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Abstract

Recently, diffusion-based deep generative mod-
els (e.g., Stable Diffusion) have shown impres-
sive results in text-to-image synthesis. How-
ever, current text-to-image models often require
multiple passes of prompt engineering by hu-
mans in order to produce satisfactory results
for real-world applications. We propose Beauti-
fulPrompt, a deep generative model to produce
high-quality prompts from very simple raw de-
scriptions, which enables diffusion-based mod-
els to generate more beautiful images. In our
work, we first fine-tuned the Beautiful Prompt
model over low-quality and high-quality col-
lecting prompt pairs. Then, to ensure that our
generated prompts can generate more beautiful
images, we further propose a Reinforcement
Learning with Visual Al Feedback technique to
fine-tune our model to maximize the reward val-
ues of the generated prompts, where the reward
values are calculated based on the PickScore
and the Aesthetic Scores. Our results demon-
strate that learning from visual Al feedback
promises the potential to improve the quality
of generated prompts and images significantly.
We further showcase the integration of Beau-
tifulPrompt to a cloud-native Al platform to
provide better text-to-image generation service
in the cloud. !

1 Introduction

Text-to-Image Synthesis (TIS) is one of the most
spectacularly developed and widely applied tech-
niques in generative Artificial Intelligence (Al),

*Work done during an internship at Alibaba.
C. Wang and J. Zhu are co-corresponding authors.
"Datasets and source codes will be publicly avail-

able in the EasyNLP framework (Wang et al., 2022a).
URL: https://github.com/alibaba/EasyNLP. Models
are released in HuggingFace under the names: pai-
bloom-1b1-text2prompt-sd  (https://huggingface.co/
alibaba-pai/pai-bloom-1b1-text2prompt-sd) and
pai-bloom-1b1-text2prompt-sd-v2 (https://huggingface.
co/alibaba-pai/pai-bloom-1b1-text2prompt-sd-v2),
where pai-bloom-1b1-text2prompt-sd is the model introduced
in this work, and pai-bloom-1b1-text2prompt-sd-v2 is the
enhanced version trained with a lareger dateset.

1

aiming to create realistic images with texts as input.
Recently, with the advance of the modeling power
of large models, TIS is undergoing a revolution.
Large-scale TIS models, such as DALLE (Ramesh
et al., 2021), DALLE-2 (Ramesh et al., 2022), la-
tent diffusion models (Rombach et al., 2022) and
Imagen (Saharia et al., 2022), significantly improve
the state-of-the-art performance and allow users
without artistic expertise to create unprecedented
images through personal imagination.

Yet, TIS models require users to write text
prompts before model inference (e.g., “A majes-
tic sailing ship”). Writing such prompts that meet
the designer’s or art worker’s needs is full of uncer-
tainty, like opening a surprise box (Oppenlaender,
2022; Liu and Chilton, 2022). This is due to the
quality of the training data, leading to the need for
detailed descriptions to produce high-quality im-
ages. In real-world scenarios, non-experts often
find it difficult to write these prompts, and need to
do iterative modification through trials and errors
to re-generate the images, leading to a significant
loss of time and computing resources.

Prompt engineering is an emerging research
field, aiming to explore how to provide prompts
for deep generative models and improve the effi-
ciency of direct interaction between humans and
Al (Oppenlaender, 2022). For example, a user
can give a task-oriented prompt and ask Chat-
GPT (OpenAl, 2023) to generate texts according
to the prompt. For TIS, the user can write a sim-
ple prompt and then ask ChatGPT to supplement
the contents. However, directly using ChatGPT
to write prompts falls into the dilemma of gener-
ating irrelevant and plausible images. Hence, the
generated prompts can be better in quality if the un-
derlying language model is optimized for the task.
We can see that fine-tuning a language model such
as (Brown et al., 2020; Scao et al., 2022; Touvron
et al., 2023) for TIS prompt generation will be a
more worthwhile exploration.

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1-11
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Astronaut rides horse — Astronaut riding a horse, fantasy, intricate, elegant, highly detailed,

artstation, concept art, smooth, sharp focus, illustration

Figure 1: Comparing the qualities of images generated from the original prompts (left) with those from the prompts
generated by Beautiful Prompt (right). The underlying TIS model is Stable Diffusion 1.5.

In this paper, we propose a new generative model
that can write high-quality prompts for diffusion-
based models, named Beautiful Prompt. For better
user experience, it re-writes and optimizes the orig-
inal, low-quality prompts into high-qualities ones
to generate better images. It also provides a good
source of inspiration for further manual prompt
editing. Specifically, we first collect a dataset for
training Beautiful Prompt using an automated data
collection pipeline based on existing Al models.
The dataset is used for supervised fine-tuning. We
further propose a Reinforcement Learning with
Visual Al Feedback (RLVAIF) technique to maxi-
mize the reward values of the generated prompts,
which are determined by a couple of trained re-
ward models based on visual signals. The gradient
update process of RLVAIF makes the generated
prompts more compatible with human preferences
without any manual labeling. A simple comparison
of prompts and the resulting images are shown in
Figure 1. In summary, the main contributions of
this study are as follows:

* We release a new dataset containing 143k
prompt pairs and 2k test prompts, enabling re-
searchers to develop prompt engineering mod-
els for their TIS applications.

* We propose BeautifulPrompt, a novel genera-
tive model that can write high-quality prompts
for diffusion-based TIS models. A Reinforce-
ment Learning with Visual Al Feedback train-
ing scheme is further proposed for better vi-
sual alignment without human labeling.

* Extensive experimental results show the supe-
riority of BeautifulPrompt over strong base-
lines. We further showcase the integration
of BeautifulPrompt to an industrial product to
provide better image generation service.

2 Related Work
2.1 Text-to-Image Synthesis (TIS)

TIS is a multi-modal task of generating images con-
ditioned on texts. In the early years, popular image
generation networks were mainly based on Gen-
erative Adversarial Network (GAN) (Goodfellow
et al., 2014; Reed et al., 2016). Recently, diffu-
sion models (Ho et al., 2020; Sohl-Dickstein et al.,
2015; Liu et al., 2023), such as DALLE-2 (Ramesh
et al., 2022), Imagen (Saharia et al., 2022), and Sta-
ble Diffusion (Rombach et al., 2022) have achieved
remarkable results. Yet, the qualities of generated
images depend on prompts. In this paper, we pro-
pose a prompt generation model, dedicated to op-
timizing input prompts to generate more beautiful
images.

2.2 TIS Evaluation

There are several metrics for evaluating TIS. CLIP
score (Radford et al., 2021) measures the similarity
between generated images and prompts. Aesthetic
score (Schuhmann et al., 2022) evaluates the aes-
thetic quality of individual images. There are also
metrics trained to align with human preferences,
such as HPS (Wu et al., 2023), Image Reward (Xu
et al., 2023), and PickScore (Kirstain et al., 2023).
Human preferences can be complex and may in-
volve various dimensions, including the similarity



between text and images, as well as image fidelity,
aesthetics, and other factors. These evaluation met-
rics can all serve as visual feedback to optimize the
training of prompt engineering models. Among the
human preference metrics, PickScore stands out
due to its stable scoring and larger, more diverse
training datasets, which includes a wider range
of implementations (e.g., model size, backbone,
hyperparameters) (Kirstain et al., 2023). These
factors can potentially contribute to more stable
training and facilitate easier extension to other TIS
models.

2.3 Prompt Engineering for TIS

Due to the extraordinary potential of TIS, there
is a surge of interest in prompt engineering (i.e.,
creating good prompts). Liu and Chilton (2022)
conduct a series of experiments and propose several
design guidelines for text-to-image prompt engi-
neering. Oppenlaender (2022) identifies six types
of prompt modifiers through a three-month ethno-
graphic study of the online generative art commu-
nity. However, these studies are limited to the long
and tedious manual prompt engineering.

BestPrompt (Pavlichenko and Ustalov, 2022)
uses a genetic algorithm to detect keywords to form
prompts in order to achieve the best images aestheti-
cally. MagicPrompt? is a popular automatic prompt
completion model trained from good prompts col-
lected from the Internet. But these models only
serve to complete the prompts. Beautiful Prompt,
on the other hand, can re-write the original prompts
to give users a good source of inspiration and gen-
erate more beautiful images.

3 Dataset Creation

In this section, we show the detailed data collection
process for Beautiful Prompt training.

% DiffusionDB

Cy,
Wy
Rule-based oy,

Filter high-quality
prompts

@ LLMW Clean & Filter
%
low-quality prompts @ %6‘\%
LLM

Prompt Pairs

Figure 2: The data collection process.

Collection of Prompt Pairs. The goal of this

Zhttps://huggingface.co/Gustavosta/
MagicPrompt-Stable-Diffusion

step is collecting pairs of high-quality and low-
quality prompts with similar semantics. As shown
in Figure 2, the original data source is Diffu-
sionDB (Wang et al., 2022b), which contains un-
paired prompts only. Heuristically, we split the
prompts into low-quality and high-quality ones ac-
cording to the length of the prompts, the certain
tags contained in the prompts, etc. Next, we 1)
use BLIP (Li et al., 2022) to caption the images
associated with high-quality prompts and treat the
results as the corresponding low-quality prompts,
as the captions are shorter and lack details; ii) use
ChatGPT to summarize the high-quality prompts
and treat the summaries as low-quality prompts;
iii) use ChatGPT to generate better prompts from
low-quality prompts; the results are considered
high-quality prompts.> Through the above three
approaches, we obtain a large number of prompt
pairs; however, the quality of these prompt pairs
cannot be guaranteed. Hence, we need to do further
data cleaning and filtering.

Post-processing. We first filter out the exam-
ples that are non-English and NSFW (Not Safe
For Work). Next, we filter out examples of im-
ages generated from high-quality prompts with low
aesthetic scores (Schuhmann et al., 2022). For
the prompt pairs generated by the mentioned Ap-
proaches i) and ii), we use the aesthetic score
model (Schuhmann et al., 2022) to score the im-
ages, as DiffusionDB already contains the images
corresponding to the high-quality prompts. For
high-quality prompts generated by the mentioned
Approach iii), we use the reward model 745 in
Section 4.2 to compute the scores.

We also consider prompts’ consistency, calculate
the text similarity (Reimers and Gurevych, 2019)
between low-quality and high-quality prompts in
a pair, and filter out examples with low similarity.
More details can be found in the Appendix B.

Statistics. We finally collect 143k prompt pairs
as our training set. In addition, we randomly ex-
tract 2k entries from low-quality prompts as our
testing set. For the training set, the average lengths
of low-quality and high-quality prompts are 40.3
and 197.8, respectively, indicating that high-quality
prompts contain more descriptions of details. More
statistics can be found in Table 1.

3The prompts and examples for invoking ChatGPT can be
found in Appendix A.
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Split Source Num Aesthetic PC ALLP ALOP
Al 143k 622 071 403 197.8
ey SUmmary 134k 623 071 398 1945
" Generation 2k 570 076 524 5014
Caption 7k 623 067 449 1777
Test - 2k - - 36.7 -

Table 1: Dataset statistics. Note that, PC, ALLP and
ALHP denote the prompt consistency (i.e., text simi-
larity), the average lengths of low-quality and the high-
quality prompts, respectively.

4 The BeautifulPrompt Model

Inspired by InstructGPT (Ouyang et al., 2022) and
ChatGPT, in this section, we introduce the Beau-
tiful Prompt training scheme in detail, which con-
tains three stages (Supervised Fine-tuning, Reward
Modeling training and Reinforcement Learning),
as shown in Figure 3.

Aesthetic Score
Prompt Pairs &
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Figure 3: The three steps of training Beautiful Prompt.
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The color of the arrows indicates three different stages.

4.1 Supervised Fine-tuning (SFT)

Given a dataset of prompt pairs D = {(x,y)}, con-
taining pairs of low-quality prompts x and high-
quality prompts y, we fine-tune a decoder-only lan-
guage model to output a high-quality prompt of to-
kensy = {y1, ..., yn } With a given instruction and
a low-quality prompt x. We use the auto-regressive
language modeling objective to maximize the fol-
lowing likelihood (Radford et al., 2019):

Esft = _ZIOgP(yZ | X, Y1, "'7yi—1)'

)

4.2 Reward Modeling (RM)

Human feedback instructs the training of Large
Language Models (LLMs) with promising re-
sults (Ouyang et al., 2022). However, this requires
extensive and tedious labor efforts. Bai et al. (2022)
propose to use Al models to instruct the training
of LLMs. Taking inspiration from this and consid-
ering that our final generated prompts y are used
for drawing, we propose RLVAIF: a method that
incorporates visual feedback into the training of
language models, thereby avoiding the cost of ex-
pensive human labeling.

We focus on the quality of the final generated
image and its similarity to the low-quality prompt x.
Therefore, we consider PickScore (Kirstain et al.,
2023) and the aesthetic score (Schuhmann et al.,
2022) as our visual Al feedback to train reward
models to fit these scores.

Briefly, PickScore (Kirstain et al., 2023) is a
preference model trained on a large dataset of text-
to-image prompts and real user preferences. In
order to reduce the impact of random seeds on the
quality of the images generated by the TIS model,
we use 8 different random seeds to generate images
and average the results. The calculated averaged
PickScore PS is used as the ground truth to train
the reward model. The loss function is:

N
1
ﬁps = _N ZMSE(TPS(X7Y)7PS)’

where rp,s(x,y) is the scalar output of the reward
model for the prompt pair (x,y). MSE is the Mean
Squared Error. NV is the total number of samples.

The aesthetic score model (Schuhmann et al.,
2022) is trained to predict the rating that people
give when asked “how much do you like this image
on a scale from 1 to 10”. Similarly, a reward model
is trained to fit the corresponding prompts from the
images to the aesthetic scores AES:

N
1
Loes = _N Z MSE(raes (Y)a AES))

where 74.5(y) is the scalar output of the reward
model. Finally, we use « as a balancing factor to
combine the scores of the two reward models as
the final reward r(x,y):

r(X,y) = 1ps(X,y) + (1 = @) - Taes(y)-



Method PickScore  Aesthetic Score HPS  CLIP Score Avg. Score
Original 20.74 5.50 0.197 0.27 0.57
MagicPrompt 20.11 5.79 0.193 0.22 0.07
ChatGPT 20.73 5.92 0.198 0.25 0.59
BeautifulPrompt (SFT only) 20.42 6.03 0.197 0.23 0.39
BeautifulPrompt (Full implementation) 20.84 6.52 0.203 0.24 0.85

Table 2: Results on the testing set. The average score is calculated with all scores normalized into [0,1]. “Original”

refers to the method that directly sends the original prompts to Stable Diffusion without modification.

4.3 Reinforcement Learning

As the collected dataset inevitably contains some
noise, for example, the consistency between low-
quality prompts and the corresponding high-quality
prompts is relatively low, the performance of the su-
pervising trained model p can be unsatisfactory. To
further improve the model performance, we initial-
ize a policy m = p, and then fine-tune 7 to perform
the task using reinforcement learning. We leverage
the Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) algorithm to directly optimize the
expected reward:

m(y | X)],

ET( [T] = IEXf\-'D,y'\/7T(-|X) [T(X7 y)_ﬁlog p(y | X)

where (3 is the Kullback-Leibler (KL) penalty coef-
ficient. It prevents the policy from moving too far
from p. Following Ziegler et al. (2019), we adopt
an adaptive KL penalty here.

S Experiments

Training Settings. We use the pre-trained check-
point of BLOOM (Scao et al., 2022) (1.1B parame-
ters with 24 transformer layers) as the backbone.*
The BFLOAT16 formats are leveraged to save GPU
memory and speed up training. For the SFT and
RM stages of training, we set the batch size to 64,
the maximum length to 384, and the learning rate
to le-5 with warmup and cosine decay. We find
that proper over-fitting benefits PPO training, so
we set the SFT training epoch to 4 and the weight
decay to 0. For PPO training, we set the learning
rate to Se-6, a: to 0.7, the batch size to 32, the initial
KL coefficient to 0.05, the training step to 5000,
and freeze two-thirds of the parameters. All the

“We choose a relatively small version of BLOOM as the
backbone to ensure the high inference speed of online deploy-
ment to support real-world applications. In addition, we find
that the 1.1B model is sufficiently large to accomplish our task
effectively with good results.

experiments are implemented in PyTorch and run
on a single server with NVIDIA Tesla A100 GPUs.
Baselines. We consider two strong baselines: Mag-
icPrompt and ChatGPT. MagicPrompt is a popular
automatic prompt completion model trained from
80,000 pieces of data crawls from Lexica.ai (re-
fer to related work). ChatGPT is almost the most
powerful general-purpose LLM and serves as a
human-level prompt engineer here.

Evaluation Protocols. Systematically evaluating
the goodness of a prompt engineer is a challenging
task. One of the most straightforward methods is to
evaluate the images generated by the prompts that
models produce. We use Stable Diffusion 1.5 to
generate images and calculate PickScore (Kirstain
et al., 2023), the aesthetic score (Schuhmann et al.,
2022), HPS (Wu et al., 2023) and CLIP score (Rad-
ford et al., 2021) for the images and the original
prompts. In addition, we conduct a human evalu-
ation experiment on 200 randomly selected exam-
ples from the testing set. Given the raw prompts,
we ask 10 human experts to pick the most desir-
able images generated by the different methods and
report the win rates of Beautiful Prompt compared
against other methods. ¢

5.1 Opverall Results

From Table 2, our method consistently outperforms
the other baselines in most scores. As the CLIP
score reflects the semantic consistency between
the text and image, it is natural that sending the
original prompts to Stable Diffusion unchanged
obtains the highest score. Our method does not
decrease the CLIP score to a large extent, showing
that Beautiful Prompt well preserves the semantics
of the original input prompts. As shown in Figure
4, the human evaluation experiment shows the su-
periority of our approach, with a win rate of over

Shttps://huggingface.co/runwayml/
stable-diffusion-v1-5
®Refer to the user interface in Appendix C.
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Figure 4: Results of human preference evaluation (i.e.,
win/lose/tie rates of our method against others). “BP” is
short for Beautiful Prompt.

57% against all other baselines.

5.2 Detailed Analysis

Ablation Study. Figure 5 illustrates the training
process using one reward model alone, two reward
models, and directly using existing models to score
the images as the reward. Using r,s alone can
drive an increase in aesthetic score, while using
Taes alone does not drive an increase in PickScore.
This is consistent with the finding that PickScore
reflects real human preferences, incorporating var-
ious factors such as image aesthetics, text-image
matching, etc (Kirstain et al., 2023). Combining
the two rewards allows for more rapid and stable
growth of both metrics and makes the training pro-
cess more stable. The training process is unstable
and the gains obtained are small when we directly
use the models (Schuhmann et al., 2022; Kirstain
et al., 2023) to compute rewards on the generated
images instead of additionally training the reward
models. Consistent with Ziegler et al. (2019), we
observe that reward models need to understand lan-
guages to better guide training.

Is BeautifulPrompt Transferable? We further
explore the transferability of BeautifulPrompt to
the other diffusion-based TIS models. Consider the
popular model Deliberate’. As shown in Figure 6,
although Deliberate already performs well in most
vanilla prompts, BeautifulPrompt is still able to
make Deliberate generate more beautiful images in
most cases. This shows Beautiful Prompt can also
be applied to other TIS models. More examples
can be found in the Appendix D.

7https ://huggingface.co/XpucT/Deliberate

BP-SFT ®
BP w/o. AES

BP w/o. PS

BP-direct L

BP +

20.8

OE X+ D>

N
©
<

] + ([
o
82061 m ‘/
g x%
o | |
205 ‘ /= x
L]
20.4 u
%
6.0 6.1 6.2 6.3 6.4 6.5
Aesthetic

Figure 5: Aesthetic-PickScore plot for Beautiful Prompt
and its variants. “BP” is short for Beautiful Prompt. We
visualize checkpoints every 1000 training steps. The
color gradually darkens as the number of training steps
increases and the arrows indicate the training direction.
For both scores, higher numbers are better.

6 Industrial Application

In this section, we briefly discuss how our model
benefits users in real-world applications. Currently,
we have integrated Beautiful Prompt into a cloud-
native Al platform (Platform of Artificial Intelli-
gence, Alibaba Cloud®) to assist users (especially
designers and art workers) to create and edit artis-
tic images based on a variety of Stable Diffusion-
style models, together with other modules such as
LoRA (Hu et al., 2021) and ControlNet (Zhang
et al., 2023). Users can freely perform any types of
image generation and editing operations through
WebUI. During any operation, users can invoke
a Beautiful Prompt helper plug-in to assist the de-
sign or art creation process. In addition, based
on the Query Per Second (QPS) requirements and
the system workload, our inference service can
automatically scale to an adjustable number of ma-
chines on GPU clusters.

7 Conclusion

We propose a deep generative model named Beau-
tiful Prompt to create high-quality prompts, which
can be feed to Stable Diffusion-style models to pro-
duce more beautiful images. Specifically, we col-
lect and release a new dataset for training prompt
engineering models. A Reinforcement Learning
with Visual AI Feedback technique is introduced

$https://www.alibabacloud.com/product/
machine-learning
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A phoenix flying above a rugged mountain peak silhouetted by the sunrise. — The phoenix fly
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Figure 6: Comparing the qualities of images generated from the original prompts (left) with those from the prompts

generated by BeautifulPrompt (right). The underlying TIS model is Delibrate.
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Figure 7: Architecture of online deployment with Beau-

tiful Prompt for text-to-image generation service.

to fine-turn the LL.Ms based on our dataset. Ex-
tensive experimental results show that Beautiful-
Prompt outperforms existing methods in terms of
both automatic and human evaluation.

Limitations

Although BeautifulPrompt can generate more aes-
thetically pleasing images, limited by the training
data, it sometimes ignores part of the information
in the original prompts or generates meaningless
prompts. In a few cases, the generated images
can be semantically inconsistent with the original
prompts, due to the auto-regressive and genera-
tive nature of language models. These improve-
ments are left to our subsequent work. In addition,
multiple open-source models are used in our train-
ing data construction, and model training process,
which may cause some degree of bias as well as
error accumulation.

Ethical Considerations

The techniques for training the BeautifulPrompt
model presented in this work are fully methodolog-
ical. Hence, there are no direct negative social
impacts of our method. As for the model, to ensure
that the generated contents are suitable for public
release, we have also filtered out NSFW prompts
from our training data. However, since the gener-
ative process is difficult to control, it is possible
(although not likely) for our model to create toxic
contents. We suggest that in our case, Beautiful-
Prompt should not be used to generate offensive
or inappropriate images for people intentionally.
Users should carefully deal with the potential risks
for online deployment.
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Q Instruction:

Summarize this image description in 10 words or less and
ignore words like archdaily, wallpaper, highly detailed, 8k.
Ignore modifiers likes 'portrait of', 'by somebody’, 'with xxx"
or 'in xxx'. Ignore adjective.

Check English.

Input: a beautiful very detailed illustration of abandoned
urbex unfinished building city nature industrial architecture
architecture building spaceport by caspar david friedrich,
scumm bar meadow nature synthwave, archdaily, wallpaper,
highly detailed, trending on artstation.

Output: abandoned urban building.

{... more examples}

Input: realistic detailed face portrait of Angelina Jolie as
Salome by Alphonse Mucha, Ayami Kojima, Amano,
Charlie Bowater, Karol Bak, Greg Hildebrandt, Jean
Delville, and Mark Brooks, Art Nouveau, Neo-Gothic,
Surreality, gothic, rich deep moody colors

Output:

@ ( Angelina Jolie portrait ]

Figure 8: An example of “ChatGPT summary” for data
collection.

A ChatGPT Templates

Figure 8 and Figure 9 show examples of using
ChatGPT to generate part of the training set.

B Data Post-processing Details

For NSFW filtering, we use a trained NSFW clas-
sifier’. For consistency filtering, we first use the
trained sentence encoder'” to obtain sentence repre-
sentations and then compute their cosine similarity:

T
r, I'y

RE R

where r, and r, are sentence representations of
low- and high-quality prompts.

cos_sim(r,, ry)

C Human Preference Evaluation

Figure 10 shows a screenshot of the human evalua-
tion experiment.

D More Cases

In Figure 11, we apply BeautifulPrompt to more
Stable Diffusion-style models (i.e., Stable Diffu-
sion 1.5, Delibrate, Dreamlike!! and Realisticlz).

9https://huggingface.co/michellejieli/NSFw_
text_classifier

lOhttps://huggingface.co/sentence—transformers/
all-mpnet-base-v2

11https://huggingface.co/dreamlike—art/
dreamlike-photoreal-2.0

Zhttps://huggingface.co/SG161222/Realistic_
Vision_V1.4
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joy (" Instruction:

Give a simple description of the image to generate a
drawing prompt.

1. Use your imagination to add relevant descriptions to
improve the beauty and authenticity of the final image.

2. Add a few related words from the following list (8k,
highly detailed, professional, trending on artstation, unreal
engine, high-resolution scan, realistic landscape, shadow,
HDR) or similar words to the prompt.

3. Output a positive English prompt in 50 words or less. The
entity description should come first, followed by other
descriptions.

Input: blond viking woman.

Output: a beautiful fashion blond viking woman, revealing
outfit, symmetrical, maximalist, lily frame, art by ilya
kuvshinov, rossdraws, sharp focus, art by wlop and artgerm,
extreme detail, detailed drawing, hyper detailed face

{... more examples}

Input: lush forest trending on artstation
\_Output:

@ (An enchanting lush forest with towering trees, vibrant
greenery, and a serene atmosphere captured in an 8k high-
resolution scan. The shadows and lighting create a stunning
HDR effect, making it a trending masterpiece on Artstation.

\_A professional and realistic landscape that inspires awe.

J

Figure 9: An example of “ChatGPT prompt generation”
for data collection.

raw_prompt: a turtle

Based on the raw prompt, which picture is better?

left tie right

Figure 10: Screenshot of the user inferface for the hu-
man evaluation experiment.
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Raw Prompt & Generated Prompt

TIS Raw Image Optimized Image

Astronaut rides horse

Astronaut riding a horse,
fantasy, intricate, elegant,
highly detailed, artstation,
concept art, smooth, sharp
focus, illustration

Stable Diffusion 1.5

Delibrate

Dreamlike

Realistic

Sunshine on iced mountain

photo of sun rays coming
from melting iced mountain,
by greg rutkowski, 4 k,
trending on artstation

Delibrate

Dreamlike

Realistic

panda mad scientist mixing
sparkling chemicals

panda as a mad scientist, lab

coat, mixing glowing and

disinertchemicals, fantasy,

intricate, elegant, highly

detailed, digital painting,
artstation, concept art,
smooth, sharp focus,

illustration

,‘.
Stable Diffusion 1.5 ﬂ

Delibrate

Dreamlike

Realistic

Figure 11: Examples of images generated by various Stable Diffusion-style models w/ and w/o Beautiful Prompt.
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Abstract

Recent research has investigated the use of
generative language models to produce regular
expressions with semantic-based approaches.
However, these approaches have shown short-
comings in practical applications, particularly
in terms of functional correctness, which refers
to the ability to reproduce the intended function
inputs by the user. To address this issue, we
present a novel method called Unit-Test Driven
Reinforcement Learning (UTD-RL). Our ap-
proach differs from previous methods by tak-
ing into account the crucial aspect of functional
correctness and transforming it into a differen-
tiable gradient feedback using policy gradient
techniques. In which functional correctness
can be evaluated through Unit Test, a testing
method that ensures regular expressions meets
its design and performs as intended. Exper-
iments conducted on public datasets demon-
strate the effectiveness of the proposed method
in generating regular expressions. This method
has been employed in a regulatory scenario
where regular expressions can be utilized to
ensure that all online content is free from non-
compliant elements, thereby significantly re-
ducing the workload of relevant personnel.

1 Introduction

Regular expressions are an essential tool for pro-
cessing text in an efficient, flexible, and powerful
manner (Friedl, 2006). For instance, an individual
whose work involves reviewing the language used
in an application to prevent the display of violent
or pornographic content to underage users. Manu-
ally checking each line can be a time-consuming
task. Therefore, the use of regular expressions can
greatly streamline this process. Nevertheless, writ-
ing and debugging regular expressions can be a
daunting task for those without expertise, as the
syntax can often be obscure and unintuitive (Kart-
tunen et al., 1996).

The use of natural language to generate regular
expressions has been explored in several works to
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Step 1 Prompt Generation

Query
Words that end in ing

Prompt

Generator

1 # Outout: Workig
F ool # Swiming
o Response
Output R
Generator <regex>[A-Za-z]+ing<regex>

Step 2 Supervised Fine-tuning

Test cases
Input: Working hard # Output: Working
Input: Swimming pool # Output: Swimming

Regular Expression
[A-Za-z]+ing

0" =argmazy Y. logpe(RiIC)
e

Language Model
mp(R'|C)

Step 3 Unit-Test Driven Reinforcement Learning

Yome(R'|C)r(R', R, Test Cases)

Language Model
@

(R'|C)

Figure 1: Pipeline of our works. And the whole pipeline
consists of 3 steps: the first step will generate prompt
from the original context; followed by the SFT with the
prompt generated from the first step; finally Unit-Test
Driven Reinforcement Learning is implemented

bridge the gap for the public in utilizing regular ex-
pressions. For instance, Ranta et al. (Ranta, 1998)
developed a rule-based system that generates regu-
lar expressions from template input. Subsequently,
Locascio et al. (Locascio et al., 2016) proposed the
use of LSTM-based Sequence to Sequence models
to generate regular expressions based on contex-
tual inputs. Furthermore, with the advancement of
large language models, researchers have discovered
that the performance can be improved by employ-
ing Supervised Fine-tuning (SFT) (Ouyang et al.,
2022) on Large Language Models (LLMs). Nev-

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 12—-19
December 6-10, 2023 ©2023 Association for Computational Linguistics



ertheless, regular expressions generated by these
models often encounter compilation failures and
inadequately capture the intended functionality of
the input requirements, which is a critical aspect in
practical applications. To address this, researchers
have explored the use of semantic correctness (Park
et al., 2019) as a criterion. However, adopting such
a method does not completely resolve the afore-
mentioned issues. We posit that the disregard for
functional significance in input specification may
be a significant factor contributing to these chal-
lenges.

Therefore, this paper emphasizes the importance
of functional correctness. To enhance the func-
tional correctness of the generated regular expres-
sion, it is important to consider the practical con-
text in which it will be used. Generally, assess-
ing its practical applicability requires conducting
"Unit Test". Specifically, if the generated regular
expression can accurately extract the desired re-
sults from a given sequence of inputs, it can be
considered to meet the functional requirements of
the user. Therefore, in this paper, we propose Unit-
Test Driven Reinforcement Learning (UTD-RL).
This approach utilizes policy gradient techniques
(Sutton et al., 1999) to learn from the feedback pro-
vided by the unit test results, enabling the model
to adjust its pattern generation process to better
align with the intended functionality. As a result,
it shows promise in improving the effectiveness
of regular expression generation in practical ap-
plications. Experimental results demonstrate that
regular expressions generated by this method can
better adhere to the input requirements, resulting
in a significant improvement in the performance
of the generated regular expression with respect to
Unit Test.

As mentioned earlier, we consider functional
correctness to be the most crucial factor in this
task. However, we have observed that the previous
evaluation method, which computes equivalence
by converting each regular expression to a minimal
deterministic finite automaton (DFA) and leverag-
ing the fact that minimal DFAs are guaranteed to
be the same for semantically equivalent regular ex-
pressions, is inadequate for assessing the functional
correctness of the generated regular expression in
relation to the input requirements. Therefore, in
this paper, we propose the adoption of "Unit Test"
as an alternative method for evaluating the gen-
erated regular expression, in addition to utilizing
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DFA.
To sum up our contributions:

1. we came up with the UTD-RL approach that
utilizes the outcomes of "Unit Test" to en-
hance the functional correctness of the gen-
erated regular expression in alignment with
input specifications.

2. we propose the use of "Unit Test" for eval-
uation, as it can better reflect the degree of
fulfillment of the input requirements.

3. we conducted several experiments to validate
the efficacy of the UTD-RL approach.

2 Related Work

Recent research has focused on automating the
generation of regular expressions from natural lan-
guage, employing both non-deep learning and deep
learning approaches. Early researchers highlighted
the ability to encode regular expressions into finite
state networks (Karttunen et al., 1996). Ranta et al.
(Ranta, 1998) capitalized on this property and de-
veloped a rule-based technique for converting for-
matted language specifications into regular expres-
sions. Sequentially, Locascio et al. (Locascio et al.,
2016) first introduced an LSTM-based sequence-
to-sequence model (Deep Regex) that translates
contextual information into regular expressions us-
ing a syntax-based objective: maximum likelihood
estimation (MLE). Zhong and Bhatia (Zhong et al.,
2018) optimized performance by employing policy
gradient techniques (Sutton et al., 1999)to train the
model with a semantics-based objective. Similarly,
Park et al. (Park et al., 2019) applied semantic
correctness as the reinforcement learning reward.
However, experiments conducted on these models
revealed significant overfitting on public datasets
resulting in limited generalizability to other input
requirements. We speculate that LSTM lacking
the capacity for induction and deduction compared
to the advanced large language models available
today.

Recently, Large language models (LLMs)
trained on extensive text corpora from diverse do-
mains have exhibited their capability to perform
zero-shot tasks, including code generation. This
zero-shot ability emerged when models reached an
adequate scale (Brown et al., 2020). Researchers
utilizing pre-trained LLMs and fine-tuning them
on pertinent datasets have achieved remarkable out-
comes. For example, CodeX (Chen et al., 2021),



a fine-tuned model on GPT-3(Brown et al., 2020),
outperforms prior state-of-the-art models on code
generation. Copilot, a highly renowned code sug-
gestion tool within the GitHub community, em-
ploys CodeX as its foundational model. Further-
more, CodeGeeX (Zheng et al., 2023), a multi-
lingual code generation model equipped with 13
billion parameters, attains the highest average per-
formance on publicly available datasets.

3 Methods
3.1 Language Model

We conducted experiments on large language mod-
els, such as llama, GPT-3, and text-davinci-003, to
evaluate their performance in solving public regular
expression problems. The results demonstrate their
ability to generate regular expressions, although
their performance may not be on par with prior
research advancements on public datasets. This
finding is significant, particularly because these
models are pretrained on a vast corpus rather than
being specifically designed for regular expression
generation. Consequently, it is essential to fine-
tune these language models specifically for the task
of regular expression generation to improve their
effectiveness.

3.2 Unit-Test Driven Reinforcement Learning

[a-zl+ing [AZa-z}4ing

nnnnnnn

\\\\\

Figure 2: Unit test. Unit test are conducted on both
the generated regular expression and the target regular
expression. If the extracted outcome is the same, the
test case is considered passed. Otherwise, the test case
fails.

Ensuring functional correctness is a critical aspect
of regular expressions. To clarify, in practical ap-
plications, validating the correctness of a regular
expression usually involves unit test. If all the in-
tended patterns are successfully extracted from the
test cases and all of the extracted patterns match the
desired patterns, then the regular expression is con-
sidered valid. Unfortunately, previous researches
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employing SFT on language models overlooked
this aspect. As a solution, we propose utilizing
policy gradient method (Sutton et al., 1999), which
optimizes parameterized policies through gradient
descent based on the expected return (reward) to
convert functional correctness into a differentiable
gradient.

Our approach aims to improve the functional cor-
rectness of the model by highlighting the unique
functionality of regular expressions and encour-
aging the production of functionally correct regu-
lar expressions, especially in challenging scenar-
ios where the generation process failed to com-
pile. The reinforcement phase will facilitate the
model in learning to generate regular expressions
that are both semantically and functionally correct,
leading to improved performance on "Unit Test".
Specifically, for a given problem context C;, a de-
sired ground truth regular expression R; and sev-
eral valid test cases 7;, we want to maximize the
expected reward r(y, R;, T;) for every regular ex-
pression y generated by language model py, namely
improving the ratio of the generated regular expres-
sion ¥ that can pass the unit test.

D

(Cs,R;,T;)ED

J(Q) EZ/NPGHCZ)T(y?RlaT‘Z) (1)

During the training process, it is still desirable
for the regular expressions generated by the model
to have a minimal discrepancy with ground truth
annotated regular expressions. Therefore, we in-
corporate the supervise loss with the ground truth
regular expressions into the final objective function,
aiming to mitigate the disparity.

0bj(0) = BJ(0) + vEc~plogpe(y|C)  (2)

In this context, D is a regular expression problem
set. The reward coefficient, 3, and supervise loss
coefficient, vy, control the magnitude of importance
between the reward and the supervise loss. Setting
~ to 0 would make the gradient depend solely on
the functional correctness of the generated regular
expression.

Measurement of Functional Correctness.
Since we have utilized the policy gradient method
(Sutton et al., 1999) to transform functional cor-
rectness into a differentiable signal, it is crucial
to define a criterion for evaluating functional cor-
rectness. In practical terms, a regular expression is
considered valid if it can successfully extract the



desired string pattern from a provided set of inputs.
This concept shares similarities with the pass@k
metric employed in code evaluation (Chen et al.,
2021). To accomplish this, we employ dedicated
unit test designed for regular expressions to assess
their functional correctness. These unit test, specif-
ically tailored to regular expressions, are illustrated
in Figure 2. The pseudo code in Algorithm 1 il-
lustrates the process of the reward function. If a
generated regular expression passes the current test
case tj, a positive value is added to the reward.
Otherwise, a negative value is added to the reward.

Algorithm 1: Reward Function
input :Label Regex R; &
Predicted Regex y &
Test_Cases T; = {t1, ...
output:r

st}

r <+ 0;
Initialize On p & n;
fort; € T; do
if y Fail the compilation then
4 0—mn;
continue
end
stry <= Pattern_Match(t;,y);
stry <— Pattern_Match(t;, R;);
if stri==stry then
‘ r<r4+p
else
‘ rer—mn
end

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15 end

Test Case Generation. Generating appropriate
test cases is a crucial aspect of unit test. Although
manual generation is possible, it is often unnec-
essary due to the availability of automated tools
like rstr, which can generate test cases automat-
ically based on the provided regular expression.
For thorough testing, it is essential to include both
positive test cases, denoted as {¢;" }, which match
the regular expression pattern, and negative test
cases, denoted as {t; }, which do not produce any
matches. Accordingly, we define our set of test
cases as T; = {t{,t5,....,t],t5, ...}, comprising
positive cases generated using rstr and negative
cases randomly selected from pre-generated test
case pools.
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id | regular expression

1| "[1-91\d * $

2 | M([1-91[0-91%){1.3}$
3 | M\+2[1-9][0-9]*$

Table 1: Example on regular expression A common
regular expression problem that can be found on Stack-
Overflow: match non-zero positive integer

3.3 Evaluation

DFA Equivalence. We assessed the effectiveness
of our approach in generating regular expressions
by testing it with DFA Equivalence, a method that
converts a given regular expression into a mini-
mal DFA. As noted by Karttunen (1996)(Karttunen
et al., 1996), regular expressions can be repre-
sented by finite state networks. This approach is
grounded in the fact that two equivalent regular
expressions possess identical minimal DFAs, irre-
spective of their structural dissimilarities(Hopcroft
et al., 2001).

However, DFA Equivalence falls short when
dealing with large and complex regular expressions.
While DFA Equivalence converts a regular expres-
sion into a Deterministic Finite Automaton, its pri-
mary focus is on syntactical equivalence between
the generated regular expression and the reference
solution. However, functionally equivalent reg-
ular expression may have syntactically different
forms. For example, the regular expressions in
Table 1 capture the pattern of non-zero positive
integers; nevertheless, DFA Equivalence fails to
identify these regular expressions as representing
the same input specification. This limitation is espe-
cially significant in complex real-world scenarios
where different experts might create distinct regular
expressions for the same specification.

Unit Test. In Section 3.2, we introduced the use
of unit test to capture functional correctness during
the reinforcement learning process. At the evalua-
tion stage, this technique can be employed to assess
the functional correctness of the generated regular
expression. For better clarity, we have created a
dedicated test case pool for each regular expression
problem, as depicted in Figure 2. The problem is
considered solved only if the generated regular ex-
pression passes all the test cases. Therefore we can
define the metric as the number of solved regular
expression problems out of the total numbers.

pass; = {

1
0

if pass all test cases
otherwise

3)



> I{pass; =1}
2.1

Unit Test = @

4 Experimental Setup

In this section, we evaluate our work on different
pre-trained language models to verify its effective-
ness. Additionally, we conduct test case analysis
and present case studies to provide further insights.

4.1 Model Configuration

We conducted experiments to evaluate the effective-
ness of UTD-RL on large language models: GPT-3
(Brown et al., 2020) and LLaMA (Touvron et al.,
2023). The pretrained GPT-3 models were pro-
vided by ModelsScope !, a platform developed by
the Alibaba DAMO team. The pretrained LLaMA
weights can be found on Hugging Face 2.

4.2 Reinforcement Learning Setup

We perform a hyper-parameter search to determine
the best hyper-parameters: 3 and y were set to
0.01 and 1.0, respectively. The number of test
cases was set to 10. Out of these test cases, 9 were
derived from positive cases, and 1 was derived from
a negative case.

4.3 Dataset

Our experiments are conducted on the following
datasets.

NL-RX-Pub. A merge dataset from KB13 (Kush-
man and Barzilay, 2013), NL-RX-Synth (Locas-
cio et al., 2016) and NL-RX-Turk(LLocascio et al.,
2016). The pairs are divided into three subsets: a
65% training set, a 10% development set, and a
25% testing set (testing set are divided back into
KB13, NL-RX-Synth, NL-RX-Turk accordingly).
In order to avoid data leakage problem, the division
is followed by the target regular expression.
NL-RX-ST?, In order to test the generalizability on
public regular expression problems, we manually
mount 100 regular expression problems from pub-
lic resources including but not limited to github,
wikipedia, and stackoverflow. To be noted this
dataset should only be used for testing.

"model weight can be found in https://modelscope.
cn/models/damo/nlp_gpt3_text-generation_1.3B/
summary

2model weight can be found in https://huggingface.
co/decapoda-research/1llama-7b-hf

3Dataset available on https://github.com/
Morris135212/NL-RX
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4.4 Results and Analysis

We demonstrate the effectiveness of our approach
by comparing it to the existing approaches includ-
ing Deep Regex(Locascio et al., 2016) and Soft-
Regex(Park et al., 2019). Moreover, we fine-tune
text-davinci-003 (SFT API provided by OpenAl)
on same data. We also conduct the ablation ex-
periments to compare the results obtained from
different language models with and without UTD-
RL.

Baseline Comparison. Table 2 provides a sum-
mary of our results across various methods.

1. Deep Regex & SoftRegex Both the Deep
Regex(Locascio et al., 2016) and Soft-
Regex(Park et al., 2019) have a simple model
structure based on LSTM and utilize a syntax-
based objective (MLE) for training. These
methods perform well on public datasets, but
they exhibit limited generalization ability on
unseen problems, as demonstrated by the re-
sults on NL-RX-ST. This demonstrates that
they severely over-fit on training data. Such a
shortcoming stem from the model itself being
too simplistic and the insufficient utilization of
functional correctness of the generated regular
expression. We conducted futher fine-tuning
of the training data using a more sophisticated
model with an increased number of parame-
ters. The obtained results provide substantial
support for our claim.

. text-davinci-003 It is widely acknowledged
that scaling up language models, such as
increasing training compute and model pa-
rameters, can significantly improve perfor-
mance and sample efficiency across various
downstream NLP tasks(Wei et al., 2022).Text-
davinci-003, as one of the current state-of-
the-art large language model provided by ope-
nai, shows promising performance across all
datasets. It even demonstrates some ability to
generalize to unseen problems. However, the
model treats the problem as a black box, only
leveraging the syntax similarity of regular ex-
pressions. Therefore, by better utilizing the
inherent functionality of the regular expres-
sion, we can further enhance the effectiveness
of the model. This point has been proven in
subsequent ablation studies.

. GPT-3 & llama. Both models are currently
open-source, large language models. From


https://modelscope.cn/models/damo/nlp_gpt3_text-generation_1.3B/summary
https://modelscope.cn/models/damo/nlp_gpt3_text-generation_1.3B/summary
https://modelscope.cn/models/damo/nlp_gpt3_text-generation_1.3B/summary
https://huggingface.co/decapoda-research/llama-7b-hf
https://huggingface.co/decapoda-research/llama-7b-hf
https://github.com/Morris135212/NL-RX
https://github.com/Morris135212/NL-RX

Model UTD-RL DFA-Acc Unit Test DFA-Acc Unit Test DFA-Acc Unit Test  Unit Test
KB13 NL-RX-Synth NL-RX-Turk NL-RX-ST

Deep Regex / 0.6611 0.6627 0.9180 0.9218 0.6420 0.6535 0.12
SoftRegex / 0.6621 0.6601 0.9222 0.9233 0.6623 0.6676 0.15
text-davinci-003 / 0.6899 0.7422 0.9043 0.9323 0.6753 0.7191 0.43
GPT-3 1.3B 0.6749 0.6869 0.9230 0.9314 0.6636 0.6864 0.31
GPT-3 1.3B v 0.6814 0.7234 0.9219 0.9312 0.6782 0.7119 0.37
GPT-32.7B 0.6734 0.6889 0.8959 0.9209 0.6663 0.6884 0.33
GPT-32.7B v 0.6843 0.7297 0.9307 0.9349 0.6813 0.7221 0.40
llama 7B 0.6764 0.7381 0.8998 0.9278 0.6664 0.708 0.37
Ilama 7B v 0.7534 0.7674 0.9223 0.9481 0.6995 0.7219 0.48
llama 13B 0.7442 0.7409 0.899 0.9398 0.6865 0.7235 0.41
llama 13B v 0.7582 0.7789 0.9237 0.9497 0.7097 0.7348 0.53

Table 2: The experiment results on different approaches (using DFA accuracy and unit test as metrics)

the results, we find that after basic fine-tuning
(without UTD-RL), these baselines demon-
strate the ability to approximate the perfor-
mance exhibited by text-davinci-003. How-
ever, it treats the problem as a black box, only
utilizing the syntax similarity of regular ex-
pressions, which we believe is insufficient for
functional corpora like regular expressions.
Therefore, a later ablation study will show
that considering functional correctness greatly
improves the performance not only on public
datasets but also in terms of generalization
ability.

Ablation study. We conducted comprehensive
ablation experiments to evaluate the use of UTD-
RL on GPT-1.3B, GPT-2.7B, llama-7B, and llama-
13B. Table 2 demonstrated a significant enhance-
ment in overall performance by incorporating UTD-
RL. The utilization of UTD-RL resulted in an av-
erage improvement of 2.06% in DFA-Acc for KB-
13, NL-RX-Synth, and NL-RX-Turk, and 2.27%
in Unit-Test. Furthermore, it led to an average im-
provement of 9% in generalization tests for NL-RX-
ST. The most notable experimental results were
observed with the llama-13B model when employ-
ing the UTD-RL approach. The use of UTD-RL
with the llama-13B model exhibited considerable
improvements across various datasets, surpassing
even the results achieved with the text-davinci-003
model. This demonstrate that considering the func-
tional properties inherent in regular expression can
enhance the functional capabilities of the model in
generating regular expressions. This approach also
promotes the generalization ability of the model,
enabling it to generate regular expression that meet
the functional requirements of input even for un-
seen problems.
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Figure 3: Compilation Test on GPT3 1.3B and LLaMA
7B

Another observation is presented in Figure 3.The
use of UTD-RL has resulted in the improved suc-
cess rates for regular expressions during compila-
tion. Specifically, for gpt-3 1.3B, there were av-
erage improvements of 5.06% on KB-13, NL-RX-
Synth, and NL-RX-Turk tests, and 8% improve-
ments on NL-RX-ST. For llama-7B, the average im-
provements were 3.19% on KB-13, NL-RX-Synth,
and NL-RX-Turk tests, and 9% improvements on
NL-RX-ST. Section 3.2 provides an illustration of
the reward function used in UTD-RL, which in-
corporates a form of "punishment" for generated
regular expressions that do not pass compilation.
The experimental results support the notion that
this reward system enables the model to generate
more robust regular expressions.

In conclusion, our method shows great poten-

tial for significantly enhancing the functional cor-
rectness of natural language-based approaches in



generating regular expressions, In addition, the use
of UTD-RL can effectively improve the model’s
generalization ability in other regular expression
problems.

