machines (SVM) try to
find the vectorw that define the hyperplane that
maximum separate the images inF of the train-
ing examples belonging to the two classes. Math-
ematically SVMs choose thew andb that satisfy
the following optimization criterion:

min
w,b

1
n

n∑
i=1

[1− yi(< w, φ(xi) > +b)]+ + ν||w||2

whereyi is the label (+1/−1) of the training ex-
amplexi, ν a regularization parameter and[x]+ =
max(x, 0).
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Kernel Ridge Regression (KRR) selects the vec-
tor w that simultaneously has small empirical er-
ror and small norm in Reproducing Kernel Hilbert
Space generated by kernelk. The resulting mini-
mization problem is:

min
w

1
n

n∑
i=1

(yi− < w, φ(xi) >)2 + λ||w||2

where againyi is the label (+1/−1) of the training
examplexi, andλ a regularization parameter. De-
tails about SVM and KRR can be found in (Taylor
and Cristianini, 2004). What is important is that
above optimization problems are solved in such a
way that the coordinates of the embedded points
are not needed, only their pairwise inner products
which in turn are given by the kernel functionk.

SVM and KRR produce binary classifiers and
gender classification is a multi-class classification
problem. There are a lot of approaches for com-
bining binary classifiers to solve multi-class prob-
lems. We usedone-vs-allscheme. For arguments
in favor of one-vs-all see (Rifkin and Klautau,
2004).

The kernel function offers to the kernel methods
the power to naturally handle input data that are
not in the form of numerical vectors, for example
strings. The kernel function captures the intuitive
notion of similarity between objects in a specific
domain and can be any function defined on the
respective domain that is symmetric and positive
definite. For strings, a lot of such kernel functions
exist with many applications in computational bi-
ology and computational linguistics (Taylor and
Cristianini, 2004).

Perhaps one of the most natural ways to mea-
sure the similarity of two strings is to count how
many substrings of lengthp the two strings have
in common. This give rise to thep-spectrum ker-
nel. Formally, for two strings over an alphabetΣ,
s, t ∈ Σ∗, thep-spectrum kernel is defined as:

kp(s, t) =
∑

v∈Σp

numv(s)numv(t)

where numv(s) is the number of occurrences of
stringv as a substring ins 4 The feature map de-
fined by this kernel associate to each string a vec-
tor of dimension|Σ|p containing the histogram of
frequencies of all its substrings of lengthp. Taking

4Note that the notion of substring requires contiguity. See
(Taylor and Cristianini, 2004) for discussion about the am-
biguity between the terms ”substring” and ”subsequence”
across different traditions: biology, computer science.

into account all substrings of length less thanp it
will be obtained a kernel that is called theblended
spectrum kernel:

kp
1(s, t) =

p∑
q=1

kq(s, t)

The blended spectrum kernel will be the ker-
nel that we will use in conjunction with SVM and
KRR. More precisely we will use a normalized
version of the kernel to allow a fair comparison
of strings of different length:

k̂p
1(s, t) =

kp
1(s, t)√

kp
1(s, s)k

p
1(t, t)

5 Experiments and Results

We performed 10-fold cross-validation learning
experiments with kernel ridge regression and the
string kernel (KRR-SK) presented in Section 4.
We used several baselines to compare the results
of the experiments against:

BL-R Gender is assigned following the distribu-
tion of genders in the data.

BL-M Gender is assigned following the majority
class (only for German, for Romanian we use
balanced data).

BL-S Gender is assigned based on suffix-gender
relation found in the literature. We use the
following mappings:

• German (Schumann, 2006):

feminine -ade, -age, -anz, -e, -ei, -enz,
-ette, -heit, -keit, -ik, -in, -ine, -ion, -
itis, -ive, -schaft, -ẗat, -tur, -ung, -ur;

masculine -ant, -er, -ich, -ismus, -ling;
neuter -chen, -ist, -lein, -ment, -nis, -o,

-tel, -um.

In our data set the most dominant gen-
der is feminine, therefore we assign this
gender to all nouns that do not match
any of the previous suffixes. Table 4
shows a few suffixes for each gender,
and an example noun.

• Romanian: in Romanian the word end-
ing is a strong clue for gender, especially
for feminine nouns: the vast majority
end in either-e or -ă (Doca, 2000). We
design a heuristic that assigns the gen-
der “preferred” by the last letter – the
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Method Accuracy masc. F-score fem. F-score neut. F-score

German
BL-R 33.79
BL-M 38.42
BL-S 51.35 40.83 62.42 26.69
KRR-SK 72.36± 3 64.88± 5 84.34± 4 64.44± 7
KRR-SKnoWB 66.91 58.77 79.19 58.26

Romanian
BL-R 33.3
BL-S 74.38 60.65 97.96 63.93
KRR-SK 78.83± 0.8 68.74± 0.9 98.05± 0.2 69.38± 2
KRR-SK no last letter 65.73± 0.6 56.11± 1 85.00± 0.5 55.05± 1
KRR-SKnoWB 77.36 67.54 96.75 67.39

Table 3: 10-fold cross-validation results – accuracy and f-scores percentages (± variation over the 10
runs) – for gender learning using string kernels

German
gender suffix example
fem. -e Ecke (corner)

-heit Freiheit (freedom)
-ie Komödie (comedy)

masc. -er Fahrer (driver)
-ich Rettich (radish)
-ling Frühling (spring - season)

neut. -chen M̈adchen (girl)
-nis Versẗandnis (understanding)
-o Auto (car)

Table 4: Gender assigning rules and examples for
German

majority gender of all nouns ending in
the respective letter – based on analy-
sis of our data. In Table 5 we include
some of the letter endings with an exam-
ple noun, and a percentage that shows
the precision of the ending in classify-
ing the noun in the gender indicated in
the table.

The results of our experiments are presented
in Table 3, in terms of overall accuracy, and f-
score for each gender. The performance presented
corresponds to the letter-based representation of
words. It is interesting to note that this represen-
tation performed overall better than the phoneme
or phonological feature-based ones. An explana-

Romanian
gender ending example Prec.
fem. -̆a mas̆a (table) 98.04

-e p̂aine (bread) 97.89
masc. -g sociolog (sociologist) 72.77

-r nor (cloud) 66.89
-n domn (gentleman) 58.45

neut. -m algoritm (algorithm) 90.95
-s vers (verse) 66.97
-t eveniment (event) 51.02

Table 5: Word-ending precision on classifying
gender and examples for Romanian

tion may be that in both the languages we consid-
ered, there is an (almost) one-to-one mapping be-
tween letters and their pronunciation, making thus
the pronunciation-based representation unneces-
sary. As such, the letter level captures the interest-
ing commonalities, without the need to go down
to the phoneme-level.

We performed experiments for Romanian when
the last letter of the word is removed. The reason
for this batch of experiments is to further test the
hypothesis that gender is more deeply encoded in a
word form than just the word ending. For both lan-
guages we observe statistically significant higher
performance than all baselines. For Romanian,
the last letter heuristic gives a very high baseline,
confirming that Romanian has strong phonologi-
cal cues for gender in the ending. Had the word
ending been the only clue to the word’s gender,
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Figure 1: Gender prediction based on the last N letters, and based on the word minus the last N letters

once it is removed the performance on recogniz-
ing gender should be close to the random assign-
ment. This is not the case, and the improvement
over the random baseline is 32% points. It is inter-
esting to notice that when cutting off the last letter
the class for which the gender assignment heuris-
tic was clearest – the feminine class with -ă and
-e endings – the performance remains very high –
85% F-score.

To further test where the gender indicators are
located, we performed two more sets of experi-
ments: (i) classify words in their corresponding
gender class using the word minus the last N let-
ters; (ii) classify words based on the last N let-
ters. The results of these experiments in terms of
accuracy are presented in Figure 1. When con-
sidering only the last N letters the performance is
high for both German and Romanian, as expected
if the gender indicators are concentrated at the end
of the word. It is interesting though to notice the
results of classification based on the word without
the last N letters. The prediction accuracy mono-
tonically decreases, but remains above the base-
line until more than 6 letters are cut. Because as
letters are cut some words completely disappear,

the baseline changes accordingly. 94.07% of the
words have a length of at most 12 letters in the
Romanian dataset, and 96.07% in the German one.
Because gender prediction can be done with accu-
racy higher than the random baseline even after 6
letters are cut from the ending of the word indicate
that for more than 94% of the words considered,
gender clues are spread over more than the second
half of the word. Again, we remind the reader that
the word forms are in nominative case, with no
case or number inflections (which are strong indi-
cators of gender in both Romanian and German).

Except for linesKRR − SKnoWB, the results
in Table 3 are obtained through experiments con-
ducted on words containing word boundary mark-
ers, as indicated in Section 4. Because of these
markers, word starting or word ending substrings
are distinct from all the others, and information
about their position in the original word is thus
preserved. To further explore the idea that gender
indicators are not located only in word endings,
we ran classification experiments for German and
Romanian when the word representation does not
contain word boundary markers. This means that
the substrings generated by the string kernel have
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no position information. The results of these ex-
periments are presented in rowsKRR−SKnoWB

in Table 3. The accuracy is slightly lower than the
best results obtained when word boundaries are
marked and the entire word form is used. How-
ever, they are well above all the baselines consid-
ered, without no information about word endings.

For both German and Romanian, the gender that
was learned best was feminine. For German part
of this effect is due to the fact that the feminine
class is more numerous in the data. For Roma-
nian the data was perfectly balanced, so there is no
such bias. Neuter and masculine nouns have lower
learning performance. For Romanian, a contri-
bution to this effect is the fact that neuter nouns
behave as masculine nouns in their singular form
(take the same articles, inflections, derivations),
but as feminine in the plural, and our data consists
of nouns in singular form. It would seem that from
an orthographic point of view, neuter and mascu-
line nouns are closer to each other than to feminine
nouns.

From the reviewed related work, the one that
uses the word form to determine gender is
Cucerzan and Yarowsky (2003) for Romanian.
There are two important differences with respect
to the approach presented here. First, they con-
sider words in context, which are inflected for
number and case. Number and case inflections
are reflected in suffixes that are gender specific.
The words considered here are in singular form,
nominative case – as such, with no inflections.
Second, Cucerzan and Yarowsky consider two
classes: feminine vs. masculine and neuter. Mas-
culine and neuter nouns are harder to distinguish,
as in singular form neuter nouns behave like mas-
culine nouns in Romanian. While the datasets and
word forms used by Cucerzan and Yarowsky are
different than the one used here, the reader may
be curious how well the word form distinguishes
between feminine and the other two classes in
the experimental set-up used here. On the full5

Romanian dataset described in Section 3, a two
class classification gives 99.17% accuracy. When
predicting gender for all words in their dataset,
Cucerzan and Yarowsky obtain 98.25% accuracy.

6 Conclusion

When a speaker of a genderless language tries to
learn a language with grammatical gender, it is

5By “full” we mean the dataset before balancing the
classes 48,477 instances (see Table 1).

very tempting to try to assign grammatical gen-
der based on perceived or guessed natural gender
types. This does not work out well, and it only
serves to confuse the learner even more, when he
finds out that nouns expressing concepts with clear
feminine or masculine natural gender will have the
opposite or a neutral grammatical gender, or that
one concept can be referred to through names that
have different grammatical genders. Going with
the flow of the language seems to be a better idea,
and allow the sound of a word to dictate the gen-
der.

In this paper we have investigated the hypothe-
sis that gender is encoded in the word form, and
this encoding is more than just the word endings
as it is commonly believed. The results obtained
show that gender assignment based on word form
analysis can be done with high accuracy – 72.36%
for German, and 78.83% for Romanian. Existing
gender assignment rules based on word endings
have lower accuracy. We have further strength-
ened the point by conducting experiments on Ro-
manian nouns without tell-tale word endings. The
accuracy remains high, with remarkably high per-
formance in terms of F-score for the feminine
class (85%). This leads us to believe that gen-
der information is somehow redundantly coded in
a word. We plan to look closer at cases where
we obtain different predictions based on the word
ending and the full form of the word, and use
boosting to learn weights for classifiers based on
different parts of the word to see whether we can
further improve the results.

As we have underlined before, word form simi-
larity between words under the same gender is one
criterion for gender assignment. It would be in-
teresting to verify whether gender recognition can
be boosted by using lexical resources that capture
the semantics of the words, such as WordNets or
knowledge extracted from Wikipedia, and verify
whether similarities from a semantic point of view
are also responsible for gender assignments in var-
ious languages.

References
Ana-Maria Barbu. 2008. Romanian lexical data

bases: Inflected and syllabic forms dictionar-
ies. In Proceedings of the Sixth International
Language Resources and Evaluation (LREC’08).
http://www.lrec-conf.org/proceedings/lrec2008/.

Sharon Bedgley. 2002. Strawberry is
no blackberry: Building brands us-

1376



ing sound. http://online.wsj.com/article/
0,,SB1030310730179474675.djm,00.html.

Leonard Bloomfield. 1933.Language. Holt, Reinhart
& Winston, New York.

Marcel Botton, Jean-Jack Cegarra, and Beatrice Fer-
rari. 2002.Il nome della marca: creazione e strate-
gia di naming, 3rd edition. Guerini e Associati.

Roger Brown. 1958.Words and Things. The Free
Press, New York.

Karl Brugmann. 1889. Das Nominalgeschlecht
in den indogermanischen Sprachen. InInter-
nationale Zeitschrift f̈ur allgemenine Sprachwis-
senschaft, pages 100–109.

S. Cucerzan and D. Yarowsky. 2003. Minimally super-
vised induction of grammatical gender. InProceed-
ings of HLT-NAACL 2003, pages 40–47.

Ferdinand de Saussure. 1916.Cours de linguistique
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Abstract

This paper explores the use of innovative
kernels based on syntactic and semantic
structures for a target relation extraction
task. Syntax is derived from constituent
and dependency parse trees whereas se-
mantics concerns to entity types and lex-
ical sequences. We investigate the effec-
tiveness of such representations in the au-
tomated relation extraction from texts. We
process the above data by means of Sup-
port Vector Machines along with the syn-
tactic tree, the partial tree and the word
sequence kernels. Our study on the ACE
2004 corpus illustrates that the combina-
tion of the above kernels achieves high ef-
fectiveness and significantly improves the
current state-of-the-art.

1 Introduction

Relation Extraction (RE) is defined in ACE as the
task of finding relevant semantic relations between
pairs of entities in texts. Figure 1 shows part
of a document from ACE 2004 corpus, a collec-
tion of news articles. In the text, the relation be-
tween president and NBC’s entertainment division
describes the relationship between the first entity
(person) and the second (organization) where the
person holds a managerial position.

Several approaches have been proposed for au-
tomatically learning semantic relations from texts.
Among others, there has been increased interest in
the application of kernel methods (Zelenko et al.,
2002; Culotta and Sorensen, 2004; Bunescu and
Mooney, 2005a; Bunescu and Mooney, 2005b;
Zhang et al., 2005; Wang, 2008). Their main prop-
erty is the ability of exploiting a huge amount of

This work has been partially funded by the LiveMemo-
ries project (http://www.livememories.org/) and Expert Sys-
tem (http://www.expertsystem.net/) research grant.

Jeff Zucker, the longtime executive producer of
NBC’s ”Today” program, will be named Friday
as the new president of NBC’s entertainment
division, replacing Garth Ancier, NBC execu-
tives said.

Figure 1: A document from ACE 2004 with all
entity mentions in bold.

features without an explicit feature representation.
This can be done by computing a kernel function
between a pair of linguistic objects, where such
function is a kind of similarity measure satisfy-
ing certain properties. An example is the sequence
kernel (Lodhi et al., 2002), where the objects are
strings of characters and the kernel function com-
putes the number of common subsequences of
characters in the two strings. Such substrings are
then weighted according to a decaying factor pe-
nalizing longer ones. In the same line, Tree Ker-
nels count the number of subtree shared by two in-
put trees. An example is that of syntactic (or sub-
set) tree kernel (SST) (Collins and Duffy, 2001),
where trees encode grammatical derivations.

Previous work on the use of kernels for RE
has exploited some similarity measures over di-
verse features (Zelenko et al., 2002; Culotta and
Sorensen, 2004; Zhang et al., 2005) or subse-
quence kernels over dependency graphs (Bunescu
and Mooney, 2005a; Wang, 2008). More specif-
ically, (Bunescu and Mooney, 2005a; Culotta
and Sorensen, 2004) use kernels over depen-
dency trees, which showed much lower accuracy
than feature-based methods (Zhao and Grishman,
2005). One problem of the dependency kernels
above is that they do not exploit the overall struc-
tural aspects of dependency trees. A more effec-
tive solution is the application of convolution ker-
nels to constituent parse trees (Zhang et al., 2006)
but this is not satisfactory from a general per-
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spective since dependency structures offer some
unique advantages, which should be exploited by
an appropriate kernel.

Therefore, studying convolution tree kernels for
dependency trees is worthwhile also considering
that, to the best of our knowledge, these models
have not been previously used for relation extrac-
tion1 task. Additionally, sequence kernels should
be included in such global study since some of
their forms have not been applied to RE.

In this paper, we study and evaluate diverse con-
volution and sequence kernels for the RE problem
by providing several kernel combinations on con-
stituent and dependency trees and sequential struc-
tures. To fully exploit the potential of dependency
trees, in addition to the SST kernel, we applied
the partial tree (PT) kernel proposed in (Moschitti,
2006), which is a general convolution tree kernel
adaptable for dependency structures. We also in-
vestigate various sequence kernels (e.g. the word
sequence kernel (WSK) (Cancedda et al., 2003))
by incorporating dependency structures into word
sequences. These are also enriched by including
information from constituent parse trees.

We conduct experiments on the standard ACE
2004 newswire and broadcast news domain. The
results show that although some kernels are less
effective than others, they exhibit properties that
are complementary to each other. In particu-
lar, we found that relation extraction can benefit
from increasing the feature space by combining
kernels (with a simple summation) exploiting the
two different parsing paradigms. Our experiments
on RE show that the current composite kernel,
which is constituent-based is more effective than
those based on dependency trees and individual
sequence kernel but at the same time their com-
binations, i.e. dependency plus constituent trees,
improve the state-of-the-art in RE. More interest-
ingly, also the combinations of various sequence
kernels gain significant better performance than
the current state-of-the-art (Zhang et al., 2005).

Overall, these results are interesting for the
computational linguistics research since they show
that the above two parsing paradigms provide dif-
ferent and important information for a semantic
task such as RE. Regarding sequence-based ker-
nels, the WSK gains better performance than pre-
vious sequence and dependency models for RE.

1The function defined on (Culotta and Sorensen, 2004),
although on dependency trees, is not a convolution tree ker-
nel.

A review of previous work on RE is described
in Section 2. Section 3 introduces support vec-
tor machines and kernel methods whereas our spe-
cific kernels for RE are described is Section 4. The
experiments and conclusions are presented in sec-
tions 5 and 6, respectively.

2 Related Work

To identify semantic relations using machine
learning, three learning settings have mainly been
applied, namely supervised methods (Miller et
al., 2000; Zelenko et al., 2002; Culotta and
Sorensen, 2004; Kambhatla, 2004; Zhou et al.,
2005), semi supervised methods (Brin, 1998;
Agichtein and Gravano, 2000), and unsupervised
method (Hasegawa et al., 2004). In a supervised
learning setting, representative related work can
be classified into generative models (Miller et al.,
2000), feature-based (Roth and tau Yih, 2002;
Kambhatla, 2004; Zhao and Grishman, 2005;
Zhou et al., 2005) or kernel-based methods (Ze-
lenko et al., 2002; Culotta and Sorensen, 2004;
Bunescu and Mooney, 2005a; Zhang et al., 2005;
Wang, 2008; Zhang et al., 2006).

The learning model employed in (Miller et al.,
2000) used statistical parsing techniques to learn
syntactic parse trees. It demonstrated that a lexi-
calized, probabilistic context-free parser with head
rules can be used effectively for information ex-
traction. Meanwhile, feature-based approaches
often employ various kinds of linguistic, syntac-
tic or contextual information and integrate into
the feature space. (Roth and tau Yih, 2002) ap-
plied a probabilistic approach to solve the prob-
lems of named entity and relation extraction with
the incorporation of various features such as word,
part-of-speech, and semantic information from
WordNet. (Kambhatla, 2004) employed maximum
entropy models with diverse features including
words, entity and mention types and the number
of words (if any) separating the two entities.

Recent work on Relation Extraction has mostly
employed kernel-based approaches over syntac-
tic parse trees. Kernels on parse trees were pi-
oneered by (Collins and Duffy, 2001). This
kernel function counts the number of common
subtrees, weighted appropriately, as the measure
of similarity between two parse trees. (Culotta
and Sorensen, 2004) extended this work to cal-
culate kernels between augmented dependency
trees. (Zelenko et al., 2002) proposed extracting
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relations by computing kernel functions between
parse trees. (Bunescu and Mooney, 2005a) pro-
posed a shortest path dependency kernel by stipu-
lating that the information to model a relationship
between two entities can be captured by the short-
est path between them in the dependency graph.

Although approaches in RE have been domi-
nated by kernel-based methods, until now, most
of research in this line has used the kernel as some
similarity measures over diverse features (Zelenko
et al., 2002; Culotta and Sorensen, 2004; Bunescu
and Mooney, 2005a; Zhang et al., 2005; Wang,
2008). These are not convolution kernels and pro-
duce a much lower number of substructures than
the PT kernel. A recent approach successfully em-
ploys a convolution tree kernel (of type SST) over
constituent syntactic parse tree (Zhang et al., 2006;
Zhou et al., 2007), but it does not capture gram-
matical relations in dependency structure. We be-
lieve that an efficient and appropriate kernel can
be used to solve the RE problem, exploiting the
advantages of dependency structures, convolution
tree kernels and sequence kernels.

3 Support Vector Machines and Kernel
Methods

In this section we give a brief introduction to sup-
port vector machines, kernel methods, diverse tree
and sequence kernel spaces, which can be applied
to the RE task.

3.1 Support Vector Machines (SVMs)

Support Vector Machines refer to a supervised ma-
chine learning technique based on the latest results
of the statistical learning theory (Vapnik, 1998).
Given a vector space and a set of training points,
i.e. positive and negative examples, SVMs find a
separating hyperplane H(~x) = ~ω × ~x + b = 0
where ω ∈ Rn and b ∈ R are learned by applying
the Structural Risk Minimization principle (Vap-
nik, 1995). SVMs is a binary classifier, but it can
be easily extended to multi-class classifier, e.g. by
means of the one-vs-all method (Rifkin and Pog-
gio, 2002).

One strong point of SVMs is the possibility to
apply kernel methods (robert Mller et al., 2001)
to implicitly map data in a new space where the
examples are more easily separable as described
in the next section.

3.2 Kernel Methods

Kernel methods (Schlkopf and Smola, 2001) are
an attractive alternative to feature-based methods
since the applied learning algorithm only needs
to compute a product between a pair of objects
(by means of kernel functions), avoiding the ex-
plicit feature representation. A kernel function
is a scalar product in a possibly unknown feature
space. More precisely, The object o is mapped in
~x with a feature function φ : O → <n, whereO is
the set of the objects.

The kernel trick allows us to rewrite the deci-
sion hyperplane as:

H(~x) =
( ∑

i=1..l

yiαi~xi

)
· ~x+ b =

∑
i=1..l

yiαi~xi · ~x+ b =
∑

i=1..l

yiαiφ(oi) · φ(o) + b,

where yi is equal to 1 for positive and -1 for neg-
ative examples, αi ∈ < with αi ≥ 0, oi ∀i ∈
{1, .., l} are the training instances and the product
K(oi, o) = 〈φ(oi) · φ(o)〉 is the kernel function
associated with the mapping φ.

Kernel engineering can be carried out by com-
bining basic kernels with additive or multiplica-
tive operators or by designing specific data objects
(vectors, sequences and tree structures) for the tar-
get tasks.

Regarding NLP applications, kernel methods
have attracted much interest due to their ability
of implicitly exploring huge amounts of structural
features automatically extracted from the origi-
nal object representation. The kernels for struc-
tured natural language data, such as parse tree
kernel (Collins and Duffy, 2001) and string ker-
nel (Lodhi et al., 2002) are examples of the well-
known convolution kernels used in many NLP ap-
plications.

Tree kernels represent trees in terms of their
substructures (called tree fragments). Such frag-
ments form a feature space which, in turn, is
mapped into a vector space. Tree kernels mea-
sure the similarity between pair of trees by count-
ing the number of fragments in common. There
are three important characterizations of fragment
type (Moschitti, 2006): the SubTrees (ST), the
SubSet Trees (SST) and the Partial Trees (PT). For
sake of space, we do not report the mathematical
description of them, which is available in (Vish-
wanathan and Smola, 2002), (Collins and Duffy,
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2001) and (Moschitti, 2006), respectively. In con-
trast, we report some descriptions in terms of fea-
ture space that may be useful to understand the
new engineered kernels.

In principle, a SubTree (ST) is defined by tak-
ing any node along with its descendants. A Sub-
Set Tree (SST) is a more general structure which
does not necessarily include all the descendants. It
must be generated by applying the same grammat-
ical rule set, which generated the original tree. A
Partial Tree (PT) is a more general form of sub-
structures obtained by relaxing constraints over
the SST.

4 Kernels for Relation Extraction

In this section we describe the previous kernels
based on constituent trees as well as new kernels
based on diverse types of trees and sequences for
relation extraction. As mentioned in the previ-
ous section, we can engineer kernels by combin-
ing tree and sequence kernels. Thus we focus on
the problem to define structure embedding the de-
sired syntactic relational information between two
named entities (NEs).

4.1 Constituent and Dependency Structures

Syntactic parsing (or syntactic analysis) aims at
identifying grammatical structures in a text. A
parser thus captures the hidden hierarchy of the
input text and processes it into a form suitable for
further processing. There are two main paradigms
for representing syntactic information: constituent
and dependency parsing, which produces two dif-
ferent tree structures.

Constituent tree encodes structural properties
of a sentence. The parse tree contains constituents,
such as noun phrases (NP) and verb phrases (VP),
as well as terminals/part-of-speech tags, such as
determiners (DT) or nouns (NN). Figure 2.a shows
the constituent tree of the sentence: In Washing-
ton, U.S. officials are working overtime.

Dependency tree encodes grammatical rela-
tions between words in a sentence with the words
as nodes and dependency types as edges. An edge
from a word to another represents a grammatical
relation between these two. Every word in a de-
pendency tree has exactly one parent except the
root. Figure 2.b shows and example of the depen-
dency tree of the previous sentence.

Given two NEs, such as Washington and offi-
cials, both the above trees can encode the syntactic

dependencies between them. However, since each
parse tree corresponds to a sentence, there may be
more than two NEs and many relations expressed
in a sentence. Thus, the use of the entire parse
tree of the whole sentence holds two major draw-
backs: first, it may be too computationally expen-
sive for kernel calculation since the size of a com-
plete parse tree may be very large (up to 300 nodes
in the Penn Treebank (Marcus et al., 1993)); sec-
ond, there is ambiguity on the target pairs of NEs,
i.e. different NEs associated with different rela-
tions are described by the same parse tree. There-
fore, it is necessary to identify the portion of the
parse tree that best represent the useful syntactic
information.

Let e1 and e2 be two entity mentions in the same
sentence such that they are in a relationship R.
For the constituent parse tree, we used the path-
enclosed tree (PET), which was firstly proposed
in (Moschitti, 2004) for Semantic Role Labeling
and then adapted by (Zhang et al., 2005) for re-
lation extraction. It is the smallest common sub-
tree including the two entities of a relation. The
dashed frame in Figure 2.a surrounds PET associ-
ated with the two mentions, officials and Washing-
ton. Moreover, to improve the representation, two
extra nodes T1-PER, denoting the type PERSON,
and T2-LOC, denoting the type LOCATION, are
added to the parse tree, above the two target NEs,
respectively. In this example, the above PET is de-
signed to capture the relation Located-in between
the entities ”officials” and ”Washington” from the
ACE corpus. Note that, a third NE, U.S., is char-
acterized by the node GPE (GeoPolitical Entity),
where the absence of the prefix T1 or T2 before
the NE type (i.e. GPE), denotes that the NE does
not take part in the target relation.

In previous work, some dependency trees have
been used (Bunescu and Mooney, 2005a; Wang,
2008) but the employed kernel just exploited the
syntactic information concentrated in the path be-
tween e1 and e2. In contrast, we defined and stud-
ied three different dependency structures whose
potential can be fully exploited by our convolution
partial tree kernel:

- Dependency Words (DW) tree is similar to
PET adapted for dependency tree constituted
by simple words. We select the minimal sub-
tree which includes e1 and e2, and we insert
an extra node as father of the NEs, labeled
with the NE category. For example, given
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Figure 2: The constituent and dependency parse trees integrated with entity information

the tree in Figure 2.b, we design the tree in
Figure 2.c surrounded by the dashed frames,
where T1-PER, T2-LOC and GPE are the ex-
tra nodes inserted as fathers of Washington,
soldier and U.S..

- Grammatical Relation (GR) tree, i.e. the DW
tree in which words are replaced by their
grammatical functions, e.g. prep, pobj and
nsubj. For example, Figure 2.d, shows the
GR tree for the previous relation: In is re-
placed by prep , U.S. by nsubj and so on.

- Grammatical Relation and Words (GRW)
tree, words and grammatical functions are
both used in the tree, where the latter are in-
serted as a father node of the former. For
example, Figure 2.e, shows such tree for the
previous relation.

4.2 Sequential Structures
Some sequence kernels have been used on depen-
dency structures (Bunescu and Mooney, 2005b;
Wang, 2008). These kernels just used lexical
words with some syntactic information. To fully
exploit syntactic and semantic information, we de-
fined and studied six different sequences (in a style
similar to what proposed in (Moschitti, 2008)),
which include features from constituent and de-
pendency parse trees and NEs:

1. Sequence of terminals (lexical words) in the
PET (SK1), e.g.:
T2-LOC Washington , U.S. T1-PER officials.

2. Sequence of part-of-speech (POS) tags in the
PET (SK2), i.e. the SK1 in which words are
replaced by their POS tags, e.g.:
T2-LOC NN , NNP T1-PER NNS.

3. Sequence of grammatical relations in the
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PET (SK3), i.e. the SK1 in which words are
replaced by their grammatical functions, e.g.:
T2-LOC pobj , nn T1-PER nsubj.

4. Sequence of words in the DW (SK4), e.g.:
Washington T2-LOC In working T1-PER of-
ficials GPE U.S..

5. Sequence of grammatical relations in the GR
(SK5), i.e. the SK4 in which words are re-
placed by their grammatical functions, e.g.:
pobj T2-LOC prep ROOT T1-PER nsubj GPE
nn.

6. Sequence of POS tags in the DW (SK6), i.e.
the SK4 in which words are replaced by their
POS tags, e.g.:
NN T2-LOC IN VBP T1-PER NNS GPE
NNP.

It is worth noting that the potential information
contained in such sequences can be fully exploited
by the word sequence kernel.

4.3 Combining Kernels

Given that syntactic information from different
parse trees may have different impact on relation
extraction (RE), the viable approach to study the
role of dependency and constituent parsing is to
experiment with different syntactic models and
measuring the impact in terms of RE accuracy.
For this purpose we compared the composite ker-
nel described in (Zhang et al., 2006) with the par-
tial tree kernels applied to DW , GR, and GRW
and sequence kernels based on six sequences de-
scribed above. The composite kernels include
polynomial kernel applied to entity-related feature
vector. The word sequence kernel (WSK) is al-
ways applied to sequential structures. The used
kernels are described in more detail below.

4.3.1 Polynomial Kernel
The basic kernel between two named entities of
the ACE documents is defined as:

KP (R1, R2) =
∑

i=1,2

KE(R1.Ei, R2.Ei),

where R1 and R2 are two relation instances, Ei is
the ith entity of a relation instance. KE(·, ·) is a
kernel over entity features, i.e.:

KE(E1, E2) = (1 + ~x1 · ~x2)2,

where ~x1 and ~x2 are two feature vectors extracted
from the two NEs.

For the ACE 2004, the features used include:
entity headword, entity type, entity subtype, men-
tion type, and LDC2 mention type. The last four
attributes are taken from the ACE corpus 2004. In
ACE, each mention has a head annotation and an
extent annotation.

4.3.2 Kernel Combinations
1. Polynomial kernel plus a tree kernel:

CK1 = α ·KP + (1− α) ·Kx,

where α is a coefficient to give more impact
to KP and Kx is either the partial tree ker-
nel applied to one the possible dependency
structures, DW, GR or GRW or the SST ker-
nel applied to PET, described in the previous
section.

2. Polynomial kernel plus constituent plus de-
pendency tree kernels:

CK2 = α ·KP + (1− α) · (KSST +KPT )

where KSST is the SST kernel and KPT is
the partial tree kernel (applied to the related
structures as in point 1).

3. Constituent tree plus square of polynomial
kernel and dependency tree kernel:

CK3 = α ·KSST + (1−α) · (KP +KPT )2

4. Dependency word tree plus grammatical re-
lation tree kernels:

CK4 = KPT−DW +KPT−GR

where KPT−DW and KPT−GR are the par-
tial tree kernels applied to dependency struc-
tures DW and GR.

5. Polynomial kernel plus dependency word
plus grammatical relation tree kernels:

CK5 = α·KP +(1−α)·(KPT−DW +KPT−GR)

Some preliminary experiments on a validation set
showed that the second, the fourth and the fifth
combinations yield the best performance with α =
0.4 while the first and the third combinations yield
the best performance with α = 0.23.

Regarding WSK, the following combinations
are applied:

2Linguistic Data Consortium (LDC):
http://www.ldc.upenn.edu/Projects/ACE/
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1. SK3 + SK4

2. SK3 + SK6

3. SSK =
∑

i=1,..,6 SKi

4. KSST + SSK

5. CSK = α ·KP + (1−α) · (KSST +SSK)

Preliminary experiments showed that the last com-
bination yields the best performance with α =
0.23.

We used a polynomial expansion to explore the
bi-gram features of i) the first and the second en-
tity participating in the relation, ii) grammatical
relations which replace words in the dependency
tree. Since the kernel function set is closed un-
der normalization, polynomial expansion and lin-
ear combination (Schlkopf and Smola, 2001), all
the illustrated composite kernels are also proper
kernels.

5 Experiments

Our experiments aim at investigating the effec-
tiveness of convolution kernels adapted to syntac-
tic parse trees and various sequence kernels for
the RE task. For this purpose, we use the sub-
set and partial tree kernel over different kinds of
trees, namely constituent and dependency syntac-
tic parse trees. Diverse sequences are applied indi-
vidually and in combination together. We consider
our task of relation extraction as a classification
problem where categories are relation types. All
pairs of entity mentions in the same sentence are
taken to generate potential relations, which will be
processed as positive and negative examples.

5.1 Experimental setup
We use the newswire and broadcast news domain
in the English portion of the ACE 2004 corpus
provided by LDC. This data portion includes 348
documents and 4400 relation instances. It defines
seven entity types and seven relation types. Every
relation is assigned one of the seven types: Phys-
ical, Person/Social, Employment/Membership/-
Subsidiary, Agent-Artifact, PER/ORG Affiliation,
GPE Affiliation, and Discourse. For sake of space,
we do not explain these relationships here, never-
theless, they are explicitly described in the ACE
document guidelines. There are 4400 positive and
38,696 negative examples when generating pairs
of entity mentions as potential relations.

Documents are parsed using Stanford
Parser (Klein and Manning, 2003) to pro-
duce parse trees. Potential relations are generated
by iterating all pairs of entity mentions in the same
sentence. Entity information, namely entity type,
is integrated into parse trees. To train and test our
binary relation classifier, we used SVMs. Here,
relation detection is formulated as a multiclass
classification problem. The one vs. rest strategy
is employed by selecting the instance with largest
margin as the final answer. For experimentation,
we use 5-fold cross-validation with the Tree
Kernel Tools (Moschitti, 2004) (available at
http://disi.unitn.it/˜moschitt/Tree-Kernel.htm).

5.2 Results

In this section, we report the results of different
kernels setup over constituent (CT) and depen-
dency (DP) parse trees and sequences taken from
these parse trees. The tree kernel (TK), compos-
ite kernel (CK1, CK2, CK3, CK4, and CK5

corresponding to five combination types in Sec-
tion 4.3.2) were employed over these two syntactic
trees. For the tree kernel, we apply the SST kernel
for the path-enclosed tree (PET) of the constituent
tree and the PT kernel for three kinds of depen-
dency tree DW, GR, and GRW, described in the
previous section. The two composite kernels CK2

and CK3 are applied over both two parse trees.
The word sequence kernels are applied over six
sequences SK1, SK2, SK3, SK4, SK5, and SK6

(described in Section 4.3).
The results are shown in Table 1 and Table 2.

In the first table, the first column indicates the
structure used in the combination shown in the
second column, e.g. PET associated with CK1

means that the SST kernel is applied on PET (a
portion of the constituent tree) and combined with
the CK1 schema whereas PET and GR associated
with CK5 means that SST kernel is applied to
PET and PT kernel is applied to GR in CK5. The
remaining three columns report Precision, Recall
and F1 measure. The interpretation of the second
table is more immediate since the only tree ker-
nel involved is the SST kernel applied to PET and
combined by means of CK1.

We note that: first, the dependency kernels,
i.e. the results on the rows from 3 to 6 are be-
low the composite kernel CK1, i.e. 68.9. This
is the state-of-the-art in RE, designed by (Zhang
et al., 2006), where our implementation provides
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Parse Tree Kernel P R F
PET CK1 69.5 68.3 68.9
DW CK1 53.2 59.7 56.3
GR CK1 58.8 61.7 60.2

GRW CK1 56.1 61.2 58.5
DW and GR CK5 59.7 64.1 61.8

PET and GR CK2 70.7 69.0 69.8
CK3 70.8 70.2 70.5

Table 1: Results on the ACE 2004 evaluation test
set. Six structures were experimented over the

constituent and dependency trees.

Kernel P R F
CK1 69.5 68.3 68.9
SK1 72.0 52.8 61.0
SK2 61.7 60.0 60.8
SK3 62.6 60.7 61.6
SK4 73.1 50.3 59.7
SK5 59.0 60.7 59.8
SK6 57.7 61.8 59.7

SK3 + SK4 75.0 63.4 68.8
SK3 + SK6 66.8 65.1 65.9

SSK =
∑

i SKi 73.8 66.2 69.8
CSK 75.6 66.6 70.8

CK1 + SSK 76.6 67.0 71.5
(Zhou et al., 2007)

82.2 70.2 75.8
CK1 with Heuristics

Table 2: Performance comparison on the ACE
2004 data with different kernel setups.

a slightly smaller result than the original version
(i.e. an F1 of about 72 using a different syntactic
parser).

Second, CK1 improves to 70.5, when the con-
tribution of PT kernel applied to GR (dependency
tree built using grammatical relations) is added.
This suggests that dependency structures are effec-
tively exploited by PT kernel and that such infor-
mation is somewhat complementary to constituent
trees.

Third, in the second table, the model CK1 +
SSK, which adds to CK1 the contribution of di-
verse sequence kernels, outperforms the state-of-
the-art by 2.6%. This suggests that the sequential
information encoded by several sequence kernels
can better represents the dependency information.

Finally, we also report in the last row (in italic)
the superior RE result by (Zhou et al., 2007).
However, to achieve this outcome the authors used

the composite kernel CK1 with several heuristics
to define an effective portion of constituent trees.
Such heuristics expand the tree and remove unnec-
essary information allowing a higher improvement
on RE. They are tuned on the target RE task so al-
though the result is impressive, we cannot use it to
compare with pure automatic learning approaches,
such us our models.

6 Conclusion and Future Work

In this paper, we study the use of several types
of syntactic information: constituent and depen-
dency syntactic parse trees. A relation is repre-
sented by taking the path-enclosed tree (PET) of
the constituent tree or of the path linking two enti-
ties of the dependency tree. For the design of auto-
matic relation classifiers, we have investigated the
impact of dependency structures to the RE task.
Our novel composite kernels, which account for
the two syntactic structures, are experimented with
the appropriate convolution kernels and show sig-
nificant improvement with respect to the state-of-
the-art in RE.

Regarding future work, there are many research
line that may be followed:

i) Capturing more features by employing ex-
ternal knowledge such as ontological, lexical re-
source or WordNet-based features (Basili et al.,
2005a; Basili et al., 2005b; Bloehdorn et al., 2006;
Bloehdorn and Moschitti, 2007) or shallow se-
mantic trees, (Giuglea and Moschitti, 2004; Giu-
glea and Moschitti, 2006; Moschitti and Bejan,
2004; Moschitti et al., 2007; Moschitti, 2008;
Moschitti et al., 2008).

ii) Design a new tree-based structures, which
combines the information of both constituent and
dependency parses. From dependency trees we
can extract more precise but also more sparse
relationships (which may cause overfit). From
constituent trees, we can extract subtrees consti-
tuted by non-terminal symbols (grammar sym-
bols), which provide a better generalization (with
a risk of underfitting).

iii) Design a new kernel which can integrate the
advantages of the constituent and dependency tree.
The new tree kernel should inherit the benefits of
the three available tree kernels: ST, SST or PT.
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Abstract

This paper presents an approach to au-
tomatic acquisition of the argument-
predicate relations from a semantically
annotated corpus. We use SALSA, a
German newspaper corpus manually an-
notated with role-semantic information
based on frame semantics. Since the rel-
atively small size of SALSA does not al-
low to estimate the semantic relatedness
in the extracted argument-predicate pairs,
we use a larger corpus for ranking. Two
experiments have been performed in or-
der to evaluate the proposed approach.
In the first experiment we compare au-
tomatically extracted argument-predicate
relations with the gold standard formed
from associations provided by human sub-
jects. In the second experiment we cal-
culate correlation between automatic relat-
edness measure and human ranking of the
extracted relations.

1 Introduction

There are many debates in lexical semantics about
what kind of world knowledge actually belongs
to the meaning of a lexeme. Nowadays, it is
widely accepted that predicates impose selectional
restrictions on their arguments. For example, since
we know that the predicateto be hungrymainly
takes expressions describing animate beings as ar-
guments, we can correctly resolve the anaphora
in the following sentence:We gave the bananas
to the monkeys because they were hungry. There
exists also multiple linguistic evidence showing
that the semantics of arguments can help to pre-
dict implicit predicates. For example, the sentence
John finished the cigaretteusually meansJohn fin-
ished smoking the cigarettebecause the meaning
of the nouncigarette is strongly associated with
the smoking activity.

It has been claimed that information about pred-
icates associated with nouns can be helpful for
a variety of tasks in natural language processing
(NLP), see for example (Pustejovsky et al., 1993;
Voorhees, 1994). However, at present there exists
no corresponding lexical semantic resource. Sev-
eral approaches have been presented that aim at
creating a knowledge base containing noun-verb
relations. There are two main research paradigms
for developing such knowledge bases. The first
paradigm assumes manual development of the re-
source (Pustejovsky et al., 2006), while the sec-
ond one relies on automatic acquisition methods,
see for example (Cimiano and Wenderoth, 2007).
In this paper we propose a procedure for auto-
matic acquisition of argument-predicate relations
from a semantically annotated corpus. In line with
(Lapata and Lascarides, 2003) our approach is
based on the assumption that predicates are omit-
ted in a discourse when they are highly predictable
from the semantics of their arguments. We exploit
SALSA (Burchardt et al., 2006), a German news-
paper corpus manually annotated with FrameNet
frames based on frame semantics. Using a man-
ually annotated corpus for relation extraction has
one particular advantage compared to extraction
from plain text: the type of an argument-predicate
relation is already annotated; there is no need to
determine it by automatic means which are usu-
ally error-prone. However, the relatively small
size of SALSA does not allow to make relevant
predictions about the degree of semantic related-
ness in the extracted argument-predicate pairs, see
section 4. We therefore employ a considerably
larger unannotated corpus for weighting. The re-
sults are evaluated quantitatively against human
judgments obtained experimentally. The proposed
evaluation procedure is similar to that presented in
(Cimiano and Wenderoth, 2007). First, we create
a gold standard for 30 words from the argument
list and evaluate our approach with respect to this
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gold standard. Second, we provide results from
an evaluation in which test subjects are asked to
rate automatically extracted relations using a four-
point scale.

The paper is structured as follows: Section 2
describes some linguistic phenomena requiring in-
ferences of an implicit predicate from the seman-
tics of an explicitly given argument. In section 3
we give a short overview of the related work. Sec-
tions 4 discusses the SALSA corpus. Section 5 in-
troduces our approach. Finally, section 6 describes
an experimental evaluation of the presented ap-
proach and section 7 concludes the paper.

2 Implicit Predicates

In this section we discuss some linguistic phenom-
ena requiring inferences of an implicit predicate
from the semantics of an explicitly given argument
for their resolution. One of the most studied phe-
nomena that Pustejovsky (1991) has called logical
metonymy is illustrated by the examples (1a) and
(1b) below. In the case of logical metonymy an im-
plicit predicate is inferable from particular verb-
noun and adjective-noun pairs in a systematic way.
The verbanfangen’to start’ and the adjectivekom-
pliziert ’complicated’ in the mentioned examples
semantically select for an event, while the nouns
(Buch ’book’ and Frage ’question’ respectively)
have a different semantic type. However, the set
of the most probable implicit predicates is pre-
dictable from the semantics of the nouns. Thus,
(1a) plausibly meansAls ich angefangen habe,
dieses Buch zu lesen/schreiben...’When I have
started to read/write this book...’ and (2a) plau-
sibly meanseine Frage die kompliziert zu beant-
worten ist’a question which is complicated to an-
swer’.

Example 1

(a)Als ich mit diesem Buch angefangen habe...
’When I have started this book...’

(b) eine komplizierte Frage
’a complicated question’

(c) Studentenfutter
’student food’

(d) Nachrichtenagentur Xinhuäuber Beziehun-
gen beider Seiten der Taiwan-Strasse

’News agency Xinhua about relations of both
sides of the Taiwan Strait’

(e)Hans ist beredt
’Hans is eloquent’

As we can see from Example 1, besides logi-
cal metonymy there are other linguistic phenom-
ena requiring knowledge about predicates associ-
ated with an argument for their resolution. Exam-
ple (1c) contains a noun compound which can be
interpreted on basis of the meaning of the noun
Futter ’food’. In general, noun compounds can be
interpreted in many different ways depending on
the semantics of the constituencies:morning cof-
feeis a coffee which is drunk in the morning,brick
houseis a house which is made of bricks etc. In
case of (1c) the relation via the predicateessen’to
eat’ takingStudenten’students’ as a subject and
Futter ’food’ as an object seems to be the most
plausible one.

The phrase (1d) is a title of a newspaper ar-
ticle. As in the previous examples, a predicate
is left out in (1d). The meaning of the prepo-
sition über ’about’ can help to narrow down the
set of possible predicates, but still allows an in-
adequately large range of interpretations. How-
ever, the semantics of the nounNachrichtenagen-
tur ’news agency’ supports such interpretations as
berichten’to report’ or informieren’to inform’.

Most of the literature discusses predicates infer-
able from nouns. However, other parts of speech
can support similar inferences. In example (1e) a
predicate is predictable on the basis of the mean-
ing of the adjectiveberedt ’eloquent’. The sen-
tence (1e) most plausibly means that Hans speaks
eloquently.

Example 1 shows that knowledge about pred-
icates associated with explicitly given arguments
can help to deal with several linguistic phenom-
ena. The cases when a predictable predicate is left
out are not rare in natural language. For example,
for logical metonymy a corpus study has shown
that the constructions likebegin V NPoccur rarely
if the verbV corresponds to a highly plausible in-
terpretation ofbegin NP(Briscoe et al., 1990).

3 Related Work

The most influential account of logical metonymy
is provided by Pustejovsky’s theory of the Gen-
erative Lexicon, GL (Pustejovsky, 1991). Ac-
cording to Pustejovsky the meaning of a noun in-
cludes aqualia structurerepresenting “the essen-
tial attributes of an object as defined by the lexi-
cal item”. Thus, the lexical meaning of the noun
book includesread andwrite as qualia roles. In
the framework of GL, Pustejovsky et al. (2006)
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are manually developing the Brandeis Semantic
Ontology which is a large generative lexicon on-
tology and dictionary. There also exist several ap-
proaches to automatic acquisition of qualia struc-
tures from text corpora which aim at supporting
the time-consuming manual work. For example,
Pustejovsky et al. (1993) use generalized syntac-
tic patterns for extracting qualia structures from a
partially parsed corpus. Cimiano and Wenderoth
(2007) suggest a pattern-based method for auto-
matic extraction of qualia structures from the Web.
The results of the human judgment experiment re-
ported in (Cimiano and Wenderoth, 2007) suggest
that the automatic acquisition of qualia structures
is a difficult task. Human test subjects have shown
a very low agreement (11,8% average agreement)
in providing qualia structures for given nouns.

Another line of research on inferring implicit
predicates concerns using information about col-
locations derived from corpora. For example,
Lapata and Lascarides (2003) resolve logical
metonymy on the basis of the distribution of para-
phrases likefinish the cigarette– finish smok-
ing the cigaretteand easy problem– problem
which is easy to solvein a corpus. This approach
shows promising results, but it is limited to logi-
cal metonymy. Similarly, Nastase et al. (2006) use
grammatical collocations for defining semantic re-
lations between constituents in noun compounds.

In our study we aim at extracting intuitively
plausible argument-predicate relations from a se-
mantically annotated corpus. Using an annotated
corpus we avoid problems of defining types of
these relations by automatic means which are usu-
ally error-prone. We represent argument-predicate
relations in terms of FrameNet frames which al-
low for a fine-grained and grounded representation
supporting paraphrasing, see next sections. Our
approach is not restricted to nouns. We also con-
cern relations where argument positions are filled
by adjectives, adverbs or even verbs.

4 The SALSA Corpus

For relation extraction we have chosen the SALSA
corpus (Burchardt et al., 2006) developed at Saar-
land University. SALSA is a German corpus
manually annotated with role-semantic informa-
tion, based on the syntactically annotated TIGER
newspaper corpus (Brants et al., 2002). The
2006 SALSA release which we have used con-
tains about 20 000 annotated predicate instances.

The corpus is annotated with the set of FrameNet
frames.

The FrameNet, FN (Ruppenhofer et al., 2006),
lexical resource is based on frame semantics (Fill-
more, 1976), seehttp://framenet.icsi.berkeley.edu.
The lexical meaning of predicates in FN is ex-
pressed in terms of frames (approx. 800 frames)
which are supposed to describe prototypical sit-
uations spoken about in natural language. Every
frame contains a set of roles (or frame elements,
FEs) corresponding to the participants of the de-
scribed situation. Predicates with similar seman-
tics are assigned to the same frame, e.g.to give
andto hand overrefer to the GIVING frame. Con-
sider a FN annotation for the sentence (2a) below.
In this annotationDONOR, RECIPIENTandTHEME

are roles in the frame GIVING andJohn, Mary and
a bookare fillers of these roles. The FN anno-
tation generalizes across near meaning-preserving
transformations, see (2b).

Example 2

(a) [John]DONOR [gave]GIVING
[Mary]RECIPIENT [a book]THEME.

(b) [John]DONOR [gave]GIVING [a
book]THEME [to Mary]RECIPIENT.

In FN information about syntactic realization
patterns of frame elements as well as information
about frequency of occurrences of these patterns in
corpora is provided. For example, the roleDONOR

in the frame GIVING is most frequently filled by a
noun phrase in the subject position or by a prepo-
sitional phrase with the prepositionby as the head
in the complement position.

The FN project originally aimed at developing a
frame-semantic lexicon for English. Later on FN
frames turned out to be to a large extent language
independent (Burchardt et al., 2006). In most of
the cases German predicates could be successfully
described by the FN frames. However, some of
the frames required adaptation to the German data,
e.g. new FEs were introduced. Since FN does not
cover all possible word senses, new frames needed
to be added for some of the predicates.

We have chosen the SALSA corpus for our
experiments because to our knowledge it is the
only freely available corpus which contains both
syntactic and role-semantic annotation. However,
we are aware that SALSA (approx. 700 000
tokens) is too small to compute a reliable co-
occurrence model for measuring plausibility of the
extracted argument-predicate relations, though it
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is relatively large for a manually annotated cor-
pus. As it was shown in (Bullinaria and Levy,
2007), co-occurrence-based approaches need very
large training corpora in order to reliably compute
semantic relatedness. The SALSA corpus, com-
prising less than 1 million tokens, is too small for
this purpose. Moreover, a considerable number of
predicates in SALSA appeared to be unannotated.
Some of the high frequency pairs, as for exam-
ple Bombe, explodieren’bomb, to explode’, occur
in SALSA only once, just as occasional pairs like
Deutsche, entdecken’German, to discover’. We
have tried to overcome the size problems by using
a larger unannotated corpus for recomputing the
rating of our resulting relations, see next section.

5 Automatic Acquisition of the
Argument-PredicateRelations

In line with (Lapata and Lascarides, 2003), our ap-
proach to extraction of argument-predicate (AP)
relations is based on two assumptions:

A1: If predicates are highly predictable from the
semantics of their arguments then they can be
omitted in a discourse;
A2: If a predicate frequently takes a word as an
argument then it is highly predictable from the se-
mantics of this word.

In the proposed experimental setting argument-
predicate relations are defined in terms of the
FrameNet frames. Thus, we aim at extracting
from SALSA tuples of the form〈Argument,ROLE,
FRAME, Predicate〉 such that theArgumentplau-
sibly fills the ROLE in the FRAME evoked by the
Predicate. As already mentioned in section 3,
our approach is not restricted to nouns. We also
treat arguments expressed by other content parts
of speech. The proposed relation extraction pro-
cedure consists in

• finding for every content word which occurs
in the corpus a set of predicates taking this
word as an argument with a high probability;

• defining a relation between the word and ev-
ery predicate from this set by finding which
roles the noun fills in frames evoked by the
predicate;

• estimating the degree of the semantic relat-
edness in the extracted argument-predicate
pairs.

For example, analyzing the following sentence

[Fünf Oppositionelle]SUSPECT sind in Ebe-
biyin [von der Polizei]AUTHORITIES [festgenom-
men]ARRESTworden.

’Five members of the opposition have been
arrested by the police in Ebebiyin.’

we aim at extracting the following tuples:

Argument Role Frame Predicate

Oppositionell SUSPECT ARREST festnehmen

Polizei AUTHORITIES ARREST festnehmen

Relation Extraction

In SALSA, every sentence is annotated with a set
of frames in such a way that for every frame its
FEs refer to some syntactic constituents in the sen-
tence. In order to extract argument-predicate rela-
tions from SALSA we need 1) to find a content
head for every constituent corresponding to a FE;
2) to resolve possibly existing anaphora. Since
SALSA is syntactically annotated, the first task
proved to be relatively easy.1 On the contrary,
anaphora resolution is well-known to be one of
most challenging NLP tasks. In our study, we
do not focus on it, and we treat only pronominal
anaphora using the following straightforward res-
olution algorithm: given a pronoun the first noun
which agrees in number and gender with the pro-
noun is supposed to be its antecedent. In order
to evaluate this resolution procedure we have in-
spected 100 anaphoric cases. In approximately
three fourths of the cases the anaphora were re-
solved correctly. Therefore, we have assigned a
confidence rate of 0,75 to the FE fillers resulting
from a resolved anaphora. In non-anaphoric cases
a confidence rate of 1 was assigned.

For every extracted tuple of the form
〈Argument, ROLE, FRAME, Predicate〉 we
have summed up the corresponding confidence
rates. Finally, we have obtained around 30 000
tuples with confidence rates ranging from 0,75
to 88. It is not surprising that most of the argu-
ments appeared to be nouns, while most of the
predicates are expressed by verbs. Since SALSA
has been annotated manually, there are almost
no mistakes in defining types of the semantic

1We have excluded from the consideration foreign-
language expressions, while proper nouns were treated in the
usual way. For verb phrases with auxiliary or modal verbs as
heads the main verb was taken as a corresponding role filler.
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relations between arguments and predicates.2 For
several pairs, the semantic relation between an
argument and a predicate is ambiguous. Consider
the tuples extracted for the word pairBuch,
schreiben’book, to write’ which are given below.
While the first tuple corresponds to phrases like
ein Buch schreiben’to write a book’, the second
one abstracts from the expressions likein einem
Buch schreiben’to write in a book’.

Argument Role Frame Predicate

Buch TEXT TEXT CREATION schreiben

Buch MEDIUM STATEMENT schreiben

Additionally, ambiguity can arise because of the
annotation disagreements in SALSA. For exam-
ple, the pair (Haft, sitzen) ’imprisonment’, ’to sit’
in Table 1 was annotated in SALSA both with the
BEING LOCATED and with the POSTUREframes.

As mentioned in section 4, a considerable num-
ber of predicates in SALSA is not annotated se-
mantically. In order to find out how many relevant
AP-relations get lost if we consider only seman-
tically annotated predicates, we have additionally
extracted AP-pairs on the basis of the syntactic an-
notation only. The anaphora resolution procedure
as described above was again applied to the syn-
tactic argument heads. We have obtained around
56 500 pairs with confidence rates ranging from
0,75 to 71,50.3

As one could expect, being a newspaper corpus
SALSA appeared to be thematically unbalanced.
The most frequent argument-predicate relations
occurring in SALSA reflect common topics dis-
cussed in newspapers: economics (e.g. (Prozent,
steigen), ’percent’, ’to increase’), criminality (e.g.
(Haft, verurteilen) ’imprisonment’, ’to sentence’),
catastrophes (e.g. (Mensch, töten) ’human’, ’to
kill’) etc.

Ranking

As mentioned in section 4, the size of SALSA
does not allow to make relevant predictions about
the distribution of frames and role fillers. Only
2% of the relations occur in SALSA more then
3 times. In order to overcome this problem we
have developed a measure of semantic relatedness
between the extracted arguments and predicates

2Mistakes can arise only because of the annotation errors
and errors in the anaphora resolution procedure.

3The comparison of the results obtained by the extraction
procedure based on the semantic annotation with the results
of the procedure based on the syntactic annotation only is
provided in the next section.

which takes into account their co-occurrence in a
larger and more representative corpus. For com-
puting semantic relatedness we have used a lem-
matized newspaper corpus (Süddeutsche Zeitung,
SZ) of 145 million words. Given a tuplet with a
confidence ratec containing an argumenta and a
predicatep, the relatedness measurerm of t was
computed as follows:

rm(t) = lsa(a, p) + c/max(c),

where thelsa(a, p) is based on Latent Semantic
Analysis, LSA (Deerwester et al., 1990). LSA is
a vector-based technique that has been shown to
give reliable estimates on semantic relatedness. It
makes use of distributional similarities of words
in text and constructs a semantic space (or word
space) in which every word of a given vocabulary
is represented as a vector. Such vectors can then
be compared to one another by the usual vector
similarity measures (e.g. cosine). We calculated
the LSA word space using the Infomap toolkit10
v. 0.8.6 (http://infomap-nlp.sourceforge.net). The
co-occurrence matrix (window size: 5 words)
comprised 80 000×3 000 terms and was reduced
by SVD to 300 dimensions. For the vector com-
parisons the cosine measure was applied. To those
words which did not occur in the analyzed SZ cor-
pus (approx. 3500 words) alsa measure of 0 was
assigned. To provide a comparable contribution to
rm, the confidence ratesc extracted from SALSA
are divided by the maximal confidence rate. The
rm function is a linear interpolation of thelsa and
the normalizedc measure. As mentioned above,
the c measure is a discriminative factor for only
2% of the relations. For the remaining 98% the
normalizedc values are small (0,003 or 0,002 or
0,001). Therefore, calculating therm measure we
mainly rely on lsa, while normalizedc actually
plays a role only for the relations frequently oc-
curring in SALSA. Table 1 contains the 5 most se-
mantically related predicates for an example argu-
ment.

6 Evaluation

Since the extracted argument-predicate relations
are intended to be used for inferring intuitively ob-
vious predicates,we evaluate to which extend they
correspond to human intuition.

1392



Table 1: Examples of the extracted argument-predicate relations
Argument Role Frame Predicate rm
Haft FINDING VERDICT verurteilen’to sentence’ 0,939
’imprisonment’ LOCATION BEING LOCATED sitzen’to sit’ 0,237

LOCATION POSTURE sitzen’to sit’ 0,226
MESSAGE REQUEST fordern ’to demand’ 0,153
BAD OUTCOME RUN RISK-FNSALSA drohen’to threaten’ 0,144

Gold Standard

Similar to (Cimiano and Wenderoth, 2007) we
provide a gold standard for 30 test arguments oc-
curring in the SALSA corpus. The test argu-
ments were selected randomly from the set of
those arguments that have more than one pred-
icate associated with them such that a value of
argument-predicate relatedness exceeds the aver-
age one. These words were nearly uniformly dis-
tributed among 20 participants of the experiment,
who were all non-linguists. We also ensured that
each word was treated by three different subjects.
For every word we asked our subjects to write be-
tween 5 and 10 short phrases that contain a pred-
icate taking the given word as an argument, e.g.
book– to read a book. The participants were asked
to provide phrases instead of single predicates, be-
cause we wanted to control the syntactic and se-
mantic position of the arguments. The participants
received an instruction informally describing the
notion of predicate and what kind of phrases they
are supposed to come up with. Besides the task
description they were shown examples containing
appropriate and inappropriate phrases. Some of
the examples are given below.

Example 3

(a) Aktie ’stock’ : Kauf der Aktien’buying of
stocks’,Aktien kaufen’to buy stocks’,Aktien an
der Börse’stocks on the bourse’ (is inappropriate
because the word “bourse” describes a place and
not an event)

(b) beredt ’eloquent’: beredt sprechen’to
speak eloquently’,ein beredter Sprecher’an elo-
quent speaker’ (is inappropriate because the word
“speaker” describes a person and not an event)

The test was conducted via e-mail. In or-
der to compare the human associations with the
extracted AP-relations, we have manually anno-
tated the obtained phrases with SALSA frames.
The agreement for the described task for every
cue word was calculated as the averaged pairwise
agreement between the AP-relations delivered by

the three subjects,S1, S2 andS3, as follows:

Agr =
|S1∩S2|
|S1∪S2|+

|S2∩S3|
|S2∪S3|+

|S2∩S3|
|S2∪S3|

3 .

Agreement results for every cue word are re-
ported in table 2. Second column of the table
contains gold standard predicates which were pro-
vided by all 3 participants treating the same word.4

Averaging over all words, we got a mean agree-
ment of 13%. Though this value seems to be low,
it is consistent with a mean agreement of 11,8%
for a similar task reported in (Cimiano and Wen-
deroth, 2007), see section 3. Cimiano and Wen-
deroth (2007) show that the lowest agreement is
yielded for more abstract words, while the agree-
ment for very concrete words is reasonable. We
could not make a similar observation, see table 2.

Comparison with the Gold Standard

In the first experiment we checked whether pred-
icates which people associate with the test argu-
ments can be automatically extracted by our pro-
cedure. For this aim we compared the gold stan-
dard with all automatically extracted argument-
predicate relations5 containing some of the 30 cue
words as follows. These relations were ranked ac-
cording to the relatedness measure described in
previous section. In line with (Cimiano and Wen-
deroth, 2007) we exploited an approach common
in information retrieval for estimating the qual-
ity of correspondence of a ranked output to a
gold standard, see (Baeza-Yates and Ribeiro-Neto,
1999).

Given somen automatically extracted relations
with the highest ranking we calculated a precision-
recall curve expressing precision and recall of our
procedure compared to the gold standard. The pre-
cision characterizes the procedure exactness, i.e.
how many redundant relations are retrieved. The

4The overall gold standard consists of 33 tuples.
5In order to evaluate the procedure extracting AP-

relations on the basis of the semantic annotation we com-
pared automatically extracted tuples to the gold standard tu-
ples. For the procedure using the syntactic annotation only
the AP-pairs were considered without regarding frames and
FEs.
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recall measures the completeness, i.e. how many
relations of the gold standard are extracted auto-
matically. For each point of the curve (which is
a pair(p, r) of values of precisionp and recallr)
we calculated theF -measure asF = 2pr/(p + r)
which is the harmonic mean between recall and
precision. The precision-recall curve is a set of
precision values for the prespecified recall levels
varying from 0 to 1 with a step 0,1. Then, to pro-
duce only one value evaluating the quality of the
ranked output compared to the gold standard, for
each precision-recall curve we calculatedFmax,
the maximal value of theF -measure achieved
for the points of this curve.Fmax expresses the
best trade-off between precision and recall for the
given ranked output. Finally, among all possible
n (numbers of the considered relations with the
highest ranking) we selected that one which pro-
vides the maximalFmax value.

The resulting maximalFmax values are 0,47 for
the procedure extracting AP-relations on the basis
of the semantic annotation and 0,41 for the pro-
cedure using the syntactic annotation only. We
compared these results with the baseline results
of maximalFmax values produced for the output
with random ranking. The calculation of the base-
line was repeated 100 times, each time a new ran-
dom ranking was generated. The lowest baseline
results are 0,08/0,06 (semantic/syntactic annota-
tion), the highest are 0,18/0,14 and the medians
are 0,1/0,07. One can see that the results produced
using the relatedness measure (0,47/0,41) greatly
exceed the baseline. Based on this comparison we
conclude that the ranking done using the related-
ness measure brings a significant advantage. The
values of precision and recall for the reported max-
imal Fmax values are 0,5/0,33 (semantic/syntactic
annotation) and 0,45/0,54 respectively. This re-
sults show that half of the AP-relations from the
gold standard appeared to be in the list of the top-
ranked tuples extracted by the “semantic” proce-
dure, while the size of this list (n = 28) was al-
most equal to the size of the gold standard (33).
The differences in performance between the “se-
mantic” and “syntactic” procedures could be ex-
plained by the fact that the “syntactic” procedure
finds in the corpus more related predicates for ev-
ery argument than the “semantic” one. Neverthe-
less, the “semantic” procedure shows better per-
formance.

Next we investigated the results for each argu-

ment used in the gold standard separately in the
same way as described above. For each argument
the Fmax measure has been computed. Because
of the low agreement between the subjects ques-
tioned for the gold standard (see above), in these
calculations we considered all predicates reported
by our subjects. The calculatedFmax values are
reported in table 2 which shows a correlation be-
tweenFmax values calculated for the “semantic”
and “syntactic” procedures. However, there is
no correlation with human agreement. This issue
needs a further investigation, see section 7.

Human Judgments of the Relatedness

Following (Cimiano and Wenderoth, 2007), in or-
der to check whether the calculated relatedness
is reasonable according to human intuition, we
have performed another experiment. For each of
the 30 words selected for the gold standard we
selected the 5 top ranked predicates. Since for
some of the cue arguments only 3 predicates were
found in the corpus, the final test set contains only
138 argument-predicate tuples. From these tuples
we generated short grammatically correct phrases
structurally similar to those in example 3. These
phrases were uniformly distributed among 10 sub-
jects so that every phrase was evaluated by one
subject. The participants were asked to rate the
phrases with respect to their naturalness using a
scale from 0 to 3, whereby 0 means ’unnatural’,
1 ’possible’, 2 ’natural’ and 3 ’totally natural and
self-evident’.

Further on we investigated the relationship be-
tween the human estimates and the relatedness
values obtained automatically. For this aim we
used the Spearman rank correlation coefficient.
Because of four-points scale used, the human
rankings are equal for many tuples which lead to
the so-called effect of ties. For this reason we
computed the correlation coefficient with a cor-
rection for ties. The coefficient value is 0,30 and
this correlation is statistically significant withp-
value 0,0006. Based on these results we conclude
that our relatedness measure is correlated with hu-
man judgments. Taking into account the subjec-
tive character of human ranking in terms of nat-
uralness, the achieved correlation values can be
considered as high.
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Table 2: Evaluation results for 30 gold standard cue words.
Cue word Shared predicates Agr Sem.Fmax Syn. Fmax

Name’name’ haben’to have’ 14% 0,2 0,48
Urlaub ’vacation’ fahren’to go’ 8% 0,13 0,16
Sprache’language’ sprechen’to speak’,lernen’to learn’ 14% 0,4 0,3
Strafe’fine’ verurteilen’to sentence’ 11% 0,21 0,3
Stuhl’chair’ sitzen’to sit’ 14% 0,1 0,2
Bombe’bomb’ hochgehen’to blow up’ 14% 0,11 0,22
Blatt ’gazette’, ’page’, ’leaf’ – 2% 0 0
Flughafen’airport’ ankommen’to arrive’, fahren’to go’ 21% 0,17 0,17
Gesetz’low’ – 8% 0,17 0,38
Polizei ’police’ rufen ’to call’ 11% 0,22 0,23
Kompromiss’compromise’ schliessen’to make’ 15% 0,07 0,29
Fluggesellschaft’airline’ – 3% 0,11 0,38
Antrag ’proposal’, ’application’ stellen’to introduce’,ablehnen’to decline’ 24% 0,43 0,42
Zeitung’newspaper’ lesen’to read’ 13% 0,17 0,09
Brief ’letter’ verschicken’to send’,schreiben’to write’ 19% 0,23 0,12
Flüchtling ’refugee’ aufnehmen’to accept’ 13% 0 0,07
Buch’book’ schreiben’to write’, lesen’to read’ 15% 0,44 0,39
Zähler ’counter’ ablesen’ to read’ 11% 0 0
Anzahl’number’ – 3% 0,23 0,19
Prozent’percent’ – 3% 0,48 0,21
Ziel ’goal’ verfehlen’to miss’, erreichen’to reach’ 20% 0,3 0,48
Schule’school’ schẅanzen’to miss’, gehen’to go’ 22% 0,13 0,23
Amt ’position’, ’department’ bekleiden, innehaben’to hold’, gehen’to go’ 20% 0 0,17
Frage ’question’ beantworten’to answer’,stellen’to ask’ 20% 0,15 0,37
Mensch’human’ sein’to be’ 16% 0,09 0,03
Zeuge’witness’ aussagen’to testify’, sein’to be’ 22% 0,13 0,19
Thema’theme’ – 7% 0,14 0,26
Preisträger ’prize winner’ – 5% 0,08 0,08
Initiative ’initiative’ ergreifen’to take’ 17% 0,1 0,13
Wohnung’flat’ – 7% 0,09 0,17

7 Conclusion and Discussion

In this paper we presented an approach to auto-
matic extraction of argument-predicate relations
from a frame-annotated corpus.6 In our approach
we aimed to combine the advantages offered by
annotated and unannotated lexical resources. Be-
sides extracting AP-pairs the proposed method al-
lows us to define types of semantic relations in
terms of FrameNet frames. The proposed proce-
dure is not restricted to arguments expressed by
nouns and treats also other content parts of speech.

The main goal of this paper was to show that
though manually annotated corpora usually have
a relatively small size, they can be successfully
exploited for the relation extraction. An obvious
limitation of the presented approach is that it is
bounded to manual annotations which are hard
to obtain. However, since semantic annotations
are useful for many different goals in linguistics
and NLP, the number of reliable annotated cor-
pora constantly grows.7 Moreover, recently sev-

6The complete list of the extracted AP-relations as well
as the results of the experiment will be available online at
http://www.ikw.uni-osnabrueck.de/∼eovchinn/APrels/.

7At present FrameNet annotated corpora are

eral tools have been developed which perform role
annotation automatically, for example see (Erk
and Pado, 2006). Therefore we believe that ap-
proaches using semantic annotation are valid and
promising. In the future we plan to experiment
with large role-annotated corpora for English such
as PropBank (approx. 300 000 words, (Palmer
et al., 2005)) and the FrameNet-annotated corpus
provided by the FN project (more than 135 000
annotated sentences, (Ruppenhofer et al., 2006)).
Since these corpora do not contain syntactic anno-
tation, for extracting argument-predicate relations
we will need to parse annotated sentences.

There are several ways to improve the proposed
procedure. First, an implementation of a more
advanced anaphora resolution algorithm treating
pronominal as well as nominal anaphora should
significantly raise the precision/recall characteris-
tics. Second, splitting German compounds occur-
ring in the corpus should provide additional ev-
idence. We have treated such words asKunde
’client’ and Privatkunde’private client’ as differ-
ent lexemes, while they are strongly related se-

available for English, German and Spanish, see
http://framenet.icsi.berkeley.edu.
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mantically and information about predicates co-
occurring with the second word could probably
be used for describing the semantics of the first
one. Concerning relatedness measure, additional
corpus-based measures such as Web-based mea-
sures (Cimiano and Wenderoth, 2007) or measures
based on syntactic relations (Pustejovsky et al.,
1993) could appear to be useful for improving the
ranking of the extracted relations.

The presented procedure was evaluated quanti-
tatively against human judgments obtained experi-
mentally. The participants of the experiment were
asked to provide short phrases containing given
cue words and predicates associated with these
words as well as to rate phrases generated from the
automatically extracted AP-relations. Concerning
the first experiment, the low human agreement has
shown that the proposed association task appeared
to be difficult for the subjects. Nevertheless, the
described learning procedure proved to extract in-
tuitively reasonable relations.

The evaluation strategy presented in this pa-
per on relies on the underlying assumptions (A1
and A2 in section 5) and is compatible with the
other approaches to relation extraction, cf. (Cimi-
ano and Wenderoth, 2007). However, it is plau-
sible that human responses in the context of pro-
viding associated predicates for target words will
differ from the responses in the experimental set-
tings where subjects are asked to infer implicit
predicates, e.g. to extend phrases containing im-
plicit predicates. In the future we plan to im-
plement a procedure making use of the extracted
AP-relations which would automatically extend
phrases containing implicit predicates. Then we
intend to compare output results of the procedure
with the human responses. Additionally, a study of
a possible correspondence between human agree-
ment on associated predicates and a semantic type
of an argument (e.g. concrete/abstract, natural
kind/artifact) should be performed on more test ar-
guments.

Potential Applications

As already mentioned in the literature, see for ex-
ample (Lapata and Lascarides, 2003), knowledge
about implicit predicates could be potentially use-
ful for a variety of NLP tasks such as language
generation, information extraction, question an-
swering or machine translation. Many applica-
tions of semantic relations in NLP are connected

to paraphrasing or query expansion, see for ex-
ample (Voorhees, 1994). Suppose that a search
engine or a question answering system receives
the queryschnelle Bombe’quick bomb’. Prob-
ably, in this case the user is interested in find-
ing information about bombs that explode quickly
rather then about bombs in general. Knowledge
about predicates associated with the nounBombe
’bomb’ could be used for predicting a set of prob-
able implicit predicates. For generation of the se-
mantically and syntactically correct paraphrases it
is sometimes not enough to guess the most prob-
able argument-predicate pairs. Information about
types of an argument-predicate relation could be
helpful, i.e. which semantic and syntactic posi-
tion does the argument fill in the argument struc-
ture of the predicate. For example, compare
eine Bombe explodiert schnell’a bomb explodes
quickly’ for schnelle Bombewith ein Buch schnell
lesen/schreiben’to read/write a book quickly’ for
schnelles Buch’quick book’. In the first case the
argumentBombefills the subject position, while
in the second caseBuch fills the object posi-
tion. Since FrameNet contains information about
syntactic realization patterns for frame elements,
representation of argument-predicate relations in
terms of frames directly supports generation of se-
mantically and syntactically correct paraphrases.

The described procedure could also support
manual development of a lexical resource, provid-
ing evidence from corpora as well as the distribu-
tional information.
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Abstract

Distinguishing speculative statements
from factual ones is important for most
biomedical text mining applications. We
introduce an approach which is based
on solving two sub-problems to identify
speculative sentence fragments. The first
sub-problem is identifying the speculation
keywords in the sentences and the second
one is resolving their linguistic scopes.
We formulate the first sub-problem as a
supervised classification task, where we
classify the potential keywords as real
speculation keywords or not by using
a diverse set of linguistic features that
represent the contexts of the keywords.
After detecting the actual speculation
keywords, we use the syntactic structures
of the sentences to determine their scopes.

1 Introduction

Speculation, also known as hedging, is a fre-
quently used language phenomenon in scientific
articles, especially in experimental studies, which
are common in the biomedical domain. When re-
searchers are not completely certain about the in-
ferred conclusions, they use speculative language
to convey this uncertainty. Consider the follow-
ing example sentences from abstracts of articles in
the biomedical domain. The abstracts are available
at the U.S. National Library of Medicine PubMed
web page1. The PubMed Identifier (PMID) of the
corresponding article is given in parenthesis.

1. We showed that the Roaz protein bound specifically to
O/E-1 by using the yeast two-hybrid system. (PMID:
9151733)

2. These data suggest that p56lck is physically associated

with Fc gamma RIIIA (CD16) and functions to mediate

1http://www.ncbi.nlm.nih.gov/pubmed/

signaling events related to the control of NK cellular

cytotoxicity. (PMID: 8405050)

The first sentence is definite, whereas the sec-
ond one contains speculative information, which is
conveyed by the use of the word “suggest”. While
speculative information might still be useful for
biomedical scientists, it is important that it is dis-
tinguished from the factual information.

Recognizing speculations in scientific text has
gained interest in the recent years. Previous
studies focus on identifying speculative sentences
(Light et al., 2004; Medlock and Briscoe, 2007;
Szarvas, 2008; Kilicoglu and Bergler, 2008).
However, in many cases, not the entire sentence,
but fragments of a sentence are speculative. Con-
sider the following example sentences.

1. The mature mitochondrial forms of the erythroid and
housekeeping ALAS isozymes are predicted to have
molecular weights of 59.5 kd and 64.6 kd, respectively.
(PMID: 2050125)

2. Like RAD9, RAD9B associates with HUS1, RAD1, and

RAD17, suggesting that it is a RAD9 paralog that

engages in similar biochemical reactions. (PMID:

14611806)

Both sentences are speculative, since they con-
tain speculative information, which is signaled by
the use of the word “predicted” in the first sen-
tence and the word “suggesting” in the second
sentence. The scope of the speculation keyword
“predicted” in the first sentence spans the entire
sentence. Therefore, classifying the sentence as
speculative does not cause information loss. How-
ever, the scope of the speculation keyword “sug-
gesting” in the second sentence applies only to
the second clause of the sentence. In other words,
only the statement “RAD9B is a RAD9 paralog
that engages in similar biochemical reactions” is
speculative. The statement “Like RAD9, RAD9B
associates with HUS1, RAD1, and RAD17” con-
veys factual information. Therefore, classifying
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the entire sentence as speculative will result in in-
formation loss.

In this paper, we aim to go beyond recogniz-
ing speculative sentences and tackle the problem
of identifying speculative fragments of sentences.
We propose an approach which is based on solv-
ing two sub-problems: (1) detecting the real spec-
ulation keywords, (2) resolving their linguistic
scopes in the sentences. As the previous exam-
ples demonstrated speculations are signaled with
speculation keywords (e.g. might, suggest, likely,
hypothesize, could, predict, and etc.). However,
these keywords are not always used in a specula-
tive context. In other words, they are not always
real speculation keywords. Unlike previous ap-
proaches which classify sentences as speculative
or not, we formulate the problem as classifying the
keywords as real speculation keywords or not. We
extract a diverse set of features such as linguistic
features that represent the context of the keyword
and positional features of the sentence in which
the keyword occurs. We use these features with
Support Vector Machines (SVM) to learn models
to classify whether the occurrence of a keyword
is in a speculative context or not. After detecting
the real speculation keywords, we use the syntactic
structures of the sentences to identify their linguis-
tic scopes.

2 Related Work

Although hedging in scientific articles has been
studied from a linguistics perspective since the
1990s (e.g. (Hyland, 1998)), it has only gained in-
terest from a natural language processing perspec-
tive in the recent years.

The problem of identifying speculative sen-
tences in biomedical articles has been introduced
by Light et al. (2004). The authors discussed the
possible application areas of recognizing specu-
lative language and investigated whether the no-
tion of speculative sentences can be characterized
to enable manual annotation. The authors devel-
oped two automated systems to classify sentences
as speculative or not. The first method is based
on substring matching. A sentence is classified as
speculative if it contains one of the 14 predefined
strings (suggest, potential, likely, may, at least, in
part, possibl, further investigation, unlikely, pu-
tative, insights, point toward, promise, propose).
The second method is based on using SVM with
bag-of-words features. The substring matching

method performed slightly better than the SVM
with bag-of-words features approach.

Medlock and Briscoe (2007) extended the work
of Light et al. (2004) by refining their annota-
tion guidelines and creating a publicly available
data set (FlyBase data set) for speculative sen-
tence classification. They proposed a weakly su-
pervised machine learning approach to classify
sentences as speculative or not with the aim of
minimizing the need for manually labeled train-
ing data. Their approach achieved 76% preci-
sion/recall break-even point (BEP) performance
on the FlyBase data set, compared to the BEP
of 60% obtained by Light et al.’s (2004) sub-
string matching approach on the same data set.
Szarvas (2008) extended the weakly supervised
machine learning methodology of Medlock and
Briscoe (2007) by applying feature selection to re-
duce the number of candidate keywords, by us-
ing limited manual supervision to filter the fea-
tures, and by extending the feature representation
with bigrams and trigrams. In addition, by fol-
lowing the annotation guidelines of Medlock and
Briscoe (2007), Szarvas (2008) made available the
BMC Bioinformatics data set, by annotating four
full text papers from the open access BMC Bioin-
formatics website. They achieved a BEP perfor-
mance of 85.29% and an F-measure of 85.08% on
the FlyBase data set. The F-measure performance
achieved on the BMC Bioinformatics data set was
74.93% when the FlyBase data set was used for
training. Kilicoglu and Bergler (2008) compiled
a list of speculation keywords from the examples
in (Hyland, 1998) and extended this list by us-
ing WordNet (Fellbaum, 1998) and UMLS SPE-
CIALIST Lexicon (McCray et al., 1994). They
used manually crafted syntactic patterns to iden-
tify speculative sentences and achieved a BEP and
an F-measure of 85% on the FlyBase data set and a
BEP and an F-measure of 82% on the BMC Bioin-
formatics data set.

Unlike pervious studies, which treat the prob-
lem of identifying speculative language as a sen-
tence classification task, we tackle the more chal-
lenging problem of identifying the portions of sen-
tences which are speculative. In other words, we
allow a sentence to include both speculative and
non-speculative parts. We introduce and eval-
uate a diverse set of features that represent the
context of a keyword and use these features in
a supervised machine learning setting to classify
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the keywords as real speculation keywords or not.
Then, we develop a rule-based method to deter-
mine their linguistic scopes by considering the
keyword-specific features and the syntactic struc-
tures of the sentences. To the best of our knowl-
edge, the BioScope corpus (Vincze et al., 2008) is
the only available data set that has been annotated
for speculative sentence fragments and we report
the first results on this corpus.

