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Preface

Welcome to The first Arabic Natural Language Processing Conference (ArabicNLP 2023) graduating
from the Workshop for Arabic Natural Language Processing Workshop (WANLP) which had its seventh,
and last, instance last year, in December 2022 within EMNLP 2022. Over the years, WANLP has develo-
ped a growing reputation as a high quality venue for researchers and engineers working on Arabic NLP,
where they share and discuss their ongoing work.

The first in the WANLP series was held in Doha, Qatar (EMNLP 2014), followed by Beijing, China
(ACL 2015), Valencia, Spain (EACL 2017), Florence, Italy (ACL 2019), online with COLING 2020,
online with EACL 2021, then finally a hybrid event in Abu Dhabi, UAE (EMNLP 2022).

For this year’s edition of ArabicNLP, we received a total of 80 main conference submissions and accepted
38 papers (32 long and 6 short), which brings us to an acceptance rate of 47.5%. All papers submitted
to the conference were reviewed by at least three reviewers each. Out of the 80 submitted papers, there
were 2 desk rejects.

ArabicNLP 2023 included five shared tasks with 48 submissions in totals: (i) The Nuanced Arabic Dia-
lect Identification (NADI) with 13 submissions, (ii) ArAlEval (Persuasion Techniques and Disinforma-
tion Detection in Arabic Text) with 17 submissions, (iii) Qur’an QA with 6 submissions, (iv) WojoodNER
with 8 submissions, and (v) Arabic Reverse Dictionary with 4 submissions. The shared task overview
papers are included in the proceedings. The overview papers and the papers of the shared task winning
systems are presented as talks during the conference. None of the shared task papers are counted toward
the acceptance rate presented above.

ArabicNLP 2023 also includes a panel discussing the hot topic “Arabic LLMs: Challenges and Opportu-
nities” by leaders in the field, like Areeb Alowisheq, Tom Baldwin, and Kareem Darwish, moderated by
Mona Diab.

We were able to secure sponsorship funding from different institutions: King Salman Global Academy
for Arabic Language, aiXplain, Lisan.ai, SCAI, Majarra, and Big IR, which we used to support student
registrations. We thank all our sponsors for their generous support and their help in building up the
Arabic NLP community.

We would like to thank everyone who submitted a paper to the conference, as well as all the members of
the Program Committee, who worked hard to provide reviews on a very tight schedule.

Finally, on behalf of everyone involved, organizing committee as well as conference attendees, I would
like to thank Nizar Habash and Houda Bouamor for supporting, mentoring and helping this conference
be a success, being available for any request and filling any gaps that are overlooked.

Hassan Sawaf, General Chair, on behalf of the conference organizers.

Website of the conference: https://arabicnlp2023.sigarab.org
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Abstract

Although image captioning has a vast array of
applications, it has not reached its full potential
in languages other than English. Arabic, for
instance, although the native language of more
than 400 million people, remains largely under-
represented in this area. This is due to the lack
of labeled data and powerful Arabic generative
models. We alleviate this issue by presenting a
novel vision-language model dedicated to Ara-
bic, dubbed Violet. Our model is based on a
vision encoder and a Gemini text decoder that
maintains generation fluency while allowing
fusion between the vision and language compo-
nents. To train our model, we introduce a new
method for automatically acquiring data from
available English datasets. We also manually
prepare a new dataset for evaluation. Violet
performs sizeably better than our baselines on
all of our evaluation datasets. For example, it
reaches a CIDEr score of 61.2 on our manually
annotated dataset and achieves an improvement
of 13 points on Flickr8k.

1 Introduction

Captioning images involves describing the visual
elements of a picture using natural language. This
requires a system that combines the strengths of
two models: one that can represent the visual ele-
ments of an image, and another that can translate
this representation into natural language. The lat-
ter employs a language model to produce fluent
(i.e., grammatically accurate) and adequate (i.e.,
capturing sufficient semantic information) descrip-
tions. In recent years, research on vision language
models (VLMs) and their applications has boomed
(Alayrac et al., 2022; Wang et al., 2022; Huang
et al., 2023). Owing to the rapid advancements in
large language models (LLMs), the performance
of VLMs has improved dramatically. More con-
cretely, VLMs have progressed from merely pro-
viding descriptions that vaguely resemble a given
image (Vinyals et al., 2015) to accurately describ-
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Figure 1. Examples of captions generated by our model.

ing complex visual cues within the image. The
pretraining-then-finetuning paradigm also plays a
significant role in achieving such impressive results,
as it allows models to first grasp general language
structures and then specialize in the specific task of
image captioning (Gan et al., 2022).

Progress in VLMs, however, has been witnessed
thus far primarily on English Awais et al. (2023).
This leaves behind a large number of other lan-
guages for which no sufficient image captioning
data or language models exist. Arabic is a case
in point where image captioning lags far behind
(Elbedwehy and Medhat, 2023). Similar to other
low-resource languages, progress in Arabic image
captioning has been hampered by the lack of pub-
licly available datasets and limited efforts in cre-
ating any such data. Manual creation of image
datasets, after all, requires a huge amount of time
and labor. Again, the unavailability of powerful
Arabic language models that understands the struc-
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ture of the language and can capture its rich mor-
phology has also caused a delay in the development
of VLMs. Given the rapid progress in vision lan-
guage technologies and their wide applications in
society, limited progress in this area can have nega-
tive consequences for the Arabic-speaking world.

(Emami et al. 423
,2022)

(Elbedwehy and 46.9
Medhat, 2023)

Ours 60.1
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Figure 2. Performance of our model compared to previous
works on Flickr8k using CIDEr metric.

To address this important issue, we introduce a
novel Arabic image captioning model dubbed Vi-
olet. Our new model is comprised of two main
components: a vision encoder and a text decoder.
For the vision encoder, we employ an object de-
tector network based on FasterRCNN (Ren et al.,
2015) to extract visual features that are then passed
to a compact transformer encoder. At the decoder
side, we leverage the recently developed genera-
tive pretrained model JASMINE (Nagoudi et al.,
2022). Taking inspiration from (Yu et al., 2022),
we split our text decoder into two halves: the first
half functions as a text decoder, whereas the sec-
ond incorporates cross-attention layers, effectively
serving as a fusion decoder. Given the dual nature
of our decoder, we refer to it as Gemini. Drawing
parallels with VisualGPT (Chen et al., 2022) and
the meshed transformer (Cornia et al., 2020), we
also adopt a meshed connection between the trans-
former vision encoder and the text decoder to foster
enhanced communication between the encoder and
decoder layers.

The other major challenge we face in our work
is the unavailability of native Arabic captioning
data. We alleviate this challenge by introducing a
method for automatically acquiring captions that
is based on first employing a powerful machine
translation model followed by a quality assurance
mechanism for removing poor captions. For evalu-
ation, in addition to reporting on Arabic translated
dataset, we task five human annotators to manually
caption an image dataset. Compared to previous
works and baselines, our novel model excels in cap-
tioning images in fluent Arabic. Figure 1 offers
four examples of fluent Arabic captions generated
by our novel model. Figure 2 shows a comparison
of our model performance with prior research on

Flickr8k in CIDEr score.
In summary, our contributions are as follows:

* We present a novel image captioning model
that employs an effective pretrained Arabic
decoder capable of outputting rich captions.

* Our model achieves competitive performance
for Arabic image captioning on both the
MSCOCO (Lin et al., 2014) and Flicker8k
(Jia et al., 2014) datasets, establishing a new
state-of-the-art in this area.

* In the process of developing our new model,
we release a translated version of MSCOCO
dataset that has gone through our quality assur-
ance pipeline. Our released dataset can help
further advance research in Arabic VLMs.

* We also release our manually captioned
dataset, a subset of MSCOCO test set, that
we dub AraCOCO.

2 Related Work

Image captioning. Early methods for im-
age captioning involve either retrieving descrip-
tions (Karpathy et al., 2014) or using template fill-
ing combined with manually designed natural lan-
guage generation techniques (Yang et al., 2011; Li
et al., 2011). However, modern image captioning
primarily relies on deep learning models. In early
work, image captioning is framed as an image-
to-sequence task using encoder-decoder models,
with Convolutional Neural Networks (CNNs) as en-
coders and Recurrent Neural Networks (RNNs) as
decoders while incorporating attention mechanisms
(Xu et al., 2015; You et al., 2016; Huang et al.,
2019). Soon after, using a transformer architecture
of a vision encoder with a text decoder became the
defacto direction towards solving the problem of
image captioning (Stefanini et al., 2022). Some
approaches use a detection model to extract vi-
sual features and then pass it to a transformer text
decoder as in Oscar (Li et al., 2020; Chen et al.,
2022), while others like CoCa (Yu et al., 2022) train
a transformer vision encoder with a text decoder
from scratch on a large-scale dataset.

More recently, there has been a shift towards
using pre-trained LLMs and vision models. Gener-
ative Image-to-text Transformer (GIT) (Wang et al.,
2022) is a decoder-only transformer that utilizes
a CLIP (Radford et al., 2021) visual encoder to
incorporate both visual and textual inputs. An-
other method to consider is VisualGPT (Chen et al.,
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Figure 3. The architecture and output generated by our model. We use an object detection network to extract K object features
(K equal 50 in our case) from an image. After projecting to a lower dimension, the features are fed to an L-layer (three-layer in
our architecture) transformer encoder. Meshed connection is employed between the encoder and decoder layers, where each
encoder layer contributes to the cross-attention output. Our text decoder is split into two halves, the first half is the standard
frozen pretrained text decoder layers, while the second half has cross-attention layers inserted after each self-attention layer. We
call this design a Gemini decoder. We employ a gating mechanism through 7+ and 7., that controls the flow of information from
the vision and language sides. The final input to the feed forward network in each cross-attention layer is the weighted sum of

each encoder-decoder attention controlled by the o parameters.

2022) which uses a pretrained FasterCNN to ex-
tract visual features that it passes to a small vision
encoder. For the decoder side, it uses the text-
pretrained model GPT?2 (Radford et al., 2019).

Arabic image captioning. Arabic poses signifi-
cant challenges to image captioning. This is due
to the lack of native Arabic captioning datasets in
the public domain, the morphological complexity
of Arabic, and the large number of diverse dialects
(Attai and Elnagar, 2020). However, a number of
Arabic image captioning works exist. For instance,
approaches such as root-word based RNNs and
deep neural networks are used for direct Arabic
caption generation (Jindal, 2017). Al-Muzaini et al.
(2018) employ a generative merge model with three
components: an LSTM-based language model, a
CNN-based image feature extraction model, and
a decoder that processes outputs from the first
two models. ElJundi et al. (2020) introduce an
Arabic captioning model trained on a translated
Flickr8K dataset, discussing issues related to trans-
lation. Afyouni et al. (2021) present AraCap, a
hybrid design that combines a CNN with object de-
tection using attention mechanisms and produces
captions through an LSTM. They train their model
on MSCOCO and Flickr30k (Plummer et al., 2015)

datasets and test on an Arabic translated subset of
MSCOCO. Lasheen and Barakat (2022) propose
an encoder-decoder structure, incorporating atten-
tion mechanisms with CNN encoding and LSTM
decoding. In another study (Emami et al., 2022),
various Arabic image captioning models are for-
mulated and assessed using standard metrics. The
authors use transformers pretrained on diverse Ara-
bic datasets following the architecture and training
method introduced in OSCAR (Li et al., 2020).
Elbedwehy and Medhat (2023) present a model
employing transformers for both encoding and de-
coding. It uses feature extraction from images in
the encoding stage and a pretrained word embed-
ding model in the decoding stage, all tested on the
Arabic-translated Flickr8k dataset in ElJundi et al.
(2020). This work is closest to ours in that we also
utilize transformer encoders and decoders. How-
ever, we use a GPT-styled decoder that endows our
approach with high Arabic fluency.

3 Approach

3.1 Model Architecture

Our model is a vision-encoder-decoder architecture.
For the vision encoder part, we employ an object



detection network (Anderson et al., 2018) and a
three-layer transformer. For the text decoder, we
use the pretrained transformer decoder JASMINE
(Nagoudi et al., 2022). To align visual and textual
features, we utilize cross-attention. In standard
attention, also known as self-attention, the attention
output is computed using three matrices derived
from the same input: the query matrix (), the key
matrix K, and the value matrix V. More concretely,
given an input sequence represented as a matrix
St, where each row corresponds to a vector in the
sequence, the attention is calculated as:

SWq(S:Wi)™
Attn(Se) = soft e
n(St) = so max( NG

Where W,, Wy, and W, are the learnable
weight matrices for the query @, key K, and value
V' respectively. dj is the dimensionality of the
query/key vectors. The division by 1/d}, is a scal-
ing factor to ensure the dot products don’t grow too
large as the dimensionality increases.

In the case of cross-attention, the query is de-
rived from the output of the text decoder’s self-
attention, while the key and value are sourced from
the vision encoder. Mathematically, given image
visual features output S,,,, and the textual features
St, the formula becomes:

) SW, (D)
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Now that the attention mechanism foundations are
laid out, we describe our vision encoder and text
decoder in detail.

3.1.1 Vision Encoder

Our vision encoder consists of two components: a
pretrained object detection network, and a three-
layer transformer encoder. For the object detection
network, we employ bottom-up attention network
(Anderson et al., 2018). In our initial experiments,
it results in superior visual features compared to
using the vanilla FasterRCNN model (Ren et al.,
2015). Previous works (Li et al., 2020; Cornia
et al., 2020; Chen et al., 2022) also show the ef-
fectiveness of this network in feature extraction.
The transformer encoder, on the other hand, is a
three-layer standard transformer architecture that
takes the output of the detection network to further
refine the visual features. For each image, the de-
tection network detects the potential objects and

extracts the visual features from their bounding
boxes.! These visual features are passed through
a projection layer and then fed to the three-layer
transformer encoder as input. We adapt meshed
connection (Cornia et al., 2020) in our architecture
between the encoder layers and the text decoder.
This allows all the encoder layers to contribute to
the input of the cross-attention rather than using
only the output of the last encoder layer. The con-
tribution of each encoder layer is determined by
the learnable parameters matrix «.. For each layer
1, oy 18 calculated as:

o = O’(WZ[St H XAttn(Smi, St) + bz]) 3)

Where S; is the input sequence of each decoder
layer, o is the sigmoid activation function, W; is a
learnable weight matrix, b; is a bias term and || in-
dicates concatenation. This measures the relevance
between the input for each decoder layer .Sy, and
the output of each encoder layer.

3.1.2 Gemini Decoder

We employ the pretrained Arabic decoder JAS-
MINE (Nagoudi et al., 2022) as our text decoder.
JASMINE is a decoder-based transformer that fol-
lows GPTNeo architecture (Black et al., 2021).
JASMINE models range in complexity from 300
million to 13 billion parameters and are trained on
a text dataset of approximately 400GB, covering di-
verse Arabic varieties from multiple domains. We
utilize the JASMINE base variant in our architec-
ture, which is a 12-layer transformer decoder with
a 768-dimensional embedding.

Although the meshed connection introduced
in Cornia et al. (2020) proved to have positive im-
provements on performance due to the richer visual
features, calculating the cross-attention of each en-
coder layer with each decoder layer is computation-
ally expensive. Inspired by Yu et al. (2022), we
split our pretrained text decoder into two parts. The
first part acts as a vanilla text decoder, while the sec-
ond part acts as a fusion decoder that aligns visual
and textual features. This design choice serves two
purposes. First, it reduces the computations and the
number of parameters by removing cross-attention
layers and the mesh connections in the first half
of the decoder. Second, having its first half intact
acting as a vanilla text decoder, allows our decoder
to keep its innate generative capabilities, while also
enabling smoother convergence.

'A bounding box is a region in the image that contains the
object.



As shown in Figure 3, the first half has only
the pretrained self-attention layers of JASMINE.
While the second half got cross-attention blocks
inserted in-between each layer, acting as a fusion
decoder. To ensure maintaining the functionality of
our pretrained decoder, we freeze the first part that
acts as the text decoder. This modification not only
decreases computational cost but also positively
impacts overall performance. In order to further
enhance the quality of the features generated by
both the vision encoders and the text decoder, we
employ self-resurrecting activation unit (SRAU)
introduced in Chen et al. (2022). The process of
generating a caption relies on visual cues to convey
the image’s content and textual cues to provide
relationships between words for a coherent and
fluent output. To allow the important information to
flow without distortion, SRAU selectively permits
the activation above a certain threshold through
a gating mechanism. This effectively filters out
any weak signal produced by either the vision or
language part.

Concretely, as shown in Figure 3, for each
encoder-decoder connection, the output Z; to the
feedforward layer is calculated as:

ZZ' = TTm X XAttn(St, Sm@) + Tt %) 141515'[’11(575)7 (4)

in which 7, is the gating parameter for the vision
part and ; for the text part, calculated as:

mm = 0(An)1(c(An) > 1),
= (1—0(An))1(1 — o(4n) > 7)

where o is the sigmoid function, A,, is an element
in the attention matrix, 1 is an indicator function
that equals one if the condition is true and zero
otherwise, and 7 is a hyperparameter. This negates
any disturbance caused by weak activations below
the threshold 7 by zeroing them out. The final out-
put Z to the feedforward layer will be the sum of
each encoder-decoder connection weighted by the
learned parameter « introduced earlier, mathemati-
cally:

1 &
Z=—7=3 az
VL i=1 “ ©

Where L is the number of encoder layers, set to
three in our architecture.

A street full of motorcycles and their riders

Some dogs stick their heads out the car window.

Original

Computer monitor and accesories sitting on a desk.

A dog herding sheep at a herding event.
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Figure 4. A comparison between the translations produced
by Google translate API and NLLB for MSCOCO dataset.
Unlike NLLB, Google API tends to give literal translations
without incorporating the context.

3.2 Data Collection

Owing to the unavailability of high-quality Ara-
bic captioning training data, we first start by cre-
ating a training dataset for our model. Manu-
ally labeling and creating a new dataset would
be both time-consuming and expensive; therefore,
we opt for translating the commonly used caption-
ing dataset Microsoft Common Objects in Context
(MSCOCO) (Lin et al., 2014). There are two fa-
mous training/validation splits for this dataset, the
2014 Karpathy’s split, and the 2017 split. Both
splits contain the same images and only differ in
the split ratio. The dataset covers around 80 dif-
ferent objects in a total of 123k images with 5 cap-
tions per image. The dataset is annotated manually,
which makes it suitable for evaluation. We create
our dataset in two steps, (i) translating the English
MSCOCO, followed by (ii) a quality assurance step
to filter poor translations.

3.2.1 Machine Translation

In all of the previous attempts at Arabic image
captioning pretraining (ElJundi et al., 2020; Sabri,
2021; Emami et al., 2022), Google translate API
(Google, 2023) was used for translating the datasets.
However, the quality of the translations produced
by it is not satisfactory. In Sabri (2021) it is re-
ported that from a random sample of 150 exam-
ples, a whooping 46% of the translations obtained
by Google API are unintelligible. Motivated by
that, we investigate Meta’s No Language Left Be-
hind model (NLLB) model (Costa-jussa et al., 2022)



for translation. Figure 4 illustrates a comparison
between the translations produced by the Google
Translate API and NLLB for four sentences sam-
pled from MSCOCO dataset.

We conduct our comparison between the two
translation models, Google Translate API* and
NLLB, on two aspects. First, we manually check
the quality of 200 sentences translated by both mod-
els. Second, we calculate the perplexity of the
translations of both models using our JASMINE
decoder. Perplexity calculates the probability of a
given sequence, providing insight into the fluency
of the output translations. Lower perplexity scores
indicate better fluency, while higher scores indicate
poor fluency. This metric helps us to quantitatively
gauge how good the translations are, supplement-
ing our manual evaluation to offer a comprehensive
understanding of the models’ performance. Sub-
sequently, our observations reveal that the Google
API tends to provide a more literal translation in
comparison to NLLB. Empirically speaking, we
find that 42% of Google’s translations are unin-
telligible, a stark contrast to the mere 15% from
NLLB. Interestingly, this observation is consistent
with findings presented in Sabri (2021). Further-
more, when pitted against ChatGPT (Ouyang et al.,
2022), the latter displays an impressive error rate
of only 7% in its translations. However, we opted
for NLLB due to its open-source nature.
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Figure 5. Examples of the rejected translations from the
dataset and their semantic similarity to the English caption.
Where orange highlighting refers to poor translation, and red
highlighting refers to poor original caption.

A teddy bear with a pacifier and a

baby bottle.
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3.2.2 Data Quality Assurance

Although NLLB in general provides better transla-
tions compared to that of Google API, it can still

The Google Translate API, integrated into Google Sheets,
was used to translate the subset of data utilized in the compar-
ison.

output ‘hallucinations’ and ultimately poor transla-
tions. This can be seen in the orange highlighted
instances in Figure 5. Moreover, our manual inspec-
tion reveals that some English captions in the orig-
inal dataset are indeed incorrect. The MSCOCO
training set can have incomprehensible samples,
typos, and even unrelated captions. Examples high-
lighted in red in Figure 5 illustrate these poor cases.
To mitigate this issue, we employ a simple method
based on semantic similarity that allows us to iden-
tify and reject any such examples.

The semantic similarity of two sentences, as the
term suggests, is an indicator of the extent to which
these two sentences align. A simple comparison
between the embeddings of the two sentences can
be obtained by passing each of them through a
model and a metric such as cosine similarity can
be calculated to determine how alike the two em-
beddings are. The smaller the angle between the
two vectors, the higher the similarity score, indi-
cating that the sentences are closer in meaning.
When the sentences are in different languages, it
is crucial to employ a multilingual model to gen-
erate accurate embeddings, ensuring the semantic
comparison remains valid across languages. In our
experiments, we employ sentence-BERT (Reimers
and Gurevych, 2019) to calculate the semantic sim-
ilarity between each original caption and its trans-
lation. We empirically chose a similarity score
threshold of 0.6, rejecting all captions below that
threshold. This results in removing a total of 60K
samples from the whole dataset, which amounts to
approximately 10% of the data.

3.2.3 AraCOCO Evaluation Dataset

Evaluating the performance of an Arabic caption-
ing model presents a significant challenge due to
the limited availability of human captioned data.
To tackle this issue, we manually annotate a subset
of 500 images from the MSCOCO test set, dubbing
our resulting dataset AraCOCO. For each of the
500 images, we acquire five distinct captions. To
ensure diversity of image descriptions, we acquire
captions from five native Arabic-speaking annota-
tors. The human labeling process is carried out
using Label Studio, a platform designed for such
tasks. Each annotator is presented with the same
set of images and is asked to write an Arabic cap-
tion describing the image given a unique English
caption as a reference. We encourage annotators
to provide an Arabic caption that is more descrip-
tive whenever possible. That is, in cases where the



English Caption

NLLB Translation

AraCOCO

An airport with large jetliners and a bus
traveling on a tarmac.

a group of buses driving around at the
airport

Airplanes sit at the gate as transportation
vehicles move about.

A busy runway with buses and luggage
carts driving around

An airplane and busses are lined up at
the airport.
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Table 1: A comparison between original MSCOCO captions (first column), their NLLB translations (second
column), and AraCOCO captions (third column) for the image in Figure 6.

Figure 6. A sample from MSCOCO included in our Ara-
COCO.

English caption is not capturing all details in the
image, annotators are encouraged to capture these
lacking details in their Arabic captions. Each an-
notator gets to provide only one caption per image,
This approach ensures having multiple perspectives
to the captions on the same image. We provide an
example image from AraCOCO in Figure 6, along
with five different captions each acquired from one
annotator in Table 1.

4 Experiments

We analyze the performance of three variations
of our architecture: (i) using the normal decoder
with cross-attention in each layer, (ii) using Gem-
ini decoder without freezing the text part, and (iii)
using Gemini decoder while freezing the text part.
As a baseline, we train a VisualGPT model (Chen
et al., 2022) on the English MSCOCO training set
then translate output into Arabic using NLLB. Our
trained VisualGPT achieves a 117.8 CIDEr score
on the English MSCOCO validation set. We con-
duct our experiments on three datasets, as follows:
(i) Our translated MSCOCO: Following the
Karpathy split, our translated and filtered
MSCOCO contains 543, 817 samples for training

(Train), 22, 845 samples for validation (Dev), and
22,912 samples for testing (Test). We refer to this
dataset as MSCOCO.

(ii) Translated Flickr8K: Similar to the orig-
inal Flickr8k, the translated dataset introduced
in ElJundi et al. (2020) consists of 6,000 images
for Train, 1,000 images for Dev, and 1,000 for
Test. Each Image has three captions, all translated
using Google translate API. We refer to this dataset
simply as Flickr8K.

(iii) AraCOCO: As described in Section 3.2.3,
AraCOCO consists of 500 images from Karpathy
test split. Each image has five captions, all obtained
from human annotators.

4.1 Implementation Details

We use JASMINE base (300m) as our text decoder.
While for the detection network, following pre-
vious works (Li et al., 2020; Cornia et al., 2020;
Chen et al., 2022), we employ bottom-up attention
network (Anderson et al., 2018) based on Resnet-
101 backbone (He et al., 2016) with 2, 048 output
features. We also limit the maximum number of
detections per image to 50 bounding boxes. The
three-layer transformer encoder contains 12 atten-
tion heads per layer with 768 embeddings dimen-
sion.

As we utilize the JASMINE decoder (Nagoudi
et al., 2022), we adopt its byte-pair encoding
(BPE) vocabulary where frequent character pairs
are merged to form subwords. This vocabulary
encompasses 63, 999 tokens. For data preprocess-
ing, we employ a custom normalizer that removes
punctuation and repeated characters.

For the optimization part, in all experiments, we
use AdamW Loshchilov and Hutter (2019) with a



Model BLEU-11t BLEU-41T Rouge? CIDErt
VisualGPT 56.2 21.4 44.1 82.1
Violet (w/o Gemini) 45.1 11.3 34.1 41.2
Violet (w/ Gemini) 59.2 21.5 46.3 83.2
Violet (w/ Gemini) * 60.3 24.8 47.2 84.9

Table 2: Results on the translated MSCoco test set. VisualGPT is trained by us on the MSCOCO dataset, and the
outputs were translated using NLLB (Costa-jussa et al., 2022). (w/o Gemini) means using a normal text decoder
with meshed cross-attention in each layer. * indicates freezing the first part of the text decoder.

learning rate of 1e~*, and empirically set 7 to 0.3.
The model is trained using a batch size of 60 for
20 epochs while employing early stopping with a
patience of 5 on the validation loss. For Flickr8k,
we use our MSCOCO-pretrained model and only
finetune it for one epoch on Flickr8k’s training data.
We employ a cross-entropy loss and train the model
in an auto-regressive manner, where the decoder
predicts the next token given the visual features
and the previously generated textual tokens.

4.2 Results and Discussion

We evaluate the performance of our models against
previous methods on the popular evaluation met-
rics BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), and CIDEr (Vedantam et al., 2015). The
results of our models on our MSCOCO dataset are
displayed in Table 2. Our Gemini decoder with six
frozen layers (last row in Table 2) achieves better
performance while having fewer computations than
the unfrozen counterpart. Furthermore, it achieves
around three points higher CIDEr score compared
to the translated VisualGPT outputs (first row in
Table 2). The poor performance observed using
the full decoder with cross-attention layers (sec-
ond row in Table 2), compared to other variants
may be due to sensitivity of the decoder parameters
which end up being changed significantly with full
cross-attention across all its layers.

Model BLEU-1 BLEU-4 Rouge CIDEr
Elbedwehy  and 58.7 16.5 38.0 46.9
Medhat (2023)

Emamietal. 2022) 39.0 09.0 33.4 42.3
Violet 44.2 13.0 38.4 60.1

Table 3: Results on Flickr8k test set from (ElJundi et al.,
2020). The results are taken from the respective papers.

To compare our Arabic captioning model with

previously published Arabic models, we evaluate
our model on the Flickr8k test set from (ElJundi
et al., 2020). As shown in Table 3, our model
achieves 2 points better score on the ROUGE met-
ric, while having a substantial improvement over
previous published results in the CIDEr metric. Our
model scores 13 points higher than the best model
of the two previous models. On the other hand, our
model falls behind in BLEU score against Elbed-
wehy and Medhat (2023). It is worth noting, how-
ever, that we are only comparing to published re-
sults of Elbedwehy and Medhat (2023) since their
model is not available (i.e., not released). They
have also used the validation set of Flickr8k in their
training, and applied self-critical (Rennie et al.,
2017) with no mention of the target data, thus giv-
ing their model an advantage over our own model.
Regardless, for image captioning, it is known that
the CIDEr (where our model excels) is a more rel-
evant evaluation metric than BLEU. Finally, we

Model BLEU-1 BLEU-4 Rouge CIDEr
VisualGPT 52.7 17.6 40.2 58.5
Violet 54.5 19.0 41.8 61.2

Table 4: Results of our model against translated outputs
of VisaulGPT on AraCOCO.

score our model on our manually annotated dataset,
AraCOCO. As shown in Table 4, our model again
exhibits sizeable gains compared to our baseline
model (i.e., the translated output of VisualGPT).
This means that we cannot expect a satisfactory
performance by simply taking output from a VLM
trained on English data and translating it into Ara-
bic, further corroborating our previous findings and
motivating future work on developing VLM mod-
els that natively tailored to Arabic language.



5 Conclusion

In this paper, we introduced Violet, an Arabic im-
age captioning model leveraging the pretrained text
decoder JASMINE. Our results demonstrated the
efficacy of our Gemini decoder in enhancing per-
formance while simultaneously reducing the num-
ber of model parameters and computations. We
also presented a new method that is effective for
acquiring Arabic captioning data from available
English data. In addition, we manually annotated a
new dataset for evaluating Arabic image captioning
models. Our model outperforms all of our base-
lines and promises to enable benchmarking in this
area. We will release our model and datasets to
advance Arabic vison-language research.

6 Limitations

Similar to other image detection-based captioning
models, the dependence on an external network to
provide the visual features introduces an additional
layer of complexity to the model. Since the model
is not trained end to end, during inference, the vi-
sual features must first be obtained from the detec-
tion network before passing it to the vision encoder.
Another limitation arises from the constraints of
the training data. Since MSCOCO focuses solely
on 80 class objects, the model’s applicability in
real-world scenarios is restricted. In our future
work, we aim to address both of these limitations
to enhance Arabic models’ efficiency and broaden
their practical usage.

7 Ethics Statement and Broad Impact

Bridging the Gap in Multilingual Image Cap-
tioning. Image captioning serves as a crucial
bridge between vision and language, with its appli-
cations touching numerous domains such as acces-
sibility, education, and search engines. For a long
time, the privilege of these advancements has been
constrained to a handful of languages, primarily
due to the lack of necessary datasets and dedicated
research in other languages. Arabic, with its vast
speakers and rich history, has unfortunately been
left behind in this domain. Our work with Violet
seeks to rectify this disparity, providing a robust
foundation for Arabic image captioning. By releas-
ing Violet and the datasets, we aim to invigorate
research in this direction, promoting inclusivity
and equal opportunity in NLP and computer vision
advancements across languages.

Automated Data Acquisition and Transparency.
To overcome the challenge of limited labeled data
for Arabic image captioning, we employed a novel
method for data acquisition using available English
datasets. While this approach provides a solution,
it also warrants a discussion on the accuracy, bias,
and quality of the automatically acquired data. We
emphasize that while our method provides a foun-
dational dataset, manual annotations and human
evaluations remain paramount for ensuring data
quality and avoiding propagation of errors.

Acknowledgment of Data Sources and Fair
Credit. Similar to ensuring proper credit assign-
ment for benchmarking tasks, we emphasize the
importance of acknowledging the original data
sources we leveraged, especially in the context of
automated data acquisition. Users and researchers
utilizing our datasets and model are encouraged
to cite and acknowledge the original datasets and
sources. This practice ensures that original creators
receive the recognition they deserve and promotes a
culture of transparency and fairness in the research
community.
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Abstract

This paper presents Nabra (33), a corpora
of Syrian Arabic dialects with morphologi-
cal annotations. A team of Syrian natives
collected more than 6K sentences containing
about 60K words from several sources includ-
ing social media posts, scripts of movies and
series, lyrics of songs and local proverbs to
build Nabra. Nabra covers several local Syr-
ian dialects including those of Aleppo, Damas-
cus, Deir-ezzur, Hama, Homs, Huran, Latakia,
Mardin, Raqqah, and Suwayda. A team of
nine annotators annotated the 60K tokens with
full morphological annotations across sentence
contexts. We trained the annotators to follow
methodological annotation guidelines to ensure
unique morpheme annotations, and normalized
the annotations. F1 and s agreement scores
ranged between 74% and 98% across features,
showing the excellent quality of Nabra anno-
tations. Our corpora are open-source and pub-
licly available as part of the Currasat portal
https://sina.birzeit.edu/currasat.

1 Introduction

Dialectal Arabic (DA) content dominates informal
writings in emails, social media, blogs, and social
messaging. Interest in building computational re-
sources for Arabic dialects has been in the rise to
provide both (i) annotated corpora (Jarrar et al.,
2022b; Alshargi et al., 2019; Khalifa et al., 2018;
Bouamor et al., 2018; Jarrar et al., 2017; Al-Shargi
et al., 2016; Zribi et al., 2015; Jarrar et al., 2014)
and (ii) morphological dialect analyzers (Obeid
et al., 2020; Khalifa et al., 2020; Pasha et al., 2014;
Zribi et al., 2017; Abdul-Mageed et al., 2021).

In this paper, we present Nabra 553, a set of cor-
pora that complement existing Arabic dialect cor-
pora by covering several dialect variants of Syr-
ian Arabic. Néabra covers dialects from 10 Syr-
ian localities including Aleppo, Damascus (a.k.a.
Shami) , Deir-ezzur, Hama, Homs, Huran, Latakia,
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de juma i/ + e Las slilfg e
Particles for continuous present tense I'am speaking
i) gl hlaall g sl + de jlias shifo + e e B\Ai/& (s saile

Feminine present second | You are being proud

(838131 50 Ohdia ga

Negation particle Not because

Figure 1: Examples of typical prefixes in Syrian dialects

-
il il LAl Jesia e/l 4 s oS )
L . L What is wrong
Preposition + pronoun for singular feminine second person .
with you
28e Eiige ile 4l saia tp Jlaall/la + 200 Ciige Cibalie aleld g iy [PRATEN
Subject pronoun, present tense, feminine second person You put it

+ object pronoun, present tense, feminine third person

Figure 2: Examples of typical suffixes in Syrian dialects.

Mardin, Raqqah, and Suwayda. Nabta was col-
lected from several sources including social media
posts, scripts of movies and series, lyrics of songs,
and local proverbs. Nine annotators worked on an-
notating 6K sentences with 60,021 tokens with full
morphological annotations. Each word was anno-
tated using: prefix(s), stem, and suffix(s), part of
speech (POS), dialect lemma, MSA lemma, person,
number, gender, gloss, and synonyms; in addition
to the sub-dialect it belongs to.

We adopted the same annotation methodology
used to annotate the Palestinian Curras2 and the
Lebanese Baladi corpora (Haff et al., 2022), which
we also used with the four corpora of Lisan (Jarrar
et al., 2023b). As we will discuss later, we adopted
the SAMA tagsets (Maamouri et al., 2010), but we
introduced new prefixes and suffixes that are com-
monly used in Syrian dialects (Figures 1 and 2).

1.1 Arabic and its Dialects

Over 300 million people speak Arabic, including
Classical Arabic (CA), Modern Standard Arabic
(MSA), and dialectal forms of Arabic (DA), in

Proceedings of the The First Arabic Natural Language Processing Conference (ArabicNLP 2023), pages 12-23
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more than 23 countries. Natural language process-
ing (NLP) research has traditionally focused on
MSA because it is the most widely used form of
Arabic in formal communication, newspapers, ed-
ucation, and media. CA dominates historical and
cultural texts, whereas most colloquial and real-life
communication uses local DA variants. DA content
is lately gaining massive growth especially through
blogs, social media, and local entertainment outlets
in songs, movies, and series.

NLP pipelines often struggle with tasks involv-
ing DA content due to the inherent morphological
richness of DA variants, their relative lack of re-
sources compared to MSA, and the absence of a
standardized orthography (Darwish et al., 2021).
DA is classified regionally into Egyptian, Gulf,
Levantine, North African, and Yemeni (Diab et al.,
2010) with Syrian and Lebanese dialects consid-
ered as Northern Levantine, and Palestinian and
Jordanian as Southern Levantine.

Syrian Arabic is well-understood across the Arab
world due to its popularity in historical dramas, TV
series, and soap operas. Twenty million Syrians
speak it for daily life. Expatriates from the Lev-
ant (Jordan, Lebanon, Palestine, and Syria) helped
spread the dialect throughout the world.

The rest of this paper is organized as follows.
Section 2 reviews related work. We introduce Syr-
ian as a Levantine dialect in Section 3 and discuss
variant Syrian dialects in Section 4. Néabra data
collection and annotation methodology follow in
Sections 5 and 6, respectively. We discuss the eval-
uation of Nébra in Section 7, then we conclude in 8
and discuss limitations and ethics considerations.

2 Related work

There are several annotated corpora and lexico-
graphic resources for MSA.

The LDC’s Penn Arabic Treebank
PATB (Maamouri et al., 2005) consists of
about consists of 791,210 tokens collected from
several news sources. PATB annotations include:
tokenization, segmentation, POS tagging, lemmati-
zation, diacritization, English gloss and syntactic
structure. The LDC Ontonotes 5 (Weischedel
et al., 2013) is another MSA corpus collected
from news sources, consisting of about 330K
tokens, which are annotated in the same way as the
PATB. Ontonotes 5 also contains multiple layers of
annotation, including the PATB annotation layer.

The Prague Arabic Dependency Treebank (Ar-
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PADT) (Hajic et al., 2004) is a treebank that con-
tains morphological annotations for a corpus of
MSA text. These annotations include lemmas, part-
of-speech tags, and other morphological features.
Ar-PADT contains about 224K words.

The LDC’s SAMA is a stem database
(Maamouri et al., 2010), which is an extension of
BAMA (Buckwalter, 2004), designed only for mor-
phological modeling. It contains stems and their
lemmas and compatible affixes. It contains about
40K lemmas.

The lexicographic database at Birzeit University
(Jarrar and Amayreh, 2019) provides a large set
of MSA lemmas, word forms, and morphological
features, which are linked with the Arabic Ontol-
ogy (Jarrar, 2021) using the W3C LEMON model
(Jarrar et al., 2019).

2.1 Dialectal Arabic Resources

There are several Arabic dialectal corpora with di-
verse morphological annotations.

An early pilot to build a Levantine Arabic Tree
bank is presented in (Maamouri et al., 2006). The
Palestinian dialect corpus Curras (Haff et al., 2022;
Jarrar et al., 2017, 2014) comprises about 56 K to-
kens. Each word in the Curras was annotated with
different morphological features, including Pre-
fixes, Stem, Suffixes, MSA lemma, Dialect Lemma,
Gloss, POS, Gender, Number, and Aspect. The
Lebanese Baladi corpus (9.6 K tokens) was devel-
oped in the same manner as Curras in order to form
a more Levantine corpus (Haff et al., 2022).

CALLHOME (Canavan et al., 1997) is an Egyp-
tian Arabic corpus with transcripts of telephone
conversations in Egyptian. CALIMA (Maamouri
et al., 2006) extended ECAL (Kilany et al., 2002)
which built on CALLHOME to provide mor-
phological analysis of Egyptian. The COLABA
project (Diab et al., 2010) collected Egyptian
and Levantine resources from online blogs lead-
ing to the construction of Egyptian Tree Bank
(ARZATB) (Maamouri et al., 2014).

The Lisan (Jarrar et al., 2022b) consists of 1.2
million tokens, covering Iraqi, Yemeni, Sudanese,
and Libyan dialects. The Yemeni corpus (about
1.05M tokens) was collected automatically from
Twitter, while the other three dialects (about 50K
tokens each) were manually collected from Face-
book and YouTube. Each word in the four corpora
was annotated with different morphological fea-
tures, such as POS, stem, prefixes, suffixes, lemma,



and a gloss in English.

A corpus of 200K tokens was morphologically
annotated covering seven different Arabic dialects
including Taizi, Sanaani, Najdi, Jordanian, Syr-
ian, Iraqi, and Moroccan (Alshargi et al., 2019).
The GUMAR Emirati corpus (Khalifa et al., 2018)
consists of 200K tokens collected from novels.
MADAR (Bouamor et al., 2018) is an ongoing
multi-dialect corpus covering 26 cities and their
corresponding dialects. The Arabizi Tunisian cor-
pus has 42K tokens (Gugliotta and Dinarelli,
2022).

The NADI (nuanced Arabic dialect identifi-
cation) SharedTask (Abdul-Mageed et al., 2021,
2020) provided researchers with 10-million/21K
unlabeled/labeled tweets and challenged re-
searchers to identify the province-level dialects
across 21 countries.

3 Syrian as a Levantine Dialect

The Levantine family of dialects can be linguisti-
cally split across the north including Lebanon and
Syria, and the south including Palestine and Jor-
dan. During the seventh century, Arabic spread
across the area, which spoke Western Aramaic be-
fore then (Skaf, 2015).

Aramaic is a Semitic language continuum spo-
ken during antiquity throughout the Levant where
It served as the lingua-franca. Aramaic survives
today through modern dialects such as Turoyo Syr-
iac and Western Neo-Aramaic spoken in parts of
Syria. It also survives more subtly in the noticeable
substratum underlying Levantine dialects that dif-
fer from MSA on several linguistic characteristics
such as phonology, syntax, morphology, and lexi-
con. This additionally motivates the development
of morphologically annotated resources for Levan-
tine dialects. In the sequel, we briefly review the
differentiating factors between Levantine dialects,
Syrian dialects, and MSA.

3.1 Levantine Phonology

Aramaic variants use the Abjad alphabet composed
of 22 letters. When Arabic spread, the population
of the region transcribed Arabic with its 28 letters
using the 22-letter Abjad resulting in “Garshouni”,
a Syriac writing tradition (Briquel Chatonnet,
2005). Adaptations to fit the additional letters
led some Syriac graphemes to represent multiple
phonemes of Arabic, especially some of the em-
phatic letters.

3.2 Syrian Phonology and Orthography

The Syrian Dialect has a glottal stop phoneme
/?/ that is cognate with either Hamza 5 3 1 ) /> or
Qaf 3 /g . In spontaneous Syrian orthography, the
two forms are distinguished in a manner similar to
Lisan guidelines (Jarrar et al., 2023b). Exceptions
include Ma /hla (now) written sk /hlg in Token
with normalization rules to highlight its etymology
link to =34la /halwgt (this time). Less common
spelling variations include devoicing C/g /3/ to
/f/,which sometimes reflects in spontaneous orthog-
raphy, e.g., C““ /ngtm< /niztmi?/ (we meet) may
appear as xatij /n$tme< /miftim9/.

3.3 Levantine Morphology

Levantine inherits templatic morphology from
Semitic languages where affixes play important
roles. Several morphological differences exist
when compared to MSA.

* Diacritic marking for syntax roles is less required
in Levantine. They are marked with suffixes re-
sulting in similar phonetic effects. For example,
there is no need for writing Dhamma - /u to dis-
tinguish the subject from the object. The MSA
sentence Y| JL,.J\ & /glb albtlu alasda (The
hero conquered the lion) may switch the subject
and object as in jld! 3.8V e /glb alasda albtlu
and the diacritics distinguish the roles. The Lev-
antine variants are I e JeJl/albrl glb alasd
and JJl 5o NV /alasd glbw albtl (also written
as JJl «le wNV/alasd glbh albtl ) with no need
for diacritics.

* Some Levantine-specific morphemes do not exist
in MSA such as «s /s which denotes present
continuous tense when it precedes imperfect verbs
FU e Ll /ana m bakl (1 am eating). Without
it '\ Ul /ana bakl means the general truth (I
eat). MSA lacks such an indicator and the tense is
inferred from context: 7 W1 /ana -kl can mean
both "I am eating” or " eat”.

* Other morphemes include o /rh and C/h that are
Levantine future indicators compared to MSA’s
o /s and Gsu /swf . (iv) The progressive Lev-
antine particle /b (as in '\ /bakl ) indicates
imperfective verbs and no counterpart exists in
MSA.

Syrian dialects lack the negation enclitic z /§
in a distinction from southern Levantine dialects.
Syrian dialects make use of a number of future
particles in free distribution. The progressive par-
ticle s /m strictly indicates active momentarily
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progression, while the progressive proclitic +_ /b
indicates a wider habitual to the progressive range.

3.4 Levantine Dialect Lexicon

The Levantine lexicon is rich with loan words from
other languages due to its cross-civilization fre-
quent passage location.

Some Syrian words are originally Syriac, e.g.,
< & /1Swb  (hot), or d\j /brany (outer). Other
words are originally Turkish, e.g., s &> /dgry
(straightforward). Some words encountered ma-
jor semantic shifts, e.g., ;& /fz comes from Turkish
tuz for ‘salt’, then semantically shifted to mean
‘something unimportant’, and eventually ‘good rid-
dance’. Other words were borrowed from French,
e.g., , s> /dykwr (decor) and ¢l /gatw (gateaux),
and from Persian, e.g., s ~ ~ /srsry (badman). Mil-
itary terms e, o5 lkwrnyt are used to specify ac-
curacy and sharpness.

4 Variant Syrian Dialects

Syrian Arabic dialects are used in daily commu-
nication among most Syrians. Some of them are
closer to Iraqi dialects, and the rest are closer to the
Levantine southern Levantine dialects. Here, we
review the most famous dialects spoken in Syria.

The Shami dialect is the dominant dialect in
the Damascus area and is the most widespread and
used Syrian dialect. As the dialect of the capi-
tal, it dominates Syrian series and films which are
widely accepted, appreciated, and spread in the
Arab world. It is used in dubbing and translation
of foreign series (Turkish and Hindi).

Table 1 shows Shami dialect features:

 Sculpture: abbreviate two or more words.

* Substitution: an example is the replacement of
/g with ¢ /> hamza.

* Spatial inversion: the introduction or delay of
letters to simplify pronunciation.

* Inclination: vowel exchange where | /a is pro-
nounced ¢/y.

The Aleppo dialect is dominant in Aleppo in
northern Syria. It is distinctive in pronunciation
and has a unique vocabulary used in Aleppo alone.
The distinct vocabulary comes from ancient Syriac
or Turkish. Examples of Syriac and Turkish vo-
cabulary used in Aleppo follow. Syriac c.c] /Zymt
replaces MSA & /mta (when), and Syriac ¢les /d%
replaces MSA - »s /gn (knead). Turkish <5 3 /fr-
tykh and (¢ o /skrtwn replace MSA &ss /Swkh
(fork), <V, /hzanh (closet), respectively.
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Shami MSA Gloss Rule
R By gt what do JOT]
Sw bdk ay §y>i;wdk you want? Sculpture
FAlL zeds 22N g K In clear ol
balmsrmhy  bklam by wadh wfsyh words Sculpture
J..ul Sl ({ how much Jiat
adys km ysawy Substitution
s> T husband Jell s
gwz zawg spatial inversion
el Jla There U]
hnyk hnak inclination

Table 1: Examples of Shami Dialect

With non-Arabic Syriac vowels (e, 0), Aleppo
words and verbs do not need the Dammah _ (nour-
ishing) and fatha _ (accusative) diacritics. Verbs
may require more than one object denoting the con-
cept of s /tdy (exceeds). Verbs connect to
to denote the masculine plural instead of the MSA
suffix ; /m Turkish influence on Aleppo dialects
morphs the pronunciation of fixed letters such as z
/¢ and (/g to a majestic Turkish tone, and also
reduces the pronunciation of vowels.

The Latakia dialect is spoken across the coast
in Latakia and Tartous. It is a mixture of Ara-
bic, Syriac, and Phoenician. It is characterized by
the strong pronunciation of the letter & /q , and
also features the letter ; /m before verbs to denote
the present tense in all its forms, e.g._oKw /mnkthb
(we write/are writing), ,aw /mydrs (he studies/is
studying).

The Raqqa dialect is one of the closest dialects
to classical Arabic in terms of vocabulary. Raqqa
enjoys a distinguished location on the shores of the
Euphrates River. It is home (> /dyar ) Mudar, who
are Arabs from the north. Mudar were displaced
to the Euphrates island several centuries before
Islam. The Raqqa syllables sound commensurate
to the corresponding classical Arabic syllables. For
example, the pronunciation of < /k results in a
thirsty z /g as in oo¥ /kant pronounced as cole
/gant . The letter 3 /g is pronounced S/k similar
to Yemeni dialects as in Zb /ga- (earth) pronounced
as CK/kd&

The Deir-ezzur dialect aka. as 4, ,.\\/aldyryh
is in proximity to the Euphrates as well, and pre-
serves most of the phonetic aspects of standard
Arabic. The significantly different phonemes are
/q, 8/k and ¢ />, while there is no different in the
gingival sounds.

The Homs dialect varies slightly across several
rural and urban areas in the Homs district. This is
mainly due to the habitual diversity of the coun-
tryside including a sizeable Turkman population.



This paper covers the dominant variant in the city
of Homs. The Homs dialect is characterized by
pronouncing the first letter in a word as if it has a
Dammah . /u diacritic (inclusion). This includes
the name of the city o~ /hims , pronounced with
a Kasra | /i dialect everywhere else. It also flips
gender when it comes to masculine second-person
<.l finti (you-male in Homsi) and feminine sec-
ond person &l /inta (you-female in Homsi). It
also differs in the pronunciation of the letter z /g
as they phonetically annex a silent > /d resulting in
ars /dg sound.

The Hama dialect is spoken in the central Syr-
ian governorates. It is a good representative of the
Syrian Levantine dialects and close to the Shami
one, as it tends to be soft and long in speech. It
is distinguished by its eloquence and stretch in
speech. Al-Hader (city in Hama) variant of the
Hama dialect is the most prominent variant.

The Hauran dialect is spoken south of the
Damascus countryside down to the Ajloun moun-
tains in Jordan including Daraa. It is an ancient Ara-
bic dialect spoken by multiple Arab tribes, where
each of them has some distinguishing phonetic
characteristics.

The Al-Suwayda dialect is spoken in Jabal al-
Arab. The harshness of the mountain environment
is reflected in the dialect’s tone. It is taut, clear, and
possesses a fast thythm. Syllable notes exit soundly
and eloquently. The concept of &lal! /almdarh
played a major role in preserving the strength of
the dialect. Therein, prominent, cultured, and expe-
rienced speakers exchange arguments. This highly
contributed to the rigor of the dialect and brought
it closer to standard and classical Arabic.

The Mardini dialect takes its name from the
city of Mardin in iC.d1/alhskh . It is also called
4l, 521 Jalgzrawyh in relevance to the <312 /a-
Ifratyh island. The dialect contains many Turkish,
Persian, and Aramaic words.

5 Nabra Corpora Collection

We manually collected about 6,000 sentences
with 60K tokens from Facebook, blogs, popular
proverbs, Syrian films and series, local poetry, and
lyrics of popular local songs in several Syrian di-
alects to build Nabra. Table 2 provides statistics on
tokens, unique tokens, sentences, lemmas, nouns,
verbs, and functional words in each of the 10 di-
alects Nabra covers.

The distribution relatively follows the order of
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dialect demographics. The Shami dialect is the
richest with 17.3K tokens, used as primary di-
alect in Damascus, the capital, and in various Syr-
ian TV series and films. Nabfa contains 9.2K
Aleppo tokens collected from popular stories on
Facebook and from vocal poetry. Coastal Latakia
features 7.9K tokens collected from film dialogues
such as 44as L\, /rsayl Sfhyh -Gss 59 O 2 lqmran
wzytwnh (Voice letters, Qumran and Zeitouna) and
series such as iwls iaws /dyh dayh (lost town).
We also added common proverbs. Suwayda dialect
features 3.2K tokens from the & a1/alhrbh series.
For Homs and Hama we collected jokes, and food
discussions from social media blogs.

The Raqqa, Huran, and Mardin dialects feature
the remaining 6.3K, 3.8K, and 1.6K tokens, respec-
tively. We manually collected texts from social
media for Raqga and Huran. We found blogs doc-
umenting Raqga. We used blogs and traditional
stories for Raqqa, vocal poetry and lyrics of popu-
lar folklore songs for Mardini, and scenes from the
Bedouin series for Huran dialects. We noticed that
the collected data reflected spontaneous dialect doc-
umentation all across, contrary to what one would
expect. Films and series were no less spontaneous
than blogs and social media.

As Arabic is diacritic-sensitive (Jarrar et al.,
2018), we did not remove any diacritics We to-
kenized the text of Nabra so that each token has a
tuple with the following information.

(SentencelD, TokenID, TokenText,
DialectName, Governate)

Local-

6 Annotation Methodology and Features

We followed a semi-automated methodology, with
an integrated productivity tool, friendly to non-
programmers, to annotate Nabra.

6.1 Methodology

We developed the Tawseem annotation portal to
help automate and validate the annotation process.
The portal leverages spreadsheets, familiar to com-
mon users, and is powered by smart functionalities
to improve annotation productivity. Figure 3 shows
a snapshot of Tawseem annotation portal with the
sentence L.adle sohd f5 0 Is o s\s /Slwn da tdhly
tslmy <lnfsa (how would you enter to greet some-
one in childbed).

For each token in the sentence, the portal
saves 17 data elements. The SentencelD and
Tokenl D columns identify the sentence and token.



Dialect &=y Damascus | Aleppo | Latakia | Raqqa Deir- Homs | Huran Suwayda Hama | Mardin
(Shami) F Yolo | 445, Ezzur Lo | Ohs | gw Lo | sl
il L
Tokens 17,274 9,255 7,893 6,284 4,322 | 4,139 3,807 3,150 | 2,322 1,575
Unique Tokens 7,123 4,452 3,829 3,389 2,453 | 2,047 2,094 1,681 1,355 949
Sentences 1,181 787 829 679 519 518 457 381 340 243
Unique MSA Lemma 4,230 2,825 2,548 2,367 1,909 | 1,543 1,580 1,312 | 1,051 686
Unique DA lemma 4,351 2,969 2,681 2,490 1,954 | 1,591 1,646 1,354 | 1,095 710
Nouns 7,700 4,251 3,771 3,316 2,384 | 2,004 2,090 1,527 | 1,135 694
Verbs 3,524 1,897 1,557 985 714 709 518 554 369 339
Functional Words 6,027 3,090 2,560 1,960 1,213 | 1,359 1,194 1,069 815 534

Table 2: Counts of tokens, unique tokens, sentences, unique MSA lemmas, unique dialectal lemmas, Nouns, Verbs,

and functional words for each of the Syrian dialects

The rest of the columns specify the rowT oken,
Token, prefix(s), stem, suffiz(s), POS,
gender, number, person, aspect, M S Alemma,
dialectlemma, synonym(s), gloss, as well as
the sub — dialect.

To simplify and accelerate the annotation pro-
cess we leverage existing annotations in the follow-
ing manner. First, we uploaded existing annotated
corpora for dialects and MSA (Haff et al., 2022;
Jarrar et al., 2023b) into the T'awseem tools.

The tool allows the annotators to search and
look up previous annotations. The lookup services
search the database and return the top matching
results ranked. Annotators can then select one of
the results, and correct the corresponding features
if needed.

Second, annotators can search the Tawseem por-
tal annotations in other sentences whether made
by themselves or by other annotators. This helps
leverage previous annotations and improves the cor-
rection process. Additionally, annotators can look
for existing annotations of a specific token in the
Tawseem portal results.

6.2 Annotation Guidelines

Training annotators to use the Tawseem portal was
straightforward as they were all familiar with the
interface of a productivity spreadsheet. We also
trained them with annotation guidelines for each of
the features in Nabra as follows:

rowToken: rawToken is the raw word as it
appears in the corpus, without any modification.

Token : T'oken is the normalized version of the
rawT oken. This entry corrects spelling errors if
needed. The idea is to unify different forms of
spelling the same word with one specification to
mitigate the lack of spelling rules for Arabic di-
alects. It is necessary to unify the different ways
one word can be written by multiple users to re-
flect the same pronunciation. We adopted the
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Token guidelines used in the Lisan corpora (Jarrar
et al., 2023b) as well as the Palestinian Curras2
and Lebanese Baladi corpora (Haff et al., 2022) so
that Nabra can be included smoothly in a larger
family of Arabic dialects for further research and
applications if needed.

Dialect lemma (i.lJ} L=l ds 1Y) determines
the dialect’s original source of the token. Thus, if
the word is a verb, we choose the past masculine
3rd person singular form as its colloquial origin.
For nouns, we select the singular masculine, if
not attained we select the singular feminine form.
When introducing a new lemma, we specify the
following: (i) definitions of senses in Arabic, which
is important for word sense disambiguation tasks
(Al-Hajj and Jarrar, 2021a; Jarrar et al., 2023a) and
Word-in-Context WiC disambiguation tasks (Al-
Hajj and Jarrar, 2021b). (ii) Equivalent lemmas in
MSA (Jarrar et al., 2019, 2021).

MSA Lemma ( sedl iwxall dsull) deter-
mines the MSA original source of the token. Ta-
ble 3 shows examples of some tokens with their
Token, and dialect and MSA lemmas.

The T'awseem portal allows to search for lem-
mas in the Birzeit’s Lexicographic database (Jarrar
and Amayreh, 2019; Alhafi et al., 2019) and Ara-
bic Ontology (Jarrar, 2021, 2011); otherwise, we
introduced a new lemma.

The Synonym (31 ll) feature provides syn-
onyms for the token and sometimes explains the
token semantics. We used an online tool for au-
tomatic synonym discovery (Ghanem et al., 2023;
Khallaf et al., 2023).

Gloss (i, A=Y, aall) specifies the meaning of
the token in English. It typically specifies a short
definition of lemma semantics. See an elabora-
tion on the gloss formulation guidelines in (Jarrar,
2006).

POS (ry&n 5) specifies the part of speech of
the token. This concerns the grammatical category
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Figure 3: Screenshot of the Tawseem annotation portal, our web-based annotation tool

of the token. We follow the SAMA tagset for com-
patibility reasons (Maamouri et al., 2010).

Stem (,i41) specifies the segment of the token
after removing suffixes and prefixes. It helps in the
morphological analysis of the tokens. We follow
the (Stem/POS) tagging schema used in (Maamouri
et al., 2010) where the stem and POS are specified
separated by ’/’.

Affixes: prefixes and suffixes. We follow the
prefixes !yl and suffixes =140l tagging schema
used in SAMA.

(Prefix1/POS) + (Prefix2/POS) . ..

(Suffix1/POS) + (Suffix2/POS) ...

The schema specifies a sequence of affix and
affix POS pairs separated by '+’. Each pair is an
affix and affix POS separated by ’/’.

Affixes and stems are morphemes where the con-
cept of morpheme denotes the smallest morpholog-
ical unit of text. Prefixes specify morphemes that
connect to the beginning of a stem or to other pre-
fixes to form a word. Suffixes specify morphemes
that connect to the end of a stem or to other mor-
phemes to form a word. Dialect affixes and their
POS tags differ from MSA affixes and augment
them due to the extended morpho-syntactic and
semantic roles of dialect affixes.

Note here, for example, the synergy of us-
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ing the future and progressive particles Juzz.!
(FUT_PART) + & las o(PROG_PART) as pre-
fixes to indicate present continuous tense for verbs
in Aleppo as in Jaige /DStgl (I am working).

While most of the Syrian dialects precede
present tense verbs with the IVIP POS with
i lae ; (PROG_PART), the Latakia coastal dialect
applies it to almost all present tense verbs as with
o JJL Imeadrs (} am studying). Latakia dialect also
uses the prefix |/x for negation (and thus it corre-
sponds to a NEG_PART POS tag) before present
tense verbs as in 2 J.j /abaf (I don’t know).

Person (sl..Y) specifies whether the subject
of the token is a &K /mtklm (first), (_l\2 /mhatb
) (second) or _5\& /gaxyb (absent) person when
applicable.

Aspect (J~d! ix.») concerns verbs and specifies
whether they are in (¢ las /mdar-) present for im-
perfective verbs (s>l /mady ) past for perfective
verbs and (| /;amr ) imperative tense.

Gender (i) specifies whether a word is of
S /mdkr male for masculine, &o§e /mwnt female
for feminine, or ki, ¥ /la@ yntbg not applicable
association when applicable.

Number (>..)!) denotes s a. /mfrd for singular,

> /gm< for plural, & /mina for dual (to count
two units), or jJai. ¥ for uncountable words when



rowToken Token Dialect lemma MSA lemma

A ralt 1 said = /gl J6 /qal J6 /qaala
s fthtk yourbed ot /thtk =i Jtht R lsaryr
X /mhndz  engineer  naye/mhnds  paies Imhnds u‘“*‘ /muhandis
Lo Itryy street ek Itryq Su Itryq S ltariyq

Table 3: Example annotations for Nabfra tokens

applicable.

7 Evaluation and Agreement

Before evaluating Nabra, we normalized the anno-
tations to unify variant annotations that are equiva-
lent. These variants occur due to human mistakes
such as typos (_qeb /masy instead of oL /ma-
dy ), ordering of tags in sequences of tags, and
inconsistent use of separators and spacing.

Another source of variants is tokens with no
feature values in the existing annotated dialects.
Annotators have to come up with novel values. We
detected these tag values, ranked them based on
their frequencies, and clustered them based on their
edit distance from each other. Then we reviewed
them and unified them across Nabra and its fea-
tures.

We developed a small suite of VBA scripts em-
powered with regular expressions to check for these
variants and correct them automatically where pos-
sible. If automatic correction is not possible and
human attention is required, then our reference an-
notators interfere to correct it.

7.1 Inter-annotation agreement

After the automatic corrections, six linguists vis-
ited the annotations to approve or correct them.
This created a significant overlap of annotations as
shown in Table 5. The overlap column shows the
number of annotations per feature that had more
than one annotation. Some of the second annota-
tions were performed by the original annotator, so
the reviewed column shows the number of annota-
tions that were reviewed by two or more annotators.
The unique column shows the number of unique
values for the tokens with overlapping annotations.

The correction approach secured a significant
overlap. We report the performance of the anno-
tators in terms of precision, recall, and F1-score
taking the correcting annotator as a reference in
Table 4. A true positive (TP) for a feature value fuv,
denotes that the original annotation matched the
reference annotation. A false positive (FP) for fv
reflects an original annotator selecting fv for the
token in conflict with the selection of the reference
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annotator. A false negative (FN) is when the origi-
nal annotator fails to select fv for a token when the
reference annotator selected it. Precision (P) and
recall (R) are given by the ratios TP/(T'P + FP),
and TP/(TP + FN), respectively. The Fl-score
is given by 2PR/(P + R).

We also computed the Kappa-Cohen met-
ric (McHugh, 2015) as implemented in the Scien-
tific Kit Learn package (scikit learn, 2022). Table 4
shows the results where we compared the feature
values of the reference annotators versus those of
the original annotators.

The results show performance and agreement
across all features. The  scores are lower than
the F-scores as the the x metric accommodates for
agreement by chance. The difference shows more
with prefixes and suffixes as a significant part of
the tokens had empty prefix and suffix, allowing
more agreement by chance.

7.2 Qualitative Evaluation

To conduct a qualitative evaluation, we randomly
selected about 7K annotations and reviewed them
manually. We found a high agreement between
the annotators who followed the specific guidelines
and used our annotation tool. In what follows, we
discuss some of the common mistakes:

(i) In rare cases, tokens specific to small local
communities were hard to understand, Such
as the token Li; /zntr (become cold) in the
Latakia dialect. Although the annotators did
their best to search external resources to under-
stand such words, some mistakes still existed.
Tokens with no clear MSA equivalent led to
difficulty in selecting MSA lemmas; thus, dif-
ferent annotators might not agree on selecting
the same lemma. For example, the token } 5J—
/lamnwal may have several MSA lemmas,
such as ¢Lr. /<am (year), or yu /mady (past).
Semantic ambiguities in contexts led to dis-
agreements on selecting lemmas. For instance,
the token 1 /bga has three possible mean-
ings (was), (therefore) and (also). And some-
times all three fit the context.

(i)

(iii)

8 Conclusion

This paper presents Nabra, a morphologically an-
notated corpora of Syrian Arabic dialects. The
corpora contain about 60K tokens from 10 Syr-
ian dialects, collected from social media platforms,
movies and series, common proverbs, and song
lyrics and poetry. To be compatible with SAMA



Feawre || TP | FP | FN | P [ R | F [ &
Stem 21,506 | 4,933 | 5,461 || 0.813 [ 0.797 | 0.805 | 0.796
POS 20,727 [ 2,979 | 3,316 || 0.874 | 0.862 | 0.868 || 0.843
Prefix 22,886 | 448 | 496 [ 0.981 | 0.979 | 0.980 || 0.939
Suffix 22,096 | 1,247 [ 1,380 [| 0.947 | 0.941 | 0.944 || 0.837
DA Lemma || 18,600 | 5,765 | 6,451 | 0.763 | 0.742 | 0.753 || 0.739
MSA Lemma || 19,300 | 5,161 | 5,749 | 0.789 | 0.770 | 0.780 || 0.767

Table 4: Precision and recall results due to annotation correction with F' and k scores

Feature H Overlap | Reviewed | Unique
Stem 44,687 26,967 3,102
POS 39,007 24,043 56

Prefix 39,007 23382 163

Suffix 39,007 23,476 358
DALemma 41,579 25,052 3,586
MSALemma || 41,579 25,050 3,352

Table 5: Reviewed overlap and unique feature values
across Nabra

and other Arabic corpora, we chose to annotate
the corpora using SAMA tagsets. To evaluate the
quality of the corpora, we used the F'1 and kappa
scores which show high agreement.

We plan to use Nabra to extend Wojood (Jarrar
et al., 2022a; Liqreina et al., 2023) by annotating
the corpora for Named Entity Recognition, similar
to what we did with Curras and Baladi.

Limitations

The work in Nabra has the following limitations.

» Nabra covers 10 Syrian dialects. variants of
these dialects and other smaller dialects con-
fined in less urban localities exist. Future
work should extend Nabra to better cover the
Syrian dialect.

Nabra addressed the Syrian dialects and their
relation to the Arabic language and touched
in prose on the relations to languages of ori-
gin such as Aramaic and Cyrillic. More data-
oriented work is needed to relate Nabra to lan-
guages of origin that were spoken in Syria as
well as to the geo-linguistic features of these
languages.

The annotation and evaluation process lever-
aged linguists who may be better at some of
the dialects than others. We will make Nabra
available online with correction suggestion ca-
pacities to accommodate for possible potential
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corrections.

Ethics Statement

The collection of texts used in Nabra respects in-
tellectual property of the material. The annotation
process employed annotators who were paid a fair
rate per hour based on their living locality. Results
from Nabra will be shared online for the research
community to use and improve upon.
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A Appendix: Nabra Statistics

Table 6: Distribution of Gender feature. Arabic Words
especially verbs and nouns and some of the functional
words are annotated with “Male”*“Female”. In some
cases, the gender can be both, depending on the context,
such as C&A-\/c‘zlgmy (everyone).

Gender

Count

Male
Female
Both

25,538
11,790
931

Table 7: Distribution of the Number feature. Arabic
words especially verbs and nouns are annotated with
“Singular”, “Dual”, “Plural”, a;nd in some rare cases, the
number can be "Any" like s.l/ubda (more important).

Number

Count

Singular
Dual
Plural
Any

32,372
192
4,450
163

Table 8: Distribution of the verbs’ Person: 1st person
( (JKM) 2nd person (=), 3rd person (_J).

Person

Count

1st
2nd
3rd

2,767
2,794
6,769
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Table 9: Distribution of the POS tags and categories.

Category POS Count
NOUN 21,250

ADJ 3742

NOUN_PROP 1,540

NOUN _QUANT 556

NOUN NOUN NUM 315
Total: 28,932 igi:ggﬁp fg;
ABBREV 31

DIGIT * 39

v 5,926

PV 3.846

VERB Al Lo
Total: 11,166 ?{,—_li,‘fsss 2§2
PUNC * 5.010

PREP 3.133

CONJ 2.506

NEG_PART T.642

ADV 1.485

PRON 1252

SUB_CONT 90T

REL_PRON 637

DEM_PRON 645
INTERROG_PART 489

VOC_PART 357

PART 342

PROG_PART * 718

FUNC_WORD | VERB 171
INTERROG_PRON 166

Total: 19.923 | FUT_PART 30
RESTRIC_PART 117

FOREIGN 15
PSEUDO_VERB 101

EMOJT = 95

VERB_PART v

INTER] e

DET 10
INTERROG_ADV 33
EXCLAM_PRON 35

FOCUS_PART 33

PREP + SUB_CONJ 27

REL_ADV T

[ Total [ 60,021 |



http://rcs.cic.ipn.mx/2015_90/Spoken%20Tunisian%20Arabic%20Corpus%20_STAC__%20Transcription%20and%20Annotation.pdf
http://rcs.cic.ipn.mx/2015_90/Spoken%20Tunisian%20Arabic%20Corpus%20_STAC__%20Transcription%20and%20Annotation.pdf
https://doi.org/https://doi.org/10.1016/j.jksuci.2017.01.004
https://doi.org/https://doi.org/10.1016/j.jksuci.2017.01.004

HICMA: The Handwriting Identification for Calligraphy and Manuscripts
in Arabic Dataset
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Abstract

Arabic is one of the most globally spoken lan-
guages with more than 313 million speakers
worldwide. Arabic handwriting is known for
its cursive nature and the variety of writing
styles used. Despite the increase in effort to
digitize artistic and historical elements, no pub-
lic dataset was released to deal with Arabic
text recognition for realistic manuscripts and
calligraphic text. We present the Handwriting
Identification of Manuscripts and Calligraphy
in Arabic (HICMA) dataset as the first pub-
licly available dataset with real-world and di-
verse samples of Arabic handwritten text in
manuscripts and calligraphy. With more than
5,000 images across five different styles, the
HICMA dataset includes image-text pairs and
style labels for all images. We further present a
comparison of the current state-of-the-art opti-
cal character recognition models in Arabic and
benchmark their performance on the HICMA
dataset, which serves as a baseline for future
works. Both the HICMA dataset and its bench-
marking tool are made available to the pub-
lic under the CC BY-NC 4.0 license in the
hope that the presented work opens the door to
further enhancements of complex Arabic text
recognition.