5 Practical application

In our context, the app hosts numerous registered
merchants. In compliance with market regulatory
requirements, these registered merchants are obli-
gated to undergo internal compliance reviews be-
fore publishing new advertisement landing pages
or text content. This is done to ensure that the con-
tent does not contain any non-compliant elements.
Given the large number of merchants involved and
the complexity of the rules, the conventional ap-
proach relied heavily on manual creation of regular
expressions to identify non-compliant text scenar-
ios. For instance, one requirement for advertise-
ment landing pages was the exclusion of promo-
tional expressions. Unfortunately, this approach
often resulted in significant time and labor costs
associated with the development and testing of reg-
ular expressions. Now a new solution has been
introduced: an automated workflow that utilizes
the large language model trained with UTD-RL.
To make it more specific, This language model
is capable of generating production-ready regu-
lar expressions and automatically conducting unit
test, thereby enabling an automated workflow that
greatly facilitates the public’s use of regular expres-
sions. The process is depicted in Figure 4.

No, Concatenate the Fail Test Case into input Prompt

9 » L:;‘E::lge B <o <wegec
Uit Pass
t
Test Case? . IIPassll . o
] o™

Output

Figure 4: Pipeline for generating a valid regular ex-
pression in a practical application. Language model
generates a regular expression based on users’ requests.
Subsequently, a unit test is implemented to assess the
validity of the regular expression. If the outcome of the
unit test exceeds the threshold, the regular expression is
considered valid. Conversely, the input prompt is con-
catenated with the failed cases to regenerate the regular
expression.

6 Conclusion

In conclusion, ensuring the functional correctness
of regular expressions is crucial in practical appli-
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cations. This paper proposes the use of UTD-RL
to effectively utilize the outcomes of unit test as
rewards for the model, thereby enhancing the func-
tional correctness. Furthermore, "unit test" are em-
ployed to assess the functional correctness of the
generated regular expressions.

This paper solely focuses on evaluating the effec-
tiveness of the proposed method in the generation
of regular expressions. However, it is believed that
this approach can be extended to generate any cor-
pus that necessitates functional specifications (e.g.,
Python code generation, SQL generation, etc.). Fu-
ture research will investigate the applicability of
this method in these domains, and we encourage
interested researchers to experiment with this ap-
proach.
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Abstract

Large language models have become a vital
component in modern NLP, achieving state of
the art performance in a variety of tasks. How-
ever, they are often inefficient for real-world
deployment due to their expensive inference
costs. Knowledge distillation is a promising
technique to improve their efficiency while re-
taining most of their effectiveness. In this pa-
per, we reproduce, compare and analyze sev-
eral representative methods for task-agnostic
(general-purpose) distillation of Transformer
language models. Our target of study in-
cludes Output Distribution (OD) transfer, Hid-
den State (HS) transfer with various layer
mapping strategies, and Multi-Head Attention
(MHA) transfer based on MiniLMv2. Through
our extensive experiments, we study the effec-
tiveness of each method for various student ar-
chitectures in both monolingual (English) and
multilingual settings. Overall, we show that
MHA transfer based on MiniLMv2 is gener-
ally the best option for distillation and ex-
plain the potential reasons behind its success.
Moreover, we show that HS transfer remains
as a competitive baseline, especially under
a sophisticated layer mapping strategy, while
OD transfer consistently lags behind other ap-
proaches. Findings from this study helped us
deploy efficient yet effective student models
for latency-critical applications.

1 Introduction

Large language models have become a crucial com-
ponent in modern NLP. They have achieved excep-
tional performance on various downstream tasks
(Devlin et al., 2019; Liu et al., 2019; Lewis et al.,
2020) and their capability shows consistent im-
provement with more compute, data, and model
parameters (Kaplan et al., 2020; Brown et al., 2020;
Touvron et al., 2023). On the downside, it is becom-
ing increasingly difficult to deploy such models in
real-world environments due to their inefficiency,
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i.e. high computation, memory, latency and storage
costs (Xu and McAuley, 2023).

Knowledge distillation (Hinton et al., 2015) is a
promising technique to overcome this challenge by
transferring the knowledge of the original model
(teacher) to a smaller, more efficient model (stu-
dent). This can be conducted in either task-specific
(Turc et al., 2019; Jiao et al., 2020) or task-agnostic
manner (Sanh et al., 2019; Wang et al., 2020).
The latter only requires distilling a single general-
purpose student which can be directly finetuned on
any downstream task. Due to its high convenience,
we focus on this latter approach in this study.

In recent years, there have been various meth-
ods proposed for task-agnostic distillation of Trans-
former language models. The aim of this paper is
to reproduce, compare and analyze the most rep-
resentative methods in this area. We generally fo-
cus on the architecture-agnostic distillation which
imposes no or minimal restriction on the student
architecture!: the representative methods include
Output Distribution (OD) transfer (Hinton et al.,
2015), Hidden State (HS) transfer based on linear
mapping (Jiao et al., 2020; Mukherjee et al., 2021)
and Multi-Head Attention (MHA) transfer based
on MiniLMv2 (Wang et al., 2021).

For HS transfer, the layer mapping strategy be-
tween teacher and student layers plays a signifi-
cant role in overall performance, however, the op-
timal strategy remains unknown or controversial
(Sun et al., 2019; Wu et al., 2020; Ko et al., 2023).
Therefore, we explore a diverse range of strategies
to empirically evaluate each technique.

For MHA transfer, the MiniLMv2 approach has
been shown to achieve state-of-the-art performance,
however, there is relatively little understanding be-
hind its success. Therefore, we develop a novel
variant named DirectMiniLM which is useful for

1By architecture-agnostic, we mean that the student and
teacher can have different architectural parameters (e.g. num-
ber of layers, attention heads, hidden state size, etc).

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 20-31
December 6-10, 2023 ©2023 Association for Computational Linguistics



t

AN AN

AN N

1
( Feed-Forward Layer W
T
L Multi-Head Attention Layer J i

f Student

Teacher

(b) OD Transfer

(a) Transformer LM

Student

Teacher

(c) HS Transfer

Teacher

(d) MHA Transfer

Figure 1: A high-level illustration of (a) the Transformer architecture and (b-d) representative distillation methods.
(b-d) denote Output Distribution (OD), Hidden State (HS), and Multi-Head Attention (MHA) transfer, respectively.
Lines between the student and teacher depict which level of information is transferred in each method.

understanding the effectiveness behind MiniLMv2
both theoretically and empirically.

In contrast to most previous studies, all methods
are reproduced on a single unified codebase for fair
and consistent comparison. We also conduct distil-
lation on 4 different student architectures, reducing
the model size in various dimensions to fit various
parameter and latency budgets. Finally, all experi-
ments are conducted on both monolingual and mul-
tilingual settings, distilled from open-source BERT
(Devlin et al., 2019) and in-house XLM-RoBERTa
(Conneau et al., 2020), respectively.

Through our extensive experiments, we criti-
cally analyze the effectiveness of each distillation
method and provide practical advice for both re-
searchers and practitioners working in this area. In
summary, our key findings are:

* MHA transfer is generally the best option for
various student architectures and language set-
tings. By comparison with DirectMiniLM, we
provide novel insights underlying its success.

* While the effectiveness of HS transfer depends

on the layer mapping strategy, it remains as a

competitive baseline. More sophisticated layer

mapping strategy can provide a boost in perfor-
mance, esp. in the multilingual setting.

Methods relying on OD transfer consistently lag

behind other methods. This shows that classical

OD distillation can be less effective when dis-

tilling complex language models on a general-

purpose objective.

2 Transformer Language Models

First, we briefly review the standard architecture
of Transformer language models (Vaswani et al.,
2017; Devlin et al., 2019). A Transformer consists
of a stack of L Transformer layers, where each
layer comprises two sub-layers: a Multi-Head At-
tention (MHA) layer followed by a fully connected
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Feed-Forward (FF) layer (Figure 1, (a)).

Formally, let x denote the input sequence, d,
the hidden state size, and H; € RI#I>dn the hid-
den state of the i*" Transformer layer (Hg denotes
the input sequence embeddings). Given H;, the
MHA layer first computes the query, key, and value
mappings Q; ., K; 4, V; , for each attention head
a € [1, Ap], which are combined to obtain the at-
tention head output O 4:

(Qi,a = IIi‘AZCQJ,a (1)
Kio =HWg,, )
Vie=H;Wy,, 3)
- KTV
0, = SoftmaX(M)Vi’a ()

Vi

Here, dj, denotes the attention head size (typically
set to j—z) and Wq 0, Wk ia, Wviia € RAnxds
are the learnt weight matrices. The output of the
MHA layer is the concatenation of O; ,, namely
MHA(H;) = @2", Oi .

Next, the MHA layer output is followed by a
position-wise FF layer with an intermediate size
of dy and a non-linear activation (we use GELU
(Hendrycks and Gimpel, 2016) in all models). The
hidden state of the next Transformer layer is com-
puted as H; 11 = FF(MHA (H;)).?

Finally, to predict the output distribution over the
entire vocabulary V, a linear layer W € R >V
is applied on top of the last hidden state to compute
the logits z = H, W € RI#I*IVI. The output dis-
tribution can be obtained by applying the softmax
function over z, denoted as softmax(z).

Throughout this paper, we assume that both the
student and teacher are Transformer language mod-
els with L° and L layers, respectively.

*Both MHA and FF sub-layers have a residual connection
(He et al., 2016) and are followed by layer normalization (Ba
et al., 2016), which are omitted for brevity.



3 Distillation Methods

Next, we introduce the representative task-agnostic
distillation methods illustrated in Figure 1, (b-d).
For Multi-Head Attention (MHA) transfer, we con-
sider two approaches: MiniLMv2 and its novel
variant DirectMiniLM. For a survey of advanced
methods and topics we could not cover in this study,
please refer to Appendix A.

Output Distribution (OD) Transfer The output
distribution of the teacher contains useful infor-
mation on the relative probabilities of plausible
(even if incorrect) predictions (Hinton et al., 2015).
In OD transfer, the student is trained to replicate
the teacher’s output distribution. This is achieved
by optimizing the following loss function, where
z°, 2" denote the student/teacher logits, CE(.) the
cross entropy loss and 7 the output temperature:

Lop=T?-CE (softmaX(ZT) softmax(zs)>
T T

)

Hidden State (HS) Transfer Transformer lan-
guage models progressively learn useful and gen-
eralizable features layer by layer. In HS transfer,
the student is trained to predict such useful features
represented in the teacher’s hidden states.
Formally, each student layer is mapped to a set
of teacher layers to be predicted. Let ¢ (i) denote
the set mapped from the i'"" student layer, where
0 C ¢(i) C [1,LT]. Foreach j € ¢(i), the hid-
den state of the i*" student layer HY < Rllxd;
is linearly transformed to predict the hidden state
of the j'" teacher layer H] € Rlzl*di 3 This is
represented by the following loss function, where
Wf € R% ¥4 denotes the linear transformation
weight and MSE(.) the mean squared error loss:

L = i > MsE(HSW/,HY)

i=1 jeg(i)

(6)

One open problem in this approach is the choice
of layer mapping strategy ¢. We conduct extensive
experiments to compare a diverse range of strate-
gies, which will be discussed in §4.

MiniLMv2 The MHA layer is a key component
in Transformer language models which controls the
long-range dependencies and interactions within
input texts. MiniLMv2 (Wang et al., 2021) is an

3Note that d5; and d¥ are the student and teacher hidden
state sizes which can take different values.
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effective method to deeply transfer this module
while allowing different number of attention heads
Ag and A7 for the student and teacher. Their main
idea is to distil the attention relation matrices (Q-Q,
K-K and V-V) obtained by first concatenating the
query (Q), key (K), and value (V) mappings from
all attention heads and re-splitting them into the
same number of attention relation heads A,.
Formally, let AQ i ar AKZ w Avl 0 € Rlelxd?
denote the concatenated and re- split queries, keys,
and values for the i*" student layer, where a €

ds . A
[1,A,] and dF = 4~ For instance, B, "4 Qfa =
@ P AQ i q» 1-€. original queries from Aﬁ atten-
tion heads are simply concatenated and then re-

split into A, matrices. We use the same notation
‘th T T T
for the j** teacher layer, Aj, ; ., Ak ;4 Ay, €

T
R‘“Xdr where dT -k Then, the loss function
of MiniLMv?2 can be deﬁned as follows:

Lapa = Y. ZCE( ToRL) O

OéE{Q,K,V} a=1

AT ATT
T a?]7a a7]7a
R .= softmax(7> ®)
T
S AST
RS, ia softmax( b aﬂ’“) )
Vd?
Here, Raja,ng e RIZIXIzl denote the atten-
tion relation matrices which are computed based
on the matrix products of Aa i Ag iaineq. (8),

(9), respectively. Intuitively, this aims to transfer
the teacher’s queries (Q), keys (K) and values (V)
in a somewhat indirect way through their matrix
products (Q-Q, K-K and V-V).

However, there is minimal justification for why
this method works effectively. It is also difficult
to directly compare the method against HS trans-
fer since the losses are computed differently. To
better understand MiniLMv2, we propose its novel
variant named DirectMiniLM for our analysis.

DirectMiniLM In DirectMiniLM, we aim to
transfer the teacher’s Q/K/V mappings more di-
rectly through the linear transformation of the stu-
dent’s ones, just as we did in HS transfer. Specifi-
cally, we use the following loss function with the

linear transformation W, , € R xdr
Ar
LDirect — Z Z MSE (Ag ia Wa,as Agj a)
ac a=
{Q?K?V}
(10)



DirectMiniLLM is important in two aspects. First,
this approach is directly comparable to HS trans-
fer based on eq. (6) with the only difference in
which information you transfer: the hidden states
H! — Hf or the Q/K/V mappings Aiw —
Ag, j o From this comparison, we can quantify the
precise advantage of transferring each knowledge
in an apples-to-apples manner.

Second, DirectMiniLM is also closely relevant to
MiniLMv2: if we constrain W, , to be orthogonal
(i.e. Wa,aWaT o = I) and take the matrix product
for each term within the MSE loss in eq. (10), we
obtain the following loss function:

Z Z MSE (Ag,i,aAg,—z!—,aa

ATT

oa,i,a)

(1D
This loss closely resembles MiniLMv2 from eq. (7)
with a minor difference of using MSE loss instead
of CE loss with softmax. Therefore, DirectMiniLM
with certain constraints naturally corresponds to
MiniLMv2. The major difference is in whether
Agl o 1s transferred directly (with linear mappings)
or indirectly (with relation matrices): by comparing
these two approaches, we can precisely quantify

the advantage of each optimization technique.

AT

a7j7a

4 Experimental Setup

We explore the task-agnostic knowledge distillation
methods under two settings:*

1. Monolingual Distillation: We train English
students using the open-source BERT (Devlin
et al., 2019) as the teacher. These models are
distilled on the same corpus used for pretrain-
ing BERT, i.e., English Wikipedia (Devlin et al.,
2019) and BookCorpus (Zhu et al., 2015).
Multilingual Distillation: We train multilingual
students using our in-house XLM-RoBERTa
(Conneau et al., 2020) as the teacher, and distill
on the CC100 dataset (Conneau et al., 2020),
which consists of data in more than 100 lan-
guages. We only use a small subset of the cor-
pus to conduct our experiments within a reason-
able computation budget while maintaining the
language-wise distribution.

In both settings, we use the Base (12 layer) archi-
tecture for the teacher, as shown in Table 1. For

“Note that we limit our study to encoder-only models and
leave the distillation of decoder-only (Radford et al., 2019) or
encoder-decoder (Lewis et al., 2020) models as future work.
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more details on each distillation setup (e.g. hyper-
parameters), please refer to Appendix B.

Student Models To conduct a strong comparison
of the representative knowledge distillation meth-
ods, we train 4 students of varying architectures
and latency/parameter budgets. A summary of the
student architectures, with their parameters and
latency of inference, are shown in Table 1.

Our largest student is a 6 layer model that fol-
lows the same architecture as DistilBERT (Sanh
et al., 2019). We also use the 6 layer model used
in Mukherjee et al. (2021), which has a smaller
hidden size than the teacher. Our smaller 4 and 3
layer students were obtained as recommendations
from a Neural Architecture Search process (Trivedi
et al., 2023) to find good student architectures for
distillation from the XLM-RoBERTa teacher, con-
ditioned to minimize the latency on CPU. Please
refer to Appendix C for more details.

Layer Mapping Strategies The layer mapping
strategy ¢ is a parameter that needs to be consid-
ered for both HS and MHA transfer. For HS trans-
fer, we explore the following three settings:

1. Single Mapping: We only distil the last (LTth)
teacher layer into the last student layer, which
has been shown to be a simple yet competitive
baseline (Ko et al., 2023).

. 1-to-1 Mapping: Prior work shows that map-
ping not only the last layer but also the inter-
mediate layers improves distillation (Sun et al.,
2019). In 1-to-1 mapping, we distil one teacher
layer into each student layer by choosing:

* Last L® teacher layers, i.e. ¢(i) = {LT —
L% + 4} (i € [1,L°]). Empirically, last
teacher layers capture more high-level (e.g.
semantic) knowledge in their representations
(Tenney et al., 2019; Jawahar et al., 2019).
A Uniform selection of teacher layers which
chooses every k' teacher layer, i.e. ¢(i) =
{ki}, where k = [L™/L57.> This method
can also transfer the lower teacher layers,
which empirically captures local (e.g. syn-
tactic) knowledge (Tenney et al., 2019).

. 1-to-N Mapping: Some works even show that
mapping each student layer to multiple teacher
layers can avoid the loss of information and fa-
cilitate student learning (Wu et al., 2020; Pass-
ban et al., 2021). For 1-to-N Mapping, we ex-

>This strategy is used in DistilBERT (Sanh et al., 2019)
and also known as the "skip" strategy (Sun et al., 2019).



. Monolingual Multilingual Monolingual Latency Multilingual Latency
Model Architecture " rams Params GPU CPU GPU CPU
6L-DistilBERT 6, 12,768, 3072 66 234 5.98 (0.03) 33.28 (0.09) 6.01(0.06) 34.02(0.06)
6L 6, 12,384, 1536 23 106 5.69(0.02) 11.98(0.07) 5.99(0.07) 12.52(0.06)
4L 4,12,576, 768 27 153 3.66(0.01)  9.53(0.04) 3.98(0.02) 9.66 (0.05)
3L 3,12, 384, 1024 16 100 3.02(0.01) 5.41(0.08) 3.25(0.01) 6.01 (0.06)
Teacher 12, 12,768, 3072 110 277 8.69 (0.08) 64.91(0.61) 9.47(0.01) 66.31(0.57)

Table 1: Model Architectures displayed as [L, A, dp,, dg]. All parameters are in millions, with the difference
in the monolingual and multilingual parameters due to the vocabulary sizes (30K for monolingual and 252K for
multilingual). All latencies are in milliseconds, measured over 5 runs, with standard deviation in parenthesis.

Distillation Method Layer Mapping Strategies

Single: L™

1-to-1: Last, Uniform

1-to-N: Uniform-Cons., Uniform+Last
Single: LT, (LT —1)th, (LT —2)th

HS Transfer

MHA Transfer

Table 2: Layer mapping strategies explored in each
distillation method. The same strategies are explored
for MiniLMv2 and DirectMiniLM in MHA Transfer.

plore the following choices of teacher layers:

* A uniform selection of k consecutive layers
(Uniform-Cons.), i.e. ¢(i) = [k(i — 1), ki,
where k = [L”/L°]. This avoids the loss
of information since all teacher layers are
mapped to at least one student layer.
Combining the Uniform and Last strategies
from the 1-to-1 mapping (Uniform+Last).
This selects 2 teacher layers per student layer
based on each 1-to-1 strategy, expecting to
take the best out of both approaches.

For MHA transfer, we always take the single
mapping strategy and distill a single teacher layer
into the last student layer, following Wang et al.
(2021). Specifically, we experiment with the last
three teacher layers as a choice for distillation for
both MiniLMv2 and DirectMiniLM. Table 2 sum-
marizes our layer selection options.

While OD transfer can be conducted from
scratch, we found this converges slowly and does
not perform competitively.® Therefore, we take the
style of multi-stage distillation (Mukherjee et al.,
2021) and conduct OD transfer after HS transfer,
using the distilled checkpoint from HS transfer.
This approach converges much faster with better
final performance, hence we take this approach as
the representative OD transfer method.

®Qur 6L monolingual student takes 49 hours on 30 V100
GPUs to reach acceptable performance, while the same model
achieves better scores in only 10.5 hours when initialized from
the HS transferred checkpoint.
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5 [Evaluation and Results

For both our monolingual and multilingual models,
we measure performance on the English GLUE
Benchmark (Wang et al., 2019) and report the av-
erage score of all tasks (without CoLA”). For mul-
tilingual models, we provide evaluations on the
XNLI dataset (Conneau et al., 2018), a set of in-
ference tasks which evaluates the model’s perfor-
mance on 15 languages after being finetuned on
only English training data. We report the average
score of all languages for XNLI.

Table 3 summarizes the performance of each
distillation method on 4 student architectures. For
detailed evaluations of each method based on the
best configuration, please refer to Appendix D.
We also provide a comparison against DistilBERT
(Sanh et al., 2019), a representative architecture-
constrained method, in Appendix E.

HS Transfer From Table 3, we can verify that
the performance of HS transfer varies with different
layer mapping strategies, and no strategy dominates
the others in all settings. In the monolingual setting,
we found that the single mapping strategy performs
competitively, which is in line with the findings of
Ko et al. (2023). However, in the multilingual set-
ting, more sophisticated 1-to-N strategies generally
show superiority over the simpler baselines. This
indicates that more supervision from the teacher
can be helpful (and at worst harmless), hence we
advocate for the adoption 1-to-N strategies, esp. in
the challenging multilingual distillation.

OD Transfer As mentioned in §4, we initialize
the model from the HS transferred checkpoints with
each layer mapping strategy. Interestingly, we see a
slight degradation in performance on downstream
tasks compared to only HS transfer, with a signifi-

"Distilled models often perform poorly on CoLA: We hy-
pothesize this is because CoL A is the only syntactic task in
the benchmark as opposed to the other semantic tasks (Xu
et al., 2022). We include the results of CoLA in Appendix D.



e e Layer Avg. GLUE (Monolingual) Avg. GLUE (Multilingual) Avg. XNLI (Multilingual)

Distillation Mapping 6L 6L 6L
Method Strategy | DisiBERT  °F 4 3 | piaserr % 3L | pigaperr O 4 3L
LTth 84.1 79.4 80.2 789 80.8 77.1 78.0 74.7 56.2 55.1 51.6 50.6
Last 83.2 80.4 793 77.7 81.7 77.0 783 72.6 63.1 61.0 603 544
HS Transfer Uniform 82.9 80.6 79.6 76.6 81.6 78.2 783 73.5 59.9 59.9 59.7 599
Uniform-Cons. 83.9 80.6 80.6 77.7 824 78.8 78.0 759 65.5 622 604 58.6
Uniform+Last 84.1 804 804 777 83.1 787 79.2 75.0 67.0 62.7 62.5 579
LTth 84.1 78.1 794 76.6 78.5 75.1 752 679 50.5 482 51.6 438
OD Transfer Last 83.1 80.4 793 764 80.7 769 76.1 69.8 62.6 57.0 54.1 427
(init. from Uniform 83.4 79.8 79.8 77.1 79.9 780 779 654 60.4 54.1 52.0 428
HS Transfer) | Uniform-Cons. 83.7 80.3 79.5 76.7 81.7 78.7 764 70.1 63.1 61.0 565 482
Uniform+Last 84.1 80.5 799 71.1 82.1 784 764 723 66.0 60.9 60.0 48.6
P 84.2 81.9 799 776 82.3 80.1 793 744 67.0 66.7 63.1 59.3
MiniLMv2 (LT —1)th 84.2 82.5 80.0 782 83.1 81.0 802 75.8 69.1 67.5 65.6 62.0
(LT —2)th 84.4 82.2 80.7 783 82.9 80.5 783 734 67.5 66.9 635 61.5
LTth 84.0 81.3 79.7 782 83.2 80.8 79.0 75.1 66.3 66.1 64.7 60.7
DirectMiniLM (LTf 1)“‘ 844 81.7 79.6 178.0 81.9 81.1 80.3 7338 66.9 659 648 61.0
(LT72)”‘ 84.3 81.7 804 783 834 80.9 79.7 75.6 66.3 64.8 654 60.5

Teacher ‘ 85.5 ‘ 84.8 ‘ 70.9

Table 3: Performance of the representative distillation methods evaluated on avg. GLUE and XNLI. Results based
on the best layer mapping strategy for each method is underlined, and the best overall result is shown in bold.

cant loss observed for smaller students. This indi-
cates that learning effective representations from
the output distribution signals is difficult, especially
for students with lower capacity. Moreover, given
how computationally expensive OD transfer can
be, HS transfer is a cheaper and more effective
alternative for knowledge transfer.

MHA Transfer For both MiniLMv2 and Direct-

MinilLM, we found distilling the upper-middle

teacher layer, i.e. (L7 —1)" or (LT —2)'" strategy,

led to the best performance, in line with the orig-
inal findings of Wang et al. (2021). Importantly,
we found that both MHA transfer methods gener-
ally outperform HS transfer, which points to the
benefit of transferring the Q/K/V knowledge over
the hidden state knowledge. This is consistent with

the latest comparative study by Wang et al. (2023),

although they only evaluate on the 6L-DistilBERT

architecture in the monolingual setting.

We also note that MiniLMv2 and DirectMiniLM
perform equivalently, with the notable exception
on XNLI. We attribute this to two factors:

1. MiniLMv?2 transfers relational representations
conditioned on the whole input, while Direct-
MiniLM transfers absolute position-wise rep-
resentations. The former may be more seman-
tically informative, as the contextual represen-
tations often exhibit rich relational structures
(Park et al., 2021; Liu et al., 2022a).

2. DirectMiniLLM requires learning the linear trans-
formation weight W, ,, while MiniLMv2 does
not incur any additional parameters.
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From these observations, we generally expect
MiniLMv?2 to be the best distillation method and
have adopted it in our latency-critical applications.®
However, DirectMiniLM performs comparably and
provides meaningful insights on the benefit of each
optimization technique, which can be useful for
debugging and analyzing MiniLMv2. Therefore,
we recommend its comparison for both reseachers
and practitioners in future studies.

6 Conclusion

This study critically analyzes the representative
methods for task-agnostic distillation of language
models. Specifically, we compare Output Distri-
bution (OD), Hidden State (HS), and Multi-Head
Attention (MHA) transfer for different student ar-
chitectures, language settings, and layer mapping
strategies. Through our extensive experiments, we
show that MHA transfer based on MiniLMv?2 is the
best option across many settings, followed by HS
transfer with sophisticated 1-to-N mapping strate-
gies. Meanwhile, we did not find OD transfer to
be an effective alternative. Finally, we propose Di-
rectMiniLM to demistify the precise advantage of
the indirect (i.e. relation matrix based) optimiza-
tion technique proposed in MiniLMv2. Overall,
we hope this study will be a useful guide for both
researchers and practitioners working in this area.

8Specifically, the 4L monolingual and multilingual stu-
dents with 7x speedup on CPU have been deployed for various
NLP applications, such as entity extraction, document classifi-
cation and relation detection, while maintaining 93% of the
teacher’s performance on average (Trivedi et al., 2023).
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A Related Work

MobileBERT (Sun et al., 2020) is an effective tech-
nique to compress BERT into a specially designed
student with a bottleneck architecture. In BERT-
of-Theseus (Xu et al., 2020), the modules of the
teacher are progressively replaced with smaller
ones to improve efficiency. However, these ap-
proaches constrain the architecture of the students.
In contrast, we focus on the architecture-agnostic
distillation methods for better flexibility.

Improvements on distillation objectives are also
made, e.g. transferring the relational, structural
or holistic representations of the language models
may provide more useful signals for students (Park
et al., 2021; Liu et al., 2022a; Tan et al., 2023).
When the transfer set is limited, various methods
of data augmentation (Liang et al., 2021; Zhang
et al., 2022; Liu et al., 2022b) can be applied suc-
cessfully. To alleviate the capacity gap between
the teacher and student, previous works proposed
scheduled annealing in OD transfer (Jafari et al.,
2021), multi-stage distillation with intermediate-
sized teacher assistants (Mirzadeh et al., 2020; Son
et al., 2021), and meta-learning to optimize the
teacher for student distillation (Zhou et al., 2022;
Ma et al., 2022). We leave the exploration of such
advanced techniques as future work.

Layer mapping strategies for HS transfer have
also been studied extensively. Jiao et al. (2021)
proposed an evolutionary search process to obtain
the optimal layer mapping for specific downstream
tasks. Li et al. (2020) applied Earth Mover’s Dis-
tance to prioritize mappings with smaller cost (i.e.
distillation loss). The attention mechanism can also
be applied to map student layers to similar teacher
layers, where the similarity is computed based on
the cosine similarity (Passban et al., 2021) or the
predictions of internal classifiers (Wu et al., 2021).
Finally, random mapping has been shown to work
surprisingly well, potentially working as a regu-
larizer to prevent overfitting (Haidar et al., 2022).
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In this study, we focus instead on the carefully de-
signed and easily applicable heuristic strategies.

Finally, there are different approaches to reduc-
ing the inference costs of large language models,
such as quantization (Zafrir et al., 2019; Shen et al.,
2020; Kim et al., 2021; Bai et al., 2021), pruning
(Fan et al., 2020; Lagunas et al., 2021; Xia et al.,
2022), early exit mechanisms (Liu et al., 2020; Xin
et al., 2021; Liao et al., 2021; Wang et al., 2022),
and matrix decomposition (Ben Noach and Gold-
berg, 2020; Mao et al., 2020; Chen et al., 2021;
Tahaei et al., 2022). Many of these approaches are
complementary to our distillation methods and can
be combined for further efficiency.

B Distillation Setup

We train our monolingual students on the entire
Wikipedia and BookCorpus using the AdamW Op-
timizer (Loshchilov and Hutter, 2019) with 5; =
0.9, 82 = 0.98. For HS and MHA transfer, stu-
dents are trained for 7 epoch with a peak learning
rate (LR) of 5¢ — 4. For OD transfer, we train for
3 epochs with a peak LR of 3e — 4 after HS trans-
fer. We use a linear LR warmup over the first 5%
of the training steps and then a linear decay. We
use a batch size of 32 with the maximum sequence
length set to 256 and train on 30 V100 GPUs.

For multilingual distillation, we use a small sub-
set of CC-100 containing 7M sentences, which we
found to be sufficient for developing competitive
students. We generally use the same setup as mono-
lingual distillation, except we use the peak LR of
8e — 4 for MHA transfer. Multilingual students are
trained on 2 A100-80GB GPUs.

Finally, the method-specific hyperparameters
(§3) are as follows. For OD transfer, we set the
output temperature 7 to the default value of 1. For
MiniLMv2, we use A, > A to transfer more
fine-grained knowledge in the Q/K/V mappings:
specifically, we set A, = 48, which is also used in
Wang et al. (2021). For DirectMiniLM, we found
using A, = Ay, without the orthogonal constraints
on W, , led to the best performance and used this
setting throughout our experiments.

C Finding Smaller Student Models

Our smallest students, a 4 layer and a 3 layer model,
were obtained as recommendations from a Neural
Architecture Search process to find good student
architectures for task-agnostic distillation from an
XLM-RoBERTa teacher, conditioned to minimize
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the latency of inference on a CPU. Specifically, we
follow the KD-NAS method of Trivedi et al. (2023)
and modify the reward to reduce the distillation
loss Lygs defined in Eq. (6), along with the CPU
latency of the student (lat(.S)) normalized by the
teacher’s latency (lat(T)):

lat(S) \ %
0.6 x lat(T)

(12)
Please refer to their original paper for more details.

reward(S) = (1 — Lys) * (

D Evaluation Results for Best Models

We include detailed results of each distillation
method for the best configuration (i.e. layer map-
ping strategy). Specifically, we show the results of
each GLUE task for monolingual and multilingual
distillation in Table 5 and 6. We show language-
wise performance on XNLI in Table 7. All down-
stream tasks are evaluated on 3 random seeds.

For the sake of efficient evaluation, we did not
conduct expensive grid search for finetuning hyper-
parameters. After some manual tuning, we used
the same LR of 2e — 5 and batch size of 32 for fine-
tuning all models on all tasks. We used 3 epochs of
finetuning for GLUE tasks (except CoLA, where
we used 6 and 10 epochs for monolingual and mul-
tilingual models) and 5 epochs for XNLI.

E Architecture Constrained Distillation:
DistilBERT

DistilBERT (Sanh et al., 2019) is one of the earli-
est and most widely used baseline. This method
comprises (1) layer initialization from the teacher
layers, (2) HS transfer based on cosine similarity
loss, and (3) OD transfer. The first two techniques
restrict the architecture of each student layer to be
identical to the teacher model, which limits our
analysis to the 6L-DistilBERT student architecture.

6L-DsitilBERT  Teacher

Avg. GLUE (Monolingual) 82.9 (0.5) 85.5(0.6)
Avg. GLUE (Multilingual) 79.7 (0.5) 84.8 (0.3)
Avg. XNLI (Multilingual) 61.8 (0.5) 70.9 (0.8)

Table 4: DistilBERT Performance. Average GLUE
scores reported for all tasks w/o CoLA. Average XNLI
scores reported for all languages. Average taken over 3
random seeds with standard deviation in parenthesis.

As shown in the results of Table 4, the perfor-
mance of DistilBERT is generally not competitive
with our distillation methods from Table 3, espe-
cially in the multilingual setting.



Model Distillation Best GLUE Performance Ave. Avg.
Method Strategy MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE (-CoLA)
HS Transfer | Uniform+Last | 82.6 862 887 90.8 459 85.9 89.7 651 | 79.4(0.5) 84.1(0.4)
6L-DistIBERT OD Transfer | Uniform+Last | 827 86.5 883 91.3 50.8 85.5 89.7 644 ]79.9(03) 84.1(0.2)
MiniLMv2 (LT —2)th 83.0 866 90.1 91.6  53.1 86.7 89.0 642 | 80.5(0.4) 84.4(0.3)
DirectMiniLM (LT —1)th 829 8.6 900 914 527 86.4 89.0 649 | 80.5(0.5) 84.4(0.4)
HS Transfer | Uniform-Cons. | 783 850 859 909 312 83.2 844 563 | 74.4(0.4) 80.6(0.3)
6L OD Transfer | Uniform+Last | 79.1  84.6  86.3 89.7 38.6 82.3 83.7 579 | 75.3(0.6) 80.5(0.3)
MiniLMv2 (LT —1)th 80.8 849 8.0 903 36.2 84.5 862 625 | 76.7(0.1) 82.5(0.1)
DirectMiniLM (LT —1)th 80.0 8.1 872 909 36.1 83.3 859  59.7 176.0(0.2) 81.7(0.2)
HS Transfer | Uniform-Cons. | 77.3 849 857 900 269 83.4 83.0  60.1 | 73.9(0.4) 80.6(0.3)
AL OD Transfer | Uniform+Last | 782  84.6  85.1 90.1 322 83.3 832 551 | 74.0(02) 79.9(0.4)
MiniLMv2 (LT —2)th 788 838 8.0 908 30.9 83.0 843 582 | 74.5(0.2) 80.7(0.3)
DirectMiniLM (LT —2)th 79.0 842 857 900 297 82.5 849  56.6 | 74.1(0.4) 80.4(0.4)
HS Transfer r 743 828 840 894 200 80.8 834 575 | 71.5(0.1) 78.9(0.3)
AL OD Transfer | Uniform+Last | 73.8 819 834  86.6 15.1 78.8 827 528 | 69.4(03) 77.1(0.4)
MiniLMv2 (LT —2)th 75.1 819 848 87.3 133 81.6 82.0 551 | 70.1(0.4) 78.3(0.2)
DirectMiniLM (LT —2)th 757 822 84.0 885 16.8 81.0 833 535 ]70.6(02) 783(0.3)
Teacher ‘ 844 8.0 915 92.9 574 88.0 89.0 648 ‘ 82.0(0.6) 85.5(0.6)

Table 5: Monolingual Student GLUE Performance for all tasks. Each row shows performance based on the best
layer mapping strategy. Each score reported as an average over 3 random seeds (standard deviation in parenthesis).

Model Distillation Best GLUE Performance Av Avg.
Method Strategy MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE & (-CoLA)

HS Transfer | Uniform+Last | 80.8 868 879 902 323 847 885 626 | 767(0.6) 83.1(0.3)
6L.Disq/BERT | O Transfer | Uniform+Last | 80.1 ~ 864 862 898 331 841 875  60.5 | 76.0(1.0) 82.1(0.5)
MiniLMv2 (LT —1)th 813 858 888 896 402 859 893  61.0 | 77.7(0.5) 83.1(0.3)
DirectMiniLM | (LT —2)th 81.0 864 892 898 378 859  90.1 61.7 | 77.7(0.7) 83.4(0.6)

HS Transfer | Uniform-Cons. | 75.0 828 830 867 169 808 846 585 | 71.1(0.6) 78.8(0.4)

oL OD Transfer | Uniform-Cons. | 76.2 837 836 875 169  78.1 850 559 | 71.1(0.6) 78.7(0.5)
MiniLMv2 (LT —1)th 783 837 869 891 292 836 851  60.3 | 74.5(0.5 81.0(0.4)
DirectMiniLM | (L7 -1)™" 783 843 861 894 255 845 86.9  58.0 | 74.1(0.6) 81.1(0.5)

HS Transfer | Uniform+Last | 75.6 837 838 878 183 812 833 59.0 | 71.6(0.7) 79.2(0.5)

AL OD Transfer Uniform 734 838 812 852 170 800 828  58.6 | 70.3(0.7) 77.9(0.7)
MiniLMv2 (LT —1)th 76.8 834 852 876 17.1 839 86.0  58.1 | 72.3(0.7) 80.2(0.5)
DirectMiniLM | (LT 1) 770 836 852 885 192 835 852  59.1 | 72.7(0.6) 80.3 (0.4)

HS Transfer Uniform-Cons. 71.0 80.7 82.1 84.6 11.0 75.8 82.2 549 | 67.8(0.4) 75.9 (0.4)

aL OD Transfer | Uniform+Last | 68.1 794 797 819 26 61.5 812 54.6 | 63.6(0.5) 72.3(0.6)
MiniLMv2 (LT —1)th 727 806 832 846 97 706 817 574 | 67.6(0.6) 75.8(0.5)
DirectMiniLM | (LT —2)™" 722 812 834 848 159 679 820 580 | 68.2(1.1) 756(l.1)

Teacher [ 841 879 902 919 517 866 914 614 [80.6(0.3) 84.8(0.3)

Table 6: Multilingual Student GLUE Performance for all tasks. Each row shows performance based on the best
layer mapping strategy. Each score reported as an average over 3 random seeds (standard deviation in parenthesis).

Model Distillation Best XNLI Performance Av

Method Strategy ar bg de el en es fr hi ru W th tr ur vi zh &
HS Transfer | Uniform+Last | 64.7 69.7 69.6 692 80.7 720 702 646 67.7 512 653 625 589 704 68.6 | 67.0(0.4)
6L-DistilBERT OD Transfer | Uniform+Last | 63.7 69.1 694 67.0 78.6 70.7 689 600 69.0 512 654 619 579 685 68.8 | 66.0(0.6)
MiniLMv2 (LT —1)t™ 655 716 721 715 814 750 735 653 706 581 651 67.1 609 69.7 693 | 69.1(0.5)
DirectMiniLM (LT —1)t 638 694 693 685 792 732 712 64.1 672 551 639 656 59.7 66.6 67.0 | 66.9(0.4)
HS Transfer | Uniform+Last | 59.7 67.2 634 656 759 687 66.8 583 624 489 627 59.1 534 632 65.1|62.7(04)
6L OD Transfer | Uniform+Last | 55.7 62.6 63.7 592 765 669 63.7 541 620 457 579 563 51.0 628 622 |61.0(0.5)
MiniLMv2 (LT —1)t 65.0 69.7 704 68.8 803 73.1 715 629 693 538 650 657 59.6 69.2 68.0 | 67.5(0.5)
DirectMiniLM Lt 632 68.8 70.1 68.1 784 70.5 700 622 666 524 646 640 59.1 662 669 | 66.1(0.5)
HS Transfer | Uniform+Last | 56.9 64.5 662 663 773 682 639 579 639 492 61.8 592 540 642 642 |62.5(0.5)
AL OD Transfer | Uniform+Last | 55.7 62.6 63.7 592 765 669 63.7 541 620 457 579 563 51.0 628 62.2 | 60.0(0.5)
MiniLMv2 (LT —1)t™ 629 675 678 682 778 70.7 682 624 670 51.0 63.6 647 577 672 67.4 | 65.6(0.8)
DirectMiniLM (LT —2)t 632 683 679 67.6 783 69.7 69.6 63.1 649 49.0 642 624 586 672 663 |654(0.7)
HS Transfer Uniform 583 634 605 60.6 741 656 61.6 56.6 614 467 573 559 518 61.1 63.1|59.9(0.5)
3L OD Transfer | Uniform+Last | 45.6 523 48.7 47.8 69.9 550 494 429 473 409 463 444 41.6 49.7 47.8 | 48.6(0.5)
MiniLMv2 (LT —1)t 60.0 649 63.6 643 741 667 642 582 618 494 59.7 60.7 553 642 624 | 62.0(0.8)
DirectMiniLM (LT 1)t 574 63.0 641 633 743 66.1 651 572 621 46.7 567 58.1 552 63.6 61.8|61.0(04)
Teacher ‘ 69.1 732 741 722 834 751 731 69 713 573 69.7 677 64.1 708 733 ‘ 70.9 (0.8)

Table 7: Multilingual Student XNLI Performance for 15 languages. Each row shows performance based on
the best layer mapping strategy. Each score reported as an average over 3 random seeds (standard deviation in
parenthesis).
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Abstract

Understanding debtor personas is crucial for
collectors to empathize with debtors and de-
velop more effective collection strategies. Thus,
we take the first step towards comprehensively
investigating the significance of debtor per-
sonas and present a successful commercial
practice on automatic debt collection agents.
Specifically, we organize the debtor personas
into a taxonomy and construct a persona-aware
conversation dataset. Building upon it, we im-
plement a simple yet effective persona-aware
agent called PAD. After two-month online test-
ing, PAD increases the recovery rate by 3.31%
and collects an additional ~100K RMB. Our
commercial practice brings inspiration to the
debt collection industry by providing an effec-
tive automatic solution.

1 Introduction

Collecting overdue debts is challenging as it re-
quires debt collectors to strategically handle var-
ious excuses from debtors during outbound calls
(Yin, 2018; Shoghi, 2019). This is particularly dif-
ficult for novice collectors who lack experience in
strategy planning (Greiner et al., 2015). As a result,
they often fail to collect debts within a few calls,
leading to substantial financial losses. To assist
novices, financial companies have invested signifi-
cant efforts in developing automatic debt collection
agents (Yan et al., 2017; Wang et al., 2020; Qian
et al., 2022). These agents typically plan strate-
gies based on debtors’ intentions (Yan et al., 2017),
conversation history (Wang et al., 2020), and repay-
ment targets (Qian et al., 2022), advising novices
by selecting relevant utterance templates.
Unfortunately, the existing agents fail to tailor
their strategies to debtor personas, which comprise
various elements of identity! (Song et al., 2021),
leading to ineffective collection. Taking Fig.1 as

' Corresponding author.
!Such as repayment ability and willingness.
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Conversation History
Collector [Ask about job status]|: Can you
tell me about your current employment status?

Debtor Personas

Debtor: 1 am between jobs for two months, | L. He is unemployed.
and I'm struggling to make ends meet with the
little money I have.

Collector [Ask about repayment plan]: How
do you plan to pay off your debts?

Debtor: Iwill domy bestto raise money in
the next two days.

2. He has financial difficulties.

3. He has ipositive repayment

i
Response 1 (X) ]
Collector [Inform credit damage]: Repay it off today. Otherwise, it damages_l
your credit, making it challenging to secure loans in the future. '
Debtor: No. I can not raise enough money today.

Response 2 (¢)
Collector [Negotiate Installment]: You could make:
and decide on the rest later. '

Debtor: Alright, I'll make a small payment today.

Figure 1: A conversation history with two responses.
Response 2 is better than Response 1 by considering the
debtor personas driven from the conversation history.
The collection strategies are marked in red.

an example”, when dealing with a debtor facing
financial difficulties but having a positive attitude
towards repayment, advising him to repay in in-
stallments is more persuasive than warning him
about damaging his credit score. This shows the
significance of debtor personas, which can aid col-
lectors in empathizing with debtors’ characteristics
and behaviors to develop more effective collection
strategies. A natural idea arises: introducing debtor
personas into automatic debt collection agents.

In this paper, we take the first step in comprehen-
sively investigating the significance of debtor per-
sonas in automatic debt collection agents. Specifi-
cally, based on the outbound calls®, we systemat-
ically organize debtors’ identities into a persona
taxonomy by considering the relationship between
debtor personas and strategies. Furthermore, we in-
troduce a successful commercial practice: a simple
yet effective Persona-Aware Debt collection agent

*We translate Chinese conversations into English for better
understanding.

3In this work, we transcribe outbound calls into conversa-
tions using an Automatic Speech Recognition (ASR) system.

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 32—45
December 6-10, 2023 ©2023 Association for Computational Linguistics



Table 1: Examples of the four categories in our persona taxonomy. The keywords are marked in red.

Category Examples Persona
FH I am between jobs for two months. He is unemployed
FS My wife works out of town and only comes back once a year. He is married
CDh Do not rush! I will settle my debts at the right time. Maybe a month later. He has a non-cooperative attitude
DS I have no extra money right now and still owe money for another platform He has multiple debts

(PAD). It is capable of dynamically summarizing
debtor personas reflected in ongoing conversations,
and integrating them into strategy planning and
response generation by using the attention mecha-
nism. As such, PAD brings inspiration to the debt
collection industry by providing a more efficient au-
tomatic solution: extracting debtor personas from
the real-time collection conversations and gener-
ating collection strategies and responses to debtor
excuses automatically.

Our experiments demonstrate that debtor per-
sonas have a universal and effective impact on vari-
ous agents, contributing to both strategy planning
and response generation. We successfully deployed
PAD for two months in a FinTech company’s con-
sumer loan scenario to assist novices. The online
testing results show that PAD increases the recov-
ery rate by 3.31% and helps to collect an addi-
tional ~100K RMB. And the PAD constantly helps
novices when dealing with debtors of different per-
sonas, especially in developing collection strategies
based on the debtors’ repayment willingness. We
believe that our work could promote the advance-
ment of automatic persona-aware debt collection
agents, highlighting the potential to cut the capital
expenditure associated with coaching and training
novices.

In conclusion, our contributions are threefold: 1)
We emphasize the importance of debtor personas in
generating effective strategies and establish a per-
sona taxonomy for the first time. 2) We proposed
a simple yet effective debt collection agent called
PAD, which dynamically leverages the debtor per-
sonas reflected in ongoing conversations to gen-
erate effective strategies and responses. 3) Our
commercial practice reveals that leveraging debtor
personas results in better response quality, a higher
recovery rate, and significant financial benefits.

2 Persona Taxonomy Induction

In Fig.1, we have caught a glimpse of the signifi-
cance of debtor personas. To methodically examine
the correlation between debtor personas and strate-

gies, we formulate debtor personas and collection
strategies into two generalized taxonomies for the
first time. Next, we use the taxonomies to construct
a persona-aware conversation dataset designed for
our PAD development and persona analysis.
Persona Taxonomy. Inspired by (Cambazoglu
et al., 2021), we employ experienced collectors*
to induce debtor personas based on 2000 conver-
sations, creating a persona taxonomy. During the
induction, 13 experienced collectors are employed
together. Three of them, who have the highest
historical recovery rate, are chosen as coordina-
tors.The remaining 10 experienced collectors are
chosen as annotators. The induction consists of
four stages: annotation scheme creation, persona
annotation, scheme revision, and taxonomy induc-
tion (See Appendix A for more details). Basically,
1) the persona annotation scheme is created by co-
ordinators who identify keywords from debtors’
utterances. These keywords are conceptualized
into debtor personas. 2) Annotators then use this
scheme to annotate debtor personas on the remain-
ing debtors’ utterances. 3) During the annotation,
the annotation scheme is revised by the coordina-
tors if necessary. Note that stage 2 and stage 3
are conducted iteratively, where the annotation and
scheme revision are repeated. 4) The coordinators
finally structure and organize the annotated debtor
personas into a taxonomy.