3 Corpus

The BioScope corpus2 has been annotated at the
token level for speculation keywords and at the
sentence level for their linguistic scopes (Vincze
et al., 2008). The corpus consists of three sub-
corpora: medical free texts (radiology reports),
biomedical article abstracts, and biomedical full
text articles. In this paper we focus on identifying
speculations in scientific text. Therefore, we use
the biomedical article abstracts and the biomedi-
cal full text articles in our experiments. The statis-
tics (number of documents, number of sentences,
and number of occurrences of speculation key-
words) for these two sub-corpora are given in Ta-
ble 1. The scientific abstracts in the BioScope cor-

Data Set Documents Sentences Hedge Keywords
Abstracts 1273 11871 2694
Full Papers 9 2670 682

Table 1: Summary of the biomedical scientific articles sub-
corpora of the BioScope corpus

pus were included from the Genia corpus (Col-
lier et al., 1999). The full text papers consist of
five articles from the FlyBase data set and four
articles from the open access BMC Bioinformat-
ics website. The sentences in the FlyBase and
BMC Bioinformatics data sets were annotated as
speculative or not and made available by Med-
lock and Briscoe (2007) and Szarvas (2008), re-
spectively and have been used by previous stud-
ies in identifying speculative sentences (Medlock
and Briscoe, 2007; Kilicoglu and Bergler, 2008;
Szarvas, 2008). Vincze et al. (2008) annotated
these full text papers and the Genia abstracts for
speculation keywords and their scopes and in-
cluded them to the BioScope corpus. The key-
words were annotated with a minimalist strategy.
In other words, the minimal unit that expresses
speculation was annotated as a keyword. A key-
word can be a single word (e.g. suggest, predict,

2Available at: http://www.inf.u-szeged.hu/rgai/bioscope

might) or a phrase (complex keyword), if none of
the words constituting the phrase expresses a spec-
ulation by itself. For example the phrase “no ev-
idence of‘” in the sentence “Direct sequencing of
the viral genomes and reinfection kinetics showed
no evidence of wild-type reversion even after pro-
longed infection with the Tat- virus.” is an example
of a complex keyword, since the words forming
the phrase can only express speculation together.

In contrast to the minimalist strategy followed
when annotating the keywords, the annotation of
scopes of the keywords was performed by assign-
ing the scope to the largest syntactic unit possible
by including all the elements between the keyword
and the target word to the scope (in order to avoid
scopes without a keyword) and by including the
modifiers of the target word to the scope (Vincze
et al., 2008). The reader can refer to (Vincze et al.,
2008) for the details of the corpus and the annota-
tion guidelines.

The inter-annotator agreement rate was mea-
sured as the F-measure of the annotations of the
first annotator by considering the annotations of
the second one as the gold standard. The agree-
ment rate for speculation keyword annotation is
reported as 92.05% for the abstracts and 90.81%
for the full text articles and the agreement rate for
speculation scope resolution is reported as 94.04%
for the abstracts and 89.67% for the full text ar-
ticles (Vincze et al., 2008). These rates can be
considered as the upper bounds for the automated
methods proposed in this paper.

4 Identifying Speculation Keywords

Words and phrases such as “might”, “suggest”,
“likely”, “no evidence of”, and “remains to be
elucidated” that can render statements speculative
are called speculation keywords. Speculation key-
words are not always used in speculative context.
For instance, consider the following sentences:

1. Thus, it appears that the T-cell-specific activation of
the proenkephalin promoter is mediated by NF-kappa
B. (PMID: 91117203)

2. Differentiation assays using water soluble phorbol es-

ters reveal that differentiation becomes irreversible

soon after AP-1 appears. (PMID: 92088960)

The keyword “appears” in the first sentence ren-
ders it speculative. However, in the second sen-
tence, “appears” is not used in a speculative con-
text.

1400



The first sub-problem that we need to solve in
order to identify speculative sentence fragments is
identifying the real speculation keywords in a sen-
tence (i.e. the keywords which convey speculative
meaning in the sentence). We formulate the prob-
lem as a supervised classification task. We extract
the list of keywords from the training data which
has been labeled for speculation keywords. We
match this list of keywords in the unlabeled (test
data) and train a model to classify each occurrence
of a keyword in the unlabeled test set as a real
speculation keyword or not. The challenge of the
task can be demonstrated by the following statis-
tics from the Genia Abstracts of the BioScope cor-
pus. There are 1273 abstracts in the corpus. There
are 138 unique speculation keywords and the to-
tal number of their occurrence in the abstracts is
6125. In only 2694 (less than 50%) of their occur-
rences they are used in speculative context (i.e.,
are real speculation keywords).

In this study we focus on identifying the fea-
tures that represent the context of a speculation
keyword and use SVM with linear kernel (we
used the SVM light package (Joachims, 1999)) as
our classification algorithm. The following sub-
section describes the set of features that we pro-
pose.

4.1 Feature Extraction

We introduce a set of diverse types of features
including keyword specific features such as the
stem and the part-of-speech (POS) of the keyword,
and keyword context features such as the words
surrounding the keyword, the dependency rela-
tion types originating at the keyword, the other
keywords that occur in the same sentence as the
keyword, and positional features such as the sec-
tion of the paper in which the keyword occurs.
While designing the features, we were inspired by
studies on other natural language processing prob-
lems such as Word Sense Disambiguation (WSD)
and summarization. For example, machine learn-
ing methods with features based on part-of-speech
tags, word stems, surrounding and co-occurring
words, and dependency relationships have been
successfully used in WSD (Montoyo et al., 2005;
Ng and Lee, 1996; Dligach and Palmer, 2008) and
positional features such as the position of a sen-
tence in the document have been used in text sum-
marization (e.g. (Radev et al., 2004)).

4.1.1 Keyword Features
Statistics from the BioScope corpus suggest that
different keywords have different likelihoods of
being used in a speculative context (Vincze et al.,
2008). For example, the keyword “suggest” has
been used in a speculative context in all its oc-
currences in the abstracts and in the full papers.
On the other hand, “appear” is a real specula-
tion keyword in 86% of its occurrences in the ab-
stracts and in 83% of its occurrences in the full
papers, whereas “can” is a real speculation key-
word in 12% of its occurrences in the abstracts and
in 16% of its occurrences in the full papers. POS
of a keyword might also play a role in determining
whether it is a real speculation keyword or not. For
example, consider the keyword “can”. It is more
likely to have been used in a speculative context
when it is a modal verb, than when it is a noun.
Based on these observations, we hypothesize that
features specific to a keyword such as the keyword
itself, the stem of the keyword, and the POS of
the keyword might be useful in discriminating the
speculative versus non-speculative use of it. We
use Porter’s Stemming Algorithm (Porter, 1980)
to obtain the stems of the keywords and Stanford
Parser (de Marneffe et al., 2006) to get the POS of
the keywords. If a keywords consists of multiple
words, we use the concatenation of the POS of the
words constituting the keyword as a feature. For
example, the extracted POS feature for the key-
words “no evidence” and “no proof” is “DT.NN”
.

4.1.2 Dependency Relation Features
Besides the occurrence of a speculation keyword,
the syntactic structure of the sentence also plays
an important role in characterizing speculations.
Kilicoglu and Bergler (2008) showed that man-
ually identified syntactic patterns are effective in
classifying sentences as speculative or not. They
identified that, while some keywords do not in-
dicate hedging when used alone, they might act
as good indicators of hedging when used with a
clausal complement or with an infinitival clause.
For example, the “appears” keyword in the ex-
ample sentences, which are given in the beginning
of Section 4, is not a real speculation keyword in
the second example “...soon after AP-1 appears.”
, whereas it is a real speculation keyword in the
first example, where it is used with a that clausal
complement “...it appears that...”. Similarly, “ap-
pears” is used in a speculative context in the fol-
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lowing sentence, where it is used with an infini-
tival clause: “Synergistic transactivation of the
BMRF1 promoter by the Z/c-myb combination ap-
pears to involve direct binding by the Z protein.”.

Another observation is that, some keywords
act as real speculation keywords only when used
with a negation. For example, words such as
“know”, “evidence”, and “proof” express cer-
tainty when used alone, but express a speculation
when used with a negation (e.g., “not known”,
“no evidence”, “no proof” ).

Auxiliaries in verbal elements might also give
clues for the speculative meaning of the main
verbs. Consider the example sentence: “Our find-
ings may indicate the presence of a reactivated
virus hosted in these cells.”. The modal auxiliary
“may” acts as a clue for the speculative context of
the main verb “indicate”.

We defined boolean features to represent the
syntactic structures of the contexts of the key-
words. We used the Stanford Dependency Parser
(de Marneffe et al., 2006) to parse the sentences
that contain a candidate speculation keyword and
extracted the following features from the depen-
dency parse trees.

Clausal Complement: A Boolean feature which is set to 1,
if the keyword has a child which is connected to it with
a clausal complement or infinitival clause dependency
type.

Negation: A Boolean feature which is set to 1, if the key-
word (1) has a child which is connected to it with a
negation dependency type (e.g. “not known”: “not” is
a child of “known”, and the Stanford Dependency Type
connecting them is “neg”) or (2) the determiner “no” is
a child of the keyword (e.g., “no evidence”: “no” is a
child of “evidence” and the Stanford Dependency Type
connecting them is “det”).

Auxiliary: A Boolean feature which is set to 1, if the key-

word has a child which is connected to it with an auxil-

iary dependency type (e.g. “may indicate”: “may” is a

child of “indicate”, and the Stanford Dependency Type

connecting them is “aux”).

If a keyword consists of multiple-words, we ex-
amine the children of the word which is the an-
cestor of the other words constituting the key-
word. For example, “no evidence” is a multi-word
keyword, where “evidence” is the parent of “no”.
Therefore, we extract the dependency parse tree
features for the word “evidence”.

4.1.3 Surrounding Words
Recent studies showed that using machine learn-
ing with variants of the “bag-of-words” feature

representation is effective in classifying sentences
as speculative vs. non-speculative (Light et al.,
2004; Medlock and Briscoe, 2007; Szarvas, 2008).
Therefore, we also decided to include bag-of-
words features that represent the context of the
speculation keyword. We extracted the words sur-
rounding the keyword and performed experiments
both with and without stemming, and with win-
dow sizes of one, two, and three. Consider the
sentence: “Our findings may indicate the presence
of a reactivated virus hosted in these cells.”. The
bag-of-words features for the keyword “indicate”,
when a window size of three and no stemming is
used are: “our”, “findings”, “may”, “indicate”,
“the”, “presence”, “of”. In other words, the fea-
ture set consists of the keyword, the three words to
the left of the keyword, and the three words to the
right of the keyword.

4.1.4 Positional Features
Different parts of a scientific article might have
different characteristics in terms of the usage of
speculative language. For example, Hyland (1998)
analyzed a data set of molecular biology articles
and reported that the distribution of speculations
is similar between abstracts and full text articles,
whereas the Results and Discussion sections tend
to contain more speculative statements compared
to the other sections (e.g. Materials and Methods
or Introduction and Background sections). The
analysis of Light et al. (2004) showed that the last
sentence of an abstract is more likely to be specu-
lative than non-speculative.

For the scientific abstracts data set, we defined
the following boolean features to represent the po-
sition of the sentence the keyword occurs in. Our
intuition is that titles and the first sentences in the
abstract tend to be non-speculative, whereas the
last sentence of the abstract tends to be specula-
tive.

Title: A Boolean feature which is set to 1, if the keyword
occurs in the title.

First Sentence: A Boolean feature which is set to 1, if the
keyword occurs in the first sentence of the abstract.

Last Sentence: A Boolean feature which is set to 1, if the

keyword occurs in the last sentence of the abstract.

For the scientific full text articles data set, we
defined the following features that represent the
position of the sentence in which the keyword oc-
curs. Our assumption is that the “Results and Dis-
cussion” and the “Conclusion” sections tend to
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contain more speculative statements than the “Ma-
terials and Methods” and “Introduction and Back-
ground” sections. We also assume that figure and
table legends are not likely to contain speculative
statements.

Title: A Boolean feature which is set to 1, if the keyword
occurs in the title of the article, or in the title of a sec-
tion or sub-section.

First Sentence: A Boolean feature which is set to 1, if the
keyword occurs in the first sentence of the abstract.

Last Sentence: A Boolean feature which is set to 1, if the
keyword occurs in the last sentence of the abstract.

Background: A Boolean feature which is set to 1, if the
keyword occurs in the Background or Introduction sec-
tion.

Results: A Boolean feature which is set to 1, if the keyword
occurs in the Results or in the Discussion section.

Methods: A Boolean feature which is set to 1, if the key-
word occurs in the Materials and Methods section.

Conclusion: A Boolean feature which is set to 1, if the key-
word occurs in the Conclusion section.

Legend: A Boolean feature which is set to 1, if the keyword

occurs in a table or figure legend.

4.1.5 Co-occurring Keywords
Speculation keywords usually co-occur in the sen-
tences. Consider the sentence: “We, therefore,
wished to determine whether T3SO4 could mimic
the action of thyroid hormone in vitro.”. Here,
“whether” and “could” are speculation keywords
and their co-occurence might be a clue for their
speculative context. Therefore, we decided to in-
clude the co-occurring keywords to the feature set
of a keyword.

5 Resolving the Scope of a Speculation

After identifying the real speculation keywords,
the next step is determining their scopes in the sen-
tences, so that the speculative sentence fragments
can be detected. Manual analysis of sample sen-
tences from the BioScope corpus and their parse
trees suggests that the scope of a keyword can be
characterized by its part-of-speech and the syntac-
tic structure of the sentence in which it occurs.
Consider the example sentence whose parse tree
is shown in Figure 1. The sentence contains three
speculation keywords, “or” and two occurrences
of “might”. The scope of the conjunction “or”, ex-
tends to the “VP” whose children it coordinates.
In other words, the scope of “or” is “[might be

one of the earliest crucial steps in the lysis of nor-
mal and dex-resistant CEM cells, or might serve
as a marker for the process]”. Here, “or” con-
veys a speculative meaning, since we are not cer-
tain which of the two sub-clauses (sub-clause 1:
[might be one of the earliest crucial steps in the
lysis of normal and dex-resistant CEM cells] or
sub-clause 2: [might serve as a marker for the pro-
cess]) is correct. The scope of both occurrences
of the modal verb “might” is the parent “VP”. In
other words, the scope of the first occurrence of
“might” is “[might be one of the earliest crucial
steps in the lysis of normal and dex-resistant CEM
cells]” and the scope of the second occurrence of
“might” is “[might serve as a marker for the pro-
cess]”. By examining the keywords, sample sen-
tences and their syntactic parse trees we devel-
oped the following rule-based approach to resolve
the scopes of speculation keywords. The exam-
ples given in this section are based on the syntactic
structure of the Penn Tree Bank. But, the rules are
generic (e.g. “the scope of a verb followed by an
infinitival clause, extends to the whole sentence”).

The scope of a conjunction or a determiner (e.g.
or, and/or, vs) is the syntactic phrase to which it
is attached. For example, the scope of “or” in
Figure 1 is the “VP” immediately dominating the
“CC”.

The scope of a modal verb (e.g. may, might,
could) is the “VP” to which it is attached. For
example, the scope of “might” in Figure 1 is the
“VP” immediately dominating the “MD”.

The scope of an adjective or an adverb starts
with the keyword and ends with the last token of
the highest level “NP” which dominates the ad-
jective or the adverb. Consider the sentence “The
endocrine events that are rapidly expressed (sec-
onds) are due to a [possible interaction with cellu-
lar membrane].” The scope of the speculation key-
word “possible” is enclosed in rectangular brack-
ets. The sub-tree that this scope maps to is: “(NP
(NP (DT a) (JJ possible) (NN interaction)) (PP
(IN with) (NP (JJ cellular) (NN membrane))))”.
If there does not exist a “NP” dominating the ad-
verb or adjective keyword, the scope extends to
the whole sentence. For example the scope of
the speculation adverb “probably” in the sentence
“[The remaining portion of the ZFB motif was
probably lost in TPases of insect Transib trans-
posons]” is the whole sentence.

The scope of a verb followed by an infinitival
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Figure 1: The syntactic parse tree of the sentence “Positive induction of GR mRNA might be one of the earliest crucial steps
in the lysis of normal and dex-resistant CEM cells, or might serve as a marker for the process.”

clause extends to the whole sentence. For exam-
ple, the scope of the verb “appears” followed by
the “to” infinitival clause is the whole sentence in
“[The block of pupariation appears to involve sig-
naling through the adenosine receptor (AdoR)]”.

The scope of a verb in passive voice extends
to the whole sentence such as the scope of “sug-
gested” in “[The existence of such an indepen-
dent mechanism has also been suggested in mam-
mals]”.

If none of the above rules apply, the scope of a
keyword starts with the keyword and ends at the
end of the sentence (or clause). An example is
the scope of “suggested” in “This [suggested that
there is insufficient data currently available to de-
termine a reliable ratio for human]”.

6 Evaluation

We evaluated our approach on two different types
of scientific text from the biomedical domain,
namely the scientific abstracts sub-corpus and the
full text articles sub-corpus of the BioScope cor-
pus (see Section 3). We used stratified 10-fold
cross-validation to evaluate the performance on
the abstracts. In each fold, 90% of the abstracts are
used for training and 10% are used to test. To facil-
itate comparison with future studies the PubMed
Identifiers of the abstracts that we used as a test
set in each fold are provided3. The full text pa-
pers sub-corpus consists of nine articles. We used
leave-one-out cross-validation to evaluate the per-

3http://belobog.si.umich.edu/clair/bioscope/

formance on the full text papers. In each iteration
eight articles are used for training and one article
is used to test. We report the average results over
the runs for each data set.

6.1 Evaluation of Identifying Speculation
Keywords

To classify whether the occurrence of a keyword is
in speculative context or not, we built linear SVM
models by using various combinations of the fea-
tures introduced in Section 4.1. Tables 2 and 3
summarize the results obtained for the abstracts
and the full text papers, respectively. BOW N is
the bag-of-words features obtained from the words
surrounding the keyword (see Section 4.1.3). N is
the window size. We experimented both with the
stemmed and non-stemmed versions of this fea-
ture type. The non-stemmed versions performed
slightly better than the stemmed versions. The rea-
son might be due to the different likelihoods of
being used in a speculative context of different in-
flected forms of words. For example, consider the
words “appears” and “appearance”. They have the
same stems, but “appearance” is less likely to be a
real speculation keyword than “appears”. Another
observation is that, decreasing the window size
led to improvement in performance. This suggests
that the words right before and right after the can-
didate speculation keyword are more effective in
distinguishing its speculative vs. non-speculative
context compared to a wider local context. Wider
local context might create sparse data and degrade
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performance. Consider the example, “it appears
that TP53 interacts with AR”. The keyword “ap-
pears”, and BOW1 (“it” and “that”) are more rel-
evant for the speculative context of the keyword
than “TP53”, “interacts”, and “with”. Therefore,
for the rest of the experiments we used the BOW
1 version, i.e., the non-stemmed surrounding bag-
of-words with window size of 1. KW stands for
the keyword specific features, i.e., the keyword, its
stem, and its part-of-speech (discussed in Section
4.1.1). DEP stands for the dependency relation
features (discussed in Section 4.1.2). POS stands
for the positional features (discussed in Section
4.1.4) and CO-KW stands for the co-occurring
keywords feature (discussed in Section 4.1.5).

Our results are not directly comparable with
the prior studies about identifying speculative sen-
tences (see Section 2), since we attempted to solve
a different problem, which is identifying specula-
tive parts of sentences. Only the substring match-
ing approach that was introduced in (Light et al.,
2004) could be adapted as a keyword classification
task, since the substrings are keywords themselves
and we used this approach as a baseline in the
keyword classification sub-problem. We compare
the performances of our models with two baseline
methods, which are based on the substring match-
ing approach. Light et al. (2004) have shown that
the substring matching method with a predefined
set of 14 strings performs slightly better than an
SVM model with bag-of-words features in classi-
fying sentences as speculative vs. non-speculative
(see Section 2). In baseline 1, we use the 14 strings
identified in (Light et al., 2004) and classify all the
keywords in the test set that match any of them as
real speculation keywords. Baseline 2 is similar
to baseline 1, with the difference that rather than
using the set of strings in (Light et al., 2004), we
extract the set of keywords from the training set
and classify all the words (or phrases) in the test
set that match any of the keywords in the list as
real speculation keywords.

Baseline 1 achieves high precision, but low re-
call. Whereas, baseline 2 achieves high recall in
the expense of low precision. All the SVM mod-
els in Tables 2 and 3 achieve more balanced preci-
sion and recall values, with F-measure values sig-
nificantly higher than the baseline methods. We
start with a model that uses only the keyword-
specific features (KW). This type of feature alone
achieved a significantly better performance than

the baseline methods (90.61% F-measure for the
abstracts and 80.57% F-measure for the full text
papers), suggesting that the keyword-specific fea-
tures are important in determining its specula-
tive context. We extended the feature set by in-
cluding the dependency relation (DEP), surround-
ing words (BOW 1), positional (POS), and co-
occurring keywords (CO-KW) features. Each new
type of included feature improved the performance
of the model for the abstracts. The best F-measure
(91.69%) is achieved by using all the proposed
types of features. This performance is close to the
upper bound, which is the human inter-annotator
agreement F-measure of 92.05%.

Including the co-occurring keywords to the fea-
ture set for full text articles slightly improved pre-
cision, but deceased recall, which led to lower F-
measure. The best F-measure (82.82%) for the
full text articles is achieved by using all the fea-
ture types except the co-occurring keywords. The
achieved performance is significantly higher than
the baseline methods, but lower than the human
inter-annotator agreement F-measure of 90.81%.
The lower performance for the full text papers
might be due to the small size of the data set (9
full text papers compared to 1273 abstracts).

Method Recall Precision F-Measure
Baseline 1 52.84 92.71 67.25
Baseline 2 97.54 43.66 60.30
BOW 3 - stemmed 81.47 92.36 86.51
BOW 2 - stemmed 81.56 93.29 86.97
BOW 1 - stemmed 83.08 93.83 88.05
BOW 3 82.58 92.04 86.98
BOW 2 82.77 92.74 87.41
BOW 1 83.27 93.67 88.10
KW: kw, kw-stem, kw-pos 88.62 92.77 90.61
KW, DEP 88.77 92.67 90.64
KW, DEP, BOW 1 88.46 94.71 91.43
KW, DEP, BOW 1, POS 88.16 95.21 91.50
KW, DEP, BOW 1, POS, CO-KW 88.22 95.56 91.69

Table 2: Results for the Scientific Abstracts

Method Recall Precision F-Measure
Baseline 1 33.77 86.75 47.13
Baseline 2 88.22 52.57 64.70
BOW 3 - stemmed 70.79 83.88 76.58
BOW 2 - stemmed 72.31 85.49 78.11
BOW 1 - stemmed 73.49 84.35 78.41
BOW 3 70.54 82.56 75.88
BOW 2 71.52 85.93 77.94
BOW 1 73.72 86.27 79.43
KW: kw, kw-stem, kw-pos 75.21 87.08 80.57
KW, DEP 75.02 89.49 81.53
KW, DEP, BOW 1 76.15 89.54 82.27
KW, DEP, BOW 1, POS 76.17 90.81 82.82
KW, DEP, BOW 1, POS, CO-KW 75.76 90.82 82.58

Table 3: Results for the Scientific Full Text Papers
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6.2 Evaluation of Resolving the Scope of a
Speculation

We compared the proposed rule-based approach
for scope resolution with two baseline methods.
Previous studies classify sentences as speculative
or not, therefore implicitly assigning the scope of
a speculation to the whole sentence (Light et al.,
2004; Medlock and Briscoe, 2007; Szarvas, 2008;
Kilicoglu and Bergler, 2008). Baseline 1 follows
this approach and assigns the scope of a specu-
lation keyword to the whole sentence. Szarvas
(2008) suggest assigning the scope of a keyword
from its occurrence to the end of the sentence.
They state that this approach works accurately for
clinical free texts, but no any results are reported
(Szarvas, 2008). Baseline 2 follows the approach
proposed in (Szarvas, 2008) and assigns the scope
of a keyword to the fragment of the sentence that
starts with the keyword and ends at the end of the
sentence. Table 4 summarizes the accuracy results
obtained for the abstracts and the full text papers.

The poor performance of baseline 1, empha-
sizes the importance of detecting the portions of
sentences that are speculative, since less than 5%
of the sentences that contain speculation keywords
are entirely speculative. Classifying the entire sen-
tences as speculative or not leads to loss in infor-
mation for more than 95% of the sentences. The
rule-based method significantly outperformed the
two baseline methods, indicating that the part-of-
speech of the keywords and the syntactic parses
of the sentences are effective in characterizing the
speculation scopes.

Method Accuracy-Abstracts Accuracy-Full text
Baseline 1 4.82 4.29
Baseline 2 67.60 42.82
Rule-based method 79.89 61.13

Table 4: Scope resolution results

7 Conclusion

We presented an approach to identify speculative
sentence fragments in scientific articles. Our ap-
proach is based on solving two sub-problems. The
first one is identifying the keywords which are
used in speculative context and the second one is
determining the scopes of these keywords in the
sentences. We evaluated our approach for two
types of scientific texts, namely abstracts and full
text papers from the BioScope corpus.

We formulated the first sub-problem as a super-

vised classification task, where the aim is to learn
models to classify the candidate speculation key-
words as real speculation keywords or not. We fo-
cused on identifying different types of linguistic
features that capture the contexts of the keywords.
We achieved a performance which is significantly
better than the baseline methods and comparable
to the upper-bound, which is the human inter-
annotator agreement F-measure.

We hypothesized that the scope of a specula-
tion keyword can be characterized by its part-of-
speech and the syntactic structure of the sentence
and developed rules to map the scope of a key-
word to the nodes in the syntactic parse tree. We
achieved a significantly better performance com-
pared to the baseline methods. The considerably
lower performance of the baseline of assigning the
scope of a speculation keyword to the whole sen-
tence indicates the importance of detecting specu-
lative sentence portions rather than classifying the
entire sentences as speculative or not.
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Abstract

This paper presents preliminary results on
the detection of cultural differences from
people’s experiences in various countries
from two perspectives: tourists and lo-
cals. Our approach is to develop proba-
bilistic models that would provide a good
framework for such studies. Thus, we pro-
pose here a new model, ccLDA, which
extends over the Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) and cross-
collection mixture (ccMix) (Zhai et al.,
2004) models on blogs and forums. We
also provide a qualitative and quantitative
analysis of the model on the cross-cultural
data.

1 Introduction

In today’s society, people from different cultural
backgrounds have to understand each other, inter-
act on a daily base and travel to or work in more
than one country. Understanding cultural diver-
sity, as well as addressing the need to communi-
cate effectively across cultural divides, have be-
come imperative in almost every aspect of life.
These constitute an important language aspect
since the lack of such cultural awareness can lead
to misinterpretations.

This paper presents preliminary results on the
detection of cultural differences from people’s ex-
periences in various countries from two perspec-
tives: tourists and locals. Since the advent of Web
2.0, user-generated data in the form of blogs and
newsgroup messages have reached high propor-
tions. In this paper we take advantage of such
resources of blogs and forums to perform various
cross-cultural analyses.

Our approach is to develop probabilistic mod-
els that would provide a good framework for such
studies. Thus, we propose here a new model,

ccLDA, which extends over the Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) and cross-
collection mixture (ccMix) (Zhai et al., 2004)
models. Our contribution is as follows:

(1) Unsupervised topic models such as LDA are
elegant and flexible approaches to clustering large
collections of unannotated data. These models,
however, have conceptually focused on one single
collection of text which is inadequate for compar-
ative analyses of text.

We thus develop an LDA-based model that can
not only discover topics but also model their simi-
larities and differences across multiple text collec-
tions.

(2) We improve on similar previous work by craft-
ing a model that can better generalize data and is
less reliant on user-defined parameters.

(3) We apply our new model on blogs and forums
to identify cross-cultural differences.

Thus, different models can be compared to re-
flect different hypotheses about the data.

The paper is organized as follows. In Section
2 we summarize relevant previous work and give
a detailed description of the model in Section 3.
Section 4 details the model’s parameter estima-
tion. Experimental results are presented in Sec-
tion 5, followed by discussion, future work, and
conclusions.

2 Previous Work

A topic model for comparing text collections
(ccMix) was previously introduced by Zhai et
al. (2004) for a problem called comparative text
mining (CTM). Given news articles from differ-
ent sources (about the same event), ccMix can ex-
tract what is common to all the sources and what
is unique to one specific source.

Our model improves over ccMix by replacing
their probabilistic latent semantic indexing (pLSI)
(Hofmann, 1999) framework with that of LDA.
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Under the ccMix model, the probability of gen-
erating the ith word in a document belonging to
collection c is:

P (wi) = (1− λB)
∑
z∈Z

P (z)(λCP (wi|z) +

(1− λC)P (wi|z, c)) + λBP (wi|B),

where each topic is denoted z. λB is the prob-
ability of choosing a word from the background
word distribution and is user-defined. λC is also
defined by the user and is the probability of draw-
ing a word from the collection-independent word
distribution instead of the collection-specific dis-
tribution. The parameters can be estimated using
the Expectation-Maximization algorithm (Demp-
ster et al., 1977).

However, in addition to the advantages of LDA
over pLSI such as the incorporation of Dirichlet
priors and a natural way to deal with new docu-
ments, our model avoids the limitations of using a
single user-defined parameter λC – this probabil-
ity is learned automatically under our model. Fur-
thermore, we allow this probability to depend on
the collection and topic, which is a less restrictive
assumption.

Our model, ccLDA, shares with the LDA-
Collocation (Griffiths et al., 2007) and Topical N-
Grams (Wang et al., 2007) models the assump-
tion that each word can come from two different
word distributions, one of which depends on an-
other observable variable. In these models, a word
can come from either its topic’s word distribution,
or it can come from a word distribution associated
with the previous word, in the case that the word
is determined to be part of a collocation. The key
difference here is that in these models, the alter-
native word distribution depends on the word pre-
ceding a token, while in ccLDA, this depends on
the document’s collection.

The model is also related to hierarchical
variants of LDA, in particular the hierarchical
Pachinko allocation (hPAM) (Mimno et al., 2007)
model, in which both a topic and hierarchy depth
are chosen, and there is a different word dis-
tribution at different levels in the hierarchy. A
natural way to view our model is as a two-
level hierarchy where the top level represents the
collection-independent distributions and the bot-
tom level represents the collection-specific distri-
butions. One of the main differences here is that
the discovered hierarchies in hPAM can be arbi-

trary, whereas the graphical structure of our model
is pre-determined such that each topic has exactly
one “sub-topic” representing each collection.

Wang et al. recently introduced Markov topic
models (MTM) (2009), a family of models which
can simultaneously learn the topic structure of a
single collection while discovering correlated top-
ics in other collections. This is promising in that
this type of model makes no assentation that each
topic is in some way shared across all collections.
However, it does not explicitly model the similar-
ities and differences between collections as we do
in this research.

In computational linguistics, topic models have
been used in various applications, such as predict-
ing response to political webposts (Yano et al.,
2009), analyzing Enron and academic emails (Mc-
Callum et al., 2007a), analyzing voting records
and corresponding text of resolutions from the
U.S. Senate and the U.N. (McCallum et al.,
2007b), as well as studying the history of ideas
in various research fields (Hall et al., 2008; Paul
and Girju, 2009). To our knowledge, the applica-
tion of topic models to identifying cross-cultural
differences is novel.

3 The Model

In this section we first review the basic pLSI and
LDA models. We then introduce our extension to
LDA: cross-collection LDA (ccLDA).

3.1 Basic Topic Modeling
The most basic generative model that assumes
document topicality is the standard Naı̈ve Bayes
model, where each document is assumed to be-
long to exactly one topic, and each topic is asso-
ciated with a probability distribution over words
(Mitchell, 1997).

While this single-topic approach can be suffi-
cient for classification tasks, it is often too limiting
for unsupervised grouping of semantically related
words into topics. A better assumption is that each
document is a mixture of topics. For example, a
news article about a natural disaster may include
topics about the causes of such disasters, the dam-
age/death toll, and relief aid/efforts. Probabilistic
latent semantic indexing (pLSI) (Hofmann, 1999)
is one such model. Under this model, the proba-
bility of seeing the ith word in a document is:

P (wi|d) =
∑
z∈Z

P (wi|z)P (z|d)
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One of the main criticisms of pLSI is that each
document is represented as a variable d and it is
not clear how to label previously unseen docu-
ments. This issue is addressed by Blei et al. with
latent Dirichlet allocation (2003). Furthermore,
the probabilities under this model have Dirichlet
priors, which results in more reasonable mixtures
and less overfitting. In LDA, a document is gener-
ated as follows:

1) Draw a multinomial distribution of words φz

from Dirichlet(β) for each topic z

2) For each document d1, draw a topic mixture
distribution θ(d) from Dirichlet(α). Then for each
word wi in d:

a) Sample a topic zi from θ(d)

b) Sample a word wi from φz

The Dirichlet parameters α and β are vectors
which represent the average of the respective dis-
tributions. In many applications, it is sufficient
to assume that these vectors are uniform and to
fix them at a value pre-defined by the user. In
this case, the Dirichlet priors simply function as
smoothing factors.

3.2 Cross-Collection LDA

In this subsection we introduce our extension
of LDA for comparing multiple text collec-
tions, which we refer to as cross-collection LDA
(ccLDA). Under this model, each topic is as-
sociated with two classes of word distributions:
one that is shared among all collections, and one
that is unique to the collection from which the
document comes. For example, when modeling
reviews of different laptops, the topic describ-
ing the preloaded software contains the words
“software”, “application”, “programs”, etc. in
its shared distribution with high probability, and
the Apple-specific word distribution contains the
words “itunes”, “appleworks”, and “iphoto”.

When generating a document under this model,
one first samples a collection c (which is ob-
servable in the data), then chooses a topic z and
flips a coin x to determine whether to draw from
the shared topic-word distribution or the topic’s
collection-specific distribution. The probability of
x being 1 or 0 comes from a Beta distribution (the
bivariate analog of the Dirichlet distribution) and

1One should also assume that a document length is sam-
pled from an arbitrary distribution, but this does not affect the
derivation of the model, so we ignore this here and elsewhere.

is dependent on the collection and topic of the cur-
rent token.

Figure 1: Graphical representation of ccLDA. C is the
number of collections, T is the number of topics, D is the
number of documents, and N is the length of each document.

The generative process is thus:

1) Draw a collection-independent multinomial
word distribution φz from Dirichlet(β) for each
topic z

2) Draw a collection-specific multinomial word
distribution σz,c from Dirichlet(δ) for each topic
z and each collection c

3) Draw a Bernoulli distribution ψz,c from
Beta(γ0, γ1) for each topic z and each collection
c

4) For each document d, choose a collection c and
draw a topic mixture θ(d) from Dirichlet(αc). Then
for each word wi in d:

a) Sample a topic zi from θ(d)

b) Sample xi from ψz,c

c) If xi = 0, sample a word wi from φz;
else if xi = 1, sample wi from σz,c

As mentioned in section 2, this model is in
some respects an LDA-based analog of the Zhai
et al. (2004) model (ccMix), and thus it offers the
same improvements that LDA offers over pLSI
(described in the previous subsection), but there
are some other differences. An obvious structural
difference between the models is that ccMix has
a special topic for background words, whereas we
simply address this by removing stop words dur-
ing preprocessing, which seems to give reasonable
performance in this respect. This could easily be
incorporated into our model such that x can take a
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third value that designates that a word comes from
the background, but removing stop words hugely
reduces the number of tokens in the data, and thus
very significantly improves the time needed to es-
timate the model.

In the ccMix model, the probability that a
word comes from the collection-specific distribu-
tion versus the shared distribution depends on a
single user-defined parameter λC . Since it is not
clear how to set this parameter2, in our model, we
learn this probability automatically. Furthermore,
the nature of the λC parameter is quite restrictive
in that it is the same regardless of the topic and
collection. In our model, this probability depends
on the collection and topic, which should allow for
a more accurate fitting of the data, as some topics
may be shared across the collections to a different
degree than others.

Additionally, our model allows the topic dis-
tributions for each document to come from non-
uniform Dirichlet priors (parameterized by the
vector αc) that depends on the document’s collec-
tion. Because the learned Dirichlet parameters can
be interpreted as the average mixing level of each
topic in the different collections, we can easily de-
termine if a topic is not shared among all collec-
tions, and thus we can automatically remove or set
aside such topics.

4 Parameter Estimation

Exact inference is often intractable in complex
Bayesian models and approximate methods must
be used. Blei et al. (2003) offer a variational EM
algorithm for LDA. Griffiths and Steyvers (2004)
show how Gibbs sampling can be used for approx-
imate inference in LDA. Gibbs sampling is a type
of Markov chain Monte Carlo algorithm and is
what we employ in this paper, as it is simple to
derive, comparable in speed to other estimators,
and it approximates a global maximum (whereas
EM algorithms may only converge to a local max-
imum).

In a Gibbs sampler, one iteratively samples new
assignments of hidden variables by drawing from
the distributions conditioned on the previous state
of the model (Gilks et al., 1995). In each Gibbs
sampling iteration we alternately sample new as-
signments of z and xwith the following equations:

2If needed, one can effectively set this probability manu-
ally in ccLDA as well by using a large prior.

P (zi|xi = 0, z−i,w, α, β) ∝ (ndzi
+ αcz)× nzi

wi + β

nzi. + Wβ
(1)

P (zi|xi = 1, z−i,w, α, δ) ∝ (ndzi
+ αcz)× nzi,c

wi + δ

nzi,c. + Wδ
(2)

P (xi = 0|x−i, z,w, γ, β) ∝ nz,cx=0 + γ0

nz,c. + γ0 + γ1
× nzi

wi + β

nzi. + Wβ
(3)

P (xi = 1|x−i, z,w, γ, δ) ∝ nz,cx=1 + γ1

nz,c. + γ0 + γ1
× nzi,c

wi + δ

nzi,c. + Wδ
(4)

Because of the conjugacy of the Beta/Dirichlet
and binomial/multinomial distributions, we can
integrate out θ, φ, σ and ψ to obtain these equa-
tions, a technique known as “collapsed” Gibbs
sampling (Heinrich, 2008).
nb

a denotes the number of times a has been
assigned to b, excluding the assignment of the
current token i. W is the size of the vocabu-
lary. x should be initialized as 0 for all tokens;
that is, we initially assume that everything comes
from the shared word distributions, otherwise the
collection-specific word distributions will form in-
dependently.
αc is a non-uniform vector that is collection-

specific. A simple and efficient way to approxi-
mate this is through moment-matching such that
αcz ∝ 1

Nc

∑
d

ndz
nd.

, where d belongs to collection c
and Nc is the number of documents in c (details in
(Minka, 2003); (Li and McCallum, 2006)). The
other hyperparameters can be updated similarly,
although in our research we simply keep that at
fixed, uniform values, as they do not largely affect
the sampling procedure at small values.

5 Experimental Results

Our experiments focus on discovering cultural dif-
ferences by running our model on text from or
about three countries: the UK, India, and Singa-
pore. We explore the notion of perspective by ex-
perimenting with datasets with two distinctly dif-
ferent perspectives: one in which the text is about
each country (tourists), and one in which the text
is authored by residents of each country (locals).

5.1 The Data
In our first experiment, we model 3,266 discus-
sions from the forums at lonelyplanet.com, the
largest blog website for travelers with a forum for
nearly every potential travel destination. We show
how this can be used for comparative content ag-
gregation and summarization, and we show how
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our model improves upon previous work on such
datasets. In the second experiment, we compare
by authorship (blogs written by locals), and we
run our model on 7,388 English-language weblogs
from the same set of three different countries3. We
show how this is a solid step toward automatic dis-
covery of cultural differences.

Moreover, we compare the two perspectives
on the topic of food. We show that there are
some strong similarities between the topic in each
dataset (thereby enforcing our inferences from
each experiment individually), but we also show
some differences in the foods tourists find inter-
esting and what locals actually eat.

In all of our experiments, we ran the Gibbs sam-
pler for a burn-in period of 3000 iterations, then
we collected and averaged 15 samples, each sep-
arated by a 100-iteration lag. We used β = δ =
0.01 and γ0 = γ1 = 1.0.

Our implementation is loosely based on the
LDA Gibbs sampler4 by Phan and Nguyen (2008).

5.2 Analysis Along the Tourists Dimension
In the first experiment we consider data about
three destination countries. Using the data pro-
vided by lonelyplanet.com, we crawled 1,108
threads from the UK forum, 1,112 from the India
forum, and 1,046 from the Singapore forum. Mes-
sages are predominantly written by people who
have traveled or plan to travel to that country.

Since we are not interested in the thread discus-
sions on a particular travel topic, we treated each
thread or discussion of multiple messages as a sin-
gle document. We were able to use simple pat-
tern matching to extract only the discussion text.
We removed HTML tags, stop words, and words
with a corpus frequency less than 10. There were
703,551 tokens after preprocessing.

We modeled this dataset with 25 topics. General
topical words were grouped into the shared word
distribution of each topic, but each collection-
specific distribution contained words in the topic
that best describe that country. For example, the
topic on weather is characterized by words like
weather, rain and snow, but each collection’s dis-
tribution might give one a sense of the weather in
each country. Table 1 shows that travelers in In-
dia, for example, should be aware of monsoon sea-
son, and travelers to Singapore can expect to be

3The dataset is available for download at
http://apfel.ai.uiuc.edu/resources.html

4http://gibbslda.sourceforge.net

weather time day going rain
summer month high days thanks
UK India Singapore
wind leh hot

waterproof monsoon humid
ending road humidity
rolling manali heat
walkers ladakh degree
rochdale trekking equator

layers trek sweat
snow season bring

footwear rains rain
ankle monsoons umbrella

Table 1: The topic of weather, modeled across travel forums
for three different countries.

hot and sweaty. The UK distribution suggests that
campers should prepare for potentially hazardous
weather with the appropriate clothing and gear.

As another example, let’s consider the topic
whose shared words are english, school, language,
and speak. The results show that English is com-
mon to all three, but the collection-specific word
distributions indicate that Irish language is found
in the UK region, Hindi is common in India, and
Mandarin is common in Singapore.

Other common topics include immigration re-
quirements, monetary issues, air and rail travel,
etc., all containing information specific to each
country. This could be used for automatic sum-
marization by topic which would be useful either
to travelers who are visiting multiple destinations,
or for a potential traveler in the process of choos-
ing where to go. Someone interested in shopping
for music should go to the UK while someone in-
terested in electronics should go to Singapore, for
example (at least according to one of the topics
discovered).

5.3 Analysis Along the Locals Dimension

The results of the first experiment offer an unsu-
pervised aggregation of factual information that is
important to travelers such as a destination’s cli-
mate, law, and infrastructure; however, the data
did not offer much in terms of cultural informa-
tion. We would now like to see if we can get bet-
ter insight into this problem by modeling text au-
thored by residents of these same countries. In do-
ing this we can compare what they talk about and
in what manner they talk about certain topics.

For this experiment we downloaded 2,715 blogs
from the UK, 2,630 blogs from India, and 2,043
blogs from Singapore. We found these English-
language blogs through blogcatalog.com, a blog
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directory which lists a blog’s language and coun-
try of origin. We downloaded only the front page
of each blog, which usually included multiple ar-
ticles or postings.

We removed HTML tags from the documents,
but we made no attempt to segment the documents
into article text – there are efficient methods of
doing this (Pasternack and Roth, 2009) and this
may be worth experimenting with, but we found
that noise such as navigation menus and advertise-
ments would mostly get grouped into their own
topics. We removed stop words and words with
a corpus frequency less than 20. All punctua-
tion was treated as word separators. There were
8,599,751 tokens in the end.

Table 2 shows 3 topics induced from modeling
this data with 50 topics. By looking at these we
can see some clear differences between the three
groups of native bloggers. For example, Topic 1 is
about fashion, and we can compare which fashions
are popular in each country. Shoes are popular in
the UK; leather and jewelry are more popular in
India. Singapore bloggers seem to focus on prices
and the shopping aspect of apparel.

From Topic 2 (about pets) it seems that Britons
slightly prefer dogs and Singaporians slightly pre-
fer cats. In general, it seems that Singaporians
have an affinity for small animals, considering the
presence of hamster and rabbit in their word dis-
tribution.

Topic 3 is about religion, in which we see that
Christianity is common to all of them, but Hin-
duism is prominent in India as well.

There are many topics not shown here includ-
ing politics, gardening, health, etc. The health
topic is interesting in that homeopathy and herbal
medicines are discussed in Indian blogs. Smoking
is a bigger topic in the UK than the others.

It is also interesting to compare what technolo-
gies and web services people use. Twitter and
Facebook are popular in the UK whereas Orkut
is more popular in India. Blogging services like
Wordpress are popular in Singapore.

From the travel topic, shown in Table 5, we
see that people travel close to home, so to speak.
Britons travel around Europe, especially Spain,
Paris and London, while Singaporians travel to
popular destinations in that part of the world, such
as Hong Kong, Thailand and Bali.

5.4 Differences in Perspective: Tourists vs.
Locals

Having modeled the same countries from two dif-
ferent perspectives (that of travelers and that of
locals), it would be interesting to see how topics
compare between the two perspectives.

Do people have the same view of themselves as
outsiders see them? Are locals interested in the
same things as tourists?

We hope to answer these questions by examin-
ing related topics within these two datasets. While
the two datasets consist of mostly different top-
ics, there are a few that would be interesting to
compare. In particular, we examine the topic of
food and eating. The top words from this topic are
shown in Table 3.

We first examine this topic from the blog data
(that is, from the perspective of residents). By
looking at each collection-specific word distribu-
tion we can see which foods are more popular in
each country – cheese and soup in the UK, curry in
India, and seafood in Singapore. We also noticed
that tea and coffee are more popular in Singapore,
wine and beer are more popular in the UK, while
in Indian blogs beverages are not commonly men-
tioned. Perhaps a less trivial observation is that
the words restaurant and chef are frequent in UK
blogs, but the Indian word distribution is domi-
nated by words pertaining to recipes. From this
one might infer that people in the UK (and to a
lesser extent in Singapore) eat out more often than
people in India, who do more home cooking.

Looking now at the topics induced from the
lonelyplanet.com forums (that is, from the per-
spective of travelers), we see some interesting sim-
ilarities. Most notably, the Indian distribution
again consists of words related to cooking, af-
firming our observation that dining out is not as
popular in India. The Singapore distribution also
matches that in the other dataset – the common
words include seafood and noodles. The UK dis-
tribution, however, shows that tourists are mostly
interested in local specialties (such as fish and
chips and haggis).

To see where these perspectives on food differ
the most, we computed the ratio of the probabil-
ity of each word given the topic between the two
datasets. That is, if p = P (w|z) in the locals
data and q = P (w|z) in the tourists data, then
λ = p/q gives us a measure of how much more (or
less) prominent that word is among locals than it
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Topic 1 Topic 2 Topic 3
fashion style look dress wear dog dogs pet animals animal god jesus lord life faith

new collection accessories black comments cat like food plant holy man christ church love
UK India Singapore UK India Singapore UK India Singapore

shoes fashion price garden water cat church krishna god
fashion women posted dog energy cats god religion sin
clothing indian earrings pet carbon dog john religious john

high designer length cat earth pet todd spiritual spirit
designer sarees item dogs green training bentley guru things

style leather sgd pets solar pets jesus lord lamb
love girls silver gardening jai hamster christ sri exodus

london china clothes cats climate cute luke shri suffering
shirts jewellery shop puppy environment hamsters bible baba cross
bag jewelry code flowers warming rabbit christian hindu lives

Table 2: A sample of topics induced on a set of blogs from 3 countries. Shown are the top 10 words from the shared
topic-word distribution P (word|x = 0, topic) and the top 10 words from P (word|x = 1, topic, class) for each collection.

Perspective of Locals Perspective of Tourists
food add chicken recipe cooking food eat restaurant restaurants tea

taste rice recipes sugar soup cheap meal eating cafe drink
UK India Singapore UK India Singapore
food recipe coffee chips cooking hawkera

wine recipes cup haggis spices satay
restaurant powder oil fish sick stalls

coffee indian comments respectability flour noodles
cheese salt fried decent tomato roti
soup tsp add veggie batter stall
eat rice restaurant pudding ate seafood

chef masala rice photoblog cook malay
english oil tea sausages olive rochester
drink coriander seafood sandwiches recipe noodle

aA hawker centre is an open-air complex with many
food stalls, commonly found in Singapore and Malaysia.

Table 3: A comparison of the food topic from two different
datasets, one of which comes from a travel forum and the
other of which consists of blogs authored by residents of each
respective country.

is among tourists in the food topic. Table 4 shows
the words with the highest (left) and lowest (right)
values of λ.

Preferred by Locals Preferred by Tourists
recipe bowl lemon tomato simple street cheap couple yeah crowd

spring spoon vanilla stir pour old road floor run locals
UK India Singapore UK India Singapore
food indian cup pubs mother quay

healthy recipes comments music ate coast
shop cup tea lane tree parkway

favorite chicken mins brick party reasonably
wine minutes pot fish fields air
icing kitchen note jazz base sultan
coffee mustard nice pints rock tum
leeds fried salt dancing toilet views
duck ginger tarts arms bottled plenty
extra salt fish recommend olive rochester

Table 4: This table shows words in the food topic that are
more popular in the tourists data than the locals data or vice
versa.

The prominent trend, which is largely a logis-
tical matter, is that travelers are more interested
in restaurants and locals talk more about cooking.
Most of the words that are more prominent from
the tourist perspective have to do with eating loca-

tions. We also noticed that wine and coffee rank
more prominently among the locals, whereas trav-
elers are more likely to ask about beer and liquor.

5.5 Model Evaluation

In this subsection we evaluate ccLDA against
ccMix and LDA both qualitatively, through blind
judgments of cluster quality, and quantitatively,
by measuring the likelihood of held-out data with
each model.

5.5.1 Cluster Coherence
Because our research relies on analyses of discov-
ered topics, it is important that we use a model that
gives the best empirical quality of word clusters.
We compare against ccMix (Zhai et al., 2004),
the only related model that is naturally suited to
our task. Using blind human judgments we show
that ccLDA unquestionably delivers topics that are
more coherent than those obtained with the ccMix
model.

A direct comparison with ccMix is tricky be-
cause it incorporates a model for background
words, whereas our model expects stop words to
be removed during preprocessing. So that they
are fully comparable, we set the parameter λB

(the probability that a word comes from the back-
ground) to 0 and fed the model the same input as
we did ccLDA. We set the parameter λC , analo-
gous to P (x = 0), to 0.6, which is the average
value learned by ccLDA on this data, and it seems
quite reasonable. Using an implementation pro-
vided by the authors of ccMix, we ran the EM pro-
cedure for 20 trials and saved the model with the
best log-likelihood.

We performed human judgments of the 25 top-
ics induced by ccLDA in the first experiment
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above and by the ccMix model with the number of
topics set again to 25. We aligned the topics auto-
matically using a symmetric KL-divergence score
computed on the collection-independent distribu-
tions – specifically, D(P ||Q) + D(Q||P ) where
D(P ||Q) is the KL-divergence5 of the distribu-
tions P and Q.

Each aligned pair of topics (ordered randomly
for each topic to avoid bias) was presented to two
natural language processing researchers who were
asked to choose which one was better, based on the
following criteria: (1) semantic coherence of the
topic as a whole (e.g. are the words in the clusters
related?) and (2) coherence across collections, that
is, are the collection-specific distributions related
to each other and to the common one? The judges
were also given the option to rate a pair as “no
opinion” in the case that the aligned topics were
too dissimilar to compare (because the two mod-
els did not discover the same topic), or that the
topics did not carry enough semantic information
to judge (i.e. topics composed mostly of function
words).

Of the 25 pairs, there were 10 that both judges
rated. Of these 10, the judges disagreed on 3. The
other 7 were all rated in favor of ccLDA.

Similarly, the 50 topics from the second exper-
iment were judged against 50 topics formed us-
ing ccMix. There were 22 topics that both judges
rated. Among these, they disagreed on only 3; of
the remaining topics they voted in favor of ccMix
for 1 topic and in favor of ccLDA for 18 topics.

It has been observed that the performance of a
model can largely depend on the estimator used
(Girolami and Kabán, 2003), so it may be that the
weaker performance of ccMix is because the EM
algorithm is getting stuck in local maxima, even
after several trials.

Table 5 shows the topic of travel compared with
both ccMix and LDA. To compare against LDA,
we performed a post-hoc estimation of the topic’s
word distribution for each collection by consider-
ing topic assignments of documents within each
collection. We see that the ccLDA distributions
are much more coherent than that of ccMix. Fur-
thermore, the advantage over LDA is clear – with
LDA, we do not get a separation of the words
that are common to all of the collections, and thus
it is hard to detect the important differences at a

5Kullback-Leibler divergence is a commonly used mea-
surement of the similarity of two probability distributions.

glance.

5.5.2 Likelihood Comparison
To measure how well our model can generalize
unseen documents, we compute the likelihood of
held-out data using ccLDA compared with ccMix
and LDA. We partitioned the forum dataset from
the first experiment into a subset of 80% of the
data on which the models are learned, and an eval-
uation set of the remaining 20%.

To calculate the likelihood of the held-out doc-
uments with ccMix, we use the “fold-in” method
(Hofmann, 1999) in which the mixing proportions
except for P (z|d) are fixed during the EM pro-
cess. As with our cluster evaluation above, we set
λB = 0 and λC = 0.6. With LDA and ccLDA, we
approximate P (z|d) through another Gibbs sam-
pling procedure, by averaging 10 samples col-
lected after 100 iterations with a 10-iteration lag
in between each sample.

The log-likelihood of the three models is shown
at various numbers of topics in Figure 2. As ex-
pected, ccLDA generally achieves a higher like-
lihood than ccMix, although the difference be-
tween them diminishes at higher numbers of top-
ics. This appears to be because the pLSI-based
ccMix does not regularize the topic mixtures and
can thus achieve higher values of P (z|d), and the
smoothing of ccLDA has a greater effect at higher
numbers of topics.

Both cross-collection models achieve a higher
likelihood than LDA, which is not too surprising,
given that these models utilize extra information
(specifically, the document’s collection) to assign
a higher probability to words more likely to appear
in a document given that information.

It should be noted that even though the like-
lihood of both cross-collection models increases
with the number of topics up to 100, we observed
empirically that the best cluster quality in this
dataset occurs around 20 to 30 topics; more than
that results in clusters that are repeated and are
largely specific to only one collection.

6 Discussion and Future Work

While there are obvious limitations of the unigram
approach used here, our system was nevertheless
able to capture some interesting details. It is im-
portant, however, to point out some limitations for
possible future extensions.

Consider Topic 2 in Table 2. The UK and Singa-
pore word distributions are both clearly pertinent
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ccLDA ccMix LDA
travel hotel hotels city best travel hotel comments hotels city travel city hotel park holiday

place holiday visit trip world posted road trip labels airport hotels place beach road visit
UK India Singapore UK India Singapore UK India Singapore

holiday india singapore yang india yang travel travel travel
holidays delhi kong train delhi dan holiday city hotel

hotels indian hong london tourism ini hotel beach city
spain mumbai spa saya dubai dengan city place park

london bangalore hotel nie indian untuk london hotel place
great tour beach travel tour itu park temple beach
surf air chinese flight bangalore saya hotel road trip

breaks dubai pictures luxury mahindra orang place park hotels
train city restaurant dan hotels tidak holidays hotels spa
ski mahindra bangkok advert marathi dalam hall tourism visit

Table 5: The topic of travel as discovered by the 3 different models.

Figure 2: Comparison of the log-likelihood of held-out data
with the 3 models.

to the topic of pets, but the India distribution seems
entirely unrelated, being about energy and the en-
vironment. This could be because the environment
topic was statistically too strong to ignore, but not
found in other collections, so it made its way into
a largely unrelated topic. (In fact, the formation of
the environment cluster within this topic is not en-
tirely random, as the pets topic also includes some
words related to gardening, including “water” and
“plant”, which are likely to also co-occur with en-
vironmental words.)

This is perhaps the main weakness of the model.
If an emerging topic is not shared among all col-
lections, it will either form as a primary topic
that is unique to only a subset of collections (and
thus some of the collection-specific distributions
will be noisy), or it will form as a collection-
specific distribution that is not strongly related
to the main collection-independent distribution.
This can make the results difficult to interpret,

although an automated solution would be to re-
move or flag topics that are not evenly shared,
which could be done by comparing the learned
collection-dependent Dirichlet parameters αc.

This is also a matter of how the model performs
with different numbers of collections. It would
be interesting to see what results we would get
by modeling UK-India, UK-Singapore, and India-
Singapore as only a pair at a time. The perfor-
mance should not degrade with larger numbers of
collections if the collections are fully compara-
ble, but in practice, with more collections there
are likely to be more topics that are difficult to fit
across all collections.

In future work, we would like to enrich the
model and/or feature set to move beyond the lim-
itations of a bag-of-words analysis. For example,
by considering negation and word polarity, we can
better capture the opinions of the authors, which is
an important component of such cultural analysis.

Certainly, there are many other possible appli-
cations of this model, including product compar-
ison, media bias detection, and interdisciplinary
literature analysis. Cultural awareness is also im-
portant in marketing and we can use this model to
investigate, for example what products and what
aspects of life people in different regions focus on.
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Abstract

We propose a novel objective function for dis-
criminatively tuning log-linear machine trans-
lation models. Our objective explicitly op-
timizes the BLEU score of expected n-gram
counts, the same quantities that arise in forest-
based consensus and minimum Bayes risk de-
coding methods. Our continuous objective
can be optimized using simple gradient as-
cent. However, computing critical quantities
in the gradient necessitates a novel dynamic
program, which we also present here. As-
suming BLEU as an evaluation measure, our
objective function has two principle advan-
tages over standard max BLEU tuning. First,
it specifically optimizes model weights for
downstream consensus decoding procedures.
An unexpected second benefit is that it reduces
overfitting, which can improve test set BLEU
scores when using standard Viterbi decoding.

1 Introduction

Increasing evidence suggests that machine trans-
lation decoders should not search for a single
top scoring Viterbi derivation, but should instead
choose a translation that is sensitive to the model’s
entire predictive distribution. Several recent con-
sensus decoding methods leverage compact repre-
sentations of this distribution by choosing transla-
tions according to n-gram posteriors and expected
counts (Tromble et al., 2008; DeNero et al., 2009;
Li et al., 2009; Kumar et al., 2009). This change
in decoding objective suggests a complementary
change in tuning objective, to one that optimizes
expected n-gram counts directly. The ubiquitous
minimum error rate training (MERT) approach op-
timizes Viterbi predictions, but does not explicitly
boost the aggregated posterior probability of de-
sirable n-grams (Och, 2003).

We therefore propose an alternative objective

function for parameter tuning, which we call con-
sensus BLEU or CoBLEU, that is designed to
maximize the expected counts of the n-grams that
appear in reference translations. To maintain con-
sistency across the translation pipeline, we for-
mulate CoBLEU to share the functional form of
BLEU used for evaluation. As a result, CoBLEU
optimizes exactly the quantities that drive efficient
consensus decoding techniques and precisely mir-
rors the objective used for fast consensus decoding
in DeNero et al. (2009).

CoBLEU is a continuous and (mostly) differ-
entiable function that we optimize using gradient
ascent. We show that this function and its gradient
are efficiently computable over packed forests of
translations generated by machine translation sys-
tems. The gradient includes expectations of prod-
ucts of features and n-gram counts, a quantity that
has not appeared in previous work. We present a
new dynamic program which allows the efficient
computation of these quantities over translation
forests. The resulting gradient ascent procedure
does not require any k-best approximations. Op-
timizing over translation forests gives similar sta-
bility benefits to recent work on lattice-based min-
imum error rate training (Macherey et al., 2008)
and large-margin training (Chiang et al., 2008).

We developed CoBLEU primarily to comple-
ment consensus decoding, which it does; it pro-
duces higher BLEU scores than coupling MERT
with consensus decoding. However, we found
an additional empirical benefit: CoBLEU is less
prone to overfitting than MERT, even when using
Viterbi decoding. In experiments, models trained
to maximize tuning set BLEU using MERT con-
sistently degraded in performance from tuning to
test set, while CoBLEU-trained models general-
ized more robustly. As a result, we found that op-
timizing CoBLEU improved test set performance
reliably using consensus decoding and occasion-
ally using Viterbi decoding.
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Eθ[c(“Once upon”, d)|f ] = 0.24 + 0.09 = 0.33
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g min{Eθ[c(g, d)|f ], c(g, r)}∑

g Eθ[c(g, d)|f ]
=

0.33 + 0.33 + 0.91
3

Figure 1: (a) A simple hypothesis space of translations
for a single sentence containing three alternatives, each
with two features. The hypotheses are scored under a
log-linear model with parameters θ equal to the identity
vector. (b) The expected counts of all bigrams that ap-
pear in the computation of consensus bigram precision.

2 Consensus Objective Functions

Our proposed objective function maximizes n-
gram precision by adapting the BLEU evaluation
metric as a tuning objective (Papineni et al., 2002).
To simplify exposition, we begin by adapting a
simpler metric: bigram precision.

2.1 Bigram Precision Tuning
Let the tuning corpus consist of source sentences
F = f1 . . . fm and human-generated references
R = r1 . . . rm, one reference for each source
sentence. Let ei be a translation of fi, and let
E = e1 . . . em be a corpus of translations, one for
each source sentence. A simple evaluation score
for E is its bigram precision BP(R,E):

BP(R,E) =

∑m
i=1

∑
g2
min{c(g2, ei), c(g2, ri)}∑m
i=1

∑
g2
c(g2, ei)

where g2 iterates over the set of bigrams in the tar-
get language, and c(g2, e) is the count of bigram
g2 in translation e. As in BLEU, we “clip” the bi-
gram counts of e in the numerator using counts of
bigrams in the reference sentence.

Modern machine translation systems are typi-
cally tuned to maximize the evaluation score of

Viterbi derivations1 under a log-linear model with
parameters θ. Let d∗θ(fi) = arg maxdPθ(d|fi) be
the highest scoring derivation d of fi. For a system
employing Viterbi decoding and evaluated by bi-
gram precision, we would want to select θ to max-
imize MaxBP(R,F, θ):

∑m
i=1

∑
g2
min{c(g2, d∗θ(fi)), c(g2, ri)}∑m
i=1

∑
g2
c(g2, d∗θ(fi))

On the other hand, for a system that uses ex-
pected bigram counts for decoding, we would pre-
fer to choose θ such that expected bigram counts
match bigrams in the reference sentence. To this
end, we can evaluate an entire posterior distri-
bution over derivations by computing the same
clipped precision for expected bigram counts us-
ing CoBP(R,F, θ):

∑m
i=1

∑
g2
min{Eθ[c(g2, d)|fi], c(g2, ri)}∑m
i=1

∑
g2

Eθ[c(g2, d)|fi] (1)

where

Eθ[c(g2, d)|fi] =
∑
d

Pθ(d|fi)c(g2, d)

is the expected count of bigram g2 in all deriva-
tions d of fi. We define the precise parametric
form of Pθ(d|fi) in Section 3. Figure 1 shows pro-
posed translations for a single sentence along with
the bigram expectations needed to compute CoBP.

Equation 1 constitutes an objective function for
tuning the parameters of a machine translation
model. Figure 2 contrasts the properties of CoBP
and MaxBP as tuning objectives, using the simple
example from Figure 1.

Consensus bigram precision is an instance of a
general recipe for converting n-gram based eval-
uation metrics into consensus objective functions
for model tuning. For the remainder of this pa-
per, we focus on consensus BLEU. However, the
techniques herein, including the optimization ap-
proach of Section 3, are applicable to many differ-
entiable functions of expected n-gram counts.

1By derivation, we mean a translation of a foreign sen-
tence along with any latent structure assumed by the model.
Each derivation corresponds to a particular English transla-
tion, but many derivations may yield the same translation.
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Figure 2: These plots illustrate two properties of the objectives max bigram precision (MaxBP) and consensus
bigram precision (CoBP) on the simple example from Figure 1. (a) MaxBP is only sensitive to the convex hull (the
solid line) of model scores. When varying the single parameter θLM , it entirely disregards the correct translation
H2 becauseH2 never attains a maximal model score. (b) A plot of both objectives shows their differing characteris-
tics. The horizontal segmented line at the top of the plot indicates the range over which consensus decoding would
select each hypothesis, while the segmented line at the bottom indicates the same for Viterbi decoding. MaxBP
is only sensitive to the single point of discontinuity between H1 and H3, and disregards H2 entirely. CoBP peaks
when the distribution most heavily favorsH2 while suppressingH1. ThoughH2 never has a maximal model score,
if θLM is in the indicated range, consensus decoding would select H2, the desired translation.

2.2 CoBLEU
The logarithm of the single-reference2 BLEU met-
ric (Papineni et al., 2002) has the following form:

ln BLEU(R,E) =

(
1− |R|∑m

i=1

∑
g1
c(g1, ei)

)
−

+
1
4

4∑
n=1

ln

∑m
i=1

∑
gn

min{c(gn, ei), c(gn, ri)}∑m
i=1

∑
gn
c(gn, ei)

Above, |R| denotes the number of words in the
reference corpus. The notation (·)− is shorthand
for min(·, 0). In the inner sums, gn iterates over
all n-grams of order n. In order to adapt BLEU
to be a consensus tuning objective, we follow the
recipe of Section 2.1: we replace n-gram counts
from a candidate translation with expected n-gram
counts under the model.

CoBLEU(R,F, θ)=

(
1− |R|∑m

i=1

∑
g1

Eθ[c(g1, d)|fi]

)
−

+
1
4

4∑
n=1

ln

∑m
i=1

∑
gn

min{Eθ[c(gn, d)|fi], c(gn, ri)}∑m
i=1

∑
gn

Eθ[c(gn, d)|fi]
The brevity penalty term in BLEU is calculated

using the expected length of the corpus, which
2Throughout this paper, we use only a single reference,

but our objective readily extends to multiple references.

equals the sum of all expected unigram counts.
We call this objective function consensus BLEU,
or CoBLEU for short.

3 Optimizing CoBLEU

Unlike the more common MaxBLEU tuning ob-
jective optimized by MERT, CoBLEU is con-
tinuous. For distributions Pθ(d|fi) that factor
over synchronous grammar rules and n-grams, we
show below that it is also analytically differen-
tiable, permitting a straightforward gradient ascent
optimization procedure.3 In order to perform gra-
dient ascent, we require methods for efficiently
computing the gradient of the objective function
for a given parameter setting θ. Once we have the
gradient, we can perform an update at iteration t
of the form

θ(t+1) ← θ(t) + ηt∇θCoBLEU(R,F, θ(t))

where ηt is an adaptive step size.4

3Technically, CoBLEU is non-differentiable at some
points because of clipping. At these points, we must com-
pute a sub-gradient, and so our optimization is formally sub-
gradient ascent. See the Appendix for details.

4After each successful step, we grow the step size by a
constant factor. Whenever the objective does not decrease
after a step, we shrink the step size by a constant factor and
try again until a decrease is attained.
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head(h)

tail(h)

u=OnceSrhyme

v1=OnceRBOnce v2=uponINupon v3=aNPrhyme

c(“Once upon”, h)

c(“upon a”, h)

= 1

= 1
!2(h) = 2

Figure 3: A hyperedge h represents a “rule” used in
syntactic machine translation. tail(h) refers to the “chil-
dren” of the rule, while head(h) refers to the “head” or
“parent”. A forest of translations is built by combining
the nodes vi using h to form a new node u = head(h).
Each forest node consists of a grammar symbol and tar-
get language boundary words used to track n-grams. In
the above, we keep one boundary word for each node,
which allows us to track bigrams.

In this section, we develop an analytical expres-
sion for the gradient of CoBLEU, then discuss
how to efficiently compute the value of the objec-
tive function and gradient.

3.1 Translation Model Form

We first assume the general hypergraph setting of
Huang and Chiang (2007), namely, that deriva-
tions under our translation model form a hyper-
graph. This framework allows us to speak about
both phrase-based and syntax-based translation in
a unified framework.

We define a probability distribution over deriva-
tions d via θ as:

Pθ(d|fi) =
w(d)
Z(fi)

with

Z(fi) =
∑
d′
w(d′)

where w(d) = exp(θ>Φ(d, fi)) is the weight of a
derivation and Φ(d, fi) is a featurized representa-
tion of the derivation d of fi. We further assume
that these features decompose over hyperedges in
the hypergraph, like the one in Figure 3. That is,
Φ(d, fi) =

∑
h∈d Φ(h, fi).

In this setting, we can analytically compute the
gradient of CoBLEU. We provide a sketch of the
derivation of this gradient in the Appendix. In
computing this gradient, we must calculate the fol-

lowing expectations:

Eθ [c(φk, d)|fi] (2)

Eθ [`n(d)|fi] (3)

Eθ [c(φk, d) · `n(d)|fi] (4)

where `n(d) =
∑

gn
c(gn, d) is the sum of all n-

grams on derivation d (its “length”). The first ex-
pectation is an expected count of the kth feature
φk over all derivations of fi. The second is an ex-
pected length, the total expected count of all n-
grams in derivations of fi. We call the final ex-
pectation an expected product of counts. We now
present the computation of each of these expecta-
tions in turn.

3.2 Computing Feature Expectations
The expected feature counts Eθ[c(φk, d)|fi] can be
written as

Eθ[c(φk, d)|fi] =
∑
d

Pθ(d|fi)c(φk, d)

=
∑
h

Pθ(h|fi)c(φk, h)

We can justify the second step since fea-
ture counts are local to hyperedges, i.e.
c(φk, d) =

∑
h∈d c(φk, h). The posterior

probability Pθ(h|fi) can be efficiently computed
with inside-outside scores. Let I(u) and O(u) be
the standard inside and outside scores for a node
u in the forest.5

Pθ(h|fi) =
1

Z(f)
w(h) O(head(h))

∏
v∈tail(h)

I(v)

where w(h) is the weight of hyperedge h, given
by exp(θ>Φ(h)), and Z(f) = I(root) is the in-
side score of the root of the forest. Computing
these inside-outside quantities takes time linear in
the number of hyperedges in the forest.

3.3 Computing n-gram Expectations
We can compute the expectations of any specific
n-grams, or of total n-gram counts `, in the same
way as feature expectations, provided that target-
side n-grams are also localized to hyperedges (e.g.
consider ` to be a feature of a hyperedge whose
value is the number of n-grams on h). If the
nodes in our forests are annotated with target-side

5Appendix Figure 7 gives recursions for I(u) and O(u).
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boundary words as in Figure 3, then this will be the
case. Note that this is the same approach used by
decoders which integrate a target language model
(e.g. Chiang (2007)). Other work has computed
n-gram expectations in the same way (DeNero et
al., 2009; Li et al., 2009).

3.4 Computing Expectations of Products of
Counts

While the previous two expectations can be com-
puted using techniques known in the literature, the
expected product of counts Eθ[c(φk, d) · `n(d)|fi]
is a novel quantity. Fortunately, an efficient dy-
namic program exists for computing this expec-
tation as well. We present this dynamic program
here as one of the contributions of this paper,
though we omit a full derivation due to space re-
strictions.

To see why this expectation cannot be computed
in the same way as the expected feature or n-gram
counts, we expand the definition of the expectation
above to get∑

d

Pθ(d|fi) [c(φk, d)`n(d)]

Unlike feature and n-gram counts, the product of
counts in brackets above does not decompose over
hyperedges, at least not in an obvious way. We
can, however, still decompose the feature counts
c(φk, d) over hyperedges. After this decomposi-
tion and a little re-arranging, we get

=
∑
h

c(φk, h)
∑
d:h∈d

Pθ(d|fi)`n(d)

=
1

Z(fi)

∑
h

c(φk, h)

[ ∑
d:h∈d

w(d)`n(d)

]

=
1

Z(fi)

∑
h

c(φk, h)D̂
n

θ (h|fi)

The quantity D̂
n
θ (h|fi) =

∑
d:h∈dw(d)`n(d) is the

sum of the weight-length products of all deriva-
tions d containing hyperedge h. In the same
way that Pθ(h|fi) can be efficiently computed
from inside and outside probabilities, this quan-
tity D̂

n
θ (h|fi) can be efficiently computed with two

new inside and outside quantities, which we call
În(u) and Ôn(u). We provide recursions for these
quantities in Figure 4. Like the standard inside and
outside computations, these recursions run in time
linear in the number of hyperedges in the forest.

While a full exposition of the algorithm is not
possible in the available space, we give some brief

intuition behind this dynamic program. We first
define În(u):

În(u) =
∑
du

w(du)`n(d)

where du is a derivation rooted at node u. This is
a sum of weight-length products similar to D̂. To
give a recurrence for Î, we rewrite it:

În(u) =
∑
du

∑
h∈du

[w(du)`n(h)]

Here, we have broken up the total value of `n(d)
across hyperedges in d. The bracketed quantity
is a score of a marked derivation pair (d, h) where
the edge h is some specific element of d. The score
of a marked derivation includes the weight of the
derivation and the factor `n(h) for the marked hy-
peredge.

This sum over marked derivations gives the in-
side recurrence in Figure 4 by the following de-
composition. For În(u) to sum over all marked
derivation pairs rooted at u, we must consider two
cases. First, the marked hyperedge could be at the
root, in which case we must choose child deriva-
tions from regular inside scores and multiply in the
local `n, giving the first summand of În(u). Alter-
natively, the marked hyperedge is in exactly one
of the children; for each possibility we recursively
choose a marked derivation for one child, while
the other children choose regular derivations. The
second summand of În(u) compactly expresses
a sum over instances of this case. Ôn(u) de-
composes similarly: the marked hyperedge could
be local (first summand), under a sibling (second
summand), or higher in the tree (third summand).

Once we have these new inside-outside quanti-
ties, we can compute D̂ as in Figure 5. This com-
bination states that marked derivations containing
h are either marked at h, below h, or above h.

As a final detail, computing the gradient
∇Cclip

n (θ) (see the Appendix) involves a clipped
version of the expected product of counts, for
which a clipped D̂ is required. This quantity can
be computed with the same dynamic program with
a slight modification. In Figure 4, we show the dif-
ference as a choice point when computing `n(h).

3.5 Implementation Details
As stated, the runtime of computing the required
expectations for the objective and gradient is lin-
ear in the number of hyperedges in the forest. The

1422



În(u) =
∑

h∈IN(u)

w(h)

`n(h)
∏

v∈tail(h)
I(v) +

∑
v∈tail(h)

În(v)
∏
w 6=v

I(w)



Ôn(u) =
∑

h∈OUT(u)

w(h)

`n(h) O(head(h))
∏

v∈tail(h)
v 6=u

I(v) + O(head(h))
∑

v∈tail(h)
v 6=u

În(v)
∏

w∈tail(h)
w 6=v
w 6=u

I(w) + Ôn(head(h))
∏

w∈tail(h)
w 6=u

I(w)



`n(h) =

{∑
gn
c(gn, h) computing unclipped counts∑

gn
c(gn, h)1 [Eθ[c(gn, d)] ≤ c(gn, ri)] computing clipped counts

Figure 4: Inside and Outside recursions for În(u) and Ôn(u). IN(u) and OUT(u) refer to the incoming and
outgoing hyperedges of u, respectively. I(·) and O(·) refer to standard inside and outside quantities, defined in
Appendix Figure 7. We initialize with În(u) = 0 for all terminal forest nodes u and Ôn(root) = 0 for the root
node. `n(h) computes the sum of all n-grams of order n on a hyperedge h.

D̂
n
θ (h|fi) =

w(h)

`n(h)O(head(h))
∏

v∈tail(h)
I(v) + O(head(h))

∑
v∈tail(h)

În(v)
∏

v∈tail(h)
w 6=v

I(w) + Ôn(head(h))
∏

w∈tail(h)
I(w)


Figure 5: Calculation of D̂

n

θ (h|fi) after În(u) and Ôn(u) have been computed.

number of hyperedges is very large, however, be-
cause we must track n-gram contexts in the nodes,
just as we would in an integrated language model
decoder. These contexts are required both to cor-
rectly compute the model score of derivations and
to compute clipped n-gram counts. To speed our
computations, we use the cube pruning method of
Huang and Chiang (2007) with a fixed beam size.

For regularization, we added an L2 penalty on
the size of θ to the CoBLEU objective, a simple
addition for gradient ascent. We did not find that
our performance varied very much for moderate
levels of regularization.

3.6 Related Work

The calculation of expected counts can be for-
mulated using the expectation semiring frame-
work of Eisner (2002), though that work does
not show how to compute expected products of
counts which are needed for our gradient calcu-
lations. Concurrently with this work, Li and Eis-
ner (2009) have generalized Eisner (2002) to com-
pute expected products of counts on translation
forests. The training algorithm of Kakade et al.
(2002) makes use of a dynamic program similar to

ours, though specialized to the case of sequence
models.

4 Consensus Decoding

Once model parameters θ are learned, we must
select an appropriate decoding objective. Sev-
eral new decoding approaches have been proposed
recently that leverage some notion of consensus
over the many weighted derivations in a transla-
tion forest. In this paper, we adopt the fast consen-
sus decoding procedure of DeNero et al. (2009),
which directly complements CoBLEU tuning. For
a source sentence f , we first build a translation
forest, then compute the expected count of each
n-gram in the translation of f under the model.
We extract a k-best list from the forest, then select
the translation that yields the highest BLEU score
relative to the forest’s expected n-gram counts.
Specifically, let BLEU(e; r) compute the simi-
larity of a sentence e to a reference r based on
the n-gram counts of each. When training with
CoBLEU, we replace e with expected counts and
maximize θ. In consensus decoding, we replace r
with expected counts and maximize e.

Several other efficient consensus decoding pro-
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cedures would similarly benefit from a tuning pro-
cedure that aggregates over derivations. For in-
stance, Blunsom and Osborne (2008) select the
translation sentence with highest posterior proba-
bility under the model, summing over derivations.
Li et al. (2009) propose a variational approxima-
tion maximizing sentence probability that decom-
poses over n-grams. Tromble et al. (2008) min-
imize risk under a loss function based on the lin-
ear Taylor approximation to BLEU, which decom-
poses over n-gram posterior probabilities.

5 Experiments

We compared CoBLEU training with an imple-
mentation of minimum error rate training on two
language pairs.

5.1 Model

Our optimization procedure is in principle
tractable for any syntactic translation system. For
simplicity, we evaluate the objective using an In-
version Transduction Grammar (ITG) (Wu, 1997)
that emits phrases as terminal productions, as in
(Cherry and Lin, 2007). Phrasal ITG models have
been shown to perform comparably to the state-of-
the art phrase-based system Moses (Koehn et al.,
2007) when using the same phrase table (Petrov et
al., 2008).

We extract a phrase table using the Moses
pipeline, based on Model 4 word alignments gen-
erated from GIZA++ (Och and Ney, 2003). Our fi-
nal ITG grammar includes the five standard Moses
features, an n-gram language model, a length fea-
ture that counts the number of target words, a fea-
ture that counts the number of monotonic ITG
rewrites, and a feature that counts the number of
inverted ITG rewrites.

5.2 Data

We extracted phrase tables from the Spanish-
English and French-English sections of the Eu-
roparl corpus, which include approximately 8.5
million words of bitext for each of the language
pairs (Koehn, 2002). We used a trigram lan-
guage model trained on the entire corpus of En-
glish parliamentary proceedings provided with the
Europarl distribution and generated according to
the ACL 2008 SMT shared task specifications.6

For tuning, we used all sentences from the 2007
SMT shared task up to length 25 (880 sentences

6See http://www.statmt.org/wmt08 for details.
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Figure 6: Trajectories of MERT and CoBLEU dur-
ing optimization show that MERT is initially unstable,
while CoBLEU training follows a smooth path to con-
vergence. Because these two training procedures op-
timize different functions, we have normalized each
trajectory by the final objective value at convergence.
Therefore, the absolute values of this plot do not re-
flect the performance of either objective, but rather
the smoothness with which the final objective is ap-
proached. The rates of convergence shown in this plot
are not directly comparable. Each iteration for MERT
above includes 10 iterations of coordinate ascent, fol-
lowed by a decoding pass through the training set. Each
iteration of CoBLEU training involves only one gradi-
ent step.

for Spanish and 923 for French), and we tested on
the subset of the first 1000 development set sen-
tences which had length at most 25 words (447
sentences for Spanish and 512 for French).

5.3 Tuning Optimization

We compared two techniques for tuning the nine
log-linear model parameters of our ITG grammar.
We maximized CoBLEU using gradient ascent, as
described above. As a baseline, we maximized
BLEU of the Viterbi translation derivations using
minimum error rate training. To improve opti-
mization stability, MERT used a cumulative k-best
list that included all translations generated during
the tuning process.

One of the benefits of CoBLEU training is that
we compute expectations efficiently over an entire
forest of translations. This has substantial stabil-
ity benefits over methods based on k-best lists. In
Figure 6, we show the progress of CoBLEU as
compared to MERT. Both models are initialized
from 0 and use the same features. This plot ex-
hibits a known issue with MERT training: because
new k-best lists are generated at each iteration,
the objective function can change drastically be-
tween iterations. In contrast, CoBLEU converges
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Consensus Decoding

Spanish
Tune Test ∆ Br.

MERT 32.5 30.2 -2.3 0.992
CoBLEU 31.4 30.4 -1.0 0.992
MERT→CoBLEU 31.7 30.8 -0.9 0.992

French
Tune Test ∆ Br.

MERT 32.5 31.1* -1.4 0.972
CoBLEU 31.9 30.9 -1.0 0.954
MERT→CoBLEU 32.4 31.2* -0.8 0.953

Table 1: Performance measured by BLEU using a con-
sensus decoding method over translation forests shows
an improvement over MERT when using CoBLEU
training. The first two conditions were initialized by
0 vectors. The third condition was initialized by the
final parameters of MERT training. Br. indicates the
brevity penalty on the test set. The * indicates differ-
ences which are not statistically significant.

smoothly to its final objective because the forests
do not change substantially between iterations, de-
spite the pruning needed to track n-grams. Similar
stability benefits have been observed for lattice-
based MERT (Macherey et al., 2008).

5.4 Results

We performed experiments from both French and
Spanish into English under three conditions. In the
first two, we initialized both MERT and CoBLEU
training uniformly with zero weights and trained
until convergence. In the third condition, we ini-
tialized CoBLEU with the final parameters from
MERT training, denoted MERT→CoBLEU in the
results tables. We evaluated each of these condi-
tions on both the tuning and test sets using the con-
sensus decoding method of DeNero et al. (2009).
The results appear in Table 1.

In Spanish-English, CoBLEU slightly outper-
formed MERT under the same initialization, while
the opposite pattern appears for French-English.
The best test set performance in both language
pairs was the third condition, in which CoBLEU
training was initialized with MERT. This con-
dition also gave the highest CoBLEU objective
value. This pattern indicates that CoBLEU is a
useful objective for translation with consensus de-
coding, but that the gradient ascent optimization is
getting stuck in local maxima during tuning. This
issue can likely be addressed with annealing, as
described in (Smith and Eisner, 2006).