1 Introduction

Handwriting is a method used by humans to con-
vey information in a written medium. Every person
possesses a unique style when drawing characters.
This leads to a wide variation in the expression
of written characters and texts. Arabic text is of
particular interest as Arabic is one of the most glob-
ally spoken languages with more than 313 million
speakers worldwide. In the Arabic language, the
complexity of written text increases since each char-
acter inherently has different forms depending on
its position in the word, that is, whether it is in the
beginning, middle, or end of the word.

Historical Arabic text is abundant with more
than ten centuries of rich Arabic history and is
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often in need of being digitized. Arabic histori-
cal manuscripts typically encompass handwritten
texts, often of a significant age, characterized by
cursive script, varying styles, and various artistic
intricacies surrounding the written text. Arabic
calligraphy is a special form of Arabic handwrit-
ing often used in manuscripts and as a prominent
tool for ornating architecture. The Arabic language
relies on a variety of styles in manuscripts and
calligraphy, each providing a different level of aes-
thetic artistic views and possessing its own rules.
The most popular styles of handwriting in Arabic
manuscripts and calligraphy are Diwani, Thuluth,
Kufic, Farsi, Naskh, and Ruqaa. Arabic calligraphy
is usually hand-drawn by experienced artists with
complex drawing techniques that include heavy
use of diacritics and decorative symbols. Conse-
quently, non-expert readers struggle to understand
the calligraphic text.

Handwriting recognition is the task involved in
converting handwritten text, which is typically cap-
tured as images, into machine-readable text. The
complexity of this task is in accurately recognizing
variations in the different styles of writing. More-
over, the complexity becomes more apparent in
historical Arabic handwritten text due to its nature.
To address the challenges in handwritten Arabic
and enhance the accessibility of Arabic calligraphic
content, the development of models capable of ac-
curately recognizing this intricate handwritten text
becomes essential. This, in turn, necessitates the
availability of large datasets for the training and
validation of such models. Many works focused
on creating datasets for the task of style classifi-
cation of Arabic calligraphy, such as the work of
Kaoudja et al.’s (2019), while others focused on
creating datasets for single character recognition
(Altwaijry and Al-Turaiki, 2021), Alrehali et al.’s
(2020)" or single-digit recognition (Abdelazeem

'The dataset is a combination of 3 subsets containing each
2,240, 1,000 and 2,000 characters
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and El-Sherif, 2017). The Calliar dataset (Alyafeai
etal., 2021) is the only existing dataset today that is
tailored for Arabic calligraphy recognition, on the
character, word, sentence, and stroke levels. This
dataset, however, contains calligraphic text drawn
using digital pens on a plain white background,
eliminating the realistic calligraphy style found in
real-world Arabic scripts.

Despite the plethora of datasets available in the
Arabic handwriting recognition space, very few
represent a realistic and rich variety of styles for
both historic manuscripts and calligraphy, target
full-sentence handwriting recognition from unpro-
cessed images, and are publicly accessible. We
present the first publicly available dataset for Ara-
bic handwritten text in both manuscripts and cal-
ligraphy forms called the Handwriting Identifica-
tion for Calligraphy and Manuscripts in Arabic
(HICMA) Dataset. With more than 5,000 im-
ages across five different Arabic writing styles,
the HICMA dataset includes image-text pairs and
style labels for all images. In this manuscript, we
describe the collection, labeling, and processing
steps of the novel HICMA dataset and present a
benchmark evaluation of the latest Optical Charac-
ter Recognition (OCR) models for the Arabic lan-
guage on HICMA. The contributions of our work
are three-fold:

1. We present the first publicly available Ara-
bic handwriting recognition dataset targeting
full sentence recognition from unprocessed
images.

2. We introduce an Arabic handwriting recogni-
tion dataset that is among the most diverse
collections of Arabic historic manuscripts
and calligraphy with more than 5,000 images
across five different writing styles.

3. We preserve the contextual details and artis-
tic styles of the Arabic manuscripts and calli-
graphic text in our dataset to closely represent
the occurrence of such text in real-world ma-
terials.

We make the HICMA dataset® and the bench-
marking tool® presented in this manuscript publicly
accessible to the research community.
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2 Related Work

Several studies have dealt with collecting vari-
ous types of datasets for different formats of Ara-
bic handwriting. For regular Arabic handwrit-
ing, there are many datasets present in literature
such as KHATT (Mahmoud et al., 2018), consist-
ing of 1,000 handwritten forms collected across
1,000 different writers from different countries. It
was then extended to the Online-KHATT (Mah-
moud et al.) dataset consisting of 10,040 lines of
handwritten text by 623 different writers. ADAB
(Mirgner and El Abed, 2009) is another dataset
that consists of 32,492 Arabic words handwritten
by more than 1,000 writers. There are also multilin-
gual datasets that combine Arabic and English like
MAYASTROUN (Njah et al., 2012), which con-
sists of 67,825 samples written by 355 writers. The
MAYASTROUN dataset consists of varying script
types including words, characters, digits, mathe-
matical expressions, and signatures.

In contrast to regular Arabic handwriting
datasets, few studies in the literature have dealt
with Arabic manuscript and calligraphy text. One
important dataset for Arabic calligraphy is the Cal-
liar dataset (Alyafeai et al., 2021) which records
digitized versions of images as strokes and draw-
ings using digital pens. Calliar is annotated for
stroke, character, word, and sentence-level pre-
diction. It also consists of 45,572 strokes, 7,556
words, and 2,500 sentences. However, the resulting
dataset overlooks the contextual details present in
real-world calligraphy such as the texture of the
paper, surrounding artistic styles, noise, and inter-
actions with other elements in the artwork. This as
a result impacts an Optical Character Recognition
(OCR) model’s ability to recognize calligraphy in
diverse and authentic settings.

Other datasets in literature targeted calligraphy
style classification by focusing on the style clas-
sification alone such as the dataset by Kaoudja
et al.’s (2019). Kaoudja et al. (2019) collected
1,685 images and classified them into 9 different
calligraphic styles including Thuluth, Naskh, and
Diwani. Each calligraphy style consists of around
180 to 195 images. Moreover, Allaf and Al-Hmouz
(2016) developed a dataset and designed a system
for classifying calligraphy images with artistic Ara-
bic calligraphy types, mainly Thuluth, Reqaa, and

Zhttps://hicma.net/
3https://github.com/anisdismail/
HICMA-benchmark


https://hicma.net/
https://github.com/anisdismail/HICMA-benchmark
https://github.com/anisdismail/HICMA-benchmark

Dataset Size Data Number Data
Type of Styles Public

Alrehali et al.’s (2020) 5,240 characters 1 (Naskh) X

MADbase (Abdelazeem and EI- 70,000 digits unspecified v

Sherif, 2017)

KHATT (Mahmoud et al., 4,000 paragraphs unspecified v

2018)

Calliar (Alyafeai et al., 2021) 2,500/40,000 sentences 4 v
/strokes

ADAB (Mirgner and El Abed, 32,492 words unspecified v

2009)

Hijja (Altwaijry and Al-Turaiki, 47,434 characters  unspecified v

2021)

Kaoudja et al.’s (2019) 1,685 sentences 9 X

Allaf and Al-Hmouz’s (2016) 267 sentences 3 v

KERTAS (Adam et al., 2018) 2,000 letters unspecified v

Salamah and King’s (2018) 1,000 letters 10 v

Khayyat and Elrefaei’s (2020) 8,638 pages unspecified X

MAYASTROUN (Njah et al., 67,825 varied unspecified X

2012)

HICMA (Ours) 5,031 sentences/styles 5 v

Table 1: Summary of Available Datasets in Literature

Kufi. Their dataset consists of 267 images divided
evenly across the three calligraphy types. Salamah
and King (2018) also approached the challenge of
calligraphy style classification and collected 1,000
calligraphy images scraped from public websites
in various calligraphy styles. Other sophisticated
datasets, such as KERTAS (Adam et al., 2018),
studied images of historical manuscripts. For pro-
ducing KERTAS, 2,000 images were taken from
various handwritten Arabic scripts dating back to
the fourteenth century and were manually anno-
tated and segmented to extract images of the char-
acters in the text. Furthermore, Khayyat and El-
refaei (2020) collected 8,638 images of historical
Arabic manuscripts. Their dataset is categorized
into fourteen classes with six handwriting styles.
Adam et al. (2017) collected 330 images of iso-
lated Arabic letters that were extracted from an-
cient manuscripts. This dataset consists of Ruqaa,
Diwani, Kufi, Naskh, and Farsi styles and has been
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used to classify Arabic script styles based on seg-
mented letters.

The aforementioned calligraphy works can be
classified into two categories, (a) datasets that sim-
plified calligraphy for recognition tasks and (b)
datasets that focused only on style classification
with authentic calligraphy text. The simplified cal-
ligraphy datasets removed the contextual details
commonly seen in real-world calligraphy. The re-
maining datasets that preserved the calligraphy in
its true form were focused only on style classifi-
cation, making them not directly useful for hand-
writing recognition. To the best of our knowledge,
there is no dataset in the literature that deals with
Arabic handwriting recognition in both manuscript
and calligraphy images. Furthermore, many of
the aforementioned datasets were either not pub-
licly available or did not allow tampering with their
dataset content. This makes the majority of the
datasets in the literature not readily accessible for
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Figure 1: The style distribution of Arabic text across the
HICMA dataset.

research purposes.

In Table 1, we present a comparative analysis of
the existing datasets based on five criteria namely
size, data type, number of styles, and whether the
dataset is publicly available or not. In this paper,
we introduce the HICMA dataset that targets both
Arabic manuscripts and calligraphy handwriting
recognition while preserving the artistic styles and
contextual details of the calligraphy to closely rep-
resent real-world data.

3 HICMA Dataset

3.1 Data Collection

The first step of creating the HICMA dataset was
collecting the images of the handwritten Arabic
text. We collected images with various calligra-
phy styles including Thuluth, Diwani, Muhaquag,
Naskh, and Kufic. We relied on the following re-
sources for building our dataset:

e Source 1: The Free Islamic Calligraphy
website*, which represents a Jordanian non-
governmental organization (NGO) dedicated
to sharing Islamic calligraphy paintings for
free in a variety of styles.

Source 2: The Ibn Bawab Qur’an from the
Chester Beatty Library> located in Dublin, Ire-
land. This Qur’an is one of the oldest versions
of the Qur’an that is written in the Naskh
style by Abu’l-Hasan °‘Ali ibn Hilal, who was
known as Ibn al-Bawwab in the 11th century.

4https ://freeislamiccalligraphy.com
5https ://viewer.cbl.ie/viewer/image/Is_1431/1/
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Figure 2: The style distribution of Arabic text per the 3
data sources of HICMA.

We selected 106 pages of the Qur’an text with
each page containing around 15 lines.

* Source 3: A private collection of manuscripts
and religious writings in Naskh style dating
back to the 17th century, which were made
accessible by courtesy of Dr. Vahid Behmardi.
We photographed and collected manuscripts
of 202 available pages.

Permission was granted from all the above re-
sources to publish all collected images in a dataset
for academic research purposes.

3.2 Data Labeling

For the labeling process, 11 volunteers were re-
cruited and trained to support in reading and record-
ing the Arabic text in the images. The volunteers
were divided into two teams who worked on label-
ing different images in parallel. Both teams started
working on source 1, followed by source 2, and
finally source 3. Every set was divided among the
two teams, and once a team labeled their corre-
sponding subset, the other team would validate the
opposing team’s labels. This cross-validation tech-
nique is employed to improve the quality of the
produced labels and ensure accurate labels.

After the labeling process was finished, the im-
ages were processed to remove duplicate samples
as well as remove diacritics and punctuation using
the pyArabic® package. The prepared dataset was
then divided into training, validation, and testing
sets following an 80%-10%-10% division, respec-
tively. To ensure that the three resulting sets have

6https: //pypi.python.org/pypi/pyarabic
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Figure 3: The distribution of label length by character
count across the different dataset sources of HICMA.

the same style distributions, we relied on stratified
sampling to preserve class distribution between the
original set and produced subsets.

3.3 Dataset Preparation & Statistics

The data preparation process involved manually
dividing the images into smaller segments. Images
that originally contained multiple lines of text were
further divided to create multiple images containing
a single line of text. Images that only contained
decorative motifs were discarded. This resulted in
a total of 1,597 images from source 1, 1,480 images
from source 2, and 1,954 images from source 3.

The combined HICMA dataset is thus made
of exactly 5,031 images and is distributed across
five styles: Kufic, Thuluth, Naskh, Diwani and
Muhaquaq, with the Naskh style being the most
prevalent followed by Thuluth as depicted in Fig-
ure 1. Figure 2 highlights that the most diverse set
of calligraphy styles is present in source 1, whereas
sources 2 and 3 predominantly consist of Naskh
scriptures. This discrepancy in style diversity likely
stems from the datasets’ origins.

Source 1 encompasses a diverse collection of
artistic Arabic calligraphy images, contributing to
the wider variety of styles observed. In contrast,
sources 2 and 3 comprise manuscripts only, where
the Naskh style is mostly used for writing such
scripts. The variation in style diversity is also ev-
ident in the sentence lengths within each set, as
depicted in the violin plot in Figure 3. Although all
three sets exhibit similar distributions of sentences
with lengths under 100 characters and averaging
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around 50 characters, source 1 stands out due to
the presence of numerous outliers with sentence
lengths surpassing 300 characters.

The disparity in sentence lengths within source 1
can be explained by the nature of the images in this
source. Calligraphy images allow for more text to
be densely packed into a limited space compared
to manuscript images. This aspect, combined with
the challenge of segmenting intricate calligraphy
words, contributes to difficulties in processing such
images into smaller segments. For a visual repre-
sentation refer to Table 2, which provides exam-
ples of images from all three dataset sources. The
HICMA dataset is publicly available’ for research
purposes under the Attribution-NonCommercial
4.0 International (CC BY-NC 4.0) license.

4 Benchmark Experiments

4.1 Models

We investigated three state-of-the-art OCR tools
that supported Arabic text recognition, namely
TesseractOCR®, Kraken (Kiessling, 2022), and
EasyOCR?, and describe them below. We ran the
tools on the validation subset of the HICMA dataset
(10%) for the presented benchmark evaluation.

1. TesseractOCR®: A widely-used open-source
OCR engine developed by Hewelet-Packard
and then by Google. It is a reliable and ro-
bust option for general text recognition tasks.
The TesseractOCR engine is pre-trained for
segmenting and recognizing text in images.
Throughout our research, we assessed two pre-
trained models for Arabic OCR from Tesser-
actOCR!? and ClearCypher!'.

. Kraken (Kiessling, 2022): An open-source
tool specialized in recognizing historical and
non-latin scripts, making it particularly suit-
able for the HICMA dataset. Kraken is trained
on specialized datasets focusing on unique
writing styles and scripts, allowing it to ex-
cel in scenarios where standard OCR engines
might struggle. We evaluated the performance
of three Kraken models pre-trained on Ara-

bic manuscripts and publicly available online.

7https
Shttps

://hicma.net
://tesseract-ocr.github.io/
*https://www.jaided.ai/easyocr/documentation/
Ohttps://github.com/tesseract-ocr/tessdata_
best/blob/main/ara.traineddata
"https://github.com/ClearCypher/
enhancing-tesseract-arabic-text-recognition


https://hicma.net
https://tesseract-ocr.github.io/
https://www.jaided.ai/easyocr/documentation/
https://github.com/tesseract-ocr/tessdata_best/blob/main/ara.traineddata
https://github.com/tesseract-ocr/tessdata_best/blob/main/ara.traineddata
https://github.com/ClearCypher/enhancing-tesseract-arabic-text-recognition
https://github.com/ClearCypher/enhancing-tesseract-arabic-text-recognition

Image Text label Style Source
AT A s AV €V e oa NI I Y g} i
DR, ,QJC/"))ZP’JM@MG))@} 3 > L"s > Diwani  Source 1
f-?)‘ o) ea sl sl
CHEEe ey et g e |
Wieyy ool e ool
P T P T | I { PR P | Sesl 3
W&L&CD&}UL&’% . ;j ijsj N Muhaquaq Source 1
Vol FalCe
A TS AR KT
M%?ﬁ&;Jf /“.%";;)‘) J’ . S ;“’ Naskh Source 1
NS Ry
Wl Y1 3g5 ¥y Jg= Y Thuluth  Source 1
b glall g2y Y50
("&Agjl:d‘ {(‘ Naskh Source 2
o2 ) Bl
A g Naskh  Source2
S sk ol s e as ource
il e A e seaall sl Lo
i &&M?m"g t"“ J-“‘L j‘ Jj iy Naskh  Source 3
g./~>
/ ‘//‘ 2/:‘/;4.,,_"/_::, o // ‘;// W . é,u,o
a—’k—c‘—"—gw'f\}&“*‘cf" 7 “ . &{" Mf‘ e Naskh Source 3
@) -

Table 2: Sample images from HICMA along with associated labels, styles, and corresponding sources.

The three models will be referred to as Kraken-
Arabic Best!2, Kraken-All Arabic Scripts”,
and Kraken-Arabic Generalized!?.

EasyOCR’: A user-friendly OCR library de-
signed by Jaided Al that employs deep learn-
ing models to accurately segment and recog-
nize text from images. It is designed to be
easy to integrate into applications and sup-
ports multiple languages, including Arabic.

With the TesseractOCR and the Kraken models,
the images were first transformed to grayscale and

12https://zenodo.org/record/705027®/files/all_
arabic_scripts.mlmodel

Bhttps://zenodo.org/record/7050296/files/
arabic_best.mlmodel

“https://github.com/OpenITI/OCR_GS_Data/blob/
master/ara/abhath/arabic_generalized.mlmodel
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converted into binary format. In contrast, the im-
ages used for EasyOCR were not subjected to any
pre-processing as no significant change in perfor-
mance was observed. Moreover, as there were no
available pre-trained Kraken segmentation models
for Arabic, the images were resized to a smaller
dimension of 200x1200 before being fed to the
Kraken models. The image resizing helped de-
crease the inference time while also enhancing the
accuracy of the Kraken models.

4.2 Evaluation Metrics

We utilized three evaluation metrics to assess the
performance of the benchmark OCR models on the
HICMA dataset.

1. Levenshtein Ratio: The Levenshtein Ratio
(Sarkar et al., 2016) measures the similar-
ity between two strings, that is, the ground


https://zenodo.org/record/7050270/files/all_arabic_scripts.mlmodel
https://zenodo.org/record/7050270/files/all_arabic_scripts.mlmodel
https://zenodo.org/record/7050296/files/arabic_best.mlmodel
https://zenodo.org/record/7050296/files/arabic_best.mlmodel
https://github.com/OpenITI/OCR_GS_Data/blob/master/ara/abhath/arabic_generalized.mlmodel
https://github.com/OpenITI/OCR_GS_Data/blob/master/ara/abhath/arabic_generalized.mlmodel

WER CER Levenshtein ratio
EasyOCR 94.51% 58.47 % 53.86 %
Kraken-Arabic Best 95.96%  65.84% 43.36%
Kraken-All Arabic Scripts 97.01% 67.14% 42.23%
Kraken-Arabic Generalized 100.55% 75.09% 34.82%
TesseractOCR-ClearCypher  98.99%  75.44% 31.94%
TesseractOCR 99.44%  81.96% 26.79%

Table 3: Summary of HICMA evaluation results across the three benchmark OCR models.

truth and OCR-generated text. It is de-
rived from Levenshtein distance (Levenshtein,
1966), which calculates the minimum number
of single-character edits required to convert
one string into another and then computes the
ratio of correct characters to the total num-
ber of characters in the ground truth text. A
higher Levenshtein ratio reflects a more accu-
rate OCR model.

Character Error Rate (CER) (Morris et al.,
2004): The CER relies on the Levenshtein dis-
tance (Levenshtein, 1966) to calculate the ra-
tio of incorrect characters recognized as com-
pared to the ground truth text. It quantifies
the accuracy of OCR models at the individual
character level. The CER is associated with
the portion of characters being incorrectly pre-
dicted. A lower CER reflects a more accurate
OCR model with 0 being a perfect score. The
CER score may exceed 1 if the value of inser-
tions is high.

. Word Error Rate (WER) (Morris et al.,
2004): The WER calculates the ratio of in-
correctly recognized words to the total ground
truth words. Similarly to the CER, lower val-
ues of WER indicate better performance with
0 meaning the handwritten text was perfectly
recognized. The WER may also exceed the
value of 1.

All three metrics were developed using the
python-levenshtein'> package and are included in
the benchmarking tool available on Github'®.

4.3 Model Results

Table 3 provides an overview of the models’ per-
formance on the HICMA validation set, measured
15https://github.com/maxbachmann/Levenshtein

Yhttps://github.com/anisdismail/
HICMA-benchmark
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using the three evaluation metrics: WER, CER,
and Levenshtein ratio. Evidently, among the pre-
trained models, the EasyOCR pre-trained model
for Arabic text stands out in terms of performance.
However, even the best-performing model falls
short of meeting the requirements for a practical
OCR system for handwritten text, as the standard
acceptable character error rate is around 20%(To-
moiaga et al., 2019), a benchmark that these models
are quite far from achieving.

A deeper examination of the EasyOCR model’s
performance, shown in Figure 4, reveals that it ex-
cels particularly in recognizing text written in the
Naskh style. This style exhibits a CER that is 53%
lower than Diwani, the next style in terms of per-
formance. Furthermore, the Naskh WER is 7%
lower while the Levenshtein ratio is 2 times higher
than Diwani. The gradual decline in performance
as we transition from Naskh to Diwani, Thuluth,
Muhaqaq, and finally Kufic can be attributed to
their frequency of usage as calligraphy fonts as
present in our dataset as well as the characteris-
tics of each style, making some more difficult to
recognize than others.

Given that Naskh is one of the most commonly
used styles for Arabic manuscripts and everyday
writing, the success of the EasyOCR model in this
style is expected due to its primary training on
Arabic computer-generated text, using the Amiri
and Noto Sans Arabic fonts!”. These fonts are
very similar to manuscript handwriting styles like
Naskh. On the other hand, the remaining styles like
Diwani, Thuluth, Muhaqaq, and Kufic are more
ornamental and artistic in nature. Therefore, the
model’s accuracy diminishes in recognizing these
artistic styles.

This variation in performance across different
calligraphic styles highlights the significance of

"https://github.com/Belval/
TextRecognitionDataGenerator
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Figure 4: Performance metrics of the EasyOCR model
across the different styles in HICMA.

having a diverse dataset that encompasses various
styles. It also emphasizes the need to enhance
OCR models’ adaptability to challenging stylistic
patterns within Arabic calligraphy. This endeavor
would contribute to the development of more robust
OCR systems capable of accurately recognizing
text in images containing intricate calligraphy.

5 Limitations

As we present the HICMA Arabic dataset and the
methodologies employed in this research, it is es-
sential to acknowledge a few limitations that re-
main open for enhancement in future work.

» Dataset Size and Style Diversity: Despite
HICMA being the most diverse public Ara-
bic manuscript and calligraphy recognition
dataset to date, there remains a need for fur-
ther style diversification and an increase in
sample count per text style. HICMA is cur-
rently composed from three sources, which
do not represent the wide range of variations
in Arabic texts. More so, the dataset’s size
remains limited compared to the vast range of
Arabic texts available and would benefit from
further expansion.

Pre-processing Challenges: Given the inher-
ent complexity of Arabic scripts and the vari-
ability in textual layouts, certain images in the
HICMA dataset may present challenges dur-
ing pre-processing. Some documents might
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contain lengthy texts or intricate structures,
requiring manual segmentation or cropping
and making it challenging to ensure reliable
pre-processing across the dataset.

Model Limitations: Variability in image qual-
ity, skewed perspectives, rotated motifs, and
uncommon fonts have been shown to affect
the existing OCR models’ accuracy. To ad-
dress existing Arabic OCR performance limi-
tations, it is crucial to investigate the develop-
ment of models that are fine-tuned to be native
to Arabic manuscripts and calligraphy.

By addressing these limitations, future research
will lead to advancements in Arabic OCR technol-

ogy.
6 Conclusion

In this work, we presented HICMA as the
largest and most diverse public dataset to date
for Handwriting Identification of Calligraphy and
Manuscripts in Arabic. The introduced dataset
includes more than 5,000 images across five di-
verse Arabic text styles along with image-text sen-
tence pairs and style labels for all images. This
dataset fills the existing literature gap for Arabic
manuscript and calligraphy text recognition. In
this work, we detailed the data collection, labeling,
and pre-processing steps of the created HICMA
dataset. We further presented statistics about the
dataset styles and label size diversity. We finally
conducted a benchmark evaluation of the top three
current state-of-the-art OCR models for Arabic and
reported their performance on the HICMA dataset,
serving as a baseline for future works. Upon analy-
sis of the benchmark results, we highlight remain-
ing open challenges in the HICMA dataset and the
existing OCR models that support Arabic as a lan-
guage. The HICMA dataset and the accompanied
benchmarking tool are made publicly available for
the research community. We believe our work is
the first among many making more inclusive Ara-
bic handwriting recognition for manuscripts and
calligraphy possible.
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Abstract

As Electronic Health Records (EHR) become
ubiquitous in healthcare systems worldwide, in-
cluding in Arabic-speaking countries, the dual
imperative of safeguarding patient privacy and
leveraging data for research and quality im-
provement grows. This paper presents a first-
of-its-kind automated de-identification pipeline
for medical text specifically tailored for the Ara-
bic language. This includes accurate medical
Named Entity Recognition (NER) for identi-
fying personal information; data obfuscation
models to replace sensitive entities with fake
entities; and an implementation that natively
scales to large datasets on commodity clusters.

This research makes two contributions. First,
we adapt two existing NER architectures—
BERT For Token Classification (BFTC) and
BiLSTM-CNN-Char — to accommodate the
unique syntactic and morphological characteris-
tics of the Arabic language. Comparative anal-
ysis suggests that BFTC models outperform Bi-
LSTM models, achieving higher F1 scores for
both identifying and redacting personally iden-
tifiable information (PII) from Arabic medical
texts. Second, we augment the deep learning
models with a contextual parser engine to han-
dle commonly missed entities. Experiments
show that the combined pipeline demonstrates
superior performance with micro F1 scores
ranging from 0.94 to 0.98 on the test dataset,
which is a translated version of the i2b2 2014
de-identification challenge, across 17 sensitive
entities. This level of accuracy is in line with
that achieved with manual de-identification by
domain experts, suggesting that a fully auto-
mated and scalable process is now viable.

1 Introduction

Arabic is one major language that covers a large
geographic and demographic portion of the world
population with a high EHR adoption rate (Abdul-
lah Alharbi, 2023). This means there is a high
volume of both structured and unstructured digital
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data available that can be leveraged for different use
cases. However, the data needs to be de-identified
before being used for any research or development
purpose.

De-identification of unstructured documents
poses challenges due to various types of noise. Fur-
thermore, every language has its own lexical rules,
which makes it challenging to have a single model
that can perform well across multiple languages.
Therefore, there is a need to have models trained
for different languages to get the best results. Usu-
ally, Named Entity Recognition (NER) models
are used to extract sensitive information from the
text which can then be de-identified (Uzuner et al.,
2007). However, training NER models require la-
beled datasets, which are scarce and laborious to
produce. In particular, the Arabic language has an
extremely limited number of public datasets that
can be leveraged.

The principal aim of this study is fourfold:
Firstly, we introduce the first-of-its-kind medi-
cal Named Entity Recognition (NER) and De-
identification models tailored specifically for the
Arabic language, addressing a critical gap in
the field. Secondly, we adapt existing NER
architectures—BiLSTM-CNN-Char and BERT For
Token Classification (BFTC)—to meet the unique
syntactic and morphological requirements of the
Arabic language. Thirdly, we implement a novel
approach to overcome dataset limitations by trans-
lating a standard English dataset used in the 2014
12b2 De-Identification challenge to Arabic using an
entity-preservation technique. Fourthly, we employ
a contextual parser engine to supplement weak en-
tity extractions, thereby increasing the robustness
of our models.

To train, evaluate, and compare these NER mod-
els, we use the Spark NLP for Healthcare library
(Kocaman and Talby, 2021b), which offers both
comprehensive NER support (Kocaman and Talby,
2022) and token embedding models for the Arabic
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language. Importantly, this is not purely academic
research; it’s an applied study that has been engi-
neered to be fully compatible and scalable with
Apache Spark, making it immediately deployable
in large-scale healthcare systems.

2 Related Work

The concept of automatic de-identification was first
introduced into the Informatics for Integrating Biol-
ogy and the Bedside (i2b2) project as explained by
(Uzuner et al., 2007) and then expanded by (Stubbs
et al., 2015), as an academic NLP challenge on au-
tomatically detecting PHI identifiers from medical
records. These challenges have boosted research
and development of Machine & Deep Learning
algorithms for robust PHI identification.

Since then, there have been numerous studies
to expand automatic de-identification to multiple
languages. (Marimon et al., 2019) generated a
dataset, and trained NER models for medical texts
in Spanish language. (Catelli et al., 2020) applied
similar techniques to Italian COVID-19 documents
for de-identification.

Over the years, researchers have proposed mul-
tiple architectures aiming to achieve better perfor-
mance. Initial approaches relied on hand-crafted
features and lexical rules to extract required con-
cepts from data. However, as token embedding
models (Mikolov et al., 2013) advanced, other
architectures started leveraging these embedding
models. Among these, Bi-LSTM and Conditional
Random Fields (CRF) based models (Huang et al.,
2015) became notable for NER. More recently,
attention-based models have been showing signif-
icantly better performance for sequence labeling
tasks (Vaswani et al., 2023).

Regarding other efforts towards extracting medi-
cal terms from Arabic medical texts, several note-
worthy studies have been conducted. (Nayel et al.,
2023) explored deep learning techniques, including
LSTM-CRF and BiLSTM-CRF models, for disease
entity recognition in Arabic medical texts, achiev-
ing impressive precision, recall, and F1-scores.
(Alanazi, 2017) introduced Bayesian Belief Net-
works (BBN) as an innovative approach to extract-
ing various medical entities, demonstrating promis-
ing precision and recall for diseases and treatment
methods.

In addition, (Abdelhay et al., 2023) tackled the
challenges of implementing medical bots in Arabic
with the introduction of the MAQA dataset, high-
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lighting the effectiveness of Transformer models.
(Hammoud et al., 2020) fine-tuned neural networks
for medical entity recognition in Arabic medical
texts, while (Hammoud et al., 2021) presented a
novel dataset for disease classification, emphasiz-
ing the potential of pre-trained models. Finally,
(Samy et al., 2012) compared strategies for med-
ical term extraction, revealing the advantages of
using Arabic equivalents of Latin prefixes and suf-
fixes. These studies collectively advance the field
of NER and medical term extraction in Arabic med-
ical texts, offering a range of valuable approaches
and insights.

Despite these advancements, it is crucial to
note that there has been a notable absence of de-
identification models or efforts explicitly targeting
the Arabic language. This gap in the literature
underscores the importance and timeliness of our
study, which aims to address this void by intro-
ducing the first Arabic-specific medical NER and
De-identification models.

3 Dataset Construction and Annotation

Training a named entity recognition model requires
data to be annotated with named entities which is
a laborious process. Instead of manually annotat-
ing an Arabic dataset, we took the standard 2014
i2b2 dataset (in English) (Stubbs et al., 2015) and
translated it to Arabic using the Google translate
API !, The i2b2 dataset is in CoNLL format, which
means text is tokenized, and entities are identified
using the IOB2 tagging scheme 2. Since entities
have fixed boundaries relative to the original text,
translating the text naively would result in entity
boundary mismatch.

For example, the name and age in the text "Alan
is a 30 year old male" start at token 1 and 4, how-
ever, after translation, the name and age start at
token 1 and 6 "Gle v\ anll -0 e e ovb.
This is because translation can change the entire
structure of the text, consequently, making entity

"https://cloud.google.com/translate

’In Named Entity Recognition (NER), the IOB2 (Inside-
Outside-Beginning) tagging scheme is a common way to anno-
tate and identify entities in a text. In this scheme, each word in
a sequence is tagged with one of the following prefixes: "B-"
(Beginning): Indicates that the word is the start of a named
entity. "I-" (Inside): Indicates that the word is inside a named
entity, but is not the first word of the entity. "O" (Outside):
Indicates that the word is not part of any named entity. These
prefixes are then followed by the type of the entity, such as
"PER" for person, "LOC" for location, "ORG" for organiza-
tion, etc. This makes it easier to identify not just the entities
in a sequence, but also their types and spans.



boundary mapping challenging. This problem is
further exacerbated for entities spanning across
multiple tokens as the number of tokens could also
vary.

To solve this problem, we replace entities in
the original (English) text with their types. For
example, "Alan is a 30 year old male" would be
converted to "NAME is a AGE year old male". This
way when the text is translated, we can search for
the entity types by simple string matching, and
replace them with Arabic values. For instance,
"NAME" is replaced with an actual Arabic name
"2wg". In addition to solving the problem of
preserving entity boundaries, this technique also
helps to adapt the data to the new language, as
entities, such as names, cities, addresses are native
Arabic values.

The original i2b2 Deid dataset provides two
types of entity sets: Generic and Granular. The
granular approach provides additional context that
can be crucial for specific applications. For exam-
ple, in a healthcare setting, knowing that a name
refers to a "PATIENT" rather than just a "NAME"
could be highly useful. Similarly, distinguishing
between ZIP codes, cities, and countries can be
very important in applications like location-based
services or logistics. The generic approach is more
broad and could be useful for general-purpose NER
tasks where such granular distinctions are not nec-
essary. It may also require less computational
power and resources than the more detailed gran-
ular approach. Here is a sample list of mapping
between generic and granular set of entities:

* NAME (PATIENT, DOCTOR, USERNAME)

* LOCATION (ROOM, DEPARTMENT, HOS-
PITAL, ORGANIZATION, STREET, CITY,
STATE, COUNTRY, ZIP, OTHER)

* AGE
* DATE

* CONTACT (PHONE, FAX, EMAIL, URL,
IPADDRESS)

* IDs (SOCIAL SECURITY NUMBER, MED-
ICAL RECORD NUMBER, HEALTH PLAN
NUMBER, ACCOUNT NUMBER, LI-
CENSE NUMBER, VEHICLE ID, DEVICE
ID, BIOMETRIC ID, ID NUMBER)

* PROFESSION

Table 1 illustrates the difference between the
generic and granular entity datasets. The details

35

regarding the differences between entity sets, an-
notation schema, and annotation guidelines can be
found at (Stubbs et al., 2015).

Chunk Generic Granular
2000 16 DATE DATE
O J.J NAME PATIENT
789 LOCATION ZIP

RS LOCATION CITY
54321 LOCATION ZIP

iy )l &l LOCATION CITY

&> 3_..,‘..‘\ LOCATION COUNTRY
3 }:.H LOCATION HOSPITAL
a~! SJ"u‘ NAME DOCTOR
u}:) NAME PATIENT
35 AGE AGE

Table 1: Tokenized illustration of difference between
generic and granular entities. In the "Generic" column,
entities are tagged with broad, high-level categories.
On the other hand, the "Granular" column takes entity
recognition a step further by using more specific, de-
tailed tags.

4 Architecture

4.1 Scalable NLP Pipeline

Our system leverages the capabilities of Spark NLP
(Kocaman and Talby, 2021b), a widely-used open-
source NLP library that excels in scalability for
both training and inference tasks on any Apache
Spark setup. The architecture allows for easy de-
ployment either on a single machine or across a
Spark cluster without requiring any modification
to the code base. The de-identification process for
Arabic text is realized through a multi-stage NLP
pipeline, consisting of text pre-processing, deep
learning models, contextual guidelines, and data
masking techniques. The pipeline components can
be seen at Figure 2.

4.1.1 Text Pre-Processing

The pipeline’s initial phase involves multiple com-
ponents such as a document assembler, sentence
detector, token generator, and word embedding cre-
ator. These components are designed to prepare the
data for identification and subsequent anonymiza-
tion of Protected Health Information (PHI) tokens
in Arabic.

At the outset, a document assembler is utilized
to structure raw Arabic text, generating annota-
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Figure 1: Example of de-identifying a text in Arabic using masking and obfuscation.
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Figure 2: Full pipeline architecture

tions that can be processed further downstream.
Following this, the pipeline employs a specialized
deep-learning model (Schweter and Ahmed, 2019)
optimized for Arabic clinical texts to perform sen-
tence boundary detection. Rule-based techniques
underperform in this context, owing to the unique
grammar and punctuation in Arabic medical notes.

4.1.2 Named Entity Recognition

The core of the de-identification mechanism is the
Named Entity Recognition (NER) model. It identi-
fies PHI components like patients’ names, health-
care providers, facilities, geographical locations,
and specific identification numbers in Arabic text.
The NER model is a crucial element as it minimizes

36

data loss while recognizing PHI efficiently. For
this, we employ a Bi-directional LSTM (BLSTM)
architecture as detailed in (Kocaman and Talby,
2021a).

4.1.3 Enhancing NER with Contextual Rule
Engine

While machine learning models excel in general-
ization, they might lack the granularity required
for certain PHI identifiers. Therefore, a regular-
expression-based rule engine is included in the
pipeline to address this limitation. The rule engine,
called Contextual Parser (CP), offers a set of ad-
justable parameters for prefix and suffix matching,
enhancing the system’s precision.



In the realm of de-identification, augmenting our
NER models with CP rules offers a robust strategy
for enhanced recognition and protection of Per-
sonal Health Information (PHI) elements. CP rules
are linguistically tailored regulations that exploit
the surrounding context of entities to optimize their
detection accuracy. This is particularly useful for
handling complex medical terminology, ambigu-
ous entities, and cultural or geographical variations,
especially in Arabic medical texts.

Rule Formulation: A collaborative effort be-
tween domain experts and translators allows us to
design a set of CP rules that are specific to both the
medical domain and the Arabic language. These
rules address the unique linguistic complexities of
medical texts, such as abbreviations, compound
terms, and varying morphological patterns. Special
attention is given to rules that target the identifica-
tion of critical PHI elements like email addresses,
dates, and identification numbers.

Entities Reinforced by CP Rules: The CP rules
particularly bolster the NER model’s ability to iden-
tify and protect a diverse array of entities. These
include but are not limited to Social Security Num-
bers (SSN), Account Numbers (ACCOUNT), Li-
cense Numbers (LICENSE), Ages (AGE), Phone
Numbers (PHONE), ZIP Codes (ZIP), Medical
Record Numbers (MEDICALRECORD), Emails
(EMAIL), Dates (DATE), Driver’s License Num-
bers (DLN), and Vehicle Identification Numbers
(VIN).

In summary, the incorporation of CP rules into a
de-identification process enhances the capabilities
of our NER models, making them highly adapt-
able and effective in identifying a broad range of
PHIs. Our model now proficiently identifies and
protects the aforementioned entities, demonstrating
the efficacy of our approach in safeguarding patient
information in Arabic medical texts.

This multi-dimensional approach, combining
data-driven deep learning with domain-specific lin-
guistic rules, showcases the flexibility and robust-
ness of our NER models. It not only fortifies our
system against privacy intrusion but also aligns it
with data protection laws.

4.1.4 Chunk Merger

Subsequent to the identification of PHI chunks by
machine learning models and rule-based methods,
the pipeline consolidates these identifications to op-
timize overall accuracy. The system assigns priori-
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ties to each type of entity, allowing for customiza-
tion depending on use-cases.

4.1.5 Masking or Obfuscation

In the final stage, the system performs the actual
deidentification and obfuscation. This involves
masking or substituting PHI elements with dummy
data while preserving the overall structure and for-
mat of the documents.

Accurate NER is the first step towards de-
identifying a text - the next step is to redact the
information. This can be achieved by applying ei-
ther masking or obfuscation. Masking essentially
replaces the identified entities with either their en-
tity type or asterisks. These asterisks can either be
of fixed character length for all the identified enti-
ties, or of the same length as the entity chunk being
replaced; we found the later option to be helpful
while de-identifying pdf and image documents, as
it minimizes any changes to the original document
layout.

Obfuscation involves replacing PHI with sur-
rogate values that are semantically, and linguisti-
cally correct. For example, names are replaced
with random names, similarly, dates are replaced
with randomized dates within an offset window.
Although obfuscation appears to be the better de-
identification strategy as it obfuscates the entire
text, making it harder to re-identify (even when
an entity is missed by the NER model), there are
some inherent challenges while maintaining data
integrity. For example, multiple occurrences of
names, addresses, and dates should be replaced
with similar values throughout the document to
maintain data integrity. The Spark NLP for Health-
care library already has built-in methods to track
entities for consistent obfuscation.

Figure 1 illustrates text de-identified using mask-
ing and obfuscation.

5 Experimentation & Analysis

Two different NER architectures are trained and
evaluated on a standard 80-20 split, and their per-
formance is evaluated based on the model architec-
ture and the embeddings used while training. The
first model is based on a Bi-LSTM architecture as
explained in (Kocaman and Talby, 2021a). This
Bi-LSTM model is versatile and can be paired with
virtually any token embedding model. In our ex-
periments, we use this architecture with GLoVe
(Pennington et al., 2014) and BERT (Devlin et al.,
2019) embeddings. The GLoVe embeddings are



trained on the Arabic common crawl dataset > 4.
For Arabic BERT embeddings, we utilize models
pre-trained on an Arabic dataset; AraBERT (An-
toun et al., 2021), and CamelBERT (Inoue et al.,
2021). The second model architecture is based
solely on BERT, upon which we train end-to-end
BERT For Token Classification (BFTC) models.

In terms of model architecture, the BFTC mod-
els outperformed Bi-LSTM based models on both
datasets as explained in Table 2 and 3. The Bi-
LSTM model trained with GLoVe, AraBERT, and
CamelBERT embeddings achieved macro F1 score
of 0.9378, 0.9372, 0.9590 on the generic entity
dataset, and 0.9386, 0.9178, 0.9369 on the granular
entity dataset. In comparison, the BFTC models
achieved 1-2% higher F1 scores.

In addition to the named entities in our training
dataset, most documents contain certain rule-based
entities like unique organizational/national identi-
fiers. Extracting such information does not nec-
essarily require re-training the model, as most of
these identifiers have a fixed format, and can be eas-
ily extracted using regular expressions. Therefore,
we include a regular expression engine in the fi-
nal pipeline that is fully customizable as explained
in section 4.1.3. Figure 2 illustrates a complete
end-to-end pipeline with all the components.

6 Conclusion

In conclusion, this study successfully presents a
groundbreaking advancement in healthcare data
privacy and research for Arabic-speaking com-
munities by introducing the first medical Named
Entity Recognition (NER) and De-identification
models tailored specifically for the Arabic lan-
guage. Through the adaptation of existing
architectures—BiLSTM-CNN-Char and BERT For
Token Classification (BFTC)—we were able to ac-
commodate the unique linguistic features of Arabic.
Furthermore, our novel entity-preservation tech-
nique was pivotal in overcoming the challenges
associated with limited datasets, enabling the trans-
lation of a standard English dataset into Arabic for
training and evaluation.

Our comparative analyses demonstrated that
BERT For Token Classification models outper-
formed Bi-LSTM models, achieving higher F1
scores in both the identification and redaction of
personally identifiable information (PII) in Arabic

3https://commoncraw].org/
“https://fasttext.cc/docs/en/crawl-vectors.html
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medical texts. The contextual parser engine de-
ployed in our study further enhanced the robustness
of our models.

Significantly, this work is more than just an aca-
demic endeavor; it is an applied study with tools
that are ready to be deployed at scale using Apache
Spark. As a seminal contribution, this research
not only provides essential tools for the safe and
efficient handling of Arabic medical records but
also lays a foundation for future studies, opening
up avenues for the adaptation of NER and De-
identification techniques to other underrepresented
languages.

7 Limitations

Following are some of the limitations of the solu-
tion that may affect its generalizability and relia-
bility, and need to be studied further for improve-
ments:

7.1 Dataset quality and Diversity

The translation of English to Arabic (achieved
through the Google Translate API), may not be
able to completely take into account the detailed
linguistic diversity and medical terminology in this
domain. This could result in inaccurate data from a
translated dataset that would affect the performance
of NER models. Moreover, since there are differ-
ences in grammatical structures between the lan-
guages, direct substitution of masked chunks with
Arabic texts may produce syntactic and contextual
ambiguities. The division of entities and their clas-
sifications may be affected by these ambiguities. In
translation errors, noise, and inconsistencies in the
dataset could be introduced that might affect model
performance.

7.2 Limited Vocabulary and Language
Nuances

Arabic, which may be difficult for the NER mod-
els to read accurately, is a diverse language with
different dialects and nuances. In the field of
medicine, there are further difficulties to be encoun-
tered with domain-specific jargon and terminology.
The model’s performance may be hindered by the
fact that it does not have an effective ability to deal
with uncommon and distinct domain terms which
could result in erroneous negative findings or mis-
classification.



Model AGE CNTC DATE 1ID LOC NAME PRO GEND Macro Micro
Bi-LSTM (GLoVe CC) 0.9870 0.9799 0.9870 0.8358 0.9413 0.9648 0.9210 0.8863 0.9378 0.9572
Bi-LSTM (AraBERT-base) 0.9727 0.9696 0.9734 0.8450 0.8675 0.8784 0.8071 0.8869 0.9372 0.9505
Bi-LSTM (CamelBERT) 0.9885 0.9666 0.9757 0.8656 0.8975 0.9111 0.8675 0.9096 0.9590 0.9712
BFTC (AraBERT-base) 0.9854 0.9852 0.9901 0.9467 0.9225 0.9425 0.8622 0.9507 0.9600 0.9800
BFTC (CamelBERT) 0.9830 0.9828 0.9899 0.9333 0.9494 0.9624 0.8601 0.9556 0.9700 0.9800

Table 2: F1 scores on the generic entity dataset (CNTC: Contact, LOC: Location, PRO: Profession, GEND: Gender).

Entity 1 2 3 4 5

71p 0.9756 0.9580 0.9566 0.9483 0.9510
USER 1.0000 1.0000 1.0000 0.9557 1.0000
STR 0.9856 0.9841 0.9836 0.9186 0.9824
GEND 0.8850 0.8895 0.8918 0.9508 0.9262
PRO 09113 0.8284 0.8780 0.8498 0.8676
PH 0.9268 09135 0.8918 0.9352 0.9558
PAT 0.8711 0.7786 0.7898 0.8054 0.8134
ORG 0.8283 0.6046 0.7469 0.7376 0.8571
MR 09714 0.8571 0.7441 0.9230 1.0000
ID 0.9630 0.9629 0.9629 0.9718 0.9390
HOSP  0.8319 0.8081 0.8766 0.8969 0.9363
EMAIL 0.9782 0.9955 1.0000 1.0000 1.0000
DOC 0.9392 0.8951 09199 0.9345 0.9314
DATE  0.9876 0.9775 0.9768 0.9903 0.9922
CNTR 09461 0.8650 0.8750 0.9038 0.9362
CITY 0.9756 0.8788 0.8953 0.9400 0.9641
AGE 0.9799 0.9755 0.9879 0.9854 0.9830
Macro 09386 09178 0.9369 0.9400 0.9100
Micro 0.9434 0.9419 0.9547 0.9800 0.9800

Table 3: F1 scores on the granular entity dataset. Num-
bers in the columns refer to the following models: 1:
Bi-LSTM (GLoVe CC), 2: Bi-LSTM (AraBERT-base),
3: Bi-LSTM (CamelBERT), 4: BFTC (AraBERT-base),
5: BFTC (CamelBERT) (USER: UserName, GEND:
Gender, PRO: Profession, PH: Phone, PAT: PATIENT,
ORG: Organization, MR: Medical Record, HOSP: Hos-
pital, DOC: Doctor, CNTR: Country).

7.3 Privacy and Ethical Considerations

For patients’ privacy and to comply with laws and
regulations, de-identification of medical data is
necessary. However, limitations may exist even
in the case of state-of-the-art de-identification
pipelines. It should be noted that the automated de-
identification process does not guarantee absolute
confidentiality, and manual verification by health-
care professionals may still be needed to ensure the
correct erasure of sensitive information. Careful
consideration has to be given to the ethical conse-
quences of false positives and false negatives in
de-identification.

7.4 Performance Evaluation Metrics

The metrics of precision, recall, and F1 score are
widely applied for evaluating NER model’s per-
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formance, but they may lack a full understanding
of the actual world impact of false positives and
false negatives in healthcare contexts. In order
to provide a more comprehensive assessment of
model efficiency, it would be useful to develop
domain-specific evaluation metrics that account for
the criticality of different types of entities in medi-
cal documents.
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Abstract

We present ArTST, a pre-trained Arabic text
and speech transformer for supporting open-
source speech technologies for the Arabic lan-
guage. The model architecture follows the
unified-modal framework, SpeechT5, that was
recently released for English, and is focused on
Modern Standard Arabic (MSA), with plans
to extend the model for dialectal and code-
switched Arabic in future editions. We pre-
trained the model from scratch on MSA speech
and text data, and fine-tuned it for the following
tasks: Automatic Speech Recognition (ASR),
Text-To-Speech synthesis (TTS), and spoken di-
alect identification. In our experiments compar-
ing ArTST with SpeechTS5, as well as with pre-
viously reported results in these tasks, ArTST
performs on a par with or exceeding the current
state-of-the-art in all three tasks. Moreover, we
find that our pre-training is conducive for gen-
eralization, which is particularly evident in the
low-resource TTS task. The pre-trained model
as well as the fine-tuned ASR and TTS models
are released for research use.

1 Introduction

Large pre-trained transformer models are currently
at the forefront of speech and text technologies,
with applications in various text and speech recog-
nition and generation tasks (Devlin et al., 2019;
Raffel et al., 2020; Hsu et al., 2021; Baevski et al.,
2020). These models share several aspects: (1) they
are based on the transformer architecture (Vaswani
et al., 2017), which enables efficient training of
larger models and incorporating wider contexts, (2)
they are scaled in terms of model size, which has
been shown to correlate with performance (Alab-
dulmohsin et al., 2022; Hestness et al., 2017), and
(3) they generally use a self-supervised training ob-
jectives, such as next token prediction (Brown et al.,
2020), masked prediction (Devlin et al., 2019; Hsu
et al., 2021), and contrastive loss (Baevski et al.,

* These authors contributed equally to this work.
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2020), which enable the utilization of large unla-
beled datasets for multiple potential downstream
tasks. Pre-trained self-supervised models like
Wav2Vec2.0 (Baevski et al., 2020), and its multi-
lingual variant (Babu et al., 2022), have mostly
replaced traditional acoustic features like MFCCs
and filter banks in the speech domain. These pre-
trained models implicitly learn robust and gener-
alizable acoustic representations that consistently
improve performance in various supervised down-
stream tasks with acoustic inputs like Automatic
Speech Recognition (ASR). This is achieved by
simply adding a prediction layer and fine-tuning
the model using a suitable loss function, such as
CTC loss (Graves, 2012).

This pre-train-then-finetune framework is flex-
ible for a variety of applications, but most pre-
trained models are uni-modal and therefore are
limited to tasks that share the same input modality.
For instance, acoustic models like Wav2Vec2.0 are
not typically used in text-to-speech synthesis appli-
cations, where the input is text, and the output is
typically in the form of mel spectrograms. For this
reason, self-supervised pre-training has not been as
widely adopted in speech synthesis research. One
exception to this trend is the SpeechT5 model (Ao
et al., 2022), which accepts both text and speech
as input and output using modal-specific networks
in addition to the core encoder-decoder network.
The model is first pre-trained using self-supervised
objectives in both text and speech modalities, and
then fine-tuned on a variety of supervised tasks,
including speech transcription, speech synthesis,
and speech classification. SpeechT5 has been
trained only on English using more than 900 hours
of speech and 400 million sentences of text data.
While the model can technically be fine-tuned for
other languages, our preliminary evaluations of
Arabic fine-tuning show poor performance; the pre-
training seems to have biased the model severely
for recognizing and generating English speech.

Proceedings of the The First Arabic Natural Language Processing Conference (ArabicNLP 2023), pages 41-51
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In this paper, we introduce Arabic Text and
Speech Transformer, ArTST', a project aiming
to push the boundaries for Arabic open-source
speech technology by providing various pre-trained
speech and text transformers. The Arabic language
exhibits significant dialectal variation and code-
switching, which introduce a layer of complexity
for speech recognition and generation tasks. We
believe this can be best addressed via methodi-
cal and focused development of self-supervised
models that target this linguistic landscape rather
than multi-lingual models that may compromise
mono-lingual performance for multi-lingual cov-
erage. The first release, as described in this paper,
is a direct adaptation of the SpeechT5 model, but
pre-trained from scratch using Modern Standard
Arabic data and evaluated on various downstream
tasks. Future versions will include dialectal Arabic,
as well as code-switched speech and text, by ex-
ploring the best architectural modifications for im-
proving coverage without sacrificing performance
for individual variants.

We demonstrate the performance of ArTST in
the following tasks: Automatic Speech Recogni-
tion (ASR), Text-To-Speech synthesis (TTS), and
spoken Dialect Identification (DID). The fine-tuned
models on each task achieved performance on a par
with or exceeding previously reported results on
our test sets, establishing a new state-of-the-art for
open-source models. For ASR, the model addition-
ally outperforms the large pre-trained ASR models,
Whisper (Radford et al., 2023), and MMS (Pratap
et al., 2023), which further demonstrates the ad-
vantage of focusing only on Arabic. Moreover, we
report some interesting findings in TTS fine-tuning,
as the model learns to synthesize speech without
explicit text diacritization in a way that generalizes
to unseen domains, which we believe is a result
of the unsupervised pre-training on large Arabic
speech data. Our main contributions are:

1. Releasing a pre-trained cross-modal trans-
former model capable of handling diverse
speech and text tasks, in addition to fine-tuned
ASR and TTS models for MSA?,

Demonstrating state-of-the-art performance
in ASR, TTS, and DID, using standard open-
domain datasets for MSA.

"Pronounced ‘artist’.
2https ://github.com/mbzuai-nlp/ArTST
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3. Demonstrating unique generalization capabili-
ties, such as speech synthesis without explicit
diacritization.

2 Related Works

To the best of our knowledge, there is no model
pre-trained on Arabic that can perform multiple
downstream speech-related tasks with different in-
put modalities. In the text domain, AraT5 (El-
madany et al., 2022) was implemented as an Arabic
version of the Text-To-Text Transfer Transformer
(T5) model (Raffel et al., 2020), which uses trans-
fer learning with a unified Transformer framework
for several downstream text generation tasks. In
the speech domain, multi-lingual acoustic models,
such as XLSR-R (Babu et al., 2022), Whisper (Rad-
ford et al., 2023), or MMS (Pratap et al., 2023),
include Arabic as one of many languages in super-
vised or self-supervised pre-training, but they can
only handle speech as input modality, and text as
output modality. ArTST is directly inspired from
the SpeechT5 model (Ao et al., 2022), which is a
pre-trained encoder-decoder transformer with addi-
tional modal-specific networks to handle both text
and speech modalities in the input and output. The
model was shown to be versatile as it can achieve
superior performance when fine-tuned for ASR,
TTS, and other speech related tasks. However, the
model was pre-trained only on English data, and
as a result, the internal representations seem to be
heavily biased towards English speech. By fine-
tuning the model for Arabic ASR and TTS, our
experiments indicate that it may be difficult to over-
come this bias without multi-lingual pre-training.
Several studies attempted to measure the effect
multi-lingual pre-training in acoustic models, with
mixed results (Yadav and Sitaram, 2022). Heigold
et al. (2013) compared models pre-trained on En-
glish only with models trained on multi-lingual
data using conventional HMM-DNN models, and
showed empirically that multilingual pre-training
is better than fine-tuning an English model on a
different target language. Huang et al. (2013) fur-
ther shows that multilingual pre-trained features
can generalize to unseen languages. Tong et al.
(2017) shows that multi-lingual ASR training is
worse than monolingual training in the target lan-
guage, but multilingual pre-training followed by
target language fine-tuning is better than monolin-
gual training. Language similarity likely plays a
role in generalization: Ram and Aldarmaki (2022)


https://github.com/mbzuai-nlp/ArTST

showed that acoustic word embeddings obtained
using Wav2Vec 2.0 features that are pre-trained
on English generalize to languages like French
and German, but don’t generalize as well for Ara-
bic. Furthermore, several studies show that multi-
lingual models generalize better using language
vectors or language adapters (Kannan et al., 2019;
Toshniwal et al., 2018; Shetty and NJ, 2020; Rad-
ford et al., 2023; Pratap et al., 2023), which indi-
cates that some language-specificity in the model
is preferable to crude multi-lingual training. Some
empirical evidence also suggests that performance
of some high-resource languages can potentially de-
grade in multi-lingual settings compared to monol-
lingual pre-training (Watanabe et al., 2017).

The above mentioned studies all focus on acous-
tic models where speech is the input rather than the
output. Text-to-speech synthesis models, on the
other hand, are generally more fragile and highly
depend on the quality and size of training data.
Generally speaking, TTS models require consistent
and clean recordings in order to synthesize natu-
ral and intelligible speech (Kulkarni et al., 2023).
Multi-lingual TTS synthesis is an emerging topic
of research, but these attempts are rare compared to
multi-lingual ASR and cover only a small subset of
languages due to shortage of resources suitable for
speech synthesis (Li et al., 2021; Cho et al., 2022).

3 ArTST

ArTST is a text and speech transformer optimized
for the Arabic language. Based on observations
from previous studies on multilingual and monolin-
gual ASR, TTS, and self-supervised pre-training,
we believe that training a model from scratch with
the Arabic language in mind would improve the
quality of the resulting models. Our strategy is
to start with a monolingual setting, and explore
the optimal settings for Modern Standard Arabic
(MSA) speech processing. In future iterations of
the model, we will explore how best to expand
it to handle various dialects as well as other lan-
guages that are often mixed with Arabic (i.e. En-
glish and French). We believe that an incremental
approach of this kind is more likely to lead to opti-
mal performance. Here, we describe the first stage
of this project, which focuses only on MSA. ArTST
is adapted from the transformer-based SpeechT5
model, which we briefly describe in this section.
For more details, please refer to Ao et al. (2022).

43

[ Speech Decoder Postnet ] [ Text Decoder Postnet ]

f f

Transformer Decoder

[ Speech Decoder Prenet } { Text Decoder Prenet ]

Cross Attention
li] 4

f;] o 1
ot t
VQ-VAE Quantizer

2658 Bgn g

Transformer Encoder ‘

{ Speech Encoder Prenet }[ Text Encoder Prenet ]

Cross Attention

> O

Figure 1: Model architecture.

3.1 Model Architecture

Figure 1 shows the overall architecture of the
model. It consists of a main encoder-decoder
transformer network, similar to the architecture
employed in T5 (Raffel et al., 2020). This net-
work is shared for both speech and text modali-
ties. To account for the differences in pre- and
post-processing, additional modal-specific pre- and
post-nets are used to handle the text and speech
features.

3.2 Pre-training

The model is pre-trained using various self-
supervised objectives to account for both speech
and text modalities in the input and output:

Speech bidirectional masked prediction: Fol-
lowing the framework of HUBERT (Hsu et al.,
2021), discrete frame-level targets are employed
for masked prediction, where random spans of 10
steps from the output of the speech encoder pre-net
are masked across each utterance, and the model is
trained to predict the correct discrete labels via
cross-entropy. The discrete labels are obtained
from a pre-trained HuBERT model (Hsu et al.,
2021), where the hidden representations are clus-
tered into 500 classes using the k-means algorithm.
This training objectives can be a stepping stone
towards learning speech to text transformation as
the model is trained to map continuous speech fea-
tures into discrete units. This objective updates the
speech encoder pre-net as well as the main encoder.



Speech de-noising auto-encoder: This objective
trains the speech decoder pre-net, decoder, and
speech decoder post-net to reconstruct speech
features in the form of 80-dimensional log mel
filterbanks from the randomly masked utterances
as described above.

Text de-noising auto-encoder: Using unlabeled
text, the text encoder pre-net, encoder-decoder
network, and text decoder pre- and post-nets, are
all optimized using a denoising reconstruction loss.

Cross-modal loss: Vector-quantized embeddings
are used to implicitly align speech and text repre-
sentations through a shared code-book. During
training, 10% of the contextual embeddings
are replaced with the corresponding quantized
embeddings, and the cross-attention in the main
encoder-decoder transformer is calculated based
on this mixed representation. A diversity loss is
used to encourage sharing more codes between the
text and speech inputs.

In ArTST, each of the encoder and decoder com-
ponents are similar in size and configuration to
SpeechT5 (Ao et al., 2022). Speech pre/post-nets
and text pre/post-nets all have the same structure
as in the SpeechT5 model, with the only differ-
ence being in the text tokenizer which we initialize
using the characters in our training sets. We em-
ployed the official HUBERT model? to generate the
discrete labels for the bidirectional masked predic-
tion objective since a pre-trained Arabic HUBERT
model was not available for our perusal. In future
work, we will explore the potential of improving
this component using a model pre-trained on Ara-
bic speech.

3.3 Fine-Tuning

Task-specific fine-tuning is carried out by employ-
ing the encoder-decoder backbone in addition to
the relevant pre- and post-nets. For example, for
ASR, the speech encoder pre-net, and text decoder
pre- and post-nets are used to handle speech input
and text output. All relevant model parameters are
updated during fine-tuning.

Shttps://github.com/facebookresearch/fairseq/
blob/main/examples/hubert
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4 Training & Fine-Tuning Settings

4.1 Dataset

For training our MSA ArTST model, we utilize
the Multi-Genre Broadcast (MGB2) dataset (Ali
et al., 2016), which is collected from Aljazeera
TV recordings of Arabic speech, mostly in MSA.
This dataset is often used for benchmarking ASR
models for MSA, which enables fair comparison
with previous research. The original dataset con-
tains 1.4K unique speakers with ~1.2K hours of
transcribed speech data. We excluded overlapping
speech utterances from the set, which are tagged in
the corpus. Furthermore, to avoid high amount of
padding and maintain a balance between compu-
tational efficiency and effectiveness, we excluded
speech samples that exceeded a duration of 40 sec-
onds. The resulting dataset consists of roughtly
1K hours of speech. We also randomly extracted a
200 hr subset of MGB?2 for the purpose of perform-
ing preliminary experiments to evaluate SpeechTS
fine-tuning on ASR. Moreover, we extracted a ran-
dom subset from the QASR corpus (Mubarak et al.,
2021), a multi-dialectal broadcast speech corpus
from Aljazeera that includes MSA speech as well
as dialectal Arabic of different varieties. As we
are focusing mainly on MSA in this work, we
do not utilize this dataset for pre-training, but in-
stead utilize it to test the generalization potential
of the model. For TTS fine-tuning, we utilize open-
source Arabic datasets curated for speech synthesis,
namely: The Arabic Speech Corpus (ASC) (Halabi
et al., 2016) and Classical Arabic Text-to-Speech
Corpus (CIArTTS) (Kulkarni et al., 2023)*. We
also utilize these two datasets for evaluating the
ASR models. For all datasets, we use the prede-
fined test/dev splits if applicable. We summarize
all dataset statistics in Table 1.

4.2 Text & Speech Pre-Processing

All punctuation marks were removed with the ex-
ception of @ and %. Additionally, all diacritics were
removed, and Indo-Arabic numerals were replaced
with Arabic numerals to ensure uniformity. The
vocabulary is comprised of individual Arabic al-
phabets, numerals, and select English characters
from the training dataset, in addition to some spe-
cial characters like @ and %. For speech data, we
standardized the sampling rate to be 16 kHz across
all collected datasets.

“www.clartts.com
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Split # of Hours # of Words
MGB2-1K (train) 1005.39 6.96M
MGB2  \GB2-200 (train) 201.32 1.39M
test 9.57 64.38K
QASR QASR-267 (train) 267.91 2.00M
test 9.57 64.38K
ASC train 3.81 20.58K
test 0.28 1.40K
CIAFTTS train 11.16 76.27K
test 0.24 1.69K

Table 1: Datasets used in our experiments.

4.3 ArTST Pre-training

We pre-trained ArTST using the MGB2-1K subset.
Since the pre-training is unsupervised, aligned text
and speech data are not required at this stage. For
text pre-training, we employed the cleaned tran-
scriptions from the MGB2 dataset as unlabeled
data. We pre-trained ArTST using Adam optimizer
with a learning rate of 2 x 10~%, spanning 200K
updates, and a warm-up phase of 64K updates. The
maximum speech token length was set at 250K
(equivalent to 15.625 seconds), and the text tokens
were capped at 600 characters. The pre-training
was run on four A100 GPUs for 14 days.

5 Results & Evaluation
5.1 SpeechT5 Finetuning vs. ArTST

We conducted preliminary assessments of the
SpeechT5 model from Ao et al. (2022), which was
pre-trained and fine-tuned on English, to assess
the ability of cross-lingual transfer by directly fine-
tuning the model for Arabic ASR using various
Arabic speech datasets. We experimented with
both the original Arabic script as input, as well as
Buckwalter transliteration (Habash et al., 2007) in-
stead of Arabic script to account for the fact that the
model was pre-trained only on English characters.

For Arabic script, we augmented the original
character tokenizer to incorporate symbols that cor-
respond to Arabic letters and special symbols con-
tained in the fine-tuning set. The original tokenizer
contained approximately 80 symbols; after incor-
porating the Arabic letters and special symbols,
the extended tokenizer vocabulary increased to 130
symbols. Furthermore, we modified the input em-
beddings structure to align with the dimensionality
of the updated tokenizer. The embedding layer re-
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Train set / Testset Enc WER| CER|
Ar  78.07% 23.54%
SpeechT5 ASC/ASC
Bw  76.92% 22.02%
ArTST ASC/ASC Ar 458% 9.88%
Ar  3231% 6.88%
SpeechT5 CIArTTS / CIATTTS
Bw  2432% 5.12%
ArTST CIArTTS / CIATTTS  Ar 12.51%  3.60%
Ar  69.74% 26.47%
SpeechT5 MGB2-200/ MGB2
Bw  45.09% 17.55%
ArTST MGB2-200/ MGB2  Ar 16.56% 7.68%
Ar  72770% 26.27%
SpeechT5 QASR-267 / MGB2
Bw  53.19% 19.01%
ArTST QASR-267/MGB2 Ar 17.27% 9.99%
Table 2: Fine-tuned ASR resutls using English

SpeechT5 vs. ArTST in terms of Word Error Rate
(WER) and Character Error Rate (CER). Character En-
coding (Enc): Arabic (Ar), BuckWalter (Bw).

tains the weights from the earlier-trained SpeechT5
model for its initial 80 components. Meanwhile,
additional elements were initialized randomly. Sim-
ilarly, for Buckwalter transcriptions, we modified
the tokenizer accordingly. Since the transliteration
scheme contains mostly English alphabets in addi-
tion to some special ASCII characters, the extended
vocabulary in this setting was increased to 90 char-
acters. We start with the pre-trained English ASR
from SpeechT5> and fine-tune it on the specified
datasets until training and validation loss diverge.

Table 2 shows the results in terms of Word Error
Rate (WER) and Character Error Rate (CER) in all
different settings. The ArTST ASR model was fine-
tuned using our pre-trained ArTST using the same
tokenizer as the pre-trained model, which contains
Arabic script.

Effect of Input Encoding

We see from these experiments that SpeechT5
fine-tuning is improved using Buckwalter rather
than Arabic script. Since the transcription scheme
mostly results in mapping Arabic letters to similar-
sounding English letters, the learning objective
does not diverge greatly from the original En-
glish model, which results in improved perfor-
mance compared to using Arabic script. In our
analysis, approximately 85% of Arabic characters
were replaced with corresponding English charac-
ters, facilitating the continuation of fine-tuning for
SpeechT5’s ASR, even with limited data.

5huggingface .co/microsoft/speecht5_asr
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Model WER| CER|
From (Hussein et al., 2022):

HMM-DNN 15.80% —
E2E, CTC + LM 16.90% —
E2E, Attention + LM 13.40% —
E2E, CTC, Attention + LM  12.50% —
ArTST 13.42% 6.43%
ArTST + LM 12.78% 6.33%

Table 3: Comparing ArTST performance against models
reported in (Hussein et al., 2022), which include best
performing model previously reports on MGB2.