Our persona taxonomy is a pioneering effort in
debt collection industry. It comprises four cate-
gories that reflect debtors’ repayment ability (i.e.,
FH, FS, and DS) and willingness (i.e., CD).

¢ Financial Health (FH) refers to the financial
situation of debtors, which reflects their financial
capacity to repay debts. FH comprises personas
on debtors’ employment, income, investments,
and real estate holdings.

* Family Status (FS) comprises personas that are
linked to the family circumstances of debtors,
including their parents, marital status, children,

*Collectors with a high recovery rate within a few calls.



and family relationships. FS reflects the repay-
ment ability, as it provides insight into debtors’
financial responsibilities and obligations.

Debt Status (DS) describes personas that en-
compass diverse types of debts owed by the
debtor, including credit card debt, multiple debts,
mortgages, and debt refinancing. DS reflects the
borrowing needs and repayment ability.
Cooperation Degree (CD) refers to the level of
cooperation (Lei et al., 2022) that debtors exhibit
towards the collector’s strategies. This category
includes debtors’ repayment plans and attitudes
connected to their repayment willingness.

Strategy Taxonomy. We also establish a taxonomy
for strategies to study their interaction effects with
debtor personas. To achieve this, we collect ~20K
experienced collectors’ utterances from online con-
versation logs. Then we cluster them into 46 clus-
ters using HDBSCAN (Mclnnes et al., 2017). Fol-
lowing this, we select 10 representative utterances
from each cluster based on their density. Similar to
persona taxonomy induction, we employ 8 experi-
enced collectors to annotate the strategies used in
these collector utterances and group them into cat-
egories. Finally, we identify 11 strategy categories
and show them with descriptions in Table 8.
Persona-aware Conversation Dataset (PCD). To
support our analysis and experiments, we create a
persona-aware conversation dataset using our es-
tablished two taxonomies. We collect transcribed
conversations made by 30 experienced collectors
from online logs. Given transcribed conversations,
we employ many experienced collectors to annotate
debtor personas as well as strategies. In addition
to annotating debtor personas and strategies, we
also annotate a binary label (i.e., 1 or 0) on each
utterance of debtors to indicate whether it exhibits
debtor personas or not. Please see Appendix B for
details about data annotation and data statistics.

3 Persona-aware Debt Collection Agent

As illustrated in Figure 2, our PAD consists of
two components, i.e., a persona extractor (PE) and
a suggestion generator. The former aims to fil-
ter out irrelevant utterances and summarize debtor
personas, while the latter provides the generated
strategies and responses as suggestions to novices.

3.1 Persona Extractor

The persona extractor formulates a two-stage pro-
cess, known as Filtering-then-Summarization. At
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Persona Extraction

Persona Extractor

iltering BERT

Debtor: T am between jobs for
two months, and ...
Debtor: I will do my best to ...

Conversation History
Collector: Hello, are you Mr.Jack?
Debtor: Yes, [ am.

r Collector: ...

Debtor: I am between jobs for two months , and I'm
struggling to make ends meet.

Collector: ...

Debtor: I will do my best to raise money.

|| Debtor I Heis Y
Personas

Summarizatior
2. He has financial difficulties

3. He has a positive attitude

UniLM

Suggestion Generation

BART Decoder

Suggestion Generator

BART Encoder

BART Encoder

Conversation
Histor
L Debtor
Personas

Persona
Aware
Attention

Suggestion
[Negotiate Installment]
You could make a partial payment
today and decide on the rest later.

Figure 2: PAD overview.

the Filtering stage, we filter out irrelevant utter-
ances that do not contain any debtor persona. We
extend BERT (Devlin et al., 2018) to build a clas-
sifier that inputs the conversation history C' and
predicts which utterance should be filtered. Specif-
ically, we prefix each utterance of the debtor with
a special token [SPC] and obtain these special to-
kens’ embeddings by BERT: (H', H?, ..., H™)
BERT(C'), where H* denotes the last hidden states
of the i-th [SPC] and m is the number of utterances.
Then the probability of i-th utterance being related
to debtor personas is given by ; = o (WQH;+ B),
where ¢ is the sigmoid function. We use a cross-
entropy loss to optimize this model, and utterances
with ¢; > 0.5 are selected for the next stage.

At the Summarization stage, we utilize UniLM
(Dong et al., 2019) to generate debtor personas
by abstractive summarization (Zhong et al., 2021).
Particularly, we fine-tune UniLM to suit our per-
sona summarization scenario by maximizing the
probability P(p|C*), where p denotes the debtor
personas and C*® denotes the selected utterances.

3.2 Suggestion Generator

Unlike existing methods that provide pre-defined
utterance templates as suggestions (Wang et al.,
2020; Qian et al., 2022), we aim to generate strate-
gies and responses using BART (Lewis et al.,
2019). To utilize personas effectively, we develop
a Persona-Aware Attention mechanism (PAA) to
incorporate them into the generation process.

In particular, BART first encodes the conver-
sation history C' and debtor personas P indepen-
dently and yields their embeddings H® and HF.
Note that the P is the concatenation of summa-
rized personas from previous and current conversa-



tions. Next, PAA extends the self-attention mech-
anism (Vaswani et al., 2017) to fuse personas em-
beddings H” into the conversation embeddings
HC. Formally, PAA involves the computation
of query matrices (i.e., Q) on H®, and the com-
putation of key and value matrices (i.e., K and
V) on both H® and H”. Its output is given by
A = FFN(softmax(QKT)V). Here, A is fed
into the BART decoder to generate strategies and
responses simultaneously. Due to the limited space,
we leave PAD’s training details in Appendix C.

4 Empirical Experiments

We evaluate the effectiveness of personas and our
PAD, guided by three research questions: RQ1:
How does PAD compare with existing debt collec-
tion agents? RQ2: Are debtor personas effective?
RQ3: To what extent can PAD improve novices’
collection performance in the online scenario?

4.1 Experimental Setups

Baseline Methods. We compare PAD with the fol-
lowing methods: 1) existing automatic collection
agents, including Flow-based model (Yan et al.,
2017), TSBC (Wang et al., 2020), and P2T
(Qian et al., 2022), and 2) a LLM-powered agent,
ChatGLM-6B° (Zeng et al., 2022). All Baselines
(i.e., including ChatGLM-6B®) are fine-tuned on
the PCD dataset. We also perform an ablation
study to examine the effectiveness of Persona Ex-
tractor (i.e., PAD w/o PE) and Persona-Aware At-
tention (i.e., PAD w/o PAA). Here, PAD w/o PAA
takes the concatenation of the conversation history
and the summarized debtor personas as inputs. See
Appendix D for implementation details.

Evaluation Metrics. To evaluate the RQ7 and RQ?2,
we evaluate the performances of various collection
agents from two aspects. 1) Strategy Planning. We
follow (Joshi et al., 2021; Deng et al., 2023a) and
assess the accuracy of the predicted strategies by
both macro and micro scores of F1 and ROC AUC
metrics. The macro scores indicate how the model
performs on infrequent strategies, whereas the mi-
cro scores provide a thorough assessment of the
model’s performance by considering the strategy
imbalance. 2) Response Quality. We consider four

>To avoid the risk of data leakage, we opted for ChatGLM,
a powerful and open-source language model, over ChatGPT.

%The debt collection requires proactive behaviors such as
persuasion and negotiation (Shoghi, 2019), which are typically
beyond the capabilities of LLMs (Deng et al., 2023a,b). We
have fine-tuned LLMs to suit our specific scenario.
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automatic generation metrics, including perplex-
ity (PPL) (Jelinek et al., 1977), BLEU (Papineni
et al., 2002), ROUGE-L (Lin and Och, 2004) and
BertScore (Zhang et al., 2019). Additionally, we
carry out human evaluations using three metrics
(Liang and Li, 2021): Readability, which evaluates
the responses’ fluency, Effectiveness, which mea-
sures whether the responses are tailored to debtor
personas, and Coherence, which assesses whether
the responses are relevant and consistent with the
ongoing conversations. We sample 500 conversa-
tions from the test set and then present the history
of conversations and the generated responses to 5
experienced collectors. We ask them to rate each
aspect in four different levels 0/1/2/3. The final
scores are the average scores annotated by all ex-
perienced collectors. We measure the inter-rater
reliability with Fleiss’ Kappa (Fleiss and Cohen,
1973). Our annotations obtain “good agreement”’
for Effectiveness (0.624) and “moderate agreement”
for Readability (0.556) and Coherence (0.543).

To evaluate the RQ3, we examine two metrics
that indicate the performance of online collection.
1) Recovery Rate. It quantifies the proportion of
debt repaid by the debtor in relation to the total
amount owed. A higher ratio indicates a more
effective debt collection. 2) Call Number. It repre-
sents the total number of calls made to complete
the debt collection process. A lower call number
reflects a more efficient debt collection process.

4.2 Agent Performance Comparison (RQ1)

This section aims to evaluate the collection perfor-
mance of PAD in comparison to existing automatic
agents. As shown in Table 2, in terms of strategy
planning, we observe that PAD constantly outper-
forms baselines, demonstrating its superior strat-
egy planning capabilities and potential for strategic
assistance. On average, PAD performs 13% better
than the current SOTA automatic collection agent
(i.e., P2T) in both F1 and ROC AUC metrics. It
also shows an improvement of 6% compared to
sophisticated LLM (i.e., ChatGLM). Moreover, in
terms of response quality, our automatic and hu-
man evaluations demonstrate that PAD has large
advantages over other baselines. According to Ta-
ble 2, compared to the best performance of the
current baselines, PAD improves response perplex-
ity (i.e., PPL) by 2%, lexical feature (i.e, B-1, B-2
and R-L) by 7%, semantic feature (i.e., BS) by 4%.
Also, PAD achieves the highest scores in terms of



Table 2: Agent performance comparison. We report BLEU-1/2 (i.e., B-1/2), ROUGE-L (i.e., R-L), and BertScore
(i.e., BS). We omit partial comparisons to existing agents (Row 1-3) as their responses are template-based.

Strategy Planning Response Quality
Models F1 ROC AUC Automatic Human

MacroT Microt ‘ MacroT Microt ‘ PPL], B-1T B-2+ R-Lt BSt ‘ Readability? EffectivenessT Coherence?

Flow-based | 17.52 37.96 55.63 61.70 - - - - - - 1.91 1.87

TSBC 23.20 44.27 65.39 66.18 - - - - - - 221 2.04

P2T 24.11 44.66 67.60 70.12 - - - - - - 2.24 2.07

ChatGLM 28.66 46.25 70.21 7230 | 625 23.17 16.10 28.04 68.24 2.46 2.45 2.38

PAD 31.27 48.01 75.39 7759 | 6.12 2456 18.23 29.47 70.81 2.49 2.61 2.59

Table 3: Persona effectiveness analysis.
Strategy Planning Response Quality
Models F1 ROC AUC Automatic Evaluation Human Evaluation

Macrof  Microf | Macro? Microf | PPL]  B-1f  B-2f  R-LT BSt | Readability? Effectiveness? Coherence?

P2T 24.11 4331 67.60 70.12 - - - - - 2.24 2.07

P2Tpersona 2585 4431 | 6876  71.19 . . . . . . 232 2.24

ChatGLM 28.66  46.25 70.21 7230 | 625 23.17 16.10 28.04 68.24 2.46 245 2.38

ChatGLMypersona | 30.98 47.76 72.49 75.90 6.17 2394 17.16 28.63 70.25 2.52 2.55 2.56

PAD w/o PE 26.93 44.41 68.55 71.24 6.39 2251 1597 27.34 67.11 2.21 2.30 2.27

PAD w/o PAA 29.76 46.89 71.46 72.83 6.27 23,53 1649 2823 68.94 247 2.52 2.51

PAD 31.27  48.01 7539 7759 | 6.12 24.56 1823 29.47 70.81 2.49 2.61 2.59

Readability, Effectiveness, and Coherence. There-
fore, we experimentally show that PAD has the
potential to provide more tailored, readable, and
coherent responses to novices as suggestions.

4.3 Persona Effectiveness Analysis (RQ2)

This section aims to conduct an in-depth analysis
of the role of debtor personas through an ablation
study. We enhance P2T and ChatGLM, the two
strongest baselines, by incorporating persona in-
formation for comprehensive analysis. Here, we
refer to them as P2T ¢, 50nq and ChatGLMersonas
respectively. Both models share the same inputs
with the PAD w/o PAA. As evidenced by Table 3,
we find that debtor personas have a universal and
effective impact on strategy planning and response
quality across various models.

In terms of strategy planning, debtor personas
lead to a significant enhancement in PAD, P2T, and
ChatGLM models. The integration of debtor per-
sonas leads to an average increase of +4% in F1
and ROC AUC for PAD (Row 3 vs. Row 5) and
+4% for ChatGLM e 5onqa (Row 3 vs. Row 4) and
+2% for P2Tersona (Row 1 vs. Row 2). Moreover,
in terms of response quality, debtor personas make
the responses generated by PAD, P2T ¢, sonq, and
ChatGLMyersone models more human-like in both
lexical and semantic aspects. For example, PAD
outperforms PAD w/o PE in terms of lexical simi-
larity. In detail, it improves the BLEU-1 score by
2.05, the ROUGE-L score by 2.13, and the PPL
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by 0.27. This indicates that the responses gener-
ated by PAD have more word overlaps with the
ground truth. Additionally, PAD shows a semantic
improvement of +3.70 on BertScore, indicating the
semantics of its generated responses are closer to
the ground truth.

Interestingly, we find that PAD maintains its
superiority over ChatGLM ey sona due to the en-
hancement of its PAA mechanism. Sharing the
same inputs, PAD w/o PAA performs worse than
ChatGLM,ersonq in all metrics, indicating that the
BART model, used in PAD w/o PAA, is relatively
inferior to ChatGLM. Fortunately, the superiority
of the PAA mechanism bridges this gap. The PAA
mechanism further enhances the performance of
PAD, allowing it outperforms ChatGLM ¢, sonq 1n
most metrics. This suggests that the PAA mecha-
nism is better suited for generating tailored strate-
gies and responses. For a comprehensive study, we
also evaluate the quality of debtor personas sum-
marized by our Persona Extractor in Appendix F.

4.4 Online Collection Performance (RQ3)

Based on a real-world consumer loan scenario from
a large FinTech company, we conduct online testing
to evaluate the effectiveness of different agents in
terms of novice assistance. We report the overall
performance of these agents and further analyze
the collection strategies used by different collectors
to deal with debtors of varying personas.

Online deployment. Our machine is an NVIDIA



Table 4: Recovery rates on different debtor personas.

Different Debtor Personas Nov. PAD Exp.
Employed 19.26% 23.96% 28.11%
FH Unemployed 991%  14.55% 20.34%
Low Income 836% 1358% 17.12%
Investment Failure 3.08% 3.88% 6.55%
Married 12.17%  18.51%  23.33%
FS Unmarried 5.24% 9.14%  13.35%
Have Children 1126% 1627%  20.73%
Bad Family Relationship 798%  1037% 11.81%
Specified Repayment Plan ~ 26.77%  30.92% 31.93%
CD | Positive Attitude 2512% 32.52%  35.26%
Non-cooperative Attitude 4.63% 6.76% 8.09%
DS Multiple Debts 7.70% 9.78%  14.21%
Debt Refinancing 8.79% 9.81%  15.98%

A10 GPU and the online service requires the agent
to provide suggestions within 500ms. To improve
the inference efficiency of PAD, we perform Int-
8 quantization and cuda acceleration on UniLM
and BART using the CTranslate2 API’. After de-
ployment, we use the validation set of PCD to test
PAD’s latency with a batch size of 1. From Table
5, we observe PAD’s average latency is 322ms and
its slowest latency under 90% coverage is 406ms,
which meets our online needs. Despite the Chat-
GLM is more powerful than BART (cf. in Section
4.3), it fails to meet the real-time efficiency need
even after Int-8 quantization and is impractical for
our high-volume scenarios. In the future, we plan
to explore the deployment of LLMs, such as distill-
ing them into smaller models.

Table 5: The online latency testing results.

Models Avg. Latency 90% Converage
ChatGLM (INT-8) 2532ms 2841ms
PAD (Vanilla) 765ms 978ms
PAD (INT-8) 322ms 406ms

Collection Performance. We randomly divided
1000 novices with similar historical recovery rates
and call numbers into 5 groups, four of which are
assisted by four automatic agents (i.e., PAD, P2T,
TSBC, and Flow-based.), respectively. After two
months of online testing, we randomly sampled
20000 conversations from each group and com-
pared their average recovery rate and call number.

Fig.3 shows the improved effectiveness of four
automatic agents compared to the control group
(i.e., novices without assistive agents). Here, PAD
achieves a significantly higher recovery rate (i.e.,
3.31%) and contributes to the lowest call number
(i.e., -0.37). Compared to the control group, PAD-
assisted novices collect an extra ~100K RMB in
debt and reduce their daily call time by approxi-

"https://github.com/shamilcm/CTranslate2
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mately one hour. We further delve into the effec-
tiveness of PAD in dealing with debtors of different
personas. According to Table 4, PAD consistently
outperforms novices, resulting in an average recov-
ery rate increase of 2.48% on FH, 4.86% on FS,
5.55% on CD, and 1.30% on DS. This indicates
that PAD is particularly beneficial for novices in
developing collection strategies based on debtors’
repayment willingness (i.e., CD). However, PAD’s
performance is less significant when considering
debtors’ repayment ability (e.g., DS). One possible
explanation is that debtors’ repayment ability is
influenced by many factors (e.g., having multiple
debts) and debtors may not voluntarily disclose in-
formation related to these factors. To overcome
this, one promising research topic for automatic
collection agents is to adopt a proactive strategy
policy that prompts debtors to disclose information,
as experienced collectors do.
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Figure 3: Improvement over novices, assisted by various
automatic collection agents.

Collection Strategy Analysis. We investigate the
collection strategy differences used by collectors
and PAD. Due to space limitations, we focus on
married debtors (i.e., PAD has significant improve-
ment) and analyze the differences in strategy dis-
tribution and strategy transitions. We leave more
analysis for other debtors in Appendix E.

For married debtors, we first quantitatively ana-
lyze the differences in strategy distribution among
three groups: novices, novices assisted by PAD,
and experienced collectors. Inspired by (Liu et al.,
2021), we compute the distribution of strategies at
different phases of the conversations for each group.
For a conversation with L utterances in total, the
k-th (1 < k < L) utterance is from the collector
and adopts the strategy st, we say that it locates
at the conversation progress k/L. Specifically, we
split the conversation progress into four phrases:

0,1] = Ui_oli/5, (i + 1)/5)U{1}. Then, we



Table 6: Strategy transition analysis (persona="Have Children’).

Groups \ Top-2 3-hop strategy transition sorted by frequency

Ask about repayment plan — Ask about job status — Request repayment by deadline

Nov. .
Ask about repayment plan — Ask about asset status — Request repayment by deadline

PAD Ask about repayment plan — Inform credit damage — Request repayment by deadline
Request repayment by deadline —

Ex Request repayment by deadline — Ask about repayment plan — Negotiate Installment

P: Ask about repayment plan — Inform credit damage — Request repayment by deadline

count the proportions of different strategies in each
phrase and quantify the average L2 distance of the
distribution between experienced collectors and the
other two groups at different phrases.

Table 7: L2 distance between experienced collectors
and the other two at different phrases.

Phase1 Phase2 Phase3 Phase4

0.38 0.32 0.46 0.34
0.13 0.11 0.10 0.12

Novice
+ PAD

As shown in Table 7, we observe that PAD-
assisted novices have a more similar strategy dis-
tribution to experienced collectors than novices
(-0.26, on average). This indicates that PAD ef-
fectively leverages debtor personas to improve its
strategy planning ability. We also conducted an
in-depth analysis of the differences in strategy tran-
sitions among the three groups, as shown in Table
6. While novices plan strategies indiscriminately,
PAD-assisted novices master an effective strategy
transition used by experienced collectors (marked
in red). However, experienced collectors are more
inclined to assess the debtor’s willingness to re-
pay and suggest installment repayment (marked in
blue), considering the potential economic pressure
of married debtors. In contrast, PAD often adopts
a relatively harsher strategy transition by inform-
ing the debtor of legal consequences and impaired
credit (marked in ). The strategic differences
provide valuable insights for our future studies.

5 Related Work

Automatic Debt Collection Agent. Designing
automatic agents to assist novices is important
for financial companies (Yan et al., 2017; Wang
et al., 2020; Qian et al., 2022). Current agents first
plan strategies and then retrieve utterance templates
to novices as suggestions. Particularly, they plan
strategies by traversing a pre-defined conversation
flow (Yan et al., 2017), formulating a multi-label
classification on the basis of BERT (Wang et al.,
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2020), or relying on the repayment probability of
the debtor (Qian et al., 2022). However, they fail
to tailor strategies to debtors of different personas.
Moreover, the utterance templates also require huge
human efforts to construct and maintain.
Conversations with Persona. Pre-defined user per-
sonas have boosted the performance on many con-
versational tasks, such as goal-oriented dialogues
(Zhang et al., 2018), empathetic dialogue (Zhong
et al., 2020) and open-domain dialogue (Liu et al.,
2020). However, implementing user personas in
real-world applications can be challenging, as it is
impractical and unnatural (Xu et al., 2022; Wang,
2021) to require users to provide personas informa-
tion before conversations, especially in sensitive
scenarios such as debt collection. Previous stud-
ies on debtors’ personas in debt collection have
mainly focused on a statistical analysis of their so-
cial behaviors(Ghaffari et al., 2021; Goetze et al.,
2023), barely touching the scenario of automatic
collection agents. Therefore, there is an urgent
need for systematically analyzing and utilizing the
personas to promote the development of automatic
debt collection agents. This motivates us to share
our commercial practice that had been successful
in our financial services.

6 Conclusion

We share a commercial practice on automatic debt
collection agents. Our study involves organizing
the debtor’s identity into a taxonomy and present-
ing a successful implementation on the persona-
aware agent. We emphasize how our practice ad-
dresses a common problem in tailored strategy
planning. This provides inspiration for the debt
collection industry by offering a more efficient and
effective automatic solution that leverages personas
to improve recovery rates in online financial ser-
vices. Moving forward, we plan to further explore
the potential of persona-aware agents in reducing
the capital expenditure associated with training and
coaching novice agents.



Ethics Statement

Intended Use by novice collectors: Our PAD is
intended to provide strategy and response guidance
and help novice collectors to improve their debt
collection performance.

Data annotation: Since the conversations are an-
notated by experienced collectors of real-world fi-
nancial companies, we do not require any addi-
tional compensation for this annotation.

Privacy: Due to the data retention policy, the call
conversations will not be used for model training
and evaluation if the debtor does not give permis-
sion. To protect debtor privacy, we remove per-
sonally identifiable information such as credit card
numbers and phone numbers when collecting the
data. Furthermore, the data used in this paper are
all processed by data abstraction and data encryp-
tion. The annotators and researchers are unable to
restore the original data.

Prevention of potential abuse: In some cases, the
suggestion generated by the generative language
models may contain potential biases toward a spe-
cific race or gender. To ensure the generated re-
sponses are appropriate and non-discriminative for
all debtors, we conduct a post-processing proce-
dure for all generated responses. It uses a con-
tinuous monitoring system to strictly control the
exposure risk of the responses and filter biased con-
tent in real time.
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A Persona Taxonomy Induction

We follow (Cambazoglu et al., 2021) to induce our
persona taxonomy. We ask experienced collectors
to induce debtor personas based on 2000 conver-
sations, creating a persona taxonomy. During the
induction, 13 experienced collectors are employed
together. Three of them, who have the highest his-
torical recovery rate, are chosen as coordinators and
responsible for annotation scheme creation, scheme
revision and taxonomy induction. The remaining
10 experienced collectors are chosen as annotators
and responsible for persona annotation based on
the scheme established by the coordinators. Our
taxonomy induction consists of four stages: annota-
tion scheme creation, persona annotation, scheme
revision, and taxonomy induction.

Persona Annotation Scheme. Initially, the co-
ordinators have been assigned the responsibility of
identifying relevant keywords from 50 randomly
sampled conversations. They select the keywords
that may help to develop effective collection strate-
gies based on their years of business experience.
They then annotate the debtor personas represented
by the keywords and provide descriptions for each
persona. Through discussions, they create a prelim-
inary persona annotation scheme, which guides the
persona annotation process.

Persona Annotation & Scheme Revision.
Based on the annotation scheme, the 10 annota-
tors label debtor personas for the remaining con-
versations. As the annotators may encounter new
personas or face confusion with the preliminary
scheme, the scheme could be revised during the
annotation process. Thus, we design an iterative
process, where each iteration consists of two steps:
persona conceptualization and scheme revision.

* Persona Conceptualization. Annotators in-
dividually annotate debtor personas on the
sampled conversations. They identify key-
words in debtors’ utterances and conceptual-
ize them into specific personas defined in the
annotation scheme. For example, if a debtor
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says "l am between jobs for two months, and
I’m struggling to make ends meet with the
little money I have", the annotators analyze
the keywords (i.e., "between jobs" and "strug-
gling to make ends meet") and conceptualize
them into the specific personas of "He is un-
employed" and "He has financial difficulties",
respectively.

Revision. Along with the persona annota-
tion, the annotation scheme may be revised
when annotators encounter ’challenges’. In
this case, the coordinators are required to
meet with the annotators and discuss the ’chal-
lenges’ they encounter. Here, the annotators
consider the following ’challenges’ and the
coordinators make substantial changes to the
annotation scheme accordingly:

— Personas, represented in certain key-
words, are helpful for planning effective
collection strategies but are not in the cur-
rent annotation scheme. In this case, the
coordinators should append the new per-
sonas into the annotation scheme after
discussion.

If a persona’s description is unclear or
ambiguous to annotators, the description
should be removed. Then Coordinators
should create new descriptions that are
clear, concise, and unambiguous.

Taxonomy Induction. The coordinators gather
the annotated debtor personas and group them into
categories. Note that if there is any disagreement
in the categorization, coordinators resolve it by the
majority voting method. Finally, we structure and
organize debtor personas into a taxonomy, which
covers four categories, including Financial Health,
Family Status, Cooperation Degree, and Debt Sta-
tus.

B Persona-aware Conversation Dataset

To support our analysis and experiments, we an-
notate a persona-aware conversation dataset using
our established two taxonomies. We first collect
large conversations made by 30 experienced col-
lectors. Then inspired by (Wang et al., 2019; Chen
et al., 2021), we carefully design and implement
our annotation process.

Strategy annotation: We ask 8 experienced col-
lectors to annotate strategies used in the utterances



Table 8: Strategy types and their descriptions

Strategy

Description

Inform legal consequences

informs debtors that we may exercise our legal rights to collect debts, such as legal action.

Inform credit damage

informs debtors that their Credit Report will be impaired, leading to negative impacts on their daily life.

Inform overdue interest

informs debtors that overdue interest will be charged, increasing their financial obligations.

Inform high-risk account

informs debtors that their accounts will be marked as high-risk, limiting their future borrowing.

Request repayment by deadline

requests debtors to repay their debts by a specified deadline.

Request capital turnover

requests debtors to turnover cash flow from other sources.

Ask about repayment plan

asks debtors about their repayment plan, including repayment time.

Ask about job status

asks debtors about their job status, such as employment status, salary, and payroll time.

Ask about asset status

asks debtors about their asset status, such as their real estate and car.

Negotiate installment

negotiates with debtors about the repayment plan by installments.

Non-Strategy

includes general ones such as greetings, and task-specific ones such as identity confirmation.

of collectors. They initially annotate 10 conversa-
tions, discuss disagreement and revise the annota-
tion criteria. Then they conduct two iterations of
annotation exercises on 10 additional conversations,
achieving an inter-annotator reliability of Krippen-
dorft’s alpha of above 0.70 for all strategies. Once
the criteria is finalized, each collector continues to
annotate the remaining conversations individually.
Note one utterance may include multiple strategies.

Table 9: The overall statistics of PCD dataset.

Data Statistics

# conversations 50350
Avg. turns per conversation 17.06
Avg. tokens per utterance 24.35
Avg. personas per conversation  4.17

Avg. strategies per utterance 3.53

Total unique tokens 4431

Table 10: The strategy proportions in the PCD dataset.

Strategy Proportion
Inform legal consequences 10.85%
Inform credit damage 8.56%
inform overdue interest 8.96%
inform high-risk account 9.75%
Request capital turnover 9.50%
Request repayment 11.42%
Ask about repayment plan 8.32%
Ask about job status 9.32%
Ask about asset status 6.23%
Negotiate installment 10.06%
Non-Strategy 7.31%

Persona annotation: We ask 22 experienced col-
lectors to annotate debtor personas exhibited in the
utterances of debtors. In addition to annotating de-
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tailed debtor personas, they also need to annotate
a binary label (i.e., 1 or 0) on each debtor’s utter-
ance to indicate whether it exhibits debtor personas
or not. Similar to the strategy annotation process,
they conduct two iterations of annotation exercises
and achieve 64.78 pair-wise Rouge-L scores (Chen
et al., 2021). Then they continue to annotate the
remaining conversations individually.

We name this annotated conversation dataset
PCD and show its statistics in Table 9 and 10.

C Training Details of PAD

PAD consists of two components, i.e., a persona
extractor (PE) and a suggestion generator. The for-
mer aims to filter out irrelevant utterances and sum-
marize debtor personas, while the latter provides
the generated strategies and responses as sugges-
tions to novices. We optimize the two components
independently and show their training details as
follows.

C.1 Persona Extractor

The persona extractor formulates a two-stage
process, known as Filtering-then-Summarization.
Note the models used in the two stages are also op-
timized independently. At the Filtering stage, we
aim to filter out utterances not contain any debtor
personas. Since online conversations are ongo-
ing and turn-based, to ensure the consistency of
training and inference, we split our training con-
versations into segments (S*, S2, ..., S™) based
on each turn. The segment S’ includes the i-th
debtors’ utterance and its preceding conversation
history. For each segment S, we prefix each utter-
ance of the debtor with a special token [SPC] and
obtain these special tokens’ embeddings by BERT:



(H', H?, ..., H') = BERT(S"), where H' denotes
the last hidden states of the i-th [SPC] and [ is
the number of debtors’ utterances in this segment.
Then the probability of i-th utterance being related
to debtor personas is given by ; = o (WQH;+ B),
where o is the sigmoid function. We optimize the
Filtering stage by a standard cross-entropy loss:

m

1
= —— 1 Ai 1-— i 1 1-— A,L'
Lop — ;:1 [ylog i + (1 — y;) log(1 — ;)]

Where g; is available in our PC'D dataset as we
annotate this information on debtors’ utterances
(See details in Appendix B). Finally, we input the
utterances with j; > 0.5 to the next stage.

At the summarization stage, we aim to summa-
rize debtor personas p based on the selected utter-
ances C° from the filtering stage. The p consists
of several phrases that describe debtor personas,
such as "He is unemployed" and "He has financial
difficulties". We concatenate these phrases into a
token sequence p = {x1, xo, ..., xx }. Our training
goal of the summarization stage is to maximize
the conditional probability P(p|C*). We need to
optimize our UniLM by the following negative log-
likelihood (NLL) loss:

Lnrr = —Elogp(p|C?)

N
—E ) log p(a:|C®, x<;)
t=1

where NV is the length of the ground personas p and
x<¢ denotes previously generated tokens.

C.2  Suggestion Generator

Taking the conversation history C' and summarized
debtor personas p as inputs, we use BART to gener-
ate strategies and responses. Formally, we concate-
nate the ground strategies st and ground responses
re as R = st @ re, where @ is the concatenate
operation. Our training goal is to maximize the
probability P(R|C, p). This probability is also op-
timized by the NLL loss similar to UniLM:

Lnrr = —Elogp(R|C, p)

M
—-E Z 10gp(Rt|Cv P R<t)
t=1

where M is the total length of the ground truth R
and R, denotes previously generated tokens.
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D Implementation of PAD and Baselines

D.1 PAD Implementation Details

The implementation of all our models used in PAD
(i.e., BERT, UniLM and BART) is based on Py-
torch and Transformers toolkit (Wolf et al., 2020).
In particular, for our BERT, we adopt the bert-base-
chinese version®. For our UniLM, We adopt the
version® that is pretrained on large chinese sum-
marization data (Xu et al., 2020). For our BART,
we choose a powerful version for chinese'® (Shao
et al., 2021). To support PAD’s training, we split
our PC' D dataset into training, validation, and test
sets using a ratio of 7:2:1. Then we train all models
by an AdamW optimizer (Loshchilov and Hutter,
2017), with a learning rate of 2e-5, warmup rate
of 0.1, batch size of 24 and max epochs of 10. We
select the checkpoints with the lowest perplexity
scores on the validation set for evaluation. During
inference, the UniLM decodes debtor personas by
beam search (Sutskever et al., 2014) with 4 beams.
The BART decodes strategies and responses by
the Nucleus sampling (Holtzman et al., 2019) with
a top-k of 50, a top-p of 0.95, and temperature
7 = 2.0. All of our experiments are conducted on
two NVIDIA A100 GPUs.

D.2 Baselines Implementation Details

The flow-based agent is designed with the help of
experienced collectors who manually pre-define a
conversation flow based on their business experi-
ence. Relying on an existing debtor intention classi-
fication model, the agent plans next-step strategies
based on the recognized debtors’ intentions and the
manually configured conversation flow.

Regarding the TSBC and P2T agents, we imple-
ment them based on their original papers (Wang
et al., 2020; Qian et al., 2022). We also implement
the ChatGLM-based agent using the guidance of
the GitHub repository'!. For these three agents,
we train/fine-tune them on our PC'D dataset using
AdamW optimizer, with a learning rate 2e-5, batch
size 24 and max epochs for 10. We choose the
model with the highest validation accuracy for test-
ing. During the inference of the ChatGLM-based
agent, we adopt the Nucleus sampling to gener-
ate strategies and responses, with a Top-k of 50, a
Top-p of 0.95, and temperature 7 = 2.0.

8https://huggingface.co/bert-base-chinese
*https://github.com/YunwenTechnology/Unilm
https://huggingface.co/fnlp/bart-base-chinese
https://github.com/THUDM/ChatGLM-6B



Groups Top-2 3-hop strategy transition sorted by frequency

Ask about repayment plan — Request repayment by deadline — Ask about job status
Nowv. . .

Request repayment by deadline — Inform overdue interest — Ask about repayment plan
PAD Ask about repayment plan — Inform credit damage — Inform legal consequences

Ask about repayment plan — Ask about job status — Request repayment by deadline

Ask about repayment plan — Request repayment by deadline — Request capital turnover
Exp. . . .

Request repayment by deadline — Inform credit damage — Negotiate Installment

Table 11: Top-2 most frequent strategy transitions on the persona of Investment Failure among three groups: novices,

novices assisted by PAD and experienced collectors.

Groups Top-2 3-hop strategy transition sorted by frequency
Nov Ask about repayment plan — Request repayment by deadline — Inform overdue interest
' Ask about job status — Request repayment by deadline — Ask about repayment plan

Ask about repayment plan — Inform credit damage — Ask about asset status

PAD .
Ask about repayment plan — Inform legal consequences — Negotiate Installment
Inform credit damage — Ask about asset status — Inform high-risk account

Exp. . . .
Request repayment by deadline — Inform credit damage — Negotiate Installment

Table 12: Top-2 most frequent strategy transitions on the persona of Non-cooperative Attitude among three groups:
novices, novices assisted by PAD and experienced collectors.

As for the PAD w/o PE, we perform direct opti-
mization on the BART model without incorporating
any debtor personas. As for the PAD w/o PAA, we
take the concatenation of the conversation history
and summarized debtor personas as inputs.

E Collection Strategy Analysis

We conducted an analysis to compare the collection
strategies used by collectors and PAD. We choose
three representative debtor personas for analy-
sis, including married (where PAD shows signifi-
cant improvement), investment failure (where PAD
shows slight improvement) and non-cooperative
attitude (where novice collectors struggle to deal
with). As we discuss the married debtors in Sec-
tion 4.4, similarly, we also analyze the differences
in strategy transitions for two other debtor cate-
gories: debtors with investment failures and non-
cooperative debtors. We show their most frequent
top-2 3-hop strategy transitions in Table 11 and 12.

As shown in Table 11, when dealing with debtors
who experience investment failures, experienced
collectors tend to use a more effective and reason-
able strategy (i.e., Request capital turnover). This
is because debtors with investment failures usually
have limited funds to repay their debts, so request-
ing them to carry out capital turnover could be an
appropriate choice. In this case, PAD shows only a
slight improvement over novice collectors (+0.8%).
However, PAD is still more effective than novices
as it informs debtors of the serious consequences of
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non-repayment, including legal action and damage
to their credit, instead of requesting them to repay
debts by a specified deadline.

For non-cooperative debtors, the results in Ta-
ble 12 indicate that experienced collectors adopt
two different strategy transitions. Initially, they
inform the debtors about the consequences of non-
repayment and continue to forcefully warn them
that their accounts will be blocked if they remain
uncooperative. However, if the debtors are unable
to repay in full, the experienced collectors try to
facilitate repayment in installments. On the other
hand, PAD-assisted novices tend to adopt relatively
softer strategies, such as negotiating installments,
and do not learn to warn debtors of blocking their
accounts. As a result, they are less effective than
experienced collectors (i.e., -1.33%).

The above strategic differences provide valuable
insights for our future studies.

F Ablations on Persona Extractor

To evaluate the quality of debtor personas summa-
rized by our Persona Extractor, we conduct human
evaluations focusing on the following aspects: Rea-
sonable (i.e., personas identical to ground truth),
Contradictory (i.e., personas contain factual er-
rors), and Incompleteness (i.e., personas miss parts
that could be deduced from the conversation). An
example of Contradictory would be if the debtor
mentions that "he has a low income", but the sum-
marized persona is "He has a high income". We



randomly sample 500 conversations and ask 10
experienced collectors to evaluate the debtor per-
sonas that are summarized from those conversa-
tions. The results show 88% of the summarized per-
sonas are marked as Reasonable, while 6% and 8%
are marked as Contradictory and Incompleteness,
respectively. The inter-annotator agreement, mea-
sured by Fleiss’s kappa (Fleiss and Cohen, 1973),
is 0.628, indicating good agreement. This result
indicates that our summarized debtor personas are
of high quality, which further supports the develop-
ment of our persona-aware agent.
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Abstract

The text prediction (TP) workflow in editor
calls a Large Language Model (LLM), after
a character is typed by the user to get subse-
quent sequence of characters. The confidence
score of the prediction is used for filtering the
results to ensure that only correct predictions
are shown to user. As LLMs require massive
amount of computation and storage, such an
approach incurs high execution cost. So, we
propose a Model gatekeeper (GK) to stop the
LLM calls that will result in incorrect predic-
tions at client application level itself. This way
a GK can save cost of model inference and
improve user experience by not showing the in-
correct predictions. We demonstrate that use of
a model gatekeeper saved ~ 46.6% of COGS
(Cost Of Goods Sold) for TP, at the cost of
=~ 4.5% loss in character saving. Use of GK
also improved the efficiency (suggestion rate)
of TP model by 73%.

1 Introduction

Large Language Models (LLMs), such as Gen-
erative Pre-trained Transformers (GPT-2, GPT-3)
and Turing Natural Language Generation (T-NLG)
models, have billions of parameters. These can be
fine-tuned for various Natural Language Processing
(NLP) tasks, such as text classification, question
answering and text prediction. Our text editor ap-
plication uses a distilled version of one such large
text prediction model to provide text suggestions
when user types in editor boxes. This improves
users’ writing productivity and reduces grammar
and spelling errors. This application calls a large
text prediction (TP) model after every keystroke
(i.e. a character is typed) to show text completion
suggestions. The last 256 character(s) typed by a
user are sent to this model to get subsequent text
prediction with confidence score. The editor appli-
cation considers only the predictions that have a
high confidence score. But, these confidence val-
ues are available only after model inference. As
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these models have a large number of parameters,
they require large number of floating point oper-
ations (FLOPs) for an inference. We perform an-
other round of quantization aware distillation to
reduce the latency and host it on cloud from where
it is accessed by millions of users. Such a large
number of inferences incur high Cost of Goods
Sold (COGS). Furthermore, it has been observed
that they are typically overconfident in their predic-
tions on out-of-distribution (OOD) data (Lakshmi-
narayanan et al., 2017; Guo et al., 2017). So, when
the LLM provides outputs for input examples that
are far from distribution in training set (i.e. OOD),
their predictions can be arbitrarily bad. These false
positives from model will reduce the reliability of
application and result in poor user experience.

To maintain user confidence, save unrewarding
COGs and delay, we propose to have a model gate-
keeper for LLM. A model gatekeeper filters out
the inputs for its large model. A model gatekeeper
is small in size so that it can be used at edge to
stop calls for model inferences for the inputs that
may result in incorrect prediction. This provides
average latency, performance and cost advantages
for enterprises hosting large models.

Gatekeeper is a binary classification model
trained using the large model’s evaluation data. For
a given input, gatekeeper predicts 0, if large model
may return a valid prediction else predicts 1. We
developed and evaluated gatekeeper for a large text
prediction model using publicly-available data and
internal data. We demonstrate that the model gate-
keeper is capable of identifying relevant inputs for
text prediction model. Use of gatekeeper improved
the suggestion rate (i.e. the percentage of times
the server model was able to provide predictions
with a confidence score higher than set threshold)
by ~ 70% and reduced the COGS by ~ 47%. The
reduction in inferences from large model resulted
in better user experience and reduced COGS.

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 46-53
December 6-10, 2023 ©2023 Association for Computational Linguistics



2 Related Work

Multiple researchers (Nguyen and O’Connor,
2015), (Nguyen et al., 2015) have established that
softmax prediction probability is a good baseline
for error and out-of-distribution (OOD) detection
across several architectures of Deep Neural Net-
works (DNNs). (Hendrycks and Gimpel, 2016)
defined the confidence score as a maximum value
of the predictive distribution. They demonstrated
that, while these prediction probabilities create a
consistently useful baseline, at times they are less
effective. (Guo et al., 2017) improved their per-
formance by using temperature scaling (that uses
a single scalar parameter T' > 0 for all classes to
“soften” the softmax (i.e. raises the output entropy)
with T > 1.

Although such inference methods are computa-
tionally simple, they depend on how well the base
model was trained. So, there has been a lot of effort
in improving the training of base DNN models for
better OOD and uncertainty determination. (Liang
et al., 2017) utilizes temperature scaling with input
perturbations using the OOD validation dataset to
tune hyper-parameters of base model. (Hendrycks
etal., 2019) and (Rawat et al., 2021) proposed data
augmentation methods to generate out-of-domain
samples, then use them to train the base model for
improved OOD detection. (Lee et al., 2018) pro-
posed jointly training a generator and a classifier,
the generator produces examples that appear to be
at the boundary of the data manifold to serve as
out-of-distribution examples, while the classifier is
encouraged to assign these uniform class probabil-
ities. (Kendall and Gal, 2017) and (DeVries and
Taylor, 2018) train neural networks that produce
two outputs: a prediction and an uncertainty esti-
mate. (Woodward et al., 2020), (Li et al., 2021) pro-
posed separate confidence estimation modules on
top of end-to-end (E2E) models, which are classifi-
cation models trained to minimize the binary cross
entropy between the estimated confidence and the
target. Bayesian probabilistic models (Louizos and
Welling, 2017) and ensembles of classifiers (Lak-
shminarayanan et al., 2017), learn a distribution
over weights during model training for estimating
the predictive uncertainty. However, these require
significant modifications to the training procedure
and are computationally expensive compared to
standard (non-Bayesian) neural networks (NNs).

Above methods improve the estimation of pre-
diction confidence, thus, require model execution,
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while our method stops model execution if output
would be unreliable. Most of them do uncertainty
calibration with the base model training. However
our method can be used for an existing model, with-
out any information about their training data.

Our gatekeeper is similar to selective prediction
approaches. Selective prediction is also commonly
used to increase the reliability of machine learning
models (Kamath et al., 2020). In selective predic-
tion, a calibrator is used to preemptively filter out
model inputs whose prediction score will not clear
the system threshold. (Varshney et al., 2022) pro-
posed a calibrator model trained using the difficulty
level of the instances and confidence scores. This
approach needs to be executed along with base
model training for the difficulty level calculation.
(Kamath et al., 2020) proposed a calibrator model
for selective question answering under domain shift.
The calibrator is trained using QA system predic-
tion confidence scores on held-out source data and
known OOD data. Thus it requires access and
knowledge of base model training data. (Garg and
Moschitti, 2021) distill the knowledge of QA mod-
els into Transformer-based question filtering model.
To train such a student model knowledge of teacher
QA model architecture is required. However, for
a GK training the base model’s architecture is not
required, it can work for black-box base models.

Our approach uses the base model’s test and/or
execution data (input and output) to train the Gate-
keeper model. Gatekeeper learns a relationship be-
tween inputs, in and/or out of model source domain,
and outputs that are below confidence threshold.

3 Problem Formulation

The TP model (a LLM) returns accurate predictions
but is costly. Current text prediction workflow calls
this model, after the user types a character to get
subsequent sequence of characters. The high call
rate further increases the COGS (Cost Of Goods
Sold) of text prediction workflow .

The server-side model returns a confidence score
(ranging from —1000 to 1), along with text pre-
diction, to indicate the quality of the prediction.
The predictions having score less than a rendering
threshold (based on model evaluation study) are not
shown to user. In a production environment, the
Suggestion Rate was less than 10%. This means
that more than 90% of requests to the server model
result in a prediction that is not good enough to
show to user.
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Figure 1: Selected results from exploratory data analysis

Percentage of Confident Predictions

0 —

Input Text Characterlstics

In offline analysis, we observed that TP model
returned a very low confidence score for ~ 18% of
the tested records. Figure 1 shows the percentage
split of confidence scores for the key observed text
characteristics. These observations made us think:
Can we identify such input texts which will get no
or poor quality response from TP model? Can we
ensure that every call made to large model returns
useful response and is actually worth its cost?

4 Gatekeeper

We propose a gatekeeper (GK) to suppress only the
unrewarding calls to large TP model, while main-
taining the overall performance. Gatekeeper is a
light weight classifier on client-side that can pre-
dict the probability of getting a NULL from the TP
model. Figure 2 shows the text prediction work-
flow with a GK. Here, for each user request, the
client application invokes the local GK (passing
up to the last 256 character) to find the probability
of getting an incorrect prediction. If this proba-
bility is low, then client application calls large TP
model and shows its prediction (based on rendering
threshold); else doesn’t show any suggestion (waits
for the next character input and so on). This way
the unrewarding executions of the server-model
and COGS are reduced; user is not bothered with
incorrect suggestions and delays.

The output of GK is 1 when the probability of
poor response from the large TP model for a given
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input is high, else it is O.

L
0,

if TP(x) < rendering threshold,

GK(z) = { .
otherwise.
6]
We use LLM responses to build its gatekeeper.
Our post-hoc approach can be used to add a GK in
existing intelligence workflows to detect incorrect
predictions, without retraining the LLM model in
use. Figure 3 shows the approach used to train
and deploy a gatekeeper model for the existing TP
model. Given that there is a well trained TP model,
we send the context text as input and get a text se-
quence prediction with its confidence score. Next,
we use the rendering threshold to set the target la-
bels for gatekeeper model training. For example,
if the rendering threshold is —0.75 and confidence
score (of predicted sequence) is —1, then the binary
target is 1; as it is less than threshold. This data
is used by gatekeeper to learn the function, f(x),
shown in equation 1. We can use this approach to
tune the gatekeeper for different products/domains
using their input and output from the TP model.