Interestingly, the brevity penatly results in
French indicate that, even though CoBLEU did

Viterbi Decoding

Spanish
Tune Test ∆

MERT 32.5 30.2 -2.3
MERT→CoBLEU 30.5 30.9 +0.4

French
Tune Test ∆

MERT 32.0 31.0 -1.0
MERT→CoBLEU 31.7 30.9 -0.8

Table 2: Performance measured by BLEU using Viterbi
decoding indicates that CoBLEU is less prone to over-
fitting than MERT.

not outperform MERT in a statistically significant
way, CoBLEU tends to find shorter sentences with
higher n-gram precision than MERT.

Table 1 displays a second benefit of CoBLEU
training: compared to MERT training, CoBLEU
performance degrades less from tuning to test
set. In Spanish, initializing with MERT-trained
weights and then training with CoBLEU actually
decreases BLEU on the tuning set by 0.8 points.
However, this drop in tuning performance comes
with a corresponding increase of 0.6 on the test
set, relative to MERT training. We see the same
pattern in French, albeit to a smaller degree.

While CoBLEU ought to outperform MERT us-
ing consensus decoding, we expected that MERT
would give better performance under Viterbi de-
coding. Surprisingly, we found that CoBLEU
training actually outperformed MERT in Spanish-
English and performed equally well in French-
English. Table 2 shows the results. In these ex-
periments, we again see that CoBLEU overfit the
training set to a lesser degree than MERT, as evi-
denced by a smaller drop in performance from tun-
ing to test set. In fact, test set performance actually
improved for Spanish-English CoBLEU training
while dropping by 2.3 BLEU for MERT.

6 Conclusion

CoBLEU takes a fundamental quantity used in
consensus decoding, expected n-grams, and trains
to optimize a function of those expectations.
While CoBLEU can therefore be expected to in-
crease test set BLEU under consensus decoding, it
is more surprising that it seems to better regularize
learning even for the Viterbi decoding condition.
It is also worth emphasizing that the CoBLEU ap-
proach is applicable to functions of expected n-
gram counts other than BLEU.
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Appendix: The Gradient of CoBLEU
We would like to compute the gradient of(

1− |R|∑m
i=1

∑
g1

Eθ[c(g1, d)|fi]

)
−

+
1
4

4∑
n=1

ln

∑m
i=1

∑
gn

min{Eθ[c(gn, d)|fi], c(gn, ri)}∑m
i=1

∑
gn

Eθ[c(gn, d)|fi]
To simplify notation, we introduce the functions

Cn(θ) =
m∑
i=1

∑
gn

Eθ[c(gn, e)|fi]

Cclip
n (θ) =

m∑
i=1

∑
gn

min{Eθ[c(gn, d)|fi], c(r, gn)}

Cn(θ) represents the sum of the expected counts
of all n-grams or order n in all translations of
the source corpus F , while Cclip

n (θ) represents the
sum of the same expected counts, but clipped with
reference counts c(gn, ri).

With this notation, we can write our objective
function CoBLEU(R,F, θ) in three terms:(

1− |R|
C1(θ)

)
−

+
1
4

4∑
n=1

lnCclip
n (θ)− 1

4

4∑
n=1

lnCn(θ)

We first state an identity:∑
gn

∂

∂θk
Eθ[c(gn, d)|fi] =

Eθ [c(φk, d) · `n(d)|fi]
−Eθ [`n(d)|fi] · Eθ[c(φk, d)|fi]

which can be derived by expanding the expectation on
the left-hand side∑

gn

∑
d

∂

∂θk
Pθ(d|fi)c(gn, d)

and substituting

∂

∂θk
Pθ(d|fi) =

Pθ(d|fi)c(φk, d)− Pθ(d|fi)
∑
d′
Pθ(d′|fi)c(φk, d′)

Using this identity and some basic calculus, the
gradient∇Cn(θ) is
m∑
i=1

Eθ [c(φk, d) · `n(d)|fi]− Cn(θ)Eθ[c(φk, d)|fi]

I(u) =
∑

h∈IN(u)

w(h)

 ∏
v∈tail(h)

I(v)



O(u) =
∑

h∈OUT (u)

w(h)

O(head(h))
∏

v∈tail(h)
v 6=u

I(v)


Figure 7: Standard Inside-Outside recursions which
compute I(u) and O(u). IN(u) and OUT(u) refer to the
incoming and outgoing hyperedges of u, respectively.
We initialize with I(u) = 1 for all terminal forest nodes
u and O(root) = 1 for the root node. These quantities
are referenced in Figure 4.

and the gradient∇Cclip
n (θ) is given by

m∑
i=1

∑
gn

[
Eθ [c(gn, d) · c(φk, d)|fi]

·1
[
Eθ[c(gn, d)|fi] ≤ c(gn, ri)

]]

−Cclip
n (θ)Eθ[c(φk, d) + fi]

where 1 denotes an indicator function. At the top
level, the gradient of the first term (the brevity
penalty) is

|R|∇C1(θ)
C1(θ)2

1

[
C1(θ) ≤ |R|

]
The gradient of the second term is

1
4

4∑
n=1

∇Cclip
n (θ)

C
clip
n (θ)

and the gradient of the third term is

−1
4

4∑
n=1

∇Cn(θ)
Cn(θ)

Note that, because of the indicator func-
tions, CoBLEU is non-differentiable when
Eθ[c(gn, d)|fi] = c(gn, ri) or Cn(θ) = |R|.
Formally, we must compute a sub-gradient at
these points. In practice, we can choose between
the gradients calculated assuming the indicator
function is 0 or 1; we always choose the latter.
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Abstract

Three methods are proposed to classify
queries by intent (CQI), e.g., navigational,
informational, commercial, etc. Follow-
ing mixed-initiative dialog systems, search
engines should distinguish navigational
queries where the user is taking the ini-
tiative from other queries where there are
more opportunities for system initiatives
(e.g., suggestions, ads). The query in-
tent problem has a number of useful appli-
cations for search engines, affecting how
many (if any) advertisements to display,
which results to return, and how to ar-
range the results page. Click logs are
used as a substitute for annotation. Clicks
on ads are evidence for commercial in-
tent; other types of clicks are evidence for
other intents. We start with a simple Naı̈ve
Bayes baseline that works well when there
is plenty of training data. When train-
ing data is less plentiful, we back off
to nearby URLs in a click graph, using
a method similar to Word-Sense Disam-
biguation. Thus, we can infer that de-
signer trench is commercial because it is
close to www.saksfifthavenue.com, which
is known to be commercial. The baseline
method was designed for precision and
the backoff method was designed for re-
call. Both methods are fast and do not re-
quire crawling webpages. We recommend
a third method, a hybrid of the two, that
does no harm when there is plenty of train-
ing data, and generalizes better when there
isn’t, as a strong baseline for the CQI task.

1 Classify Queries By Intent (CQI)

Determining query intent is an important prob-
lem for today’s search engines. Queries are short

(consisting of 2.2 terms on average (Beitzel et al.,
2004)) and contain ambiguous terms. Search en-
gines need to derive what users want from this lim-
ited source of information. Users may be search-
ing for a specific page, browsing for information,
or trying to buy something. Guessing the correct
intent is important for returning relevant items.
Someone searching for designer trench is likely
to be interested in results or ads for trench coats,
while someone searching for world war I trench
might be irritated by irrelevant clothing advertise-
ments.

Broder (2002) and Rose and Levinson (2004)
categorized queries into those with navigational,
informational, and transactional or resource-
seeking intent. Navigational queries are queries
for which a user has a particular web page in mind
that they are trying to navigate to, such as grey-
hound bus. Informational queries are those like
San Francisco, in which the user is trying to gather
information about a topic. Transactional queries
are those like digital camera or download adobe
reader, where the user is seeking to make a trans-
action or access an online resource.

Knowing the intent of a query greatly affects the
type of results that are relevant. For many queries,
Wikipedia articles are returned on the first page
of results. For informational queries, this is usu-
ally appropriate, as a Wikipedia article contains
summaries of topics and links to explore further.
However, for navigational or transactional queries,
Wikipedia is not as appropriate. A user looking
for the greyhound bus homepage is probably not
interested in facts about the company. Similarly,
someone looking to download adobe reader will
not be interested in Wikipedia’s description of the
product’s history. Conversely, for informational
queries, Wikipedia articles tend to be appropriate
while advertisements are not. The user searching
for world war I trench might find the Wikipedia
article on trench warfare useful, while he is prob-
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(a) The advertisements and related searches are probably more likely to be clicked on than
the top result for designer trench.

(b) The top result will receive more clicks than the spelling suggestion. Wikipedia often
receives lots of clicks, but not for commercial queries like bestbuy.

Figure 1: Results pages from two major search engines. A search results page has limited real estate that
must be divided between search results, spelling suggestions, query suggestions, and ads.

ably not interested in purchasing clothing, or even
World War I related products. We noticed empiri-
cally that queries in the logs tend to have a high
proportion of clicks on the Wikipedia article or
the ads, but almost never both. The Wikipedia
page for Best Buy in Figure 1(b) is probably a
waste of space. Knowing whether a particular
query is navigational, informational, or transac-
tional would improve search and advertising rel-
evance.

After a query is issued, search engines return
a list of results, and possibly also advertisements,
suggestions of related searches, and spelling sug-
gestions. For different queries, these alternatives
have varying utilities to the users. Consider the

queries in Figures 1(a) and 1(b). For designer
trench, the advertisements may well be more use-
ful to the user than the standard set of results. The
query suggestions for designer trench all would
help refine the query, whereas the suggestions for
bestbuy are less useful, as they would either re-
turn the same set of results or take the user to Best
Buy’s competitors’ sites. The spelling suggestion
for best buy instead of bestbuy is also unnecessary.
Devoting more page space to the content that is
likely to be clicked on could help improve the user
experience.

In this paper we consider the task of: given a
class of queries, which types of answer (standard
search, ads, query suggestions, or spelling sug-
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gestions) are likely to be clicked on? Typos will
tend to have more clicks on the spelling sugges-
tions, informational queries will have more clicks
on Wikipedia pages, and commercial queries will
have more clicks on the ads. The observed behav-
ior of where users click tells us something about
the hidden intentions of the users when they issue
that query.

We focus on commercial intent (Dai et al.,
2006), the intent to purchase a product or service,
to illustrate our method of predicting query intent.
The business model of web search today is heav-
ily dependent on advertising. Advertisers bid on
queries, and then the search results page also con-
tains “sponsored” sites by the advertisers who won
the auction for that query. It is thus advantageous
for the advertisers to bid on queries which are most
likely to result in a commercial transaction. If
a query is classified as likely implying commer-
cial intent, but the advertisers have overlooked this
query, then the search engine may want to sug-
gest that advertisers bid on that query. The search
engine may also want to treat queries classified
as having commercial intent differently, by rear-
ranging the appearance of the page, or by showing
more or fewer advertisements.

This paper starts with a simple Naı̈ve Bayes
baseline to classify queries by intent (CQI). Super-
vised methods work well, especially when there is
plenty of annotated data for testing and training.
Unfortunately, since we don’t have as much anno-
tated data as we might like, we propose two work-
arounds:

1. Use click logs as a substitute for annotated
data. Clicks on ads are evidence for commer-
cial intent; other types of clicks are evidence
for other intents.

2. We propose a method similar to Yarowsky
(1995) to generalize beyond the training set.

2 Related Work

Click logs have been used for a variety of tasks
involved in information retrieval, including pre-
dicting which pages are the best results for queries
(Piwowarski and Zaragoza, 2007; Joachims, 2002;
Xue et al., 2004), choosing relevant advertise-
ments (Chakrabarti et al., 2008), suggesting re-
lated queries (Beeferman and Berger, 2000), and
personalizing results (Tan et al., 2006). Queries
that have a navigational intent tended to have

a highly skewed click distribution, while users
clicked on a wider range of results after issuing
informational queries. Lee et al. (2005) used the
click distributions to classify navigational versus
informational intents.

While navigational, informational, and
resource-seeking are very broad intentions, other
researchers have looked at personalization and
intent on a per user basis. Downey et al. (2008)
use the last URL visited in a session or the last
search engine result visited as a proxy for the
user’s information goal, and then looked at the
correspondence between information needs and
queries (how the goals are expressed).

We are interested in a granularity of intent
in between navigational/informational/resource-
seeking and personalized intents. For these sorts
of intents, the web pages associated with queries
provide useful information. To classify queries
into an ontology of commercial queries, Broder
et al. (2007) found that a classifier that used the
text of the top result pages performed much bet-
ter than a classifier that used only the query string.
While the results are quite good on their hierarchy
of 6000 types of commercial intents, they manu-
ally constructed about 150 hand-picked examples
each for each of the 6000 intents. Beitzel et al.
(2005) do semi-supervised learning over the query
logs to classify queries into topics, but also train
with hundreds of thousands of manually annotated
queries. Thus, while we also use the query logs
and the identities of web pages of associated with
each query, we are interested in finding methods
that can be applied when that much annotation is
prohibitive.

Semi-supervised methods over the click graph
make it possible to train classifiers after starting
from a much smaller set of seed queries. Li et al.
(2008) used the semi-supervised learning method
described in Zhou et al. (2004) to gain a much
larger training set of examples, and then trained
classifiers for product search or job search on the
expanded set. Random walk methods over the
click graph have also been used to propagate re-
lations between URLs, for tasks such as finding
“adult” content (Craswell and Szummer, 2007)
and suggesting related queries (Antonellis et al.,
2008) and content (Baluja et al., 2008). In our
work we also seek to classify query intent us-
ing the click graph, but we demonstrate the ef-
fectiveness of a simple method by building deci-
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sion lists of URLs. In addition, we evaluate our
method automatically by using user click rates,
rather than assembling hand-labeled examples for
training and testing.

Dai et al. (2006) also classified queries by com-
mercial intent, but their method involved crawling
the top landing pages for each query, which can
be quite time-consuming. In this paper we investi-
gate the commercial intent problem when crawling
pages is not feasible, and use only the identities of
the top URLs.

3 Using Click Logs as a Substitute for
Annotation

Prior work has used click logs in lieu of manual
annotations of relevance ratings, either of web-
pages (Joachims, 2002) or of sponsored search ad-
vertisements (Ciaramita et al., 2008). Here we use
the click logs as a large-scale source of intents.
Logs from Microsoft’s Live Search are used for
training and test purposes. Logs from May 2008
were used for training, and logs from June 2008
were used for testing.

The logs distinguish four types of clicks: (a)
search results, (b) ads, (c) spelling suggestions and
(d) query suggestions. Some prototypical queries
of each type are shown in Table 1. As mentioned
above, clicks on ads are evidence for commercial
intent; other types of clicks are evidence for other
intents. The query, ebay official, is assumed to be
commercial intent, because a large fraction of the
clicks are on ads. In contrast, typos tend to have
relatively more clicks on “did-you-mean” spelling
suggestions.

The query logs contain over a terabyte of
data for each day, and our experiments were
done using months of logs at a time. We
used SCOPE (Chaiken et al., 2008), a script-
ing programming language designed for doing
Map-Reduce (Dean and Ghemawat, 2004) style
computations, to distribute the task of aggre-
gating the counts of each query over thousands
of servers. As the same query is often issued
several times by multiple users across an en-
tire month of search logs, we summarize each
query with four ratios–search results clicks:overall
clicks, ad clicks:overall clicks, spelling sugges-
tion clicks:overall clicks, and query suggestion
clicks:overall clicks.

A couple of steps were taken to ensure reliable
ratios. We are classifying types, not tokens, and

so limited ourselves to those queries with 100 or
more clicks. This still leaves us with over half a
million distinct queries for training and for test-
ing, yet allows us to use click ratios as a substitute
for annotating these huge data sets. If a query was
only issued once and the user clicked on an ad,
that may be more a reflection of the user, rather
than reflecting that the query is 100% commer-
cial. In addition, the ratios compare clicks of one
type with clicks of another, rather than compar-
ing clicks with impressions. There is less risk of a
failure to find fallacy if we count events (clicks) in-
stead of non-events (non-clicks). There are many
reasons for non-clicks, only some of which tell us
about the meaning of the query. There are bots that
crawl pages and never click. Many links can’t be
seen (e.g., if they are below the fold).

Queries are labeled as positive examples of
commercial intent if their ratio is in the top half of
the training set, and negative otherwise. A similar
procedure is used to label queries with the three
other intents.

Our task is to predict future click patterns based
on past click patterns. Note that a query may ap-
pear in both the test set and the training set, al-
though not necessarily with the same label. In fact,
because of the robustness requirement of 100+
clicks, many queries appear in both sets; 506,369
out of 591,122 of the test queries were also present
in the training month. The overlap reflects natural
processes on the web, with a long tail (of queries
that will never be seen again) and a big fat head (of
queries that come up again and again). Throwing
away the overlap would both drastically reduce the
size of the data and make the problem less realistic
for a commercial application.

We therefore report results on various training
set sizes so that we can show both: (a) the abil-
ity of the proposed method to generalize to unseen
queries, and (b) the high performance of the base-
lines in a realistic setting. We vary the number of
new queries by training the methods on subsets of
20%, 40%, 60%, 80%, and 100% of the positive
examples (along with all the negative examples)
in the training set. This led to the test set having
17%, 34%, 52%, 67%, and 86% actual overlap of
these queries, respectively, with the training sets.
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Click Type Query Type Example
(Area on Results Page) (Intent)
Spelling Suggestion Typo www.lastmintue.com.au
Ad Commercial Intent ebay official
Query Suggestion Suggestible sears employees (where there are some popular query suggestions

indicating how current employees can navigate to the benefits site,
as well as how others can apply for employment)

Search Result Standard Search craigslist, denver, co

Table 1: Queries with a high percentage of clicks in each category

4 Three CQI Methods

4.1 Method 1: Look-up Baseline

The baseline method checks if a query was present
in the training set, and if so, outputs the label from
the training set. If the query was not present, it
backs off to the appropriate default label: “non-
commercial” for the commercial intent task (and
“non-suggestible”, “not a typo”, etc. for the other
CQI tasks). This very simple baseline method
is effective because the ratios tend to be fairly
stable from one month to the next. The query,
ebay official, for example, has relatively high ad
clicks in both the training month as well as the
test month. The next section will propose an al-
ternative method to address the main weakness of
the baseline method, the inability to generalize be-
yond the queries in the training set.

Figure 2: saks and bluefly trench coats are known
to be commercial, while world war I trench is
known to be non-commercial. What about de-
signer trench? We can classify it as commercial
because it shares URLs with the known commer-
cial queries.

4.2 Method 2: Using Click Graph Context to
Generalize Beyond the Queries in the
Training Set

To address the generalization concern, we propose
a method inspired by Yarowsky (1994). Word
sense disambiguation is a classic problem in nat-
ural language processing. Some words have mul-
tiple senses; for instance, bank can either mean
a riverbank or a financial institution, and for var-
ious tasks such as information retrieval, parsing,
or information extraction, it is useful to be able to
differentiate between the possible meanings.

When a word is being used in each sense, it
tends to appear in a different context. For exam-
ple, if the word muddy is nearby bank, the author
is probably using the riverbank sense of the term,
while if the word deposit is nearby, the word is
probably being used with the financial sense.

Yarowksy (1995) thus creates a list of each pos-
sible context, sorted by how strong the evidence is
for a particular sense. To classify a new example,
Yarowsky (1994) finds the most informative collo-
cation pattern that applies to the test example.

In this work, rather than using the surrounding
words as context as in text classification, we con-
sider the surrounding URLs in the click graph as
context. A sample portion of the click graph is
shown in figure 2. The figure shows queries on
the left and URLs on the right. The click graph
was computed on a very large sample of logs com-
puted well before the training period. There is an
edge from a query q to a URL u if at least 10 users
issued q and then clicked on u.

For each URL, we look at its neighboring
queries and calculate the log likelihood ratio of
their labels in the training set. We classify a new
query q according to URL∗, the neighboring URL
with the strongest opinion (highest absolute value
of the log likelihood ratio). That is, we compute
URL∗ with:
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argmaxUi∈Nbr(q)

∣∣∣∣log
Pr(Intent|Ui)

Pr(¬Intent|Ui)

∣∣∣∣
If the neighboring opinion is positive (that is,

Pr(Intent|URL∗) > Pr(¬Intent|URL∗)), then
the query q is assigned a positive label. Otherwise,
q is assigned a negative label.

In Figure 2, we classify designer trench as a
commercial query based on the neighbor with
the strongest opinion. In this case, there
was a tie between two neighbors with equally
strong opinions: www.saksfifthavenue.com and
www.bluefly.com/Designer-Trench-Coats. Both
neighbors are associated with queries that were
labeled commercial in the training set: saks and
bluefly trench coats, respectively.

This method allows the labels of training set
queries to propagate through the URLs to new test
set queries.

4.3 Method 3: Hybrid (“Better Together”)
We recommend a hybrid of the two methods:

• Method 1: the look-up baseline

• Method 2: use click graph context to gener-
alize beyond the queries in the training set

Method 1 is designed for precision and method 2
is designed for recall. The hybrid uses method
1 when applicable, and otherwise, backs off to
method 2.

5 Results

5.1 Commercial Intent
Table 2 and Figures 3(a) and 3(b) compare the per-
formance on the proposed hybrid method with the
baseline. When there is plenty of training mate-
rial, both methods perform about equally well (the
look-up baseline has an F-score of 84.1%, com-
pared with the hybrid method’s F-score of 85.3%),
but generalization becomes important when train-
ing data is severely limited. Figure 3(a) shows
that the proposed method does no harm and might
even help a little when there is plenty of training
data. The hybrid’s main benefit is generalization
to queries beyond the training set. If we severely
limit the size of the training set to just 20% of the
month, as in Figure 3(b), then the proposed hybrid
method is substantially better than the baseline. In
this case, the proposed hybrid method’s F-score
is 65.8%, compared with the look-up method’s F-
score of 28.4%.

5.2 Other types of clicks

Table 3 and Figures 4(a) and 4(b) show a similar
pattern for the query suggestion task. In fact, the
pattern is perhaps even stronger for the query sug-
gestion task than commercial intent. When the full
training set is used, the hybrid method achieves
an F-score of 91.9% (precision = 91.5%, recall =
92.3%). When only 20% of the training data is
used, the hybrid method has an F-score of 73.9%,
compared with the baseline’s F-score of 29.6%. A
similar pattern was observed for clicks on search
results.

The one exception is the spelling suggestion
task, where the context heuristic proved ineffec-
tive, for reasons that should not be surprising in
retrospect. Click graph distance is an effective
heuristic for many intents, but not for typos. Users
who issue misspelled the query have the same
goals as users who correctly spell the query, so
we shouldn’t expect URLs to be able to differ-
entiate them. For misspelled queries, for exam-
ple, yuotube, there are correctly spelled queries,
like youtube, with the same intent that will tend to
be associated with the same set of URLs (such as
www.youtube.com).

6 Conclusion and Future Work

We would like to be able to distinguish web
queries by intent. Unfortunately, we don’t have
annotated data for query intent, but we do have
access to large quantities of click logs. The logs
distinguish four types of clicks: (a) search results,
(b) ads, (c) spelling suggestions and (d) query sug-
gestions. Clicks on ads are evidence for commer-
cial intent; other types of clicks are evidence for
other intents. Click logs are huge sources of data,
and while there are privacy concerns, anonymized
logs are beginning to be released for research pur-
poses (Craswell et al., 2009).

Besides commercial intent, queries can also be
divided into two broader classes: queries in which
the user is browsing and queries for which the user
is navigating. Clicks on the ads and query sug-
gestions indicate that users are browsing and will-
ing to look at these alternative suggestions, while
clicks on the search results indicate that the users
were navigating to what they were searching for.
Clicks on typos indicate neither, as presumably the
users are not entering typos on purpose.

Just as dialogue management systems learn
policies for when to allow user initiative (the user
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(a) (b)

Figure 3: Better together: proposed hybrid is no worse than baseline (left) and generalizes better to
unseen tail queries (right). The two panels are the same, except that the training set was reduced on the
right to test generalization error.

(a) (b)

Figure 4: Similar to Figures 3(a) and 3(b), adding the decision list method generalizes over the look-up
method for the “suggestible” task.

can respond in an open way) versus system ini-
tiative (the system asks the user questions with a
restricted set of possible answers) (Relaño et al.,
1999; Scheffler and Young, 2002; Singh et al.,
2002), search engines may want to learn policies
for when the user just wants the search results or
when the user is open to suggestions. When users
want help (they want the search engine to suggest
results), more space on the page should be devoted
to the ads and the query suggestions. When the
users know what it is they want, more of the page
should be given to the search results they asked
for.

We started with a simple baseline for predicting
click location that had great precision, but didn’t
generalize well beyond the queries in the train-

ing set. To improve recall, we proposed a con-
text heuristic that backs off in the click graph.
The backoff method is similar to Yarowsky’s Word
Sense Disambiguation method, except that context
is defined in terms of URLs nearby in click graph
distance, as opposed to words nearby in the text.

Our third method, a hybrid of the baseline
method and the backoff method, is the strongest
baseline we have come up with. The evaluation
showed that the hybrid does no harm when there
is plenty of training data, and generalizes better
when there isn’t.

A direction for further research would be to see
if propagating query intent through URLs that are
not direct neighbors but are further away, perhaps
through random walk methods (Baluja et al., 2008;
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Training Size F-score Precision / Recall
Baseline Method 2 Hybrid Baseline Method 2 Hybrid

100% 84.1 75.6 85.3 88.2 / 80.4 76.6 / 74.6 85.7 / 85.0
80% 74.4 74.8 83.5 88.2 / 64.3 79.3 / 70.7 86.7 / 80.6
60% 62.4 72.9 80.7 88.3 / 48.2 82.5 / 65.3 87.9 / 74.6
40% 47.9 70.1 76.0 77.5 / 34.7 78.5 / 63.3 80.7 / 66.0
20% 28.4 62.5 65.8 77.6 / 17.4 75.9 / 53.1 74.3 / 59.1

Table 2: The baseline and hybrid methods have comparable F-scores when there is plenty of training
data, but generalization becomes important when training data is severely limited. The proposed hybrid
method generalizes better as indicated by the widening gap in F-scores with smaller and smaller training
sets.

Training Size F-score Precision / Recall
Baseline Method 2 Hybrid Baseline Method 2 Hybrid

100% 91.0 86.2 91.9 94.9 / 87.4 90.7 / 82.3 91.5 / 92.3
80% 80.5 85.2 90.6 94.9 / 69.9 91.6 / 79.7 91.9 / 89.4
60% 67.6 83.3 88.6 94.9 / 52.4 92.6 / 75.8 92.3 / 85.1
40% 51.0 79.5 84.7 94.9 / 34.9 87.6 / 72.7 93.0 / 77.8
20% 29.6 69.8 73.9 81.5 / 18.1 90.6 / 56.8 94.0 / 60.8

Table 3: F-scores on the query suggestion task. As in the commercial intent task, the proposed hybrid
method does no harm when there is plenty of training data, but generalizes better when training data is
severely limited.

Antonellis et al., 2008) improves classification.
Similar methods could be applied in future work

to many other applications such labeling queries
and URLs by: language, market, location, time,
intended for a search vertical (such as medicine,
recipes), intended for a type of answer (maps, pic-
tures), as well as inappropriate intent (porn, spam).

In addition to click type, there are many other
features in the logs that could prove useful for
classifying queries by intent, e.g., who issued the
query, when and where. Similar methods could
also be used to personalize search (Teevan et al.,
2008); for queries that mean different things to dif-
ferent people, the Yarowsky method could be ap-
plied to variables such as user, time and place, so
the results reflect what a particular user intended
in a particular context.

7 Acknowledgments

We thank Sue Dumais for her helpful comments
on an early draft of this work. We would also like
to thank the members of the Text Mining, Search,
and Navigation (TMSN) group at Microsoft Re-
search for useful discussions and the anonymous
reviewers for their helpful comments.

References
I. Antonellis, H. Garcia-Molina, and C.C. Chang.

2008. Simrank++: query rewriting through link
analysis of the clickgraph (poster). WWW.

S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik,
S. Kumar, D. Ravichandran, and M. Aly. 2008.
Video suggestion and discovery for youtube: taking
random walks through the view graph. WWW.

D. Beeferman and A. Berger. 2000. Agglomerative
clustering of a search engine query log. In SIGKDD,
pages 407–416.

S.M. Beitzel, E.C. Jensen, A. Chowdhury, D. Gross-
man, and O. Frieder. 2004. Hourly analysis of a
very large topically categorized web query log. SI-
GIR, pages 321–328.

S.M. Beitzel, E.C. Jensen, O. Frieder, D.D. Lewis,
A. Chowdhury, and A. Kolcz. 2005. Improving
automatic query classification via semi-supervised
learning. ICDM, pages 42–49.

A.Z. Broder, M. Fontoura, E. Gabrilovich, A. Joshi,
V. Josifovski, and T. Zhang. 2007. Robust classifi-
cation of rare queries using web knowledge. SIGIR,
pages 231–238.

A. Broder. 2002. A taxonomy of web search. SIGIR,
36(2).

R. Chaiken, B. Jenkins, P.Å. Larson, B. Ramsey,
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Abstract 

 

This paper presents a new approach to 
selecting the initial seed set using stratified 
sampling strategy in bootstrapping-based 
semi-supervised learning for semantic relation 
classification.  First, the training data is 
partitioned into several strata according to 
relation types/subtypes, then relation instances 
are randomly sampled from each stratum to 
form the initial seed set. We also investigate 
different augmentation strategies in iteratively 
adding reliable instances to the labeled set, and 
find that the bootstrapping procedure may stop 
at a reasonable point to significantly decrease 
the training time without degrading too much 
in performance. Experiments on the ACE 
RDC 2003 and 2004 corpora show the 
stratified sampling strategy contributes more 
than the bootstrapping procedure itself. This 
suggests that a proper sampling strategy is 
critical in semi-supervised learning. 

1 Introduction 

With the dramatic increase in the amount of 
textual information available in digital archives 
and the WWW, there has been growing interest 
in techniques for automatically extracting 
information from text documents. Information 
Extraction (IE) is such a technology that IE 
systems are expected to identify relevant 
information (usually of pre-defined types) from 
text documents in a certain domain and put them 
in a structured format. 

According to the scope of the NIST Automatic 
Content Extraction (ACE) program (ACE, 2000-
2007), current research in IE has three main 
objectives: Entity Detection and Tracking (EDT), 
Relation Detection and Characterization (RDC), 

and Event Detection and Characterization (EDC). 
This paper focuses on the ACE RDC subtask, 
where many machine learning methods have 
been proposed, including supervised methods 
(Miller et al., 2000; Zelenko et al., 2002; Culotta 
and Soresen, 2004; Kambhatla, 2004; Zhou et al., 
2005; Zhang et al., 2006; Qian et al., 2008), 
semi-supervised methods (Brin, 1998; Agichtein 
and Gravano, 2000; Zhang, 2004; Chen et al., 
2006; Zhou et al., 2008), and unsupervised 
methods (Hasegawa et al., 2004; Zhang et al., 
2005).  

Current work on semantic relation extraction 
task mainly uses supervised learning methods, 
since it achieves relatively better performance. 
However this method requires a large amount of 
manually labeled relation instances, which is 
both time-consuming and laborious. In the 
contrast, unsupervised methods do not need 
definitions of relation types and hand-tagged data, 
but it is difficult to evaluate their performance 
since there are no criteria for evaluation. 
Therefore, semi-supervised learning has received 
more and more attention, as it can balance the 
advantages and disadvantages between 
supervised and unsupervised methods. With the 
plenitude of unlabeled natural language data at 
hand, semi-supervised learning can significantly 
reduce the need for labeled data with only 
limited sacrifice in performance. Specifically, a 
bootstrapping algorithm chooses the unlabeled 
instances with the highest probability of being 
correctly labeled and use them to augment 
labeled training data iteratively.  

Although previous work (Yarowsky, 1995; 
Blum and Mitchell, 1998; Abney, 2000; Zhang, 
2004) has tackled the bootstrapping approach 
from both the theoretical and practical point of 
view, many key problems still remain unresolved, 
such as the selection of initial seed set. Since the 
size of the initial seed set is usually small (e.g. 
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100 instances), the imbalance of relation types or 
manifold structure (cluster structure) in it will 
severely weaken the strength of bootstrapping. 
Therefore, it is critical for a bootstrapping 
approach to select the most appropriate initial 
seed set. However, current systems (Zhang, 2004; 
Chen et al., 2006) use a randomly sampling 
strategy, which fails to explore the affinity nature 
among the training instances. Alternatively, 
Zhou et al. (2008) bootstrap a set of weighted 
support vectors from both labeled and unlabeled 
data using SVM. Nevertheless, the initial labeled 
data is still randomly generated only to ensure 
that there are at least 5 instances for every 
relation subtype. 

This paper presents a new approach to 
selecting the initial seed set based on stratified 
sampling strategy in the bootstrapping procedure 
for semi-supervised semantic relation 
classification. The motivation behind the 
stratified sampling is that every relation type 
should be as much as possible represented in the 
initial seed set, thus leading to more instances 
with diverse structures being added to the labeled 
set. In addition, we also explore different 
strategies to augment reliably classified instances 
to the labeled data iteratively, and attempt to find 
a stoppage criterion for the iteration procedure to 
greatly decrease the training time, other than 
using up all the unlabeled set. 

The rest of this paper is organized as follows. 
First, Section 2 reviews related work on semi-
supervised relation extraction. Then we present 
an underlying supervised learner in Section 3. 
Section 4 details various key aspects of the 
bootstrapping procedure, including the stratified 
sampling strategy. Experimental results are 
reported in Section 5. Finally we conclude our 
work in Section 6. 

2 Related Work 

Within the realm of information extraction, 
currently there are several representative semi-
supervised learning systems for extracting 
relations between named entities. 

DIPRE (Dual Iterative Pattern Relation 
Expansion) (Brin, 1998) is a system based on 
bootstrapping that exploits the duality between 
patterns and relations to augment the target 
relation starting from a small sample. However, 
it only extracts simple relations such as (author, 
title) pairs from the WWW. Snowball (Agichtein 
and Gravano, 2000) is another bootstrapping-
based system that extracts relations from 

unstructured text. Snowball shares much in 
common with DIPRE, including the use of both 
the bootstrapping framework and the pattern 
matching approach to extract new unlabeled 
instances. Due to pattern matching techniques, 
their systems are hard to be adapted to the 
general problem of relation extraction. 

Zhang (2004) approaches the relation 
classification problem with bootstrapping on top 
of SVM. He uses various lexical and syntactic 
features in the BootProject algorithm based on 
random feature projection to extract top-level 
relation types in the ACE corpus. Evaluation 
shows that bootstrapping can alleviate the burden 
of hand annotations for supervised learning 
methods to a certain extent.  

Chen et al. (2006) investigate a semi-
supervised learning algorithm based on label 
propagation for relation extraction, where labeled 
and unlabeled examples and their distances are 
represented as the nodes and the weights of 
edges respectively in a connected graph, then the 
label information is propagated from any vertex 
to nearby vertices through weighted edges 
iteratively, finally the labels of unlabeled 
examples are inferred after the propagation 
process converges.  

Zhou et al. (2008) integrate the advantages of 
SVM bootstrapping in learning critical instances 
and label propagation in capturing the manifold 
structure in both the labeled and unlabeled data, 
by first bootstrapping a moderate number of 
weighted support vectors through a co-training 
procedure from all the available data, and then 
applying label propagation algorithm via the 
bootstrapped support vectors. 

However, in most current systems, the initial 
seed set is selected randomly such that they may 
not adequately represent the inherent structure of 
unseen examples, hence the power of 
bootstrapping may be severely weakened. 

This paper presents a simple yet effective 
approach to generate the initial seed set by 
applying the stratified sampling strategy, 
originated from statistics theory. Furthermore, 
we try to employ the same stratified strategy to 
augment the labeled set. Finally, we attempt to 
find a reasonable criterion to terminate the 
iteration process. 

3 Underlying Supervised Learning 

A semi-supervised learning system usually 
consists of two relevant components: an 
underlying supervised learner and a 
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bootstrapping algorithm on top of it. In this 
section we discuss the former, while the latter 
will be described in the following section.  

In this paper, we select Support Vector 
Machines (SVMs) as the underlying supervised 
classifier since it represents the state-of-the-art in 
the machine learning research community, and 
there are good implementations of the algorithm 
available. Specifically, we use LIBSVM (Chang 
et al., 2001), an effective tool for support vector 
classification, since it supports multi-class 
classification and provides probability estimation 
as well. 

For each pair of entity mentions, we extract 
and compute various lexical and syntactic 
features, as employed in a state-of-the-art 
relation extraction system (Zhou et al., 2005). 

(1) Words: According to their positions, four 
categories of words are considered: a) the words 
of both the mentions; b) the words between the 
two mentions; c) the words before M1; and d) 
the words after M2.  

(2) Entity type: This category of features 
concerns about the entity types of both the 
mentions. 

(3) Mention Level: This category of features 
considers the entity level of both the mentions. 

(4) Overlap: This category of features includes 
the number of other mentions and words between 
two mentions. Typically, the overlap features are 
usually combined with other features such as 
entity type and mention level. 

(5) Base phrase chunking: The base phrase 
chunking is proved to play an important role in 
semantic relation extraction. Most of the 
chunking features concern about the headwords 
of the phrases between the two mentions.  

In this paper, we do not employ any deep 
syntactic or semantic features (such as 
dependency tree, full parse tree etc.), since they 
contribute quite limited in relation extraction. 

4 Bootstrapping & Stratified Sampling 

We first present the self-bootstrapping algorithm, 
and then discuss several key problems on 
bootstrapping in the order of initial seed 
selection, augmentation of labeled data and 
stoppage criterion for iteration. 

4.1 Bootstrapping Algorithm 

Following Zhang (2004), we define a basic self-
bootstrapping strategy, which keeps augmenting 
the labeled data set with the models 

straightforwardly trained from previously 
available labeled data as follows: 

Require: labeled seed set L
Require: unlabeled data set U
Require: batch size S
Repeat
    Train a single classifier on L
    Run the classifier on U
    Find at most S instances in U that the classifier has
the highest prediction confidence
    Add them into L
Until: no data points available or the stoppage
condition is reached

Algorithm self-bootstrapping

Figure 1. Self-bootstrapping algorithm 
In order to measure the confidence of the 

classifier’s prediction, we compute the entropy 
of the label probability distribution that the 
classifier assigns to the class label on an example 
(the lower the entropy, the higher the confidence): 

log
n

i i
i

H p p= −∑      (1) 

Where n denotes the total number of relation 
classes, and pi denotes the probability of current 
example being classified as the ith class.  

4.2 Stratified Sampling for Initial Seeds  

Normally, the number of available labeled 
instances is quite limited (usually less than 100 
instances) when the iterative bootstrapping 
procedure begins. If the distribution of the initial 
seed set fails to approximate the distribution of 
the test data, the augmented data generated from 
bootstrapping would not capture the essence of 
relation types, and the performance on the test 
set will significantly decrease even only after one 
or two rounds of iterations. Therefore, the 
selection of initial seed set plays an important 
role in bootstrapping-based semantic relation 
extraction. 

Sampling is a part of statistical practice 
concerned with the selection of individual 
observations, which is intended to yield some 
knowledge about a population of interest. When 
dealing with the task of semi-supervised 
semantic relation classification, the population is 
the training set of relation instances from the 
ACE RDC corpora. We compare two practical 
sampling strategies as follows: 

(1) Randomly sampling, which picks the initial 
seeds from the training data using a random 
scheme. Each element thus has an equal 
probability of selection, and the population is not 
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subdivided or partitioned. Currently, most work 
on semi-supervised relation extraction employs 
this method. However, since the size of the initial 
seed set is very small, they are not guaranteed to 
capture the statistical properties of the whole 
training data, let alone of the test data. 

(2) Stratified sampling. When the population 
embraces a number of distinct categories, 
stratified sampling (Neyman, 1934) can be 
applied to this case. First, the population can be 
organized by these categories into separate 
"strata", then a sample is selected within each 
"stratum" separately, and randomly. Generally, 
the sample size is normally proportional to the 
relative size of the strata. The main motivation 
for using a stratified sampling design is to ensure 
that particular groups within a population are 
adequately represented in the sample. 

It is well known that the number of the 
instances for each relation type in the ACE RDC 
corpora is greatly unbalanced  (Zhou et al., 2005) 
as shown in Table 1 for the ACE RDC 2004 
corpus. When the relation instances for a specific 
relation type occurs frequently in the initial seed 
set, the classifier will achieve good performance 
on this type, otherwise the classifier can hardly 
recognize them from the test set. In order for 
every type of relations to be properly represented, 
the stratified sampling strategy is applied to the 
seed selection procedure. 
Types Subtypes Train Test

Located 593 145
Near 70 17

PHYS 

Part-Whole 299 79
Business 134 39
Family 101 20

PER-SOC 

Other 44 11
Employ-Executive 388 101
Employ-Staff 427 112
Employ-Undetermined 66 12
Member-of-Group 152 39
Subsidiary 169 37
Partner 10 2

EMP-ORG 

Other 64 16
User-or-Owner 160 40
Inventor-or-Man. 8 1

ART 

Other 1 1
Ethnic 31 8
Ideology 39 9

OTHER-
AFF 

Other 43 11
Citizen-or-Resid. 226 47
Based-In 165 50

GPE-AFF 

Other 31 8
DISC  224 55
Total  3445 860
Table 1. Numbers of relations on the ACE RDC 
2004: break down by relation types and subtypes 

Figure 2 illustrates the stratified sampling 
strategy we use in bootstrapping, where RSET 
denotes the training set, V is the stratification 
variable, and SeedSET denotes the initial seed set. 
First, we divide the relation instances into 
different strata according to available properties, 
such as major relation type (considering reverse 
relations or not) and relation subtype 
(considering reverse relations or not). Then 
within every stratum, a certain number of 
instances are sampled randomly, and this number 
is normally proportional to the size of that 
stratum in the whole population. However, when 
this number is 0 due to the rounding of real 
numbers, it is set to 1. Also it must be ensured 
that the total number of instances being sampled 
is NS. Finally, these instances form the initial 
seed set and can be used as the input to the 
underlying supervised learning for the 
bootstrapping procedure. 

 
Require: RSET ={R1,R2,…,RN} 
Require: V = {v1, v2,…,vK} 
Require: SeedSET with the size of NS (100) 
Initialization: 
SeedSET = NULL 

Steps: 
z Group RSET into K strata according to the 

stratified variable V, i.e.:  
RSET={RSET1,RSET2,…,RSETK} 

z Calculate the class prior probability for each 
stratum i={1,2,…,K} 

)(/)( RSETNUMRSETNUMP ii =  
z Caculate the number of intances being sampled 

for each stratum 
NPN ii ∗=  

If Ni =0 then Ni=1 
z Calculate the difference of numbers as follows: 

∑
=

∆ −=
K

i
iS NNN

1
 

z If N△>0 then add Ni (i=1,2,…,|N△|) by 1 
If N△<0 then subtract 1 from Ni (i=1,2,...,|N△|) 
z For each i from 1 to K 

Select Ni instances from RESTi randomly 
Add them into SeedSET 

 
Figure 2. Stratefied Sampling for initial seeds 

4.3 Augmentation of labeled data 

After each round of iteration, some newly 
classified instances with the highest confidence 
can be augmented to the labeled training data. 
Nevertheless, just like the selection of initial seed 
set, we still wish that every stratum would be 
represented as appropriately as possible in the 
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instances added to the labeled set. In this paper, 
we compare two kinds of augmentation strategies 
available: 

(1) Top n method: the classified instances are 
first sorted in the ascending order by their 
entropies (i.e. decreasing confidence), and then 
the top n (usually 100) instances are chosen to be 
added.  

(2) Stratified method: in order to make the 
added instances representative for their stratum, 
we first select m (usually greater than n) 
instances with the highest confidence, then we 
choose n instances from them using the stratified 
strategy. 

4.4 Stoppage of Iterations 

In a self-bootstrapping procedure, as the 
iterations go on, both the reliable and unreliable 
instances are added to the labeled data 
continuously, hence the performance will 
fluctuate in a relatively small range. The key 
question here is how we can know when the 
bootstrapping procedure reaches its best 
performance on the test data. The bootstrapping 
algorithm by Zhang (2004) stops after it runs out 
of all the training instances, which may take a 
relatively long time. In this paper, we present a 
method to determine the stoppage criterion based 
on the mean entropy as follows: 

Hi <= p    (2) 

Where Hi denotes the mean entropy of the 
confidently classified instances being augmented 
to the labeled data in each iteration, and p 
denotes a threshold for the mean entropy, which 
will be fixed through empirical experiments. 
This criterion is based on the assumption that 
when the mean entropy becomes less than or 
equal to a certain threshold, the classifier would 
achieve the most reliable confidence on the 
instances being added to the labeled set, and it 
may be impossible to yield better performance 
since then. Therefore, the iteration may stop at 
that reasonable point.  

5 Experimentation 

This section aims to empirically investigate the 
effectiveness of the bootstrapping-based semi-
supervised learning we discussed above for 
semantic relation classification. In particular, 
different methods for selecting the initial seed set 
and augmenting the labeled data are evaluated. 

5.1 Experimental Setting 

We use the ACE corpora as the benchmark data, 
which are gathered from various newspapers, 
newswire and broadcasts. The ACE 2004 corpus 
contains 451 documents and 5702 positive 
relation instances. It defines 7 relation types and 
23 subtypes between 7 entity types. For easy 
reference with related work in the literature, 
evaluation is also done on 347 documents 
(including nwire and bnews domains) and 4305 
relation instances using 5-fold cross-validation. 
That is, these relation instances are first divided 
into 5 sets, then, one of them (about 860 
instances) is used as the test data set, while the 
others are regarded as the training data set, from 
which the initial seed set is sampled. In the ACE 
2003 corpus, the training set consists of 674 
documents and 9683 positive relation instances 
while the test data consists of 97 documents and 
1386 positive relation instances. The ACE RDC 
2003 task defines 5 relation types and 24 
subtypes between 5 entity types. 

The corpora are first parsed using Collins’s 
parser (Collins, 2003) with the boundaries of all 
the entity mentions kept. Then, the parse trees 
are converted into chunklink format using 
chunklink.pl 1. Finally, various useful lexical and 
syntactic features, as described in Subsection 3.1, 
are extracted and computed accordingly. For the 
purpose of comparison, we define our task as the 
classification of the 5 or 7 major relation types in 
the ACE RDC 2003 and 2004 corpora. 

For LIBSVM parameters, we adopted the 
polynomial kernel, and c is set to 10, g is set to 
0.15. Under this setting, we achieved the best 
classification performance. 

5.2 Experimental Results 

In this subsection, we compare and discuss the 
experimental results using various sampling 
strategies, different augmentation methods, and 
iteration stoppage criterion. 

 
Comparison of sampling strategies in selecting 
the initial seed set 

Table 2 and Table 3 show the initial and the 
highest classification performance of 
Precision/Recall/F-measure for various sampling 
strategies of the initial seed set on 7 major 
relation types of the ACE RDC 2004 corpus 
respectively when the size of initial seed set L is 
100, the batch size S is 100, and the top 100 

                                                 
1 http://ilk.kub.nl/~sabine/chunklink/ 
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instances with the highest confidence are added 
at each iteration. Table 2 also lists the number of 
strata for stratified sampling methods from which 
the initial seeds are randomly chosen 
respectively. Table 3 additionally lists the time 
needed to complete the bootstrapping process (on 
a PC with a Pentium IV 3.0G CPU and 1G 
memory). In this paper, we consider the 
following five experimental settings when 
sampling the initial seeds: 
z Randomly Sampling: as described in 

Subsection 4.2. 
z Stratified-M Sampling: the strata are 

grouped in terms of major relation types 
without considering reverse relations. 

z Stratified-MR Sampling: the strata are 
grouped in terms of major relation types, 
including reverse relations. 

z Stratified-S Sampling: the strata are 
grouped in terms of relation subtypes 
without considering reverse subtypes. 

z Stratified-SR Sampling: the strata are 
grouped in terms of relation subtypes, 
including reverse subtypes. 

For each sampling strategies, we performed 20 
trials and computed average scores and the total 
time on the test set over these 20 trials. 

Sampling strategies 
for initial seeds 

# of 
strat. P(%) R(%) F 

Randomly 1 66.1 65.9 65.9
Stratified-M 7 69.1 66.5 67.7
Stratified-MR 13 69.3 67.3 68.2
Stratified-S 30 69.8 67.7 68.7
Stratified-SR 39 69.9 68.5 69.2

Table 2. The initial performance of applying 
various sampling strategies to selecting the initial 
seed set on the ACE RDC 2004 corpus 

Sampling strategies 
for initial seeds 

Time 
(min) P(%) R(%) F 

Randomly 52 68.6 66.2 67.3
Stratified-M 65 71.0 66.9 68.8
Stratified-MR 65 71.6 67.0 69.2
Stratified-S 71 72.7 67.8 70.1
Stratified-SR 77 72.9 68.4 70.6

Table 3. The highest performance of applying 
various sampling strategies in selecting the initial 
seed set on the ACE RDC 2004 corpus 

 
These two tables jointly indicate that the self-

bootstrapping procedure for all sampling 
strategies can moderately improve the 
classification performance by ~1.2 units in F-
score, which is also verified by Zhang (2004). 
Furthermore, they show that: 

z  The most improvements in performance 
come from improvements in precision. Actually, 
for some settings the recalls even decrease 
slightly. The reason may be that due to the nature 
of self-bootstrapping, the instances augmented at 
each iteration are always those which are the 
most similar to the initial seed instances, 
therefore the models trained from them would 
exhibit higher precision on the test set, while it 
virtually does no help for recall. 
z  All of the four stratified sampling methods 

outperform the randomly sampling method to 
various degrees, both in the initial performance 
and the highest performance. This means that 
sampling of the initial seed set based on 
stratification by major/sub relation types can be 
helpful to relation classification, largely due to 
the performance improvement of the initial seed 
set, which is caused by adequate representation 
of instances for every relation type. 
z  Of all the four stratified sampling methods, 

the Stratified-SR sampling achieves the best 
performance of 72.9/68.4/70.6 in P/R/F. 
Moreover, the more the number of strata 
generated by the sampling strategy, the more 
appropriately they would be represented in the 
initial seed set, and the better performance it will 
yield. This also implies that the hierarchy of 
relation types/subtypes in the ACE RDC 2004 
corpus is fairly reasonably defined. 
z  An important conclusion, which can be 

draw accordingly, is that the F-score 
improvement of Stratified-SR sampling over 
Randomly sampling in initial performance (3.3 
units) is significantly greater than the F-score 
improvement gained by bootstrapping itself 
using Randomly sampling (1.4 units). This means 
that the sampling strategy of the initial seed set is 
even more important than the bootstrapping 
algorithm itself for relation classification. 
z  It is interesting to note that the time needed 

to bootstrap increases with the number of strata. 
The reason may be that due to more diverse 
structures in the labeled data for stratified 
sampling, the SVM needs more time to 
differentiate between instances, i.e. more time to 
learn the models. 
 
Comparison of different augmentation 
strategies of training data 

Figure 3 compares the performance of F-score 
for two augmentation strategies: the Top n 
method and the stratified method, over various 
initial seed sampling strategies on the ACE RDC 
2004 corpus. For each iteration, a variable 
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number (m is ranged from 100 to 500) of 
classified instances in the decreasing order of 
confidence are first chosen as the base examples, 
then at most 100 examples are selected from the 
base examples to be augmented to the labeled set. 
Specifically, when m is equal to 100, the whole 
set of the base example is added to the labeled 
data, i.e. degenerated to the Top n augmentation 
strategy. On the other hand, when m is greater 
than 100, we wish we would select examples of 
different major relation types from the base 
examples according to their distribution in the 
training set, in order to achieve the performance 
improvement as much as the stratified sampling 
does in the selection of the initial seed set. 
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Figure 3. Comparison of two augmentation 
strategies over different sampling strategies in 
selecting the initial seed set. 

This figure shows that, except for randomly 
sampling strategy, the stratified augmentation 
strategies improve the performance. Nevertheless, 
this result is far from our expectation in two 
ways: 
z  The performance improvement in F-score is 

trivial, at most 0.4 units on average. The reason 
may be that, although we try to add as many as 
100 classified instances to the labeled data 
according to the distribution of every major 
relation type in the training set, the top m 
instances with the highest confidence are usually 
focused on certain relation types (e.g. PHSY and 
PER-SOC), this leads to the stratified 
augmentation failing to function effectively. 
Hence, all the following experiments will only 
adopt Top n method for augmenting the labeled 
data. 
z  With the increase of the number of the base 

examples, the performance fluctuates slightly, 
thus it is relatively difficult to recognize where 
the optima is. We think there are two 
contradictory factors that affect the performance. 
While the reliability of the instances extracted 
from the base examples decreases with the 
increase of the number of base examples, the 

probability of extracting instances of more 
relation types increases with the increase of the 
number of the base examples. These two factors 
inversely interact with each other, leading to the 
fluctuation in performance. 
 
Comparison of different threshold values for 
stoppage criterion 

We compare the performance and 
bootstrapping time (20 trials with the same initial 
seed set) when applying stoppage criterion in 
Formula (2) with different threshold p over 
various sampling strategies on the ACE RDC 
2004 corpus in Figure 4 and Figure 5 
respectively. These two figures jointly show that: 
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Figure 4. Performance for different p values 
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Figure 5. Bootstrapping time for different p 
values 
z  The performance decreases slowly while the 

bootstrapping time decreases dramatically with 
the increase of p from 0 to 0.3. Specifically, 
when the p equals to 0.3, the bootstrapping time 
tends to be neglected, while the performance is 
almost similar to the initial performance. It 
implies that we can find a reasonable point for 
each sampling strategy, at which the time falls 
greatly while the performance nearly does not 
degrade.  
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Bootproject LP-js Stratified Bootstrapping Relation types 
P R F P R F P R F 

ROLE 78.5 69.7 73.8 81.0 74.7 77.7 74.7 86.3 80.1
PART 65.6 34.1 44.9 70.1 41.6 52.2 66.4 47.0 55.0
AT 61.0 84.8 70.9 74.2 79.1 76.6 74.9 66.1 70.2
NEAR - - - 13.7 12.5 13.0 100.0 2.9 5.6
SOC 47.0 57.4 51.7 45.0 59.1 51.0 65.2 79.0 71.4
Average 67.9 67.4 67.6 73.6 69.4 70.9 73.8 73.3 73.5
Table 4. Comparison of semi-supervised relation classification systems on the ACE RDC 2003 corpus 

 
z  Clearly, if the performance is the primary 

concern, then p=0.2 may be the best choice in 
that we can get ~30% saving on the time at the 
cost of only ~0.08 loss in F-score on average. If 
the time is a primary concern, then p=0.22 is a 
reasonable threshold in that we get ~50% saving 
on the time at the cost of ~0.25 units loss in F-
score on average. This suggests that our 
proposed stoppage criterion is effective to 
terminate the bootstrapping procedure with 
minor performance loss. 
 
Comparison of Stratified Bootstrapping with 
Bootproject and Label propagation  

Table 4 compares Bootproject (Zhang, 2004), 
Label propagation (Chen et al., 2006) with our 
Stratified Bootstrapping on the 5 major types of 
the ACE RDC 2003 corpus. 

Both Bootproject and Label propagation 
select 100 initial instances randomly, and at each 
iteration, the top 100 instances with the highest 
confidence are added to the labeled data. 
Differently, we choose 100 initial seeds using 
stratified sampling strategy; similarly, the top 
100 instances with the highest confidence are 
augmented to the labeled data at each iteration. 
Due to the lack of comparability followed from 
the different size of the labeled data used in 
(Zhou et al., 2008), we omit their results here. 

This table shows that our stratified 
bootstrapping procedure significantly 
outperforms both Bootproject and Label 
Propagation methods on the ACE RDC corpus, 
with the increase of 5.9/4.1 units in F-score on 
average respectively. Stratified bootstrapping 
consistently outperforms Bootproject in every 
major relation type, while it outperforms Label 
Propagation in three of the major relation types, 
especially SOC type, with the exception of AT 
and NEAR types. The reasons may be follows. 
Although there are many AT relation instances in 
the corpus, they are scattered divergently in 
multi-dimension space so that they tend to be 
relatively difficult to be recognized via SVM. 

For the NEAR relation instances, they occur least 
frequently in the whole corpus, so it is very hard 
for them to be identified via SVM. By contrast, 
even small size of labeled instances can be fully 
utilized to correctly induce the unlabeled 
instances via LP algorithm due to its ability to 
exploit manifold structures of both labeled and 
unlabeled instances (Chen et al., 2006). 

In general, these results again suggest that the 
sampling strategy in selecting the initial seed set 
plays a critical role for relation classification, and 
stratified sampling can significantly improve the 
performance due to proper selection of the initial 
seed set. 

6 Conclusion 

This paper explores several key issues in semi-
supervised learning based on bootstrapping for 
semantic relation classification. The application 
of stratified sampling originated from statistics 
theory to the selection of the initial seed set 
contributes most to the performance 
improvement in the bootstrapping procedure. In 
addition, the more strata the training data is 
divided into, the better performance will be 
achieved. However, the augmentation of the 
labeled data using the stratified strategy fails to 
function effectively largely due to the 
unbalanced distribution of the confidently 
classified instances, rather than the stratified 
sampling strategy itself. Furthermore, we also 
propose a mean entropy-based stoppage criterion 
in the bootstrapping procedure, which can 
significantly decrease the training time with little 
loss in performance. Finally, it also shows that 
our method outperforms other state-of-the-art 
semi-supervised ones. 

 
Acknowledgments 
This research is supported by Project 60673041 
and 60873150 under the National Natural 
Science Foundation of China, Project 
2006AA01Z147 under the “863” National High-
Tech Research and Development of China, 

1444



Project BK2008160 under the Jiangsu Natural 
Science Foundation of China, and the National 
Research Foundation for the Doctoral Program 
of Higher Education of China under Grant No. 
20060285008. We would also like to thank the 
excellent and insightful comments from the three 
anonymous reviewers. 

References  
S. Abney. Bootstrapping. 2002. In Proceedings of the 

40th Annual Meeting of the Association for 
Computational  Linguistics (ACL 2002). 

ACE 2002-2007. The Automatic Content Extraction 
(ACE) Projects. 2007. http//www.ldc.upenn.edu/ 
Projects/ACE/. 

E. Agichtein and L. Gravano. 2000. Snowball: 
Extracting relations from large plain-text 
collections. In Proceedings of the 5th ACM 
international Conference on Digital Libraries 
(ACMDL 2000). 

A. Blum and T. Mitchell. 1996. Combining labeled 
and unlabeled data with co-training. In COLT: 
Proceedings of the workshop on Computational 
Learning Theory. Morgan Kaufmann Publishers. 

S. Brin. 1998. Extracting patterns and relations from 
the world wide web. In WebDB Workshop at 6th 
International Conference on Extending Database 
Technology (EDBT 98). 

C.C. Chang and C.J. Lin. 2001. LIBSVM: a library 
for support vector machines. http:// 
www.csie.ntu.edu.tw/~cjlin/libsvm. 

M. Collins. 2003. Head-Driven Statistics Models for 
Natural Language Parsing. Computational 
linguistics, 29(4): 589-617. 

J.X. Chen, D.H. Ji, and L.T. Chew. 2006. Relation 
Extraction using Label Propagation Based Semi 
supervised Learning. In Proceedings of the 21st 
International Conference on Computational 
Linguistics and the 44th Annual Meeting of the 
Association of Computational Linguistics 
(COLING/ACL 2006), pages 129-136. July 2006, 
Sydney, Australia.  

A. Culotta and J. Sorensen. 2004. Dependency tree 
kernels for relation extraction. In Proceedings of 
the 42nd Annual Meeting of the Association of 
Computational Linguistics (ACL 2004), pages 423-
439. 21-26 July 2004, Barcelona, Spain. 

T. Hasegawa, S. Sekine, and R. Grishman. 2004. 
Discovering Relations among Named Entities from 
Large Corpora. In Proceedings of the 42nd Annual 
Meeting of the Association of Computational 
Linguistics (ACL 2004). 21-26 July 2004, 
Barcelona, Spain. 

N. Kambhatla. Combining lexical, syntactic and 
semantic features with Maximum Entropy models 
for extracting relations. In Proceedings of the 42nd 
Annual Meeting of the Association of 
Computational Linguistics (ACL 2004)(posters), 
pages 178-181. 21-26 July 2004, Barcelona, Spain. 

S. Miller, H. Fox, L. Ramshaw, and R. Weischedel. 
2000. A novel use of statistical parsing to extract 
information from text. In Proceedings of the 6th 
Applied Natural Language Processing Conference. 
29 April-4 May 2000, Seattle, USA. 

J. Neyman. 1934. On the Two Different Aspects of 
the Representative Method: The Method of 
Stratified Sampling and the Method of Purposive 
Selection. Journal of the Royal Statistical Society, 
97(4): 558-625. 

L.H. Qian, G.D. Zhou, Q.M. Zhu, and P.D Qian. 2008. 
Exploiting constituent dependencies for tree 
kernel-based semantic relation extraction. In 
Proceedings of The 22nd International Conference 
on Computational Linguistics (COLING 2008), 
pages 697-704. 18-22 August 2008, Manchester, 
UK. 

D. Yarowsky. 1995. Unsupervised word sense 
disambiguation rivaling supervised methods. In the 
Proceedings of the 33rd Annual Meeting of the 
Association for Computational Linguistics (ACL 
95), pages 189-196. 26-30 June 1995, MIT, 
Cambridge, Massachusetts, USA. 

D. Zelenko, C. Aone, and A. Richardella. 2003. 
Kernel Methods for Relation Extraction. Journal of 
Machine Learning Research, (2): 1083-1106. 

M. Zhang, J. Zhang, J. Su, and G.D. Zhou. 2006. A 
Composite Kernel to Extract Relations between 
Entities with both Flat and Structured Features. In 
Proceedings of the 21st International Conference 
on Computational Linguistics and the 44th Annual 
Meeting of the Association of Computational 
Linguistics (COLING/ACL 2006), pages 825-832. 
Sydney, Australia. 

M. Zhang, J. Su, D. M. Wang, G. D. Zhou, and C. L. 
Tan. 2005. Discovering Relations between Named 
Entities from a Large Raw Corpus Using Tree 
Similarity-Based Clustering. In Proceedings of the 
2nd international Joint Conference on Natural 
Language Processing (IJCNLP-2005), pages 378-
389. Jeju Island, Korea.  

Z. Zhang. 2004. Weakly-supervised relation 
classification for Information Extraction. In 
Proceedings of ACM 13th conference on 
Information and Knowledge Management (CIKM 
2004). 8-13 Nov 2004, Washington D.C., USA. 

G.D. Zhou, J. Su, J. Zhang, and M. Zhang. 2005. 
Exploring various knowledge in relation extraction. 
In Proceedings of the 43rd Annual Meeting of the 
Association of Computational Linguistics (ACL 
2005), pages 427-434. Ann Arbor, USA. 

G.D. Zhou, J.H. Li, L.H. Qian, and Q.M. Zhu. 2008. 
Semi-Supervised Learning for Relation Extraction. 
In Proceedings of the 3rd International Joint 
Conference on Natural Language Processing 
(IJCNLP-2008), page 32-38. 7-12 January 2008, 
Hyderabad, India. 

 

1445



Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 1446–1454,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Construction of a Blog Emotion Corpus for Chinese Emotional
Expression Analysis

Changqin Quan
Faculty of Engineering

University of Tokushima
2-1 Minamijosanjima Tokushima Japan
quan-c@is.tokushima-u.ac.jp

Fuji Ren
Faculty of Engineering

University of Tokushima
2-1 Minamijosanjima Tokushima Japan
ren@is.tokushima-u.ac.jp

Abstract
There is plenty of evidence that emotion
analysis has many valuable applications.
In this study a blog emotion corpus is con-
structed for Chinese emotional expression
analysis. This corpus contains manual an-
notation of eight emotional categories (ex-
pect, joy, love, surprise, anxiety, sorrow,
angry and hate), emotion intensity, emo-
tion holder/target, emotional word/phrase,
degree word, negative word, conjunction,
rhetoric, punctuation and other linguistic
expressions that indicate emotion. An-
notation agreement analyses for emotion
classes and emotional words and phrases
are described. Then, using this corpus,
we explore emotion expressions in Chi-
nese and present the analyses on them.

1 Introduction

Textual emotion analysis is becoming increasingly
important due to augmented communication via
computer mediated communication (CMC) inter-
net sources such as weblogs, email, websites, fo-
rums, and chat rooms. Especially, blogspace con-
sists of millions of users who maintain an online
diary, containing frequently-updated views and
personal remarks about a range of issues.

Despite the increased focus on analysis of web
content, there has been limited emotion analy-
sis of web contents, with the majority of studies
focusing on sentiment analysis or opinion min-
ing. Classifying the mood of a single text is a
hard task; state-of-the-art methods in text classi-
fication achieve only modest performance in this
domain (Mishne, 2005). In this area, some of
the hardest problems involve acquiring basic re-
sources. Corpora are fundamental both for devel-
oping sound conceptual analyses and for training
these emotion-oriented systems at different lev-
els: to recognize emotions, to express appropriate

emotions, to anticipate emotions, and other emo-
tion processing applications.

In this study we propose a relatively fine-
grained annotation scheme, annotating emotion in
text at three levels: document, paragraph, and sen-
tence. We select eight emotion classes (expect,
joy, love, surprise, anxiety, sorrow, angry and hate)
for this annotation, and explore various linguis-
tic expressions that indicate emotion in Chinese.
The annotation scheme has been employed in the
manual annotation of a corpus containing 1,487
documents, with 11,255 paragraphs, 35,096 sen-
tences, and 878,164 Chinese words. Then, using
this corpus, we explore and present data analy-
ses on emotions, involving emotion states, accom-
panying emotions, transfer emotions, independent
emotions in texts.

The remainder of this paper is organized as fol-
lows. Section 2 describes the emotion corpus an-
notation scheme. Section 3 presents the inter-
annotator agreement study. Section 4 describes
the analysis of emotion expressions. Section 5
presents a review of current emotion corpora for
textual emotion analysis. Section 6 concludes this
study with closing remarks and future directions.

2 Blog Emotion Corpus Annotation
Scheme

Weblogs are an increasingly popular mode of
communication in the ever changing online world.
Writing suits the recording of facts and the com-
munication of ideas, and their textual basis makes
them equally suitable for recording emotions and
opinions. So, we select blogs as object and data
source for this emotion corpus annotation.

2.1 Emotional Expression in Text

An important starting point in constructing this
corpus is to represent emotion in text. One of the
biggest questions in affect recognition is, “What
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are the couplings between affective states and their
patterns of expressions” (Picard, 1997).

In this study we propose an emotional expres-
sion space model to represent emotion in text,
which is hierarchical in consistent with the natural
structure of a document. Emotion of a document
is represented by a vector

−→
d =< e1, e2, ..., ei, ..., en > (1)

Here, ei is a basic emotion class contained in doc-
ument d. The values of ei range from 0.0 to 1.0
(discrete), indicating the intensities of the basic
emotion classes. Similar to a document, emotion
of each paragraph and each sentence in a docu-
ment is represented by an emotion vector.

Basic emotions may be defined in many ways.
To decrease confusions on emotion categories’ se-
lection and to contain the most common emotion
classes in blogs, we select eight emotion classes
(expect, joy, love, surprise, anxiety, sorrow, angry
and hate) for this manual annotation, and they are
agreed by eleven annotators through a testing an-
notation period. Table 1 shows the numbers of the
eight emotion classes in documents, paragraphs,
and sentences in this corpus.

Emotions Doc Para Sen
Expect 656 2,145 4,588
Joy 565 2,740 6,211
Love 911 4,991 11,866
Surprise 124 503 1,118
Anxiety 732 4,128 10,115
Sorrow 693 3643 8,166
Angry 189 900 2,221
Hate 335 1,589 3,555
Sum 4,205 20,639 47,840

Table 1: Num. of the eight emotion classes

As shown in Table 1, we have reasonably large
counts for all 8 emotions in all 3 units of text. And
we also can get the average value for the numbers
of emotion classes in each document, each para-
graph and each sentence; they are 2.83, 1.84, and
1.36 respectively.

2.2 The Multi-level Annotation Frame
The annotation frame includes 3 levels: docu-
ment, paragraph, and sentence. Sentence level
is the basic level for emotion annotation; the an-
notation includes intensities of the eight basic
emotion classes, emotion holder/target, emotional

words/phrases, rhetoric, emotional punctuations,
emotion objective/subjective and emotion polarity.
Paragraph level is the upper level of sentence level;
the annotation includes intensities of the eight ba-
sic emotion classes, topic words to reflect the topic
of a paragraph, and the number of topic sentence
that can express the main points of this paragraph.
Document level is the uppermost level; its anno-
tation is similar to paragraph level. The tokenized
text files are organized into XML documents. An
example document is listed in Figure 1.

Figure 1: An annotated document in XML format
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2.3 Sentence Level Annotation

Sentences are basic units for emotional expres-
sion. The central aim of sentence level annotation
is to explore as much linguistic expressions for re-
flecting emotion in Chinese as possible.

a) Emotion holder/target
In the task of opinion analysis, the problem of

opinion holder identification has also been stud-
ied, (Bethard, Steven et al., 2004; Choi, Cardie,
et al., 2005; Kim and Hovy, 2005). As for emo-
tion holder/target identification, little research has
been conducted, but we believe it is important for
exploring emotional expression and emotion anal-
ysis. Emotion holder is the one who holds the
emotions, and an emotion target is the object of
an emotion holder. For instance,

(1) 我喜欢这个老师。(English: I like this
teacher.) In sentence (1),我“ (English: I)” is the
emotion holder, and 这个老师“(English: this
teacher.)” is the emotion target.

In this corpus, not every sentence is annotated
with emotion holder or emotion target, and emo-
tion holder or emotion target may not appear in
pairs in one sentence. If one sentence has more
than one emotion holders or emotion targets, they
are all annotated.

b) Emotional words and phrases
Lexicon-based methods have received a lot of

attention in opinion analysis task. There are many
lexical resources for these tasks. For emotion anal-
ysis tasks, the function of words is equally funda-
mental. In most sentimental lexicons, the words
usually bear direct emotions or opinions, such as
happy or sad, good or bad. However, there are a
lot of sentences can evoke emotions without direct
emotional words, for example,

(2) 春天在孩子们的眼里、在孩子们的心
里。(English: Spring is in children’s eyes, and in
their hearts.)

In sentence (2), we may feel joy, love or ex-
pect delivered by the writer. Indeed, as (Ortony,
Andrew, et al., 1987) indicates, besides words di-
rectly referring to emotional states and for which
an appropriate lexicon would help, there are words
that act only as an indirect reference to emotions
depending on the context.

In this annotation scheme, direct emotional
words and indirect emotional words in a sen-
tence are all annotated. In sentence (2), 春
天“(English: spring)”, 孩子们“(English: chil-
dren)” are labeled. An emotional word or phrase

is represented as a vector to record its intensi-
ties of the eight basic emotional classes. For in-
stance, the vector for the word 喜欢“(English:
like)” −→w = (0.0, 0.3, 0.9, 0.0, 0.0, 0.0, 0.0, 0.0)
indicates the emotions of weak joy and strong
love. For indirect emotional words, we anno-
tate their emotion vectors according to their con-
texts, for example, the possible emotion vec-
tor for the word “春天(English: spring)” −→w =
(0.1, 0.3, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0) indicates the
emotions of weak expect, joy and love. (The emo-
tions and intensity values may be different because
of different annotators).

Emotional phrases are combination of words,
such as Chinese proverbs, like “世上无难事，
只要肯攀登(English: Where there is a will, there
is a way) ”. For an emotional phrase, the positions
of its first and character in a sentence are labeled,
and also for emotional words if there are Chinese
word segmentation mistakes.

The statistics show that 84.9% of all emotional
words have one emotion, and 14.7% have two
emotions, only 0.4% have three or four emotions,
but they are indispensable for expressing complex
feelings in use of language.

Table 2 shows the numbers of emotional words
with different POS (part-of-speech) tags. The set
of POS includes 35 classes; Table 2 lists the top
five classes.

POS Num. of words
(have repeat)

Verb 37,572
Noun 21,308
Adj. 20,265
Adv. 4,223
Gerund 2,789

Table 2: Emotional words with different POS

As shown in Table 2, verbs, nouns, adjectives
and adverbs are strong markers of emotion in Chi-
nese.

c) Degree words, negative words, conjunc-
tions

Degree words are associated with the intensi-
ties of emotions. In Chinese, degree words ap-
pear with high frequency. In this corpus, there
are 1,039 different degree words annotated, the to-
tal occurring number of them is 16,713, in which,
8,294 degree words modify emotional words or
phrases directly. Degree words and the modifying
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contents are all labeled.
Negative words can be placed almost every-

where in a sentence to change the meaning, also
to change the emotions. Negative words are fre-
quently used in Chinese. The statistical data shows
that there are 645 different negative words anno-
tated in this corpus, the total occurring number of
them is 13,750, in which, 3,668 negative words
modify emotional words or phrases directly.

Besides, conjunctions may change the emotion
of a sentence. for example,

(3)尽尽尽管管管我们喜欢这个老师，但但但她已经离开
了我们。(Jin guan wo men xi huan zhe ge lao shi,
dan ta yi jing li kai le wo men; English: Although
we like this teacher, she has leaved.)

Sentence (3) uses the conjunctions “尽
管...但...(jin guan...dan..., English: although)”
express emotions of love and sorrow. There
are 297 different conjunctions annotated in this
corpus. Conjunctions and the modifying contents
are all labeled. If conjunctions appear in pairs
in a sentence, the position of pairing words
for each conjunction are also labeled. For the
above sentence (3), conjunctions are annotated as
follows (Figure. 2).

Figure 2: An example of conjunctions annotation

Figure 3 shows the growth curve of word num-
ber with document number from 300 to 1487. As
can be seen from Figure 3, the increase numbers of
emotional words/phrases slow down with the in-
crease in the number of documents, and the num-
bers of negative words, degree words and conjunc-
tions basically remained stable. We can look for-
ward to containing most of common emotional ex-
pressions in weblogs articles.

d) Rhetorics, punctuations
Chinese rhetoric has been well studied from

the view of linguistics and literature. We se-
lect nine common rhetoric categories to anno-
tate: 比喻(English: metaphor), English: 夸
张(exaggeration), 拟 人(English: personifica-
tion), 对偶(English: antithesis or parallel), 排

Figure 3: Growth curve of word number

比(English: parallelism sentence), 设问(English:
rhetorical question with answer), 反问(English:
rhetorical question), 重复(English: repeat), 讽
刺(English: irony). Especially, 讽刺(English:
irony) is a way as to imply the contrary of what one
says, if a sentence is annotated with irony, its emo-
tions maybe totally different from the emotions of
words that it contains. We annotate rhetoric cate-
gory and the corresponding emotion category.

Punctuation is the use of standard marks and
signs in writing to separate words into sentences,
clauses, and phrases in order to clarify meaning.
Some punctuation marks can express emotions,
for example, an exclamation mark (!) or a question
mark (?) is used at the end of a sentence to show
strong emotion. Balog, Mishne, et al. (2006) sug-
gests that people relied on four strategies includ-
ing punctuation to express happiness versus sad-
ness. Punctuation effect is also shown in (Leshed
and Kaye, 2006) to extend to emoticon placement
in website text messages. We annotate punctua-
tion with emotion and the corresponding emotion
category.

e) Emotion objective/subjective, emotion po-
larity

Distinguishing a sentence between factual and
subjective information could support for many
natural language processing applications. Objec-
tive and subjective in our annotation scheme is to
distinguish a sentence between writer’s emotion
and non-writer’s emotion.

There is a positive side or a negative side on
emotion. We call this an emotional polarity. Emo-
tion polarity of a sentence is determined by inte-
grating its emotions. A sentence without emotion
is annotated with neutral.

An annotation tool is developed for this corpus
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annotation. Input files are text files with Chinese
segmentation and part-of-speech tags, the anno-
tated output files are XML files.

3 Annotation Agreement analysis

Emotion annotation is a hard task because the na-
ture of emotion is inherently ambiguous. In the
process of annotation, annotators were encouraged
to follow their “first intuition”. To measure agree-
ment on various aspects of the annotation scheme,
three annotators independently annotated 26 doc-
uments with a total of 270 paragraphs, 701 sen-
tences.

3.1 Agreement for Emotion Classes
The kappa coefficient of agreement is a statistic
adopted by the Computational Linguistics com-
munity as a standard measure for this purpose
(Carletta, 1996). We measured two agreements for
emotion classes’ annotation:

Agreement (a): the agreement on classifi-
cation of containing or not containing some
emotions. In this case, we distinguish two
classes: emotion intensity ei ∈ {0.0} or ei ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0};

Agreement (b): the agreement on classifica-
tion of emotion intensity. In this case, we dis-
tinguish four classes: ei ∈ {0.0} or ei ∈
{0.1, 0.2, 0.3, 0.4}, or ei ∈ {0.5, 0.6, 0.7}, or ei ∈
{0.8, 0.9, 1.0}.

Table 3 shows Agreement (a) and (b) measure
on documents, paragraphs and sentences.

Agreement(a) Agreement(b)
documents 0.831 0.695
paragraphs 0.705 0.616
sentences 0.756 0.648
Average 0.764 0.653

Table 3: Agreement on emotion classes

As shown in Table 3, it is easier for annotators
to agree at the coarser levels of granularity, and it
is more difficult to agree on the level of emotion
intensity.

3.2 Agreement for Emotional Words and
Phrases

Measuring agreement for emotional words and
phrases is to verify that annotators agree on which
expressions should be marked. To illustrate this
agreement problem, consider the emotional words

and phrases identified by annotators a and b. This
sentence was preprocessed by Chinese segmenta-
tion and tagged with part-of-speech.

(4) 今晨/t ，/w 当/d 我/v 沐浴/n 着/u 阳光/n
前往/v 会场/n 时/Ng ，/w 脑中/v 突然/ad 浮
现/v出/v多年/m不用/d的/u优美/a词语/n，/w
那/r 就/d 是/v ：/w 秋高气爽/n 、/w 金光/n 璀
璨/z。(English: This morning, when I walked to
the meeting with sunshine, some wonderful words
that have not been used for many years crossed my
mind, which are “the autumn sky is clear, the air
is crisp” and “shinning with gold color”)

a: 阳光,优美,秋高气爽,金光,璀璨;
b: 沐浴,阳光,优美,秋高气爽,璀璨;
In sentence (4), the two annotators agree that

“阳光”, “优美”, “秋高气爽” and “璀璨” can ex-
press emotion. In addition, annotator a marked the
word “金光”, and annotator b marked the word
“沐浴”.

In this task, there is no guarantee that the an-
notators will identify the same set of expressions.
Thus, to measure agreement we want to consider
how much intersection there is between the sets
of expressions identified by the annotators. We
use the following voting-agreement metric to mea-
sure agreement in identifying emotional words
and phrases.

Metric voting-agreement is defined as follows.
Let A, B and C be the sets of expressions anno-
tated by annotators a, b and c respectively. The
expert coder is the set of expressions that agreed
by at least two annotators, see Equation 2.

voting agreement = Avg(
count(ti = ej)
count((ti)

)

(2)
In which, ti ∈ T, ej ∈ E, T = A

⋃
B
⋃
C,

E = (A
⋂
B)
⋃

(A
⋂
C)
⋃

(B
⋂
C).

The agreement for emotional words and phrases
is 0.785.

4 Emotional Expressions Analysis

4.1 Emotion State
“Emotion state in text” is the state of combined
emotions in a text unit. An emotion state is repre-
sented by 8 binary digits, each digit corresponding
to a basic emotion class respectively. As an exam-
ple, a document emotion state “01100000” is the
state of combined emotions by joy and love.

The statistics show that, in this corpus, there
are 149 different emotion states in all of the 1,487

1450



documents, 165 different emotion states in all of
the 11,255 paragraphs, and 143 different emotion
states in all of the 35,096 sentences respectively.
That indicates the set of emotion state in texts is
relatively small. We also found some basic emo-
tions tend to combine together, such as {expect,
joy, love}, {anxiety, sorrow}, {angry, hate}. How-
ever, some emotions have small or scarce possibil-
ity appear together, such as joy and hate, surprise
and angry.

4.2 Accompanying Emotions
In an emotion state, some basic emotions are
mixed together. When an emotion ej arise, emo-
tion ei(i 6= j) arise with accompany, then, ei is
an accompanying emotion of ej . To compute the
probability of the accompanying emotion given an
emotion ej , we count the cooccurrence of ei and
ej in a text unit (a document, a paragraph, or a
sentence).

P (ei|ej) =
count(ei with ej)

count(ej)
(3)

Table 4 shows the accompanying emotions with
the highest probabilities for the eight basic emo-
tions in documents, paragraphs and sentences.

Emotions Docs Paras Sens
Expect Love Love Love
Joy Love Love Love
Love Joy Joy Joy
Surprise Anxiety Love Love
Anxiety Sorrow Sorrow Sorrow
Sorrow Anxiety Anxiety Anxiety
Angry Anxiety Hate Hate
Hate Anxiety Sorrow Angry

Table 4: Accompanying emotions

In Table 4, the accompanying emotions has
shown a high uniformity in the 3 units of text.

4.3 Transfer Emotions
When emotion change from one emotion class to
another one, we call this emotion transfer. Using
the context relation of paragraphs and sentences,
we compute the probability P (ei → ej).

P (ei → ej) =
count(et = ei, et+1 = ej)

count(et = ei)
(4)

In which, et is an emotion class in paragraph t
(or sentence t), and et+1 is another emotion class

in paragraph t + 1 (or sentence t + 1). Table 4
shows the transfer emotions with the highest prob-
abilities for the eight basic emotions in paragraphs
and sentences.

Emotions Paras Sens
Expect Love Expect
Joy Love Love
Love Love Love
Surprise Love Love
Anxiety Anxiety Anxiety
Sorrow Sorrow Sorrow
Angry Anxiety Angry
Hate Hate Hate

Table 5: Transfer emotions

Similar to this, we can compute the probability
of emotion state transfer P (e statei → e statej).
This may help a lot for emotion prediction, for
example, if we know the current emotion state is
“00000110” (sorrow an angry), we can estimate
the probability of this emotion state to another
emotion state “00000001” (hate).

4.4 Independent Emotion
When a text unit (a document, a paragraph, or
a sentence) only contains one emotion class, this
emotion class is an independent emotion. The
statistics show that emotion of love has high in-
dependence, however, joy, surprise and angry has
relative low independence. The intuition is love
can be the only topic emotion in a text unit, but
emotions of joy, surprise and anxiety more incline
to combine with other emotions.