Effect of Pre-Training

We also observe large reductions in error rate us-
ing the same datasets for fine-tuning ArTST. The
difference in performance is evident in all cases,
but it’s particularly large for the ASC and MGB2-
200 subsets. SpeechT5 fine-tuned with Buckwalter
transcriptions on the CIArTTS corpus results in
relatively good performance of 24% WER com-
pared to 12.78% WER for ArTST. For the other
two datasets, the difference is roughly 30% abso-
lute WER in favor of ArTST. This could potentially
be resulting from two factors: CIArTTS is a con-
sistent and clean dataset that was curated for TTS,
compared to MGB2 which is extracted from TV
shows. ASC is also curated for TTS, and there-
fore consists of clean and consistent recordings,
but dataset size could have played a role in the high
WER for ASC, which is much smaller than the
CIACTTS dataset (~3.8 hrs compared to ~11.16
hrs). While MGB2 contains orders of magnitude
more data than CIArTTS, the error rates are higher
than CIArTTS for all models, including ArTST,
which is further evidence that dataset quality is
most likely playing a role in these results.

Finally, we also used a subset of QASR for
fine-tuning ASR models as a counterpoint for the
MGB?2 datasets because the latter was used in pre-
training and could have biased the results in favor
of ArTST. However, even in this set, we clearly
see that ArTST performs much better than the fine-
tuned SpeechT5, with error rates on a par with the
ones observed for MGB2.

5.2 Benchmarking ArTST for MSA

We fine-tuned ArTST on our MGB2-1K dataset,
and compared the performance against compara-
ble models trained and tested on MGB2. Since
2017, the lowest WER on MGB2 test set was re-
ported in Smit et al. (2017) as 13.2%. Recently,
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Hussein et al. (2022) explored the potential of an
end-to-end transformer model compared to conven-
tional ASR systems, and achieved state-of-the-art
performance in the MGB2 test set. The model
was trained on the MGB?2 dataset, so it’s compa-
rable to our model in that regard. Furthermore,
they utilize a language model for rescoring using
the MGB?2 transcriptions as well as the additional
130M words of text data provided in the MGB2
challenge. Our model consists of the speech pre-
net, encoder, and text pre/post-nets fine-tuned with
CTC loss. We also experiment with LM shallow
fusion using a transformer-based auto-regressive
character language model trained on the same sets.
We used the default LM setting from the Fairseq li-
brary®, and we trained the model for 300K updates
using the Adam optimizer, with 4K warm-up steps,
a learning rate of 0.0005, and 0.1 dropout rate.

The results are shown in Table 3. Our model
without LM fusion achieves 13.42% WER, which
is on a par with the transformer-based end-to-end
model with attention and LM rescoring reported
in Hussein et al. (2022). Furthermore, ArTST out-
performs the architecture most similar to it (E2E,
CTC + LM) by more than 3% absolute WER, with-
out incorporating a language model for inference.
The error rates are further reduced to 12.78% by
incorporating LM fusion, which is comparable to
the best model reported in Hussein et al. (2022);
the latter incorporates both Attention and CTC, as
well as LM rescoring with beam size of 20.

5.3 Comparing ArTST With Multilingual
Models

Recently, a few large multi-lingual pre-trained mod-
els have been released for ASR in multiple lan-
guages, such as Whisper (Radford et al., 2023),
and MMS (Pratap et al., 2023). Both models include
Arabic as one of many languages included in their
supervised pre-training. Training data, model archi-
tectures, training objectives, and model sizes vary
considerably between these models, so they are not
directly comparable, However, the fact that these
models are widely circulated and used necessitates
some kind of performance comparison with our
model.

Table 4 shows the WER/CER of these models in
Arabic ASR using our test sets. We also report the
number of parameters for each model.

6gi thub.com/facebookresearch/fairseq
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Test Set \ ArTST | Whisper,cgium | Whisperigrge | MMS,cgium | MMSjgge

| WER | CER | WER | CER | WER | CER | WER | CER | WER | CER
ASC 45.70% | 9.73% | 48.46% | 10.74% | 47.73% | 10.83% | 54.05% | 11.71% | 57.37% | 11.13%
CIArTTS | 13.52% | 3.90% | 2049% | 6.24% | 19.25% | 6.23% | 36.18% | 9.17% | 31.13% | 6.58%
MGB2 13.42% | 6.43% | 28.69% | 11.72% | 26.71% | 10.78% | 45.58% | 14.86% | 40.33% | 13.06%
QASR(1hr) | 26.08% | 16.65% | 36.54% | 17.45% | 32.32% | 15.56% | 52.79 % | 20.86 % | 47.81 % | 18.80%
# params | 155 M \ 769 M \ 1550 M \ 300M \ 965 M

Table 4: ArTST compared with large multi-lingual models: Whisper & MMS on our test sets. ArTST was fine-tuned
for ASR using MGB2-1k train set. Results are shown without LM fusion.

While Whisper performs relatively well com-
pared to MMS, ArTST outperforms both models,
including the large variant of each model, in all test
sets, while having a smaller number of parameters.
For instance, without LM fusion, ArTST achieved
13.5% WER on MGB?2 test set, while the large
variants of Whisper and MMS achieved 26.7% and
40.3% WER, respectively.

5.4 Qualitative Analysis of ASR Output

In Table 5, we show some examples of ASR outputs
from ArTST compared with the reference transcrip-
tions. These examples show the drawback of the
raw WER/CER metrics as they don’t account for
potential variations in spelling. In particular, we
observed several cases where English words are
transliterated or misspelled. Furthermore, numeric
expressions, like 80%, are in some cases written
in numeric format, and others spelled out in words.
Furthermore, the large error rates reported for ASC
are in a large part caused by intentional misspelling
in the reference ASC transcriptions, which are in-
tended to facilitate learning of TTS synthesis in
a low-resource setting. In the shown examples,
ArTST output is in fact the correct spelling. We
also show a couple of examples of ArTST, which
is fine-tuned on MGB2, generalizing to dialectal
Arabic utterances from QASR.

5.5 ArTST for TTS Synthesis

We experimented with TTS fine-tuning, compar-
ing ArTST pre-trained model with SpeechT5 TTS’
as a starting point. We fine-tuned each model us-
ing the CIArTTS and the ASC datasets, which
are two open-source datasets curated for Arabic
TTS. For the SpeechT5 model, we used Buckwal-
ter transcriptions for the text, as our experiments
in ASR demonstrated it to be more suitable for
this model. For both models, we fine-tuned the

7huggingface .co/microsoft/speecht5_tts
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Table 5: Sample ArTST ASR transcriptions (bottom)
vs. reference transcriptions (top). Highlighting differ-
ences or errors.

TTS model without using input diacritics, so no
automatic diacritizer is needed for inference. This
feature diverges from previous works in Arabic
TTS, where efforts are taken to include diacritiza-
tion in the input text. However, since this would
necessitate the use of text-based diacritizers for in-
ference, and as shown in Aldarmaki and Ghannam
(2023), text-based diacritizers have high error rates
when applied to the speech domain. We opted to
train undiacritized TTS instead, and let the model
implicitly learn the correct pronunciation.

The fine-tuning was carried out using the text
encoder pre-net, encoder/decoder backbone, and
speech decoder pre/post-nets. All model param-
eters were updated during fine-tuning. We used
the pre-trained HiFi-GAN vocoder® to convert the
output of each model to waveform.

8huggingface .co/microsoft/speecht5_hifigan
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Fine-tuning Data MOS 1

ASC 4.31
Ground Truth

CIAITTS 4.64

ASC 1.57
English SpeechT5

CIAITTS 1.88

ASC 293
ArTST

CIAITTS 4.11

ASC 3.44
ArTST*

CIAITTS 4.31

Table 6: Subjective listening tests in terms of Mean
Openion Score (MOS) for models fine-tuned using En-
glish SpeechT5 vs. ArTST, vs. ArTST* (variant of TTS
model pre-trained on MGB-2 data).

TTS Pre-Training

Since both ASC and CIArTTS are relatively small
datasets, we also experimented with TTS pre-
training using ASR data from MGB2. Generally
speaking, ASR data are not suitable for TTS train-
ing due to the high variability is speaking style and
presence of noise. On the other hand, ASR data are
available in abundance, and can potentially help
improve the model’s generalization potential. We
start by fine-tuning the TTS model on MGB2-1K
train set, and then fine-tune it again on the TTS
train sets. We refer to this variant as ArTST*.

TTS Evaluation

We conducted subjective evaluation through listen-
ing tests to assess the naturalness and intelligibility
of the synthesized speech from differnet models in
a single score from 1 to 5 (higher is better). We
selected random utterances from each test set, and
synthesized speech based on the corresponding text
transcription using the variants speechT5, ArTST
and ArTST*. Fifteen native Arabic speakers partic-
ipated in the evaluation. The Mean Openion Score
(MOS) for each model is shown in Table 6. The
audio samples used in the evaluation are available
here °. As seen from the table, and through the
provided samples, using the pre-trained SpeechT5
model as a basis for fine-tuning leads to very poor
speech synthesis. On the other hand, using the pre-
trained ArTST as a basis for fine-tuning results in
high-quality synthesis. Furthermore, pre-training
the TTS model using MGB2 ASR data further im-
proves the quality of the transcriptions. Moreover,
we observed through listening tests that the model
generalizes to unseen sentences from MSA, where

9https ://artstts.wixsite.com/artsttts

48

Model Dev Test
E2E (softmax) (Shon et al., 2020) 83.00% 82.00%
HuBERT-17 (Sullivan et al., 2023) 92.23%  92.12%
XLS-R-300M-17 (Sullivan et al., 2023)  90.77%  90.20%
ArTST 95.08% 94.18%
MGB-5 Challenge (Ali et al., 2019) Top 2 Systems:

UKent 93.50% 93.10%
DKU [Single best system] 94.70%  93.80%
DKU [Fusion of 4 systems] 97.40% 94.90%

Table 7: Accuracy results for dialect identification on
the ADI17 set.

we synthesized speech from transcriptions obtained
from QASR'C. In particular, the model learns to
produce the correct pronunciation in spite of not
being provided with any diacritics.

5.6 Dialect Identification

To fine-tune ArTST for speech classification, we re-
cast the multi-class classification task as a speech
to text generation task. The decoder is then trained
to predict the dialect class at the first time step
(which is equivalent to a regular softmax classi-
fier). We fine-tuned all parameters using the Ara-
bic Dialect Identification for 17 countries (ADI17)
dataset (Shon et al., 2020). We compared our
model to previously reported results in Table 7. As
seen from these results, ArTST outperforms previ-
ous models, including the best single system sub-
mitted to the MGB-5 challenge (Al et al., 2016),
and is not far behind the top model which fuses
4 different system,; it is worth noting that the lat-
ter also incorporates data augmentation to further
improve performance, which we do not explore in
this work.

6 Conclusions & Future Work

We demonstrated the potential of ArTST in speech
recognition, synthesis, and classification, where we
achieved results on a par with or outperforming
previously reported results with relatively straight-
forward fine-tuning. What we have demonstrated
in this paper is only a subset of potential applica-
tions of this framework. As the model can handle
both text and speech modalities, it can potentially
be applied for text-to-text and speech-to-speech
applications, in addition to text classification and
generation tasks. We will explore these avenues
of application in future work. In this initial work,
we focused on MSA as the main variant of Arabic

10Samples are available in the same website.
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for pre-training. We explored the potential of the
model to generalize to dialectal Arabic using small
test sets that include dialectal Arabic, as well as
the dialect identification task. Future edition will
focus on expanding the coverage of the pre-trained
model to include various dialects, and potentially
code-switched speech, without sacrificing perfor-
mance on MSA. As demonstrated in this paper, our
model outperforms larger multi-lingual models like
Whisper and MMS, which we believe is a result of
focusing on the Arabic language as a basis of our
model from its inception. While multi-linguality
may be desirable for some applications, and could
be beneficial for low-resource languages, mono-
lingual models have a greater potential for high-
resource languages, and the Arabic language cur-
rently boasts large volumes of open-source datasets
that can be utilized to develop high-quality models
across various tasks.

7 Limitations

As this is a large on-going project comprising sev-
eral tasks and potential variations in pre-training,
there are several limitations that can be acknowl-
edged here. First, the model’s pre-training con-
sists of mainly MSA speech from a single dataset
(MGB2). While this dataset is large and compa-
rable to the pre-training conditions in SpeechT?5,
there are other datasets that could be incorporated
to potentially improve performance. Furthermore,
we did not focus on dialectal Arabic in this edi-
tion, and only alluded to potential generalization
to dialects through some experiments on ASR and
dialect identification. Given small amount of code-
switching in the MGB?2 set, the model does have
limited code-switching recognition, but it can be
improved by intentionally using code-switching
dataset for pre-training and fine-tuning. One more
limitation is the use of pre-trained HuBERT for
generating intermediate discrete labels in the pre-
training stage. While our model demonstrably
achieves excellent results in all tested tasks in spite
of that, we did not explore the possibility of op-
timizing HuBERT for Arabic, mainly due to the
additional computational load for training another
large model. Finally, we did not probe the internal
representations of the model to explore potential
architectural improvements. Further analysis of
these representations, and a thorough analysis of
the dialect identification model could shed light on
the properties of these representations.
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Abstract

Despite the purported multilingual proficiency
of instruction-finetuned large language models
(LLMs) such as ChatGPT and Bard, the linguistic
inclusivity of these models remains insufficiently
explored. Considering this constraint, we present a
thorough assessment of Bard and ChatGPT (encom-
passing both GPT-3.5 and GPT-4) regarding their
machine translation proficiencies across ten vari-
eties of Arabic. Our evaluation covers diverse Ara-
bic varieties such as Classical Arabic (CA), Modern
Standard Arabic (MSA), and several country-level
dialectal variants. Our analysis indicates that LLMs
may encounter challenges with dialects for which
minimal public datasets exist, but on average are
better translators of dialects than existing commer-
cial systems. On CA and MSA, instruction-tuned
LLMs, however, trail behind commercial systems
such as Google Translate. Finally, we undertake
a human-centric study to scrutinize the efficacy
of the relatively recent model, Bard, in following
human instructions during translation tasks. Our
analysis reveals a circumscribed capability of Bard
in aligning with human instructions in translation
contexts. Collectively, our findings underscore that
prevailing LL.Ms remain far from inclusive, with
only limited ability to cater for the linguistic and
cultural intricacies of diverse communities.

1 Introduction

Large language models (LLMs) finetuned to follow
instructions (Wei et al., 2021; Wang et al., 2022;
Ouyang et al., 2022) have recently emerged as pow-
erful systems for handling a wide range of NLP
tasks. In accordance with the scaling law (i.e., pre-
training larger models will continue to result in
better performance) (Kaplan et al., 2020), a num-
ber of LLMs such as GPT-3 (Brown et al., 2020),
Chinchilla (Hoffmann et al., 2022), Claude (An-

*Equal contribution
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Figure 1: Experimental setup for our evaluation. We
evaluate multiple language models on different Arabic
varieties.

thropic, 2023), ChatGPT! (OpenAl, 2022), GPT-
4 (OpenAl, 2023), and Bard (Google, 2023) have
been introduced. Most of these models, however,
are ‘closed’. That is, little-to-no information about
them is known. This includes details about model
architectures, pretraining data, languages involved,
and training configurations. LLMs are also expen-
sive both to pretrain and deploy. To alleviate these
concerns, ‘open’ LLMs such as BLOOM (Scao
et al., 2022), LLaMA-1 (Touvron et al., 2023a),
Falcon (Almazrouei et al., 2023), and LLaMA-
2 (Touvron et al., 2023b) were introduced. These
more open models can facilitate research and (non-)
commercial deployment.

In spite of drawbacks such as their closed nature,
computational costs (Dasgupta et al., 2023), and
biases they exhibit (Ferrara, 2023), closed LLMs
remain attractive primarily due to their remark-
able performance (Bang et al., 2023a; Laskar et al.,
2023a). It is thus important to fully understand the
full capabilities of these closed models. Although
there has been a recent flurry of works attempting
to evaluate ability of LLMs to carry out NLP tasks,
many of these models remain opaque. This is espe-
cially the case when it comes to understanding how
LLMs fare on different varieties and dialects of
several popular languages and on vital tasks such
as machine translation (MT). For example, the ex-
tent to which LLMs can handle MT from Arabic
varieties into other languages is unknown.

'In this work, we refer gpt-3.5-turbo as ChatGPT.
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Another challenge is how more recent models
such as Google’s Bard are yet to be evaluated and
understood. Bard was released in 41 different lan-
guages, which makes it a particularly attractive tar-
get for MT evaluation. This is also the case given
Google’s strong history of investment in MT (Wu
et al., 2016a). In this work, we offer a thorough
evaluation of LLMs on MT from major Arabic
varieties into English (Figure 1). Namely, we eval-
uate ChatGPT, GPT-4, and Bard on MT of ten
Arabic varieties into English. Since there are usu-
ally concerns about downstream evaluation data
leaking into LLM pretraining, which involves data
collected from the web, we benchmark the models
on new test sets that we manually prepare for this
work. Our evaluation targets diverse varieties of
Arabic. Namely, we evaluate on Classical Arabic
(CA), Modern Standard Arabic (MSA), and several
country-level Arabic dialects such as Algerian and
Egyptian Arabic (Section 3).

Bard provides three different drafts for each text
input we ask it to translate. Contents of the three
drafts are diverse, providing us with excellent con-
texts to analyze the degree to which the model
adheres to our prompts. We leverage these contexts
to carry out a human evaluation study investigating
the helpfulness of the model, allowing us to reveal
a number of Bard’s limitations. We carefully ana-
lyze these limitations against the different Arabic
varieties we target, thus affording even better un-
derstanding of the model’s ability to translate from
Arabic.

Overall, our work offers the following contribu-
tions:

(i) We offer a detailed MT evaluation of instruc-
tion finetuned LLMs on ten diverse varieties
of Arabic.

(i1) To the best of our knowledge, our work is the
first to assess performance of Bard on NLP
tasks in any language, and on Arabic MT in
particular.

(iii)) We introduce a new manually created multi-
Arabic dataset for MT evaluation that has
never been exposed to any existing LLM.

(iv) We extensively evaluate Bard through a hu-
man study to analyze its behavior in terms of
helpfulness. We examine how well the model
follows human instructions when tasked with
translating across ten different Arabic vari-
eties.
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The rest of the paper is organized as follows: In
Section 2, we review previous research evaluating
LLMs on NLP tasks in general and MT in particu-
lar. In Section 3, we introduce our newly developed
multi-Arabic MT dataset. In Section 4, we describe
our evaluation methods. In Section 5, we present
our results and the main findings obtained from
comparing ChatGPT and Bard to various commer-
cial MT products. In Section 6, we present our
human study analyzing Bard’s helpfulness, par-
ticularly in terms of its ability to follow human
instructions in MT. We conclude in Section 7.

2 Related Work

Evaluation of ChatGPT and Other LLMs. A
growing body of literature has focused on eval-
uating ChatGPT and other LLMs on NLP tasks.
Laskar et al. (2023a) find ChatGPT effective on
many tasks. Other works find it either on par
with supervised models (Ziems et al., 2023) or
in some cases (e.g., sequence tagging) falling be-
hind these models (Qin et al., 2023). Both Jiao
et al. (2023) and Ogundare and Araya (2023) find
that GPT-4 is competitive with commercial sys-
tems for high-resource languages but lags behind
for low-resource languages. Bang et al. (2023b)
find a similar pattern for ChatGPT. Guerreiro et al.
(2023) find complex translation scenarios, such as
in the low-resource setting, to be prone to hallucina-
tion. Peng et al. (2023) demonstrate that ChatGPT
can surpass Google Translate on many translation
pairs, but Zhu et al. (2023) show it is outperformed
by NLLB (NLLB et al., 2022) on at least 83%
of the English-centric pairs they study. Wang et al.
(2023); Karpinska and Iyyer (2023), however, show
that ChatGPT can match the performance of fully
supervised models for document-level translation.

Peng et al. (2023) find that adding task and
domain-specific information in the prompt can im-
prove the robustness of the MT system, which cor-
roborates the findings by Gao et al. (2023). Huang
et al. (2023) propose a prompting technique called
cross-lingual-thought prompting (XLT) to improve
cross-lingual performance for a wide range of tasks,
including MT. Similarly, Lu et al. (2023b) asks
ChatGPT to correct its own mistakes as a way
to improve the model’s translation quality. Lu
et al. (2023a) propose Chain-of-Dictionary (CoD)
prompting to solve rare word translation issues.
Prompting with CoD improves the performance of
ChatGPT for both X-En and En-X language direc-



tions.

Evaluation of ChatGPT on Arabic. Khondaker
et al. (2023) evaluate ChatGPT and other contem-
porary LLMs such as BloomZ (Muennighoff et al.,
2022) in few-shot settings (0, 1, 3, 5, and 10) on
four X-Arabic and two code-mixed Arabic-X lan-
guage sets. They show that providing in-context
examples to ChatGPT achieves comparable results
to a supervised baseline. Alyafeai et al. (2023) eval-
uate ChatGPT and GPT-4 on 4, 000 Arabic-English
sentence pairs from Ziemski et al. (2016) and find
a supervised SoTA model to outperform ChatGPT
and GPT-4 by a significant margin. These works,
however, only consider a limited number of Ara-
bic varieties. They also do not conduct a thorough
analysis of the LLMs for MT. Additionally, none of
the works evaluate Bard. Our work bridges these
gaps by performing a comprehensive evaluation
of these systems on a wide range of Arabic vari-
eties. We also conduct our study on novel in-house
data that we guarantee no leakage for (i.e., our
data cannot have been seen by ChatGPT, GPT-4, or
Bard since we create the data for this work). Other
works have focused on evaluating smaller-sized
Arabic language models (Abu Farha and Magdy,
2021; Inoue et al., 2021; Alammary, 2022), includ-
ing on recent benchmarks (Nagoudi et al., 2023;
Elmadany et al., 2023).

Arabic MT. There are several works on Arabic
MT itself, including rule-based (Bakr et al., 2008;
Mohamed et al., 2012; Salloum and Habash, 2013),
statistical (Habash and Hu, 2009; Salloum and
Habash, 2011; Ghoneim and Diab, 2013), and neu-
ral (Junczys-Dowmunt et al., 2016; Almahairi et al.,
2016; Durrani et al., 2017; Alrajeh, 2018). While
these systems focus on MSA, others target Ara-
bic dialects (Zbib et al., 2012; Sajjad et al., 2013;
Salloum et al., 2014; Guellil et al., 2017; Baniata
et al., 2018; Sajjad et al., 2020; Farhan et al., 2020;
Nagoudi et al., 2021, 2022a). We provide a more
detailed review of related literature in Appendix A,
with a summary in Table 7.

3 Coverage and Datasets

3.1 Arabic Varieties

Our goal is to provide a comprehensive evaluation
of MT on ChatGPT, GPT-4, and Google Bard, fo-
cusing on their performance across ten different
varieties of Arabic. These can vary across time
(i.e., old vs. modern day) and space (e.g., country-
level geography) as well as their sociopragmatic
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Variety Example with English Translation

el e Ciseis Ui 3 o lhe s o Lol

EGY
And if we keep hiding, we’re going to die out of fear
JOR éxl‘}.ah){wg%l&inﬁqu@}au
I do not and cannot underestimate him; he is still my father, no matter what.
MAU .(.M.Eﬂ MW lls o J,fj'i cwle gl J‘{g‘i Ol e
Look, whenever I'm in, I never take a step back; I only go forward.
VEM ,&;'Ju $3s d\él) $3 ey (oUWl G o s &,

I set up a checkpoint at the door to screen anyone who comes in or out.

Table 1: Example sentences from some of the Arabic
varieties in our new translation evaluation dataset. See
Appendix Table 16 for remaining varieties.

Prompt Template BLEU

Translate the following Modern Standard Arabic (MSA)
sentence into English

Lo N B0 ) I 4 ) il Lo A o5
I want you to act as an expert translator. You will translate
Modern Standard Arabic (MSA) sentences into English.

I will give you a Modern Standard Arabic (MSA) input,

and you will translate it into English and keep the same

ENG 48.48

MSA 47.92

ENG
(elaborate)

46.17

semantic meaning. Please translate this Modern
Standard Arabic (MSA) text into English

Table 2: Performance of ChatGPT on the
MSA—English translation task. Our concise English
prompt outperforms other prompts in BLEU score.

functions (e.g., standard use in government com-
munication vs. everyday street language). Before
introducing our dataset, we provide a brief back-
ground about Arabic and its varieties. Arabic, the
collection of languages spoken by approximately
450 million people across the Arab world, encom-
passes a broad spectrum of varieties. Classical Ara-
bic (CA) is known as Quranic Arabic, the language
of the Quran (Rabin, 1955), and has emerged from
the medieval dialects of the Arab tribes. It was spo-
ken early in Mecca around 1, 500 years ago in the
sixth or seventh century AD. CA is considered the
most eloquent form of Arabic and is preserved no-
tably in the Holy Quran and pre-Islamic epic poems
(Versteegh, 2014). It is often described as exhibit-
ing archaic words, figurative speech, and thyming
sentences that are no longer (or less frequently)
used in MSA and dialectal Arabic varieties. Mod-
ern Standard Arabic (MSA) (Holes, 2004), on the
contrary, is deeply rooted in CA that has been light-
ened to a great extent to encompass the modern
uses in Modern literature, poetry and official state-
ments. MSA additionally serves as the standard-
ized language for formal events, news broadcasts,
sermons, and formal communication. We now ex-
plain how we acquire our dataset for each Arabic
variety.



3.2 Datasets

CA. We manually curate 200 sentences from the
Open Islamic Texts Initiative (OpenITI) (Nigst
et al., 2020) dataset, namely from the latest 2022.16
version. It includes a collection of premodern Ara-
bic works featuring a comprehensive library of
10, 342 books. The sentences were chosen based
on a set of specified criteria: Initially, we iden-
tify books originating from the first and second-
century Anno Hegirae (in the year of the Hijra),
excluding those written after this period. Then we
compile a collection of 15 distinctive books, includ-
ing notable works like Abdullah Ibn AlMuqfaa’s
“Al-Adab Al-Kabir” and “Al-Adab Al-Saghir”, Mo-
hamed Idis Al-Shafi’s “Al-Umm”, “Al-Risala”, and
“Al-Adab Wal-Muraa”, among others. We subse-
quently extract sentences of a minimum of ten
words. We provide the list of the 15 books we
sample from in Appendix B (Table 9).

MSA. We collect a total of 200 sentences from cur-
rent event news picked from two online news web-
sites: Aljazeera’ and BBC Arabic®. The curated
sentences showcase various news genres, including
political, social, and sports.

Various Dialects. We manually select a dataset of
dialectal Arabic from an in-house project where
we transcribe TV series collected from YouTube
videos belonging to Arabic dialects. Again, we
use 200 sentences from each dialect, resulting in a
total of 1, 600 sentences across eight dialects, each
transcribed and translated by their respective na-
tive speakers. The dialects belong to North African
countries such as Algeria, Morocco, and Maurita-
nia; Gulf area dialects, namely Emirati; Levantine
Arabic (focusing on Palestinian and Jordanian);
and Egyptian Arabic.

For all varieties, we collect sentences that are at
least ten words long. We present one sample from
some of the dataset in Table 1. Statistics of the
datasets across the Arabic varieties is presented in
Appendix B (Table 8).

4 Methodology

4.1 Prompt Design

The term prompt refers to the set of instructions
used to program an LLM with a goal to steer and
enhance its purpose and capabilities (White et al.,
2023). Prompts can influence subsequent interac-

2https ://aljazeera.net/news
3https ://bbc.com/arabic
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tions with the model as well as its generated out-
puts. Therefore, it is important to clearly identify
the right prompts to obtain the desired outcome for
a particular task. To determine the right prompt for
our translation task, we set up a pilot experiment
that we now describe.

Pilot experiment. In our pilot experiment, we
investigate three prompt candidates. To limit the
search space, we perform this experiment only with
ChatGPT. We experiment with both Arabic and
English prompts to concisely instruct ChatGPT to
translate from an Arabic variety into English, again
restricting our search space to MSA as a variety that
is known to overlap with other varieties at all lin-
guistic levels (Abdul-Mageed et al., 2020; Habash,
2022). We also experiment with an elaborate En-
glish prompt that clearly defines the role and the
objective of ChatGPT before asking the model to
carry out the translation task. We then evaluate the
performance of ChatGPT on 100 MSA—English
samples. We present the prompt templates and the
corresponding performance we acquire in Table 2.
Evaluation. As evident, the concise English
prompt outperforms the other two prompts, in-
cluding the Arabic counterpart (by 1~2 BLEU
scores). This result substantiates findings in prior
works (Khondaker et al., 2023; Lai et al., 2023)
regarding the superiority of English prompts on
ChatGPT over non-English prompts. Therefore, in
the rest of the paper we employ the concise and
direct English prompt to conduct our experiments.

4.2 N-Shot Experiments

We run ChatGPT MT generation under 0-shot, 1-
shot, 3-shot, and 5-shot settings. For a particu-
lar translation task, we always select the samples
for these in-context learning experiments from the
same set of training examples. This means that for
a k-shot setting, we make sure that if a training
sample is selected then it will also be selected for
n-shot settings where n > k. We generate trans-
lation with ChatGPT (gpt-3.5-turbo®, an opti-
mized version of GPT-3.5 series) by setting the
temperature to 0.0 to ensure deterministic and re-
producible results. In addition, we restrict the max-
imum token length to 512 for all the generation
tasks. For GPT-4, we use the web interface for MT
generation under O-shot and 5-shot settings. For
Bard’, we use the web interface but opt out of gen-

4Snapshot of gpt-3.5-turbo from June 13th 2023.
SUpdate from - 2023.07.13


https://aljazeera.net/news
https://bbc.com/arabic
https://aljazeera.net/news
https://bbc.com/arabic

erating any few-shot response because it lacks an
API and its outputs can be problematic requiring
intensive manual preprocessing (Section 6).

4.3 Evaluation and Baselines

Evaluation metrics. Different evaluation metrics
are usually employed to automatically evaluate MT
systems. These metrics are often based on word
overlap and/or context similarity between refer-
ences and model outputs. In our work, we em-
ploy both types of metrics to evaluate the quality
of various translation systems that we consider in
our study. Namely, we use BLEU (Papineni et al.,
2002), COMET (Rei et al., 2020a), ChrF (Popovié,
2015), ChrF++, and TER (Snover et al., 2006). We
provide a detailed description of each metric in
Appendix 4.1.

Baselines. We compare instruction-tuned LLLMs to
a number of MT systems, including both commer-
cial services (Amazon, Google, and Microsoft) as
well as the supervised NLLB-200 system (NLLB
et al., 2022)°. We provide more details about each
of these systems in Appendix 4.2.

5 Results and Discussion

We evaluate all models on X-English translation di-
rection where X is an Arabic variety (MSA and
CA). As mentioned earlier, we evaluate LLMs
(ChatGPT, GPT-4, and Bard) in n-shot settings.
We report BLEU, COMET, and ChrF++ in Table
3. We report additional metrics in Appendix C. We
summarize our main findings here.

Is GPT-4 better than ChatGPT? In most cases,
yves. GPT-4 consistently outperforms ChatGPT on
many dialects and varieties. However, for JOR
and UAE, ChatGPT 0O-shot performs better than
0-shot GPT-4. Overall, on average, GPT-4 0-
shot outperforms ChatGPT 0-shot by 1 ~ 3 points
on all metrics. Additionally, GPT4 in 0-shot set-
ting is on par with ChatGPT in the 5-shot setting.
When comparing ChatGPT with GPT-4 under 5-
shot setting, we observe that ChatGPT substantially
closes the performance gap, even outperforming
GPT-4 in 6 out of 10 varieties in terms of BLEU
score. Although GPT-4 marginally outperforms
ChatGPT on average BLEU score, this result shows
that by providing few-shot examples, it is possible
for ChatGPT to achieve comparable performance
to GPT-4 on Arabic MT.

®For NLLB-200, we use the distilled 1.3B
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Is ChatGPT/GPT4 better than Bard? In most
cases, yes. For fairness, we compare Bard, Chat-
GPT, and GPT-4 only under the 0-shot condition.
In the majority of the varieties, either ChatGPT
or GPT-4 outperforms the best Bard draft (i.e.,
Draft 1). Our results show that Bard is better
than both of these models in only three cases (i.e.,
CA, EGY and JOR). Overall, GPT-4 ranks best
(BLEU score at 23.12), followed by ChatGPT
(21.77 BLEU points), which in turn is followed
by Bard (20.47 BLEU points).

Is ChatGPT/GPT4 better than commercial
systems? Yes, but only on dialects. We evaluate
three commercial translation systems, namely,
Amazon, Microsoft, and Google Translate. Among
commercial systems, we find Google Translate
to outperform other commercial systems across
all varieties except YEM. The average score
for Google Translate is 22.29/64.89/43.11
(BLEU/COMET/ChrF++) compared to
18.80/63.68/41.55 ~and  17.77/62.85/39.76
for Microsoft and Amazon systems, respectively.

From our evaluation results in Table 3, we ob-
serve that commercial systems are better at trans-
lating CA and MSA but fail to produce high-
quality translations when it comes to dialectal
Arabic. ChatGPT and GPT-4 in 0-shot and few-
shot settings are on par or better than the best-
performing commercial system (i.e., Google Trans-
late) for all Arabic dialects except JOR. The aver-
age BLEU score of ChatGPT and GPT-4 in few-
shot setting is 23.62 (5-shot) and 13.64 (5-shot),
respectively, compared to 2.29 for Google Trans-
late. However, we notice that Google Translate
outperforms ChatGPT and GPT-4 on MSA by a
significant margin (while it stays behind on other
dialects). Hence, we conclude that ChatGPT and
GPT-4 are better translators of Arabic dialects than
the commercial Google Translate system. We find
similar patterns in other metrics.

Is ChatGPT/GPT-4 better than the supervised
baseline? Yes, it is. We evaluate NLLB (NLLB
et al., 2022) as the supervised baseline, finding
both ChatGPT and GPT-4 able to outperform
this baseline in the 0O-shot setting. The average
BLEU score for NLLB is 12.97 compared to 21.77
and 23.12 of ChatGPT and GPT-4 under O-shot
settings, respectively. Similar to the commercial
systems, the supervised baseline (NLLB) does well
on MSA and is on par with ChatGPT and GPT-4.
However, both ChatGPT and GPT-4 outperform it



Met Var/M ChatGPT GPT4 Bard NLLB NL'LB Amazon MST GT
0-shot 1-shot 3-shot 5-shot 0-shot 5-shot D1 D2 D2 Avg (SB) (Dia)
CA 11.27 12.02 1222 1252 11.79 11.36 12.32 1043 1239 11.71 17.32 - 11.35  11.96 14.30
MSA 4285 4411 4429 4481 43.18 43.66 37.23 3323 36.18 35.55 41.34 - 46.76  47.36 66.01
ALG 1448 1641 17.16 17.31 1837 17.83 1524 11.67 1258 13.16 7.27 - 10.08 11.67 11.93
EGY 1996 21.00 21.38 21.74 21.15 2149 2133 19.39 2091 2054 11.12 13.87 1495 16.64 18.09
o JOR 2574 26.75 27.63 26.82 2457 2526 2693 2348 25.09 25.17 13.07 185 21.56  21.71 29.35
E MAU 852 89 927 905 919 987 o6.11 425 237 424 348 - 7.21 6.89 7.67
= MOR 27.15 28.19 28.86 29.80 3290 33.32 31.59 30.84 31.25 31.23 1045 1947 1276 1425 1694
PAL 29.47 29.37 31.62 31.56 3197 3048 22.57 20.59 2425 2247 1498 1256 21.75 24.23 25.78
UAE 2420 24.61 2455 26.17 23.86 2691 2193 19.61 21.29 20.94 11.27 - 16.85 19.05 19.56
YEM 1403 15.13 1624 1644 1427 1622 946 638 533 7.06 941 1256 1441 1423 13.25
Avg 21.77 22.66 23.32 23.62 23.12 23.64 2047 1799 19.16 1921 1297 1539 17.77  18.80 22.29
CA 70.11 70.08 70.01 70.24 7147 70.95 6829 67.04 68.65 67.99 58.87 - 63.03  63.16 66.37
MSA  85.87 86.14 86.22 86.24 86.32 86.22 80.21 80.00 80.44 80.22 84.76 - 86.15 8570 87.23
ALG  62.69 6377 6398 6385 6506 6552 60.90 5562 59.72 58.75 49.88 - 5455 5648 55.33
EGY 7241 73.15 7420 7396 74.14 7491 7150 6820 71.30 70.33 61.15 63.81 6424  65.59 68.41
E JOR 7446 7520 7552 7527 7637 76,50 7419 70.65 72.65 72.50 60.25 65.05 67.33 7046 71.83
% MAU 5837 5899 60.35 60.66 59.24 62.13 52.53 46.38 50.41 49.77 48.50 - 52.37 5145 51.58
@) MOR 69.36 69.64 70.58 70.73 73.94 7395 72.12 70.60 71.82 71.51 5323 62.74 5450 51.89 56.55
PAL 7459 7494 7540 7551 76.62 76.19 69.37 67.78 69.94 69.03 60.57 59.04 6580 68.54 68.69
UAE  69.64 69.62 69.80 70.80 7293 7238 66.71 63.08 66.12 6530 54.57 - 5940 61.74 61.57
YEM 6448 6541 66.09 6588 6247 68.77 58.34 5535 56.89 56.86 57.01 59.04 61.09 61.75 61.32
Avg 7020 70.69 7122 7131 71.86 7275 6742 6447 66.79 6623 5888 6194 62.85 63.68 64.89

Table 3: Results in BLEU, and COMET scores. Higher is better unless otherwise specified by |. Average repre-
sents the mean across all varieties. Three drafts (D1, D2, D3) from Bard are reported individually and averaged.
NLLB is our MSA-based supervised baseline; NLLB (Dia) is dialect-specific. Abbreviations: SB - supervised
baseline, Dia - dialect, Var - varieties, M - model, MST - Microsoft Translation, GT - Google Translate. Best

results are in bold.

on dialectal translation by a significant margin.

Is NLLB with dialects as source better than
vanilla NLLB? Yes, it mostly is when the dialects
match. Our supervised baseline, NLLB, takes the
dialects of the source into consideration. For exam-
ple, both JOR and PAL dialects in NLLB can be de-
fined as South Levantine, i.e., (JOR, PAL)—South
Levantine. In addition, source dialects like EGY
and MOR can be defined in their actual forms,
while YEM can be defined as Taizzi. The column
NLLB (Dia) in Table 3 provides BLEU score where
the NLLB model treats the input as a particular di-
alect. We find that when the actual dialect matches
the appropriate mapping with this NLLB source
dialect, we acquire performance. One exception is
the case of PAL, where NLLB does poorly com-
pared to MSA.

Is Bard a good instruction following model? Not
always. We evaluate Bard for our translation using
the web interface’. We find that Bard can fail to fol-
low the instructions we prompt it with. We further
discuss and describe this in Section 6. Bard often
provides the main translation output within double

7https ://bard.google.com/
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quotes (""), which we extract semi-automatically.®
Additionally, Bard provides three different drafts.
We report results for each draft independently, as
well as the average of all three drafts in our results.

Are instruction following models better at di-
alect translation? [n most cases? Yes. In order
to clearly see performance on dialects, we exclude
CA and MSA results and report the average per-
formance of the models on the various dialects as
reported in Table 4. We observe that GPT-4 at its
5-shot setting is the best model on dialects. Al-
though commercial systems fare well on CA and
MSA, their performance degrades on dialects. For
example, the gap between the best performing com-
mercial system (Google Translate) and the best
instruction-tuned model (GPT-4 5-shot) across the
various dialects races to 4.85 from 1.35 in terms
of average BLEU score.

Do diacritics affect translation? Yes, in most
cases they do. Although in most real-world use,
native speakers do not usually employ diacritics,

81n order to keep sufficient information to study model
behavior, we collect and save all output from Bard (in-
cluding explanations of translations). Even when we try to
prompt Bard to restrict its output to target translation, it did
not follow our instructions.


https://bard.google.com/

CGPT CGPT GPT-4 GPT-4
0-shot 5-shot 0-shot 5-shot

Metric Bard NLLB GT

BLEU 20.44 2236 22.03 22.67 19.40 10.13 17.82
COMET 68.25 69.58 70.10 71.29 65.71 55.65 61.91
ChrF++ 43.71 44.70 44.98 45.44 36.23 28.64 39.33
TER| 77.08 7223 74.07 71.51 83.62 101.38 79.38

Table 4: Average scores across eight dialects, exclud-
ing MSA and CA. Higher is better unless specified by
J. Best results are in bold.

some Arabic texts (especially those written in CA)
do make use of diacritic markers. We were inquisi-
tive about the effect of diacritics on the translation
task across the different systems and so carry out
a limited study of any such effect. To this end,
we collect and manually translate 50 new CA sen-
tences that are fully diacritized. The sentences
conform to the identical selection criteria as those
utilized within the study, specifically with regard
to their length and as they originate from the first
and second centuries AH books. We make a copy
of this set and remove diacritics, and then indepen-
dently feed both the diacritized and undiacritized
versions to all the systems that we evaluate in this
work. As shown in Table 5, we find most systems
to work better when we remove diacritics. How-
ever, we also observe that some systems provide
the same output regardless of whether the input
is diacritized or not. This prompts us to conduct
a quick analysis on a list of 20 word pairs of het-
erophonic homographs, i.e., words with the same
spelling that change meaning and pronunciation
according to the diacritics. We provide this list in
Appendix 12 (Table 14). An example of such a

pair is J — he wrote and ;’,:( — books. For this
analysis, we perform single word translation by all
the systems to ensure that the intended meaning
cannot be retrieved from context, but rather solely
based on changes in the diacritics. We find that
Google Translate and Microsoft Translation pro-
vide the same meaning for both words of each pair,
while the rest of the systems show different outputs
when diacritics change.

Robustness. We also run a series of bootstrapping
experiments that confirm the robustness of the re-
sults we acquire from the different models. We
describe these experiments in Appendix 3.2.
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Met Mo/Var CGPT GPT-4 NLLB Amazon MST GT
D1 Avg

BLEU CA 23.57 23.81 22.9423.01 16.13 17.50 20.13 26.61

CA*  23.46 24.45 25.39 24.25 13.61 18.66 20.13 24.92

COMET CA 74.38 75.07 73.23 73.27 64.06 63.98 65.39 72.04

CA*  75.75 76.71 76.01 75.56 61.82 66.01 66.60 73.76

Table 5: Effect of diacritics on translation. CA* is
without diacritics. Other metrics and bootstrapped re-
sults are reported in Appendix 3.3 (Tables 12 and 13).

wrong_lang @ no_translation ¢ degeneration ® content_filtering

Figure 2: Distribution of Bard helpfulness errors when
it fails to follow our prompts.

6 Human Analysis of Bard Helpfulness

Our experience working with Bard reveals that
the model does not always follow human instruc-
tions. For this reason, we decided to carry out
a human study to assess Bard’s helpfulness. We
define helpfulness here simply as the model’s abil-
ity to follow human instructions. For each variety
of Arabic, we task two native speakers of Arabic
with familiarity with the dialects to assign one tags
from the set {wrong_lang, no_translation,
degeneration, content_filtering} to the
model responses. We develop this tagset based on
a bottom-up approach where we let the categories
emerge from the data. Although this tagset may
not be exhaustive, we find it to reasonably capture
errors we identify with model responsiveness to
instructions. Each of the two annotators manually
label each draft, independently, with one tag from
the set of our helpfulness error tags. The annota-
tors meet and discuss differences, reaching 100%
agreement which indicates that the categories are
clear and independent. Table 6 shows one example
from each of the categories.

The most frequent issue with model helpful-
ness is translating into the wrong target language
(wrong_lang), followed by not providing any trans-
lation at all (no_translation) (Figure 2). The for-
mer is predominantly due to a translation into MSA
instead of English, oftentimes prefacing the output
with the sentence “4 <Y J] dodl 7 5 &JJ”. In-
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Figure 3: Error rate distribution of Google Bard by error type and Arabic variety.

terestingly, Bard does not seem to struggle with
wrong_lang errors when translating from MSA
(and the same scenario almost happens for trans-
lating from CA). Instead, Bard tends to mistake
the translation task for a text generation one where
it generates a couple of paragraphs that start with
the input sentence. From Figure 3, it seems that
the error rate may be proportional to the resource
availability of a given variety (i.e., varieties for
which no much data are publicly available tend to
suffer from higher error rates). This observation
should be couched with caution since the LLMs
we evaluate remain closed, with little know about
their pretraining as well as finetuning datasets and
processes. When we look at each of Bard’s drafts
separately, we find that the first draft shows a higher
number of wrong_lang and content_filtering
errors. Meanwhile, draft 2 is the most prone to
no_translation errors, with these accounting for
57% of the wrong generations it produces (Figure
4 in Appendix 4.3).

Other behavior. While Bard has a feature where
it occasionally adds sources to support the infor-
mation it provides, these sources can be unrelated.
For example, it can cite links to GitHub reposi-
tories attached to political news translations. It
also has a tendency to respond to input sentences
that are questions the way it would for a Ques-
tion Answering (QA) task. Sometimes it also pro-
duces an opinion about a sentence it translates:
“ sl Soldl s e ciilaly Al eds A3 (This
piece of news shocked me; and I am bothered
by this tragic accident). Additionally, we find
instances where Bard adds details not included
in the input sentence, such as its translation of
"¢ 25555 <l as "Elon Musk and Mark Zucker-

berg" (where it adds first names as shown in italics).

Bard output format. Bard often provides a de-
tailed breakdown when it performs a translation,
either in the form of a list or a paragraph detailing
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the meaning of each word or phrase. With sen-
tences that are parts of a conversation, Bard also
explains the message that the speaker is trying to
convey and what emotions they are having. When
it comes to sentences from the news domain, Bard
provides more context and information about the
topic after the translation. We provide examples in
Figure 5.

7 Conclusion

We evaluate Bard, ChatGPT, and GPT-4 on MT
of ten diverse varieties of Arabic, comparing to
three commercial systems and a supervised model
to juxtapose the performance of these LLMs under
varying conditions. To assess the capacity of the
LLMs on truly unseen data, we manually create a
multi-dialectal Arabic dataset for MT evaluation.
We find that although LL.Ms can do well on some
of the varieties we consider, they struggle espe-
cially on varieties on the more scarce public data
end. As such, these LLMs suffer from not being
quite inclusive of the different varieties of even lan-
guages they are claimed to perform well on such as
Arabic. A rigorous human investigation also under-
scores a palpable scope for enhancement in Bard’s
adherence to instructions in the context of MT. Our
future work includes evaluating the performance of
Bard and other LLMs on more Arabic varieties.

8 Limitations

We can identify a number of limitations for our
work, which we list here.

Coverage. We strive to cover as many varieties of
Arabic as possible, and ensure treating both CA and
MSA. However, our dialectal varieties do not cover
all Arab countries. Although this is somewhat alle-
viated by the fact that we include dialects from both
the Eastern and Western parts of the Arab world
(i.e., Asia and Africa), future work can consider
evaluating LLMs on other Arabic dialects.



Wrong Target Language
Input:
G Qlis Lef o e Opmi Lo U3 e o | elly
=
Ref:

Najm shouldn’t we know our enemy first to
know how to act?

Output:
Loguas & 58 O pm 0l dmy ) O3l ik ¥ ok

No Translation

Input:
by g L 2, csils Ko sely gLl
Ref:

I’d kill one of you, then go turn myself in, and
defend myself.

Output:
ol e 15 sfe ¥ oK) Ul
Content Filtering
Input:
Ref:

And even those men for whom we’ll become
thin, we have no use for them.

Output:
L) e ) ) ek sl 225 550 Y 15 e
Lo B o o
Degeneration
Input:

pamy iskek Lo Olay ¥ (¥se LY (¥se LYY
Ref: No, no sir, no sir, no, Burhan should not be
executed.
Output:

"No, no, my lord, no, my lord, no, no, no, no,

no, no, no, no, no, no, no, no, no, no, no, no"

Table 6: Examples of errors in Google Bard’s ability
to follow prompts. For each of the sentences, we use
the prompt Translate the following text from [Variety]
Arabic [dialect] into English: <s>.
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Single reference translations. Again, due to the
laborious nature of manually translating data from
the various dialects and the challenge of finding
qualified native speakers to carry out these trans-
lations, our evaluation dataset involves only one
single reference of each source sentence. It con-
tinues to be desirable to create evaluation datasets
with 3 — 5 references for each source sentence.
We alleviate this challenge by providing results in
different metrics such that the results are not only
based on surface level matching but also similarity
of the translation pairs. More references would still
be better since different human translators would
collectively provide data less prone to human sub-
jectivity or errors.

Evaluation of multiword expressions. While we
provide translations of full sentences that may in-
volve multiword expressions, including idioms and
proverbs, it would be useful to develop evaluation
datasets that focus on these types of expressions as
these data could uncover particular types of model
capabilities. For example, a model that is able to
translate and explain a proverb can be thought of as
somewhat knowledgeable about culture and prag-
matic phenomena.

Evaluation by different lengths. We provide re-
sults on our data regardless of sentence length. In
the future, it would be useful to report results based
in various sentence length bins as longer sentences
are usually more challenging to MT models. Again,
this is alleviated by the fact that we design our
datasets to be at least ten words long from the out-
set.

Orthography normalization: Due to the lack of a
standardized writing form, Arabic dialects are char-
acterized by an important variation in orthography.
In this paper, we do not perform normalization on
the input sentences before inputting them into the
models since (i) we want our input to reflect the
full diversity of orthography in the wild. In addi-
tion, (ii) there is currently no normalization tool
that covers all the dialects we treat in this work.

9 [Ethics Statement

Intended use. We understand our work will likely
inspire further research in the direction of exploring
the multilingual capabilities of LLMs, especially
newly released ones such as Bard. Our findings
both highlight some of the strengthens of these
models as well as expose some of their weaknesses
and limitations. For example, available LLMs still



struggle to translate from dialects of even major
language collections such as Arabic. Our work also
further showcases the limited capability of Bard to
follow simple instructions such as those typical of
an MT context. Consequently, we believe our work
can provide useful feedback for improving both
coverage and usefulness of LLMs.

Potential misuse and bias. Since there exists
little-to-no information about the data involved in
pretraining and finetuning LLLMs we consider, we
cannot safely generalize our findings to varieties
of Arabic we have not investigated. We conjec-
ture, however, that the models will perform equally
poorly on dialects with no or limited amounts of
public data. Although our work does not focus
on studying biases in the models nor how they
approach handling harmful content (Laskar et al.,
2023b), we could observe that especially Bard puts
a lot of emphasis on filtering harmful and poten-
tially offending language so much that its instruc-
tion tuning leads it to interact negatively with the
model’s usefulness as an MT system. Overall, our
recommendation is not to use the models in ap-
plications without careful prior consideration of
potential misuse and bias.
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A Related Work
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Notably, Laskar et al. (2023a) evaluate ChatGPT
on 140 diverse NLP tasks spanning across multiple
categories. The authors show that although Chat-
GPT is effective on various NLP tasks, its ability
to solve challenging tasks such as low-resource ma-
chine translation with standard prompting is very
limited. Ziems et al. (2023) evaluate 13 different
LLM:s including ChatGPT on 24 computational so-
cial science tasks and find that for many classifica-
tion tasks, ChatGPT is on par with supervised mod-
els while excelling at generation tasks. Qin et al.
(2023) evaluate ChatGPT on 20 different datasets
spanning across seven task categories. They find
that ChatGPT is better at solving tasks that require
reasoning capabilities but falls behind supervised
models on tasks such as sequence tagging.

Evaluating MT ability of ChatGPT. Both Jiao
et al. (2023) and Ogundare and Araya (2023) find
that GPT-4 is on par with commercial translation
tools for high-resource languages. However, they
find the model to lag behind for low-resource lan-
guages. To fix this issue, the authors propose pivot-
prompting where a low-resource source language
is first translated into a high-resource pivot lan-
guage and then from the pivot language back to
the low-resource target language. Evaluation by
Peng et al. (2023) shows that ChatGPT can surpass
commercial systems such as Google Translate on
many translation pairs. Additionally, Peng et al.
(2023) find that adding task and domain-specific in-
formation in the prompt can improve the robustness
of the MT sytem. This observation also corrobo-
rates the findings by Gao et al. (2023). Zhu et al.
(2023) argue that despite being on par with com-
mercial systems, ChatGPT still falls behind fully
supervised methods such as NLLB (NLLB et al.,
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2022) on at least 83% translation pairs out of 202
English-centric translation directions.

Guerreiro et al. (2023) study the hallucination
phenomenon in MT systems and find that low-
resource languages and complex translation sce-
narios such low resource translation direction are
prone to hallucination. Wang et al. (2023); Karpin-
ska and Iyyer (2023) show that ChatGPT can match
the performance of fully supervised models for
document-level translation. Bang et al. (2023b)
find that when it comes to translation from high-
resource languages into English, ChatGPT is com-
parable with the fully supervised model authors
use but that performance degrades by almost 50%
when translating from low-resource languages into
English. Huang et al. (2023) propose a prompting
technique called cross-lingual-thought prompting
(XLT) to improve cross-lingual performance for
a wide range of tasks, including MT. Similarly,
Lu et al. (2023b) asks ChatGPT to correct its mis-
takes as a way to improve the model translation
quality. To accurately translate attributive clauses
from Japanese to Chinese, a pre-edit scheme is
proposed in Gu (2023), which improves accuracy
of the translation by ~ 35%. Lu et al. (2023a)
proposes Chain-of-Dictionary (CoD) prompting to
solve rare word translation issues. Prompting with
CoD improves the performance of ChatGPT for
both X-En and En-X language directions.

Arabic MT. Arabic MT to date has primarily fo-
cused on two main themes: translating MSA and
translation of Arabic dialects.

MSA MT. The development of MSA MT sys-
tems has gone through various stages, including
rule-based systems (Bakr et al., 2008; Mohamed
et al., 2012; Salloum and Habash, 2013) and sta-
tistical MT (Habash and Hu, 2009; Salloum and
Habash, 2011; Ghoneim and Diab, 2013). There
have also been efforts to employ neural machine
translation (NMT) (Bahdanau et al., 2014) methods
for MSA. For instance, several sentence-based Ara-
bic to English NMT systems, trained on different
datasets, have been presented in Akeel and Mishra
(2014), Junczys-Dowmunt et al. (2016), Almahairi
et al. (2016), Durrani et al. (2017), and Alrajeh
(2018). Furthermore, researchers have explored
Arabic-related NMT systems for translating from
languages other than English to MSA, including
Chinese (Aqglan et al., 2019), Turkish (El-Kahlout
et al., 2019), Japanese (Noll et al., 2019), four for-
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eign languages!! (Nagoudi et al., 2022a), and 20
foreign languages (Nagoudi et al., 2022b).

Dialectal Arabic MT. A number of works focus
on translating between MSA and various Arabic
dialects. For instance, both Zbib et al. (2012)
and (Salloum et al., 2014) combine MSA and
dialectal data to build an MSA/dialect to English
MT system. Sajjad et al. (2013) use MSA as
a pivot language for translating Arabic dialects
into English. Guellil et al. (2017) propose an
NMT system for translating Algerian Arabic,
written in a mixture of Arabizi and Arabic
characters, into MSA. Baniata et al. (2018) present
an NMT system for translating Levantine and
Maghrebi dialects into MSA.!? Furthermore,
Sajjad et al. (2020) introduce AraBench, an
evaluation benchmark for dialectal Arabic to
English MT, and evaluate several NMT systems
under different settings such as fine-tuning, data
augmentation, and back-translation. To address
the challenge of unsupervised dialectal MT, both
Farhan et al. (2020) and Nagoudi et al. (2021)
propose a zero-shot dialectal NMT system, where
the source dialect is not present in the training data.
More recently, Nagoudi et al. (2022a) employ
Arabic text-to-text transformer (AraT5) models for
translating from various Arabic dialects to English.

ChatGPT for Arabic MT. Khondaker et al. (2023)
and Alyafeai et al. (2023) evaluate ChatGPT for X-
Arabic and Arabic-X translation pairs. Khondaker
et al. (2023) evaluate ChatGPT and other contem-
porary LLMs such as BloomZ (Muennighoff et al.,
2022) in few-shot settings (0, 1, 3, 5, and 10) on
four X-Arabic and two code-mixed Arabic-X lan-
guage sets. They show that providing in-context
examples to ChatGPT achieves comparable results
to a supervised baseline. Alyafeai et al. (2023) eval-
uate ChatGPT and GPT-4 on 4, 000 Arabic-English
sentence pairs from Ziemski et al. (2016) and find
a supervised SoTA model to outperform ChatGPT
and GPT-4 by a significant margin. These works,
however, only consider a limited number of Ara-
bic varieties. They also do not conduct a thorough
analysis of the LLMs for MT. Additionally, none of
the works evaluate Bard. Our work bridges these
gaps by performing a comprehensive evaluation of
these systems on a wide range of Arabic varieties.
We also conduct our study on novel in-house data
“English, French, German, and Russian.

121 evantine includes Jordanian, Syrian, and Palestinian.
Maghrebi covers Algerian, Moroccan, and Tunisian.
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that, to the best of our knowledge, is not presented
in the training data of LLMs such as ChatGPT and
Bard. Other works have focused on evaluating
smaller-sized Arabic language models (Abu Farha
and Magdy, 2021; Inoue et al., 2021; Alammary,
2022), including on recent benchmarks (Nagoudi
et al., 2023; Elmadany et al., 2023).

We present a concise literature summary in Ta-
ble 7.

B Datasets

Table 8 presents the summary of the datasets across
different Arabic varieties and a list of the 15 books
we sample CA sentences from can be found in
Table 9.

C Results

31

We report ChrF, ChrF++, and TER scores in Table
10, in addition to the results presented in Section 5
in Table 3.

Main Results

3.2 Robustness of Results

To more tightly ensure robustness of the results
we acquire, we conduct bootstrap statistics with a
maximum number of iterations of 1, 000 for BLEU,
ChrF, ChrF++, and TER."® Considering results of
our bootstrapping experiment, we acquire results
that are very close to those reported in Table 3.
For example, in our bootsrapping, the simple mean
of means for all dialects is 23.69 (std +2.85) for
ChatGPT (5-shot) compared to 23.64 (std £2.73)
for GPT-4. In our results in Table (Table 3) Chat-
GPT (5-shot) is 23.62 compared to 23.64 of GPT-4
(5-shot), in terms of BLEU score. We report the
detailed results of bootstrapping in Table 11.

3.3 Diacritics Effect

We provide ChrF, ChrF++ and TER scores for the
effect of diacritics on translation in Table 12 (boot-
strapped results are in Table 13) and the list of
heterophonic homographs we use in Table 14.

3The bootstrapping process is quite compute-intensive.
For example, to run the bootstrapping for the above men-
tioned four metrics, we parallelize the process over 48 CPUs
which takes over six hours to get all the results. While all
metrics can be computed with CPU, COMET requires GPUs
and running it over a similar amount of GPUs is not feasible.
As aresult of this constraint, we do not conduct bootstrap-
ping for COMET.



Ref Focus Languages Datasets Setting Metrics Baselines
Jiao et al. (2023)  Eval Multi Flores-101, WMT- A BLEU GoogleT, DeepL, Tencent
Bio/Rob
Peng et al. (2023)  Eval, Rob Multi Flores-200, WMT- 7S, FS COMET, BLEU, ChrF GoogleT
News/Bio
Gao et al. (2023)  Eval, Multi/6TD Flores-101 ZS,FS-1/5 BLUE, ChrF++, TER GoogleT, DeepL.
Prompting
Zhu et al. (2023)  Eval Multi(102)/202 TD Flores-101 ZS,FS BLEU XGLM-7.5B OPT-175B
BLOOMZ-7.1B / SV-
M2M-12B NLLB-1.3B
Hendy et al. (2023) Eval, Rob, Multi(H, L)/18TD WMT-21/22 ZS,FS-1/5 COMET, BLEU, ChrF, WMT-Best, MS-
DocLEval HE Translator
Guerreiro et al. Eval, Hallu- Multi H, M, L/ Flores, WMT, TICO A spBLEU, COMET, SMaLL100, M2M
(2023) cination >100 TD LaBSE
Wang et al. (2023) DocLEval ~ Multi H mZPRT, WMT- ZS BLEU, TER, COMET, MCN, GoogleT, MR-
22, IWSLT-15/17, dBLUE,T, HE Doc2Doc, MR-Doc2Sent,
NewsComm-v11 Sent2Sent
Europar-v7,0penSub-
18
Bang et al. (2023b) Eval Multi H, L 13/24  Flores-200 A ChrF++ FT-SOTA, ZS-SOTA
TD
Huang et al. (2023) Eval, Multi / 12 TD FLORES SacreBLEU text-davinci-003
Prompting
Gu (2023) Eval, Two / NA A NA NA
Prompting
Karpinska and DocLEval  Multi/18 TD Novel A COMET BLEURT
Iyyer (2023) BERTSCORE COMET-
QE HE
Laskar et al. Eval Multi/10TD WMT14, WMT16, zS BLEU PalLM-540B, Finetuned
(2023a) WMTI19 SOTA
Ghosh and Eval, Fair- Multi/ 5 TD NA zS HE
Caliskan (2023) ness, Bias
Luetal. (2023a) Eval, Multi Flores-200 ZS,FS-1/3  chrF++, BLEU GPT-3.5-turbo
Prompting
Ogundare and Eval Multi NA zS SQ-Score GoogleT
Araya (2023)
Khondaker et al. ~ Eval Multi/6 TD UNPC, MDPC ZS, FS- BLUE Supervised (AraT5)
(2023) 3/5/10
Alyafeai et al. Eval Mono/1TD UNvI 7S, FS- BLUE Supervised SOTA
(2023) 3/5/10
Neubig and He Eval,Rob  Multi WMT ZS,FS-1/5 COMET, ChrF, GoogleT, MS Translate,
(2023) DeepL

Table 7: A summary of related works. We provide a brief description of recent studies aimed at evaluating
LLMs on MT tasks. MT - machine translation. TD - translation direction. ZS - zero-shot, FS - few-shot, Rob -
Robustness, H, L, M - high, low, medium resource.
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Variety Mean Median Mode
CA 22.98 19 15
MSA 30.33 30 26
CALG 1563 135 10

EGY 19.42 16 13
JOR 15.50 14 11
MAU 15.96 14 11
MOR 17.63 17 17
PAL 16.85 14.5 14
UAE 14.98 13 10
YEM 16.16 14 12
Avg. 18.52 16.45 13.9

Table 8: Length statistics of the dataset (in number of
words) across the different Arabic varieties.

D Evaluation and Baselines

4.1 Evaluation Metrics

BLUE (Papineni et al., 2002). BLEU is used to
evaluate machine translation quality by compar-
ing n-gram (n = 4) overlap between machine-
generated translations and human references.
Higher scores indicate better translation quality.
COMET. (Rei et al., 2020b) Cross-lingual Opus
METric measures translation quality through
source-to-translation word-level alignment. Higher
values indicate better quality. We use the default
model'* which supports Arabic. However, based
on our inspection, we find that Arabic data used to
train the model is mostly MSA. Hence, the model
may not be able to capture dialect-level nuances in
the source text while computing the scores.

ChrF and ChrF++ (Popovié, 2015). Character n-
gram F-score calculates the F-score of character
n-grams in the machine translation compared to
the reference translations, with higher scores denot-
ing better quality. ChrF++ is an extension of ChrF
where the word order is 2.

TER (Snover et al., 2006). Translation Error Rate
measures translation quality by counting edit oper-
ations between the machine and reference transla-
tions, providing a lower score for better quality.
We use huggingface’s implementation of these met-
rics in evaluate' package. We use all the de-
fault parameters unless otherwise specified above.
While BLEU, ChrF, and TER rely mostly on direct

“https://huggingface.co/Unbabel/wmt22-comet-da
Bhttps://github.com/huggingface/evaluate

comparisons of tokens or characters between the
MT output and reference, COMET uses a model-
based approach to capture more complex aspects
of the translation such as semantics.

4.2 Baselines

Google Translate. In 2016, Google replaced their
Statistical Machine Translation (SMT) system with
Google Neural Machine Translation (GNMT) Wu
et al. (2016b) featuring an LSTM with 8 encoder
layers and 8 decoder ones with attention and resid-
ual connections. GNMT was trained on Google’s
internal datasets and it supports 133 languages.
GNMT currently is powered by Transformers.
Microsoft Translator. Microsoft’s translation ser-
vice uses an NMT model that supports 111 differ-
ent languages.

Amazon Translation. Amazon Web Services
(AWS) offer batch translation with their NMT mod-
els that can translate to and from 75 languages.
NLLB-200. No Language Left Behind (NLLB
et al., 2022) is an open-source Transformer model
developed by META. It was trained on FLORES-
200 (NLLB et al., 2022), NLLB-MD (NLLB et al.,
2022), and NLLB-Seed (NLLB et al., 2022) for a
total of 18B sentence pairs. It supports 202 lan-
guages (and 40, 000 translation directions), 76 of
which are not supported by the aforementioned
Google and Microsoft translation systems NLLB
et al. (2022).

4.3 Human Analysis of Bard Helpfulness

wrong_lang M no_translation
23.7

degeneration M content_filtering

i 0.4
1.7 —

Draft 3

Draft 1 Draft 2

Figure 4: Percentage of Google Bard’s failure to fol-
low the prompt for each draft relative to all errors
across all drafts.
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.ws/book/7528/127
.ws/book/6513
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.ws/book/6163/3
.ws/book/8180/1
.ws/book/5678/91182
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.ws/book/13086
.ws/book/7776/1
.ws/book/5678/396
.ws/book/133417
.ws/book/21615/2
.ws/book/741/1

Table 9: List of 15 CA books from the first and second AH accompanied by direct links to each book.

Sure, here is the translation of the Moroccan Arabic dialect sentence "y
Sigaie (155 5y (b Ladly (oo (008 Ubly . adge 3L uis” tO Engllish:
“Lady, Younes is still missing. Do you know any place where he

might be hiding?"

The sentence expresses that the speaker is concerned about Younes, who
is still missing. They ask the woman if she knows of any place where
Younes might be hiding.

The sentence is translated as follows:

o "Uy" (lady) - lady

o "Luis" (Younes) - Younes
o "3l (still) - still

o "lase" (Missing) - missing
« "_uly" (do you) - do you

o "sd,2" (know) - know

O, ol el Tl Lol o] STl
U.S. Agency Develops Engine Without Moving Parts for Ships and
Submarines

A U.S. agency is developing an engine without moving parts for ships
and submarines. The engine, called the "Magnetic Resonance
Engine," uses magnetic fields to propel the vehicle. The engine is still
in the early stages of development, but it has the potential to
revolutionize naval transportation.

The Magnetic Resonance Engine is much more efficient than
traditional engines. It does not produce any emissions, and it is much
quieter. This makes it ideal for use in submarines and other vessels
that need to be stealthy.

The Magnetic Resonance Engine is also much more reliable than
traditional engines. It has no moving parts, so it is less likely to break
down. This makes it a more cost-effective option for naval forces.

(a) Google Bard’s translation, explanation and breakdown of

(b) Google Bard’s translation and context of an MSA

one dialectal sentence (from MOR).