S Experimental Setup

5.1 Evaluation Metrics

The TP model is used to improve user productivity
by reducing the number of characters to be typed



in the text editor. So we use following metrics to
measure the effectiveness of TP model:
Character savings - Number of characters in
predicted sequences that had confidence score
greater than threshold and matched the charac-
ters typed by user. (This is a proxy metric based
on the assumption that by predicting correct se-
quence we save users’ keystrokes)

Suggestion rate — Percentage of times the large
model was able to provide predictions with a
confidence score higher than rendering threshold.
Introduction of TP gatekeeper should not have a
negative impact on the performance of TP model
and should reduce the COGS. So, we measure the
effectiveness and efficiency of gatekeeper using
following metrics:

¢ COGS reduction percentage (COGS Red%)
(Higher is Better)— Number of times server model
is invoked, estimated as server hit rate. For exam-
ple: For a paragraph of length of 100 characters,
server model is called 100 times, then with a
gatekeeper model, server model will be called 90
times to get 10% saving.

(COGS,rg — COGSyitnG)

COGSoy * 100

2

Character  savings loss  percentage
(CharSavLoss%) (Lower is Better) - Lesser
number of calls to TP model may reduce
the number of correct predictions also. Thus
measuring the percentage loss in character
saving due to use of gatekeeper.

(CharSavorg - CharS@vwithGK)
CharSaverg

* 100 (3)

COGS reduction to Character savings loss
Ratio (GK E f ficiency) (Higher is Better) - To
measure the trade-off between COGS saving and
loss in character savings, their ratio is used. A
GK is efficient if COGS saving is multiple times
of the resulting loss in character savings.

COGS Red%
CharSavLoss%

4

Suggestion rate improvement (SugRatelm-
prv%) (Higher is Better) — Percentage of times
the large model was able to provide predictions
with a confidence score higher than rendering
threshold.

(SugRateory — SugRateyithak)

100 (5
SugRateorg * )
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We use “No Gatekeeper” as baseline to calculate
the above metrics. "No Gatekeeper" is the orig-
inal TP scenario, where client sends all requests
to server and responses having confidence score
greater than rendering threshold are considered.

5.2 Datasets

We collected data from public data sources — wiki,
books, documents, news and Technical Support
Guide (TSG). The sentences in the data sets were
converted into input-output (context, prediction)
format, for testing the TP model. The input (i.e.
context) from this formatted data was used to obtain
the text predictions and prediction scores from TP
model.

We used the input and output from TP model
evaluation to build its gatekeeper. The input to
gatekeeper is same as the input to TP model, as
it determines the prediction. The expected output
from the gatekeeper was determined based on the
confidence score from the TP model. If confidence
score is greater than rendering threshold then out-
put is O else 1. The PROD environment used a
rendering threshold (ren_thresh) derived after mul-
tiple experiments, so we used following criteria to
define labels for Gatekeeper model training:

if TP(x) < ren_thresh,

otherwise. ©
Table 3 in Appendix A shows a sample of data used
for building the TP GK.

We used same steps to generate labels for each
of the five datasets, merged all the data sets. We
created the training (60%), validation (20%) and
test (20%) splits from the SM+ records. We used
training split for model training, validation split for
model fine-tuning after each epoch and test split
for the final model evaluation.

The TP model is a proprietary model, tuned us-
ing internal data. The data used to train and test GK
model was generated using this model, so cannot
share the dataset.

5.3 Gatekeeper

We experimented with 2 types of gatekeeper - rule-
based and model-based.

5.3.1 Rule-based Gatekeeper

We formulated rule-based GK on the analysis of
TP evaluation results, where we observed that cer-
tain input texts almost always got no response or



low confidence from the TP model. The rule-based
gatekeeper uses one or more of these simple rules
to stop the calls to the server model. For the “all
rules” scenario, we combined following checks us-
ing “OR” operation for this rule-based gatekeeper:

* length of input text is less than 6 characters

* last character is space

* last character is a punctuation mark

* last char is a digit

* Jlast word is name of a number

* length of last word is greater than 20 charac-

ters

5.3.2 Model-based Gatekeeper

We developed a model-based GK for TP model
using the below approach.

Model selection: First, we evaluated multiple

classification models such as logistic regression,

tree based ensemble models (Adaboost, LGBM)

and neural networks with 2 types of NLP features:.

 Character count vectorizer, specifically, bi-gram
of characters.

¢ Text features such as the number (#) of words,

# of capital words, # of punctuation, # of stop-

words, input length, etc. These features were

based on our exploratory data analysis.
However most of these models had low F1-scores
(0.44-0.55).

Next, we experimented with Transformer-based
gatekeeper. Given the fact the input is text sequence
and the large TP model is a transformer model,
these models had higher performance. Based on
the model performance and size, we finalized on
using Tiny BERT. Tiny BERT is a smaller variant
of BERT model (Turc et al., 2019) that gives good
results and satisfies our computational constraints
of 3-5MB disk size and 20MB RAM usage at peak.
So, we fine-tuned the TinyBert model'. Our model
architecture consists of standard Transformer en-
coder followed by a single classification layer that
performs binary classification. We used area under
the receiver operating characteristics (ROC) curve
(AUCQ) to tune the model.

The model with selected hyper-parameters (de-
tailed in Appendix B) converged to 0.88 AUC.
Model had AUC of 0.864 and 0.858 on validation
and test sets, respectively. As tiny-bert tokenizer
is not available in ONNX (Open Neural Network
Exchange?), we used standard “bert-base-cased”

1h'ctps://huggingface.c:o/prajjwa11 /bert-mini
2https://onnx.ai/
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tokenizer and included it in the model pipeline,
converted it to ONNX format and quantized it to
uint8 for optimized execution. The final size of
transformer-model gatekeeper was ~ 4 megabytes
(MB). It had peak memory usage of 24.3 MB on
264 and took 3.52 milliseconds (ms) on average
(including tokenization) for inference.

6 Results Analysis and Discussion

We evaluated the performance of GK by executing
a pipeline of gatekeeper and TP model on test set.
The data in test set was not used during gatekeeper
model training or validation. We used these results
to determine the threshold for transformer-model
GK and select the type of gatekeeper.

6.1 Model-based GK at different thresholds

Figure 4 shows the improvement in COGS saving
and reduction in character saving metrics at differ-
ent thresholds of the Gatekeeper (GK) model. We
observe that as the threshold increases, the COGS
saving reduce at a high rate while loss in character
saving reduces at a lower rate. GK model provides
the probability of not getting a response from the
large model.When a low threshold is used for GK,
it stops the call even if probability of getting a
wrong response is low. This reduces the number of
predictions which lowers the probability of getting
expected response and thus reduces the saving on
character typing. However, GK model has high
precision (0.9 on average) at high threshold, it al-
lows more calls and correct text predictions, which
result in higher character savings.

6.2 Rule-based and/or Model-based GK

Considering that space rule provides high COGS
savings and bert-tokenizer removes the spaces, we
combined them to create a rule+model based GK.
We created GK using different combinations of
rule and model. Table 1 shows results of using
different types of gatekeepers on the combined test
set. Based on these evaluation results, we finalized
on the transformer-based GK for the TP model.

We observed that combining of various rules
increased the loss in char savings, almost incremen-
tally, but didn’t increase COGS saving proportion-
ally. Also selecting a set of heuristics by means of
A/B experiments would require a significant num-
ber of experiments. So, it was hard to find out the
best way to combine them.

In fact, the model-based GK can be used with


https://huggingface.co/prajjwal1/bert-mini
https://onnx.ai/

Gatekeeper SugRatelmprv% (1) | COGSRed% (1) | CharSavLoss% () | GKefficiency(T)
Space Rule 10.30 16.55 7.84 2.11

All rules (except space) 6.65 8.50 2.07 4.11

All rules 16.95 22.74 9.62 2.36
Model@0.9 73.80 46.61 4.50 10.36
Space-Rule+Model @0.9 78.99 52.03 11.81 4.41

All rules+Model @0.9 80.72 53.29 13.45 3.96

Table 1: Text prediction performance metrics on complete test set when Rule and/or Model Gatekeeper is used.

COGS Reduction / Chars saving Reduction

—— QOGS reduction
—— Chars saved reduction

Figure 4: COGS saving and loss in Character saving at
different thresholds on doc’s test set

different thresholds. We observed that the trade-off
(between COGS saving and char saving loss) varies
for different evaluation sets. So a tuned threshold,
transformer-based GK can be used for different
products, such as for docs and emails. Likewise,
different thresholds can be used for different cus-
tomers/domains i.e books, wiki.

6.3 Model-based GK errors analysis

In this section we analyze the errors of GK model.
GK model error is defined as blocking a call for
which large TP model predicts correctly. Table 2
shows a random sample of results with 0.9 as the
GK’s threshold for “docs” test set. We observed
that for a large number of rows where GK model
predicted “True” (stop the call), prediction from TP
model was not matching with the expected output
or was “NULL”. Mostly, when GK model predicted
“FALSE”, the TP response was matching with ex-
pected response. Overall, only 0.11% of stopped
calls would have gotten correct response for the
end user, in case of “docs” test set. More examples
are provided in Appendix C

7 Conclusion and Future Work

In this paper we presented a gatekeeper to improve
the usage efficiency of LLM. The model GK is
designed to the reduce number of executions of
LLM without negatively impacting the overall per-
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TP Prediction IsAMatch  GK Prediction
nan FALSE TRUE

ight and TRUE FALSE
nizations TRUE FALSE

nan FALSE TRUE

nan FALSE TRUE

Table 2: Sample of text prediction and gatekeeper pre-
dictions on docs dataset.

formance of scenario. We developed a gatekeeper
for large TP model using its evaluation results. We
demonstrated that the model-based gatekeeper im-
proves large TP model’s efficiency (i.e. ratio of
COGS increase to char saving decrease) by ~ 10
times at a threshold. In production, we observed
that GK (transformer + rule) provided ~ 55%
COGS saving with less than 1% loss in charac-
ter saving (when 5% is acceptance criteria) for a
set of web-client users.

We plan to test and tune the transformer-based
gatekeeper for a few large TP models, to establish
the generality of the GK. We will develop gatekeep-
ers for other text sequence models, such as gram-
mar and sentence correction, for reducing their
COGS without impacting the user experience. We
need to ensure that model gatekeepers are devel-
oped and updated at the same pace as the LLM
are being released. So, we plan to use Continu-
ous Learning algorithms to update the gatekeeper
models in dynamic environments.

Limitations

We acknowledge following limitations in current
work. We plan to address them in future.

* In this work, we focused on English text editor
and experimented with only English datasets. In
the future, we would like to develop and test
COGS saving gatekeepers for other languages.

* We understand that the current approach requires
the GK to be tuned/updated for every change in
server side TP model.
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A Data Samples

Here’s a snapshot of the training data created using
TP model evaluation.

Input confScore  Label
“If you aren’t co -1000 1
“If you aren’t com -0.5923 0
“If you aren’t comp -0.71796 0
“If you aren’t compl ~ -1000 1
“If you aren’t comple  -1000 1

Table 3: Sample of training data for GK model.

B GK model Hyper-parameters

We tuned the model using AdamW optimizer and
BSEWithLogitsLoss as loss function on 4 Nvidia
A100 GPUs. The training batch size is set to 8.
The distribution of labels was highly skewed; in
the 3 splits, almost 85% of examples had predic-
tion score less than the rendering threshold. To
ensure that a training batch contains equal number
of examples of the two classes, we use a weighted
random sampler utility, WeightedRandomSampler,
of pytorch library for data sampling in each batch.
We ran a sweep over learning rate, maximal input
sequence length and optimizer epsilon to find out
their optimal values for our data. The model is
trained for 5 epochs, with a learning rate of 0.0003,
sequence length of 128 and epsilon of 1e — 8. Our
tuned model consists of standard Transformer En-
coder followed by a single classification layer that
performs binary classification.

C Model-based GK samples

Tables 4 and 5 show random samples of responses
from TP model and if that predicted string was
matching to expected response for “wiki” and
“TSG” test sets, respectively. These Tables also
have a column indicating if GK would have stopped

TP Pred IsAMatch GK Pred
nan FALSE TRUE
nd FALSE FALSE
nan FALSE TRUE
hare to TRUE FALSE
e FALSE TRUE

Table 4: Sample of text prediction and gatekeeper pre-
dictions on wiki dataset.
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TP Pred IsAMatch GK Pred
ow TRUE FALSE
nan FALSE TRUE
to TRUE TRUE
nan FALSE TRUE
resents TRUE FALSE

Table 5: Sample of text prediction and gatekeeper pre-
dictions on TSG dataset.

that call (and thus that prediction). We observe
that for a large number of rows, GK model pre-
dicted “True” (stop the call), when prediction from
TP model was “NULL”. Also a large number of
rows, when GK model predicted “FALSE”, the
TP response was matching with expected response.
Overall, only 0.48% and 0.28% of stopped calls
would have gotten correct response for the user, in
case of “wiki” and “TSG” test set.
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Abstract

As pretrained transformer language models
continue to achieve state-of-the-art perfor-
mance, the Natural Language Processing com-
munity has pushed for advances in model com-
pression and efficient attention mechanisms to
address high computational requirements and
limited input sequence length. Despite these
separate efforts, no investigation has been done
into the intersection of these two fields. In
this work, we provide an evaluation of model
compression via knowledge distillation on effi-
cient attention transformers. We provide cost-
performance trade-offs for the compression of
state-of-the-art efficient attention architectures
and the gains made in performance in compar-
ison to their full attention counterparts. Fur-
thermore, we introduce a new long-context
Named Entity Recognition dataset, GONERD,
to train and test the performance of NER mod-
els on long sequences. We find that distilled
efficient attention transformers can preserve a
significant amount of original model perfor-
mance, preserving up to 98.6% across short-
context tasks (GLUE, SQUAD, CoNLL-2003),
up to 94.6 % across long-context Question-and-
Answering tasks (HotpotQA, TriviaQA), and
up to 98.8% on long-context Named Entity
Recognition (GONERD), while decreasing in-
ference times by up to 57.8%. We find that, for
most models on most tasks, performing knowl-
edge distillation is an effective method to yield
high-performing efficient attention models with
low costs.

1 Introduction

The rise of Transformer-based models (Vaswani
et al., 2017) has driven significant advancements in
the field of Natural Language Processing (NLP). Of
these models, BERT (Devlin et al., 2018; Rogers
et al., 2020) produced landmark performance in
a variety of NLP tasks such as Question Answer-
ing (QA), Named Entity Recognition (NER), and

*Corresponding author.
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GLUE (Wang et al., 2018). BERT-based mod-
els (Rogers et al., 2020) continue to dominate the
field (Zhou et al., 2023) with variations such as
RoBERTa (Liu et al., 2019) dramatically improv-
ing performance on downstream tasks.

However, BERT-based models often have a
fairly short maximum input length of 512 tokens,
severely limiting their capabilities in long-context
situations. Attempting to increase this limit to al-
low for longer sequences often results in signifi-
cantly greater computational requirements. This
has given rise to the creation of efficient attention
transformer models (Tay et al., 2022) such as Long-
former (Beltagy et al., 2020), Big Bird (Zaheer
et al., 2020), Nystromformer (Xiong et al., 2021),
and LSG (Condevaux and Harispe, 2023), which
can accept as input much longer sequences with
reduced computational overhead by modifying and
approximating BERT’s original attention mecha-
nism.

While efficient attention models require less
computational resources on long-context tasks
when compared to their non-efficient counterparts,
they are still often computationally expensive to
train and deploy (Sharir et al., 2020). Thus, organi-
zations and individuals are required to grapple with
increased operational costs, difficulty deploying
these models on resource-limited hardware such
as mobile devices, and often must rely on cloud-
based solutions which restricts model availability
in scenarios with limited internet access.

In response to computational challenges asso-
ciated with transformer models, the NLP commu-
nity has invested considerable efforts into creating
cheaper yet performant models. This has been par-
ticularly the case in the study of Knowledge Distil-
lation (KD) (Gou et al., 2021; Hinton et al., 2015).
However, despite the rapid progress of KD and its
effectiveness in model compression, little work has
been done toward the investigation of the intersec-
tion of KD and efficient attention architectures. As
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such, we focus on combining these two method-
ologies. We believe this is an essential effort for
creating models that can cheaply and effectively
operate on a production scale on long-context tasks.
Furthermore, despite its significance in practical
NLP usage, Named Entity Recognition (NER) still
does not have a well-accepted long-context bench-
mark. Our work attempts to address these two
needs directly.

The main contributions of this work are twofold:

1. Performance analysis of popular pretrained
efficient transformers and their distilled stu-
dents in various contexts, including GLUE,
SQuAD (Rajpurkar et al., 2016, 2018), Hot-
potQA (Yang et al., 2018), TriviaQA (Joshi
et al., 2017), CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003), and GONERD.

2. The introduction of a new long-context
NER task: the Giant Oak NER Dataset
(GONERD). This dataset and all models are
publicly available on Hugging Face™.

In particular, we find that distilling Longformer-
RoBERTa (Beltagy et al., 2020) yields the best re-
sults during our experiments, producing substantial
improvements in cost performance over state-of-
the-art models. In short, it retains considerable
performance on GLUE (92.3%), SQuAD (93.0%),
HotpotQA (88.4%), CoNLL-2003 (99.8%), and
GONERD (95.9%) while decreasing inference
times by 49.3% on long sequences. In the con-
text of GONERD, this is effectively 95.9% of the
original model’s performance for 50.7% of the
cost.

2 Related Work

Considerable success has been made in the com-
pression of BERT (Devlin et al., 2018) which, at
the time of its release, was one of the largest mod-
els in NLP. BERT itself has been expanded to fit
many different use cases including, but not limited
to, ROBERTA (Liu et al., 2019), a model built to
improve BERT performance on a variety of tasks
through clever choices in training data and hyper-
parameters, XLM-R (Conneau et al., 2020), which
was built using similar methods on extremely mul-
tilingual data (100 languages), and DistilBERT
(Sanh et al., 2019), which sought to greatly reduce

*https://huggingface.co/giant-oak
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the computational costs of BERT through knowl-
edge distillation. ALBERT (Lan et al., 2019) factor-
izes the embedding matrices of BERT and shares
weights between layers to significantly decrease
the parameter size, thereby decreasing training and
inference costs.

BERT-based distillation methods, such as Distil-
BERT (Sanh et al., 2019), TinyBERT (Jiao et al.,
2020), and MobileBERT (Sun et al., 2020) have
gained prominence due to their utilization of dis-
tillation techniques and can be applied to a wide
variety of BERT-based architectures. These mod-
els have significantly reduced the computational
requirements and resource consumption associ-
ated with BERT-based NLP models, making them
more accessible and easily deployable on resource-
constrained hardware. However, BERT’s attention
mechanism still results in a quadratic dependency
on sequence length, resulting in greater computa-
tional requirements at higher sequence lengths.

To solve this problem with BERT-based archi-
tectures, methods have been developed to create
efficient attention transformer models (Tay et al.,
2022) which can operate on sequences many times
longer than their BERT counterparts. Two popu-
lar methods in this area are Longformer (Beltagy
et al., 2020) and Big Bird (Zaheer et al., 2020),
which use dilated sliding window and a combina-
tion of global, sliding, and random activations in
their attention matrices, respectively, to increase
the maximum input sequence length from 512 to
4096. More recently, Local Sparse Global (LSG)
(Condevaux and Harispe, 2023) attention uses a Lo-
cality Sensitive Hashing algorithm (Andoni et al.,
2015) with the Local, Sparse, and Global patterns
used in Longformer and Big Bird, whereas Nys-
tromformer (Xiong et al., 2021) uses a Nystrom
matrix approximation to the regular softmax atten-
tion, reducing self-attention complexity to linear
time.

The Long-Range Arena (LRA) (Tay et al.,
2021), a comprehensive suite of benchmarking
tasks toward systematically evaluating long-context
transformer architectures, is novel in that its tasks
largely decouple the effect of Masked Language
Modeling (MLM) pretraining from efficient model
performance. While useful for developing new
transformer architectures, we are primarily focused
on the comparative performance between student
and teacher models on downstream tasks after hav-
ing been pretrained/distilled on MLM. As such,


https://huggingface.co/giant-oak

LRA is not utilized in this paper.

3 Methodology

3.1 Khnowledge Distillation

Knowledge Distillation (KD) for transformer-based
architectures (Gou et al., 2021) is most commonly
executed in three steps: (1) Pretrain a larger, com-
plex model. (2) Distill knowledge from the larger
complex model into a smaller, simpler model. (3)
Fine-tune the student model on a downstream task.
While effective in short-context scenarios, this
three-step process leaves room for ambiguity re-
garding the recommended distillation process for
long-context efficient attention transformer models.

In this paper, we use the term "convert” to refer
to the process of updating a pretrained LM to use
an efficient attention pattern, i.e. one capable of
input lengths longer than 512 tokens. Considering
this, we can identify two possible methods of in-
serting the conversion operation into the classical
KD pipeline:

1. Convert-Then-Distill: Convert teacher —
Pretrain teacher — Distill into student — Fine-
tune student on downstream task

2. Distill-Then-Convert: Pretrain teacher —
Distill into student — Convert student — Fine-
tune student on downstream task

Although Distill-Then-Convert is conceptually
interesting and potentially fruitful, we will be only
covering Convert-Then-Distill in this work. How-
ever, we do include an experiment directly extend-
ing the maximum input sequence length in Sec-
tion 4.2 of existing non-efficient distilled students,
demonstrating the necessity of the conversion step
in long-context tasks in terms of reducing a model’s
computational requirements.

Within the realm of Convert-Then-Distill, we
perform knowledge distillation using the same
process utilized in the creation of DistilBERT
(Sanh et al., 2019). Namely, we begin by com-
pressing pretrained efficient teacher models Long-
former RoOBERTa (Beltagy et al., 2020), Big Bird
RoBERTa (Zaheer et al., 2020), LSG RoBERTa
(Condevaux and Harispe, 2023), and Nystrom-
former (Xiong et al., 2021). In all cases, the number
of hidden layers is reduced by a factor of two, with
the student model being initialized by taking every
other hidden layer from the teacher.

During training, the distillation loss is calculated
over the soft target probabilities of the teacher. A
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softmax temperature is used, and a linear combina-
tion of the distillation loss, MLM supervised train-
ing loss, and cosine embedding loss is performed.
For additional details, see Appendix B.

3.2 Distillation Datasets

To perform knowledge distillation, we utilize the
Open Super-large Crawled Aggregated coRpus
project (OSCAR) (Ortiz Su’arez et al., 2019),
a large open-source corpus of raw unannotated
web text. MLM pretraining, and by consequence
Knowledge Distillation, requires a large amount
of text data (Qiu et al., 2020) and OSCAR allows
for the selection of a large amount of high-quality
long-context text samples. This dataset is used
during distillation alongside the commonly used
training dataset, BookCorpus (Zhu et al., 2015).
The selection of these two distillation datasets was
determined through an experiment investigating
the effect of different distillation datasets on down-
stream performance, as seen in Section 4.5.

When constructing our data to be used for knowl-
edge distillation, we first filtered out all data from
the OSCAR?23.01 corpus which was not classified
as having an eighty percent or higher chance of
being English text to align with downstream tasks.
To seek out only high-quality data, we also remove
samples with quality annotations indicating tiny,
short, or noisy sequences. We remove any data
with a harmful perplexity score of 13.51 or less
(Jansen et al., 2022) using perplexity scores pro-
vided by the OSCAR corpus (Ortiz Su’arez et al.,
2019), and additionally remove any harmful cate-
gories. Finally, we select a sample from our filtered
dataset to be used during distillation consisting of
nearly three million sequences, then distil using
this OSCAR subset alongside BookCorpus (Zhu
et al., 2015), totaling 19 GB of uncompressed text.

3.3 GONERD

Data for GONERD (Giant Oak NER Dataset) was
obtained by web scraping articles from publicly
available sources such as online news and press
release websites prior to being sampled and hand-
labeled. A combination of automatic and manual
filtering was then applied to remove text containing
code and other unwanted data such as sequences
deemed short, noisy, or duplicates.

As the explicit goal of GONERD is to gauge
the performance of long-context NER models, we
briefly quantify what sequence lengths are present
within the dataset. We compare against CoNLL-



Length CoNLL-2003 (512) GONERD (4096)
mean 14.5 507.6

std. dev. 11.8 556.5

min 1.0 1.0

25% 6.0 170.0

50% 10.0 330.0

75% 22.0 658.0

max 124.0 6768.0

Table 1: Summary statistics on sequence length of
CoNLL-2003 and GONERD. All statistics are
computed over the whole dataset. "mean" and "std.
dev." follow their usual definitions, "min" and "max"
are the lengths of the shortest and longest datasets.
"25%", "50%", "15%" are the 25th, 50th, and 75th
percentiles, respectively.

2003, shown in Table 1, as it is widely used through-
out NER literature. We find, on average, GONERD
has much longer sequences than CoNLL-2003
(507.6 vs. 14.5), with a right skew as seen by the
50% percentile (330) being lower than the mean.
We show this skew in Appendix A.2.

Furthermore, we find that approximately 35%
of GONERD sequences are above the 512 token
threshold, whereas none of the CoNLL-2003 se-
quences occur in this range. Finally, we find that
0.2% of sequences are longer than 4096, which are
truncated at training and inference time. For more
information on GONERD, including exploratory
data analysis and additional comparisons with
CoNLL-2003, see Appendix A.1 and A.2.

3.4 LSG RoBERTa Pretraining

Although the implementation of LSG RoBERTa
(Condevaux and Harispe, 2023) is publicly avail-
able, there are currently no publicly accessible
weights, neither compressed nor uncompressed,
that have been pretrained on long-context se-
quences. While analysis on inference and memory
utilization can be performed without these weights,
undergoing a comprehensive performance analy-
sis of LSG RoBERTa or utilizing this model in
research or production requires further pretraining.

To address this issue, and to yield a pretrained
teacher model as the first step towards develop-
ing a distilled student model, we pretrain a ran-
domly initialized LSG RoBERTa model using the
same dataset presented in LSG’s inception (Conde-
vaux and Harispe, 2023). This consists of English
Wikipedia, BookCorpus, and CC_News.
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4 Experiments

4.1 Inference Speed and Memory Usage

We calculate the average inference time and max-
imum GPU memory utilization for a variety of
short-context and long-context transformer models
as a proxy for predicting costs for hosting each
model type in production, as displayed in Table 2.
Moreover, we compare the potential cost of deploy-
ing efficient attention models versus their distilled
equivalents. All models were tested in a uniform
environment utilizing a single 80GB A100 GPU
with a sequence length of either 512 or 4096 tokens
and a batch size of 16.

Params Time (sec) Mem. (MB)
Model .
(mil.) 512 4096 512 4096
BERTgAsE 109.5 0.135 - 4167 -
£ BERTLarce 3351 0379 - 5171 -
'S RoBERTa 124.6 0.148 - 4843 -
& LegalBERTpasg 109.5 0135 - 4167 -
XLM-R 278.0 0.237 - 11673 -
g DistiRoBERTa 82.1 0.089 - 4663 -
§ DistilBERT 66.4 0.078 - 3987 -
g, TinyBERT 44 0.057 - 3033 -
g MobileBERT 246 0072 - 3639 -
O ALBERT 11.7  0.128 - 3783 -
LSG 127.8  0.170 1.157 5472 23482
- 85.3 0.103 0.641 5292 23302
2 Nystromformer 111.2  0.159 1.866 4291 29059
g 68.7 0.090 0.787 4111 28879
& Longformer 148.7 0.149 1.110 4077 11881
= - 95.5 0.075 0.588 3857 11661
Big Bird 127.5 0.158 1.542 4938 26854
- 84.9 0.097 0913 4757 26673

Table 2: Average Inference Speed and Peak GPU
Memory Usage for sequence lengths of 512 and 4096.
"w" indicates distillation.

We find an average 45.2% decrease in inference
times for long-context efficient attention models
and an average 2.6% percent decrease in GPU
memory utilization across all distilled efficient
models. Among the distilled efficient students,
Longformer produces the fastest inference speed
and least peak GPU memory usage in both 512 and
4096 settings, despite having the most parameters.

We find that KD as discussed in Section 3.1 does
not significantly impact peak GPU memory us-
age during inference across both efficient (LSG,
Nystromformer, Longformer, Big Bird) and non-
efficient (DistilBERT, DistilRoBERTa) architec-
tures. Larger modifications to the student architec-
ture (TinyBERT, MobileBERT, ALBERT), produce
varying speeds and levels of GPU memory usage.



Model CoLA MNLI MRPC QNLI QQpP RTE  SST-2 STS-B Total
Metric MCC M/MM Acc. Acc./F1 Acc. Acc./F1 Acc Acc. PCC/SRCC Avg.
BERT%ASE 52.1 84.6/83.4 88.9 90.5 71.2 66.4 93.5 85.8 79.6
BERTEARGE 60.5 86.7/85.9 89.3 92.7 72.1 70.1 94.9 86.5 82.1

RoBERTa? 63.6 87.6 90.2 92.8 91.9 78.7 94.8 91.2 86.4
LegalBERT 38.6 82.2/82.9 88.2 89.9 89.7 65.3 91.5 87.0/86.6 80.2
XLM-R 59.8 85.3/85.7 88.2/91.6 923 90.7/876 713 933 90.9/90.6 86.1

DistilRoBERTa? 59.3 84.0 86.6 90.8 89.4 67.9 92.5 88.3 82.4
DistilBERT" 524 82.6 86.5 89.5 88.6 60.3 91.3 86.8 79.8
TinyBERT*! 43.3 82.5/81.8 86.4 87.7 71.3 62.9 92.6 79.9 76.5
MobileBERTéASE 50.5 83.3/82.6 88.8 90.6 70.2 66.2 92.8 84.4 78.8
ALBERT 59.8 85.3/85.7 88.2/91.6 92.3 90.6/87.7 71.3 92.9 90.9/90.6 86.1
LSG 59.8 86.7/86.1 89.7/92.5 93.4 89.8/86.3 70.0 94.8 90.2/90.0 84.2
- 29.4 71.8/72.6 77.5/85.0 84.1 86.1/81.9 58.9 89.7 80.9/80.8 74.9
Nystromformer 33.6 77.91779.1 77.7184.7 86.3 88.8/850  56.7 90.8 86.1/86.0 71.7
- 43.4 78.6/78.6 75.2/83.8 85.8 89.3/85.9 58.5 90.8 86.2/85.8 785

Longformer 61.3 86.3/86.4 91.9/94.2 92.9 89.6/86.0  77.6 93.9 90.8/90.5 86.8
- 55.5 82.0/81.8 82.1/86.9 87.7 90.3/86.8 54.2 91.7 86.2/86.0 80.9
Big Bird 51.6 87.1/87.3 87.8/91.3 91.0 90.3/86.9 682 95.0 86.5/86.5 84.1

- 53.9 81.6/81.9 82.4/873 86.8 90.2/86.5 59.6 92.4 85.2/84.8 81.0

Table 3: Results on the validation set of the GLUE benchmark. "=" indicates distillation performance. Results for
1.2 are pulled from MobileBERT (Sun et al., 2020) and DistilBERT (Sanh et al., 2019) papers, respectively; all other
models are computed to completion. WNLI is not reported due to its problematic nature (Devlin et al., 2018).

4.2 Extending Input Sequence Length

To demonstrate the necessity of efficient attention
architectures, we investigate the feasibility of using
existing models on long-context tasks by allowing
inefficient attention models to process longer se-
quence lengths. To explore this, as presented in
Table 4, we examine the inference speed and peak
GPU memory consumption during inference on full
attention BERT-based models after being adjusted
to compute sequence lengths of up to 4096 tokens,
employing the same benchmarking methodology
as seen in Section 4.1.

Mode] T4096 Time (sec) GPU Mem (MB)
BERTL ARGE 5.806 (+423%) 39344 (+221%)

BERTgAsE 1.833 (+65%) 29886 (+152%)

RoBERTa 1.886 (+70%) 42506 (+258%)

DistilBERT 0.636 (+8%) 29706 (+155%)

DistilRoBERTa 0.798 (+36%) 42326 (+163%)

MobileBERT 1.274 (+117%) 24406 (+109%)

TinyBERT 0.631 (+7%) 29706 (+155%)

Longformer 1.110 11881

- 0.588 11661

Table 4: Inference speed and GPU memory
consumption when extending the maximum input
sequence length from 512 to 4096 for various models.
Percentages for non-compressed models are calculated
against Longformer, while percentages for compressed
models are calculated against distilled Longformer.

Our findings illustrate a noticeable trend: al-
though it is possible to allow inefficient models to
accept input sequences of up to 4096 tokens, there
are significant speed and memory costs associated
with doing so. Moreover, the newly initialized posi-
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tion embeddings would require anyone using these
extended models to perform additional pretraining
to yield acceptable long-context performance - a
process that would be slower and more expensive
than training an efficient attention model. This dif-
ficulty training would also inherently transfer to the
process of fine-tuning these models on downstream
tasks.

This evidence suggests that, although it is pos-
sible for full attention models to operate in long-
context scenarios, it is often associated with in-
creased inference and training costs when com-
pared to non-distilled and distilled efficient atten-
tion models. As such, efficient attention models are
an important step toward reducing the operational
costs of long-context models, and distillation after
conversion can be a useful methodology to further
reduce costs and improve model accessibility.

4.3 Performance Benchmarks

GLUE We perform hyperparameter optimization
using Population-Based Training (Jaderberg et al.,
2017) on several baselines, augmented, efficient
attention, and distilled efficient attention models on
the GLUE benchmark (Wang et al., 2018). As seen
in Table 3, we find that distilling efficient atten-
tion models yields compressed models capable of
retaining, on average, 94.6 % of teacher model per-
formance across all GLUE tasks and metrics. Dis-
tilled Big Bird produces the highest GLUE scores
on average when compared to our distilled efficient
attention models. Distilled Nystromformer sees a



slight increase in performance when compared to
its teacher. Distilled LSG retains only 87.3% of
teacher performance.

Model SQuAD1.1 HotpotQA TriviaQA
EM Fl1 EM Fl1 EM Fl1
BERTgAsE 80.97 88.21 -
BERT ARGE 83.91 90.73 -
RoBERTa 86.08 92.47 -
LegalBERT 79.89 87.66 -
XLM-R 82.38 89.16 -
DistilRoBERTa 80.43 87.87 -
DistilBERT 77.01 85.21 -
TinyBERT 69.77 78.89 -
MobileBERT 80.83 88.56 -
ALBERT 83.58 90.64
LSG 80.61 87.89 56.96 72.11 4734 51.82
- 64.20 74.13 41.77 54.58 26.67 30.00
Nystromformer 76.59 84.89 52.57 67.86 4730 52.29
- 70.87 80.51 48.54  63.87 44.55  49.68
Longformer 85.92 92.24 58.52 7348 5529 60.52
- 77.93 85.81 49.86  64.96 46.75 51.42
Big Bird 84.94 91.44 59.77 75.26 5429 59.33
- 74.53  82.67 49.40 64.21 44.61 49.96

Table 5: SQuAD, HotpotQA, and TriviaQA Results.

Question Answering We train and evaluate all
short-context and long-context transformer models
on SQuADI.1 (Rajpurkar et al., 2016). Moreover,
we train and evaluate all long-context transformer
models using a maximum sequence length of 4096
tokens on TriviaQA (Joshi et al., 2017) and Hot-
potQA (Yang et al., 2018) for up to 5 and 10 epochs,
respectively. Results are reported in Table 5.

We find that on SQuAD, HotpotQA, and Triv-
1aQA, efficient attention students retained up to
94.8%, 94.1%, and 95.0% of original model F1
performance, respectively. LSG RoBERTa was
particularly strongly affected by the distillation
process on long-context Question and Answering
tasks, preserving 75.7% of teacher performance
on HotpotQA and 57.9% on TriviaQA. Distilled
Nystromformer retains the most performance from
its teacher with an average of 94.7% across all QA
benchmarks, but it is still outperformed by distilled
Longformer by 2.3%.

Named Entity Recognition We explore the im-
pact of separately fine-tuning and evaluating both
distilled and non-distilled efficient attention trans-
former models on CoNLL-2003 and GONERD in
Table 6. We report each model’s F1 performance on
predicting Person (PER), Organization (ORG), Lo-
cation (LOC), and Miscellaneous (MISC) tags. We
find that performing knowledge distillation prior to
fine-tuning on NER preserved 97.4% of CoNLL-
2003, while boosting GONERD F1 performance
by 0.2%.
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CoNLL-2003 (512) GONERD (4096)
o &
Model e L U ST N & L VSN
§ S & ¥ 9 &
é’ S &5 < ?') é’ S &5 < Y\')
BERTgasE 97.1 89.8 95.4 87.9 92.6 - -
BERT arge  98.6 92.6 96.5 88.8 94.1 - -
ROBERTa 96.2 91.3 96.4 89.8 93.4 - -
LegalBERT  95.3 87.2 94.8 86.0 90.8 - -
XLM-R 95.6 90.2 95.8 89.8 92.9 - -
DistilRoBERTA 96.7 92.1 96.7 90.1 93.9 - -
DisilBERT ~ 96.7 89.2 95.4 88.3 92.4 - -
TinyBERT 95.6 87.8 95.3 86.8 91.4 - -
MobileBERT ~ 97.8 90.2 96.4 87.9 93.1 - -
ALBERT 93.8 85.6 94.5 86.3 90.1 - -
LSG 96.6 90.0 95.2 88.1 925 76.5 66.7 64.0 78.7 70.2
- 89.8 80.0 92.2 81.3 85.8 69.8 59.0 60.7 72.6 64.1
Nystromformer 94.8 85.1 93.3 86.4 89.9 72.4 59.5 59.6 75.1 65.0
- 95.3 85.1 94.2 85.6 90.1 70.6 56.4 60.2 70.5 63.3
Longformer  96.2 91.5 96.8 90.5 93.8 75.9 68.0 65.1 77.3 70.6
- 96.7 91.2 96.7 89.8 93.6 71.8 65.1 63.3 763 67.7
Big Bird 96.4 91.8 96.4 89.8 93.6 759 654 66.3 73.1 69.8
- 96.2 90.4 962 89.7 93.1 71.6 63.2 61.7 73.2 66.4
Table 6: Named Entity Recognition (NER) F1
Performance on CoNLL-2003 and GONERD.
4.4 Evaluating the Effect of Convert and
Distill on Downstream Performance
=
o
g § e § I Q
& ) ~N 3 [ I &
Model £ 5 & § 5 s .s? s
< - P o
§ & & & 5 &£ & &
RoBERTa 148 4843 8635 92.47 93.43 -
A KD 39.9% -3.7% -4.6% -5.0% +0.5% - -
A Convert +0.7% -15.8% -0.5% -2.5% +0.3% 7348 60.52 70.6

A Convert+KD -49.3% -20.4% -6.3% -7.0% +0.2% -11:6% -15.0% -4.1%

Table 7: Effects of introducing Knowledge Distillation
and Longformer attention into ROBERTa on various
tasks. We report average score for GLUE and overall
F1 for QA and NER. "A" indicates a change from the

base model. Results are compared against ROBERTa on

short-context tasks and against Longformer (A

Convert) on long-context tasks. Sequence lengths of
512 are used for inference time and memory usage.

To gauge the contribution of each component of
the Convert-Then-Distill pipeline, we provide the
computational cost and performance with respect to
RoBERTa after undergoing conversion and distilla-
tion in Table 7. In contrast to Table 4, the inference
speeds and max GPU memory usages are calcu-
lated on sequences of up to 512 tokens. Within this
range, we see that KD greatly improves inference
speed while resulting in a minor decrease in maxi-
mum GPU memory utilization. Conversely, we see
conversion to an efficient attention mechanism (in
this case, Longformer) yields significant decreases
in maximum GPU memory utilization and minor
improvements in inference speed. Together, we
find that Convert+KD is additive in its effects: per-



forming Conversion and KD yields models with
both improved inference speeds and reduced GPU
memory requirements,

We find long-context QA performance is heavily
degraded by introducing Convert+KD into training
in comparison to other tasks, whereas conversion
does not significantly impact performance. How-
ever, long-context NER appears to be an exception,
as introducing Convert+KD into GONERD has
a significantly lower impact on performance. Fi-
nally, we note that the distillation process as used
in DistilBERT (Sanh et al., 2019) and detailed in
Appendix B leaves room for further improvement:
developing distillation methods tailored for indi-
vidual efficient attention mechanisms, tasks, and
architectures may yield improved performance.

4.5 Evaluating the Effect of Distillation Data
on Downstream Performance

Distillation Data

BC + WIKI
OSCAR + BC
OSCAR + WIKI
WIKI

OSCAR

BC

Table 8: Effects of choice of data on KD performance
using Longformer RoBERTa with a train batch size of
4. Average score, not including WNLI, is reported for
GLUE and overall F1 is reported for QA and NER. A
full expansion of GLUE results is given in Table 11.

For a more comprehensive evaluation of our
knowledge distillation process, we report the per-
formance of Longformer-RoBERTa after distilla-
tion on various permutations of the OSCAR, Book-
Corpus, and English Wikipedia datasets, as seen in
Table 8.

We find that, although OSCAR+BookCorpus
yields the best performance on both short-
context and long-context tasks, the perfor-
mance gap between OSCAR+BookCorpus,
Wikipedia+BookCorpus, and OSCAR+Wikipedia
is very modest. However, as OSCAR+BookCorpus
proved to be the most performant, we utilize this
dataset when distilling efficient attention models.

5 Conclusion

In this work, we performed an investigation into
the Convert-Then-Distill paradigm, the process of
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(1) converting a teacher model to utilize an efficient
attention mechanism, (2) pretraining the converted
teacher model, (3) distilling into a smaller student
model, then (4) fine-tuning the student on a down-
stream task. We saw an average decrease in infer-
ence times of up to 58%. The efficient attention
students preserved up to 98.6% of performance
across short-context (GLUE, SQuAD, CoNLL-
2003) tasks, 94.1% of HotpotQA performance,
95.0% of TriviaQA performance, and 97.4% per-
cent of GONERD performance when compared to
their teacher models. We saw distilled Nystrom-
former retained the most performance when com-
pared to its teacher, while distilled Longformer had
the best base performance across most tasks. We
introduced GONERD, a long-context NER dataset
consisting of large amounts of hand-labeled web
text data. Finally, we release all models on the
Hugging Face Hub for general use. Our research
demonstrates that, for most models on most tasks,
employing knowledge distillation on efficient at-
tention architectures can be a highly effective ap-
proach. This technique yields models with a high
level of performance on both short and long-context
tasks at a fraction of the cost.
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Limitations

As seen in Section 4.3, we find that, in both
short and long sequences, Convert-Then-Distill
degrades performance to a greater extent than ei-
ther Convert or KD separately. This performance
degradation warrants further investigation into gen-
eralization capabilities of efficient students.

Following this, many distillation procedures
have been proposed since the original technique
of DistilBERT (Sanh et al., 2019). Using more
recent distillation methods, or developing distilla-
tion methods tailored toward an individual efficient
attention architecture, may decrease the student-
teacher performance gap and increase generaliz-
ability.

Our work is constrained to the Convert-Then-
Distill paradigm which, although intuitive, is not
obviously better than Distill-Then-Convert or
other alternatives. For instance, it may be possible
that non-efficient teachers produce better students
which can then be extended to the 4096 or greater
token range. Further investigation into the optimal
method for developing distilled efficient attention
models may be necessary to further close the afore-
mentioned performance gap.

Finally, GONERD suffers from a domain bias
as it is composed entirely of news-like webtext
data and commonly littered with legal jargon. We
attempt to control for this bias by comparing with
LegalBERT and ablating on choices of pretraining
data, but we note this bias for any potential users
of GONERD. For general long-context NER use,
additional pretraining may be required.
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A.2 Exploratory Data Analysis Website #  pdf cdf
CoNLL-2003 (512) GONERD (4096) Justice.gov 342 242242
Type P ) ¢ i ctvnews.ca 190 .085 .327
G G 146 065 392
o 251k 832 - 1013k .896 - msn.com : ) ’ ’
B-PER 10k .033 .198 24.4k .022 200 southcarohnapubllcradlo.org 54 .024 416
I-PER 6.9k .023 .138 229k .020 .188 express.co.uk 41 018 .434
B-ORG 93k .031 .184  21.5k .019 .177 .
LORG 53k 018 .104  23.0k .020 .188 dailyrecord.com 33015 449
B-LOC  10.6k .035 210 164k .014 .134 dailyvoice.com 28 .013 .462
I-LOC 1.7k .006 .033 9.7k .009 .079 nbcnews.com 23 010 472
B-MISC 5.1k .017 .100 2.4k .002 .020
IMISC 1.7k 006 034 1.7k .002 .014 newsbreak.com 21009 481
chicagotribune.com 19 .008 .489
Total 301k 1.0 1.0 1131k 1.0 1.0
Total 2237 1.0 1.0

Table 9: Occurrence of PER/ORG/LOC/MISC/O tags
in CoNLL-2003 and GONERD. p represents the
proportion of a tag over the total amount of labeled
tokens and p' represents the proportion over non-O
tokens.

Sequence Length Distribution In Figure 1, we
display the distribution of CoNLL-2003 sequences
in orange and GONERD sequences in blue. To
produce the figure, we used standard Kernel Den-
sity Estimation (KDE) through the kdeplot function
of the Python seaborn library. For the GONERD
distribution, we used the default parameters of the
kdeplot function, but for CoNLL-2003, we used
a higher KDE bandwidth and upsampled the dis-
tribution in the 256 range, thereby giving CoNLL-
2003 a slightly synthetically higher distribution,
resulting in CoNLL-2003 sequences appearing to
be longer than they actually are. We perform
this to account for to the extreme gap in aver-
age sequence length between CoNLL-2003 and
GONERD. CoNLL-2003 has a large number of
short sequences which make the table significantly
taller, making visually comparing their distribu-
tions unintelligible. We briefly provide summary
statistics in Table 1 to evidence this gap.

Entity Makeup For our NER task, we evalu-
ated the distribution of tags to gain a deeper un-
derstanding of our evaluation results. As seen in
Tables 9 and 10, although ConLL-2003 consists
of more sequences, GONERD has 3.5x as many
labeled tokens. Additionally, we find that names in
GONERD tend to be longer than CoNLL-2003, as
evidenced by the proportion of I to B tokens across
all NER tags. For GONERD, we find this propor-
tion to be 57.3/64.7 in comparison to 15.6/35 for
CoNLL-2003.

As seen in Table 6, LOC and ORG are the
most difficult for both teacher and student teachers
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Table 10: Occurrence of domains in GONERD. "#" is
the raw amount of samples occuring under a domain,
"pdf" is the proportion of samples in the whole dataset
for that domain, and "cdf" is the cumulative proportion
of samples sorted by frequency. Results are sorted by
descending "pdf." Asteriscs indicate data not shown.

to learn in GONERD. This may come as a sur-
prise when considering the MISC tag, in which all
efficient attention models obtained better perfor-
mance despite MISC’s fewer samples. One possi-
ble explanation for the discrepancy in MISC perfor-
mance is in how GONERD handles MISC labeling.
GONERD has a fixed schema for MISC: ages, ad-
dresses, and phone numbers, while everything else
is not marked as a valid entity. As this reduces
the diversity of this category, this could make the
MISC tag easier for models to learn to detect. This
is in stark comparison to CoNLL-2003, in which
MISC consists of adjectives and events, making it a
very diverse category. This can be evidenced by the
performance difference for efficient attention mod-
els on CoNLL-2003, where MISC was the most
difficult tag for models to learn. Outside of the
discrepancy on MISC, GONERD’s makeup closely
resembles ConL.L-2003 regarding the distribution
of non-O tags but leverages long-context, making
it a valuable asset to long-context NER models.

Domains In Table 10, we show the frequencies of
the top ten domains occurring in GONERD, ranked
by relative occurrence. The raw number of sam-
ples under a domain is denoted by "#", the relative
proportion by "pdf," and the cumulative by "cdf."
Aligning with expectations, we see that jus-
tice.gov appears in 24.2% samples, a website full
of news and legal language, primarily in the form
of criminal charges and sentencing. However, as
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Figure 1: Sequence length distribution using Kernel Density Estimation (KDE) of CoNLL-2003 (orange) and
GONERD (blue). Smoothing was performed with Gaussian KDE using the seaborn kdeplot function. x-axis is
number of tokens and y-axis is probability density.

domains progress, the relative contribution drops
off exponentially, with the top ten domains only
making up 48.9% of GONERD whereas there are
369 domains present within the dataset.