5 Related work

Previous approaches to textual emotion analysis
have employed some different corpora. Mishne
(2005) experimented mood classification in blog
posts on a corpus of 815,494 blog posts from Live-
journal (http://www.livejournal.com), a free we-
blog service with a large community. Livejour-
nal also used as data source for finding happi-
ness (Mihalcea and Liu, 2006), capturing global
mood levels (Mishne and De Rijke, 2006), clas-
sifying mood (Jung, Park, et al., 2006; Jung,
Choi, et al., 2007), discovering mood irregu-
larities (Balog, Mishne, et al., 2006), recogniz-
ing affect (Leshed and Kaye, 2006). A similar
emotion corpus in Chinese is Yahoo!’s Chinese
news (http://tw.news.yahoo.com), which is used
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for Chinese emotion classification of news read-
ers (Lin, Yang, et al., 2007) and emotion lexi-
con building (Yang, Lin, et al., 2007). Tokuhima
(2008) also use web as data resources to obtain
a huge collection of emotion-provoking event in-
stances for Japanese emotion classification. More
and more weblogs have added mood column to
record blog users’ moods when they read or write
a blog.

Two merits let them well accepted as emotion
corpora: a large number of weblogs contained and
moods annotated by blog users. However, there is
a great inconsistency on emotion categories given
by different websites. Livejournal gives a pre-
defined list of 132 common moods, while Ya-
hoo!’s Chinese news provides readers 8 emotion
categories. Too many mood classes may confuse
users, and Mishne (2005) also pointed out one ob-
vious drawback of the mood “annotation” in this
corpora is that they are not provided in a consistent
manner; the blog writers differ greatly from each
other, and their definitions of moods differ accord-
ingly. In addition, some words are not fitted to be
taken as emotion classes, such as “useful” in Ya-
hoo!’s emotion categories. These corpora may be
helpful for analyzing the global moods on a full
text, but the inconsistent emotion categories is a
problem, and no more labeled information can be
exploited from them.

The emotion analysis on sentence level may
also be important for more detailed emotion anal-
ysis systems. Alm, Roth, et al. (2005) ex-
plore the text-based emotion prediction problem;
they annotated a corpus of 22 Grimms’tales on
sentence level with eight emotion categories (an-
gry, disgusted, fearful, happy, sad, positively sur-
prised, negatively surprised), contain 1580 sen-
tences. Neviarouskaya, Prendinger et al. (2007)
address the tasks of recognition and interpreta-
tion of affect communicated through text messag-
ing. They collected 160 sentences labeled with
one of nine emotions categories (anger, disgust,
fear, guilt, interest, joy, sadness, shame, and sur-
prise) from a corpus of online diary-like blog
posts and a corresponding intensity value. Aman
and Szpakowicz (2007) classify emotional and
non-emotional sentences based on a knowledge-
based approach. They used a corpus with tags
of emotion category, emotion intensity and the
words/phrases that indicate emotion in text. An
emotion corpus for Japanese was built for rec-

ognizing emotions and emotion estimation (Ren,
2009; Matsumoto, 2006). However, the sizes of
these corpora seem not enough for large scale tex-
tual emotion analysis, a lot of linguistic features
are not reflected from them. A more fine-grained
opinion and emotion corpus is the MPQA Corpus
(Wiebe, Wilson, et al., 2005), which contains 535
news articles (10,000-sentence) from a wide va-
riety of news sources, manually annotated at the
sentential and subsentential level for opinions and
other private states. But emotion categories are not
included in it.

To the best of our knowledge, at present, there’s
no relatively large corpora annotated with detailed
linguistic expressions for emotion in Chinese, and
we believe that such corpora would support the de-
velopment and evaluation of emotion analysis sys-
tems.

6 Conclusions and Future Work

In this study we proposed an emotional expres-
sion space model. Emotion of a document, a para-
graph, a sentence, or even a word is represented
by an emotional vector. Based on this model,
we described a relatively fine-grained annotation
scheme and annotated emotion in text. We also
gave the inter-annotator agreement study on an-
notation. Then, we explore the emotional expres-
sions in texts.

This annotated dataset can be obtained for free
with license 1. Eleven annotators made efforts
on it spanning a period of ten months (They are
Ph.D and M.S. candidates specialize in Natural
Language Processing and Emotion Analysis). To
ensure the quality of this dataset, each document
was performed a three pass annotation, in which
the first pass is annotated by one annotator and
then the second and the third verification pass were
performed by other two annotators. The process
of this corpus annotation is easy to make mistakes
because of a lot of information should be anno-
tated. The verification pass is to check the an-
notation mistakes (such as the start and end po-
sitions of emotional phrases in sentences), but not
to change the choices of emotion classes or emo-
tional words which had been annotated by other
annotators.

Using this corpus, we will make a more exten-
sive study of textual emotion analysis in Chinese,

1http://a1-www.is.tokushima-u.ac.jp/member/ren/Ren-
CECps1.0/Ren-CECps1.0.html
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for example, the influence of degree words, nega-
tive words, or other elements on emotional expres-
sion; the difference between subjective emotion
and objective emotion; emotion transfer tracking.
More applications also will be explored, such as
emotional summarization, emotional question an-
swering; emotional topic discovering. At the same
time, new research problems will arise, for exam-
ples, how to acquiring more emotional words and
to generate their emotional vectors automatically;
how to generate emotional vectors for sentences,
paragraphs and documents with known emotional
elements in them? There is need to immerge fur-
ther into these problems.
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Abstract

This paper proposes a probabilistic model
for associative anaphora resolution in
Japanese. Associative anaphora is a
type of bridging anaphora, in which the
anaphor and its antecedent are not coref-
erent. Our model regards associative
anaphora as a kind of zero anaphora and
resolves it in the same manner as zero
anaphora resolution using automatically
acquired lexical knowledge. Experimen-
tal results show that our model resolves
associative anaphora with good perfor-
mance and the performance is improved
by resolving it simultaneously with zero
anaphora.

1 Introduction

The correct interpretation of anaphora is vital
for natural language understanding. Bridging
anaphora (Clark, 1975) represents a special part of
the general problem of anaphora resolution, which
has been studied and discussed for various lan-
guages and domains (Hahn et al., 1996; Murata et
al., 1999; Poesio et al., 2004; Gasperin and Vieira,
2004; Gasperin and Briscoe, 2008).

Usually bridging anaphora considers two
types:1 associative anaphors are noun phrases
(NPs) that have an antecedent that is necessary
to their interpretation but the relation between the
anaphor and its antecedent is different from iden-
tity; and indirect anaphors are those that have
an identity relation with their antecedents but the
anaphor and its antecedent have different head

1The terminology that we use here is introduced by
Hawkins (1978), which is also used in (Vieira et al., 2006).

nouns. In this paper, we focus on associative
anaphora in Japanese.

Associative anaphora resolution is decomposed
into two steps: acquiring lexical knowledge for as-
sociative anaphora resolution, and resolving asso-
ciative anaphora using the acquired knowledge.

Grammatical salience plays a lesser role for
resolving anaphors with full lexical heads, than
for pronominal anaphora (Strube and Hahn, 1999;
Modjeska, 2002). Furthermore, since associative
anaphors and their antecedents usually have differ-
ent head nouns, string matching technique cannot
be applied. Therefore, a large and diverse amount
of lexical knowledge is essential to understand as-
sociative anaphora. For example, to recognize the
meronymic relation between “a house” and “the
roof” in (1), such knowledge as “a roof” is a part
of a building or vehicle is required. To recognize
the attributive relation between “Prius” and “the
price” in (2), such knowledge as “price” is a price
of some goods or service is required.

(1) There was a house. The roof was white.

(2) Toyota launched the hybrid car Prius in
1997. The price was 21.5 million yen.

To acquire such lexical knowledge, various
studies have been carried out. Early studies used
hand-crafted lexical knowledge such as Word-
Net (Strube and Hahn, 1999; Vieira and Poe-
sio, 2000; Meyer and Dale, 2002), but obtained
poor or mediocre results. Hence, Poesio et al.
(2002) proposed to exploit “Nh of Nm” phrases
in large corpora to resolve associative anaphora
in English; Murata et al. (1999) proposed to ex-
ploit “Nm no Nh” phrases to resolve associative
anaphora in Japanese. Here, the Japanese postpo-
sition “no” roughly corresponds to “of,” but it has

1455



much broader usage. These studies obtained rea-
sonable results, but the coverage of the acquired
knowledge was not sufficient. Recently, a num-
ber of researchers argued for using the Web as a
source of lexical knowledge, and the Web has been
shown to be a useful resource for anaphora resolu-
tion (Bunescu, 2003; Markert et al., 2003; Poesio
et al., 2004).

Hence, in this study, we acquire the lexi-
cal knowledge for associative anaphora resolution
from “Nm no Nh” phrases in the Web by using the
method described in (Sasano et al., 2004). We pro-
posed a method for acquiring such lexical knowl-
edge, called nominal case frames (NCFs), using
an ordinary language dictionary and “Nm no Nh”
phrases, and constructed NCFs from newspaper
corpora. In this study, we aim to acquire a suffi-
cient amount of lexical knowledge by constructing
NCFs from the Web.

As for associative anaphora resolution itself, we
propose an integrated probabilistic model for zero
anaphora and associative anaphora resolution, in
which associative anaphora is regarded as a kind
of zero anaphora and resolved by using the same
model as zero anaphora. Our model assumes zero
pronouns that represent indispensable entities of
target noun phrases, which are called zero adnom-
inal in (Yamura-Takei, 2003), and conducts zero
pronoun resolution.

Let us consider the associative anaphoric re-
lation between “Prius” and “kakaku” (price).
Although “kakaku” itself is considered as the
anaphor from a conventional point of view (3a),
our model assumes a zero pronoun φ and consid-
ers it as the anaphor (3b).

(3) a. Prius - kakaku (price)
[antecedent: Prius, anaphor: kakaku (price)]

b. Prius - (φ-no) kakaku (price (of φ))
[antecedent: Prius, anaphor: φ]

The point of this study is three-fold: the ac-
quisition of the lexical knowledge for associative
anaphora resolution from the Web, the application
of zero anaphora resolution model to associative
anaphora resolution, and the integrated resolution
of zero anaphora and associative anaphora.

2 Construction of Nominal Case Frames

Most nouns have their indispensable entities:
“price” is a price of some goods or service, “roof”

is a roof of some building, and “coach” is a coach
of some sports. The relation between a noun and
its indispensable entities is parallel to that between
a verb and its arguments or obligatory cases. In
this paper, we call indispensable entities of nouns
obligatory cases. Note that, obligatory does not
mean grammatically obligatory but obligatory to
interpret the meaning of the noun. Associative
anaphora resolution needs comprehensive infor-
mation of obligatory cases of nouns. Nominal case
frames (NCFs) describe such information, and we
construct them from the Web.

2.1 Automatic Construction of NCFs
First, we briefly introduce our method for con-
structing NCFs from raw corpora proposed in
(Sasano et al., 2004).

Whereas verbal case frame construction uses ar-
guments of each verb (Kawahara and Kurohashi,
2002), nominal case frame construction basically
uses adnominal constituents of each noun. How-
ever, while the meaning of a verbal argument can
be distinguished by the postposition, such as “ga”
(nominative), “wo” (accusative), and “ni” (dative),
the meaning of an adnominal constituent can not
be distinguished easily, because most adnominal
constituents appear with the same postposition
“no” (of). Thus, we first conduct a semantic anal-
ysis of adnominal constituents, and then construct
NCFs using the results as follows:

1. Collect syntactically unambiguous noun
phrases “Nm no Nh” from the automatic re-
sulting parses of large corpora.

2. Analyze the relation between Nm and Nh

by Kurohashi and Sakai’s method (1999) that
exploits an ordinary language dictionary.

3. Depending on the results, classify Nm, and
obtain preliminary case slots for Nh.

4. Merge case slots if two preliminary case slots
of Nh are similar.

5. Consider frequent case slots as obligatory
cases of Nh. The frequency thresholds are
varied according to semantic analyses.

6. For each meaning of Nh, collect case slots
and construct case frames.

The point of this method is the integrated use of
an ordinary dictionary and example phrases from
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Table 1: Examples of constructed nominal case frames.
Case slot Examples with freq Generalized examples with rate

Definition: the amount of money you have to pay for something.
kakaku (1) [something] shôhin(goods):9289, seihin(product):2520, [CT:ARTIFACT]:0.93, · · ·

(price) buhin(part):341, yunyuhin(importation):232, · · ·
Definition: the structure that covers or forms the top of a building etc.

yane (1) [building] ie(house):2505, kuruma(car):1565, koya(hut):895, [CT:FACILITY]:0.44,
(roof) tatemono(building):883,minka(private house):679, · · · [CT:VEHICLE]:0.13,· · ·

Definition: the elected leader of the government in a country that has a parliament.
shusho (1) [country] nihon(Japan):2355, kuni(country):272, [NE:LOCATION]:0.82,

(prime minister) doitsu(Germany):157, chûgoku(China):130, · · · [CT:VEHICLE]:0.13,· · ·
Definition: a girl or woman who has the same parents as you.

imouto (1) <relationship> watashi(me):3385, ore(me):1188, boku(me):898, [CT:PERSON]:0.74,
(sister) jibun(oneself):341, tomodachi(friend):537, · · · [NE:PERSON]:0.22, · · ·

Definition: a stick or handle on a machine.
rebâ(1) [machine] bur̂eki(brake):122, sokketo(sochet):67, [CT:ARTIFACT]:0.61,
(lever) waipâ(wiper):54, souchi(device):52,· · · [CT:VEHICLE]:0.04, · · ·

Definition: the liver of an animal, used as food.
rebâ(2) [animal] niwatori(chicken):153, buta(pig):153, [CT:ANIMAL]:0.98, · · ·
(liver) ushi(cattle):62, doubutsu(animal):25,· · ·

Definition: someone who takes part in a sport.
senshu(1) [sport] yakyû(baseball):1252, rirê(relay):736, [CT:ABSTRACTION]:0.56, · · ·
(player) kyôgi(competition):430, sakkâ(soccer):394, · · ·

<affiliation> chı̂mu(team):4409, nihon(Japan):3222, [NE:LOCATION]:0.33,
reddu(Reds):771, kankoku(Korea):644,rı̂gu(league) · · · [CT:ORGANIZATION]:0.30, · · ·

* “[]” and “<>” denote dictionary-based and semantic feature-based analysis respectively. For details see (Sasano et al., 2004).

large corpora. Dictionary definition sentences are
an informative resource to recognize obligatory
cases of nouns. However, it is difficult to resolve
associative anaphora by using a dictionary as it is,
because all nouns in a definition sentence are not
an obligatory case, and only the frequency infor-
mation of noun phrases tells us which is the oblig-
atory case. On the other hand, a simple method
that just collects and clusters “Nm no Nh” phrases
based on some similarity measure of nouns cannot
construct comprehensive nominal case frames, be-
cause of polysemy and multiple obligatory cases.
For details see (Sasano et al., 2004).

It is desirable to use a probability distribution
for deciding whether a case slot is obligatory or
not. However, it is difficult to estimate a prob-
ability distribution, since we construct nominal
case frames not by using the examples of associa-
tive anaphora itself but by using the examples of
noun phrases “Nm no Nh” (Nh of Nm). We use
such noun phrases because indispensable entities
of noun ”Nh” often appear as ”Nm.” However, we
can say neither frequently appeared ”Nm” is an in-
dispensable entity of ”Nh.” nor an indispensable
entity frequently appears as ”Nm.” For example,
the name of a country is considered as an indis-
pensable entity of ”shusho” (prime minister), but

does not frequently appear as ”Nm.”2 Thus, it is
difficult to estimate a probability distribution and
we use a hard decision.

2.2 NCF Construction from the Web

We constructed nominal case frames from the Web
Corpus (Kawahara and Kurohashi, 2006), which
comprises 1.6 billion unique Japanese sentences.
In this corpus, there were about 390 million noun
phrases “Nm no Nh,” about 100 million unique
noun phrases, and about 17 million unique head
nouns “Nh.” There were about 4.07 million head
nouns that appeared more than 10 times in the cor-
pus, and we used only such head nouns.

The resultant nominal case frames consisted of
about 564,000 nouns including compound nouns.
We show examples of constructed nominal case
frames in Table 1. The average number of case
frames for a noun that has case frames was 1.0031,
and the average number of case slots for a case
frame was 1.0101. However, these statistics dif-
fered with the frequency of the noun. Therefore,
we investigated the statistics of constructed nom-
inal case frames for each group classified by the
frequency of the nouns. Table 2 shows the re-

2It is because “the prime minister of Japan” is often men-
tioned by simply “the prime minister” in Japanese.
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Table 2: The statistics of constructed NCFs.
Frequency Proportion # of NCFs # of CSs Coverage
ranking of nouns per noun per NCF

with NCF with NCF
-100 56.0% 1.34 1.07 17.3%
-1000 68.8% 1.17 1.16 25.6%
-10000 51.7% 1.11 1.17 27.0%
-100000 14.8% 1.05 1.13 17.6%
100001- 13.7% 1.0009 1.0053 12.5%

all 13.9% 1.0031 1.0101 100%

Table 3: Evaluation of constructed NCFs.
Precision Recall F-measure

62/70 (0.89) 62/84 (0.74) 0.81

sult. As for the 10,000 most frequently appeared
nouns, which occupied about 70% of all noun ap-
pearances, the average number of case frames for
a noun was 1.11, and the average number of case
slots for a case frame was 1.17.

For evaluating the resultant case frames, we ran-
domly selected 100 nouns from the 10,000 most
frequent nouns, and created gold standard case
frames for these nouns by hand. For each noun,
case frames were given if the noun was considered
to have any indispensable entity, and for each case
frame, obligatory case slots were given manually:
70 case frames were created that had 84 case slots;
56 case frames had only one case slot, the other 14
case frames had two case slots. 30 nouns had no
case frames.

We then evaluated the automatically con-
structed case slots for these selected nouns. The
evaluation result is shown in Table 3: the sys-
tem output 70 case slots, and out of them, 62 case
frames were judged as correct. The F-measure was
0.81. Since the boundary between indispensable
cases and optional cases of a noun is not always
obvious, this score is considered to be reasonable.

2.3 Generalization of Examples

By using nominal case frames constructed from
the Web, sparseness problem was alleviated to
some extent, but still remained. For instance, there
were thousands of named entities (NEs), which
could not be covered intrinsically. To deal with
this sparseness problem, we generalized the exam-
ples of case slots.

First, we used the categories that Japanese mor-

phological analyzer JUMAN3 adds to common
nouns. In JUMAN, about twenty categories are
defined and tagged to common nouns. For ex-
ample, “kuruma (car),” “niwatori (chicken),” and
“tatemono (building)” are tagged as “VEHICLE,”
“ANIMAL” and “FACILITY,” respectively. For
each category, we calculated the rate of catego-
rized examples among all case slot examples, and
added it to the case slot as “[CT:VEHICLE]:0.13.”

We also generalized NEs. We used a com-
mon standard NE definition for Japanese pro-
vided by IREX workshop (1999). We first rec-
ognized NEs in the source corpus by using an
NE recognizer (Sasano and Kurohashi, 2008), and
then constructed NCFs from the NE-recognized
corpus. As well as categories, for each NE
class, we calculated the NE rate among all case
slot examples, and added it to the case slot as
“[NE:PERSON]:0.22.” The generalized examples
are also included in Table 1.

3 Probabilistic Model

In this study, we apply a lexicalized probabilis-
tic model for zero anaphora resolution proposed in
(Sasano et al., 2008) to associative anaphora reso-
lution.

3.1 A Lexicalized Probabilistic Model for
Zero Anaphora Resolution

In English, overt pronouns such as “she” and
definite noun phrases such as “the company”
are anaphors that refer to preceding entities (an-
tecedents). On the other hand, in Japanese,
anaphors are often omitted, which are called zero
pronouns, and zero anaphora resolution is one of
the most important techniques for semantic analy-
sis in Japanese.

Here, we introduce our model for zero anaphora
resolution (Sasano et al., 2008). This model first
resolves coreference and identifies discourse enti-
ties; then from the end of each sentence, analyzes
each predicate by the following steps:

1. Select a case frame temporarily.

2. Consider all possible correspondences be-
tween each input argument and a case slot of
the selected case frame.

3. Regard case slots that have no correspon-
dence as zero pronoun candidates.

3http://nlp.kuee.kyoto-u.ac.jp/nl-resource/juman-e.html
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4. Consider all possible correspondences be-
tween zero pronoun candidates and existing
entities.

5. For each possible case frame, estimate each
correspondence probabilistically, and select
the most likely case frame and correspon-
dence.

Figure 1 shows an example of correspondences
between case frames and discourse entities.

The probabilistic model gives a probability to
each possible case frame CF and case assignment
CA when target predicate v, input arguments IA
and existing discourse entities ENT are given,
and outputs the case frame and case assignment
that have the highest probability. That is to say,
their model selects the case frame CFbest and the
case assignment CAbest that maximize the proba-
bility P (CF,CA|v, IA,ENT ):

(CF best, CAbest)
= argmax

CF,CA
P (CF,CA|v, IA,ENT ) (i)

By decomposing case assignment (CA) into
direct case assignment (DCA) and the indirect
case assignment (ICA) and using several inde-
pendence assumptions, Equation (i) is transformed
into the following equation:4

(CFbest, DCAbest,ICAbest) =

argmax
CF,DCA,ICA

(
P (CF |v)× P (DCA, IA|CF )

×P (ICA|ENT,CF,DCA)
)

(ii)

Here, P (CFl|v) denotes the probability to se-
lect CFl when target predicate v is given, and es-
timated by using case structure analysis of large
raw corpora.

P (DCAk, IA|CFl) denotes the probability to
generate direct case assignment and input argu-
ments when a case frame is given, and estimated
by using case structure analysis of large raw cor-
pora, the frequency of a case slot example in the
automatically constructed verbal case frames, and
the web corpus in which the relation between a
surface case marker and a case slot is manually
annotated.

P (ICAk|ENT,CFl, DCAk) denotes the
probability to generate indirect case assignment
when existing discourse entities, a case frame and

4For details see (Sasano et al., 2008).

Toyota-wa

Prius-wo

hybrid car

hatsubai.

kaigai-demo

hanbai-shiteiru.

1997-nen

2000-nen-karawa

{Toyota, Φ１}

{hybrid car, 
Prius, Φ2 }

{kaigai}

Entities

(overseas)

(launch)

(sell)

hatsubai (launch)

ga
nominative

company, SONY, firm, … 
[NE:ORGANIZATION] 0.15, …

wo
accusative

product, CD, model, car,  …
[CT:ARTIFACT] 0.40, …

de      
locative

area, shop, world, Japan, …
[CT:FACILITY] 0.13, …

hanbai (sell)

ga
nominative

company, Microsoft, … 
[NE:ORGANIZATION] 0.16, …

wo
accusative

goods, product, ticket, … 
[CT:ARTIFACT] 0.40, …

ni
dative

customer, company, user, … 
[CT:PERSON] 0.28, …

de      
locative

shop, bookstore, site, … 
[CT:FACILITY] 0.40, …

:direct case assignment

:indirect case assignment (zero anaphora)

Verbal case framesInput sentences

Toyota launched the hybrid car Prius in 1997. Φ１ started selling Φ2 overseas in 2000.

{1997-nen}

{2000-nen}

Figure 1: An example of correspondences be-
tween verbal case frames and discourse entities.

direct case assignments are given, and estimated
by using several preferences on the relation
between a zero pronoun and an antecedent, such
as a lexical preference, a surface case preferences,
and a locational preference.

For example, the lexical preference represents
how likely an entity that contains njm as a con-
tent part is considered to be an antecedent and is
estimated by the following equation.

P (njm |CFl, sj , A
′(sj)=1)

P (njm)
(iii)

where, the function A′(sj) returns 1 if a case slot
sj is filled with an antecedent of a zero pronoun;
otherwise 0. P (nj |CFl, sj , A

′(sj) = 1) is calcu-
lated by using case frames and denotes the proba-
bility of generating a content part nj of a zero pro-
noun, when a case frame and a case slot are given
and the case slot is filled with an antecedent of a
zero pronoun.

3.2 Extension to Associative Anaphora
Resolution

We then extend this probabilistic model to associa-
tive anaphora resolution. In this model, associative
anaphora is regarded as a kind of zero anaphora,
that is, the relation between a noun and its oblig-
atory cases is considered to be parallel to that be-
tween a verb and its arguments. Omitted obliga-
tory cases are considered to be zero pronouns and
resolved by the same process as zero anaphora res-
olution.

We conduct associative anaphora resolution for
only non-coreferent noun phrases. This is because
most of the relationships between coreferent noun
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Toyota-wa

Prius-wo
hybrid car

kakaku-wa

215-man-yen-datta.

1997-nen

Hatsubai-tosho

{Toyota, Φ１}

{hybrid car, 
Prius, Φ2 }

Entities

(price)

(ten thousands)

kakaku (price)

something goods, product, part, 
importation, … 
[CT:ARTIFCAT] 0.40, …

Nominal case framesInput sentences

{1997-nen}

{215-man-
yen}

{kaigai}

Toyota launched the hybrid car Prius ・・・. The initial price of Φ2 was 21.5 million yen.

:indirect case assignment 
(associative anaphora)

(initial)

Figure 2: An example of correspondences be-
tween a nominal case frame and discourse entities.

phrases and its obligatory entities are easy to rec-
ognize by following up the coreference chains.
For example, the second appearance of ”the roof”
in (4) means ”the roof of the house,” and it is
easy to recognize by looking the first appearance
of ”the roof.”

(4) I saw the roof of the house. The roof was
painted dark green.

While verbal case frames describe both obliga-
tory and optional cases, nominal case frames de-
scribe only obligatory cases. Therefore, we con-
sider all case slots of nominal case frames as the
target of associative anaphora resolution.

Let us consider following example:

(5) Toyota-wa 1997-nen hybrid car Prius-wo
year

hatsubai. 2000-nen-kara-wa kaigai-demo
launched year overseas

hanbai-shiteiru. Hatsubai tosho,
selling initial

(φ-no) kakaku-wa 215-man yen-datta.
price ten thousands

(Toyota1 launched the hybrid car Prius2 in 1997. φ1

started selling φ2 overseas in 2000. The initial price
of φ2 was 21.5 million yen.)

“Kakaku” (price) in this example has an omitted
obligatory case “[something]” as shown in Table
1. Therefore, our model assumes a zero pronoun
and identifies the antecedent from the existing dis-
course entities, such as {Toyota}, {hybrid-car,
Prius},5 and {kaigai}. Figure 2 shows an exam-
ple of correspondences between the nominal case
frame of “kakaku” (price) and discourse entities.

In addition, as well as zero anaphora resolution,
we exploit generalized examples to estimate lexi-
cal preference. When one mention of an entity is

5“Hybrid car” and “Prius” are in apposition and these two
phrases are considered to refer to the same discourse entity.

tagged any category or recognized as an NE, our
model also uses the category or the NE class as the
content part of the entity. Specifically, for estimat-
ing Equation (iii), our model also calculates:

P (NE :ARTIFACT |kakaku(1), no, A′(no)=1)
P (NE :ARTIFACT )

besides:

P (Prius|kakaku(1), no, A′(no) = 1)
P (Prius)

and uses the geometric mean of them.

3.3 Salience Score Filtering

Previous work has reported the usefulness of
salience for anaphora resolution (Lappin and Le-
ass, 1994; Mitkov et al., 2002). In order to con-
sider the salience of a discourse entity, we intro-
duce the concept of salience score, which is calcu-
lated by the following set of simple rules, and only
consider the entities that have the salience score no
less than 1 as candidate antecedents of an associa-
tive anaphor.

• +2 : mentioned with topical marker “wa,” or
at the end of a sentence.

• +1 : mentioned without topical marker “wa.”

• +1 : assigned to a zero pronoun.

• ×α : beginning of each sentence.

We call α a decay rate. If α ≥ 1, we do not
filter out any entities. If α = 0, we only consider
the entities that appears in the same sentence as
candidate antecedents. For example, we consider
the salience score of the discourse entity {hybrid-
car, Prius} in the example (5) when using α=0.6.
In the first sentence, since {hybrid-car, Prius} is
mentioned twice, the salience score is 2.0. At the
beginning of the second sentence it becomes 1.2,
and after the zero anaphora resolution of “hanbai”
it becomes 2.2. At the beginning of the third sen-
tence it becomes 1.32.

Note that, this is an ideal case. Practically, some
zero pronouns are not detected and some pronouns
are assigned wrong antecedent; thus the salience
score varies according to the preceding analysis.
In addition, the salience score also depends on
whether we resolve only associative anaphora or
resolve associative anaphora simultaneously with
zero anaphora. If zero pronoun resolution is not
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conducted, zero pronouns that represent omitted
cases of verbs are not considered.

For example, in case of {hybrid-car, Prius}
with α = 0.6, if zero anaphora resolution is not
conducted, the salience score at the beginning of
the third sentence becomes 0.72, because the zero
anaphora resolution of “hanbai” is not considered;
and thus {hybrid-car, Prius} is not considered as
an antecedent candidate.

In order to recognize discourse structure more
properly, our model basically resolves associa-
tive anaphora simultaneously with zero anaphora,
and aims to consider zero pronouns that represent
omitted cases of verbs.

3.4 Summary of Our model

Our model is summarized as follows:

1. Parse an input text using the Japanese parser
KNP6 and recognize NEs.

2. Resolve coreference, and link each mention
to an entity or create a new entity.

3. From the end of each sentence, zero anaphora
and associative anaphora resolution is con-
ducted for each verb and non-coreferent noun
by the following steps:

(a) Select a case frame temporarily.
(b) Consider all possible correspondences

between each input argument and a case
slot of the selected case frame.

(c) Regard case slots that have no corre-
spondence as zero pronoun candidates.

(d) Consider all possible correspondences
between zero pronoun candidates and
existing entities that has a salience score
no less than 1.0.

(e) Estimate each correspondence proba-
bilistically, and select the most likely
case frame and a correspondence.

4 Experiments

4.1 Setting

We created an anaphoric relation-tagged corpus
consisting of 186 web documents (979 sentences),
in which all predicate-argument relations and re-
lations between nouns were manually tagged. We
show some examples:

6http://nlp.kuee.kyoto-u.ac.jp/nl-resource/knp-e.html

(6) Toyota-wa 1997-nen Prius-wo hatsubai.
year launch

2000-nen-kara-wa kaigai-demo hanbai.
year overseas sell

(Toyota launched Prius in 1997.
φ1 started selling φ2 overseas in 2000.)

TAG: hatsubai ⇐ ga:Toyota, wo:Prius,
(NOM) (ACC)

hanbai ⇐ ga:Toyota, wo:Prius
(NOM) (ACC)

For the predicate “hatsubai” (launch), “Toyota”
is tagged as ga (nominative) case and “Prius” is
tagged as wo (accusative) case. For the predicate
“hanbai” (sell), “Toyota” is tagged as omitted ga
(nominative) case and “Prius” is tagged as omit-
ted wo (accusative) case, which are indicated in
bold, and such omitted cases are the target of zero
anaphora resolution.

As for relations between nouns, both overt and
implicit relations are tagged with the Japanese
case marker “no” (adnominal). In addition, rela-
tions between nouns are classified into three cate-
gories: indispensable, possible, and adjunct. Since
it is not always obvious whether the relations are
indispensable or not, borderline relations between
indispensable and adjunct are tagged possible. We
consider only the implicit relations that are tagged
indispensable as the target of associative anaphora
resolution.

(7) Ken-wa imouto-to yatte-kita.
sister came.

(Ken came with φ’s sister.)

TAG: imouto ⇐ no:Ken (indispensable)
(ADN)

(8) Kôen-ni ikuto benchi-ga atta.
park went bench was

(I went to the park. There was a bench in φ.)

TAG: benchi ⇐ no:kôen (possible)
(ADN)

We used 62 documents for testing and used the
other 124 documents for calculating several prob-
abilities. In the 62 test documents, 110 associa-
tive anaphoric relations were tagged. Each param-
eter for the proposed model was estimated using
maximum likelihood from raw corpora, the tagged
corpus, and case frames. As verbal case frames,
we used the case frames constructed from the Web
corpus comprising 1.6 billion sentences (Sasano et
al., 2009).

In order to concentrate on associative anaphora
resolution, we used the correct morphemes, named
entities, syntactic structures, and coreference re-
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Figure 3: Experimental results of associative
anaphora resolution on several salience decay
rates α.

lations that were annotated by hand. Since cor-
rect coreference relations were given, the number
of created entities was the same between the gold
standard data and the system output because zero
anaphora and associative anaphora resolution did
not create new entities.

4.2 Results

Figure 3 shows the experimental results of asso-
ciative anaphora resolution, in which we used gen-
eralized examples, resolved zero anaphora auto-
matically, and varied the decay rate α introduced
in Section 3.3 from 0 to 1. When we used the de-
cay rates smaller than 0.5, the recall score wors-
ened clearly. On the other hand, although we ex-
pected to obtain higher precision with small decay
rate, the highest precision was achieved by the de-
cay rate 0.5. Consequently, we obtained the high-
est F-measure of 0.427 with the decay rate 0.5. In
the following experiments, we fixed the decay rate
0.5.

We utilized two baseline models for demon-
strating the effectiveness of our approach: a ran-
dom model and a salience-based model. The ran-
dom model selects a case frame and its correspon-
dence randomly from all possible case frames and
correspondences. The salience-based model se-
lects a case frame and its correspondence that as-
sign a zero pronoun candidate the existing entity
that have highest salience score. In addition, in or-
der to confirm the effectiveness of generalized ex-
amples of NCFs, we conducted experiments with-
out using generalized examples. Table 4 shows
the experimental results. We can confirm that our
proposed model outperforms two baseline mod-
els. Without using any generalized examples, the

Table 4: Experimental results of associative
anaphora resolution with two baseline models and
our model with/without generalized examples.

Model Recall Precision F-measure
Random* 0.148 0.035 0.056

(16.3/110) (16.3/467.5)

Salience- 0.400 0.135 0.202
based (44/110) (44/325)

Proposed
CT NE

0.318 0.257 0.285
(35/110) (35/136)√

0.345 0.268 0.302
(38/110) (38/142)√

0.464 0.333 0.388
(51/110) (51/153)√ √

0.518 0.363 0.427
(57/110) (57/157)

CT: Using examples generalized by categories.
NE: Using examples generalized by named entities.
* The average of 10 trials is shown.

F-measure was about 0.14 lower than the method
using generalized examples, and we can also con-
firm the effectiveness of the generalized examples.
While generalization of categories much improved
the F-measure, generalization of NEs contributed
little. This is because the NE rate was smaller than
the common noun rate, and so the effect was lim-
ited. This tendency was also seen in zero anaphora
resolution (Sasano et al., 2008).

In order to investigate the effects of zero
anaphora resolution, we tested our model under
three conditions: without zero anaphora resolu-
tion (no resolution), with zero anaphora resolution
(automatically resolved), and with using correct
zero anaphora relations that are manually tagged
(manually identified). The performance of auto-
matic zero anaphora resolution resulted in a recall
of 0.353, a precision of 0.375, and an F-measure of
0.364. Table 5 shows the experimental results. To
resolve associative anaphora simultaneously with
zero anaphora improved F-measure by 0.072; us-
ing correct zero anaphora relations improved F-
measure by 0.103. We can confirm that the per-
formance of associative anaphora resolution is im-
proved by considering zero anaphora.

Note that, strictly speaking, these comparisons
are not fair because we set the decay rate α to max-
imize the performance when using generalized ex-
amples and resolving zero anaphora automatically.
However, these tendencies described above were
also seen with other decay rates.
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Table 5: The effects of zero anaphora resolution.
Zero anaphora Recall Precision F-measure
No resolution 0.373 0.339 0.355

(41/110) (41/121)
Automatically 0.518 0.363 0.427
resolved (57/110) (57/157)
Manually 0.573 0.382 0.458
identified (63/110) (63/165)

4.3 Discussion

By using generalized examples and resolving
simultaneously with zero anaphora, our model
achieved a recall of 0.518 (57/110), but there were
still 53 associative anaphoric relations that were
not recognized. Table 6 shows the causes of them.

22 false negatives were caused by salience score
filtering. Note that, it does not mean that these 22
associative anaphoric relations were always recog-
nized correctly if the correct antecedents were not
filtered by salience score.

Case frame sparseness caused only 5 false neg-
atives. Considering that the recall of nominal case
frames was 74% as shown in Table 3, this seems to
be too few. This is because we do not considered
the relations that tagged possible, and only con-
sidered obviously indispensable relations. From
this result, we can say that coverage of nominal
case frames for nouns that have obviously indis-
pensable entities is much higher than 74%, which
is considered to achieve a coverage of about 95%
(105/110).

4.4 Comparison with previous work

Murata et al. (1999) proposed a method of utiliz-
ing “Nm no Nh” phrases for associative anaphora
resolution.7 They basically used all “Nm no Nh”
phrases from corpora as a lexical knowledge, and
used rule-based approach. They obtained a recall
of 0.63 and a precision of 0.68 by using exam-
ples of “X no Y” (Y of X), a recall of 0.71 and a
precision of 0.82 by assuming ideal nominal case
frames. One reason of such high performance may
be that they considered referential properties of
noun phrases, such as generic, indefinite, and defi-
nite, while our model does not. We can also say
that their experiments were conducted on small
and supposedly easy corpora. Half of their corpora

7Murata et al. (1999) and we (Sasano et al., 2004) used
the terminology indirect anaphora, but concerned with the
same phenomena as we concerned with in this paper.

Table 6: Causes of false negatives.
Causes Num
Filtered by salience score 22 (15)
Judge as non-anaphoric 13 (14)
Select false antecedents 13 (13)
Case frame sparseness 5 (5)
Total 53 (47)
*“()“ denotes the number of causes when
using correct zero anaphora tags.

were occupied by fairy tale, against which domain
specific rules are considered to be effective.

We proposed a rule-based approach for asso-
ciative anaphora resolution based on automati-
cally acquired nominal case frames (Sasano et al.,
2004).7 We obtained a recall of 0.633 and a pre-
cision of 0.508 against news paper articles. How-
ever, we regarded some additional relations that
can be interpreted by considering coreference re-
lations as associative anaphoric relations.

(9) Chechen Kyôwakoku-no shuto-ni ...
Chechen Republic capital

... shuto seiatsu-no saishu dankai-ni ...
capital conquer last stage

(... to the capital of Chechen Republic ... in the last
stage to conquer the capital ...)

For example, although the second mention of
“shuto” (capital) in example (9) means “Chechen
Kyôwakoku-no shuto” (the capital of Chechen Re-
public), it can be interpreted by recognizing the
coreference relation between the first and second
mentions of “shuto” (capital). Therefore, as men-
tioned in Section 3.2, we do not consider such re-
lations as associative anaphora in this study; we
included such relations as associative anaphora in
(Sasano et al., 2004). The relatively high score is
caused by this criterion.

5 Conclusion

In this paper, we proposed a probabilistic model
for associative anaphora resolution. Our model
regards associative anaphora as a kind of zero
anaphora and resolves it in the same manner as
zero anaphora resolution that uses automatically
acquired case frames. We also showed that the
performance of associative anaphora resolution
can be improved by resolving it simultaneously
with zero anaphora. As future work, we plan to
consider referential properties of noun phrases in
associative anaphora resolution.
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Abstract

It is well known that pragmatic knowl-
edge is useful and necessary in many dif-
ficult language processing tasks, but be-
cause this knowledge is difficult to acquire
and process automatically, it is rarely used.
We present an open information extrac-
tion technique for automatically extracting
a particular kind of pragmatic knowledge
from text, and we show how to integrate
the knowledge into a Markov Logic Net-
work model for quantifier scope disam-
biguation. Our model improves quantifier
scope judgments in experiments.

1 Introduction

It has long been a goal of the natural language
processing (NLP) community to be able to inter-
pret language utterances into logical representa-
tions of their meaning. Quantifier scope ambigu-
ity has been recognized as one particularly chal-
lenging aspect of this problem. For example, the
following sentence has two possible readings, de-
pending on the scope of its quantifiers:

Every boy wants a dog.

One reading of this sentence is that there exists a
single dog in the world which all boys want. The
second, and usually preferred, reading is that the
sentence is describing a separate “wanting” rela-
tion for each boy, and that the dog in question is
a function of the boy who wants it. In this read-
ing, there may be as many different dogs as boys,
although it leaves open the possibility that several
of the boys want the same dog. In logic, these two
readings can be represented as follows:

1. ∃d∈Dogs ∀b∈Boys wants(b, d)
2. ∀b∈Boys ∃d∈Dogs wants(b, d)

The readings differ only in the order of the quanti-
fiers. The quantifier that comes first in each ex-
pression is said to havewide scope; the second
quantifier hasnarrow scope.

Linguists and NLP researchers have come up
with several theories and mechanisms for automat-
ically determining the scope of quantified linguis-
tic expressions. Despite a long history of proposed
solutions, however, researchers have for the most
part abandoned this task as hopeless because of
“overwhelming evidence suggesting that quanti-
fier scope is a phenomenon that must be treated at
the pragmatic level” (Saba and Corriveau, 2001).
For example, in active voice clauses, the quantifier
for the subject noun is usually preferred for wide
scope over the quantifier of the predicate noun
(Kurtzman and MacDonald, 1993). But such pref-
erences can easily be overruled by world knowl-
edge:
A doctor lives in every city.
1. ∃d∈Docs ∀c∈Cities lives in(d, c)

(A single doctor lives in all cities.)
2. ∀c∈Cities ∃d∈Docs lives in(d, c)

(Each city has a different doctor living there.)
Syntactic preferences would normally indicate
that reading 1 is better, but in this particular case
common-sense knowledge of the world overrules
that preference and makes reading 2 far more
probable.

Open-domain pragmatic knowledge is usually
not available to language processing systems, but
that is beginning to change. Recent research in
open information extraction (Banko and Etzioni,
2008; Davidov and Rappaport, 2008) has shown
that we can extract large amounts of relational data
from open-domain text with high accuracy. Here,
we show how we can connect the two fields, by ex-
tracting a targeted form of pragmatic knowledge
for use in quantifier scope disambiguation. Our
contributions are:
1) We build an extraction mechanism for extract-
ing pragmatic knowledge about relations. In par-
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ticular, we extract knowledge about the expected
sizes of the sets of objects that participate in the
relations. The task of identifying functional re-
lationships is a subtask of our extraction problem
that has received recent attention in the literature
(Ritter et al., 2008).
2) We devise a novel probabilistic model in the
Markov Logic Network framework for reasoning
over possible readings of sentences that involve
quantifier scope ambiguities. The model is able
to assign a probability that a particular reading is
plausible, given the pragmatic knowledge we ex-
tract.
3) We provide an empirical demonstration that our
system is able to resolve quantifier scope ambigu-
ities in cases where the syntactic and lexical fea-
tures used by previous systems are of no help.

The remainder of this paper is organized as fol-
lows. The next section describes previous work.
Section 3 shows how the problem can be formu-
lated as a task of assigning probabilities to possi-
ble worlds, and that the crucial difference between
them has to do with the number of objects partic-
ipating in individual relationships. Section 4 dis-
cusses our techniques for extracting the pragmatic
knowledge that allows us to make judgments about
quantifier scope. Section 5 presents our proba-
bilistic model for resolving scope ambiguities. We
present an empirical study in section 6, and section
7 concludes and suggests items for future work.

2 Related Work

Quantifier scope disambiguation has received at-
tention in linguistics and computational linguis-
tics since at least the 1970s. Montague (1973)
gave a seminal treatment of quantifier ambiguities,
and argued that a particular syntax-based mech-
anism known as “quantifying-in” could resolve
scope ambiguities. Since then, most work on dis-
ambiguation has focused on syntactic clues for de-
termining which readings of an ambiguous state-
ment are possible, and of the set of possible read-
ings, which ones are preferred (Van Lehn, 1978;
Hobbs and Shieber, 1987; Poesio, 1993a; Hurum,
1988; Moran, 1988). For instance, one linguis-
tic study (Kurtzman and MacDonald, 1993) deter-
mined that in active voice sentences where quan-
tifiers in the subject and object give rise to scope
ambiguity, there is a preference for the reading in
which the subject quantifier has wide scope — the
direct reading is acceptable 70-80% of the time,
whereas the indirect reading is acceptable 30-40%

of the time. Sentences that are similar in all re-
spects except that they are passive voice have no
such preference. Nevertheless, in these studies
both readings are often quite plausible. In addition
to syntactic clues, other studies have noted that
the choice of quantifier has a significant effect on
scope disambiguation (e.g., “each” has a greater
tendency for wide scope than “every”) (Van Lehn,
1978; Alshawi, 1990). Most authors have noted
that both syntactic and lexical evidence fall short
of a full solution, and that pragmatic knowledge
(knowledge about the world) is necessary for this
task (Van Lehn, 1978; Saba and Corriveau, 1997;
Moran, 1988). Saba and Corriveau (2001) recently
proposed a test for quantifier scope disambigua-
tion using pragmatic knowledge. However, they
do not show how to extract the necessary infor-
mation, nor do they implement or evaluate their
proposed test.

Due to the difficulty of the problem, several
authors have devised techniques for “underspec-
ified” logical representations that can efficiently
store multiple ambiguous readings, and they de-
vise techniques for automated reasoning using un-
derspecified representations (Reyle, 1995; Late-
cki, 1992; Poesio, 1993b). Others (Hobbs and
Shieber, 1987; Park, 1988) have devised compu-
tational mechanisms for generating all of the pos-
sible readings of statements exhibiting quantifier
ambiguity, especially in cases involving more than
two quantifiers.

Detecting functions in extracted relational data
has been studied in several contexts. Ritteret
al.(2008) use knowledge of functions to determine
when two extracted relationships contradict one
another. Knowledge of functions has also been
important in finding synonyms (Yates and Etzioni,
2009) and in review mining (Popescu, 2007). We
extend this work by extracting not just a binary
determination of whether a relation is functional,
but a distribution over the expected number of ar-
guments for that relation. Our technique also dif-
fers from previous work based on extracted rela-
tionships between named entities. We leverage
domain-independent extraction patterns involving
numeric phrases, as discussed below; our tech-
nique is complementary to existing approaches
and could in fact be combined with them for even
greater accuracy. Finally, we apply the extracted
knowledge in a novel way to quantifier scope dis-
ambiguation.

Our work is similar in spirit to several recent
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projects that use semantic reasoning over extracted
knowledge for a novel approach to well-known
tasks. For example, Schoenmackerset al.(2008)
have recently used extracted knowledge for the
task of predicting whether a new extracted fact is
correct. Yateset al.(2006) use extracted knowl-
edge to determine whether a parse of a sentence
has a plausible semantic interpretation. We extend
this new line of attack to a hard problem in lan-
guage understanding.

3 Possible Worlds Framework

We now present a framework for reasoning about
quantifier scope ambiguities, and for choosing
among possible readings based on pragmatic
knowledge (or world knowledge — we use the
terms interchangeably). We first present a formal
description of the quantifier scope disambiguation
(QSD) problem. We then describe the crucial dif-
ferences between the “possible worlds” evoked by
different readings of an ambiguous statement.

3.1 Representation of Readings

We follow Copestakeet al. (2005), among oth-
ers, in representing quantifiers as modal oper-
ators with three arguments: a variable name
for the variable being quantified; a logical for-
mula, called therestriction, which defines the set
of objects over which the variable may range;
and a second logical formula, called thebody,
which defines the expression in which the quan-
tified variable takes part. For example, we
represent the sentence “Every dog barks” as:
every(x,dog(x),barks(x)).

For the sake of clarity and convenience, we re-
strict our attention to a common syntactic form
of sentences, where the semantic representation
is relatively well-understood: active-voice English
sentences in which the subject noun phrase is
quantified, and a noun phrase in the predicate (ei-
ther an object of the verb, or an object of a prepo-
sition attached to the verb) is also quantified. For
a sentence with the following structure, in which
pi andqj represent predicates introduced by mod-
ifiers like adjectives and prepositional phrases,

(S (NP (DET Q1)(N [p1, . . . , pn]C1))
(V P (V R)(NP (DET Q2)(N [q1, . . . , qm]C2))

we can represent the two possible readings of the

sentence as:

direct reading:
Q1(x, C1(x) ∧ p1(x) ∧ . . . ∧ pn(x),

Q2(y, C2(y) ∧ q1(y) ∧ . . . ∧ qm(y),
R(x, y)))

(1)

indirect reading:
Q2(y, C2(y) ∧ q1(y) ∧ . . . ∧ qm(y),

Q1(x, C1(x) ∧ p1(x) ∧ . . . ∧ pn(x),
R(x, y)))

(2)

By making the restriction to this type of sen-
tences, we can isolate the effects of pragmatics on
scope disambiguation decisions from the effects
of syntax, since all test cases have essentially the
same syntax. As we show below, for certain types
of relations, the preference for interpretations may
be drastically different from the general preference
for the direct reading, even though the syntax of
the sentences we investigate matches the syntax
studied by Kurtzman and MacDonald (1993).

3.2 Readings, Possible Worlds, and World
Knowledge

The different logical forms for the direct and indi-
rect readings describe different “possible worlds.”
For instance, the direct reading of “A doctor lives
in every city” describes worlds in which there is a
single doctor who manages to reside in each city
of the world simultaneously. This reading is “pos-
sible” in the sense that it does not contradict itself.
In logical terms, ifφ represents the direct reading
of this sentence,φ 0 ⊥. Using some imagination
one could devise a scenario, perhaps in an online
game world, that satisfiesφ.

Nevertheless, the indirect reading is strongly
preferred for this statement in the absence of any
context that indicates an abnormal world. The
indirect readingφ′ describes worlds where every
city is inhabited by some doctor, but potentially a
different doctor per city. Using pragmatic knowl-
edge, the reader can easily deduce that this logical
statement is a much more likely reading thanφ.
LetB represent the reader’s pragmatic knowledge,
including facts like “People don’t simultaneously
live in more than one city,” and, “There are at least
hundreds of cities in the world.” The reader can
easily deduce thatB � ¬φ. We now turn to meth-
ods for extracting the necessary pragmatic knowl-
edgeB from text.
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4 Extraction Techniques to Support QSD
Decisions

Saba and Corriveau (2001) point out that there is
a restricted form of pragmatic knowledge that can
be used in many instances of QSD. Consider the
facts that were used above to determine thatφ′
is preferable toφ. The facts fall into two basic
categories of knowledge: 1) the size of classC
(e.g., how many cities are there?), and 2) the ex-
pected number ofY participants in a relationship
R, given that there is exactly 1X participant (e.g.,
how many cities does 1 doctor live in?). In both
cases, we are concerned with extracting sizes of
sets.

Previous extraction systems have attempted to
estimate set sizes based on extracted named en-
tities. Downeyet al. (2005)estimate the size of
classes based on the number of named-entities ex-
tracted for the class. As far as we are aware, find-
ing the expected size of an argument set for a rela-
tion is a novel task for information extraction, but
several researchers (Ritter et al., 2008; Yates and
Etzioni, 2009) have investigated the special case
of detecting functional relations — those relations
where the expected size of theY argument set is
precisely 1. As with class size extraction, they
use extractions involving named-entity arguments
to find functional relations.

Approaches that depend on named-entity ex-
tractions have several disadvantages: they must
find a large set of named-entities for every set,
which can be time-consuming and difficult. Also,
many classes, like “trees” and “hot dogs,” have no
or very few named instances, but many un-named
instances, so approaches based on named entities
have little hope. In fact, besides classes like peo-
ple, locations, and organizations (and their sub-
classes), there are few classes that have a large
number of named instances. For classes that do
have named instances, synonymy, polysemy, and
extraction errors are common problems that can
all affect estimates of size (Ritter et al., 2008).

Rather than indirectly determining set sizes
from extracted instances, our system directly ex-
tracts estimates of set sizes. It usesnumeric
phrases, like “two trees,” “hundreds of students,”
or “billions of stars,” to associate numeric values
with sets. Table 1 lists the numeric phrases we use.
Currently, we use only numeric phrases with ex-
plicit values or ranges of values, but it may be pos-
sible to increase the recall of our extraction tech-
nique by incorporating more approximate phrases

Numeric Phrase Value

no | none| zero 0
a | one| this | the 1
two 2
...

...
one hundred| a hundred 100
...

...

hundreds of 100
thousands of 1,000
tens of thousands of 10,000
...

...

Table 1: Numeric phrases used in our extraction pat-

terns. For the word “the”, we require that it be followed di-

rectly by a singular noun, to try to weed out plural usages.

like “several,” “many,” or even bare plurals. We
do not match numbers expressed in digits (e.g.,
1234) because we found that they produced too
many noisy extractions, such as dates and times.
For words like “hundreds,” we set the value of the
word to be the lower limit (i.e., 100). This gives
a conservative estimate of the value, but our tech-
niques described below can help to compensate for
this bias.

Table 2 lists examples of the hand-crafted,
domain-independent extraction patterns we use.
Our extraction patterns generate two types of ex-
tractions, one for classes and one for relations. For
classes, each extractionE consists of a class name
Ec and a numberEn indicating the size of some
subsetS ⊆ Ec. For instance, the 4gram “hun-
dreds of students are” matches our first pattern.
The numeric phrase “hundreds of” here indicates
that some subsetS ⊆ Ec = students has a size in
the hundreds. After processing a large corpus, our
system can determine a probability distribution for
the size of a class given by:

PC (size(C) = N) =
|{E | Ec = C ∧ En = N}|

|{E | Ec = C}|
In practice, we only include the largest 20% of the
numbersN in the set of extractions for a class to
estimate that class’s size.

The second type of extraction we get from our
patterns are relational extractions. Each relational
extractionF consists of a relation nameFr, and
possibly names for the classes of its two argu-
ments,Fc1, Fc2. In addition, the extraction con-
tains values for the size of both arguments,Fn1
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Pattern Extraction

<numeric> <word>+ (of | are | have) Ec = <word>+, En = value(<numeric>)

(I | he | she) <word>+ <numeric> <noun> Fr = <word>+, Fc1 = people, Fc2 = <noun>,
Fn1 = 1, Fn2 = value(<numeric>)

it is pastParticiple(<verb>) by <numeric> Fr = <verb>, Fc2 = thing,
Fn1 = value(<numeric>), Fn2 = 1

is the <word> of <numeric> Fr = is the <word> of,
Fn1 = 1, Fn2 = value(<numeric>)

Table 2:Sample extraction patterns for discovering classes (Ec) and their sizes (En), or relations (Fr) and the expected

set size of their arguments (Fn1 and Fn2).

andFn2 respectively. For example, the fragment
“she visited four countries” matches the second
pattern in Table 2, withFr = visited, Fn1 = 1,
andFn2 = 4. Note that in our extraction patterns,
one of of the arguments is always constrained to be
a singleton set, like “he” or “it.” This restriction
allows us to avoid quantifier scope ambiguity in
the extraction process: if we extracted phrases like
“Two men married two women,” it would be un-
clear which quantifier has wide scope, and there-
fore how many men and women are participating
in each “married” relationship. By using singular
pronouns, we avoid this confusion; in almost all
cases, these pronouns have wide scope, and indi-
cate a single element.1

Based on these extractions, our system de-
termines two distributions for each relation:
PLeft

R (n) andPRight
R (n). ThePLeft

R distribution
represents the probability that the left argument of
R is a set of sizen, given that the right argument
is a singleton set, and likewise forPRight

R . We de-
termine the distributions from the extractions by
maximum likelihood estimation:

PLeft
R (n) =

|{F | Fr = R, Fn1 = n, Fn2 = 1}|
|{F | Fr = R, Fn2 = 1}|

PRight
R (n) =

|{F | Fr = R, Fn2 = n, Fn1 = 1}|
|{F | Fr = R, Fn1 = 1}|

For example, for the relationis the father
of, we might see the fragment “he is the father
of two children” far more often than “he is the
father of twenty children.” PRight

is the father of
would therefore have a relatively low probability
for n = 20. As one would expect, the relation

1An example of an exception to this rule from our data set
is the sentence “It is worn by millions of women.” Here, “it”
refers to a class of items such as a brand, and thus may refer
to a different item for each of the “millions of women.”

visited appears more often with “twenty,” and
the relationmarried never does. TheirPRight

distributions are comparatively higher and lower,
respectively than the one foris the father
of atn = 20.

In practice, we create histograms of the ex-
tracted counts for both ourE andF extractions,
and our probability distributions are really dis-
tributions over the buckets in these histograms,
rather than over all possible set sizes. To help
combat sparse counts for large numeric values, we
use buckets of exponentially increasing width for
larger numeric values. Thus betweenn = 0 and
10, buckets have size 1, between 10 and 100 they
have size 10, and so on.

We also create distributions in the same way for
relations together with their extracted argument
classes. Since counts for these extractions tend to
be much more sparse, we interpolate these distri-
butions with the distribution for just the relation,
and with the distribution for the relation and just
one class. We use equal weights for all interpo-
lated distributions.

5 A Probabilistic Model for Quantifier
Scope Disambiguation

QSD requires reasoning about different possible
states of the world. This involves logical reason-
ing, since the direct and indirect readings differ in
the number of objects that exist in models satis-
fying each reading, and the number of relation-
ships between those objects. QSD also involves
probabilistic reasoning, since none of the extracted
knowledge is certain. We leverage recent work on
Markov Logic Networks (MLNs) (Richardson and
Domingos, 2006) to incorporate both types of rea-
soning into our technique for QSD. We next briefly
review MLNs, before describing our model and
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methods for training it.

5.1 Markov Logic Networks

Syntactically, an MLN consists of a set of first-
order logical formulasF and a real-valued weight
wF for eachF ∈ F. Semantically, an MLN
defines a probability distribution over possible
groundingsof the logical formulas. That is, ifU
denotes the set of all objects in the universe, andG
denotes the set of all possible ways to ground ev-
ery F ∈ F (i.e., substitute an element fromU for
every variable inF ), then an MLN defines a distri-
bution over truth assignments to the grounded for-
mulasG ∈ G. Let I denote the set of all possible
interpretations ofG — that is, eachI ∈ I assigns
true or false to everyG ∈ G. The probabil-
ity of a particular interpretationI according to the
MLN is given by :

P (I) =
1
Z

exp

(∑
F∈F

wF · n(F, I)

)

Z =
∑
I∈I

exp

(∑
F∈F

wF · n(F, I)

)

wheren(F, I) gives the number of groundings of
F that are true in interpretationI.

The equation above provides an expression for
P (I) whenU , or at least the size ofU , is known
and fixed. When we are interpreting expressions
like “every city” or “every doctor”, however, we
require extracted knowledge to inform the system
of the correct number of “city” or “doctor” objects.
Since our extractions are uncertain, they provide a
distribution P (|U | = n) for the size of a class.
Using P (|U |), we can still calculateP (I), even
without knowing the exact size ofU :

P (I) =
∑

n

P (|U | = n)P (I | |U | = n)

5.2 MLN Classifier for QSD

Let Q be a QSD problem, consisting of a rela-
tion Qr, a class for the first argument of the re-
lation Qc1, a class for the second argumentQc2,
and quantifiiersQq1, Qq2 for each argument. We
construct an MLN model forQ using the follow-
ing logical formulas:

1) Clustering:We allow members of each class
to belong to clusters denoted byγ, but each ele-
ment can belong to no more than one cluster. This
is represented by the following formula, which has

infinite weight.

∀x∈Qc1∪Qc2,γ,γ′x ∈ γ ∧ x ∈ γ′ ⇒ γ = γ′

2) Relation between clusters:Every cluster of
class 1 elements must participate in the relation
Qr with exactly one cluster of class 2 elements,
andvice versa. We represent this participation in
Qr with a series of logical relationsRm,n, each of
which indicates that a cluster of sizem is partic-
ipating in Qr with a cluster of sizen. We use a
set of formulas for each setting ofm andn, each
having infinite weight.

∀γ⊂Qc1∃!γ′⊂Qc2,m,n Rm,n(γ, γ′)
∀γ′⊂Qc2∃!γ⊂Qc1,m,n Rm,n(γ, γ′)

∀γ,γ′ Rm,n(γ, γ′) ⇒ |γ| = m ∧ |γ′| = n

3) Prefer relations between clusters of the ap-
propriate size:We include a set of formulas with
finite weight that express the preference for a par-
ticular relation to have arguments of a certain size.
There is a separate formula for each setting ofm
andn, with a separate weightwm,n for each.

∀γ,γ′Rm,n(γ, γ′)

This formula does most of the work of our clas-
sifier. For a given relation, such as thelives
in(Person, City) relation, we can set the
weights wm,n so that the model prefers worlds
where each person lives in just one place. For in-
stance, we can set the weightw1,1 relatively high,
so that the model is more likely to make clusters of
size 1, which then participate in theR1,1 relation.

We describe how we choose thewm,n weights
below, but first we explain how to incorporate the
quantifiersQq1 andQq2 into the model. Unfortu-
nately, every natural language quantifier has dif-
ferent semantics (Barwise and Cooper, 1981), and
thus they affect our model in different ways. Here,
we restrict our attention to the two common quan-
tifiers “a” and “every”, but note that the MLN
framework is a powerful tool for incorporating
the logical semantics and statistical preferences of
other quantifiers.

For the quantifier “a”, we require that the rela-
tion have no argument clusters with size more than
1 for that class. Thus ifQq1 = “a”, we restrict
Rm,n to R1,n, andvice versaif Qq2 = “a.” Fur-
thermore, we require that at least one element of
the class belong to a cluster:∃x,γx ∈ γ has infi-
nite weight. For “every,” we require that every el-
ement of the class that “every” modifies to be part
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of some cluster. To effect this change, we simply
put an infinite weight on the formula∀x∃γx ∈ γ.

Our MLN model is general in the sense that
for any QSD problemQ, it can determine prob-
abilities for any possible world corresponding to
a reading ofQ. For our purposes, we are primar-
ily interested in the direct and indirect readings of
any Q involving “a” and “every.” To predict the
correct reading for a givenQ, we simply check to
see which has the higher probability according to
our MLN model.

5.3 Parameter Estimation

Our MLN model for QSD requires settings for
the wm,n parameters for each QSD problemQ.
The standard approach to this problem would be
to estimate these parameters from labeled train-
ing data. We reject the standard supervised frame-
work, however, because each distinct relationQr

requires different settings of the parameters, and
therefore a standard supervised approach would
require manually labeled training data for every
relationQr.

A second approach that is made possible by
our extraction technique is to set the parameters
using the extracted distributions. We tried this
approach by settingw1,n = log PRight

Qr
(n) and

wm,1 = log PLeft
Qr

(m); since we only consider
sentences containing the quantifier “a”, one ofm
andn will always be 1. Unfortunately, in our ex-
periments we found that this setting for the param-
eters often gave far too little weight for large val-
ues ofm andn, and as a consequence, the classi-
fier would systematically judge one reading to be
more likely than another.

To counteract this problem, we take a hybrid ap-
proach to parameter estimation, informed by both
labeled training data and the extracted distribu-
tions. Crucially, our approach, which we call ZIPF

FLATTENING, has only two parameters that need
to be trained using a supervised approach, and
these parameters do not depend on the relationR.
Thus, the approach minimizes the amount of train-
ing data we need to a practical level.

ZIPF FLATTENING works by correcting thePR

distributions to give higher weight to larger values
of m andn. First, we estimate a Zipf distribution
from the raw extracted counts for each argument
of relationR. To fit a Zipf curve, we use least-
squares linear regression on the log-log plot of the
extracted counts to find parameterszR andcR such

that

log (count) = zR · log (argSize) + cR

⇒ count = ecR · argSizezR

We can perform this part automatically, using only
the extraction data and no manually labeled train-
ing data, for every relation. However, the fitted
Zipf distribution needs to be corrected for the sys-
tematic bias in the extracted counts. To do this, we
introduce two parameters,α1 andα2, that we use
to scale back the sharp falloff in the Zipf distribu-
tion. Ourflatteneddistribution has the form:

count = eα1cR · argSizeα2zR

Whenα2 is less than 1, the resulting curve has a
less steep slope, and greater weight is placed on
the large values ofm andn, as desired. Our last
step is to interpolate thePRight

R andPLeft
R distri-

butions with the flattened Zipf distribution to come
up with corrected distributions for the right and
left argument sizes ofR. We use equal weights
on the two distributions to interpolate. Note that if
the original counts from the extraction system in-
clude counts for only one argument size, then it is
impossible to estimate a Zipf distribution, and we
simply fall back on the extracted distribution. We
do not include counts for an argument size of zero
in this process.

To estimate the parametersαi, we collect a
training set of QSD problemsQ, labeled with the
correct reading for each (direct or indirect), and
run the extractor for the relationsQr appearing in
the training set. We then perform a gradient de-
scent search to find optimal settings for theαi on
the training data.

6 Experiments

We report on two sets of experiments. The first
tests our extraction technique on its own, and the
second tests the accuracy of our complete QSD
system, including the extraction mechanisms and
the prediction model, on a quantifier scope disam-
biguation task.

6.1 Function Detection Experiment

Function detection is an important task in its own
right, and has been used in several previous ap-
plications (Ritter et al., 2008; Yates and Etzioni,
2009; Popescu, 2007). To turn our extraction
system into a classifier for functions vs. non-
functions, we simply checked whether there were
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Num Precision Recall F1

Functions 54 .79 .76 .77
Non-functions 74 .83 .85 .84

Table 3:Precision and recall for detecting functions us-

ing the numeric extraction technique.

any extractions forR with Fn2 > 1. If so, we pre-
dicted that theR was nonfunctional, and otherwise
we predicted it was functional.

We used the Web1Tgram Corpus of n-grams
provided by Google, Inc to extract classes, rela-
tions, and counts. This corpus contains counts for
2- through 5-grams that appear on the Web pages
indexed by Google. Counts are included in this
data set for all n-grams that appeared at least 40
times in their text. We ran our extraction tech-
niques on the 3-, 4- and 5-grams. To create a test
set, we sampled a set of 200 relations from our ex-
tractions, removed any relations that consisted of
punctuations, stopwords, or other non-relational
items. We then manually labeled the remainder
as functions or non-functions.

Table 3 shows our results. A baseline sys-
tem that simply predicts the majority class (non-
functions) on this data set would achieve an ac-
curacy of 56%, well below the 81% accuracy
of our classifier. Many of the relations in our
test set, likebuilt(Person, House) andis
riding(Person,Animal), do not ordinarily
have named-entity extractions for both arguments,
and would therefore not be amenable to previous
function detection approaches.

Some of our technique’s errors highlight inter-
esting difficulties with function detection. For in-
stance, while we labeled theis capital of
relation as a function, our technique predicted that
it was not. It turns out that the country of Bolivia
has two capitals, and the South Asian region of
Jammu and Kashmir also has two capitals. Both
of these facts are prominent enough on the Web
to cause our system to detect a small probability
for PRight

capital of (2). Thus any label for this rela-
tion is somewhat unsatisfying: it is almost entirely
functional, but not strictly so. By generalizing the
problem to one of determining a distribution for
the size of the argument, we can handle these bor-
der cases in a useful way for QSD, as discussed
below.

6.2 Preliminary QSD Experiments

We test our complete QSD system on two impor-
tant tasks. In the first, the system is presented
with a series of QSD problemsQ in which the
first quantifierQq1 is always “a,” and the second
(Qq2) is always “every.” Each example is manu-
ally labeled to indicate whether a direct or indirect
reading of the sentence is preferred, and the sys-
tem is charged with predicting the preferred read-
ing. In the second task, eachQ has “every” as
the first quantifier, and “a” as the second quanti-
fier. Since indirect readings are very rarely pre-
ferred for active-voice sentences of this form,we
charge the system with making a different type of
prediction: determine whether the indirect reading
is plausible or not. The system assumes that ev-
ery sentence has a plausible direct reading, but by
determining whether the indirect reading is plau-
sible, it can determine whether the sentence is am-
biguous between the two readings.

We created data sets for these tasks by sampling
our 5grams for examples containing the relations
in our function experiment. From this set, we se-
lected phrases that involved named classes for the
arguments to the relation. When a class was miss-
ing, we either manually supplied one, or discarded
the example. We then constructed two examples
from each combination of relation and argument
classes: one example in which the first argument
is constrained by the quantifier “a” and the sec-
ond by “every,” and a second example in which
the quantifiers are reversed. Finally, we manually
labeled every example with a preference for direct
or indirect reading (in the case of “a/every” exam-
ples) or with a plausibility judgment for the indi-
rect reading (in the case of “every/a” examples).
Our final test sets included 46 labeled examples
for each task. Further experiments involving mul-
tiple annotators, as in the experiments of Kurtz-
man and MacDonald (1993), are of course desir-
able, but note that even their experiments included
just 32 labeled examples.

Table 4 shows our results for the first QSD task,
and Table 5 shows our results for the second one.
In each case, we compare our supervised Cor-
rected MLN model against an Uncorrected MLN
model that uses no supervised data, and simply
takes its weights straight from our extracted distri-
butions. The supervised model uses a training cor-
pus of 10 manually labeled examples for each task,
five from each class. We also compare against a
majority class baseline. Note that the Corrected
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Direct Indirect
System Acc. P R P R

All-Direct BL .53 .53 1.0 0.0 0.0
Uncorrected MLN .58 .78 .30 .53 .90
Corrected MLN .74 .77 .74 .71 .75

Table 4: Our trained MLN outperforms two other sys-

tems at predicting whether sentences of the form “A/some

<class 1> <relation> every <class 2>” should have di-

rect or indirect readings. We measure accuracy over the

whole dataset, as well as precision and recall for the two sub-

sets labeled with direct and indirect readings, respectively.

Plausible Implaus.
System Acc. P R P R

All-Plausible BL .67 .67 1.0 0.0 0.0
Uncorrected MLN .49 .89 .28 .38 .93
Corrected MLN .72 .76 .86 .60 .43

Table 5: Our trained MLN outperforms two other sys-

tems at predicting whether sentences of the form “Every

<class 1> <relation> a/some<class 2>” have a plausi-

ble indirect reading or not. We measure accuracy over the

whole dataset, as well as precision and recall for the two sub-

sets labeled with plausible and implausible indirect readings.

MLN model has balanced recall numbers for the
two classes in both of our tasks, compared with the
Uncorrected MLN. This indicates that our ZIPF

FLATTENING technique is accurately learning bet-
ter weights to remove the systematic bias in the
Uncorrected MLN.

Our results demonstrate the utility of our ex-
tracted distributions for these difficult tasks. Al-
though the extracted data prevents us from deter-
mining thatis capital of should be classi-
fied as a function, since almost all of the prob-
ability mass inPRight is still on n ∈ {0, 1}.
Thus, the probability for the direct reading of
a sentence like “Some city is the capital of ev-
ery country” is still very low. Likewise, even
though our system (correctly) determines that the
relation is a parent of is non-functional,
it does not therefore group it with other non-
functional relations likevisited. The dis-
tribution PRight

is parent of(n) is skewed to much
smaller numbers forn than is the distribution for
visited, and thus the indirect reading for “A
person is the parent of every child” is much more
likely than the indirect reading of “A person vis-
ited every country.”

The biggest hurdle for better performance is
noise in our extraction technique. Polysemous re-
lations sometimes have large counts for large ar-
gument sizes in one sense, but not another. Us-
ing argument classes to disambiguate relations can
help, but extractions for relations in combination
with argument classes are much more sparse. Im-
proved extraction techniques could directly impact
performance on the QSD task.

7 Conclusion and Future Work

We have demonstrated targeted methods for ex-
tracting world knowledge that is necessary for
making quantifier scope disambiguation deci-
sions. We have also demonstrated a novel,
minimally-supervised, statistical relational model
in the Markov Logic Network framework for mak-
ing QSD decisions based on extracted pragmatics.

While our preliminary results for QSD are
promising, there are clearly many areas for im-
provement. We will need to handle more kinds of
quantifiers in our MLN model. Our current system
is biased towards using purely pragmatic knowl-
edge, but a complete system should also integrate
syntactic and lexical constraints and preferences.
Also, discourses can introduce knowledge that di-
rectly affects QSD problems, such as constraints
on the size of a particular set that is discussed in
the discourse. Integrating our technique for QSD
with discourse processing is a major challenge that
we hope to address.
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Abstract

Most existing systems for Chinese Seman-
tic Role Labeling (SRL) make use of full
syntactic parses. In this paper, we evalu-
ate SRL methods that take partial parses as
inputs. We first extend the study on Chi-
nese shallow parsing presented in (Chen
et al., 2006) by raising a set of addi-
tional features. On the basis of our shal-
low parser, we implement SRL systems
which cast SRL as the classification of
syntactic chunks with IOB2 representation
for semantic roles (i.e. semantic chunks).
Two labeling strategies are presented: 1)
directly tagging semantic chunks in one-
stage, and 2) identifying argument bound-
aries as a chunking task and labeling their
semantic types as a classification task. For
both methods, we present encouraging re-
sults, achieving significant improvements
over the best reported SRL performance
in the literature. Additionally, we put
forward a rule-based algorithm to auto-
matically acquire Chinese verb formation,
which is empirically shown to enhance
SRL.

1 Introduction

In the last few years, there has been an increas-
ing interest in Semantic Role Labeling (SRL) on
several languages, which consists of recognizing
arguments involved by predicates of a given sen-
tence and labeling their semantic types. Nearly
all previous Chinese SRL research took full syn-
tactic parsing as a necessary pre-processing step,
such as (Sun and Jurafsky, 2004; Xue, 2008; Ding
and Chang, 2008). Many features are extracted to
encode the complex syntactic information. In En-
glish SRL research, there have been some attempts
at relaxing the necessity of using full syntactic

parses; better understanding of SRL with shallow
parsing is achieved by CoNLL-2004 shared task
(Carreras and Màrquez, 2004). However, it is still
unknown how these methods perform on other lan-
guages, such as Chinese.

To date, the best SRL performance reported on
the Chinese Proposition Bank (CPB) corresponds
to a F-measure is 92.0, when using the hand-
crafted parse trees from Chinese Penn Treebank
(CTB). This performance drops to 71.9 when a
real parser is used instead1 (Xue, 2008). Com-
paratively, the best English SRL results reported
drops from 91.2 (Pradhan et al., 2008) to 80.56
(Surdeanu et al., 2007). These results suggest that
as still in its infancy stage, Chinese full parsing
acts as a central bottleneck that severely limits our
ability to solve Chinese SRL. On the contrary, Chi-
nese shallow parsing has gained a promising re-
sult (Chen et al., 2006); hence it is an alternative
choice for Chinese SRL.

This paper addresses the Chinese SRL problem
on the basis of shallow syntactic information at
the level of phrase chunks. We first extend the
study on Chinese chunking presented in (Chen et
al., 2006) by raising a set of additional features.
The new set of features yield improvement over
the strong chunking system described in (Chen et
al., 2006). On the basis of our shallow parser, we
implement lightweight systems which solve SRL
as a sequence labeling problem. This is accom-
plished by casting SRL as the classification of syn-
tactic chunks (e.g. NP-chunk) into one of semantic
labels with IOB2 representation (?). With respect
to the labeling strategy, we distinguish two differ-
ent approaches. The first one directly recognizes
semantic roles by an IOB-type sequence tagging.
The second approach divides the problem into two
independent subtasks: 1) Argument Identification
(AI) and 2) Semantic Role Classification (SRC).

1This F-measure is evaluated on the basis of hand-crafted
word segmentation and POS tagging.
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A Chinese word consists of one or more char-
acters, and each character, in most cases, is a mor-
pheme. The problem of how the words are con-
structed from morphemes, known as word for-
mation, is very important for a majority of Chi-
nese language processing tasks. To capture Chi-
nese verb formation information, we introduce a
rule-based algorithm with a number of heuristics.
Experimental results indicate that word formation
features can help both shallow parsing and SRL.

We present encouraging SRL results on CPB2.
The best F-measure performance (74.12) with
gold segmentation and POS tagging can be
achieved by the first method. This result yield
significant improvement over the best reported
SRL performance (71.9) in the literature (Xue,
2008). The best recall performance (71.50) can be
achieved by the second method. This result is also
much higher than the best reported recall (65.6) in
(Xue, 2008).

2 Related Work

Previous work on Chinese SRL mainly focused on
how to implement SRL methods which are suc-
cessful on English, such as (Sun and Jurafsky,
2004; Xue and Palmer, 2005; Xue, 2008; Ding
and Chang, 2008). Sun and Jurafsky (2004) did
the preliminary work on Chinese SRL without
any large semantically annotated corpus of Chi-
nese. Their experiments were evaluated only on
ten specified verbs with a small collection of Chi-
nese sentences. This work made the first attempt
on Chinese SRL and produced promising results.
After the CPB was built, (Xue and Palmer, 2005)
and (Xue, 2008) have produced more complete
and systematic research on Chinese SRL. Ding
and Chang (2008) divided SRC into two sub-tasks
in sequence. Under the hierarchical architecture,
each argument should first be determined whether
it is a core argument or an adjunct, and then be
classified into fine-grained categories. Chen et
al. (2008) introduced an application of transduc-
tive SVM in Chinese SRL. Because their experi-
ments took hand-crafted syntactic trees as input,
how transductive SVMs perform in Chinese SRL
in realistic situations is still unknown.

Most existing systems for automatic Chinese
SRL make use of a full syntactic parse of the sen-
tence in order to define argument boundaries and

2Our system is available at
http://code.google.com/p/csrler/

to extract relevant information for training clas-
sifiers to disambiguate between role labels. On
the contrary, in English SRL research, there have
been some attempts at relaxing the necessity of us-
ing syntactic information derived from full parse
trees. For example, Hacioglu and Ward (2003)
considered SRL as a chunking task; Pradhan et
al. (2005) introduced a new procedure to incor-
porate SRL results predicted respectively on full
and shallow syntactic parses. Previous work on
English suggests that even good labeling perfor-
mance has been achieved by full parse based SRL
systems, partial parse based SRL systems can still
enhance their performance. Though better under-
standing of SRL with shallow parsing on English
is achieved by CoNLL-2004 shared task (Carreras
and Màrquez, 2004), little is known about how
these SRL methods perform on Chinese.

3 Chinese Shallow Parsing

There have been some research on Chinese shal-
low parsing, and a variety of chunk defini-
tions have been proposed. However, most of
these studies did not provide sufficient detail.
In our system, we use chunk definition pre-
sented in (Chen et al., 2006), which provided
a chunk extraction tool. The tool to extract
chunks from CTB was developed by modify-
ing the English tool used in CoNLL-2000 shared
task, Chunklink3, and is publicly available at
http://www.nlplab.cn/chenwl/chunking.html. The
definition of syntactic chunks is illustrated in Line
CH in Figure 1. For example, ”保险公司/the in-
surance company”, consisting of two nouns, is a
noun phrase.

With IOB2 representation (Ramshaw and Mar-
cus, 1995), the problem of Chinese chunking can
be regarded as a sequence labeling task. In this
paper, we first implement the chunking method
described in (Chen et al., 2006) as a strong base-
line. To conveniently illustrate, we denote a word
in focus with a fixed window w−2w−1ww+1w+2,
where w is current token. The baseline features
includes:

• Uni-gram word/POS tag feature: w−2, w−1,
w, w+1, w+2;

• Bi-gram word/POS tag feature: w−2 w−1,
w−1 w, w w+1, w+1 w+2;

3http://ilk.uvt.nl/team/sabine/chunklink/chunklink 2-2-
2000 for conll.pl
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WORD: 截止 目前 保险 公司 已 为 三峡 工程 提供 保险 服务

POS: [P] [NT] [NN NN] [AD] [P] [NR] [NN] [VP] [NN NN]
CH: [PP NP] [NP] [ADVP] [PP NP NP ] [VP] [NP]
M1: B-A* I-A*4 B-A0 B-AM-ADV B-A2 I-A2 I-A2 B-V B-A1

M2-AI: B-A I-A B-A B-A B-A I-A I-A B-V B-A
M2-SRC: AM-TMP A0 AM-ADV A2 Rel A1

Until now, the insurance company has provided insurance services for the Sanxia Project.

Figure 1: An example from Chinese PropBank.

That means 18 features are used to represent a
given token. For instance, the bi-gram Word fea-
tures at 5th word position (”公司/company”) in
Figure 1 are ”， 保险”, ”保险 公司”, ”公司 已”,
”已 为”.

To improve shallow parsing, we raised an addi-
tional set of features. We will discuss these fea-
tures in section 5.

4 SRL with Shallow Parsing

The CPB is a project to add predicate-argument
relations to the syntactic trees of the CTB. Similar
to English PropBank, the semantic arguments of a
predicate are labeled with a contiguous sequence
of integers, in the form of AN (i.e. ArgN ); the ad-
juncts are annotated as such with the label AM (i.e.
ArgM) followed by a secondary tag that represents
the semantic classification of the adjunct. The as-
signment of argument labels is illustrated in Figure
1, where the predicate is the verb ”提供/provide”.
For example, the noun phrase ”保险公司/the in-
surance company” is labeled as A0, meaning that it
is the proto-Agent of提供; the preposition phrase
”截止目前/until now” is labeled as AM-TMP, in-
dicating a temporal component.

4.1 System Architecture

SRL is a complex task which has to be decom-
posed into a number of simpler decisions and tag-
ging schemes in order to be addressed by learn-
ing techniques. Regarding the labeling strategy,
we can distinguish at least two different strategies.
The first one consists of performing role identifi-
cation directly as IOB-type sequence tagging. The
second approach consists of dividing the problem
into two independent subtasks.

4The semantic chunk labels here are B-AM-TMP and I-
AM-TMP. Limited to the document length, we cannot put all
detailed chunk labels in one line in Figure 1.

4.1.1 One-stage Strategy
In the one-stage strategy, on the basis of syntac-
tic chunks, we define semantic chunks which do
not overlap nor embed using IOB2 representation.
Syntactic chunks outside a chunk receive the tag
O. For syntactic chunks forming a chunk of type
A*, the first chunk receives the B-A* tag (Begin),
and the remaining ones receive the tag I-A* (In-
side). Then a SRL system can work directly by
using sequence tagging techinique. Since the se-
mantic annotation in the PropBank corpus does
not have any embedded structure, there is no loss
of information in this representation. The line M1
in Figure 1 illustrates this semantic chunk defini-
tion.

4.1.2 Two-stage Strategy
In the two-stage architecture, we divide Chinese
SRL into two subtasks: 1) semantic chunking for
AI, in which the argument boundaries are pre-
dicted, and 2) classification for SRC, in which the
already recognized arguments are assigned role la-
bels. In the first stage, we define semantic chunks
B-A which means begin of an argument and I-A
which means inside of an argument. In the second
stage, we solve SRC problem as a multi-class clas-
sification. The lines M2-AI and M2-SRC in Fig-
ure 1 illustrate this two-stage architecture. For ex-
ample, the noun phrase ”保险公司/the insurance
company” is proto-Agent, and thus should be la-
beled as B-A in the AI chunking phase, and then
be tagged as A0. The phrase ”为三峡工程/for the
Sanxia Project” consists of three chunks, which
should be labeled as B-A, I-A, and I-A respectively
in the AI chunking phase, then these three chunks
as a whole argument should be recognized as A2.

4.1.3 Chunk-by-Chunk
There is also another semantic chunk definition,
where the basic components of a semantic chunk
are words rather than syntactic chunks. A good
election for this problem is chunk-by-chunk pro-
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cessing instead of word-by-word. The motivation
is twofold: 1) phrase boundaries are almost always
consistent with argument boundaries; 2) chunk-
by-chunk processing is computationally less ex-
pensive and allows systems to explore a relatively
larger context. This paper performs a chunk-by-
chunk processing, but admitting a processing by
words within the target verb chunks.