Figure 5: Examples of Google Bard’s translation output. The bottom parts are cropped for readability.

sentence from the news domain.
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ChatGPT GPT-4 Bard NLLB NLLB

Metrics Var/M Amazon MST GT
0-shot 1-shot 3-shot 5-shot 0-shot 5-shot D1 D2 D2 Avg (SB) (Dia)

CA 39.99  40.18  40.00 40.14 4032 39.25 38.56 37.44 38.87 38.29 28.56 - 36.35 38.09 39.14

MSA 69.37  69.84 6991 70.15 69.04 69.56  63.15 60.71 61.94 6193 65.27 - 71.04 70.35  80.18

ALG 40.04 4127 4172 4175 4397 4291 31.93 26.31 30.53 29.59 25.31 - 33.15 37.54  33.96

EGY 46.46 4697 4766 4767 4780 4762 4296 39.62 43.83 42.14 33.03 36.68 40.43 43.00 4335
JOR 5036 5027 5050 4997 5030 4996  49.02 44.14 47.48 46.88 34.58 4143 4522 4748 52.40

%: MAU 3277 3201 3291 3297 3490 3438 18.49 11.68 13.36 14.51 21.74 - 29.86 30.60 28.74
MOR 4820 4925 4944 4990 53.02 53.60 47.40 4698  47.73 47.37 27.22 39.04 34.79 3550 39.36
PAL 5328 5220 5348 5348 5415 5342 41.54 39.69 4443 41.89 35.68  40.02 45.79 48.80 48.64
UAE 46.54  46.78  46.83 4799 4831 4937 3931 36.39 39.68 38.46 30.02 - 38.13 4142 40.06
YEM 40.70 4154 4160 4235 37.64 4130 24.28 19.93 20.31 21.51 31.52 34.8 36.99 39.29 3832
Avg 46.77  47.03 4741 4764 4794 48.14  39.66 36.29 38.82 38.26 33.29 38.39 41.18 4321 4442
CA 37.89  38.15 38.04 3822 3831 3732 37.03 35.74 37.30 36.69 27.34 - 34.65 36.22 3744
MSA 67.47 6799 6805 6829 6701 6757 60.84 58.32 59.65 59.60 63.42 - 68.99 68.54  79.00
ALG 3877  40.03 4041 4047 4293 41.61 31.18 25.69 29.83 28.90 24.16 - 31.30 3520 3242
EGY 4513 4569 4647  46.54 4630 4633  42.08 38.83 42.85 41.25 31.46 32.25 38.96 4141 41.96
b JOR 4942 4936 4958  49.03 48772 4887  48.15 4334 4660  46.03 33.32 40.3 43.94 45.69 5130
E MAU 3127 3035 3144 3133 3339 3276 18.03 11.63 13.08 14.25 20.27 - 28.05 2844  27.05
© MOR 47.71 48.69 4893 4942 5257 5314 4731 46.71 4754  47.19 26.32 38.65 34.00 3476 3857
PAL 5226 51.10 5248 5250 5312 5231 40.51 38.56  43.33 40.80 34.36 38.88 44.33 47.16 47.23
UAE 4582  45.88 4594  47.19 4644 4854 3881 35.90 39.02 3791 29.16 - 37.32 4021  39.11
YEM 3933 4025 4034 4113 3638 3993 2378 19.76 1994 21.16 30.07 33.69 36.09 37.88  36.99
Avg 45.51 4575 4617 4641 4652  46.84  38.77 3545 37.91 37.38 31.99 37.35 39.76 41.55 43.11
CA 86.20 8433 8347 8344 8572 83.55 87.54 101.63  87.03 92.07 89.63 - 81.83 83.86 84.20
MSA 4473 4356  43.19 4270  44.13 43777 55.07 67.96 6254  61.86 4479 - 40.18 39.52 2843
ALG 87.08 80.86 8025 7848 80.56 7891  94.13 11252 117.12 10792 126.85 - 90.62 86.90 89.43
EGY 75.09 7205 72.18 7150 7344 7161 75.22 81.33 77.04  77.86 88.69 86.29 80.56 79.17 7640
C‘ JOR 70.04  67.61 6582 67.10 7035 6846  68.07 73.85 69.41 70.44  108.25  80.83 72.71 71.47  65.82
EJ, MAU 102.64 9575 9524 9473 98.80 91.73 10670 105.17 24562 152.50 129.17 - 96.85 98.16 99.54

MOR 65.23 6252 6216 6138 5624 5725 6144 61.89 61.25 61.53 10023  73.39 82.60 80.71  71.75
PAL 60.11 59.85 57.12  57.03 5573 57.38 7329 75.46 66.10 71.62 86.76 78.23 67.38 6241 65.84
UAE 71.45 68.55  69.17 6620 7193 6591  79.58 76.24 73.60 76.47 85.07 - 76.77 73.87  75.90
YEM 8496  82.09  80.51 8145 8553 80.81 110.53 151.27 18299 14826 86.01 88.89 81.20 80.58 84.36
Avg 74.75 7172 7091 7040 7224 69.94 81.16 90.73 10427  92.05 94.55 81.53 77.07 75.67 7477

Table 10: Results in ChrF, ChrF++, and TER scores. Higher is better unless otherwise specified by |. Aver-

age represents the mean across all varieties. Three drafts (D1, D2, D3) from Bard are reported individually and
averaged. NLLB is our MSA-based supervised baseline; NLLB (Dia) is dialect-specific. Abbreviations: SB - su-
pervised baseline, Dia - dialect, Var - varieties, M - model, MST - Microsoft Translation, GT - Google Translate.
Best results are in bold.
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ChatGPT GPT-4 Bard NLLB NLLB

Met Var/M Amazon MST GT
0-shot 1-shot  3-shot 5-shot 0-shot 5-shot D1 D2 D2 Avg (SB) (Dia)
CA  11.19%1%% 12,0894 12.21#29 12.48*297 11,7681 11.41#18 12.30*292  10.92#2%2  12.35%214  12.30*2%2 7,131 - 1122820 11992210 14,2327
MSA  42.97%2% 44,0813 44,3289 44.84%316 42 94#311 43 54%276 3638358 3 99483 34 701 36382358 41 38*37 - 46.48533 47238348 6547521
ALG 14_54t2 57 1().43ﬁ 81 17_164:3 00 l7_33i2.7i 18.54&277 18.08i2'74 14_954:3 30 1 1_75&1.42 13.38H‘“S 14_95{4 30 6.8 liz 01 _ 9_89iz.zs 1 1_42t2 30 1 1_72i2 07

EGY 19.80%* 21.03*** 21.36*>% 21.67**7 20.99*>% 21437 20.17**"!  19.26*% 2081 21.17%' 10.627% 1246 14.78**%' 16.62*>% 17.89%
JOR 25513384 2650865 2743867 26,9089 24 5680 2525810 26.978351  2330*334  25,08*316 26,9751 12,9380 1831228 21,1382 21,39+302 29,55%406
MAU &531].73 893&1.87 9A17t1.89 8A96i2’00 9A1911.79 9.96&1'97 5:72&1.7] 4(1911.82 2A64i1’45 5.721I71 3371].65 7(06il.62 6(791].65 7‘45il95
MOR  27.144341 2812350 28 874318 29 814332 32 86*33% 33,4043 3123*2 3052883 31067 31.23*2 93027 194627 12.61*12 14255 16,96
PAL  29.43%326 293780 31 4624 31,4287 31,8180 3039501 21,9637 20213377 23.92%385 21,9687 14.03**%  17.08*2% 21.772% 24,08*27" 25.34*30
UAE 24148321 24508399 24 49*338 26 00352 23.924317 26,84*331 2149839 1930533 21,1584 21.4983%  10,9582% 16.652°" 18.952287 19.36+2%¢
YEM 14_79i21!8 1602i2 21 1694i2 41 17-46ﬁ2$6 ]398ﬂ 23 ]6.14i2'32 9_4912 85 7_221‘4 17 6_2954 12 9.4912 85 9_28il 72 12.46&.0] 14_29t198 14_19i2112 13]8t2 10
Avg  21.80%27% 2272277 23.34*283 23,6928 23.0552% 23.64*273 20.17°1%  17.9753 1916533 20,1758 12,5824 15954240 17,5923 18 69248 22,1229

BLEU

CA  39.96*% 40.18*67 40.04*7 40.09%"77 40.34*161 3928*15 38 64201  37,53#261 388819 37.98*% 28 6124 - 36.39%"%% 38.24*1%% 39.29%226
MSA  69.4441% 69 854195 69.94+191 70.20%1% 68.99%191 69.60%17 63.1983°  60.76**°!  62.13**14 1.0 65.30*>%° - 70.971° 70302 80.16*>*
ALG  40.10%2%0 41.20%242 41.75%242 41,79*235 44.11%2% 43.11*>% 32,02**" 26.55% 311652 28.09*%1° 25.46*2% - 33.15%215 37,5542 34,0323
EGY 46.34*2% 46.92%'8 47.60%'6 47.51%% 47.628*% 475587 42.91*333  39.53*11  4371%341 4092838 330527 36.69*%% 40.28*"% 42,9918 432627
JOR  50.20%%%" 50.11%%% 50.51%%% 50.04%76 5025829 4987425 49,09*3%7  44.06"%  47.50*310 4521820 34,64 41.40*2% 4516 47482 52,5131
MAU  32.74%1% 31.99%203 32 874201 30 974205 34 954210 34 47#221 18 50344 11,86*392 13,538366  1240%350 21722240 29.76%1%2 30.57%182 28.74*212
MOR  48.29*2! 49.16*2%° 49.46*2%0 4993263 53,02%265 53,6929 47.44*42  4704*%77 47.82* 11 47302 2726*2% 39.01*2% 347415 355022 39,3523
PAL  53.25%%0 52.23%217 53 584232 53 49%233 54,19%23 5348%22 414549  39.87*49 44,190 41313 357583 39944258 45.94*213 48.78*216 48,652
UAE  46.482% 46.85%267 46,8627 47.92%278 48 39*2% 49,38*272 304740  3628%42¢ 3972435 37438445 9 9g#233 38.10%2% 41.412°1 40.23827°
YEM 40_81t2!5 4167i2 25 4159i2 43 42-53ﬁ212 37_5411.(}0 4].16i2'52 2444i4 65 2()_17t466 20‘78i4.99 2037i4 88 31.48i2.06 34.83&.09 36_96t204 39_27t208 3832i2 15
Avg 467627 47.038% 47.42%32 47,6550 47,9478 48,1530 39708390 36374415 38,0489 37238395 3333270 38 37242 4 154214 43 213219 44 454250

ChrF

CA  37.85%166 38.16*68 38.08%!76 38.18+%0 38.33%164 37 37+162 37 10*203 3584260 37.31*198  36.33*20 2741232 - 34691 36.371% 37.60**%
MSA  67.5441% 68.0182% 68.0872% 68.35” 66.96**"! 67.61*"% 60.88*32 58.36**%7 59.84**%5 58.85%387 (345260 - 689123 68.49232 7897324
ALG  38.84*2% 40.06*2% 40.44*2%5 405323 43.08*>% 41.804 31.25*77 25.04*65  30.44*505  2744%498 04342259 - 3131212 35.20#222 32 48*23!
EGY 45.01%%% 45677 46.40%15 46.38*%* 46.12*2% 46257 42,0332 38.76*%%” 42.76*%° 40.098% 31.50**% 3526*>% 38.80*"%° 41.40*>!7 41.87>!
JOR  49.26*%%% 49.20%%% 49,5901 49,08*7 48.68%> 48.80%>% 48.21*33¢ 432857 46,6210 44.39810 333952 4027429 438778 45,6929 51.40*3F
MAU 31.26%% 30.3582% 31.40%2% 31.32%204 33.44%205 30 80*220 18,0483 11.80*3% 13.25%351 122884 2008*232 - 27.94%180 28 42*180 97 (72207
MOR  47.79*2% 48.61*2%7 48.96*>°! 49452264 52 57%266 53234273 4736*30 46.76*'° 47.64**% 47.05**1° 26.40*2% 38.62*2%° 33.95°12 34.76*2% 38563
PAL 522043 51.14%220 52 554236 52 49%237 53 17#237 52 38%230 40.41*483  38.75*70 430745 40.19¥0  34.43*321 38.80*7°0 4447212 4714217 47262
UAE 457627 4595269 4598270 47 122281 46 49*255 48,55*275 38.96*4% 3577*1° 39,07*% 36.87*% 29.13#2% - 3729222 40212 39.28*281
YEM  39.48!! 40.43%2% 40.36*>% 41.37*%" 36.31*2% 39.80*%% 23.96*'%°  20.00**' 20.40**%  20.13*7" 30,0420 3372220 36.04*2° 37.86*2* 36.98*>"
Avg  45.50%2% 4576230 46,1823 46.43*2% 46.52*7% 46.86*>7 38.8283%  35.53%0% 3804835 36378380 32,04*200 37,33 #240 39 73+213 41 56+ 43,157

ChrF++

CA 8632447 84.28*3 §339*432 g3 50%462 g5 72+ 83334427 87.71*3% 101.91*3*7 87.24*91  97,02*% 89.41*101* - 81.81%367 83.50*+10 83 87+
MSA  44.6481 4362816 43,1752 42,6387 44,3081 43.71%°1 55.05*872 67.26*1%%* 62.66*'% 65.73*13° 44.86*>2 - 40.43345 39,55%332 28,59%478
ALG  87.28*42 §0.95%%* 80,145 7833470 §(,53*>11 78,6041 94.21%1282 111.99*3% 1156253752 113.20*2°4 128.00*40% - 90.41%712 8693348 89 59*420
EGY 75.13*3% 71.94%374 7212343 7138877 73,60*4% 71.60**! 7537*%19 §1.23*10%3 77.70*1448 0.05*123% 88.40*2%7 86.04*!058 80,6347 79,1267 76,4558
JOR  70.36®% 67.77%% 66.04*70 67.04*% 7033444 68.46*3 68.13*001  73.84*4 694756 723824 108.32*311 80.80* 72977 71.53**7" 65.56*5"
MAU 102.5657 9572450 95 5054 94,987 99,0845 91,6143 107.13*!1%7 104.58*%7 246,245 151.80*24¢ 130,19*35 - 96.82%416 98,3049 99,6530
MOR  65.20**" 62.67*37 62.00°°! 61.475%2 56.30**7 57.06**" 61.46**%% 61.78**%!  61.13**5°  61.56**" 100.36**** 73.51**13 82.814*77 80.81:4? 77,684
PAL  59.96®% 59.88%3! 57,09%346 57,12#340 55713 573#355 72 77#1110 75 25¢1172 66 454484 72 303695 86, 112194 78,4748 6731517 6250534 65.88*4%°
UAE  71.55%%21 68.55%*31 69.23%4% 66,1942 71,650 65.94*31 78.90*% 76.6257% 73.59*4%° 7561%05 85,0876 - 76.8853 73835422 75,62%437
YEM  83.06*** 80.08%3%¢ 79,0492 79,4742 85 50**17 80.89**2* 110.69%%%7 153,212 182.04*%% 162.827%% 86.00**%2 88.80*>2 §1.22%34% g0 474388 g4, 17404
Avg  T4.61% 71,5559 70775411 70.212418 72274424 69.85*415 §1.14*1160 90, 772086 104,21#2680 95252173 94,672083 81,5249 77,13+392 75 65421 74714446

TER

Table 11: Bootstraped results for BLEU, ChrF, ChrF++, and TER with standard deviation in superscript. Higher
is better unless otherwise specified by |. Average represents the mean across all varieties. Three drafts (D1, D2,
D3) from Bard are reported individually and averaged. NLLB is our MSA-based supervised baseline; NLLB
(Dia) is dialect-specific. Abbreviations: SB - supervised baseline, Dia - dialect, Var - varieties, M - model, MST -
Microsoft Translation, GT - Google Translate. Best results are in bold.
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Bard

Met Mo/Var CGPT GPT-4 DI Avg NLLB Amazon MST GT
CheF CA 50.59 50.35 46.99 47.54 37.76 40.08 42.73 48.58
CA*  50.01 50.49 47.49 47.35 32.13 39.53 42.73 46.95
ChrE++ CA 49.23 48.99 46.11 46.74 37.09 39.33 41.95 47.68
CA* 4897 49.25 47.02 46.81 31.71 38.78 41.9545.93
TER | CA 69.98 67.17 69.14 69.61 77.95 73.45 66.23 62.76
CA*  68.48 66.04 64.82 65.63 75.42 68.95 66.23 64.92

Table 12: The effect of diacritics on translation qual-
ity. CA* is without diacritics. Higher is better unless
otherwise specified by |. The best results are in bold.

Met Mo/Var  CGPT

GPT-4

NLLB

Amazon

MST GT

CA
CA*

2347 *254 23.87*2!11 22,98 ¥200 22,99 #1592 *191 17,41 *228 20,10 *2* 26.48 =7
23.49 %24 24,50 *>* 2533 * 150 24,221 1351 *2% 18.67 *% 20.02 *>* 24.48 *2%

CA
CA*

ChrF | BLEU

50.60 "7 50.43 *'% 46.99 =1 47,68 177 3774 *'* 40.11 ' 42.76 *'° 48.61 *>'°
50.07 '%7 50.58 =1 47.50 =% 47.04 =17 32,08 *'** 39.61 =¥ 42.65*'7"" 46.88 *'**

CA
CA*

49.24%1%49.06* ' 46.11 *'7' 46.89 17 37.06 %' 39.36 * ' 41.99 *170 47.71 ** 13
49.03 * 197 49.34* 172 47.04* 1.81 46.42* 175 31.65* 1.96 38.85* 1.90 41.88* L7 4585* 1.99

CA
CA*

TER |ChrF++

Py

70.00 2% 67.08 2% 69.10 =27 70.39 *3* 77.96 =2 73.40 *** 66.19 *>° 62.74 =2
68.48 7% 65.97 277 64.93 29 66.20 *2% 75.42 2% 68.89 *2% 66.19 “2 65.04 £277

Table

13: Bootstrapped scores in BLEU, ChrF,
ChrF++, and TER. CA* is without diacritics. Higher
is better unless otherwise specified by .
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MSA English MSA English
’ 3 He wrote ;‘Af.’( Books
&5 He divided (w Oath
*Is Flag "(}{- Science
L;M Sincerity &l& He believed
A3 He was born U5 Boy
; '3 Corn ;j.v Atom
L j:\.a School L;j.,\.i Teacher
é’ U~ Bathroom g Vs Pigeons
3> Mourning 3145 Blacksmith
J"_’w Hair =& Poetry
i{ % Vehicle ::.Nf j Composite
j.ai.i Drunkenness j.z{.i Sugar
‘;.fﬁf It resulted V‘:‘: Star
:Lof 3 Man :L& J Foot
#%3  Humans 55 He preached
:;L,LZ King :;LL: Possession
f\é Grandfather f\p Seriousness
v Camel JLP) Sentences
§§<s Referee ‘:ﬂ.; Ruling
é\f‘ Fish ;,Lc‘: Thickness

Table 14: Heterophonic homographs used to test
model sensitivity to diacritics.



Variety WL NT D CF Total

CA 9 10 3 0 22
MSA 127 1 0 29
ALG 81 72 5 6 164
EGY 11 36 2 17 66
JOR 14 22 2 2 40
MAU 160 136 6 1 303
MOR 42 13 3 2 60
PAL 57 13 0 8 78
UAE 33 49 2 10 9%
YEM 178 44 10 0 232

Total 586 422 34 46 1088

Table 15: Counts of the helpfulness errors that Google
Bard suffers from by Arabic variety and error cate-

gory.



Var  Source Reference

Translation

CA  OsfRae Wl Q“ (é»-i Qi sk =5 A wise man knows that people are the
2o dls c3le U Ol 3 oee same in love and hate.
asdly (3l Ul 3 09 gt

It is incumbent upon the wise person to know that people
are equal in their love for what they agree upon, and in their
hatred. - ChatGPT

So it is upon the wise person to know that people are united
and equal in their love for what is agreeable and in their hatred.
- GPT-4

So the wise man should know that people are united and equal
in love for what agrees with them, and in hatred for what
disagrees with them. - Bard

A reasonable person would know that people share a common
level of love for what is right and hate for what is wrong. -
NLLB

So the sane person should know that people are equal in love
for what agrees and hate - GT

MSA &l J» o Sdly Laadl v s Tunisia is between shock and looking
for a solution to the Sfax migrant

gilae u} u‘fL““ crisis.

Tunisia is between shock and searching for a solution to the
plight of immigrants in Sfax. - ChatGPT

Tunisia is between shock and the search for a solution to the
migrant crisis in Sfax. GPT-4

Tunisia between shock and the search for a solution to the
migrant crisis in Sfax - Bard

Tunisia is between shock and finding a solution to the migrant
crisis in Safiq . NLLB

Tunisia is between shock and the search for a solution to the
plight of migrants in Sfax - GT

ALG d‘“‘) o 8ad o5 F 3B L de Y 5 Y Neither you nor anyone else can scare
me..

You and no one else can move a single hair on my head. -
ChatGPT

Neither you nor anyone else can move a single hair on my
head. - GPT-4

Neither you nor anyone else can move a hair on my head -
Bard

Neither you nor Neta can move a hair of my head . - NLLB

Neither you nor anyone else can move a hair from my head -
GT

MOR a=ly oles 8" ol Lla rLiJﬂ A=ly ons He has a tattoo here. He’s accompa-
i nied by a dog from time to time at

JP B 5 L

He has a tattoo on his arm. He always comes with a dog some-
times at night. - ChatGPT

He has a tattoo here. Sometimes he comes with a dog at night.
- GPT-4

He has a tattoo here. He comes with a dog sometimes at night.
- Bard

He has one tattoo here. He’s got a dog once a night. - NLLB
He has one tattoo Hanaya. He saw Keiji with one of the dogs
once at night - GT

MAU o) sile s yi e 58 nxy sal Do Hebila talked to him, but he persisted
: ...  inworking.

They told him to change, but he is still stubborn and refuses to
work. - ChatGPT

God willing, talk to him to change; he is still insistent on
working for him. - GPT-4

He has changed a lot but he is still determined to work hard -
Bard

No matter how much he changes , he ’s still not a public de-
signer . - NLLB

He doesn’t want to talk to him about changing, he is still not a
public designer, so he can work - GT

UAE Ul Qi C.E el e ol ﬁgi L;ui Gl I want to understand why you are not
" - . convinced that you and I are the same
g v\>‘j u-f‘j person.

I want to understand why you’re not convinced that you and I
are one? - ChatGPT

T want to understand why you’re not convinced that you and I
are one. - GPT-4

I want to understand why you are not willing to be convinced
that we are one - Bard

1 want to understand why you ’re so happy to convince me that
you and I are one ? - NLLB

I want to understand why you are not satisfied with being
convinced that you and I are one? - GT

Table 16: Translations generated by the LL.Ms, the supervised baseline and the best performing commercial
system (Google Translate). Translations from ChatGPT, GPT-4 and Bard were obtained under the zero-shot

setting.
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Leveraging Domain Adaptation and Data Augmentation to Improve
Qur’anic IR in English and Arabic

Vera Pavlova
rttl.ai
Dubai, UAE
verttl.ai

Abstract

In this work, we approach the problem of
Qur’anic information retrieval (IR) in Arabic
and English. Using the latest state-of-the-art
methods in neural IR, we research what helps
to tackle this task more efficiently. Training
retrieval models requires a lot of data, which
is difficult to obtain for training in-domain.
Therefore, we commence with training on a
large amount of general domain data and then
continue training on in-domain data. To han-
dle the lack of in-domain data, we employed
a data augmentation technique, which con-
siderably improved results in MRR@ 10 and
NDCG @5 metrics, setting the state-of-the-art
in Qur’anic IR for both English and Arabic.
The absence of an Islamic corpus and domain-
specific model for IR task in English motivated
us to address this lack of resources and take
preliminary steps of the Islamic corpus com-
pilation and domain-specific language model
(LM) pre-training, which helped to improve the
performance of the retrieval models that use the
domain-specific LM as the shared backbone.
We examined several language models (LMs)
in Arabic to select one that efficiently deals
with the Qur’anic IR task. Besides transferring
successful experiments from English to Arabic,
we conducted additional experiments with re-
trieval task in Arabic to amortize the scarcity
of general domain datasets used to train the
retrieval models. Handling Qur’anic IR task
combining English and Arabic allowed us to
enhance the comparison and share valuable in-
sights across models and languages.

1 Introduction

Recent advances in Natural Language Processing
(NLP) have helped to improve search relevance and
retrieval quality. Nevertheless, deep-learning tech-
niques, specifically transformer-based approaches
(Vaswani et al., 2017), are hardly employed in
Quran’ic NLP (Bashir et al., 2023). In this work,
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Figure 1: Data augmentation technique that leverages
correlation of Qur’anic verses for training retrieval mod-
els in-domain.

we will utilize the latest state-of-the-art neural re-
trieval models to compare what works best for solv-
ing the IR task in the Islamic domain. Moreover,
we proposed a data-augmentation technique to gen-
erate data for in-domain training appropriate for
the IR task involving the Holy Qur’an (see Figure
D).

We experimented with Arabic and English lan-
guages. Arabic, more precisely one of its variants,
Classical Arabic (CA), is the language of the Holy
Qur’an and is an integral component in tackling
retrieval task using sacred scripture (Bashir et al.,
2023). English is another popular language used
for search in various domains, including the Islamic
domain. Addressing the problem using Arabic and
English allows for comparing the solutions and
sharing insights across languages. English is a high-
resource language with a great choice of corpora
and pre-trained LMs for diverse domains. At the
same time, depending on the domain, Arabic can
be considered a low- or medium-resource language
(Xue et al., 2021; Abboud et al., 2022). However,
Arabic is in more favorable conditions than English
in the Islamic domain; in the case of the Arabic lan-
guage, there are Islamic corpora like OpenITI (Ro-
manov and Seydi, 2019) and domain-specific LMs
(Malhas and Elsayed, 2022; Inoue et al., 2021).

Proceedings of the The First Arabic Natural Language Processing Conference (ArabicNLP 2023), pages 76—-88
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From this perspective, addressing Qur’anic IR in
English is more challenging as it requires a num-
ber of additional preparations, like preparing an
Islamic corpus and pre-training domain-specific
LM. This state of affairs with the English language
in the Islamic domain necessitates addressing it
alongside the Arabic language. Simultaneously,
another advantage of handling the problem in En-
glish is the abundance of datasets to train for a
general domain. Training on general domain data
can be a required step to prepare a retrieval model
that needs a substantial amount of data for training,
where in-domain data is scarce. Experimenting
with Qur’anic IR in English will allow us to learn
what works best and apply these approaches to
Arabic, where general domain data is insufficient.

Our main contributions are:

* We introduce an Islamic corpus and a new
language model for the Islamic domain in En-
glish.

* We conduct comprehensive experiments with
different retrieval models to see what works
best for efficient retrieval from the Holy
Qur’an in Arabic and English.

* We propose a data-augmentation technique
that helped to improve the retrieval models’
performance for both languages and set a new
state-of-the-art in Qur’anic IR.

The rest of the work is organized as follows: we
start with addressing the problem of Qur’anic IR
in English. We prepare the Islamic corpus and
domain-specific LM (Section 2). Section 3 applies
to both languages, English and Arabic, including
metrics choice, datasets for training and testing,
experimental details, and training procedure of the
retrieval models. Section 4 is dedicated to Qur’anic
IR in Arabic. Apart from applying successful ex-
periments that worked well with Qur’anic IR in
English, we executed more methods of preparing
retrieval models for Arabic language, including
teacher-student distillation and employing machine
translation. Model comparison and Final analysis
is performed in Section 5. The prior work done in
the field is highlighted in Section 6.
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Tafseer

Figure 2: Types of Islamic text that constitute Islamic
Corpus.

2 Domain-Specific Language Model as a
Backbone of In-Domain IR

2.1 Islamic Corpus in English

Preparing an Islamic Corpus in English is challeng-
ing due to the insufficient amount of Islamic Text
that is either translated from Arabic or other lan-
guages to English or initially written in English.
We collect text available online of the following
types (see Figure 2):

Islamic literature. These are Islamic books
written by Islamic scholars about Tafseer (Qur’an
exegesis), Hadith, Seerah, Figh (Islamic jurispru-
dence), and Ageedah (Islamic creed) (approx. 28M
words).

Islamic journals. Journals that are available
online and focus on discussing modern issues of
Islamic banking, Finance, Economy, and Islamic
Education (approx. 5.5 M words).

Fatwa counseling. Fatwas that are available
online from Fatwa centers (approx. 4.8M words)

Wikipedia. Articles related to Islam from the
Wikipedia Islam portal (approx. 5.6M words).

Common Crawl. We search for keywords and
collect files from Common Crawl on Islamic topics.
We perform additional filtering and preprocessing
of these articles (approx. 2.5 M words).

The total amount of words in the corpus is
around 47M words.

2.2 Adaptation of General Domain Language
Model for Islamic Domain

Pre-training starting from the existing checkpoint
of the model pre-trained for the general domain
helps reduce pre-training time (Gururangan et al.,
2020; Bommasani et al., 2022; Guo and Yu, 2022).
To account for the small size of the pre-training
corpus and perform domain adaptation effectively,
we continue pre-training the BERT model on the



Islamic corpus. To address the issue of the ab-
sence of domain-specific vocabulary during con-
tinued pre-training, we trained the WordPiece to-
kenizer (Song et al., 2021) on the Islamic corpus.
We find the intersection between Islamic vocabu-
lary and bert-base-uncased !, and for the tokens
inside this intersection, we assign the weights from
bert-base-uncased. For the tokens outside of the
intersection (Islamic tokens), we perform contex-
tualized weight distillation following (Pavlova and
Makhlouf, 2023) 2.

* In the first step, we find tokens of interest and
extract corresponding sentences from the Is-
lamic Corpus. We sample from one to twenty
sentences (Bommasani et al., 2020).

In the second step, we tokenize these sen-
tences using a bert-base-uncased tokenizer.
In that case, Islamic tokens are broken into
subtokens because they are absent from bert-
base-uncased vocabulary. We average the
contextualized weights of the corresponding
subtokens that the BERT model produces
(tagistilleq) and then compute aggregated repre-
sentation across sentences (fqggregated) for a
corresponding token of interest from Islamic
vocabulary:

tdistitled = f(t1, .., k)

f € {mean} W

Where k is the number of the subtokens that
make up the token of interest.

tagg'regated = g(tdistilled7 X3) tm)

g € {mean} @

And m is the number of sentences involved in
aggregated representation.

In order to avoid overinflating the vocabulary
with new tokens, which would require longer pre-
training and be prohibitive in the case of a small cor-
pus, we analyze the frequency of each token in our
corpus. Tokens with a count below threshold are fil-
tered out, resulting in 3992 new domain-specific to-
kens. Moreover, we remove [unused] tokens from
the bert-base-uncased vocabulary and add Islamic
tokens, resulting in 33511 total tokens in the BPIT
model’s final vocabulary (BPIT is the abbreviation
for BERT Pre-trained on Islamic Text).

1https://huggingface.co/bert—base—uncased
2https://github.com/rttl—ai/BIOptimus
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2.3 Pre-training Set-up

In order to accommodate the limited size of the pre-
training corpus, we schedule two-stage pre-training
akin to phases of Curriculum learning (Bengio
et al., 2009; Soviany et al., 2022). In the first stage,
we start with an easier task of predicting masked
tokens/subtokens, with a masking rate of 0.15 and
using the "80-10-10" corruption rule (Devlin et al.,
2019; Wettig et al., 2023). In the second stage,
we increase the complexity of the prediction task
by switching to predicting the whole words with
the same masking rate and using the corruption
rule. It is harder for a language model to predict
whole words than to predict tokens or subtokens
that might make up the word and give the LM more
clues and make the prediction task less challeng-
ing (Cui et al., 2021; Dai et al., 2022; Gu et al.,
2021). This pre-training approach introduces the
LM to a broader scope of language experience and
helps to gain more diversified knowledge of tex-
tual input (Mitchell, 1997), which is crucial in the
case of a small corpus that we use. Pre-training
hyperparameters can be found in Appendix A.

3 Preparing Neural IR Model to Retrieve
from the Holy Qur’an

3.1 Dataset for Testing Retrieval Models

To test our models, we converted the QRCD
(Qur’anic Reading Comprehension Dataset) (Mal-
has and Elsayed, 2022) to the IR dataset. We use
both train and development split as test data. We
do not include no-answer questions (Malhas and
Elsayed, 2020), which results in 169 queries in to-
tal for testing. Queries are accompanied by the
corresponding verses from the Holy Qur’an. Each
Qur’anic verse is treated as the basic retrieval unit
because it presents a more challenging task (see
Section 5) and has higher utilization factors. The
original dataset is in Arabic and was constructed
and annotated by experts in Islamic studies. For our
purposes of testing IR systems, we translate queries
to English and verify the validity and accuracy of
the translation with Islamic scholars. We use the Sa-
heeh International® translation of the Holy Qur’an
to express specific Qur’anic terms used in query
formulation. To retrieve answers, we use the same
Sahih International translation as a retrieval collec-
tion.

3https://tanzil.net/trans/


https://huggingface.co/bert-base-uncased
https://github.com/rttl-ai/BIOptimus
https://tanzil.net/trans/

3.2 Maetrics

Due to the complexity of the language of the Holy
Qur’an and the fact that some meanings can be ex-
pressed indirectly, the retrieval task using the Holy
Qur’an is quite difficult. Therefore, using several
metrics to estimate the retrieval model’s effective-
ness from a different perspective makes sense. We
use the MRR @10 (Mean Reciprocal Rate), the of-
ficial evaluation metric of the MS MARCO dataset
(Bajaj et al., 2018) that we extensively use to fine-
tune our retrieval models. Furthermore, we add
NDCG@5 (Normalized Discounted Cumulative
Gain) and Recall @100, used in the BEIR bench-
mark (Thakur et al., 2021b). This combination of
metrics lets us estimate our models with a deci-
sion support metric such as Recall, binary rank-
aware metrics such as MRR, and metric with a
graded relevance judgment such as NDCG (Wang
et al., 2013). For evaluation, we use the BEIR
framework® that utilizes the Python interface of the
TREC evaluation tool (Gysel and de Rijke, 2018).

3.3 Baselines

BM25 is a commonly used baseline to compare
retrieval systems. It is a sparse lexical retrieval
method based on token-matching and uses TF-IDF
weights. Though the lexical approaches suffer from
the lexical gap (Berger et al., 2000) due to the con-
straints of retrieving the documents containing ex-
act keywords presented in a query, BM25 remains a
strong baseline (Kamalloo et al., 2023). We also in-
clude a dense neural retrieval model, trained using
a sentence-transformers framework (Reimers and
Gurevych, 2019) referred to as SBERT- GD (gen-
eral domain), a late-interaction model ColBERT
(Khattab and Zaharia, 2020) (ColBERT-GD), and
Cross-Encoder-GD. All models were trained on the
MS MARCO dataset from the bert-base-uncased
checkpoint. This approach allows us to evaluate
their performance in a zero-shot setting for the
Islamic domain and compare them with the re-
trieval models trained using the domain-specific
BPIT model. More details on how SBERT-GD,
ColBERT-GD, and Cross-encoder-GD were trained
are presented in Section 3.4; hyperparameters de-
tails are listed in Appendix A.

*https://github.com/beir-cellar/beir/tree/
main
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3.4 Training a Domain-specific Model on
General Domain Data

To prepare the domain-specific model for the IR
task, we prepare and compare three approaches.

SBERT-BPIT. We use the sentence-
transformers framework, which employs a
Siamese network (Bromley et al., 1993) that

enables semantic similarity search. We train our
BPIT model using the architecture above on the
MS MARCO dataset that contains 533k training
examples (more details on MS MARCO dataset
are in Section 4.4), utilizing Multiple Negative
Ranking Loss (MNRL) (Henderson et al., 2017;
Ma et al., 2021; van den Oord et al., 2019). MNRL
is a cross-entropy loss that treats relevant pairs
{2,y M (where M is batch size) as positive
labels and other in-batch examples as negative, and
formally defined as:

JMNRL(9) =
D), foy™))

— 3 log
Z z®), fo(y)))

where o is a similarity function, in our case it
is a cosine similarity function; fy is the sentence
encoder. We use multiple hard negatives; these are
negative passages similar to the positive passage
but not relevant to the query and mined using cross-
encoder scores .

Cross-encoder-BPIT. In the case of a cross-
encoder, a pair of sentences are simultaneously
fed into a transformer-like model, and attention is
applied across all tokens to produce a similarity
score (Humeau et al., 2020). This approach does
not allow end-to-end information retrieval and en-
dure extreme computational overhead. However, in
many IR tasks, it performs superior to other meth-
ods and can be used for mining hard negatives,
data augmentation (Section 3.5), and reranking.
The model is trained with triples provided by MS
MARCO starting from the BPIT checkpoint under
a classification task, using Cross Entropy Loss.

CoIlBERT-BPIT. ColBERT computes embed-
dings independently for queries and documents
and, at the same time, can also register more fine-
grained interactions between tokens. Using the
same mined hard negatives constructed for the MS
MARCO dataset used to pre-train SBERT-BPIT,
ColBERT-BPIT is trained starting from the BPIT

eXPU (fo(at
S expo(fo(x

Shttps://huggingface.co/datasets/
sentence-transformers/msmarco-hard-negatives


 https://github.com/beir-cellar/beir/tree/main
 https://github.com/beir-cellar/beir/tree/main
https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives
https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives

checkpoint by optimizing the cross-entropy loss ap-
plied to the score of the query and the positive pas-
sage against in-batch negatives (Santhanam et al.,
2022).

All models with the prefix BPIT are counter-
parts of GD models; for a fair comparison, they are
trained using the same dataset, objective function,
and hyperparameters (see Appendix A) with the
only difference that BPIT models initialized from
the BPIT checkpoint and GD models initialized
with the bert-base-uncased checkpoint.

3.5 In-domain Training of the
Domain-specific Model

The performance of dense retrieval systems wors-
ens when encountering a domain shift (Thakur
et al., 2021b); therefore, there is a great benefit
in training neural IR models on in-domain data.
The lack of domain-specific data is often solved by
augmenting training data: generating synthetic data
(dos Santos Tanaka and Aranha, 2019), paraphras-
ing using synonyms (Wei and Zou, 2019), sampling
and recombining new training pairs (Thakur et al.,
2021a), round-trip translation (Yu et al., 2018; Xie
et al., 2020) or involving denoising autoencoders
(Wang et al., 2021). These techniques involve data
distortion, which is suboptimal when dealing with
religious and heritage datasets. We propose a data
generation technique for in-domain training advan-
tageous for the retrieval task involving the text of
the Holy Qur’an (see Figure 1). Understanding
the text of the Holy Qur’an is closely related to the
meaning explained in the books of Tafseer written
by Islamic Scholars. Tafseer Ibn Kathir, one of
the established books of Qur’an exegesis, contains
ample verse relations references. Putting this into
use allows not only to perform data augmentation
but also to intertwine more meaning to Qur’anic
verses that need to be more explicit for a LM to
learn directly from the text of the verse.

Pairing. Let C; denote a collection of books of
Tafseer by Ibn Kathir. We start with extracting and
paring all verse relations mentioned in Tafseer Ibn
Kathir. That gives us V; that contains distinct pairs
{vg,vp} € Vi and |V;| ~ 11Kk pairs.

Filtering. Not all the pairs can be used for train-
ing the retrieval model because not all the verse
relation pairs will be interpreted by the model as a
signal of positive correlation due to meanings that
are expressed indirectly. We use the cross-encoder
model M. that was trained on a general domain
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to score ayah pairs s.e = Mc(vg, vp). We filter
out the pairs that were scored below the threshold,
leaving us with V that contains pairs with strong
positive correlations (¢, p*) € Vy and |Vy| = 2352
pairs.

Sampaling hard negatives. To prepare neg-
ative passages, we use the text of the Tafseer
Ibn Kathir without verses’ quotations. The text
is split into M passages to form a collection
C~ = {py,p;3,....,D;y} to sample negative pas-
sages. Sampling from the Holy Qur’an text is a
less favorable approach. Due to the relatively small
size of the Qur’anic corpus, mined negative pas-
sages may turn out to be false negatives (Qu et al.,
2021). At the same time, sampling from another
corpus would create easy negatives that are not
beneficial for training (Ren et al., 2021; Karpukhin
et al., 2020; Xiong et al., 2021), while the text of
the Tafseer Ibn Kathir contains passages that are
similar to the positive passages but not precisely
relevant to ¢ and are good candidates to play a role
of hard negatives. To choose hard negatives, we use
a retrieval model trained with a Seamise network
Mp and retrieve negative passages (p; , ..., p; ) re-
lated to Vg € Vy. We score each pair (¢, p~) with
the cross-encoder s.. = M¢(q,p~ ), and use these
scores in the next stage of training.

Continue training in-domain. We combine the
collection of verses from the Holy Quran C'* and
the collection of passages from Tafseer Ibn Kathir
C~ into one collection Cy,,4 for training, which to-
gether with selected positive pairs and mined hard
negatives forms new augmented dataset Dy for
in-domain training. We continue training SBERT-
BPIT and ColBERT-BPIT on new in-domain data
following the same procedure described for each
model in Section 3.4. The models that come out
as a result of this stage of training are SBERT-ID
(Islamic Domain) and ColBERT-ID.

3.6 Results and Discussion

The performance of all models on the test dataset
is collected in Table 1. All the models steadily
outperform the BM25 baseline on every metric.
In the category of the GD and BPIT models, the
best-performing model is ColBERT for all met-
rics. In contrast, in the category of ID models,
SBERT shows the best results at MRR @10, with
a considerable improvement in performance after
in-domain training on the augmented dataset (in-
creasing from 0.48 to 0.55).



Recall@100 MRR @10 NDCG@5

BM25 0.15 0.27 0.15
SBERT-GD 0.2 0.43 0.23
CoIBERT-GD 0.25 0.43 0.26
Cross-encoder-GD 0.19 0.37 0.22
SBERT-BPIT 0.28 0.48 0.28
ColBERT-BPIT 0.32 0.51 0.32
Cross-encoder-BPIT 0.17 0.3 0.16
SBERT-ID 0.32 0.55 0.33
CoIlBERT-ID 0.33 0.53 0.33

Table 1: Performance of retrieval models on the test
data (English).

Recall@100 MRR @10 NDCG@5

SBERT-ID (Saheeh Int.) 0.32 0.55 0.33
SBERT-ID (Yusuf Ali) 0.31 0.49 0.3
SBERT-ID (al-Hilali) 0.33 0.5 0.31
SBERT-ID (Pickthall) 0.29 0.48 0.29
ColBERT-ID (Saheeh Int.) 0.33 0.53 0.33
ColBERT-ID (Yusuf Ali) 0.28 0.46 0.27
ColBERT-ID (al-Hilali) 0.25 0.5 0.3
CoIBERT-ID (Pickthall) 0.27 0.47 0.28

Table 2: Comparison of the performance of the retrieval
models on the test data for different translations of the
Holy Qur’an into English.

Overall, all ID models demonstrate superior per-
formance, proving that training in-domain using
our data augmentation technique was beneficial.
Moreover, another important observation is con-
sistent progress for SBERT and ColBERT mod-
els when training using the domain-specific model
(BPIT) coupled with training on in-domain data.
We suppose that leveraging domain adaptation of a
LM that serves as a backbone for retrieval models
and subsequent training of retrieval models on large
general domain data before training on in-domain
data is an effective approach.

In Table 2, we included a comparison and anal-
ysis of the performance of the retrieval models for
different translations of the Holy Qur’an into En-
glish. We can see no significant degradation of
the models’ performance. The formulation of the
queries contains terms from Saheeh International
translation (Section 3.1), which proves that the
models can maintain search relevancy with differ-
ent semantics. With these results and insights, we
switch to exploring how to tackle IR tasks for the
Holy Quran in the Arabic Language.

4 Preparing a Retrieval Model to Extract
Relevant Verses from the Holy Qur’an
in Arabic

This section discusses how to address the same
problem of designing an efficient neural IR model
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for extracting relevant verses from the Holy Qur’an
in Arabic. Though the goal is essentially the same,
the resources to achieve it are quite different in the
case of the Arabic Language. The dataset for test-
ing is the same as the one described in Section 3.1.
We use the queries as they were initially formulated
in Arabic by the authors of QRCD (Malhas and El-
sayed, 2022). For the choice of the metrics, refer
to Section 3.2.

4.1 Choice of Arabic LM to Tackle IR Task in
the Islamic Domain

Due to a lack of manually crafted linguistic re-
sources, Arabic is considered a low- or medium-
resource language, depending on the domain of
application (Xue et al., 2021; Abboud et al., 2022).
Recent advances in Arabic NLP have brought a
number of LMs pre-trained on Arabic corpora and
new datasets translated into Arabic or initially cu-
rated in Arabic. Arabic is the language of the
Holy Qur’an and the source language of numer-
ous Islamic scholarly works. Moreover, the multi-
institutional initiative has offered the Arabic NLP
community an Open Islamicate Texts Initiative
OpenlTI (Romanov and Seydi, 2019), an excel-
lent source for pre-training a LM for the Islamic
domain. These advantageous conditions for the Is-
lamic domain in Arabic let us skip the preliminary
stage of corpus preparation and LM pre-training.

However, there is a benefit in comparing how var-
ious Arabic LMs can fit as the backbone of the IR
system for the Islamic domain. Table 3 compares
Arabic LMs’ efficiency in tackling IR task in the
Islamic domain out-of-the-box. We use a sentence-
transformers framework to compare LMs to avoid
a costly training stage. We add an averaging pool-
ing layer on top of BERT embeddings and convert
it into a fixed-sized sentence embedding (Reimers
and Gurevych, 2019). The same model is utilized
to create sentence embeddings for both queries and
Qur’anic verses, and then answers to the query are
found using the cosine similarity measure. The
models are not ready to efficiently handle IR tasks
without additional training, yet this approach let us
to compare LMs’ embeddings out-of-the-box. We
include in the comparison the bert-base-uncased
model and the BPIT model (evaluation is run on
the English translation of QRCD).

As we can see from the table, most of the mod-
els perform poorly. We can also observe that pre-
training on large amounts of data does not neces-



Number of tokens/ MRR@10 NDCG@5

Domain
bert-base-arabic-
camelbert-mix 17.3B/GD 0.01 0.01
(Inoue et al., 2021)
bert-base-arabic-
camelbert-ca 847M/ID 0.01 0.01
(Inoue et al., 2021)
bert-base-arabertv02
(Antoun et al., 2020) 8.6B/GD 0.01 0.01
bert-base-arabic
(Safaya et al., 2020) 8.2B/GD 0.06 0.02
bert-base-uncased 3.3B/GD 0.07 0.03

(Devlin et al., 2019)
CL-AraBERT
(Malhas and Elsayed, 2022)
BPIT

2.7B+1.05B/GD+ID 0.11

0.11

0.06

3.3B+50M/GD+ID 0.06

Table 3: Performance of LMs on the test dataset. GD
stands for General domain and ID for Islamic domain.

sarily lead to better performance in IR task. CL-
AraBERT performs significantly better than other
Arabic LMs, and its performance is similar to the
BPIT model. It is plausible that, as in the case of
CL-AraBERT (Malhas and Elsayed, 2022) and the
BPIT model, pre-training in a continued approach
on a domain-specific corpus with specialized vocab-
ulary starting from the general domain checkpoint
helps to tackle IR task in the Islamic domain more
efficiently. Another noteworthy observation is that
the BPIT model exhibits this performance while
pre-trained for a short period and with a small cor-
pus of less than 50M tokens. We assume that con-
textualized weight distillation might help boost the
efficiency during the pre-training stage. The sec-
ond best performing models are bert-base-uncased
and bert-base-arabic. Based on the result of Table
3, we choose CL-AraBERT as a backbone model
to conduct subsequent experiments with IR task in
Islamic Domain in Arabic.

4.2 Knowledge Distillation Approach to
Improve Performance of Arabic LM in IR
Task

The lack of manually crafted linguistic resources in
low-resource languages can be tackled by knowl-
edge distillation. Reimers and Gurevych (2020)
showed that it is possible to improve the perfor-
mance of sentence embedding models by mimick-
ing the performance of a stronger model. They
used parallel corpora to teach the student model to
produce sentence embeddings close to the embed-
dings of the teacher model. Their experiment uses
the English SBERT model to initialize the teacher
model, and multilingual XLM-RoBERTa (Conneau
et al., 2020) is used as a student model. Our ex-
periment uses the SBERT-BPIT (Section 3.4) as
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Recall@100 MRR @10 NDCG@5

Bilingual-distilled 0.12 0.26 0.15
SBERT-AR-NLI 0.21 0.38 0.21
SBERT-AR-MARCO 0.23 0.4 0.23
ColBERT-AR 0.28 0.47 0.29
SBERT-AR-ID 0.25 0.45 0.27
ColBERT-AR-ID 0.29 0.48 0.29

Table 4: Performance of retrieval models on the test
dataset (Arabic).

a teacher model and the bilingual EN-AR student
model. The student model combines the embed-
ding matrix of the CL-AraBERT for Arabic tokens
and the BPIT model for English tokens, and the en-
coder weights are borrowed from the BPIT model.
We use a combination of parallel datasets (EN-
AR) available on the OPUS website (Tiedemann,
2012): TED2020, NewsCommentary, WikiMatrix,
Tatoeba, and Tanzil, total size of training data is
around 1.1M sentences (for hyperparameters de-
tails, see Appendix A). Table 4 presents the eval-
uation results of this approach on the test dataset
(Bilingual-distilled-EN-AR model). We can see a
significant improvement compared to the results of
CL-AraBERT from Table 3, yet the performance
is practically twice lower than the performance of
the equivalent English model (SBERT-BPIT, Table
D).

4.3 Training on Arabic Natural Language
Inference Dataset to Improve Sentence
Embeddings

Another approach that can help to improve the
quality of the sentence embeddings is training
on the Natural Language Inference (NLI) dataset
(Reimers and Gurevych, 2019; Bowman et al.,
2015; Williams et al., 2018) . Conneau et al. (2018)
introduced Cross-lingual Natural Language Infer-
ence (XNLI) comprising 7500 examples for devel-
opment and test sets translated into 15 languages,
including Arabic. We train CL-AraBERT on XNLI
following Reimers and Gurevych (2019), using
400k machine-translated training examples that ac-
company XNLI development and test set (more
details in Appendix A). The performance of this
model (SBERT-AR-NLI, Table 4) is better than
Bilingual-distilled-EN-AR, yet lower than SBERT-
BPIT (Table 1).



4.4 Employing Machine-Translated Datasets
to Overcome The Lack of Large Training
Data

Although the quality of the machine-translated
dataset is inferior to human translation, the acces-
sibility of machine-translated text helps to gener-
ate a considerable training set which is essential
for preparing a retrieval model. The experiment
with training on the XNLI dataset from section
4.3 showed that training on a machine-translated
dataset can achieve competitive performance. This
motivates us to extend this experiment further to
the MS MARCO dataset. MS MARCO is a large
collection of datasets focused on deep learning in
search (Bajaj et al., 2018), including the IR dataset
that comprises more than half a million queries and
is accompanied by a collection of 8.8M passages
and 39M triplets for training. Another advantage
of using MS MARCO, besides a sizable training
set, is that it is more suitable for training IR sys-
tems, and we can experiment with both SBERT and
ColBERT approaches to prepare retrieval models
and compare their performance across languages.
Bonifacio et al. (2022) presented a multilingual
version of the MS MARCO dataset created using
machine translation comprising 13 languages. We
use the Arabic translation of MS MARCO and train
SBERT-AR-MARCO equivalently to SBERT-BPIT
and ColBERT-AR following the training procedure
of ColBERT-BPIT (Section 3.4). Table 4 demon-
strates that training on MS MARCO can give better
results compared to other training approaches de-
scribed in Sections 4.2 and 4.3.

4.5 In-domain Training of Retrieval Model
for Qur’anic IR in Arabic

In the last stage, we perform training on in-domain
data and repeat the successful experiment with
dataset augmentation in English. The steps to aug-
ment dataset are the same (see Section 3.5). We
use a cross-encoder trained on machine-translated
MS MARCO to score ayah pairs, which results in a
slightly different count of selected pairs (2723).
We continue training SBERT-AR-MARCO and
ColBERT-AR on in-domain data and produce
SBERT-AR-ID and ColBERT-AR-ID.

The performance of these retrieval models is
included in Table 4, and we can observe further
improvement after training on in-domain data. The
best-performing model is CoIBERT-AR-ID, and
it is plausible that the retrieval approach of the
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Recall@100 MRR @10 NDCG@5

SBERT-AR-ID 0.25 0.45 0.27
ColIBERT-AR-ID 0.29 0.48 0.29
SBERT-AR-ID (passages) 0.7 0.47 0.35
ColBERT-AR-ID (passages) 0.77 0.53 0.43

Table 5: Performance of Arabic retrieval models on the
passage retrieval task (Arabic).

ColBERT model that leverages more fine-grained
interactions between a query and a verse (Khattab
and Zaharia, 2020) is especially advantageous for
languages with complex morphological structures,
such as Arabic.

S Model comparison and Final analysis

W SBERT-D M ColBERT-ID M SBERT-AR-ID ColBERT-AR-ID

Recall@1 00 MRR@10

NDCO@5

Figure 3: Comparison of the retrieval models for the
Islamic domain (ID) for English and Arabic across all
metrics.
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Figure 4: Comparison of the retrieval models for the
Islamic domain (ID) for English and Arabic across all
metrics.

Figure 3 compares all the retrieval models for
the Islamic domain (ID) for English and Arabic
across all metrics. A noteworthy observation is
that all English retrieval models outperform their
Arabic equivalents, which can be explained by the
complexity of the Arabic language and the usage
of machine-translated data. Nevertheless, the re-
sults of Arabic retrieval models are not far apart
from English models, and specifically, with the em-



ployment of the ColBERT model, we can see a
competitive performance (0.48 for MRR @10 and
0.29 for Recall@100 and NDCG@5).

The radar chart (Figure 4) shows a more compre-
hensive comparison across all models. We can see
that the radar chart has a tapered shape overall, with
an MRR @10 axis being the most prolonged edge,
indicating that all models show the best results for
this metric. Moreover, NDCG @5 and Recall@100
are more proportionally placed against each other,
signifying that the performance for these metrics
is similar across all the models. SBERT-ID and
ColBERT-ID (magenta and green colors) are lo-
cated at the edge, showing the best performance.
They are followed by ColBERT-BPIT and SBERT-
BPIT (English models), and Arabic ColBERT and
SBERT models are located in the middle of the
chart. In the center, we can see BM25 and the
Bilingual-distilled model, these are models with
the lowest performance.

In addition, we conducted tests on two models,
ColBERT-AR-ID and SBERT-AR-ID (as shown in
Table 5), for the passage retrieval task (Malhas,
2023). We did not apply any passage or query ex-
pansion heuristics (Malhas, 2023). Our findings
indicate that this approach is less challenging and
increases the MRR @ 10 score, especially for the
ColBERT model. The NDCG@10 score grows by
0.08 for the SBERT model and by 0.14 for the Col-
BERT model. Moreover, the Recall@100 grows
by almost threefold.

6 Related work

Thakur et al. (2021a) proposed a data augmenta-
tion technique to train sentence transformers when
little data for in-domain training is available. Wang
et al. (2021) and Wang et al. (2022) experimented
with domain adaptation techniques for embedding
models.

The topic of the choice of hard negatives is dis-
cussed in works of: Qu et al. (2021), Ren et al.
(2021), Karpukhin et al. (2020), Xiong et al., 2021.

Bashir et al. (2023) wrote a detailed overview
of the state of Qur’anic NLP, including the present
state of search and retrieval technologies. Most
of the approaches described use keywords-based
or ontology-driven search. A few works employ
semantic search based on deep-learning methods:
Alshammeri et al. (2021) use doc2vec; Mohamed
and Shokry (2022) utilize word2vec. Malhas and
Elsayed (2022) pre-trained CL-Arabert on Open-
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ITI (Romanov and Seydi, 2019) starting from the
AraBERT checkpoint (Antoun et al., 2020). They
also introduced the first Qur’anic Reading Compre-
hension Dataset (QRCD) that we used as a test data
for the Qur’anic IR task.

7 Conclusion

In this paper, we employed state-of-the-art ap-
proaches in IR to analyze and compare what works
better to improve Qur’anic IR in English and Ara-
bic. The results show that retrieval models in En-
glish outperform their Arabic equivalents. The
inherent linguistic complexity of the Arabic lan-
guage may explain this performance gap; neverthe-
less, transferring successful experiments from En-
glish to Arabic, applying large machine-translated
datasets, and using the proposed data-augmentation
technique helped to enhance the results in Qur’anic
IR in Arabic.

One of the possible directions to take in the fu-
ture is to extend this work to encompass more lan-
guages. This would broaden the scope of the se-
mantic search for the Holy Qur’an, making it ac-
cessible to a larger audience. Moreover, research
conducted in a multilingual environment helps to
exchange insights among languages and enhance
the results in Qur’anic IR.

Another essential step is to extensively evaluate
real-world user queries to analyze models’ perfor-
mance in practice ©.
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A Appendix
A.1 Hyperparameter details

Computing Infrastructure 2 x NVIDIA RTX 3090 GPU
Hyperparameter Assignment
number of epochs 10
batch size 128
maximum learning rate 0.0005
learning rate optimizer Adam
learning rate scheduler None or Warmup linear
Weight decay 0.01
Warmup proportion 0.06
learning rate decay linear

Table 6: Hyperparameters for continual pre-training of
BPIT model.

For training SBERT and ColBERT models, we
follow training recommendations implemented by
the authors. To ensure fair comparison across
models and languages, all the hyperparameters for
SBERT models are identical, and the same applies
to ColBERT models.

Computing Infrastructure 2 x NVIDIA RTX 3090 GPU
Hyperparameter Assignment
number of epochs 10
batch size 64
learning rate 2e-5
pooling mean

Table 7: Hyperparameters for training SBERT models.

Computing Infrastructure 2 x NVIDIA RTX 3090 GPU
Hyperparameter Assignment
number of epochs 1
batch size 32
learning rate le-5

Table 8: Hyperparameters for training ColBERT mod-
els.

Computing Infrastructure 2 x NVIDIA RTX 3090 GPU
Hyperparameter Assignment
number of epochs 1
batch size 32
learning rate 2e-5

Table 9: Hyperparameters for training Cross-encoders.
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Abstract

Text summarization has been intensively stud-
ied in many languages, and some languages
have reached advanced stages. Yet, Arabic Text
Summarization (ATS) is still in its developing
stages. Existing ATS datasets are either small
or lack diversity. We build, LANS, a large-
scale and diverse dataset for Arabic Text Sum-
marization task. LANS offers 8.4 million arti-
cles and their summaries extracted from news-
papers websites’ metadata between 1999 and
2019. The high-quality and diverse summaries
are written by journalists from 22 major Arab
newspapers, and include an eclectic mix of at
least more than 7 topics from each source. We
conduct an intrinsic evaluation on LANS by
both automatic and human evaluations. Human
evaluation of 1,000 random samples reports
95.4% accuracy for our collected summaries,
and automatic evaluation quantifies the diver-
sity and abstractness of the summaries.

1 Introduction

Every day there is an abundant amount of text pub-
lished on the internet, such as news articles, scien-
tific papers, product reviews, and blogs. Therefore,
the need for text summarization is compelling to
make use of this information overload. For a sum-
marized text, a good one should be concise and
include the main information of the original text
(Radev et al., 2002). For some languages like En-
glish, the field has developed rapidly and achieved
competitive results(Zhang et al., 2020; Lewis et al.,
2019; Dou et al., 2020). Unlike English, the field
in Arabic has been slowly and fairly developing
in the past few years; thus, it has not reached
its advanced shape. In the field of Arabic Text
Summarization (ATS) (Belkebir and Guessoum,
2015; AL-Khawaldeh and Samawi, 2015; Fejer
and Omar, 2014; Abu Nada et al., 2020; El-Kassas
et al., 2021), the dearth of a diverse and large sum-
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Figure 1: The Webpage view (left) shows a typi-
cal news article view. The summaries are extracted
from the HTML source code view’s (right) metadata
(og:description).

marization dataset is one of the main existing dif-
ficulties that ATS researchers encounter (Al-Saleh
and Menai, 2016; Elsaid et al., 2022).

Concerted efforts have been made to over-
come those challenges by building various Ara-
bic datasets for the task such that EASC (El-Haj
et al., 2010), Kalimat(El-Haj and Koulali, 2013),
TAC2011 (El-Ghannam and El-Shishtawy, 2014),
ANT(Chouigui et al., 2021), and XL-Sum (Hasan
et al., 2021), but those datasets have limitations in
terms of diversity or size. Therefore, the demand
for a diverse and large-scale dataset is crucial to
advance the ATS field. The diversity in the ATS
dataset is in twofold. The first kind of diversity
exists in the Modern Standard Arabic (MSA). Even
though 22 countries use MSA as an official stan-
dard language, each country has its own dialects
(Dialectal Arabic) for communication. Each coun-
try’s dialects have some effects on the MSA style
of writing and the choice of words. For example, in
a sentence describing the rounds of a soccer match,

Moroccan MSA would use the word "J‘j.\;‘" for
"rounds" and "lp_‘j.“" for the word "the match"

while Saudi MSA would use "L\j.ij” and "3!,LLI"
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Corpus # of documents ~MSA Diversity  Category Diversity = Human Evaluation
EASC 153 X X v
KALIMAT 20,291 X v X
ANT 31,798 X v X
XL-Sum 40,327 X v 250
LANS > 8 millions v Ve 1,000

Table 1: Arabic Text Summarization Datasets comparison

respectively. Second, there is diversity in news cat-
egories. Each newspaper has different news topics,
such as finance, politics, sports, health, local, in-
ternational news, and more. Not all ATS datasets
include both diversity aspects in one dataset (see
Table 1). Thus, it is essential to build a dataset that
considers both types of diversity.

In terms of size, the available ATS datasets con-
tain a range of 100 to 41,000 training samples,
which make them too small to fully train a summa-
rization model. The performance in summarization
models evidently relies on a substantial amount of
applicable training samples (Volske et al., 2017;
Grusky et al., 2018; Zhang et al., 2020; Lewis et al.,
2019; Dou et al., 2020). Thus, we expect a large-
scale dataset which is provided in this work.

To overcome the current limitations in diversity
and size, we introduce a new ATS dataset (LANS)
that includes both types of diversity and large-scale
to present new opportunities to ATS models and im-
prove their summary accuracies. To achieve MSA
diversity, that is the variety of each Arab country
dialects’ impact on its MSA, LANS encompasses
19 Arab countries and collected articles along with
their summaries of 22 popular newspapers (see Ta-
ble 2). For the diversity of text categories, we con-
sider all available news categories of each source in
our ATS dataset. Thus, LANS ensures both types
of diversity of MSA among the Arab countries. To
overcome the size limitation, LANS provides more
than 8 million news articles along with their sum-
maries. LANS’s substantial amount of articles and
their summaries, plus the diversity in MSA sources
and categories make it a worthy resource for ATS
models.

LANS exploited the metadata of newspapers’
archives to extract and build the dataset. In Fig-
ure. 1, a high-level example is shown to demon-
strate where the collected information originated
from two parallel views: the webpage view and
its HTML source code view. The webpage view
shows what a reader sees when reading a news
article: the URL, title, bold part or the abstract
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sentence/s, and article bodies. LANS pursues the
metadata attributes from the HTML source code
- specifically (og:description) to extract the sum-
maries from. In the webpage view, the summaries
lie either in bold text or before the article’s para-
graphs. In the HTML source code view, the sum-
maries lie in the metadata attributes, in our case
between (og:description) tags, which we extracted
as the news articles’ summaries. After the extrac-
tion, we cleaned and filtered 11M news articles to
present 8.4M articles along with their summaries.

To quantify the quality of the collected sum-
maries and examine their summarization proper-
ties, we conducted an automatic evaluation based
on 3 common metrics. Moreover, we corroborated
the evaluation with human evaluation of 1,000 sam-
ples to verify the accuracy of using the abstract
from the HTML source code’s metadata as a sum-
mary. The human evaluation verifies that using the
summary available in the metadata has a 95.4%
accuracy. Considering the large size of LANS, 8.4
million, LANS can benefit the ATS field, because
large datasets improve NLP tasks, such as numer-
ous training samples for pre-trained models (Zhang
et al., 2020; Lewis et al., 2019). Besides, both types
of diversities create opportunities for researchers
to construct more accurate ATS models.

Our main contributions are as follows: (1) We cu-
rate LANS, a large-scale ATS dataset of 8.4 million
Arabic news articles paired with their summaries
written by journalists between 1999 to 2019. To
our knowledge, it is the largest to date. (2) LANS
is collected from 22 reputable Arab newspapers to
achieve high quality of diversity in MSA, and for
each source, there are at least 7 topics to achieve
diversity in categories. (3) To quantify the intrinsic
quality of LANS, a human evaluation is conducted
on 1,000 random samples and verifies 95.4% accu-
racy of the summaries. Plus, the automatic evalua-
tion on the whole dataset quantifies the abstractness
and properties of the summaries.



ID Newspaper Country From  Articles [ ID Newspaper Country From Articles
1 Elkhabar Algeria 2014 78201 12 Hespress Morroco 2007 91357
2 Alwasat Bahrain 2013 23860 13 Alwatan Oman 2014 130067
3 Gate Ahram Egypt 2016 315655 14 Alquds Palestine 2015 88313
4 Youm?7 Egypt 2008 2039818 | 15 Alquds-UK Palestine 2013 349439
5 Albayan Emirates 1999 1137188 | 16 Alwatan Qatar 2016 214405
6  Almadapaper Iraq 2009 105925 17 Aljazira Saudi Arabia 2001 809445
7 Aldustoor Jordan 2000 601372 18 Alryiadh Saudi Arabia 2004 1004893
8 Annahar Kuwait 2007 575482 | 19  Alsudan Alyoom Sudan 2016 104439
9 Alakhbar Lebanon 2006 222215 | 20 Zamanalwsl Syria 2007 128785
10 WAL Libya 2013 141898 | 21 Alssabah Tunisia 2011 166137
11 Sahara Media Mauritania 2009 11982 22 Almasdar Yemen 2009 102608
Total 8,443,484

Table 2: Overall statistics of the collected articles

2 Related Work (Existing Datasets)

To the best of our knowledge, Lakhas (Douzidia
and Lapalme, 2004) is considered one of the early
works to build an ATS model. Due to the lack of
ATS datasets at that time, Douzidia et al. translated
(DUC)! dataset, from English to Arabic for their
ATS model’s evaluation (Douzidia and Lapalme,
2004). The translation used machine translation at
that time which was not as accurate and advanced
as these days, and that had a negative impact on
the results. Moreover, other ATS models built their
own datasets to evaluate their models (Al-Maleh
and Desouki, 2020). Consequently, researchers
built Arabic ground-truth summaries over the past
years, and this section mentions the major ones.

The Essex Arabic Summaries Corpus (EASC)
Dataset. EASC (El-Haj et al., 2010) is an ATS
dataset, where each summary is extracted from the
texts by Mechanical Turk. Its text source is two
Arabic newspapers (Alrai and Alwatan) and the
Arabic language version of Wikipedia. As a result,
it contains 153 Arabic articles and 765 summaries
(5 summaries per article). In short, EASC has high-
quality human-generated summaries but it is too
small and lacks diversity.

Kalimat Dataset. El-Haj et al. worked on a
dataset called Kalimat (El-Haj and Koulali, 2013).
It has 20,291 extractive Single-document and multi-
document system summaries, and includes only
6 categories. It has been collected from only
one source, which is Alwatan newspaper from
Oman. The single-document summaries are gener-
ated based on their model Gen-Summ which inputs
the article and its first sentence, then outputs the ex-
tractive summary. The multi-document summaries
were generated for each 10, 100, and 500 articles

'An English text summarization dataset of news paired
with human summaries. https://duc.nist.gov/
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in different categories. The generated summaries
also lack human evaluation of the summaries.

Arabic News Texts Corpus (ANT) and XL-
Sum. ANT (Chouigui et al., 2021), and XL-Sum
(Hasan et al., 2021) are the most recent works.
ANT collected 31,798 documents paired with sum-
maries using RSS feeds from 5 Arab news sources:
AlArabiya, BBC, CNN, France24, and SkyNews,
while XL-Sum collected 40,327 only from BBC.
ANT includes 6 categories, while XL-Sum reported
none. Unlike ANT, LANS utilized the HTML
source code og:description tag to collect the sum-
maries which is similar to (Grusky et al., 2018).
ANT is evaluated on several extractive summariza-
tion methods such as LexRank, TextRank, Luhn
and LSA. XL-Sum fine-tuned mT5 on their dataset
and randomly sampled 500/500 development and
test set respectively. Besides, they conducted hu-
man evaluation on 250 random samples. When
compared to our LANS, our work collected nearly
8 million articles with summaries from 19 Arab
countries local newspapers. Moreover, experts
evaluated 1,000 random summaries from LANS
to substantiate the validity of the summaries.

3 LANS Dataset

This section details how LANS is collected starting
from the scraping process to building the dataset
and how it is shaped for public use.

3.1 Data Collection

Our main goal is to improve the ATS field by col-
lecting and building the largest and most diverse
ATS dataset. We collect newspapers from 19 coun-
tries 2. For consistency and fairness of data col-

>There are 22 Arab countries, but 3 of them: Djibouti, The
Comoros Islands, and Somalia, lack Arabic data and reliable
newspapers


https://duc.nist.gov/

lection, all the TV news channels’ websites are ex-
cluded, like Alarabiya, Aljazeera, Arabic CNN, and
Arabic BBC because they are primarily established
as TV news channels. To make our data sources
comprehensive and trustworthy, we collected and
listed approximately all the reliable newspapers for
each country. For instance, we listed 18 reputable
newspapers in Saudi Arabia. After analyzing the
newspapers, we then ranked them by assigning the
highest priority to the newspaper with the longest
publishing history.

Next, we only select the newspapers if their con-
tent passes certain criteria:

History of published articles (archive): Each
newspaper’s website is inspected to examine if it
has a considerable historical electronic archive to
reestablish the long-history versions of a newspaper.
An old reputable newspaper can be given a lower
rank over a modern one if the latter has a longer
historical e-archive. Thus, LANS has collected
data from 1999 to 2019 see Table 2.

Diversity in categories: A newspaper should
contain a variety of topics or categories (at least
7), for example, local news, international news,
politics, economy, religion, culture, health, sports,
art, technology, and so on.

Availability of the summary in the metadata:
the metadata of a document has the hidden informa-
tion of an article. The summary of an article written
by the author initially lies in the metadata and also
can appear in bold on the webpage or ahead of the
article. The availability of the summary published
by the author/journalist is the major factor in se-
lecting the newspaper. Only the newspapers with
provided summaries in the metadata are selected.

The aforementioned criteria narrow down the list
of the reliable newspapers, shown in Table 2. As a
result, 22 popular newspapers of 19 Arab countries
have been selected for the next step from the period
of time between 1999 to 2019. The wide variety
of the data sources can significantly benefit the
diversity of the summaries.

3.1.1 Data Scraping

Since there are 22 newspaper websites to be
scraped, it is necessary to customize a code for
each of them. Each code identifies the patterns,
the selectors, and the URLs to be scraped. The
main information scraped from each news article
are the following: URL, title or (headline), arti-
cle, and finally the summary or (the metadata from
og:description). An example is shown in Table 3,
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which shows the scraped information from an ar-
ticle’s webpage. For reproducibility, Scrapy was
ideal, in our case scenario, for implementing recur-
ring and large-scale web scraping projects. Besides,
Scrapy supports different built-in data outputs such
as JSON, XML, and CSV.