B Knowledge Distillation Details

Briefly, we give an overview of the student ob-
jective used in our distillation experiments, which
we frame as the linear combination of supervised
training loss, distillation loss, and hidden state loss.
Our supervised training loss is the standard masked
language modeling loss (Devlin et al., 2018). Our
distillation loss is a cross entropy over soft targets
(Hinton et al., 2015; Sanh et al., 2019), which are
calculated by applying a softmax with temperature
to the output logits:

o _ca(=/T)
TS eap(z;/T)

where p; is the probability of logit z; and T is
temperature, which controls the smoothness of the
distribution. Following the methods outlined in
DistilBERT (Sanh et al., 2019), we use a cosine
embedding loss between the hidden states vectors
of the teacher and student as a hidden state loss.
Our overall training objective can thus be written
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as
Estudent = aﬁmlm + ﬁﬁce + 7£cse

We take o = 2.0, = 5.0,y = 1.0, and T = 2.0.
Finally, we train the student by minimizing the as-
sociated empirical risk with the AdamW optimizer.

C Data Ablation Results

Finally, we expand upon the GLUE performance
given in Table 8, distilling Longformer RoOBERTa
on various permutations of the BookCorpus (BC),
English Wikipedia (ENW), and OSCAR datasets
and evaluating on all GLUE tasks. All models are
trained identically as given in Section 4.5.

We find that distilling Longformer on OSCAR
and BookCorpus yields the highest GLUE scores,
with an average of 78.9 across all tasks and metrics.
However, both BookCorpus and English Wikipedia
as well as OSCAR and English Wikipedia still yield
very similar results, with the most notable differ-
ences being in the CoLA and MNLI tasks. We see
significantly lower scores, particularly on CoLA,
when Longformer is distilled using only short or
long sequences. This indicates that it may be nec-
essary for efficient attention models to be distilled
using a mixture of both short and long-context data
to ensure maximum student performance.



Model CoLA MNLI MRPC QNLI QQP RTE  SST-2 STS-B Total

Metric MCC M/MM Acc. Acc./F1 Acc. Acc./F1 Acc. Acc. PCC/SRCC Avg.
BC + ENW 41.7 7731716 82.6/87.6 83.9 88.0/84.7 56.7 89.7 84.4/84.1 75.6
OSCAR +BC 521 81.8/82.3 84.8/88.9 87.3 89.9/86.6 57.0 91.7 86.3/86.1 78.9
OSCAR + ENW 46.1 76.8/78.9 83.8/88.9 86.2 87.9/83.1 58.5 91.3 85.2/84.9 77.1
ENW 7.1 73.8/74.3 79.4786.0 81.6 86.0/80.9 54.2 85.1 81.6/81.3 68.7
OSCAR 10.6 67.7/44.0 72.3/82.0 75.3 82.6/717.5 47.3 81.5 56.0/56.8 60.5
BC 38.7 74.2175.6 75.7/83.6 83.1 87.1/82.5 55.2 88.3 78.6/78.3 72.9

Table 11: Full validation results for GLUE on the students in the distillation ablative experiment in Section 4.5.
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Abstract

As an important application of Artificial In-
telligence, legal intelligence has recently at-
tracted the attention of many researchers. Pre-
vious works investigated diverse issues like pre-
dicting crimes, predicting outcomes of judicial
debates, or extracting information/knowledge
from various kinds of legal documents. Al-
though many advances have been made, the
research on supporting prediction of court judg-
ments remains relatively scarce, while the
lack of large-scale data resources limits the
development of this research. In this paper,
we present a novel, large-size Court Debate
Dataset (CDD), which includes 30, 481 court
cases, totaling 1,144,425 utterances. CDD
contains real-world conversations involving
judges, plaintiffs and defendants in court tri-
als. To construct this dataset we have invited
experienced judges to design appropriate labels
for data records. We then asked law school
students to provide annotations based on the
defined labels. The dataset can be applied to
several downstream tasks, such as text summa-
rization, dialogue generation, text classification,
etc. We introduce the details of the different
tasks in the rapidly developing field of legal
intelligence, the research of which can be fos-
tered thanks to our dataset, and we provide the
corresponding benchmark performance.

1 Introduction

The increasing needs for efficient, high quality ju-
dicial service and the shortage of judicial person-
nel have become important concerns in the current
society. The use of Artificial Intelligence (AI) tech-
nology to assist judges in effectively adjudicating
cases is a research area that has potential to help
improve judicial efficiency. In the real world, Legal
Intelligence (LI) (Gray, 1997) could be applied in
many scenarios, such as supporting management of
court trials, legal judgment prediction, case infor-
mation extraction, etc. The use of Artificial Intelli-
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gence technology to provide judicial services could
not only alleviate the pressure on judges, but might
also improve the efficiency of delivering judicial
decisions.

In the recent years, judicial intelligence has grad-
ually entered into the field of interest of many re-
searchers, resulting in some explorations in this
field ranging from legal judgment prediction (Xu
et al., 2020; Zhong et al., 2020), analyzing trial
cases, predicting particular laws that apply to a
given case (Luo et al., 2017; Li et al., 2022),
through court trialing to predicting the type of com-
mitted crimes. The advancement of Legal Intel-
ligence research is however closely related to the
availability of public datasets. Two well-known
public available datasets that are currently in use
are especially worth mentioning here: CAIL and
ECHR. Chinese Al and Law challenge (CAIL)
(Xiao et al., 2018) contains more than 2.6 mil-
lion verdicts of criminal cases published by the
Supreme People’s Court of China!, where each
verdict consists of the identified facts given by the
judge and the applicable law articles, charges, and
prison terms, supporting the task of judgment pre-
diction. ECHR (Chalkidis et al., 2019), on the other
hand, is the first English legal judgment prediction
dataset, containing cases from the European Court
of Human Rights. Although previous research has
made significant progress on the track of judgment
prediction, the lack of effective and diverse datasets
has become a considerable obstacle to the develop-
ment of the Legal Intelligence field.

Legal intelligence involves a wide range of sce-
narios and is not just limited to legal judgment pre-
diction or crime prediction. It can provide judges
with more efficient and transparent trials in more
ways. In this context, we provide a large-scale
judicial dataset, which contains the real-world dia-

!China Judgement Online: https://wenshu.court .
gov.cn/
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Role Dialogue
Judge In addition to the facts and reasons stated in the complaint, whether the plaintiff has any new additions.
Plaintiff ~ The interest is changed to be calculated at four times the benchmark loan interest rate for the same period stipulated in
<orgname> from <number> year <number> month <number> to the date of actual repayment .
Judge The following is the original evidence provided by the plaintiff. SannaaE

D 1e (
(Question and Answering ,

—»| Text Generation, )
The following is the original
evidence provided by the

Plaintiff | Provide an IOU of <number> year <number> month <number> and a customer receipt of <orgname> to prove the fact that
the defendant borrowed <number> ten thousand yuan from the plaintiff and agreed on the loan term and interest.

plaintiff

(Text Classification)
1. The nature of the loan
is personal loan

2. There is a written loan
agreement

3. The interest rate is
agreed on

r t n
(Text Classification)

1. Pay interest

2. Delivery amount

(Text Classification)

Judge Does the plaintiff have any other evidence to provide?

Plaintiff  No

Judge Defendant <personname> has been legally summoned by this court and refuses to appear in court without justifiable
reasons, and is deemed to have waived the right to cross-examine

Judge What is the relationship between the plaintiff and the defendant?

Plaintiff  Originally from the same village , the defendant's father and I have been colleagues for more than 30 years.

Judge Who wrote the handwritten part of the IOU ?

Plaintiff  defendant

Judge Review loan usage ?

Plaintiff  The original <orgname> personname foot wash shop was handed over for rent , and now the shop has been handed over to -
relatives .

Judge ’ How is the loan for review delivered ? [

Plaintiff ~ Through bank deposits. —

Judge After the loan was given, has the defendant repaid the loan's principal or interest?

Plaintiff  |Half a month after borrowing is about <number> month <number> day. The defendant paid

a month's interest of <number> yuan in cash.

Judge

1 (Text Summarization )

After the trial, it was found that the father of the plaintiff and the defendant had been colleagues for many years. <number> year <number> month <number> day, the
defendant <personname> borrowed <number> million yuan from the plaintiff for business needs, and issued an IOU. By convention, the loan period is to <number> years
<number> months <number> days, with monthly interest <number> . On the same day, the plaintiff entered <number> million yuan into the card number of the defendant

<personname> at <orgname>. <number> year ber> month

ber> day, <per

returned <number> element. The balance has not yet been paid. The!

laintiff sued to the court.

Figure 1: Example Dialog in Court Debate Dataset.

logues between judges, plaintiffs and defendants in
court trials of private lending cases. Figure 1 gives
an example, where the judge is inquiring about the
details of the case and the party being questioned
answers them?. We invited experienced judges to
define judicial features and elements which mark
key characteristics of debates, and we asked a large
pool of judicial practitioners from law schools to
provide the corresponding annotations. In the end,
our annotated dataset has multiple dimensions in-
cluding: facts, features, elements and roles. It
can be then applied to multiple downstream tasks.
As shown in Figure 1, it can be used to foster re-
search in Fact Finding, Dialogue Generation, Fea-
ture Recognition, Elements Identification and Role
Recognition. In total, we introduce five down-
stream tasks and discuss their associated applica-
tion scenarios as well as provide baseline models
to establish reference performance. Based on the
proposed dataset, one can thus conduct research
focusing on multiple application scenarios. We will
describe the details of those tasks in Section 3.

2 Related work

Legal Intelligence research has been initiated in
1960s (Nagel, 1960). Nagel (1960) proposed the
use of algebraic calculations to determine the judge-
ment of the court case. Especially, in the recent

2Sensitive information (e.g., person’s name) has been re-
moved for privacy issue.
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years, legal intelligence has emerged as a popu-
lar topic attracting attention of many researchers
(McElvain et al., 2019; Biega et al., 2020; Bhat-
tacharya et al., 2020; Shao, 2020; Dong and Niu,
2021; Ma et al., 2021).

Dong and Niu (2021) proposed to predict the
outcome of trials based on the facts of the judicial
cases. Zhong et al. (2018) introduced a topologi-
cal multi-task learning framework (TOP-JUDGE)
that incorporates multi-task learning and DAG de-
pendencies into judgment prediction. Zhou et al.
(2019) leveraged multi-view dispute representation
for e-commerce judgement result prediction while
Wang et al. (2019) utilized fact, law and article in-
formation to build a hierarchical matching network
for crime classification. Li et al. (2022) extracted
objective elements from factual descriptions for
crime prediction.

The release of relevant datasets often provides
important stimuli for a field. Xiao et al. (2018)
published CAIL to foster research in judgment pre-
diction. Duan et al. (2019) proposed a Chinese
Judicial Reading Comprehension (CJRC) datasets?.
Xiao et al. (2019) published CAIL2019-SCM, a
similar case matching dataset. Chalkidis et al.
(2019) released the first English legal judgment
prediction dataset (ECHR), containing cases from
the European Court of Human Rights. Malik et al.

Shttp://wenshu.court.gov.cn



Table 1: The publicly available large-scale judicial datasets.

Dataset Scale Language Supported downstream task
CAIL2018 (Xiao et al., - A . {4 Text Classification # Question and Answering
2018) 2.6 million criminal cases Chinese F Text Generation # Text Summarization
CAIL2019 (Xiao et al., . . . L {4 Text Classification # Question and Answering
2019) 8,964 wriplets of cases Chinese F Text Generation # Text Summarization

. . . I ) . F2 Text Classification i Question and Answering
CJRC (Duan et al., 2019) 10K documents and 50K questions with answers Chinese 3 Text Generation 8 Text Summarization
ECHR (Chalkidis et al.,  11.5k cases from European Court of Human Rights Enelish {4 Text Classification # Question and Answering
2019) public database S 4 Text Generation # Text Summarization
ILDC (Malik etal, 2021) 35k Indian Supreme Court Cases English 4 Text Classification G Question and Answering

{4 Text Generation 8 Text Summarization

CbD teen Judicial Elements

30,481 court dialogue cases, twelve feature and four-

{4 Text Classification IJ Question and Answering

Chinese/English {4 Text Generation 1 Text Summarization

Table 2: Basic Statistics of Court Debate Dataset

Total cases 30,481
Total utterances 1,144,425
Total words 18,590,439
Average turns 37.62
Max turns of case 461
Average length of utterance 162.44
Max length of utterance 2382

(2021) provided ILDC for Court Judgment Pre-
diction and Explanation (CJPE) tasks. The current
large-scale judicial disclosed datasets are compared
in Table 1.

Note that the current judicial research focuses
more on classification tasks such as case outcome
prediction, crime prediction, etc. It is difficult to
carry out richer and multi-scenario tasks due to in-
sufficient resources. Our work fills this gap aiming
to provide a comprehensive dataset for researchers
to promote the progress of legal intelligence.

3 Court Debate Dataset
3.1 Data Collection

The data comes from the actual records of court
trial procedures of private lending cases*. It con-
tains 30, 481 trial cases, 1, 144, 425 utterances and
18,590,439 words. Each case is a multi-turn
dialogue between judges, plaintiffs, and defen-
dants. The average number of turns of the dia-
logue in a case is 37 and the maximum is 461.
For processing the raw conversation data, we use
jieba® toolkit for word segmentation. The over-
all dataset statistics are shown in Table 2. In
particular, we remove sensitive information (e.g.,
replacing all numbers, person names, and orga-
nization names with specific tokens <number>,
<personname>, <orgname>, respectively). In

“The dataset is provided by the High People’s Court of a
province in China. All the court transcripts have been manu-
ally recorded by the court clerk.

Shttps://github.com/fxsjy/jieba
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addition, we also align the trial of a case to its
final verdict so that the fact description summa-
rized by the judge can be regarded as the summary
of the court debate transcript. In order to enable
any researchers to freely use our dataset, we have
translated the original content into English using
professional translators®.

3.2 Data Definition

To make the data available for academic research,
we asked experienced judges to define features and
elements to indicate the important aspects of trials.

The features are defined as the qualitative eviden-
tial features of the case that can help to determine
the judgment result. As for the case of private lend-
ing, which is the type of trials that CDD contains,
during the initial review of a case, a judge usu-
ally needs to consider some qualitative features of
the case, such as: “whether there is a written loan
agreement”, “whether the interest rate has been
agreed on”, etc. Following such logic, the judge
is usually able to issue the verdict. We asked 6
experienced judges for this and they have defined
12 qualitative essential features. The 12 features
are listed in Appendix A.1.

In order to determine the facts of the case, the
judge needs to also investigate and inquire about
the factual elements, such as: “loan amount”, “loan
period”, etc. Therefore, in order to clarify the facts
of the case, the experienced judges helped us to
define 14 elements for the case of private lending.
Note that these 14 elements do not necessarily ap-
pear in all the loan cases. In some simple cases,
only a few of these elements appear in the conver-
sation. The 14 element tags are listed in Appendix
A2

®https://github.com/jichangzhen/CDD



3.3 Data Annotation

Following the judges’ provision of the definition
of key evidential features and factual elements, we
hired students from law schools to annotate the
court debate data based on the provided label set-
tings.

The annotation process was conducted as fol-
lows:
* For features: the annotators need to give quali-
tative judgment. Take the label ”whether there
is a written loan agreement” as an example. An
annotator is asked to first find out if there ex-
ists any mention about the loan agreement and
he/she has to determine whether it is a written
loan agreement rather than a verbal one. If so,
this label will be marked as ’yes’, otherwise as
'no’. The annotator needs to read the dialogue
between the judge, the plaintiff and the defen-
dant, and then provide the annotation based on
the factual information found in the dialogue.
For elements: an annotator labels whether or
not each element appeared in the conversation.
Therefore, for labeling elements, the annotators
only need to focus on the mentions of the ele-
ments. If the element is mentioned in particular
context then it is marked as "yes’ for this element
label, otherwise is annotated as 'no’.
For speaking roles: each utterance is marked
with the role of its speaker (plaintiff, defendant
or judge).
For summary: as mentioned in Sec. 3.1, the
fact description in the verdict is regarded as the
summary of the court debate transcript.

3.4 Task Definitions

According to the data described in Sec 3.2 and the
annotation outlined in Sec 3.3, we define five tasks
for our dataset: (1) Fact Finding (FF), (2) Dialogue
Generation (DG), (3) Feature Recognition (FR), (4)
Elements Identification (EI) and (5) Role Recogni-
tion (RR).

e Fact Finding (FF) is a text summarization task.
After trial, a judge summarizes the facts based on
the answers of the plaintiff and defendant. These
facts include the key notes extracted from the case,
which record who, when, and where, as well as
the cause, the course and the result of the incident.
In this task, the entire dialogue is regarded as an
input, and the fact description in the corresponding
verdict is treated as the output.

¢ Dialogue Generation (DG) is a fundamental
task of natural language processing. Considering
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Table 3: Statistics of the dataset for dialogue generation.

Dialogue sample | 133,268
Average length 37.62
Average turns 8.5

Max turns of case 10

Min turns of case 5

judicial scenarios, the generation of judge’s utter-
ance has potential to support intelligent solutions
towards more effective court trials. To fully use
the entire court debate data for the task of dialogue
generation, we divide each trial debate into smaller
units. Specifically, due to the different lengths of
judicial cases, some cases have more than 400 dia-
logue rounds, and some cases less than 10 dialogue
rounds. We divide each case into multiple dialogue
samples, so that each dialogue sample has only
5-10 dialogue rounds’. The last sentence of each
dialogue sample is always the judge’s utterance.
With this setting, we assume the prior utterances
before the last utterance of each dialogue sample
as an input, while the last sentence is considered as
an output that needs to be generated. Note that one
objective for such setting is to investigate the appli-
cation of an intelligent assistance for judges for the
next question formulation. The basic statistics of
the dataset for the task of dialogue generation are
given in the Table 3.

e Feature Recognition (FR) is a multi-label
classification task where 12 factual features are in
advance defined by an experienced judge and each
case is annotated with the above 12 factual features.
Since the annotation is conducted over the entire
dialogue, therefore for each sample, the input is
the entire dialogue and the output are the binary
choices over the 12 feature labels.

e Elements Identification (EI) is also a multi-
label classification task. As mentioned in Sec 3.2,
14 elements tags are predefined by the judges. Dif-
ferent from Feature Recognition, the task of Ele-
ments Identification relies on gathering the detailed
information of the case. For each sample, the input
is the entire conversation of a case and the task is
to predict whether the information related to each
element appeared in the court record or not.

e Role Recognition (RR) is a conventional
multi-classification task. In the conventional trial
process, there are usually three roles: judge, plain-
tiff and defendant. We use the utterances in the
trial to predict the speakers’ roles. Therefore,
Role Recognition is a three-class classification task.

"For example, if a case has 20 rounds of dialogue, the
annotator should divide it into 2-4 dialogue samples.



Table 4: Dataset distribution: the number of dialogues,
sentences, words, divided into the training set, develop-
ment set and test set.

dataset | dialogue | sentence word
train 27,432 | 1,029,528 | 16,725,537
dev 1,524 56,941 924,952
test 1,525 57,956 939,950
total 30,481 1,144,425 | 18,590,439

Studying this task could help us in better under-
standing of trial debate (see Section 5.4 for specific
practical implications).

4 Experiments

In this section, we describe the experiments con-
ducted on CCD, and we introduce classical baseline
models tested for the above-discussed tasks.

4.1 Baselines

The entire dataset is divided into the training set,
development set and test set. The division of the
dataset is summarized in Table 4.

We group the the five judicial tasks discussed
before into three categories of NLP tasks. These
are Fact Finding as text summarization task; Di-
alogue Generation, as text generation task; Fea-
ture Recognition, Elements Identification and Role
Recognition as text classification tasks.

For text summarization and text generation tasks
we test the following models:

e S2S+attention (Sutskever et al., 2014): a
sequence-to-sequence model where attention is
used to assign weights to context.
PGN (See et al., 2017): a model that employs the
pointer generator network. During decoding, it
expands the context distribution to the dynamic
vocabulary, which solves the out-of-vocabulary
problem.
HRED (Serban et al., 2016): a hierarchical long
short-term memory network structure which can
encode multiple sentences hierarchically.
Transformer (Vaswani et al., 2017): a network
architecture using self-attention mechanism and
positional encoding.
LLaMA (Touvron et al., 2023): a large language
model based on transformer architecture.
LLaMA+SFT (Ouyang et al., 2022): a model
which employs Supervised Fine-Tuning on the
basis of large language model LLaMA.
For text classification tasks, the following mod-
els are tested:
¢ BiLSTM (Klein et al., 2017): a bidirectional
encoding structure that solves the problem of
RNN’s difficulty to memorize long sequences.
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Table 5: Fact Finding and Dialogue Generation Experi-
mental Results.

model Fact Finding Dialogue Generation
R-1 R-2 R-L R-1 R-2 R-L
S2S+attention | 40.71 22.11 3395 | 27.69 1629 | 22.63
PGN 41.28 | 2235 | 34.63 | 28.48 17.91 23.97
HEAD 44.02 | 2421 37.73 | 28.59 19.03 | 24.13
LLaMA 52.85 | 42.76 | 54091 4843 | 4728 | 53.65
LLaMA+SFT | 54.43 | 4429 | 57.61 4835 | 49.79 | 54.84

Table 6: Feature Recognition, Elements Identification
and Role Recognition Experimental Results.

model - FR . El - RR
Mic Mac Mic Mac Mic Mac
BIiLSTM 72.51 31.92 69.26 27.62 83.69 40.03
BERT 74.63 34.58 73.53 32.87 85.16 41.29
LLaMA 82.71 75.43 83.84 71.29 89.72 76.81
LLaMA+SFT 85.64 78.39 88.43 74.59 90.07 77.20

* Bert (Devlin et al., 2019): a pre-trained language
model using mask mechanism, which can be ap-
plied to a variety of downstream tasks.

* LLaMA (Touvron et al., 2023): a large language
model based on transformer architecture.

* LLaMA+SFT (Ouyang et al., 2022): a model
which add SFT fine-tuning technology on the
basis of large language model LLaMA.

4.2 Evaluation

We use two types of evaluation metrics: for nat-
ural language generation tasks, we use ROUGE
(Lin, 2004), and report ROUGE-1, ROUGE-2 and
ROUGE-L scores, while for classification tasks,
we use micro-average F1 scores (mic) and macro-
average F1 scores (mac).

5 Result discussion

5.1 Text Summarization

Table 5 (columns 2-4) shows the results of the Fact
Finding task over different tested baselines.

For traditional models, compared to
S2S+attention, PGN shows better perfor-
mance, mainly because the fact entities usually
appear in the dialogue, so copying the entities
from the dialogue into the generated fact is an
efficient solution. HRAD achieves better results,
mainly because the input of text is a dialogue
where the hierarchical information is essential for
representation, and hierarchical coding is more
conducive to obtaining semantic information. The
large language models (LLMs) show superior
performance, especially the model after SFT
fine-tuning achieves a new performance level.
Pre-training a large language model on massive
amounts of data is a major advance in NLP.



5.2 Dialogue Generation

Table 5 (columns 5-7) shows the results of the Di-
alogue Generation. Similar to Fact Finding, the
dialogue generation task is also conducted with the
mainstream generation models. There are certain
similarities between the generation of dialogue and
the generation of facts. The goal of those two tasks
is to obtain concrete factual information from the
dialogue.

From the results in Table 5, it can be seen that
the LLaMA+SFT model achieves here the best
results, too. The dialogue generation task aims to
generate the judge’s utterance through the analy-
sis of the previous part of dialogue between the
judge, the plaintiff and the defendant. Compared
to the model S2S+attention, PGN produces better
results. Usually, the judge’s utterances are in the
form of questions with the objective to find out the
truth of the matter. The judge will continuously
ask questions to the plaintiff and the defendant, and
will further investigate the content mentioned in
their replies. For example, the plaintiff said "He
signed an IOU”, and next, the judge will further
investigate the fact of the "IOU”. Therefore getting
the contextual key words and phrases makes sense
for generating judges’ utterance generation. In ad-
dition, a copy mechanism in PGN contributes to
the better performance of the generation model.

5.3 Text Classification

Table 6 shows the results of the Feature Recogni-
tion, Elements Identification and Role Recognition.
They all use the same classification baseline mod-
els. The difference is that Role Recognition is a
three-class classification of a single sentence, while
feature recognition and elements recognition are
multi-label classification tasks for entire dialogues.

From the experimental results, it can be con-
cluded that LLaMA+SFT achieves the best classi-
fication results. It outperforms BiLSTM and Bert
models by a large margin, not only in single sen-
tence classification but also in long text classifi-
cation. Hence, it is promising to do classification
using pre-trained large language models.

5.4 Practical significance

Nowadays, a large number of judges are under a
high workload. In addition to adjudicating cases
in court, judges also undertake a large number of
transactional tasks such as litigation guidance, post-
judgment questions and answers, law populariza-
tion, investigation and research. If Al technology
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can effectively support the administrative work of
judicial personnel, its application in the judicial
field would save effort and costs.

The five tasks proposed in this paper have impor-
tant practical applications. Studying Fact Finding
and Dialogue Generation can be of great signif-
icance in the research of judicial assistants. For
example, judge’s utterances could be generated to
let the judge use it as a prompt when questioning
the plaintiff and the defendant, or to simulate actual
trial debate for educational or preparatory purposes.
Generating corresponding facts or judgments af-
ter the trial could support the task of summarizing
the case. The research on Element Identification
and Feature Recognition could help judges quickly
overview and understand the elements of a case,
which are of great significance for case filing. Fi-
nally, the task of Role Recognition could lead to
providing sufficient support or refutation depend-
ing on speaker’s role, and could form a part of
multi-tasking approaches to automatic court debate
analysis/simulation.

5.5 Ethics Statement

Finally, we would like to briefly reflect on ethi-
cal issues. The dataset is created on the basis of
real cases, and should ensure the fairness and im-
partiality of court judgments (Pitoura et al., 2018;
Mahoney, 2015; Lim et al., 2020). Unbalanced
dataset distribution and social bias could lead to
potential risks of machine learning, and researchers
should be aware of such risks. To address those is-
sues, we have carefully removed sensitive data (eg,
name, gender, race, etc.). We have also adopted a
cross-training approach to ensure a more balanced
dataset.

6 Conclusions
We proposed a large-scale judicial dataset, Court
Debate Dataset (CDD) which contains real judicial
debates and is annotated by experienced judges
and students of law schools. CDD can be applied
in academic research on a variety of downstream
tasks, including Fact Finding, Dialogue Generation,
Feature Recognition, Element Identification and
Role Recognition. Academic research results could
be then put into practice in real-world applications
leading to the interplay of theory and practice, and
promoting the process of Legal Intelligence.

In the future, we will continue to develop new
models based on the provided dataset to improve
results across diverse sub-tasks.



References

Paheli Bhattacharya, Kripabandhu Ghosh, Arindam Pal,
and Saptarshi Ghosh. 2020. Hier-spcnet: A legal
statute hierarchy-based heterogeneous network for
computing legal case document similarity. In Pro-
ceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 1657-1660. ACM.

Asia J Biega, Peter Potash, Hal Daumé, Fernando Diaz,
and Michele Finck. 2020. Operationalizing the legal
principle of data minimization for personalization.
In Proceedings of the 43rd International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 399-408. ACM.

Ilias Chalkidis, Ion Androutsopoulos, and Nikolaos Ale-
tras. 2019. Neural legal judgment prediction in En-
glish. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
4317-4323, Florence, Italy. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies. Association for Computational Linguistics.

Qian Dong and Shuzi Niu. 2021. Legal judgment pre-
diction via relational learning. In Proceedings of
the 44rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 983-992. ACM.

X Duan, B. Wang, Z. Wang, W. Ma, Y. Cui, D. Wu,
S. Wang, T. Liu, T. Huo, and Z. Hu. 2019. Cjrc:
A reliable human-annotated benchmark dataset for
chinese judicial reading comprehension.

P. N. Gray. 1997. Artificial legal intelligence. Artificial
Legal Intelligence.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In Pro-
ceedings of ACL 2017, System Demonstrations, pages
67-72, Vancouver, Canada. Association for Compu-
tational Linguistics.

Lin Li, Lingyun Zhao, Peiran Nai, and Xiaohui Tao.
2022. Charge prediction modeling with interpreta-
tion enhancement driven by double-layer criminal
system. World Wide Web, 25(1):381-400.

Sora Lim, Adam Jatowt, Michael Farber, and Masatoshi
Yoshikawa. 2020. Annotating and analyzing biased
sentences in news articles using crowdsourcing. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 1478—1484, Marseille,
France. European Language Resources Association.

72

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Bingfeng Luo, Yansong Feng, Jianbo Xu, Xiang Zhang,
and Dongyan Zhao. 2017. Learning to predict
charges for criminal cases with legal basis. pages
2727-2736.

Luyao Ma, Yating Zhang, Tianyi Wang, Xiaozhong
Liu, Wei Ye, Changlong Sun, and Shikun Zhang.
2021. Legal judgment prediction with multi-stage
case representation learning in the real court setting.
In Proceedings of the 44rd International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 993—-1002. ACM.

Kathleen Mahoney. 2015. Judicial bias: The ongoing
challenge. Journal of Dispute Resolution, 2015(1):4.

V. Malik, R. Sanjay, S. K. Nigam, K. Ghosh, and
A. Modi. 2021. Ildc for cjpe: Indian legal documents
corpus for court judgment prediction and explana-
tion.

Gayle McElvain, George Sanchez, Sean Matthews, Don
Teo, Filippo Pompili, and Tonya Custis. 2019. West-
search plus: A non-factoid question-answering sys-
tem for the legal domain. In Proceedings of the 42rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
1361-1364. ACM.

Stuart Nagel. 1960. Using simple calculations to predict
judicial decisions. American Behavioral Scientist,
4(4):24-28.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Evaggelia Pitoura, Panayiotis Tsaparas, Giorgos Flouris,
Irini Fundulaki, Panagiotis Papadakos, Serge Abite-
boul, and Gerhard Weikum. 2018. On measuring
bias in online information. ACM SIGMOD Record,
pages 16-21.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Iulian Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages
3776-3783. AAAL



Yungiu Shao. 2020. Towards legal case retrieval. In
Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 2485-2485. ACM.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Conference on Neural Information Processing Sys-

tems, pages 3104-3112. MIT Press.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, fLukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Conference on Neural Information Pro-
cessing Systems, pages 5998-6008. MIT Press.

Pengfei Wang, Yu Fan, Shuzi Niu, Ze Yang, Yongfeng
Zhang, and Jiafeng Guo. 2019. Hierarchical match-
ing network for crime classification. In Proceedings
of the 42rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,

pages 325-334. ACM.

Chaojun Xiao, Haoxiang Zhong, Zhipeng Guo, Cun-
chao Tu, Zhiyuan Liu, Maosong Sun, Yansong Feng,
Xianpei Han, Zhen Hu, Heng Wang, and Jianfeng
Xu. 2018. Cail2018: A large-scale legal dataset for
judgment prediction. ArXiv, abs/1807.02478.

Chaojun Xiao, Haoxiang Zhong, Zhipeng Guo, Cun-
chao Tu, Zhiyuan Liu, Maosong Sun, Tianyang
Zhang, Xianpei Han, Heng Wang, and Jianfeng Xu.
2019. Cail2019-scm: A dataset of similar case match-
ing in legal domain. ArXiv.

Nuo Xu, Pinghui Wang, Long Chen, Li Pan, Xiaoyan
Wang, and Junzhou Zhao. 2020. Distinguish confus-
ing law articles for legal judgment prediction. pages
3086-3095, Online. Association for Computational
Linguistics.

Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Chaojun Xiao,
Zhiyuan Liu, and Maosong Sun. 2018. Legal judg-
ment prediction via topological learning. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3540-3549,
Brussels, Belgium. Association for Computational
Linguistics.

Haoxi Zhong, Yuzhong Wang, Cunchao Tu, Tianyang
Zhang, Zhiyuan Liu, and Maosong Sun. 2020. Iter-
atively questioning and answering for interpretable
legal judgment prediction. 01, pages 1250-1257.

Xin Zhou, Yating Zhang, Xiaozhong Liu, Changlong
Sun, and Luo Si. 2019. Legal intelligence for e-
commerce: Multi-task learning by leveraging multi-
view dispute representation. In Proceedings of the

_
B~ W

73

42rd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,

pages 315-324. ACM.

A Appendices

A.1 Features

The 12 features mentioned in Section 3.2 are:
Whether the litigation period has expired,
Whether to demand repayment,

whether there is a written loan agreement,
whether the loan is a private loan,

whether the guarantor provides a guarantee,
whether the interest rate is agreed on,
whether repayment period is agreed upon,

whether the loan period is agreed upon,

A A T e

whether the default clause is agreed upon,

H
e

whether there is a repayment action,
11.
12.

whether the borrower provides the loan as

whether the principal and interest are still owed.

A.2 Element

The 14 element tags mentioned in Section 3.2 in-
clude:

Loan amount,
Loan period,

Loan start time,
Loan end time,
Repayment time,
Principal payment,
Interest payment,

Liquidated damages,

A R G i A

Outstanding principal balance,

_
e

Delivery Date,

[u—
[a—

. Delivery Amount,

—_
[\

. Annual Interest rate,
. Monthly interest rate,

. Overdue interest rate.
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Abstract

In this paper, we present a methodology for
linguistic feature extraction, focusing partic-
ularly on automatically syllabifying words in
multiple languages, with a design to be compat-
ible with a forced-alignment tool, the Montreal
Forced Aligner (MFA). In both the textual and
phonetic domains, our method focuses on the
extraction of phonetic transcriptions from text,
stress marks, and a unified automatic syllabi-
fication (in text and phonetic domains). The
system was built with open-source components
and resources. Through an ablation study, we
demonstrate the efficacy of our approach in
automatically syllabifying words from several
languages (English, French and Spanish). Addi-
tionally, we apply the technique to the transcrip-
tions of the CMU ARCTIC dataset, generating
valuable annotations available online' that are
ideal for speech representation learning, speech
unit discovery, and disentanglement of speech
factors in several speech-related fields.

1 Introduction

Modern speech technologies have moved towards
end-to-end models that constitutes black box sys-
tems that do not allow for explainability of the
prediction or decisions. This lack of explainability
started to raise a lot of concerns in the industry be-
cause of the need of identifying causes or reasons
for decisions. This lead to the advent of the concept
of Explainable AI (XAI) for which the goal is to
discover ways to explains why a certain prediction
was made by a system.

For this, one avenue is the field of representa-
tion learning which incorporate unsupervised/self-
supervised learning, aiming to discover robust and
meaningful representations for various tasks and
analyze their relationship with expert knowledge
(e.g. (Tits et al., 2019, 2021)). It is well known that
in Deep Learning, learning knowledge can be tran-
ferable from one task to other and Self-Supervised

lhttps ://github.com/noetits/MUST_P-SRL
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Learning is probably the most versatile Transfer
Learning technique today. Transfer Learning (Tan
et al., 2018) is a widely used technique in Deep
Learning for leveraging models trained on related
tasks for which there exist abundant datasets to-
wards tasks for which few labels exist.

This principle has been applied successfully for
speech technology application (Wang and Zheng,
2015) with few available data such as speech recog-
nition for low resource languages, emotion recog-
nition in speech (Tits et al., 2018), emotional or
expressive speech synthesis (Tits et al., 2020, 2019)
or voice conversion (Zhou et al., 2022).

Self-supervised learning is thus a specific form
of Transfer Learning where a model is trained to
learn representations of input data without the need
for explicit supervision. These representations are
the projection of the input data to a multidimen-
sional space called latent space that captures infor-
mation that is important for prediction of character-
istics.

There is however still a lot work to do to under-
stand how these latent spaces are structured, what
characteristics can be predicted, how can they be
disentangled, etc.

In this paper, we are particularly interested in
providing a fine-grained expert annotations that
can be aligned with a speech signal, allowing for
exploration of relationships between speech repre-
sentations and expert knowledge.

To this end, our rich phonetic annotations, aug-
mented with syllable and stress information, serve
as strong supervisory signals. Moreover, these pho-
netic transcriptions, tied to their written form, pro-
vide an explicit correspondence between the dis-
crete symbols and their variably pronounced forms
encountered in natural language. This could facil-
itate the discovery of speech units directly from
the data. Hence, this research can provide valuable
insights and push the boundaries of current meth-
ods in automatic speech recognition, synthesis, and

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 74-82
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analysis.

Conducting linguistic feature extraction, such as
phonetic transcriptions, syllable separations, and
word stress, plays an essential role in a multitude
of fields, such as speech representation learning,
speech synthesis (Pradhan et al., 2013; Taylor et al.,
1998), speech recognition, and speaker identifica-
tion. The ability to accurately mark syllable bound-
aries in words is fundamental for understanding lan-
guage structure and its phonetic variations, which
in turn aids in efficient decoding and analysis of
speech data.

Among its potential use-cases, applications in
the realms of second language learning and more
specifically computer-assisted pronunciation train-
ing (CAPT) (Tits and Broisson, 2023) can greatly
benefit from the reliable extraction, ensuring the
development of effective learning materials that
enhance pronunciation and overall language profi-
ciency in learners.

Nevertheless, the extraction of linguistic features
poses challenges due to the inherent complexity
and variability observed in natural languages. Di-
alectal variations, phonetic ambiguities, and incon-
sistencies in syllable boundaries are contributing
factors that hinder the development of a reliable
and consistent system for extracting linguistic fea-
tures. Moreover, there is a lack of resources that
offer consistent phonetic transcriptions encompass-
ing stress marks, phone boundaries, and syllable
boundaries across both pronunciation and spelling
domains.

In this work, our goal is to define a methodology
for linguistic feature extraction (phonetic transcrip-
tions, stress marks, automatic syllabification in text
and phonetic transcription domains) that is multilin-
gual and compatible with forced-alignment tools.
We have developed a process based on existing
open-source building blocks that includes different
steps and checks, as well as a consensus mecha-
nism to extract the best possible linguistic features
from text.

The Montreal Forced Aligner (MFA) (McAuliffe
et al., 2017) is an essential tool in our analysis
for its function in phonetic alignment, providing
detailed pronunciation transcriptions. It is impor-
tant to note that, while MFA is commonly used to
align audio signals with corresponding text tran-
scriptions, we consider that task to be already ef-
ficiently handled by MFA’s acoustic models. Our
work aims to enrich this process: we focus on align-
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Input sentence

G2P:
-Pronunciation dictionary:
MFA/CMU pronunciation
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-fallback on model

Text normalization

[

Stress mark
estimation

eSpeak

Syllabification in text:
-single vowel detection
-look-up in syllabified words dataset
-sonority extraction in text +
language specific rules
-SSP-DTW with sonorities in
phonetics

Matching and
consistency analysis

Output containing original and
normalized text with segmented
phonetics and text

Figure 1: Block diagram of the linguistic feature extrac-
tion system described in Section 3

ing phonetic syllabifications with graphemic repre-
sentations of the corresponding words, essentially
extracting and aligning units of sounds for precise
syllabification across languages. We consciously
designed our system to be fully compatible with
the MFA, providing a complementary solution to
the existing forced-alignment process.

By aligning phonetic syllabifications with their
corresponding graphemic representations and creat-
ing a multimodal mapping, our methodology opens
up new avenues of exploration in the field of speech
representation learning.

2 Related Work

Automatic syllabification is a challenging task for
natural language processing due to the ambiguity
of syllable boundaries. Different techniques have
been developed to address this problem, includ-
ing rule-based and data-driven approaches. In this
section, we review some relevant studies on auto-
matic syllabification in English, Spanish, Italian,
and Portuguese.

For English, the study presented in (Marchand
et al., 2009) compares five different algorithms, in-
cluding two rule-based approaches and three data-
driven techniques. The study finds that data-driven
methods outperform rule-based systems in terms
of word and juncture accuracy. Furthermore, syl-
labification in the pronunciation domain is easier
than in the spelling domain. The study also high-
lights the challenge of establishing a gold standard
corpus for evaluation due to the lack of consensus
in the entries of multiple lexical databases. How-
ever, in their experiment, they apply the two rule-
based algorithms in the spelling domain without



any adaptation, and they do not consider the use of
the Sonority Sequencing Principle.

The Sonority Sequencing Principle (SSP) (Ven-
nemann, 1987) is a widely used rule for syllabifi-
cation, which states that syllables are formed by
increasing then decreasing sonority. It is based
on the sonority hierarchy, which assigns a relative
sonority value to each phone. Vowels have the
highest sonority, followed by approximants (such
as /r/ and /w/), fricatives, nasals, and finally stops,
which have the lowest sonority. The linguistic lit-
erature identified exceptions to this principle, the
main one being probably the sibilant-stop conso-
nant cluster (Iacoponi and Savy, 2011; Yin et al.,
2023; DeLisi, 2015). Implementations of the prin-
ciple with processing of these exceptions been suc-
cessfully applied for automatic syllabification in
several languages in the pronunciation domain with
very high word accuracies (Bigi et al., 2010; Bigi
and Petrone, 2014; Bigi and Klessa, 2015). But it
has also been applied in the spelling domain with
some success for some languages.

In Spanish, (Herndndez-Figueroa et al., 2013)
points out that syllabification follows basic rules
but may deviate due to various factors, such as
diphthongs or hiatuses. Some variations in syl-
labification are also related to geographical and
dialectal criteria. Therefore, automatic syllabifica-
tion in Spanish requires taking into account these
variations. For Italian, (Iacoponi and Savy, 2011)
presents a rule-based method that uses the Sonor-
ity Sequencing Principle (SSP) and additional rules
specific to Italian. The study evaluates their method
on a dataset of sentences that were manually syl-
labified and reports an accuracy of 0.98-1 for some
of the subjects. We could not find an application of
SSP in the spelling domain in English. The reason
is maybe because a naive application of SSP in the
spelling domain would not perform very well.

Many data-driven syllabification methods using
different levels of complexities of machine/deep
learning models, that have the potential to be ap-
plied to several languages, have been developed
but mainly for the phonetic domain only (Bartlett
etal., 2009; Rogova et al., 2013; Krantz et al., 2018,
2019).

In this literature review, we did not find any
method that is capable of syllabification in both
pronunciation and spelling domains and study the
consistency between them. In this work, we thus
propose a methodology for a unified automatic syl-

76

labification and experiment it in several languages.

3 System

The proposed methodology for linguistic feature
extraction is illustrated in Figure 1. It includes
several steps: text normalization, grapheme-to-
phoneme (G2P) conversion, syllabification in the
phonetic domain, and syllabification in the text do-
main. Lastly, a consistency analysis is conducted
to identify words with inconsistent syllable counts,
facilitating manual correction of the remaining ex-
ceptional cases. The system is designed to be multi-
lingual and compatible with forced-alignment tools,
namely Montreal forced aligner (MFA).

3.1 Text normalization

The initial stage of the process involves normaliz-
ing the text, which includes handling non-standard
notations that differ from actual words. The system
assumes that most punctuation symbols in English
are attached to words, either at the end (commas,
different kinds of dots, etc.) or at the start (double
quotes can be at the start and end). For acronyms,
the system assumes that they are written as a se-
quence of capital letters without dots between them.
Numerals are translated to words using a rule-based
algorithm with the Python library num2words?.

3.2 Grapheme-to-phoneme (g2p) conversion

After normalizing the text, the system utilizes var-
ious methods to perform grapheme-to-phoneme
(g2p) conversion. Phonetics is the study of the phys-
ical properties and production of speech sounds,
while phonemics is concerned with the abstract and
meaningful distinctions of sounds within a particu-
lar language, known as phonemes. Phonetics focus
on the sounds themselves, while phonemics focus
on the functional and linguistic aspects of those
sounds. There exist different phonetic symbol sets
categorizing speech sounds production (IPA, X-
SAMPA, ARPAbet)

There is a language abuse in the state of the art
of G2P models, as they are in fact performing the
transformation of written language (graphemes)
into a sequence of phonetic symbols (phones) and
not phonemes. These terminologies are often used
interchangeably in internet resources. In this pa-
per we only work with phonetic transcriptions (se-
quence of phones).

2https: //pypi.org/project/num2words/
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First, it looks up the word in a pronunciation
dictionary. If the word is not found, the system es-
timates its pronunciation using a machine learning
model. This two-step methodology allows the sys-
tem to use high-quality transcriptions from avail-
able dictionaries while handling the problem of
out-of-vocabulary words with a machine learning
model. However, this method is limited in that it
cannot model dependencies of pronunciation on
context. The system relies on manual human cor-
rection to handle this problem.

The system uses open-source resources as pro-
nunciation dictionaries and fallback machine learn-
ing models, including the CMU pronunciation dic-
tionary and an open-source CMU g2p model?, as
well as the MFA pronunciation dictionaries and
their g2p models using a carefully described IPA
phone set?.

3.3 Syllabification in pronunciation domain
(phonetic transcriptions)

Syllabification in the phonetic domain is carried out
by the system, employing the Sonority Sequenc-
ing Principle (SSP). The SSP is a well-accepted
principle that states that syllables are formed by or-
ganizing sounds according to their sonority, which
is a measure of the relative loudness or intensity of
a sound.

We based our implementation on SyllabiPy?
github repository. We defined the sonority hier-
archies for the different symbol sets used in this
paper (CMU phone set®, MFA’s TPA set, letters).
Figure 2 shows sonority curve examples for three
words. The top curves are in the phonetic domain,
while the bottom curves are in the spelling domain
(see next section for explanations about the map-
ping between them).

The syllable breaks are determined by the local
minima that have a vowel (sonority of value 5)
located before themselves and after the last syllable
break (or start of the word for the first syllable
break). An additional rule is that a new syllable
break cannot create a syllable that does not contain
a vowel.

In the resources used as a basis, diphthongs are
annotated as single phones, where hiatuses are an-

3https://github.com/Kyubyong/gZp

*https://mfa-models.readthedocs.io/en/latest/
mfa_phone_set.html

5https://github.com/henchc/syllabipy

®Based on the ARPABET phonetic symbol set: https:
//en.wikipedia.org/wiki/ARPABET
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notate as two separate vowels. Therefore to cor-
rectly segment hiatuses, we represent all vowels
by a sequence of two sonorities: 5, then 4. This
allows us to generate a syllable breaks in case of
hiatuses, without influencing the rest of the seg-
mentation. In this case, the syllable breaks position
will be placed after the vowel containing the local
minimum. On the contrary the syllable breaks de-
termined by consonant local minima will be placed
before them.

The system handles sibilant-stop consonant clus-
ters such as /skr/ and /spl/ thanks to the rule that
a new syllable break cannot create a syllable that
does not contain a vowel (mentioned earlier).

As stress marks are not provided in MFA dictio-
naries and g2p models, we use eSpeak as an extra
resource for retrieving this information. We com-
pute a syllabified version of eSpeak transcription
and extract stressed syllable index to augment the
MFA transcription.

3.4 Syllabification in spelling domain (text)

In the literature, it is commonly assumed that syl-
labification in the text domain results in a single,
definitive number of syllables. However, pronunci-
ation dictionaries, such as the CMU or MFA pro-
nunciation dictionaries, provide variations of pro-
nunciation, including variations in the number of
vowels and, therefore, in the number of syllables.

To ensure consensus across datasets, we propose
matching the number of syllables in text with the
number of syllables in the pronunciation dictionary.
This is consistent with the use of consensus as a
valid mechanism for gathering data from manual
annotators and was also used to combine datasets
in (Marchand et al., 2009).

We assume that the number of syllables is the
same across variants of English. We proceed with
syllabification in several steps. First, we detect if
the word has only one vowel based on its phonetic
transcription using the G2P section. This step in-
creases accuracy and avoids imprecisions that may
arise in the following steps.