4.2 Features

Most of the feature templates are ”standard”,
which have been used in previous SRL research.
We give a brief description of ”standard” features,
but explain our new features in detail.5

4.2.1 Features for Semantic Chunking
In the semantic chunking tasks, i.e. the one-stage
method and the first step in the two-stage method,
we use the same set of features. The features
are extracted from three types of elements: syn-
tactic chunks, target verbs, links between chunks
and target verbs. They are formed making use
of words, POS tags and chunks of the sentence.
Xue (2008) put forward a rough verb classifica-
tion where verb classes are automatically derived
from the frame files, which are verb lexicon for
the CPB annotation. This kind of verb class in-
formation has been shown very useful for Chinese
SRL. Our system also includes this feature. In our
experiments, we represent a verb in two dimen-
sions: 1) number of arguments, and 2) number of
framesets. For example, a verb may belong to the
class ”C1C2,” which means that this verb has two
framesets, with the first frameset having one argu-
ment and the second having two arguments.

To conveniently illustrate, we de-
note a token chunk with a fixed context
wi−1[ckwi...wh...wj ]wj+1, where wh is the
head word of this chunk ck. The complete list of
features is listed here.

Extraction on Syntactic Chunks
Chunk type: ck.
Length: the number of words in a chunk.
Head word/POS tag. The rules described in

(Sun and Jurafsky, 2004) are used to extract head
word.

IOB chunk tag of head word: chunk tag of head
word with IOB2 representation (e.g. B-NP, I-NP).

5The source code of our system also provides lots of com-
ments for implementation of all features.

Chunk words/POS tags context. Chunk con-
text includes one word before and one word after:
wi−1 and wj+1.

POS tag chain: sequential containers of each
word’s POS tag: wi ... wj . For example, this fea-
ture for ”保险服务” is ”NN NN”.

Position: the position of the phrase with respect
to the predicate. It has three values as before, after
and here.

Extraction on Target Verbs Given a target verb
wv and its context, we extract the following fea-
tures.

Predicate, its POS tag, and its verb class.
Predicate IOB chunk tag context: the chain of

IOB2 chunk tags centered at the predicate within
a window of size -2/+2.

Predicate POS tag context: the POS tags of
the words that immediately precede and follow the
predicate.

Number of predicates: the number of predicates
in the sentence.

Extraction on Links To capture syntactic prop-
erties of links between the chunks and the verbs,
we use the following features.

Path: a flat path is defined as a chain of base
phrases between the token and the predicate. At
both ends, the chain is terminated with the POS
tags of the predicate and the headword of the to-
ken.

Distance: we have two notions of distance. The
first is the distance of the token from the predicate
as a number of base phrases, and the second is the
same distance as the number of VP chunks.

Combining Features We also combine above
features as some new features.

Conjunctions of position and head word, tar-
get verb, and verb class, including: position wh,
position wv, position wh wv, position class,
and position wh class.

Conjunctions of position and POS tag of
head word, target verb, and verb class, in-
cluding: position wh wv, position wh, and
position wh class.

4.2.2 Features for SRC
In the SRC stage of the two-stage method, dif-
ferent from previous work, our system only uses
word-based features, i.e. features extracted from
words and POS tags, to represent a given argu-
ment. Experiments show that a good semantic
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role classifier can be trained by using only word-
based features. To gather all argument position
information predicted in AI stage, we design a
coarse frame feature, which is a sequential collec-
tion of arguments. So far, we do not know the
detailed semantic type of each argument, and we
use XP as each item in the frame. To distinguish
the argument in focus, we use a special symbol
to indicate the corresponding frame item. For in-
stance, the Frame feature for argument 保险服
务 is XP+XP+XP+XP+V+!XP, where !XP means
that it is the argument in focus.

Denote 1) a given argument
wi−2wi−1[wiwi+1...wj−1wj ]wj+1wj+2, and
2) a given predicate wv. The features for SRC are
listed as follows.

Words/POS tags context of arguments: the con-
tents and POS tags of the following words: wi,
wi−1, wi−2, wi+1, wi+2, wj , wj+1, wj−1, wj−2,
wj+1, wj+2; the POS tags of the following words:
wi+1, wi+2, wj+1, wj+2.

Token Position.
Predicate, its POS, and its verb class.
Coarse Frame.
Combining features: conjunctions of bound-

ary words, including wi−1 wj+1 and wi−2 wj+2;
conjunction of POS tags of boundary words, in-
cluding wi−1 wj+1 and wi−2 wj+2; conjunction
of token position, boundary words, and predi-
cate word, including position wi wj , wi wj wv;
position wi wj wv; conjunction of token posi-
tion, boundary words’ POS tags, and predicate
word, also including position wi wj , wi wj wv;
position wi wj wv; conjunction of predicate and
frame; conjunction of target verb class and frame;
conjunction of boundary words’ POS tags, and
predicate word.

5 Automatic Chinese Verb Formation
Analyzing

5.1 Introduction to Chinese Word Formation

Chinese words consist of one or more charac-
ters, and each character, in most cases, is a mor-
pheme which is the smallest meaningful unit of
the language. According to the number of mor-
phemes, the words can be grouped into two sets,
simple words (consisting of one morpheme) and
compound words (consisting of two morphemes
or more). There are 9 kinds of word formation in
Chinese compound words, and table 1 shows the
detail with examples. Note that, attributive-head

and complementarity are not for Chinese verbs.

Types Examples
reduplication 看看(look)想想(think)

affixation 激化(intensify)觉着(feel)
subject-verb 耳闻(hear)口述(dictate)
verb-object 戒烟(quit smoking)

理发(haircut)
verb-complement 通知(inform)栽培(plant)

verb-result 超出(exceed)煮沸(boil)
adverbial-head 隐居(retreat)误用(misuse)

coordinate 爱惜(cherish)追逐(chase)
attributive-head* 谣言(rumor)医院(hospital)

complementarity* 纸张(paper)马匹(horse)

Table 1: Example Words with Formation

The internal structure of a word constraints its
external grammatical behavior, and the formation
of a verb can provide very important information
for Chinese SRL. Take ”超出/exceed” as an ex-
ample, the two characters are both verbal mor-
phemes, and the character ”超” means ”pass” and
the character ”出” with the meaning of ”over”
shows the complement of the action of ”超”. In
this word, ”出” is usually collocated with an ob-
ject, and hence a Patient role should comes af-
ter the verb ”超出”. Note that, the verb ”超”,
however, is unlikely to have an object. Take ”理
发/haircut” as another example, the first charac-
ter ”理” is a verbal morpheme with the meaning
of ”cut” and the second character ”发” is a nomi-
nal morpheme with the meaning of ”hair”. In this
word, ”发” acts as the object of ”理”, and the word
”理发” is unlikely to have an Patient any more in
the sentential context.

5.2 Verb Formation Analyzing Method

To automatically analyze verb formation, we in-
troduce a rule-based algorithm. Pseudo code in
Algorithm 1 illustrates our algorithm. This algo-
rithm takes three string (one or more Chinese char-
acters) sets as lexicon knowledge:

• adverbial suffix set A: strings in A are usu-
ally realized as the modifier in a adverbial-
head type word, e.g. 不/not, 别/not,
总/always,并/both,共/all.

• object head setO: strings inO are usually re-
alized as the head in a verb-object type word,
e.g. 变/change,获/get,谈/talk,发/send.
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Algorithm 1: Verb Formation Analyzing.
Data: adverbial suffix set A, object head set

O, complement suffix set C
input : word W = c1...cn and its POS P
output: head character h, adverbial character

a, complement character c, object
character o

begin
h = c = a = o = null;
if n = 4 and c1 = c3 and c2 = c4 then

return Verb formation of W ′ = c1c3;
else if n = 3 and c2 = c3 then

h = c1, c = c2;
else if n = 2 and c1 = c2 then

h = c1;
else if n = 1 then

h = c1;
else if cn ∈ C and cn−1cn ∈ C and
P=”VV” then

h = c1, c = cn/cn−1cn;
else if c1 ∈ A then

a = c1, h = c2...cn;
else if c1 ∈ O and P=”VV” then

h = c1, o = c2...cn;

end

• complement suffix set C: strings in C are
usually realized as complement in a verb-
complement type word: e.g. 出/out, 入/in,
完/finish,来/come,不到/not.

Note that, to date there is no word formation
annotation corpus, so direct evaluation of our rule-
based algorithm is impossible. This paper makes
task-oriented evaluation which measures improve-
ments in SRL.

5.3 Using Word Formation Information to
improve Shallow Parsing

The majority of Chinese nouns are of type
attributive-head. This means that for most nouns
the last character provides very important infor-
mation indicating the head of the noun. For ex-
ample, the word formations of ”桃树/peach”, ”柳
树/willow” and ”黄杨树/boxtree” (three different
kinds of trees), are attributive-head and they have
the same head word ”树/tree”. While for verbs, the
majority are of three types: verb-object, coordi-
nate and adverbial-head. For example, words ”加
大/enlarge”, ”加剧/make more drastic” and ”加
快/accelerate” have the same head ”加/add”. The
head morpheme is very useful in alleviating the

data sparseness in word level. However, for any
given word, it is very hard to accurately find the
head. In the shallow paring experiments, we use
a very simple rule to get a pseudo head character:
1) extracting the last word for a noun, and 2) ex-
tracting the first word for a verb. The new features
include:

Pattern 1: conjunction of pseudo head of wi−1

and POS tags of wi−1 and wi.
Pattern 2: conjunction of pseudo head ofwi and

POS tags of wi−1 and wi.
Pattern 3: conjunction of length/POS tags of

wi−1, wi, wi+1.

5.4 Using Verb Formation Information to
improve SRL

We use some new verb formation features to im-
prove our SRL system. The new features are listed
as follows. The first four are used in semantic
chunking task, and all are used in SRC task.

First/last characters.
Word length.
Conjunction of word length and first/last char-

acter.
Conjunction of token position and first/last

character.
The head string of a verb (e.g. ”理” in ”理发”).
The adverbial string of a verb (e.g. ”误” in ”误
用”).

The complement string of a verb (e.g. ”出” in
”超出”).

The object string of a verb (e.g. ”发” in ”理
发”).

6 Results and Discussion

6.1 Experimental Setting

6.1.1 Data
Experiments in previous work are mainly based on
CPB and CTB, but the experimental data prepar-
ing procedure does not seem consistent. For ex-
ample, the sum of each semantic role reported in
(Ding and Chang, 2008) is extremely smaller than
the corresponding occurrence statistics in origi-
nal data files in CPB. In this paper, we mod-
ify CoNLL-2005 shared task software6 to pro-
cess CPB and CTB. In our experiments, we use
the CPB 1.0 and CTB 5.0. The data is divided
into three parts: files from chtb 081 to chtb 899
are used as training set; files from chtb 041 to

6http://www.lsi.upc.edu/∼srlconll/soft.html
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chtb 080 as development set; files from chtb 001
to chtb 040, and chtb 900 to chtb 931 as test set.
The data setting is the same as (Xue, 2008). The
results were evaluated for precision, recall and F-
measure numbers using the srl-eval.pl script pro-
vided by CoNLL-2005 shared task.

6.1.2 Classifier
For both syntactic and semantic chunking, we
used TinySVM along with YamCha7 (Kudo and
Matsumoto, 2000; Kudo and Matsumoto, 2001).
In the chunking experiments, all SVM classifiers
were realized with a polynomial kernel of de-
gree 2. Pair-wise strategy is used to solve multi-
class classification problem. For the SRC ex-
periments, we use a linear SVM classifier, along
with One-Vs-All approach for multi-class classifi-
cation. SVMlin

8, a fast linear SVM solvers, is used
for supervised learning. l2-SVM-MFN (modified
finite newton) method is used to solve the opti-
mization problem (Keerthi and DeCoste, 2005).

6.2 Shallow Parsing Performance

P(%) R(%) Fβ=1

Baseline 93.54 93.00 93.27
Ours 93.83 93.39 93.61

Table 2: Shallow parsing performance

Table 2 summarizes the overall shallow pars-
ing performance on test set. The first line shows
the performance of baseline. Comparing the best
system performance 94.13 F-measure of CoNLL
2000 shared task (Syntactic Chunking on English),
we can see Chinese shallow parsing has reached
a comparable result, tough the comparison of nu-
meric performance is not very fair, because of dif-
ferent languages, different chunk definition, dif-
ferent training data sizes, etc.. The second line
Ours shows the performance when new features
are added, from which we can see the word for-
mation based features can help shallow parsing.

Table 3 shows the detailed performance of noun
phrase (NP) and verb phrase (VP), which make up
most of phrase chunks in Chinese. Our new fea-
tures help NP more, whereas the effect of new fea-
tures for VP is not significant. That is in part be-
cause most VP chunk recognition error is caused
by long dependency, where word formation fea-

7http://chasen.org/∼taku/index.html.en
8http://people.cs.uchicago.edu/∼vikass/svmlin.html

P(%) R(%) Fβ=1

NP(Baseline) 90.84 90.05 90.44
NP(Ours) 91.42 90.78 91.10
VP(Baseline) 94.44 94.55 94.50
VP(Ours) 94.65 94.74 94.69

Table 3: Performance of NP-chunk and VP-chunk

tures do not work. Take the sentences below for
example:

1. [V P 因此获得胜利]。 (Therefore (we)
achieve victory.)

2. [ADV P 因此] [V P 大量出现] 的是以前不
曾遇到的。 (Therefore the major changes
have not been met before.)

The contexts of the word ”因此/therefore” in the
two sentences are similar, where ”因此” is fol-
lowed by verbal components. In the second sen-
tence, the word ”因此/therefore” will be correctly
recognized as an adverbial phrase unless classifier
knows the following component is a clause. Un-
fortunately, word formation features cannot sup-
ply this kind of information.

6.3 SRL Performance

P(%) R(%) A(%) Fβ=1

(Xue, 2008) 79.5 65.6 – 71.9
M1− 79.02 69.12 – 73.74
M1+ 79.25 69.61 – 74.12

M2−/AI 80.34 75.11 – 77.63
M2+/AI 80.01 75.15 – 77.51

M2−/SRC – – 92.57 –
M2+wf/SRC – – 93.25 –

M2+/SRC – – 93.42 –
M2−AI+SRC 76.48 71.50 – 73.90

Table 4: Overall SRL performance of different
methods

Table 4 lists the overall SRL performance num-
bers on test set using different methods mentioned
earlier; these results are based on features com-
puted from gold standard segmentation and POS
tagging, but automatic recognized chunks, which
is parsed by our improved shallow parsing sys-
tem. For the AI and the whole SRL tasks, we
report the precision (P), recall (R) and the Fβ=1-
measure scores, and for the SRC task we report
the classification accuracy (A). The first line (Xue,
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2008) shows the SRL performance reported in
(Xue, 2008). To the authors’ knowledge, this re-
sult is best SRL performance in the literature. Line
2 and 3 shows the performance of the one-stage
systems: 1) Line M1− is the performance without
word formation features; 2) Line M1+ is the per-
formance when verb formation features are added.
Line 4 to 8 shows the performance of the two-stage
systems: 1) Line M2−/AI and M2+/AI shows the
performance of AI phase without and within word
formation features respectively; 2) Line M2−/SRC
shows the SRC performance with trivial word-
based features (i.e. frame features and verb forma-
tion features are not used); 3) Line M2+wf/SRC is
the improved SRC performance when coarse verb
formation features are added; 4) Line M2+/SRC
is the SRC performance with all features; 5) Line
M2−AI+SRC shows the performance of SRL sys-
tem, which uses baseline features to identify argu-
ments, and use all features to classify arguments.

6.4 Discussion

The results summarized in Table 4 indicate that
according to the-state-of-the-art in Chinese pars-
ing, SRL systems based on shallow parsing out-
performs the ones based on full parsing. Com-
parison between one-stage strategy and two-stage
strategy indicates 1) that there is no significant dif-
ference in the F-measure; and 2) that two-stage
strategy method can achieve higher recall while
one-stage strategy method can achieve higher pre-
cision. Both the one-stage strategy and two-stage
strategy methods yield significant improvements
over the best reported SRL performance in the lit-
erature, especially in terms of recall performance.
Comparison SRL performance with full parses
and partial parses indicates that both models have
strong and weak points. The full parse based
method can implement high precision SRL sys-
tems, while the partial parse based methods can
implement high recall SRL systems. This is fur-
ther justification for combination strategies that
combine these independent SRL models.

Generally, Table 4 shows that verb formation
features can enhance Chinese SRL, especially for
fine-grained role classification. The effect of word
formation in formation in both shallow parsing
and SRL suggests that automatic word formation
analyzing is very important for Chinese language
processing. The rule-based algorithm is just a pre-
liminary study on this new topic, which requires

Num of words P (%) R (%) Fβ=1

Length = 1 84.69% 75.48% 79.82
Length = 2 82.14% 74.21% 77.97
Length = 3 75.43% 63.98% 69.24
Length = 4 75.71% 65.63% 70.32
Length = 5 72.46% 64.38% 68.18
Length = 6 72.97% 66.21% 69.43
Length = 7 77.03% 67.65% 72.04
Length = 8 74.39% 57.28% 64.72
Length = 9 66.67% 51.16% 57.89
Length = 10 68.08% 58.28% 62.80
Length = 11+ 67.40% 57.71% 62.18

Table 5: SRL performance with arguments of dif-
ferent length

more research effort.
Though our SRC module does not use any pars-

ing information, our system can achieve 93.42%
accuracy, comparing the best gold parse based re-
sult 94.68% in the literature. This result suggests
that Chinese SRC system, even without parsing,
can reach a considerable good performance. The
main reason is that in Chinese, arguments with dif-
ferent semantic types have discriminative bound-
ary words, which can be extracted without pars-
ing. It is very clear that the main bottleneck for
Chinese SRL is to accurately identify arguments
rather than to disambiguate their detailed seman-
tic types.

Table 5 summarizes the labeling performance
for argument of different length. It is not surpris-
ing that arguments are more and more difficult to
rightly recognize as the increase of their length.
But the performance decline slows up when the
length of arguments is larger than 10. In other
words, some of the arguments that are composed
of many words can still be rightly identified. The
main reason for this point is that these arguments
usually have clear collocation words locating at ar-
gument boundaries. Take the sentences below for
example,

3. 包括[A1 . . . . . .等] (including ... etc.)

the object of the verb ”包括/include” has a defi-
nite collocation word ”等/etc.”, and therefore this
object is easy to be recognized as a A1.

7 Conclusion

In this paper, we discuss Chinese SRL on the ba-
sis of partial syntactic structure. Our systems ad-
vance the state-of-the-art in Chinese SRL. We first
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extend the study on Chinese shallow parsing and
implement a good shallow parser. On the ba-
sis of partial parses, SRL are formulated as a se-
quence labeling problem, performing IOB2 deci-
sions on the syntactic chunks of the sentence. We
exploit a wide variety of features based on words,
POS tags, and partial syntax. Additionally, we
discuss a language special problem, i.e. Chinese
word formation. Experimental results show that
coarse word formation information can help shal-
low parsing, especially for NP-chunk recognition.
A rule-based algorithm is put forward to automat-
ically acquire Chinese verb formation, which is
empirically shown to enhance SRL.
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Abstract 

In this paper we address the problem of identi-

fying a broad range of term variations in Japa-

nese web search queries, where these varia-

tions pose a particularly thorny problem due to 

the multiple character types employed in its 

writing system. Our method extends the tech-

niques proposed for English spelling correc-

tion of web queries to handle a wider range of 

term variants including spelling mistakes, va-

lid alternative spellings using multiple charac-

ter types, transliterations and abbreviations. 

The core of our method is a statistical model 

built on the MART algorithm (Friedman, 

2001). We show that both string and semantic 

similarity features contribute to identifying 

term variation in web search queries; specifi-

cally, the semantic similarity features used in 

our system are learned by mining user session 

and click-through logs, and are useful not only 

as model features but also in generating term 

variation candidates efficiently. The proposed 

method achieves 70% precision on the term 

variation identification task with the recall 

slightly higher than 60%, reducing the error 

rate of a naïve baseline by 38%.  

1 Introduction 

Identification of term variations is fundamental 

to many NLP applications: words (or more gen-

erally, terms) are the building blocks of NLP ap-

plications, and any robust application must be 

able to handle variations in the surface represen-

tation of terms, be it a spelling mistake, valid 

spelling variation, or abbreviation. In search ap-

plications, term variations can be used for query 

expansion, which generates additional query 

terms for better matching with the terms in the 

document set. Identifying term variations is also 

useful in other scenarios where semantic equiva-

lence of terms is sought, as it represents a very 

special case of paraphrase.  

This paper addresses the problem of identify-

ing term variations in Japanese, specifically for 

the purpose of query expansion in web search, 

which appends additional terms to the original 

query string for better retrieval quality. Query 

expansion has been shown to be effective in im-

proving web search results in English, where dif-

ferent methods of generating the expansion terms 

have been attempted, including relevance feed-

back (e.g., Salton and Buckley, 1990), correction 

of spelling errors (e.g., Cucerzan and Brill, 2004), 

stemming or lemmatization (e.g., Frakes, 1992), 

use of manually- (e.g., Aitchison and Gilchrist, 

1987) or automatically- (e.g., Rasmussen 1992) 

constructed thesauri, and Latent Semantic Index-

ing (e.g., Deerwester et al, 1990). Though many 

of these methods can be applied to Japanese 

query expansion, there are unique problems 

posed by Japanese search queries, the most chal-

lenging of which is that valid alternative spel-

lings of a word are extremely common due to the 

multiple script types employed in the language. 

For example, the word for 'protein' can be spelled 

as たんぱくしつ, タンパク質, 蛋白質, たん白質 

and so on, all pronounced tanpakushitsu but us-

ing combinations of different script types. We 

give a detailed description of the problem posed 

by the Japanese writing system in Section 2. 

Though there has been previous work on ad-

dressing specific subsets of spelling alterations 

within and across character types in Japanese, 

there has not been any comprehensive solution 

for the purpose of query expansion.  

Our approach to Japanese query expansion is 

unique in that we address the problem compre-

hensively: our method works independently of 

the character types used, and targets a wide range 

of term variations that are both orthographically 

and semantically similar, including spelling er-

rors, valid alternative spellings, transliterations 

and abbreviations. As described in Section 4, we 

define the problem of term variation identifica-
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tion as a binary classification task, and build two 

types of classifiers according to the maximum 

entropy model (Berger et al., 1996) and the 

MART algorithm (Friedman, 2001), where all 

term similarity metrics are incorporated as fea-

tures and are jointly optimized. Another impor-

tant contribution of our approach is that we de-

rive our semantic similarity models by mining 

user query logs, which has been explored for the 

purposes of collecting related words (e.g., Jones 

et al., 2006a), improving search results ranking 

(e.g., Craswell and Szummer, 2007) and learning 

query intention (e.g., Li et al., 2008), but not for 

the task of collecting term variations. We show 

that our semantic similarity models are not only 

effective in the term variation identification task, 

but also for generating candidates of term varia-

tions much more efficiently than the standard 

method whose candidate generation is based on 

edit distance metrics.  

2 Term Variations in Japanese 

In this section we give a summary of the Japa-

nese writing system and the problem it poses for 

identifying term variations, and define the prob-

lem we want to solve in this paper.  

2.1 The Japanese Writing System 

There are four different character types that are 

used in Japanese text: hiragana, katakana, kanji 

and Roman alphabet. Hiragana and katakana are 

the two subtypes of kana characters, which are 

syllabic character sets, each with about 50 basic 

characters. There is a one-to-one correspondence 

between hiragana and katakana characters, and, 

as they are phonetic, they can be unambiguously 

converted into a sequence of Roman characters. 

For example, the word for 'mackerel' is spelled in 

hiragana as さば or in katakana as サバ, both of 

which can be transcribed in Roman characters as 

saba, which is how the word is pronounced. 

Kanji characters, on the other hand, are ideo-

graphic and therefore numerous – more than 

5,000 are in common usage. One difficulty in 

handling Japanese kanji is that each character has 

multiple pronunciations, and the correct pronun-

ciation is determined by the context in which the 

character is used. For instance, the character 行 is 

read as kou in the word 銀行 ginkou 'bank', gyou 

in 行  'column', and i or okona in 行った  itta 

'went' or okonatta 'done' depending on the con-

text in which the word is used.
1
 Proper name 

readings are particularly difficult to disambiguate, 

as their pronunciation cannot be inferred from 

the context (they tend to have the same grammat-

ical function) or from the dictionary (they tend to 

be out-of-vocabulary). Therefore, in Japanese, 

computing a pronunciation-based edit distance 

metric is not straightforward, as it requires esti-

mating the readings of kanji characters.  

2.2 Term Variation by Character Type 

Spelling variations are commonly observed both 

within and across character types in Japanese. 

Within a character type, the most prevalent is the 

variation observed in katakana words. Katakana 

is used to transliterate words from English and 

other foreign languages, and therefore reflects 

the variations in the sound adaptation from the 

source language. For example, the word 

'spaghetti' is transliterated into six different 

forms (スパゲッティ supagetti, スパゲッティー

supagettii, スパゲッテイ supagettei, スパゲティ

supageti, スパゲティー supagetii, スパゲテイ

supagetei) within a newspaper corpus (Masuya-

ma et al., 2004).  

Spelling variants are also prevalent across 

character types: in theory, a word can be spelled 

using any of the character types, as we have seen 

in the example for the word 'protein' in Section 1. 

Though there are certainly preferred character 

types for spelling each word, variations are still 

very common in Japanese text and search queries. 

Alterations are particularly common among hira-

gana, katakana and kanji (e.g. さば~サバ~ 鯖 sa-

ba 'mackerel'), and between katakana and Roman 

alphabet (e.g. フェデックス  fedekkusu fedex). 

This latter case constitutes the problem of transli-

teration, which has been extensively studied in 

the context of machine translation (e.g. Knight 

and Graehl, 1998; Bilac and Tanaka, 2004; Brill 

et al., 2001).  

2.3 Term Variation by Re-write Categories 

Table 1 shows the re-write categories of related 

terms observed in web query logs, drawing on 

our own data analysis as well as on previous 

work such as Jones et al. (2006a) and Okazaki et 

al. (2008b). Categories 1 though 9 represent 

strictly synonymous relations; in addition, terms 

in Categories 1 through 5 are also similar ortho-

graphically or in pronunciation. Categories 10 

                                                 
1 In a dictionary of 200K entries, we find that on average 

each kanji character has 2.5 readings, with three characters 

(直,生,空) with as many as 11 readings. 
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through 12, on the other hand, specify non-

synonymous relations.  

Different sets out of these categories can be 

useful for different purposes. For example, Jones 

et al (2006a; 2006b) target all of these categories, 

as their goal is to collect related terms as broadly 

as possible for the application of sponsored 

search, i.e., mapping search queries to a small 

corpus of advertiser listings. Okazaki et al. 

(2008b) define their task narrowly, to focusing 

on spelling variants and inflection, as they aim at 

building lexical resources for the specific domain 

of medical text.  

For web search, a conservative definition of 

the task as dealing only with spelling errors has 

been successful for English; a more general defi-

nition using related words for query expansion 

has been a mixed blessing as it compromises re-

trieval precision. A comprehensive review on 

this topic is provided by Baeza-Yates and Ribei-

ro-Neto (1999). In this paper, therefore, we adopt 

a working definition of the term variation identi-

fication task as including Categories 1 through 5, 

i.e., those that are synonymous and also similar 

in spelling or in pronunciation.
2
 This definition is 

reasonably narrow so as to make automatic dis-

covery of term variation pairs realistic, while 

covering all common cases of term variation in 

Japanese, including spelling variants and transli-

terations. It is also appropriate for the purpose of 

query expansion: because term variation defined 

in this manner is based on spelling or pronuncia-

tion similarity, their meaning and function tend 

                                                 
2 In reality, Category 3 (Inflection) is extremely rare in Jap-

anese web queries, because nouns do not inflect in Japanese, 

and most queries are nominals.  

to be completely equivalent, as opposed to Cate-

gories 6 through 9, where synonymy is more 

context- or user-dependent. This will ensure that 

the search results by query expansion will avoid 

the problem of compromised precision.  

3 Related Work 

In information retrieval, the problem of vocabu-

lary mismatch between the query and the terms 

in the document has been addressed in many 

ways, as mentioned in Section 1, achieving vary-

ing degrees of success in the retrieval task. In 

particular, our work is closely related to research 

in spelling correction for English web queries 

(e.g., Cucerzan and Brill, 2004; Ahmad and 

Kondrak, 2005; Li et al., 2006; Chen et al., 2007). 

Among these, Li et al. (2006) and Chen et al. 

(2007) incorporate both string and semantic simi-

larity in their discriminative models of spelling 

correction, similarly to our approach. In Li et al. 

(2006), semantic similarity was computed as dis-

tributional similarity of the terms using query 

strings in the log as context. Chen et al. (2007) 

point out that this method suffers from the data 

sparseness problem in that the statistics for rarer 

terms are unreliable, and propose using web 

search results as extended contextual information. 

Their method, however, is expensive as it re-

quires web search results for each query-

candidate pair, and also because their candidate 

set, generated using an edit distance function and 

phonetic similarity from query log data, is im-

practically large and must be pruned by using a 

language model. Our approach differs from these 

methods in that we exploit user query logs to 

derive semantic knowledge of terms, which is 

Categories Example in English Example in Japanese 

1. Spelling mistake aple ~ apple グウグル guuguru ~ グーグル gu-guru 'google' 

2. Spelling variant color ~ colour さば~サバ~鯖; スパゲティ~スパゲッティー (Cf. Sec.2.2) 

3. Inflection matrix ~ matrices 作る tsukuru 'make' ~ 作った tsukutta 'made' 

4. Transliteration  フェデックス ~ fedex 'Fedex' 

5. Abbreviation/ 

Acronym 

macintosh ~ mac 世界銀行 sekaiginkou ~ 世銀 segin 'World Bank'; マクド

ナルド makudonarudo ~ マック makku 'McDonald's' 
6. Alias republican party ~ gop フランス furansu ~ 仏 futsu 'France' 

7. Translation パキスタン大使館 pakisutantaishikan ~ Pakistan embassy 

8. Synonym carcinoma ~ cancer 暦 koyomi ~ カレンダー karendaa 'calendar' 

9. Abbreviation 

    (user specific) 

mini ~ mini cooper クロネコヤマト kuronekoyamato ~ クロネコ kuroneko 

(name of a delivery service company)  

10. Generalization nike shoes ~ shoes シビック 部品 shibikku buhin 'Civic parts' ~ 車 部品 ku-

ruma buhin 'car parts' 

11. Specification ipod ~ ipod nano 東京駅 toukyoueki 'Tokyo station' ~ 東京駅時刻表 tou-

kyouekijikokuhyou 'Tokyo station timetable' 

12. Related windows ~ microsoft トヨタ toyota 'Toyota' ~ ホンダ honda 'Honda' 

Table 1: Categories of Related Words Found in Web Search Logs 
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used both for the purpose of generating a candi-

date set efficiently and as features in the term 

variation identification model.  

Acquiring semantic knowledge from a large 

quantity of web query logs has become popular 

in recent years. Some use only query strings and 

their counts for learning word similarity (e.g., 

Sekine and Suzuki, 2007; Komachi and Suzuki, 

2008), while others use additional information, 

such as the user session information (i.e., a set of 

queries issued by the same user within a time 

frame, e.g., Jones et al., 2006a) or the URLs 

clicked as a result of the query (e.g., Craswell 

and Szummer, 2007; Li et al., 2008). This addi-

tional data serves as an approximation to the 

meaning of the query; we use both user session 

and click-through data for discovering term vari-

ations.  

Our work also draws on some previous work 

on string transformation, including spelling nor-

malization and transliteration. In addition to the 

simple Levenshtein distance, we also use genera-

lized string-to-string edit distance (Brill and 

Moore, 2000), which we trained on aligned kata-

kana-English word pairs in the same manner as 

Brill et al. (2001). As mentioned in Section 2.2, 

our work also tries to address the individual 

problems targeted by such component technolo-

gies as Japanese katakana variation, English-to-

katakana transliteration and katakana-to-English 

back-transliteration in a unified framework.  

4 Discriminative Model of Identifying 

Term Variation 

Recent work in spelling correction (Ahmed and 

Kondrak, 2005; Li et al., 2006; Chen et al., 2007) 

and normalization (Okazaki et al., 2008b) formu-

lates the task in a discriminative framework:  

𝑐∗  = argmax𝑐∈gen  𝑞 𝑃(𝑐|𝑞) 

This model consists of two components: gen(q) 

generates a list of candidates C(q) for an input 

query q, which are then ranked by the ranking 

function P(c|q). In previous work, gen(q) is typi-

cally generated by using an edit distance function 

or using a discriminative model trained for its 

own purpose (Okazaki et al., 2008b), often in 

combination with a pre-complied lexicon. In the 

current work, we generate the list of candidates 

by learning pairs of queries and their re-write 

candidates automatically from query session and 

click logs, which is far more robust and efficient 

than using edit distance functions. We describe 

our candidate generation method in detail in Sec-

tion 5.1.  

Unlike the spelling correction and normaliza-

tion tasks, our goal is to identify term variations, 

i.e., to determine whether each query-candidate 

pair (q,c) constitutes a term variation or not. We 

formulate this problem as a binary classification 

task. There are various choices of classifiers for 

such a task: we chose to build two types of clas-

sifiers that make a binary decision based on the 

probability distribution P(c|q) over a set of fea-

ture functions fi(q,c). In maximum entropy 

framework, this is defined as:  

𝑃 𝑐 𝑞 =
exp  𝜆𝑖𝑓𝑖 𝑐, 𝑞 𝐾

𝑖=1

 exp  𝜆𝑖𝑓𝑖 𝑐, 𝑞 𝐾
𝑖=1𝑐

 

where λ1,…, λk are the feature weights. The op-

timal set of feature weights λ
*
 is computed by 

maximizing the log-likelihood of the training 

data. We used stochastic gradient descent for 

training the model with a Gaussian prior.   

The second classifier is built on MART 

(Friedman, 2001), which is a boosting algorithm. 

At each boosting iteration, MART builds a re-

gression tree to model the functional gradient of 

the cost function (which is cross entropy in our 

case), evaluated on all training samples.  MART 

has three main parameters: M, the total number 

of boosting iterations, L, the number of leaf 

nodes for each regression tree, and v, the learning 

rate. The optimal values of these parameters can 

be chosen based on performance on a validation 

set.  In our experiments, we found that the per-

formance of the algorithm is relatively insensi-

tive to these parameters as long as they are in a 

reasonable range: given the training set of a few 

thousand samples or more, as in our experiments, 

M=100, L=15, and v=0.1 usually give good per-

formance. Smaller trees and shrinkage may be 

used if the training data set is smaller. 

The classifiers output a binary decision ac-

cording to P(c|q): positive when P(c|q) > 0.5 and 

negative otherwise.  

5 Experiments 

5.1 Candidate Generation 

We used a set of Japanese query logs collected 

over one year period in 2007 and 2008. More 

specifically, we used two different extracts of log 

data for generating term variation candidate 

pairs:  

Query session data. From raw query logs, we 

extracted pairs of queries q1 and q2 such that they 

are (i) issued by the same user; (ii) q2 follows 

within 3 minutes of issuing q1; and (iii) q2 gener-

ated at least one click of a URL on the result 
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page while q1 did not result in any click. We then 

scored each query pair (q1,q2) in this subset using 

the log-likelihood ratio (LLR, Dunning, 1993) 

between q1 and q2, which measures the mutual 

dependence within the context of web search 

queries (Jones et al., 2006a). After applying an 

LLR threshold (LLR > 15) and a count cutoff 

(we used only the top 15 candidate q2 according 

to the LLR value for each q1), we obtained a list 

of 47,139,976 pairs for the 14,929,497 distinct q1, 

on average generating 3.2 candidates per q1
3
. We 

took this set as comprising query-candidate pairs 

for our model, along with the set extracted by 

click-through data mining explained below.  

Click-through data. This data extract is based 

on the idea that if two queries led to the same 

URLs being repeatedly clicked, we can reasona-

bly infer that the two queries are semantically 

related. This is similar to computing the distribu-

tional similarity of terms given the context in 

which they appear, where context is most often 

defined as the words co-occurring with the terms. 

Here, the clicked URLs serve as their context.  

One challenge in using the URLs as contex-

tual information is that the contextual representa-

tion in this format is very sparse, as user clicks 

are rare events. To learn query similarities from 

incomplete click-through data, we used the ran-

dom walk algorithm similar to the one described 

in Craswell and Szummer (2007). Figure 1 illu-

strates the basic idea: initially, document 𝑑3 has 

a click-through link consisting of query 𝑞2 only; 

the random walk algorithm adds the link from 𝑑3 

to 𝑞1 , which has a similar click pattern as 𝑞2 . 

Formally, we construct a click graph which is a 

bipartite-graph representation of click-through 

data. We use  𝑞𝑖 𝑖=1
𝑚  to represent a set of query 

nodes and  𝑑𝑗  𝑗=1

𝑛
 a set of document nodes. We 

further define an  𝑚 × 𝑛 matrix 𝑊 in which ele-

ment 𝑊𝑖𝑗  represents the click count associated 

with  𝑞𝑖 , 𝑑𝑗  . This matrix can be normalized to 

be a query-to-document transition matrix, de-

                                                 
3 We consider each query as an unbreakable term in this 

paper, so term variation is equivalent to query variation. 

noted by 𝐴, where 𝐴𝑖𝑗 = 𝑝(1)(𝑑𝑗 |𝑞𝑖) is the prob-

ability that 𝑞𝑖  transits to 𝑑𝑗  in one step. Similarly, 

we can normalize the transpose of 𝑊  to be a 

document-to-query transition matrix, denoted by 

𝐵, where 𝐵𝑗 ,𝑖 = 𝑝(1)(𝑞𝑖|𝑑𝑗 ). It is easy to see that 

using 𝐴 and 𝐵 we can compute the probability of 

transiting from any node to any other node in 𝑘 

steps. In this work, we use a simple measure 

which is the probability that one query transits to 

another in two steps, and the corresponding 

probability matrix is given by 𝐴𝐵.  
We used this probability and ranked all pairs 

of queries in the same raw query logs as in the 

query session data described above to generate 

additional candidates for term variation pairs. 

20,308,693 pairs were extracted after applying 

the count cutoff of 5, generating on average 6.8 

candidates for 2,973,036 unique queries. 

It is interesting to note that these two data ex-

tracts are quite complementary: of all the data 

generated, only 4.2% of the pairs were found in 

both the session and click-through data. We be-

lieve that this diversity is attributable to the na-

ture of the extracts: the session data tends to col-

lect the term pairs that are issued by the same 

user as a result of conscious re-writing effort, 

such as typing error corrections and query speci-

fications (Categories 1 and 11 in Table 1), while 

the click-though data collects the terms issued by 

different users, possibly with different intentions, 

and tends to include many spelling variants, syn-

onyms and queries with different specificity 

(Categories 2, 8, 10 and 11).  

5.2 Features 

We used the same set of features for the maxi-

mum entropy and MART models, which are giv-

en in Table 2. They are divided into three main 

types: string similarity features (1-16), semantic 

similarity features (17, 18), and character type 

features (19-39). Among the string similarity 

features, half of them are based on Levenshtein 

distance applied to surface forms (1-8), while the 

other half is based on Levenshtein and string-to-

string edit distance metrics computed over the 

Romanized form of the query, reflecting its pro-

nunciation. The conversion into Roman charac-

ters was done deterministically for kana charac-

ters using a simple mapping table. For Romaniz-

ing kanji characters, we used the function availa-

ble from Windows IFELanguage API (version 

 
Figure 1. Random Walk Algorithm 

1488



2).
4
 The character equivalence table mentioned in 

the features 3,4,7,8 is a table of 643 pairs of cha-

racters that are known to be equivalent, including 

kanji allography (same kanji in different graphi-

cal styles). The alpha-beta edit distance (11, 12, 

15, 16) is the string-to-string edit distance pro-

posed in Brill and Moore (2001), which we 

trained over about 60K parallel English-to-

katakana Wikipedia title pairs, specifically to 

capture the edit operations between English and 

katakana words, which are different from the edit 

operations between two Japanese words. Seman-

tic similarity features (17, 18) use the LLR score 

from the session data, and the click-though pair 

probability described in the subsection above. 

Finally, features 19-39 capture the script types of 

the query-candidate pair. We first defined six 

basic character types for each query or candidate: 

Hira (hiragana only), Kata (katakana only), Kanji 

(kanji only), Roman (Roman alphabet only), 

MixedNoKanji (includes more than one charac-

ter sets but not kanji) and Mixed (includes more 

than one character sets with kanji). We then de-

rived 21 binary features by concatenating these 

basic character type features for the combination 

                                                 
4 http://msdn.microsoft.com/en-us/library/ms970129.aspx. 

We took the one-best conversion result from the API. The 

conversion accuracy on a randomly sampled 100 kanji que-

ries was 89.6%.  

of query and candidate strings. For example, if 

both the query and candidate are in hiragana, 

BothHira will be on; if the query is Mixed and 

the candidate is Roman, then RomanMixed will 

be on. Punctuation characters and Arabic numer-

als were treated as being transparent to character 

type assignment. The addition of these features is 

motivated by the assumption that appropriate 

types of edit distance operations might depend 

on different character types for the query-

candidate pair.  

Since the dynamic ranges of different features 

can be drastically different, we normalized each 

feature dimension to a normal variable with zero-

mean and unit-variance. We then used the same 

normalized features for both the maximum en-

tropy and the MART classifiers. 

5.3 Training and Evaluation Data 

In order to generate the training data for the bi-

nary classification task, we randomly sampled 

the query session (5,712 samples) and click-

through data (6,228 samples), and manually la-

beled each pair as positive or negative: the posi-

tive label was assigned when the term pair fell 

into Categories 1 through 5 in Table 1; otherwise 

it was assigned a negative label. Only 364 (6.4%) 

and 244 (3.9%) of the samples were positive ex-

amples for the query session and click-through 

data respectively, which makes the baseline per-

String similarity features (16 real-valued features) 

1. Lev distance on surface form 

2. Lev distance on surface form normalized by q1 length 

3. Lev distance on surface form using character equivalence table 

4. Lev distance on surface form normalized by  q1 length using character equivalence table 

5. Lev distance on surface form w/o space 

6. Lev distance on surface form normalized q1 length w/o space 

7. Lev distance on surface form using  character equivalence table w/o space 

8. Lev distance on surface form normalized by q1 using character equivalence table  w/o space 

9. Lev distance on Roman 

10. Lev distance on Roman normalized by q1 length 

11. Alpha-beta edit distance on Roman 

12. Alpha-beta edit distance on Roman normalized by q1 length 

13. Lev distance  on Roman w/o space 

14. Lev distance  on Roman normalized by q1 length w/o space 

15. Alpha-beta edit distance on Roman w/o space 

16. Alpha-beta edit distance on Roman normalized by q1 length w/o space 

Features for semantic similarity (2 real-valued features) 

17. LLR score 

18. Click-though data probability 

Character type features (21 binary features) 

19. BothHira, 20. BothKata, 21. BothRoman, 22. BothKanji, 23. BothMixedNoKanji, 24. BothMixed,  

25. HiraKata, 26. HiraKanji, 27. HiraRoman, 28. HiraMixedNoKanji, 29. HiraMixed, 30. KataKanji, 

31.KataRoman, 32. KataMixedNoKanji, 33. KataMixed, 34. KanjiRoman, 35. KanjiMixedNoKanji,  

36. KanjiMixed, 37. RomanMixedNoKanji, 38. RomanMixed, 39. MixedNoKanjiMixed 

Table 2: Classifier Features 
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formance of the classifier quite high (always 

predict the negative label – the accuracy will be 

95%). Note, however, that these data sets include 

term variation candidates much more efficiently 

than a candidate set generated by the standard 

method that uses an edit distance function with a 

threshold. For example, there is a query-

candidate pair q=家風情報 kafuujouhou 'house-

style information' c= 花 粉 情 報  kafunjouhou 

'pollen information') in the session data extract, 

the first one of which is likely to be a mis-

spelling of the second.
5
 If we try to find candi-

dates for the query 家風情報 using an edit dis-

tance function naively with a threshold of 2 from 

the queries in the log, we end up collecting a 

large amount of completely irrelevant set of can-

didates such as 台風情報 taifuujouhou 'typhoon 

information', 株情報 kabu jouhou 'stock informa-

tion', 降雨情報 kouu jouhou 'rainfall information' 

and so on – as many as 372 candidates were 

found in the top one million most frequent que-

ries in the query log from the same period; for 

rarer queries these numbers will only be worse. 

Computing the edit distance based on the pro-

nunciation will not help here: the examples 

above are within the edit distance of 2 even in 

terms of Romanized strings.  

Another advantage of generating the annotated 

data using the result of query log data mining is 

that the annotation process is less prone to sub-

jectivity than creating the annotation from 

scratch. As Cucerzan and Brill (2004) point out, 

the process of manually creating a spelling cor-

rection candidate is seriously flawed as the inten-

tion of the original query is completely lost: for 

the query gogle, it is not clear out of context if 

the user meant goggle, google, or gogle. Using 

data mined from query logs solves this problem: 

an annotator can safely assume that if gogle-

goggle appears in the candidate set, it is very 

likely to be a valid term variation intended by the 

user. This makes the annotation more robust and 

efficient: the inter-annotator agreement rate for 

2,000 query pairs by two annotators was 95.7% 

on our data set, each annotator spending only 

about two hours to annotate 2,000 pairs.  

5.4 Results and Discussion 

In order to compare the performance of two clas-

sifiers, we first built maximum entropy and 

MART classifiers as described in Section 4 using 

                                                 
5 家風情報 does not make any sense in Japanese; on the 

other hand, information about cedar pollen is commonly 

sought after in spring due to widespread pollen allergy.  

all the features in Section 5.2. We run five expe-

riments using different random split of training 

and test data: in each run,  we used 10,000 sam-

ples for training and the remaining 1,940 samples 

for testing, and measured the performance of the 

two classifiers on the task of term variation iden-

tification in terms of the error rate i.e., 1–

accuracy. The results, average over five runs, 

were 4.18 for the maximum entropy model, and 

3.07 for the MART model. In all five runs, the 

MART model outperformed the maximum en-

tropy classifier. This is not surprising given the 

superior performance of tree-boosting algorithms 

previously reported on similar classification 

tasks (e.g., Hastie et al., 2001). In our task where 

different types of features are likely to perform 

better when they are combined (such as semantic 

features and character types features), MART 

would be a better fit than linear classifiers  be-

cause the decision trees generated by MART op-

timally combines features in the local sense. In 

what follows, we only discuss the results pro-

duced by MART for further experiments. Note 

that the baseline classifier, which always predicts 

the label to be negative, achieves 95.04% in ac-

curacy (or 4.96% error rate), which sounds ex-

tremely high, but in fact this baseline classifier is 

useless for the purpose of collecting term varia-

tions, as it learns none of them by classifying all 

samples as negative.  

For evaluating the contribution of different 

types of features in Section 5.2, we performed 

feature ablation experiments using MART. Table 

3 shows the results in error rate by various 

MART classifiers using different combination of 

features. The results in this table are also aver-

aged over five run with random training/test data 

split. From Table 3, we can see that the best per-

formance was achieved by the model using all 

features (line A of the table), which reduces the 

baseline error rate (4.96%) by 38%. The im-

provement is statistically significant according to 

the McNemar test (P < 0.05). Models that use 

string edit distance features only (lines B and C) 

did not perform well: in particular, the model 

that uses surface edit distance features only 

Features Error rate (%) 

A. All features (1-39 in Table 2) 3.07 

B. String features only (1-16) 3.49 

C. Surface string features only (1-8) 4.9 

D. No semantic feats (1-16,19-39) 3.28 

E. No character type feats (1-18) 3.5 

Table 3: Results of Features Ablation Experiments 

Using MART Model 
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without considering the term pronunciation per-

formed horribly (line C), which confirms the re-

sults reported by Jones et al. (2006b). However, 

unlike Jones et al. (2006b), we see a positive 

contribution of semantic features: the use of se-

mantic features reduced the error rate from 3.28 

(line D) to 3.07 (line A), which is statistically 

significant. This may be attributable to the nature 

of semantic information used in our experiments: 

we used the user session and click-though data to 

extract semantic knowledge, which may be se-

mantically more specific than the probability of 

word substitution in a query collection as a 

whole, which is used by Jones et al. (2006b). 

Finally, the character type features also contri-

buted to reducing the error rate (lines A and E). 

In particular, the observation that the addition of 

semantic features without the character type fea-

tures (comparing lines B and E) did not improve 

the error rate indicates that the character type 

features are also important in bringing about the 

contribution of semantic features.   

Figure 2 displays the test data precision/recall 

curve of one of the runs of MART that uses all 

features. The x-axis of the graph is the confi-

dence score of classification P(c|q), which was 

set to 0.5 for the results in Table 3. At this confi-

dence, the model achieves 70% precision with 

the recall slightly higher than 60%. In the graph, 

we observe a familiar trade-off between preci-

sion and recall, which is useful for practical ap-

plications that may favor one over the other.  

In order to find out where the weaknesses of 

our classifiers lie, we performed a manual error 

analysis on the same MART run whose results 

are shown in Figure 2. Most of the classification 

errors are false negatives, i.e., the model failed to 

predict a case of term variation as such. The most 

conspicuous error is the failure to capture ab-

breviations, such as failing to capture the altera-

tion between 十 条 中 学 校  juujoochuugakkou 

'Juujoo middle school' and 十条中 juujoochuu, 

which our edit distance-based features fail as the 

length difference between a term and its abbrevi-

ation is significant. Addition of more targeted 

features for this subclass of term variation (e.g., 

Okazaki et al., 2008a) is called for, and will be 

considered in future work. Mistakes in the Ro-

manization of kanji characters were not always 

punished as the query and the candidate string 

may contain the same mistake, but when they 

occurred in either in the query or the candidate 

string (but not in both), the result was destruc-

tive: for example, we assigned a wrong Romani-

zation on 水銀燈 as suiginnakari ‘mercury lamp’, 

as opposed to the correct suiginntou, which caus-

es the failure to capture the alteration with 水銀

痘 suiginntou, (a misspelling of 水銀燈). Using 

N-best (N>1) candidate pronunciations for kanji 

terms or using all possible pronunciations for 

kanji characters might reduce this type of error. 

Finally, the features of our models are the edit 

distance functions themselves, rather than the 

individual edit rules or operations. Using these 

individual operations as features in the classifica-

tion task directly has been shown to perform well 

on spelling correction and normalization tasks 

(e.g., Brill and Moore, 2000; Okazaki et al., 

2008b). Okazaki et al.’s (2008b) method of gene-

rating edit operations may not be viable for our 

purposes, as they assume that the original and 

candidate strings are very similar in their surface 

representation – they target only spelling variants 

and inflection in English. One interesting future 

avenue to consider is to use the edit distance 

functions in our current model to select a subset 

of query-candidate pairs that are similar in terms 

of these functions, separately for the surface and 

Romanized forms, and use this subset to align 

the character strings in these query-candidate 

pairs as described in Brill and Moore (2000), and 

add the edit operations derived in this manner to 

the term variation identification classifier as fea-

tures.  

6 Conclusion 

In this paper we have addressed the problem of 

acquiring term variations in Japanese query logs 

for the purpose of query expansion. We generate 

term variation candidates efficiently by mining 

query log data, and our best classifier, based on 

the MART algorithm, can make use of both edit-

distance-based and semantic features, and can 

identify term variation with the precision of 70% 

at the recall slightly higher than 60%. Our next 

 
Figure 2: Precision/Recall Curve of MART 
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goal is to use and evaluate the term variation col-

lected by the proposed method in an actual 

search scenario, as well as improving the per-

formance of our classifier by using individual, 

character-dependent edit operations as features in 

classification.  
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Abstract

Argumentative Zoning (AZ) is an anal-
ysis of the argumentative and rhetorical
structure of a scientific paper. It has been
shown to be reliably used by independent
human coders, and has proven useful for
various information access tasks. Annota-
tion experiments have however so far been
restricted to one discipline, computational
linguistics (CL). Here, we present a more
informative AZ scheme with 15 categories
in place of the original 7, and show that
it can be applied to the life sciences as
well as to CL. We use a domain expert
to encode basic knowledge about the sub-
ject (such as terminology and domain spe-
cific rules for individual categories) as part
of the annotation guidelines. Our results
show that non-expert human coders can
then use these guidelines to reliably an-
notate this scheme in two domains, chem-
istry and computational linguistics.

1 Introduction

Teufel et al. (1999) define the task of Argumenta-
tive Zoning (AZ) as a sentence-by-sentence clas-
sification with mutually exclusive categories from
the annotation scheme given in Fig. 1. The reason-
ing behind the categories is inspired by the notion
of a knowledge claim(Myers, 1992; Luukkonen,
1992): the act of writing a paper corresponds to
an attempt of claiming ownership for a new piece
of knowledge, which is to be integrated into the
repository of scientific knowledge in the authors’
field by the process of peer review and publica-
tion. In the cause of this process, the authors
have to convince the reviewers that the knowledge
claim of the paper is valid (Swales, 1990; Hy-
land, 1998). What AZ aims to model, then, are
some of the relevant stages in this argument. We

divide the paper intozones, OTHER, OWN and
BACKGROUND. These are defined on the basis
of who owns the knowledge claim in the corre-
sponding segment. There are also two categories
which are defined by their relationship to existing
work, BASIS and CONTRAST. That means that
parts of the AZ scheme are similar to citation func-
tion classification schemes from the area of cita-
tion content analysis (Garfield, 1965; Weinstock,
1971; Spiegel-Rüsing, 1977), and to automatic
citation function classification (Nanba and Oku-
mura, 1999; Garzone and Mercer, 2000; Teufel
et al., 2006). The remaining categories, AIM and
TEXTUAL , fulfil different rhetorical functions for
the presentation of the paper. AIM points out the
paper’s main knowledge claim, a rhetorical move
which may be repeated in the conclusion and the
introduction. TEXTUAL explains the physical lo-
cation of information, e.g., by giving a section
overview or presenting a summary of a subsec-
tion. On the basis of human-annotated training
material, AZ can be automatically classified using
supervised machine learning.

Category Description
A IM Statement of research goal.

BACKGROUND Description of generally accepted
background knowledge.

BASIS Existing KC provides basis for new
KC.

CONTRAST An existing KC is contrasted, com-
pared, or presented as weak.

OTHER Description of existing KC.

OWN Description of any other aspect of
new KC.

TEXTUAL Indication of paper’s textual
structure.

Figure 1: AZ Annotation Scheme (Teufel et al.
1999).

Rhetorical information marking is useful for
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many novel information access tasks. For in-
stance, information retrieval can profit from
rhetorical information in the form of paradigm
shift statements (Chichester et al., 2005), as papers
containing such statements have a high impact in
an area. 75% of the ”Faculty of 1000 Biology”
papers (which are chosen by experts for their spe-
cial importance) contain paradigm shift sentences
(Agnes Sandor, personal communication).

AZ annotation allows the construction of multi-
and single document summaries which concen-
trate on differences and similarities to related
(cited) work. AZ can also be used for search in
a data base of scientific articles, in particular for
enhanced citation indexing. This has been pre-
viously explored in a task-based evaluation, were
users were asked to list positive and negative cita-
tions they would expect in a paper, given a short
extract (Teufel, 2001). In that task, AZ-based ex-
tracts outperformed other document surrogates.

Feltrim et al. (2005) present a writing support
system which analyses students’ drafts of sum-
maries for their PhD theses, performs an AZ anal-
ysis on them and critiques the rhetorical structure
of the students’ draft on the basis of it.

The definition of the AZ categories is based
on rhetorical principles and should be decidable,
in principle, without specific domain knowledge
about what is discussed in detail in the paper. We
present here the first evidence that AZ categories
can be reliably recognised across scientific disci-
plines, using chemistry and computational linguis-
tics as our model disciplines for these experiments.

The categories just introduced are abstract and
depend on the annotators’ interpretation of a
rhetorical argument. This means that there is
no guarantee that several independent annotators
would annotate similarly. It is therefore crucial
that all annotations at a high level of interpreta-
tion are backed up by human annotation with more
than one annotator. However, annotations of cita-
tion function classification typically use only the
untested annotation of a single human annotator
as gold standard, who is typically the designer of a
scheme (Spiegel-Rüsing, 1977; Weinstock, 1971;
Nanba and Okumura, 1999; Garzone and Mercer,
2000). Teufel et al. (2006) are the only exception
who test their citation function scheme using mod-
ern corpus-linguistic annotation methodology.

A study of human agreement on AZ annotation
exists (Teufel et al., 1999), but this uses articles

from only one discipline, namely computational
linguistics. In this paper, we use a similar method-
ology to Teufel et al., but with data from two disci-
plines. The preliminary conclusion from these ex-
periments is that annotation with chemistry papers
has resulted in higher agreement than annotation
with computational linguistics papers.

We extend the AZ annotation scheme to make
further distinctions, as will be discussed in sec-
tion 2. We also created an environment in which
domain knowledge that an annotator might have
about the science in a paper is systematically dis-
regarded. We will describe how this was done in
section 3, and then present the annotation experi-
ment itself in section 4.

2 Changes to the AZ Scheme

Argumentative Zoning II (AZ-II) is a new annota-
tion scheme, which is an elaboration of the orig-
inal AZ scheme. It is presented in Fig. 2. Our
annotation guidelines are 111 sides of A4 and con-
tain a decision tree, detailed description of the se-
mantics of the 15 categories, 75 rules for pairwise
distinction of the categories and copious examples
from both chemistry and computational linguis-
tics. During guideline development, 70 chemistry
papers and 20 CL papers were used, which are dis-
tinct from the ones used for annotation. It took 3
months part-time-work to prepare the guidelines
for CL, and substantially less time to adapt them
for chemistry. We have made them available at
www.cl.cam.ac.uk/research/nl/sciborg.

The differences between the original AZ and
AZ-II are as follows:

• Category AIM remained the same.
• Category BACKGROUND was renamed

CO GRO, or common ground.
• Category OTHER was split into other peo-

ple’s work (OTHR) and the authors’ own pre-
vious work (PREV OWN).

• Category BASIS was split into usage (USE)
and support (SUPPORT).

• Category CONTRAST was split into neu-
tral comparison (CODI), contradiction
(ANTISUPP), and a category combining
research gaps with criticism (GAP WEAK).

• Category OWN was split into description of
method (OWN MTHD), results (OWN RES)
and conclusions (OWN CONC), and a cate-
gory which specifies recoverable errors made
by the authors (OWN FAIL ).
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Category Description Category Description
A IM Statement of specific research goal, or

hypothesis of current paper
OWN CONC Findings, conclusions (non-measurable)

of own work
NOV ADV Novelty or advantage of own approach CODI Comparison, contrast, difference to

other solution (neutral)
CO GRO No knowledge claim is raised (or knowl-

edge claim not significant for the paper)
GAP WEAK Lack of solution in field, problem with

other solutions
OTHR Knowledge claim (significant for paper)

held by somebody else. Neutral descrip-
tion

ANTISUPP Clash with somebody else’s results or
theory; superiority of own work

PREV OWN Knowledge claim (significant) held by
authors in a previous paper. Neutral de-
scription.

SUPPORT Other work supports current work or is
supported by current work

OWN MTHD New Knowledge claim, own work:
methods

USE Other work is used in own work

OWN FAIL A solution/method/experiment in the pa-
per that did not work

FUT Statements/suggestions about future
work (own or general)

OWN RES Measurable/objective outcome of own
work

Figure 2: AZ-II Annotation Scheme.

• Category TEXTUAL was discontinued, be-
cause it is less informative than the other cat-
egories.

• Two new categories were introduced,
NOV ADV (advantages of the new knowl-
edge claim) and FUT (declaration of
limitations or future work).

Our AZ-II categories are more fine-grained than
the original AZ categories. The reasons for this are
twofold: To bring AZ closer to contemporary cita-
tion function schemes, and to incorporate distinc-
tions recently found useful by other researchers.
For instance, Chichester et al. (2005) argue that
ANTISUPP is particularly important. The finer
grain in AZ-II has been accomplished purely by
splitting existing AZ categories; hence, the coarser
AZ categories are recoverable (with the exception
of the TEXTUAL category). Annotation examples
are given in the appendix.

As in AZ, citations are an important but not nec-
essarily decisive cue for a sentence to belong to
a particular zone. The guidelines mention cita-
tions as one factor in deciding whether a knowl-
edge claim holds, and citations occur in several
examples, so it is likely that the presence of ci-
tations would have influenced annotators in their
decision.

Of the changes, the distinction which is likely
to have the greatest impact on the annotation is
the split of OWN according to the stage of the au-
thors’ problem solving process – into methods, re-
sults, conclusion or local failure. In most life sci-
ences, descriptions of research as a problem solv-
ing process are a dominant phenomenon, whereby

problem-solving descriptions can be of differing
length and embeddedness. For instance, in syn-
thetic chemistry, the starting compound for the
main synthesis in the paper may first have to be
synthesised itself (if it is not commercially avail-
able, for instance). In that case, arriving at the
compound is an intermediate, smaller problem-
solving process which enables the larger problem-
solving process that represents the new KC.

The original AZ scheme didn’t mark the dis-
tinction, possibly because it is not as easily ob-
servable in CL as it is in the life sciences, and
because problem-solving stages were not part of
the main analytic interest of AZ, which focused
on how scientific argumentation is related to de-
scriptions of own and other work. Also, neither of
the traditional AZ applications (summarisation or
citation indexing) had any direct use for the subdi-
vided categories. But in the life sciences, there
are applications which would make use of such
a subdivision. For instance, in chemistry there
is a niche for search applications which guide
searchers directly to the method and/or result sec-
tions in papers. Specifically, the OWN FAIL cat-
egory is motivated by the failure–and–recovery
search. In text, OWN FAIL marks cases where the
authors helpfully mention in passing steps which
were found not to work during a long synthetic
procedure (often the ‘total synthesis’ of a com-
pound which is found in nature). Such cases hap-
pen frequently, and are generally followed by a
‘recovery’ statement which explains how the prob-
lem can be avoided. Another possible applica-
tion that calls for a subdivision is Feltrim et al.’s
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(2005) rhetorical writing system for novice writ-
ers. It trains novices in writing rhetorically well-
formed abstracts and therefore must have a way of
distinguishing, for instance, between methods and
results.

Note that several of the applications based on
AZ and AZ-II in general rely on the rare categories
much more than they rely on the more frequent
categories. OWN FAIL is an example of a rare but
important category, and so is AIM , which is central
to summarisation applications. The comparative
and contrastive categories CODI ANTISUPP and
GAP WEAK, on the other hand, are particularly
useful to citation-based search applications.

Other AZ-like schemes for scientific discourse
created for the biomedical domain (Mizuta and
Collier, 2004) and for computer science (Feltrim
et al., 2005) also made the decision to subdivide
OWN, in similar ways to how we propose here.
The current work, however, is the first experimen-
tal proof that humans can make this distinction –
and the others encoded in AZ-II – reliably, and in
two quite distinct disciplines.

3 Discipline-Independent Non-Expert
Annotation

An important principle of AZ is that its categories
can be decided without domain knowledge. This
rule is anchored in the guidelines: when choosing
a category, no reasoning about the scientific facts
is allowed. The avoidance of domain-knowledge
has its motivation in a strategy for a hypotheti-
cal automatic text-understanding system for unre-
stricted texts. Given the state of the art in text pro-
cessing and knowledge representation, text under-
standing systems should in our opinion use gen-
eral, rhetorical, and logical aspects of the text,
rather than attempting to recognise or represent the
scientific knowledge contained in the text. What
the human annotation – the gold standard – should
then do is to simulate the best possible output that
such a system could theoretically create.

Annotators may use only general, rhetorical or
linguistic knowledge; knowledge which is shared
by all proficient speakers of a language. The
guidelines spell out what is meant by these general
principles. For instance, one can use lexical and
syntactic parallelism in a text to infer that the au-
thors were setting up a comparison between them-
selves and some other approach.

There is, however, a problem with annotator ex-

pertise and with the exact implementation of the
“no domain knowledge” principle. This problem
does not become apparent until one starts work-
ing with disciplines where at least some of the an-
notators or guideline developers are not domain
experts (chemistry, in our case). Domain experts
naturally use scientific knowledge and inference
when they make annotation decisions. It would
be unrealistic to expect them to be able to disre-
gard their domain knowledge simply because they
were instructedto do so. Additionally, when all
annotators/scheme developers are domain experts,
it is hard to even notice the cases where they “ac-
cidentally” use domain knowledge during anno-
tation. We therefore artificially created a situa-
tion where all annotators are “semi-informed non-
experts”, which forces them to comply with the
principle, namely by the following rules:

Justification: Annotators have to justify all an-
notation decisions by pointing to some text-based
evidence, and by giving the section heading in the
guidelines that describes the particular reason for
assigning the category. General discipline-specific
knowledge an annotator may happen to have is ex-
cluded as justification. Annotators’ justifications
have to be typed into the annotation tool and are
open to challenge during the training phase. Much
of the allowable justification comes in the form
of general and linguistic principles, e.g., an ex-
plicit cue phrase, the title, or the structural simi-
larity of textual strings. For instance, annotators
are allowed to infer that process-VPs in the title
are likely to be the contribution (knowledge of the
actual concrete contribution of a paper is a require-
ment for annotation of AIM ).

Discipline-specific Generics: The guidelines
contain a section with high-level facts about the
general research practices in the discipline. These
generics constitute the onlyscientificknowledge
which is acceptable as a justification, and are
aimed to help non-expert annotators recognise
how a paper might relate to already established
scientific knowledge, so that they will be able
to avoid common mistakes about the knowledge
claim status of a certain fact. For instance, the bet-
ter they are able to distinguish what is commonly
known from what is newly claimed by the authors,
the more consistent their annotation will be.

Annotation with expert-trained non-expert an-
notators means that a domain expert must be avail-
able initially, during the development of the anno-
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tation scheme and the guidelines, either as a co-
developer or as an informant. The domain expert’s
job is to describe scientific knowledge in that do-
main in a general way, in as far as it is neces-
sary for the scheme’s distinctions, and to write the
domain-specific rules for the individual categories,
including the choice of example sentences. This
means that the guidelines are split into a domain-
general and a domain-specific part.

The discipline-specific generics in chemistry
come in the form of a “chemistry primer”, a 10-
page collection of high-level scientific domain
knowledge. It contains: a glossary of words a non-
chemist would not have heard about or would not
necessarily recognise as chemical terminology; a
list of possible types of experiments performed
in chemistry; a list of commonly used machin-
ery; a list of non-obvious negative characterisa-
tions of experiments and compounds (“sluggish”,
“inert”); and a list of possible types of knowledge
claims. For instance, in chemistry each chemi-
cal substance mentioned can have in principle a
knowledge claim associated with its discovery or
invention – with the exception of water, rock salt,
the metals known in prehistory and a few others.
If a compound or process is however considered to
be so commonly used that it is in the “general do-
main” (e.g., “the Stern–Volmer equation” or “the
Grignard reaction”), it is no longer associated with
somebody’s knowledge claim, and as a result its
usage is not to be marked with category USE.

Descriptions of individual categories can have
domain-specific subsections, as well as the gen-
eral ones. For instance, if the text states that the
authors could not replicate a published result, the
guidelines describe the cases when this is the au-
thors’ fault (OWN FAIL ) in contrast to the cases
where this is an indirect accusation of the previ-
ous experiment (ANTISUPP).

Another potentially unclear distinction is
between results (OWN RES) and conclusions
(OWN CONC). The difference is defined on
the basis of how much reasoning is necessary
to be able to make the statement concerned. If
all the authors did was to read a measurement
off an instrument, the label OWN RES applies.
Reasoning points to OWN CONC; it is some-
times linguistically marked (“therefore”, “we
conclude”, “this means that”), but in many cases,
domain knowledge may be required to decide
whether reasoning was necessary to make a

certain statement. Possible OWN RES statements,
according to the chemistry primer, include: state-
ments of simple numerical result; descriptions of
graphs; descriptions of atoms’ positions in three-
dimensional space; statements of trends, unless
a reason for these results is given; comparisons
of results of more than one experiment, unless a
reason for these results is given.

The chemistry primer also lists phenomena
which in a typical experiment would be read off
chemical machinery (e.g., “Stark effect”). This list
gives the non-expert annotator an objective crite-
rion to answer the question how likely it is that a
certain statement by the authors was arrived at by
inference. We also found that our list of phenom-
ena which can be read off machinery, which was
compiled from the first 30 papers, generalised well
to the other 40 papers considered.

The chemistry primer is not an attempt to sum-
marise all methods and experimentation types in
chemistry; this would be impossible to do, cer-
tainly in a few pages. Rather, it tries to answer
many of the high-level questions a non-expert
would have to an expert, in the framework of AZ.

This methodology allows to hire expert and
non-expert annotators and bring them in line with
each other. We believe it could be expanded rel-
atively easily into many other disciplines, using
domain experts which create similar primers for
genetics, experimental physics, cell biology, but
re-using the bulk of the guidelines.

4 Annotation Experiments

The annotators were the co-developers of the an-
notation scheme and the authors of this paper.
Whereas all three annotators have good back-
ground knowledge in CL, the largest difference be-
tween them concerns their expertise in chemistry:
Annotator A is a PhD-level chemist, Annotator B
has two years’ of undergraduate training in chem-
istry and can therefore be considered a chemical
semi-expert, and Annotator C has no specialised
chemistry knowledge.

As agreement measure we choose the Kappa
coefficientκ (Fleiss, 1971; Siegel and Castellan,
1988), the agreement measure predominantly used
in natural language processing research (Carletta,
1996). κ corrects raw agreementP (A) for agree-
ment by chanceP (E):

κ = P (A)−P (E)
1−P (E)
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No matter how many items or annotators, or
how the categories are distributed,κ = 0 when
there is no agreement other than what would be
expected by chance, andκ = 1 when agreement
is perfect. If two annotators agreeless than ex-
pected by chance,κ can also be negative. Chance
agreementP (E) is defined as the level of agree-
ment which would be reached by random anno-
tation using the same distribution of categories as
the real annotators. All work done here is reported
in terms of Fleiss’κ. 1 κ is also designed to ab-
stract over the number of annotators as its formula
relies on the proportion of expected vs. observed
pairwise agreements possible in a pool. That is,
κ for k annotators will be an average of the val-
ues ofκ taking all possiblem-tuples of annota-
tors from the annotator pool (withm < k). As a
side effect of its definition of random agreement,
κ treats agreement in a rare category as more sur-
prising, and rewards such agreement more than an
agreement in a frequent category. This is a desir-
able property, because we are more interested in
the performance of the rare rhetorical categories
than we are in the performance of the more fre-
quent zone categories.

4.1 Data

For chemistry, 30 random-sampled papers from
journals published between 2004 and 2007 by the
Royal Society of Chemistry were used for anno-
tation2. The papers cover all areas of chemistry
and some areas close to chemistry, such as climate
modelling, process engineering, and a double-
blind medical trial. The data used for the exper-
iment contains a total of 3745 sentences.

For computational linguistics, 9 papers were an-
notated, with a total of 1629 sentences. The papers
were published between 1998 and 2001 at ACL,
EACL or EMNLP conferences, and were taken
from the Computation and Language archive.
Both chemistry and CL papers were automatically
sentence-split, with manual correction of errors;
acknowledgement sections were disregarded. A

1Artstein and Poesio (2008) observe that there are several
version ofκ which differ in howP (E) is calculated. In par-
ticular, Fleiss’ (1971)κ calculatesP (E) as the average ob-
served distribution of all annotators, whereas Cohen’s (1960)
κ calculatesP (E) only on the basis of the other annotator(s).

2100 papers across a spread of disciplines from the Jan-
uary 2004 issues of the RSC were selected blindly (but with
an attempt to cover most areas of chemistry). 30 out of these
were random sampled for annotation; the rest were used for
annotation development.

Category Chem CL Category Chem CL
OWN MTHD 25.4 55.6 SUPPORT 1.5 0.7
OWN RES 24.0 5.6 GAP WEAK 1.1 1.0
OWN CONC 15.1 10.7 FUT 1.0 1.4
OTHR 8.3 10.0 NOV ADV 1.0 0.8
USE 7.9 2.7 CODI 0.8 1.2
CO GRO 6.7 5.7 OWN FAIL 0.8 0.1
PREV OWN 3.4 1.7 ANTISUPP 0.5 0.6
A IM 2.3 1.8

Figure 3: Frequency of AZ-II Categories (in %).

web-based annotation tool was used for guideline
definition and for annotation.

Our choice of which data sets to use was ef-
fected by the relative length of papers more than
by the journal/conference distinction. Average
article length between chemistry journal articles
(3650 words/paper) and CL conference articles
(4219 words/paper) is comparable, so conference
articles in CL seem a much better choice for com-
parative work than journal publications, which are
often very long in CL. Additionally, conferences
have a high profile in CL, and we found the con-
ference publications to be of high editorial quality.
We are nevertheless interested in the structure of
longer journal articles, and plan to investigate CL
journals in the future.

The annotations were done using a web-based
annotation tool. Every sentence is assigned a cat-
egory. No communication between the annotators
was allowed.

4.2 Results

The inter-annotator agreement for chemistry
was κ = 0.71 (N=3745,n=15,k=3). For CL,
the inter-annotator agreement wasκ = 0.65
(N=1629,n=15,k=3). For comparison, the
inter-annotator agreement for the original, CL-
specific AZ with 7 categories wasκ = 0.71
(N=3420,n=7,k=3). Given the subjective nature
of the task and the fact that AZ-II introduces ad-
ditional distinctions, the AZ-II agreement can be
considered acceptable for CL and relatively high
for chemistry. Additionally, chemistry annota-
tion used one non-expert annotator, who had no
chemistry-specific domain knowledge apart from
that in the chemistry primer.

The distribution of categories for the two disci-
plines is given in Fig. 3. As expected, there is a
large discrepancy in frequency between the (rare)
rhetorical categories and the (much more fre-
quent) zone categories OWN MTHD, OWN RES,
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OWN CONC, OTHR and CO GRO. For supervised
learning, too few examples of any category can be
a problem. There are methods which attempt to re-
duce the annotation effort by using a trained clas-
sifier to suggest possible cases to a human. How-
ever, the classifier can only find examples similar
to the ones that have already been manually clas-
sified, when the real problem is a recall-problem,
i.e., the challenge is to find more new examples in
the multitude of possible sentences. To solve this
in a fundamentally sound way, there seems to be
no other way than to annotate more texts, at the
cost of more human effort.

If we consider the differences across disci-
plines, the most striking ones concern the distri-
bution of OWN MTHD, which is more than twice
as common in CL (56% v. 25%), and OWN RES,
which is far more common in chemistry overall
(24% v 5.6%). Usage of other people’s knowl-
edge claims or materials also seems to be more
common in chemistry, or at least more explicitly
expressed (7.9% vs 2.7%). With respect to the
shorter, rarer categories, there is a marked dif-
ference in OWN FAIL (0.1% in CL, but 0.8% in
chemistry3 and SUPPORT, which is more common
in chemistry (1.5% vs 0.7%). However, this effect
is not present for ANTISUPP (contradiction of re-
sults), the “reverse” category to SUPPORT, (0.6%
in CL vs 0.5% in chemistry).

As far as the chemistry annotation is con-
cerned, it is interesting to find out whether Annota-
tor A was influenced during annotation by domain
knowledge which Annotator C did not have, and
Annotator B had to a lower degree4. We there-
fore calculated pairwise agreement, which was
κAC = 0.66, κBC = 0.73 andκAB = 0.73 (all:
N=3745,n=15,k=2). That means that the largest
disagreements were between the non-expert (C)
and the expert (A), though the differences are
modest. This might point to the fact that Anno-
tators A and B might have used a certain amount
of domain-knowledge which the chemistry primer
in the guidelines does not yet, but should, cover.

In an attempt to determine how well cate-
gories are defined, we first consider the binary dis-

3These are not large differences in absolute terms – 55
items identified as OWN FAIL by at least one annotator in
chemistry, vs. 7 such items in CL, the relative difference is
large and confirms that in chemistry papers, particularly de-
scriptions of synthesis procedures, OWN FAIL cases appear
relatively frequently.

4This question does not arise in the case of CL, as all an-
notators can be considered experts in this respect.

tinction between zone categories (OWN MTHD,
OWN RES, OWN CONC, OWN FAIL , OTHR,
PREV OWN and CO GRO) and rhetorical cate-
gories (the other 8). This shows an inter-annotator
agreement ofκbinary = 0.78 (N=3745, n=2, k=3)
for chemistry andκbinary = 0.65 (N=1629, n=2,
k=3) for CL, indicating that annotators find it rel-
atively easy (chemistry) or at least not more dif-
ficult than the overall distinction (CL) to distin-
guish these two types of categories. We next per-
form Krippendorff’s (1980) category distinctions
(Fig. 4). Here, all categories apart from the one
diagnosed are collapsed, and what is reported is
the difference of inter-annotator agreement when
compared to the overall distinctiveness (κ=0.71
for chemistry,κ=0.65 for CL). Where the differ-
ence is positive, the annotators could distinguish
the given category better than they could distin-
guish all categories, and where they are negative,
correspondingly worse.5

The results confirm that categories USE, A IM ,
OWN MTHD, OWN RES and FUT are particularly
well distinguished in both disciplines. This is a
positive result, as these categories are important
for several types of searches. In these cases the
guidelines seem to fully suffice for their descrip-
tion, but then again good performance of AIM ,
FUT and USE is not that surprising, as they are
signalled clearly by linguistic and non-linguistic
cues. However, there are three categories with
particularly low distinguishability in both disci-
plines: ANTISUPP, OWN FAIL and PREV OWN.
As ANTISUPP and OWN FAIL are crucial for the
envisaged downstream tasks, the problems with
their definition should be identified and fixed. We
are in the process of systematically troubleshoot-
ing the guidelines for those categories.

The table also shows that category definition
has discipline-specific problems. For instance,
we believe that the fact that distinctiveness for
OWN FAIL is so bad for CL must be due to the
fact that we only encountered very few potential
OWN FAIL cases in this domain. The definition
of the categories SUPPORT and NOV ADV also
seem to be substantially more confusing for CL
than for chemistry. However, CODI is a category
which shows average distinctiveness for CL, but
much worse distinctiveness for chemistry. We be-
lieve this is due to the fact that comparisons of

5All κ values for chemistry were measured with N=3745,
n=2, k=3; for CL with N=1629, n=2, k=3.
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methods and approaches are more common in CL
and are clearly expressed, whereas in chemistry
the objects that are involved in comparisons are
more varied and at a lower grade of abstraction
(e.g., compounds, properties of compounds, coef-
ficients, etc.), which obviously has a negative ef-
fect on the distinctiveness of this category.

Category Chem CL Category Chem CL
USE +0.12 +0.00 NOV ADV -0.07 -0.23
A IM +0.09 +0.08 OWN CONC -0.08 -0.13
OWN MTHD +0.05 +0.05 GAP WEAK -0.08 -0.16
OWN RES +0.02 +0.04 PREV OWN -0.11 -0.15
FUT +0.01 +0.06 OWN FAIL -0.19 -0.43
CO GRO -0.01 -0.03 ANTISUPP -0.35 -0.32
SUPPORT -0.04 -0.12 CODI -0.36 +0.00
OTHR -0.06 +0.07

Figure 4: Krippendorff’s Diagnostics for Category
Distinction (κ, relative to Overall Distinctiveness).

We also provide a direct comparison of our an-
notation results with those from the original AZ
scheme. Comparisons between two similar anno-
tation schemes can be made by collapsing those
categories in each scheme which are not distin-
guished in the other scheme. Such a comparison
can of course only ever approximate the smallest
common denominator between two schemes.

The AZ-II categories were collapsed into a set
of six categories that closely resemble AZ cate-
gories, as described in section 2 (with OWN simu-
lated by the union of OWN FAIL , OWN MTHD,
OWN RES, OWN CONC, FUT, and NOV ADV).
This created a 6-category AZ annotation.

As TEXTUAL is not marked up in AZ-II, the
original AZ annotation was also collapsed, by in-
corporating TEXTUAL examples into OWN. The
two 6-pronged AZ-annotations are now more di-
rectly comparable. Inter-annotator agreement for
the collapsed AZ-II showedκ = 0.75 (N=3745,
n=6, k=3). This compares favourably to the col-
lapsed AZ’s agreement ofκ = 0.71 (N=3420, n=6,
k=3); but when comparing the raw numerical re-
sults one should consider that different data from
different disciplines is used (chemistry in AZ-II,
CL in AZ).

These results should be interpreted as a pos-
itive result for the domain-independence of AZ,
and also for the feasibility of using trained non-
experts as annotators. The additional work that
went into the guidelines has produced annotation
of a high consistency, even though AZ-II provides
more distinctions (15 categories vs. 7 in AZ).

There is also the faint possibility that discourse
annotation of chemistry is intrinsically easier than
discourse annotation of CL,becauseit is a more
established discipline and not despite of it. For
instance, it is likely that the problem-solving cat-
egories OWN FAIL , OWN MTHD, OWN RES and
OWN CONC are easier to describe in a discipline
with an established methodology (such as chem-
istry), than they are in a younger, developing dis-
cipline such as computational linguistics.

5 Conclusion

Argumentative Zoning is an analysis of the rhetor-
ical progression of the scientific argument in a pa-
per. In this paper, we have made the following
contributions to this analysis:

• We have presented a more informative
scheme, which additionally recognises the
structure of an experiment in terms of prob-
lem solving (method – results – conclusions)
and makes more fine-grained distinctions in
some of the sentiment-inspired relational cat-
egories (e.g., criticism and comparisons to
other approaches).

• We introduced an annotation methodology
which attempts to systematically exclude the
use of annotators’ extraneous domain knowl-
edge from the annotation.

• We have experimentally shown that human
coders can independently annotate this new
AZ scheme in two distinct disciplines. Our
results show inter-annotator agreements of
κ=0.65 andκ=0.71 for computational lin-
guistics and chemistry, respectively.

Overall, the outcome of this work indicates
that the phenomena described in AZ can be de-
fined in a domain-independent way. The experi-
ment also tested how realistic the “expert-trained
non-expert” approach to domain-knowledge free
annotation is. The fact that the agreement be-
tween three annotators (an expert, a semi-expert,
and a non-expert) is acceptable overall vindicate
our task definition as domain-knowledge free (us-
ing the tools of justification and domain-specific
generic knowledge). However, the agreements in-
volving the semi-expert are higher than the agree-
ment between expert and non-expert. This prob-
ably means that the chemistry generics were not
fully adequate to ensure that the non-expert un-
derstood enough of the chemistry to achieve the
highest-possible agreement.
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The automation of AZ-annotation is underway.
This requires adaptation of the high-level features
used in AZ (Teufel and Moens, 2002) to chemistry.
We are also preparing an annotation experiment
with naive annotators. Another research avenue
is the expansion of the guidelines to other disci-
plines such as bio-medicine, and to longer journal
articles, e.g., in computational linguistics.