3.2 Building LANS Dataset

For the collected data to be curated so it preserves
a good quality for reuse and evaluation, we de-
tail how the data is extracted, cleaned, and prepro-
cessed.

3.2.1 Data Extraction

Among the data formats for retrieval, the most con-
venient format to preserve data quality is XML. The
extracted data is stored in a tree structure. Each
newspaper has a dataset formatted as the following:
"Item" is the root node of the tree. The root has
many child nodes "Items". Each "Items", a child
node, holds the extracted data of a single document
(a newspaper article). The child node, "Items", has
4 child nodes of its own named: Address, Title,
Article, and Summary. Each child node of the par-
ent "Items" (Address, Title, Article, and Summary)
has 1 or more grandchild nodes depending on the
actual values extracted from an article’s webpage.
The data in this stage is not considered clean nor
reliable because it contains many errors that could
impact the quality of LANS. Errors can be extra-
neous or foreign characters, empty values, HTML
code, or other common text errors. Thus, we need
to clean the data. Plus, to better utilize the data in
the XML files, we need to preprocess the data for
the evaluation process.

Data cleaning: Initially, more than 11 million
articles and their metadata are scraped. The data
is laboriously examined to ensure whether the ex-
tracted articles are error-free content or not, and to
ensure their validity for usage. One of the main
errors was the collected articles with missing con-
tent. There are some reasons for that. One of the
reasons is that many articles contain only images
or videos without any textual content, because they
are types of news that only report pictures or videos.
The other reason for missing content is mistakes
from the HTML pages, or content stored under a
different selector. All articles with the mentioned
errors are removed. Moreover, to clean the other
errors the normalization step in the preprocessing
steps below is performed. In short, the removed
articles may have no title, article, or valid data. Af-



Type Scraped info
URL http://www.alwasatnews.com/news/1196668.html

Title LAl sl kel Ao oot d) Cf“ oy yeall
Aricle  clasY BLoYL (& el Ll mp oo JWY e Bk Bkl Sagt Ry ) pliy 3,0 Fls¥ly L1 AL o5l 6
oleysladl e YLKl 36 U] o) (lae ilaae dmed] 3 Baally &1 05is &b e, JB cile e demed] 3] a2
Jedadl o a8l 5 Ll Cas g ilaal) 57 e Jotie g sl skl BlE e Lesld) dla L cal) il satld Cus cBakal
Wl dale J) BLaYl ol e JlSily #Soly Judaol &320 41 ) YW adse o o))l 0l sy alall J)
Lo Y oplad &3 N pood 0K 25 LS A 5 oTRall Ll fe il Vim c@ k) BB 505 o Gl &y sladll
ol calda
Summary oy et e oo &) 5aal Calai de oSl 2l o Lol cielam ) 4 ad) A R 5l o i el

Yoy U osE Lk Va3l cheo o 58

Table 3: An example of scraped information from an Article

ter removing all the unusable articles, the number
has dropped from 11,115,932 to 8,443,484 articles.
After this step, the data is stored in its final XML
tree format.

3.2.2 Preprocessing

Even though the data is clean at this stage, it re-
quires preprocessing for ATS evaluation process,
due to the complex and rich nature of Arabic lan-
guage. The steps involve normalization, segmenta-
tion, removal of stop words, and lemmatization; in
that order. This stage in Arabic is the primary stage
to prepare the text for processing and transform the
input text into a unified representation.

The normalization step cleans the data and re-
moves many extraneous texts. It removes extra
white spaces or tabs, foreign irrelevant characters,
non-letters, and diacritics. It also replaces certain
Arabic characters with a certain single character
to normalize the differences in characters. Nor-
malization also removes the "Tatweel" (character
stretching) (Ayedh et al., 2016). For tatweel, a
word that appears in this format "a__ o 5" is

going to be replaced with "oy s

Segmentation or tokenization are commonly
used interchangeably. The segmentation process is
applied to segment the article into sentences and
prepare for the next steps. We use the Natural Lan-
guage Toolkit (NLTK) (Loper and Bird, 2002) to
tokenize sentences and words. We are aware that
some scholars weigh tokenization differently such
as when tokenization breaks the words into con-
stituent prefix(es), stem, and suffix(s) (Mubarak,
2017; Abdelali et al., 2016; El-Defrawy et al., 2015;
Pasha et al., 2014). However, ATS lemmatization
accomplishes the intended purpose of the other def-
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inition of Arabic tokenization.

Stop words have a major impact on text sum-
marization because they impact the length of the
articles and summaries, and increase the frequency
of words which in both cases would change the
weights of sentences (El-Khair, 2017; Al-Taani and
Al-Omour, 2014). To remove the stop words, we
used a list of stop words prepared by Abu El-khair
et al (El-Khair, 2017) which contains 1,377 words.

For our evaluation, the final and most crucial
step for preprocessing the text is lemmatization.
This step can improve the accuracy of the sum-
marization and evaluation process. Lemmatiza-
tion is the process of reducing words to their basic
root by removing the attached affixes of words.
LANS dataset does not store the data in the lem-
matized format, because lemmatization is usually
used in the training or testing on the original data.
Many lemmatizers are considered such as Alkhalil
(Boudchiche and Mazroui, 2019), ISRI (Khoja)
(El-Defrawy et al., 2015), Madamira (Pasha et al.,
2014), CAMeL (Obeid et al., 2020), but only
Farasa (Mubarak, 2017; Abdelali et al., 2016) is
applied because it outperforms the state-of-the-art
CAMel by a slight margin and its fast performance
on large-scale datasets. Following all the men-
tioned steps, the dataset is passed for automatic
evaluation (see sec 6).

4 LANS Description

LANS builds 8,443,484 articles and their sum-
maries from 22 newspapers of 19 Arab countries
dated from 1999 to 2019. The high-level overall
statistics in Table 2 show that some newspapers
have more data than the others. This does not un-
dermine any country’s newspapers. Among the


http://www.alwasatnews.com/news/1196668.html

newspapers with a long history of journalism, most
of them have been published on physical newspa-
pers before newspapers become digitalized. The
dates of collection reflect how much data is avail-
able in the e-archive for each newspaper. For in-
stance, Gate Ahram newspaper from Egypt (Gat,
2022) is established in 1875 and has been pub-
lished since then. However, the available e-archive
for the newspaper starts from 2016. Each newspa-
per’s webpage has its own e-archive and its own
progress over time. This is why the variations of
collection dates exist.

LANS encompasses 19 Arab countries for MSA
diversity. One of the overlooked aspects of diver-
sity in Arabic is the diversity of MSA in the Arab
countries. It is true that all the newspapers in the
Arab countries use the same MSA, but events, cul-
ture, and use of vocabulary are different from one
country to another. Therefore, it is necessary to
collect such diverse data from each country. To
achieve MSA diversity in LANS, our dataset en-
compasses 19 Arab countries - except for the Co-
moros Islands, Djibouti, and Somalia because of
the scarcity of data in their newspapers.

Further, LANS provides a wide-ranging topic
variety. The collected data from each country cov-
ers different categories, and some newspapers have
more categories than others, which enhances the
diversity of categories in LANS. Some newspapers
have only a few categories (not less than 7), while
some others have more than 9 categories including
local news, international, political, financial, soci-
ety, sports, technology, art, health, and religious
news articles. This category diversity is one of the
features of LANS. It allows researchers to not only
create subdatasets, but also create sub-subdataset
of any of the subdatasets. For example, a subset can
be all articles/summaries from Saudi Arabia. Then,
a sub-subdataset can be the local news categories
from the subset of Saudi Arabia articles/summaries.
This type of diversity can be created from LANS.

The dataset is chunked into separate XML files,
each file is under 2 GB to make it easier to load
and process. The total size of the whole dataset
is 32GB. Each country’s dataset is a subset of the
whole dataset, and researchers have the freedom
to choose a subset or several subsets (by specific
countries) to train and evaluate ATS models.
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5 Experiment

Since the ATS field is still under-researched
for abstractive summarization, it is difficult to
achieve multiple comparisons among the avail-
able works. Therefore, we created a translate-
summarize-translate pipeline from the available
pretrained state-of-the-art multi-language models
such mT5 (Xue et al., 2020), mBART (Tang et al.,
2020), and CRISS (Tran et al., 2020). For our ex-
periment, we chose mT5 becasue of its wide cover-
age of 101 languages and support for 41 languages.
The model is utilized to generate summaries of the
1,000 randomly sampled articles, and then compare
them with LANS ground-truth summaries using
ROUGE-N. In a high-level description, the pipeline
inputs the preprocessed samples as mentioned ear-
lier in section 3.2.2, translates the articles (Arabic
— English), generates summaries from the trans-
lated articles, then translates the generated sum-
maries (English — Arabic) for evaluation. The
model for each step of the pipeline will be given
later.

Some of the pipeline steps to generate automatic
text summaries are tuned to adapt Arabic language.
Firstly, we preprocess the text, as detailed in sec-
tion 3.2.2. Secondly, we translate the articles from
Arabic to English. We apply OPUS-MT (Tiede-
mann and Thottingal, 2020) project. OPUS-MT is
based on Marian-NMT (Junczys-Dowmunt et al.,
2018), a state-of-the-art transformer-based Neu-
ral Machine Translation (NMT), and trained on
OPUS data using OPUS-MT-Train. The transla-
tion achieves accurate results in machine transla-
tion. Next, since articles are translated into English,
we process the articles to generate automatic text
summaries using mT5 which inherits all the ben-
efits of T5 (Raffel et al., 2019). The automatic
text summaries currently are English. Finally, we
translate automatic text summaries into Arabic by
again applying the OPUS-MT project as described
in the second step. An example of the ground-truth
summary and a generated Arabic summary are dis-
played in Table 4.

Both summaries are evaluated by ROUGE
(Ganesan, 2018) evaluation metric and will be
used for human evaluation (see sec 6.2). We ap-
ply ROUGE-1, ROUGE-2, and ROUGE-L to con-
sider different summary lengths. Moreover, we
also show how lemmatization impacts the accuracy.
The results are reported in Table 5. The results
show that the summaries generated by mT5 achieve
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Table 4: Table presents a sample of two summaries from LANS and mT5-based pipeline.

lower scores before applying the lemmatization
process. After we lemmatized the summaries by
Farasa, the results improve by a good margin. In
both cases, for a model that has not been designed
for Arabic language, mT5 shows good scores when
scored with LANS summaries see Table 4.

Before Lemmatization  After Lemmatization
R-1 R-2 R-L R-1 R-2 R-L
mT5 03 0.12 028 044 0.19 0.38

Table 5: Results of the generated summaries referenced
to LANS summaries.

6 Intrinsic Evaluation of LANS

We apply two methods of evaluation to validate
the reliability of the summaries from LANS. The
first is an automatic evaluation which examines the
summarization techniques in LANS. It uses the fol-
lowing metrics: compression ratio, fragment den-
sity, and coverage. The automatic evaluation has
been performed on the whole dataset. The second
evaluation is performed by experts which verifies
the quality of LANS by randomly extracting 1,000
articles and their respective summaries, which are
evaluated by experts.

6.1 Automatic Evaluation

To assess LANS, we apply 3 common metrics to
quantify the abstractness of LANS’s summaries
and examine their strategies. Note that summaries
can be extractive or abstractive;, extractive sum-
maries derive words from the source text, while
abstractive summaries use novel words to describe
the source text. The applied metrics used are com-
pression ratio, fragment density (abstractivity), and
coverage (Grusky et al., 2018; Bommasani and
Cardie, 2020). Compression Ratio quantifies the
conciseness of summaries, and is defined as the
ratio of words between a summary and an article:
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Al
where | S| is the summary’s length and | A| is the ar-
ticle’s length in words. Coverage by (Grusky et al.,
2018) quantifies how much the summary borrows
words from the article. Its formula is below:

> 1

teT(S,A)

CMP, (S, A) (1)

1

5]

where T'(S, A) is the set of extractive phrases in
summary S extracted from article A, and ¢ is the
summary tokens (words) derived from the article.
In abstractive summaries, it is preferred not to de-
rive many words from the article.

Fragment Density is proposed by (Grusky et al.,
2018), and later introduced as Abstractivity in
(Bommasani and Cardie, 2020) with a slight change
that generalizes it. This paper uses fragment den-
sity. It quantifies how well the summaries can
construct a sequence of words that are greedily
matched in the article. It is measured as the follow-
ing:

COV(S, A) 2

1

5]

The results of the automatic evaluation are re-
ported in Table 6. The | arrow for coverage scores
(COV) indicates how abstractive the summaries
are from each source. The reported low scores
signify that the summaries have novel words to
describe the articles. The 1 arrows for density
(DENS) and fragment compression (CMP) mean
the higher the better. The highest score for density
is in Hespress(Morocco) newspaper summaries,
and the lowest is in WAL (a Libyan news agency).
For compression, the most concise summaries are
reported from Alakhbar (Lebanon), and the least
concise ones are reported from Alsudan Alyoom
(Sudan). The diversity exists among the Arab coun-
tries’ style of writing the summaries, and the indi-

DENS(S, A)

> It

teT(S,A)

3)



Dataset COV] DENST CMP1 [ Dataset COV] DENST CMP1
Elkhabar(Algeria) 0.34 0.87 0.77 Alwatan(Oman) 0.35 0.64 0.68
Alwasat(Bahrain) 0.32 0.88 0.51 Alquds(Palestine) 0.28 0.74 0.65
Gate Ahram(Egypt) 0.27 0.81 0.57 Alquds-UK (Palestine) 0.39 0.90 0.79
Youm7(Egypt) 0.31 0.86 0.53 Alwatan(Qatar) 0.24 0.58 0.74
Aldustoor(Jordan) 0.25 0.52 0.50 Aljazira(Saudi Arabia) 0.23 0.46 0.57
Annahar(Kuwait) 0.24 0.57 0.72 Alryiadh(Saudi Arabia) 0.30 0.73 0.51
Almadapaper(Iraq) 0.45 0.52 0.64 Alsudan Alyoom(Sudan) 0.36 0.31 0.49
Alakhbar(Lebanon) 0.27 0.49 0.82 Zamanalwsl(Syria) 0.26 0.62 0.59
WAL(Libya) 0.32 0.30 0.55 Alssabah(Tunisia) 0.26 0.70 0.58
Sahara Media(Mauritania)  0.32 0.88 0.68 Albayan(Emirates) 0.41 0.35 0.65
Hespress(Morocco) 0.38 1.01 0.78 Almasdar(Yemen) 0.38 0.92 0.77

Table 6: Automatic evaluation results of LANS comparing all newspapers to each other. The up arrow 1 indicates
that higher is better and the opposite for the down arrow |. The results show the diversity among the collected
datasets from one source to another. It also shows there is a high level of abstractiveness and conciseness.

cation of that is the varying scores in all metrics.
The detailed distributions of fragment density and
coverage across LANS dataset are displayed in the
appendix Figure 2

6.2 Human Evaluation

Relying on only automatic evaluation and ROUGE
metric may result in some limitations, such as bi-
ases in scoring against the systems that depend
more on paraphrasing such as abstractive sys-
tems(Grusky et al., 2018). As a result, even though
meaningful summaries are generated, ROUGE can
be subjective and assigns a low score to well-
generated summaries(See et al., 2017). Therefore,
we conduct human evaluation.

Human evaluation is costly, but the results from
the automatic method described in Sec. 6.1 are yet
to be verified by experts. A survey is created for
human experts to assess which summaries capture
the full key information of the articles, have bet-
ter readability, and have syntactic correctness.
The survey contained the 1,000 random samples
selected for the experiment in Sec. 5. Each sur-
vey question contains the following data: the full
article; Choice 1: LANS summary; Choice 2: mT5-
based generated summary; and Choice 3: none-of-
the-above (non of the summaries). Choices 1 and 2
were shuffled and anonymized, so human experts
can make fairer choices with less biases. For ex-
ample, if Choice 1 was always LANS’s summary,
then human experts may form a judgement to al-
ways choose Choice 1. Therefore, the choices were
shuffled. Besides, the choices were anonymous.
It means that human evaluators do not know the
origin of each summary.

The experts who did the survey are highly knowl-
edgeable in Arabic. For a human expert to evaluate
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the survey; an expert should be an Arabic native
speaker, also, an expert should at least have a bach-
elor’s degree majoring in Arabic Language. The
experts were asked not only to choose which choice
is the fittest for the given criteria, but also to pro-
vide their feedback on the choices. Human evalua-
tion results show that 954, out of the 1,000, LANS
extracted summaries have more accurate semantic
representation, and correct syntactic forms. The se-
mantic representation means that the summary cap-
tures salient and key information of the article and
has better readability. The results, also, show that
2 of the choices are "none", which means neither
summaries meet the required criteria. While the
ROUGE scores are low between the automatically
generated summaries and the LANS summaries,
the 95.4% approval rating for LANS summaries
during the human evaluation validates the use of
the descriptions present in the source code of the
articles as their summaries.

7 Conclusion

This work presents LANS, a large-scale and diverse
text summarization dataset of more than 8 million
new articles paired with their summaries written by
journalists. The summaries are collected from the
metadata of 22 scraped popular Arab newspapers’
websites from the period between 1999 to 2019.
For each of those resources, LANS considered a
wide range of topics. The work applied two evalua-
tion methods (automatic and human) to verify the
superiority of the extracted summaries in LANS.
The dataset can be accessed upon request. 3. LANS
offers this dataset for researchers to advance the
field of ATS, and takes advantage of the data to

3Request data from first author



train and evaluate the results of new models on this
dataset.

8 Limitations

The distribution of data in LANS is far from uni-
form with regards to the newspapers coming from
each country. This disparity is primarily driven
by the varying number of newspapers in different
countries. As a result, some nations’ data represen-
tation is much more than others due to the former’s
extensive media landscape.

This uneven distribution underscores the impor-
tance of considering geographic and media-related
factors when conducting data-driven research or
analysis.

9 Ethical Statement

In accordance with ethical research practices, it is
important to clarify that the data collection process
for the LANS dataset did not violate any copy-
rights or intellectual property rights. The dataset
comprises articles and their summaries obtained
from publicly accessible websites of 22 major Arab
newspapers, all of which span from 1999 to 2019.
Every article included in the dataset is properly
cited, including its originating source, and each has
an associated URL, allowing for verification and
direct reference. The data is solely utilized for aca-
demic and research purposes, intended to advance
the field of Arabic Text Summarization (ATS). The
extraction and use of this data adhere to all relevant
ethical guidelines, ensuring that the journalistic
integrity of the original articles and their authors
is maintained. Thus, the dataset aims to serve as
a high-quality and diverse resource for research
while respecting all ethical and legal norms.
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Figure 2: The distributions of fragment density and coverage across the datasets of LANS is displayed in the
sub-figures. This shows how diverse the dataset is from one country to another. The sub-figures support table.6.
Each sub-figure is a normalized bivariate density plot. The X -axis represents the coverage, and it ranges from O to
1. The Y -axis represents the Fragment density(Abstractiveness), and it ranges from 1 to 4. The red color shows
where most of the summaries are, and the dark blue color indicates where the least summaries are. The extraction
method is explained in section.6.1
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Abstract

Large language models (LLMs) finetuned to
follow human instruction have recently exhib-
ited significant capabilities in various English
NLP tasks. However, their performance in
grammatical error correction (GEC), especially
on languages other than English, remains sig-
nificantly unexplored. In this work, we evaluate
the abilities of instruction finetuned LLMs in
Arabic GEC, a complex task due to Arabic’s
rich morphology. Our findings suggest that
various prompting methods, coupled with (in-
context) few-shot learning, demonstrate con-
siderable effectiveness, with GPT-4 achieving
up to 65.49 F; score under expert prompting
(approximately 5 points higher than our estab-
lished baseline). Despite these positive results,
we find that instruction finetuned models, re-
gardless of their size, are still outperformed by
fully finetuned ones, even if they are signifi-
cantly smaller in size. This disparity highlights
substantial room for improvements for LLMs.
Inspired by methods used in low-resource ma-
chine translation, we also develop a method
exploiting synthetic data that significantly out-
performs previous models on two standard Ara-
bic benchmarks. Our best model achieves a
new SOTA on Arabic GEC, with 73.29 and
73.26 F; on the 2014 and 2015 QALB datasets,
respectively, compared to peer-reviewed pub-
lished baselines.

1 Introduction

As interest in second language learning continues
to grow, ensuring the accuracy and effectiveness
of written language becomes increasingly signif-
icant for pedagogical tools and language evalua-
tion (Rothe et al., 2021; Tarnavskyi et al., 2022). A
key component in this respect is grammatical error
correction (GEC), a sub-area of natural language
generation (NLG), which analyzes written text to
automatically detect and correct diverse grammat-
ical errors. Figure 1 shows an instance of GEC
from Mohit et al. (2014). Despite the growing at-
tention to GEC, it is predominantly studied within

dalag Ule o oY 48l 8 ale €Y Aoy pall 40 s pal | day il 20K o a3
L olla s il o) WS 63 Y | L yaag Lol (oSl 4K e o AT dagg | A

AV

GEC System

Ule Dl (Y ¢ 48l i Lalle () sSY Ay ) A0S & A1 | Aay ) 40 3 ga oy i M)
_|\;u;54;‘@“|musa)\cym)n,gm;),sumvy@)ssm, L) dalsy

Figure 1: An example of an Arabic GEC system show-
casing six types of errors: character replacement ,

missing word , hamgza error , missing punctuation ,

additional character , and | punctuation confusion .

the English language. Extending GEC systems to
other languages presents significant challenge, due
to lack of high-quality parallel data and/or inher-
ent challenges in these languages. Recognizing
this, our work focuses on Arabic. In addition to
being less-explored for GEC (Mohit et al., 2014;
Rozovskaya et al., 2015a; Mohit et al., 2014; Ro-
zovskaya et al., 2015a; Solyman et al., 2022; Al-
hafni et al., 2023), Arabic has complex grammar
and rich morphology that present significant chal-
lenges and further motivate our work.

Focusing primarily on English, the field of
GEC has witnessed significant advancements,
specifically with the emergence of sequence-to-
sequence (seq2seq) (Chollampatt and Ng, 2018;
Gong et al., 2022) and sequence-to-edit approaches
(seq2edit) (Awasthi et al., 2019; Omelianchuk
et al., 2020) achieving SoTA results in the CONLL-
2014 (Ng et al., 2014) and the BEA-2019 shared
task (Bryant et al., 2019), respectively. In spite of
the efficacy of these approaches, they rely heavily
on large amounts of labeled data. This poses is-
sues in low-resource scenarios (Feng et al., 2021).
Yet, scaled up language models, aka large lan-
guage models (LLMs) have recently demonstrated
remarkable potential in various NLP tasks. The
core strength of LLMs lies in their capacity to gen-
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eralize across a wide range of languages and tasks,
and in-context learning (ICL), enabling them to
handle various NLP tasks with just a few examples
(i.e., few-shot learning). A key strategy for LLMs
is instruction fine-tuning, where they are refined on
a collection of tasks formulated as instructions (Wei
et al., 2022a). This process amplifies the models’
ability to respond accurately to directives, reduc-
ing the need for few-shot examples (Ouyang et al.,
2022; Wei et al., 2022b; Sanh et al., 2021).

Given the ability of LLMs to adeptly address the
low-resource challenge, we investigate them in the
context of GEC. Focusing primarily on ChatGPT,
we examine the effectiveness of various prompt-
ing strategies such as few-shot chain of thought
(CoT) prompting (Kojima et al., 2022) and expert
prompting (Xu et al., 2023). Our research extends
the realm of GEC research by concentrating on
the unique challenges posed by Arabic. Drawing
upon the work of Junczys-Dowmunt et al. (2018a),
we frame these challenges within the context of a
low-resource MT task. We then carefully conduct
a thorough comparison of the different methodolo-
gies employed in addressing GEC in Arabic. Our
key contributions in this paper are as follows:

1. We conduct a comprehensive investigation of
the potential of LLMs for tasks involving GEC
in Arabic.

2. We methodically investigate the utility of dif-
ferent prompting methods for generating syn-
thetic data with ChatGPT for GEC.

3. We further carry out in-depth comparisons be-
tween several approaches (seq2seq, seq2edit,
and instruction fine-tuning) for Arabic GEC
(AGEC), allowing us to offer novel insights
as to the utility of these approaches.

The rest of this paper is organized as follows: In
Section 2, we review related work with a particu-
lar emphasis on Arabic. In Section 3, we outline
our experimental setups. We present our experi-
ments on LLMs and prompting strategies in Sec-
tion 4. In Section 5, we introduce our seq2seq
approach along with data augmentation techniques;
Section 6 discusses our seq2edit approach. In Sec-
tion 7, we conduct a comprehensive analysis of our
best model. We discuss our results in Section 8,
and conclude in Section 9.

2 Related Work

Progress in GEC. Pretrained Transformer models
have reframed GEC as an MT task, achieving SoTA
results (Ng et al., 2014; Felice et al., 2014; Junczys-
Dowmunt et al., 2018b; Grundkiewicz et al., 2019).
In contrast, sequence2edit approaches view the task
as text-to-edit, converting input sentences into edit
operations to produce corrected sentences (Malmi
et al., 2019; Awasthi et al., 2019; Omelianchuk
et al., 2020). These approaches both streamline
the training process and enhance model accuracy.
Further progress has also been made through meth-
ods such as instruction fine-tuning (Chung et al.,
2022) and innovative prompting techniques, such
as CoT (Kojima et al., 2022) and Expert (Xu et al.,
2023) prompting. Recent applications of LLMs,
like ChatGPT in GEC, highlight their potential. We
provide further details on each of these methods in
Appendix A.

Arabic GEC. Challenges in AGEC stem from the
complexity and morphological richness of Arabic.
Arabic, being a collection of a diverse array of lan-
guages and dialectal varieties with Modern Stan-
dard Arabic (MSA) as a contemporary variety, is
further complicated by the optional use of diacrit-
ics. This introduces orthographic ambiguity, fur-
ther complicating GEC in Arabic (Abdul-Mageed
et al., 2020; Belkebir and Habash, 2021). De-
spite these challenges, progress in AGEC has been
made. This includes development of benchmark
datasets through the QALB-2014 and 2015 shared
tasks (Mohit et al., 2014; Rozovskaya et al., 2015b;
Habash and Palfreyman, 2022), and introduction
of synthetic datasets (Solyman et al., 2021, 2023).
As for model development, character-level seq2seq
models (Watson et al., 2018) and other novel ap-
proaches are shown to be effective on AGEC L1
data. Further details about progress in AGEC are
provided in Appendix A. Despite this progress, no
exploration has been undertaken into the utility of
using ChatGPT (or other LLMs) for AGEC. More-
over, substantial work remains in exploring syn-
thetic data generation, including the use of LLMs
and the adoption of diverse machine learning ap-
proaches. Our research aims to address these gap.

3 Experimental Setup

3.1 Datasets

In this study, we make use of the QALB-2014 (Mo-
hit et al., 2014) and 2015 (Rozovskaya et al.,
2015b) datasets to evaluate the performance of our
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Dataset Statistics Train Dev Test Level
Number of sents. 19,411 1,017 968 L1

QALB-2014 Number of words. 1,021,165 54,000 51,000 LI
Number of error. 306, 000 16,000 16,000 LI
Number of sents. 310 154 920 L2

QALB-2015 Number of words. 43,353 24,742 48,547 L2
Number of error. 13,200 7,300 13,000 L2

Table 1: Statistics for QALB-2014 and 2015 Train, de-
velopment (Dev), and Test datasets.

models. Both datasets make use of the QALB cor-
pus (Zaghouani et al., 2014), a manually corrected
collection of Arabic texts. These texts include on-
line commentaries from Aljazeera articles in MSA
by L1 native speakers, as well as texts produced
by L2 learners of Arabic. Both the QALB 2014
and 2015 datasets are split into training (Train),
development (Dev), and test (Test) sets based on
their annotated dates. QALB 2015 includes L1
commentaries and L2 texts that cover different gen-
res and error types. For the purposes of our study,
we exclusively use the L1 test set (2015), as we
focus on sentence-level AGEC, where L2 test sets
are document-level. We used Train, Dev, and Test
splits described in Table 1.

3.2 Evaluation

Metrics. For evaluation, we utilize the overlap-
based metric MaxMatch (M?) (Dahlmeier and N g,
2012), which aligns source and hypothesis sen-
tences based on Levenshtein distance , selecting
maximal matching edits, scoring the precision (P),
recall (R), and F; measure. Moreover, we report
the Fy5 score , a variation of the F; score that
places twice as much weight on precision than on
recall. This reflects a consensus, in alignment with
recent works on GEC, that precision holds greater
importance than error correction in GEC systems.
Importantly, we use the exact scripts provided from
the shared task for evaluation, ensuring consistency
with other studies.

3.3 Models & Fine-tuning

LLMs. To evaluate the capabilities of LLMs for
AGEC, we prompt and fine-tune LLMs of varying
sizes, including LLaMA-7B (Touvron et al., 2023),
Vicuna-13B (Chiang et al., 2023), Bactrian-Xp;,0m-
7B (Li et al., 2023), and Bactrian-X;;,,,-7B (Li
et al., 2023). For experiments with ChatGPT, we
use the official API to prompt ChatGPT-3.5 Turbo
and GPT-4. We instruction fine-tune each smaller
model for 4 epochs using a learning rate of 2e-5 and
a batch size of 4. We then pick the best-performing

model on our Dev, then report on our blind Test.
Seq2seq models. Our baseline settings for seq2seq
models include AraBart (Eddine et al., 2022) and
AraT5,, (Nagoudi et al., 2022), both of which are
text-to-text transformers specifically tailored for
Arabic. We also evaluate the performance of the
mTO (Muennighoff et al., 2022) and mT5 (Xue
et al., 2020) variants of the T5 model (Raffel et al.,
2020), both configured for multilingual tasks. Each
model is fine-tuned for 50 epochs, with an early
stopping patience of 5 using a learning rate of 5e-
5 and a batch size of 32. These models serve as
the baseline for comparison throughout our experi-
ments.

Seq2edit models. ARBERT,, and
MARBERT,, (Abdul-Mageed et al., 2021)
serve as the baselines for our seq2edit experiments.
We fine-tune each model for 100 epochs for each
training stage, employing a learning rate of le-5
and a batch size of 4, with an early stopping
patience of 5.

All models are trained for three runs, with
seeds of 22, 32, and 42. We then select the best-
performing model based on our Dev data for blind-
testing on the Test sets. We report the mean score
of the three runs, along with its standard deviation.
Results on the Dev set, and more details regarding
hyperparameters are provided in Appendix 15, and
Appendix 14.

4 LLMs and Prompting Techniques

This section outlines our experiments designed to
instruction fine-tune LLLMs and explore different
prompting methods for ChatGPT in the context
of AGEC. We begin by experimenting with vari-
ous prompting strategies using ChatGPT, compar-
ing its performance against smaller LLMs and our
listed baselines. We evaluate the performance of
ChatGPT-3.5 Turbo (ChatGPT) and GPT-4, under
two prompting strategies: Few-shot CoT (Fang
et al., 2023) and Expert Prompting (Xu et al.,
2023). We now describe our prompting strategies.

4.1 ChatGPT Prompting

Preliminary experiment. Initially, we experiment
with a diverse set of prompt templates to assess
ChatGPT’s capabilities in zero-shot learning as
well as two aspects of few-shot learning: vanilla
few-shot and few-shot CoT (Fang et al., 2023). We
also experiment with prompts in both English and
Arabic. However, we discover that the responses
from these prompt templates contain extraneous
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explanations and are disorganized, necessitating
substantial preprocessing for compatibility with
the M? scorer. This problem is particularly notable
in the zero-shot and Arabic prompt setups, which
fails to yield output we can automatically evaluate.
Few-shot CoT. Adopting the few-shot CoT prompt
design strategy from Kojima et al. (2022) and Fang
et al. (2023), we implement a two-stage approach.
Initially, we engage in ‘reasoning extraction’,
prompting the model to formulate an elaborate
reasoning pathway. This is followed by an ‘an-
swer extraction’ phase, where the reasoning text
is combined with an answer-specific trigger sen-
tence to form a comprehensive prompt. In our few-
shot CoT settings, we include labeled instances
from the Dev set in our prompts to implement
ICL, facilitating learning from examples (Brown
et al., 2020). This involves providing erro-
neous sentences, labeled <input> SRC </input> ,
along with their corrected versions, labeled
<output> TGT </output> , from the original Dev
set.
Expert prompting. Xu et al. (2023) introduces
a novel strategy, which leverages the expert-like
capabilities of LLMs. This method involves assign-
ing expert personas to LLMs, providing specific
instructions to enhance the relevance and quality of
the generated responses. Following the framework
of Xu et al. (2023), we ensure that our AGEC cor-
rection tool exhibits three key characteristics: being
, informative, and automatic during
the ‘reasoning extraction’ stage of our prompt. To
achieve this, we employ a distinct and informa-
tive collection of various error types as proposed
in the Arabic Learner Corpus taxonomy (Alfaifi
and Atwell, 2012). We then prompt to automate
the system by instructing it to operate on sentences
labeled with <input> and <output> tags. Both
prompts are illustrated in Figure 2.

4.2 ChatGPT Results.

Table 2 presents the performance of ChatGPT un-
der different prompting strategies, compared to the
baseline settings. We observe improvements, par-
ticularly as we progress from the one-shot to five-
shot configurations for both the few-shot CoT and
expert prompting (EP) strategies. Under the CoT
prompt, ChatGPT’s F| g score increases from 53.59
in the one-shot setting to 62.04 in the five-shot set-
ting. A similar upward trend is evident with the EP
strategy, where the F; o score rises from 55.56 (one-
shot) to 63.98 (five-shot). Among all experiments

Models Exact Match

Settings

P R Fro Fos
mTO 70.76 +0.03 50.78 +0.07 59.12 +0.05 65.59 40.03
mT5 70.64 F012 50,16 T 58,66 F005  65.30 H009
Baselines AraBART 70.71 F006 6046 F00 65,18 F007 8,39 +008
AraT5,, 73.04 £010 3,09 +015  @7.70 +012  70.81 01
ChatGPT (1-shot) 58.71 49.29 53.59 56.55
+CoT ChatGPT (3-shot) 64.60 60.37 62.41 63.71
ChatGPT (5-shot) 64.70 59.59 62.04 63.61
ChatGPT (1-shot) 60.49 51.37 55.56 58.42
+EP ChatGPT (3-shot) 65.83 61.41 63.54 64.90
ChatGPT (5-shot) 66.53 61.62 63.98 65.49
GPT4 (1-shot) * - - - -
+CoT GPT4 (3-shot) 69.31 59.24 63.88 67.03
GPT4 (5-shot) 69.46 61.96 65.49 67.82

Table 2: Performance of ChatGPT under different
prompting strategies on QALB-2014 Test set.” Results
for QALB-2015 Test and GPT4 1-shot are not included
due to the high cost in producing these results, and a
pattern has already been established showing that per-
formance increases as we increase the number of N-shot
examples. More details are in Appendix B.2.

involving ChatGPT, the three-shot and five-shot
settings of GPT-4, CoT, achieve the highest scores,
with F g of 63.98 and 65.49, respectively.

4.3 Instruction-Finetuning LL.Ms

Fine-tuning LLMs. To instruct fine-tune rela-
tively large models, henceforth just LLMs, we
first train these models on the translated Alpaca
dataset (Taori et al., 2023) ! to allow the models
to gain deeper understanding of the Arabic lan-
guage and its complexities. Following this, we
further fine-tune the models on the QALB dataset,
to specifically target the task of GEC. Then, we
employ well-structured task instructions and input
prompts, enabling the models to take on GEC tasks.
Each model is assigned a task, given an instruction
and an input for output generation. We provide
an illustration of the instructions we use for model
training in Appendix B.

LLM results. As shown in Figure 3, larger mod-
els such as Vicuna-13B and models trained on
multilingual datasets like Bactrian-X;,,,-7B, and
Bactrian-Xp;,0,,-7B exhibit an overall trend of bet-
ter performance, achieving F; of 58.30, 50.1, and
52.5, respectively. Despite these improvements,
it is noteworthy that all models fall short of Chat-
GPT’s. This reaffirms ChatGPT’s superior ability
on AGEC.

5 Data Augmentation

Motivated by the significant improvements ob-
served in low-resource GEC tasks in languages

'We translate the Alpaca datasets using NLLB MT
model (Costa-jussa et al., 2022)
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Few-Shot CoT Prompts with

Few-Shot CoT Prompts .
P Expert Prompting
e N\
. . . R ) You can
You are an Arabic grammatical error correction tool that can identify and identify and correct errors in Arabic text that span orthography, morphology,
correct grammatical errors in a text. We offer some examples labeled syntax, ics, p jon, and word seg jon.

with the tag <input> SRC </input>, representing original sentences that
rmay contain grammatical errors.

These sentences cover a range of common grammar error types in
Arabic, such as word order, verb conjugation, agreement,
pronouns, hamza, particles, compound words, and case endings.

Reasoning
Extraction

Detect the error type first, then correct them into their ideal form.

These are d and c: by human editors and are
referred to as <output> TGT </output>.

\.

J

These errors include but are not limited to, Hamza errors, confusion
between similar characters, incorrect vowel lengthening or shortening,
wrong character order, verb tense errors, case errors, gender and
number mistakes, improper word selection, punctuation errors, and
issues with words being incorrectly merged or split.

Detect the error type first, then correct them into their ideal form.
You operate on sentences labeled <input> SRC </input>, correcting them

into their ideal form, labeled as <output> TGT <output>.
\

-

Please identify and correct any grammatical errors in the following sentence
indicated by <input> ERROR </input> tag;
you need to comprehend the sentence as a whole before gradually identifying
and correcting any errors while keeping the original sentence structure
unchanged as much as possible. Afterward, output the corrected version
directly without any explanations. Here are some in-context examples:

N\

7

Please identify and correct any gr ical errors in the ing
indicated by <input> ERROR </input> tag;
you need to comprehend the sentence as a whole before gradually identifying
and correcting any errors while keeping the original sentence structure
hanged as much as ible. Afterward, output the corrected version
directly without any explanations. Here are some in-context examples:

(1) <input> SRC </input> tput>TGT Joutp

(2) <input> SRC put>  : TGT P

TGT

P P!

Answer Extraction
N-Shot CoT

(N) <input> SRC </input>

Remember to format your corrected output results
<output> Your Corrected Version </output>.
Please start: <input> {text} <input>

(1) <input> SRC </input> : <output>TGT </output>

(2) <input> SRC <finput> tout>TGT <foutp

(N) <input> SRC </input>  : put>TGT <foutp

Remember to format your corrected output results
tp Your C Version P
Please start: <input> {text} </input>

Figure 2: Illustration of Few-Shot CoT and Expert Prompts for Arabic Grammatical Error Correction.

LLMs vs ChatGPT

70

Figure 3: Comparison of F; scores between LLMs and
ChatGPT on the QALB-2014 Test set.

such as German, Russian, and Czech through syn-
thetic data (Flachs et al., 2021), and recognizing
the recent efforts to develop synthetic data for
AGEC (Solyman et al., 2021), we experiment with
three distinctive data augmentation methods.

ChatGPT as corruptor. With slight adaptation
to our original prompt, we engage ChatGPT as an
Al model with the role of introducing grammatical
errors into Arabic text to generate artificial data.
We randomly sample 10,000 correct sentences from
the QALB-2014 Train set and, using the taxonomy
put forth by the Arabic Learner Corpus (Alfaifi and
Atwell, 2012), prompt ChatGPT to corrupt these,
creating a parallel dataset. We refer to the resulting

dataset as syntheticGPT.

Reverse noising. We adopt a reverse noising ap-
proach (Xie et al., 2018), training a reverse model
that converts clean sentences Y into noisy coun-
terparts X. This involves implementing a standard
beam search to create noisy targets Y from clean
input sentences Y. Our approach incorporates two
types of reverse models: the first trains on both
QALB-2014 and 2015 gold datasets, and the sec-
ond on the syntheticGPT dataset. Subsequently
we generate a parallel dataset using commentaries
from the same newspaper domain as our primary
clean inputs, matching the original Train data. We
name the respective parallel datasets reverseGold,
and reverseGPT.

Data augmentation evaluation. To evaluate the
efficacy of ChatGPT in generating artificial data,
we select 10, 000 parallel sentences from synthet-
icGPT, 10,000 examples from reverseGPT, and
10, 000 parallel sentences from the original train-
ing set. We then further fine-tune each model on the
original training dataset and the two synthetically
generated reverse noised datasets, aiming to assess
if these artificially crafted datasets can replace the
gold standard training set. Figure 4 shows our re-
sults. In our initial tests (Figure 4.a), fine-tuning
the AraT5,, model exclusively on the 10, 000 sen-
tences from syntheticGPT, registers an F; of 65.87,
and reverseGPT an F; score of 46.85 falling be-
hind the original QALB 2014 training data (which
records an F; of 68.34). Following this, when fur-
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I SyntheticGPT QALB 10,000 [l ReverseGPT
73.0 729 711
64.0 w2 83 650 =2 65.2 648 65.8 8.5 683 63.0

60 g 55.8
g 46.9
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Precision Recall F1 F0.5 Precision Recall F1 F0.5
Metrics Metrics
(a) Base model trained on respective datasets (b) Base model futher fine-tuned on original dataset
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o a2 S 453
g o 252 30

22.8 26.7 248
204
04
Precision Recall F1 F0.5 Precision Recall F1 F0.5

Metrics

(c) Base model futher fine-tuned on reverseGPT

Metrics

(d) Base Model futher fine-tuned on reverseGold

Figure 4: Scores of models fine-tuned on 10, 000 parallel sentences from different sources: Original training data,
syntheticGPT, and reverseGPT evaluated on the QALB-2014 Test set.

ther fine-tuned on the original training set (Fig-
ure 4.b). We find that both syntheticGPT and the re-
verseGPT surpass model fine-tuned on equivalent-
sized gold dataset, with F; of 69.01 and 68.54,
respectively. This confirms the utility of ChatGPT
for generating synthetic data. Conversely, when
we further fine-tune the model with the two reverse
noised datasets (see Figures 4.c and d), we observe
a sharp decline in performance. This emphasizes
the critical importance of relevant, high-quality syn-
thetic data over randomly generated samples.

5.1 Decoding Methods.

Decoding strategies for text generation are essen-
tial and can vary based on the task (Zhang et al.,
2023). We compare three decoding strategies to
identify the best method for AGEC task. As shown
in Table 3, we compare greedy decoding (Ger-
mann, 2003) (temperature=0), Beam search (Fre-
itag and Al-Onaizan, 2017) (num_beams=5, tem-
perature=1), and Top-P sampling (Holtzman et al.,
2019) (top-p=0.8, top-k=75, and temperature=0.8).
With the highest scoring strategy identified, we
scale up our data augmentation experiments, by
generating sets of Smillion and 10million re-
verseGold datasets. In addition to these datasets,
we utilize the complete AGEC dataset from Soly-
man et al. (2021) (referred to as AraT5,, (11M) in
our experiments) for further evaluation.

Outlined in Table 4, AraT5,, shows consistent
improvement as the number of training samples
increases from 5M to 11M. Results indicate Top-
P sampling is the best decoding method for GEC,
exhibiting a balance between number of correct

QALB-2014 QALB-2015

Strategy

P R Fy Fos ‘ P R Fp Fos

Greedy  74.095057 6563505 69,6005 72.23%055 | 67412082 66.855097  67.13%082 67,3008

Beam 75ATEML 68,6112 7187EMY 73,9914 | 7054304 68043014 69.275024 70032035

Top-p  76.945067  69.26¥073 72905068 75.27X067 | 72,643032 74212075 73412051 72,9420

Table 3: Performance of AraT5,, (11M) on QALB-2014
and 2015 Test set under different decoding methods.

Dataset: QALB-2014 QALB-2015
atasets

3 R F Fs | ® R F Fus
M1 71354014 64455040 67.735017  69.8550% | 69.65407 647405 6711014 68,6103
M2 73.14%020 67485107 70.23+015 72 37H105 | 70264110 65,74+ 67.935127  69.31%120
M3 76.945067 692607 72905065 75275067 | 72644032 74214075 73414051 72.94+039

Table 4: Performance of AraT5y, models using the *Top-
P’ decoding method on QALB-2014 and 2015 Test sets,
on different amounts of training data. M1 : AraT5,;

(5M), M2 : AraT5,, (10M), M3 : AraT5,, (11M)

edits and total number of edits made.

6 Sequence Tagging Approach

In this section, we detail our methods to adapt the
GECToR model (Omelianchuk et al., 2020) to ex-
periment with the seq2edit approach.

Token-level transformations. We first perform
token-level transformations on the source to re-
cover the target text. ‘Basic-transformations’ are
applied to perform the most common token-level
edit operations, such as keeping the current to-
ken unchanged (SKEEP), deleting current token
(SDELETE), appending new token t_; next to
the current token x; (SAPPEND_t;) or replac-
ing the current token x; with another token t_s
(SREPLACE_ to). To apply tokens with more task-
specific operations, we employ ‘g-transformations’
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QALB-2014 QALB-2015

Methods  Models

Fos

T0 015 g3 £018
mTs
Seq2Seq
AraBART

66.14 011
66.76 007

AraT5,> 71.68 £0%%

Error Type Incorrect Sentence Correct Sentence

ARBERTY2
ARBERT,
Seqzedit
MARBERT,,  T:
MARBERT,»

51.56 2029 68,46 £02

Table 5: Performance of the seq2edit approach com-
pared to baselines on the QALB-2014 and QALB-2015
Test sets. T: Models trained on 3-stage training.

such as the (SMERGE) tag to merge the current to-
ken and the next token into a single one. Edit space
after applying token-level transformations results
in KEEP (725K op), SREPLACE_to (201K op),
SAPPEND_t; (75K op), SDELETE (13K op),
and SMERGE (5.7K op) tags.

Preprocessing and fine-tuning. We start the pre-
processing stage by aligning source tokens with tar-
get subsequences, preparing them for token-level
transformations. We then fine-tune ARBERT,,
(Elmadany et al., 2022) and MARBERT,, (Abdul-
Mageed et al., 2021) on the preprocessed data. We
adhere to the training approach detailed in the orig-
inal paper (Omelianchuk et al., 2020), adopting its
three-stage training and setting the iterative correc-
tion to three. More details about the fine-tuning
procedure can be found in Appendix C.

Sequence tagging evaluation. As shown in Ta-
ble 5, ARBERT,, and MARBERT,;, exhibit high
precision (e.g., ARBERT,;’s three-step training
is at 74.39 precision). However, relatively lower
recall scores indicate challenges in ability of the
two models to detect errors. Unlike the findings in
the original paper, our implementation of a three-
stage training approach yields mixed results: while
accuracy improves, recall scores decrease, lead-
ing to a drop in the overall F; score (by 0.36 for
ARBERT,; and 1.10 for MARBERT,,, respec-
tively). Consequently, all models fall behind the
’seq2seq’ models. We note that both ARBERT,,
and MARBERT,, surpass mT0 and mT5 in terms
of Fy 5 scores, highlighting their abilities in correct-
ing errors with precision.

7 Error Analysis

7.1 Error type evaluation.

We use the Automatic Error Type Annotation
(ARETA) tool (Belkebir and Habash, 2021) to
assess our models’ performance on different er-
ror types. We focus on seven errors types: Or-
thographic, Morphological, Syntactic, Semantic,

. Mo, Jo ) . 2l |
Orthographic oAl J= ) oA J=)
The man rears the horse. The man the horse.
P . CoAl e Je ) CoAN S )
The man, rides the horse. The man rides the horse.
Lo S e e Ve de
Syntax S 2C PR O IS I
He found a man riding a hors. He found a man riding a
C A S e e e S
Merge oAl S o A
Tomorrowtheman will ride the horse. will ride the horse.
. Al S > )V s . | I
spis AN 4 o) AN )
The man ri des the horse. The man the horse.
. Al 4k 3 | . Al b . |
Semantic oA A G R ) oA Al 2 )
The man is sitting in the horse’s back. The man is sitting on the horse’s back.
. S, o W lae . ] I
Morphological e Al =) oA J=J)

Tomorrow the man rode the horse.  Tomorrow the man the horse.

Table 6: Examples of Merge, Morphological, Ortho-
graphic, Punctuation, Semantic, Split, and Syntactic
errors, along with their corresponding corrections and
English translations.

Punctuation, Merge, and Split. Examples of each
error types alongside their translations can be found
in Table 6. We examine top models from each
approach, including ARBERT,, (3-step), GPT-4
(5-shot) + CoT, and AraT5,,(11M). Figure 5 illus-
trates the performance of selected models under
each error type. AraT5,,(11M), surpasses all other
models across all error categories. In particular, it
excels in handling Orthographic (ORTH) errors,
Morphological (MORPH) errors, and Punctuation
(PUNCT) errors, consistently achieving over 65 F;
score. However, it is worth observing that all mod-
els encounter challenges with Semantic (SEM) and
Syntactic (SYN) errors. These disparate outcomes
underscore the significance of selecting the appro-
priate model based on the error types prevalent in
a specific dataset.

7.2 Normalization methods.

In addition to the ‘Exact Match’ score, we also
analyze system performance under different nor-
malization methods. Namely, we assess the system
on normalized text (1) without Alif/Ya errors, (2)
without punctuation, and (3) free from both Alif/Ya
and punctuation errors. Examples of text under
each setting can be found in Appendix D.1.

7.3 Normalisation results

Looking at Table 7, in the ‘No punctuation’ set-
ting, all models perform better, reflecting models’
limitations in handling punctuation which is due to
absence of clearly agreed upon punctuation rules
in Arabic. Moreover, the datasets used are based
on commentaries where punctuation is inherently
inconsistent and varied. Another noteworthy obser-
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Figure 5: Best model F; scores for each approach on specific error types in the QALB-2014 Test set.

Exact Match No Alif/ Ya Errors

Test Set

No Punctuation and Alif/ Ya Errors

P R Fio Fos 13 R

Fio

Fos P R Fro Fos P R Fio Fos

65.79 -
63.23 50.86

61.96 5147

o
QALB-2014 i
ARBERT,, (3-step)

ATy (11m)

17.34%030 5779020 T 41862024

69.26507 72,9006 5 5256051

56.7
54.73
50.89+0-17

57.060.05

60.89 76.99 60.56 69.45 76.99 49.91 60.56 69.45

56.90 74.50 78.15
5 57.83%0.00
T 8467025

76.33 75.28 60.06 65.75

20.30%0-61
67.40£053

62.78 6112
47742003

76.70£052

58.46%098 | 76.90%0%%5 4 67,9407 | 56.66%057 38.62%0:99

60.162935 | 8g.52%0:50 85775039 | 79 442051 72.92£052

80.23 63.59 70.91

72.87 43.20

49.83 39.97
30,1707

43515050

Cha 3
QALB-2015
ARBERT,; (3-step)

AraTSy (11m)

61.84%0-49

57.19

38.92
146475047
48.89%022

70.84 85.8 81.7 84.11 80.12 58.24 67.45 74.52

32.95 53.38
66.00£017
85825081

54.96
64.00%028
5 73815028

54.00 33.33
71182016

75.08%018

46.77
39.00%057
53.30%0-98

38.02
50.39+0.7%
62.34%0-60

35.36
61.00%0-49
69.40%0-20

52.34%0.13 65.74%018

s2.8120-11 82.87£0-50

Table 7: Results on QALB-2014, QALB-2015 Test sets under Normalization Methods.

vation is the drop in F; scores when Alif/Ya errors
are removed. This can be attributed to the fact
that Alif/Ya errors are relatively simpler compared
to other error categories. Moreover, AraT5,; is
trained on formal texts such as AraNews (Nagoudi
et al., 2020) and Hindawi Books 2, which contain
proper Alif/Ya indicating the model’s proficiency
with the correct usage of these letters.

8 Discussion

LLMs and ChatGPT. ChatGPT demonstrates re-
markable ability to outperform other fully trained
models by learning from only a few examples, par-
ticularly five-shot under both few-shot CoT and EP
prompting strategies. Nevertheless, ChatGPT’s per-
formance lags behind AraT5,, and AraBART, sug-
gesting potential areas for improvements in prompt-
ing strategies to fully exploit ChatGPT models.
Models such as Vicuna-13B as well as those trained
on multilingual datasets like Bactrian-X;;;,,,-7B
and Bactrian-Xp,0,-7B, tend to perform better.
However, these models fail to match ChatGPT’s
performance which reinforces ChatGPT’s superior-
ity in this domain.

Seq2seq approach. Despite being smaller in size,
pretrained Language Models (PLMs) often outper-
form LLMs, especially models specifically trained
for Arabic tasks, such as AraT5,, and AraBART.

2www.hindawi.org/books

In contrast, mT0 and mT?5, both of which are mul-
tilingual models, are surpassed by ChatGPT when
using both prompting strategies from 3-shot, but
still outperform smaller LLMs such as LLaMA,
Alpaca and Vicuna. Moreover, the results under-
score the advantages of synthetic data for PLMs, as
evidenced by the consistent improvement in scores
with additional data.

Seq2edit approach. These models exhibit high
precision scores and relatively low recall scores,
suggesting their strengths in making corrections
rather than detecting errors. This trend can be ex-
plained by the absence of g-transformations. For
instance, in the case of English GECToR mod-
els, g-transformations enable a variety of changes,
such as case alterations and grammatical transfor-
mations. However, in this work we only rely on
the *merge’ g-transformations from the GECToR
model as crafting effective g-transformations for
Arabic, a language with rich morphological fea-
tures, poses significant challenges, limiting the
model’s ability to effectively detect errors. Devel-
oping specific g-transformations for Arabic could
significantly improve performance in these models.
Data augmentation. Data augmentation results
underscore the potential of synthetic data, gener-
ated by ChatGPT, in enhancing model performance.
Our findings reveal that not just the quantity, but
the quality of synthetic data, is crucial for achiev-
ing optimal performance. The relative underperfor-
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Exact Match
Test Set Models xact Vate

P R Fro Fos

Solyman et al. (2021) 79.06 65.79 71.82 75.99
Mohit et al. (2014) 73.34 63.23 67.91 71.07
GPT4 (5-shot) 69.46 61.96 65.49 67.82
ARBERT,, (3-step) 74.17F022 47.34%0-30 66.62%026
AraT5,; (11m) 76.94%07 69.26F073 75.27%067

QALB-2014 57.79%0-29

72.90£068

Solyman et al. (2021) 80.23 63.59 70.91 76.24
Rozovskaya et al. (2015a) 88.85 61.76 72.87 81.68
ChatGPT (3-shot) + EP 52.33 47.57 49.83 54.10
ARBERT,; (3-step) 73.92%0-28 61.84F049 68 56E039
AraT5,; (11m) 72.10%0-31 72847040 79 40%0-30

QALB-2015 53 15£0.59

73.59£070

Table 8: Results on QALB-2014, QALB-2015 Test sets
compared to recent works.

mance of models further trained with synthetically
generated data examples emphasizes this conclu-
sion. Improvements we observe when expanding
the dataset from SM to 10M and from 10M to 11M
are similar, even though the quantity of additional
data vary. This can be attributed to the quality
of the sources as the data for SM and 10M were
derived from noisier online commentaries, while
the 11M data was derived from the OSIAN cor-
pus (Zeroual et al., 2019). Furthermore, our results
on decoding methods on scaled datasets indicate
that the chosen method can significantly influence
precision and recall, emphasizing the need to select
the right method depending on the specific task at
hand.

Best model in comparison. Although our main ob-

jective is not to develop the best model for AGEC,
our AraT5y, (11M) model as detailed in Table 8
excels in comparison to previous SOTA (71.82 vs.
72.90). It is worth noting that contemporaneous
work by Alhafni et al. (2023) introduces a new
alignment algorithm that is much better than that
employed by the shared task evaluation code we
use. They also present an AGEC model. In per-
sonal communication with the authors, they con-
firmed their alignment algorithm through which we
can perform direct and fair comparisons, and the
data split on ZAEBUC dataset (Habash and Pal-
freyman, 2022) will be released once their work
is published through peer-review. Different from
their work, our models are also dependency-free.
For example, we do not exploit any morphological
analyzers.

9 Conclusion

This paper provided a detailed exploration of the
potential of LLMs, with a particular emphasis on
ChatGPT for AGEC. Our study highlights Chat-
GPT’s promising capabilities, in low-resource sce-
narios, as evidenced by its competitive perfor-
mance on few-shot setttings. However, AraT5,,

and AraBART still exhibit superior results across
various settings and error types. Our findings also
emphasize the role of high-quality synthetic data,
reinforcing that both quantity and quality matter
in achieving optimal performance. Moreover, our
work unveils trade-offs between precision and re-
call in relation to dataset size and throughout all the
other experimental settings. These insight, again,
could inform future strategies for improving GEC
systems. Although our exploration of ChatGPT’s
performance on AGEC tasks showcases encourag-
ing results, it also uncovers areas ripe for further
study. Notably, there remains significant room for
improvement in GEC systems, particularly within
the context of low-resource languages. Future re-
search may include refining prompting strategies,
enhancing synthetic data generation techniques,
and addressing the complexities and rich morpho-
logical features inherent in the Arabic language.

10 Limitations
We identify the following limitations in this work:

1. This work is primarily focused on MSA and
does not delve into dialectal Arabic (DA) or
the classical variety of Arabic (CA). While
there exist DA resources such as the MADAR
corpus (Bouamor et al., 2018), their primary
application is for dialect identification (DID)
and machine translation (MT), making them
unsuitable for our specific AGEC objectives.
A more comprehensive coverage could be
achieved with the development and introduc-
tion of datasets specifically tailored for the
dialects in question.

2. This work aimed to examine the potential of
LLMs, with an emphasis on ChatGPT, by
comparing them to fully pretrained models.
However, uncertainty surrounding the extent
of Arabic data on which ChatGPT has been
trained, poses challenges for direct compar-
isons with other pretrained models. Addi-
tionally, LLMs are primarily fine-tuned for
English-language data. While prior studies
have demonstrated their effectiveness in other
languages, the limited amount of pretraining
data for non-English languages complicates a
straightforward comparison.

3. The scope of this work is primarily centered
on sentence-level GEC. This limitation arose
due to the official ChatGPT API, at the time
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of our study, allowed a maximum of 4,097 to-
kens, making it unsuitable for longer texts and
precluding document-level GEC tasks. How-
ever, it’s worth noting that document-level cor-
rection, offers a broader context that’s vital for
addressing certain grammatical inconsisten-
cies and errors (Yuan and Bryant, 2021). With
the recent introduction of a newer API that ac-
commodates extended texts, future endeavors
can potentially address document-level GEC,
utilizing datasets such as QALB-2015 L2 and
the newly introduced ZAEBUC corpus.

11 Ethics Statement and Broad Impact

Encouraging research development and con-
tributing to a collaborative research culture.
Progress in AGEC has been stagnant for a long
time due to the lack of benchmark datasets. This
can be attributed to the extensive time and cost
involved in creating these datasets. As a result, ad-
vancing AGEC has proven challenging. With the
recent development of LLMs and their capabilities,
there is potential for these models to expedite the
creation of datasets. By doing so, they can sig-
nificantly reduce both time and cost, as has been
observed in other languages. We hope our work
will inspire further exploration into the capabilities
of LLMs for AGEC, thus aiding in the progress of
this field.

Advancing Second Language Learning through
LLMs. With increasing interest in second language
learning, ensuring accuracy and effectiveness of
written language has become significant for peda-
gogical tools. Nowadays, individuals treat LLMs
as their own writing assistants. Therefore, LLMs
in the context of educational applications and more
specifically GEC is becoming increasingly impor-
tant. As such, introducing works in the develop-
ment of tools that aid assistance in writing can help
bridge the gap between non-native speakers and
fluent written communication, enhancing the effi-
cacy of educational tools. Especially with Arabic,
being a collection of a diverse array of languages
and dialectal varieties, we hope this will inspire
more work to ensure comprehensive coverage and
improved support for all learners. However, it is
crucial to emphasize the ethical implications of us-
ing Al-driven educational tools. It’s essential that
these tools remain unbiased, transparent, and con-
siderate of individual learning differences, ensur-
ing the trustworthiness and integrity of educational
platforms for every learner.

Data privacy. In relation to the data used in this
work, all datasets are publicly available. Therefore,
we do not have privacy concerns.
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A Related Works

Sequence to sequence approach. Transformer-
based Language Models (LMs) have been integral
to advancements in GEC. These models have sub-
stantially transformed the perception of GEC, re-
framing it as a MT task. In this framework, erro-
neous sentences are considered as the source lan-
guage, and the corrected versions as the target lan-
guage. This perspective, which has led to SOTA
results in the CONLL 2013 and 2014 shared tasks
(Bryant et al., 2022; Ng et al., 2013, 2014), reinter-
prets GEC as a low-resource or mid-resource MT
task. Building on this paradigm, Junczys-Dowmunt
et al. (2018a) successfully adopted techniques from
low-resource NMT and Statistical Machine Trans-
lation (SMT)-based GEC methods, leading to con-
siderable improvements on both the CONLL and
JFLEG datasets.

Sequence tagging approach. Sequence tagging
methods, another successful route to GEC, are
showcased by models like GECToR (Omelianchuk
et al., 2020), LaserTagger (Malmi et al., 2019), and
the Parallel Iterative Edit (PIE) model (Awasthi
et al., 2019). By viewing GEC as a text editing
task, these models make edits predictions instead
of tokens, label sequences rather than generating
them, and iteratively refine predictions to tackle de-
pendencies. Employing a limited set of output tags,
these models apply edit operations on the input se-
quence, reconstructing the output. This technique
not only capably mirrors a significant chunk of the
target training data, but it also diminishes the vo-
cabulary size and establishes the output length as
the source text’s word count. Consequently, it cur-
tails the number of training examples necessary for
model accuracy, which is particularly beneficial in
settings with sparse human-labeled data (Awasthi
et al., 2019).

Instruction fine-tuning. LLMs have revolution-
ized NLP, their vast data-learning capability en-
abling diverse task generalizations. Key to their en-
hancement has been instructional finetuning, which
fortifies the model’s directive response and miti-
gates the need for few-shot examples (Ouyang
etal., 2022; Wei et al., 2022b; Sanh et al., 2021). A
novel approach, Chain of Thought (CoT), directs
LLMs through a series of natural language reason-
ing, generating superior outputs. Proven beneficial
in ’Let’s think step by step’ prompts (Wei et al.,
2022b), CoT has harnessed LLMs for multi-task

cognitive tasks (Kojima et al., 2022) and achieved
SOTA results in complex system-2 tasks like arith-
metic and symbolic reasoning.

ChatGPT. In the specific realm of GEC, LLMs
have demonstrated its potential. Fang et al. (2023)
applied zero-shot and few-shot CoT settings us-
ing in-context learning for ChatGPT (Brown
et al., 2020) and evaluated its performance on three
document-level English GEC test sets. Similarly,
Wu et al. (2023) carried out an empirical study to
assess the effectiveness of ChatGPT in GEC, in the
CoNLL2014 benchmark dataset.

Development in AGEC  Arabic consists of a col-
lection of diverse languages and dialectal varieties
with Modern Standard Arabic (MSA) being the cur-
rent standard variety used in government and pan-
arab media as well as education (Abdul-Mageed
et al., 2020). The inherent ambiguity of Arabic
at the orthographic, morphological, syntactic, and
semantic levels makes AGEC particularly challeng-
ing. Optional use of diacritics further introduces or-
thographic ambiguity (Belkebir and Habash, 2021),
making AGEC even harder.

Despite these hurdles, progress has been made
in AGEC. For dataset development, the QALB cor-
pus (Zaghouani et al., 2014) was utilized. Dur-
ing the QALB-2014 and 2015 shared tasks (Mohit
et al., 2014; Rozovskaya et al., 2015b), the first
AGEC datasets containing comments and docu-
ments from both native (L1) and Arabic learner
(L2) speakers were released. Furthermore, the
more recent ZAEBUC corpus (Habash and Palfrey-
man, 2022), which features essays from first-year
university students at Zayed University in the UAE,
has also been released. There has also been work
on generating synthetic data. Solyman et al. (2021,
2023) apply Convolutional neural network (CNN)
to generate synthetic parallel data using unsuper-
vised noise injection techniques showing improve-
ments in the QALB-2014 and 2015 benchmark
datasets. In terms of model development, Watson
et al. (2018) developed a character-level seq2seq
model that achieved notable results on AGEC L1
data, marking prgoress from basic classifier mod-
els (Rozovskaya et al., 2014) and statistical ma-
chine translation models (Jeblee et al., 2014). More
recently, Solyman et al. (2022, 2021) introduced
novel design that incorporates dynamic linear com-
binations and the EM routing algorithm within a
seq2seq Transformer framework.
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B Instruction Fine-tuning LL.Ms

B.1 Instructions for LLMs

Instruction format used for training is provided in
Table 9 and instructions used for training are shown
in Table 10.

B.2 Baseline and experimental setup for
LLMs and ChatGPT

For LLMs, evaluation was only done on the QALB-
2014 Test set, for two main reasons. First was due
to the high cost in producing results using ChatGPT
and we were able to observation of a similar trend
in our preliminary experiment with ChatGPT-3.5
Turbo on the QALB-2015. Second, as instruction
fine-tuned were predominantly compared against
ChatGPT’s performance, we also evaluate them
only on the QALB-2014 Test set. These Results
can be found in Table 11.

C Sequence Tagging Approach

The training procedure detailed in the original
GECToR paper (Omelianchuk et al., 2020) encom-
passes three stages:

1. Pre-training on synthetically generated sen-
tences with errors.

2. Fine-tuning solely on sentences that contain
erTors.

3. Further fine-tuning on a mix of sentences,
both with and without errors.

For our training process, we pre-train the model on
the complete AGEC dataset (Solyman et al., 2021),
use the reverseGold dataset for stage 2, and employ
the gold training data in the third stage. More-
over, as some corrections in a sentence depend on
others, applying edit sequences once may not be
enough to correct the sentence fully. To address
this issue, GECToR employs an iterative correction
approach from Awasthi et al. (2019). However,
in our experiments, we find that the iterative cor-
rection approach does not result in any tangible
improvement. Therefore, we set our iterations to 3.

D Normalization Methods

D.1 Normalization examples

Examples of text under each normalization meth-
ods can be found in Table 12

D.2 Arabic Learner Corpus error type
taxonomy

The ALC error type taxonomy can be found in
Table 13.

D.3 Hyperparameters

The Hyperparameters used for training are shown
in Table 14.

D.4 Dev results

Results on the Dev set are presented in Table 15.

D.5 ARETA results

Full results evaluated using ARETA are presented
in Table 16.
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Fine-tune Instruction Example

3amd Lealle 593, Lo s - 3L} Bl Ladl
Sy Al By ey L)

it g?_}:l\f:i\ g

:JOl el el Mas Y1 el ;
#it ool :

oAl o Je )

s ) ¢

coAl e e )l

Table 9: Modified data format for the LLaMA instruction fine-tuning step.

Translated in English Instructions Samples
Correct all written errors in the following text except for a thousand, ya and punctuation: gl Sldley dly L Gl sl Yol el G 46 s oot §
Please verify spelling, grammatical scrutiny, and correct all errors in the following sentence, except for punctuation: : r(:;JU\ Sldley Lo 1] YO Ll 3 el K memdl 5 (g5l 53l SN 33 el )

Explore the grammatical errors and repair them except for punctuation marks such as a comma, or a question marks, ete: 3] ¢ pliit] Zudle ARWHIg A Sdley Taaill Lasls odlo]y oY1 G cllasf Olael, E

Can you correct all errors in the following text except those related to punctuation such as commas, periods, etc: : é‘h ezl ¢ dollf” f‘\sj}( Sl Gl lasls J\:H ol g Sagar sl sllax ¥l 7 elia o
Can you fix all spelling and grammatical errors, except for the mistakes of the "Alif" and "Ya": ey YL Lol s il & gadly 2250Y1 (e 8 el oiKa o
Please explore the grammatical spelling erors and repair them all, except for the mistakes related to the "Alif" and "Ya" ey Y @) as Y el U LSty samdl 3N 5301 el Olaga] ol )
Correct all the written errors in the following text except for the "Alif" and "Ya": eldly ¥l ) lasls 0 ol 5 2l oY) s
Please correct all errors in the following sentence: A Ll 53y oll clasYI K mmdd <l )

Table 10: Different instructions used for instruction fine-tuning.

Exact Match
P R Fio  Fos

ChatGPT (3-shot) 49.89 46.72 48.22 49.49
ChatGPT (5-shot) 52.33 47.57 49.83 51.15

Settings Models

+ CoT

Table 11: Performance of ChatGPT-3.5 on QALB-2015 Test set.