The second step involves looking up the word in
a publicly available corpus of manually syllabified
words. For English, we use a dataset of manually
syllabified words’ from the Gutenberg Project. For
French, we use the Lexique383% . We apply a sys-
tematic correction to group consonants alone in a

7https: //www.gutenberg.org/ebooks/3204
8http: //www.lexique.org/
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Figure 2: Ilustration of the application of DTW on
sonority sequences in the pronunciation and spelling
domain. The blue curves are the sonority sequences, the
red and green lines are the mapping links extracted from
the DTW alignments. The green lines correspond to the
local minima selected as syllable breaks in the phonetic
domain and identifying the corresponding location in
the spelling domain. The syllable break location are
indicated with the vertical green pipe characters in both
phonetic and spelling domains.

word with the next syllable. This correction ad-
dresses the issue of the sC cluster mentioned in
Section 3.3. For Spanish, we do not use any dataset
and redirect everything to SSP.

The third step involves processing words with
more than one vowel that are out of vocabulary
(OOV). One could try applying SSP on the letters
of the words, assuming the sonority of the letters.
The performance of this method depends on the
language. Specifically, this work well when the
words follow a a predictable letter-to-sound map-
ping. To mitigate the limitation of this technique,
it is also possible to add language specific rules.

However, SSP on text will struggle with hia-
tus, diphthongs, silent letters, and other cases for
which the letter-to-sound mapping assumption is
violated. To overcome this difficulty, we propose
an approach that aligns sonority sequences in the
pronunciation domain and the spelling domain us-
ing Dynamic Time Warping (DTW) (Miiller, 2007).
This approach allows us to benefit from the accu-
rate prediction of syllable starts in the pronunci-
ation domain and map them into the spelling do-
main.

An illustration of this procedure is shown in
Figure 2 with three example English words con-
taining cases where letter-to-sound mapping is not
respected: (1) rhythm contains a silent A, a schwa
sound (symbol AHO in CMU set) that does not cor-
respond to a written letter, and a consonant sound
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Figure 3: Proportions of words (in %) in CMU ARC-
TIC sentences and MFA pronunciation dictionary per
number of syllables in the word, according to sonority
principle applied in the pronunciation domain
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written with two letters (th); (2) leaves containing
the grapheme ea as a single vowel, and a silent e;
(3) oceanic containing the grapheme ea as a hiatus.

4 Experiments

To evaluate the quality of an Automatic Syllabifi-
cation algorithm, two measures are typically used:
word accuracy and juncture accuracy. Word accu-
racy measures the proportion of words for which
the number of syllables is exactly the same as a
gold standard. Juncture accuracy measures the pro-
portion of junctures that are the same as a gold
standard.

In this study, we propose to measure word accu-
racy between the syllabified text of our methodol-
ogy and the result of the application of the Sonority
Sequencing Principle in the pronunciation domain.
This is backed by the literature, as the number of
syllables extracted in the phonetic domain is highly
reliable. This measure allows for reproducibility
and avoids comparison with a gold standard an-
notated by humans, which is also imperfect and
inconsistent.

Our consensus mechanism allowed us to detect
errors that can complement syllabified text corpora
or start corpora of edge cases for new languages.

4.1 Distribution of number of syllables in
words in natural language corpus and in a
lexicon

The word accuracy applied to sentences is not di-
rectly comparable to that of a lexicon of existing
words in English. The reason for this is that the
distribution of the number of syllables in a lexicon
and in a set of sentences is very different. To il-
lustrate this, Figure 3 shows the proportion (in %)
of words for each possible number of syllables in
CMU ARCTIC sentences and MFA pronunciation
dictionary (en_US variation). The large propor-
tion (> 70%) of single vowel words in sentences



explains why the lexicon benchmarks are more
challenging than a set of sentences.

We therefore provide the results for both scenar-
ios in Section 4.2 and Section 4.3.

4.2 Ablation Study on words

An essential step in our work involves the use of
SSP for direct syllabification - a method we refer
to as SSP. It is pertinent to note that our imple-
mentation of this approach mirrors the implemen-
tation provided in the documentation of the Natu-
ral Language Toolkit (NLTK)?, a popular platform
employed for multiple language processing tasks.
NLTK's syllabification implementation also relies
on SSP and supports various languages. This estab-
lished baseline bears significance in our ablation
study, where we gauge the additional contributions
made by the other components of our methodol-
ogy. The reader can directly spot the limitations
of this method applied to text by consulting the
given example in the link of the footnote with the
word sentence. Indeed, it is syllabified in 3 sylla-
bles (senltenlce), while it should be in 2 syllables
(senltence).

To measure the difference in performance be-
tween different languages, we performed an abla-
tion study on English (variations GB and US based
on MFA pronunciation dictionaries, as well as US
with CMU pronunciation dictionary), Spanish, and
French. We used a set of randomly selected 1000
words in the corresponding pronunciation dictio-
naries to report word accuracies in the different
versions.

The first step of all the versions is the same and
consists of single vowel checking through a look-
up in the pronunciation dictionary. Then, to be
able to quantify the contributions of the technique
of DTW between sonority sequencies of text and
phonetics, and the contribution of using look-up in
a dataset of syllabified words (when available), we
compute word accuracies on 4 alternatives of the
methodology, consisting in the possible component
combinations:

* SSP: we directly use SSP on the letters, we use
neither the DTW technique, neither look-up
in the dictionary

* lkp-SSP: we first perform lookup in the syllab-

ified words dataset to check if the word exist,
and fallback on SSP on the letters

*https://www.nltk.org/api/nltk. tokenize.
sonority_sequencing.html
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* SSP-DTW: extract sonority sequences and ap-
ply DTW to associate letters to phones and
use SSP to extract starts of syllables

* lkp-SSP-DTW: we first perform lookup in the
syllabified words dataset to check if the word
exist, else we use SSP-DTW

SSP | lkp-SSP | SSP-DTW | lkp-SSP-DTW
es_ES | 87.6 - 94.0 -
fr FR | 82.3 85.9 90.1 89.1
en_GB | 88.5 94.4 92.6 95.5
en_US | 88.5 93.7 92.3 94.2
CMU 89.5 93.6 934 94.7
Table 1: Word accuracies for different lan-

guage/variations and methods

We report word accuracies for different versions
of our methodology. The results are shown in Ta-
ble 1. From the results, we can observe that the
look-up in the syllabified words dataset has a posi-
tive effect over SSP (text only) for both French and
English (all variations). We can also see that the
SSP-DTW methodology performs better than the
naive application of SSP on text, for all languages
in our experiments. For English, the highest ac-
curacy is achieved by the lkp-SSP-DTW version,
indicating that the use of syllable corpus lookup in
conjunction with DTW methodology can signifi-
cantly improve the accuracy of automatic syllabi-
fication. This is however not true for experiments
in French. This might indicate that the SSP-DTW
methodology is more reliable in itself than the hu-
man annotations collected in the dataset used for
the experiment.

4.3 CMU ARCTIC sentences

The CMU ARCTIC dataset (Kominek and Black,
2004) is a multi-speaker database consisting of
1132 phonetically balanced English utterances,
recorded under studio conditions. The set of speak-
ers include several accents of English. The dataset
was then generated by selecting a compact subset
of utterances containing at least one occurrence of
every diphone (phone pairs).

It was originally created to support speech syn-
thesis research but it has been widely used in vari-
ous applications since its release, including speech
synthesis, voice conversion, speaker adaptation,
prosody modeling, speech recognition, and linguis-
tic studies. We therefore release the result of our
unified phonetization and syllabification in text and
phonetic domains to support future studies in these
domains. We also think that these annotations are
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useful information for speech representation learn-
ing as it could serve as data to analyze impact of
contribution of different factors (speaker identity,
accent, stress, rhythm), and potentially help in the
disentanglement of these different factors.

Furthermore, other datasets including L2-
ARCTIC (Zhao et al., 2018), and EmoV-
DB (Adigwe et al., 2018) use the same transcrip-
tions. L2-ARCTIC is a speech corpus of non-native
English that is intended for research in voice con-
version, accent conversion, and mispronunciation
detection. The initial release of their dataset in-
cludes recordings from ten non-native speakers of
English whose first languages are Hindi, Korean,
Mandarin, Spanish, and Arabic, each L1 containing
recordings from one male and one female speaker.
Each speaker recorded approximately one hour of
read speech from the CMU ARCTIC sentences.
EmoV-DB consists of recordings of several speak-
ers with different emotional categories in a parallel
setup using CMU ARCTIC sentences. These sen-
tences do not convey particular emotions in the
text which would help to disentangle emotional
expressiveness in speech from the textual content.

The phonetization and unified syllabification de-
scribed in Section 3 was applied to the 1132 CMU
ARCTIC sentences. The word accuracy obtained
on all the words is > 99.8%.

5 Conclusions

This study introduced a novel, multilingual method-
ology for linguistic feature extraction, designed to
be compatible with forced-alignment tools. Our
approach effectively extracted essential linguistic
features, including phonetic transcriptions, stress
marks, and automatic syllabification in both text
and phonetic domains. The methodology inte-
grated various techniques, such as text normaliza-
tion, grapheme-to-phoneme conversion, syllabifi-
cation in the phonetic and text domains, and a con-
sensus analysis to identify inconsistencies.

Our ablation study demonstrated the efficacy of
the proposed methodology in automatically syl-
labifying words across multiple languages. The
optimal performance was achieved by combining
corpus lookup and Dynamic Time Warping (DTW)
on sonority sequences. This approach can be fur-
ther enhanced by progressively incorporating edge
cases into the training dataset.

By applying our methodology to the CMU ARC-
TIC dataset, we generated valuable data that can
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benefit various speech-related research domains,
available online'?. Our unified phonetization and
syllabification annotations have the potential to ad-
vance speech representation learning and disentan-
gle different factors in speech technologies, such
as speech synthesis and speech analysis tasks.

Limitations

This paper concentrates on the intersection of pho-
netics and syllabification, aiming to align pho-
netic transcriptions with corresponding graphemes.
While we mention the term alignment, the context
in this paper refers to the alignment of phonetic
transcriptions with their corresponding graphemes,
a pivotal step in our methodology for accurate mul-
tilingual syllabification. Highlighting this nuance
provides a correct understanding of the terminolo-
gies and approaches used in this study, and sheds
light on the specific challenges and contributions
of our work.

Future research directions include extending the
proposed methodology to additional languages and
investigating the impact of our linguistic feature
extraction on specific speech technology applica-
tions. Furthermore, refining the methodology by
incorporating language-specific rules or addressing
limitations in the consensus analysis could lead to
even more accurate and robust results.

While our methodology presents improvements
in linguistic feature extraction and automatic syllab-
ification, some limitations should be noted. Firstly,
while we aimed to create a multilingual system,
our current implementation and evaluations were
focused mainly on English, French, and Spanish.
Extending and evaluating our methodology across
other languages, especially those with vastly differ-
ent phonetic structures, remains a future challenge.

Secondly, the system heavily relies on the avail-
ability and quality of pronunciation dictionaries for
its grapheme-to-phoneme conversion process. As
such, issues like handling out-of-vocabulary words
or modeling pronunciation dependencies based on
context heavily depend on manual correction, lim-
iting the scalability of the system. Note however
that the choice of MFA tools was done among other
things because of the large list of languages it sup-
ports (see the pronunciation dictionaries'' and g2p
models'?).

10https: //github.com/noetits/MUST_P-SRL

11https: //mfa-models.readthedocs.io/en/latest/
dictionary/index.html

12https: //mfa-models.readthedocs.io/en/latest/
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Thirdly, our approach to identifying and address-
ing inconsistencies between different syllabifica-
tion resources uses a consensus mechanism which,
while effective, may still retain inaccuracies inher-
ent in these resources.

Acknowledging these limitations provides valu-
able directions for potential future enhancements
and research towards fully automated and accurate
linguistic feature extraction.
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Abstract

Voice-controlled Al dialogue systems are sus-
ceptible to noise from phonetic variations and
failure to resolve ambiguous entities. Typically,
personalized entity resolution (ER) and/or
query rewrites (QR) are deployed to recover
from these error modes. Previous work in this
field achieves personalization by constraining
retrieval search space to personalized indices
built from user’s historical interactions with the
device. While constrained retrieval achieves
high precision, predictions are limited to en-
tities in recent user history, which offers low
coverage of future requests. Further, maintain-
ing individual indices for a large number of
users is memory intensive and difficult to scale.
In this work, we propose a personalized entity
retrieval system that is robust to phonetic noise
and ambiguity but is not limited to a personal-
ized index. We achieve this by embedding user
listening preferences into a contextual query
embedding used in retrieval. We demonstrate
our model’s ability to correct multiple error
modes and show 91% improvement over base-
line on the entity retrieval task. Finally, we
optimize the end-to-end approach to fit within
online latency constraints while maintaining
gains in performance.

1 Introduction

As conversational Al agents assert a ubiquitous
presence in millions of households, the expectation
for a seamless user experience grows. Users ex-
pect the Al agent to understand natural language
queries and diverse accents, remember individual
preferences, and function well in noisy environ-
ments. However, some interactions lead to user
friction where a user does not get what they re-
quest. Friction primarily arises from (1) system
errors and (2) ambiguity. System errors accumulate
across various stages of the spoken dialog system
pipeline, such as Automatic Speech Recognition
(ASR), Natural Language Understanding (NLU),

&3

2 Coyiow

play love
wf) | Here's Love by Flo Rida | ) | Here's Love by Flo Rida
& No, play love by kendrick lamar
u{) | Here's Low by Sza o)) |Here's Love by Kendrick Lamar

(a) ASR system error (b) Ambiguity error

Figure 1: Example (a) phonetically and (b) contextually
ambiguous queries that require user reformulation for
the system to resolve the request correctly.

and more. For example, the ASR model may con-
fuse the user request “play low” with a phonetically
similar request "play love" (Figure 1a). Ambigu-
ity arises when a user’s input is unclear due to
abbreviations, or lack of context. A common sce-
nario in the music domain is when a user requests
a song without specifying the artist. As illustrated
in Figure 1b, without context into a user’s listen-
ing preferences, the system struggles to deliver the
user’s preferred track due to numerous matching
entities in the catalog. These scenarios result in
prolonged interactions where a user reformulates
the query or abandons the request all together.

In practice, these challenges are typically ad-
dressed through Query Rewriting (QR) (Pon-
nusamy et al., 2020; Chen et al., 2020b) and build-
ing robust Entity Resolution (Zhou et al., 2022)
components. In search-based approaches, queries
and candidate target entities are embedded in latent
space where vector search is performed to retrieve
the most relevant target per query. In QR, the out-
put space is formed by historical user requests; in
ER it comprises catalog entities. Personalization
and contextualization are key for high-precision re-
trieval in entity-centric domains (Cho et al., 2021;
Uma Naresh et al., 2022). Current approaches
rely on user-specific indices to constrain the output
search space to requests/entities a user has asso-
ciated with in the past to achieve personalization.
However, personalized indices offer low coverage
of future queries (Uma Naresh et al., 2022), since
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Go by The Kid Laroi

Go by Cat Burns

O
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O

G.O.A.T by Eric Bellinger
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(a) Global index

Go by The Kid Laroi

Go by Cat Burns

G.O.A.T by Eric Bellinger

(b) Pesonalized Index

Go by The Kid Laroi

"play ﬁO"/O

"play go" Go by Cat Burns

G.0.A.T by Eric Bellinger

(c) Our Approach

Figure 2: Different approaches to search-based retrieval visualized in a 2-d projection. Circles represent indexed
entities and squares represent queries that are embedded in the same search space. Lines connect the query with its
nearest entity neighbor. In (a) search is performed on a global index; the nearest entity to the query is retrieved.
The output is agnostic to user preferences. In (b) search is performed on personalized indices; different entities are
retrieved for users A (green) and B (blue) due to different index compositions. Our approach is illustrated in (c),
where personalization is achieved via contextualized query embeddings, such that semantically identical queries
may be positioned differently for different users in the embedding space.

users regularly explore new content through novel
queries.

In this work we present an efficient personalized
retrieval system that extends beyond the personal-
ized index. Rather than using historical interactions
to constrain the output (Cho et al., 2021), we embed
them into continuous representations to form user
embeddings that become inputs into the retrieval
model. The user embeddings are joined with se-
mantic query representations to form a contextual
embedding that is subsequently used in retrieval.
Figure 2 visually differentiates our work from exist-
ing global and personalized search-based retrieval
approaches.

To form the user embeddings, we propose en-
tity2vec; a domain-aware continuous entity repre-
sentation learning method that captures item simi-
larities beyond semantics and phonetics. This dif-
ferentiates our approach from previous work in con-
textualization (Hao et al., 2022), where multi-turn
dialogues are concatenated with the query as input
into a semantic encoder. To illustrate, consider a
sequence of queries in a user session:

"play dancing queen by abba"
"play i will survive by gloria gaynor”
"play bad girls"

Previous approach cannot leverage semantic signal
in the sequence to disambiguate the final request
for "bad girls", whereas our domain-aware embed-
dings would derive that user likes 70’s disco music
and resolve it to Bad Girls by Donna Summers as
opposed to the more recent and popular song Bad
Girls by MIA.
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In Section 6, we demonstrate that our approach
improves by 91% over an index-based personalized
baseline. Further, we explain how we optimize the
end-to-end system for runtime deployment.

2 Related Work

Query Rewriting (QR) in voice-enabled conver-
sational Al systems is a popular way to refine
ASR output into forms that can be accurately han-
dled by downstream systems (Ponnusamy et al.,
2020; Fan et al., 2021; Cho et al., 2021). Pon-
nusamy et al. (2020) propose rewrites based on a
Markov Chain model trained on historical user re-
formulation patterns. Chen et al. (2020b) re-frame
the problem as neural retrieval where queries and
rewrite candidates are jointly encoded in vector
space, followed by nearest-neighbor search on the
query. The embedding-based search enables gen-
eralization to previously unseen queries. Fan et al.
(2021) and Cho et al. (2021) improve precision
by explicitly modeling diverse user preferences
through personalized indices. However, the index
is constrained to historical interactions which re-
sults in low recall ceiling when users request for
new entities (Uma Naresh et al., 2022). Collabo-
rative filtering to diversify the index is suggested
in (Uma Naresh et al., 2022), but index size is still
limited by memory constraints. Our approach over-
comes this limitation by expanding search to the
full catalog, while maintaining high precision and
personalization power.

Our model architecture is inspired by Cho et al.
(2021) and Zhou et al. (2022), who fuse embed-
dings from multiple sources in encoder-based QR
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Figure 3: Dual encoder setup with shared encoder architecture. Semantic and domain signals are embedded with
pre-trained encoders (SBERT and entity2vec). On the query side (left) we embed the query text and up to 50 recent
entities that user interacted with. On the entity side (right), we embed the entity tokens and fetch the entity2vec
embedding. Component embeddings are combined in the merger layer to form the final representation of query and
entity. Model weights are optimized to maximize cosine similarity between groundtruth (query,entity) pairs.

and ER systems. We take a similar approach to
merge user and query embeddings in our encoder,
which we describe in section 3.2.

3 Model

We frame the problem as entity retrieval. Follow-
ing a dual-encoder framework for dense retrieval
(Gillick et al., 2019), we learn vector representa-
tions of queries and entities in a joint space. The
encoder is optimized with a contrastive learning ob-
jective (Chen et al., 2020a), ensuring that queries
and relevant entities are embedded closely in the la-
tent vector space. At inference, we leverage FAISS
(Johnson et al., 2019) to perform nearest neighbor
search on a pre-computed global entity index to
retrieve the closest candidates for an input query.

3.1 Encoder Architecture

Figure 3 shows our two-part encoder architecture.
We detail each component of the encoder below.
Semantic Encoder. We leverage SBERT
(Reimers and Gurevych, 2019), a pre-trained sen-
tence encoder, to derive semantic representations
of user queries. As in the original paper, we apply
mean pooling on the token outputs of SBERT to
form a 768-dimensional embedding for each input
query and entity. The pre-trained SBERT is fine-
tuned on domain data as described in Section 5.1.
Entity Encoder for Personalization. We lever-
age user interaction patterns to learn domain-aware
entity representations. The goal of these repre-
sentations is to capture domain knowledge, such
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that similar entities lie close together in the embed-
ding space. Following the intuition of word2vec
(Mikolov et al., 2013), we hypothesize that songs
that appear together frequently in user-sessions are
similar across some dimension. We propose en-
tity2vec, a modified word2vec skip-gram model
that operates at the entity level across user listen-
ing sessions instead of word level across sentences.
Specifically, the model is trained to maximize the
cosine similarity between target and context entities
that appear together in user playback sessions. We
train entity2vec with Gensim'. In Table 1 we qual-
itatively evaluate the resulting embeddings by in-
specting nearest neighbors of select popular tracks
and find that music entities from similar artists and
genres have high cosine similarity.

In the dual-encoder model (Figure 3), entity2vec
input on the entity side is a unique global catalogld.
On the query side, we embed a maximum of 50
entities the user has recently engaged with, and
compute their mean to generate what we term as a
"user embedding". The motivation is that user em-
beddings should capture user listening preferences.

3.2 Merger Layer

The Merger Layer combines semantic and
user/entity embeddings in the encoder model. We
experiment with weighted sum fusion as in (Liu
et al., 2018; Zhou et al., 2022) and concatenation

"https://radimrehurek.com/gensim/models/word2vec.html.
Training parameters: dim=200, window_size=5, learn-
ing_rate=0.0025, negative_counts=5



Anchor Nearest Neighbors

Kill Bill, | Blind, SZA | Sure Thing, Miguel |

SZA Boy’s a Liar, Pinkpatheress | ...

Baby Shark, | The Alphabet Song, Cedarmont Kids

Pinkfong | We are the Dinosaurs, The Laurie
Berkner Band | Twinkle Twinkle Lit-
tle Star, Super Simple Songs | ...

Table 1: Nearest neighbors based on cosine similar-

ity between entity2vec embeddings. The popular kid’s
song Baby Shark is closely associated with other kid’s
content. In contrast, a recently trending song by SZA is
close to other hip-hop/r&b artists.

as in (Gillick et al., 2019). The weighted-sum ap-
proach leads to best results on our task (see com-
parison in Appendix B). A linear projection layer
is applied to reduce all component embeddings to
the same dimension, followed by an element-wise
weighted sum. Rather than treating the weighted
sum coefficients as hyper-parameters (Zhou et al.,
2022; Liu et al., 2018), we let them update during
training to converge to the optimal values given our
objective function. Following Zhou et al. (2022),
we pass the weighted sum output through 2 feed-
forward layers to allow information to flow across
the dimensions of the merged embedding.

4 Data

We build a dataset of voice search queries from
user requests in a production system. For this work
we target a subset of user utterances requesting mu-
sic playback (e.g., “play flowers by miley cyrus”).
Expansion to other domains is in scope for future
work. All user data are de-identified.

4.1 Training

Rephrase Dataset. We use a heuristic rephrase
detection algorithm as in (Cho et al., 2021; Fan
et al., 2021) to construct a dataset of groundtruth
(query, entity) pairs from user reformulations in
multi-turn dialogues. When the production sys-
tem fails to resolve a query correctly, users may
choose to repeat their request until they get what
they want (as in Figure 1). We find 2.5M such
(query, rephrase) events in one week of production
traffic and train our model to resolve the rephrase
entity from input query. We extract the song name
and artist name announced to the user before play-
back begins to form the ground truth entity. For
example, "play green green grass" and "put on the
green grass song" rephrase utterances map to the
entity Green Green Grass by George Ezra.
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For embedding the queries we use the grapheme
output of the ASR model as input into the seman-
tic encoder. To form the user history, we em-
bed up to 50 recently played entities by the same
userld within 2 weeks of each request. To derive
the semantic embedding of an entity, we feed the
fine-tuned SBERT model a string containing track
and artist names corresponding to the entity along
with special tokens that demarcate track and artist
boundaries (see Figure 3).

We train on 1 week of rephrase data (2.5M) and
reserve 2 consecutive days for validation (400k)
and testing (380k).

Entity Dataset. To train entity2vec, we build
a dataset of user listening sessions. A session is a
sequence of music entities played for a particular
user, where session boundaries are characterized by
800s+ pause in playback. To reduce noise, we only
consider entities that play for 30 seconds or longer.
We keep sessions with at least 2 entities and have
no upper limit on session length. We find 31 mil-
lion such sessions in 1 month of English-speaking
user interactions with our production system. For
entity2vec training, we process the sessions into
positive pairs of target and context entities. Nega-
tive pairs are generated by sampling random con-
text entities from the vocabulary.

4.2 Inference

Entity Catalog. There are 1.5 million unique
music entities in the Entity Dataset (Section 4.1),
which cover 95% of all music entities in in our pro-
duction system traffic. This set defines the output
entity space that we search over during inference.

S Experiments

5.1 Optimization Objective and Training

We train the end-to-end encoder on the Rephrase
Dataset (Section 4.1). We tune the encoder with
a contrastive objective (Chen et al., 2020a); given
input query ¢; and a set of candidate entities F/, the
task is to identify the ground-truth entity e, € E.

Empirically, we find that fine-tuning SBERT sep-
arately performs better than tuning the encoder and
merger layers at the same time (Appendix Table 8).
Thus, we first fine-tune SBERT with in-batch soft-
max loss (eq 1), where the candidate set E is con-
strained mini-batch entities. Since we can’t guar-
antee that all targets in batch are unique, we use
(Khosla et al., 2020)’s formulation of softmax con-
trastive loss which generalizes to an arbitrary num-



Baseline Model r@l1 r@s r@10

global, SBERT +249.47% +179.99% +148.20%
global, fine-tuned | +109.78%  +69.87%  +50.90%
personalized +91.09% +162.38% +176.20%

Table 2: Retrieval results on rephrase test set relative
to baselines. In global, SBERT, search is performed
over the entire entity catalog from section 4.2 using a
pre-trained SBERT to generate query and entity embed-
dings. We fine-tune SBERT following section 4.1 in
global, fine-tuned and perform search over the same
entity catalog. personalized is our own implementation
of (Fan et al., 2021) using SBERT from global, fine-
tuned with personalized catalogs constructed from up
to 1 month of historical user utterances. P-value com-
puted from bootstrap confidence intervals is <0.01 for
all reported results.

ber of in-batch positives. Using cosine similarity
as the scoring function s(q, e) = cos(f(q), f(e)),
where f(.) denotes a forward pass through our en-
coder, the loss for a batch of size IV is given by:

N
Lg = Z Z log
i=1

pE Pi

~1
| Pl

exp(s(gi, p)/T)

S exp(s(qie;)/T)
(1

Here, P; is the set of "positive" batch indices such
that e, = ¢;Vp € P;, and 7 is a scalar temperature
parameter that we set to 0.1 based on findings in
Khosla et al. (2020) and Chernyavskiy et al. (2022).

Next, we adopt triplet loss with a hard margin for
training the merger layers. Here, negative entities
e~ are explicitly sampled for each input rephrase
pair (g;, e;) to form triplets (g;, e; , e; ). The loss
function to minimize is:

N

Ly = Zmax(O,)\ —s(gi,ef) +s(qie;)) (2)
=1

where A is the margin hyper-parameter that we
tune to A = 0.25 on the validation set. To form
the triplets we sample 2 random negative catalog
entities for each positive (g, e) pair our dataset.
For all experiments we train with Adam op-
timizer with initial learning rate 5e-5 and batch
size=1024 distributed across 8 NVIDIA v100 GPU
cores. The output dimension is fixed to 200. We
train for up to 3 epochs with early stopping on val-
idation loss. Our best model learns coefficients
of 0.8 and 0.2 corresponding to the semantic and
entity embedding weights (a and b in Figure 3).

5.2 Evaluation

We evaluate the model on the task of retrieving the
correct target entity from a global catalog given
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history size target entity in history?
no yes
% of test r@1 % of test r@l
0 22.47% +3.90% - -
1-10 18.34% -2.66% 6.29%  +49.41%
10-20 19.28% -1.55% 10.67%  +38.13%
20-30 10.96% +4.57% 6.72%  +39.24%
30+ 3.30% +16.66 % 2.02%  +39.99%
total 74.28% O (relative) | 25.71% +41.36%

Table 3: Model performance as function of user history
size and composition. r@1 reported relative to average
r@1 when target is not in history. When user history is
not available, we build a user embedding from the top
50 popular tracks in our catalog.

an input user utterance and listening history. Our
most competitive baseline is our own implementa-
tion of (Fan et al., 2021), which comprises semantic
search over de-identified personalized catalogs con-
structed from up to 1 month of historical user inter-
actions. For a fair comparison with our model, we
generate semantic embeddings with our fine-tuned
SBERT. We also compare against a global base-
line where we run semantic search over a global
catalog.

We report recall @k for values of k in {1, 5, 10},
measuring the fraction of test set for which the
target entity is in the top k model predictions.

6 Results & Discussion

Table 2 compares our results against baselines. Our
model achieves >100% and 91% relative improve-
ment in recall@1 over the global and personalized
baselines, respectively. Interestingly, relative per-
formance gains over the (Fan et al., 2021) person-
alized index baseline grow for higher values of
k. This result highlights a major advantage of our
model whose predictions are not limited to a fixed
size user catalog, leading to higher recall on fu-
ture requests. In Table 3 we show how our model
generalizes to predict entities beyond those present
in user history, and that the generalization power
increases with larger history size. At the same time,
when target is present in recent history, the model
performs best when history size is small.

We observe that fine-tuning SBERT is crucial
to adapt the semantic encoder to our entity-centric
domain (global, fine-tuned vs global, SBERT in
Table 2). User requests in production are typically
short, comprising an action verb followed by the
desired entity (e.g., "play baby shark"). Fine-tuning
on the query-entity matching task teaches the en-
coder to differentiate between entities and verbs



query user history model predictions

play go 1035, Tiesto | Beautiful Dat, Trinix | In the Name of | Go, Cat Burns | Go!, Lil Yachty | Go, The Kid Laroi
Love, Martin Garrix | ...

play go All I want, Olivia Rodrigo | Cigarettes, Juice WRLD | | Go, The Kid Laoroi | Goat, Lil Tjay | Go, Cat Burns
Love, Kendrick Lamar | ...

play go Trap Queen, Fetty Wap | Love & War, Kodak Black | Im | Goat, Eric Bellinger | Go, Cat Burns | Go, The Kid
so Awesome, Kodak Black | ... Laroi

play Something in the Orange, Zach Bryan | Oh My Dayum!, | Beer in Mexico, Kenny Chesney | Stick That in your

drinkin The Gregory Brothers | About You, The 19751 ... Country Song, Eric Church | Caught Up in The Country,

mexico Rodney Arkins | ...

Table 4: Top 3 model predictions for input user query and history. Top 3 rows demonstrate how user history
influences the order of top retrieved entities for a fixed request. The bottom 2 rows are examples of ASR and ER

error correction, respectively.

in the query. For example, the query "play phone
booth" moved closer to song Payphone and further
away from Phone Play post-fine-tuning on our task.

In Table 4 we demonstrate how model predic-
tions on the ambiguous request “play go” vary
based on user history (e.g., Go by The Kid Laroi
given hip hop preferences vs. Go by Cat Burns
given electronic dance preferences). We also high-
light an example of successful recovery from pho-
netic variations (go — Goat by Eric Bellinger) and
semantic aliasing ("play drinkin mexico" — Beer
in Mexico).

6.1 Online Inference

Upon profiling the runtime of the retrieval model
at each step we find that encoder forward pass and
vector similarity search are prohibitively slow on
our deployment hardware (r4.8xlarge CPU instance
on AWS cloud). We perform the following opti-
mizations to reduce latency and enable real time
online inference.

Knowledge distillation. We replace SBERT
(109M parameters) used in the semantic encoder
with MiniLM (22M parameters) (Wang et al., 2020)
which is distilled from BERT-base and follow the
same training process as described in section 4.1.
As a result, we reduce encoder forward pass run-
time from 44 ms/query to 14 ms/query while main-
taining 71% improvement over baseline. More
details can be found in Appendix in Table 9.

Similarity search. By combining inverted index
(IVF) with product quantization as in (Herve et al.,
2011) for approximate vector-search, we reduce the
average search speed from 239ms to 6ms per query
with marginal performance trade-off in recall@1.
Detailed results are reported in Appendix Table 10.

6.2 Phonetic signal

Similar to previous work (Zhou et al., 2022; Cho
et al., 2021), we experiment with ingesting pho-
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netic signal into our model using a transformer
based phonetic encoder. However, contrary to pre-
vious reports, we find that a SBERT with subword
tokenization is effective at recognizing phonetic
variations as well as semantics and a separate pho-
netic encoder does not improve performance on our
task. We report results in Appendix A.

7 Conclusion

In this work we present a novel approach for per-
sonalized search-based entity retrieval on noisy
queries in voice-operated Al dialogue systems. We
achieve personalization by encoding historical user
preferences in a contextual query vector represen-
tation, followed by vector search on a global entity
catalog. We empirically confirm that our approach
significantly improves on existing baselines that
rely on fixed-size historical indices to guide model
output to personalized predictions.

Future work includes incorporating more contex-
tual features in the user embeddings. For example,
user preferences may vary based on time of day,
day of week, and seasonality trends. Similarly in-
cluding external knowledge such as lyrics, release
dates, etc., in the entity embeddings will be ex-
plored.

Limitations

Music is a dynamic domain with new content re-
leased on a weekly basis. To keep up with changing
trends, the proposed system must be retrained at
a frequent cadence to learn embeddings for newly
released entities and adapt to changing listening
patterns. Another direction for future work is to
explore methods for approximating embeddings
for new releases to close the coverage gap between
model re-trainings. For example, new releases from
known artists can be positioned close to other enti-
ties from the same artist in the embedding space.
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A Phonetic Encoder

We inject phonetic signal as input to teach the end-
to-end model to recognize phonetic variations for
ASR error correction. We pre-train a phonetic
BERT (PBERT) on user queries with a masked lan-
guage modeling (MLM) objective. Training data
for the phonetic encoder comprises phoneme string
outputs from the ASR model (e.g., “plel @ t1{ n
t @ s” for the request “play atlantis”). As in (Cho
et al., 2021), we introduce word boundaries (e.g.,
“plel @tl{nt@s”) and train a sub-word phoneme
tokenizer to make the phoneme token length com-
parable to query length. As with SBERT, we mean-
pool over the token output of the last layer to build
the final embedding.

We experiment with different encoder configura-
tions: vocabulary size=10,000, hidden dimensions
{128, 512, 768}, {4, 8, 12} attention heads, and {2,
4} transformer layers. We evaluate PBERT on a
downstream homophone binary classification task
before using it in the end-2-end model. We opt
for a smaller architecture (small-BERT (Turc et al.,
2019), 18M parameters) to ensure that our end-to-
end model latency is not significantly affected.

In the merger layer, we add phonetic embedding
derived from PBERT with the semantic and entity
embedding, as described in Figure 4. Table 5 com-
pares end-to-end model performance with and with-
out phonetic encoder. We observe that recall@k
is similar between SBERT + PBERT + entity2vec
end-to-end model and SBERT + entity2vec model.

Model recall@1 recall@5 recall@10
SBERT + pBERT + entity2vec | +89.88% +162.88% +176.64%
SBERT + entity2vec +91.09% +162.38% +176.20%
pBERT + entity2vec +66.35% +135.46% +149.72%

Table 5: Performance comparison with and without
phonetic encoder on rephrase test set. Metrics reported
relative to personalized baseline (our implementation of
(Fan et al., 2021)).

B Multi-modal fusion methods

For merging the semantic, phonetic, and entity2vec
embeddigs, we experiment with weighted sum fu-
sion as in (Liu et al., 2018) and concatenation as in
(Gillick et al., 2019).

The weighted sum approach is described in Sec-
tion 3.2. For concatenation, outputs of each compo-
nent encoder (entity2Vec, SBERT, and/or PBERT)
are joined to form one large embedding combining
the dimensionality of all the inputs. We pass the
concatenated embedding through a feed forward
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Model Fusion r@1 r@s r@10
concat  +60.70% +131.29%  +145.64%

PBERT + E2V sum +66.35% +135.46% +149.72%
concat +85.07% +158.63% +172.36%

SBERT + E2V sum +91.09% +162.38% +176.20%
concat +80.53% +156.46% +171.32%

SBERT + pBERT + E2V

sum +89.88% +162.88% +176.64%

Table 6: Comparison of concatenation (concat) and
weighted-sum (sum) fusion methods for different com-
binations of semantic (SBERT), and entity (E2V) em-
beddings. All metrics reported relative to personalized
baseline (our implementation of (Fan et al., 2021)).

layer to reduce the dimension back to 200, followed
by another 2 fully connected layers on top to match
the architecture of the weighted sum merger.
Results in Table 6 indicate that weighted sum
fusion consistently outperforms concatenation.

C Encoder training method

To train the end-to-end model described in Sec-
tion 3.1, we first try tuning the pre-trained SBERT
encoder and Merger Layer weights at the same time.
However, we find that fine-tuning SBERT on our
rephrase dataset separately yields a better perform-
ing model. Results are reported in Table 8. Thus,
for all experiments reported in this paper we split
training into 3 steps: first we and train entity2vec;
next we fine-tune pre-trained SBERT/PBERT on
the rephrase dataset; finally, we freeze all encoder
weights and fine-tune the merger layers on the same
rephrase dataset.

D Encoder runtime optimization

Tables 9 and 10 present detailed results from en-
coder and vector search optimization detailed in
Section 6.1. Replacing SBERT (109M parameters)
with MiniLM (22M parameters) paired with opti-
mized approximate nearest neighbor search results
in total 20ms/query average inference time. This
is 14x improvement in speed over the SBERT +
exhaustive search baseline.

E Performance Over Time

User music preferences vary over time due to sea-
sonality, changing trends, and new releases. In
Table 11 we report how model performance re-
gresses over time. We observe 721bps regression
in recall@1 over 3 months, indicating that regular
retraining is necessary to keep up with user listen-
ing habits and incorporate new releases.
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Figure 4: Dual encoder setup with shared phonetic, semantic and entity encoders. Semantic, phonetic and domain
signals are embedded with pre-trained encoders (SBERT, PBERT and entity2vec). On the query side (left) we
embed the query text, query phonemes and up to 50 recent entities that user interacted with. On the entity side
(right), we embed the entity tokens and the entity itself. The component embeddings are combined in the merger
layer to form the final representation of query and entity. Model weights are optimized to maximize cosine similarity
between groundtruth (query,entity) pairs.

request rephrase ground truth entity correction type
play the standard time play the stains of time Stains of Time by Kit Walters ASR

play the gummy bear song play i am a gummy bear [ Am a Gummy Bear by Gummibar ER alias

play low play low by sza Low by Sza ER disambiguation

Table 7: Sample user rephrases from our dataset. Rephrases in production traffic illustrate 3 error modes: ASR
defect, ER alias, and ER disambiguation.

Method r@l1 r@5s r@10
end-to-end -8.91% +53.58% +81.44%
pre-tune +91.09% +162.38% +176.20% Encoder Inference time r@1 r@s r@10
SBERT 45 ms/query +91.09% +162.38% +176.20%
Table 8: Fine-tuning SBERT encoder before tuning MiniLM 14 ms/query +71.35% +133.83% +145.84%

the combined model results in better performance. All

metrics reported relative to personalized baseline (our ~ Table 9: Runtime vs recall comparison of different

implementation of (Fan et al., 2021)). semantic encoders. Inference time is evaluated as the
mean over 1000 inference runs with batch size 1. Met-
rics reported relative to personalized baseline (our im-

F Examples from Rephrase Dataset plementation of (Fan et al., 2021)).

We present sample rephrases in our rephrase dataset
in Table 7. The dataset extraction method is de-
tailed in Section 4.1. For readability, we omit the
user history field which contains up to 50 entities

from user’s recent interaction history. Search Method | build speed ms/query  r@1
Exhaustive 696ms 239 +91.09%
+IVF 3.9s 23 +89.22%
+ Quantization 151s 6 +79.37%

Table 10: Vector search optimization for online infer-
ence. Metrics reported relative to personalized baseline.
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train date test date r@1 r@s r@10
2/26/2023 0% 0% 0%
2/27/2023  -0.14%  -1.05% -1.24%
2/28/2023 -0.16%  -095% -1.23%

2/26/2023  3/19/2023 -7.00%  -6.16% -6.31%
3/22/2023 -16.48% -7.60%  -7.32%
5/10/2023 -16.48% -15.07% -14.25%
5/14/2023 -16.76% -15.08% -14.50%

Table 11: Model performance over time. Model is

trained on 1 week of rephrase data ending on train date.
Model is tested on 1 day of rephrase data from test date.

Recall values reported relative to a 2/26/2023 test date

baseline.
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Abstract

Multi-label text classification is a critical task
in the industry. It helps to extract structured
information from large amount of textual data.
We propose Text to Topic (Text2Topic), which
achieves high multi-label classification perfor-
mance by employing a Bi-Encoder Transformer
architecture that utilizes concatenation, subtrac-
tion, and multiplication of embeddings on both
text and topic. Text2Topic also supports zero-
shot predictions, produces domain-specific
text embeddings, and enables production-scale
batch-inference with high throughput. The final
model achieves accurate and comprehensive
results compared to state-of-the-art baselines,
including large language models (LLMs).

In this study, a total of 239 topics are defined,
and around 1.6 million text-topic pairs annota-
tions (in which 200K are positive) are collected
on approximately 120K texts from 3 main data
sources on Booking.com. The data is collected
with optimized smart sampling and partial la-
beling. The final Text2Topic model is deployed
on areal-world stream processing platform, and
it outperforms other models with 92.9% micro
mAP, as well as a 75.8% macro mAP score.
We summarize the modeling choices which are
extensively tested through ablation studies, and
share detailed in-production decision-making
steps.

1 Introduction

In the digital age, large-scale online travel plat-
forms (OTPs) face the challenge of effectively ex-
tracting valuable insights from massive volumes of
textual data. Such an OTP can get hundreds of mil-
lions of customer reviews in one year, so structured
insights are crucial for comprehending customer
behavior and making data-driven decisions in order
to improve the overall travel experience. One appli-
cation example is to find the top facilities for each
hotel, by extracting information from the positive
reviews, which can lead to better accommodation
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recommendations. Similarly, understanding travel
destination themes, such as romantic getaways, city
trips, or family trips can enhance destination rec-
ommendations. In this study, we research use cases
from Booking.com and define in total 239 valu-
able topics. Each topic is set with a topic name
and a topic description, to better match the natural
customer language and for optimal model training
results. The main data source is user-generated con-
tent on Booking.com, including customer reviews
and forum posts from hotel owners and travelers.

Developing an architecture that ensures high ac-
curacy, scalability for a large number of topics,
low cost and low latency on real-world inference
is of utmost importance. Sentence-BERT (Reimers
and Gurevych, 2019) extends BERT (Devlin et al.,
2019) for sentence-level embeddings, achieving im-
pressive performance on tasks like sentence similar-
ity and semantic retrieval. Multilingual Universal
Sentence Encoder for Semantic Retrieval (MUSE)
(Yang et al., 2019), a multilingual extension of
the Universal Sentence Encoder (Cer et al., 2018),
enables cross-lingual semantic retrieval and pro-
vides multiple open-source models. Though there
are also other state-of-the-art approaches, the two
methods above are prevalent in real industry appli-
cations, due to the computational efficiency, high
and robust in-domain performance by fine-tuning,
zero-shot ability, and strengths in scalability.

Our proposed Text2Topic framework adopts a
fine-tuning approach upon pre-trained language
models. Specifically, we employ the bi-encoder
transformer (Vaswani et al., 2017) architecture pro-
posed by Sentence-BERT, which allows separate
injection of the text and topic information, as Sec-
tion 2 shows. This architecture not only enables
the model to have zero-shot capabilities (handle
new topics for inference) but also exhibits text em-
bedding abilities. By leveraging the strengths of
the pre-trained language model and incorporating
topic-specific information, the model effectively
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addresses the challenge of topic detection. The
paper’s contributions are summarized as follows:

* We propose a practical Text2Topic framework
for the efficient extraction of topics from texts.

* We share the model development core find-
ings, including multiple model architectures’
comparison, training one universal model ver-
sus dedicated models per data source, outper-
forming against baselines (MUSE, GPT-3.5).

* We share efficient and practical dataset an-
notation strategies with smart model-based
sampling, as described in Section 3.

* We provide zero-shot capability for unseen
classes, which performs better than MUSE
when the unseen class is in the travel domain.

¢ We detail the real-world use cases in Section
6, and deployment decisions in Section 7.

2 Architectures

In this study, we research 3 main architectures. For
each text-topic (with topic description), we know
one binary ground truth for this pair, and perform:

* Cross-encoder: the text and topic description
are tokenized and concatenated as one input
with [SEP] separator (“TEXTLSEPJTOPIC”),
then passed into the transformer encoder and
a classification head to derive logits, where
Binary Cross Entropy (BCE) loss is applied.

Bi-encoder Concatenation (Figure 1): we
first generate a pair of embeddings (U, V')
both as dimension d,,,4¢;, Where U is the
topic description embedding and V is the text
embedding. Then we feed E (the embed-
ding concatenation, subtraction and multipli-
cation) into 2 feedforward layers (F'F'N; €
RaEXdmodel . ReLLU activation, and dropout,
and then FFN, € R%moder*1) and finally
apply BCE loss.

Bi-encoder Cosine: similar to the Figure 1, but
at step 4, instead of embedding combination,
we apply cosine similarity directly on U and
V', and then apply mean-squared-error loss as
the objective function.

The bi-encoder architecture has 3 benefits over
cross-encoder: 1) Low inference time-complexity:
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we pre-calculate and cache all topic embeddings,
only embed each text once and repeat the text vec-
tor to score on all topics. Given N as the number of
texts and 7" as the number of topics, to get N x T’
predictions, the bi-encoder needs O(N + T') en-
coding operations, while it is O(N - T') for the
cross-encoder. 2) In-house embedding: bi-encoder
enables us to have the text part embeddings, that
can be used as features for other tasks. 3) For the
same base model, the bi-encoder allows longer text
input since text and topic are embedded separately.

All the above architectures can easily extend
to include new topics for training, and also have
zero-shot possibility when the unseen topic is
well-defined with a description. For all architec-
tures, we experiment with three pooling strategies
(Reimers and Gurevych, 2019): using the output of
the [CLS]; computing the mean or max of output
vectors on all tokens (mean-pooling, max-pooling).

3 In-house Dataset Construction

With hundreds of topics, the annotation becomes
challenging: how to define, merge, and distinguish
topics; how to decide annotation volume and can-
didate texts per topic and reduce cost. This section
shows how we tackle them by smart model-based
sampling and partial labeling.

3.1 Annotation Volume Estimation

We start with a proof-of-concept stage, where 43
topics are pre-defined and annotated by domain
experts on 12K texts. With the data, we run mul-
tiple cross-encoder model training by increasing
the number of positive annotations per topic in the
training data. Figure 5 in the Appendix shows that
for most topics, the mAP metrics saturate at 200
positive annotations, which reflects basic guidance.

3.2 Topic Definitions

In the end, we define 239 topics from user re-
searches, covering broader topics such as trip types
(romantic trip, city trip etc.), travel activities (surf-
ing, hiking etc.), and specific user needs such as
hotel facilities (garden, balcony etc.). Each topic
has a name and a description which is refined with
the help from LIME (see Section 5.5).

3.3 Smart Sampling and Partial Labeling

In our corpus, text is typically short and contains
low number of topics, so we apply partial labeling
instead of full annotation. The 239 topics are split
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into 38 multi-choice question groups (e.g., food
topics are in one group). With the best 43-topic
model (from the training as Section 3.1 shows), we
apply it to predict on a large corpus, detecting 239
topics and generating text-topic scores. Notably,
the prediction results for the unseen 196 topics are
generated by zero-shot.

With the predictions, we perform smart text sam-
pling: 1) Firstly, for each topic, we do probability-
weighted sampling on the texts whose scores pass
a threshold, and assign selected texts to the multi-
choice group which contains that topic. Figure 4
in the Appendix shows an example for a text that
passes the threshold for the “romantic trip” topic
and was assigned with the group of topics that con-
tains the “romantic trip” topic. 2) In addition, to
avoid annotation bias, each selected text is also as-
signed to one random group (besides the already
assigned relevant groups). For example, the text
in Figure 4 is also assigned to another group ran-
domly. 3) Besides the model-based text sampling,
we also randomly sample some texts from corpus
and randomly assign them to groups.