6 Acknowledgements

This work was funded by EPSRC project Sciborg
(EP/C010035/1).

Appendix: Annotation Examples6

A IM We now describe in this paper a synthetic route for the
functionalisation of the framework of mesoporous organosil-
ica by free phosphine oxide ligands, which can act as a tem-
plate for the introduction of lanthanide ions. (b514878b)

A IM The aim of this paper is to examine the role that train-
ing plays in the tagging process. . . (9410012)

NOV ADV Moreover, the simplicity and ease of application
of the electrochemical method [...] should also be emphasised
and makes it an interesting and valuable synthetic tool.

(b513402a)

NOV ADV Other than the economic factor, an important ad-
vantage of combining morphological analysis and error detec-
tion/correction is the way the lexical tree associated withthe
analysis can be used to determine correction possibilities.

(9504024)

CO GRO A wide range of organosulfur compounds are bi-
ologically active and some find commercial application as
fungicides and bactericides1−4 . (b514441h)

CO GRO It has often been stated that discourse is an inher-
ently collaborative process . . . (9504007)

OTHR In their system, antibody immobilized on a solid sub-
strate reacts with antigen, which binds with another antibody
labelled with peroxidase. (b313094k)

OTHR But in Moortgat’s mixed system all the different re-
source management modes of the different systems are left in-
tact in the combination and can be exploited in different parts
of the grammar. (9605016)

PREV OWN As a program aimed at the applications of

imines(2a,g,5) we have studied the formation of carbanions
from imines and their subsequent reactions. (b200198e)

PREV OWN Earlier work of the author (Feldweg 1993;
Feldweg 1995a) within the framework of a project on corpus
based development of lexical knowledge bases (ELWIS) has
produced LIKELY . . . (9502038)

OWN MTHD In order for it to be useful for our purposes,
the following extensions must be made: (0102021)

OWN MTHD On the other hand, a tertiary amide can be an
excellent linking functional group. (b201987f)

6Corpus examples are taken from our chemistry and CL
data sets; indicated by their respective file numbers.

OWN FAIL Initial attempts to improve the dehydration of4
via chemical or thermal means were unsuccessful; similarly,
attempts to couple the chlorosilane (Me3Si)2 (Me2ClSi)CH
with Ag2O failed. (b510692c)

OWN FAIL When the ABL algorithms try to learn with two
completely distinct sentences, nothing can be learned.

(0104006)
OWN RES While the acid 1a readily coupled to the olefin,

the corresponding boronic ester was surprisingly inert under
the reaction conditions. (b311492a)

OWN RES All the curves have a generally upward trend but
always lie far below backoff (51% error rate). (0001012)

OWN CONC It is unlikely that every VOC emit ted by plants
serves an ecological or physiological role . . . (b507589k)

OWN CONC Unless grammar size takes on proportionately
much more significance for such longer inputs, which seems
implausible, it appears that in fact the major problems do not
lie in the area of grammar size, but in input length.(9405033)

GAP WEAK Various methods of preparation have been de-
veloped, but they often suffer from low yield and tedious
separation.[16,17,28,31] (b200888m)

GAP WEAK Here, we will produce experimental evidence
suggesting that this simple model leads to serious overesti-
mates of system error rates. . . (9407009)

CODI However, the measured values of the dielectric con-
stant (ǫ = 310) are lower than the values reported by Ganguli
and coworkers(21) for BSTO pellets sintered at 1100degC . . .

(b506578j)
CODI Unlike most research in pragmatics that focuses on

certain types of presuppositions or implicatures, we provide a
global framework in which one can express all these types of
pragmatic inferences. (9504017)

SUPPORT This is in line with the findings of Martin and Illas

for inorganic solids(84,85). (b515732c)

SUPPORT Work similar to that described here has been car-
ried out by Merialdo (1994), with broadly similar conclusions.

(9410012)

USE The diamine10 was prepared following a previously

published procedure(4d). (b110865b)

USE We use the framework for the allocation and transfer
of control of Whittaker and Stenton (1988). (9504007)

FUT Our further efforts are directed towards the above
goal,. . . and overcoming limitations pertaining to the electron-
poor arylboronic acids. (b311492a)

FUT An important area for future research is to develop
principled methods for identifying distinct speaker strategies
pertaining to how they signal segments. (9505025)

ANTISUPP Although purification of 8b to a de of 95percent

has been reported elsewhere[31], in our hands it was always
obtained as a mixture of the two [EQN]-diastereomers.

(b310767a)

ANTISUPP This result challenges the claims of recent dis-
course theories (Grosz and Sidner 1986, Reichman 1985)
which argue for a the close relation between cue words and
discourse structure. (9504006)
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Abstract

Set expansion refers to expanding a par-
tial set of “seed” objects into a more com-
plete set. One system that does set ex-
pansion is SEAL (Set Expander for Any
Language), which expands entities auto-
matically by utilizing resources from the
Web in a language-independent fashion.
In this paper, we illustrated in detail the
construction of character-level wrappers
for set expansion implemented in SEAL.
We also evaluated several kinds of wrap-
pers for set expansion and showed that
character-based wrappers perform better
than HTML-based wrappers. In addition,
we demonstrated a technique that extends
SEAL to learn binary relational concepts
(e.g., “x is the mayor of the city y”) from
only two seeds. We also show that the
extended SEAL has good performance on
our evaluation datasets, which includes
English and Chinese, thus demonstrating
language-independence.

1 Introduction

SEAL1 (Set Expander for Any Language) is a
set expansions system that accepts input ele-
ments (seeds) of some target set S and automat-
ically finds other probable elements of S in semi-
structured documents such as web pages. SEAL
is a research system that has shown good perfor-
mance in previously published results (Wang and
Cohen, 2007). By using only three seeds and
top one hundred documents returned by Google,
SEAL achieved 90% in mean average precision
(MAP), averaged over 36 datasets from three lan-
guages: English, Chinese, and Japanese. Un-
like other published research work (Etzioni et al.,
2005), SEAL focuses on finding small closed sets

1http://rcwang.com/seal

of items (e.g., Disney movies) rather than large
and more open sets (e.g., scientists).

In this paper, we explore the impact on perfor-
mance of one of the innovations in SEAL, specif-
ically, the use of character-level techniques to de-
tect candidate regular structures, or wrappers, in
web pages. Although some early systems for
web-page analysis induce rules at character-level
(e.g., such as WIEN (Kushmerick et al., 1997) and
DIPRE (Brin, 1998)), most recent approaches for
set expansion have used either tokenized and/or
parsed free-text (Carlson et al., 2009; Talukdar et
al., 2006; Snow et al., 2006; Pantel and Pennac-
chiotti, 2006), or have incorporated heuristics for
exploiting HTML structures that are likely to en-
code lists and tables (Nadeau et al., 2006; Etzioni
et al., 2005).

In this paper, we experimentally evaluate
SEAL’s performance under two settings: 1) us-
ing the character-level page analysis techniques
of the original SEAL, and 2) using page analy-
sis techniques constrained to identify only HTML-
related wrappers. Our conjecture is that the less
constrained character-level methods will produce
more candidate wrappers than HTML-based tech-
niques. We also conjecture that a larger number of
candidate wrappers will lead to better performance
overall, due to SEAL’s robust methods for ranking
candidate wrappers.

The experiments in this paper largely vali-
date this conjecture. We show that the HTML-
restricted version of SEAL performs less well,
losing 13 points in MAP on a dozen Chinese-
language benchmark problems, 8 points in MAP
on a dozen English-language problems, and 2
points in MAP on a dozen Japanese-language
problems.

SEAL currently only handles unary relation-
ships (e.g., “x” is a mayor). In this paper, we
show that SEAL’s character-level analysis tech-
niques can, like HTML-based methods, be read-
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ily extended to handle binary relationships. We
then demonstrate that this extension of SEAL can
learn binary concepts (e.g., “x is the mayor of
the city y”) from a small number of seeds, and
show that, as with unary relationships, MAP per-
formance is 26 points lower when wrappers are
restricted to be HTML-related. Furthermore, we
also illustrate that the learning of binary concepts
can be bootstrapped to improve its performance.

Section 2.1 explains how SEAL constructs
wrappers and rank candidate items for unary re-
lations. Section 3 describes the experiments and
results for unary relations. Section 4 presents the
method for extending SEAL to handle binary re-
lationships, as well as their experimental results.
Related work is discussed in Section 5, and the
paper concludes in Section 6.

2 SEAL

2.1 Identifying Wrappers for Unary
Relations

When SEAL performs set expansion, it accepts a
small number of seeds from the user (e.g., “Ford”,
“Nissan”, and “Toyota”). It then uses a web
search engine to retrieve some documents that
contain these instances, and then analyzes these
documents to find candidate wrappers (i.e., regu-
lar structures on a page that contain the seed in-
stances). Strings that are extracted by a candidate
wrapper (but are not equivalent to any seed) are
called candidate instances. SEAL then statisti-
cally ranks the candidate instances (and wrappers),
using the techniques outlined below, and outputs a
ranked list of instances to the user.

One key step in this process is identifying can-
didate wrappers. In SEAL, a candidate wrapper is
defined by a pair of left and right character strings,
` and r. A wrapper “extracts” items from a partic-
ular document by locating all strings in the docu-
ment that are bracketed by the wrapper’s left and
right strings, but do not contain either of the two
strings. In SEAL, wrappers are always learned
from, and applied to, a single document.

Table 1 illustrates some candidate wrappers
learned by SEAL. (Here, a wrapper is written as
`[...]r, with the [...] to be filled by an extracted
string.) Notice that the instances extracted by
wrappers can and do appear in surprising places,
such as embedded in URLs or in HTML tag at-
tributes. Our experience with these character-
based wrappers lead us to conjecture that exist-

ing heuristics for identifying structure in HTML
are fundamentally limited, in that many potentially
useful structures will not be identified by analyz-
ing HTML structure only.

SEAL uses these rules to find wrappers. Each
candidate wrapper `, r is a maximally long pair of
strings that bracket at least one occurrence of ev-
ery seed in a document: in other words, for each
pair `, r, the set of strings C extracted by `, r has
the properties that:

1. For every seed s, there exists some c ∈ C that
is equivalent to s; and

2. There are no strings `′, r′ that satisfy property
(1) above such that ` is a proper suffix of `′

and r is a proper prefix of r′.

SEAL’s wrappers can be found quite efficiently.
The algorithm we use has been described previ-
ously (Wang and Cohen, 2007), but will be ex-
plained again here for completeness. As an ex-
ample, below shows a mock document, written in
an unknown mark-up language, that has the seeds:
Ford, Nissan, and Toyota located (and boldfaced).
There are two other car makers hidden inside this
document (can you spot them?). In this section,
we will show you how to automatically construct
wrappers that reveal them.

GtpKxHnIsSaNxjHJglekuDialcLBxKHforDxkrpW
NaCMwAAHOFoRduohdEXocUvaGKxHaCuRAxjHjnOx
oTOyOTazxKHAUdIxkrOyQKxHToYotAxjHCRdmLxa
puRAPprtqOVKxHfoRdxjHaJAScRFrlaFoRDofwNL
WxKHtOYotaxkrHxQKlacXlGEKtxKHNisSanxkrEq

Given a set of seeds and a semi-structured doc-
ument, the wrapper construction algorithm starts
by locating all strings equivalent to a seed in the
document; these strings are called seed instances
below. (In SEAL, we always use case-insensitive
string matching, so a string is “equivalent to” any
case variant of itself.) The algorithm then inserts
all the instances into a list and assigns a unique id
to each of them by its index in the list (i.e., the id
of an instance is its position in the list.)

For every seed instance in the document, its
immediate left character string (starting from the
first character of the document) and right charac-
ter string (ending at the last character of the docu-
ment) are extracted and inserted into a left-context
trie and a right-context trie respectively, where the
left context is inserted in reversed character or-
der. (Here, we implemented a compact trie called
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URL: http://www.shopcarparts.com/
Wrapper: .html" CLASS="shopcp">[...] Parts</A> <br>
Content: acura, audi, bmw, buick, cadillac, chevrolet, chevy, chrysler, daewoo, daihatsu, dodge, eagle, ford, ...

URL: http://www.allautoreviews.com/
Wrapper: </a><br> <a href="auto reviews/[...]/
Content: acura, audi, bmw, buick, cadillac, chevrolet, chrysler, dodge, ford, gmc, honda, hyundai, infiniti, isuzu, ...

URL: http://www.hertrichs.com/
Wrapper: <li class="franchise [...]"> <h4><a href="#">
Content: buick, chevrolet, chrysler, dodge, ford, gmc, isuzu, jeep, lincoln, mazda, mercury, nissan, pontiac, scion, ...

URL: http://www.metacafe.com/watch/1872759/2009 nissan maxima performance/
Wrapper: videos">[...]</a> <a href="/tags/
Content: avalon, cars, carscom, driving, ford, maxima, nissan, performance, speed, toyota

URL: http://www.worldstyling.com/
Wrapper: ’>[...] Accessories</option><option value=’
Content: chevy, ford, isuzu, mitsubishi, nissan, pickup, stainless steel, suv, toyota

Table 1: Examples of wrappers constructed from web pages given the seeds: Ford, Nissan, Toyota.

Patricia trie where every node stores a substring.)
Every node in the left-context trie maintains a list
of ids for keeping track of the seed instances that
follow the string associated with that node. Same
thing applies to the right-context trie symmetri-
cally. Figure 1 shows the two context tries and
the list of seed instances when provided the mock
document with the seeds: Ford, Nissan, and Toy-
ota.

Provided that the left and right context tries are
populated with all the contextual strings of ev-
ery seed instance, the algorithm then finds maxi-
mally long contextual strings that bracket at least
one seed instance of every seed. The pseudo-code
for finding these strings for building wrappers is
illustrated in Table 2, where Seeds is the set of
input seeds and ` is the minimum length of the
strings. We observed that longer strings produce
higher precision but lower recall. This is an in-
teresting parameter that is worth exploring, but
for this paper, we consider and use only a min-
imum length of one throughout the experiments.
The basic idea behind the pseudo-code is to first
find all the longest possible strings from one trie
given some constraints, then for every such string
s, find the longest possible string s′ from another
trie such that s and s′ bracket at least one occur-
rence of every given seed in a document.

The wrappers constructed as well as the items
extracted given the mock document and the exam-
ple seeds are shown below. Notice that Audi and
Acura are uncovered (did you spot them?).

Wrapper: xKH[...]xkr
Content: audi, ford, nissan, toyota

Wrapper: KxH[...]xjH
Content: acura, ford, nissan, toyota

Wrappers MakeWrappers(Trie `, Trie r)
Return Wraps(l, r) ∪Wraps(r, l)

Wrappers Wraps(Trie t1, Trie t2)
For each n1 ∈ TopNodes(t1, `)

For each n2 ∈ BottomNodes(t2, n1)
For each n1 ∈ BottomNodes(t1, n2)

Construct a new Wrapper(Text(n1), Text(n2))
Return a union of all wrappers constructed

Nodes BottomNodes(Trie t1, Node n′)
Find node n ∈ t1 such that:

(1) NumCommonSeeds(n, n′) == |Seeds|, and
(2) All children nodes of n (if exist) fail on (1)

Return a union of all nodes found

Nodes TopNodes(Trie t, int `)
Find node n ∈ t such that:

(1) Text(n).length ≥ `, and
(2) Parent node of n (if exist) fails on (1)

Return a union of all nodes found

String Text(Node n)
Return the textual string represented by the
path from root to n in the trie containing n

Integer NumCommonSeeds(Node n1, Node n2)
For each index i ∈ Intersect(n1, n2):

Find the seed at index i of seed instance list
Return the size of the union of all seeds found

Integers Intersect(Node n1, Node n2)
Return n1.indexes ∩ n2.indexes

Table 2: Pseudo-code for constructing wrappers.

Table 1 shows examples of wrappers con-
structed from real web documents. We have also
observed items extracted from plain text (.txt),
comma/tab-separated text (.csv/.tsv), latex (.tex),
and even Word documents (.doc) of which the
wrappers have binary character strings. These ob-
servations support our claim that the algorithm is
independent of mark-up language. In our experi-
mental results, we will show that it is independent
of human language as well.
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Figure 1: The context tries and the seed instance list constructed given the mock document presented in
Section 2.1 and the seeds: Ford, Nissan and Toyota.

2.2 Ranking Wrappers and Candidate
Instances

In previous work (Wang and Cohen, 2007), we
presented a graph-walk based technique that is
effective for ranking sets and wrappers. This
model encapsulates the relations between docu-
ments, wrappers, and extracted instances (entity
mentions). Similarly, our graph also consists of
a set of nodes and a set of labeled directed edges.
Figure 2 shows an example graph where each node
di represents a document, wi a wrapper, and mi

an extracted entity mention. A directed edge con-
nects a node di to a wi if di contains wi, a wi to a
mi ifwi extractsmi, and a di to ami if di contains
mi. Although not shown in the figure, every edge
from node x to y actually has an inverse relation
edge from node y to x (e.g., mi is extracted by wi)
to ensure that the graph is cyclic.

We will use letters such as x, y, and z to denote
nodes, and x r−→ y to denote an edge from x to
y with labeled relation r. Each node represents an
object (document, wrapper, or mention), and each
edge x r−→ y asserts that a binary relation r(x, y)
holds. We want to find entity mention nodes that
are similar to the seed nodes. We define the sim-
ilarity between two nodes by random walk with
restart (Tong et al., 2006). In this algorithm, to
walk away from a source node x, one first chooses
an edge relation r; then given r, one picks a target
node y such that x r−→ y. When given a source
node x, we assume that the probability of picking
an edge relation r is uniformly distributed among
the set of all r, where there exist a target node y
such that x r−→ y. More specifically,

Figure 2: Example graph built by Random Walk.

P (r|x) =
1

|r : ∃y x r−→ y| (1)

We also assume that once an edge relation r is
chosen, a target node y is picked uniformly from
the set of all y such that x r−→ y. More specifi-
cally,

P (y|r, x) =
1

|y : x r−→ y| (2)

In order to perform random walk, we will build
a transition matrix M where each entry at (x, y)
represents the probability of traveling one step
from a source node x to a target node y, or more
specifically,

Mxy =
∑
r

P (r|x)P (y|r, x) (3)

We will also define a state vector ~vt which rep-
resents the probability at each node after iterating
through the entire graph t times, where one itera-
tion means to walk one step away from every node.
The state vector at t+ 1 iteration is defined as:

~vt+1 = λ~v0 + (1− λ)M~vt (4)
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Since we want to start our walk from the seeds,
we initialize v0 to have probabilities uniformly
distributed over the seed nodes. In each step of
our walk, there is a small probability λ of tele-
porting back to the seed nodes, which prevents us
from walking too far away from the seeds. We
iterate our graph until the state vector converges,
and rank the extracted mentions by their probabil-
ities in the final state vector. We use a constant λ
of 0.01 in the experiments below.

2.3 Bootstrapping Candidate Instances
Bootstrapping refers to iterative unsupervised set
expansion. This process requires minimal super-
vision, but is very sensitive to the system’s perfor-
mance because errors can easily propagate from
one iteration to another. As shown in previous
work (Wang and Cohen, 2008), carefully designed
seeding strategies can minimize the propagated er-
rors. Below, we show the pseudo-code for our
bootstrapping strategy.

stats← ø, used← inputs
for i = 1 to M do
m = min(3, |used|)
seeds← selectm(used) ∪ top(list)
stats← expand(seeds, stats)
list← rank(stats)
used← used ∪ seeds

end for

where M is the total number of iterations, inputs
are the two initial input seeds, selectm(S) ran-
domly selects m different seeds from the set S,
used is a set that contains previously expanded
seeds, top(list) returns an item that has the high-
est rank in list, expand(seeds, stats) expands
the selected seeds using stats and outputs accu-
mulated statistics, and rank(stats) applies Ran-
dom Walk described in Section 2.2 on the accu-
mulated stats to produce a list of items. This
strategy dumps the highest-ranked item into the
used bucket after every iteration. It starts by ex-
panding two input seeds. For the second iteration,
it expands three seeds: two used plus one from
last iteration. For every successive iteration, it ex-
pands four seeds: three randomly selected used
ones plus one from last iteration.

3 Experiments with Unary Relations

We would like to determine whether character-
based or HTML-based wrappers are more suited
for the task of set expansion. In order to do that,

# L. Context [...]R. Context Eng Jap Chi Avg
1 .+[...].+ 87.6 96.9 95.4 93.3
2 .*[<>].*[...].*[<>].* 85.7 96.8 90.7 91.1
3 .*>[...]<.* 85.7 96.7 90.7 91.0
4 .*<.+?>.*[...].*<.+?>.* 80.1 95.8 83.7 86.5
5 .*<.+?>[...]<.+?>.* 79.6 94.9 82.4 85.6

Table 3: The performance (MAP) of various types
of wrappers on semi-structured web pages.

we introduce five types of wrappers, as illustrated
in Table 3. The first type is the character-based
wrapper that does not have any restriction on the
alphabets of its characters. Starting from the sec-
ond type, the allowable alphabets in a wrapper be-
come more restrictive. The fifth type requires that
an item must be tightly bracketed by two complete
HTML tags in order to be extracted.

All pure HTML-based wrappers are type 5, pos-
sibly with additional restrictions imposed (Nadeau
et al., 2006; Etzioni et al., 2005). SEAL cur-
rently does not use an HTML parser (or any other
kinds of parser), so restrictions cannot be easily
imposed. As far as we know, there isn’t an agree-
ment on what restrictions make the most sense
or work the best. Therefore, we evaluate perfor-
mance for varying wrapper constraints from type
1 (most general) to type 5 (most strict) in our ex-
periments.

For set expansion, we use the same evaluation
set as in (Wang and Cohen, 2007) which contains
36 manually constructed lists across three differ-
ent languages: English, Chinese, and Japanese (12
lists per language). Each list contains all instances
of a particular semantic class in a certain language,
and each instance contains a set of synonyms (e.g.,
USA, America).

Since the output of our system is a ranked list
of extracted instances, we choose mean average
precision (MAP) as our evaluation metric. MAP
is commonly used in the field of Information Re-
trieval for evaluating ranked lists because it is sen-
sitive to the entire ranking and it contains both re-
call and precision-oriented aspects. The MAP for
multiple ranked lists is simply the mean value of
average precisions calculated separately for each
ranked list. We define the average precision of a
single ranked list as:

AvgPrec(L) =

|L|∑
r=1

Prec(r)× isFresh(r)

Total # of Correct Instances
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where L is a ranked list of extracted instances, r
is the rank ranging from 1 to |L|, Prec(r) is the
precision at rank r, or the percentage of correct
synonyms above rank r (inclusively). isFresh(r)
is a binary function for ensuring that, if a list con-
tains multiple synonyms of the same instance (or
instance pair), we do not evaluate that instance (or
instance pair) more than once. More specifically,
the function returns 1 if a) the synonym at r is cor-
rect, and b) it is the highest-ranked synonym of its
instance in the list; it returns 0 otherwise.

We evaluate the performance of each type of
wrapper by conducting set expansion on the 36
datasets across three languages. For each dataset,
we randomly select two seeds, expand them by
bootstrapping ten iterations (where each iteration
retrieves at most 200 web pages only), and evalu-
ate the final result. We repeat this process three
times for every dataset and report the average
MAP for English, Japanese, and Chinese in Ta-
ble 3. As illustrated, the more restrictive a wrapper
is, the worse it performs. As a result, this indicates
that further restrictions on wrappers of type 5 will
not improve performance.

4 Set Expansion for Binary Relations

4.1 Identifying Wrappers for Binary
Relations

We extend the wrapper construction algorithm de-
scribed in Section 2.1 to support relational set ex-
pansion. The major difference is that we introduce
a third type of context called the middle context
that occurs between the left and right contexts of
a wrapper for separating any two items. We ex-
ecute the same algorithm as before, except that a
seed instance in the algorithm is now a seed in-
stance pair bracketing some middle context (i.e.,
“s1·middle· s2”).

Given some seed pairs (e.g., Ford and USA),
the algorithm first locates the seeds in some given
documents. For every pair of seeds located, it ex-
tracts their left, middle, and right contexts. The
left and right contexts are inserted into their corre-
sponding tries, while the middle context is inserted
into a list. Every middle context is assigned a flag
indicating whether the two instances bracketing it
were found in the same or reversed order as the
input seed pairs. Every entry in the seed instance
list described previously now stores a pair of in-
stances as one single string (e.g. “Ford/USA”). An
id stored in a node now matches the index of a pair

of instances as well as a middle context.
Shown below is a mock example document of

which the seed pairs: Ford and USA, Nissan and
Japan, Toyota and Japan are located (and bold-
faced).

GtpKxHnIsSaNoKpjaPaNxjHJgleTuoLpBlcLBxKH
forDEFcuSAxkrpWNapnIkAAHOFoRdawHDaUSauoh
deQsKxHaCuRAoKpJapANxjHdIjWnOxoTOyOTaVaq
jApaNzxKHAUdIEFcgErmANyxkrOyQKxHToYotAoK
pJApaNxjHCRdmtqOVKxHfoRdoKpusAxjHaJASzEi
nSfrlaFoRDLMmpuSaofwNLWxKHtOYotaEFcjAPan
xkrHxQKzrHpoKdGEKtxKHNisSanEFcJApAnxkrEq

After performing the abovementioned proce-
dures on this mock document, we now have con-
text tries that are much more complicated than
those illustrated in Figure 1, as well as a list of
middle contexts similar to the one shown below:

id Seed Pairs r Middle Context
0 Nissan/Japan No oKp
1 Nissan/Japan No EFc
2 Nissan/Japan Yes xkrHxQKzrHpoKd...
4 Toyota/Japan No oKp
6 Toyota/Japan Yes xjHdIjWnOxo
9 Ford/USA No EFc

13 Ford/USA Yes xkrpWNapnIkAAHO

where r indicates if the two instances bracketing
the middle context were found in the reversed or-
der as the input seed pairs. In order to find the
maximally long contextual strings, the “Intersect”
function in the set expansion pseudo-code pre-
sented in Table 2 needs to be replaced with the
following:

Integers Intersect(Node n1, Node n2)
Define S = n1.indexes ∩ n2.indexes
Return the largest subset s of S such that:

Every index ∈ s corresponds to same middle context

which returns those seed pairs that are bracketed
by the strings associated with the two input nodes
with the same middle context. A wrapper for re-
lational set expansion, or relational wrapper, is
defined by the left, middle, and right contextual
strings. The relational wrappers constructed from
the mock document given the example seed pairs
are shown below. Notice that Audi/Germany and
Acura/Japan are discovered.

Wrapper: xKH[.1.]EFc[.2.]xkr
Content: audi/germany, ford/usa, nissan/japan,

toyota/japan
Wrapper: KxH[.1.]oKp[.2.]xjH
Content: acura/japan, ford/usa, nissan/japan,

toyota/japan
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Dataset ID Item #1 vs. Item #2 Lang. #1 Lang. #2 Size Complete?
US Governor US State/Territory vs. Governor English English 56 Yes

Taiwan Mayor Taiwanese City vs. Mayor Chinese Chinese 26 Yes
NBA Team NBA Team vs. NBA Team Chinese English 30 Yes

Fed. Agency US Federal Agency Acronym vs. Full Name English English 387 No
Car Maker Car Manufacturer vs. Headquartered Country English English 122 No

Table 4: The five relational datasets for evaluating relational set expansion.

Mean Avg. Precision Precision@100
Datasets 1 2 3 4 5 1 2 3 4 5

US Governor 97.4 89.3 89.2 89.3 89.2 55 50 51 50 50
Taiwan Mayor 99.8 95.6 94.3 91.3 90.8 25 25 24 23 23

NBA Team 100.0 99.9 99.9 99.9 99.2 30 30 30 30 30
Fed. Agency 43.7 14.5 5.2 11.1 5.2 96 55 20 40 20

Car Maker 61.7 0.0 0.0 0.0 0.0 74 0 0 0 0
Average 80.5 59.9 57.7 58.3 56.9 56 32 25 29 25

Table 5: Performance of various types of wrappers on the five relational datasets after first iteration.

Mean Avg. Precision Precision@100
Datasets 1 2 3 4 5 1 2 3 4 5

US Governor 98.9 97.0 95.3 94.1 93.9 55 55 54 53 53
Taiwan Mayor 99.8 98.3 96.9 93.8 94.3 25 25 25 24 24

NBA Team 100.0 100.0 99.2 98.4 98.6 30 30 30 30 30
Fed. Agency 65.5 54.5 27.9 55.3 30.0 97 97 61 95 69

Car Maker 81.6 0.0 0.0 0.0 0.0 90 0 0 0 0
Average 89.2 70.0 63.9 68.3 63.4 59 41 34 40 35

Table 6: Performance of various types of wrappers on the five relational datasets after 10th iteration.

4.2 Experiments with Binary Relations

For binary relations, we performed the same ex-
periment as with unary relations described in Sec-
tion 3. A relational wrapper is of type t if the
wrapper’s left and right context match t’s con-
straint for left and right respectively, and also
that the wrapper’s middle context match both con-
straints.

For choosing the evaluation datasets for rela-
tional set expansion, we surveyed and obtained a
dozen relationships, from which we randomly se-
lected five of them and present in Table 4. Each
dataset was then manually constructed. For the
last two datasets, since there are too many items,
we tried our best to make the lists as exhaustive as
possible.

To evaluate relational wrappers, we performed
relational set expansion on randomly selected
seeds from the five relational datasets. For every
dataset, we select two seeds randomly and boot-
strap the relational set expansion ten times. The
results after the first iteration are shown in Table 5
and after the tenth iteration in Table 6. When com-
puting precision at 100 for each resulting list, we
kept only the top-most-ranked synonym of every

instance and remove all other synonyms from the
list; this ensures that every instance is unique. No-
tice that for the “Car Maker” dataset, there exists
no wrappers of types 2 to 5; thus resulting in zero
performance for those wrapper types. In each ta-
ble, the results indicate that character-based wrap-
pers perform the best, while those HTML-based
wrappers that require tight HTML bracketing of
items (type 3 and 5) perform the worse.

In addition, the results illustrate that bootstrap-
ping is effective for expanding relational pairs of
items. As illustrated in Table 6, the result of find-
ing translation pairs of NBA team names is per-
fect, and it is almost perfect for finding pairs of
U.S. states/territories and governors, as well as
Taiwanese cities and mayors. In finding pairs of
acronyms and full names of federal agencies, the
precision at top 100 is nearly perfect (97%). The
results for finding pairs of car makers and coun-
tries is good as well, with a high precision of
90%. For the last two datasets, we believe that
MAP could be improved by increasing the number
of bootstrapping iterations. Table 7 shows some
example wrappers constructed and instances ex-
tracted for wrappers of type 1.
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Seeds: kentucky / steve beshear, north dakota / john hoeven
URL: http://wikifoia.pbworks.com/Alaska-Governor-Sarah-Palin

Wrapper: Governor [.2.]">[.1.] Governor

URL: http://blogs.suntimes.com/sweet/2008/02/sweet state dinner for governo.html
Wrapper: <br /> <br /> The Honorable [.2.], Governor of [.1.] <br /> <br />

URL: http://en.wikipedia.org/wiki/United States Senate elections, 2010
Wrapper: " title="Governor of [.1.]">Governor</a> <a href="/wiki/[.2.]" title="

URL: http://ballotbox.governing.com/2008/07/index.html
Wrapper: , [.1.]’s [.2.],

Content: alabama / bob riley, alaska / sarah palin, arizona / janet napolitano, arkansas / mike huckabee, california /
arnold schwarzenegger, colorado / bill ritter, connecticut / mary jodi rell, delaware / ruth ann minner, florida
/ charlie crist, georgia / sonny perdue, hawaii / linda lingle, idaho / butch otter, illinois / rod blagojevich. . .

Seeds: cia / central intelligence agency, usps / united states postal service
URL: http://www1.american.edu/dccampus/links/whitehouse.html

Wrapper: <a href="http://www.[.1.].gov" class="Links2nd">[.2.]</a><span class="Links2nd">

URL: http://www.usembassy.at/en/us/gov.htm
Wrapper: /" target=" blank">[.2.] ([.1.])</a> -

URL: http://www.nationmaster.com/encyclopedia/List-of-United-States-federal-agencies
Wrapper: The [.2.] ([.1.]) is

URL: http://www.nationmaster.com/encyclopedia/List-of-United-States-federal-agencies
Wrapper: </li> <li>[.1.]- <a href="/encyclopedia/[.2.]" onmouseover="pv(event, 2

Content: achp / advisory council on historic preservation, arc / appalachian regional commission, cftc / commod-
ity futures trading commission, cia / central intelligence agency, cms / centers for medicare and medicaid
services, exim bank / export import bank of the united states, ntrc / national transportation research center. . .

Seeds: mazda / japan, venturi / france
URL: http://www.jrfilters.com/filtres/index.php?lng=en

Wrapper: &page=filtres&lng=en">[.1.]&nbsp;&nbsp;&nbsp;([.2.])</option><option value="index.php?

URL: http://www.jrfilters.com/suspensions/index.php?famille=1&lng=en
Wrapper: &lng=en">[.1.]&nbsp;&nbsp;&nbsp;([.2.])</option><option value="index.php?famille=1&rubrique1

URL: http://www.street-car.net/forums/forumdisplay.php?f=10
Wrapper: "><strong>[.1.]</strong></a> </div> <div class="smallfont">Country of origin:[.2.].

URL: http://www.allcarcentral.com/
Wrapper: file.html">[.1.],[.2.]</a><br />

Content: abarth / italy, acura / japan, alfa romeo / italy, aston martin / england, auburn / usa, audi / germany, austin
healey / england, austin / england, auto union / germany, balwin / usa, bandini / italy, bentley / england, bmw
/ germany, brabham / england, bricklin / usa, bristol / england, brm / england, bucciali / france. . .

Table 7: Examples of (type 1) wrappers constructed and instances (contents) extracted.

1510



5 Related Work

In recent years, many research has been done
on extracting relations from free text (e.g., (Pan-
tel and Pennacchiotti, 2006; Agichtein and Gra-
vano, 2000; Snow et al., 2006)); however, al-
most all of them require some language-dependent
parsers or taggers for English, which restrict
the language of their extractions to English only
(or languages that have these parsers). There
has also been work done on extracting relations
from HTML-structured tables (e.g., (Etzioni et al.,
2005; Nadeau et al., 2006; Cafarella et al., 2008));
however, they all incorporated heuristics for ex-
ploiting HTML structures; thus, they cannot han-
dle documents written in other mark-up languages.

Extracting relations at character-level from
semi-structured documents has been proposed
(e.g., (Kushmerick et al., 1997),(Brin, 1998)).
In particular, Brin’s approach (DIPRE) is the
most similar to ours in terms of expanding rela-
tional items. One difference is that it requires
maximally-long contextual strings to bracket all
seed occurrences. This technique has been experi-
mentally illustrated to perform worse than SEAL’s
approach on unary relations (Wang and Cohen,
2007). Brin presented five seed pairs of author
names and book titles that he used in the exper-
iment (unfortunately, he did not provide detailed
results). We input the top two seed pairs listed in
his paper into the relational SEAL, performed ten
bootstrapping iterations (took about 3 minutes),
and obtained 26,000 author name/book title pairs
of which the precision at 100 is perfect (100%).

6 Conclusions

In this paper, we have described in detail an al-
gorithm for constructing document-specific wrap-
pers automatically for set expansion. In the exper-
imental results, we have illustrated that character-
based wrappers are better suited than HTML-
based wrappers for the task of set expansion. We
also presented a method that utilizes an additional
middle context for constructing relational wrap-
pers. We also showed that our relational set ex-
pansion approach is language-independent; it can
be applied to non-English and even cross-lingual
seeds and documents. Furthermore, we have il-
lustrated that bootstrapping improves the perfor-
mance of relational set expansion. In the future,
we will explore automatic mining of binary con-
cepts given only the relation (e.g., “mayor of”).
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Abstract

Named entity disambiguation concerns
linking a potentially ambiguous mention
of named entity in text to an unambigu-
ous identifier in a standard database. One
approach to this task is supervised classifi-
cation. However, the availability of train-
ing data is often limited, and the avail-
able data sets tend to be imbalanced and,
in some cases, heterogeneous. We pro-
pose a new method that distinguishes a
named entity by finding the informative
keywords in its surrounding context, and
then trains a model to predict whether each
keyword indicates the semantic class of
the entity. While maintaining a compara-
ble performance to supervised classifica-
tion, this method avoids using expensive
manually annotated data for each new do-
main, and thus achieves better portability.

1 Introduction

While technology on named entity recognition
(NER) matures, many researchers in the field of
information extraction (IE) gradually shifted their
focus to more complex tasks such as named en-
tity disambiguation and relation extraction. Both
tasks are particularly important for biomedical text
mining, which concerns automatically extracting
facts from the exponentially growing biomedical
literature (Hunter and Cohen, 2006). One type of
facts is relations between biomedical named en-
tities, such as disease-drug relation, gene-disease
relation, protein-protein interaction (PPI), etc. To
automatically extract these facts, advanced natu-
ral language processing techniques such as parsing
have been adopted to analyse the syntactic and se-
mantic structure of text. The idea is that linguistic
structures between the interacting biological enti-
ties may have common characteristics that can be

exploited by similarity measures or machine learn-
ing algorithms. For example, Erkan et al. (2007)
used the shortest path between two genes accord-
ing to edit distance in a dependency tree to de-
fine a kernel function for extracting gene interac-
tions. Miwa et al. (2008) comparably evaluated a
number of kernels for incorporating syntactic fea-
tures, including the bag-of-word kernel, the subset
tree kernel (Moschitti, 2006) and the graph ker-
nel (Airola et al., 2008), and they concluded that
combining all kernels achieved better results than
using any individual one. Miyao et al. (2008)
used syntactic paths as one of the features to train
a support vector machines (SVM) model for PPIs
and also discussed how different parsers and out-
put representations affected the end results.

Another crucial IE task is named entity disam-
biguation, which concerns grounding mentions of
named entities in text to unambiguous concepts as
defined in some standard dictionary or database.
For instance, given a search term Python, users
may like to see the results grouped into the fol-
lowing categories: a type of snake, a programming
language, or a film (Bunescu and Paşca, 2006).
One approach to such lexical disambiguation tasks
is supervised classification. However, such tech-
niques suffer from the knowledge acquisition bot-
tleneck, meaning that manually annotating train-
ing data is costly and can never satisfy the need by
the machine learning algorithms. In addition, su-
pervised techniques may not yield reliable results
when the distributions of the semantic classes are
different in the training and test datasets (Agirre
and Martinez, 2004; Koeling et al., 2005). For ex-
ample, on the task of word sense disambiguation,
a model trained on a dataset where the predom-
inant sense of the word star is “heavenly body”,
may not work well on text mainly composed of
entertainment news. Such problems are also ma-
jor concerns when developing a system to disam-
biguate biomedical named entities (e.g., protein,
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gene, and disease), for which some researchers
rely on hand-crafted rules in addition to a small
amount of training data (Morgan and Hirschman,
2007; Hakenberg et al., 2008).

This paper proposes a new disambiguation
method that, instead of classifying each individual
occurrence of an entity, it classifies pair-wise re-
lations between the entity mention in question and
the “cue words” in its adjacent context, where each
cue word is assumed to bear a semantic class. We
then select the cue word that has a positive rela-
tion with the entity, and pass its semantic tag to it.
While an individual entity mention may belong to
a large number of semantic classes, a relation can
only take one of two values: positive or negative,
hence transforming a complex multi-classification
problem into a less complicated binary classifica-
tion task. The remainder of the paper is organised
as follows: Section 2 proposes the disambigua-
tion method and Section 3 introduces the task of
disambiguating the model organisms of biomedi-
cal named entities. Section 4 describes in detail
our proposed method and also a number of base-
line systems for comparison purposes. Section 5
shows the evaluation results and discusses the ad-
vantages and drawback of our system, and we fi-
nally conclude in Section 6.

2 Disambiguation as Relation
Classification

The named entity disambiguation task is defined
as follows: given a mention of a named entity in
text, we automatically assign a semantic tag d to
it, where d ∈ D, and D is a pre-compiled dic-
tionary with |D| entries. When |D| is small, the
problem can be approached by supervised classi-
fication. For example, to determine whether an
occurrence of an entity is a protein, a gene or an
RNA, Hatzivassiloglou et al. (2001) compared
performance of 3 supervised classification meth-
ods and reported results near the human agree-
ment rate. Nevertheless, when |D| is large (e.g.,
> 100), the performance of classification may de-
crease, especially when the distribution of d in
training dataset differs from that in the test set. In
other words, when |D| is large, named entity dis-
ambiguation becomes a multi-class classification
task on heterogeneous and imbalanced datasets,
which is challenging for a machine learning model
to learn to discriminate enough between the se-
mantic classes (Japkowicz, 2000).

We propose an alternative method for named
entity disambiguation. Intuitively, in the surround-
ing context of an ambiguous entity, one can of-
ten find “cue words” that are informative indica-
tors of the entity’s semantic category. These cue
words are provided by authors to remind readers
the semantic identity of a named entity. For ex-
ample, in an article about protein p53, phrase “hu-
man protein p53” may be mentioned, where both
human and protein contain semantic information
regarding p53: human indicates the model organ-
ism of p53, and protein suggests the type of this
entity. Such cue words may occur infrequently in
the training data, making it difficult for machine
learning classifiers to capture.

Our method exploits this observation. Given a
sentence, let E be the set of ‘target’ entities (e.g.,
p53) and W of the ‘cue’ words (e.g., human) that
co-occur in a sentence, we define a relation as a
pair r = 〈e, w〉, where e ∈ E and w ∈ W , and
r is a positive relation if e belongs to the semantic
class indicated by w, and is a negative one if not.
Then we can disambiguate e by accomplishing the
following steps: 1) identify W and build a set
of relations R = {〈e, wi〉|wi ∈W, i = 1, 2, .., n},
where n is the size of W ; and 2) classify every
r ∈ R and assign the semantic tag of wj to e such
that rj = 〈e, wj〉 is positive. The first task can be
tackled by a dictionary lookup, or by an NER sys-
tem, if manually annotated data is available. The
second is essentially a binary relation classifica-
tion task, and in this work, we use an SVM model
exploiting bag-of-word and syntactic features.

3 Species Disambiguation

We show the performance of the proposed method
on a task of resolving one major source of am-
biguity in protein and gene entities: model or-
ganisms. Model organisms are species studied to
understand particular biological phenomena. Bi-
ological experiments are often conducted on one
species, with the expectation that the discover-
ies will provide insight into the workings of oth-
ers, including humans, which are more difficult
to study directly. From viruses, prokaryotes, to
plants and animals, there are dozens of organ-
isms commonly used in biological studies, such
as E. coli, Drosophila, Homo sapiens, and hun-
dreds more are frequently mentioned in biologi-
cal research papers. In biomedical articles, entities
of different species are commonly referred to us-
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ing the same name, causing great ambiguity. For
example, searching a protein sequence database,
RefSeq1 with query “tumor protein p53” resulted
in over 100 proteins, as the name is shared by
many organisms.

The importance of distinguishing model organ-
isms has been recognised by the community of
biomedical text mining. Chen et al. (2005) col-
lected gene names from various source databases
and calculated intra- and inter-species ambigui-
ties. Overall, only 25 (0.02%) official symbols
were ambiguous within the organisms. However,
when official symbols from 21 organisms were
combined, the ambiguity increased substantially
to 21, 279 (14.2%) symbols. Hakenberg et al.
(2008) showed that species disambiguation is one
of the most important steps for term normalisa-
tion and identification, which concerns automat-
ically associating mentions of biomedical enti-
ties in text to unique database identifiers (Mor-
gan et al., 2008). Also, the task of extracting
PPIs in the recent BioCreative Challenge II work-
shop (Hirschman et al., 2007) requires protein
pairs to be recognised and normalised, which in-
evitably involves species disambiguation.

More specifically, given a text, in which men-
tions of biomedical named entities are annotated,
a species disambiguation system automatically as-
signs a species identifier, as in a standard database
of model organisms, to every entity mention. The
types of biomedical named entities concerned in
this study are protein, gene, protein complex and
mRNA/cDNA, and we used identifiers from the
NCBI Taxonomy of model organisms.2 The work
focuses on species disambiguation and assumes
that the entities are already identified. In practice,
an automated named entity recogniser (e.g., AB-
NER (Settles, 2005)) should be used before apply-
ing the systems.

4 Approaches

This section describes a number of approaches to
species disambiguation, highlighting the relation
classification method proposed in Section 2.

4.1 Heuristics Baselines

The cue words for species are words denoting
names of model organisms (e.g., mouse as in

1http://www.ncbi.nlm.nih.gov/RefSeq
2http://www.ncbi.nlm.nih.gov/sites/

entrez?db=taxonomy

phrase “mouse p53”). Another clue is the pres-
ence of the species-indicating prefixes in gene and
protein names. For instance, prefix ‘h’ in en-
tity “hSos-1” suggests that it is a human protein.
Throughout this paper, we refer to such cue words
(e.g., mouse, hSos-1) as “species words”. Note
that a species “word” may contain multiple tokens
(e.g., E. Coli).

We encoded this knowledge in a rule-based
species tagging system (Wang and Grover, 2008).
The system takes a 2-step approach. First, it marks
up species words in the document using a species-
word detection program,3 which searches every
word in a dictionary of model organisms and as-
signs a species ID to the word if a match is found.
The dictionary was built using the NCBI taxon-
omy4 and the UniProt controlled vocabulary of
species,5 and in total it contains 420,224 species
words for 324,157 species IDs. When species
words are identified, we disambiguate an entity
mention using one of the following rules:

1. previous species word: If the word preceding an entity
is a species word, assign the species ID indicated by
that word to the entity.

2. species word in the same sentence: If a species word
and an entity appear in the same sentence, assign its
species ID to the entity. When more than one species
word co-occurs in the sentence, priority is given to the
species word to the entity’s left with the smallest dis-
tance. If all species words occur to the right of the en-
tity, take the nearest one.

3. majority vote: assign the most frequently occurring
species ID in the document to all entity mentions.

It is expected that the first rule would produce
good precision. However, it can only disam-
biguate the fraction of entities that happen to have
a species word to their immediate left. The second
rule relaxes the first by allowing an entity to take
the species indicated by its nearest species word
in the same sentence, which should increase recall
but decrease precision. Statistics from our dataset
(see Section 5.1) show that only 5.68% entities can
potentially be resolved by rule 1 and 22.16% by
rule 2, while the majority rule can tackle every en-
tity mention in the dataset.

3The species word detector identifies the cue words and
was used in all the systems studied in this paper. We could
not properly evaluate the detector due to the lack of man-
ually annotated data. Its performance, however, would not
affect the comparative evaluation results, and improvement
to species word detection should increase the performance of
these disambiguation systems.

4ftp://ftp.ncbi.nih.gov/pub/taxonomy/
5http://www.expasy.ch/cgi-bin/speclist
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4.2 Supervised Classification
The disambiguation problem can be approached as
a classification task. Given an entity mention and
its surrounding context, a machine learning model
classifies the entity into one of the classes, where
each class corresponds to a species ID. We car-
ried out experiments with two classification meth-
ods: multi-class classification and one-class clas-
sification, where a maximum entropy model6 was
used for the former and SVM-light7 for the lat-
ter. In one-class classification, we trained a se-
ries of binary SVM classifiers, each constructing
a separating hyperplane that maximises the mar-
gin between the instances of one specific species
(i.e., the target class) and a set of randomly se-
lected instances of other species (i.e., the outlier
class). We used equal numbers of instances for
both classes in training. The following types of
features were used in both multi-class and one-
class experiments, where the values of n were
set empirically by cross-validation on the training
data:

• leftContext The n word lemmas to the left of the entity
(n = 200).

• rightContext The n word lemmas to the right of the
entity (n = 200).

• leftSpeciesIDs The n species IDs to the left of the entity
(with order, n = 5).

• rightSpeciesIDs The n species IDs to the right of the
entity (with order, n = 5).

• leftNouns The n nouns to the left of the entity (with
order, n = 2).

• leftAdjs The n adjectives to the left of the entity (with
order, n = 2).

• leftSpeciesWords The n species word forms to the left
of the entity (n = 5).

• rightSpeciesWords The n species word forms to the
right of the entity (n = 5).

• firstLetter The first character of the entity itself (e.g.,
‘h’ in hP53).

• documentSpeciesIDs All species IDs that occur in the
document in question.

• useStopWords filter out function words.

• useStopPattern filter out words consisting only of digits
and punctuation characters.

Feature selection was also carried out for the
one-class classification experiments. We com-
pared two feature selection methods that report-
edly work well on the task of text classification:
information gain (IG) (Yang and Pedersen, 1997)

6http://homepages.inf.ed.ac.uk/
s0450736/maxent_toolkit.html

7http://svmlight.joachims.org/

The 
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Drosophila Kip3 isorthologue of Klp67A.

Figure 1: Predicate argument structure (PAS).

and Bi-Normal separation (BNS) (Forman, 2003).
IG measures the decrease in entropy when the
feature is given vs. absent, and is defined as:
IG(Y |X) = H(Y ) − H(Y |X) where H(Y ) is
the uncertainty about the value of Y (i.e., Y ’s en-
tropy), and H(Y |X) is Y ’s conditional entropy
given X . The BNS is defined as: |F−1(x) −
F−1(y)|, where F−1 is the standard Normal distri-
bution’s inverse cumulative probability function,
namely, z-score; x is the ratio between the number
of positive cases containing the feature in ques-
tion, and the total number of positive cases; and y
is the ratio between the number of negative cases
containing the feature, and the total number of
negative cases.

We computed a weight for each feature and then
ranked the features according to their weight, with
respect to each feature selection method. The top
10% features were used in training. Given a test
instance, the one-class classification method first
counts the species words in the document that the
instance appears in, and then applies in sequence
the binary models of each occurring species, start-
ing from the most frequent one. For example, if
a document contains 5 occurrences of human and
3 mouse, we first apply the human species model
to judge whether an entity mention is of human
species, and only if not, the mouse model was ap-
plied. The most-frequent species in the document
was used as backup when none of the binary mod-
els gives positive answers.

4.3 Relation Classification

4.3.1 Overview

As for the proposed relation classification method,
in the training phase, we first selected the sen-
tences in which an entity mention and a species
word co-occur, and constructed pair-wise entity-
species relations. We then assigned each relation a
binary label: a relation is positive if the species ID
inferred from the species word matches the gold-
standard species annotation on the entity, and is
negative otherwise. For example, for the sentence
shown in Figure 1, where Drosophila is a species
word, and Kip3 and Klp67A are proteins, relation
〈Kip3, Drosophila〉 is a negative instance and the
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pair 〈Klp67A, Drosophila〉 is a positive one.8

For each relation, a vector of features were ex-
tracted. We followed the PPI extraction method
described in (Miyao et al., 2008), where two types
of features were used for a SVM classifier. The
first was bag-of-word features, i.e., the words be-
fore, between and after the pair of entities, where
the words were lemmatised. We added an ad-
ditional feature of the distance between the en-
tity and the cue word. The other type was syn-
tactic features obtained from parsers. For bag-
of-word features, a linear kernel was used, and
for syntactic ones, a subset tree kernel (Mos-
chitti, 2006) was adopted. The syntactic features
were represented in a flat tree format. Figure 2
shows such a feature for the negative instance
〈Kip3, Drosophila〉 from Figure 1. Note that all
species words (e.g., Drosophila) were normalised
to “SPECIESWORD”, and entities (e.g., Kip3) to
“ENTITY”, which not only reduces the noise in
the feature set, but also makes the model more
species-generic. From the training dataset (see
Section 5.1), 25, 413 relations were extracted, of
which 63.3% were positive.

(ENJU(noun arg1(SPECIESWORD orthologue))
(prep arg12(of orthologue))
(prep arg12(of ENTITY)))

Figure 2: A syntactic feature obtained from the ENJU
parser.

To identify the species of an entity in unseen
text, we first parsed the sentence, and then listed
all pairs of species words and entities as relations.
Having extracted the bag-of-word and syntactic
features from the instance, the trained model was
applied to judge whether each species-entity rela-
tion was positive. The entity mention in a positive
relation would be tagged with the ID indicated by
the species word, while the mentions in negative
relations would be left untagged. The next section
describes in detail how we extracted the syntactic
features from text.

4.3.2 Syntactic Features
Given a sentence, a natural language parser au-
tomatically recognises its syntactic structure and
outputs a parse tree, in which nodes represent
words or syntactic constituents. A path between

8Orthologues are genes/proteins in different species but
have similar sequences. In this example it implies that
Klp67A is a Drosophila protein but Kip3 is not.

Parser Input Output
C&C POS-tagged GR
ENJU POS-tagged PAS
ENJU-Genia POS-tagged PAS
Minipar Sentence-detected Minipar
RASP Tokenised GR
Stanford POS-tagged SD
Stanford-Genia POS-tagged SD

Table 1: Parsers and their input and output format

a pair of nodes can be interpreted as a syntactic re-
lation between sentence units, which was proved
useful to infer biological relations (e.g., Airola et
al., 2008; Miwa et al., 2008).

We experimented with the following parsers
(summarised in Table 1):

• Dependency parsers identify one word as the head
of a sentence and all other words are either a depen-
dent of that word, or else dependent on some other
word that connects to the headword through a sequence
of dependencies. We used Minipar (Lin, 1998) and
RASP (Briscoe et al., 2006) for the experiments;

• Constituent-structured parsers split a sentence into
syntactic constituents such as noun phrases or verb
phrases. We used the Stanford parser (Klein and Man-
ning, 2003), and also a variant of the Stanford parser
(i.e., Stanford-Genia), which was trained on the GE-
NIA treebank (Tateisi et al., 2005) for biomedical text;

• Deep parsers aim to compute in-depth syntactic and
semantic structures based on syntactic theories such as
HPSG (Pollard and Sag, 1994) and CCG (Steedman,
2000). We used the C&C parser (Clark and Curran,
2007), ENJU (Miyao and Tsujii, 2008), and a variant
of ENJU (Hara et al., 2007) adapted for the biomedical
domain (i.e., ENJU-Genia);

There were a number of practical issues to con-
sider when using parsers for this task. Firstly, be-
fore parsing, the text needs to be linguistically pre-
processed, and the quality of this process has a sig-
nificant impact on parsers’ performance. The pre-
processing steps include sentence boundary detec-
tion, tokenisation and part-of-speech (POS) tag-
ging, all of which can be tricky especially when
applied to biomedical text (Grover et al., 2003).
To avoid the noise that can be introduced in the
pre-processing steps and to concentrate on evalu-
ating the performance of the parsers, we used the
same pre-processing tools (Alex et al., 2008a)9

whenever possible. The middle column in Ta-
ble 1 shows how the input text was linguisti-
cally pre-processed with respect to each parser.
A POS-tagged text implies that it was also sen-
tence boundary detected and tokenised Except for

9These particular tools were chosen because they were
adopted to pre-process the ITI-TXM dataset, which we used
in our study.
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RASP and Minipar, all parsers took POS-tagged
text as input. RASP requires POS tags and punctu-
ation labels that were derived from the CLAWS-7
tagset,10 whereas our dataset uses POS labels from
the Penn Treebank tagset (Marcus et al., 1994).
As RASP does not recognise the Penn tagset, we
used its build-in POS tagger. Minipar, on the other
hand, does not support input of tokenised or POS-
tagged text, and therefore took split sentences as
input.

Secondly, the output representations of the
parsers are different and we preferred a format
that depicts relations between words instead of
syntactic constituents. In total, 4 representations
were used: grammatical relation (GR) (Briscoe et
al., 2006), Stanford typed dependency (SD) (de
Marneffe et al., 2006), Minipar’s own representa-
tion (Lin, 1998), and ENJU’s predicate-argument
structure (PAS). All the above representations de-
fine relations of words in triples, where a depen-
dency triple (i.e., GR, SD and Minipar) consists
of head, dependent and relation, and a PAS triple
contains predicate, argument, and relation. Fig-
ure 1 shows a sentence parsed by ENJU in PAS
representation. The right-most column in Table 1
lists the output representation of each parser. A
syntactic path between an entity and a species
word was represented by a sequence of triples,
each following the order of head-dependent or
predicate-argument. These paths were used as
syntactic features for the SVM classifier.

4.4 Spreading Strategies

Except for the majority vote rule, the approaches
described in Sections 4.1 and 4.3 were expected
to yield low recall, because they can only detect
intra-sentential relations, and therefore only be ap-
plied to the entities having at least one species
word appearing in the same sentence.

Since our aim is to disambiguate as many entity
mentions as possible, we would like to “spread”
the decisions from the disambiguated mentions to
their “relatives” in the same document. We define
an entity mention ē as another mention e’s rela-
tive under either of the following conditions: a)
if ē has the same surface form with e; or, b) if
ē is an abbreviation or an antecedent of e, where
abbreviation/antecedent pairs were detected using
the algorithm described in (Schwartz and Hearst,

10http://ucrel.lancs.ac.uk/claws7tags.
html

2003). Given the set of disambiguated mentions,
we then “spread” their species IDs to their rela-
tives in the same document. After this process, the
mentions that do not have any disambiguated rela-
tives would still be missed by the system. In such
cases, we used a “default” species, as determined
by the rule of majority vote (see Section 4.1).

5 Evaluation

5.1 Data and Ontology
The species disambiguation experiments were
conducted using the ITI-TXM corpus (Alex et al.,
2008b), a collection of full-length biomedical re-
search articles manually annotated with linguistic
and biomedical information for developing auto-
matic information extraction systems. The cor-
pus contains two datasets covering slightly dif-
ferent domains: enriched protein-protein interac-
tion (EPPI) and tissue expression (TE). When-
ever possible, protein, protein complex, gene, and
mRNA/cDNA entities were tagged with NCBI
Taxonomy IDs, denoting their species, and it was
the species annotation that this study used.

The EPPI and TE datasets have different distri-
butions of species. The entities in EPPI belong to
118 species with human being the most frequent at
51.98%. In TE, the entities are across 67 species
and mouse is the most frequent at 44.67%.11 The
inter-annotator agreement of species annotation on
EPPI and TE are 86.45% and 95.11%, respectively.

The species disambiguation systems were de-
veloped on the training portions of the EPPI and
TE corpora, each containing 221 articles, and eval-
uated on a dataset combining the development
test (DEVTEST) datasets of EPPI and TE, contain-
ing 58 and 48 articles, respectively. The com-
bined training dataset contains 96, 992 entity men-
tions belonging to 138 model organisms, while the
DEVTEST dataset contains 23, 118 entities of 54
species. The diversity of model organisms in this
corpus highlights the fact that a primary consid-
eration when developing a species disambiguation
system is its ability to distinguish a wide range of
species with minimal additional manual effort.

5.2 Results
5.2.1 Evaluation Metrics
The evaluation was carried out on the DEVTEST

dataset, and the systems are compared using av-
11These figures were obtained from the training split of the

datasets.
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micro-avg. macro-avg.
Maxent 70.48 / 70.48 / 70.48 10.07 / 10.00 / 9.85
SVM 62.24 / 59.35 / 60.76 14.70 / 17.11 / 15.01
SVM (IG) 65.20 / 61.06 / 63.06 14.90 / 19.53 / 16.09
SVM (BNS) 43.61 / 42.63 / 43.11 11.99 / 10.05 / 9.34

Table 2: Evaluation results of the classification systems on
DEVTEST (precision/recall/F1-score, in %)

eraged precision, recall and F1 scores over all
species. In more detail, for each model organism
that appears in the DEVTEST dataset, we collect
two lists of entity mentions of that species: one
from the gold-standard DEVTEST dataset, and the
other from the output of a disambiguation system.
Then the list of system output is compared against
the gold-standard list to obtain precision, recall
and F1 score. For each system, the scores ob-
tained from all species are averaged using micro-
average and macro-average. The micro-average is
the mean of the summation of contingency metrics
for all model organisms, so that scores of the more
frequent species influence the mean more than
those of less frequent ones. The macro-average is
the mean of precision, recall, or F1 over all labels,
thus attributing equal weights to each species, and
measuring a system’s adaptability across different
model organisms.

5.2.2 Evaluation Results

First of all, Table 2 shows the results of the clas-
sification methods described in Section 4.2. The
multi-classification system using a maximum en-
tropy model (Maxent) yielded the highest overall
micro-averaged F1. Among the SVM-based sys-
tems, the one using IG feature selection achieved
better performance. In particular, it outperformed
the Maxent model in term of macro-averages. The
performance of the SVM model with BNS feature
selection is disappointing, perhaps because the oc-
currences of a feature in each instance are not nor-
mally distributed. As the Maxent system obtained
better results, it was used to compare with other
disambiguation systems.

Table 3 shows the results of a number of meth-
ods described in the previous sections. The meth-
ods are categorised into 4 groups: rule-based
baseline systems, a Maxent classification model,
relation-classification methods, and a hybrid sys-
tem. The difference between the relation classifi-
cation systems is the features adopted. Rel-Context

was trained on only bag-of-word and distance fea-
tures, whereas each other system also used syn-

tactic features provided by a specific parser. For
example, the Rel-RASP system identifies an entity’s
species by finding positive relations between the
entity and its neighbouring species words, using
features including bag-of-word, distance, and de-
pendency paths generated by RASP. The hybrid
system (Hbrd) ran the Rel-ENJU-Genia system on top
of the outcome of Maxent. When a conflict oc-
curs, the species ID is chosen by Rel-ENJU-Genia.
The idea is that the relation classification system
is more accurate than Maxent when it is applica-
ble, and hence would improve precision on dis-
ambiguating the species with few or no training
instances.

Without spreading (shown in the “NO SPRD”
columns of Table 3), most of the rule-based and re-
lation classification systems only work on a subset
of DEVTEST, resulting in low recall: Rule-Sp works
on the small proportion of entities (5.68%) with a
preceding species word, while the other systems
only work on the collection of sentences contain-
ing at least one species word and one entity, which
covers 4.60% sentences and 22.16% entity men-
tions. Rule-Majority, Maxent, and Hbrd, on the other
hand, apply to all entity mentions, and therefore
they are only compared against the others when
spreading was applied.

The results shown in the “NO SPRD” columns
can be viewed as a comparative evaluation of
the usefulness of the syntactic features supplied
by the parsers on this particular task. The rule-
based systems set high baselines: Rule-Sp pro-
duced good precision and Rule-SpSent achieved the
highest micro-averaged F1, thanks to its high
coverage, which is also an upperbound of recall
for the relation classification systems. Neverthe-
less, it is encouraging that the relation classifica-
tion systems obtained higher precision than Rule-

SpSent, which is important, considering the de-
cisions will be transfered to the untagged entity
mentions across the document. Indeed, as shown
in the SPRD columns in Table 3, most relation
classification systems outperformed the Rule-SpSent

baseline when spreading was used. The scores
of the systems using different parser outputs only
vary slightly. Rel-Context, on the other hand, sur-
passed others in terms of micro-averaged preci-
sion, while sacrificing micro-averaged recall and
macro-averaged scores.

Next, the SPRD columns in Table 3 show the re-
sults when the spreading rules were applied, which
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METHOD NO SPRD (micro-avg) NO SPRD (macro-avg) SPRD (micro-avg) SPRD (macro-avg)
Rule-Majority N/A N/A 66.14 / 61.99 / 64.00 16.76 / 21.75 / 18.08
Rule-Sp 88.96 / 5.02 / 9.51 33.77 / 8.55 / 10.18 66.96 / 63.41 / 65.13 28.25 / 30.65 / 27.00
Rule-SpSent 80.82 / 16.88 / 27.93 43.16 / 28.85 / 24.73 67.34 / 63.22 / 65.21 22.65 / 26.42 / 23.10
Maxent N/A N/A 70.48 / 70.48 / 70.48 10.07 / 10.00 / 9.85
Rel-Context 90.04 / 3.71 / 6.13 15.23 / 4.45 / 4.90 67.34 / 63.22 / 65.21 22.65 / 26.42 / 23.10
Rel-C&C 82.79 / 16.14 / 27.02 43.97 / 29.56 / 25.60 66.59 / 63.64 / 65.08 32.29 / 33.20 / 29.14
Rel-ENJU 83.39 / 15.87 / 26.66 46.89 / 29.88 / 25.95 68.28 / 65.02 / 66.61 31.82 / 34.08 / 29.67
Rel-ENJU-Genia 83.54 / 15.74 / 26.49 44.13 / 29.93 / 25.78 68.91 / 65.45 / 67.13 32.00 / 34.87 / 30.21
Rel-Minipar 81.82 / 16.27 / 27.14 43.63 / 27.88 / 24.15 67.98 / 63.77 / 65.81 31.83 / 33.93 / 29.44
Rel-RASP 81.67 / 16.10 / 26.90 43.95 / 28.92 / 25.03 66.62 / 64.08 / 65.33 32.66 / 33.54 / 29.80
Rel-Stanford 82.75 / 16.10 / 26.95 44.05 / 29.49 / 25.92 66.81 / 63.81 / 65.28 32.67 / 33.03 / 29.45
Rel-Stanford-Genia 82.22 / 16.04 / 26.84 43.37 / 29.40 / 25.22 66.85 / 63.64 / 65.21 32.72 / 32.29 / 28.64
Hbrd N/A N/A 74.15 / 73.26 / 73.70 43.98 / 37.47 / 31.80

Table 3: Evaluation results of the species disambiguation systems on DEVTEST (precision/recall/F1-score, in %)

effectively improved recall (see Section 5.2.3
for discussion on statistical significance tests on
the results). The Maxent system achieved very
good micro-averaged precision, but low macro-
averaged scores. In fact, as shown in Table 4, Max-

ent can only disambiguate 7 species (out of a total
of 54) that have relatively large amount of train-
ing instances,12 and failed completely on other
species. This suggests that Maxent may not be able
to generate good micro-averaged scores when ap-
plied to a dataset where the dominant species are
different from those in the training set. On the
other hand, the relation-classification approaches
have a clear advantage over Maxent as measured
by macro-averaged scores. As shown in Table 4,
Rel-ENJU-Genia worked well on most of the species,
displaying its good adaptability, while achieving
comparable micro-averaged F1 to Maxent. Over-
all, Hbrd, which combines the strengths of relation
classification and the Maxent classification model,
obtained the highest points as measured by every
metric.

5.2.3 Statistical Significance
To see whether our methods significantly im-
proved the baseline systems, we performed ran-
domisation tests (Noreen, 1989; Yeh, 2000) on
some of the results shown in Table 3. The in-
tuition of randomisation test is as follows: when
comparing two systems (e.g., A and B), we erase
the labels “output of A” or “output of B” from all
observations. The null hypothesis is that there is
no difference between A and B, and thus any re-
sponse produced by one of the systems could have
as likely come from the other. We shuffle these re-

12The following 7 species occur most frequently in the
training set: H. sapiens (43.25%), M. musculus (27.05%),
R. norvegicus (5.35%), S. cerevisiae (3.98%), X. tropicalis
(3.56%), D. melanogaster (3.33%) and C. elegans (0.94%).

Species Name Pct Mxt Rel Hbrd
H. sapiens 50.13% 76.25 65.33 79.51
M. musculus 13.99% 66.41 58.29 68.27
X. tropicalis 7.35% 64.80 77.72 71.39
D. melanogaster 6.34% 93.17 78.46 95.15
S. cerevisiae 4.79% 90.12 83.32 87.68
R. norvegicus 2.97% 44.04 38.69 51.77
T. aestivum 2.62% 0.00 89.68 23.35
P. americana 2.27% 0.00 98.50 7.76
C. elegans 2.08% 96.83 95.88 97.50
H. herpesvirus 5 1.58% 0.00 54.46 4.27
R. virus 1.45% 0.00 28.54 6.45
H. spumaretrovirus 1.17% 0.00 99.37 2.49
... ... ... ... ...
Macro-average 9.85 30.21 31.80
Micro-average 70.48 67.13 73.70

Table 4: The micro-averaged F1 scores (%) of Maxent
(Mxt), Rel-ENJU-Genia with spreading (Rel), and Hbrd with
respect to each of the most frequent 12 species in DEVTEST.

sponses R times, reassign each response to A or
B and see how likely such a shuffle produces a
difference in the metric of interest that is at least
as large as the difference observed when using A
and B on the test data. Let r denote the number
of times that such a difference occurred, then as
R → ∞, r+1

R+1 approaches the significance level.
In our case, the metrics tested were micro- and
macro-averaged precision, recall and F1.

Following this procedure, we tested whether the
improvements made by a relation classification
based system (i.e., Rel-ENJU-Genia with SPRD) and
the hybrid system (i.e., Hbrd) over the baseline sys-
tems were statistically significant. We carried out
approximate randomisation with 10,000 shuffles
and the test results are shown in Table 5. The nu-
merical figures in the cells are differences in pre-
cision, recall and F1 between a pair of systems.
The significance levels (i.e., p-values) are indi-
cated by superscript marks, whose correspond-
ing values are displayed in Table 6. For exam-
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Rule-Majority Rule-Sp Rule-SpSent Maxent

Rel micro-avg 2.77∗/3.46∗/3.13∗ 1.95∗/2.04∗/2.00∗ 1.57∗/2.22∗/1.92∗ -1.57∗ / -5.02∗ / -3.35∗

macro-avg 15.24∗/13.12∗/12.13∗ 3.75a/4.21a/3.20a 9.35∗/8.44∗/7.10∗ 21.92∗/24.87∗/20.35∗

Hbrd micro-avg 8.01∗/11.27∗/9.70∗ 7.19∗/9.85∗/8.57∗ 6.81∗/10.04∗ /8.49∗ 3.67∗/2.78∗/2.82b

macro-avg 27.22∗/15.72c/13.72d 15.73∗/6.82e/4.80f 21.33∗/11.05g / 8.70h 33.91i/27.47∗/21.95∗

Table 5: Results of paired randomisation tests on whether Rel-ENJU-Genia with SPRD (Rel) and Hbrd significantly im-
proved the baseline systems. The numerical figures in the cells show the differences between the two systems as measured by
precision/recall/F1 in percentage. The superscript marks indicate the significance levels and are explained in Table 6.

ple, the difference in micro-averaged precision be-
tween Rel-ENJU-Genia and Rule-Majority on the test
data was 2.77%, and in 10,000 approximate ran-
domisation trials, there was zero times13 that Rel-

ENJU-Genia’s micro-averaged precision is greater
than Rule-Majority’s by at least 2.77% (p < 0.0001).

MARK VALUE MARK VALUE
* p < 0.0001 a p < 0.06
b p < 0.002 c p < 0.0003
d p < 0.0002 e p < 0.03
f p < 0.05 g p < 0.003
h p < 0.005 i p < 0.07

Table 6: p-values.

The test results confirmed that, the improve-
ments made by Hbrd are statistically significant
with at least 95% confidence as measured by all
metrics except for macro-averaged precision. The
relation classification approach achieved signifi-
cantly lower performance than Maxent in terms of
micro-averaged scores (hence the “-” sign in the
corresponding cell in Table 5), but in all other
cases it can reject the null hypothesis with very
high confidence (i.e., p < 0.0001).

6 Conclusions and Future Work

This paper proposes a method that tackles a com-
plex disambiguation problem by breaking it into
two cascaded simpler tasks of cue word discov-
ery and binary relation classification. We evalu-
ated the method on the task of disambiguating the
model organisms of biomedical named entities,
along with a number of other approaches. As mea-
sured by micro-averaged F1 score, a supervised
classification approach (Maxent) yielded the second
best result. However, it can only disambiguate
a small number of species that have abundant
training instances. With spreading rules, a rela-
tion classification system (Rel-ENJU-Genia) trained
on word and syntactic features from ENJU-Genia
also obtained good micro-averaged F1, while sur-

13The numbers of times are not shown in Table5 for
brevity.

passing Maxent significantly in terms of macro-
averaged scores. Combining these two systems
achieved the best overall performance. Neverthe-
less, we combined the two methods in a rather
crude way, leaving ample room for exploring bet-
ter strategies in the future.

One drawback of the relation classification sys-
tems is that they can not cover all entity mentions
but only the ones with informative keywords co-
occurring in the same sentence. We overcame the
drawback by using spreading rules. For some ap-
plications, however, it may be sufficient to make
predictions exclusively for cases where the sys-
tems are applicable. Also, the predictions with
high confidence can be used as seed training ma-
terial for automatically harvesting more training
data.
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Abstract

Bootstrapping is the process of improving
the performance of a trained classifier by
iteratively adding data that is labeled by
the classifier itself to the training set, and
retraining the classifier. It is often used
in situations where labeled training data is
scarce but unlabeled data is abundant. In
this paper, we consider the problem of do-
main adaptation: the situation where train-
ing data may not be scarce, but belongs to
a different domain from the target appli-
cation domain. As the distribution of un-
labeled data is different from the training
data, standard bootstrapping often has dif-
ficulty selecting informative data to add to
the training set. We propose an effective
domain adaptive bootstrapping algorithm
that selects unlabeled target domain data
that are informative about the target do-
main and easy to automatically label cor-
rectly. We call these instances bridges, as
they are used to bridge the source domain
to the target domain. We show that the
method outperforms supervised, transduc-
tive and bootstrapping algorithms on the
named entity recognition task.

1 Introduction

Most recent researches on natural language pro-
cessing (NLP) problems are based on machine
learning algorithms. High performance can often
be achieved if the system is trained and tested on
data from the same domain. However, the perfor-
mance of NLP systems often degrades badly when
the test data is drawn from a source that is differ-
ent from the labeled data used to train the system.
For named entity recognition (NER), for example,
Ciaramita and Altun (2005) reported that a system
trained on a labeled Reuters corpus achieved an

F-measure of 91% on a Reuters test set, but only
64% on a Wall Street Journal test set.

The task of adapting a system trained on one do-
main (called the source domain) to a new domain
(called the target domain) is called domain adap-
tation. In domain adaptation, it is generally as-
sumed that we have labeled data in the source do-
main while labeled data may or may not be avail-
able in the target domain. Previous work in do-
main adaptation can be classified into two cate-
gories: [S+T+], where a small, labeled target do-
main data is available, e.g. (Blitzer et al., 2006;
Jiang and Zhai, 2007; Daumé III, 2007; Finkel and
Manning, 2009), or [S+T-], where no labeled tar-
get domain data is available, e.g. (Blitzer et al.,
2006; Jiang and Zhai, 2007). In both cases, and es-
pecially for [S+T-], domain adaptation can lever-
age on large amounts of unlabeled data in the tar-
get domain. In practice, it is often unreasonable
to expect labeled data for every new domain that
we come across, such as blogs, emails, a different
newspaper agency, or simply articles from a differ-
ent topic or period in time. Thus although [S+T+]
is easier to handle, [S+T-] is of higher practical
importance.

In this paper, we propose a domain adaptive
bootstrapping (DAB) approach to tackle the do-
main adaptation problem under the setting [S+T-].
Bootstrapping is an iterative process that uses a
trained classifier to label and select unlabeled in-
stances to add to the training set for retraining
the classifier. It is often used when labeled train-
ing data is scarce but unlabeled data is abundant.
In contrast, for domain adaptation problems, we
may have a lot of training data but the target ap-
plication domain has a different data distribution.
Standard bootstrapping usually selects instances
that are most confidently labeled from the unla-
beled data. In domain adaptation situations, usu-
ally the most confidently labeled instances are the
ones that are most similar to the source domain in-
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stances - these instances tend to contain very little
information about the target domain. For domain
adaptive bootstrapping, we propose a selection cri-
terion that selects instances that are informative
and easy to automatically label correctly. In addi-
tion, we propose a criterion for stopping the pro-
cess of bootstrapping before it adds uninformative
and incorrectly labeled instances that can reduce
performance.

Our approach leverages on instances in the tar-
get domain called bridges. These instances con-
tain domain-independent features, as well as fea-
tures specific to the target domain. As they contain
domain-independent features, they can be classi-
fied correctly by classifiers trained on the source
domain labeled data. We argue that these instances
act as a bridge between the source and the target
domain. We show that, on the NER task, DAB
outperforms supervised, transductive and standard
bootstrapping algorithms, as well as a bootstrap-
ping variant, called balanced bootstrapping (Jiang
and Zhai, 2007), that has recently been proposed
for domain adaptation.

2 Related work

One general class of approaches to domain adap-
tation is to consider that the instances from the
source and the target domain are drawn from dif-
ferent distributions. Bickel et al. (Bickel et al.,
2007) discriminatively learns a scaling factor for
source domain training data, so as to adapt the
source domain data distribution to resemble the
target domain data distribution, under the [S+T-]
setting. Daume III and Marcu (Daumé III and
Marcu, 2006) considers that the data distribution is
a mixture distribution over general, source domain
and target domain data. They learn the underlying
mixture distribution using the conditional expec-
tation maximization algorithm, under the [S+T+]
setting. Jiang and Zhai (2007) proposed an in-
stance re-weighting framework that handles both
the [S+T+] and [S+T-] settings. For [S+T-], the
resulting algorithm is a balanced bootstrapping al-
gorithm, which was shown to outperform the stan-
dard bootstrapping algorithm. In this paper, we
assume the [S+T-] settings, and we show that the
approach proposed in this paper, domain adaptive
bootstrapping (DAB), outperforms the balanced
bootstrapping algorithm on NER.

Another class of approaches to domain adap-
tation is feature-based. Daume III (Daumé III,

2007) divided features into three classes: domain-
independent features, source-domain features and
target-domain features. He assumed the existence
of training data in the target-domain (under the
setting [S+T+]), so that the three classes of fea-
tures can be jointly trained using source and target
domain labeled data. This cannot be done in the
setting [S+T-], where no training data is available
in the target domain. Using a different approach,
Blitzer et al. (2006) induces correspondences be-
tween feature spaces in different domains, by de-
tecting pivot features. Pivot features are features
that occur frequently and behave similarly in dif-
ferent domains. Pivot features are used to put
domain-specific features in correspondence. In
this paper, instead of pivot features, we attempt
to leverage on pivot instances that we call bridges,
which are instances that bridge the source and tar-
get domain. This will be illustrated in Section 3.

It is generally recognized that adding informa-
tive and correctly labeled instances is more useful
for learning. Active learning queries the user for
labels of most informative or relevant instances.
Active learning, which has been applied to the
problem of NER in (Shen et al., 2004), is used in
situations where a large amount of unlabeled data
exists and data labeling is expensive. It has also
been applied to the problem of domain adaptation
for word sense disambiguation in (Chan and Ng,
2007). However, active learning requires human
intervention. Here, we want to achieve the same
goal without human intervention.

3 Bootstrapping for domain adaptation

We first define the notations used for domain adap-
tation in the [S+T-] setting. A set of training data
DS = {xi, yi}1≤i≤|DS | is given in the source do-
main, where the notation |X| denotes the size of a
set X . Each instance xi in DS has been manually
annotated with a label, yi, from a given set of la-
bels Y . The objective of domain adaptation is to
label a set of unlabeled data, DT = {xi}1≤i≤|DT |
with labels from Y . A machine learning algorithm
will take a labeled data set (for e.g. DS) and out-
puts a classifier, which can then be used to classify
unlabeled data, i.e. assign labels to unlabeled in-
stances.

A special class of machine learning algorithms,
called transductive learning algorithms, is able to
take the unlabeled data DT into account during
the learning process (see e.g. (Joachims, 1999)).
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However, such algorithms do not take into account
the shift in domain of the test data. Jiang and Zhai
(2007) recently proposed an instance re-weighting
framework to take domain shift into account. For
[S+T-], the resulting algorithm is a balanced boot-
strapping algorithm, which we describe below.

3.1 Standard and balanced bootstrapping

We define a general bootstrapping algorithm in Al-
gorithm 1. The algorithm can be applied to any
machine learning algorithm that allows training in-
stances to be weighted, and that gives confidence
scores for the labels when used to classify test
data. The bootstrapping procedure iteratively im-
proves the performance of a classifier SCt over a
number of iterations. In Algorithm 1, we have left
a number of parameters unspecified. These param-
eters are (1) the selection-criterion for instances to
be added to the training data, (2) the termination-
criterion for the bootstrapping process, and (3) the
weights (wS , wT ) given to the labeled and boot-
strapped training sets.

Standard bootstrapping: (Jiang and Zhai,
2007) the selection-criterion is based on selecting
the top k most-confidently labeled instances inRt.
The weight wS

t is equal to wT
t . The value of k is a

parameter for the bootstrapping algorithm.
Balanced bootstrapping: (Jiang and Zhai,

2007) the selection-criterion is still based on se-
lecting the top k most-confidently labeled in-
stances in Rt. Balanced bootstrapping was for-
mulated for domain adaptation, and hence they set
the weights to satisfy the ratio wSt

wTt
= |Tt|

|DS | . This
allows the small amount of target data added, Tt,
to have an equal weight to the large source domain
training set DS .

In this paper, we formulate a selection-criterion
and a termination-criterion which are better than
those used in standard and balanced bootstrap-
ping. Regarding the selection-criterion, standard
and balanced bootstrapping both select instances
which are confidently labeled by SCt to be used
for training SCt+1, in the hope of avoiding us-
ing wrongly labeled data in bootstrapping. How-
ever, instances that are already confidently labeled
by SCt may not contain sufficient information
which is not inDS , and using them to train SCt+1

may result in SCt+1 performing similarly to SCt.
This motivates us to select samples which are both
informative and easy to automatically label cor-
rectly. Regarding the termination-criterion, which

Algorithm 1 Bootstrapping algorithm
Input: labeled data DS , test data DT and a ma-
chine learning algorithm.
Output: the predicted labels of the set DT .
Set T0 = ∅, R0 = DT , and t = 0
Repeat

1. learn a classifier SCt with (DS , Tt) with
weights (wS

t , w
T
t )

2. label the set Rt with SCt

3. select St ⊆ Rt based on selection-criterion
4. Tt+1 = Tt ∪ St, and Rt+1 = Rt \ St.

Until termination-criterion
Output the predicted labels of DT by SCt.

is not mentioned in the paper (Jiang and Zhai,
2007), we assume that bootstrapping is simply run
for either a single iteration, or a small and fixed
number of iterations. However, it is known that
such simple criterion may result in stopping too
early or too late, leading to sub-optimal perfor-
mance. We propose a more effective termination-
criterion here.

3.2 Domain adaptive bootstrapping (DAB)
Our selection-criterion relies on the observation
that in domain adaptation, instances (from the
source or the target domain) can be divided into
three types according to their information content:
generalists are instances that contain only domain-
independent information and are present in all do-
mains; specialists are instances containing only
domain-specific information and are present only
in their respective domains; bridges are instances
containing both domain-independent and domain-
specific information, also present only in their re-
spective domains but are useful as a “bridge” be-
tween the source and the target domains.