Normalisation Method Example

Normal LN LY e e 2 Al oy AT 0l s 0 ot oSy Bt ] G ol e o
No Alif/Ya LN LY e e 2 AL 2 AT 0k o5 0l ot oKy Bt Y s ol e o
No Punct ALYl e Wi Al oy DU o i OF ot oKy Bt ] G ol e o
No Alif/Ya & Punct LB e Lie Al 5 U s o O ot oKy Bl Y ol e o

Table 12: Examples of normalized text: with Alif/Ya errors removed, punctuation removed, and both Alif/Ya errors
and punctuation removed.
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Class Sub-class Description

OH Hamza error

oT Confusion in Ha and Ta Mutadarrifatin

OA Confusuion in Alif and Ya Mutadarrifatin
ow Confusion in Alif Fariqa

ON Confusion Between Nun and Tanwin
. 0S Shortening the long vowels
Orthographic oG Lengthening the short vowels
oC Wrong order of word characters
OR Replacement in word character(s)

(0))] Additional character(s)
OM Missing character(s)
00 Other orthographic errors

MI Word inflection

MT Verb tense

MO Other morphological errors

XF Definiteness
Morphological XG Gender

XN Number

XT Unnecessary word
XM Missing word
X0 Other syntactic errors
SW Word selection error
Semantic SF Fasl wa wasl (confusion in conjunction use/non-use)
SO Other semantic errors
PC Punctuation confusion
Punctuation PT Ur.lne.cessary pun?tuatlon
PM Missing punctuation
PO Other errors in punctuation
Merge MG Words are merged
Split SP Words are split

Table 13: The ALC error type taxonomy extended with merge and split classes

Hyperparameter Seq2seq Decoder Only (LLMs) Seq2Edit Encoder Only

Learning Rate 5x107° 2x107° 1x107°

Train Batch Size 4 8 8

Eval Batch Size 4 8 8

Seed 42 42 42

Gradient Accumulation Steps 8 8 8

Total Train Batch Size 32 64 64

Optimizer Adam (betas=(0.9,0.999), epsilon=1 X 10’8) AdamW (betas=(0.9,0.999), epsilon=1 x 10’7) AdamW (betas=(0.9,0.999), epsilon=1 x 10’8)
LR Scheduler Type Cosine Linear Cosine

Num Epochs 50 4 100

Table 14: Summary of hyperparameters used for model training.
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Settings Models Exact Match No Alif / Ya Errors No Punctuation No Puncation and Alif / Ya Errors
P R Fro Fos P R Fro Fos | P R Fro Fos | P R Fro Fos
ARBERTV2  73.30 47.85 5790 6625 | 6560 4420 5281 59.81 | 72.38 4875 5826 6598 | 5740 3390 4263 5041
Seq2Edit ARBERT,; 3-stage  74.65 4670 5746  66.67 | 6500 4120 5043 5827 | 7550 4450 5600 6627 | 5570 27.50 36.82  46.22
MARBERT,, 7295 47.65 57.65 6595 | 6460 4320 5178 5878 | 73.72 44.16 5523 6502 | 5680 3420 4269  50.17
MARBERT,; 3-stage 7455 4575 5670 6621 | 6510 4130 50.54 5837 | 7541 4552 5677 6666 | 5600 2920 3838  47.31
TLama-7B 5820 3250 4171 5025 | 3550 1670 2271 2808 | 19.60 5430 28.80 2247 | 65.10 32.00 4291  53.94
Alpaca-7B 4220 3120 3588 3942 | 4220 3340 3729 40.09 | 8220 6220 70.81 7723 | 6220 3950 4832  55.79
LLMs Vicuna-13B 6390  51.00 5673  60.82 | 5140 3930 44.54 4842 | 8390 7390 7858 81.69 | 6850 49.00 57.13 6345
Bactrian-Xpoon-7B 60.80 4380 5092 5642 | 5370 41.00 4650 5057 | 79.40  63.00 7026 7547 | 62.00 5100 5596  59.44
Bactrian-Xpma-7B ~ 58.60 4140 4852 5410 | 5100 3810 43.62 4777 | 77.00 5920 6694 7263 | 5860 4810 5283  56.15
mTO0  69.35 5429 6090 65.70 | 5745 4250 4886 5367 | 82.35 7534 78.69 80.85 | 7020 5030 5861  65.05
mT5  69.00 5320 60.08 6513 | 5670 39.50 4656 52.16 | 81.00 70.00 7510 7853 | 68.00 4800 5628  62.77
AraBART 7200  61.50 6634  69.62 | 60.00 4970 5437 57.61 | 8500 7850 8162 8362 | 7400 6050 6657  70.84
Seq2Seq AraT5,, 7450 6450 69.14 7226 | 6350 5270 57.60 61.00 | 88.00 8450 8621 8728 | 81.50 6950 7502  78.78
AraT5,, (SM) 7533 6744 7117 7361 | 6455 5155 5732 6145 | 89.22 8340 8621 87.99 | 8130 7024 7537  78.82
AraT5,; (I0M) 7590 6833 7192 7425 | 6534 5244 5818 6228 | 89.88 8422 8696 88.69 | 8234 7144 7650  79.90
AraT5,; (1IM)  77.85 6890 73.10 7588 | 6633 5520 60.26 63.76 | 90.10 8521 8759 89.08 | 8455 7150 7748 8157
Table 15: Dev Set results on the QALB-2014 benchmark dataset.
CLASS GECToR_ARBERT five-shot_2014_expertprompt  five-shot_2014-chatgptd  AraT5 (11M) COUNT
OH 73.73 89.80 92.91 87.34 4902
oT 76.59 94.12 95.58 90.84 708
OA 78.63 84.66 88.93 87.35 275
ow 38.57 80.79 86.96 83.70 107
ON 0.00 0.00 0.00 0.00 0
oG 48.00 55.74 63.64 90.32 34
oC 21.43 28.57 53.66 87.18 22
OR 38.24 53.02 65.96 77.10 528
OD 33.76 51.89 59.60 73.07 321
OM 41.80 44.53 57.35 86.44 393
00 0.00 0.00 0.00 0.00 0
MI 11.02 13.25 20.53 75.00 83
MT 0.00 7.84 11.43 62.50 7
XC 32.95 46.10 50.78 88.35 526
XF 6.06 17.98 23.81 76.92 29
XG 37.10 19.57 31.35 89.47 79
XN 25.19 25.79 31.25 88.12 108
XT 3.95 3.78 5.48 2.48 66
XM 2.04 4.14 6.38 1.07 26
X0 0.00 0.00 0.00 0.00 0
SW 50.51 21.25 33.38 8.29 219
SF 0.00 6.67 3.45 57.14 3
PC 60.89 56.25 47.59 74.98 713
PT 29.62 29.58 21.40 57.42 480
PM 55.24 54.21 52.09 67.08 5599
MG 25.05 75.96 79.70 64.80 434
SP 42.27 90.93 91.61 86.70 805
micro avg 55.67 60.05 64.51 57.28 16467
macro avg 30.84 39.13 43.51 61.62 16467
weighted avg 56.98 66.96 68.24 76.35 16467

Table 16: Analysis of Error Type performances on the QALB-2014 Test set.
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Abstract

Recent advancements in self-supervised
speech-representation learning for
automatic speech recognition (ASR)
approaches have significantly improved
the results on many benchmarks with
low-cost data labeling. In this paper, we
train two self-supervised frameworks for
ASR, namely wav2vec, and data2vec, in
which we conduct multiple experiments
and analyze their results. Furthermore, we
introduce Aswat dataset, which covers
multiple genres and features speakers
with vocal variety. Aswat contains 732
hours of clean Arabic speech that can be
used in the pretraining task for learning
latent speech representations, which
results in achieving a lower word error
rate (WER) in Arabic ASR. We report
the baseline results and achieve state-of-
the-art WERs of 11.7% and 10.3% on
Common Voice (CV) and the second
round of Multi-Genre Broadcast (MGB-
2) respectively, as a result of including
our dataset Aswat.

Index Terms: Automatic
recognition,  Self-supervised
wav2vec, data2vec.

speech
learning,

1 Introduction

Automatic speech recognition (ASR) is the task
of transcribing speech audio into text. Supervised
deep learning has shown a notable improvement
in speech recognition, providing significant gains
in tasks rich in labeled data. Unfortunately, this
reliance on labeled data limits the extent to
which deep learning can advance, primarily
because of the scarcity of labeled data in some
tasks. Recently, self-supervised approaches have
overcome this problem and made it possible to
reach outstanding results with a limited labeled
dataset (Baevski et al., 2020; Hsu et al., 2021;
Baevski et al., 2022). Self-supervised learning

*Equal contribution
“Work done in Tahakom

aalessab5.c@ksu.edu.sa

3Center for Complex Engineering Systems, Saudi
Arabia,,Massachusetts Institute of Technology, USA,

4Intelmatix, Saudi Arabia

elaf@mit.edu ralagil@intelmatix.ai

leverages raw waveforms to learn representation

that captures low level features and underlying
structure of the data. The learned representations
in the pretraining phase are used in downstream
tasks in a supervised phase with a minimal
amount of labeled data.

Arabic is one of the most spoken

languages worldwide, with over 400 million
speakers (Graves, and Jaitly, 2014). It is
considered challenging to process automatically
due to various internal factors, including multiple
dialects, ambiguous  syntax,  syntactical
flexibility, and diacritics (Hussein et al., 2022).
However, Modern Standard Arabic (MSA) is one
formal dialect that is understood by the majority
of Arabic speakers. It is the formal spoken and
written dialect that is often used in formal
speech, news broadcasts, radio, and newspapers.
It is also taught in schools and universities
(Ryding , 2005).
In our work, we utilized the self-supervised
frameworks wav2vec (Baevski et al., 2020) and
data2vec (Baevski et al., 2022), and released
dataset Aswat (Voices), on which we trained the
ASR systems. Aswat is a well-organized,
unannotated dataset of Arabic speech, of which
66% is in MSA (Modern Standard Arabic). We
carefully curated and manually cleaned it, and it
includes speakers from various demographic
backgrounds. It has 732 hours of speech
constructed from audio files on the internet; thus,
it covers a variety of audio files recorded from
different speakers and under various recording
setup environments. Aswat leads to the learning
of useful latent speech representations during the
pretraining task in wav2vec (Baevski et al.,
2020) and data2vec (Baevski et al., 2022). This
results in state-of-the-art performance in Arabic
with a word error rate (WER) of 11.7% on
Common Voice (CV) and 10.3% on MGB-2,
achieved with fewer training instances compared
to the second round of Multi Genre Broadcast
(MGB-2). The original audio files are crawled
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Dataset Dialect Domain Split #Hours #Segments
Common train 31.5 27,823
Voice MSA Monologues valid 12.7 10,386
test 12.6 10,388
vep.y  MSA(70%), DA News: Conversation — o 1,128 376,011
(30%) (63%), interview valid 8.5 5,002
(19%), report (18%) test 9.6 5,365
5 - -
Asat MS(AZ\ 7(30(; A)o)t,hiz;ludl Monologues (45%), train 724.6 502,391
' Dialogues (55%) valid 7.3 5,065

dialects (7%)

Table 1: Comparison between CommonVoice, MGB-2 and Aswat.

from YouTube and Soundcloud; therefore, they
are subject to copyright. We made the dataset
publicly available! for non-commercial purposes.
This paper’s contributions can be summarized as
follows:

¢ Releasing baseline results in Arabic for some
of the most prominent self-supervised models
in speech, namely wav2vec and data2vec.

¢ Providing 732 hours of a high-quality diverse
Arabic speech dataset.

e Comparing the results obtained from
pretraining wav2vec and data2vec on Aswat
with two of the most well-known Arabic
benchmarks in ASR with extensive analysis,
with which we were able to achieve the
lowest WER.

2 Background
2.1. Self-supervised speech models

Self-supervised approaches have led to
significant advances in the field of speech
recognition [1,2,3]. Wa2vec2.0 (Baevski et al.,
2020) is the most prominent self-supervised
approach in speech, and data2vec (Baevski et al.,
2022) is an approach that produced state-of-the-
art results on Librispeech.

2.1.1 Wav2vec

The architecture consists of three components: a
feature encoder where the audio waves are
encoded with a stack of 1-D convolutional
layers, a quantization module to map the
resulting latent representations into a discretized
space, and a contextual network used during the
pretraining where a span of the resulting
representations are masked and fed into a context

! https://github.com/AswatDataset/AswatDataset
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network that follows the transformer network. It
learns contextualized representations and tries to
distinguish them from quantized distractors via a
contrastive task. The pretrained model is fine-
tuned by projecting a linear head on the top of
the context network with connectionist temporal
classification (CTC) loss (Baevski et al., 2020).

2.1.2 Data2vec

Data2vec is a unified framework that works with
three modalities (images, text, and speech)
separately. It learns to construct representations
that are continuous and contextualized. For
speech data, the audio inputs are encoded by 1-D
convolution layers. Then, the resulting latent
representations are fed into a standard
transformer network. The architecture consists of
a single model with two modes: student and
teacher. In the student mode, the model encodes
a masked version of the representation, and in the
teacher mode, it encodes the unmasked version
of the representation to construct the training
targets. The model’s training mode is
parameterized by an exponential moving average
(EMA) of the student’s parameters. The student’s
learning task is to minimize the objective
function of the student’s prediction of a target
that is constructed by the teacher’s parameters.
Similar to wav2vec, the model is fine-tuned with
CTC loss (Baevski et al., 2022).

2.2. Annotated datasets

While the audio datasets in Arabic are still scarce
compared to other languages, there is an increase
in the recent work to bridge the gap such as: the
datasets of Multi-Genre Broadcast challenge,
MGB-2 (Ali et al., 2016), MGB-3 (Ali et al.,
2017), MGB-5 (Ali et al., 2019), Arabic
Mozilla’s Common Voice?, ADI-17 (Shon et al.,

2 https://commonvoice.mozilla.org/ar/datasets
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2020), QASR (Mubarak et al., 2021), MASC
(Al-Fetyani et al., 2021), and SADAS3. In our
work, we consider the most well-known Arabic
labeled datasets in ASR, namely Common Voice
and the second round of MGB. Moreover, they
are publicly available datasets that focus on MSA
speech and are commonly used in literature, we
used them for comparison and benchmarking.

2.2.1 Common Voice

Mozilla’s CV is a platform that provides a public
audio dataset with multiple languages powered
by the voices of volunteers around the world, it
allows users to record and validate other people’s
recordings. In this paper, we used Arabic CV
version 8.0 that was released on January 19,
2022 and recorded by 1,216 volunteers?.

2.2.2 MGB-2

MGB-2 uses a multi-dialect dataset with 70%
MSA and 30% Dialectal Arabic (DA). It includes
programs recorded from 2005 to 2015. The
training script is aligned using the QCRI Arabic
LVCSR system, and it is manually transcribed
but not always verbatim; it includes rephrasing,
removal of repetition, and summarization,
whereas the validation and test sets are
transcribed verbatim. These alterations lead to
variation in the transcripts’ quality; the WER
between the original transcribed text to the
verbatim version is about 5% in the validation set
(Ali et al., 2016). The dataset includes a large
corpus of 130 million words from Al-Jazeera
website. We used this corpus for language
modeling.

Table 1 depicts the two datasets’
information, excluding the overlapping segments
from MGB-2 in the validation and test sets.

3 Related Work

In (Ashish et al., 2017), the first transformer-
based architecture was introduced to better
parallelize self-attention mechanisms.
Furthermore, when applied to ASR tasks, Karita
et al., (2019) demonstrated that transformer-
based models outperformed state-of-the-art
recurrent neural networks (RNNs). In the ASR
task, self-supervised approaches, such as [1, 3],
have recently shown significant improvement.
The main difference between them is that

3 https://www.kaggle.com/datasets/sdaiancai/sada2022

wav2vec learns discrete units of speech during
pretraining through a quantitation process, and
data2vec directly predicts contextualized latent
representations without quantization.

Although the literature on E2E models
trained on Arabic speech is limited, researchers
have done valuable work that is essential to the
community. In (Ali et al., 2018), the authors used
CTC and RNNs, and the reported results were on
the MGB-2 development set, without any further
results on the test set. In (Belinkov et al., 2019),
the authors analyzed the learned internal
representations and compared phonemes and
graphemes as well as various articulatory
features using DeepSpeech2, an end-to-end ASR
model. In Taha Zouhair's work*, the author used
wav2vec model on CV benchmark, achieving a
WER of 24 %. Belinkov et al. (2019) utilized the
transformer architecture with CTC and attention
objectives resulting in a WER of 12.5 % in an
MSA task on MGB-2. More recently,
Chowdhury et al. (2021) proposed a multilingual
strategy for dialectal code switching in Arabic
ASR. Using end-to-end transformer models
reported in (Belinkov et al., 2019) for Arabic,
they achieved state-of-the-art results with a WER
of 12.1 % demonstrating the effectiveness of
multilingual approaches. In our work, we
constructed a high-quality dataset and reached
state-of-the-art WERs on two well-known
benchmark datasets, by pretraining self-
supervised architectures, namely wav2vec2.0
(Baevski et al., 2020) and data2vec (Baevski et
al., 2022).

4  Aswat Dataset
4.1. Dataset construction

During the dataset construction phase, we started
by selecting Arabic audio data with clear
pronunciation, and targeted various speech data
recorded under multiple settings, such as
audiobooks, news, podcasts, and lectures. It
covers multiple genres, including politics,
philosophy, history, health, folklore, religions,
sports, economy, and science. The data includes
clear conversation in an interview-like setting
without any overlapping speech. We obtained
1060 audio files from two platforms: YouTube
and SoundCloud. The former is a video-sharing

4 https://www.diva-portal.org/smash/get/diva2:
1579121/FULLTEXTOL.pdf

122



service, and the latter is a service for sharing
audio and music.

4.2. Dataset cleaning

We cleaned the dataset manually to improve
speech intelligibility and find better speech
representations. All audio files were reviewed to
remove noise such as background music using
Audacity tool®.

4.3. Data preprocessing

We reduced the number of channels from stereo
to mono-channel and resampled the wave rate to
16 kHz. Finally, we split the audio into segments
ranging in length from 3 to 27 seconds, based on
silence regions using Pydub Python Package®.
Details of Aswat are presented in Figure 1.
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MSA/Levantine 1 6.47%
1 5.47%
8 MSA/Saudi 1 5429
= 1 3.71%
a Egyptian 1.22%
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North African 0.05%

z E e 7 54%
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S
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A g~ 54 55%
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ESTE® 0.91%

z" 8
i e 32 31%
g Female m 16.89%
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Figure 1: Aswat Statistics.
5 Experimental Settings
5.1. Acoustic model

5.1.1 Data preparation

For the acoustic modeling, we segmented the
MGB-2 audio files on the timing information
provided in the XML files. Then, we converted
the audio files of CV and MGB-2 to mono-
channel, resampled their rates to 16 kHz, and
exported the audio files into FLAC format. We
excluded the overlapped speech from MGB-2
validation and test sets.

5 https://www.audacityteam.org
6 https://github.com/jiaaro/pydub

For the transcription, we preprocessed
the transcripts by removing punctuation,
diacritics, and any other characters except for the
Arabic letters. For the numbers in MGB-2
transcription, we reported the results of two
different preprocessing techniques: 1) converting
numbers to numerals (words); and 2) removing
data entries in the training set that have numbers
in their transcription.

5.1.2 Pretraining

We used the implementation of wav2vec and
data2vec in fairseq (Ott et al., 2019). We
considered only the BASE models and used the
same fairseq hyper-parameters (Ott et al., 2019).
Moreover, we initialized the models with the
fairseq pretrained weights of Librispeech and
started the training without resting the optimizer.
For pretraining, we ran three experiments: 1) we
trained the models on Aswat; 2) we trained the
models on MGB-2; and 3) we trained the models
on a combined dataset (C.Dataset) of Aswat and
MGB-2. The purpose of these experiments is to
compare Aswat to MGB-2 and determine which
model provides better speech representations for
Arabic when they are fine-tuned on the same
task. We did not train a model on CV because it
is relatively small and pretraining requires a large
dataset. For the validation task in the first
experiment, we randomly sampled 1% of Aswat
dataset and set it as the validation set, and we
used the rest for training because self-supervised
approaches need substantial data for the
pretraining task.

In pretraining data2vec models, the
training crashed in the early epochs of the model
that was trained on MGB-2, and it crashed in the
later epochs of the two other models with the
following message: “Minimum loss scale
reached (0.0001).” which is caused by the loss
overflow. We were able to delay the crashing to
later epochs by setting the fp16 scale tolerance to
0.25. We used 16 Tesla V100 (32GB) GPUs for
each experiment and chose the training
checkpoints with the lowest loss on the
validation set.

5.1.3 Fine-tuning

In this stage, we fine-tuned the pretrained models
on the labeled data CV and MGB-2 separately.
For hyper-parameter selection, we used the
configurations of Librispeech-100h for CV and
Librispeech-960h for MGB-2 as they resulted in
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the best WERs compared to other Librispeech
configurations, we used the same settings except
for the max update where we increase it to
640000.

However, we encountered the same issue
in fine-tuning that appeared while pretraining our
model: the training crashed at early epochs. To
train the model for longer epochs, we reduced the
batch size and switched from fp16 to fp32. We
conducted each experiment on 8 Tesla V100
(32GB) GPUs and chose the models with the
lowest WER on the validation set.

5.2. Language Model

We considered a transformer-based language
model (LM) provided in fairseq (Ott et al., 2019)
to decode the results of the speech recognition
models. We used MGB-2 corpus for this task and
cleaned the text by removing extra new lines and
any non-Arabic characters. Then, we split the
text into sequences with a maximum length of
300 words and an overlap of 50 words.

The model was trained on 8 Tesla V100
(32GB) GPUs with the same data splitting
approach and hyper-parameters in fairseq (Ott et
al.,, 2019). We tuned the hyper-parameters
Im_weigh and word_score and obtained the best
results from the wvalues 0.2 and -0.2,
respectively.

6 Results and Discussion
6.1 Fine-tuning on Common Voice

We used Arabic CV version 8.0 in training the
speech models. Table 2 shows the results of
evaluating the models on CV test set, and we
decoded the results using LM with beams 5 and
20.

Model Unlabeled No LM, LM,
Data LM beam=5 beam=20
Aswat 16.4% 16.1% 15.9%
wav2vec MGB-2 18% 17.3% 17.2%
C.Dataset 16.5%  16.3% 16.1%
Aswat 12.1% 13.1% 13%
data2vec MGB-2 155% 15.5% 15.3%
C.Dataset 11.7% 12.6% 12.5%

Table 2: WER on the CV test when training on the
CV training set. The best results in each framework
are in bold, and the second best results are underlined.

For fine-tuning on CV, we achieved the
best results for data2vec models from pretraining
on the combined dataset, followed by Aswat, and
then MGB-2. For wav2vec, pretraining on Aswat
yielded a lower WER than the combined dataset,
as Table 2 shows. Additionally, the significantly
lower WER achieved by pretraining on Aswat
compared to MGB-2 could be attributed to one
of two factors: (1) the similarity between Aswat
and CV, as they both contain monologue speech,
or (2) Aswat has better speech representation,
and better generalization. We were able to
achieve a state-of-the-art WER of 11.7% on
Arabic CV benchmark with the ASR model
alone. Decoding with LM resulted in improving
the WER of the wav2vec models, but it increased
the WER for data2vec, except for the model
trained on MGB-2.

Our explanation for the LM performance
is that the LM is trained on news data (MGB-2)
which has a different domain from common
voice (i.e. blog posts, books, movies). In
data2vec, the acoustic model (AM) has good
results, but LM tends to replace unseen or
infrequent words generated by AM with words
from its dictionary, which results in increasing
WER score. In wav2vec, the AM generates texts
that contain non-real words, which are
subsequently corrected by the LM. While it's true
that the LM occasionally replaces correct words
with incorrect ones, the frequency of such cases
is significantly lower than the instances where it
makes correct predictions. As a result, this
contributes to an improvement in WER.

Analysis of the best model errors in
Table 2 shows that most errors are substitution
errors. Such errors occur due to the similarity in
pronunciation of some Arabic sounds between
MSA and DA. For instance, the model has many
substitutions between (s (sin) and 2= (sad),
A (dad) and J% (dal), and 3= (dad) and s
(za"). Also, some errors occur due to the features
that cannot be automatically captured by the
model, such as the rules of writing the variations
of the 33 (hamzah) which indicates a glottal
stop. In Arabic, there are two types of 3)x
(hamzah) or glottal stops: Hamzat Al-Wasl and
Hamzat Al-Qata’a. Hamzat Al-Wasl is written as
an <l (Calif) without the 3% (hamzah) marker,
and it is only pronounced if it is in the beginning
of an utterance. In contrast, Hamzat Al-Qata’a is
written as an <l (alif) with the 3% (hamzah)
marker, and it is always pronounced.
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6.2. Fine-tuning on MGB-2

For MGB-2, we used PyArabic Python package’

11.4% of the training data and reducing the WER
by 9.6%.

to transform numbers to their verbatim form. The Model Unlabeled  No LM, LM,
WERs of MGB-2 results are reported using the Data LM beam=5 beam=20
evaluation script provided in the MGB challenge Aswat 12.8% 11.8% 11.6%
Github repository®. The table below depicts the
. . MGB-2 12.8% 11.7% 11.6%
results of testing the model with LM decoded wav2vec ° > >
with beams 5 and 20. C.Dataset 12.4% 11.4% 11.2%
Aswat 114%  10.8% 10.7%
Unlabeled No LM, LM,
Model Data LM  beam=5 beam=po data2vec ~MGB-2  11.3% 10.7%  10.7%
Aswat  14.7% 13.1%  12.9% C.Dataset 10.9% 105%  10.3%
- 0 0] 0,
wavovec _ MGB-2  14.2% 12.8% 12.6% Table 4: WER of the second experiment on the MGB-
C.Dataset 14.1%  12.9% 12.5% 2 test. The best results in each framework are in bold,
and the second best results are underlined.
Aswat 13% 12.3% 12.1%
data2vec MGB-2  12.6%  11.9% 11.8% Table 4 depicts the result of the second
experiment. The ASR model shows the best
C.Dataset 12.1% 11.6% 11.4%

Table 3: WER of the first experiment on the MGB-2
test. The best results in each framework are in bold,
and the second best results are underlined.

Table 3 shows that the best obtained
models in wav2vec and data2vec were those
pretrained on the combined dataset, followed by
MGB-2, and then Aswat. The addition of Aswat
to the pretraining improved the WER from
14.2% to 14.1% in wav2vec and 12.6% to 12.1%
in data2vec. The model pretrained only on MGB-
2 has an advantage over the model that was
pretrained only on Aswat because it has seen all
of the data used for fine-tuning, so it has learned
better speech representations for MGB-2 and
therefore yields a better WER.

We noticed from analyzing the errors of
the best model in Table 3 that most errors are
substitutions in numeral words. The model
substitutes the word for “fifteen” in DA _-ilived”
(xmsta:Jt) with its equivalent in MSA “ (i
s_e” (xms (f1t), the word for “sixteen,” *_-&liu”
(sta;Jr) with “3_de < (st €frt), the word for
“seventy,” “Uwmmss”  (wsbfjn) with  “Osmuas”
(wsbfwn), and “two thousand” “usl” (?fjn) with
“oli” (?fan). These errors come from using
PyArabic tool in preprocessing; it converts every
number to its MSA form and uses one
grammatical case: Al-Raf’a case (the nominative
case). We tackled this issue in the second
experiment by dropping examples with numbers
from the training set, resulting in removing

13

7 https://pypi.python.org/pypi/pyarabic
8 https://github.com/qcri/ArabicASRChallenge2016
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results yielded from fine-tuning the data2vec
model that was pretrained on the combined
dataset. In addition, the decoded output shows
that the model predicts the numerical words
correctly. Evaluating the models with the LM
reduced the WERs and closed the gap between
WERs of wav2vec models. We reached a state-
of-the-art (SOTA) WER of 10.3% on the MGB-2
benchmark and outperformed the previous result
of 12.1% (Chowdhury et al., 2021).

Analyzing the errors shows that most of them are
substitution errors between different Hamza
variations and between 4k » <U (ta’ marbatah)
and «& (ha’). In addition, some substitutions
come from removing the Arabic definite article
“d” (Al) and the connected prepositions and
conjunctions from the beginning of the word,
such as removing <& (fa’), <& (ba)’, and 5
(waw).

Additionally, we observed that the model
removes words that are pronounced with an
American English accent, even if they are Arabic
words. This behavior could be attributed to
removing Latin letters from the training script,
although the presence of these letters was very
small in the dataset.

Finally, Tables 2, 3, and 4 show that
data?vec produced better results in all of the
experiments, as (Baevski et al., 2022) claimed
that discrete units are not required with the use of
rich contextualized targets and that learning
contextualized targets during the pretraining
phase leads to better performance. Our empirical
research shows that this claim holds true for
Arabic speech data.



Limitations

While our work achieved state-of-the-art
performance, it has three main limitations. First,
although our dataset was carefully curated and
meticulously cleaned to meet our research
objectives; it is important to note a limitation in
speaker diversity. This imbalance in gender
representation within our dataset can potentially
affect our model's performance indicating the
need for future experiments with more diverse
set of speakers and conducting experiments on
the effect of gender bias in our model’s
performance. Second, while our research used a
self-supervised approach, we confined our
experimentation with fine-tuning on ASR only,
which limited our exploration of other
downstream tasks that may benefit from our
dataset. The focus on ASR was an intentional
choice given its prominence and frequent usage
among speech tasks. Nevertheless, we
acknowledge that the broader applicability of our
dataset across different tasks remains an open
guestion. Third, we did not use the larger version
of wav2vec and data2vec models. Although the
larger model may potentially vyield better
performance, the primary goal of this paper was
to improve Arabic ASR results and reach SOTA
results with our current model configuration. Our
findings have successfully demonstrated the
benefits of our dataset.

7 Conclusion

In this work, we provide the community with 732
hours of a clean and organized Arabic speech
dataset. We report state-of-the-art results for
ASR with data2vec architecture, and by
combining Aswat with MGB-2 in the pretraining
stage, we achieved a WER of 11.7% on CV and
10.3% on MGB-2. In the future work, we plan to
improve our methods by using automatic audio
cleaning tools® and tool in (David at al., 2018) to
collect bigger data and include more dialects. In
addition, we plan to use the LARGE data2vec
and adjust the hyper-parameters based on the
training data to enhance the results.
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Abstract

While significant progress has been made in
benchmarking Large Language Models (LLMs)
across various tasks, there is a lack of compre-
hensive evaluation of their abilities in respond-
ing to multi-turn instructions in less-commonly
tested languages like Arabic. Our paper offers
a detailed examination of the proficiency of
open LLMs in such scenarios in Arabic. Utiliz-
ing a customized Arabic translation of the MT-
Bench benchmark suite, we employ GPT-4 as a
uniform evaluator for both English and Arabic
queries to assess and compare the performance
of the LLMs on various open-ended tasks. Our
findings reveal variations in model responses
on different task categories, e.g., logic vs. liter-
acy, when instructed in English or Arabic. We
find that fine-tuned base models using multilin-
gual and multi-turn datasets could be compet-
itive to models trained from scratch on mul-
tilingual data. Finally, we hypothesize that
an ensemble of small, open LLMs could per-
form competitively to proprietary LLMs on the
benchmark.

1 Introduction

Recently, Large language models (LLMs) have
brought about significant disruptions across var-
ious domains in both research and industry. LLMs
have shown strong capability in solving and gener-
alizing across diverse and complex tasks in natural
language processing (NLP) and beyond. Moreover,
their success in engaging in conversations and ac-
curately following human instructions has been
particularly noteworthy. The recent surge in the
availability of LLMs necessitates extensive bench-
marking and evaluation.

In this work, we analyze the competency of
publicly-available, open LLMs when prompted
with open-ended, multi-turn instructions in a lan-
guage different than English. We compare the qual-
ity of these responses to the ones generated from
equivalent instructions in English in order to iden-

Majd Hawasly
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Figure 1: Performance scores per category for selected
LLMs on the original MT-Bench (Zheng et al., 2023)
for English. The model responses are evaluated by GPT-
4 and scored on a scale of 1 to 10 using criteria of
helpfulness, relevance, accuracy, depth, creativity, and
level of detail.

tify the strengths and weaknesses of these models
in terms of their multilinguality. Specifically, we
study Arabic instructions, but the analysis could be
repeated for any other language. Our study aim to
answer the following questions:

* How do open LLMs fare in following open-ended
instructions written in Arabic? and how do they
compare to GPT models?

» What is the effect of specifically targeting Arabic
when training a model?

* What is the effect of specifically fine-tuning on
Arabic multi-turn instructions?

* How to select a good starting point LLM model
to fine-tune for Arabic instruction following?

We start by a brief overview of the LLM bench-
marking effort in Section 2. We introduce ARABIC
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MT-BENCH in Section 3 as an analysis tool for
multilingual instruction following. Then, we at-
tempt to answer the proposed questions through
a number of analyses in Section 4. Finally, we
conclude in Section 5 with some insights and rec-
ommendations for pushing forward the competency
of Arabic LLMs.

2 LLM Benchmarking

LLMs have shown capabilities that go far beyond
traditional NLP tasks, such as text classification or
multi-choice question answering in some target nat-
ural language. Their ability to generate human-like
text and engage in long conversations in any topic
have opened up a multitude of novel opportunities
and horizons that transcend tasks and languages.
However, many existing benchmarks for LLMs are
still anchored in the conventional NLP paradigm or
support English only. Consequently, these bench-
marks exhibit limitations when it comes to evaluat-
ing the proficiency of LLMs in open-ended gener-
ation, multi-turn tasks, or in languages other than
English.

2.1 Conventional benchmarks

Some of the recent effort in this category include
projects such as HELM (Liang et al., 2022) and
Evaluation Harness (Gao et al., 2021) which are
platforms for LLM benchmarking. Also, stan-
dardized datasets such as MMLU (Hendrycks
et al., 2021), HellaSwag (Zellers et al., 2019),
Truthful QA (Lin et al., 2022), ARC (Mihaylov
et al., 2018) and OpenbookQA (Clark et al., 2018),
amongst many others, are used to evaluate core
LLM capabilities such as commonsense reason-
ing, math, question answering, and factuality. In
addition, some recent works targeted Arabic lan-
guage specifically with suites of tasks and datasets,
e.g. (Khondaker et al., 2023; Abdelali et al., 2023;
Alyafeai et al., 2023).

These benchmarks require specification of
prompts per-task and model, in addition to post-
processing functions to validate model answers
against a gold standard, which might not be straight-
forward and could prove time-consuming. More-
over, with publicly available answer sets, there is al-
ways the potential risk of contamination to the train-
ing data of language models. Furthermore, some
of these benchmarks have been shown to diverge in
certain cases from human judgment (Zheng et al.,
2023), possibly due to their narrow focus.

2.2 Instructional and conversational
benchmarks

Recent efforts on instruction-following bench-
marks, such as Flan (Longpre et al., 2023) and
Super-Naturallnstructions (Wang et al., 2022), or
conversational benchmarks, such as OpenAssis-
tant (Kopf et al., 2023), CoQA (Reddy et al., 2019)
and MMDiag (Feng et al., 2022), present a more so-
phisticated and comprehensive challenge to LLMs,
but they are mostly limited to English, and the di-
versity of the questions are insufficient for the most
advanced LLMs. Translating such datasets to other
language is not a straightforward task, as it requires
a large effort to manually curate the translated ques-
tions and answers for the purpose of ensuring high
quality in the target language.

2.3 Evaluating open-ended questions

When it comes to open-ended tasks, such as cre-
ative writing, human evaluation of LLM responses
is indispensable. Here, a human-in-the-loop acts
as a judge to directly score an LLM response or
to rank responses of multiple LLMs for the best
answer on some question. However, achieving a
reliable benchmark this way is resource-intensive
and lacks scalability. In one application, LMSYS
Chatbot Arena', which is a crowd-sourced LLM
evaluation platform, allows users to use freestyle
prompts for two randomly-selected LL.Ms before
voting for the better response. Benchmarking using
this approach, while very powerful, is challeng-
ing as it compares models evaluated on different
prompts.

An alternative approach that has recently
emerged is the employment of an LLM to act as a
judge of the responses of other LLMs. MT-Bench
(Multi-Turn Benchmark) (Zheng et al., 2023) uti-
lizes this approach on a standard set of 80 open-
ended questions of eight categories; namely: writ-
ing, extraction, reasoning, math, coding, role-play,
humanities, and STEM. Moreover, it assesses the
ability of an LLM to maintain a conversation by
asking it a follow-up question that is based on its
response to the first question. Examples of the
MT-Bench questions are shown in Table 1. These
examples illustrate the level of open endedness and
complexity of the questions, and the dependency
of the follow-up question on the first turn.

MT-Bench prompts a judge LLM with an in-
struction to rate the responses on a scale of 1-10

1https: //chat.1lmsys.org
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Craft an intriguing opening paragraph
for a fictional short story. The story
should involve a character who wakes
up one morning to find that they can
time travel.

Summarize the story with three bullet
T2| points using only nouns and adjectives,
without verbs.

David has three sisters. Each of them
T1| has one brother. How many brothers
does David have?

If we change the previous question
and assume that each sister of David
has two brothers, how many brothers
would David have?

The vertices of a triangle are at points
T1]| (0, 0), (-1, 1), and (3, 3). What is the
area of the triangle?

What’s area of the circle circumscrib-
ing the triangle?

T1

Writing

Reasoning

T2

Math

T2

Table 1: A sample of questions from MT-Bench in cate-
gories Writing, Reasoning and Math. T1 and T2 denote
the first turn and second turn (follow-up) questions, re-
spectively.

(where 1 indicates failure in answering the question
and 10 indicates a perfect answer), clearly defining
the evaluation task and criteria. Also, the judge
LLM is asked to provide an explanation for the
suggested score. This approach has been shown to
have an agreement rate of 85% with human evalua-
tion when GPT-4 is used as a judge (Zheng et al.,
2023), which was also found to be higher than
human-human agreement (81%). MT-Bench scores
for selected LLMs are shown in Figure 1.

The approach of MT-Bench is versatile and scal-
able as it delegates the resource-intensive scoring
of open-ended questions to the judge LLM. More-
over, it could be extended to benchmarking LL.Ms
in other languages by translating the benchmark
dataset to the target language as long as a good
judge LLM exists for that language. For Arabic,
GPT-4 is highly-competent and has showed a good
level of proficiency (Khondaker et al., 2023; Abde-
lali et al., 2023; Alyafeai et al., 2023). Therefore,
it is eligible to be used as a judge for Arabic re-
sponses. Moreover, by using the same prompt for
judging English and Arabic responses for the origi-
nal and translated versions of the same question, it
is even possible to contrast the multilingual skills

of an LLMs at a question and a category level.

3 ARABIC MT-BENCH

In this work, we develop an Arabic version of MT-
Bench. First, we auto-translated the original bench-
marking questions using Google Translate. A thor-
ough manual curation of the translations is then
performed. This step is essential to ensure the qual-
ity of the question set and hence the responses and
the judgment. For example, all people names in
the questions were changed to Arabic names, and
questions about correcting English grammatical er-
rors were re-written. See Table 7 in Appendix A.4
for a sample of curated translated questions 2.

In addition to the questions, the benchmark pro-
vides reference answers for reasoning, math and
code questions that are passed to the LLM judge to
aid in the judgment. One option to get these refer-
ence answers in Arabic is to prompt GPT-4 with the
translated Arabic questions directly, but we decided
instead to translate the original reference answers
from English to ensure that the Arabic scores for
these three categories stay as close as possible to
the English MT-bench scores.

Finally, our initial evaluation showed that some
LLMs tend to respond in English despite the
question being in Arabic. Hence, we decided
to add at the end of each question a clear
instruction to the LLM to respond in Arabic

(dy_)l &L LYl sl JY). We observed that,

without having to modify the original judgment
prompt, GPT-4, acting as an Arabic judge, has
taken into consideration that instruction and scored
lower responses in English.

Table 2 gives an overview of the ARABIC MT-
BENCH dataset.

Number of question categories 8

Number of questions per category | 10

Number of turns per question 2

Number of reference answers 30

Table 2: Statistics of ARABIC MT-BENCH dataset

3.1 Score consistency

In order to answer the question: are the scores
of ARABIC MT-BENCH consistent and coherent
such that it could be used as a metric? and to
qualitatively assess the effectiveness of ARABIC

2ARABIC MT-BENCH is available at
https://huggingface.co/spaces/QCRI/mt-bench-ar
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Common issues in Al assistant responses include: not addressing user’s question, providing irrelevant or
repetitive information, lacking depth, creativity, and accuracy, not following user’s specific instructions, and
not using the requested language. Users often seek detailed, accurate, and creative answers tailored to their
requests, but Al assistants sometimes fail to deliver, resulting in unhelpful or unsatisfactory responses.

Common issues in the Al assistant’s responses include lack of depth, inaccuracies, language inconsistencies,
and not directly addressing the user’s question. Some responses are repetitive and do not provide compre-
hensive analysis or examples. To improve, the Al assistant should focus on directly answering the user’s
question, providing clear and accurate examples, maintaining language consistency, and offering detailed and
informative explanations. Additionally, adhering to specific user instructions and avoiding repetition will

Al assistants provide relevant, creative, and accurate responses to various user requests, demonstrating a
good understanding of topics and user instructions. They offer helpful suggestions, clear explanations,
and maintain requested languages. Responses cover a wide range of subjects, including summarization,
problem-solving, and engaging in fictional conversations. However, there are occasional minor mistakes
and areas for improvement in clarity and depth. Overall, Al assistants successfully address user questions,

Rating | Justification summary
2
4
enhance the overall quality of the responses.
8
providing satisfactory and informative answers.

Table 3: Summaries provided by GPT-4 of the collection of judgment justifications for questiones rated 2, 4 and 8
across all models and tasks. This indicates some level of internal consistency of the ARABIC MT-BENCH scores.

MT-BENCH, we clustered the judgments across all
models and categories by their numerical ratings,
then asked GPT-4 to summarize its justification
texts for every score (1 to 10). In Table 3 are exam-
ples of the justification summaries for some ratings.
While qualitative, we could conclude from this
analysis that the justifications are reasonably con-
sistent across models and categories, indicating an
acceptable level of impartiality. In addition to that,
the correlation between scores using the Arabic and
English benchmarks for strong models, as will be
seen Section 4, is another supporting evidence for
the viability of ARABIC MT-BENCH as a metric.

4 Results and Discussion

4.1 Model selection

In addition to OpenAl GPT-3.5-turbo and GPT-4,
which are only considered in this work to set an
upper bound, a number of open LLMs have been
chosen for this study. Through preliminary evalu-
ations on HuggingFace playground, some LLMs
exhibited knowledge of Arabic despite not being
purposefully trained for it. The criteria we adopted
for choosing models involve:

* the model is open-source. Some competitive pro-
prietary models are not accessible to us.

¢ the model size is 33B or less, a decision driven
by constraints in hardware infrastructure.

 the model is known to do well on the English
benchmarks on the LMSYS leaderboard?

An overview of the chosen models can be seen

3https ://chat.1lmsys.org/?arena

in Table 4, and more details can be found in Ap-
pendix A.3.

4.2 How do open LLMs fare in following
open-ended instructions written in
Arabic?

Table 5 shows the model ranking based on the ARA-
BIC MT-BENCH scores. The first, second and third
columns of the tables give the model’s average
score for the first turn across all questions, the av-
erage score for the second turn across all questions,
and the average of both, respectively. Per-category
scores could be seen in Figure 2. For comparison,
Figure 1 (and Table 6 in Appendix A.1) give the
per-category scores for the original English MT-
Bench for the same models.

As the results show, GPT-4 and GPT-3.5-turbo
are better than any open LLM we tested by a large
margin with average scores of 8.27 and 7.13 out
of 10, respectively. Because GPT-4 is used as the
judge, there exists the potential for bias in favor of
its own responses, which has been discussed in the
MT-Bench paper (Zheng et al., 2023).

In the English MT-Bench, the two GPT models
score 8.99 and 7.0, respectively. Hence, GPT-4
is approximately one point lower in terms of the
Arabic score compared to the English benchmark.
By manual inspection of the responses, we qualita-
tively confirm that the proficiency of GPT models
in Arabic is lower than English as indicated by the
scores. Therefore, we compare the scores across
Arabic and English benchmarks in Section 4.3.

Overall, LLMs fine-tuned specifically for Arabic
or for multilingual capabilities (e.g. Jais, Phoenix)
are better than generic models such as some mem-
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Model Base model Size | Training language Multi-turn
GPT-4 _ >175B | Multilingual v
GPT-3.5-turbo _ 175B | Multilingual v
Jais-13B-chat Jais-13B 13B | EN, AR v
PolyLM-13B _ 13B | Multilingual X
MPT-30B-chat MPT-30B 30B | Primarily English v
LLaMa-2-13B-chat LLaMa-2-13B 13B | Primarily English v
Tulu-30B LLaMa 33B | Primarily English X
Guanaco-33B LLaMa 33B | Primarily English X
Vicuna-33B-v1.3 LLaMa 33B | Primarily English v
BLOOMZ-7B1 _ 7.1B | Multilingual X
BLOOMZ-7B1-MT BLOOMZ-7B1 7.1B | Multilingual X
Noon-7B BLOOM 7B | Multilingual, AR fine-tuning X
Phoenix-chat-7B BLOOMZ-7B1-MT 7B | Multilingual v
Phoenix-inst-chat-7B | BLOOMZ-7B1-MT 7B | Multilingual v

Table 4: Attributes of the chosen models for this study. _ for the ‘Base model” indicates a model that has been
trained from scratch. ‘Size’ is in the number of parameters. ‘Training language’ is the natural language/s that made
up the pre-training and instruction datasets for the model, and ‘Multi-turn’ refers to chat fine-tuning.

coding

writing extraction
7 /\
stem humanities
o 2/ 4=—% & 10
VA =
,//
roleplay math
model gpt-3.5-turbo gpt-4 —— jais-13b-chat llama-2-13b-chat
mpt-30b-chat noon-7b phoenix-inst-chat-7b

vicuna-33b-v1.3

Figure 2: Performance scores per category for selected
LLMs on our Arabic multi-turn benchmark. The model
responses are evaluated by GPT-4 and scored on a scale
of 1 to 10 using criteria of helpfulness, relevance, accu-
racy, depth, creativity, and level of detail.

bers of the Llama family (e.g. Vicuna, Guanaco)
in Arabic instruction following, even when smaller
in size. The fine-tuning data and recipe matters
significantly; for example, Phoenix-inst-chat-7B is
much better then its predecessor Bloomz-7B1 or
Bloomz-7B1-mt.

Jais-13B-chat is the best open model in Arabic in
our evaluation. It achieves an average score of 5.08
out 10. The model has targeted Arabic and English
in both pre-training and fine-tuning. Despite this,
its relatively small size hinders it from being com-
petitive with the best models. Also, it is still far on

Model ‘ Turnl ‘ Turn2 ‘ Avg
GPT-4 8.41 8.12 8.27
GPT-3.5-turbo 7.48 6.79 7.13
Jais-13B-chat 5.01 5.14 5.08
Phoenix-inst-chat-7B | 4.84 3.70 4.27
Llama-2-13B-chat 4.54 3.86 4.20
Phoenix-chat-7B 4.16 3.84 4.00
Vicuna-33B-v1.3 3.44 3.43 343
MPT-30B-chat 3.26 2.62 2.94
Noon-7B 3.39 2.39 2.89
Guanaco-33B 2.68 2.52 2.60
PolyLM-13B 1.91 2.08 1.99
Bloomz-7B1-mt 1.54 1.75 1.64
Bloomz-7B1 1.29 1.54 1.41
Tulu-30B 1.10 1.35 1.23

Table 5: Results of benchmarked LLMs on ARABIC
MT-BENCH (scores between 1-10). showing for each
model average scores per turn, and average score across
all questions and turns.

the English MT-Bench leaderboard from models
of comparable size, where the best model within
13B size in the English MT-Bench achieves a score
above 6 out of 10 (see a selection of these scores
in Table 6 in the Appendix). Also, Jais-13B-chat
model has the largest drop in performance in the
second-turn questions on the English benchmark.
Jais-13B-chat has been benchmarked internally us-
ing a similar approach to ours on private data ac-
cordingly to its technical report (Sengupta et al.,
2023).

We note that the fine-tuning dataset of Jais-13B-
chat is large with over 10M samples. The longer
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period needed for this fine-tuning could raise ad-
ditional challenges as it might increase the risk of
catastrophic forgetting of knowledge gained during
pre-training (Luo et al., 2023; He et al., 2021). For
comparison, Phoenix-inst-chat-7B is ranked sec-
ond among the evaluated open models in our exper-
iment. The model is fine-tuned from a BLOOMZ-
7B1-MT base (Chen et al., 2023). The fine-tuning
dataset has 133 languages with 58% English, 20.9%
Chinese and 0.8% Arabic which is ranked 11th in
language coverage, with a total of 267K instruction-
tuning samples. The conversation-tuning dataset
has 189K samples covering more than 40 lan-
guages. Despite its smaller size and wide coverage
of languages, Phoenix-chat-7B achieves intriguing
results. Figure 3 shows detailed comparison per
category for Jais-13B-chat, Phoenix-inst-chat-7B
and GPT-3.5. The two open LLMs had the lowest
scores on math and reasoning, whereas the highest
scores are on roleplay, humanities and stem.

model ™ gpt-3.5-turbo M jais-13b-chat phoenix-inst-chat-7b

10

8 ‘ ‘
o|| | | |I |I ‘l ‘l ‘l

Co ey, 1, n o/ % Yy,
(o7 7 Uy ) © 7
g Bt %,7% 4 O, 7 g

o

IS

N

Figure 3: Average scores per category for three selected
models evaluated on the ARABIC MT-BENCH.

Vicuna-33B-v1.3 and MPT-30B-chat scored
around 3 out 10, while they were not expected to
have any significant skill in Arabic. One possible
explanation is that given their size over 30B, they
are able to maximize their multilingual skills effec-
tively. This hypothesis needs further investigations.
Despite their low performance, it is interesting to
explore the model development in order to adapt
for training multilingual LLMs.

4.3 What is the effect of specifically targeting
Arabic when training a model?

Figure 4 shows a heat map of the difference in
score per category between the Arabic and the En-
glish benchmarks for the selected models. The

models are sorted from top to bottom based on a
decreasing score differences. Warmer cells in the
figure indicate English advantage over Arabic for
the same model and category, while cooler cells
indicate Arabic advantage.

-5 0 5

guanaco-33b  0.85 3.55 -0.1

vicuna-33b-v1.3 0.1 3.28

0.6

mpt-30b-chat  0.45 2.83 =0.55

llama-2-13b-chat  -1.2 272 3.65 =0E 3.45

phoenix-chat-7b -2.15 0.65 255 -0.05 0.7 1.22 13 2.98
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bloomz-7bl-mt -0.25 0.55 -0.15 -0.85 1.45 -0.6 05 0.2
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Figure 4: Difference of average MT scores between
English and Arabic benchmarks per category. Positive
values (red) indicate English answers are scored higher
that the corresponding Arabic answers, while negative
values (blue) indicate some advantage in Arabic. Neu-
tral colors mean a model is equally-competent in both
languages.

The two GPT models reside in the neutral area,
indicating comparable competency in English and
Arabic. Not surprisingly, Models that have been
pre-trained and fine-tuned on multilingual data (see
Table 4) appear in the bottom half of the heat map,
indicating some Arabic knowledge. Also, it could
be seen from the heatmap that coding and math are
neutral, language-agnostic skills across models, as
should be expected, while reasoning has a lingual
side.

Figure 5 shows the per-turn average scores of
ARABIC MT-BENCH on the X-axis and English
MT-Bench on the Y-axis for the selected models.
Points closer to the diagonal line are models with
similar average performance in Arabic and English,
and the closer to the top right corner the better
the model is on both languages. Most models are
above the diagonal, and hence exhibit relatively su-
perior skills in English compared to Arabic. This is
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likely due to the imbalance in the training and fine-
tuning data between the two languages. Note that
the LLaMa-based models are clustered together far
from the diagonal, indicating lack in multilingual-
ity, while BLOOMZ-7B1-MT and Noon-7B, both
heavily multilingual, are on top of the diagonal.

4.4 What is the effect of specifically
fine-tuning on Arabic multi-turn
instructions?

In Figure 5, the two dots for each model represent
the two turns, and their placement gives an insight
into the ability of a model to engage in a conversa-
tion. Vertical drop between the two turns indicates
diminished performance on English for the second
turn, while horizontal shifts to the left indicates
diminished performance on Arabic for the second
turn.

BLOOMZ-7B1-MT does not degrade on the sec-
ond turn, even though it is not fine-tuned on con-
versational data (Muennighoff et al., 2023), and it
is the only model that is not affected in the sec-
ond turn for both languages, while a capable model
like GPT-4 had a slight improvement on the second
turn for English but had a minor deterioration of
the score for Arabic.

On the other hand, Noon-7B has the largest drop
in score between turns on Arabic. This model is
built on top of BLOOM by instruct fine-tuning
using a combination of datasets with ColossalAl
framework (Bian et al., 2021). Noon-7B* used
GPT-3.5-Turbo as a judge for evaluation on private
data. We also observe that Jais-13B-chat has a large
drop in English multi-turn instructions compared
to a small drop in Arabic, which might be caused
by the ratio of Arabic to English instructions in its
chat fine-tuning.

Phoenix-chat-7B, Noon-7B and BLOOMZ-7B1-
MT are all based on different variants of the back-
bone BLOOM-7B or BLOOMZ-7B. The resulting
models vary a lot in terms of performance, indicat-
ing that a careful fine-tuning recipe is crucial for
improving the capabilities of any base model.

4.5 How to select a good starting point LLM
model to fine-tune for Arabic instruction
following?

We consider the hypothetical optimal ensemble
model defined by the maximum per-question score
across the open models in our experiment. This

4https ://huggingface.co/Naseej/noon-7b

model ® bloomz-7b1-mt gpt-3.5-turbo gpt-4 guanaco-33b
® jais-13b-chat llama-2-13b-chat mpt-30b-chat
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vicuna-33b-v1.3
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Figure 5: Scores in Arabic (X-axis) and English (Y-axis)
MT-Bench for the first and second turn. The farther the
model is from the diagonal, the bigger the gap in quality
between the two languages. The farther Turn 2 is from
Turn 1 for a model, the bigger the change in quality in
responding to continued conversation.

characterizes an upper bound on the performance of
any open LLMs ensemble made from these models.
Based on our ARABIC MT-BENCH, the optimal en-
semble model achieves an MT score of 6.70. This
represents a 32% increase in performance com-
pared to the best individual open LLM (Jais, 5.08).
Also it indicates that a collection of smaller models
trained differently could capture various skills that
might be difficult to capture together in one model
without upping the model size. For the sake of
contrast, for the English benchmark, the optimal
ensemble model achieves a score of 8.2.

Figure 6 shows the contributions of the three
highest-scoring LLLMs per category in the optimal
Arabic ensemble model. We counted how often a
model was the best for a given category and consid-
ered the top 3 models in each. Note that ‘best’ here
is relative to the performance of available LLMs,
and is not an assessment of quality.

As the figure shows, Jais-13B-chat is the top
model in five ‘literacy’ categories, whereas math,
coding and reasoning are shared with LLaMa-2-
13B-chat, Guanaco-33B, and Phoenix-inst-chat-7b.
The challenge is how to define a criterion to select
the best response among the ensemble LL.Ms. One
possible approach is to ask each LLM to vote for
the best answer and consider a majority vote, which
will rely mainly on the ability of these small models
to play the role of a judge in this limited context.
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Figure 6: Contribution of the best three LLMs to the
optimal ensemble model for each category. The Y-axis
indicates how often a model was selected the best in
terms of Arabic MT-score for the questions of a cate-

gory.

We will leave investigating this to future work.

5 Conclusion

In this paper, we propose a framework for ana-
lyzing the effect of multilinguality on LLM per-
formance in open-ended tasks. In particular, we
assessed the interaction between language, dialog
and instruction following in Arabic and English for
small open LLMs. We employ an LLM as a judge
following the paradigm of MT-Bench. We show
the effects of language on different categories of
tasks and suggest ways to ensemble small LLMs to
achieve better performance on the benchmark.

In future work, we plan to extend the benchmark
and analysis with more models and tasks, and in-
vestigate the viability of LLM ensemble models.

6 Limitations

‘We now discuss a number of limitations related to
this study.

6.1 Judging

* The use of an LLM as a judge for evaluating
LLMs has issues related to bias. As reported
in (Zheng et al., 2023), in pairwise comparisons,
the judge tends to favor its own answers com-
pared to other models. For example, that study
shows that GPT-4 favors itself with 10% higher
win rate and Claude-V1 favors itself with 25%
higher win rate. On the other hand, GPT-3.5 does
not appear to favor itself.

* Using GPT-4 as the judge and as an LLM un-
der study might favor it in the scores. However,
the score margin to the closet competitor is big
enough to make any potential deviation in the
scores insignificant, and we adhered to the orig-
inal MT-Bench setup in the choice of judge in
order to mirror the results and measure multilin-
gual competency.

* Other LLM judges than GPT-4 could be consid-
ered for evaluating the responses. However, the
choice of alternative judges is currently rather
limited when considering Arabic. The profi-
ciency of models such as Claude or Bard in Ara-
bic are not yet proven. Alternatively, multiple
LLMs could be used for this task. A voting judg-
ment mechanism could be considered over multi-
ple open LLMs.

* While GPT-4 exhibits competence in Arabic, its
proficiency in the language falls short of its mas-
tery of English. This discrepancy may have had
an impact on certain aspects of our analyses, espe-
cially when comparing Arabic results to English
results.

* We used the same judgment prompt as in the En-
glish MT-Bench for the purpose of consistency.
However, we note that the judgment prompt does
not acknowledge important aspects such as safety
and harmlessness of LLM responses. Also, the
MT-score is a metric that combines multiple di-
mensions such as relevance, helpfulness, and cre-
ativity together to give an aggregate verdict. It
might be useful to analyze model performance
separately on these dimensions for a better un-
derstanding.

6.2 Coverage

* MT-Bench has a limited number of questions
(160 in total considering both turns). This is
likely not representative of the wide spectrum of
tasks needed to effectively evaluate LLMs, and
the authors of MT-Bench are acknowledging that
by working to expand their benchmarking dataset
to 1000 questions. In addition, language-specific
dimensions of conversation might require be-
spoke questions to test properly.

* We only included a small number of models in
the benchmark. During an initial screening, we
excluded several LLMs due to their limited capa-
bilities in Arabic. We plan to extend our bench-
mark and include more LLMs in the future.
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A Appendix
A.1 English MT-Bench scores

Table 6 shows the per-turn and average scores for
the selected models on the original MT-Bench.

Model ‘ Turnl ‘ Turn2 ‘ Avg
GPT-4 8.96 9.02 8.99
GPT-3.5-turbo 8.07 7.81 7.94
Vicuna-33B-v1.3 7.46 6.79 7.12
Llama-2-13B-chat 7.06 6.24 6.65
Guanaco-33B 6.88 6.18 6.53
Tulu-30B 7.02 5.85 6.43
MPT-30B-chat 6.68 6.11 6.39
Jais-13B-chat 6.11 3.84 4.97
Phoenix-chat-7B 5.49 4.31 4.90
Phoenix-inst-chat-7B | 5.46 4.05 4.75
Noon-7B 3.28 2.58 2.93
Bloomz-7B1-mt 1.66 1.84 1.75
Bloomz-7B1 1.39 1.85 1.62

Table 6: Results of benchmarked LLMs on English MT-
BENCH (scores between 0-10). showing for each model
average scores per turn, and average score across all
questions and turns.

A.2 Prompts for LLM Judge

Figure 7 shows the judging prompt for the first-
turn questions in MT-Bench, and Figure 8 shows
the prompt for the second-trun questions.

/Please act as an impartial judge and evaluate the\
quality of the response provided by an AI assistant
to the user question displayed below. Your eval
uation should consider factors such as the help
fulness, relevance, accuracy, depth, creativity,
and level of detail of the response. Begin your
evaluation by providing a short explanation. Be
as objective as possible. After providing your
explanation, you must rate the response on a scale
of 1 to 10 by strictly following this format:
\[[rating]], for example: "Rating: [[5]1]1".

J

Figure 7: LLM judge first turn’s prompt. The high-
lighted text indicates the evaluation criteria.

A.3 Chosen Models

e GPT-4: a proprietary multilingual chatbot by
OpenAl, trained on public and proprietary data
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quality of the response provided by an AI assistant
to the user question displayed below. Your eval
uation should consider factors such as the help
fulness, relevance, accuracy, depth, creativity,
and level of detail of the response. You evalu
ation should focus on the assistant’s answer to
the second user question. Begin your evaluation by
providing a short explanation. Be as objective as
possible. After providing your explanation, you
must rate the response on a scale of 1 to 10 by
strictly following this format: [[rating]], for
Lexample: "Rating: [[5]1]1".

(Please act as an impartial judge and evaluate the\

Figure 8: LLM judge second turn’s prompt. The high-
lighted text in green indicates the evaluation criteria.
The highlighted text in orange indicates the instruction
to focus the evaluation on the answer of the second ques-
tion.

and fine-tuned using reinforcement learning with
human and Al-generated feedback. Allows 8k
and 32k prompts (OpenAl, 2023).

* GPT-3.5-turbo: the predecessor of GPT-4 with
175B parameters.

* Jais-13B-chat: A 13B parameter model that fol-
lows the GPT-3 architecture, pre-trained on 279B
English and 116B Arabic tokens, then fine-tuned
on 5.9 million English and 3.8 million Arabic
supervised multi-turn instructions, and further
fine-tuned for safety (Sengupta et al., 2023).

* Phoenix-chat-7B: A BLOOMZ-based 7B param-
eter model fine-tuned for dialog using online
ChatGPT records and multi-round conversations
(Chen et al., 2023).

* Phoenix-inst-chat-7B: Another 7B model from
the Phoenix family, fine-tuned not only for con-
versations but also for multilingual instruction
following using self-instruct and translators.

¢ Vicuna-33B-v1.3: A 33B LLaMa-based model,
fine-tuned on a ShareGPT.com dataset for instruc-
tion following and multi-turn dialog (Zheng et al.,
2023).

e MPT-30B-Chat: A fine-tuned version of MPT-
30B which is an encoder-only transformer model
trained on 1T English tokens. MPT-30B-Chat
was fine-tuned for chat on a number of pub-
lic datasets including ShareGPT-Vicuna, Camel-
Al, GPTeacher, Guanaco and Baize (MosaicML,
2023).

* Noon-7B: A BLOOM-based 7B parameter
model, fine-tuned on 110k Arabic instructions

from translated datasets including GPT-4 re-
sponses to Alpaca quesitons, Dolly, Truthful QA,
Grade School Math in addititon to self-instruct
questions in Arabic.

* Guanaco-33B: A LLaMa-based model with 33B
parameters, fine-tuned on 534k multiligual in-
structions using the OASST1 dataset. Not chat
trained (Dettmers et al., 2023).

* PolyLM-13B: A decoder-only model of 13B
parameters, pre-trained on a multilingual train-
ing data of 640B tokens, and fine-tuned on
MULTIALPACA that contains 132K multilin-
gual instructions generated in a self-instruct fash-
ion. (Wei et al., 2023)

e Llama-2-13B-Chat: A member of Llama2 auto-
regressive transformer models with 13B param-
eters, pre-trained on 2T tokens with 4k context,
and fine-tuned for multi-turn dialog using super-
vised fine-tuning on public instruction datasets
and reinforcement learning with human feed-
back over more than 1 million human annota-
tions (Touvron et al., 2023).

* BLOOMZ-7B1: A multilingual decoder-only
transformer model trained on 350B tokens includ-
ing 45 natural languages, and fine-tuned on xP3,
a multitask and multilingual instruction dataset.
Recommended for prompting in English. (Muen-
nighoff et al., 2023)

* BLOOMZ-7B1-MT: A version of BLOOMZ-
7B1 fine-tuned on xP3mt, a multitask and
multilingual instruction dataset with machine-
translated prompts in 20 languages. Recom-
mended for prompting in non-English.

e Tulu-30B: A LLaMa-based 33B model fine-
tuned on number of publicly-available instruc-
tion datasets including FLAN V2, CoT, Dolly,
Open Assistant 1, GPT4-Alpaca, Code-Alpaca,
and ShareGPT. (Wang et al., 2023)

A.4 Arabic questions and reference answers

The full set of questions and reference answers
of ARABIC MT-BENCH are available at https://
huggingface.co/spaces/QCRI/mt-bench-ar.

Here in Table 7 we present a sample of the cu-
rated questions.
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Table 7: A sample of translated and curated questions from ARABIC MT-BENCH in categories Writing, Roleplay
and Reasoning. T1 and T2 denote the first and second turn (follow-up) questions, respectively.
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Abstract

In this paper, we study the transferability of
Named Entity Recognition (NER) models be-
tween Arabic dialects. This question is impor-
tant because the available manually-annotated
resources are not distributed equally across
dialects: Modern Standard Arabic (MSA) is
much richer than other dialects for which lit-
tle to no datasets exist. How well does a NER
model, trained on MSA, perform on other di-
alects? To answer this question, we construct
four datasets. The first is an MSA dataset ex-
tracted from the ACE 2005 corpus. The oth-
ers are datasets for Egyptian, Moroccan, and
Syrian which we manually annotate following
the ACE guidelines. We train a span-based
NER model on top of a pretrained language
model (PLM) encoder on the MSA data and
study its performance on the other datasets
in zero-shot settings. We study the perfor-
mance of multiple PLM encoders from the
literature and show that they achieve accept-
able performance with no annotation effort.
Our annotations and models are publicly avail-
able (https://github.com/niamaelkhbir/
Arabic-Cross-Dialectal-NER).

1 Introduction

The Arabic language, encompassing Classical Ara-
bic (CA), Modern Standard Arabic (MSA), and
various Dialects of Arabic (DA), stands out for its
linguistic diversity and intricate morphology. This
linguistic complexity presents a unique challenge
for Natural Language Processing (NLP) tasks, par-
ticularly in the field of named entity recognition
(NER). Modern Standard Arabic serves as the for-
mal reference, and many research efforts have been
dedicated to MSA NER. The literature on MSA
NER methods has witnessed an evolution from
rule-based methods, to machine learning models
based on hand-crafted features and subsequently
deep learning models incorporating rich contextual
representations. Notably, pretrained transformer-

based language models have recently driven signif-
icant advancements in Arabic NER.

Arabic, however, has more than 20 distinct di-
alects and around 100 regional variants, which are
widely used in everyday communication, particu-
larly in digital spaces. This emphasizes the urgent
need for NLP models capable of effectively han-
dling this linguistic diversity. However, these di-
alects exhibit significant linguistic variation, includ-
ing differences in spelling, morphology, and syntax,
making it exceptionally challenging to develop a
unified global modeling approach. Additionally,
there is no standardized spelling for these dialects.
In addition, the scarcity of annotated dialectal data
has been a major obstacle to progress in the field
of dialectal NER.

Our research is driven by the goal of bridging
the linguistic gap between MSA and Arabic di-
alects, specifically in the context of entity recog-
nition. Given the substantial time required for the
annotation process and leveraging the success of
cross-lingual transfer learning, our work focuses
on exploring knowledge transfer in the context of
NER, transferring knowledge from MSA to various
dialects.

Our contributions in this article are two-fold:

* We introduce a NER dataset manually anno-
tated for three dialects: Moroccan, Egyptian,
and Syrian. This dataset is used for evaluation
purposes;

* We propose an efficient span-based NER
model trained on already-available MSA data
and analyze its transferability to other dialects.

2 Dataset and Annotation

In this section, we introduce our datasets for Mod-
ern Standard Arabic and Arabic Dialects (Moroc-
can, Egyptian, Syrian), their construction, and an-
notation guidelines.
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2.1 Modern Standard Arabic Dataset

Our dataset for Modern Standard Arabic is sourced
from the Arabic Corpus ACE 2005 (Walker and
Consortium, 2005). The ACE corpus comprises a
rich collection of text data from diverse sources,
including newswires, broadcast news, and weblogs.
This corpus includes annotations for seven distinct
entity types, namely Persons (PER), Organizations
(ORG), Geographical/Social/Political Entities (GPE),
Locations (LOC), Facilities (FAC), Vehicles (VEH),
and Weapons (VEH). In addition to entity types,
it annotates three entity mention types: Names
(NAM), Nominal Constructions (NOM), and Pronouns
(PRO). The corpus offers annotations for both flat
and nested entities, further including coreference
information.

The MSA dataset we use in this work is based
on ACE 2005. In its construction, we make the
following choices:

* Focus on NAM and NOM entities: we opted
to concentrate exclusively on the recognition
of named entities and nominal constructions
while excluding pronouns. ACE 2005 is no-
table for its detailed annotation, including
pronouns, which is uncommon in the typical
named entity recognition task that primarily
deals with nominal entities and names. Pro-
noun usage exhibits considerable variation,
displaying nuanced distinctions not only be-
tween dialects but even within distinct regions
of the same dialect. Consequently, accurately
annotating pronouns across dialects presents
practical challenges and potential ambiguity,
due to their strong contextual reliance and
the absence of comprehensive dialect-specific
guidelines. The inclusion of pronouns is there-
fore left to future work. For clarity, named
entities include examples such as (y ¢> (John)

and aJl! f‘J (Ramallah), while nominal enti-
ties include examples like u‘\"‘l V (The lawyer)
and sl (Port). Pronominal entities, which
we chose to exclude, include terms such as o
(they), Ul (some), and () 5 J"Cf (many).

* Focus on flat entities: we opted to con-
centrate exclusively on flat entities, omit-
ting nested entities and coreference resolu-

tion. This choice simplifies the task signifi-
cantly by reducing complexity in both annota-

tion and modeling. Nesting and coreference,
while valuable areas of study, introduce intri-
cate challenges, especially in dialectal Arabic,
where linguistic variations are prevalent. Fo-
cusing on flat entities streamlines our research
process, making it more scalable for testing
across dialects.