We use AWS SageMaker Ground Truth as the
platform for the annotations collection, and lever-
age on some of the MuMIC (Wang et al., 2023)
annotation pipelines and strategies (majority voting
etc.). We recruit specialized annotators to form one
auditing team, and multiple worker teams. After a
knowledge transfer phase, we start the production
phase where each task is done by 3 workers, and the
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labels are inferred by majority voting. The auditing
team performs regular performance checks and we
get > 95% annotation accuracy. Finally, we col-
lected almost 1.6 million annotations at a low cost,
with 200K of them being positive (which is 12.5%).
These annotations are gathered from approximately
120K unique multilingual texts, including English,
German, French, Russian, etc., from guests, trav-
elers, and property owners, sourced from reviews,
the travel community, and partner hub.

4 Experimental Setup

All experiments are performed on a computation
instance equipped with 1 NVIDIA Tesla T4 Tensor
Core GPU, 4 vCPU, and 16GB RAM. The exper-
iments have the following general settings: bert-
base-multilingual-cased model as the pre-trained
base model; fine-tuning all layers; mixed-precision
training; batch size of 12 text-topic pairs, with gra-
dient accumulation steps as 8; weight decay (on all
weights that are not gains or biases) with coefficient
0.01; AdamW optimizer (Loshchilov and Hutter,
2017); initial learning rate le-5 with a linear sched-
uler; allowing maximum 6 epochs with early stop-
ping patience as 3 steps, and warm-up steps as 10K.
We apply stratified sampling (on topic frequency)
on the texts, and get training/validation/test sets,
with a ratio of 70/15/15 respectively.



4.1 Evaluation Metrics

Given T topics, and N texts, the ground truth and
the predictions can both be represented as a matrix
with size N x T'' . We use the below metrics as
the main evaluation criterion (Sorower, 2010):

 Average Precision (AP) per class:

N
AP; =" p;(i) Ar;(i) (1)
=1

where p; is the precision of class j, and r; is
the recall of class j. It is equivalent to the area
under the precision-recall curve per class.

macro Mean Average Precision

1 T
AP = — AP; 2
macrom T ]Zl % )

which is the unweighted average of AP on all
classes, treating each class equally.

weighted Mean Average Precision

T
1
weightedm AP = — Z AP;-NP;
g=1 V45 =1
3)
where NN P; is the number of positive samples
of class j.

* micro Average Precision (global-based)

N-T
micromAP = Z p(i)Ar(i)
i=1

C))

4.2 Baselines

MUSE (Yang et al., 2019): Google provides mul-
tiple versions of MUSE models, and we use the
“multilingual-large-3” one 2. The model covers the
languages we have in the dataset, is trained with
multi-task learning on Transformer architecture,
and is optimized for multi-word length text. Given
a text, MUSE generates a 512-dimensional vector
as the embedding. For each text-topic pair, we cal-
culate the cosine similarity on text embedding and
topic embedding as the model prediction score.
GPT-3.5: we choose the gpt-3.5-turbo-0301, which
supports a maximum 4K token context length.
'With partial labeling, the matrix has null values, and we
filter them out accordingly when do metrics calculation.

Zhttps://tfhub.dev/google/universal-sentence-encoder-
multilingual-large/3
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method micro macro weighted
mAP mAP mAP
MUSE 379 41.2 60.4
Cross-encoder 94.7 814 92.8
Bi-encoder (cosine) 89.4 71.4 88.5
Bi-encoder (concat) 84.3 62.5 80.3
Bi-encoder (concat, sub) 91.4 72.6 89.5
Bi-encoder (concat, sub, mult)  92.9 75.8 91.0

Table 1: Performance comparison of Text2Topic, on the
test set. All metrics are in %.

S Experimentation Findings

5.1 Final Model Performance

Table 1 compares performance across multiple
model architectures and MUSE baseline. We per-
form hyperparameter tuning on all methods, report
the highest reachable performance and find all of
them beat the MUSE baseline . The cross-encoder
outperforms all other architectures because it learns
the topic-text relation attention layer by layer inside
the transformer. Generally, the bi-encoder concate-
nation method is better than simple cosine similar-
ity architecture, and the embedding subtraction and
multiplication are both necessary.

It’s worth mentioning that for all methods, the
model training typically can saturate at around 2nd
or 3rd epoch, which takes less than one day for one
model training. The cross-encoder has the high-
est performance but with too high inference time
complexity, so we choose the “bi-encoder (con-
cat, sub, mult)” one for production and refer it as
“bi-encoder concat” model in this paper.

5.2 Train One Model or Three Models?

As mentioned in Section 3.3, there are 3 data
sources. In the dataset, customer reviews occupy
more than 70% data, and have almost all 239 topics,
while the other 2 sources both have less than 100
topics. Should we train one model on all data or
3 models per dataset? Table 2 shows the ablation
results - under the same modeling set-up, we train
and evaluate models on each source. Training on
all datasets yields the best performance, we expect
the model to learn patterns from all sources and
gain better generalization ability. This decision
also makes the model management easier.

3In Text2Topic hyperparamter tuning, we find the bi-
encoder cosine architecture prefers mean-pooling, while bi-
encoder concat models prefer [CLS] embedding.



train on all data (all) train on customer review (rev) | train on partner hub (ph) | train on travel community (tc)
macro micro weighted | macro micro weighted | macro micro weighted | macro micro  weighted
mAP mAP mAP mAP mAP mAP mAP mAP mAP mAP  mAP mAP
all | 714 894 88.5 66.1 87.0 86.6 33.5 23.1 534 32.6 349 55.4
rev | 71.7  90.3 89.4 70.8 90.1 89.4 323 22.5 54.7 31.3 34 55.3
ph | 652 732 72.8 28.2 17.5 35.1 58.7 73.7 72.9 27.4 21.1 39.2
tc 57.9 68.7 70.4 40.9 344 49.1 27.9 20.6 41.3 564 727 72.0

Table 2: Cross-dataset model training experimentation results, on test set, with bi-encoder cosine. We mark the

highest scores as bold for each evaluation metric.

method macro weighted macro
mAP mAP F1 score
MUSE 41.2 60.4 46.4
Bi-encoder (cosine) 35.8 64.1 41.3
Bi-encoder (concat, sub, mult)  46.8 71.1 51.1

Table 3: Zero-shot overall test-set performance on all
topics. We search the best F1 across all thresholds per
topic, and then get macro averaged F1 across topics.

5.3 Zero-Shot Evaluation

We randomly split all topics into 5 groups, and
then each time train 4 groups and evaluate the zero-
shot ability on the remaining one group. Table 3
provides an overall performance comparison, and
we see bi-encoder concat model performs the best.
In the Appendix, Figure 6 and Figure 7 depict topic-
level performance, where the bi-encoder concat has
the best zero-shot ability in most topics, and Table 4
in the Appendix shows the aggregated performance
on popular topics. In general, we can say that the
Text2Topic keeps a balance between learning new
capabilities and exposing existing capabilities.

5.4 Comparison with GPT-3.5

Considering the GPT-3.5 context length, we select
24 topics for the evaluation, covering 3 representa-
tive groups: food, trip types, and room conditions.
With multiple prompt iterations, we find the few-
shot prompting is necessary because it can regulate
output format by showing examples. We finally
get two best prompts: 8-shot and 38-shot. Both
prompts include the 24 topic definition list with de-
scriptions, and Chain-of-Thought (CoT) (Wei et al.,
2023) rules: ask the model to quote each part of
the text, infer topics, and then output a topic list.
Besides topic description and CoT rules, the 8-shot
prompt (around 1700 tokens) has 3 text examples,
covering 8 positive annotations on 8 topics; while
the 38-shot (around 2900 tokens) has 16 examples,
covering 38 positive annotations on 24 topics.
Figure 2 shows that Text2Topic (our bi-encoder
concat model) performs the best in almost all top-
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ics, and the 38-shot prompt slightly outperforms
the 8-shot. This indicates that when already hav-
ing clear topic descriptions in the prompt, adding
more examples is not always powerful. In our
case, Text2Topic is a better choice because of: 1)
less dependency on non-open-source models, so
that the model iteration and rate limits are under-
control; 2) avoiding tedious prompt tuning proce-
dures; 3) a lower cost and it’s more eco-friendly:
the Text2Topic model has less than 200M param-
eters (considering we cache the topics embedding
during inference). If the GPT-3.5 has 175B pa-
rameters, it would be more than 800 times bigger.
As described in Section 7.2, Text2Topic can reach
8000 text/min throughput, with a $7.5 cost predict-
ing on 1M text, while GPT-3.5 would cost $6250
(assuming the prompt and text have 3.5K tokens,
the output (CoT and topic list result) has 500 to-
kens) #. 4) better scalability for larger number of
topics and less worrying about prompting length
exceeding certain limitation. Though we can split
topics into multiple groups/prompts and do multi-
ple calls on GPT-3.5, it means a higher cost and the
group split setting is difficult to optimize.

5.5 Model Interpretation

We use Local Interpretable Model-agnostic Expla-
nations (LIME) (Ribeiro et al., 2016) for model in-
terpretation. LIME generates local explanations by
perturbing individual text instances, approximating
the model behavior by using a surrogate model that
highlights the importance of words in the original
text. LIME is effective in the error-analysis flow,
and help topic description refinements at an early
stage (see example in Figure 3 in the Appendix).

6 Real-World Applications

This section describes 3 main real-world use cases
which employ Text2Topic. Besides, the Text2Topic

*OpenAl price on gpt-3.5-turbo-0301 is $0.0015 / 1K input
tokens + $0.0020 / 1K output tokens, when writing this paper.
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Figure 2: F1 score on each topic, on the test set. The x-axis represents the 24 topics, ordered by topic popularity
(support-1). For Text2Topic and MUSE, we search the best F1 score across all thresholds for each topic.

training system is also re-used effectively for train-
ing other data sources like search queries.

It is important to note that use cases may require
varying threshold settings. We use the F-beta score
(Goutte and Gaussier, 2005) to determine the op-
timal threshold setting on the topic’s probability
score for a given use case. For recall-oriented sce-
narios, where minimizing false negatives is critical,
we set beta > 1. Conversely, for precision-oriented
cases, where reducing false positives is a priority,
we set beta < 1. For each topic, to find the best
threshold, we systematically vary its value by com-
puting the threshold that yields the highest F-beta
score, using the chosen beta value.

Property Recommendation: Reviews contain
rich information that encapsulates the users’ pref-
erences towards different properties. Text2Topic
turns them into structured features, which enhance
the in-house property recommendation models’ per-
formance. With classification scores on reviews,
we perform property-level score aggregations, to
extract a variety of insightful attributes such as
a property’s relevancy for different themes (e.g.,
beach, spa/wellness). These attributes are inte-
grated into the recommendation models to increase
relevant inventory (e.g., number of beach properties
is increased by 4% by leveraging Text2Topic); and
to create novel and nuanced categories of recom-
mendations (such as castle-type hotels, romantic
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getaways, etc.). Furthermore, the model provides a
natural mechanism to serve explainable recommen-
dations by linking them to relevant reviews.

Detect Property Type: With Text2Topic pre-
dictions on reviews, we are able to detect hidden
properties categorizations, by analyzing relevant
topic (guest house, farm stay, resort, chalet etc.)
frequencies. For example, an Apartment property
that is described as a Guest house, could be sur-
faced to users that are searching for a guest house.
We detect over a million extra properties supply
(774K more apartments, 25k more villas and 60k
more cabins/chalets).

Fintech: Text2Topic training pipeline enables
us to train a new model on Fintech data and top-
ics, such as payments and questions about invoices
and commissions. The model auto-classifies in-
coming messages from customers and correctly
re-routes them to the right self-service solution,
which increases the auto-reply success rate by 9%
and reduces manual handling time.

7 Deployment

7.1 The Deployment Platform

The model is deployed and monitored on a stream
processing platform based on Apache Flink (Katsi-
fodimos and Schelter, 2016). It consumes real-time
events from Kafka (Kreps et al., 2011) topics to



generate model-based predictions. It automatically
scales up the number of model endpoints to better
handle peak times and allows leveraging Apache
Flink’s asynchronous I/O operator to perform con-
current asynchronous HTTP calls to the model end-
point. The architectural design allows the platform
to be also used for backfilling (scoring historical
data with newly deployed model), by simulating
events of historical data and pushing them to Kafka.
The platform is designed to achieve high prediction
throughput while keeping a low latency.

7.2 Model Serving and Batch Invocations

To maximize the hardware utilization (NVIDIA
Tesla V100 GPUs for production), we combine
batch model invocations with Flink’s native asyn-
chronous I/O support. For batch model invocations,
we leverage Flink’s windowing mechanism to im-
plement the grouping of events that will be sent to
the model together in a single API call. Events are
accumulated to windows as soon as they become
available for consumption from the source Kafka
topic. The window is closed after a predefined time
period (e.g. 3 seconds), or whenever the number of
accumulated events reaches the desired batch size.

Aiming to minimize the cost per prediction, we
start with grid searching the optimal batch size by
performing stress tests using a single model end-
point. For each batch size we randomly sample
batches of texts from the corpus, and then iterate
over the batches sequentially and invoke the model.
We observe that while increasing the batch size, the
throughput (number of texts predictions per minute)
first increases, and then starts decreasing as the
number of available GPU cores exhausted. An op-
timal and memory-explosion safe batch size is 300.
Then we run experiments to compare batch invo-
cations against asynchronous I/O invocations. As
Table 5 in the Appendix shows, using synchronous
API calls with a batch size of 300 yields a cost of
$7.5 for 1M predictions, while using 50 concurrent
asynchronous I/0 API calls without batching yields
a cost of $15. So the former is selected. In addi-
tion, for backfilling, texts with similar lengths are
grouped together and we apply dynamic padding
to the longest element in each batch, which reduces
computational overhead.

8 Conclusion

In this paper, we present Text2Topic, a flexible
multi-label text classification system that is de-
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ployed at Booking.com, with high performance
and supports multiple applications. We summa-
rize lessons learnt from the end-to-end production
journey, including practical annotation approaches,
modeling choices, and production decisions, which
are valuable references for the industry domain.
We also compare the performance with LLM like
GPT-3.5, and Text2Topic is a more feasible choice
from multiple aspects. For future work, we can ex-
plore if parameter efficient fine-tuning techniques
(e.g., LoORA (Hu et al., 2021), p-tuning (Liu et al.,
2022)) on open-source LLMs could bring better
performance, and how to better balance the model
specialization and generalization power for zero-
shot.
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A Appendix

macro weighted macro
method mAP mAP F1 score
MUSE 54.4 58.3 57.6
Bi-encoder (cosine) 47.4 62.4 51.6
Bi-encoder (concat, sub, mult) 58.1 68.5 60.0

Table 4: Zero-shot overall test-set performance on popu-
lar topics which have more than 50 positive annotations
each in the test set. We search the best F1 across all
thresholds per topic, and then get macro averaged F1
across topics.

Batch #Concurrent Throughput $USD/IM
Size Calls (#texts per Predictions
(Async I/O) minute)
1 50 4,000 $15
300 3 7,200 $8.3
300 1 8,000 $7.5

Table 5: Comparing batch model invocations and Async
I/O approach. Maximizing the batch size doubles the
model invocation throughput and reduces the prediction
costs by half. Combining too many asynchronous calls
with a large batch size exhausted the GPU resources,
which resulted in a reduced throughput compared to
pure batch invocations.

Prediction probabilities lot nature-peaceful trip

waterfall
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Text with highlighted words

Having a view of the waterfall, so very peaceful experience in the mountain. Sometimes we hear sound of
kids playing.

Figure 3: LIME explanation for a specific text-topic pair.
We can see word-level importance in detecting “nature-
peaceful trip” topic. Orange color indicates positive
influence (words like: view, waterfall, peaceful, moun-
tain) and Blue color indicates negative influence (words
like: kids, sound). LIME explanation helps human to re-
fine topic descriptions, for example by removing unclear
wording, or adding more precise and concise wording,
at the early stage of this project.
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Select appropriate categories:

Beach trip
City trip
[ CoTTTTmTmommmmm o mmm s mmmmEEmm T ! Nature trip
1 The location is amazing, as is the food and the owners! It :
: was the most romantic place that I've ever stayed! | Roadtrip
__________________________________ Romantic trip
Ski trip
None of the above
Skip

Figure 4: Example of the topics group assigned to a text
in an annotation task. The annotator can select multiple
topics.



Good location Public transport options nearby Connection to the airport Central location Sightseeing location
Food and drink options nearby Shopping area Parking option Quiet area Location safety Access to the beach
Clean bed Clean bathroom Housekeeping clean Room cleanliness Clean property Pool Kitchen Breakfast
Wellness area General facilities WiFi connection Sauna Garden Room amenities Fitness center Terrace
Restaurant Staff help and support Check-in Reception Value for money Food value for money Extra charges

Convenient location In-room temperature Comfort bed Quiet room Room size Comfort shower Comfort room
Location with a view Comfort bathroom = macro mAP = micro mAP weighted mAP
1.0 1.00
99224 B— B30

0.4 025
02 0.00
0 100 200 300 400 500

number of positives per topic

Figure 5: Performance tracking when sampling different number of positive annotations per topic for model training.
This provides a general guide: for most topics, 200 number positive annotations is enough. However, for training
hundreds of topics in one model, we might need more positive annotations per topic, so we also consider it when
deciding on the annotation volume.

Zero-Shot AP Gap Per Class ("bi-encoder concat" - "bi-encoder cosine")
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Figure 6: Zero-shot Average Precision score gap on each topic, on the test set. The x-axis represents the topics,
ordered by the score gap. The y-axis shows the gap between the AP score of “bi-encoder concat” model and
“bi-encoder cosine” model. This plot includes the popular topics which have more than 50 positive annotations each
in the test set. We can see the cosine one is almost always worse than the concat one.
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Zero-Shot AP Gap Per Class ("bi-encoder concat" - "muse")
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Figure 7: Zero-shot Average Precision score gap on each topic, on the test set. The x-axis represents the topics,
ordered by the score gap. The y-axis shows the gap between the AP score of “bi-encoder concat” model and MUSE.
This plot includes the popular topics which have more than 50 positive annotations each in the test set. We can
see that when inspecting topic-level performance, the Text2Topic bi-encoder concat has stronger zero-shot ability
than MUSE. MUSE is better at some topics, which we find are mainly facility specific topics (BBQ, towel, vending
machine, stairs etc.).
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Abstract

Most e-commerce search engines use customer
behavior signals to augment lexical match-
ing and improve search relevance. Many e-
commerce companies like Amazon, Alibaba,
Ebay etc. operate in multiple countries with
country specific stores. However, customer be-
havior data is sparse in newer stores. To com-
pensate for sparsity of behavioral data in low
traffic stores, search engines often use cross-
listed products in some form. However, cross-
listing across stores is not uniform and in many
cases itself sparse. In this paper, we develop a
model to identify duplicate and near-duplicate
products across stores. Such a model can be
used to unify product catalogs worldwide, im-
prove product meta-data or as in our case, use
near-duplicate products across multiple to im-
prove search relevance. To capture the product
similarity hierarchy, we develop an approach
that integrates retrieval and ranking tasks across
multiple languages in a single step based on
a novel Hierarchical Ranked Multi Similarity
(HRMS) Loss that combines Multi-Similarity
(MS) loss and Hierarchical Triplet Loss to learn
a hierarchical metric space. Our method out-
performs strong baselines in terms of catalog
coverage and precision of the mappings. We
also show via online A/B tests that the product
mappings found by our method are success-
ful at improving search quality in low traffic
stores, measured in rate of searches with at least
one click, significantly by 0.8% and improving
cold start product engagement measured as new
product clicks significantly by 1.72% in estab-
lished stores.

1 Introduction

Modern Search Engines utilize two types of infor-
mation associated with products in their matching
and ranking stages: 1) semantic information in
terms of product attributes (e.g. title, description,
brand, color etc.) provided by the sellers, and 2) be-
havioral information derived from the customer’s

interaction with the product (e.g. clicks, adds-to-
cart, purchases, reviews & ratings etc.). Behavioral
features are critical for both matching and ranking
stages and play an important role in improving the
quality of search results.

Large amount of customer behavior data is re-
quired for building high quality behavioral features.
The difference in query volume across high-traffic
established stores versus a new store is often stag-
gering, with newer stores receiving orders of mag-
nitude lower traffic. Lower traffic in newer stores
lowers the quality of behavioral features and con-
sequently the quality of search results. Also, many
major e-commerce companies operate a multilin-
gual search system where each country has a pri-
mary language and possibly multiple secondary
languages. However, not all secondary languages
have rich behavior data, resulting in poorer search
quality compared to primary language queries.

One practical way to mitigate this sparsity in
large scale commercial Search Engines is Integra-
tive Knowledge Transfer (IKT) (Pan et al., 2008;
Zhuo et al., 2008). As part of transfer learning,
IKT is a technique used to infuse knowledge from
one domain into a different domain similar to fea-
ture engineering and data integration methods (Pan,
2014). In e-commerce, IKT is used to synthetically
associate behavioral data for a product from higher-
resource source store with the cross-listed product
in a lower-resource target store. Despite its suc-
cess, IKT based methods suffer from selection bias:
owing to more (transferred) behavioral data, cross-
listed products dominate search results while prod-
ucts exclusive to a specific store get pushed down
in relevance. This negative transfer can overwhelm
local preferences and results in bad customer ex-
perience. In this paper, we reduce the selection
bias by identifying products, across multiple stores,
with near-identical shopping intents and apply IKT
techniques to these product mappings. We refer to
such products as substitutes.
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The problem of identifying substitutes across
stores with different languages can be formulated
as cross-lingual information retrieval (CLIR). Exist-
ing works in CLIR focus on either query/document
translation using machine translation (McCarley,
1999; Picchi and Peters, 1998) or expanding queries
with translations (Ballesteros and Croft, 1998; Xu
and Croft, 2017). Nguyen et al. (2008) uses
Wikipedia as source for cross-lingual document
sets, Tigrine et al. (2015) constructs cross-lingual
ontologies from existing knowledge bases. All
these works suffer from poor generalization to new
domains such as product search. Most works in
CLIR don’t use behavioral features which are im-
portant for product search. Gupta et al. (2020)
addresses some of these challenges for product
search by estimating prior values of behavioral
features for cold start products. However, their
approach is neither cross-locale nor easily extend-
able to a cross-lingual setting. Ahuja et al. (2020)
addresses the problem of product search in multi-
ple languages with limited amount of data per lan-
guage. They achieve this by learning language in-
dependent query and product representations with
an end-to-end (query, product) relevance ranking
model.

CLIR approaches, however, ignore hierarchi-
cal information associated with most product cat-
alogs. Product catalogs of all major e-commerce
businesses are organized in a product taxonomy
(Karamanolakis et al., 2020). A typical example
is ‘Shoes->Mens Sports Shoes->Running Shoes’.
It follows then that cross-listed products exist in
a cross-lingual product hierarchy, even though the
taxonomy mapping may not be one-to-one. Prod-
uct taxonomy or other forms of hierarchy can still
be leveraged when retrieving substitute products
from catalogs of different stores. Hierarchical
ranked loss functions can learn the characteristics
of the product taxonomy and score exact cross-
listed cross-lingual products higher than substitutes,
and substitutes higher than dissimilar products in
other categories (Figure 1).

In this paper, we propose an approach that com-
bines retrieval and ranking across multiple lan-
guages in a single step. Our solution makes use of
product hierarchy by combining Multi-Similarity
(MS) loss (Wang et al., 2019b) and Hierarchical
Triplet Loss (Ge, 2018) into Hierarchical Ranked
Multi Similarity (HRMS) Loss. While there ex-
ist loss functions which optimize for output rank

Exact Matching Product
(Various Stores and Languages)

Substitute Products

Product Query // \
4 ! (Similar Product Identity)

‘ Product Categorization

Figure 1: The diversity of a cross-listed cross-lingual
multi-store product catalog means that for a given prod-
uct there exist multiple possible exact and substitutes
matches. A learned metric space should reflect the na-
ture of the data set by ranking exact matches closer
than substitutes and far from other levels of product
categorization.

(Cakir et al., 2019; Wang et al., 2019a) or hierar-
chical objectives (Yang et al., 2021) independently,
none learns both together. Using HRMS, we learn
a ranked metric space by generating informative
pairs based on the hierarchical nature of the data.
By varying the margin based on the hierarchical
label, we are able to improve the ranked query out-
put compared to vanilla multi-similarity and rank-
ing based loss functions. We demonstrate the use
of HRMS by training a multi-modal cross-lingual
model nicknamed ProductSIM based on a hierar-
chical cross-lingual product catalog. Finally we
demonstrate the business use of ProductSIM by
using its output to improve Search Results for new
stores and products as measured by significant im-
provement in business metrics like Search-Rate-
with-Clicks (percent of searches with at least one
clicks) and New Product Impressions and Clicks.
The main contribution of this paper is the Hierar-
chical Ranked Multi Similarity (HRMS) Loss, built
by extending Multi Similarity loss for hierarchical
ranking in metric space.

2 Method

In this section, we review the challenges of a hier-
archical product data set and limitations of proxy
based loss functions (Yang et al., 2022) applied to
sparse data. We then introduce our Hierarchical
Ranked Multi Similarity loss (HRMS), an adaption
from Multi Similarly (MS) Loss.

2.1 Preliminaries

We assume a information retrieval setup where
given a feature space X, there is a query ¢ € X
and a candidate set R C X. Our goal is to learn a
non-linear mapping function f(z;) (using a deep
neural net) that embeds an instance x; onto a unit
sphere of m-dimensional space. Formally we de-
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fine the similarity of two items as S;; given as the
euclidean distance between { f(x;), f(z;)} where
Sij = —llwi — =42 -

2.2 Hierarchically Labelled Data

To perform nearest neighbour retrieval, given ¢
there exist a rank output in R according to their
hierarchical labels In order to create this ranked
list, each item x; is assigned a label yf at every
level of the hierarchy L. Product data set contains
an inherent hierarchy created in terms of an taxon-
omy (Karamanolakis et al., 2020). For example,
using the product hierarchy ‘Shoes->Mens Sports
Shoes->Running Shoes’, shoes classified as Run-
ning Shoes and with the same Brand would be
considered substitutes. Similarly shoes classified
as Mens Sports Shoes and with the same Brand
could be through of as second level substitutes, but
those classified merely as Shoes would not be con-
sidered substitutes. Similarly shoes classified as
Mens Sports Shoes and with the same Brand could
be through of as second level substitutes, but those
classified merely as Shoes would not be considered
substitutes.

The goal of HRMS hence for each item z;
is to create a ranked output list by placing
items that are equivalent together resulting in
[mg, :U?, l'(l), x%xﬂ where L denotes the number
of hierarchical layers available in the data set and
z! denotes items which are hierarchically equiva-
lent at [ level. This is distinctive from ranking loss
(Cakir et al., 2019) which assumes only a single
layer or L = 1. In an hierarchical setting each [
can have varying sizes and items in each [ are to be
ranked with an ordering. In this paper this ranked
output list is created based on the hierarchical prod-
uct data set but could be form generally from any
data set with a hierarchical taxonomy.

Although R can aggregate to a root node, HRMS
makes no assumption on the depth of L. In cases
where L = 1 (single layer), HRMS will work simi-
lar to MS. The only assumption made in the data
set is that the items aggregate hierarchically similar
to a tree as illustrated in Figure 2. For example,
items in the data set could be aggregated under dif-
ferent categories with increasing granularity. The
items in the training data are considered weakly
supervised as it capture only the relations of item
to each other hierarchically.

Product Category

Product Substitute 1 Product Substitute 2 Product Substitute 3

Product A Product B

Products Products

BEE *xx

Figure 2: HRMS requires weakly supervised labels and
assumes that items within the same layer are equivalent.
In this paper we assume that each product can only
belong to one product substitute grouping

2.3 Challenges of Hierarchical Product Data
In Metric Learning

Challenge 1 - Sparsity of Data: State-of-the-art
deep metric learning loss functions typically oper-
ate at the pair level or involve training a proxy at the
class level. For example Additive Margin Softmax
attempts to rank the true translation of each item
against all alternatives discounted by a configurable
margin (Wang et al., 2018). Proxy-based loss func-
tions are not scalable in a massive cross-lingual
hierarchical product data set as the number of prox-
ies to be trained is akin to the number of products
in the training data. To work around scalability
issues one could down sample the training data,
define the hierarchy at a higher level (i.e., product
category level) to reduce the number of classes to
a manageable level or use a high-powered cluster
of machines. The alternatives may not be practi-
cally feasible or may not achieve optimal model
performance.

There are also challenges using pair-based loss
functions for hierarchical data sets. For a fixed
number of training samples there is a prohibitively
large number of tuples which could be selected.
A number of these pairs are also likely to be non-
informative which does not contribute to model
training (Xuan et al., 2020). To work around is-
sues with proxy and pair based methods, HRMS
combines both training paradigms by grouping the
data ahead by the lowest level in the hierarchy and
using a pair miner to select informative pairs for
training. We then shuffle the data each level of the
hierarchy and generate a different set of classes per
mini batch.

Challenge 2 - Multi Tiered Metric Space: Al-
though proxy-based metric learning loss functions
learn class-discriminative features the output may
not necessarily be ranked since by design it pushes
items which belong to different classes apart (Yang
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et al., 2022). To create a ranked output HRMS
adapts ideas from learning to rank paradigm by
creating a margin of separation between positive
and negative examples using varying margin (Cakir
et al., 2019).

2.4 HRMS - Pair Miner

Similar to MS, HRMS adopts a 2 step approach
where informative pairs are first mined from each
mini batch. HRMS assumes that the training data
as input is grouped by the lowest level in the hierar-
chy. Through the implementation of an additional
pair mining step, MS mines hard negatives and
positives by discarding all other records that do
not contribute to model training. As described in
Wang et al. (2019b), an optimal pair mining method
should optimize for self-similarity, negative relative
similarity and positive relative similarity. Formally,
given € as a margin, y as labels and x; as anchor,
the miner selects pairs {xz;,z;} which meet the
following criteria:

M SPairMiner(e,y) =
{{mi,xj} | .S;; > (min S — E)} U
Yk=Yi

{{xi,mj} | S{; < (max Sj, + 6)} (1)
YkFYi

where S;; denotes hard negatives and S£ hard
positives that are identified through the miner.

HRMS adapted the pair mining step in MS at
the hierarchical level with varying ¢; with y; re-
flecting the hierarchy depending on the granularity
level. In the product data set example, catalog items
which are exact match of each other but in different
languages will be considered to be at higher granu-
larity and hence assigned a lower ¢; (closer to the
leaf node in a tree structure) compared to products
at a lower granularity level which are functionality
similar but are not substitutable, say of different
brand.

HRMSPairMiner(el“L, y) =

U {{{xi,xj} 55> (i, S~ 2

V(leL) i

U {{wz‘vl’j} | 55 < (I{fjxl_ Sik +6l)}} (2)

k i

where €’ is a hyper parameter which is inversely
proportion to the granularity in the hierarchical tree.
Note that 3/ varies hierarchically, items which are
considered negative at one level may be positives at
another as per a tree structure. Since it is possible
for pairs to be selected as positive and negative
across different levels in L, a deconflicting step is
added discarding pairs in the negative set if they are
added as positive pairs in other hierarchical levels.

2.5 HRMS - Loss Function

Together with the miner, MS also proposes a pair
weighting scheme based on binomial deviance (Yi
et al., 2014; Lazic) and lifted structure loss (Song
et al., 2015). Binomial deviance is suitable for
data with large variance as it is robust to outliers.
Specifically the penalty term increases linearly for
increasingly negative margin, controlling the im-
pact of outliers on the overall loss. Lifted structure
loss attempts to optimize across all pairs in the
mini-batch, O(m?) rather than optimizing across
O(m) pairs. It does so by proposing a smooth up-
per bound on the loss function in a way that does
not require mining all pairs within the mini-batch
repeatedly. By combining both losses together,
MS attempts to weight the pairs more accurately
by considering both self similarity (binomial de-
viance loss) and negative relative similarity (lifted
structured loss) in its loss function. MS loss is
formulated as:

MSLoss(a, 8, \, P;, N;) =

1
_ _ a(Sik—A)
- Z log[1 + Z e k]
i=1 keP;
+ ;log[l + Y PLERN] 3
keEN;

where m denotes all training samples filtered by
the pair miner, P; the selected positive pairs and V;
the selected negative pairs. «, 5 and A are hyper
parameters as in Binomial deviance loss.

Similar to the pair miner, HRMS adapts MS hi-
erarchically varying « and S proportionally to the
granularity in the tree. A is kept constant across
different hierarchical levels as it is an offset value
that is applied equally to both positive and negative
terms in binomial deviance loss. HRMS is aggre-
gated hierarchically and back propagates through
all levels in L per mini-batch.
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where m! denotes the pairs selected by the pair
miner, Pil the selected positive pairs and Nl-l the
selected negative pairs for the specific hierarchical
level [

3 Data Corpus

The model is trained using a sample of products
from the worldwide Amazon catalog. Since a prod-
uct can be cross-listed across multiple stores and in
different languages, we use the term catalog item
to reference a product which is represented in a
specific language (e.g., English, France), product
referring to a item which consist of multiple cata-
log items (same product across multiple stores and
languages) and product family which consist of a
set of items that are of the same product identity,
but differ according to a consistent dimension, for
example the same t-shirt in different sizes and col-
ors. Since it is not possible to annotate substitute
products at Amazon scale, to train our network, we
consider products within the same product family
as substitutes.

The training data contains 14m product families
with an average of 6 unique languages each and
8.5 catalog items per product (A product may con-
tain more than 1 catalog item that is in the same
language). Each product family contain an average
of 8.7 products. In all, the data set contains over
1 billion catalog items across 22 text and image
attributes. These fields are displayed to customers
when they view the product on the website.

4 Product DML Model - ProductSIM

ProductSIM is a light weight multi-modal DML
model whose goal is to output a trained set of em-
beddings such that similar products are positioned
close together in Euclidean space. ProductSIM
is built using Language-Agnostic BERT Sentence
Enbedding (LaBSE), Shift Vision Transformers
(ShiftViT) as language and image encoders respec-
tively. The embeddings from respective encoders

Lurrose Criss Cross Headbands Dots Headbands Wide Headwraps | Product 1
Bohemian Headbands Yoga Cotton Hair Bands Turban Head Wraps
for Women Girls (Black)

Lurrose Criss Cross Stirnbdnder Punkte Stirnbinder Wide Headwraps
Bohemia Stirnbander Yoga Baumwolle Haarbinder Turban Head
Wraps fiir Damen Madchen (schwarz)

Lurrose Criss Cross diademas lunares diademas anchas para la
cabeza bohemia diademas de algodén para yoga bandas para el pelo
turbante para mujer nifia (negro)

Lurrose Criss Cross Headbands Dots Headbands Wide Headwraps | Product 2
Bohemia Headbands Yoga Cotton Hair Bands Turban Head Wraps for
Woman Girl (White)

’ Lurrose Criss Serre-téte croisé & pois larges bandeaux bohéme en
V4 coton pour femme fille (blanc)

Lurrose Criss Cross Pannband Prickar Pannband Breda Huvuddukar
Bohemia Pannband Yoga Bomull Harband Turban Huvudsjal fér
Kvinna Flicka (Vit)

Lurrose Criss Cross Headbands Dots Headbands Wide Headbands | Product 3
Bohemia Headbands Yoga Cotton Hairbands Turban Headwraps for
| | Woman Girl (Purple)

» Lurrose Criss Cross Hoofdbanden Dots Hoofdbanden Brede
— Hoofdbanden Bohemen Hoofdbanden Yoga Katoen Haarbanden
Tulband Hoofdwraps voor Vrouw Meisje (Paars)

Lurrose Criss Cross Stimb&nder Punkte Stimbénder Wide Headwraps
Bohemia Stimbiinder Yoga Baumwolle Haarbinder Turban Head
Wraps fiir Damen Madchen (lila)

Figure 3: In this illustration, each product exists in 3
different languages. All 3 products collectively belong
to the same product family as they are identical and
differ only in a single attribute (color).

are then fed through a fusion encoder to capture
inter-modality interaction in a late fusion manner
(Baltrusaitis et al., 2019). Details on ProductSIM
can be found in Appendix A.

5 Offline Evaluations

We validate ProductSIM on a holdout set from the
training data. We select the holdout set such that
each product and its substitutes exist in at least two
languages across multiple stores. The catalog items
from the same products are exact matches and
should be ranked highest in the retrieved ranked
list. Different products within a single product fam-
ily are considered substitutes and should be ranked
lower than exact matches. All other products are
irrelevant and should not be retrieved. We selected
an evaluation test set of 33k product families (sub-
stitutes) containing an average of 6.7 products in
11.2 languages on average per family. Each product
contains an average of 3.7 catalog items.

For a given catalog item of a product, we gen-
erate the ProductSIM embedding and retrieve the
top-k neighbors by Euclidean distance. Our goal is
to retrieve all the other catalog items of the input
product in the top-k neighbors ranked such that
exact matches are ranked ahead of substitutes. We
use the embeddings from the test set and built a flat
FAISS index (Johnson et al., 2017) for the purpose
of performing exhaustive search for each query.

In order to measure the ranked nature of the re-
sults, we adopted the implementation of weighted
nDCG similar to Reddy et al. (2022). In our eval-

108



Loss Function Recall nDCG
Multi Similarity Loss (Wang et al., 2019b) 77.38 84.33
Triplet Loss with Easy Positive Mining (Xuan et al., 2020) 68.71 83.77
Supervised Constrastive Learning (Khosla et al., 2020) 76.03 83.88
Proxy-NCA (Movshovitz-Attias et al., 2017) 77.2 83.47
HRMS (Ours) 79.68 86.27

Table 1: Loss Function Ablation: We evaluate the efficacy of HRMS on an holdout set from the data corpus. All
results are reported using ProductSIM as backbone. Bold denotes best results and underline second best

uation data set we have 2 degrees of relevance for
each query: Exact (catalog items) and Substitute
(product family), and we set gain values of 1.0,
0.25 respectively. We report results for both Recall
(where both exact and substitutes are treated as pos-
itives) and nDCG. As illustrated in Table 1, HRMS
loss achieves best performance against other loss
functions in both nDCG and recall.

6 Impact on Search Results

All search engines use behavioral data to match
and rank products to queries. Low traffic stores
and new products lack such behavioral data and
thus suffer from less relevant search results. We
used Integrative Knowledge Transfer (IKT) (Pan
et al., 2008) to boost the behavioral data associated
with the new stores and products by synthetically
transferring query-product associations from high-
traffic stores to low-traffic stores. In addition to
cross-listed products we used product substitutes
identified by ProductSIM to identify like products
to transfer behavior. The following experiments
show the impact of expanded IKT coverage on
search results.

Low-Traffic Store: We used ProductSIM to
map products from a low-traffic store to those in
multiple high-traffic stores. We then boosted the
behavior associated with the products in the low-
traffic store by using the behavior associated with
the mapped products from the high-traffic store(s).
We did this by treating the traffic associated with a
product in the established store as if it occurred in
the low-traffic store albeit in the context of the prod-
uct identified by ProductSIM. In our experiment,
we used a store where roughly 50% of the query
traffic was in English and 50% in a single non-
English language. Using ProductSIM, we boosted
the behavior associated with 21% of the active cat-
alog products, thereby boosting their rank in the
search results. This improved customer engage-

ment, in an online A/B test using as measured by
Search click rate defined as number of searches
with at least one click over total number of searches
by 0.8% (p-value = 0.026)

New Products in a High-Traffic Store: Cold
start is a known problem in product search (Han
et al., 2022). This is specially true in high-traffic
stores where established products dominate search
impressions. We used ProductSIM to map new
products in a high-traffic store to established prod-
ucts in the same store when possible, and a different
store otherwise. Boosting behavior associated with
the new products using the mapping, we were able
to increase customer engagement with these prod-
ucts. In particular in an online A/B test, we boosted
New Product Impressions by 1.76% (p-value= 0.0)
and New Product Clicks by 1.72% (p-value = 0.0).
The strong correlation between impressions and
clicks also tells us that we boosted products that
customers desired.

7 Related Work

Hierarchical vs Ranking Metric Loss Functions:
While hierarchical and ranking loss functions are
similar in pulling similar items together and dissim-
ilar items apart, there are important differences in
its mechanism:

1. Ranking loss optimise the total ordering of
objects as induced by the learned metric. They
typically requires a ranked list of example
where given a query item there exist an inherit
position in its output (Cakir et al., 2019).

2. The goal of hierarchical loss functions is to
learn an adaptive class structure such that it
encodes global context on a manifold sphere.
Hierarchical loss functions are used to guide
triplet samples generation for each mini-batch
such that they are informative for learning.
(Ge, 2018)
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More recently, attempts are made to learn hierar-
chical metric learning representation by adapting
proxy-based methods (Yang et al., 2022). While
such methods work well for dense data sets (small
number of classes and large number of samples per
class), it is challenging to scale to granular settings
during training (e.g., E-Commerce Product Data
Sets), where classes could be defined at the product
level and a small number of examples are available
per class. Further existing methods do not opti-
mize for the ranked output hierarchically instead
focus either on recall or mean average precision
(Musgrave et al., 2020)

In this paper we combine ideas from both
paradigm to propose HRMS. By mirroring the char-
acteristics of a real life hierarchical product data set
and without the complexity of a Graph Neural Net-
work, we show that it is possible to induce a model
to learn both retrieval and ranking simultaneously.

8 Conclusion and Future Work

In this paper we propose a metric learning loss
function which is suitable for use on hierarchical
data sets similar to Amazon catalog. We extend the
existing multi similarity loss with adaptive margin
for a hierarchical data set. Hierarchical Ranked
Multi Similarity Loss (HRMS) works by optimiz-
ing for ranked retrieval instead of multi-similarity
or ranked loss individually. Future work could
consider the multi-aspect dimension of similarity
(Kong et al., 2022). Similarity is context specific,
for example one could look for products with simi-
lar brand.
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A  ProductSIM Model Architecture

ProductSIM is a light weight multi-modal DML
model whose goal is to output a trained set of em-
beddings such that similar products are positioned
close together in Euclidean space. ProductSIM
is built using Language-Agnostic BERT Sentence
Enbedding (LaBSE), Shift Vision Transformers
(ShiftViT) as language and image encoders respec-
tively. The embeddings from respective encoders
are then fed through a fusion encoder to capture
inter-modality interaction in a late fusion manner
(Baltrusaitis et al., 2019).

Source L ) Source
Catalog Item Vector

Language
Encoder

Target N D N Target
Catalog Item . Vector

Vision Fusion HRMS
Encoder Encoder

Figure 4: ProductSIM is built using LaBSE, ShiftViT
as language and image encoders respectively. The out-
put of both encoders are than fed through a series of
fully connected layers (as shown using unfilled blue
rectangular boxes).

Language Encoder: We used the pretrained
LaBSE (Feng et al., 2020) that is trained on data
from CommonCrawl and Wikipedia as base model.
Language-Agnostic BERT Sentence Enbedding
(LaBSE) follows the setup of a Bidirectional En-
coder Representations from Transformers (BERT)
model which uses 12 layers transformer with 12
heads and 768 hidden size. Similar to prompt based
learning methods (Liu et al., 2023), we feed both
structured and unstructured attributes to the lan-
guage encoder by suffixing the attribute value with
attribute name.

Vision Encoder: Multi layer perceptron (MLP)
based vision models recently gained popularity
in being able to achieve competitive results with
higher throughput then compared to vision trans-
formers (Tolstikhin et al., 2021). Considering the
need for efficiency and frugality at scale, Prod-
uctSIM utilizes the smallest available (ShiftViT-
Tiny) ImageNet pretrained ShiftViT as the vision
embedding model (Wang et al., 2022). ShiftViT
follows Swin Transformers to build hierarchical
representation but replaces the attention mecha-
nism with a shift operation (Liu et al., 2021). The

zero-parameter shift operation moves a portion of
input channels along four directions to model spa-
tial relationships in images while keeping other lay-
ers untouched. The shifted output are then parsed
through a series of feed forward layers to fuse the
channels together.

Fusion Encoder: Since ShiftViT forms hier-
archical and not token representations of an im-
age, we did not opt for an transformer-based fusion
encoder approach. Instead, ProductSIM concate-
nates both normalized image and language repre-
sentations by feeding them into a series of fully-
connected layers.
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Abstract

We present a new BERT model for the cyberse-
curity domain, CTI-BERT, which can improve
the accuracy of cyber threat intelligence (CTI)
extraction, enabling organizations to better de-
fend against potential cyber threats. We provide
detailed information about the domain corpus
collection, the training methodology and its ef-
fectiveness for a variety of NLP tasks for the
cybersecurity domain. The experiments show
that CTI-BERT significantly outperforms sev-
eral general-domain and security-domain mod-
els for these cybersecurity applications, indicat-
ing that the training data and methodology have
a significant impact on the model performance.

1 Introduction

In response to rapidly growing cyber-attacks, cy-
bersecurity experts publish many CTI reports, de-
tailing on new security vulnerabilities and malware.
While these reports help security analysts to better
understand the cyber-threats, it is very difficult to
digest all the information in a timely manner. Thus,
automatic extraction of CTI from text has gained a
lot of attention from the cybersecurity community.

However, general-domain language models
(LMs) are not effective for cybersecurity text due to
differences in terminology and styles. Earlier stud-
ies have demonstrated that domain-specific LMs
are crucial for domain-specific applications (Belt-
agy etal.,2019; Lee et al., 2020; Huang et al., 2019;
Peng et al., 2019; Gu et al., 2022; Chalkidis et al.,
2020; Hu et al., 2022; Priyanka Ranade and Finin,
2021; Aghaei et al., 2023).

Two different approaches have been used to pro-
duce domain-specific language models: continual
pretraining and pretraining from scratch. The con-
tinual pretraining method takes an existing general-
domain model and continues training the model
using a domain-specific corpus. While this ap-
proach is useful, especially when the size of the
domain-specific corpus is small, the vocabulary

Weiqiu You
University of Pennsylvania
Philadelphia, PA, USA
weigiuy@seas.upenn.edu

of the new model remains largely same as that of
the original model. Most domain-specific terms
are thus out of vocabulary. The pretraining from
scratch approach trains a new tokenizer to con-
struct a domain-specific vocabulary and trains the
language model using only its own corpus. Beltagy
et al. (2019), Gu et al. (2022), and Hu et al. (2022)
have trained BERT models from scratch for the bio-
medicine, computer science, and political science
areas. These studies show that pretraining from
scratch outperforms the continual pretraining.

Recently, a few transformers-based LMs
have been built for the cybersecurity domain.
CyBERT (Priyanka Ranade and Finin, 2021) trains
a BERT model, and SecureBERT (Aghaei et al.,
2023) trains a ROBERTa model using the contin-
ual pretraining method. jackaduma (2022) intro-
duces SecBERT and SecRoBERTa models trained
from scratch. However, these models either do
not provide training details or are not evaluated on
many cybersecurity tasks.

We present CTI-BERT, a BERT model pretrained
from scratch with a high quality cybersecurity
corpus containing CTI reports and publications.
In CTI-BERT, both the vocabulary and the model
weights are learned from our corpus. Further, we in-
troduce a variety of sentence-level and token-level
classification tasks and benchmark datasets for the
security domain. The experimental results demon-
strate that CTI-BERT outperforms other general-
domain and security domain models, confirming
that training a domain model from scratch with a
high quality domain-specific corpus is critical.

To the best of our knowledge, this work provides
the most comprehensive evaluations for classifi-
cation task within the security domain. Accom-
plishing these tasks is a crucial part of the broader
process of automatically extracting CTI, suggesting
appropriate mitigation strategies, and implement-
ing counter-measurements to thwart attacks. Thus,
we see our work as an essential milestone towards
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more intelligent tools for cybersecurity systems.
The main contributions of our work are the fol-
lowing:

* We curate a large amount of high quality cy-
bersecurity datasets specifically designed for
cyber-threat intelligence analysis.

* We develop a pre-trained BERT model tai-
lored for the cybersecurity domain.

* We perform extensive experiments on a wide
range of tasks and benchmark datasets for the
security domain and demonstrate the effective-
ness of our model.