The implication of the above observation is
that when choosing unlabeled target domain data
for bootstrapping, we should exploit the bridges,
because the generalists are not likely to contain
much information not in DS due to their domain-
independence, and the specialists are difficult to be
labeled correctly due to their domain-specificity.
In contrast, the bridges are informative and eas-
ier to label correctly. Choosing confidently clas-
sified instances for bootstrapping, as in standard
bootstrapping and balanced bootstrapping, is sim-
ple, but results in choosing mostly generalists, and
is too conservative. We design a scoring function
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on instances, which has high value when the in-
stance is informative and sufficiently likely to be
correctly labeled in order to identify correctly la-
beled bridges.

Intuitively, informativeness of an instance can
be measured by the prediction results of the ideal
classifier IS for the source domain and the ideal
classifier IT for the target domain. If IS and IT
are both probabilistic classifiers, IS should return
a noninformative distribution while IT should re-
turn an informative one. The ideal classifier for the
source domain is approximated with a source clas-
sifier SC trained on DS , while the ideal classifier
for the target domain is approximated by training a
classifier, TC, on target domain instances labeled
by the source classifier.

We also try to ensure that instances that are se-
lected are correctly classified. As the label used
is provided by the target classifier, we estimate
the precision of the target classification. The final
ranking function is constructed by combining this
estimate with the informativeness of the instance.

We show the algorithm for the instance selec-
tion in Algorithm 2. The notations used follow
those used in Algorithm 1. For simplicity, we as-
sume that wS

t = wT
t = 1 for all t. We expect

TC to be a reasonable classifier on DT due to the
presence of generalists and bridges. Note that the
target classifier is constructed by randomly split-
ting DT into two partitions, training a classifier
on each partition and using the prediction of the
trained classifier on the partition it is not trained
on. This is because classifiers tend to fit the data
that they have been trained on too well making the
probability estimates on their training data unreli-
able. Also, a random partition is used to ensure
that the data in each partition is representative of
Du.

3.3 The scoring function: score(p(s), p(t))

The scoring function score(p(s), p(t)) in Algo-
rithm 2 is simply implemented as the product of
two components: a measure of the informative-
ness and the probability that SC’s label is correct.
We show how the intuitive ideas (described above)
behind these two components are formalized.

Informativeness of a distribution p on a set of
discrete labels Y is measured by its entropy h(p)
defined by

h(p) = −
∑
y∈Y

p(y) log p(y).

Algorithm 2 Algorithm for selecting instances for
bootstrapping at iteration t
Input: Labeled source domain dataDS , target do-
main training data Tt, remaining data Rt, the clas-
sifier SCt trained on DS ∪ Tt, and a scoring func-
tion score(p(s), p(t))
Output: k instances for bootstrapping.

1. LabelRt with SCt, and to each instance xi ∈
Rt, SCt outputs a distribution p(s)

i (yi) over
its labels.

2. Randomly split Rt into two partitions, R0
t

and R1
t with their labels assigned by SCt.

3. Train each target classifier, TCx
t with the data

Rx
t , for x = {0, 1}.

4. Label R(1−x)
t with the classifier TCx

t , which
to each instance xi ∈ Rt, outputs a distribu-
tion p(t)

i (yi) over its labels.
5. Score each instance from xi ∈ Rt with the

function score(p(s)
i , p

(t)
i ).

6. Select top k instances from Rt with the high-
est scores.

h(p) is nonnegative; h(p) = 0 if and only if p
has probability 1 on one of the labels; h(p) attains
its maximum value when the distribution p is uni-
form over all labels. Hence, an instance is clas-
sified with high confidence when the distribution
over its labels has low entropy.

We measure the informativeness of an instance
using h(p(s))− h(p(t)), where p(s) and p(t) are as
in Algorithm 2. We argue that a larger value of this
expression implies that the instance is more likely
to be a bridge instance. This expression has a high
value when the source classifier is uncertain, and
the target classifier is certain. Uncertain classifi-
cation by the source classifier indicates that the in-
stance is unlikely to be a generalist. Moreover, if
the target classifier is certain on xi, it means that
instances similar to the instance xi are consistently
labeled with the same label by the source classifier
SCt, indicating that it is likely to be a bridge in-
stance.

The probability that TC’s label is correct can-
not be estimated directly because we do not have
labeled target domain data. Instead, we use the
source domain to give an estimate. We do this with
a simple pre-processing step: we split the data DS

into two partitions of equal size, train a classifier
on each partition, and test each classifier on the
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other partition. We then measure the resulting ac-
curacy given each label:

ρ(y) =
# correctly labeled instances of label y

# total instances of label y
.

Summarizing the above discussion, the scoring
function is as shown below.

score(p(s), p(t)) = ρ(y∗)
[
h(p(s))−h(p(t))

]
,

where y∗ = arg max
y∈Y

p(s)(y)

The scoring function has a high value when the
information content of the example is high and the
label has high precision.

3.4 The termination criterion
Intuitively, our algorithm terminates when there
are not enough informative instances. Formally,
we define the termination criterion as follows: we
terminate the bootstrapping process when, there
exists an instance xi in the top k instances satis-
fying the following condition:

1. h(p(s)
i ) < h(p(t)

i ), or
2. maxy∈Y p

(s)
i (y) > maxy∈Y p

(t)
i (y)

The second case is used to check for instances
where the classifier SCt is more confident than
the target classifiers TCx

t , on their respective pre-
dicted labels. This shows that the instance xi is
more of a generalist than a bridge.

4 NER task and implementation

The algorithm described in Section 3 is not spe-
cific to any particular application. In this paper,
we apply it to the problem of named entity recog-
nition (NER). In this section, we describe the NER
classifier and the features used in our experiments.

4.1 NER features
We used the features generated by the CRF pack-
age (Finkel et al., 2005). These features include
the word string feature, the case feature for the cur-
rent word, the context words for the current word
and their cases, the presence in dictionaries for the
current word, the position of the current word in
the sentence, prefix and suffix of the current word
as well as the case information of the multiple oc-
currences of the current word. We use the same
set of features for all classifiers used in the boot-
strapping process, and for all baselines used in the
experimental section.

4.2 Machine learning algorithms

A base machine learning algorithm is required in
bootstrapping approaches. We describe the two
machine learning algorithms used in this paper.
We chose these algorithms for their good perfor-
mance on the NER task.

Maximum entropy classification (MaxEnt):
The MaxEnt approach, or logistic regression, is
one of the most competitive methods for named
entity recognition (Tjong and Meulder, 2003).
MaxEnt is a discriminative method that learns a
distribution, p(yi|xi), over the labels, yi, given
the vector of features, xi. We used the imple-
mentation of MaxEnt classifier described in (Man-
ning and Klein, 2003). For NER, each instance
represents a single word token within a sentence,
with the feature vector xi derived from the sen-
tence as described in the previous section. Max-
Ent is not designed for sequence classification. To
deal with sequences, each name-class (e.g. PER-
SON) is divided into sub-classes: first token (e.g.
PERSON-begin), unique token (e.g. PERSON-
unique), or subsequent tokens (e.g. PERSON-
continue) in the name-class. To ensure that the
results returned by MaxEnt is coherent, we de-
fine deterministic transition probabilities that dis-
allow transitions such as one from PERSON-begin
to LOCATION-continue. A Viterbi parse is used
to find the valid sequence of name-classes with the
highest probability.

Support vector machines (SVM): The basic
idea behind SVM for binary classification prob-
lems is to consider the data points in their fea-
ture space, and to separate the two classes with a
hyper-plane, by maximizing the shortest distance
between the data points and the hyper-plane. If
there exists no hyperplane that can split the two la-
bels, the soft margin version of SVM will choose
a hyperplane that splits the examples as cleanly as
possible, while still maximizing the distance to the
nearest cleanly split examples (Joachims, 2002).
We used the SVMlight package for our experi-
ments (Joachims, 2002). For the multi-label NER
classification with N classes, we learn N SVM
classifiers, and use a softmax function to obtain
the distribution. Formally, denoting by s(y) the
confidence returned by the classifier for each label
y ∈ Y , the probability of the label yi is given by

p(yi|xi) =
exp(s(yi))∑

y∈Y exp(s(y))
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Similarly to MaxEnt, we subdivide name-classes
into begin, continue, and unique sub-classes, and
use a Viterbi parse for the sequence of highest
probability. The SVMlight package also imple-
ments a transductive version of the SVM algo-
rithm. We also compare our approach with the
transductive SVM (Joachims, 1999) in our experi-
mental results.

5 Experimental results

In this paper, we use the annotated data provided
by the Automatic Content Extraction (ACE) pro-
gram. The ACE data set is annotated for an Entity
Detection task, and the annotation consists of the
labeling of entity names (e.g. Powell) and men-
tions for each entity (e.g. pronouns such as he).
In this paper, we are interested in the problem of
recognition of the proper names (the named entity
recognition task), and hence use only entities la-
beled with the type NAM (LDC, 2005). Entities
are classified into seven types: Person entities are
humans mentioned in a document; Organization
entities are limited to established associations of
people; Geo-political entities are geographical ar-
eas defined by political and/or social groups; Lo-
cation entities are geographical items like land-
masses and bodies of water; Facility entities re-
fer to buildings and real estate improvements; Ve-
hicle entities are devices used for transportation;
and Weapon entities are devices used for harming
or destruction.

We compare performances of a few algorithms:
MaxEnt classifier (MaxEnt); MaxEnt classifier
with standard bootstrapping (MaxEnt-SB); bal-
anced bootstrapping based on MaxEnt classi-
fier (MaxEnt-BB); MaxEnt with DAB (MaxEnt-
DAB); SVM classifier (SVM); transductive SVM
classifier (SVM-Trans); and DAB based on SVM
classifier (SVM-DAB). No regularization is used
for MaxEnt classifiers. SVM classifiers use a
value of 10 for parameter C (trade-off between
training error and margin). Bootstrapping based
algorithms are run for 30 iterations and 100 in-
stances are selected in every iteration.

The evaluation measure used is the F-measure.
F-measure is the harmonic mean of precision and
recall, and is commonly used to evaluate NER
systems. We use the scorer for CONLL 2003
shared task (Tjong and Meulder, 2003) where the
F-measure is computed by averaging F-measures
for name-classes, weighted by the number of oc-

Code Source Num docs
NW Newswire 81
BC Broadcast conversation 52
WL Weblog 114
CTS Conversational Telephone Speech 34

Table 1: The sources, and the number of docu-
ments in each source, in the ACE 2005 data set.

currences.

5.1 Cross-source transfer

The ACE 2005 data set consists of articles drawn
from a variety of sources. We use the four cate-
gories shown in Table 1. Each category is consid-
ered to be a domain, and we consider each pair of
categories as the source and the target domain in
turn.

Figure 1 compares the performance of MaxEnt-
SB, MaxEnt-BB and MaxEnt-DAB over multiple
iterations. Figure 2 compares the performance
of SVM, SVM-Trans and SVM-DAB. Each line
in the figures represents the average F-measure
across all the domains over many iterations. When
the termination condition is met for one domain,
its F-measure remains at the value of the final iter-
ation.

Despite a large number of iterations, both stan-
dard and balanced bootstrapping fail to improve
performance. Supervised learning performance on
each domain is shown in Table 3 (by 2-fold cross-
validation with random ordering) as a reference.
In Table 5, we compare the F-measures obtained
by different algorithms at the last iteration they
were run. We will discuss more on this in Sec-
tion 5.3.

5.2 Cross-topic transfer

This data set is constructed from 175 articles from
the ACE 2005 corpus. The data set is used to eval-
uate transfer across topics. We manually classify
the articles into 4 categories: military operations
(MO), political relationship or politicians (POL),
terrorism-related (TER), and those which are not
in the above categories (OTH). A detailed break-
down of the number of documents in the each
topic is given in Table 2.

Supervised learning performance on each do-
main is shown in Table 4 (by 2-fold cross-
validation with random ordering) as a reference.
Experimental results on cross-topic evaluation are
shown in Table 6. Figure 3 compares the perfor-
mance of MaxEnt-SB, MaxEnt-BB and MaxEnt-
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Figure 1: Average performance on the cross-
source transfer using MaxEnt classifier.
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Figure 2: Average performance on the cross-
source transfer using SVM classifier.
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Figure 3: Average performance on the cross-topic
transfer using MaxEnt classifier.
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Figure 4: Average performance on the cross-topic
transfer using SVM classifier.

Topic Topic description # docs
MO Military operations 92
POL Political relationships 40
TER Terrorist-related 28
OTH None of the above 15

Table 2: The topics, their descriptions, and the
number of training and test documents in each
topic.

Domain MaxEnt SVM
NW 82.47 82.32
BC 78.21 77.91
WL 71.41 71.84
CTS 93.90 94.01

Table 3: F-measure of supervised learning on the
cross-source target domains.

DAB over multiple iterations. Figure 4 compares
the performance of SVM, SVM-Trans and SVM-
DAB. Similar to cross-source transfer, standard
and balanced bootstrapping perform badly. This
will be discussed in Section 5.3.

Domain MaxEnt SVM
MO 80.52 80.6
POL 77.99 79.05
TER 81.74 82.12
OTH 71.33 72.08

Table 4: F-measure of supervised learning on the
cross-topic target domains.

5.3 Discussion
We show in our experiments that DAB outper-
forms standard and balanced bootstrapping, as
well as the transductive SVM. We have also shown
DAB to be robust across two state-of-the-art clas-
sifiers, MaxEnt and SVM. Balanced bootstrapping
has been shown to be more effective for domain
adaptation than standard bootstrapping (Jiang and
Zhai, 2007) for named entity classification on a
subset of the dataset used here. In contrast, we
found that both methods perform poorly on do-
main adaptation for NER. In named entity clas-
sification, the names have already been segmented
out and only need to be classified with the appro-
priate class. However, for NER, the names also
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Train Test MaxEnt MaxEnt-SB MaxEnt-BB MaxEnt-DAB SVM SVM-Trans SVM-DAB
BC CTS 74.26 74.19 74.16 81.03 72.47 43.27 75.43
BC NW 64.81 64.76 64.80 66.20 64.08 43.01 64.39
BC WL 47.81 47.80 47.76 49.52 47.98 36.58 47.93

CTS BC 46.19 46.12 46.40 54.62 46.02 40.44 49.64
CTS NW 54.25 54.15 54.26 53.07 55.63 23.61 58.99
CTS WL 40.42 40.43 40.72 41.27 39.96 29.05 42.04
NW BC 59.90 59.83 59.80 60.55 59.89 45.71 58.42
NW CTS 66.64 66.48 66.59 66.73 68.28 28.80 73.47
NW WL 52.52 52.53 52.47 53.44 52.19 36.39 52.30
WL BC 58.58 58.79 58.65 56.00 58.43 52.64 58.64
WL CTS 64.63 63.89 64.50 80.45 65.96 45.04 81.04
WL NW 67.79 67.72 67.92 68.46 68.38 43.40 69.33

Average 58.15 58.06 58.17 60.95 58.27 39.00 60.97

Table 5: F-measure of the cross-source transfer.

Train Test MaxEnt MaxEnt-SB MaxEnt-BB MaxEnt-DAB SVM SVM-Trans SVM-DAB
MO OTH 81.70 81.48 81.57 81.95 81.78 75.68 81.94
MO POL 73.21 73.11 73.28 74.97 72.56 58.13 72.66
MO TER 68.13 68.07 68.24 69.89 69.40 65.02 69.38
OTH MO 63.30 63.80 63.94 63.91 64.18 61.03 65.45
OTH POL 67.96 68.05 67.86 69.13 68.29 56.50 70.67
OTH TER 45.34 44.82 45.30 51.06 45.71 48.77 52.87
POL MO 62.14 62.12 61.95 61.94 61.98 51.67 62.32
POL OTH 77.91 77.72 77.79 76.58 78.11 65.71 78.13
POL TER 66.55 66.38 66.08 66.38 66.44 51.29 67.24
TER MO 58.35 58.62 58.02 57.29 58.30 49.80 58.14
TER OTH 66.83 67.61 66.83 68.97 66.28 58.25 68.12
TER POL 67.34 66.94 67.16 72.00 67.54 50.55 70.65

Average 66.56 66.56 66.50 67.84 66.71 57.70 68.13

Table 6: F-measure of the cross-topic transfer.

need to be separated from not-a-name instances.
We find that the addition of not-a-name instances
changes the problem - the not-a-names form most
of the instances classified with high confidence.
As a result, we find that both standard and bal-
anced bootstrapping fail to improve performance:
the selection of the most confident instances no
longer provide sufficient new information to im-
prove performance.

We also find that transductive SVM performs
poorly on this task. This is because it assumes
that the unlabeled data comes from the same dis-
tribution as the labeled data. In general, apply-
ing semi-supervised learning methods directly to
[S+T-] type domain adaptation problems do not
work and appropriate modifications need to be
made to the methods.

The ACE 2005 data set also contains a set of
ariticles from the broadcast news (BN) source
which is written entirely in lower case. This makes
NER much more difficult. However, when BN is
the source domain, the capitalization information
can be discovered by DAB. Figures 5 and 6 show
the average performance when BN is used as the
source domain and all other domains in Table 1 as

the target domains.

The source domain classifier tends to have high
precision and low recall, DAB results in an in-
crease in recall, with a small decrease in precision.

Testing the significance of the F-measure is not
trivial because the named entities wrongly labeled
by two classifiers are not directly comparable. We
tested the labeling disagreements instead, using a
McNemar paired test. The significance test is per-
formed on the improvement of MaxEnt-DAB over
MaxEnt and SVM-DAB over SVM. In most of
the domains for the cross-source transfer, the im-
provements are significant at a significance level
of 0.05, using MaxEnt classifier. The exceptional
train-test pairs are NW-WL and WL-BC. In the
case of WL-BC, this means the slight decrement in
performance is not statistically significant. Similar
result is achieved for the cross-source transfer us-
ing SVM classifier. In the cross-topic transfer, the
source domain and the target domain are not very
different. When we have a large amount of train-
ing data and little testing data, the gain of DAB
can be not statistically significant, as in the case
when we train with MO and POL domains.
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Figure 5: Performance on recovering capitaliza-
tion using MaxEnt classifier.
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Figure 6: Performance on recovering capitaliza-
tion using SVM classifier.

6 Conclusion

We proposed a bootstrapping approach for domain
adaptation, and we applied it to the named entity
recognition task. Our approach leverages on in-
stances that serve as bridges between the source
and target domain. Empirically, our method out-
performs baseline approaches including super-
vised, transductive and standard bootstrapping ap-
proaches. It also outperforms balanced bootstrap-
ping, an approach designed for domain adaptation
(Jiang and Zhai, 2007).
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Abstract
In this paper, we present a novel approach
for mining opinions from product reviews,
where it converts opinion mining task to
identify product features, expressions of
opinions and relations between them. By
taking advantage of the observation that a
lot of product features are phrases, a con-
cept of phrase dependency parsing is in-
troduced, which extends traditional depen-
dency parsing to phrase level. This con-
cept is then implemented for extracting re-
lations between product features and ex-
pressions of opinions. Experimental eval-
uations show that the mining task can ben-
efit from phrase dependency parsing.

1 Introduction

As millions of users contribute rich information
to the Internet everyday, an enormous number of
product reviews are freely written in blog pages,
Web forums and other consumer-generated medi-
ums (CGMs). This vast richness of content be-
comes increasingly important information source
for collecting and tracking customer opinions. Re-
trieving this information and analyzing this con-
tent are impossible tasks if they were to be manu-
ally done. However, advances in machine learning
and natural language processing present us with
a unique opportunity to automate the decoding of
consumers’ opinions from online reviews.

Previous works on mining opinions can be di-
vided into two directions: sentiment classification
and sentiment related information extraction. The
former is a task of identifying positive and neg-
ative sentiments from a text which can be a pas-
sage, a sentence, a phrase and even a word (So-
masundaran et al., 2008; Pang et al., 2002; Dave
et al., 2003; Kim and Hovy, 2004; Takamura et
al., 2005). The latter focuses on extracting the el-
ements composing a sentiment text. The elements

include source of opinions who expresses an opin-
ion (Choi et al., 2005); target of opinions which
is a receptor of an opinion (Popescu and Etzioni,
2005); opinion expression which delivers an opin-
ion (Wilson et al., 2005b). Some researchers refer
this information extraction task as opinion extrac-
tion or opinion mining. Comparing with the for-
mer one, opinion mining usually produces richer
information.

In this paper, we define an opinion unit as a
triple consisting of a product feature, an expres-
sion of opinion, and an emotional attitude(positive
or negative). We use this definition as the basis for
our opinion mining task. Since a product review
may refer more than one product feature and ex-
press different opinions on each of them, the rela-
tion extraction is an important subtask of opinion
mining. Consider the following sentences:

1. I highly [recommend](1) the Canon SD500(1) to
anybody looking for a compact camera that can take
[good](2) pictures(2).

2. This camera takes [amazing](3) image qualities(3)

and its size(4) [cannot be beat](4).

The phrases underlined are the product features,
marked with square brackets are opinion expres-
sions. Product features and opinion expressions
with identical superscript compose a relation. For
the first sentence, an opinion relation exists be-
tween “the Canon SD500” and “recommend”, but
not between “picture” and “recommend”. The ex-
ample shows that more than one relation may ap-
pear in a sentence, and the correct relations are not
simple Cartesian product of opinion expressions
and product features.

Simple inspection of the data reveals that prod-
uct features usually contain more than one word,
such as “LCD screen”, “image color”, “Canon
PowerShot SD500”, and so on. An incomplete
product feature will confuse the successive anal-
ysis. For example, in passage “Image color is dis-
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appointed”, the negative sentiment becomes ob-
scure if only “image” or “color” is picked out.

Since a product feature could not be represented
by a single word, dependency parsing might not be
the best approach here unfortunately, which pro-
vides dependency relations only between words.
Previous works on relation extraction usually use
the head word to represent the whole phrase and
extract features from the word level dependency
tree. This solution is problematic because the in-
formation provided by the phrase itself can not be
used by this kind of methods. And, experimental
results show that relation extraction task can ben-
efit from dependencies within a phrase.

To solve this issue, we introduce the concept
of phrase dependency parsing and propose an ap-
proach to construct it. Phrase dependency pars-
ing segments an input sentence into “phrases” and
links segments with directed arcs. The parsing
focuses on the “phrases” and the relations be-
tween them, rather than on the single words inside
each phrase. Because phrase dependency parsing
naturally divides the dependencies into local and
global, a novel tree kernel method has also been
proposed.

The remaining parts of this paper are organized
as follows: In Section 2 we discuss our phrase de-
pendency parsing and our approach. In Section 3,
experiments are given to show the improvements.
In Section 4, we present related work and Section
5 concludes the paper.

2 The Approach

Fig. 1 gives the architecture overview for our ap-
proach, which performs the opinion mining task
in three main steps: (1) constructing phrase de-
pendency tree from results of chunking and de-
pendency parsing; (2) extracting candidate prod-
uct features and candidate opinion expressions; (3)
extracting relations between product features and
opinion expressions.

2.1 Phrase Dependency Parsing

2.1.1 Overview of Dependency Grammar
Dependency grammar is a kind of syntactic the-
ories presented by Lucien Tesnière(1959). In de-
pendency grammar, structure is determined by the
relation between a head and its dependents. In
general, the dependent is a modifier or comple-
ment; the head plays a more important role in de-
termining the behaviors of the pair. Therefore, cri-

Phrase Dependency Parsing  

Review Crawler 

Review 

Database

 Chunking Dependency

Parsing

  

Candidate

Product Features

Identification

Candidate

Opinion Expressions

Extraction

Relation Extraction
Opinion

Database

Phrase Dependency Tree

Figure 1: The architecture of our approach.

teria of how to establish dependency relations and
how to distinguish the head and dependent in such
relations is central problem for dependency gram-
mar. Fig. 2(a) shows the dependency represen-
tation of an example sentence. The root of the
sentence is “enjoyed”. There are seven pairs of
dependency relationships, depicted by seven arcs
from heads to dependents.

2.1.2 Phrase Dependency Parsing

Currently, the mainstream of dependency parsing
is conducted on lexical elements: relations are
built between single words. A major informa-
tion loss of this word level dependency tree com-
pared with constituent tree is that it doesn’t ex-
plicitly provide local structures and syntactic cat-
egories (i.e. NP, VP labels) of phrases (Xia and
Palmer, 2001). On the other hand, dependency
tree provides connections between distant words,
which are useful in extracting long distance rela-
tions. Therefore, compromising between the two,
we extend the dependency tree node with phrases.
That implies a noun phrase “Cannon SD500 Pow-
erShot” can be a dependent that modifies a verb
phrase head “really enjoy using” with relation type
“dobj”. The feasibility behind is that a phrase is a
syntactic unit regardless of the length or syntac-
tic category (Santorini and Kroch, 2007), and it is
acceptable to substitute a single word by a phrase
with same syntactic category in a sentence.

Formally, we define the dependency parsing
with phrase nodes as phrase dependency parsing.
A dependency relationship which is an asymmet-
ric binary relationship holds between two phrases.
One is called head, which is the central phrase in
the relation. The other phrase is called dependent,
which modifies the head. A label representing the
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Figure 2: Example of Phrase Dependency Parsing.

relation type is assigned to each dependency rela-
tionship, such as subj (subject), obj (object), and
so on. Fig.2(c) shows an example of phrase de-
pendency parsing result.

By comparing the phrase dependency tree and
the word level dependency tree in Fig.2, the for-
mer delivers a more succinct tree structure. Local
words in same phrase are compacted into a sin-
gle node. These words provide local syntactic and
semantic effects which enrich the phrase they be-
long to. But they should have limited influences on
the global tree topology, especially in applications
which emphasis the whole tree structures, such as
tree kernels. Pruning away local dependency re-
lations by additional phrase structure information,
phrase dependency parsing accelerates following
processing of opinion relation extraction .

To construct phrase dependency tree, we pro-
pose a method which combines results from an
existing shallow parser and a lexical dependency
parser. A phrase dependency tree is defined as
T = (V ,E ), where V is the set of phrases,
E is the dependency relations among the phrases
in V representing by direct edges. To reserve
the word level dependencies inside a phrase, we
define a nested structure for a phrase Ti in V :
Ti = (Vi, Ei). Vi = {v1, v2, · · · , vm} is the inter-
nal words, Ei is the internal dependency relations.

We conduct the phrase dependency parsing in
this way: traverses word level dependency tree
in preorder (visits root node first, then traverses
the children recursively). When visits a node R,
searches in its children and finds the node set D
which are in the same phrase with R according

Algorithm 1 Pseudo-Code for constructing the
phrase dependency tree
INPUT:

T ′ = (V ′, E′) a word level dependency tree
P = phrases

OUTPUT:
phrase dependency tree T = (V , E ) where
V = {T1(V1, E1), T2(V2, E2), · · · , Tn(Vn, En)}

Initialize:
V ← {({v′}, {})|v′ ∈ V ′}
E ← {(Ti, Tj)|(v′i, v′j) ∈ E′, v′i ∈ Vi, v

′
j ∈ Vj}

R = (Vr, Er) root of T
PhraseDPTree(R, P )
1: Find pi ∈ P where word[R] ∈ pi
2: for each S = (Vs, Es), (R, S) ∈ E do
3: if word[S] ∈ pi then
4: Vr ← Vr ∪ vs; vs ∈ Vs
5: Er ← Er ∪ (vr, root[S]); vr ∈ Vr
6: V ← V − S
7: E ← E + (R, l); ∀(S, l) ∈ E
8: E ← E − (R, S)
9: end if

10: end for
11: for each (R, S) ∈ E do
12: PhraseDPTree(S,P )
13: end for
14: return (V , E )

to the shallow parsing result. Compacts D and R
into a single node. Then traverses all the remain-
ing children in the same way. The algorithm is
shown in Alg. 1.

The output of the algorithm is still a tree, for we
only cut edges which are compacted into a phrase,
the connectivity is keeped. Note that there will be
inevitable disagrees between shallow parser and
lexical dependency parser, the algorithm implies
that we simply follow the result of the latter one:
the phrases from shallow parser will not appear in
the final result if they cannot be found in the pro-
cedure.

Consider the following example:

“We really enjoyed using the Canon PowerShot SD500.”

Fig.2 shows the procedure of phrase depen-
dency parsing. Fig.2(a) is the result of the lex-
ical dependency parser. Shallow parsers result
is shown in Fig.2(b). Chunk phrases “NP(We)”,
“VP(really enjoyed using)” and “NP(the Canon
PowerShot SD500)” are nodes in the output phrase
dependency tree. When visiting node “enjoyed” in
Fig.2(a), the shallow parser tells that “really” and
“using” which are children of “enjoy” are in the
same phrase with their parent, then the three nodes
are packed. The final phrase dependency parsing
tree is shown in the Fig. 2(c).
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2.2 Candidate Product Features and Opinion
Expressions Extraction

In this work, we define that product features
are products, product parts, properties of prod-
ucts, properties of parts, company names and re-
lated objects. For example,in consumer elec-
tronic domain, “Canon PowerShot”, “image qual-
ity”,“camera”, “laptop” are all product features.

From analyzing the labeled corpus, we observe
that more than 98% of product features are in a
single phrase, which is either noun phrase (NP) or
verb phrase (VP). Based on it, all NPs and VPs
are selected as candidate product features. While
prepositional phrases (PPs) and adjectival phrases
(ADJPs) are excluded. Although it can cover
nearly all the true product features, the precision
is relatively low. The large amount of noise can-
didates may confuse the relation extraction clas-
sifier. To shrink the size of candidate set, we in-
troduce language model by an intuition that the
more likely a phrase to be a product feature, the
more closely it related to the product review. In
practice, for a certain domain of product reviews,
a language model is build on easily acquired unla-
beled data. Each candidate NP or VP chunk in the
output of shallow parser is scored by the model,
and cut off if its score is less than a threshold.

Opinion expressions are spans of text that ex-
press a comment or attitude of the opinion holder,
which are usually evaluative or subjective phrases.
We also analyze the labeled corpus for opinion ex-
pressions and observe that many opinion expres-
sions are used in multiple domains, which is iden-
tical with the conclusion presented by Kobayashi
et al. (2007). They collected 5,550 opinion ex-
pressions from various sources . The coverage of
the dictionary is high in multiple domains. Moti-
vated by those observations, we use a dictionary
which contains 8221 opinion expressions to select
candidates (Wilson et al., 2005b). An assump-
tion we use to filter candidate opinion expressions
is that opinion expressions tend to appear closely
with product features, which is also used to extract
product features by Hu and Liu (2004). In our ex-
periments, the tree distance between product fea-
ture and opinion expression in a relation should be
less than 5 in the phrase dependency parsing tree.

2.3 Relation Extraction

This section describes our method on extracting
relations between opinion expressions and product

features using phrase dependency tree. Manually
built patterns were used in previous works which
have an obvious drawback that those patterns can
hardly cover all possible situations. By taking ad-
vantage of the kernel methods which can search a
feature space much larger than that could be repre-
sented by a feature extraction-based approach, we
define a new tree kernel over phrase dependency
trees and incorporate this kernel within an SVM to
extract relations between opinion expressions and
product features.

The potential relation set consists of the all
combinations between candidate product features
and candidate opinion expressions in a sentence.
Given a phrase dependency parsing tree, we
choose the subtree rooted at the lowest common
parent(LCP) of opinion expression and product
feature to represent the relation.

Dependency tree kernels has been proposed by
(Culotta and Sorensen, 2004). Their kernel is de-
fined on lexical dependency tree by the convolu-
tion of similarities between all possible subtrees.
However, if the convolution containing too many
irrelevant subtrees, over-fitting may occur and de-
creases the performance of the classifier. In phrase
dependency tree, local words in a same phrase are
compacted, therefore it provides a way to treat “lo-
cal dependencies” and “global dependencies” dif-
ferently (Fig. 3). As a consequence, these two
kinds of dependencies will not disturb each other
in measuring similarity. Later experiments prove
the validity of this statement.

B

A C

D

E

B

A

C

D E

Phrase Local dependencies

Global dependencies

Figure 3: Example of “local dependencies” and
“global dependencies”.

We generalize the definition by (Culotta and
Sorensen, 2004) to fit the phrase dependency tree.
Use the symbols in Section 2.1.2, T i and T j are
two trees with root Ri and Rj , K(T i,T j) is the
kernel function for them. Firstly, each tree node
Tk ∈ T i is augmented with a set of features F ,
and an instance of F for Tk is F k = {fk}. A
match function m(Ti, Tj) is defined on comparing
a subset of nodes’ features M ⊆ F . And in the
same way, a similarity function s(Ti, Tj) are de-
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fined on S ⊆ F

m(Ti, Tj) =

{
1 if f i

m = f j
m ∀fm ∈M

0 otherwise
(1)

and

s(Ti, Tj) =
∑
fs∈S

C(f i
s, f

j
s ) (2)

where

C(f i
s, f

j
s ) =

{
1 if f i

s = f j
s

0 otherwise
(3)

For the given phrase dependency parsing trees,
the kernel function K(T i,T j) is defined as fol-
low:

K(T i,T j) =


0 if m(Ri, Rj) = 0

s(Ri, Rj) +Kin(Ri, Rj)

+Kc(Ri.C, Rj .C) otherwise

(4)

where Kin(Ri, Rj) is a kernel function over
Ri = (V i

r , E
i
r) and Rj = (V j

r , E
j
r)’s internal

phrase structures,

Kin(Ri, Rj) = K(Ri, Rj) (5)

Kc is the kernel function over Ri and Rj’s chil-
dren. Denote a is a continuous subsequence of in-
dices a, a+ 1, · · · a+ l(a) for Ri’s children where
l(a) is its length, as is the s-th element in a. And
likewise b for Rj .

Kc(Ri.C, Rj .C) =∑
a,b,l(a)=l(b) λ

l(a)K(Ri.[a], Rj .[b])
×∏s=1..l(a)m(Ri.[as], Rj .[bs])

(6)

where the constant 0 < λ < 1 normalizes the ef-
fects of children subsequences’ length.

Compared with the definitions in (Culotta and
Sorensen, 2004), we add term Kin to handle the
internal nodes of a pharse, and make this exten-
sion still satisfy the kernel function requirements
(composition of kernels is still a kernel (Joachims
et al., 2001)). The consideration is that the local
words should have limited effects on whole tree
structures. So the kernel is defined on external
children (Kc) and internal nodes (Kin) separately,

Table 1: Statistics for the annotated corpus

Category # Products # Sentences
Cell Phone 2 1100
Diaper 1 375
Digital Camera 4 1470
DVD Player 1 740
MP3 Player 3 3258

as the result, the local words are not involved in
subsequences of external children for Kc. After
the kernel computing through training instances,
support vector machine (SVM) is used for classi-
fication.

3 Experiments and Results

In this section, we describe the annotated corpus
and experiment configurations including baseline
methods and our results on in-domain and cross-
domain.

3.1 Corpus

We conducted experiments with labeled corpus
which are selected from Hu and Liu (2004), Jin-
dal and Liu (2008) have built. Their documents
are collected from Amazon.com and CNet.com,
where products have a large number of reviews.
They also manually labeled product features and
polarity orientations. Our corpus is selected
from them, which contains customer reviews of
11 products belong to 5 categories(Diaper, Cell
Phone, Digital Camera, DVD Player, and MP3
Player). Table 1 gives the detail statistics.

Since we need to evaluate not only the prod-
uct features but also the opinion expressions and
relations between them, we asked two annotators
to annotate them independently. The annotators
started from identifying product features. Then for
each product feature, they annotated the opinion
expression which has relation with it. Finally, one
annotator A1 extracted 3595 relations, while the
other annotator A2 extracted 3745 relations, and
3217 cases of them matched. In order to measure
the annotation quality, we use the following metric
to measure the inter-annotator agreement, which is
also used by Wiebe et al. (2005).

agr(a||b) =
|A matches B|

|A|
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Table 2: Results for extracting product features
and opinion expressions

P R F
Product Feature 42.8% 85.5% 57.0%
Opinion Expression 52.5% 75.2% 61.8%

Table 3: Features used in SVM-1: o denotes an
opinion expression and t a product feature

1) Positions of o/t in sentence(start, end, other);
2) The distance between o and t (1, 2, 3, 4, other);
3) Whether o and t have direct dependency relation;
4) Whether o precedes t;
5) POS-Tags of o/t.

where agr(a||b) represents the inter-annotator
agreement between annotator a and b, A and B
are the sets of anchors annotated by annotators a
and b. agr(A1||A2) was 85.9% and agr(A2||A1)
was 89.5%. It indicates that the reliability of our
annotated corpus is satisfactory.

3.2 Preprocessing Results

Results of extracting product features and opin-
ion expressions are shown in Table 2. We use
precision, recall and F-measure to evaluate perfor-
mances. The candidate product features are ex-
tracted by the method described in Section 2.2,
whose result is in the first row. 6760 of 24414
candidate product features remained after the fil-
tering, which means we cut 72% of irrelevant can-
didates with a cost of 14.5%(1-85.5%) loss in true
answers. Similar to the product feature extraction,
the precision of extracting opinion expression is
relatively low, while the recall is 75.2%. Since
both product features and opinion expressions ex-
tractions are preprocessing steps, recall is more
important.

3.3 Relation Extraction Experiments

3.3.1 Experiments Settings
In order to compare with state-of-the-art results,
we also evaluated the following methods.

1. Adjacent method extracts relations between a
product feature and its nearest opinion expression,
which is also used in (Hu and Liu, 2004).

2. SVM-1. To compare with tree kernel based

Table 4: Features used in SVM-PTree

Features for match function

1) The syntactic category of the tree node
(e.g. NP, VP, PP, ADJP).

2) Whether it is an opinion expression node
3) Whether it is a product future node.

Features for similarity function

1) The syntactic category of the tree node
(e.g. NP, VP, PP, ADJP).

2) POS-Tag of the head word of node’s internal
phrases.

3) The type of phrase dependency edge linking
to node’s parent.

4) Feature 2) for the node’s parent
5) Feature 3) for the node’s parent

approaches, we evaluated an SVM1 result with a
set of manually selected features(Table 3), which
are also used in (Kobayashi et al., 2007).

3. SVM-2 is designed to compare the effective-
ness of cross-domain performances. The features
used are simple bag of words and POS-Tags be-
tween opinion expressions and product features.

4. SVM-WTree uses head words of opinion ex-
pressions and product features in the word-level
dependency tree, as the previous works in infor-
mation extraction. Then conducts tree kernel pro-
posed by Culotta and Sorensen (2004).

5. SVM-PTree denotes the results of our tree-
kernel based SVM, which is described in the Sec-
tion 2.3. Stanford parser (Klein and Manning,
2002) and Sundance (Riloff and Phillips, 2004)
are used as lexical dependency parser and shallow
parser. The features in match function and simi-
larity function are shown in Table 4.

6. OERight is the result of SVM-PTree with
correct opinion expressions.

7. PFRight is the result of SVM-PTree with
correct product features.

Table 5 shows the performances of different
relation extraction methods with in-domain data.
For each domain, we conducted 5-fold cross val-
idation. Table 6 shows the performances of the
extraction methods on cross-domain data. We use
the digital camera and cell phone domain as train-
ing set. The other domains are used as testing set.

1libsvm 2.88 is used in our experiments
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Table 5: Results of different methods

Cell Phone MP3 Player Digital Camera DVD Player Diaper
Methods P R F P R F P R F P R F P R F

Adjacent 40.3% 60.5% 48.4% 26.5% 59.3% 36.7% 32.7% 59.1% 42.1% 31.8% 68.4% 43.4% 23.4% 78.8% 36.1%

SVM-1 69.5% 42.3% 52.6% 60.7% 30.6% 40.7% 61.4% 32.4% 42.4% 56.0% 27.6% 37.0% 29.3% 14.1% 19.0%

SVM-2 60.7% 19.7% 29.7% 63.6% 23.8% 34.6% 66.9% 23.3% 34.6% 66.7% 13.2% 22.0% 79.2% 22.4% 34.9%

SVM-WTree 52.6% 52.7% 52.6% 46.4% 43.8% 45.1% 49.1% 46.0% 47.5% 35.9% 32.0% 33.8% 36.6% 31.7% 34.0%

SVM-PTree 55.6% 57.2% 56.4% 51.7% 50.7% 51.2% 54.0% 49.9% 51.9% 37.1% 35.4% 36.2% 37.3% 30.5% 33.6%

OERight 66.7% 69.5% 68.1% 65.6% 65.9% 65.7% 64.3% 61.0% 62.6% 59.9% 63.9% 61.8% 55.8% 58.5% 57.1%

PFRight 62.8% 62.1% 62.4% 61.3% 56.8% 59.0% 59.7% 56.2% 57.9% 46.9% 46.6% 46.7% 58.5% 51.3% 53.4%

Table 6: Results for total performance with cross domain training data

Diaper DVD Player MP3 Player
Methods P R F P R F P R F

Adjacent 23.4% 78.8% 36.1% 31.8% 68.4% 43.4% 26.5% 59.3% 36.7%

SVM-1 22.4% 30.6% 25.9% 52.8% 30.9% 39.0% 55.9% 36.8% 44.4%

SVM-2 71.9% 15.1% 25.0% 51.2% 13.2% 21.0% 63.1% 22.0% 32.6%

SVM-WTree 38.7% 52.4% 44.5% 30.7% 59.2% 40.4% 38.1% 47.2% 42.2%

SVM-PTree 37.3% 53.7% 44.0% 59.2% 48.3% 46.3% 43.0% 48.9% 45.8%

3.3.2 Results Discussion
Table 5 presents different methods’ results in five
domains. We observe that the three learning based
methods(SVM-1, SVM-WTree, SVM-PTree) per-
form better than the Adjacent baseline in the first
three domains. However, in other domains, di-
rectly adjacent method is better than the learning
based methods. The main difference between the
first three domains and the last two domains is the
size of data(Table 1). It implies that the simple Ad-
jacent method is also competent when the training
set is small.

A further inspection into the result of first 3
domains, we can also conclude that: 1) Tree
kernels(SVM-WTree and SVM-PTree) are better
than Adjacent, SVM-1 and SVM-2 in all domains.
It proofs that the dependency tree is important
in the opinion relation extraction. The reason
for that is a connection between an opinion and
its target can be discovered with various syntac-
tic structures. 2) The kernel defined on phrase
dependency tree (SVM-PTree) outperforms ker-
nel defined on word level dependency tree(SVM-
WTree) by 4.8% in average. We believe the main
reason is that phrase dependency tree provides a
more succinct tree structure, and the separative
treatment of local dependencies and global depen-
dencies in kernel computation can indeed improve

the performance of relation extraction.
To analysis the results of preprocessing steps’

influences on the following relation extraction,
we provide 2 additional experiments which the
product features and opinion expressions are all
correctly extracted respectively: OERight and
PFRight. These two results show that given an
exactly extraction of opinion expression and prod-
uct feature, the results of opinion relation extrac-
tion will be much better. Further, opinion expres-
sions are more influential which naturally means
the opinion expressions are crucial in opinion re-
lation extraction.

For evaluations on cross domain, the Adjacent
method doesn’t need training data, its results are
the same as the in-domain experiments. Note
in Table 3 and Table 4, we don’t use domain
related features in SVM-1, SVM-WTree, SVM-
PTree, but SVM-2’s features are domain depen-
dent. Since the cross-domain training set is larger
than the original one in Diaper and DVD domain,
the models are trained more sufficiently. The fi-
nal results on cross-domain are even better than
in-domain experiments on SVM-1, SVM-WTree,
and SVM-PTree with percentage of 4.6%, 8.6%,
10.3% in average. And the cross-domain train-
ing set is smaller than in-domain in MP3, but
it also achieve competitive performance with the
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in-domain. On the other hand, SVM-2’s result
decreased compared with the in-domain experi-
ments because the test domain changed. At the
same time, SVM-PTree outperforms other meth-
ods which is similar in in-domain experiments.

4 Related Work

Opinion mining has recently received consider-
able attention. Amount of works have been
done on sentimental classification in different lev-
els (Zhang et al., 2009; Somasundaran et al., 2008;
Pang et al., 2002; Dave et al., 2003; Kim and
Hovy, 2004; Takamura et al., 2005). While we
focus on extracting product features, opinion ex-
pressions and mining relations in this paper.

Kobayashi et al. (2007) presented their work on
extracting opinion units including: opinion holder,
subject, aspect and evaluation. Subject and aspect
belong to product features, while evaluation is the
opinion expression in our work. They converted
the task to two kinds of relation extraction tasks
and proposed a machine learning-based method
which combines contextual clues and statistical
clues. Their experimental results showed that the
model using contextual clues improved the perfor-
mance. However since the contextual information
in a domain is specific, the model got by their ap-
proach can not easily converted to other domains.

Choi et al. (2006) used an integer linear pro-
gramming approach to jointly extract entities and
relations in the context of opinion oriented infor-
mation extraction. They identified expressions of
opinions, sources of opinions and the linking re-
lation that exists between them. The sources of
opinions denote to the person or entity that holds
the opinion.

Another area related to our work is opinion
expressions identification (Wilson et al., 2005a;
Breck et al., 2007). They worked on identify-
ing the words and phrases that express opinions
in text. According to Wiebe et al. (2005), there are
two types of opinion expressions, direct subjective
expressions and expressive subjective elements.

5 Conclusions

In this paper, we described our work on min-
ing opinions from unstructured documents. We
focused on extracting relations between product
features and opinion expressions. The novelties
of our work included: 1) we defined the phrase
dependency parsing and proposed an approach

to construct the phrase dependency trees; 2) we
proposed a new tree kernel function to model
the phrase dependency trees. Experimental re-
sults show that our approach improved the perfor-
mances of the mining task.
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Abstract
This paper proposes a method that speeds
up a classifier trained with many con-
junctive features: combinations of (prim-
itive) features. The key idea is to pre-
compute as partial results the weights of
primitive feature vectors that appear fre-
quently in the target NLP task. A trie
compactly stores the primitive feature vec-
tors with their weights, and it enables the
classifier to find for a given feature vec-
tor its longest prefix feature vector whose
weight has already been computed. Ex-
perimental results for a Japanese depen-
dency parsing task show that our method
speeded up the SVM and LLM classifiers
of the parsers, which achieved accuracy of
90.84/90.71%, by a factor of 10.7/11.6.

1 Introduction

Deep and accurate text analysis based on discrimi-
native models is not yet efficient enough as a com-
ponent of real-time applications, and it is inade-
quate to process Web-scale corpora for knowledge
acquisition (Pantel, 2007; Saeger et al., 2009) or
semi-supervised learning (McClosky et al., 2006;
Spoustová et al., 2009). One of the main reasons
for this inefficiency is attributed to the inefficiency
of core classifiers trained with many feature com-
binations (e.g., word n-grams). Hereafter, we refer
to features that explicitly represent combinations
of features as conjunctive features and the other
atomic features as primitive features.

The feature combinations play an essential role
in obtaining a classifier with state-of-the-art ac-
curacy for several NLP tasks; recent examples in-
clude dependency parsing (Koo et al., 2008), parse
re-ranking (McClosky et al., 2006), pronoun reso-
lution (Nguyen and Kim, 2008), and semantic role
labeling (Liu and Sarkar, 2007). However, ‘ex-
plicit’ feature combinations significantly increase

the feature space, which slows down not only
training but also testing of the classifier.

Kernel-based methods such as support vector
machines (SVMs) consider feature combinations
space-efficiently by using a polynomial kernel
function (Cortes and Vapnik, 1995). The kernel-
based classification is, however, known to be very
slow in NLP tasks, so efficient classifiers should
sum up the weights of the explicit conjunctive fea-
tures (Isozaki and Kazawa, 2002; Kudo and Mat-
sumoto, 2003; Goldberg and Elhadad, 2008).
`1-regularized log-linear models (`1-LLMs), on

the other hand, provide sparse solutions, in which
weights of irrelevant features are exactly zero, by
assuming a Laplacian prior on the weights (Tibshi-
rani, 1996; Kazama and Tsujii, 2003; Goodman,
2004; Gao et al., 2007). However, as Kazama and
Tsujii (2005) have reported in a text categorization
task and we later confirm in a dependency pars-
ing task, when most features regarded as irrelevant
during training `1-LLMs appear rarely in the task,
we cannot greatly reduce the number of active fea-
tures in each classification. In the end, when effi-
ciency is a major concern, we must use exhaustive
feature selection (Wu et al., 2007; Okanohara and
Tsujii, 2009) or even restrict the order of conjunc-
tive features at the expense of accuracy.

In this study, we provide a simple, but effective
solution to the inefficiency of classifiers trained
with higher-order conjunctive features (or polyno-
mial kernel), by exploiting the Zipfian nature of
language data. The key idea is to precompute the
weights of primitive feature vectors and use them
as partial results to compute the weight of a given
feature vector. We use a trie called the feature
sequence trie to efficiently find for a given fea-
ture vector its longest prefix feature vector whose
weight has been computed. The trie is built from
feature vectors generated by applying the classifier
to actual data in the classification task. The time
complexity of the classifier approaches time that
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is linear with respect to the number of primitive
features when the retrieved feature vector covers
most of the features in the input feature vector.

We implemented our algorithm for SVM and
LLM classifiers and evaluated the performance of
the resulting classifiers in a Japanese dependency
parsing task. Experimental results show that it
successfully speeded up classifiers trained with
higher-order conjunctive features by a factor of 10.

The rest of this paper is organized as follows.
Section 2 introduces LLMs and SVMs. Section 3
proposes our classification algorithm. Section 4
presents experimental results. Section 5 concludes
with a summary and addresses future directions.

2 Preliminaries

In this paper, we focus on linear classifiers that cal-
culate the probability (or score) by summing up
weights of individual features. Examples include
not only log-linear models but also support vec-
tor machines with kernel expansion (Isozaki and
Kazawa, 2002; Kudo and Matsumoto, 2003). Be-
low, we introduce these two classifiers and their
ways to consider feature combinations.

In classification-based NLP, the target task is
modeled as one or more classification steps. For
example in part-of-speech (POS) tagging, each
classification decides whether to assign a partic-
ular label (POS tag) to a given sample (each word
in a given sentence). Each sample is then repre-
sented by a feature vector x, whose element xi is
a value of a feature function fi ∈ F .

Here, we assume a binary feature function
fi(x) ∈ {0, 1}, in which a non-zero value means
that particular context data appears in the sample.
We say that a feature fi is active in sample x when
xi = fi(x) = 1 and |x| represents the number of
active features in x (|x| = |{fi|fi(x) = 1}|).
2.1 Log-Linear Models
The log-linear model (LLM), or also known as
maximum-entropy model (Berger et al., 1996), is
a linear classifier widely used in the NLP literature.
Let the training data of LLMs be {〈xi, yi〉}Li=1,
where xi ∈ {0, 1}n is a feature vector and yi is a
class label associated with xi. We assume a binary
label yi ∈ {±1} here to simplify the argument.

The classifier provides conditional probability
p(y|x) for a given feature vector x and a label y:

p(y|x) =
1

Z(x)
exp

∑
i

wi,yfi,y(x, y), (1)

where fi,y(x, y) is a feature function that returns
a non-zero value when fi(x) = 1 and the label is
y, wi,y ∈ R is a weight associated with fi,y, and
Z(x) =

∑
y exp

∑
iwi,yfi,y(x, y) is the partition

function. We can consider feature combinations in
LLMs by explicitly introducing a new conjunctive
feature fF ′,y(x, y) that is activated when a partic-
ular set of features F ′ ⊆ F to be combined is acti-
vated (namely, fF ′,y(x, y) =

∧
fi,y∈F ′ fi,y(x, y)).

We then introduce an `1-regularized LLM (`1-
LLM), in which the weight vector w is tuned so
as to maximize the logarithm of the a posteriori
probability of the training data:

L(w) =
L∑

i=1

log p(yi|xi)− C‖w‖1. (2)

Hyper-parameter C thereby controls the degree of
over-fitting (solution sparseness). Interested read-
ers may refer to the cited literature (Andrew and
Gao, 2007) for the optimization procedures.

2.2 Support Vector Machines
A support vector machine (SVM) is a binary clas-
sifier (Cortes and Vapnik, 1995). Training with
samples {〈xi, yi〉}Li=1 where xi ∈ {0, 1}n and
yi ∈ {±1} yields the following decision function:

y(x) = sgn(g(x) + b)

g(x) =
∑

xj∈SV
yjαjφ(xj)Tφ(x), (3)

where b ∈ R, φ : Rn 7→ RH and support vec-
tors xj ∈ SV (subset of training samples), each
of which is associated with weight αj ∈ R. We
hereafter call g(x) the weight function. Nonlinear
mapping function φ is chosen to make the train-
ing samples linearly separable in RH space. Ker-
nel function k(xj ,x) = φ(xj)Tφ(x) is then in-
troduced to compute the dot product in RH space
without mapping x to φ(x).

To consider combinations of primitive features
fj ∈ F , we use a polynomial kernel kd(xj ,x) =
(xT

j x + 1)d. From Eq. 3, we obtain the weight
function for the polynomial kernel as:

g(x) =
∑

xj∈SV
yjαj(xT

j x + 1)d. (4)

Since we assumed that xi is a binary value repre-
senting whether a (primitive) feature fi is active
in the sample, the polynomial kernel of degree d
implies a mapping φd from x to φd(x) that has
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H =
∑d

k=0

(
n
k

)
dimensions. Each dimension rep-

resents a (weighted) conjunction of d features in
the original sample x.1

Kernel Expansion (SVM-KE) The time com-
plexity of Eq. 4 is O(|x| · |SV|). This cost is usu-
ally high for classifiers used in NLP tasks because
they often have many support vectors (|SV| >
10, 000). Kernel expansion (KE) was proposed
by Isozaki and Kazawa (2002) to convert Eq. 4
into the linear sum of the weights in the mapped
feature space as in LLM (p(y|x) in Eq. 1):

g(x) = wTxd =
∑

i

wix
d
i , (5)

where xd is a binary feature vector whose element
xd

i has a non-zero value when (φd(x))i > 0, w
is the weight vector for xd in the expanded fea-
ture space Fd and is precalculated from the sup-
port vectors xj and their weights αj . Interested
readers may refer to Kudo and Matsumoto (2003)
for the detailed computation for obtaining w.

The time complexity of Eq. 5 (and Eq. 1) is
O(|xd|), which is linear with respect to the num-
ber of active features in xd within the expanded
feature space Fd.

Heuristic Kernel Expansion (SVM-HKE) To
make the weight vector sparse, Kudo and Mat-
sumoto (2003) proposed a heuristic method that
filters out less useful features whose absolute
weight values are less than a pre-defined threshold
σ.2 They reported that increased threshold value σ
resulted in a dramatically sparse feature space Fd,
which had the side-effects of accuracy degradation
and classifier speed-up.

3 Proposed Method

In this section, we propose a method that speeds
up a classifier trained with many conjunctive fea-
tures. Below, we focus on a kernel-based classifier
trained with a polynomial kernel of degree d (here,

1For example, given an input vector x = (x1, x2)
T

and a support vector x′ = (x′1, x
′
2)

T, the 2nd-order
polynomial kernel returns k2(x

′, x) = (x′1x1 + x′2x2 +
1)2 = 3x′1x1 + 3x′2x2 + 2x′1x1x

′
2x2 + 1 (∵ x′i, xi ∈

{0, 1}). This function thus implies a mapping φ2(x) =

(1,
√

3x1,
√

3x2,
√

2x1x2)
T. In the following argument, we

ignore the dimension of the constant in the mapped space and
assume constant b is set to include it.

2Precisely speaking, they set different thresholds to posi-
tive (αj > 0) and negative (αj < 0) support vectors, consid-
ering the proportion of positive and negative support vectors.

Figure 1: Efficient computation of g(x).

SVMs), but an analogous argument is possible for
linear classifiers (e.g., LLMs).3

We hereafter represent a binary feature vector x
as a set of active features {fi|fi(x) = 1}. x can
thereby be represented as an element of the power
set 2F of the set of features F .

3.1 Idea

Let us remember that weight function g(x) in
Eq. 5 maps x ∈ 2F to W ∈ R. If we could cal-
culate Wx = g(x) for all possible x in advance,
we could obtain g(x) by simply checking |x| ele-
ments, namely, in O(|x|) time. However, because
|{x|x ∈ 2F}| = 2|F| and |F| is likely to be very
large (often |F| > 10, 000 in NLP tasks), this cal-
culation is impractical.

We then compute and store weight Wx′ =
g(x′) for x′ ∈ Vc(⊂ 2F ), a certain subset of
the possible value space, and compute g(x) for
x /∈ Vc by using precalculated weight Wxc for
xc ⊆ 4x in the following way:

g(x) = Wxc +
∑

fi∈xd−xdc

wi. (6)

Intuitively speaking, starting from partial weight
Wxc , we add up remaining weights of primitive
features f ∈ F that are not active in xc but active
in x and conjunctive features that combine f and
the other active features in x.

An example of this computation (d = 2) is de-
picted in Figure 1. We can efficiently compute
g(x) for a vector x that has four active features
f1, f2, f3, and f4 (and x2 has their six conjunc-
tive features) using precalculated weight W{1,2,3};
we should first check the three features f1, f2, and
f3 to retrieve W{1,2,3} and next check the remain-
ing four features related to f4, namely f4, f1,4,
f2,4, and f3,4, in order to add up the remaining

3When a feature vector x includes (explicit) conjunctive
features f ∈ Fd, we assume weight function g′(y|x′) =
g(y|x), where x′ is a projection of x (by φ−1

d : Fd → F ).
4This means that all active features in xc are active in x.
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weights, while the normal computation in Eq. 5
should check the four primitive and six conjunc-
tive features to get the individual weights.

Expected time complexity Counting the num-
ber of features to be checked in the computation,
we obtain the time complexity f(x, d) of Eq. 6 as:

f(x, d) = O(|xc|+ |xd| − |xd
c |), (7)

where |xd| =
d∑

k=1

(|x|
k

)
(8)

(e.g., |x2| = |x|2+|x|
2 and |x3| = |x|3+5|x|

6 ).5 Note
that when |xc| becomes close to |x|, this time
complexity actually approaches O(|x|).

Thus, to minimize this computational cost, xc

is to be chosen from Vc as follows:

xc = argmin
x′∈Vc,x′⊆x

(|x′|+ |xd| − |x′d|). (9)

3.2 Construction of Feature Sequence Trie
There are two issues with speeding up the classi-
fier by the computation shown in Eq. 6. First, since
we can store weights for only a small fraction of
possible feature vectors (namely, |Vc| � 2|F|), we
should choose Vc so as to maximize its impact on
the speed-up. Second, we should quickly find an
optimal xc from Vc for a given feature vector x.

The solution to the first problem is to enumer-
ate partial feature vectors that frequently appear in
the target task. Note that typical linguistic features
used in NLP tasks usually consist of disjunctive
sets of features (e.g., word surface and POS), in
which each set is likely to follow Zipf’s law (Zipf,
1949) and correlate with each other. We can ex-
pect the distribution of feature vectors, the mixture
of Zipf distributions, to be Zipfian. This has been
confirmed for word n-grams (Egghe, 2000) and
itemset support distribution (Chuang et al., 2008).
We can thereby expect that a small set of partial
feature vectors commonly appear in the task.

To solve the second problem, we introduce a
feature sequence trie (fstrie), which represents a
hierarchy of feature vectors, to enable the clas-
sifier to efficiently retrieve (sub-)optimal xc (in
Eq. 9) for a given feature vector x. We build an
fstrie in the following steps:

Step 1: Apply the target classifier to actual (raw)
data in the task to enumerate possible feature
vectors (hereafter, source feature vectors).

5This is the maximum number of conjunctive features.

Figure 2: Feature sequence trie and completion of
prefix feature vector weights.

Step 2: Sort the features in each source feature
vector according to their frequency in the
training data (in descending order).

Step 3: Build a trie from the source feature vec-
tors by regarding feature indices as characters
and store weights of all prefix feature vectors.

An fstrie built from six source feature vectors is
shown in Figure 2. In fstries, a path from the root
to another node represents a feature vector. An
important point here is that the fstrie stores the
weights of all prefix feature vectors of the source
feature vectors, and the trie structure enables us to
retrieve for a given feature vector x the weight of
its longest prefix vector xc ⊆ x in O(|xc|) time.
To handle feature functions in LLMs (Eq. 1), we
store partial weight Wxc,y =

∑
iwi,yfi,y(xc, y)

for each label y on the node that expresses xc.
Since we sort the features in the source fea-

ture vectors according to their frequency, the pre-
fix feature vectors exclude less frequent features
in the source feature vectors. Lexical features or
finer-grained features (e.g., POS-subcategory) are
usually less frequent than coarse-grained features
(e.g., POS), so they lie in the latter part of the
feature vectors. This sorting helps us to retrieve
longer feature vector xc for input feature vector x
that will have diverse infrequent features. It also
minimizes the size of fstrie by sharing the com-
mon frequent prefix (e.g., {f1, f2} in Figure 2).

Pruning nodes from fstrie We have so far de-
scribed the way to construct an fstrie from the
source feature vectors. However, a naive enumer-
ation of source feature vectors will result in the
explosion of the fstrie size, and we want to have
a principled way to control the fstrie size rather
than reducing the processed data size. Below, we
present a method that prunes useless prefix feature
vectors (nodes) from the constructed fstrie to max-
imize its impact on the classifier efficiency.
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Algorithm 1 PRUNE NODES FROM FSTRIE

Input: fstrie T , node_limit N ∈ N
Output: fstrie T

1: while # of nodes in T > N do
2: xc ← argmin

x′∈leaf(T )

u(x′)

3: remove xc, T
4: end while
5: return T

We adopt a greedy strategy that iteratively
prunes a leaf node (one prefix feature vector and
its weight) from the fstrie built from all the source
feature vectors, according to a certain utility score
calculated for each node. In this study, we con-
sider two metrics for each prefix feature vector xc

to calculate its utility score.

Probability p(xc), which denotes how often the
stored weight Wxc will be used in the tar-
get task. The maximum-likelihood estima-
tion provides probability:

p(xc) =

∑
x′⊇xc

nx′∑
x nx

, (10)

where nx ∈ N is the frequency count of a
source feature vector x in the processed data.

Computation reduction ∆d(xc), which denotes
how much computation is reduced by Wxc to
calculate a weight of x ⊇ xc. This can be es-
timated by counting the number of conjunc-
tive features we additionally have to check
when we remove xc. Since the fstrie stores
the weight of a prefix feature vector xc- ⊂ xc

such that |xc-| = |xc| − 1 (e.g., in Figure 2,
xc- = {f1, f2} for xc = {f1, f2, f4}), we
can define the computation reduction as:

∆d(xc) = (|xd
c | − |xd

c-|)− (|xc| − |xc-|)

=
d∑

k=2

(|xc|
k

)
−

d∑
k=2

(|xc| − 1
k

)
(∵ Eq. 8).

∆2(xc) = |xc| − 1 and ∆3(xc) = |xc|2−|xc|
2 .

We calculate utility score of each node xc in the
fstrie as u(xc) = p(xc) · ∆d(xc), which means
the expected computation reduction by xc in the
target task, and prune the lowest-utility-score leaf
nodes from the fstrie one by one (Algorithm 1). If
several prefix vectors have the same utility score,
we eliminate them in numerical descending order.

Algorithm 2 COMPUTE WEIGHT WITH FSTRIE

Input: fstrie T , weight vector w ∈ R|Fd|

feature vector x ∈ 2F

Output: weight W = g(x) ∈ R
1: x← sort(x)
2: 〈xc,Wxc〉 ← prefix_search(T , x)
3: W ←Wxc

4: for all feature fj ∈ xd − xd
c do

5: W ←W + wj

6: end for
7: return W

3.3 Classification Algorithm

Our classification algorithm is shown in detail in
Algorithm 2. The classifier first sorts the active
features in input feature vector x according to their
frequency in the training data. Then, for x, it re-
trieves the longest common prefix vector xc from
the fstrie (line 2 in Algorithm 2). It then adds the
weights of the remaining features to partial weight
Wxc (line 5 in Algorithm 2).

Note that the remaining features whose weights
we sum up (line 4 in Algorithm 2) are primitive
and conjunctive features that relate to f ∈ x−xc,
which appear less frequently than f ′ ∈ xc in the
training data. Thus, when we apply our algorithm
to classifiers with the sparse solution (e.g., SVM-
HKEs or `1-LLMs), |xd|−|xd

c | can be much smaller
than the theoretical expectation (Eq. 8). We con-
firmed this in the following experiments.

4 Evaluation

We applied our algorithm to SVM-KE, SVM-HKE,
and `1-LLM classifiers and evaluated the resulting
classifiers in a Japanese dependency parsing task.
To the best of our knowledge, there are no previous
reports of an exact weight calculation faster than
linear summation (Eqs. 1 and 5). We also com-
pared our SVM classifier with a classifier called
polynomial kernel inverted (PKI: Kudo and Mat-
sumoto (2003)), which uses the polynomial kernel
(Eq. 4) and inverted indexing to support vectors.

4.1 Experimental Settings

A Japanese dependency parser inputs bunsetsu-
segmented sentences and outputs the correct head
(bunsetsu) for each bunsetsu; here, a bunsetsu is
a grammatical unit in Japanese consisting of one
or more content words followed by zero or more
function words. A parser generates a feature vec-
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Modifier,
modifiee
bunsetsu

head word (surface-form, POS, POS-subcategory,
inflection form), functional word (surface-form,
POS, POS-subcategory, inflection form), brackets,
quotation marks, punctuation marks, position in
sentence (beginning, end)

Between
bunsetsus

distance (1, 2–5, 6–), case-particles, brackets,
quotation marks, punctuation marks

Table 1: Feature set used for experiments.

tor for a particular pair of bunsetsus (modifier and
modifiee candidates) by exploiting the head-final
and projective (Nivre, 2003) nature of dependency
relations in Japanese. The classifier then outputs
label y = ‘+1’ (dependent) or ‘−1’ (independent).

Since our classifier is independent of individ-
ual parsing algorithms, we targeted speeding up
(a classifier in) the shift-reduce parser proposed
by Sassano (2004), which has been reported to be
the most efficient for this task, with almost state-
of-the-art accuracy (Iwatate et al., 2008). This
parser decreases the number of classification steps
by using the fact that a bunsetsu is likely to modify
a bunsetsu close to itself. Due to space limitations,
we omit the details of the parsing algorithm.

We used the standard feature set tailored for this
task (Kudo and Matsumoto, 2002; Sassano, 2004;
Iwatate et al., 2008) (Table 1). Note that features
listed in the ‘Between bunsetsus’ row represent
contexts between the target pair of bunsetsus and
appear independently from other features, which
will become an obstacle to finding the longest pre-
fix vector. This task is therefore a better measure
of our method than simple sequential labeling such
as POS tagging or named-entity recognition.

For evaluation, we used Kyoto Text Corpus Ver-
sion 4.0 (Kurohashi and Nagao, 2003), Mainichi
news articles in 1995 that have been manually an-
notated with dependency relations.6 The train-
ing, development, and test sets included 24,283,
4833, and 9284 sentences, and 234,685, 47,571,
and 89,874 bunsetsus, respectively. The training
samples generated from the training set included
150,064 positive and 146,712 negative samples.

The following experiments were performed on
a server with an Intel R© XeonTM 3.20-GHz CPU.
We used TinySVM7 and a simple C++ library for
maximum entropy classification8 to train SVMs
and `1-LLMs, respectively. We used Darts-Clone,9

6http://nlp.kuee.kyoto-u.ac.jp/nl-resource/corpus-e.html
7http://chasen.org/˜taku/software/TinySVM/
8http://www-tsujii.is.s.u-tokyo.ac.jp/˜tsuruoka/maxent/
9http://code.google.com/p/darts-clone/

Model type Model statistics Dep. Sent.
Model d ω / σ |Fd| |xd| acc. acc.
SVM-KE 1 0 39712 27.3 88.29 46.49
SVM-KE 2 0 1478109 380.6 90.76 53.83
SVM-KE 3 0 26194354 3286.7 90.93�54.43�

SVM-HKE 3 0.001 13247675 2725.9 90.92�54.39�

SVM-HKE 3 0.002 2514385 2238.1 90.91�54.32>

SVM-HKE 3 0.003 793195 1855.4 90.83 54.21
SVM-KE 4 0 293416102 20395.4 90.91�54.69�
SVM-HKE 4 0.0002 96522236 15282.1 90.93�54.53>

SVM-HKE 4 0.0004 19245076 11565.0 90.96�54.64�

SVM-HKE 4 0.0006 7277592 8958.2 90.84 54.48>

`1-LLM 1 1.0 9268 26.5 88.22 46.06
`1-LLM 2 2.0 32575 309.8 90.62 53.46
`1-LLM 3 3.0 129503 2088.3 90.71 54.09>

`1-LLM 3 4.0 85419 1803.0 90.61 53.79
`1-LLM 3 5.0 63046 1699.5 90.59 53.55

Table 2: Specifications of LLMs and SVMs. The
accuracy marked with ‘�’ or ‘>’ was signifi-
cantly better than the d = 2 counterpart (p < 0.01
or 0.01 ≤ p < 0.05 by McNemar’s test).

a double-array trie (Aoe, 1989; Yata et al., 2008),
as a compact trie implementation. All these li-
braries and algorithms are implemented in C++.
The code for building fstries occupies 100 lines,
while the code for the classifier occupies 20 lines
(except those for kernel expansion).

4.2 Results

Specifications of SVMs and LLMs used here are
shown in Table 2; |Fd| is the number of active fea-
tures, while |xd| is the average number of active
features in each classification for the test corpus.
Dependency accuracy is the ratio of dependency
relations correctly identified by the parser, while
sentence accuracy is the exact match accuracy of
complete dependency relations in a sentence.

For LLM training, we designed explicit conjunc-
tive features for all the d or lower-order feature
combinations to make the results comparable to
those of SVMs. We could not train d = 4 LLMs
due to parameter explosion. We varied SVM soft
margin parameter c from 0.1 to 0.000001 and LLM

width factor parameter ω,10 which controls the im-
pact of the prior, from 1.0 to 5.0, and adjusted
the values to maximize dependency accuracy for
the development set: (d, c) = (1, 0.1), (2, 0.005),
(3, 0.0001), (4, 0.000005) for SVMs and (d, ω) =
(1, 1.0), (2, 2.0), (3, 4.0) for `1-LLMs.

The accuracy of around 90.9% (SVM-KE, d =
3, 4) is close to the performance of state-of-the-

10The parameter C of `1-LLM in Eq. 2 was set to ω/L
(referred to in Kazama and Tsujii (2003) as ‘single width’).
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Model PKI Baseline Proposed w/ fstrieS Proposed w/ fstrieM Proposed w/ fstrieL Speed
type d classify Mem. Time [ms/sent.] Mem. Time [ms/sent.] Mem. Time [ms/sent.] Mem. Time [ms/sent.] up

[ms/sent.] (MB) classify (total) (MB) classify (total) (MB) classify (total) (MB) classify (total)

SVM-KE 1 13.480 0.2 0.003 (0.015) +0.6 0.006 (0.018) +20.2 0.007 (0.018) +662.9 0.016 (0.029) NA
SVM-KE 2 10.313 13.5 0.041 (0.054) +0.5 0.020 (0.032) +18.0 0.021 (0.034) +662.4 0.023 (0.036) 2.1
SVM-KE 3 10.945 142.2 0.345 (0.361) +0.5 0.163 (0.178) +18.2 0.108 (0.123) +667.0 0.079 (0.093) 4.4
SVM-KE 4 12.603 648.0 2.338 (2.363) +0.5 1.156 (1.178) +18.6 0.671 (0.690) +675.9 0.415 (0.432) 5.6

Table 3: Parsing results for test corpus: SVM-KE classifiers with dense feature space.

art parsers (Iwatate et al., 2008), and the model
statistics are considered to be complex (or re-
alistic) enough to evaluate our classifier’s util-
ity. The number of support vectors of SVMs was
71, 766 ± 9.2%, which is twice as many as those
used by Kudo and Matsumoto (2003) (34,996) in
their experiments on the same task.

We could clearly observe that the number of ac-
tive features |xd| increased dramatically according
to the order d of feature combinations. The den-
sity of |xd| for SVMs was very high (e.g., |x3| =
3286.7, close to the maximum shown in Eq. 8:
(27.33 + 5× 27.3)/6 ' 3414.

For d ≥ 3 models, we attempted to control
the size of the feature space |Fd| by changing
the model’s hyper-parameters: threshold σ for the
SVM-HKE and width factor ω for the `1-LLM. Al-
though we successfully reduced the size of the fea-
ture space |Fd|, we could not dramatically reduce
the average number of active features |xd| in each
classification while keeping the accuracy advan-
tage. This confirms that the solution sparseness
does not suffice to obtain an efficient classifier.

We obtained source feature vectors to build
fstries by applying parsers with the target clas-
sifiers to a raw corpus in the target domain,
3,258,313 sentences of 1991–94 Mainichi news
articles that were morphologically analyzed by
JUMAN6 and segmented into bunsetsus by KNP.6

We first built fstrieL using all the source feature
vectors. We then attempted to reduce the number
of prefix feature vectors in fstrieL to 1/2n the size
by Algorithm 1. We refer to fstries built from 1/32
and 1/1024 of the prefix feature vectors in fstrieL

as fstrieM and fstrieS in the following experiments.
Because we exploited Algorithm 2 to calcu-

late the weights of the prefix feature vectors, it
took less than one hour (59 min. 29 sec.) on the
3.20-GHz server to build fstrieL (and calculate the
utility score for all the nodes in it) for the slow-
est SVM-KE (d = 4) from the 40,409,190 source
feature vectors (62,654,549 prefix feature vectors)
generated by parsing the 3,258,313 sentences.
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Figure 3: Average classification time per sentence
plotted against size of fstrie: SVM-KE.

Results for SVM-KE with dense feature space
The performances of parsers having SVM-KE clas-
sifiers with and without the fstrie are given in Ta-
ble 3. The ‘speed-up’ column shows the speed-up
factor of the most efficient classifier (bold) ver-
sus the baseline classifier without fstries. Since
each classifier solved a slightly different num-
ber of classification steps (112, 853± 0.15%), we
show the (average) cumulative classification time
for a sentence. The Mem. columns show the size
of weight vectors for SVM-KE classifiers and the
size of fstriesS, fstriesM, and fstriesL, respectively.

The fstries successfully speeded up SVM-KE

classifiers with the dense feature space.11 The
SVM-KE classifiers without fstries were still faster
than PKI, but as expected from a large |xd| value,
the classifiers with higher conjunctive features
were much slower than the classifier with only
primitive features by factors of 13 (d = 2), 109
(d = 3) and 738 (d = 4) and the classification
time accounted for most of the parsing time.

The average classification time of our classifiers
plotted against fstrie size is shown in Figure 3.
Surprisingly, we obtained a significant speed-up
even with tiny fstrie sizes of < 1 MB. Further-
more, we naively controlled the fstrie size by sim-

11The inefficiency of the classifier (d = 1) results from the
cost of the additional sort function (line 1 in Algorithm 2) and
CPU cache failure due to random accesses to the huge fstries.
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Model Baseline Proposed w/ fstrieS Proposed w/ fstrieM Proposed w/ fstrieL Speed
type d σ / ω Mem. Time [ms/sent.] Mem. Time [ms/sent.] Mem. Time [ms/sent.] Mem. Time [ms/sent.] up

(MB) classify (total) (MB) classify (total) (MB) classify (total) (MB) classify (total)

SVM-HKE 3 0.001 64.6 0.348 (0.363) +0.5 0.151 (0.166) +17.6 0.097 (0.111) +638.0 0.070 (0.084) 5.0
SVM-HKE 3 0.002 13.9 0.332 (0.346) +0.5 0.123 (0.137) +17.0 0.074 (0.088) +612.2 0.053 (0.067) 6.2
SVM-HKE 3 0.003 4.2 0.314 (0.328) +0.4 0.102 (0.115) +14.7 0.057 (0.070) +526.2 0.041 (0.054) 7.8
SVM-HKE 4 0.0002 235.0 2.258 (2.280) +0.5 1.022 (1.042) +17.7 0.558 (0.575) +637.1 0.330 (0.346) 6.8
SVM-HKE 4 0.0004 82.8 2.038 (2.058) +0.5 0.816 (0.835) +16.8 0.414 (0.430) +601.7 0.234 (0.249) 8.7
SVM-HKE 4 0.0006 32.2 1.802 (1.820) +0.4 0.646 (0.662) +15.7 0.311 (0.326) +558.9 0.168 (0.183) 10.7
`1-LLM 1 1.0 0.1 0.004 (0.016) +0.8 0.006 (0.018) +25.0 0.007 (0.019) +787.7 0.016 (0.029) NA
`1-LLM 2 2.0 0.4 0.043 (0.055) +0.6 0.016 (0.028) +20.5 0.015 (0.027) +698.0 0.018 (0.030) 2.9
`1-LLM 3 3.0 1.0 0.314 (0.326) +0.5 0.091 (0.103) +17.8 0.041 (0.054) +601.0 0.027 (0.040) 11.6
`1-LLM 3 4.0 0.7 0.300 (0.313) +0.5 0.082 (0.094) +16.3 0.036 (0.049) +550.1 0.024 (0.037) 12.4
`1-LLM 3 5.0 0.5 0.290 (0.302) +0.5 0.076 (0.088) +15.1 0.032 (0.045) +510.7 0.022 (0.035) 13.3

Table 4: Parsing results for test corpus: SVM-HKE and `1-LLM classifiers with sparse feature space.
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Figure 4: Fstrie reduction: utility score vs. pro-
cessed sentence reduction for SVM-KE (d = 4).

ply reducing the number of sentences processed to
1/2n. The impact on the speed-up of the resulting
fstries (naive) and the fstries constructed by our
utility score (utility-score) on SVM-KE (d = 4)
is shown in Figure 4. The Zipfian nature of lan-
guage data let us obtain a substantial speed-up
even when we naively reduced the fstrie size, and
the utility score further decreased the fstrie size
required to obtain the same speed-up. We needed
less than 1/3 size fstries to achieve the same speed-
up: 0.671 ms./sent. (18.6 MB) (utility-score) vs.
0.680 ms./sent. (67.1 MB) (naive).

Results for SVM-HKE and `1-LLM classifiers
with sparse feature space The performances of
parsers having SVM-HKE and `1-LLM classifiers
with and without the fstrie are given in Table 4.
The fstries successfully speeded up the SVM-HKE

and `1-LLM classifiers by factors of 10.7 (SVM-
HKE, d = 4, σ = 0.0006) and 11.6 (`1-LLM,
d = 3, ω = 3.0). We obtained more speed-
up when we used fstries for classifiers with more
sparse feature space Fd (Figures 5 and 6). The
parsing speed with d = 3 models are now compa-
rable to the parsing speed with d = 2 models.
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Figure 5: Average classification time per sentence
plotted against size of fstrie: SVM-HKE (d = 3).
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Figure 6: Average classification time per sentence
plotted against size of fstrie: `1-LLM (d = 3).

Without fstries, little speed-up of SVM-HKE

classifiers versus the SVM-KE classifiers (in Ta-
ble 3) was obtained due to the mild reduction in
the average number of active features |xd| in the
classification. This result conforms to the results
reported in (Kudo and Matsumoto, 2003).

The parsing speed reached 14,937 sentences
per second with accuracy of 90.91% (SVM-HKE,
d = 3, σ = 0.002). We used this parser to pro-
cess 1,005,918 sentences (5,934,184 bunsetsus)
randomly extracted from Japanese weblog feeds
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updated in November 2008, to see how much the
impact of fstries lessens when the test data and
the data processed to build fstries mismatch. The
parsing time was 156.4 sec. without fstrieL, while
it was just 35.9 sec. with fstrieL. The speed-up
factor of 4.4 on weblog feeds was slightly worse
than that on news articles (0.346/0.067 = 5.2)
but still evident. This implies that sorting features
in building fstries yielded prefix features vectors
that commonly appear in this task, by excluding
domain-specific features such as lexical features.

In summary, our algorithm successfully mini-
mized the efficiency gap among classifiers with
different degrees of feature combinations and
made accurate classifiers trained with higher-order
feature combinations practical.

5 Conclusion and Future Work

Our simple method speeds up a classifier trained
with many conjunctive features by using precal-
culated weights of (partial) feature vectors stored
in a feature sequence trie (fstrie). We experimen-
tally demonstrated that it speeded up SVM and
LLM classifiers for a Japanese dependency pars-
ing task by a factor of 10. We also confirmed that
the sparse feature space provided by `1-LLMs and
SVM-HKEs contributed much to size reduction of
the fstrie required to achieve the same speed-up.
The implementations of the proposed algorithm
for LLMs and SVMs (with a polynomial kernel) and
the Japanese dependency parser will be available
at http://www.tkl.iis.u-tokyo.ac.jp/˜ynaga/.

We plan to apply our method to wider range of
classifiers used in various NLP tasks. To speed up
classifiers used in a real-time application, we can
build fstries incrementally by using feature vec-
tors generated from user inputs. When we run our
classifiers on resource-tight environments such as
cell-phones, we can use a random feature mix-
ing technique (Ganchev and Dredze, 2008) or a
memory-efficient trie implementation based on a
succinct data structure (Jacobson, 1989; Delpratt
et al., 2006) to reduce required memory usage.

We will combine our method with other tech-
niques that provide sparse solutions, for example,
kernel methods on a budget (Dekel and Singer,
2007; Dekel et al., 2008; Orabona et al., 2008) or
kernel approximation (surveyed in Kashima et al.
(2009)). It is also easy to combine our method
with SVMs with partial kernel expansion (Gold-
berg and Elhadad, 2008), which will yield slower

but more space-efficient classifiers. We will in
the future consider an issue of speeding up decod-
ing with structured models (Lafferty et al., 2001;
Miyao and Tsujii, 2002; Sutton et al., 2004).
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Abstract 

In this paper, we propose a linear model-based 
general framework to combine k-best parse 
outputs from multiple parsers. The proposed 
framework leverages on the strengths of pre-
vious system combination and re-ranking 
techniques in parsing by integrating them into 
a linear model. As a result, it is able to fully 
utilize both the logarithm of the probability of 
each k-best parse tree from each individual 
parser and any additional useful features. For 
feature weight tuning, we compare the simu-
lated-annealing algorithm and the perceptron 
algorithm. Our experiments are carried out on 
both the Chinese and English Penn Treebank 
syntactic parsing task by combining two state-
of-the-art parsing models, a head-driven lexi-
calized model and a latent-annotation-based 
un-lexicalized model. Experimental results 
show that our F-Scores of 85.45 on Chinese 
and 92.62 on English outperform the previ-
ously best-reported systems by 1.21 and 0.52, 
respectively. 