Considering these two methodological decisions,
we constructed our MSA dataset from the ACE
2005 corpus by randomly selecting 500 sentences.
We provide detailed statistics about these sentences
in the first columns of Tables 1 and 2.

This dataset will be used to train a model and
study its transferability to other dialects. It will
also be used to evaluate models that are trained on
other dialects.

We also extracted an additional 350 MSA sen-
tences to train an MSA model and evaluate it on
the 500 sentences for reference. More details can
be found in the results section (5)

2.2 Annotation Guidelines for Dialects

We introduce concise yet comprehensive annota-
tion guidelines that were used in the annotation
of our dialectal datasets. These guidelines closely
follow the ACE guidelines that were used for the
MSA dataset. The detailed reference is provided by
the Linguistic Data Consortium (LDC) guidelines'.

1. PER (Person): This entity type is used for in-
dividual human beings. It includes:

e Names and surnames of individuals. Ex-
ample: _goy ; s (Mift Romney)

* Group of people. Example: {5\ (The

Sfamily).
* Saints and other religious figures. Exam-
ple: ) (God).

2. ORG (Organization): This entity type is used
for corporations, agencies, and other groups
of people defined by an organization structure.
It includes:

* Commercial organizations. Example:
Ao gy J,(:.a (Microsoft)
* Government organizations. Example:

LU & _=JV (Royal Navy).

"https://www.ldc.upenn.edu/collaborations/past-
projects/ace/annotation-tasks-and-specifications
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* Educational organizations. Example:
5, 92l dasl> (Stanford University).

* Political  parties.
Sl O A (Liberal Party).
* Media. Example: L.l U8y (ANSA
agency).

Example:

3. LOC (Location): This entity type is used for ge-
ographical entities such as mountains, rivers,
seas, and regions that aren’t politically de-

fined. Example: §<euSs g5 Ju* (Northern
New Mexico).

4. GPE (Geographical/Social/Political Entity):
This entity type is used for geographical re-
gions that have a political distinction. This in-
cludes countries, states, provinces, and cities.

Example: K.: J;‘ (America).

5. VEH (Vehicle): This entity type is used for
entities that are primarily designed for trans-
porting goods or people from one place to
another. Example: & s (vehicle).

6. WEA (Weapon): This entity type is used for
devices used with intent to inflict damage or
harm.

* Exploding. Example: };U3 (Bombs).
* Chemical. Example: 3\ (Gas).

 Underspecified. Example: CMM

(Weapon).

7. FAC (Facility): This entity type is used for
buildings or structures. It includes buildings,
houses, factories, stadiums, office buildings,
gymnasiums, prisons, museums, space sta-
tions, barns, parking garages and airplane
hangars, streets, highways, airports, ports,
train stations, bridges, and tunnels. Example:
LWl (The airporr).

We adhere to these guidelines by annotating
the smallest constituent of flat entities. For ex-
ample, consider the entity Samdl &LYoll
(United States champion). In this case, we an-
notate 5>l | LY (United States) as GPE and

JHas (champion) as PER. If our task involved

nested entities, we would have provided addi-
tional annotations for the entire nested entity

amill LYl ey as PER.

Stat MSA Mor. Egy. Syr
Sentences | 500 378 353 361

Tokens 14168 6780 6533 6034
Entities 3030 970 831 956

Table 1: Dialect Dataset Statistics. MSA: Modern Stan-
dard Arabic, Mor.: Moroccan, Egy.: Eyptian, Syr.:
Syrian.

Ent | MSA Mor. Egy. Syr.
FAC | 143 83 63 71
GPE | 923 249 229 331
Loc | 160 191 142 89
ORG | 413 112 77 109
PER | 1269 278 264 307
VEH | 52 45 50 41
WEA | 70 12 6 8

Table 2: Dialect Dataset Statistics by Entity Type. MSA:
Modern Standard Arabic, Mor.: Moroccan, Egy.: Eyp-
tian, Syr.: Syrian.

2.3 Annotation Process of the Dialect Datasets

Our dataset for Arabic Dialects is sourced from the
xP3x corpus (Muennighoff et al., 2022). The xP3x
corpus comprises a vast collection of prompts and
datasets across 277 languages, covering 16 distinct
NLP tasks. This corpus comprises pairs of sen-
tences and their translations in various languages.

3 Task Definition and Model

In this study, we opted to work with three distinct
Arabic dialects: Moroccan, Egyptian, and Syrian.
For each dialect, we selected randomly 500 sen-
tences from the xP3x corpus and tokenized them
by whitespaces before presenting them for annota-
tion. Notably, our annotation process was overseen
by a single annotator, a proficient Moroccan Arabic
speaker, with a deep understanding of Egyptian and
Syrian dialects as well. The limited dataset size
made the use of a single annotator optimal, as this
approach ensured consistency, coherence, and a
manageable workload, minimizing inter-annotator
discrepancies and maintaining unified annotation
styles.

In this study, we chose to investigate three dis-
tinct Arabic dialects: Moroccan, Egyptian, and Syr-
ian. We randomly selected 500 sentences from the
xP3x corpus for each dialect and tokenized them
using whitespace. Our annotation process, carried
out using Label Studio as the annotation tool, was
supervised by a single proficient annotator, fluent
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Dialect

Example

GPE

Moroccan

Lo 1 a1 iy gl daeilsa [t ] ool way oo folol gidl] gaiad 5 1 gand 5y e

Because they succeeded in manufacturing submarines, after the war, the Germans were not sure to take much of it

VEH

Syrian

s[5 a5 ] s iy 3905 255 5 T iy B s

Families with children are very rare, but some hostels give them private rooms

Egyptian

LugygS Ly ibgins Lgigudei m&a Digdaaldl ghill

Most of the objects buried with Tutankhamun are well preserved

PER

Figure 1: Example of annotations from our Dialect Dataset.

in Moroccan Arabic and possessing a strong grasp
of Egyptian and Syrian dialects. Given the lim-
ited dataset size, employing a single annotator was
advantageous for maintaining consistency, coher-
ence, and manageable workloads, thereby reducing
inter-annotator discrepancies and ensuring uniform
annotation styles.

After the annotation process, we only retained
sentences containing entities for our experiments.
For a comprehensive overview of the dataset’s
statistics, please consult Tables 1 and 2. To vi-
sualize examples from our dataset, please refer to
Figure 1.

Named Entity Recognition involves identifying
and categorizing named entities within text into
predefined entity categories. Formally, we frame
the task of NER as a span classification problem.
Given an input sequence: * = {z;}~ ,, our ob-
jective is to classify all potential spans within the
sequence, defined as:

L L
y=J U sije )
i=1j=i
Here, 1, j, and c correspond to the start position,
end position, and span type, respectively. The prob-
ability of a specific span classification y given the
input sequence x is represented as:

exp Y . ey Po(Sijel®)
Zy(x)

po(yle) = ()
In this equation, ¢y(.) is the span scoring func-
tion, and Zy(x) is the partition function. During
training, our objective is to minimize the negative
log-likelihood of the gold span classifications.

Training loss During training, our assumption
allows us to bypass the need to explicitly evaluate

the partition function Zy(x) to compute the loss.
The loss for a single sample (x,y) € T is simply
the sum of loss for all spans in the input:

L(w,y)=— ) logp(cilz) 3)
Cij €Y
where,

exp dg(cij|x)

p(cijlz) = 5 4)

This loss is minimized over the training set using
a stochastic gradient descent algorithm.

Decoding
mine:

During inference, our aim is to deter-

y* =argmax Y dg(sizelx) (5
yey Sijc€Y
In other words, we seek to identify the span la-
beling configuration that achieves the highest score.
For unconstrained span classification, a straight-
forward approach is to assign the label with the
highest score to each individual span, as follows:

Sijer = arg max ¢g(sijc|x) (6)
C

Nonetheless, this decoding approach is not op-
timal since it may result in structural constraint
violations. In our context of flat entities, overlap-
ping entity spans are strictly prohibited. A more
efficient solution, as presented in our prior research
(Zaratiana et al., 2022a,b)?, employs a two-stage
decoding process. Initially, spans predicted as non-
entities are filtered out, followed by the application
of a maximum independent set algorithm to the
remaining spans to determine the optimal set of
entity spans.

Zhttps://github.com/urchade/Filtered-Semi-Markov-CRF
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Token and Span Representations We compute
the span score ¢g(s;jc|x) by performing a linear
projection of the span representation, which is
derived from a 1D convolution applied to token
representations obtained from a transformer-based
model (eg. BERT):
Sije == wE Conv1Dg([his hivs. .. hj))  (7)
Here, h; € RY represents the token representa-
tion at position ¢, k signifies the size of the convo-
lutional filter (corresponding to the span length),
and w, € RP denotes a learned weight matrix
associated with span label c.

4 Experimental Setup

Token Encodings To encode our input tokens,
we use 8 diverse pretrained language models,
i.e trained on diverse dataset sources: Arabic
MSA dataset (ARBERTv2 and CAMeLBERT-
MSA), Arabic dialect dataset (MARBERTYV2 and
CAMeLBERT-DA), Mixture of MSA and Arabic
dialect (AraBERTVv2 and CAMeLBERT-Mix), and
multilingual dataset (nBERT and mDeBERTa).
We detail them below:

* ARBERTV2: (Abdul-Mageed et al., 2021): A
large-scale pretrained masked language model
for MSA with 12 attention layers, 12 heads,
768 hidden dimensions, and 163M parameters,
trained on 61GB of Arabic text.

* MARBERTV2 (Abdul-Mageed et al., 2021):
A large-scale pretrained masked language
model for both DA and MSA, trained on 1B
Arabic tweets (128GB text, 15.6B tokens), us-
ing the same architecture as ARBERT (BERT-
base) without next sentence prediction.

¢ AraBERTV2 (Antoun et al., 2020): The
dataset consists of 77GB Arabic text from
diverse sources. It uses the same architecture
as BERT-Base.

e CAMeLBERT-DA (Inoue et al., 2021): A col-
lection of pretrained BERT models for Arabic
dialects, trained on a diverse dataset of 54GB,
totaling 5.8 billion tokens.

* CAMeLBERT-Mix (Inoue et al., 2021): A col-
lection of pretrained BERT models for Arabic,
including MSA, DA, and CA, trained on a di-
verse dataset of 167GB, totaling 17.3 billion
tokens.

* CAMeLBERT-MSA (Inoue et al., 2021): A
collection of pretrained BERT models for
MSA, trained on a diverse dataset of 107GB,
totaling 12.6 billion tokens.

* mBERT (Devlin et al., 2019): The multilin-
gual version of BERT pretrained on the top
104 languages with the largest Wikipedia us-
ing a masked language modeling (MLM) ob-
jective.

* mDeBERTa: A multilingual version of De-
BERTa (He et al., 2020) trained with CC100
multilingual data.

Hyperparameters We train all our models up to
convergence. We use a training batch size of 12
and a validation batch size of 32. We employed a
learning rate of 2e-5 for the pre-trained parameters
and a learning rate of 3e-3 for the other parameters.
We used a batch size of 8 and trained all the models
to convergence (near O training loss). For testing,
we use the last model, given the limited availability
of validation data in our dataset. To manage the
complexity of the task, we impose a constraint on
the maximum span length, setting it to a maximum
width of K = 10. This constraint significantly
reduces the number of segments from L? to LK.
The pretrained transformer models were loaded
from HuggingFace’s Transformers library, we used
AllenNLP for data preprocessing. We trained all
the models on a server equipped with V100 GPUs.

Evaluation Metrics We adopt the standard NER
evaluation methodology, calculating precision (P),
recall (R), and F1-score (F), based on the exact
match between predicted and actual entities.

5 Results

The main results of our experiments are shown in
Figure 2. We conducted two primary experiments:
firstly, training on Modern Standard Arabic, and
evaluating on dialects, and secondly, reversing this
configuration, training on individual dialects and
assessing on MSA. For both scenarios, we used the
complete dataset outlined in Table 1. In addition,
we conducted MSA-to-MSA experiments, where
we evaluated our model on the MSA dataset speci-
fied in Table 1, while the training set consisted of
a random selection of 350 sentences drawn from
the original Arabic ACE dataset, using the same
preprocessing steps detailed in Section 2.1.
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Figure 2: Comparative performance of models across different training and testing settings in terms of F1 score.

MSA-to-MSA The performance metrics reveal
that MSA-to-MSA settings consistently yield the
highest accuracy across all tested configurations,
a result that aligns with expectations given that
Modern Standard Arabic often serves as the
benchmark for Arabic language tasks. Interest-
ingly, most backbone models such as ARBERTV2,
mDeBERTav3, CAMeLBERT-MSA (Inoue et al.,
2021), CAMeLBERT-Mix (Inoue et al., 2021),
AraBERTV2 and MARBERTV2 demonstrate com-
parable performance, suggesting that their archi-
tecture and training data are well-suited for MSA-
centric tasks. Two models, however, diverge from
this trend. CAMeLBERT-DA (Inoue et al., 2021)
exhibits an 8% drop in performance compared to
the other language models, which can be attributed
to its focus on dialectal data during training. This
specialization likely limits its ability to generalize
effectively to MSA. Similarly, mBERT performs
less well. As a multilingual model, mBERT may
suffer from language interference or tokenization
issues, given its training on a diverse corpus where
Arabic is not the dominant language.

MSA to Dialects When training models on the
MSA dataset, the observed performance metrics in-
dicate a hierarchical trend among the tested Arabic
dialects. The best performances are systematically
obtained with the Syrian dialect, followed by the
Egyptian dialect, and finally the Moroccan dialect.
This gradient could be indicative of the linguis-
tic similarities and differences between MSA and

Test Best Model Avg. F1
Egyptian CAMeLBERT-MSA  59.74
Moroccan AraBERTv2 55.24
Syrian ARBERTV2 68.10

Table 3: Best-Performing Language Model for test Di-
alect (F1-score).

Train Best Model Avg. F1
Egyptian MARBERTYV2 58.75
Moroccan MARBERTvV2 61.38
Syrian CAMeLBERT-MSA  63.24

Table 4: Best-Performing Language Model for train
Dialect (F1 score).

these dialects. The Syrian dialect may share more
syntactic and semantic features with MSA, allow-
ing models trained on MSA to generalize more
easily to Syrian. On the other hand, the Moroccan
dialect appears to be the most divergent from MSA
among the tested dialects, resulting in the lowest
performance scores. This could be due to unique
lexical, grammatical, or even phonological features
that are not adequately captured when a model is
trained solely on MSA data.

Dialects to MSA  Similar to the MSA to dialects
scenario, the best test performance on MSA is ob-
tained when models are trained on the Syrian di-
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alect, followed by the Egyptian dialect and finally
the Moroccan dialect. This pattern aligns well with
the earlier observation that models trained on MSA
perform best on the Syrian dialect, thereby suggest-
ing a mutual linguistic affinity between Syrian and
MSA. Models trained on Egyptian also perform
relatively well, reinforcing the notion of shared lin-
guistic features between Egyptian and MSA. Con-
versely, the Moroccan dialect, which was identified
as the most challenging for models trained on MSA,
also proves to be the least effective training data
for models tested on MSA. This consistent under-
performance across both scenarios could point to
a greater linguistic divergence between Moroccan
and MSA, which may involve lexical, syntactic, or
phonological differences not easily bridged by the
models in question.

Optimal Language Model for MSA Training
When training with an MSA dataset, AraBERTv2
emerges as the top-performing language model,
with an average score of 65.12 across various
Arabic dialects. The strength of this model can
be attributed to its well-balanced training regi-
men, which combines both MSA and dialectal
data, resulting in a harmonious blend of specializa-
tion and generalization. Models explicitly trained
on MSA, namely ARBERTv2 and CAMeLBERT-
MSA, closely follow in terms of performance,
underscoring the effectiveness of MSA-focused
training. In contrast, dialect-specific models like
MARBERTvV2 and CAMeLBERT-DA still deliver
respectable results, although falling behind their
MSA-centric counterparts. Interestingly, multilin-
gual models like mDeBERTav3 and mBERT rank
lower in performance, possibly due to language
interference issues. Overall, our data suggests that
a balanced training approach, as exemplified by
AraBERTYV2, offers the most effective strategy for
tasks involving MSA and its various dialects.

Optimal Language Models for Each Dialect
Our investigation underscores the significant im-
pact of the choice of language model on the perfor-
mance of dialectal NER tasks. We find that for the
Egyptian and Moroccan dialects, MARBERTv2
excels as the most effective model. This can be at-
tributed to its specialized training on dialectal data,
allowing it to capture the nuances specific to these
dialects and deliver superior results. In the case of
the Syrian dialect, CAMeLBERT-MSA takes the
lead. Interestingly, this model is primarily trained

Dialect Mixture Mono (Best)
ARBERTvV2 64.56 58.57 (Syr.)
AraBERTv2 58.61 55.92 (Syr.)
CAMeLBERT-DA 54.84 50.20 (Syr.)
CAMeLBERT-Mix 61.49 61.60 (Syr.)
CAMeLBERT-MSA  63.30 63.24(Syr.)

mBERT 58.60 56.05 (Syr.)
MARBERTvV2 66.10 61.38 (Mor.)
mDeBERTav3 60.27 55.92 (Syr.)

Table 5: Performance for MSA when training on a mix-
ture of dialects. We compare the result with the best
obtained result when training on a single dialect.

on MSA but appears to generalize well to the Syr-
ian dialect, perhaps due to linguistic similarities
between the two. This emphasizes the importance
of model-dialect congruence, where using a model
trained on the same or similar dialect as the dataset
can yield better performance.

Training on Mixture of Dialects In the context
of training on a mixture of Arabic dialects and
evaluating on the Modern Standard Arabic (MSA)
dataset, our analysis reveals intriguing insights into
the impact of dialectal diversity on MSA perfor-
mance. Remarkably, the performance metrics sug-
gest that training on a mixture of dialects consis-
tently yields competitive accuracy on the MSA
dataset. This shows that exposure to a diverse range
of dialects during training can enhance a model’s
adaptability and robustness, enabling it to perform
well on MSA.

Effect of Increased MSA Training Data While
training on a diverse range of dialects typically
enhances performance for Modern Standard Ara-
bic (MSA), it is important to note that training on
additional MSA data may not necessarily lead to
improved performance in dialects, as demonstrated
in Table 6.

6 Related Work

Named Entity Recognition for Modern Stan-
dard Arabic The development of Named En-
tity Recognition techniques in Modern Standard
Arabic has been a central focus within the Ara-
bic NLP community. Initially, rule-based NER
systems like those described in Shaalan and Raza
(2008); Abdallah et al. (2012) relied on manually
crafted grammatical rules and gazetteers. While
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Model ARBERTV2 MARBERTvV2 AraBERTv2 CAMeLBERT-DA CAMeLBERT-Mix CAMeLBERT-MSA mBERT mDeBERTav3
Egyptian 55.42 58.29 60.38 53.65 55.19 60.28 53.92 56.78
Moroccan 53.03 54.35 54.52 44.43 50.43 53.31 47.57 51.30
MSA 84.96 84.02 86.61 80.49 84.10 85.51 81.90 84.71
Syrian 65.51 64.45 66.87 57.68 62.81 66.47 59.82 63.36

Table 6: Effect of Increased MSA Data on Performance.

effective, these systems demanded extensive main-
tenance and lacked scalability. Subsequently, ma-
chine learning-based NER methods, as demon-
strated by Benajiba and Rosso (2007); Al-Qurishi
and Souissi (2021), treated NER as a classification
task, leveraging large annotated datasets. This era
also witnessed the fusion of rule-based and ma-
chine learning-based approaches through hybrid
systems (Oudah and Shaalan, 2012; Meselhi et al.,
2014), followed by the adoption of deep learning
techniques, which allowed for the automatic extrac-
tion of intricate features. Deep learning, character-
ized by neural networks processing word and char-
acter embeddings, marked a departure from manual
feature engineering, resulting in significantly im-
proved accuracy and a more streamlined approach
to Arabic NER. In recent years, pretrained lan-
guage models (PLMs) such as BERT (Devlin et al.,
2019) have opened up a new era in Arabic NER.
Arabic-specific PLMs, such as AraBERT (Antoun
et al., 2020) and AraELECTRA (Antoun et al.,
2021), have been meticulously developed and fine-
tuned for NER tasks, offering the advantage of
context-rich information. This evolution has given
rise to a multitude of high-performance systems
(Helwe et al., 2020; El Khbir et al., 2022).

Additionally, extensive annotation efforts have
led to the creation of high-quality MSA NER
datasets. ACE 2005 (Walker and Consortium,
2005) comprises a diverse text collection with an-
notations for seven entity types (PER, ORG, GPE,
LOC, FAC, VEH, WEA), three mention types (NAM,
NOM, PRO), and coreference information. ANER-
corp (Benajiba et al., 2007) comprises articles from
diverse sources. It includes traditional entity types
(ORG, LOC, PER) and introduces a MISC (miscel-
laneous) type. AQMAR (Mohit et al., 2012) com-
prises hand-annotated text extracted from Arabic
Wikipedia articles. It includes 28 articles catego-
rized by domain, each tagged with named entities
and custom entity classes. Wojood (Jarrar et al.,
2022) comprises text sourced from different do-
mains and manually annotated with 21 entity types,
including both flat and nested entities.

Datasets and Named Entity Recognition for Ara-
bic Dialects Few works addressed NER for Ara-
bic dialects. Zirikly and Diab (2014) introduced an
annotated dataset and a named entity recognition
system tailored to the Egyptian dialect. However,
their evaluation focused solely on two entity types:
PER and LOC. In a subsequent work, Zirikly and
Diab (2015) presented a gazetteer-free NER sys-
tem tailored to the Egyptian dialect, evaluated on
three entity types: PER, LOC, and ORG. Additionally,
Moussa and Mourhir (2023) introduced a manually
annotated NER dataset for the Moroccan dialect,
which comprises 4 entity types: PER, LOC, ORG and
MISC.

7 Conclusion and Future Work

In this work, we explore transfer learning for
named entity extraction, specifically from Mod-
ern Standard Arabic (MSA) to various Arabic di-
alects, employing a range of pretrained language
models. For this purpose, we annotated a dataset
including Moroccan, Syrian, and Egyptian dialects.
Our results showed that for both MSA-to-dialects
and dialects-to-MSA scenarios, Syrian data demon-
strated superior performance, which suggests a ro-
bust linguistic affinity between the Syrian dialect
and MSA. Similarly, Egyptian models exhibited
strong results. In contrast, models trained on the
Moroccan dialect consistently face challenges, in-
dicating substantial linguistic divergence between
Moroccan Arabic and MSA.

In future work, we plan to include a wider range
of Arabic dialects to better understand the nuances
and generalization of our results across different
dialectal variants. In addition, we plan to explore
the nested entity task.

Limitations

While our study provides valuable insights into
the transfer learning of named entity extraction be-
tween Modern Standard Arabic and Arabic dialects,
it is important to acknowledge certain limitations:

¢ We focus on three Arabic dialects: Moroccan,
Syrian and Egyptian. While they offer a rep-
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resentative sample of the diversity of Arabic,
extending our dataset to other dialect variants
would enable us to generalize our findings
more effectively.

* The annotation of our dataset relies on a sin-
gle annotator, which may be a potential source
of bias. Future work should consider the in-
volvement of multiple annotators to assess
inter-annotator agreement and ensure labeling
robustness.
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Abstract

Product information in e-commerce is usually
localized using machine translation (MT) sys-
tems. The Arabic language has rich morphol-
ogy and dialectal variations, so Arabic MT
in e-commerce training requires a larger vol-
ume of data from diverse data sources; Given
the dynamic nature of e-commerce, such data
needs to be acquired periodically to update
the MT. Consequently, validating the qual-
ity of training data periodically within an in-
dustrial setting presents a notable challenge.
Meanwhile, the performance of MT systems
is significantly impacted by the quality and
appropriateness of the training data. Hence,
this study first examines the Arabic MT in
e-commerce and investigates the data qual-
ity challenges for English-Arabic MT in e-
commerce then proposes heuristics-based and
topic-based data selection approaches to im-
prove MT for product information. Both on-
line and offline experiment results have shown
our proposed approaches are effective, lead-
ing to improved shopping experiences for cus-
tomers.

1 Introduction

As e-commerce shopping websites are localized
worldwide, customers now are provided with op-
tions to browse products in their preferred lan-
guages other than the primary language of the
store. For instance, customers from the King-
dom of Saudi Arabia (KSA) can shop in both
English and Arabic in the KSA store. Modern
e-commerce stores provide multi-lingual product
discovery (Riicklé et al., 2019; Nie, 2010; Saleh
and Pecina, 2020; Bi et al., 2020; Jiang et al.,
2020; Lowndes and Vasudevan, 2021), and prod-
uct information such as titles, descriptions, and
bulletpoints are usually translated using machine
translation (MT) systems (Way, 2013; Guha and
Heger, 2014; Zhou et al., 2018; Wang et al., 2021).
Product information in e-commerce demands ac-

sdanials@amazon.ae

sstwa@amazon.de

curate, culturally relevant, and contextually appro-
priate translations, which has significant impact on
the customers’ shopping experiences. The highly
complex morphology of Arabic as well as other
linguistic aspects have made the machine trans-
lation from and to Arabic a lot more challenging
(Ameur et al., 2020; Alkhatib and Shaalan, 2018).
Moreover, the multitude of dialectal variants along
social and geographic dimensions introduce fur-
ther linguistic challenges to MT (Habash, 2010).
Hence in order to train Arabic MT systems in the
e-commerce industrial setting, typically a larger
volume of training data needs to be acquired from
a wider range of data sources to address the com-
plexity of the Arabic language. Moreover, as e-
commerce product catalogs continue to expand,
the task of maintaining up-to-date machine trans-
lation systems poses significant challenges. When
the vast amount of product information is sourced
from various sellers or suppliers, each can present
the data differently. As a result, the inconsisten-
cies and noise in the source data can have a neg-
ative impact on MT systems. Meanwhile, validat-
ing a substantial volume of data for MT training
at scale becomes increasingly difficult and time-
consuming, demanding significant resources for
manual review and error correction to guarantee
the accurate interpretation of product information.

Therefore, in this study, we first investigate the
training data quality issues and challenges for
Arabic MT in e-commerce, and identify two ma-
jor data issue patterns based on our observations
and addressing the data quality challenges from
the periodic data acquisition. Then we propose
heuristics-based and topic-based data selection
approaches for Arabic MT. The heuristics-based
data selection approach leverages the identified
data issue patterns that are typical to the Arabic
training data in e-commerce and proposes straight-
forward and effective data filters to remove the
undesirable noisy data for training data quality
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improvement; The topic-based data selection ap-
proach first clusters the data based on the textual
patterns then choose the clusters of the clean data
for MT training so that the data of new and un-
known noise patterns from the periodic data sourc-
ing can be removed. We experiment our proposed
approaches separately and in combination for the
case study of English-Arabic MT. The offline ex-
periment results have shown that the application
of two approaches in combination can further im-
prove the MT by 4.47% for BLEU on average
across three domains (product titles, descriptions
and bulletpoints), and 9.32% for BLEU for titles.
The online A/B experiment results further have
shown the customers’ shopping experiences have
been improved, which indicates the effectiveness
of our proposed approaches.

2 Training data for Arabic MT in
e-commerce

2.1 Arabic language in e-commerce

Arabic language is rich in morphology and has a
large number of dialects given an Arabic-speaking
region, hence Modern Standard Arabic (MSA) is
usually a practical choice for the Arabic MT in e-
commerce. Unlike regional dialects, MSA Ara-
bic is understood by the majority across the Arab
world, providing a unified platform for commu-
nication. In the context of e-commerce, this is
particularly advantageous as it enables us to effec-
tively convey our product titles, descriptions and
bulletpoints in a consistent manner. On the other
hand, we have also observed that it is beneficial
to adapt MSA to some extent for specific regions.
For instance, the word case in the iPhone 14 pro
max transparent case with stand Dual 360° Rotat-
ing ring has a more formal MSA translation Uz,

However, when the translation is used specifically
for the store in Egypt, the dialectal variation !

for the word case is preferred since we observe it
can improve customers’ shopping experience.

2.2 Common Arabic data issues in
e-commerce

Many-to-one and one-to-many cases: we
have observed that it is more common in the
Arabic data that some source texts have multiple
target texts (reference translations), particularly
for language pairs where the target language
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is Arabic.! Those multiple target variants can
be either translation or transliteration. For ex-
ample, given the source Stainless Steel, there

are target texts il p sl 5¥45 (translation)
and e Wbl (transliteration);

also be the dialectal variations in Arabic, For
example: given source text Cases and Covers,
the target texts can be L~ olasley oLl >

they can

or &bl a9 o367 It is also possible that the
multiple targets are just inaccurate translations,
for example: Product colour: Silver can have
more than one inaccurate target translation

such as r\}& s AQ :QJ)J‘.L.A.;ZG:.J‘ O¢ and
f‘} oA :ij)&.wzczl\gjj.

Incorrect languages: Given the wide range of the
data sources for data acquisition, it is common to
have noisy data acquired in a language that is not
part of the language pair. We have observed that
for Arabic data, such noisy texts can be entirely
in a different language or also often in mixed lan-
guages such as partial English and Arabic, which
poses challenges for existing language detection
tools that are tailored for texts usually in one lan-
guage.

2.3 Emerging new noise patterns

Product catalogs continue to expand in the dy-
namic e-commerce, therefore, it is crucial to ac-
quire newer data periodically to update the MT
systems. Considering the rich morphology and
dialectal variations of Arabic, the vast amount of
product information is often acquired from a larger
number of sellers or suppliers, and each of which
can present the data differently. As a result, incon-
sistencies and noise emerge inevitably during each
data acquisition cycle in the source data, which
can have a negative impact on MT systems. Al-
though we are aware of the various common noise
patterns and data issues, it is challenging to detect
such new noise patterns or data issues given the
quality of the data and the complexity of the Ara-
bic language.

3 Heuristics-based data selection
approach

1:M/N:1 data filter: When the source (or target)
texts have a larger number of target (or source)

'Some target texts have multiple source texts, particularly
for language pairs where the source language is Arabic.



texts, it is challenging to validate the quality of
such data at scale. When a larger number of
variants can be mapped to a single source or
target texts, it is also more likely that such data
can be defected data and have a negative impact
on the MT training. Therefore, we propose a
heuristics-based 1:M/N:1 data filter. M refers to
the number of target references for a given source
text whereas N refers to the number of the source
texts given a target in the training data. We can
use this filtering mechanism to detect and remove
the data which have a larger number of mapped
source or target texts than M and N respectively.

Script-based language filter: We propose a
straightforward Script-based language filter for
language pairs involving Arabic to filter the data
that is not in the expected language. This script-
based language filter is based on the string over-
lapping between an input string and the alphabet
set of the given language. As Arabic language
is morphologically different from most languages,
such filtering mechanism can be effective. We ap-
ply this filtering mechanism to detect the language
based on the ratio of the number of characters in
a given string that belongs to the alphabet of the
given language and the total number of charac-
ters in the input string. Given an input string .S,
L is list of the letters/characters of input string .S

(|S| = |L]), A is the alphabet set of the given lan-
guage, we define the filter ratio 7" as equation 1
|Salphabet|
T=—7"7— (D
5]

where, Squiphabet =< l1,12...l, > is a list of the
letters I;(l; € Saiphabet) Where [; € S and [; €
A. This filtering mechanism can achieve a high
precision especially when we decrease our filter
ratio threshold (7") to make sure we only remove
sentences with a large number of characters that
do not belong to the expected character set.

4 Topic-based data selection

4.1 Topical clustering

We use Dirichlet Multinomial Mixture (DMM)
(Nigam et al., 2000) and Collapsed Gibbs Sam-
pling (CoGS) (Yin and Wang, 2014) for topical
clustering. DMM and CoGS are efficient cluster-
ing algorithms capitalizing on symbolic text rep-
resentation, making them ideal to cluster industry
scale e-commerce data based on textual patterns.

Moreover, the number of topic clusters is automat-
ically inferred to adequately capture both frequent
and rare textual patterns.

We use the DMM model to label each document
(input text) with one topic tag. DMM is a proba-
bilistic generative model for documents and em-
bodies two assumptions about the generative pro-
cess: first, the documents are generated by a mix-
ture model; second, there is a one-to-one corre-
spondence between mixture components and clus-
ters. When generating document d, DMM first
selects a mixture component (topic cluster) &k ac-
cording to the mixture weights (weights of clus-
ters) P(z = k). Then document d is generated
by the selected mixture component (cluster) from
distribution P(d|z = k). We can characterize the
likelihood of document d with the sum of the total
probability over all mixture components:

K
P(d)=> P(dlz=kP(z=k) ()
k=1

where, K is the number of mixture components
(topic clusters). DMM assumes that each mixture
component (topic cluster) is a multinomial distri-
bution over words and each mixture component
(topic cluster) has a Dirichlet distribution prior:

P(wlz = k) = P(w|z = k,®) = dpw  O3)

P(z=k)=P(z=k|O) =0 4)

-, - =

v
where, ) ¢, 1, = 1 and P(®|5) = Dir(6|5) and

K "
>0, = 1and P(0|d@) = Dir(|d).2

* The collapsed Gibbs sampling is used to esti-
mate DMM parameters, documents are randomly
assigned to K clusters initially and the following
information is recorded:

Z is the cluster labels of each document

m, 1s the number of documents in each cluster
z

ny is the number of occurrences of word w in
each cluster z

Ny is the number of words in document d

NJ is the number of occurrence of word w in
the document d

V is the vocabulary of the corpus

2The weight of each mixture component (cluster) is sam-

pled from a multinomial distribution which has a Dirichlet
prior
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The documents are traversed for a number of
iterations. In each iteration, each document is re-
assigned to a cluster according to the conditional
distribution of P(Z; = z|Z.4,d), ~d means d is
not contained:

P(Zg=z|Zq4,d) x
NY
Yy +Bi—1
my ~d+a wl_e[djl;[1( »—d ) (5)
D—1+Ka Ny
(nz,ﬂd+vﬁ+ifl)
1

where, hyper-parameter o controls the popularity
of the clusters, hyper-parameter 8 emphasizes on
the similar words between a document and clus-
ters.

4.2 Topic-based data selection

As Figure 1 shown, the data selection approach
first clusters large volume of the training data. Em-
pirically, larger clusters can capture the major top-
ical and textual patterns so they are usually the
clean desirable data whereas the smaller clusters
can capture smaller and rare textual patterns so
they are likely to be the noisy undesirable data.
Additionally, we can also distinguish between de-
sirable and undesirable data based on the data in-
spection of the clusters. Finally, only clusters of
desirable data are chosen for training to improve
MT. Data providers are also informed of the unde-
sirable data patterns for future data quality control.

9%
%
Topical clusters

}
vt |«— (3) (@)

Selected clusters

Training >
data

Figure 1: Choosing desirable data for MT training

5 Case study: English-Arabic MT

5.1 Experiment setup

Data: We train the MT models on a large volume
of in-house generic training data and ~20 million
product-information data (product titles, descrip-
tions and bulletpoints) for domain adaptation. We
have three test data sets for product titles, descrip-
tions and bulletpoints respectively. Each test data

set has 2000 test segments and we evaluate the
models using BLEU? and chrF (Popovié, 2015) to
assess the translation quality.

Model: We use the transformer-based architecture
(Vaswani et al., 2017) with 20 encoder and 2
decoder layers with the Sockeye MT toolkit
(Domhan et al., 2020) to train a generic MT
using generic data and domain-specific data,
then fine-tune the model on the domain-specific
product information data for domain adaptation.

Baseline Model: The baseline MT model is first
trained using generic data and domain-specific
data, then is fine-tuned on the domain-specific
product information data.

Topic Clustering: For the topic clusters, the
source text is lower-cased, tokenized and stemmed
using NLTK ToolKit (Bird et al., 2009), stemmed
tokens with document frequency less than or
equals to 2 are removed in the preprocessing steps.
The initial upper-bound number of topical clusters
is set to 500. The number of the topic clusters is
inferred automatically during the collapsed Gibbs
sampling process. The number of iterations is set
to 30, and both hyper-parameters « and 3 are set
to 0.1.

We create 2-D plots using Jensen-Shannon
distance (Fuglede and Topsoe, 2004) and
multi-dimensional scaling technique (Borg and
Groenen, 2005) with LDAvis (Sievert and Shirley,
2014) to easily visualize the size and relations of
the topic clusters returned from the algorithm,
and to inspect the topic words extracted from the
clusters.

Data filters: 1:M/N:1 data filter: We choose
m=n=10 and m=n=>5 for the 1:M/N:1 data filter
respectively. The former is more relaxed since
each sentence can have up to 10 variants whereas
the latter with m=n=>5 is more strict.

Language detection filter: For the script-based
language filter, we choose 1T'=0.1, so the data will
be removed if 10% or less of the sentence char-
acters belong to the character set. We apply this
language filter on both source and target texts.
The character set for the source side was Latin
(ISO-8859-1) and for the target side was Arabic

3SacreBLEU version 2.0.0 (Post, 2018)
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(ISO-8859-6). We also incorporate two existing
language detectors Cybozu language detection li-
brary4 (Nakatani, 2010) and FastText (Joulin et al.,
2016b,a) in addition to our script-based language
filter.

5.2 Experiment results and analysis

Clustering Results

Indomain data size -(TTL/BP/DESC) ~20 million

Num of total clusters 374
Num of major clusters (>1000 seg.) 110
Num of minor clusters 264

minor clusters % total data 1.32%

Table 1: Clustering result for the in-domain data (En-
glish data) for the bilingual indomain data for EnUs-
ArAe

Figure 2: Plot of all the topic clusters with Principal
Coordinate Analysis (PCoA)

Table 1 shows the clustering results using the
source text of the ~20 million indomain product
data which includes titles (TTL), bulletpoints
(BP) and descriptions (DESC). In total, there are
374 clusters extracted. We empirically consider
clusters having 1000 segments or more data points
as major clusters while those having less than
1000 segments as minor clusters. The total data
from the minor clusters account for 1.32% of the
total indomain training data.

We also generate 2-D data visualization as
Figure 2 with projected clusters using Jensen-
Shannon distance (Fuglede and Topsoe, 2004)
and multi-dimensional scaling techniques such as
Principal Coordinate Analysis (PCoA) (Borg and
Groenen, 2005). We can use the plot to understand
the relations of clusters, the sizes of the clusters

*https://github.com/shuyo/language-detection

are proportional to the size of the data assigned to
the cluster. The long tail in the plot are all the mi-
nor clusters which deviate from the major clusters.

Training Data Filtering results

Domain m=10, n=10 m=5, n=5
TTL BLEU +0.73% +1.68 %
chrF -0.09% +1.98 %
BLEU +0.58 % +0.27%
DESC chrF -0.24% -0.16%
BP BLEU +0.56 % +0.49%
chrF +0.00% +0.15 %

Table 2: Quality improvement % of the model trained
with 1:M/N:1 filter in the data selection over the base-
line model trained with data without the filter (Config-
urations: m=n=5 and m=n=10

1:M/N:1 Filter: Previously, we have conducted
a separate experiment with different m and n con-
figurations using an older version of indomain
data. We use two configurations m=n=5 and
m=n=10 to filter the indomain data for MT train-
ing. As Table 2 shows, we have seen the aver-
age BLEU score and ChrF are improved by 0.64%
and 0.51% respectively across three domains with
the configuration of m=n=10. meanwhile, using a
strict filter configuration of m=n=>5 yields higher
MT quality scores.

. . . Script Filter Script Filter
Domain Script Filter + Cybozu + FastText
TTL BLEU +2.94% -0.52% +0.16%
chrF +1.61% +2.15% +0.43%
DESC BLEU -2.64% -3.49% -2.56%
chrF +0.38% +0.38% +0.38%
BP BLEU +0.85% -1.47% -0.23%
chrF +0.91% +0.45% +0.76%

Table 3: Quality improvement % of the model trained
with different language detection filters in the data se-
lection over a baseline model without the filter.

Language detection filter: Table 3 shows the
BLEU and chrF improvements over 3 domains of
test set (TTL, DESC and BP) compared to a base-
line trained using the latest indomain product in-
formation data. Using the script-based filter alone
can improve the MT by 0.38% and 0.97% for the
average BLEU score and ChrF, respectively. The
experiment results have also shown that existing
language detectors do not show substantial advan-
tages to the data filtering on in addition to the
straightforward script-based language detector.
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Domain HEU TOPIC HEU +TOPIC Example 1
BLEU +093% +7.20% +9.32%
TTL chiF  +047%  +2.79% +3.83% Source ‘ Great for Party Favors, Sweet 15 or 16
BLEU +131% +1.45% 0.02% Baseline | yq ol yo dslo cdad! Llag a1,
DESC hrF 0.95 % 0.87% 0.95% . -
chr. +0. 0 +0. 0 +0. 0 Newer \.\j‘\o wj—w‘uw‘b‘v\d 4‘:"‘)
Bp BLEU +4.10% +0.57% +4.10%
chrF  +2.05% +0.41% +2.26% Example 2
Table 4: Quality improvement % of the model trained Source ‘ Brand New And High Quality
with both Heuristics-based (HEU) and Topic-based Baseline | 9] dJleg suyad! 4 ! LoDl
(TORIC) data selef:tion approachgs compgred with the Newer 3s jﬁ" JL‘j UL w e
baseline model trained with latest indomain data. - = C

Furthermore, we have also conducted the exper-
iment with both the heuristics-based (HEU) and
topic-based (TOPIC) data selection approaches in
combination. For the heuristics-based approach,
we use the 1:M/N:1 data filter with configuration
of m=n=5 as it yields better results in a separate
study as discussed in Table 2, and we use our pro-
posed script-based filter to remove data that is not
English or Arabic. For the topic-based approach,
we use the data from the major clusters as dis-
cussed in Table 1 for the MT model training. Then
we apply the heuristics-based data selection ap-
proach to the data from the major clusters and use
the filtered data to train an MT model.

Table 4 shows the MT quality metrics with both
approaches alone and in combination using the
aforementioned experimental configuration. We
can see the MT model (HEU+TOPIC) with both
approaches is further improved by 4.47% and
2.35% for BLEU and chrF on average across three
domains (product titles, descriptions and bullet-
points), and it also shows large improvement for
titles by 9.32% and 3.83% for BLEU and chrF.

5.3 Human Evaluation and AB Testing

We have also conducted human evaluation for the
MT translation quality in addition to the automatic
metrics reported in the previous section, we pro-
vide human raters with hundreds of translations
from the baseline MT and the newer MT (HEU
+TOPIC) trained with both proposed approaches
in combination, and let human raters assess the
fluency and the adequacy of the translations, the
newer MT’s fluency and adequacy are improved
by 3.1% and 3.29% compared with the baseline
model.

As the Table 5 shows, in the example 1 the base-
line model translated sweet to the sweets as can-
dies whereas the newer model translates it bet-

Table 5: Translation examples from the baseline MT
and newer MT (HEU+TOPIC)

ter through transliteration since in Arabic such
terms are not existent. In the example 2, base-
line model incorrectly translates brand new to new
brand whereas the newer model translates to com-
pletely new correctly.

We have further conducted online A/B testing
in the Kingdom of Saudi Arabia (KSA) store with
the English-Arabic MT. For the A/B testing, cus-
tomers shopping in Arabic are presented with two
different versions of the product information trans-
lations (titles, descriptions and bullet points) from
the baseline model and the newer MT model (HEU
+TOPIC) trained with heuristics-based and topic-
based data selection approaches in combination.
After a 4-week A/B testing experiment, the results
have shown that the translations from the newer
MT trained with our proposed approaches have
a much larger positive impact on the customers’
shopping experiences. This indicates the effective-
ness of our approach.

6 Related Work

There are studies related to data selection for
machine translation systems. (Mohiuddin et al.,
2022) focuses on data selection for curriculum
training through fine-tuning MT model on a se-
lected by both deterministic scoring, (van der
Wees et al., 2017) proposes dynamic data selec-
tion which varies the selected subset of training
data between different training epochs to improve
neural MT. Previous studies also have successfully
used topic models to improve statistical machine
translation (Eidelman et al., 2012; Hu et al., 2013;
Xiong et al., 2015; Mathur et al., 2015) and neu-
ral machine translation (Zhang et al., 2016; Chen
et al., 2019). (Mathur et al., 2015) integrates topic
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models as feature functions in the phrase-tables
to improve statistical machine translation for e-
commerce domain adaption. (Zhang et al., 2016)
presents an approach using topic models to in-
crease the likelihood of word selection from the
same topic as the source context. Instead of ex-
plicitly affecting the parameters or vocabulary se-
lection, in this paper, we utilize a topical cluster
model for data selection.

7 Conclusion

In this study, we first review and investigate the
data quality validation challenges the Arabic ma-
chine translation systems for product information
translation in e-commerce, Arabic language has
rich morphology and dialectal variations, which
can cause more data quality issues that are unique
to acquired training data for developing MT trans-
lating from and to Arabic. Then we propose
heuristics-based and topic-based data selection ap-
proaches to select clean and desirable data for
neural MT training. Both offline experiment re-
sults and human evaluation have shown both ap-
proaches can improve the English-Arabic MT for
product information. On-line A/B testing also
shows customers’ shopping experience has been
improved with the translation from the MT trained
with two approaches, which it shows the effective-
ness of our proposed approaches.

Limitations

In this study, we have proposed the approaches
and conducted experiments for developing and im-
proving English-Arabic MT for product informa-
tion translation in e-commerce, and analyzed the
offline MT translation quality and business im-
pact. However, this study only focuses on the do-
main of e-commerce and the business case study
of English-Arabic MT. In future work, we are
planning to apply our proposed approaches to
more language pairs involving Arabic and experi-
ment with domains beyond product information.
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Abstract

Extracting and disambiguating geolocation in-
formation from social media data enables effec-
tive disaster management, as it helps response
authorities; for example, locating incidents for
planning rescue activities and affected people
for evacuation. Nevertheless, the dearth of re-
sources and tools hinders the development and
evaluation of Location Mention Disambigua-
tion (LMD) models in the disaster management
domain. Consequently, the LMD task is greatly
understudied, especially for the low resource
languages such as Arabic. To fill this gap, we
introduce IDRISI-D, the largest to date En-
glish and the first Arabic public LMD datasets.
Additionally, we introduce a modified hierarchi-
cal evaluation framework that offers a lenient
and nuanced evaluation of LMD systems. We
further benchmark IDRISI-D datasets using
representative baselines and show the competi-
tiveness of BERT-based models.

1 Introduction

The cost-effectiveness and efficiency of commu-
nication over social media platforms make them
primary sources of information during disaster
events and emergencies. An essential dimension
that makes the data extracted from microblogging
platforms (e.g., X platform, formerly Twitter) in-
valuable and actionable is the geolocation informa-
tion. Nevertheless, users typically opt to disable
the geolocation functionalities over social media
platforms to preserve their own safety and privacy
which necessitates the development of geolocation
extraction tools for social good. In this paper, we
focus on the Location Mention Disambiguation
(LMD) task over microblogs that we exemplify by
X posts. An LMD system aims at matching loca-
tion mentions (LMs) appearing in microblogs to
toponyms, i.e., place or location names, in a geo-
positioning database, i.e., gazetteer.
Unfortunately, the research community lacks
access to public disaster-specific microblogging

LMD datasets, especially for low-resource lan-
guages, which consequently prevents the develop-
ment and comparison of robust LMD systems. For
example, there are only two English LMD datasets,
namely Singapore (Ji et al., 2016) and GeoCorpora
(Wallgriin et al., 2018), where the former dataset is
geographically confined, lacks event context, and
is not publicly available, whereas the latter one
(i.e., GeoCorpora (Wallgriin et al., 2018)) is public,
it has the same issues of low geographical cov-
erage, lacking disaster event context, and many
relevant/informative posts that do not contain the
tracking keywords (Suwaileh et al., 2023a). On the
other front, there are no Arabic LMD datasets to
the best of our knowledge.

In this paper, we fill this gap and release IDRISI-
D datasets' for Arabic (IDRISI-DA) and English
(IDRISI-DE) languages. IDRISI-DA is the first
public human-labeled Arabic (a low-resource lan-
guage) dataset, constituting 2,869 posts and 3,893
LMs. IDRISI-DE is the largest to date human-
labeled English microblogging dataset in terms of
number of LMs. It constitutes 5,591 posts and
9,685 LMs. Additionally, to alleviate the lack of
context challenge for microblogs and toponyms, we
asked annotators to judge different features such
as hashtags, replies, and URLs, among others, for
usefulness for the LMD task.

Furthermore, to evaluate the LMD systems, Ac-
curacy (Acc), Precision (P), Recall (R), and the Fg
score are typically computed (Zhang and Gelernter,
2014; Li et al., 2014; Ji et al., 2016; Middleton
et al., 2018; Wang and Hu, 2019a; Xu et al., 2019).
While these measures evaluate binary classification
tasks, the LMD task is usually perceived as a multi-
class classification where every LM has only one

'"Named after Muhammad Al-Idrisi, who is one of the
pioneers and founders of advanced geography: https://
en.wikipedia.org/wiki/Muhammad_al-Idrisi. The “D"
refers to the disambiguation task. Release: The link is re-
moved due to the blind-review policy. The dataset and evalua-
tion script are attached as Supplementary Materials.
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(or no) correct toponym in gazetteers. Moreover,
distance-based methods (Wang and Hu, 2019a),
are also used to evaluate LMD systems within a
distance d that is commonly set to 161 KM (100
miles). For example, Acc@Qd is the fraction of cor-
rectly predicted LMs that are within d. However,
tuning the d for different location granularity was
not empirically investigated.

To address these shortcomings, we propose eval-
uating the LMD systems using ranking evaluation
measures, namely the Mean Reciprocal Rank at cut-
off r (M RR@r) in a lenient hierarchical strategy
(Mourad et al., 2019) where systems are evaluated
at different location granularity such as country,
city, street, etc. Indeed, the hierarchical evalua-
tion substitutes the distance-based measures but in
discrete manner.

The contributions of this work are as follows:

* We present IDRISI-DA, the first Arabic
LMD dataset containing about 2,869 posts
and 3,893 LMs.

* We present IDRISI-DE, the largest manually-
labeled public English LMD dataset of about
5,461 posts and 9,685 LMs.

* We manually label and analyze the usefulness
of different features, including hashtags, event
context, and URLs, replies, named entities,
and other LMs, to draw helpful insights for
developing effective LMD systems.

* We present a modified hierarchical LMD eval-
uation for classification and ranking methods.

* We provide simple yet effective English and
Arabic LMD baselines.

The remainder of this paper is organized as fol-
lows. We present the related work in Section 2.
We then define the LMD task in Section 3. We
introduce IDRISI-D datasets and analyze them
in Sections 4 and 5, respectively. We then bench-
mark the datasets in Section 6. We next discuss the
dataset use cases in Section 7. We finally conclude
in Section 9.

2 Related Work

In this section, we discuss the LMD related studies
and discuss their technical solutions (Section 2.1)
and evaluation (Section 2.2).

2.1 Technical Solutions

There are a few studies that tackle the LMD task us-
ing machine learning and deep learning techniques.

For instance, Geoparspy (Middleton et al., 2018)
is a Support Vector Machine (SVM) model trained
on gazetteer-based features including location type,
population, and alternative names. Additionally,
the disambiguation models of the toponym reso-
lution system employed by Wang and Hu (2019a)
are essentially machine learning models including
(i) DM_NLP (Wang et al., 2019) which is a Light
Gradient Boosting Machine (LightGBM) model
trained on similarity scores, contextual representa-
tions, gazetteer attributes, and mention list features,
(ii) UniMelb (Li et al., 2019) which is an SVM
that uses different feature types such as the history
results in the training dataset, population, gazetteer
attributes, similarity, and mention neighbors fea-
tures, and (iii) UArizona (Yadav et al., 2019) which
is a heuristic-based system that favors toponyms
with higher populations.

Furthermore, Xu et al. (2019) proposed an
attention-based two-pairs of bi-LSTMs for match-
ing LMs against Foursquare gazetteer. Each lo-
cation profile (Ip) in Foursquare is represented by
concatenating one-hot vector for the category at-
tribute, TF-IDF vectors for textual attributes (e.g.,
address attribute), and the numeric-based attributes.
On the other hand, the LM is represented using its
context (i.e., post) and encoded using contextual
representation attended to the [p vector, besides
the geographical distance. The two-pair networks
learn the left and right contexts of the LM. Both
representations then go through a fully connected
layer to learn disambiguation.

2.2 Evaluation

There is a dearth of microblogging disaster-specific
LMD datasets. Table 1 presents the only two LMD
datasets and their statistics. GeoCorpora (Wall-
griin et al., 2018) is the only available one for
the research community. Wang and Hu (2019a)
evaluated it using eight different datasets available
through EUPEG framework (Wang and Hu, 2019b),
solely one of which is a microblogging dataset that
is GeoCorpora. Xu et al. (2019) used Singapore
dataset (Ji et al., 2016) for evaluation.

As for the evaluation measures, the distance-
based measures have been used in non-disaster-
specific studies to evaluate LMD systems. For that,
the distance between the GPS coordinates of the
gold and predicted LMs is measured using the great
circle distance. The systems’ overall performance
is then computed by the Median and Mean Error
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Dataset #Twt #LM (unique) Labeling LM types Public
Singapore (Ji et al., 2016) 3,611 1,542 (-) In-house - X
GeoCorpora (Wallgriin et al., 2018) 6,648 3,100 (1,119) Crowd X v
IDRISI-DE 5591 9,586 (1,601) In-house v v
IDRISI-DA 2,869 3,893 (763) In-house v v
Table 1: The existing LMD datasets compared to IDRISI datasets.
Distance. 4 Dataset Construction

Additionally, the discrete measures including Ac-
curacy (Acc), Precision (P), Recall (R), and the Fg
score are computed to evaluate systems (Zhang and
Gelernter, 2014; Li et al., 2014; Ji et al., 2016; Mid-
dleton et al., 2018; Wang and Hu, 2019a; Xu et al.,
2019), however, they provide a bird’s-eye view
of systems’ performance neglecting the nuance in
their techniques. To overcome this shortcoming,
Karimzadeh (2016) proposed using Cross Entropy
(CE) that considers the probabilities of systems
rather than their ranks, Root Mean Square Error
(RMSE) that quantifies the average great circle dis-
tance between predicted and gold toponyms, and
Eccentricity that combines both CE and RMSE.

Acc, P, R, and Fg can also be computed within
a distance d that is commonly set to 161 KM (100
miles). For example, Acc@d is the fraction of
correctly predicted LMs within d.

While these measures evaluate binary classifi-
cation tasks, the LMD is typically modeled as a
multi-class classification task making them inap-
propriate for evaluation.

3 Problem Definition

The LMD System, as illustrated in Figure 1, is
given the following inputs:

* A post (a microblog) p that is related to a
disaster event e,

* A set of location mentions (LMs): L, =
{li;i € [1,np]} in post p, where ; is the ith
location mention and n,, is the total number
of location mentions in p, if any.

* A geo-positioning database G (i.e., gazetteer)
that consists of a set of toponyms: 7T =
{tj;i € [1, K]}, where t; is the 4 toponym,
and k is the number of toponyms in G.

The LMD system aims to match every location
mention /; in the post p to one of the toponyms ?;
in GG that accurately represents /;, if exists. Other-
wise, the system must abstain and declare that [; is
unresolvable (or unlinkable).

In this section, we discuss the constructing pro-
cess of IDRISI-D datasets. We start by describing
IDRISI-R datasets. We then present the sampling
strategy and the annotation process.
IDRISI-R Datasets: We extend IDRISI-R
Location Mention Recognition (LMR) English
(IDRISI-RE) (Suwaileh et al., 2023a) and Ara-
bic (IDRISI-RA) (Suwaileh et al., 2023b) datasets
that are originally sampled from HumAID (Alam
et al., 2021) and Kawarith (Alharbi and Lee, 2021)
datasets, respectively. We select these datasets due
to their unique characteristics as described below.
IDRISI-RE is the largest to date LMR mi-
croblogging English dataset. It exhibits unique
diversity (domain and location types), coverage
(temporal and geographical), and generalizability
(domain and geographical), compared to all exist-
ing datasets of its kind. It comprises around 20k
human-labeled (gold) and 57k machine-labeled (sil-
ver) posts from 19 disaster events of diverse types
covering wide geographical areas. The events cap-
ture the critical periods of disaster events. The an-
notations include spans of location mentions in the
textual content alongside their location types (e.g.,
country, city, street). Empirically, IDRISI-RE is
the best domain and geographical generalizable
dataset against all existing English datasets.
IDRISI-RA is the first Arabic LMR microblog-
ging dataset. It contains 22 disaster events of dif-
ferent types that happened in Arab countries, cov-
ering various dialects reasonably. It contains 4.6K
manually-annotated (gold) posts sampled from 7
disaster events,? and 1.2M automatically-annotated
(silver) posts sampled from the entire dataset. Both
versions are labeled for location mentions and loca-
tion types. Empirically, the LMR models trained on
IDRISI-RA showed decent generalizability to un-
seen events and acceptable domain and geographi-
cal generalizability.

These events are labeled for informativeness in Kawarith
dataset.
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Gazetteers Address of resolved LMs

) ) v e N
Disaster-related Twitter stream v 24, Kothaval Chavadi St, Sadullakhan
-=—‘ Nagar, Saidapet, Chennai, Tamil
Candidate LMs Nadu, India
N ! J
( 24 <Road> ] > 4
Name 113, Kothaval Chavadi S, Duraisamy
@usemname [ 113 <Road> ] JR . Garden, Saidapet, Chennai, Tamil
i i | Nadu, India
Mom and relatives at 24/113,kothaval chavadi st(near [ kothaval chavadi st <Street>]—>i LMD :_> N J
. o AR . —— ——— @ @ -
mosque st),Saldapet. Please help @ChennaiRains [ Saidapet <Neighbourhood> ] Kothaval Chavadi S, Duraisamy
@RJ_Balaji @Chinmayi #ChennaiRainsHelp Garden, Saidapet, Chennai, Tamil
7:18 PM - Dec 3, 2015 - Twitter Web Client [ Chennai <District> ] L Nadu, India

J

[ Saidapet, Chennai, Tamil Nadu, India ]

Figure 1: High-level overview of the Location Mention Disambiguation (LMD) task.

Dataset Sampling: Constrained by not overwhelm-
ing the volunteered annotators, we sampled a set
of posts from every disaster event in IDRISI-RE
while maintaining the distribution of LM types,
but covering all fine-grained LMs including neigh-
borhoods, streets, and POlIs. In total, we sampled
8,224 posts containing 11,023 LMs. On the other
hand, the IDRISI-RA gold version was labeled
entirely, including seven events containing 2,974
having LMs (the remaining 1,618 posts do not con-
tain LMs) and 5,236 LMs.

Dataset Annotation: The LMD annotation re-
moves the ambiguity of geo/geo entities (in contrast
to the geo/non-geo LMR annotations). We col-
lected the LMD annotations in 3 phases to increase
the reliability of annotations with the minimum
burden on the expert annotators:

P1. Two in-house annotators are assigned for ev-
ery event with the condition of having a good
familiarity with the country of the disaster
event. When one of the annotators declares
a low confidence for a specific LM or both
disagree, the LM is forwarded to a meta anno-
tator in Phase 2.

P2. A meta annotator resolves the disagreement
from Phase I and labels the low-confident
examples. She has a solid understanding of
the LMD task; hence, she verifies the doubtful
annotations. When she fails to disambiguate
an LM, it goes to experts in Phase 3.

P3. Expert annotators disambiguate the hard unre-
solved LMs from Phases I and 2. Experts are
residents of the countries where the disaster
events took place.

In all phases, annotators attentively read the post
online alongside replies and the linked web pages.
Next, they (1) disambiguate the LMs by searching
OpenStreetMap (OSM) gazetteer through Nomi-

natim search engine? to find the best matching to-
ponym, (2) assign a confidence score between 1-3
for their annotation, and (3) judge the usefulness
of features for disambiguation (“Yes”, “No”, or
“None”). The features we investigate their useful-
ness include:

* Event: The disaster event name.

» Hashtags: The set of posts having the same
hashtag as the target post within their text.

* Replies: The thread or responses to the post.

* Other LMs: Other location mentions appear-

ing within the same post text.

URLSs: The linked web pages or media within

the post text.

* Entities: Named entities that appear within
the post text.

We define the usefulness as whether a feature
helps the annotator to accurately find the correct
toponym from the OSM that best matches the can-
didate LM being annotated.

Additionally, to avoid propagating human errors
from IDRISI-R, we asked the annotators to modify
LMs, add new LMs, or drop LMs in certain cases.
In Table 2, we show example posts and elaborate
on them in the following:

Modifying LMs: Several cases require modifica-
tion, such as separating multiple LMs (Posts #1
and #6), fixing LM boundaries (Posts #2 and #7),
and fixing LM type (changing “Street” to “City”
in Post #3 and “City” to “POI” in Post #8), to list
a few. Annotators modified 15 and 154 LMs in
both IDRISI-DA and IDRISI-DE, respectively.
IDRISI-RA is cleaner than IDRISI-RE as it was
labeled in-house.

Dropping LMs: Annotators dropped LMs when
they violate the LMR annotations guidelines. Cases
include organization or person entities (Posts #4

3https: //nominatim.openstreetmap.org/
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and #9), ambiguous LMs (Posts #5), nationalities,
and locational descriptions, among others. In total,
we dropped 212 and 1,986 mentions, 97 and 435 of
which are unique, from IDRISI-DA and IDRISI-
DE datasets, respectively.
Adding new LMs: Annotators added unlabeled
LMs if they are resolvable. For example, the “Pon-
tagea Health Centre” in Post #10. This resulted in
adding 27 new LMs to IDRISI-DE while no LMs
are added to IDRISI-DA.
Adding LMs to OSM: Annotators added 171 and
27 new toponyms to OSM for IDRISI-DA and
IDRISI-DE, respectively.

We ran the annotation task for ten weeks and
obtained the final IDRISI-DE and IDRISI-DA
datasets. Table 1 presents their statistics.

5 Dataset Analysis

IDRISI-D datasets inherit the geographical, do-
main, location types, temporal, informativeness,
and dialectical (for Arabic) coverage from IDRISI-
R datasets. In this section, we analyze the reli-
ability of annotations and the usefulness of post
features for the LMD task.

Reliability: To evaluate the reliability of annota-
tions in Phase 1, we compute the Inter-Annotator
Agreement (IAA) using Cohen’s Kappa (Cohen,
1960). We measure the IAA for the ability to
resolve LMs, i.e., whether an LM is resolvable
or not. We also compute the agreement percent-
age on the extracted toponyms from gazetteers
by the annotators for all LMs. The annotators in
Phase 1 achieved substantial and almost perfect
Cohen’s Kappa scores of approximately 0.90 and
0.83 for IDRISI-DA and IDRISI-DE datasets,
respectively. The raw agreement percentages are
around 97.98% and 93.50% for IDRISI-DA and
IDRISI-DE datasets, respectively. These results
statistically demonstrate the high quality and reli-
ability of annotations of IDRISI-D datasets. To
further increase the quality of the datasets, we re-
solved the disagreement cases in the subsequent
annotation phases 2 and 3.

Usefulness of Features: Table 4 shows the per-
centages of features’ presence in posts and the per-
centages of useful features. We show the statistics
for: (i) “ALL”: all types of LMs in the datasets, (ii)
“Coarse”: the coarse-grained LMs including coun-
tries, cities, states, counties, districts, and neigh-
borhoods, and (iii) “Fine”: the fine-grained LMs
including streets, natural POIs, human-made POlIs.

Apparently, the “event”, “other LMs”, and “hash-
tags” are the most useful features for LMD, espe-
cially for fine-grained LMs.

Looking carefully at the annotations of features’
usefulness, we make different observations through
examples in Table 3:

Event: Knowing the event place helps in narrowing
the search space over OSM. Consequently, anno-
tators can mitigate the “Toponymic homonymy”
challenge (Suwaileh et al., 2022). In Post #1, all
results for “J.)1 s, 55" ¢ L7 (“Corniche El Nile
Street”) in Post #1 are not within “Cairo” where
the “Cairo BMB 2019” event took place. Thus,
searching toponyms within the affected area results
in accurate annotations.

Other LMs: The geo-vicinity between co-
occurring LMs usually represents inclusion and
containment relationships, making the coarse-
grained LMs useful to disambiguate the fine-
grained LMs. For instance, in Post #2, “&yn”
(“Beirut” is a city) which is also a hash-
tag is helpful for accurately disambiguating
“ sl madll aails” (“Saint George Hospital”
is a human Point-of-Interest). Similarly, in Post
#4, “Nebraska” (State) was useful to distinguish
“Elkhorn River” (Human Point-of-Interest) from
another part of the river located in “West Virginia”
(State). Different reasons cause the low usefulness
percentages of “other LMs”. To elaborate, in cases
where the same LM appears multiple times in the
same post, the duplicates are useless for disam-
biguating each other.

Hashtags: As most hashtags indicate the
disaster event (e.g., “r\ﬁ‘\!\_ dnes sty and

G > 1 =l in posts #1 and #2), they are equally
important to the “Event” feature.

Replies: Typically, a small number of posts get
the community attention. Hence, replies are rarely
useful for LMD.

URLs: Linked web pages are useful if they elab-
orate on the geographical context of the reported
information in the post. For example, the linked
web page in Post #2 was useful for locating the
hospital. Also, “Lake Butler” in Post #4 is chal-
lenging LM. The linked Facebook page contains
“Lake Butler, FL, United States” and “Keystones
Heights” that helped the annotator to successfully
resolve this LM by their geo-proximity. The impor-
tance percentage of URLs is low as many URLs
are already broken or require a paid subscription.
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# Change Post text

I Separate LMs gl 3 olbibeall faie 3 Uao¥) Joow Liats Q1,031 o35 536Y Ubge » G Ui

3 Modify type Street—City B, M oL L5 sae Jwy @SN L) Cay &lae YW G L

4 Drop ORG e mers S Godl BNE] - gy s e Ol Gemtr g s ¢ 2L

5 Drop undefined éjx...r Joal s O e flas Vo vy Yy

6 Separate LMs Please join us for Hurricane Maria relief this Saturday on Melrose St btwn
Buchwick & Broadway ...

7 Modify offsets The University of Nebraska Omaha Love Your Melon Crew sure knows how
to make kids happy ... #MealsThatHeal

8 Modify type Amidst applause, Canadas rescue team arrives in
Mexico City Airportc;;,—,por on Saturday #earthquake #CASDDA
via [user_mention]

9 Drop ORG Rosen Hotels & Resorts in Orlando announces availability of 30 guestrooms
at [user_mention] for #Hurricanelrma evacuees...

10 Add LM Pontagea Health Centre in Beira, #Mozambique, was partially destroyed by

#Cycloneldai, ...

Table 2: Examples of issues and corrections in LMD annotations. Bold text is the annotated LMs in IDRISI-R.
Underlined text is the corrected LMs in IDRISI-D.

#  Useful features Post text
1 Event, Other LMs, C\Lu\ Lals L (G O2jla ) L A, o8 gl sl Ll §)1sY1 ks
Hashtag. . N e
2 Other LMs, Hash- Gop#t 3 _psersle (uadl] Lidles o a8 Jlos 3 ound B laisly ...
tag & URL https:/t.co/7TSAALORVIW
3 None Sondt b las] Jyam J8 Slesgidl dal J8ls o Sl i 292y 225 s
4  Other LMs Human remains discovered along Elkhorn River after flooding, sheriff says
https://buff.ly/2CEShla #Nebraska
5 URL In the wake of Hurricane Irma, we’ve planned a food distribution event in
Lake Butler to help anyone affected by... fb.me/2fbeOb4YE
6 None Labatt to help those affected by Fort McMurray wildfire [...]

#FortMcMurray #L.CBO

Table 3: Example posts showing the usefulness of different features for the LMD annotation. Underlined and bold
text indicate the LMs and features, respectively.

It is worth noting here that the coarse-grained 6 Benchmarking Experiments
LMs are usually easy to disambiguate without ex-
ploiting any features (e.g., posts #3 and #6).

In this section, we discuss the experimental setup
and results of benchmarking IDRISI-D.
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Loctype Event Hashtags URLs Replies Other LMs Entities
IDRISI-DE
~ Al 100.0% 63.9% 37.0% 0.4% 673%  31.2%
g Fine 100.0% 64.0% 34.3% 2.7% 65.5%  31.9%
M Coarse 100.0% 63.9% 37.2% 0.3% 67.7%  31.2%
o Al 98.4% 327%  3.9% 5.0% 38.3% 5.6%
‘*E Fine 94.0% 54.7% 28.2% 0.0% 66.9% 12.3%
5 Coarse 98.8% 309% 21%  32.1% 36.0% 5.1%
IDRISI-DA
~ Al 100.0% 56.6% 419%  27.7% 427%  34.8%
g Fine 100.0% 77.5% 53.5%  59.8% 74.6%  63.8%
M Coarse 100.0% 50.6% 38.4%  17.8% 327%  25.8%
o Al 63.2% 222%  2.6% 0.9% 23.1% 2.0%
‘*QE; Fine 89.8% 212%  3.6% 0.6% 19.8% 1.0%
5 Coarse 54.4% 224%  2.0% 1.2% 24.8% 2.5%

Table 4: Statistics of the LMD features in IDRISI-D dataset.

6.1 Evaluation Setup

This section presents the learning models and the
evaluation strategy we used to benchmark our
IDRISI-D datasets.