2 Training Datasets

We curated a cybersecurity corpus from various rep-
utable data sources. The documents are profession-
ally written and cover key security topics including
cyber-campaigns, malware, and security vulnerabil-
ities. Most of the documents are in HTML and PDF
formats. We processed the files using the Apache
Tika parsers' to extract the file content. Then, we
detected sentence boundaries and discarded sen-
tences if the percentage of word tokens is less than
10% in the sentences. Table 1 summarizes our
document categories and their statistics.

Document Set # Sentences # Tokens
Attack Description 22,086 544,260
Security Textbook 20,371 438,720

Academic Paper 1,156,026 23,245,317
Security Wiki 298,450 7,338,609
Threat Report 84,639,372 1,195,547,581

Vulnerability Description 598,265 14,123,559
Total 86,734,570 1,241,238,046

Table 1: Summary of our datasets

Attack Description This dataset includes de-
scriptions about known cyber-attack techniques
collected from MITRE ATT&CK? and CAPEC
(Common Attack Pattern Enumeration and Clas-
sification)?. They are carefully curated glossaries
containing the attack technique name, the definition
and examples, and potential mitigation approaches.

Security Textbook The dataset contains two on-
line text books for the CISSP (Certified Information
Systems Security Professional) certification test.

"https://tika.apache.org/
Zhttps://attack.mitre.org/
3https://capec.mitre.org/

The CISSP textbooks cover all information secu-
rity topics including access control, cryptography,
hardware and network security, risk management
and recovery planning.

Academic Paper This dataset contains all the pa-
pers in the proceedings of USENIX Security Sym-
posium, a premier security conference, from year
1990 through 2021.

Security Wiki This dataset contains 7,919
Wikipedia pages belonging to the “Computer Se-
curity” category. We download the data starting
from the ‘Computer Security’ category and recur-
sively extracting pages from its subcategories. We
discarded the subcategories not related to the cy-
bersecurity domain.

Threat Reports This dataset contains news arti-
cles and white papers about cyber-campaigns, mal-
ware, and security vulnerabilities. These articles
provide in-depth analysis on a specific cyber-attack,
including the attack techniques, any known charac-
teristics of the perpetrator, and potential mitigation
methods. We collected the dataset from security
companies and the APTnotes collection*, which
is a repository of technical reports on Advanced
Persistent Threat (APT) groups.

Vulnerability This dataset contains records from
CVE (Common Vulnerabilities and Exposures)’
and CWE (Common Weakness Enumeration)®,
which offer the catalogs of all known vulnerabil-
ities and provide information about the affected
products, the vulnerability type, and the impact.

3 Training Methodology

We first train the WordPiece tokenizer after lower-
casing the security text and produce a vocabulary
with 50,000 tokens. Training a tokenizer from
scratch is beneficial, as it can recognize domain-
specific terms better. Table 13 in Appendix shows
examples of our tokenizer and BERT for recogniz-
ing security-related words.

Following the observations by RoBERTa (Liu
et al., 2019), we trained CTI-BERT using only the
Masked Language Modeling (MLM) objective us-
ing the HuggingFace’s MLM training script. The
model was trained for 200,000 steps with 15% mlm
probability, the sequence length of 256, the total

*https://github.com/aptnotes/data
Shttps://cve.mitre.org
®https://cwe.mitre.org/
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batch size of 2,048, the learning rate of Se-4 with
learning rate warm-up to 10,000 steps and weight
decay of 0.01. We use the Adam optimizer with
81 =0.9, 82 =0.98,¢ =1le — 6.

4 Cybersecurity Applications

We evaluate CTI-BERT using several security
NLP applications and compare its results with
both general-domain models and other cyberse-
curity domain models. The baseline models are
bert-base-uncased, SecBERT (BERT models)
and roberta-base, SecRoBERTa and SecureBERT
(RoBERTa models). All the baseline models are
downloaded from HuggingFace.

The downstream applications can be categorized
as sentence-level classification tasks and token-
level classification tasks. The goal of the exper-
iments is to compare different pretrained models
rather than optimizing the classification models for
individual tasks. Thus, we use the same model ar-
chitecture and hyper-parameters to fine-tune mod-
els for all sub-tasks in each application category.

4.1 Masked Word Prediction

First, we conduct the masked token prediction task
to measure how well the models understand the do-
main knowledge. To ensure that the test sentences
are not in the training data, we use five headlines
from security news published in January and Febru-
ary, 20237, Table 2 shows the test sentences and
the models’ predictions. For each sentence, we
conduct the masked token prediction twice with
different masked words. The upper line shows the
predictions for <mask>1, and the lower line shows
the predictions for <mask>, respectively.

The results clearly show that CTI-BERT performs
very well in this test; its predictions are either the
same words (boldfaced) or synonyms (italicized).
Note that CTI-BERT produces RAT for “PlugX
<mask>", which is a more specific term than the
masked word (‘malware’). RAT (Remote Access
Trojan) is the malware family which PlugX be-
longs to. However, both SecBERT and SecRoBERTa
do not perform well for this test, even though
they were trained with security text. Interestingly,
roberta-base performs better than these models
and bert-base-uncased.

"beepingcomputer.com

4.2 Sentence Classification Tasks

For sentence or document-level classification, we
add onto the pretrained language models a classifi-
cation head, with one hidden layer and one output
projection layer connected with tanh activation,
which takes the average of the last hidden states of
all tokens in sentences as the input. We fine-tune
the pretrained models together with the randomly
initialized classification layers, using 1,000 warm-
up steps, with learning rate varied according to the
formula in Vaswani et al. (2017). We use the Adam
optimizer with 51 = 0.9, B = 0.999, and weight
decay of 0.01. All the models are trained for 50
epochs with the batch size of 16 and the learning
rate of 2e-5.

For the evaluation, we train five models with
five different seeds (42, 142, 242, 342, and 442)
for each task and report both the micro and macro
mean F1 score (Mean) and the standard deviation
(Std.) over the five models.

4.2.1 ATT&CK Technique Classification

The key knowledge SoC analysts look for in CTI
reports is information about malware behavior and
the adversary’s tactics and techniques. The MITRE
ATT&CK framework® offers a knowledge base of
these adversary tactics and techniques, which has
been used as a foundation for the threat models and
methodologies in many security products.

To facilitate research on identifying ATT&CK
techniques in prose-based CTI reports, MITRE cre-
ated TRAM?, a dataset containing sentences from
CTI reports labeled with the ATT&CK techniques.
We observe that TRAM contains duplicate sen-
tences across the splits. We remove the duplicates
and keep only the classes with at least one sentence
in train, development and test splits. The cleaned
dataset contains 1,491 sentences, 166,284 tokens,
and 73 distinct classes. More detailed statistics
of the dataset is shown in Table 15 in Appendix.
Note that this dataset is very sparse and imbal-
anced. Table 3 shows the results of the six models
for this task. As we can see, CTI-BERToutperforms
all other models by a large margin.

4.2.2 10T App Description Classification

IoTSpotter is a tool for automatically identifying
Mobile-IoT (Internet of Things) apps, loT-specific
library, and potential vulnerabilities in the IoT

8https://attack.mitre.org
*https://github.com/center-for-threat-informed-
defense/tram
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Masked Sentence bert-base-uncased SecBERT CTI-BERT roberta-base SecRoBERTa  SecureBERT
New Mirai <malware>; variant infects Linux de- linux malware worm this malware
vices to build DDoS <botnet>5.
attacks attacks botnets attacks commands botnets
The <Colonial>; Pipeline incident is one of the most oil it colonial Pegasus the Olympic
infamous <ransomware>o attacks
pipeline targeted ransomware terrorist cyber cyber
New stealthy Beep malware focuses heavily on intrusion antivirus evading stealth antivirus sandbox
<evading>; <detection>s
2009 detection detection detection
Microsoft ~ Exchange  ProxyShell <flaws>; is previously vulnerability vulnerability Key Service
<exploited>2 in new crypto-mining attack
resulting resulting exploited exploited eavesdrop used
PlugX <malware>; hides on USB devices to also is rat 11 silently malware
<infect>5 new Windows hosts
create open infect infect communicate infect

Table 2: Masked Word Prediction (top-1). The actual words, instead of <mask>, are shown for reference.

Model Micro-F1 Macro-F1 Model Micro-F1 Macro-F1
Mean Std. Mean  Std. Mean Std. Mean  Std.
bert-base-uncased 61.13 0.73 38.58 0.70 bert-base-uncased 83.24 140 64.80 3.13
SecBERT 63.61 086 39.56 0.88 SecBERT 83.82 1.13 70.06 2.69
CTI-BERT 6930 096 46.62 1.66 CTI-BERT 8518 098 69.26 2.79
roberta-base 5944 1.01 37.63 1.06 roberta-base 83.30 1.37 66.5 144
SecRoBERTa 5730 0.58 3561 0.67 SecRoBERTa 8424 1.01 7095 2.04
SecureBERT 63.61 0.65 41.18 0.69 SecureBERT 83.59 1.14 61.74 6.32

Table 3: ATT&CK Technique Classification Results

apps (Jin et al., 2022). The authors created a dataset
containing the descriptions of 7,237 mobile apps
which are labeled with mobile IoT apps vs. non-loT
apps with the distribution of approximately 45%
and 55% respectively. They removed stopwords
and put together all remaining tokens in the descrip-
tion ignoring the sentence boundaries. We use the
datasets!? without any further processing. The data
statistics are shown in Table 16 in Appendix. The
models’ classification results are shown in Table 4.

Model Micro-F1 Macro-F1

ode Mean Std. Mean Std.
bert-base-uncased 95.78 0.04 95.70 0.05
SecBERT 9422 021 94.12 0.21
CTI-BERT 96.40 0.26 96.33 0.26
roberta-base 95.88 0.26 95.82 0.26
SecRoBERTa 9459 0.39 9448 0.40
SecureBERT 96.27 0.13 96.19 0.13

Table 4: Performance for IoT App Classification

4.2.3

The next two tasks, malware sentence detection
and malware attribute classification, are borrowed

Malware Sentence Detection

https://github.com/Secure-Platforms-Lab-W-
M/IoTSpotter/tree/main/data/dataset

Table 5: Malware Sentence Classification Results

from the SemEval-2018 Task 8, which consisted
of four subtasks to measure NLP capabilities for
cybersecurity reports (Phandi et al., 2018). The
task provided 12,918 annotated sentences extracted
from 85 APT reports, based on the MalwareTextDB
work (Lim et al., 2017).

The first sub-task is to build models to ex-
tract sentences about malware. The dataset is bi-
ased with the ratios of malware and non-malware
sentences being 21% and 79% respectively as
shown in Table 17 in Appendix. The results are
listed in Table 5 which shows that CTI-BERT and
SecRoBERTaperform well on this task.

4.2.4

This task classifies sentences into the malware at-
tribute categories as defined in MAEC (Malware
Attribute Enumeration and Characterization) vo-
cabulary'!. MAEC defines the malware attributes
in a 2-level hierarchy with four high-level attribute
types—ActionName, Capability, StrategicObjec-
tives and TacticalObjectives—and 444 low-level
types. This sub-task was conducted by building
models for each of the four high-level attributes.
Table 23 in Appendix shows more details of this

Malware Attribute Classification

https://maecproject.github.io/
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dataset for the four high-level attributes. As we
can see, the datasets are very sparse with a large
number of classes.

Tables 6-9 show the classification results for
the four malware attribute types. We can see that
CTI-BERT performs well, being the best or second
best model, for all four attributes types.

4.3 Token Classification Tasks

Here, we compare the models’ effectiveness
for token-level classification using two security-
domain NER tasks and a token type detection task.
We use the standard sequence tagging setup and
add one dense layer as the classification layer on
top of the pretrained language models. The clas-
sification layer assigns each token to a label us-
ing the BIO tagging scheme. Our system is im-
plemented in PyTorch using HuggingFace’s trans-
formers (Wolf et al., 2019). The training data is
randomly shuffled, and a batch size of 16 is used
with post-padding. We set the maximum sequence
length to 256 and use cross entropy loss for model
optimization with the learning rate of 2e-5. All
other training parameters were set to the default
values in transformers. Similarly to the sentence
classification tasks, we train five models for each
task with the same five seeds for 50 epochs and
compare the average mention-level precision, re-
call and F1-score.

4.3.1 NERI1: Coarse-grained Security Entities

Cybersecurity entities have very distinct charac-
teristics, and many of them are out of vocabulary
terms. Here, we investigate if domain specific lan-
guage models can alleviate the vocabulary gap. We
collected 967 CTI reports on malware and vulnera-
bilities. The documents are labeled with the 8 entity
types defined in STIX (Structured Threat Informa-
tion Expression)!?, which is a standard framework
for cyber intelligence exchange. The 8 types are
Campaign (names of cyber campaigns), Course-
OfAction (tools or actions to take to deter cyber
attacks), ExploitTarget (vulnerabilities targeted for
exploitation), Identity (individuals, groups or orga-
nizations involved in attacks), Indicator (objects
used to detect suspicious or malicious cyber ac-
tivity), Malware (malicious codes used in cyber
crimes), Resource (tools used for cyber attacks);
and ThreatActor (individuals or groups that commit
cyber crimes). The size of the dataset and detailed

Phttps://stixproject.github.io/releases/1.2

statistics of the entity types in the corpus are shown
in Table 18 and Table 19 in Appendix. Table 10
shows the NER results using the mention-level mi-
Cro average scores.

4.3.2 NER2: Fine-grained Security Entities

We note that some STIX entity types (esp. Indi-
cator) are very broad containing many different
sub-types and, thus, are difficult to be directly used
by automatic threat investigation applications. We
redesigned the type system into 16 types by divid-
ing broad categories into their subcategories and
annotated the test dataset from the NERI1 task. We
then split the dataset into a 80:10:10 ratio for the
train, dev and test sets. Table 20 and Table 21 in
Appendix show the statistics of this dataset. The
NER results in Table 11 show that most models
perform better for the finer-grained types, and espe-
cially CTI-BERT outperforms all other models by a
large margin.

4.3.3 Token Type Classification

The token type detection task is the sub-task2 from
SemEval2018 Task8 which aims to classify tokens
to Entity, Action and Modifier, and Other cate-
gories. Action refers to an event. Entity refers to
the initiator of the Action (i.e., Subject) or the recip-
ient of the Action (i.e., Object). Modifier refers to
tokens that provide elaboration on the Action. All
other tokens are assigned to Other. More details
on the dataset are shown in Table 22 in Appendix.

Even though the categories are not semantic
types as in NER, this task can also be solved as
a token sequence tagging problem, and, thus, we
apply the same system used for the NER tasks.
The classification results are shown in Table 12.
Overall, the models don’t perform very well likely
because the mentions are long and semantically het-
erogeneous. The results show that the BERT based
models perform better than the RoBERTa-based
models.

5 Related Work

Motivated by the large-scale foundational models’s
successes in many general domain NLP tasks, sev-
eral domain-specific language models have been
developed (Roy et al., 2017, 2019; Mumtaz et al.,
2020). In scientific and bio-medical domains,
there are SciBERT (Beltagy et al., 2019), Blue-
BERT (Peng et al., 2019), Clinical BERT (Huang
et al., 2019), BioBERT (Lee et al., 2020) and Pub-
MedBERT (Gu et al., 2022). In political and legal
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Model Micro-F1 Macro-F1 Model Micro-F1 Macro-Fl1
ode Mean Std.  Mean Std. ode Mean Std. Mean  Std.
bert-base-uncased 38.79 19.68 30.37 15.79 bert-base-uncased 60.68 391 51.51 541
SecBERT 43.64 3.09 33.25 2.97 SecBERT 53.18 1.82 43.39 1.9
CTI-BERT 55.76 492 4337 4.92 CTI-BERT 6091 234 5223 4.39
roberta-base 56.36 4.11 44.04 3.41 roberta-base 59.77 371 50.86 3.80
SecRoBERTa 40.00 227 29.03 2.39 SecRoBERTa 46.82 196 37.70 4.26
SecureBERT 52.12 297 3997 3.32 SecureBERT 61.59 273 5412 4.66

Table 6: Performance for ActionName attributes

Table 7: Performance for Capability attributes

Model Micro-F1 Macro-F1 Model Micro-F1 Macro-F1
Mean std  Mean std Mean std Mean std
bert-base-uncased 43.71 146 2931 227 bert-base-uncased 36.19 156 19.00 1.55
SecBERT 38.57 2.86 21.12 242 SecBERT 3524 254 1958 2.75
CTI-BERT 45.14 430 28.11 4.69 CTI-BERT 4984 162 3149 224
roberta-base 47.14 202 3322 3.81 roberta-base 4254 063 2395 1.15
SecRoBERTa 3771 4.00 2242 476 SecRoBERTa 3587 327 2037 4.18
SecBERT 44.00 498 30.74 6.98 SecureBERT 40.32 433 2437 4.38

Table 8: Performance for StrategicObjective attributes

Model Type Precison  Recall F1
bert-base-uncased 72.04 68.67 70.31
SecBERT 69.74 6398 66.73
CTI-BERT 75.63 75.88 75.75
roberta-base 72,52 68.99 70.70
SecRoBERTa 68.00 5946 63.44
SecureBERT 73.47 72.51  72.99

Table 10: NER1 Results (mention-level micro average)

Model Precison  Recall F1
bert-base-uncased 73.44 68.23 70.73
SecBERT 68.58  60.90 64.43
CTI-BERT 83.35 78.62 80.91
roberta-base 72.17 73.51 72.80
SecRoBERTa 7191 55.01 62.34
SecureBERT 76.66 7598 76.30

Table 11: NER2 Results (mention-level micro average)

Model Type Precison  Recall F1
bert-base-uncased 2297 4451 30.27
SecBERT 21.63 36.20 27.02
CTI-BERT 22,67 47.77 30.70
roberta-base 15.05 17.44 15.97
SecRoBERTa 14.18 20.71 16.81
SecureBERT 2258 4697 30.46

Table 12: Token Type Classification Results (mention-
level micro average)

domains, there are ConflictBERT (Hu et al., 2022)
and LegalBERT (Chalkidis et al., 2020). These
domain models have shown to improve the perfor-

Table 9: Performance for TacticalObjective attributes

mance of downstream applications for the domain.

There have been several attempts to construct
language models for the cybersecurity domain.
Roy et al. (2017, 2019) propose techniques to effi-
ciently learn domain-specific language models with
a small-size in-domain corpus by incorporating ex-
ternal domain knowledge. They train Word2Vec
models using malware descriptions. Similarly,
Mumtaz et al. (2020) train a Word2Vec model
using security vulnerability-related bulletins and
Wikipedia pages.

Recently, transformers-based models have
been built for the cybersecurity domain: Cy-
BERT (Priyanka Ranade and Finin, 2021),
SecBERT (jackaduma, 2022) and Secure-
BERT (Aghaei et al., 2023). CyBERT is trained
with a relatively small corpus consisting of 500
security blogs, 16,000 CVE records, and the
APTnotes collection. Further, CYBERT applies the
continual pretraining and uses the BERT model’s
vocabulary after adding 1,000 most frequent words
in their corpus which do not exist in the base
vocabulary. SecBERT provides both BERT and
RoBERTa models trained on a security corpus
consisting of APTnotes, the SemEval2018 Task8
dataset and Stucco-Data!? which contains security
blogs and reports. However, the details about
the data and any experimental results are not
available. SecureBERT trains a RoOBERTa model
using security reports, white papers, academic

Bhttps://stucco.github.io/data/
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books, etc., which are similar to our dataset
both in terms of the size and document type.
However, the model is built using the continual
pretraining method while CTI-BERT is trained from
scratch. We believe that the main difference comes
from CTI-BERT being trained from scratch and
having the vocabulary specialized to the domain,
compared to the extended vocabulary used in
CyBERT and SecureBERT. Table 14 compares
different training strategies used for these models.

6 Conclusion

We presented a new pretrained BERT model tai-
lored for the cybersecurity domain. Specifically,
we designed the model to improve the accuracy of
cyber-threat intelligence extraction and understand-
ing, such as security entity (IoCs) extraction and
attack technique (TTPs) classification. As demon-
strated by the experiments in Section 4, our model
outperforms existing general domain and other cy-
bersecurity domain models with the same base ar-
chitecture. For future work, we plan to collect more
documents to improve the model and also to train
other language models to support different security
applications.

Limitations

The model is pretrained using only English data.
While the majority of cybersecurity-related in-
formation is distributed in English, we consider
adding support for multiple languages in the fu-
ture work. Further, while we demonstrate that
CTI-BERT outperforms other security-specific LMs
for a variety of tasks, the benchmark datasets are
relatively small. Thus, the findings may not be con-
clusive, and further evaluations with more data are
needed.

Ethical Considerations

To our knowledge, this research has a very low risk
for ethical perspectives. All datasets were collected
from reputable sources, which are publicly avail-
able. The only person information in our corpus
is the authors’ names and their affiliations in the
USENIX Security proceedings. However, we do
not expose their identities nor use the information
in this work.
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A Details on Model Training

Term CTI-BERT

bert-base-uncased

apt*® apt, aptl, apt10, apt28, apt29, apt41, apts apt
backdoor*  backdoor, backdoored, backdoors -
*bot abbot, agobot, bot, gaobot, ircbot, ourbot, qakbot, gbot, rbot, robot, sabot, abbot, bot, robot, talbot

sdbot, spybot, syzbot, trickbot, zbot

*crime* crime, crimes, crimeware, cybercrime

crime, crimea, crimean,
crimes

crypto* crypto, cryptoc, cryptocurr, cryptocurrencies, cryptocurrency, cryptograph, —
cryptographers, cryptographic, cryptographically, cryptography, cryptojack-
ing, cryptol, cryptolocker, cryptology, cryptom, cryptomining, cryptosystem,

cryptosystems, cryptow, cryptowall

cyber* cyber, cyberark, cyberattack, cyberattackers, cyberattacks, cyberb, cybercri, cyber
cybercrime, cybercrimes, cybercriminal, cybercriminals, cyberdefense, cybere,
cybereason, cyberespionage, cybers, cybersec, cybersecurity, cyberspace,
cyberthre, cyberthreat, cyberthreats, cyberwar, cyberwarfare, cyberweap

dark* dark, darknet, darkreading, darks, darkside

dark, darkened, dark-
ening, darker, darkest,
darkly, darkness

hijack* [hijack, hijacked, hijacker, hijackers, hijacking, hijacks -

key* key, keybase, keyboard, keyboards, keychain, keyctl, keyed, keygen, key- key, keyboard, key-
ing, keylog, keylogger, keyloggers, keylogging, keynote, keypad, keyring, boardist, keyboards,
keyrings, keys, keyspan, keyst, keystone, keystore, keystream, keystro, keynes, keynote, keys,
keystroke, keystrokes, keytouch, keyword, keywords keystone

*kit applewebkit, bootkit, kit, rootkit, toolkit, webkit bukit, kit

malware*  malware, malwarebytes, malwares

*net botnet, cabinet, cnet, darknet, dotnet, ethernet, fortinet, genet, honeynet, inet, barnet, baronet, bon-
internet, intranet, kennet, kinet, kuznet, magnet, monet, net, phonet, planet, net, cabinet, clarinet,
stuxnet, subnet, technet, telnet, vnet, x9cinternet, zdnet ethernet, hornet, inter-

net, janet, magnet, net,
planet
trojan* trojan, trojanized, trojans trojan
*virus* antivirus, coronavirus, virus, viruses, virusscan, virustotal virus, viruses
web* web, webapp, webapps, webassembly, webc, webcam, webcams, webcast, we-  web, webb, webber, we-

bcasts, webclient, webcore, webd, webdav, webex, webgl, webhook, webin, ber, website, websites,
webinar, webkit, webkitbuild, webkitgtk, weblog, weblogic, webm, web- webster

mail, webmaster, webpage, webpages, webresources, webroot, webrtc, webs,

websense, webserver, webshell, website, websites, websocket, webspace,

websphere, webtools, webview

*ware adware, antimalware, aware, beware, coveware, crimeware, delaware, de- aware, delaware, hard-
signware, firmware, foxitsoftware, freeware, hardware, malware, middleware, —ware, software, unaware,
radware, ransomware, scareware, shareware, slackware, software, spyware, ware

unaware, vmware, ware, X9cmalware

Table 13: Comparison of Vocabulary. For a fair compar-
ison, we generated our tokenizer with 30,000 tokens.

Model Base Training mode Vocab. Seq. Batch  Train Steps
CTI-BERT scratch 50,000 256 2,048 200,000
CyBERT BERT-base continual 29,996 (base+1,000 security) 128 - 1 epoch
SecBERT scratch 52,000 - - -

SecRoBERTa scratch 52,000 - - -
SecureBERT ~ ROBERTabase o ih il 50,265 (base+17.673 security) 512 144 250,000

Table 14: Comparison of Model Training.
“— indicates the information is not available.
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B Details on Experiment Datasets

Train Dev.  Test Total
# Sentences 754 355 382 1,491
# Tokens 138,721 19,578 7,985 166,284

Table 15: Summary of TRAM Data

Entity Type Train Dev Test Total
Campaign 39 0 4 43
SecurityAdvisory 54 12 30 96
Vulnerability 401 50 86 537
DomainName 169 3 16 188
EmailAddress 6 1 1 8
Endpoint 3 0 0 3
FileName 210 37 24 271
Hash 93 5 3 101
IpAddress 37 0 2 39
Network 3 0 0 3
URL 181 20 27 228
WindowsRegistry 9 0 0 9
AvSignature 99 13 10 122
MalwareFamily 554 53 47 654
Technique 334 39 76 449
ThreatActor 89 4 7 100

Train Dev Test Total
# Documents 5,214 1,058 965 7,237
# Tokens 635,220 133,546 106,084 874,850
Table 16: Summary of IoTSpotter Data
Train Dev. Test Total
# Sentences 9,424 1,213 618 11,255
# Tokens 1,020,655 146,362 56,216 1,223,233

Table 17: Summary of the Malware Sentence Data

Table 21: Entity Types and Distributions in the NER2

Train Dev Test Total
# Documents 667 167 133 967
# Sentences 38,721 6,322 9,837 54,880
# Tokens 465,826 92,788 119,613 678,227

Table 18: Summary of the NER1 Dataset

Entity Type Train Dev Test
Campaign 247 27 85
CourseOfAction 1,938 779 329
ExploitTarget 5,839 1412 1,282
Identity 6,175 1,262 1,692
Indicator 3,718 1,071 886
Malware 4,252 776 1,027
Resource 438 91 114
ThreatActor 755 91 144

Table 19: Entity Types and Distributions in the NER1

Dataset

Train Dev Test Total
# Documents 106 14 13 133
# Sentences 5,206 561 671 6,438
# Tokens 75,969 8,106 9,984 94,059

Table 20: NER2 Dataset

Dataset
#Doc.  #Sent. #Action #Entity #Mod.
Train 65 9,424 3,202 6,875 2,011
Dev 5 1,213 122 254 79
Test 5 618 125 249 79
Total 75 11,255 3,449 7,378 2,169

Table 22: Dataset for Token Type Classification

Split ActionName Capability

p #Doc. #Sent. #Class | #Doc. #Sent #Class
Train 65 1,154 99 65 2817 20
Dev. 5 46 20 5 102 13
Test 5 33 18 5 88 14
Solit StrategicObjectives TacticalObjectives

p #Doc. #Sent. #Class | #Doc. #Sent. #Class
Train 65 2,206 53 65 1,783 93
Dev. 5 77 28 5 63 26
Test 5 70 21 5 63 27

Table 23: Data Statistics for Malware Attribute Classifi-

cation
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Abstract

The latest industrial inference engines, such
as FasterTransformer' and TurboTransform-
ers (Fang et al., 2021), have verified that half-
precision floating point (FP16) and 8-bit integer
(INTS) quantization can greatly improve model
inference speed. However, the existing INT8
quantization methods are too complicated, and
improper usage will lead to model performance
damage greatly. In this paper, we develop a
toolkit for users to easily quantize their models
for inference, in which Self-Adaptive Mixed-
Precision (SAMP) is proposed to automatically
control quantization rate by a mixed-precision
architecture to balance model accuracy and ef-
ficiency. Experimental results show that our
SAMP toolkit has a higher speedup than Py-
Torch (Paszke et al., 2019) and FasterTrans-
former while ensuring the required accuracy.
In addition, SAMP is based on a modular de-
sign, decoupling the tokenizer, embedding, en-
coder and target layers, which allows users to
handle various downstream tasks and can be
seamlessly integrated into PyTorch.

1 Introduction

Text understanding is one of the basic tasks in
the field of Natural Language Processing (NLP),
including information retrieval, dialogue system,
sentiment recognition, summarization, language
model, etc. Transformer-based models (Vaswani
et al., 2017) have achieved state-of-the-art in many
downstream tasks, such as BERT (Devlin et al.,
2018), XLNet (Yang et al., 2019), Google T5 (Raf-
fel et al., 2020), etc. In some large industrial sys-
tems, training frameworks (e.g. TensorFlow (Abadi
et al., 2016) or PyTorch (Paszke et al., 2019)) are
not good options to deploy models due to the lack
of high GPU occupation considerations and good
memory management of them during the inference
phase (Wang et al., 2021).
*Corresponding author: Rong Tian.

E-mail: tianrong03 @kuaishou.com
1https ://github.com/NVIDIA/FasterTransformer

Conventional inference acceleration tools for
deep learning models such as NVIDIA TensorRT
(Vanholder, 2016), TurboTransformers (Fang et al.,
2021) and LightSeq (Wang et al., 2021) are pri-
marily designed for fixed-size or variable-length
inputs. These tools’ optimization concepts mainly
take into account memory management, operation
fusion, or other data pruning techniques in the on-
line computing systems, mostly single-precision
calculation (only floating-point is used). So the
acceleration performance is limited. On this basis,
FasterTransformer developed by NVIDIA performs
fixed-point acceleration on Transformer models
(using Fully-quantization in all transformer layers),
and has achieved an excellent speedup compared
with floating-point. However, this method of Fully-
quantized in all transformer layers makes it difficult
for INT8-quantization inference results to achieve
the accuracy of floating-point calculations, result-
ing in a large loss of calculation accuracy in specific
tasks, making it difficult to be widely used. On the
other hand, we find that the kernel-fusion policy in
FasterTransformer INT8-quantization implementa-
tion can still be optimized.

To solve these problems, we propose an infer-
ence toolkit SAMP, which contains a self-adaptive
mixed-precision Encoder and a series of advanced
fusion strategies. Objectively, The mixed-precision
calculation of floating-point and fixed-point can
obtain better calculation accuracy than fully-fixed-
point calculation. Self-Adaptive Mixed-Precision
Encoder can find an optimal combination of mixed-
precision among a large number of General Ma-
trix Multiplication (GEMM) operations and Trans-
former layers, which can align the performance
of model inference most closely with user needs
(calculation accuracy and inference latency). Ad-
vanced Fusion Strategies make fusion improve-
ments for embedding kernels and quantization-
related operations respectively, reducing CUDA
kernel calls by half. Moreover, SAMP is an end-
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Inference Toolkit | Tokenizer Mixed-Precision GEMMs Downstream Tasks

Layers MHA-FFN Fully-quantized | Classification NER Text Matching
FasterTransformer X X X v v X X
TurboTransformers X X X X v X X
LightSeq X X X X X X X
SAMP v 4 4 v v v 4

Table 1: Features for FasterTransformer, TurboTransformers, LightSeq and our proposed SAMP. SAMP supports
tokenizer, different combinations of mixed-precision modes and various downstream tasks.

to-end toolkit implemented by C++ programming
language (from Tokenizer to Embedding, Encoder,
and Downstream tasks), which has excellent infer-
ence speed and reduces the threshold of industrial
application. Table 1 shows the innovative features
compared with similar systems. We present the
following as the key contributions of our work:

Self-Adaptive SAMP balances computational ac-
curacy and latency performance in post-
training quantization inference methods.
Users can choose a mixed-precision configura-
tion with appropriate accuracy and inference
latency for different tasks. SAMP also sug-
gests a combination of quantization modes au-
tomatically via an adaptive allocation method.

Efficiency SAMP shows better inference speedup
than other inference toolkits in a wide preci-
sion range (from floating-point to fixed-point).
In CLUE? classification task datasets, SAMP
achieves up to 1.05-1.15 times speedup com-
pared with FasterTransformer.

Flexibility SAMP covers lots of downstream
tasks, such as classification, sequence label-
ing and text matching. And Target modules
are extensible and flexible to customize. It
is user-friendly and less dependent. SAMP
supports both C++ and Python APIs, only re-
quires CUDA 11.0 or above. We also provides
many convenient tools for model conversion.

2 Related Work

2.1 Quantization in Neural Networks

Quantizing neural networks dates back to the 1990s
(Balzer et al., 1991; Marchesi et al., 1993). In the
early days, the main reason to quantize models is to
make it easier for digital hardware implementation
(Tang and Kwan, 1993). Recently, the research

2https ://github.com/CLUEbenchmark/CLUE

of quantizing neural networks has revived due to
the success of deep learning (Guo, 2018). A slew
of new quantization methods have been proposed,
which are divided into two categories, post-training
quantization (PTQ) and quantization-aware train-
ing (QAT), according to whether the quantization
procedure is related to model training. PTQ re-
quires no re-training and is thus a lightweight push-
button approach to quantization, only calibration
needed. QAT requires fine-tuning and access to
labeled training data but enables lower bit quanti-
zation with competitive results (Jacob et al., 2018).
However, this method is difficult to popularize in
the industry, especially for many existing models
that need to be retrained, and the training process
is also very long. Both FasterTransformer and our
SAMP use PTQ to achieve fixed-point quantization
acceleration.

2.2 Kernel Fusion

Kernel fusion can improve computational effi-
ciency by reducing the number of memory ac-
cesses, increasing cache locality and reducing ker-
nel launch overhead (Fang et al., 2021). Espe-
cially in inference, because of no back-propagation
procedure, some small adjacent operators can be
fused into a larger kernel. Previous fusion meth-
ods mainly include Tensor-fusion and Layer-fusion
(Vanholder, 2016). Tensor-fusion is mainly to con-
catenate tensors of the same shape into one tensor.
Layer-fusion is to fuse operators of adjacent layers
into one operator layer. Our fusion improvement
of embedding kernels in SAMP is Tensor-fusion,
and the operation fusion of quantization operators
belongs to Layer-fusion.

3 Architecture
3.1 Overview of SAMP

In this section, we mainly introduce four modules
of SAMP as shown in Figure 1: Tokenizer, Embed-
ding, Encoder and Downstream Target, and some
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innovative features make it stand out from other
similar works.

Tokenizer: SAMP is a task-oriented and end-to-
end inference library, which has a complete word
segmentation module for Chinese and English that
supports multi-granularity tokenization, such as
character-based tokenization, wordpiece tokeniza-
tion and general BertTokenizer. This module is
implemented by C++ programming language and
multi-thread processing methodology. So, its pro-
cessing is faster than some Python programming
language implementations in similar inference li-
braries.

Embedding: Current embedding method pro-
posed by BERT (Devlin et al., 2018) is constructed
by summing the corresponding token, segment, and
position embeddings, which is implemented by pre-
vious work (e.g. FasterTransformer) through three
independent operation kernels. We fuse these three
operators into one kernel (Embedding Kernel) to
reduce CUDA kernel calls, as shown in Figure 1.

Encoder: SAMP selects Transformer (Vaswani
et al., 2017) as the basic component in Encoder
module. Our innovative features about how to
quantitatively balance the accuracy and latency per-
formance of FP16 and INTS are mainly realized in
this module, and we propose an Accuracy-Decay-
Aware allocation algorithm to obtain best speedup
of mixed-precision while ensuring the required ac-
curacy automatically. At the same time, the fusion
improvements of quantization operators are also
implemented in this module.

Downstream Target: SAMP supports a lot of
models in NLP downstream tasks, including clas-
sification, multi-label, named entity recognition,
text matching and so on. These capabilities and
customization are implemented in Target module.

3.2 SAMP Transformer-based Encoder

In order to solve the problem of serious loss of accu-
racy, which exists in Fully-quantization method of
FasterTransformer, SAMP divides the GEMMs in
Transformer Encoder into two categories by multi-
head attention (MHA) and feed-forward network
(FFN) to generate two mixed-precision modes:
Fully-Quant and Quant-FFN-Only. Fully-Quant
means GEMMs in MHA and FFN are both quan-
tized. Quant-FFN-Only means GEMMs only in
FFN are quantized, and MHA reserves FP32/FP16
accuracy. Figure 2 illustrates the kernel details of
the two mixed-precision modes in SAMP. For a
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Figure 1: The architecture of SAMP.

Transformer-based model, the encoder module is
usually composed of lots of Transformer layers.
Assuming that the number of layers is L, there are
2L combinations of mixed-precision.

Fully-Quant mode shown in Figure 2(a) quan-
tizes the FP32/FP16 inputs of the Encoder in Em-
bedding module, so the data bit width between
Embedding and Encoder is INT8 directly, which
reduces the cost of separate quantization kernel
call. In addition, we also make a big kernel fusion
with Quant/deQuant operations, such as AddResid-
ual, AddBias, and LayerNorm, so that in the whole
forward calculation in Encoder, the data transmis-
sion between kernels is always 8-bit integer (all
green arrows). This fusion reduces the bit width of
memory I/O and the number of kernels, making the
speed of SAMP INT8-quantization exceed Faster-
Transformer 5% ~ 10%, as shown in Section 4.3.

Quant-FFN-Only mode shown in Figure 2(b)
only quantized the GEMM operations in FFN. As
stated above, we reserve the FP32/FP16 GEMM
algorithms in MHA, and quantize the floating-point
result after LayerNorm operation at the end of
MHA. The INT8 GEMM algorithm in FFN is the
same as that in Fully-Quant mode, and the only
difference is that quantization is not used in the last
big kernel to support floating-point outputs.

We now illustrate how SAMP works effectively.
More details of installation and usage are described
in Appendix A. For a specific task, SAMP will
automatically calculate the accuracy and latency
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Figure 2: Two modes of Transformer models in SAMP method. Each square above represents a CUDA kernel,
including one or more function operations. Arrows indicate dataflow. For Fully-Quant mode, both Multi-Head
Attention and Feed-Forward Network are INT8-quantized in Transformer, while in Quant-FFN-Only mode, only

Feed-Forward Network is quantized.

Algorithm 1 Accuracy-Decay-Aware allocator

Input: Array A, L of Accuracy and Latency, the number
of Transformer-layers N
Output: Lg, number of quantized Transformer-layers.

1: drmin < MAX_FLOAT

2: Agppie < Ao, Lypie < Lo

3: fori =0to N do

4: if - == 0 then

5: Arec + Agpis

6: Lyee prlﬁ

7: else

8: dr < (Az — Arec)/(Li - Lrec)
9: if dr < 0 or dr < drm» then
10: Armin < dr
11: Arec — Az
12: chc — L’L
13: Lg<+1i
14: end if
15: end if
16: end for

17: return Lgq

of these mixed-precision combinations of differ-
ent modes, using Fully-FP16 implementations of
SAMP as baseline. Users can input specific la-
tency and accuracy requirements before the calcu-
lation. SAMP will find the mixed-precision com-
bination that mostly meets the requirements, and
configure the mixed-precision parameters to infer-

ence toolkit automatically. When users cannot give
clear requirements, SAMP will generate a set of
recommended configuration parameters of mixed-
precision by the Accuracy-Decay-Aware alloca-
tion algorithm. Specifically, in the two modes
we proposed above, the speedup increases linearly
with the number of quantization layers (each layer
of Quant-FFN-Only mode brings 2 ~ 3% speedup
compared with Fully-FP16 in BERT-base binary
classification), while the accuracy drops signifi-
cantly after more layers of quantization. This algo-
rithm will recommend a balance between accuracy
and speedup of mixed-precision combination, as
shown in Algorithm 1.

4 Experiments

4.1 Experiment Settings

In this section, we show the experimental results
of SAMP from two aspects: SAMP trade-off test
on text classification tasks and latency speedup.
All the evaluation experiments are conducted on
GPU NVIDIA Tesla T4, CUDA 11.0. Moreover,
we use INT8-quantization calibration tool pytorch-
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PTQ Libraries Quantized Layer

AFQMC

IFLYTEK TNEWS

MHA FFN Accuracy Speedup Accuracy Speedup Accuracy Speedup
PyTorch-FP16 0/12 0/12 0.7337 1.0000 0.6048 1.0000 0.5633 1.0000
FasterTransformer-FP16 0/12 0/12 0.7340 2.9319 0.6052 1.6524 0.5634 3.1351
FasterTransformer-INT8 12/12 12/12 0.5773 3.4990 0.4540 2.4539 0.5058 3.5551
SAMP-FP16 0/12 0/12 0.7338 3.3741 0.6056 1.4870 0.5632 3.5022
2/12 2/12 0.6671 3.5790 0.5572 1.5550 0.0930 3.6790
4/12 4/12 0.3167 3.7689 0.2957 1.6144 0.0856 3.9083
6/12 6/12 0.3188 4.0486 0.1454 1.7305 0.0952 4.2274
SAMP-Fully-Quant 8/12 8/12 0.6435 4.3882 0.1493 1.8645 0.0851 4.5985
10/12 10/12 0.6874 4.7751 0.1149 2.0162 0.0900 4.9869
12/12 12/12 0.4409 5.1817 0.0150 2.1978 0.0884 5.3271
0/12 2/12 0.7340 3.4799 0.6007 1.5073 0.5654 3.6659
0/12 4/12 0.7318 3.6162 0.5932 1.5532 0.5640 3.7465
0/12 6/12 0.7088 3.7725 0.5840 1.6269 0.5610 3.9527
SAMP-Quant-FEN-Only 1, ¢/, 0.6872  4.0059 05786 17095  0.5523  4.1440
0/12 10/12 0.5588 4.2262 0.5663 1.7863 0.5208 4.3917
0/12 12/12 0.5279 4.4574 0.5641 1.8821 0.5077 4.6195

Table 2: SAMP test for Fine-tuned BERT-base(LL12_H768) model on CLUE tasks AFQMC, IFLYTEK and TNEWS.
We all use min-max calibrator of pytorch-quantization® to generate scales for INT8-quantization. We only show
partial experimental data here due to space constraints. Compared with SAMP-FP16, Underlined scores represent a
mixed-precision combination recommended by the accuracy-decay-aware allocation method in each mode.

quantization® of NVIDIA TensorRT , which pro-
vides four calibration methods for post-training
quantization (PTQ). Users can choose an appro-
priate calibration method to generate scale values,
which convert model weights from floating-point
to fixed-point, for mixed-precision calculations.

First, we test three groups of experiments for
SAMP trade-off (between accuracy and latency
speedup) in text classification tasks AFQMC(Ant
Financial Question Matching Corpus), IFLY-
TEK(Long Text classification) and TNEWS(Short
Text Classification for News) in Chinese Language
Understanding Evaluation Benchmark (Xu et al.,
2020). We use BERT-base (12-Layer, HiddenSize-
768) released by Google (Devlin et al., 2018) as
the pre-trained model, and train the FP32 baseline
models by the paradigm of "Pre-training and Fine-
tuning" in each task. And we also use TencentPre-
train (Zhao et al., 2022) as training toolkit. Finally,
SAMP self-adaptively obtains the best trade-off
between accuracy and latency speedup of mixed-
precision on the Dev set.

Secondly, we also test SAMP latency speedup
separately, choosing the popular PyTorch and the
latest version of FasterTransformer for comparison.
Due to the difference of Tokenizer(shown in Ta-
ble 1) and programming languages in Target mod-

Shttps://github.com/NVIDIA/TensorRT/tree/main/
tools/pytorch-quantization

ules (SAMP’s targets are developed by C++ pro-
gramming language, and FasterTransformer uses
Python targets (Fang et al., 2021)), we only make
speedup comparison with Encoder.

4.2 Text Classication on CLUE

Table 2 shows the changes of accuracy and speedup
with the increase of the number of quantized
Transformer-layers in two modes, Fully-Quant and
Quant-FFN-Only. The upper bound of speedup is
All-layers Fully-Quant and lower bound is Fully-
FP16. We choose PyTorch-FP16 implementa-
tion as baseline for speedup comparison. In each
mode, with the increase of the number of quantized
Transformer-layers, the speedup of three tasks in-
creased steadily, while accuracy decreases faster
and faster.

SAMP has three modes: SAMP-FP16, SAMP-
Fully-Quant and SAMP-Quant-FFN-Only. It au-
tomatically recommends the appropriate mixed-
precision combination (underlined scores in Ta-
ble 2) for each task by using the accuracy-decay-
aware allocation method. For example, compared
with Fully-FP16, in SAMP Quant-FFN-Only mode,
the AFQMC task achieves a speedup of 18.7%
(4.0059 vs. 3.3741) through 8-layer FFN quan-
tization, and the accuracy decreases by only 4.7%
(0.6872 vs. 0.7338) . IFLYTEK task achieves
a speedup of 26.6% and accuracy of it decreases
by only 4.15%. In TNEWS task, the accuracy de-
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creases slightly by only 0.22% in 6-layer FEN quan-
tization, and achieves a speedup of 12.9%. These
recommended results of SAMP have significantly
higher accuracy than All-layers Fully-quantization
in FasterTransformer, and even most of them have
achieved better speedups. Finally, the balance idea
between accuracy and latency of SAMP is proved
to be effective significantly.

We also find an interesting phenomenon that
accuracy decreases heavily in Fully-Quant mode
compared with Quant-FFN-Only. The main reason
for the severe accuracy loss of quantizing MHA
is caused by quantizing the output of Softmax in
MHA. For general neural network layers, the distri-
bution of positive and negative outputs are almost
balanced, so that the precision range of 8-bit fixed-
point (—27 to 27 — 1) can be fully used. But the
output value of Softmax is between 0 and 1, so the
part of -128 to 0 is unused (default in symmetric
quantization, refer to Appendix B). Experimental
results shows most Softmax output quantized val-
ues are distributed between 0 and 64, rather than
-128 to 127. The accuracy loss of quantizing Soft-
max output accumulates when Transformer layer
gets deeper, resulting in the overall severe accuracy
loss of SAMP Fully-Quant and FasterTransformer.
So, Quant-FFN-Only is the preferred mode rec-
ommended by SAMP.

4.3 Speedup of SAMP

For our kernel-fusion improvements, we also make
a latency benchmark comparison for fully floating-
point and fixed-point, including Fully-FP32, Fully-
FP16 and Fully-INT8. As shown in Figure 3,
SAMP floating-point Encoder achieves higher
speedups than PyTorch and FasterTransformer in
common batch size and length of sequence re-
spectively. These histogram tables show that
SAMP-FP32 achieves up to 1.5x speedup com-
pared with PyTorch and 1.1x compared with Faster-
Transformer, and SAMP-FP16 achieves up to 2x
speedup compared with PyTorch and 1.15x com-
pared with FasterTransformer-FP16. Meanwhile,
SAMP-Fully-INTS8 achieves up to 1.1x speedup
compared with FasterTransformer-INT8 in com-
mon application scenarios. These comparisons
demonstrate that SAMP has been optimized as a
new inference tool with faster floating-point and
fixed-point computations for Transformer-based
Encoder.
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Figure 3: Encoder speedup on GPU Tesla T4 compared
with FasterTransformer and PyTorch.

5 Conclusion

In this paper, we introduce a new inference toolkit
SAMP for NLP models. The main contribution
of SAMP is to solve the problem of serious per-
formance loss of the existing quantization infer-
ence tools in the industrial application of text un-
derstanding. And it also pioneers the application
of quantization inference to various downstream
tasks through a wide variety of task-type coverage.
SAMP is light-weight, flexible, and user-friendly.
At present, it has been widely used in our busi-
ness, which greatly saves the deployment cost of
industrial applications.

In the future work, we will focus on optimizing
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the quantization effect of GEMMs in MHA, and ex-
plore fixed-point acceleration methods with lower
bit width than 8-bit integer, and introduce SAMP
to more models.

Limitations

We propose a high-performance quantization infer-
ence toolkit SAMP, but it inevitably contains some
limitations as:

* SAMP is an end-to-end inference toolkit im-
plemented by C++ programming language.
Compared with most toolkits of Python pro-
gramming language, the flexibility of it is lim-
ited, and users are required to have some basic
knowledge or experience in C++ language de-
velopment. Based on that, we have provided
a lot of convenient Python APIs for ordinary
users.

¢ In different series of GPU architec