1 Introduction 

Statistical models have achieved great success in 
language parsing and obtained the state-of-the-
art results in a variety of languages. In general, 
they can be divided into two major categories, 
namely lexicalized models (Collins 1997, 1999; 
Charniak 1997, 2000) and un-lexicalized models 
(Klein and Manning 2003; Matsuzaki et al. 2005; 
Petrov et al. 2006; Petrov and Klein 2007). In 
lexicalized models, word information play a key 
role in modeling grammar rule generation, while 
un-lexicalized models usually utilize latent in-
formation derived from the parse structure diver-
sity. Although the two models are different from 
each other in essence, both have achieved state-
of-the-art results in a variety of languages and 
are complementary to each other (this will be 
empirically verified later in this paper). There-
fore, it is natural to combine the two models for 
better parsing performance.  

Besides individual parsing models, many sys-
tem combination methods for parsing have been 
proposed (Henderson and Brill 1999; Zeman and 
Žabokrtský 2005; Sagae and Lavie 2006) and 
promising performance improvements have been 
reported. In addition, parsing re-ranking (Collins 
2000; Riezler et al. 2002; Charniak and Johnson 
2005; Huang 2008) has also been shown to be 
another effective technique to improve parsing 
performance. This technique utilizes a bunch of 
linguistic features to re-rank the k-best (Huang 
and Chiang 2005) output on the forest level or 
tree level. In prior work, system combination 
was applied on multiple parsers while re-ranking 
was applied on the k-best outputs of individual 
parsers. 

In this paper, we propose a linear model-based 
general framework for multiple parsers combina-
tion. The proposed framework leverages on the 
strengths of previous system combination and re-
ranking methods and is open to any type of fea-
tures. In particular, it is capable of utilizing the 
logarithm of the parse tree probability from each 
individual parser while previous combination 
methods are unable to use this feature since the 
probabilities from different parsers are not com-
parable. In addition, we experiment on k-best 
combination while previous methods are only 
verified on 1-best combination. Finally, we apply 
our method in combining outputs from both the 
lexicalized and un-lexicalized parsers while pre-
vious methods only carry out experiments on 
multiple lexicalized parsers. We also compare 
two learning algorithms in tuning the feature 
weights for the linear model. 

We perform extensive experiments on the 
Chinese and English Penn Treebank corpus. Ex-
perimental results show that our final results, an 
F-Score of 92.62 on English and 85.45 on Chi-
nese, outperform the previously best-reported 
systems by 0.52 point and 1.21 point, respec-
tively. This convincingly demonstrates the effec-
tiveness of our proposed framework. Our study 
also shows that the simulated-annealing algo-
rithm (Kirkpatrick et al. 1983) is more effective 
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than the perceptron algorithm (Collins 2002) for 
feature weight tuning. 

The rest of this paper is organized as follows. 
Section 2 briefly reviews related work. Section 3 
discusses our method while section 4 presents 
the feature weight tuning algorithm. In Section 5, 
we report our experimental results and then con-
clude in Section 6. 

2 Related Work  

As discussed in the previous section, system 
combination and re-ranking are two techniques 
to improve parsing performance by post-
processing parsers’ k-best outputs.  

Regarding the system combination study, 
Henderson and Brill (1999) propose two parser 
combination schemes, one that selects an entire 
tree from one of the parsers, and one that builds a 
new tree by selecting constituents suggested by 
the initial trees. According to the second scheme, 
it breaks each parse tree into constituents, calcu-
lates the count of each constituent, then applies 
the majority voting to decide which constituent 
would appear in the final tree. Sagae and Lavie 
(2006) improve this second scheme by introduc-
ing a threshold for the constituent count, and 
search for the tree with the largest number of 
count from all the possible constituent combina-
tion. Zeman and Žabokrtský (2005) study four 
combination techniques, including voting, stack-
ing, unbalanced combining and switching, for 
constituent selection on Czech dependency pars-
ing. Promising results have been reported in all 
the above three prior work. Henderson and Brill 
(1999) combine three parsers and obtained an F1 
score of 90.6, which is better than the score of 
88.6 obtained by the best individual parser as 
reported in their paper. Sagae and Lavie (2006) 
combine 5 parsers to obtain a score of 92.1, 
while they report a score of 91.0 for the best sin-
gle parser in their paper. Finally, Zeman and 
Žabokrtský (2005) reports great improvements 
over each individual parsers and show that a 
parser with very low accuracy can also help to 
improve the performance of a highly accurate 
parser. However, there are two major limitations 
in these prior works. First, only one-best output 
from each individual parsers are utilized. Second, 
none of these works uses the parse probability of 
each parse tree output from the individual parser.  

Regarding the parser re-ranking, Collins (2000) 
proposes a dozen of feature types to re-rank k-
best outputs of a single head-driven parser. He 
uses these feature types to extract around half a 

million different features on the training set, and 
then examine two loss functions, MRF and 
Boosting, to do feature selection. Charniak and 
Johnson (2005) generate a more accurate k-best 
output and adopt MaxEnt method to estimate the 
feature weights for more than one million fea-
tures extracted from the training set. Huang 
(2008) further improves the re-ranking work of 
Charniak and Johnson (2005) by re-ranking on 
packed forest, which could potentially incorpo-
rate exponential number of k-best list. The re-
ranking techniques also achieve great improve-
ment over the original individual parser. Collins 
(2002) improves the F1 score from 88.2% to 
89.7%, while Charniak and Johnson (2005) im-
prove from 90.3% to 91.4%. This latter work 
was then further improved by Huang (2008) to 
91.7%, by utilizing the benefit of forest structure. 
However, one of the limitations of these tech-
niques is the huge number of features which 
makes the training very expensive and inefficient 
in space and memory usage.  

3 K-best Combination of Lexicalized 
and Un-Lexicalized Parsers with 
Model Probabilities 

In this section, we first introduce our proposed k-
best combination framework. Then we apply this 
framework to the combination of two state-of-
the-art lexicalized and un-lexicalized parsers 
with an additional feature inspired by traditional 
combination techniques. 

3.1 K-best Combination Framework 

Our proposed framework consists of the follow-
ing steps: 

1) Given an input sentence and N different 
parsers, each parser generates K-best parse 
trees. 

2) We combine the N*K output trees and 
remove any duplicates to obtain M unique 
tress. 

3) For each of the M unique trees, we re-
evaluate it with all the N models which are 
used by the N parsers. It is worth noting 
that this is the key point (i.e. one of the 
major advantages) of our method since 
some parse trees are only generated from 
one or I (I<N) parsers. For example, if a 
tree is only generated from head-driven 
lexicalized model, then it only has the 
head-driven model score. Now we re-
evaluate it with the latent-annotation un-
lexicalized model to reflect the latent-
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annotation model’s confidence for this 
tree. This enables our method to effec-
tively utilize the confidence measure of all 
the individual models without any bias. 
Without this re-evaluation step, the previ-
ous combination methods are unable to 
utilize the various model scores. 

4) Besides model scores, we also compute 
some additional feature scores for each 
tree, such as the widely-used “constituent 
count” feature. 

5) Then we adopt the linear model to balance 
and combine these feature scores and gen-
erate an overall score for each parse tree.  

6) Finally we re-rank the M best trees and 
output the one with the highest score. 

 
 ଵ ଵ ே ே ଵ ଵ௅ ௅  
 
The above is the linear function used in our 

method, where t is the tree to be evaluated,  to 
 are the model confidence scores (in this paper, 

we use logarithm of the parse tree probability) 
from the N models,  to  are their weights, 
′  to ′  are the L additional features, ′  to ′  

are their weights.  
In this paper, we employ two individual pars-

ing model scores and only one additional feature. 
Let  be the head-driven model score,  be the 
latent-annotation model score, ′  be the consti-
tuent count feature and ′  is the weight of fea-
ture ′ .  

3.2 Confidences of Lexicalized and Un-
lexicalized Model 

The term “confidence” was used in prior parser 
combination studies to refer to the accuracy of 
each individual parser. This reflects how much 
we can trust the parse output of each parser. In 
this paper, we use the term “confidence” to refer 
to the logarithm of the tree probability computed 
by each model, which is a direct measurement of 
the model’s confidence on the target tree being 
the best or correct parse output. In fact, the fea-
ture weight ௜ in our linear model functions simi-
larly as the traditional “confidence”. However, 
we do not directly use parser’s accuracy as its 
value. Instead we tune it automatically on devel-
opment set to optimize it against the parsing per-
formance directly. In the following, we introduce 
the state-of-the-art head-driven lexicalized and 
latent-annotation un-lexicalized models (which 
are used as two individual models in this paper), 

and describe how they compute the tree probabil-
ity briefly. 

Head-driven model is one of the most repre-
sentative lexicalized models. It attaches the head 
word to each non-terminal and views the genera-
tion of each rule as a Markov process first from 
father to head child, and then to the head child’s 
left and right siblings. 

Take following rule r as example,  
 

 
 

 is the rule’s left hand side (i.e. father label), 
 is the head child,  is M’s left sibling and  

is M’s right sibling. Let h be M’s head word, the 
probability of this rule is 

 

 

 

The probability of a tree is just the product of the 
probabilities of all the rules in it. The above is 
the general framework of head-driven model. For 
a specific model, there may be some additional 
features and modification. For example, the 
model2 in Collins (1999) introduces sub-
categorization and model3 introduces gap as ad-
ditional features. Charniak (2000)’s model intro-
duces pre-terminal as additional features. 

The latent-annotation model (Matsuzaki et al. 
2005; Petrov et al. 2006) is one of the most ef-
fective un-lexicalized models. Briefly speaking, 
latent-annotation model views each non-terminal 
in the Treebank as a non-terminal followed by a 
set of latent variables, and uses EM algorithms to 
automatically learn the latent variables’ probabil-
ity functions to maximize the probability of the 
given training data. Take the following binarized 
rule as example, 

 

 
 

could be viewed as the set of rules  
 

 
 

The process of computing the probability of a 
normal tree is to first binarized all the rules in it, 
and then replace each rule to the corresponding 
set of rules with latent variables. Now the pre-
vious tree becomes a packed forest (Klein and 
Manning 2001; Petrov et al. 2007) in the latent-
annotation model, and its probability is the inside 
probability of the root node. This model is quite 
different from the head-driven model in which 
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the probability of a tree is just the product all the 
rules’ probability. 

3.3 Constituent Counts 

Besides the two model scores, we also adopt 
constituent count as an additional feature in-
spired by (Henderson and Brill 1999) and (Sagae 
and Lavie 2006). A constituent is a non-terminal 
node covering a special span. For example, 
“NP[2,4]” means a constituent labelled as “NP” 
which covers the span from the second word to 
the fourth word. If we have 100 trees and NP[2,4] 
appears in 60 of them, then its constituent count 
is 60. For each tree, its constituent count is the 
sum of all the counts of its constituent. However, 
as suggested in (Sagae and Lavie 2006), this fea-
ture favours precision over recall. To solve this 
issue, Sagae and Lavie (2006) use a threshold to 
balance them. For any constituent, we calculate 
its count if and only if it appears more than X 
times in the k-best trees; otherwise we set it as 0. 
In this paper, we normalize this feature by divid-
ing the constituent count by the number of k-best. 
Note that the threshold value and the additional 
feature value are not independent. Once the 
threshold changes, the feature value has to be re-
calculated. 

In conclusion, we have four parameters to es-
timate: two model score weights, one additional 
feature weight and a threshold for the additional 
feature.  

4 Parameter Estimation  

We adopt the minimum error rate principle to 
tune the feature weights by minimizing the error 
rate (i.e. maximizing the F1 score) on the devel-
opment set. In our study, we implement and 
compare two algorithms, the simulated-annealing 
style algorithm and the average perceptron algo-
rithm. 

4.1 Simulated Annealing 

Simulated-annealing algorithm has been proved 
to be a powerful and efficient algorithm in solv-
ing NP problem (Černý 1985). Fig 1 is the pseu-
do code of the simulated-annealing algorithm 
that we apply.   

In a single iteration (line 4-11), the simulated 
algorithm selects some random points (the Mar-
kov link) for hill climbing. However, it accepts 
some bad points with a threshold probability 
controlled by the annealing temperature (line 7-
10). The hill climbing nature gives this algorithm 
the ability of converging at local maximal point 

and the random nature offers it the chance to 
jump from some local maximal points to global 
maximal point. We do a slight modification to 
save the best parameter so far across all the fi-
nished iterations and let it be the initial point for 
upcoming iterations (line 12-17). 

RandomNeighbour(p) is the function to gener-
ate a random neighbor for the p (the four-tuple 
parameter to be estimated). F1(p) is the function 
to calculate the F1 score over the entire test set. 
Given a fixed parameter p, it selects the candi-
date tree with best score for each sentence and 
computes the F1 score with the PARSEVAL me-
trics. 

 
Pseudo code 1. Simulated-annealing algorithm 
Input: k-best trees combined from two model output 
Notation:  

   p: the current parameter value 
   F1(p): the F1 score with the parameter value p 
   TMF: the max F1 score of each iteration 
   TMp: the optimal parameter value during iteration 
   MaxF1: the max F1 score on dev set 
   Rp: the parameter value which maximizes the F1 score 

of the dev set 
   T: annealing temperature 
   L: length of Markov link 

Output: Rp 
 
1. MaxF1:= 0, Rp:= (0,0,0,0), T:=1, L=100 // initialize 
2. Repeat                                                       // iteration 
3.      TMp :=Rp 
4.      for  i := 1 to L  do 
5.            p := RandomNeighbour(TMp) 
6.            d= F1(p)- TMF 
7.            if d>0 or exp(d/T) > random[0,1) then  
8.                  TMF:=F1(p) 
9.                  TMp:=p 
10.            end if 
11.      end for 
12.      if TMF > MaxF1 then 
13.            MaxF:=TMF 
14.            Rp:=TMp 
15.      else  
16.            TMp:=Rp 
17.      end if 
18.      T=T*0.9 
19. Until convergence 

 
Fig 1. Simulated Annealing Algorithm 

4.2 Averaged Perceptron 

Another algorithm we apply is the averaged per-
ceptron algorithm. Fig 2 is the pseudo code of 
this algorithm. Averaged perceptron is an online 
algorithm. It iterates through each instance. In 
each instance, it selects the candidate answer 
with the maximum function score. Then it up-
dates the weight by the margin of feature value 
between the select answer and the oracle answer 
(line 5-9). After each iteration, it does average to 
generate a new weight (line 10). The averaged 
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perceptron has a solid theoretical fundamental 
and was proved to be effective across a variety of 
NLP tasks (Collins 2002). 

However, it needs a slightly modification to 
adapt to our problem. Since the threshold and the 
constituent count are not independent, they are 
not linear separable. In this case, the perceptron 
algorithm cannot be guaranteed to converge. To 
solve this issue, we introduce an outer loop (line 
2) to iterate through the value range of threshold 
with a fixed step length and in the inner loop we 
use perceptron to estimate the other three para-
meters. Finally we select the final parameter 
which has maximum F1 score across all the itera-
tion (line 14-17). 
 
Pseudo code 2. Averaged perceptron algorithm 
Input: k-best trees combined from two model output 
Notation:  

   MaxF1, Rp: already defined in pseudo code 1 
   T: the max number of iterations 
   I: the number of instances 
   Threshold: the threshold for constituent count 
   w: the three feature weights other than threshold 
   ′: the candidate tree with max function score given a 

fixed weight w 
   ା: the candidate tree with the max F1 score (since the 

oracle tree may not appeared in our candidate set, 
we choose this one as the pseudo orcale tree) 

   : the set of candidate tree for ith sentence 
Output: Rp 
 
1. MaxF1:=0, T=30 
2. for  Threshold :=0 to 1 with step 0.01 do  
3.     Initialize w 
4.     for iter : 1 to T do 
5.           for  i := 1 to I  do 
6.               ′ ୷אୡୟ୬ୢሺ୧ሻ  
7.               ା ′  
8.               ୧:= w 
9.           end for  
10.           ∑ ୵౟I౟ؔభI  
11.           if converged  then break 
12.     end for 
13.     p := (Threshold, w) 
14.     if F1(p) > MaxF1 then 
15.         MaxF1 := F1(p) 
16.         Rp:=p 
17.     end if 
18. end for 

 

Fig 2. Averaged Perceptron Algorithm 

5 Experiments 

We evaluate our method on both Chinese and 
English syntactic parsing task with the standard 
division on Chinese Penn Treebank Version 5.0 
and WSJ English Treebank 3.0 (Marcus et al. 
1993) as shown in Table 1.  

We use Satoshi Sekine and Michael Collins’ 
EVALB script modified by David Ellis for accu-

racy evaluation. We use Charniak’s parser 
(Charniak 2000) and Berkeley’s parser (Petrov 
and Klein 2007) as the two individual parsers, 
where Charniak’s parser represents the best per-
formance of the lexicalized model and the Berke-
ley’s parser represents the best performance of 
the un-lexicalized model. We retrain both of 
them according to the division in Table. 1. The 
number of EM iteration process for Berkeley’s 
parser is set to 5 on English and 6 on Chinese. 
Both the Charniak’s parser and Berkeley’s parser 
provide function to evaluate an input parse tree’s 
probability and output the logarithm of the prob-
ability. 

 

        Div. 
Lang. Train Dev Test 

English Sec.02-21 Sec. 22 Sec. 23 

 
Chinese 

Art. 
001-270, 
400-1151 

Art. 
301-325 

Art. 
271-300 

 

          Table 1. Data division 

5.1 Effectiveness of our Combination Me-
thod 

This sub-section examines the effectiveness of 
our proposed methods. The experiment is set up 
as follows: 1) for each sentence in the dev and 
test sets, we generate 50-best from Charniak’s 
parser (Charniak 2000) and Berkeley’s parser 
(Petrov and Klein 2007), respectively; 2) the two 
50-best trees are merged together and duplication 
was removed; 3) we tune the parameters on the 
dev set and test on the test set. (Without specific 
statement, we use simulated-annealing as default 
weight tuning algorithm.)  

The results are shown in Table 2 and Table 3. 
“P” means precision, “R” means recall and “F” is 
the F1-measure (all is in % percentage metrics); 
“Charniak” represents the parser of (Charniak 
2000), “Berkeley” represents the parser of (Pe-
trov and Klein 2007), “Comb.” represents the 
combination of the two parsers. 

 

         parser 
accuracy Charniak Berkeley Comb. 

<=40 
words 

P 85.20 86.65 90.44 
R 83.70 84.18 85.96 
F 84.44 85.40 88.15 

All 
P 82.07 84.63 87.76 
R 79.66 81.69 83.27 
F 80.85 83.13 85.45 

 

Table 2. Results on Chinese 
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         parser 
accuracy Charniak Berkeley Comb. 

<=40 
words 

P 90.45 90.27 92.36 
R 90.14 89.76 91.42 
F 90.30 90.02 91.89 

All 
P 89.86 89.77 91.89 
R 89.53 89.26 90.97 
F 89.70 89.51 91.43 

 

Table 3. Results on English 
 

From Table 2 and Table 3, we can see our me-
thod outperforms the single systems in all test 
cases with all the three evaluation metrics. Using 
the entire Chinese test set, our method improves 
the performance by 2.3 (85.45-83.13) point in 
F1-Score, representing 13.8% error rate reduc-
tion. Using the entire English test set, our method 
improves the performance by 1.7 (91.43-89.70) 
point in F1-Score, representing 16.5% error rate 
reduction. These improvements convincingly 
demonstrate the effectiveness of our method. 

5.2 Effectiveness of K 

Fig 3 and Fig. 4 show the relationship between 
F1 score and the number of K-best used when 
doing combination on Chinese and English re-
spectively.  

From Fig 3 and Fig. 4, we could see that the 
F1 score first increases with the increasing of K 
(there are some vibration points, this may due to 
statistical noise) and reach the peak when K is 
around 30-50, then it starts to drop.  It shows that 
k-best list did provide more information than 
one-best and thus can help improve the accuracy; 
however more k-best list may also contain more 
noises and these noises may hurt the final com-
bination quality. 

 

 
 

       Fig 3. F1-measure vs. K on Chinese 
 

 
 

       Fig 4. F1-measure vs. K on English 

5.3 Diversity on the K-best Output of the 
Head-driven and Latent-annotation-
driven Model  

In this subsection, we examine how different of 
the 50-best trees generated from Charnriak’s 
parser (head-driven model) (Charnriak, 2000) 
and Berkeley’s parser (latent-annotation model) 
(Petrov and Klein, 2007).   

Table 4 reports the statistics on the 50-best 
output for Chinese and English test set. Since for 
some short sentences the parser cannot generate 
up to 50 best trees, the average number of trees is 
less than 50 for each sentence. Each cell reports 
the total number of trees generated over the en-
tire test set followed by the average count for 
each sentence in bracket. “Total” means simply 
combine the number of trees from the two pars-
ers while “Unique” means the number after re-
moving the duplicated trees for each sentence. In 
the last row, we report the averaged redundant 
rate for each sentence, which is derived by divid-
ing the figures in the row “Duplicated” by those 
in the row “Total”. 

 

 Chinese English 
Charniak 14577 (41.9) 120438 (49.9) 
Berkeley 14524 (41.7) 114299 (47.3) 
Total 29101 (83.6) 234737 (97.2) 
Unique 27747 (79.7) 221633 (91.7) 
Duplicated 1354 (3.9) 13104 (5.4) 
Redundant rate 4.65% 5.58% 

 

          Table 4. The statistics on the 50-best out-
put for Chinese and English test set.  
 

The small redundant rate clearly suggests that 
the two parsing models are quite different and 
are complementary to each other.  
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         parser 
Oracle Charniak Berkeley Comb. 

Chinese 
P 88.95 90.07 92.45 
R 86.51 87.12 89.67 
F 87.71 88.57 91.03 

English 
P 97.06 95.86 98.10 
R 96.57 95.53 97.68 
F 96.82 95.70 97.89 

 
Table 5. The oracle over 50-best output for in-

dividual parser and our method 
 

The k-best oracle score is the upper bound of 
the quality of the k-best trees. Table 5 reports the 
oracle score for the 50-best of the two individual 
parsers and our method.  Similar to Table 4, Ta-
ble 5 shows again that the two models are com-
plementary to each other and our method is able 
to take the strength of the two models. 

5.4 Effectiveness of Model Confidence 

One of the advantages of our method that we 
claim is that we can utilize the feature of the 
model confidence score (logarithm of the parse 
tree probability). 

Table 6 shows that all the three features con-
tribute to the final accuracy improvement. Even 
if we only use the “B+C” confidence scores, it 
also outperforms the baseline individual parser 
(as reported in Table 2 and Table 3) greatly. All 
these together clearly verify the effective of the 
model confidence feature and our method can 
effectively utilize this feature. 

 
         Feat.  
Lang    I B+C B+C+I 

Chinese 82.34 84.67 85.45 
English 90.20 91.02 91.43 

 
Table 6. F1 score on 50-best combination with 

different feature configuration. “I” means the 
constituent count, “B” means Berkeley parser 
confidence score and “C” means Charniak parser 
confidence score. 

5.5 Comparison of the Weight Tuning Al-
gorithms 

In this sub-section, we compare the two weight 
tuning algorithms on 50-best combination tasks 
on both Chinese and English. Dan Bikel’s ran-
domized parsing evaluation comparator (Bikel 
2004) was used to do significant test on precision 
and recall metrics. The results are shown in Ta-
ble 7.  

We can see, simulated annealing outperforms 
the averaged perceptron significantly in both 
precision (p<0.005) and recall (p<0.05) metrics 
of Chinese task and precision (p<0.005) metric 
of English task. Though averaged perceptron got 
slightly better recall score on English task, it is 
not significant according to the p-value (p>0.2). 

From table 8, we could see the simulated an-
nealing algorithm is around 2-4 times slower 
than averaged perceptron algorithm. 

 
         Algo. 

Lang SA. AP. P-value 

Chinese 
P 87.76 86.85 0.003 
R 83.27 82.90 0.030 

English 
P 91.89 91.72 0.004 
R 90.97 91.02 0.205 

 
Table 7. Precision and Recall score on 50-best 

combination by the two parameter estimation 
algorithms with significant test; “SA.” is simu-
lated annealing, “AP.” is averaged perceptron, 
“P-value” is the significant test p-value. 

 
           Algo. 
Lang 

Simulated 
Annealing 

Averaged 
Perceptron 

Chinese 2.3 0.6 
English 12 6 

  
   Table 8. Time taken (in minutes) on 50-best 

combination of the two parameter estimation 
algorithms 

5.6 Performance-Enhanced Individual  
Parsers on English  

For Charniak’s lexicalized parser, there are two 
techniques to improve its performance. One is re-
ranking as explained in section 2. The other is 
the self-training (McClosky et al. 2006) which 
first parses and reranks the NANC corpus, and 
then use them as additional training data to re-
train the model. In this sub-section, we apply our 
method to combine the Berkeley parser and the 
enhanced Charniak parser by using the new 
model confidence score output from the en-
hanced Charniak parser.  

Table 9 and Table 10 show that the Charniak 
parser enhanced by re-ranking and self-training 
is able to help to further improve the perfor-
mance of our method. This is because that the 
enhanced Charniak parser provides more accu-
rate model confidence score.  
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         parser 
accuracy reranking Comb. baseline 

<=40 
words 

P 92.34 93.41 92.36 
R 91.61 92.15 91.42 
F 91.97 92.77 91.89 

All 
P 91.78 92.92 91.89 
R 91.03 91.70 90.97 
F 91.40 92.30 91.43 

 
Table 9. Performance with Charniak parser 

enhanced by re-ranking; “baseline” is the per-
formance of the combination of Table 3. 

 
         parser 
accuracy 

self-train+ 
reranking Comb. baseline 

<=40 
words 

P 92.87 93.69 92.36 
R 92.12 92.44 91.42 
F 92.49 93.06 91.89 

All 
P 92.41 93.25 91.89 
R 91.64 92.00 90.97 
F 92.02 92.62 91.43 

 
 Table 10. Performance with Charniak parser 

enhanced by re-ranking plus self-training 

5.7 Comparison with Other State-of-the-art 
Results 

Table 11 and table 12 compare our method with 
the other state-of-the-art methods; we use I, B, R, 
S and C to denote individual model (Charniak 
2000; Collins 2000; Bod 2003; Petrov and Klein 
2007), bilingual-constrained model (Burkett and 
Klein 2008)1, re-ranking model (Charniak and 
Johnson 2005, Huang 2008), self-training model 
(David McClosky 2006) and combination model 
(Sagae and Lavie 2006) respectively. The two 
tables clearly show that our method advance the 
state-of-the-art results on both Chinese and Eng-
lish syntax parsing. 
 

System  F1-Measure 

I 
Charniak (2000) 80.85 
Petrov and Klein (2007) 83.13 

B Burkett and Klein (2008)1 84.24 
C Our method 85.45 

 

Table 11. Accuracy comparison on Chinese 
 

                                                           
1 Burkett and Klein (2008) use the additional know-
ledge from Chinese-English parallel Treebank to im-
prove Chinese parsing accuracy. 

System  F1-Measure 

I 
Petrov and Klein (2007) 89.5 
Charniak (2000) 89.7 
Bod (2003) 90.7 

R 
Collins (2000) 89.7 
Charniak and Johnson (2005) 91.4 
Huang (2008) 91.7 

S David McClosky (2006) 92.1 

C 
Sagae and Lavie (2006) 92.1 
Our method 92.6 

 
  Table 12. Accuracy comparison on English. 

6 Conclusions   

In this paper2, we propose a linear model-based 
general framework for multiple parser combina-
tion. Compared with previous methods, our me-
thod is able to use diverse features, including 
logarithm of the parse tree probability calculated 
by the individual systems. We verify our method 
by combining the two representative parsing 
models, lexicalized model and un-lexicalized 
model, on both Chinese and English. Experimen-
tal results show our method is very effective and 
advance the state-of-the-art results on both Chi-
nese and English syntax parsing. In the future, 
we will explore more features and study the for-
est-based combination methods for syntactic 
parsing. 
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Abstract

Automated mining of novel documents
or sentences from chronologically ordered
documents or sentences is an open chal-
lenge in text mining. In this paper, we
describe the preprocessing techniques for
detecting novel Chinese text and discuss
the influence of different Part of Speech
(POS) filtering rules on the detection per-
formance. Experimental results on AP-
WSJ and TREC 2004 Novelty Track data
show that the Chinese novelty mining per-
formance is quite different when choosing
two dissimilar POS filtering rules. Thus,
the selection of words to represent Chinese
text is of vital importance to the success of
the Chinese novelty mining. Moreover, we
compare the Chinese novelty mining per-
formance with that of English and investi-
gate the impact of preprocessing steps on
detecting novel Chinese text, which will
be very helpful for developing a Chinese
novelty mining system.

1 Introduction

The bloom of information nowadays brings us rich
useful information as well as tons of redundant in-
formation in news articles, social networks (Tsai et
al., 2009), and blogs (Chen et al., 2008). Novelty
mining (NM), or novelty detection, aims at mining
novel information from a chronologically ordered
list of relevant documents/sentences. It can facil-
itate users to quickly get useful information with-
out going through a lot of redundant information,
which is usually a tedious and time-consuming
task.

The process of detecting novel text contains
three main steps, (i) preprocessing, (ii) cate-
gorization, and (iii) novelty mining. The first
step preprocesses the text documents/sentences

by removing stop words, performing word stem-
ming, implementing POS tagging etc. Categoriza-
tion classifies each incoming document/sentence
into its relevant topic bin. Then, within each
topic bin containing a group of relevant docu-
ments/sentences, novelty mining searches through
the time sequence of documents/sentences and re-
trieves only those with “novel” information. This
paper focuses on applying document/sentence-
level novelty mining on Chinese. In this task,
we need to identify all novel Chinese text given
groups of relevant documents/sentences.

Novelty mining has been performed at three dif-
ferent levels: event level, sentence level and doc-
ument level (Li and Croft, 2005). Works on nov-
elty mining at the event level originated from re-
search on Topic Detection and Tracking (TDT),
which is concerned with online new event detec-
tion/first story detection (Allan et al., 1998; Yang
et al., 2002; Stokes and Carthy, 2001; Franz et
al., 2001; Brants et al., 2003). Research on doc-
ument and sentence-level novelty mining aims to
find relevant and novel documents/sentences given
a stream of documents/sentences. Previous stud-
ies on document and sentence-level novelty min-
ing tend to apply some promising content-oriented
techniques (Li and Croft, 2005; Allan et al., 1998;
Yang et al., 1998; Zhang and Tsai, 2009). Simi-
larity metrics that can be used for detecting novel
text are word overlap, cosine similarity (Yang et
al., 1998), new word count (Brants et al., 2003),
etc. Other works utilize ontological knowledge,
especially taxonomy, such as WordNet (Zhang et
al., 2002; Allan et al., 2003), synonym dictionary
(Franz et al., 2001), HowNet (Eichmann and Srini-
vasan, 2002), etc.

Previous studies for novelty mining have been
conducted on the English and Malay languages
(Kwee et al., 2009; Tang et al., 2009; Tang and
Tsai, 2009). Novelty mining studies on the Chi-
nese language have been performed on topic de-
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tection and tracking, which identifies and collects
relevant stories on certain topics from information
stream (Zheng et al., 2008; Hong et al., 2008).
Also many works have discussed the issues, such
as word segmentation, POS tagging etc, between
English and Chinese (Wang et al., 2006; Wu et
al., 2003). However, to the best of our knowledge,
no studies have been reported on discussing pre-
processing techniques on Chinese document and
sentence-level novelty mining, which is the focus
of our paper.

The rest of this paper is organized as follows.
Section 2 gives a brief overview of related work on
detecting novel documents and sentences on En-
glish and Chinese. Section 3 introduces the details
of preprocessing steps for English and Chinese.
A general novelty mining algorithm is described
in Section 4. Section 5 reports experimental re-
sults. Section 6 summarizes the research findings
and discusses issues for further research.

2 Related Work

In the pioneering work for detecting novel doc-
uments (Zhang et al., 2002), document novelty
was predicted based on the distance between the
new document and the previously delivered doc-
uments in history. The detected document which
is very similar to any of its history documents is
regarded as a redundant document. To serve users
better, it could be more helpful to further highlight
novel information at the sentence level. Therefore,
later studies focused on detecting novel sentences,
such as those reported in TREC 2002-2004 Nov-
elty Tracks (Harman, 2002; Soboroff and Harman,
2003; Soboroff, 2004), which compared various
novelty metrics (Allan et al., 2003), and integrated
different natural language techniques (Ng et al.,
2007; Li and Croft, 2008).

Although novelty mining studies have mainly
been conducted on the English language, stud-
ies on the Chinese language have been performed
on topic detection and tracking. A prior study
(Zheng et al., 2008) proposed an improved rel-
evance model to detect the novelty information
in topic tracking feedback and modified the topic
model based on this information. Experimental
results on Chinese datasets TDT4 and TDT2003
proved the effectiveness in topic tracking. Another
study proposed a method of applying semantic do-
main language model to link detection, based on
the structure relation among contents and the se-

mantic distribution in a story (Hong et al., 2008).

3 Preprocessing for English and Chinese

3.1 English

Since the focus of this paper is on novelty min-
ing, we begin from a list of relevant documents or
sentences that have already undergone the catego-
rization process.

The first step for English preprocessing is to re-
move all stop words from documents or sentences,
such as conjunctions, prepositions, and articles.
Stop words are words that are too common to
be informative. These words should be removed,
otherwise it will influence the novelty prediction
of documents or sentences. After stop words re-
moval, the remaining words are then stemmed.
The inflected (or sometimes derived) words are
reduced to their root forms. This paper used
Porter stemming algorithm (Porter, 1997) for En-
glish word stemming. This algorithm removes the
commoner morphological and inflexional endings
from the words in English. The entire preprocess-
ing steps in English novelty mining can be seen in
Figure 1.

3.2 Chinese

In Chinese, the word is the smallest independent
meaningful element. There is no obvious bound-
ary between words so that Chinese lexical anal-
ysis, such as Chinese word segmentation, is the
prerequisite for novelty mining.

Unlike English, Chinese word segmentation
is a very challenging problem because of the
difficulties in defining what constitutes a word
(Gao et al., 2005). While each criteria pro-
vides valuable insights into “word-hood” in Chi-
nese, they do not consistently lead us to the
same conclusions. Moreover, there is no white
space between Chinese words or expressions
and there are many ambiguities in the Chinese
language, such as: ‘主板和服务器’ (means
‘mainboard and server’ in English) might be ‘主
板/和/服务器’ (means ‘mainboard/and/server’ in
English) or ‘主板/和服/务/器’ (means ‘main-
board/kimono/task/utensil’ in English). This am-
biguity is a great challenge for Chinese word seg-
mentation. In addition, there is no obvious in-
flected or derived words in Chinese so that word
stemming is not applicable.

Therefore, in order to reduce the noise brought
by Chinese word segmentation and get a better
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word list for one document or sentence, we firstly
apply word segmentation on the Chinese text and
then utilize Part-of-Speech (POS) tagging to se-
lect the meaningful candidate words. Figure 2
shows the preprocessing steps on the Chinese text
for novelty mining. POS tagging is a process of
marking up the word in a text as corresponding
to a particular part of speech. It is learnt that the
idea of a text mainly relies on some meaningful
words, such as nouns and verbs, so that we can get
the main content by extracting these meaningful
words. Moreover, it will decrease the impact of
the errors in Chinese word segmentation on nov-
elty mining because only meaningful words are
considered and other words (including stop words)
such as ‘虽然’ (means ‘although’ in English) will
not appear in the word list for the following sim-
ilarity computation in novelty mining. Losee also
mentioned that POS tagging shows a great poten-
tial to avoid lexical ambiguity and it can help to
improve the performance of information retrieval
(Losee, 2001).

ICTCLAS is used when performing word seg-
mentation and POS tagging in our experiments
(ICTCLAS, 2008). It is an open source project
and achieves a better precision in Chinese word
segmentation and POS tagging than other Chi-
nese POS tagging softwares (ICTCLAS, 2008).
First, we apply word segmentation on the relevant
Chinese documents/sentences. Chinese word seg-
mentation includes atom segmentation, N-shortest
path based rough segmentation and unknown
words recognition (see Figure 3). Atom segmen-

tation is an initial step of the Chinese language
segmentation process, where atom is defined to
be the minimal unit that cannot be split further.
The atom can be a Chinese character, punctua-
tion, symbol string, etc. Then, rough segmentation
tries to discover the correct segmentation with as
few candidates as possible. The N-Shortest Path
(NSP) method (Zhang and Liu, 2002) is applied
for rough segmentation. Next, we detect some un-
known words such as person name, location name
so as to optimize the segmentation result. Finally,
we POS tag the words and keep some kinds of
words in the word list according to the selective
rule, which are used in novelty mining.

4 Novelty Mining

From the output of preprocessing, we can obtain a
bag of words. The corresponding term-document
matrix (TDM)/term-sentence matrix (TSM) can be
constructed by counting the term frequency (TF)
of each word. The novelty mining system predicts
any incoming document/sentence by comparing it
with its history documents/sentences in this vector
space. Therefore, given a Chinese TDM/TSM, the
novelty mining system designed for English can
also be applied to Chinese.

In novelty mining, the novelty of a docu-
ment/sentence can be quantitatively measured by a
novelty metric and represented by a novelty score.
The most popular novelty metric, i.e. cosine sim-
ilarity (see (Allan et al., 2003)), is adopted. This
metric first calculates the similarities between the
current document/sentence dt and each of its his-

1563



Word

Segmentation

POS Tagging

Novelty Mining

Relevant documents / 

sentences

Novel documents /

sentences

Preprocessing 

steps

Figure 2: Preprocessing steps on Chinese.

tory documents/sentences di (1 ≤ i ≤ t − 1).
Then, the novelty score is simply one minus the
maximum of these cosine similarities, as shown in
Eq.(1).

Novelty Score(dt) = 1− max
1≤i≤t−1

cos(dt, di) (1)

cos(dt, di) =
∑n

k=1wk(dt) · wk(di)
‖dt‖ · ‖di‖

where Ncos(d) denotes the cosine similarity score
of the document/sentence d and wk(d) is the
weight of kth element in the document/sentence
weighted vector d. The term weighting function
used in our work is TF(term frequency).

The final decision on whether a docu-
ment/sentence is novel or not depends on whether
the novelty score falls above or below a thresh-
old. The document/sentence predicted as “novel”
will be placed into the list of history docu-
ments/sentences.

5 Experiments and Results

5.1 Datasets
Two public datasets APWSJ (Zhang et al., 2002)
and TREC Novelty Track 2004 (Soboroff, 2004)
are selected as our experimental datasets for the
document-level and the sentence-level novelty
mining respectively. APWSJ data consists of
news articles from Associated Press (AP) and Wall
Street Journal (WSJ). There are 50 topics from
Q101 to Q150 in APWSJ and 5 topics (Q131,
Q142, Q145, Q147, Q150) are excluded from the

Table 1: Statistics of experimental data
Dataset Novel Non-novel
APWSJ 10839(91.10%) 1057(8.90%)

TREC2004 3454(41.40%) 4889(58.60%)

experiments because they lack non-novel docu-
ments (Zhao et al., 2006). The assessors provide
two degrees of judgements on non-novel docu-
ments, absolute redundant and somewhat redun-
dant. In our experiments, we adopt the strict defi-
nition used in (Zhang et al., 2002) where only ab-
solute redundant documents are regarded as non-
novel. TREC 2004 Novelty Track data is devel-
oped from AQUAINT collection. Both relevant
and novel sentences are selected by TREC’s asses-
sors. The statistics of these two datasets are sum-
marized in Table 1.

5.2 Evaluation Measures

From many previous works, redundancy precision
(RP ), redundancy recall (RR) and redundancy F
Score (RF ) are used to evaluate the performance
of document-level novelty mining (Zhang et al.,
2002). Precision (P ), recall (R) and F Score (F )
are mainly used in evaluating the performance for
sentence-level novelty mining (Allan et al., 2003).
Therefore, we use RP , RR, RF and redundancy
precision-recall (R-PR) curve to evaluate our ex-
perimental results on the document level. P , R, F
and precision-recall (PR) curve are used to eval-
uate the performance on the sentence-level nov-
elty mining. The larger the area under the R-PR
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curve/PR curve, the better the algorithm. Also
we drew the standard redundancy F Score/F Score
contours (Soboroff, 2004), which indicate the F
Score values when setting precision and recall
from 0 to 1 with a step of 0.1. These contours can
facilitate us to compare redundancy F Scores/F
Scores in R-PR curves/PR curves. Redundancy
precision, redundancy recall, precision and recall
on a certain topic are defined as:

Redundancy Precision =
R−

R− +N− (2)

Redundancy Recall =
R−

R− +R+
(3)

Precision =
N+

N+ +R+
(4)

Recall =
N+

N+ +N− (5)

where R+,R−,N+,N− correspond to the number
of documents/sentences that fall into each cate-
gory (see Table 2).

Based on all the topics’ RP /P and RR/R, we
could get the averageRP /P and averageRR/R by
calculating the arithmetic mean of these scores on
all topics. Then, the average redundancy F Score
(RF )/F Score (F ) is obtained by the harmonic av-
erage of the average RP /P and average RR/R.

Table 2: Categories for evaluation
Non-novel Novel

Delivered R+ N+

Not Delivered R− N−

5.3 Experimental Results
In this experimental study, the focus was novelty
mining rather than relevant documents/sentences
categorization. Therefore, our experiments started
with all given relevant Chinese text, from which
the novel text should be identified.

Since the datasets that we used for document-
level novelty mining and sentence-level novelty
mining both were written in English, we first trans-
lated them into Chinese. During this process,
we investigated issues on machine translation vs.
manually corrected translation.

We compared the novelty mining performance
on 107 text in TREC 2004 Novelty Track between
automatically translated using Google Translate
API1 and the manually corrected translation. For
example, here is an English sentence in Topic 51:

According to a Chilean government report, a
total of 4,299 political opponents died or disap-
peared during Pinochet’s term.

After machine translation using Google Trans-
lator, the above sentence is translated as:
根据智利政府的报告，共有4299政敌的死亡

或失踪期间，皮诺切特的任期。

1http://code.google.com/p/google-api-translate-java
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Then we manually corrected the machine trans-
lation and obtained the corrected translation:
根据智利政府的报告，在皮诺切特的任期期
间，共有4299政敌死亡或失踪。

After novelty mining on the machine transla-
tion sentences and the humanly corrected transla-
tion sentences individually, we found that there is
a slight difference (<2%) in precision and F Score.
Thus, we used machine translation to translate the
remaining documents/sentences to Chinese. This
indicates that the noise in machine translation for
Chinese had little impact on our actual results.

Then on English text, we applied the prepro-
cessing steps discussed in Section 3.1, includ-
ing stop word removing and word stemming.
For Chinese datasets, we segmented the docu-
ments/sentences into words and then performed
POS filtering to acquire the candidate words for
the space vector.

Based on the vectors of Chinese text, we
calculated the similarities between docu-
ments/sentences and predicted the novelty
for each document/sentence in the Chinese and
English datasets. An incoming Chinese/English
document will be compared with all the system
delivered 10 novel documents. If the novelty score
is above the novelty score threshold, the document
is considered to be novel. Thresholds used were
between 0.05 and 0.65. We also performed
Chinese/English sentence-level novelty mining.
Whether an incoming Chinese/English sentence
is novel is predicted by comparing with the most
recent system-delivered 1000 novel sentences.
Thresholds adopted were between 0.05 and 0.95
with an equal step of 0.10. Then, we evaluated the
Chinese/English novel text detection performance
by setting a series of novelty score thresholds.

5.3.1 POS Filtering Rule
We adopted two different rules to select the can-
didate words to represent one document/sentence
and investigated the POS filtering influence on de-
tecting the novel Chinese text.

• Rule1: only some non-meaningful words,
including pronouns (‘r’ in Peking Univer-
sity/Chinese Academy of Sciences Chinese
POS tagging criterions (PKU and CAS,
1999)), auxiliary words (‘u’), tone words
(‘y’), conjunctions (‘c’), prepositions (‘p’)
and punctuation words (‘w’) are removed.

• Rule2: fewer kinds of words are selected to

represent a document/sentence. Only nouns
(including ‘n’ short for common nouns, ‘nr’
short for person name, ‘ns’ short for location
name, ‘nt’ short for organization name, ‘nz’
short for other proper nouns), verbs (‘v’), ad-
jectives (‘a’) and adverbs (‘d’) are kept.

For example, here is a simple Chinese sen-
tence: “墙上挂着一幅画。” (There is a picture
on the wall). After POS filtering using Rule1,
the words we keep are: “墙(‘n’),上(‘v’),挂(‘v’),
一(‘m’), 幅(‘q’), 画(‘n’)”. After POS filtering
using Rule2, the remaining words are: “墙(‘n’),
上(‘v’), 挂(‘v’), 画(‘n’)”. It is noticed that by
using Rule2, we can remove more non-important
words.

Figure 4 and Figure 5 show the performances
on the document and sentence-level novelty min-
ing when choosing the stricter rule (Rule2) and
the less strict rule (Rule1) in POS filtering. The
grey dashed lines show contours at intervals of 0.1
points of F Score.

From Figure 4 and Figure 5, we learn that the
Chinese novelty mining performance varies when
choosing the stricter rule (Rule2) and the less strict
rule (Rule1) in POS filtering. We can obtain a
better performance when choosing a stricter rule
(Rule2). Therefore, it is necessary to perform POS
filtering in the preprocessing steps on Chinese and
just removing some non-meaningful words (like
stop words) may not be enough. POS filtering
can help to remove the less meaningful words so
that each vector is represented better. Compared to
choosing more kinds of words (Rule1), only keep-
ing nouns, verbs, adjectives and adverbs (Rule2)
will be a better choice for novelty mining. We
also noticed that the selection of words to repre-
sent Chinese text is of vital importance to the suc-
cess of Chinese novelty mining.

5.3.2 Comparison with English
We compared the novelty mining performance
on the English and Chinese documents/sentences
datasets. For Chinese, we chose Rule2 to select
the candidate words. Figure 6 and Figure 7 show
the R-PR and PR curves of document/sentence-
level novelty mining in English and Chinese when
given a series of novelty score thresholds.

From Figure 6 and Figure 7, we observe that
the performance on detecting novel Chinese docu-
ments is slightly lower than that on English. This
may be due to the different linguistical characteris-
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tics of each language so that the preprocessing in-
fluence on each language’s novelty mining is dis-
similar. Furthermore, the Chinese preprocessing
quality is not as good as that on English so that it
is difficult to obtain a good “bag of words” from
a document. Moreover, the errors in word seg-
mentation will influence the result of POS tagging.
These issues make tokenizing and POS tagging
extremely difficult for the Chinese text.

However, the performance of Chinese sentence-
level novelty mining is almost the same as that on
English. The reason is that the novelty mining per-
formance at the sentence level is not so sensitive
to the preprocessing steps as that at the document
level. If the similarity computation is based on the
sentence level, the word segmentation and POS
tagging errors actually will not have a big influ-
ence on the result as that on documents.

6 Conclusion

This paper studied the preprocessing issues on
mining novel Chinese text, which, to the best
of our knowledge, have not been sufficiently
addressed in previous studies. We described
the Chinese preprocessing steps and discussed
the influence when choosing different Part-of-
Speech (POS) filtering rules. Then we applied
novelty mining on Chinese and English docu-
ments/sentences and compared their performance.

The experimental results on APWSJ and TREC
2004 Novelty Track showed that after adopting
a stricter POS filtering rule, the Chinese nov-

elty mining performed better on both documents
and sentences. This is because non-meaningful
words have a negative influence on detecting novel
text. However, compared to English, Chinese per-
formed worse on the document level and similarly
on the sentence level. The reason may be due to
the lower sensitivity of preprocessing at the sen-
tence level. The main contributions of this work
are as follows:

1) We investigated the preprocessing techniques
for detecting novel Chinese text on both doc-
ument and sentence level.

2) The POS filtering rule, telling how to select
words to represent one document/sentence,
was discussed.

3) Several experiments were conducted to com-
pare the novelty mining performance be-
tween Chinese and English. The novelty
mining performance on Chinese can be im-
proved as good as that on English if we can
increase the preprocessing precision on Chi-
nese text.

Our findings will be very helpful for develop-
ing a real-time Chinese novelty mining system at
both the document and sentence level. In future
work, we will try other word combinations and in-
vestigate better ways to represent the Chinese text.
In addition, we will explore how to utilize the bet-
ter Chinese sentence-level novelty mining result to
improve the detection performance on documents.
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Abstract 

 

The problem of re-ranking initial retrieval re-

sults exploring the intrinsic structure of docu-

ments is widely researched in information re-

trieval (IR) and has attracted a considerable 

amount of time and study. However, one of 

the drawbacks is that those algorithms treat 

queries and documents separately.  Further-

more, most of the approaches are predomi-

nantly built upon graph-based methods, which 

may ignore some hidden information among 

the retrieval set.   

This paper proposes a novel document re-

ranking method based on Latent Dirichlet Al-

location (LDA) which exploits the implicit 

structure of the documents with respect to 

original queries. Rather than relying on graph-

based techniques to identify the internal struc-

ture, the approach tries to find the latent struc-

ture of “topics” or “concepts” in the initial re-

trieval set. Then we compute the distance be-

tween queries and initial retrieval results based 

on latent semantic information deduced. Em-
pirical results demonstrate that the method can 

comfortably achieve significant improvement 

over various baseline systems.  

1 Introduction 

Consider a traditional IR problem, where there 

exists a set of documents 𝔻 in the collection. In 

response to an information need (as expressed in 

a query 𝑞), the system determines a best fit be-

tween the query and the documents and returns a 

list of retrieval results, sorted in a decreasing or-
der of their relevancy. In practice, high precision 

at the top rankings of the returned results is of 

particular interest. Generally, there are two ways 
to automatically assist in achieving this ultimate 

goal after an initial retrieval process (Baeza-

Yates and Ribeiro-Neto, 1999): document re-
ranking and query expansion/re-weighting. Since 

the latter normally need a second round of re-

trieval process, our method focuses on the docu-

ment re-ranking approach.  We will focus on ad-
justing the ranking positions directly over initial 

retrieval results set 𝔻𝑖𝑛𝑖𝑡 .  

Recently, there is a trend of exploring the hid-
den structure of documents to re-rank results. 

Some of the approaches represent the document 

entities as a connected graph 𝐺. It is usually con-

structed by links inferred from the content in-
formation as a nearest-neighbor graph. For ex-

ample, Zhang et al. (2005) proposed an affinity 

ranking graph to re-rank search results by opti-
mizing diversity and information richness. Kur-

land and Lee (2005) introduced a structural re-

ranking approach by exploiting asymmetric rela-
tionships between documents induced by lan-

guage models. Diaz (2005); Deng et al. (2009) 

use a family of semi-supervised machine learn-

ing methods among documents graph con-
structed by incorporating different evidences.  

However in this work we are more interested in 

adopting an automatic approach.  
There are two important factors that should be 

taken into account when designing any re-

ranking algorithms: the original queries and ini-
tial retrieval scores. One of issues is that pre-

vious structural re-ranking algorithms treat the 

query and the content individually when compu-

ting re-ranking scores. Each document is as-
signed a score independent of other documents 

without considering of queries. The problem we 

want to address in this paper is how we can leve-
rage the interconnections between query and 

documents for the re-ranking purpose.    

Another problem with such approaches con-

cerns the fundamental re-ranking strategy they 
adopted. HITS (Kleinberg, 1999) and PageRank 
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(Brin and Page, 1998) style algorithms were 

widely used in the past. However, approaches 

depend only on the structure of the global graph 

or sub-graph may ignore important information 
content of a document entity. As pointed out by 

Deng et al. (2009), re-ranking algorithms that 

rely only on the structure of the global graph are 
likely lead to the problem of topic drift.  

Instead, we introduce a new document re-

ranking method based on Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003) which exploits 

implicit structure of the documents with respect 

to original queries. Rather than relying on graph-

based techniques to identify the internal struc-
ture, the approach tries to directly model the la-

tent structure of “topics” or “concepts” in the 

initial retrieval set. Then we can compute the 
distance between queries and initial retrieval re-

sults based on latent semantic information in-

ferred. To prevent the problem of topic drift, the 
generative probability of a document is summed 

over all topics induced. By combining the initial 

retrieval scores calculated by language models, 

we are able to gather important information for 
re-ranking purposes. The intuition behind this 

method is the hidden structural information 

among the documents: similar documents are 
likely to have the same hidden information with 

respect to a query. In other words, if a group of 

documents are talking about the same topic 

which shares a strong similarity with a query, in 
our method they will get allocated similar rank-

ing as they are more likely to be relevant to the 

query. In addition, the refined ranking scores 
should be relevant to the initial ranking scores, 

which, in our method, are combined together 

with the re-ranking score either using a linear 
fashion or multiplication process.  

To illustrate the effectiveness of the proposed 

methodology, we apply the framework to ad-hoc 

document retrieval and compare it with the initial 
language model-based method and other three 

PageRank style re-ranking methods. Experimen-

tal results show that the improvement brought by 
our method is consistent and promising. 

The rest of the paper is organized as follows. 

Related work on re-ranking algorithms and LDA 
based methods is briefly summarized in Section 

2. Section 3 describes the re-ranking framework 

based on latent information induced together 

with details of how to build generative model. In 
Section 4 we report on a series of experiments 

performed over three different test collections in 

English and French as well as results obtained. 

Finally, Section 5 concludes the paper and specu-

lates on future work.  

2 Related Work 

There exist several groups of related work in the 
areas of document retrieval and re-ranking.  

The first category performs re-ranking by us-

ing inter-document relationship (Lee et al., 
2001), evidences obtained from external re-

sources (Kamps, 2004), or through local context 

analysis (Xu and Croft, 2000). In the past, docu-
ment distances (Balinski and Daniowicz, 2005), 

manually built external thesaurus (Qu et al., 

2001), and structural information (such as docu-

ment title) (Luk and Wong, 2004), etc have been 
used extensively for this very purpose.   

A second category of work is related to recent 

advances in structural re-ranking paradigm over 
graphs. Kurland and Lee performed re-ranking 

based on measures of centrality in the graph 

formed by generation links induced by language 
model scores, through a weighted version of Pa-

geRank algorithm (Kurland and Lee, 2005) and 

HITS-style cluster-based approach (Kurland and 

Lee, 2006). Zhang et al. (2005) proposed a simi-
lar method to improve web search based on a 

linear combination of results from text search 

and authority ranking. The graph, which they 
named affinity graph, shares strong similarities 

with Kurland and Lee’s work with the links in-

duced by a modified version of cosine similarity 

using the vector space model. Diaz (2005) used 
score regularization to adjust document retrieval 

rankings from an initial retrieval by a semi-

supervised learning method. Deng et al. (2009) 
further developed this method. They built a latent 

space graph based on content and explicit links 

information. Unlike their approach we are trying 
to model the latent information directly.   

This work is also related to a family of me-

thods so called latent semantic analysis (LSA) 

(Landauer et al., 1998), especially topic models 
used for document representation. Latent Dirich-

let Allocation (LDA), after it was first introduced 

by Blei et al. (2003), has quickly become one of 
the most popular probabilistic text modeling 

techniques and has inspired research ranging 

from text classification and clustering (Phan et 
al., 2008), information discovery (Mei et al., 

2007; Titov and McDonald, 2008) to information 

retrieval (Wei and Croft, 2006). In this model, 

each topic is represented by a set of words and 
each word corresponds with a weight to measure 

its contribution to the topic. Wei and Croft 
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(2006) described large-scale information retriev-

al experiments by using LDA. In their work, 

LDA-based document model and language mod-

el-based document model were linearly com-
bined to rank the entire corpus. However, unlike 

this approach we only apply LDA to a small set 

of documents. There are two reasons by doing 
so. One is the concern of computational cost. 

LDA is a very complex model and the complexi-

ty will grow linearly with the number of topics 
and the number of documents. Only running it 

through a document set significantly smaller than 

the whole corpus has obvious advantages. Se-

condly, it is well known that LSA-based method 
suffers from an incremental build problem. Nor-

mally adding new documents to the corpus needs 

to “be folded in” to the latent representation.  
Such incremental addition fails to capture the co-

occurrences of the newly added documents (and 

even ignores all new terms they contain). As 
such, the quality of the LSA representation will 

degrade as more documents are added and will 

eventually require a re-computation of the LSA 

representation. Because our method only requires 
running LDA once for a small number of docu-

ments, this problems could be easily avoided.  In 

addition, we also introduce two new measures to 
calculate the distance between a query and a 

document. 

 

3 Latent Re-Ranking Framework 

In this section, we describe a novel document re-

ranking method based on extracting the latent 
structure among the initial retrieval set and mea-

suring the distance between queries and docu-

ments.  

3.1 Problem Definition 

Let 𝔻 = {𝑑1, 𝑑2,… , 𝑑𝑛} denote the set of docu-

ments to be retrieved. Given a query 𝑞, a set of 

initial results 𝔻𝑖𝑛𝑖𝑡 ∈ 𝔻  of top documents are 

returned by a standard information retrieval 

model (initial ranker). However, the initial ranker 
tends to be imperfect. The purpose of our re-

ranking method is to re-order a set of documents  

𝔻𝑖𝑛𝑖𝑡
′  so as to improve retrieval accuracy at the 

very top ranks of the final results.  

3.2 Latent Dirichlet Allocation 

We will first introduce Latent Dirichlet Alloca-

tion model which forms the basis of the re-

ranking framework that will be detailed in the 

next subsection. It was previously shown that co-

occurrence structure of terms in text documents 

can be used to recover some latent topic struc-

tures without any usage of background informa-

tion (Landauer et al., 1998). This means that la-
tent-topic representations of text allow modeling 

of linguistic phenomena such as synonymy and 

polysemy. By doing so, information retrieval 
systems can match the information needs with 

content items on a meaning level rather than by 

just lexical congruence. 
The basic generative process of LDA closely 

resembles PLSA (Hofmann, 1999). LDA extends 

PLSA method by defining a complete generative 

model of text. The topic mixture is drawn from a 
conjugate Dirichlet prior that remains the same 

for all documents. The process of generating a 

document corpus is as follows: 

1) Pick a multinomial distribution 𝜑  𝑧  for 

each topic 𝑘 from a Dirichlet distribu-

tion with hyperparameter 𝛽 . 
2) For each document 𝑑 , pick a multi-

nomial distribution 𝜃 𝑑 , from a Dirich-
let distribution with hyperparameter 

𝛼 . 

3) For each word token 𝑤 in document 

𝑑, pick a topic 𝑧 ∈ {1 …𝑘} from the 

multinomial distribution 𝜃 𝑑 . 

4) Pick word 𝑤  from the multinomial 

distribution 𝜑  𝑧 . 

Thus, the likelihood of generating a corpus is: 

 

𝑝 𝑑1, … , 𝑑𝑛 |𝛼 , 𝛽  

=   𝑝(𝜃 𝑑 |𝛼 )

𝑛

𝑑=1

∙  𝑝(

𝑘

𝑧=1

𝜑  𝑧|𝛽 )

∙   𝑝 𝑧𝑖  𝜃 𝑑 𝑝(𝑤𝑖 |𝑧, 𝜑  𝑧)

𝑘

𝑧𝑖=1

𝑁𝑑

𝑖=1

𝑑𝜃 𝑑𝑑𝜑  𝑧  

Unlike PLSA model, LDA possesses fully 
consistent generative semantics by treating the 

topic mixture distribution as a 𝑘-parameter hid-

den random variable.  LDA offers a new and in-

teresting framework to model a set of documents.  
The documents and new text sequences (for ex-

ample, queries) could be easily connected by 

“mapping” them to the topics in the corpus. In 
the next subsection we will introduce how to 

achieve this goal and apply it to document re-

ranking. 
LDA is a complex model and cannot be solved 

by exact inference. There are a few approximate 

inference techniques available in the literature: 

variational methods (Blei et al., 2003), expecta-
tion propagation (Griffiths and Steyvers, 2004) 
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and Gibbs sampling (Griffiths and Steyvers, 

2004). Gibbs sampling is a special case of Mar-

kov-Chain Monte Carlo (MCMC) simulation and 

often yields relatively simple algorithms. For this 
reason, we choose to use Gibbs sampling to es-

timate LDA. 

According to Gibbs sampling, we need to 

compute the conditional probability 𝑝(𝑧𝑖 |𝑧 ¬𝑖 , 𝑤   ), 

where 𝑤    denotes the vector of all words and 𝑧 ¬𝑖  

denotes the vector of topic assignment except the 

considered word at position 𝑖 . This probability 
distribution can be derived as: 

𝑝 𝑧𝑖 𝑧 ¬𝑖 , 𝑤    =
𝑛𝑧,¬𝑖
𝑤 𝑖 + 𝛽𝑤 𝑖

( 𝑛𝑧
𝑣 + 𝛽𝑣) − 1𝑉

𝑣=1

∙
𝑛𝑑𝑖 ,¬𝑖

𝑧 + 𝛼𝑘

( 𝑛𝑑𝑖

𝑧 + 𝛼𝑧) − 1𝑘
𝑧=1

 

where 𝑛𝑧,¬𝑖
𝑡  indicates the number of instances of 

word 𝑤𝑖  assigned to topic 𝑧 = 𝑘 , not including 

the current token and 𝑛𝑑𝑖 ,¬𝑖
𝑧  denotes the number 

of words in document 𝑑𝑖  assigned to topic 𝑧 = 𝑘, 
not including the current token.  

Then we can obtain the multinomial parameter 

sets: 

𝜃𝑑𝑖 ,𝑘 =
𝑛𝑑𝑖

𝑘 + 𝛼𝑘

 𝑛𝑑𝑖

𝑧 +𝑘
𝑧=1 𝛼𝑧

 

𝜑𝑘,𝑤 𝑖
=

𝑛𝑘
𝑤 𝑖 + 𝛽𝑤 𝑖

 𝑛𝑧
𝑣 +𝑉

𝑣=1 𝛽𝑣

 

The Gibbs sampling algorithm runs over three 
periods: initialization, burn-in and sampling. We 

do not tune to optimize these parameters because 

in our experiments the markov chain turns out to 
converge very quickly.  

3.3 LDA-based Re-Ranking 

Armed with this LDA methodology, we now 

describe the main idea of our re-ranking method. 

Given a set of initial results 𝔻𝑖𝑛𝑖𝑡 , we are trying 

to re-measure the distance between the query and 

a document. In the vector space model, this dis-

tance is normally the cosine or inner product 
measure between two vectors. Under the proba-

bilistic model framework, this distance can be 

obtained from a non-commutative measure of the 
difference between two probability distributions.  

The distance used in our approach is the Kull-

back-Leibler (KL) divergence (Kullback and 

Leibler, 1951). Given two probability mass func-

tion  𝑝 𝑥  and 𝑞(𝑥), the KL divergence (or rela-

tive entropy) between 𝑝 and 𝑞 is defined as: 

𝐷(𝑝| 𝑞 =  𝑝 𝑥 𝑙𝑜𝑔

𝑥

𝑝(𝑥)

𝑞(𝑥)
 

In terms of text sequences (either queries or 

documents), the probability distribution can be 

regarded as a probabilistic language model 𝑀𝑑   

or 𝑀𝑞  from each document 𝑑 or each query 𝑞. In 

other words, it assumes that there is an underly-
ing language model which “generates” a term 

(sequence) (Ponte and Croft, 1998). The unigram 

language model is utilized here. There are sever-

al ways to estimate the probabilities. Let 

𝑔(𝑤 ∈ 𝑑) denotes the number of times the term 

𝑤  occurs in a document 𝑑  (same idea can be 

used on a query). The Maximum-likelihood es-

timation (MLE) of 𝑤 with respect to 𝑑 is defined 

as: 

𝑀𝐿𝐸𝑑𝑤 ≝
𝑔(𝑤 ∈ 𝑑)

 𝑔(𝑤′ ∈ 𝑑)𝑤 ′
 

Previous work in language-model-based in-

formation retrieval (Zhai and Lafferty, 2004) 

advocates the use of a Dirichlet-smoothed esti-

mation: 

𝐷𝐼𝑅𝑑𝑤 ≝
𝑔 𝑤 ∈ 𝑑 + 𝜇 ∙ 𝑀𝐿𝐸𝑤𝔻

 𝑔(𝑤′ ∈ 𝑑)𝑤 ′ + 𝜇
 

where smoothing parameter 𝜇  controls the de-
gree of reliance on relative frequencies in the 

document corpus rather than on the counts in 𝑑. 

The initial ranker that we choose to use later in 

the experiment computes the KL divergence be-

tween the 𝑀𝐿𝐸𝑞𝑤  and a modified version of 

𝐷𝐼𝑅𝑑𝑤 (Zhai and Lafferty, 2001).  
Both estimations can be easily extended to dis-

tributions over text sequences by assuming that 

the terms are independent: 

𝑀𝐿𝐸𝑑(𝑤1𝑤2 …𝑤𝑛) ≝  𝑀𝐿𝐸𝑑(𝑤𝑗 )

𝑛

𝑗=1

 

 

𝐷𝐼𝑅𝑑(𝑤1𝑤2 …𝑤𝑛) ≝  𝐷𝐼𝑅𝑑 (𝑤𝑗 )

𝑛

𝑗=1

 

In the re-ranking setting, we estimate that the 

probability of a document 𝑑 generates 𝑤, using a 

mixture model LDA. It uses a convex combina-
tion of a set of component distributions to model 

observations. In this model, a word  𝑤 is gener-

ated from a convex combination of some hidden 

topics 𝑧: 

𝐿𝐷𝐴𝑑 𝑤 =  𝑝 𝑤 𝑧 𝑝(𝑧|𝑑)

𝑘

𝑧=1

 

where each mixture model 𝑝(𝑤|𝑧)  is a multi-

nomial distribution over terms that correspond to 

one of the latent topics 𝑧. Similar to MLE and 

DIR estimations, this could be generated to give 

a distribution on a sequence of text: 
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𝐿𝐷𝐴𝑑(𝑤1𝑤2 …𝑤𝑛) ≝  𝐿𝐷𝐴𝑑 (𝑤𝑗 )𝑛
𝑗=1  

   Then the distance between a query and a doc-

ument based on this model can be obtained. The 

first method we propose here adopts the KL di-
vergence between the query terms and document 

terms to compute a Re-Rank score 𝑅𝑆𝐿𝐷𝐴
𝐾𝐿1: 

𝑅𝑆𝐿𝐷𝐴
𝐾𝐿1 = −𝐷(𝑀𝐿𝐸𝑞(∙)||𝐿𝐷𝐴𝑑 ∙ ) 

This method also has the property of length-

normalization to ameliorate long document bias 

problems (Kurland and Lee, 2005).  
The second method also measures a KL diver-

gence between a query and a document, however, 

in a different way. As in the original LDA model, 

the multinomial parameter  𝜃 𝑑  indicates the topic 

distribution of a document 𝑑 . Query 𝑞  can be 

considered as topic estimation of a unknown 

document 𝑤    . Thus by first randomly assigning 
topics to words and then performing a number of 

loops through the Gibbs sampling update, we 

have: 

𝑝 𝑧𝑖 𝑧 
 
¬𝑖 , 𝑤   

 ; 𝑧 ¬𝑖 , 𝑤    

=
𝑛𝑧,¬𝑖
𝑤 𝑖 + 𝑛 𝑧,¬𝑖

𝑤 𝑖 + 𝛽𝑤 𝑖

( 𝑛𝑧
𝑣 + 𝑛 𝑧

𝑣 + 𝛽𝑣) − 1𝑉
𝑣=1

∙
𝑛𝑑 𝑖 ,¬𝑖

𝑧 + 𝛼𝑘

( 𝑛𝑑 𝑖

𝑧 + 𝛼𝑧) − 1𝑘
𝑧=1

 

where 𝑛 𝑧,¬𝑖
𝑤 𝑖  counts the observations of word 𝑤𝑖  

and topic 𝑘 in unseen document. Then the topic 

distribution for the query (just the unseen docu-

ment 𝑑 𝑖) is:  

𝜃 𝑑 𝑖 ,𝑘 =
𝑛𝑑 𝑖

𝑘 + 𝛼𝑘

 𝑛𝑑 𝑖

𝑧 +𝑘
𝑧=1 𝛼𝑧

 

so that the distance between a query 𝑞 and a doc-

ument 𝑑  is defined as the KL divergence be-

tween the topic distributions of 𝑞  and 𝑑 . Then 

the re-ranking score is calculated as: 

𝑅𝑆𝐿𝐷𝐴
𝐾𝐿2 = −𝐷(𝜃 𝑞 ||𝜃 𝑑) 

   Thus we can re-rank the initial retrieved docu-

ments according to the scores acquired. However, 

as in other topic models, a topic in the LDA 
model represents a combination of words, and it 

may not be as precise a representation as words 

in language model. Hence we need to further 
consider how to combine initial retrieval scores 

with the re-ranking scores calculated. Two com-

bination methods will be presented in the next 

subsection. 

3.4 Combining Initial Retrieval Scores 

Motivated by the significant improvement ob-

tained by (Wei and Croft, 2006) and (Zhang et 

al., 2005), we formulate our method through a 
linear combination of the re-ranking scores based 

on initial ranker and the latent document re-

ranker, shown as follow: 

𝑅𝑆1 = (1 − 𝜆) ∙ 𝑂𝑆 + 𝜆 ∙ 𝑅𝑆𝐿𝐷𝐴
𝐾𝐿∙  

where 𝑂𝑆 denotes original scores returned by the 

initial ranker and 𝜆  is a parameter that can be 

tuned with 𝜆 = 0 meaning no re-ranking is per-

formed. 
Another scheme considers a multiplication 

combination to incorporate the original score. It 

does not need to tune any parameters:  
𝑅𝑆2 = 𝑂𝑆 ∙ 𝑅𝑆𝐿𝐷𝐴

𝐾𝐿∙  
This concludes our overview of the proposed 

latent re-ranking method. 

4 Evaluation 

   In this section, we will empirically study the 

effectiveness of the latent document re-ranking 

method over three different data collections.  

4.1 Experimental Setup 

Data The text corpus used in our experiment 

was made up from elements of the CLEF-2007 

and CLEF-2008 the European Library (TEL) 

collections
1
 written in English and French. These 

collections are described in greater detail in Ta-

ble 1. All of the documents in the experiment 

were indexed using the Lemur toolkit
2
. Prior to 

                                                
1 http://www.clef-campaign.org 
2 http://www.lemurproject.org 

Collection Contents Language Num of docs Size Queries 

BL 

(CLEF2008) 

British Library 

Data 

English 

(Main) 

1,000,100 1.2 GB 50 

BNF 
(CLEF2008) 

Bibliothèque Na-
tionale de France 

French (Main) 1,000,100 1.3 GB 50 

LAT 
(CLEF2007) 

Los Angeles 
Times 2002  

English 135,153 434 MB 50 

Table 1. Statistics of test collections 
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indexing, Porter's stemmer and a stopword list
3
 

were used for the English documents. We use a 

French analyzer
4
 to analyze French documents.  

   It is worth noting that the CLEF-2008 TEL 
data is actually multilingual: all collections to a 

greater or lesser extent contain records pointing 

to documents in other languages. However this is 
not a major problem because the majority of 

documents in the test collection are written in 

main languages of those test collections (BL-
English, BNF-French). Furthermore, documents 

written in different languages tend not to match 

the queries in main languages. Also the data is 

very different from the newspaper articles and 
news agency dispatches previously used in the 

CLEF as well as TREC
5
. The data tends to be 

very sparse. Many records contain only title, au-
thor and subject heading information; other 

records provide more detail. The average docu-

ment lengths are 14.66 for BL and 24.19 for 
BNF collections after pre-processing, respective-

ly. Please refer to (Agirre et al., 2008) for a more 

detailed discussion about this data. The reason 

we choose these data collections is that we 
wanted to test the scalability of the proposed me-

thod in different settings and over different 

guages. In addition we also select a more 
tional collection (LAT from CLEF2007) as a test 

base. 

   We also used the CLEF-2007 and CLEF-

2008 query sets. The query sets consist of 50 
topics in English for LAT, BL and in French for 

BNF, all of which were used in the experiment. 

Each topic is composed of several parts such as: 
Title, Description, Narrative. We chose to 

conduct Title+Description runs as queries. The 

queries are processed similarly to the treatment 
in the test collections. The relevance judgments 

are taken from the judged pool of top retrieved 

documents by various participating retrieval 

systems from previous CLEF workshops.  
We compare the proposed latent re-ranking 

method with four other approaches: the initial 

ranker, mentioned above, is a KL-divergence 
retrieval function using the language models. 

Three other baseline systems are: Kurland and 

Lee’s structural re-ranking approach (Recursive 
Weighted Influx + Language Model), chosen as 

it demonstrates the best performance in their pa-

per (Kurland and Lee, 2005), Zhang et al.’s af-

finity graph-based approach (Zhang et al., 2005) 

                                                
3 ftp://ftp.cs.cornell.edu/pub/smart/ 
4 http://lucene.apache.org/ 
5 http://trec.nist.gov/ 

and a variant of Kurland and Lee’s work with 

links in the graph calculated by the vector-space 

model (cosine similarity as mentioned in (Kur-

land and Lee, 2005)). We denote these four sys-
tems as InR, RWILM, AFF, and VEC respective-

ly.  Furthermore, we denote the permutations of 

our methods as follows: LDA1: 𝑅𝑆2 𝑤𝑖𝑡ℎ 𝑅𝑆𝐿𝐷𝐴
𝐾𝐿1 , 

LDA2: 𝑅𝑆1 𝑤𝑖𝑡ℎ 𝑅𝑆𝐿𝐷𝐴
𝐾𝐿1  , LDA3: 

𝑅𝑆2 𝑤𝑖𝑡ℎ 𝑅𝑆𝐿𝐷𝐴
𝐾𝐿2 , LDA4: 𝑅𝑆1 𝑤𝑖𝑡ℎ 𝑅𝑆𝐿𝐷𝐴

𝐾𝐿2 . 

Because the inconsistency of the evaluation 

metrics employed in the past work, we choose to 

employ all of them to measure the effectiveness 

of various approaches. These include: mean av-
erage precision (MAP), the precision of the top 5 

documents (Prec@5), the precision of the top 10 

documents (Prec@10), normalized discounted 
cumulative gain (NDCG) (Jarvelin and Kekalai-

nen, 2002) and Bpref (Buckley and Voorhees, 

2004). Statistical-significant differences in per-
formance were determined using a paired t-test at 

a confidence level of 95%. 

It is worth pointing out that the above meas-

urements are not directly comparable with those 
of the CLEF participants because we restricted 

our initial pool to a smaller number of documents 

and the main purpose in the paper is to compare 
the proposed method with different baseline sys-

tems. 

 
Parameter Two primary parameters need to 

be determined in our experiments. For the re-

ranking experiments, the combination parameter 

𝜆 must be defined. For the LDA estimation, the 

number of topics 𝑘 must be specified. We opti-

mized settings for these parameters with respect 

to MAP, not with all other metrics over the BL 
collection and apply them to all three collections 

directly. 

   The search ranges for these two parameters 

were: 

 :     0.1, 0.2, …, 0.9 

k :     5, 10, 15, …, 45 

   As it turned out, for many instances, the optim-

al value of 𝜆 with respect to MAP was either 0.1 
or 0.2, suggesting the initial retrieval scores have 

valuable information inside them. In contrast, the 

optimal value of 𝑘 was between 20 and 40. Al-

though this demonstrates a relatively large va-
riance, the differences in terms of MAP have 

remained small and statistically insignificant. We 

set 𝔻𝑖𝑛𝑖𝑡  to 50 in all results reported, as in Kur-
land and Lee’s paper (Kurland and Lee, 2005) 

and we later show that the performance turns out 

to be very stable when this set enlarged.  
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Table 2. Experimental Results. For each evaluation setting, improvements over the RWILM baseline 

are given in italics (because it has highest performance); statistically significant differences between our 

methods and InR, RWILM, AFF, VEC are indicated by o, l, a, v, respectively. Bold highlights the best 

results over all algorithms. 

MAP Prec@5 Prec@10 NDCG Bpref

InR 0.1913 0.52 0.452 0.3489 0.2287

RWILM 0.2152 0.532 0.468 0.3663 0.2242

AFF 0.1737 0.444 0.434 0.3273 0.22

VEC 0.1756 0.448 0.434 0.3258 0.2216

LDA1 0.21 o, a, v 0.544 a, v 0.47 0.3679 o, a, v 0.2429 a, v

LDA2 0.2148 o, a, v 0.58 o, a, v 0.5 o, a, v 0.3726 o, a, v 0.2491 o, l, a, v

LDA3 0.1673 0.452 0.402 0.3297 0.2

LDA4 0.2035 o, a, v 0.548 a, v 0.468 a, v 0.3626 o, a, v 0.2326 a

MAP Prec@5 Prec@10 NDCG bpref

InR 0.1266 0.268 0.216 0.2456 0.1482

RWILM 0.1274 0.264 0.218 0.2495 0.1498

AFF 0.108 0.248 0.21 0.2221 0.1404

VEC 0.1126 0.252 0.214 0.2262 0.1463

LDA1 0.1374 a, v 0.292 a 0.242 0.2544 a, v 0.1617

LDA2 0.1452 o, a, v 0.292 a, v 0.244 a 0.2608 o, a, v 0.1697 o, l, a, v

LDA3 0.1062 0.232 0.202 0.2226 0.1439

LDA4 0.1377 a,v 0.28 a 0.246 o, a, v 0.2507 a, v 0.1672 o, a, v

MAP Prec@5 Prec@10 NDCG bpref

InR 0.3119 0.568 0.48 0.5093 0.3105

RWILM 0.3097 0.556 0.478 0.5096 0.3064

AFF 0.3065 0.572 0.492 0.5037 0.312

VEC 0.301 0.536 0.474 0.4975 0.3087

LDA1 0.3253 v 0.584 v 0.502 v 0.5158 v 0.3339 o, l, v

LDA2 0.3271 a, v 0.584 o, v 0.496 0.518 o, v 0.3351 o, l, a, v

LDA3 0.2848 0.444 0.398 0.486 0.2879

LDA4 0.3274 o 0.552 0.478 0.5202 o, v 0.3396 o, l, v

BL

BNF

LAT02

   Lastly, the parameters in the baseline systems 

are set according to the tuning procedures in their 

original papers
6
. 

                                                
6 More specifically, the combination parameter was 

set to 0.5 for AFF, the number of links was set to 4 for 

RWILM. 

4.2 Results 

Primary Evaluation The main experimental 
results are presented in Table 2. The first four 

rows in each collection specify reference-

comparison data. The first question we are inter-
ested in is how our latent re-ranking methods 
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perform (taken as a whole). It is shown that our 

methods bring improvements upon the various 

baselines in 75% of the 48 relevant comparisons 

(4 latent re-ranking methods × 4 corpora × 4 
baselines). Only the algorithm permutation 

LDA3 performs less well. Furthermore, our me-

thods are able to achieve the highest performance 
across all the evaluation metrics over three test 

collections except in one case (MAP in BL col-

lection). An even more exciting observation is 
that in many cases, our methods, even though 

tuned for MAP, can outperform various baselines 

for all the evaluation metrics, with statistically 

significant improvements in many runs.  
A closer examination of the results in Table 2 

reveals some interesting properties. As expected, 

the RWILM method bought improvements in 
many cases in CLEF-2008 test collections. How-

ever, the performance over CLEF-2007 collec-

tion was somewhat disappointing. This seems to 
indicate that the language model induced graph 

method tends to perform better in sparse data 

rather than longer documents. Also Language 

Modeling requires large set training data to be 
effective, while the complexity of our method is 

only linear with number of topics and the number 

of documents for each iteration.  The affinity and 
vector graph based methods demonstrated poor 

performance across all the collections. This may 

be due to the fact that the approach Zhang et al. 

(Zhang et al., 2005) developed focuses more on 
diversity and information richness and cares less 

about the precision of the retrieval results while 

asymmetric graph as constructed by the vector 
space model fails in capturing important relation-

ship between the documents. 

Another observation we can draw from Table 
2 is that the relative performance tends to be sta-

ble during test collections written in different 

languages. This shows a promising future for 

studying structure of the documents with respect 
to queries for re-ranking purpose.  At the same 

time, efficiency is always an issue in all re-

ranking methods. Although this is not a primary 
concern in the current work, it would definitely 

worth thinking in the future. 

We also conducted some experiments over 
queries constructed by using Title field only. 

This forms some more realistic short queries. 

The experiments showed very similar results 

compared to longer queries. This demonstrates 
that the query length is a trivial issue in our me-

thods (as in other graph-based structural re-

ranking). We examined the best and worse per-
formed queries, their performance are generally 

consistent across all the methods. This phenome-

non should be investigated further in the follow 

up evaluation. 

 
Comparison of Different Methods In com-

parison of performance between four permuta-

tions of our methods, LDA2 is the clear winner 
over CLEF-2008 test collections. The results ob-

tained by LDA2 and LDA4 over CLEF-2007 test 

collection were mixed. LDA2 performed better 

in precision at top 𝑛 documents while LDA4 

showed promising results in terms of more gen-

eral evaluation metrics. On the other hand, the 

linear combination approach performed much 
better than multiplication based combination. 

The situation is even worse when we adopted the 

𝑅𝑆𝐿𝐷𝐴
𝐾𝐿2  method, which was inferior in several 

cases. Thus the linear combination should be 
highly recommended.  

 

Scalability We have shown that our latent 
document re-ranking method is successful at ac-

complishing the goal of improving the results 

returned by an initial retrieval engine. But one 

may raise a question of whether it is necessary to 

restrict our attention to an initial pool  𝔻𝑖𝑛𝑖𝑡  at 

such a small size. As it happens, preliminary ex-

periments with LDA2 on larger size of the initial 
pool are presented in Figure 1. As we can see, 

our method can bring consistently stable im-

provements.  

 

 
 

Figure 1. Experiments with larger initial pools 

 

5 Conclusion and Future Work 

In this paper we proposed and evaluated a la-

tent document re-ranking method for re-ordering 
the initial retrieval results. The key to refine the 

results is finding the latent structure of “topics” 

or “concepts” in the document set, which leve-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 200 300 400 500

Size of the initial retrieval set

MAP (InR) MAP (LDA2) Prec@5 (InR) Prec@5 (LDA2)

Prec@10 (InR) Prec@10 (LDA2) NDCG (InR) NDCG (LDA2)

Bpref (InR) Bpref (LDA2)

1578



rages the latent Dirichlet allocation technique for 

the query-dependent ranking problem and results 

in state-of-art performance.  

There are many research directions we are 
planning to investigate. It has been shown that 

LDA-based retrieval is a promising method for 

ranking the whole corpus. There is a desire to 
call for a direct comparison between ranking and 

re-ranking using the proposed algorithmic varia-

tions. Future work will also include the compari-
son between our methods with other related ap-

proaches, such as Kurland and Lee’s cluster-

based approach (Kurland and Lee, 2006). 

There exist a sufficient number of latent se-
mantic techniques such as singular vector de-

composition, non-negative matrix factorization, 

PLSA, etc. We are planning to explore these me-
thods to compare their performance. Also direct 

re-ranking can be used to improve automatic 

query expansion since better ranking in top re-
trieved documents can be expected to improve 

the quality of the augmented query. We believe 

this is another fruitful line for future research. 
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