6.1.1 Learning models

We train our own BERT-based models. We further
employ retrieval- and heuristic-based off-the-shelf
LMD baselines.

BERT/p: We fine-tuned the BERT-LARGE-
CASED (Devlin et al., 2019) and MAR-
BERT (Abdul-Mageed et al., 2021) models
in sequence classification mode for English and
Arabic LMD, respectively. To augment negative
examples, we issue every gold LM against OSM
and pick the top toponym that does not match it.
We add only one negative example to balance the
training data.

NOMINATIM (NOMIN): A search engine to search
OSM data by name and address. We note that none
of the existing studies compare their approaches
against gazetteer search APIs (Nominatim, 2023).
GEOLOCATOR2 (GEOL2): CMU-geolocator is
an off-the-shelf LMP system that considers the hier-
archy of location mentions in posts when resolving
them (Zhang and Gelernter, 2014).
GEOLOCATOR3 (GEOL3): An improved version
of CMU-geolocator that uses the population to post-
filter retrieved results from Nominatim (Zhang and
Gelernter, 2014).

GEOPARSEPY (GEOPY): A trained SVM model
on gazetteer-based features including location type,
population, and alternative names (Middleton et al.,

2018).

It is worth mentioning that GEOL and GEOPY
employ NOMIN and apply post-filters on top of
it. Additionally, when benchmarking IDRISI-DA,
we exclude GEOPY as it is incapable of process-
ing Arabic text. We also note that we could not
employ the disaster-specific LMD models, except
GEOPY, as they are nonpublic. Re-implementation
is not handy due to the lack of several technical
details and the unavailability of their evaluation
datasets (Jiet al., 2016; Xu et al., 2019).

6.1.2 Evaluation Measures and Strategy

Inspired by the evaluation of user geolocation
task (Mourad et al., 2019), we leniently evaluate
LMD systems using hierarchical evaluation; how-
ever, we adopt three major changes. First, we use
exhaustive locational levels including country, state,
county, city, district, neighborhood, street, and POL.
Second, we propagate errors from higher to lower
levels. Third, we compute ranking evaluation mea-
sures, i.e., M RRQr not classification or distance-
based measures. In this work, we set 7 = 1,% but
we can use different values when perceiving the
task as ranking.

6.2 Results and Discussion

In this section, we benchmark IDRISI-D using
off-the-shelf LMD models and our own BERT 3/ p

*The M RRQ1 is equivalent to the accuracy measure for
classification since for every LM, we have only one correct
toponym.
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model. Table 5 shows the M RRQ1 results over
IDRISI-D datasets.

System CrY STA CoON CTY STR POI
IDRISI-DA

GEOL2 0.45 0.08 0.00 0.03 0.00 0.01
GEOL3 0.44 0.07 0.00 0.02 0.00 0.01
NOMIN 0.43 0.22 0.03 0.17 0.13 0.11
BERT;p/p 045 049 0.10 0.34 0.42 0.28
IDRISI-DE

GEOL2 0.85 0.60 0.32 0.24 0.02 0.02
GEOL3 0.83 0.61 0.31 0.24 0.02 0.02
GEOPY 0.64 0.32 0.14 0.09 0.00 0.00
NOMIN 0.81 0.66 0.38 0.36 0.24 0.07
BERTLp 0.73 0.61 0.29 0.28 0.14 0.07

Table 5: The results for the LMD models on IDRISI-
DE and IDRISI-DA datasets. “CRY,” “STA,” “CON,”
“CTY,” “STR,” and “PoI1” refer to COUNTRY, STATE,
COUNTY, CITY, STREET, and POINT-OF-INTEREST
evaluation levels, respectively

Arabic LMD: The GEOL systems show high per-
formance at COUNTRY level. However, their per-
formance is comparable to the BERT s p model.
GEOL systems fail at the fine-grained evaluation
levels as they employ the GeoNames gazetteer that
does not support Arabic for fine-grained locations.
The NOMIN baseline is showing the best results
among baselines, but it fails to outperform the
BERT,/p at all evaluation levels.

English LMD: 1t is evident that the post-filters that
are employed by GEOL and GEOPY are not effec-
tive for all evaluation levels, except for the COUN-
TRY level making the raw results from NOMIN
more accurate. GEOL systems show the best results
for the COUNTRY level, but their performance de-
creases against the BERT 3y p model at finer evalu-
ation levels including STATE, CITY, STREET and
Po1. NOMIN is the top model at almost all evalua-
tion levels. The BERT, 3, p model managed to com-
pete with NOMIN at only the POI evaluation level,
which counts for the BERT s p as the fine-grained
LMs are harder to disambiguate and they are of
interest to the response authorities in the disaster
domain (Kropczynski et al., 2018). The results also
confirm that disambiguating fine-grained LMs is
more challenging than coarse-grained LMs.

7 Research Use Cases

Releasing IDRISI-D enables research on disaster-
specific and generic geolocation applications that

we discuss below:

Event/incident detection: While LMs indicate
where events and incidents took place (Hu and
Wang, 2021), IDRISI-D datasets with their re-
solved LMs could serve event/incident detect mod-
els that exploit geospatial features.

Relevance filtering: While LMs increase the likeli-
hood of microblogs being relevant and informative
with regard to the disaster events (De Albuquerque
et al., 2015), IDRISI-D can enable research on rel-
evance filtering approaches that utilize geospatial
information.

Geolocation applications: While the LMP tasks
play a key role in tackling all of the geolocation
tasks (e.g., predicting post location (Ozdikis et al.,
2019), inferring user location (Luo et al., 2020),
modeling user movement (Wu et al., 2022), etc.)
that employ textual features (Zheng et al., 2018),
IDRISI-D is an invaluable resource for tackling
all these tasks.

Geographical retrieval: The geographical infor-
mation retrieval (GIR) systems are concerned with
extracting spatial information alongside the rele-
vant multimodal data to the user information need.
IDRISI-D could empower the GIR retrieval tech-
niques that rely on applying LMP tasks over queries
and documents (Garcia-Cumbreras et al., 2009).

8 Challenges

Compared to gazetteers, posts over social media
contain informal language, misspellings, grammar
mistakes, shortened words, and slang, causing the
so-called mismatch challenge (Han et al., 2013).
Table 6 presents different types of issues in the
following with examples in Table 6:

Nicknames: Some places have common nick-
names used by locals. For example, in Post #1,

Ca 2

“osesle madll ailes” isnamed “p g ) adis”
Also, Chennai is nicknamed “The Detroit of India"
in Post #2. The nicknames often do not exist in the
gazetteers.

Abbreviations: Short names of places are prevalent
on Twitter due to the character limit of posts. For
example, “iKLdV” (Kingdom) in Post #3 is abbrevia-

tion of &gaudl &y &) &KLt (Kingdom of Saudi Ara-
bia). Also, “T. Nagar" and “GM Chetty Road" are
abbreviations of “Theagaraya Nagar" and “Gopathi
Narayanaswami Chetty", respectively, in Post #4.

Misspellings: Misspellings and grammar mis-
takes are common over Twitter. For instance,
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T# Challenge Post text

1 Nicknames

ot Lo ol# aaildl J Lie? dlag o ) S E;JKC.;)J‘

2 #ChennaiFloods sad to see the state of city. Detroit of India is
suffering. Hv personal experienced.

3 Abbreviations

)y ookl b e U] 5 Uy, o8 gl BLoYL SR slasdU L

Sl el e e 7 fe olsis Al

4 Anyone around T. Nagar, needing shelter or food, can approach
the Gurudwara on GM Chetty Road #Chennai

5 Misspelling

VL ol it aadl £ G bl s .

6 Medical students of shri ramchandra medical college in chennai
stranded without supplies. Need help.

7 Shortcuts

8 sm 1

help providing water 50
Charitable Trust.safe.2/4,1st cross st,3rd

o1 5 il 9 iy el Y1 3 g Al Gl e e Ole b G

children @Lawrence
avenue,AshokNagar-

LakshmanSruti #ChennaiFloods

Table 6: Example posts illustrating the challenges of processing user-generated content for the LMD task. LMs with

issues are underlined in text.

“aadl g7 and “ LUl 2" in Post #5 should be writ-
ten as ‘:Z;'a.yﬂ‘ # (with 3 taa marbuta letter) and
“obUWl 2" (Wlth space), respectively. Also, “shri
ramchandra medical college" in Post #6 should be
written as “sri ramchandra medical college".

Shortcuts: Users tend to use shortened words due
to the character limit of posts. For example, “.L”

and “.4” in Post #7 refer to ““. 3, _L” (road in English)
and “. s , 45 (bridge in English), respectively. Also,
using “st” instead of “road”, in Post #8. Also, using
“@” symbol instead of the literal “at” prepositions
in the same post.

Capitalization: Users tend to ignore capitaliza-
tion when writing posts (e.g., “chennai" instead
of “Chennai" in Post #6.

Dialectics and varieties: “. s , 5 (bridge in En-
glish) in Post #7 is the dialectical (e.g., Egyptian)
form of . in Modern Standard Arabic (MSA).

9 Conclusion

This paper contributes towards a crucial task, i.e.,
Location Mention Disambiguation in the crisis
management domain. We introduced IDRISI-D,

the first Arabic and the largest to date English LMD
datasets.The LMD annotations that are of high re-
liability indicating the usefulness of the dataset.
A key characteristic of IDRISI-D is the annota-
tions of features’ usefulness that we anticipate to
guide the development of LMD tools. Our bench-
marking results show the competitiveness of simple
exact matching (NOMINATIM) and the promising
performance of contextual features (BERT/p)
for learning LMD. We release the datasets and the
evaluation script for the research community. The
future directions are two-fold: (i) enhancing the
representation of LMs and toponyms for robust
LMD learning, and (ii) employing advanced learn-
ing algorithms.
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Limitations

There are a few shortcomings that we discuss be-
low:

Twitter API Accessibility: Recently, X platform
have re-envisioned its business model imposing
more restrictions on the API accessibility for the
research community. Although X data is extremely
useful for disaster management, we expect less at-
tention from the academic researchers to develop
LMD systems that are specific for X platform. Nev-
ertheless, IDRISI-D is invaluable resource for de-
veloping LMD systems that process user-generated
content, specifically the data from microblogging
platforms.

Underrepresented fine-grained LMs: Although
we had chosen a careful sampling method, akin to
the existing LMD datasets, the fine-grained LMs
are yet underrepresented which forms a major limi-
tation in IDRISI-D.

Temporary locations: Temporary facilities (i.e.,
medical camps, shelters, etc.) are constructed dur-
ing emergencies to provide resources and support
for the affected people. The names of these loca-
tions could change during emergencies. For exam-
ple, allocating a specific school as a shelter and
giving it a new expressive name (e.g., “main shel-
ter”’). Once the disaster event is over, the school
will return to providing its original services. The
difficulty of these temporary locations lies in their
need for context when resolved. Although they are
important for the affected people and response au-
thorities, not all of them are labeled in IDRISI-D.

Ethics Statement

Although the X platform allows users to disable
the geo-tagging features to protect their privacy,
“even well-informed and rational individuals cannot
appropriately self-manage their privacy” (Solove,
2012). There are situations where extracting ge-
olocation data can be justified for the greater good
such as during natural disasters when the focus
is on saving lives and providing essential support.
Therefore, any resources and tools must preserve
the users’ privacy and safety, especially during crit-
ical situations that could risk people’s lives (e.g.,
conflicts and wars). Consequently, we have de-
identified the data to protect users’ privacy.” We
further release the data for research purposes only
under the Creative Commons Attribution 4.0 Inter-

SNewTab. html

national License. Above all, we affirm that systems
developed using IDRISI-D datasets must imple-
ment appropriate mechanisms to safeguard user
privacy.
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Abstract

We present CamelParser2.0, an open-source
Python-based Arabic dependency parser tar-
geting two popular Arabic dependency for-
malisms, the Columbia Arabic Treebank
(CATiB), and Universal Dependencies (UD).
The CamelParser2.0 pipeline handles the pro-
cessing of raw text and produces tokenization,
part-of-speech and rich morphological features.
As part of developing CamelParser2.0, we ex-
plore many system design hyper-parameters,
such as parsing model architecture and pre-
trained language model selection, achieving
new state-of-the-art performance across diverse
Arabic genres under gold and predicted tok-
enization settings.

1 Introduction

Dependency parsing is a natural language process-
ing (NLP) task used to analyze the grammatical
structure of a sentence by identifying and repre-
senting the relationships between its words. De-
pendency parsing assigns a directed tree structure
to the sentence, with words as nodes and syntac-
tic dependencies as edges (see Figure 1). Depen-
dency parsing, and syntactic parsing in general,
has long been considered an important NLP en-
abling technology and analysis tool (Jurafsky and
Martin, 2009). The interest in using syntactic struc-
tures in NLP in the neural age remains, e.g., as
analytical tools for studying large language mod-
els (Kulmizev, 2023), for guided data augmenta-
tion for Neural Machine Translation (Duan et al.,
2023), Semantic Role Labeling (Tian et al., 2022),
and Grammatical Error Correction (Li et al., 2022;
Zhang et al., 2022).

There have been previous developments in Ara-
bic dependency parsing (Habash and Roth, 2009;
Marton et al., 2013; Zhang et al., 2015; Shahrour
et al., 2016; Al-Ghamdi et al., 2023). However,
they are not based on state-of-the-art (SOTA) de-
velopments in neural dependency parsing and pre-
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Figure 1: An example CATiB dependency tree (Habash
et al., 2009) for the short question Tl:e> dow |y

whl sysrHwnhA ?*<and will they explain it?’.

trained language models, nor can they be easily in-
tegrated into larger project pipelines. Furthermore,
they are not trained on larger and more diverse tree-
banks that have been developed recently. Many
have only been tested with gold tokenization, not
as part of a full pipeline from sentence to tree — a
notable exception is the work of Zhang et al. (2015)
who modeled segmentation and parsing jointly.

In this work, we investigate the effect of many
system design hyper-parameters including parsing
model architecture, pretrained language model se-
lection, and training data configurations to achieve
unprecedented dependency parsing performance
on multiple Arabic genres. Hence, we present
CamelParser2.0, an open-source dependency pars-
ing pipeline that achieves SOTA performance on
Columbia Arabic Treebank (CATiB) and Universal
Dependencies (UD) parsing of Arabic across mul-
tiple genres from Modern Standard Arabic (MSA)
and Classical Arabic (CA).

Our contributions are: (1) achieving new state-
of-the-art on both CATiB and UD formalisms
in multiple Arabic genres on all metrics; (2) de-
veloping and releasing an open-source Python-
based pipeline for Arabic parsing;' and (3) bench-
marking a large number of hyper-parameters to
ensure the best system design choices.

1https ://github.com/CAMeL-Lab/camel_parser
2HSB Arabic transliteration (Habash et al., 2007)
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2 Related Work
2.1 Dependency Parsing

There are two main approaches to dependency
parsing: transition-based (Yamada and Matsumoto,
2003; Nivre et al., 2006) and graph-based (McDon-
ald et al., 2005). Both approaches have recently
been implemented with neural models to improve
performance. For example, Dozat and Manning
(2016) develop a graph-based parser that uses a
biaffine attention mechanism on a neural model to
achieve SOTA/near SOTA results on six different
languages including Czech, a morphologically rich
language with flexible word order. On the other
hand, Mohammadshahi and Henderson (2019) de-
velop a transformer mechanism that conditions on
graphs to be used with a neural transition-based
parser to achieve SOTA results on 13 languages.
The evaluations that guide the development of these
architectures are mainly carried out on higher re-
source languages, such as English and other Euro-
pean languages.

In this work, we investigate how neural depen-
dency parsing performs on Arabic given its rela-
tively fewer resources, especially in certain classi-
cal genres, such as pre-Islamic texts.

2.2 Arabic Treebanks

The primary treebank for Arabic syntactic analysis
is the Penn Arabic Treebank (PATB) (Maamouri
et al., 2004), which uses a phrase structure gram-
mar. It has been converted to a dependency rep-
resentation that uses two different formalisms:
CATiB (henceforth, PATB-CATiB) (Habash and
Roth, 2009), and UD (NUDAR Treebank) (Taji
et al., 2017). The two formalisms are compared in
some detail by Taji et al. (2017).

The first dependency treebank developed for Ara-
bic is the Prague Arabic Dependency Treebank
(PADT) (Smrz et al., 2002). PADT is in part based
on PATB; and it was later extended to UD (hence-
forth, PADT-UD).? Since then, several treebanks
have been developed such as the Columbia Arabic
Treebank (CATiB) (Habash and Roth, 2009), Quran
Corpus (Dukes and Buckwalter, 2010), i3rab tree-
bank (Halabi et al., 2021), and Arabic Poetry Tree-
bank (ArPoT) (Al-Ghamdi et al., 2021). Most re-
cently, Habash et al. (2022) released the Camel
Treebank (CamelTB), which is a multi-genre Ara-
bic dependency treebank in the CATiB formalism

3https://github.com/UniversalDependencies/UD_
Arabic-PADT/
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spanning CA texts from the 6th Century to MSA
texts from the 21st century. PADT (Smrz et al.,
2002), CATiB (Habash et al., 2009), and UD (Nivre
et al., 2017) are dependency tree representations
with different POS tags, dependency relation labels,
and attachment rules.

In this work, we make use of recent develop-
ments in Arabic treebanking to explore the per-
formance of different parsing model architectures,
with different training dataset configurations, and
with different dependency formalisms (CATiB and
UD) on multiple Arabic genres, and under gold and
predicted tokenization conditions.

2.3 Arabic Parsing

Regarding evaluating parser design in Arabic de-
pendency parsing, the work done by Marton et al.
(2013) examines the impact of morphological fea-
tures on dependency parsing performance under
both gold and predicted conditions. They observe
differences in feature importance when using pre-
dicted features due to changes in prediction accu-
racy for each examined feature. They find that
definiteness, person, number, gender, and undia-
critized lemma are most helpful under predicted
conditions. Their results are observed using Malt-
Parser, a transition-based model, with a feature-
based SVM classifier (Nivre et al., 2006), which
differs from the recent neural SOTA models that
learn features from the training data implicitly.

Kankanampati et al. (2020) leverage the Easy-
First LSTM-based architecture proposed by Kiper-
wasser and Goldberg (2016), but experiment with
sharing tree representations and BiLSTM layers
between CATiB and UD formalisms to achieve sig-
nificant error reduction on both.

More recently, Al-Ghamdi et al. (2023) em-
ploy an approach that treats dependency parsing
as a sequence labeling task (Strzyz et al., 2019).
They apply various pretrained BERT models un-
der different fine-tuning and architectural setups.
They explore the performance of this approach
on (a) PADT (Smrz et al., 2002), (b) part 2 of
PATB in the CATiB formalism (Maamouri et al.,
2004; Habash and Roth, 2009), and (¢) ArPoT (Al-
Ghamdi et al., 2021).

To our knowledge, the current state-of-the-art
in terms of publicly available dependency parsing
systems in Arabic is the CamelParser1.0 for the
CATiB formalism (Shahrour et al., 2016), and UD-
Pipe 2 for the UD formalism (Straka, 2018).


https://github.com/UniversalDependencies/UD_Arabic-PADT/
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Figure 2: A diagram of the CamelParser2.0 pipeline paired with a simple example of raw text input.

Our work is closest in high-level design to
CamelParser1.0, which uses the MADAMIRA
morphological disambiguation system based on
SVM classifiers and morphological analyzers
(Pasha et al., 2014) and an SVM-based parsing
system called MaltParser (Nivre et al., 2006). It
reported results on the Penn Arabic Treebank
(Maamouri et al., 2004), which is limited to the
newswire genre. Since these results were reported,
significant advancements have been made in both
dependency parsing and morphological analysis
through the use of pretrained language models
like BERT and neural model architectures (Dozat
and Manning, 2016; Inoue et al., 2022); and more
datasets in Arabic genres beyond newswire have
been created (Habash et al., 2022). We use CAMeL
Tools (Obeid et al., 2020) as part of the implemen-
tation of CamelParser2.0.

By utilizing the aforementioned developments
in Arabic treebanking and neural dependency pars-
ing, we experiment on PATB-CATiB, CamelTB,
NUDAR, and PADT to improve the dependency
parsing performance in Arabic in multiple MSA
and CA genres and across the CATiB and UD for-
malisms. Due to a different experimental setup and
data scope explored by Al-Ghamdi et al. (2023),
we cannot directly compare our results on all met-
rics and datasets; however, we observe that our
approach outperforms their reported results on the
test set of PADT. Additionally, by comparing our
findings to the existing SOTA pipelines, Camel-
Parser1.0 and UDPipe 2, as well as the reported
results in Kankanampati et al. (2020), we observe
that CamelParser2.0 sets the new SOTA in Arabic
dependency parsing for both gold and predicted
tokenization settings.

3 The CamelParser2.0 Pipeline

In this section, we present the details of the Camel-
Parser2.0 pipeline (Figure 2). The pipeline ac-
commodates varying levels of pre-processing in
the input. Depending on the extent to which the
input has been pre-processed, the pipeline conducts
morphological disambiguation. Once input tokens
have been identified, they are passed to the depen-
dency parsing system which outputs dependency
arcs and labels. The dependency relations are then
combined with the form and additional part-of-
speech tags and morphological features, which are
either specified in the input or generated in the
morphological disambiguation step, to output a
CoNLL-X/CoNLL-U file format (Buchholz and
Marsi, 2006; De Marneffe et al., 2014).

3.1 Input Formats

Before parsing begins, the input to the pipeline
is directed to the proper step based on its format.
Currently, we support the following input formats.

Raw Text Raw Arabic text is first cleaned by nor-
malizing Unicode characters, removing diacritics
and other characters that are not Arabic, ASCII, or
Latin-1, and performing whitespace tokenization
(Obeid et al., 2020). The text is then passed to the
Morphological Disambiguation step (Figure 2).

Pre-Tokenized and Tagged Text Files contain-
ing token and optional Part-of-Speech (POS) tag
tuples are supported. The input is passed to the
parser directly. Since the parser does not require
POS tags, they will not be produced if only tok-
enized text is provided.
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CoNLL-X/CoNLL-U The pipeline also accepts
input in the CoNLL-X/CoNLL-U tab-separated file
format (Buchholz and Marsi, 2006; De Marneffe
etal., 2014).

3.2 Tokenization and POS tagging

When the input is already tokenized, we pass that
information onto the dependency parsing system.
As for raw untokenized text, we make use of a Mor-
phological Disambiguation system which predicts
the tokens and the POS tags of these tokens (see
Figure 2). The user determines whether to use a
more accurate but more resource-intensive BERT
unfactored disambiguator (Inoue et al., 2022) or a
lighter Maximum Likelihood Estimation (MLE)
disambiguator, both of which are included in
CAMeL Tools (Obeid et al., 2020). We then extract
the tokens, lemmas, and primary POS tags (CATiB
or UD), as well as a set of morphological features
provided by CAMeL Tools: MADA POS, position-
marked proclitics and enclitics (prc3, prc2, prci,
prco, encd), person, gender, number, aspect, voice,
mood, state, case, and rationality. We add a feature
token_type to signify if the token is a baseword
or clitic (indicated by its location, e.g., prc2).

3.3 Dependency Parsing

The next component of our parsing pipeline is
the dependency parsing model, which expects to-
kenized Arabic data as input. We use the SuPar
Biaffine Dependency Parser (Zhang, 2021), which
is based on the work of Dozat and Manning (2016)
with a key difference. Instead of using a GLoVe
vector-based encoding layer, we generate word em-
beddings using a BERT model. To achieve this, a
BERT model is used to generate WordPiece-level
embeddings by summing up the last four layers
of the BERT model (Devlin et al., 2018). Then,
to generate the token-level embeddings, the corre-
sponding WordPieces’ embeddings of each token
are pooled using a mean.

The output of this step is the dependency rela-
tions and labels of the input text. The POS and
morphological features are integrated in the final
dependency representation in an output postpro-
cessing step (see Figure 2).

In this paper, for comparison purposes, we also
report on using the MaltParser system introduced
by Nivre et al. (2006) which is employed by the
previous SOTA parsing system for Arabic, Camel-
Parser1.0 (Shahrour et al., 2016).

4 Experimental Setup

Our experimental setup involves training multiple
dependency parsing models with different training
data configurations which are then evaluated on
multi-genre development and test sets under both
gold and predicted tokenization settings to gauge
accuracy and robustness across multiple genres in
Arabic. The details of the various experimental
setups are outlined below.

4.1 Data

The data we use to train and evaluate includes
PATB-CATiB and CamelTB (CATiB representa-
tion), and PADT-UD and NUDAR (UD represen-
tation). Table 1 lists the corpora and their sub-
corpora and indicates their genres, variety (MSA or
CA), and sizes. We note that PADT-UD text data
contains a subset of PATB. CamelTB has a vari-
ety of different sub-corpora across multiple genres,
some of which are similar to PATB (WikiNews and
QALB). The PATB (PATB-CATiB and NUDAR)
was split according to the recommendations by
Diab et al. (2013). We follow the recommendations
of the creators of PADT for its data splits.* We split
the CamelTB data according to the recommenda-
tions by Habash et al. (2022) in CamelTB vl.1)
In our experiments, we examine a number of
training data combinations to provide the best ro-
bustness and accuracy across multiple Arabic gen-
res. We do not train on individual CamelTB genres
because of the limited amount of data we have; but
we report results for them. Similar to Kankanam-
pati et al. (2020), we exclude all non-projective
trees in the training, but not in the dev and test.

4.2 Metrics

Dependency Parsing Accuracy Evaluation of
dependency parsing models is done primarily
through three metrics:

* Labeled Attachment Score (LLAS): The per-
centage of tokens with correct head/parent and
correct label/relation to that parent.

e Unlabeled Attachment Score (UAS): The
percentage of tokens with correct head/parent.

* Label Score (LS): The percentage of tokens
with correct label/relation.

LAS is the primary metric we report on.

4https://github.com/UniversalDependencies/UD_
Arabic-PADT/
5http://treebank.camel—lab.com/
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Rep Corpus Text Source Var |Cent Genre Sents | Words | Tokens
PATB-CATIB |Penn Arabic Treebank (Parts 1-2-3) MSA |21st |News 19,738 628,598 | 738,889
Odes Suspended Odes (Mu’allaqat) CA |6th |Poetry 784 7,465| 10,170

Quran Quranic Surahs CA |7th |Quranic 572 11,699 15,791

Hadith Hadiths from Sahih Bukhari CA |7th |Prophetic Sayings 1,190 12,467 15,745

1001 One Thousand and One Arabian Nights [CA |12th |Stories 1,145 11,831 17,109

Hayy Hayy ibn Yaqdhan (Ibn Tufail) CA |12th |Philosophical Novel | 1,198| 19,674 26,583

Q Q oT Old Testament MSA | 19th [Bible Translation 535 9,097 11,788
;g E NT New Testament MSA [19th |Bible Translation 573 9,593| 12,293
; Sara Sara (Al-Akkad) MSA |20th [Novel 1,585| 35,356| 46,375

ALC Arabic Learner Corpus MSA |21st [Student Essays (L2) 727 9,221 12,047

BTEC Basic Traveling Expressions Corpus MSA (21st |Phrasebook 2,000| 15,935 18,602

QALB QALB Corpus MSA (21st |Online Commentary 923| 11,454 14,139
WikiNews| WikiNews MSA |21st |News 996| 18,314 21,481
ZAEBUC | Zayed Bilingual Undergraduate Corpus |MSA |21st [Student Essays (L1) | 1,109| 15,778 19,787
CamelTB Total | 13,337 | 187,884 | 241,910

PATB-CATiB+CamelTB Total | 33,075 | 816,482 | 980,799

D PADT-UD |Prague Arabic Dependency Treebank |MSA [21st |News 7,664 17,357| 113,500
NUDAR |NYUAD UD Arabic Treebank MSA |21st |News 19,738 628,598 738,889

Table 1: The various datasets we experiment with in developing CamelParser2.0. Rep (Representation) specifies
the treebank formalism. Var is the Arabic variant. Cent is the century. Sents is the number of sentences.

Statistical Significance In certain cases, we
test for statistical significance using a one-tailed
Welch’s t-test following the recommendations of
Dror et al. (2018). We treat each sentence as an
independent experiment and calculate a sentence-
level accuracy of parsing which we use to conduct
the statistical significance testing.

4.3 Tokenization

Previous work on dependency parsing tends to
judge performance purely on gold tokenization
(Marton et al., 2013; Shahrour et al., 2016; Dozat
and Manning, 2016; Mohammadshahi and Hen-
derson, 2019), although there are many recent ex-
ceptions (Shao et al., 2018; More et al., 2019;
Habash et al., 2022). We report on both gold and
predicted tokenization to study the performance
under real-world conditions. We use the BERT
unfactored disambiguator (Inoue et al., 2022) in
CAMeL Tools (Obeid et al., 2020). On our dev
datasets (PATB and CamelTB sub-corpora), the av-
erage predicted word-level tokenization accuracy is
96.8%, with a wide range from WikiNews (99.8%)
to Odes (91.3%), with PATB at 99.1%. This range
of performance is consistent with our expectations
since the CAMeL Tools MSA disambiguator is
trained on PATB train data (news genre).

4.4 Parsing Models

We compare our CamelParser2.0 neural depen-
dency parsing architecture, as described in sec-
tion 3.3 with other pre-existing parsing system
baselines. The first baseline, MaltParser (v1.9.2)
(Nivre et al., 2007), forms the core of the previous
SOTA for dependency parsing in Arabic, Camel-
Parser1.0 (Shahrour et al., 2016). We compare to
it directly and as part of CamelParser1.0 (second
baseline). The third baseline is UDPipe 2, whose
models are currently available from the LINDAT
UDPipe REST Service.® The last baseline is the
system of Kankanampati et al. (2020); we report
their published numbers where appropriate.

It is important to note that the experimentation
Kankanampati et al. (2020) report on is mainly to
leverage parallel data in two formalisms (CATiB
and UD) and not necessarily to achieve an over-
all SOTA parser for Arabic. Nevertheless, they
achieve impressive results so we compare against
their best reported numbers. We do not lever-
age their multitask learning approach for Camel-
Parser2.0; however, it could prove useful for fu-
ture work to explore combining our approaches by
sharing representations in the Biaffine parsing ar-

Shttps://ufal.mff.cuni.cz/udpipe/2
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| LAS | UAS | LS |

MaltParser 80.7 | 83.0 | 934
CamelParser1.0 (Shahrour et al., 2016) || 83.8 | 86.4 | 93.2
Kankanampati et al. (2020) 86.2 | 88.1 -

CamelParser2.0 913 | 924 | 97.0

Table 2: Scores of various dependency parsing systems trained on the PATB-CATiB and evaluated on the test set of
PATB-CATiB. CamelParser2.0 achieves the SOTA on all metrics and improves on CamelParser1.0 (Shahrour
et al., 2016) by almost 7.5 points on the LAS. Kankanampati et al. (2020) do not report on the LS.

chitecture proposed by Dozat and Manning (2016)
between different formalisms to further improve
parsing performance across formalisms.

4.5 BERT Model Selection

We also experiment with four pretrained BERT
models. The first three are from CamelBERT (In-
oue et al., 2021): CamelBERT-MSA is pretrained
on MSA data, CamelBERT-CA is pretrained on
CA data, and CamelBERT-MIX is pretrained on
MSA, CA, and Dialectal Arabic data. We make
use of them because they give us an understand-
ing of how pretrained data interplays with parsing
performance on differing genres and variants. Addi-
tionally, they were created under the same settings,
hence, they reduce experimental variation. Further-
more, we make use of AraBERT v2.0 (Antoun
et al., 2020) as it improves upon AraBERTv0.2
which has been shown previously to achieve SOTA
performance on a range of Arabic NLP tasks (Inoue
et al., 2021).

5 Results and Analysis

We present the results of the experiments we con-
ducted as part of developing CamelParser2.0.

5.1 Comparing System Baselines

In Table 2, we report CamelParser2.0’s perfor-
mance against previous SOTA baselines under
the same exact training/testing conditions with
gold tokenization. All systems are trained on
PATB-CATiB training data and evaluated on PATB-
CATiB test. It should be noted that MaltParser
and CamelParser1.0 use the same base algorithms
and implementations; however, CamelParser1.0
does further hyper-parameter optimization and fea-
ture selection to improve performance on Arabic as
opposed to MaltParser which just uses the default
configuration. We also include the best results re-
ported by Kankanampati et al. (2020), however, we
cannot compare our results on the LS as they do not

report them. For CamelParser2.0, we use our base-
line BERT model (CamelBERT-MSA). We observe
that across all metrics, CamelParser2.0 achieves
significant improvements over all the reported sys-
tems including a 46.3%, 44.1%, and 55.9% error
reduction on the LAS, UAS, and LS respectively
when compared to the previous SOTA pipeline
CamelParser1.0. Therefore, we only move for-
ward with testing CamelParser2.0 for the rest of
our experiments.

5.2 Comparing Training Data Configurations

We compare different training datasets and their
combination. We use the same CamelParser2.0
model with CamelBERT-MSA, and report on both
gold and predicted tokenization to determine which
training data configuration yields the best results on
LAS. As seen in Table 3, in the first three columns
under the Gold/Predicted Tokenization and Camel-
BERT headers, the overall trend is that using train-
ing data from both PATB-CATiB and CamelTB
to train the parser yields the best results on all
averages in both the gold and predicted tokeniza-
tion cases. This is unsurprising given the larger
training data size and inclusion of multiple genres.
There are some instances where using a smaller
training configuration is better than using the larger
combined configuration (e.g., Hadith, Hayy, NT);
however, they are not statistically significant. On
average there are larger gains on both accuracy and
robustness to be had from using more training data.

5.3 Comparing BERT Embedding Models

We then experiment with different BERT mod-
els as embedding layers (Table 3). Unsurpris-
ingly, the best-performing models on the MSA and
CA multi-genre data were CamelBERT-MSA and
CamelBERT-CA, not CamelBERT-MIX which was
trained with dialectal data.

We observe the following differences depend-
ing on the BERT model used. There was a sta-
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Gold Tokenization Predicted Tokenization
CamelBERT CamelBERT
NISA CA TMIX AraBERT MISA CA AraBERT

PATB-CATiB| X X X X X X X X X

CamelTB X X X X X X X X X
1001 CA 86.2 190.7 1919 | 91.2 | 91.2 92.8 84.2 | 88.9 | 90.1 | 90.7 90.8
ALC MSA | 87.3 | 88.9 | 89.2 | 88.6 | 88.9 90.1 86.0 | 87.3 | 87.5 | 86.5 88.7
BTEC MSA | 82.0 | 86.0 | 86.2 | 85.2 | 85.0 87.1 81.2 | 85.1 | 85.1 | 84.5 86.1
Hadith CA 81.2 1904 |90.2 | 91.2 | 90.7 91.2 79.6 | 87.9 | 88.2 | 88.9 88.9
Hayy CA 86.6 1 90.4 |1 90.2 | 91.0 | 89.3 91.3 85.6 | 88.9 | 88.7 | 89.2 89.8
NT MSA | 74.5 | 81.1 | 79.8 | 81.2 | 80.6 80.2 71.8 | 785 | 76.4 | 77.1 76.9
Odes CA 72.7176.9 | 77.7 |80.2*% | 77.1 78.7 68.6 | 71.7 | 72.5 |75.2* 74.8
oT MSA| 77.1 | 82.4 | 82.5 | 82.3 | 824 83.4 744 1794 | 79.7 | 79.5 80.5
QALB MSA | 82.8 | 87.6 | 87.6 | 88.0 | 88.0 87.7 82.3 | 86.7 | 86.9 | 87.3 87.3
Quran CA 73.8 |1 84.1 | 84.4 | 85.4 | 84.3 85.5 72.8 | 82.3 | 83.0 | 83.2 83.5
Sara MSA | 80.2 | 86.3 | 86.6 | 86.3 | 85.9 87.0 79.0 | 85.0 | 84.1 | 82.6 83.9
WikiNews |MSA | 89.0 | 90.3 (90.4* | 86.9 | 89.5 90.3 88.9 | 90.1 [90.2* | 87.9 90.1
ZAEBUC |MSA| 88.2190.0 | 91.1 | 89.6 | 90.9 92.0 87.6 | 89.5 1 90.7 | 89.3 91.7
PATB MSA | 92.2 | 85.2 | 92.1 | 90.9 | 91.5 92.3 91.7 | 85.0 | 91.6 | 90.4 91.8
CamelTB Average| 81.7 | 86.5 | 86.5 | 87.2 | 86.4 87.5 80.2 | 84.7 | 84.4 | 85.6 85.6
Total Average| 82.4 | 86.5 | 86.9 | 87.5 | 86.8 87.8 81.0 | 84.7 | 85.0 | 85.9 86.1
MSA Average| 83.7 | 86.4 | 86.9 | 86.6 | 87.0 87.8 82.5 852 | 853 | 85.0 86.3
CA Average| 80.1 | 86.5 | 86.9 | 89.7 | 86.5 87.9 78.2 | 83.9 | 84.5 | 88.0 85.6

Table 3: The LAS of different training configurations on the Dev sets of the CamelTB sub-corpora and PATB-CATiB.
We test under both Gold and Predicted tokenization conditions, and using different BERT embedding models. The
overall best-performing configuration is underlined and in bold, while the best-performing CamelBERT model is in
bold. Results with an asterisk indicate statistical significance (p < 0.05) for results discussed in Section 5.3.

tistically significant +2.5 gain with gold tokeniza-
tion and +2.7 gain with predicted tokenization on
the LAS from using CamelBERT-CA instead of
CamelBERT-MSA on CamelTB-Odes. Further-
more, there was a statistically significant -3.5 drop
with gold tokenization and -2.3 drop with pre-
dicted tokenization from using CamelBERT-CA
over CamelBERT-MSA on CamelTB-WikiNews.
However, on average, there is not much of a per-
formance difference between CamelBERT-CA and
CamelBERT-MSA; in other cases, the differences
were not statistically significant. Nevertheless,
it seems that using CamelBERT-CA yields im-
provements on the parser’s performance on CA
texts, despite being pretrained on fewer data, and
CamelBERT-MSA yields improvements on the per-
formance on MSA texts. These results are consis-
tent with the observations of Inoue et al. (2021)
and support the importance of careful selection of

the BERT embedding model depending on the data
being parsed.

Finally, we also compare with AraBERT, which
outperforms CamelBERT on macro average across
almost all sub-corpora. AraBERT is better or equal
to CamelBERT in 10 out of 14 cases in both Gold
and Predicted conditions; however, none of the im-
provements are statistically significant when com-
pared genre-by-genre.

5.4 CATiB Test Set Results

We report the performance of our best performing
models on CATiB formalism from Table 3 on the
unseen test sets in Table 4. We observe similar pat-
terns in the results as discussed before. Hence, we
make similar recommendations for model selection
given the data.
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Gold Tokenization Predicted Tokenization
CamelBERT CamelBERT
MSA CA AraBERT MSA CA AraBERT

PATB-CATiB X X X X X X

CamelTB X X X X X X
1001 CA 91.9 92.0 92.2 89.6 89.7 89.9
ALC MSA 87.5 86.9 87.6 86.0 85.7 86.5
BTEC MSA 84.9 84.3 85.5 83.6 83.0 84.0
Hadith CA 92.4 93.9 92.2 90.5 91.8 90.9
Hayy CA 91.7 91.8 92.6 90.3 90.5 91.1
NT MSA 84.7 84.2 84.6 79.1 78.7 78.8
Odes CA 77.3 81.5 78.8 75.3 77.0 75.5
oT MSA 87.4 87.3 87.8 82.4 80.8 82.6
QALB MSA 86.5 86.7 86.8 86.1 85.1 85.9
Quran CA 82.7 83.6 83.9 80.3 80.8 81.0
Sara MSA 84.5 83.9 84.2 78.9 78.1 79.3
WikiNews |MSA 90.1 88.9 90.1 90.0 88.7 90.0
ZAEBUC MSA 91.8 91.4 92.5 90.6 90.4 91.3
PATB MSA 91.3 89.8 91.3 89.6 89.6 91.0
CamelTB Average| 87.2 87.4 87.6 84.8 84.6 85.1
Total Average| 87.5 87.6 87.9 85.2 85.0 85.6
MSA Average|| 87.6 87.0 87.8 85.1 84.5 85.5
CA Average| 87.2 88.6 87.9 85.2 86.0 85.7

Table 4: The LAS of different training configurations on the Test sets of the CamelTB sub-corpora and PATB-CATiB.
Only the best-performing models from the evaluation on the dev sets are included. The overall best-performing
configuration is underlined and in bold, while the best-performing CamelBERT model is in bold.

5.5 Parsing UD with CamelParser2.0

The focus of the previous experiments has been
on the performance on the CATiB formalism; how-
ever, we also examine the system’s performance
on UD data. We do so by training our dependency
parsing model on PADT-UD and NUDAR, and
evaluate on the respective dev and test sets. Due
to differing annotation styles between these two
UD corpora, cross-evaluation results in poor per-
formance. Hence, we do not report those results
here.

We only include CamelParser2.0 with
AraBERT and CamelBERT-MSA because these
datasets consist of only MSA, and those models
performed the best on MSA data based on our
experimentation with CATiB dependency parsing.

Furthermore, we use the same disambiguation
system to generate the predicted tokens for two
reasons: UDPipe 2’s disambiguation system was
not able to segment the sentences properly so we
were unable to align the output for evaluation and
secondly we get to observe the performance of
the systems while controlling for tokenization
accuracy. Results are in Table 5. Furthermore,
we only include the best-reported results by
Kankanampati et al. (2020) on Gold Tokenization
because that is the only experimental setup they
report on. We observe that we indeed achieve the
SOTA on UD datasets when we compare against
UDPipe 2 and Kankanampati et al. (2020). We
also observe that CamelBERT-MSA performs
better on these datasets than AraBERT.
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Gold Tokenization Predicted Tokenization
] System Train Dev \ Test Dev Test
UDPipe 2 PADT-UD 82.5 82.7 81.6 80.9
CamelParser2.0+CamelBERT | PADT-UD 83.2 83.9 82.5 824
CamelParser2.0+AraBERT PADT-UD 82.7 83.4 82.2 82.0
Kankanampati et al. (2020) NUDAR 85.2 84.8 - -
CamelParser2.0+CamelBERT | NUDAR 89.1 88.9 88.7 88.8
CamelParser2.0+AraBERT NUDAR 89.0 88.9 88.1 88.4

Table 5: The LAS of different systems evaluated on

datasets that use the UD formalism using both gold and

predicted tokenization. The first three systems are trained on the PADT and the last three systems are trained on the
PATB in the UD formalism (NUDAR). Evaluation is done on the respective Dev and Test sets of each corpus.

6 Conclusion and Future Work

We presented CamelParser2.0, a new SOTA open-
source, Python-based Arabic dependency parser
that supports UD and CATiB formalisms and mul-
tiple Arabic genres. We make CamelParser2.0
publicly available.” In the future, we plan to con-
tinue to enhance the CamelParser2.0 models and
integrate them in downstream applications to sup-
port Arabic NLP. We also plan to extend the parser
to cover multiple Arabic dialects.
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Limitations

We recognize that the current parser has limitations,
as it is primarily tailored to the most commonly
used dependency representation formalisms. How-
ever, it does not accommodate other formalisms,
such as those rooted in Arabic’s extensive tradi-
tional syntactic literature (Dukes and Buckwalter,
2010; Halabi et al., 2021). The primary challenge
here revolves around the availability of resources.
Additionally, we acknowledge that the parser’s cur-
rent focus is on Modern Standard Arabic (MSA)
and Classical Arabic (CA), and there is a notable
absence of research in the field of Dialectal Arabic
parsing (Chiang et al., 2006). It’s worth noting
that there are numerous pretrained language mod-
els available for experimentation. Regrettably, due
to limited computational resources, we are unable
to explore this avenue. Lastly, we acknowledge
that we do not report on extrinsic metrics or perfor-
mance in downstream tasks.

7https ://github.com/CAMeL-Lab/camel_parser

References

Sharefah Al-Ghamdi, Hend Al-Khalifa, and Abdulma-
lik Al-Salman. 2021. A dependency treebank for
classical Arabic poetry. In Proceedings of the Sixth
International Conference on Dependency Linguistics
(Depling, SyntaxFest 2021), pages 1-9, Sofia, Bul-
garia.

Sharefah Al-Ghamdi, Hend Al-Khalifa, and Abdulmalik
Al-Salman. 2023. Fine-tuning bert-based pre-trained
models for arabic dependency parsing. Applied Sci-
ences, 13(7).

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 9-15, Marseille, France.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of the Conference on Computational
Natural Language Learning (CoNLL), pages 149—
164, New York City, New York.

David Chiang, Mona Diab, Nizar Habash, Owen Ram-
bow, and Safiullah Shareef. 2006. Parsing Arabic
Dialects. In Proceedings of the Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics (EACL), Trento, Italy.

Marie-Catherine De Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre,
and Christopher D Manning. 2014. Universal stan-
ford dependencies: A cross-linguistic typology. In
Proceedings of the Language Resources and Evalua-
tion Conference (LREC), volume 14, pages 4585-92,
Reykjavik, Iceland.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Mona Diab, Nizar Habash, Owen Rambow, and Ryan
Roth. 2013. LDC Arabic treebanks and associated
corpora: Data divisions manual. arXiv preprint
arXiv:1309.5652.

Timothy Dozat and Christopher D. Manning. 2016.
178


https://github.com/CAMeL-Lab/camel_parser
https://aclanthology.org/2021.depling-1.1
https://aclanthology.org/2021.depling-1.1
https://doi.org/10.3390/app13074225
https://doi.org/10.3390/app13074225
https://aclanthology.org/2020.osact-1.2
https://aclanthology.org/2020.osact-1.2
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

Deep biaffine attention for neural dependency pars-
ing. CoRR, abs/1611.01734.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing sta-
tistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383—-1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Sufeng Duan, Hai Zhao, and Dongdong Zhang. 2023.
Syntax-aware data augmentation for neural machine
translation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 31:2988-2999.

Kais Dukes and Tim Buckwalter. 2010. A Depen-
dency Treebank of the Quran using Traditional Ara-
bic Grammar. In Proceedings of the Conference on
Informatics and Systems (INFOS), Cairo, Egypt.

Nizar Habash, Muhammed AbuOdeh, Dima Taji, Reem
Faraj, Jamila El Gizuli, and Omar Kallas. 2022.
Camel treebank: An open multi-genre Arabic depen-
dency treebank. In Proceedings of the Thirteenth
Language Resources and Evaluation Conference,
pages 2672-2681, Marseille, France.

Nizar Habash, Reem Faraj, and Ryan Roth. 2009. Syn-
tactic Annotation in the Columbia Arabic Treebank.
In Proceedings of the International Conference on
Arabic Language Resources and Tools, Cairo, Egypt.

Nizar Habash and Ryan Roth. 2009. CATiB: The
Columbia Arabic Treebank. In Proceedings of
the Joint Conference of the Association for Com-
putational Linguistics and the International Joint
Conference on Natural Language Processing (ACL-
IJCNLP), pages 221-224, Suntec, Singapore.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den
Bosch and A. Soudi, editors, Arabic Computational
Morphology: Knowledge-based and Empirical Meth-
ods, pages 15-22. Springer, Netherlands.

Dana Halabi, Ebaa Fayyoumi, and Arafat Awajan. 2021.
I3rab: A new Arabic dependency treebank based on
Arabic grammatical theory. Transactions on Asian

and Low-Resource Language Information Process-
ing, 21(2):1-32.

Go Inoue, Bashar Alhafni, Nurpeiis Baimukan, Houda
Bouamor, and Nizar Habash. 2021. The interplay
of variant, size, and task type in Arabic pre-trained
language models. In Proceedings of the Sixth Arabic
Natural Language Processing Workshop, pages 92—
104, Kyiv, Ukraine (Virtual). Association for Compu-
tational Linguistics.

Go Inoue, Salam Khalifa, and Nizar Habash. 2022. Mor-
phosyntactic tagging with pre-trained language mod-
els for Arabic and its dialects. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1708—1719, Dublin, Ireland. Association for
Computational Linguistics.

Dan Jurafsky and James H. Martin. 2009. Dependency
Parsing. Pearson Prentice Hall.

Yash Kankanampati, Joseph Le Roux, Nadi Tomeh,
Dima Taji, and Nizar Habash. 2020. Multitask easy-
first dependency parsing: Exploiting complemen-
tarities of different dependency representations. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 2497-2508,
Barcelona, Spain (Online).

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Easy-
first dependency parsing with hierarchical tree
LSTMs. Transactions of the Association for Compu-
tational Linguistics, 4:445-461.

A Kulmizev. 2023. The Search for Syntax: Investigating
the Syntactic Knowledge of Neural Language Mod-
els Through the Lens of Dependency Parsing. Ph.D.
thesis, Uppsala University.

Zuchao Li, Kevin Parnow, and Hai Zhao. 2022. Incor-
porating rich syntax information in grammatical error
correction. Information Processing & Management,
59(3):102891.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank:
Building a Large-Scale Annotated Arabic Corpus.
In Proceedings of the International Conference on
Arabic Language Resources and Tools, pages 102—
109, Cairo, Egypt.

Yuval Marton, Nizar Habash, and Owen Rambow. 2013.
Dependency parsing of modern standard Arabic with
lexical and inflectional features. Computational Lin-
guistics, 39(1):161-194.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Haji¢. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 523-530, Vancouver,
British Columbia, Canada. Association for Computa-
tional Linguistics.

Alireza Mohammadshahi and James Henderson. 2019.
Graph-to-graph transformer for transition-based de-
pendency parsing. CoRR, abs/1911.03561.

Amir More, Amit Seker, Victoria Basmova, and Reut
Tsarfaty. 2019. Joint transition-based models for
morpho-syntactic parsing: Parsing strategies for
MRLs and a case study from Modern Hebrew. Trans-
actions of the Association for Computational Linguis-

tics, 7:33-48.

Joakim Nivre, Zeljko Agi¢, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Bengoetxea,
Riyaz Ahmad Bhat, Eckhard Bick, Cristina Bosco,
Gosse Bouma, Sam Bowman, Marie Candito, Giilsen
Cebiroglu Eryigit, Giuseppe G. A. Celano, Fabricio
Chalub, Jinho Choi, Cagr1 Coltekin, Miriam Connor,
Elizabeth Davidson, Marie-Catherine de Marneffe,
Valeria de Paiva, Arantza Diaz de Ilarraza, Kaja Do-
brovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Marhaba Eli, Tomaz Erjavec, Richard
Farkas, Jennifer Foster, Claudia Freitas, Katarina
GajdoSov4, Daniel Galbraith, Marcos Garcia, Filip
Ginter, Iakes Goenaga, Koldo Gojenola, Memduh

179


http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.1109/TASLP.2023.3301214
https://doi.org/10.1109/TASLP.2023.3301214
https://aclanthology.org/2022.lrec-1.286
https://aclanthology.org/2022.lrec-1.286
https://aclanthology.org/2021.wanlp-1.10
https://aclanthology.org/2021.wanlp-1.10
https://aclanthology.org/2021.wanlp-1.10
https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.18653/v1/2020.coling-main.225
https://doi.org/10.18653/v1/2020.coling-main.225
https://doi.org/10.18653/v1/2020.coling-main.225
https://doi.org/10.1162/tacl_a_00110
https://doi.org/10.1162/tacl_a_00110
https://doi.org/10.1162/tacl_a_00110
https://aclanthology.org/H05-1066
https://aclanthology.org/H05-1066
http://arxiv.org/abs/1911.03561
http://arxiv.org/abs/1911.03561
https://doi.org/10.1162/tacl_a_00253
https://doi.org/10.1162/tacl_a_00253
https://doi.org/10.1162/tacl_a_00253

Gokirmak, Yoav Goldberg, Xavier Gémez Guino-
vart, Berta Gonzales Saavedra, Matias Grioni, Nor-
munds Grizitis, Bruno Guillaume, Nizar Habash,
Jan Haji¢, Linh Ha My, Dag Haug, Barbora Hladka,
Petter Hohle, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Fredrik Jgrgensen, Hiiner Kagikara, Hiroshi
Kanayama, Jenna Kanerva, Natalia Kotsyba, Simon
Krek, Veronika Laippala, Phuong Lé Hong, Alessan-
dro Lenci, Nikola Ljubesi¢, Olga Lyashevskaya,
Teresa Lynn, Aibek Makazhanov, Christopher Man-
ning, Citédlina Méranduc, David Marecek, Héc-
tor Martinez Alonso, André Martins, Jan Masek,
Yuji Matsumoto, Ryan McDonald, Anna Missild,
Verginica Mititelu, Yusuke Miyao, Simonetta Mon-
temagni, Amir More, Shunsuke Mori, Bohdan
Moskalevskyi, Kadri Muischnek, Nina Mustafina,
Kaili Miiiirisep, Luong Nguyén Thi, Huyén Nguyén
Thi Minh, Vitaly Nikolaev, Hanna Nurmi, Stina
Ojala, Petya Osenova, Lilja @vrelid, Elena Pascual,
Marco Passarotti, Cenel-Augusto Perez, Guy Perrier,
Slav Petrov, Jussi Piitulainen, Barbara Plank, Mar-
tin Popel, Lauma Pretkalnina, Prokopis Prokopidis,
Tiina Puolakainen, Sampo Pyysalo, Alexandre Rade-
maker, Loganathan Ramasamy, Livy Real, Laura
Rituma, Rudolf Rosa, Shadi Saleh, Manuela San-
guinetti, Baiba Saulite, Sebastian Schuster, Djamé
Seddah, Wolfgang Seeker, Mojgan Seraji, Lena
Shakurova, Mo Shen, Dmitry Sichinava, Natalia Sil-
veira, Maria Simi, Radu Simionescu, Katalin Simkd,
Maria §imkové, Kiril Simov, Aaron Smith, Alane
Suhr, Umut Sulubacak, Zsolt Szant6, Dima Taji,
Takaaki Tanaka, Reut Tsarfaty, Francis Tyers, Sumire
Uematsu, Larraitz Uria, Gertjan van Noord, Viktor
Varga, Veronika Vincze, Jonathan North Washington,
Zdenék Zabokrtsk}’/, Amir Zeldes, Daniel Zeman, and
Hanzhi Zhu. 2017. Universal dependencies 2.0.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
Parser: A data-driven parser-generator for depen-
dency parsing. In Proceedings of the Language Re-
sources and Evaluation Conference (LREC), pages
2216-2219, Genoa, Italy.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gulsen Eryigit, Sandra Kubler, Svetoslav Marinov,
and Erwin Marsi. 2007. MaltParser: A Language-
independent System for Data-driven Dependency
Parsing. Natural Language Engineering, 13(2):95—
135.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash. 2020.
CAMelL tools: An open source python toolkit for
Arabic natural language processing. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 7022—7032, Marseille, France.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of Ara-
bic. In Proceedings of the Language Resources and
Evaluation Conference (LREC), pages 1094-1101,
Reykjavik, Iceland.

Anas Shahrour, Salam Khalifa, Dima Taji, and Nizar

Habash. 2016. CamelParser: A system for Arabic
syntactic analysis and morphological disambiguation.
In Proceedings of the International Conference on
Computational Linguistics (COLING), pages 228—
232.

Yan Shao, Christian Hardmeier, and Joakim Nivre. 2018.

Universal word segmentation: Implementation and
interpretation. Transactions of the Association for
Computational Linguistics, 6:421-435.

Otakar Smrz, Jan Snaidauf, and Petr Zemanek. 2002.

Prague Dependency Treebank for Arabic: Multi-
Level Annotation of Arabic Corpus. In Proceedings
of the International Symposium on Processing of Ara-
bic, pages 147-155, Manouba, Tunisia.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL

2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197-207,
Brussels, Belgium. Association for Computational
Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gémez-

Rodriguez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717-723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Dima Taji, Nizar Habash, and Daniel Zeman. 2017. Uni-

versal dependencies for Arabic. In Proceedings of the
Workshop for Arabic Natural Language Processing
(WANLP), Valencia, Spain.

Yuanhe Tian, Han Qin, Fei Xia, and Yan Song. 2022.

Syntax-driven approach for semantic role labeling.
In Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 7129-7139, Mar-
seille, France.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-

tical dependency analysis with support vector ma-
chines. In Proceedings of the Eighth International
Conference on Parsing Technologies, pages 195-206,
Nancy, France.

Yu Zhang. 2021. SuPar GitHub repository - v1.1.4.
Yuan Zhang, Chengtao Li, Regina Barzilay, and Ka-

reem Darwish. 2015. Randomized greedy inference
for joint segmentation, POS tagging and dependency
parsing. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 42-52, Denver, Colorado. Associa-
tion for Computational Linguistics.

Yue Zhang, Bo Zhang, Zhenghua Li, Zuyi Bao, Chen Li,

180

and Min Zhang. 2022. SynGEC: Syntax-enhanced
grammatical error correction with a tailored GEC-
oriented parser. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2518-2531, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.


https://aclanthology.org/2020.lrec-1.868
https://aclanthology.org/2020.lrec-1.868
https://doi.org/10.1162/tacl_a_00033
https://doi.org/10.1162/tacl_a_00033
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://aclanthology.org/2022.lrec-1.772
https://aclanthology.org/W03-3023
https://aclanthology.org/W03-3023
https://aclanthology.org/W03-3023
https://github.com/yzhangcs/parser
https://doi.org/10.3115/v1/N15-1005
https://doi.org/10.3115/v1/N15-1005
https://doi.org/10.3115/v1/N15-1005
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162

GARI: Graph Attention for Relative Isomorphism of Arabic Word
Embeddings

Muhammad Asif Ali,' Maha Alshmrani,' Jianbin Qin,”> Yan Hu,' Di Wang!
! King Abdullah University of Science and Technology, KSA
2 Shenzhen University, China
{muhammadasif.ali; maha.shmrani; yan.hu; di.wang} @kaust.edu.sa; qinjianbin @szu.edu.cn

Abstract

Bilingual Lexical Induction (BLI) is a core
challenge in NLP, it relies on the rela-
tive isomorphism of individual embedding
spaces. Existing attempts aimed at con-
trolling the relative isomorphism of differ-
ent embedding spaces fail to incorporate
the impact of semantically related words
in the model training objective. To ad-
dress this, we propose GARI that combines
the distributional training objectives with
multiple isomorphism losses guided by the
graph attention network. GARI consid-
ers the impact of semantical variations of
words in order to define the relative iso-
morphism of the embedding spaces. Ex-
perimental evaluation using the Arabic lan-
guage data set shows that GARI outper-
forms the existing research by improving
the average P@1 by a relative score of
up to 40.95% and 76.80% for in-domain
and domain mismatch settings respectively.
We release the codes for GARI at https:
//github.com/asif6827/GARI.

1 Introduction

Bilingual Lexical Induction (BLI) is a key task in
natural language processing. It aims at the auto-
mated construction of translation dictionaries from
monolingual embedding spaces. BLI plays a signif-
icant role in multiple different natural language pro-
cessing applications. For instance, the automated
construction of lexical dictionaries plays a key role
in the development of linguistic applications for
low-resource languages, especially in cases where
hand-crafted dictionaries are non-existent. Auto-
mated construction of high-quality dictionaries also
helps in augmenting the end performance of multi-
ple down-streaming tasks, including but not limited
to: machine translation (Lample et al., 2018), infor-

mation retrieval (Artetxe et al., 2018), cross-lingual
transfers (Artetxe and Schwenk, 2019).

Earlier methods aimed at the construction of
cross-lingual embeddings use linear and/or non-
linear mapping functions in order to map the mono-
lingual embeddings in a shared space. Some ex-
amples in this regard include retrieval criteria for
bilingual mapping by Joulin et al. (2018) and BLI
in non-isomorphic spaces by Patra et al. (2019).

These methods rely on the approximate isomor-
phism assumption, i.e., they assume that under-
lying monolingual embedding spaces are geomet-
rically similar, which severely limits their use to
closely related data sets originating from similar
domains and/or languages exhibiting similar char-
acteristics. The limitations of the mapping-based
methods, especially their inability to handle data
sets originating from different domains and lan-
guages exhibiting different characteristics has been
identified by (Conneau et al., 2017; Sggaard et al.,
2018; Glavas et al., 2019; Patra et al., 2019).

Some other noteworthy aspects identified in the
literature that limit the end performance of the BLI
systems, include: (a) algorithmic mismatch for in-
dependently trained monolingual embeddings, (b)
different parameterization, (c) variable data sizes,
(d) linguistic difference, etc., (Marie and Fujita,
2020; Marchisio et al., 2022).

In the recent past, there has been a shift in the
training paradigm for the BLI models, i.e., instead
of relying on pre-trained embeddings trained inde-
pendently of each other, they use explicit isomor-
phism metrics along with the distributional training
objective (Marchisio et al., 2022). However, a key
limitation of these models is their inability to in-
corporate the impact of semantically related tokens
(including their lexical variations) in controlling
the relative isomorphism of different spaces. This
is illustrated in Figure 1, where the left half of the
figure shows a set of semantically related English
words, e.g., {strong, rugged, and robust}. These
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Figure 1: Some examples of semantically related tokens
for English and their corresponding translations in the
Arabic language.

words though lexically different share the same
semantics. Correspondingly, their translations in
the Arabic language: { e «(5 93 « Ay A3} are also
semantically related. We h)}bothesize that each
language encompasses a list of such semantically
related words that may be used interchangeably
within a fixed context, and in order to control the
relative isomorphism of corresponding embedding
spaces the end model should be robust to incorpo-
rate these semantic variations in the model training
objective.

To address these challenges, in this paper, we
propose Graph Attention for Relative Isomorphism
(GARI). GARI combines the distributional training
objective with the isomorphism loss in a way that
it incorporates the impact of semantically related
words using graph attention, required to perform
the end-task in a performance-enhanced way. We
outline the key contributions of this work as fol-
lows:

1. We propose GARI that combines the distribu-
tional loss with graph attention-based isomor-
phism loss functions for effective BLI.

2. The graph attention part of the GARI lever-
ages self-attention mechanism in order to at-
tend over words that are semantically related
to a given word.

3. We prove the effectiveness of GARI by com-
prehensive experimentation. Experimental
evaluation shows, for the Arabic dataset, the
GARI outperforms the existing research on
relative isomorphism by 40.95% and 76.80%
for in-domain and out-of-domain settings.

2 Related Work

There is an immense literature on BLI and con-
trolling the relative isomorphism of the embedding
spaces. In order to save space, we primarily limit

the related work of this paper to one that is more
relevant to our problem settings. We classify the
related work into the following categories: (i) map-
ping pre-trained embeddings, (ii) combined train-
ing.

Mapping Pre-trained Embeddings. These
methods rely on the use of linear and/or non-linear
mappings to map the mono-lingual embeddings to
a shared space.

Earlier works in this regard include principled
bilingual dictionaries by Artetxe et al. (2016) that
aim to learn bilingual mappings while preserv-
ing invariance for the monolingual analogy tasks.
Artetxe et al. (2017) introduced a self-learning ap-
proach to relax the requirements for bilingual train-
ing seeds and/or parallel corpora. Alvarez-Melis
and Jaakkola (2018) formulate the alignment as
an optimal transport problem and employ Gromov-
Wasserstein distance to compute the similarity of
word pairs across different languages. Doval et al.
(2018) propose additional transformation on top of
the alignment step to force the synonyms towards
a middle point for a better cross-lingual integration
of the vector spaces. Jawanpuria et al. (2019) in-
troduced language-specific rotations followed by
a language-independent similarity in a common
space. Similar to the word embedding methods, the
application of the mapping-based methods to the
contextualized embeddings include context-aware
mapping by Aldarmaki and Diab (2019) and align-
ment of contextualized embeddings by Schuster
et al. (2019).

Combined Training. On contrary to the
mapping-based methods that rely on pre-trained
embeddings, these methods use parallel data as
input in order to jointly minimize the mono-lingual
as well as cross-lingual training objectives. Duong
et al. (2017) introduced methods for cross-lingual
word embeddings for multiple languages in
a unified vector space aimed to combine the
strengths of different languages. Wang et al.
(2019) addressed the limitations of joint training
methods by combining them with mapping-based
schemes for model training. For more details
on the joint training methods refer to the survey
paper by Ruder et al. (2019). Marchisio et al.
(2022) introduced IsoVec which uses multiple
different isomorphism metrics with skip-gram as
the distributional training objective to control the
isomorphism.
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Nevertheless, we observe that existing methods
for controlling the relative isomorphism ignore the
impact of words that are semantically related to
a given word, severely limits the ability of these
methods to control the relative isomorphism of the
embedding spaces.

3 Background

In this section, we first introduce the mathemati-
cal notation being used throughout the paper and
formulate our problem definition. Later, we pro-
vide a quick background of the VecMap (Artetxe
et al., 2018), a toolkit for mapping across different
embedding spaces.

3.1 Notation

For this work, we use X € R™*% and Y € R"*¢
to represent the embedding matrices for the source
and target languages with vocab size m and n re-
spectively. d refers to the dimensionality of the em-
bedding space. The embedding vectors for words,
e.g., {x,y} are represented by {X,y}. Like exist-
ing supervised works on controlling the relative iso-
morphism, e.g., IsoVec by Marchisio et al. (2022),
we assume the availability of training seeds pairs
for the source and target languages, denoted by:

{(Qjo, ?/0), (xlv 91)7 ...(IS, ys)}
3.2 The problem

In this work, we address a core challenge in BLI,
i.e., we control the relative isomorphism of the
embedding spaces. Specifically, we learn the distri-
butional embeddings for the source language (i.e.,
Arabic) in a way:

1. The source embeddings X are geometrically
isomorphic to the target embeddings Y (i.e.,
English language).

2. While learning isomorphic embeddings the
X should incorporate the impact of the se-
mantically related tokens (also their lexical
variations) in Y in order to perform the end
task in a performance-enhanced way.

3.3 VecMap toolkit

We use VecMap toolkit' for mapping across dif-
ferent embedding spaces. For this, we pre-process
the embeddings using a process flow outlined by
Zhang et al. (2019). The embeddings are unit-
normed, mean-centered followed by another round
of unit-normalization. For bi-lingual induction, we

lhttps ://github.com/artetxem/vecmap
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Figure 2: Graph Attention for Relative Isomorphism
(GARI), the framework proposed in this work. It com-
bines skip-gram and isomorphism loss (guided by graph
attention).

follow (Artetxe et al., 2018), i.e., whitening the
spaces, and solving Procrustes. Later, we perform
re-weighting, de-whitening, and mapping of trans-
lation pairs via nearest-neighbor retrieval (Artetxe
etal., 2018).

4 Proposed Approach

In this paper, we address a core challenge in con-
trolling the geometric isomorphism for source word
embeddings relative to the target word embeddings,
i.e., incorporate the impact of semantically coher-
ent words in order to perform the end task in a
performance augmented fashion. For this, we pro-
pose Graph Attention for Relative Isomorphism
(GARI), shown in Figure 2. Details about the in-
dividual components of GARI are provided in the
following subsections.

4.1 GARI

4.1.1 Overview

GARI aims to learn the source distributional em-
beddings X in a way that: (a) X is geometrically
isomorphic to the target embeddings Y, (b) X in-
corporates the impact of semantic variations of
words in Y. In order to control the geometric iso-
morphism of the embedding spaces in a robust way,
GARI uses graph attention mechanism (to incorpo-
rate the impact of semantically related tokens) prior
to using the isomorphism loss functions. Finally, it
combines the distributional training objective and
the isomorphism loss as the training objectives of
the complete model.

4.1.2 Distributional Representation Learning

In order to learn the distributional embeddings
for GARI, we use skip-gram with negative sam-
pling (Mikolov et al., 2013). Its formulation is
shown in Equation 1, i.e, embed a word close to
its neighboring words within a fixed contextual
window, while at the same time pushing it away
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from a list of random words selected from a noisy
distribution.
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Here X, and X, correspond to the output and
input vector representations of the word c. k is the
number of noisy samples and X x ~is the embedding
vector for the noisy word selected from the noisy
distribution P,(c).
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4.1.3 Semantic Relatedness

To incorporate the impact of semantically related
words in controlling the relative isomorphism of
the embedding spaces, GARI uses graph atten-
tion mechanism. The graph attention part of
GARI works as follows: (a) create a graph G such
that semantically related words end up being neigh-
bors in the graph, (b) use graph attention mecha-
nism for information sharing among neighbors in
G. The details about individual components are as
follows:

(a) Graph Construction. The end goal of the
graph construction step is to unite and/or com-
bine the semantically related words helpful in
controlling the relative isomorphism. Inputs for
the graph construction process include: (i) pre-
trained word2vec embeddingsz, and (i) seed
words corresponding to the target language, i.e.,
{v0,91,..-,ys}. The graph construction process
proceeds as follows:

(a) Organize all seed words for the tar-
get language as a set of pairss P =
{(o,91), (Yo,v2), .-, (ys, Ys) }, i.e., combinations
of two words at a time.

(b) For each pair compute the cosine similarity
score between the corresponding word2vec embed-
ding vectors, and retain only the subset (P ,;) with
the cosine similarity score greater than a threshold
(n).

(c) Finally, for the word pairs in P, construct
a graph G by formulating edges between the word
pairs.

Note, this setting for the graph construction
allows each word to be surrounded by a set of
semantically related neighbors which provides

2https ://code.google.com/archive/p/word2vec/,
trained using Google-News Corpus of 100 billion words.

GARI with the pr