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Abstract

Expert Finding is an important task in Com-
munity Question Answering (CQA) platforms,
which could help route questions to potential
users to answer. The key is to learn represen-
tations of experts based on their historical an-
swered questions accurately. In this paper, in-
spired by the strong text understanding ability
of Pretrained Language modelings (PLMs), we
propose a pre-training and fine-tuning expert
finding framework. The core is that we design
an expert-level pre-training paradigm, that ef-
fectively integrates expert interest and expertise
simultaneously. Specifically different from the
typical corpus-level pre-training, we treat each
expert as the basic pre-training unit including
all the historical answered question titles of the
expert, which could fully indicate the expert in-
terests for questions. Besides, we integrate the
vote score information along with each answer
of the expert into the pre-training phrase to
model the expert ability explicitly. Finally, we
propose a novel reputation-augmented Masked
Language Model (MLM) pre-training strategy
to capture the expert reputation information. In
this way, our method could learn expert repre-
sentation comprehensively, which then will be
adopted and fine-tuned in the down-streaming
expert-finding task. Extensive experimental
results on six real-world CQA datasets demon-
strate the effectiveness of our method.

1 Introduction

Community Question Answering (CQA) websites
have become a popular platform, which can help
people share their knowledge in the form of ques-
tions and answers. Some large portals such as
Stack Exchange 1 have extremely attracted mil-
lions of users (Fu et al., 2020), which can raise
their questions or post answers for questions they

1https://stackexchange.com
Qiyao Peng and Hongtao Liu are equal contribution.
Qing Yang is the corresponding author.

What types of jobs 
did upper class 
Romans do?

Kublai Khan's army 
consist largely of Mongol
warriors or native Chinese?

How were books 
published in 
Ancient Greece?

What knowledge 
may have been lost 
in … Alexandria?

In Mongolian Conquests, 
how did they screen the 
population for engineers?

Figure 1: Several historical questions were answered
by an expert (user ID 3353 in the History of StackEx-
change). The blue boxes represent original questions
and the red boxes represent vote scores provided by the
CQA community for answers. The higher the vote score
of the answer, the more professional expertise. The rep-
utation is 37,339, which can reflect the expert overall
capabilities (obtains top 0.36% in History domain).

are interested in or good at. Due to the large partic-
ipation, there are too many questions to wait for an-
swers (Zhao et al., 2017; Yuan et al., 2020). Hence,
it is a great challenge to route questions to a suitable
expert for providing satisfactory answers (Chang
and Pal, 2013; Zhao et al., 2014). Expert finding in
CQA websites can effectively route questions and
help raisers receive high-quality answers quickly,
which has attracted considerable attention recently.

Generally speaking, accurate learning expert rep-
resentation is the central problem in expert finding.
Most existing methods usually infer expert interest
representation based on her/his historical answered
questions, then measure the matching score be-
tween experts and the new questions. For example,
PMEF (Peng et al., 2022a) designs a title-body-tag
multi-view paradigm to learn representations of
questions and experts respectively. It is noted that
most existing methods focus on modeling expert in-
terests and ignore whether the expert has the ability
to answer the question, i.e., the expertise.

Recently, Pretrained Language Models (PLMs),
e.g., BERT, pre-train general corpus-level language
knowledge and fine-tune on the downstream task,
which have achieved great success in various ar-
eas (Wu et al., 2021; Qiu et al., 2021). Motivated
by this, “Can we pre-train expert-level represen-
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tation on CQA domains, and then fine-tune on
the downstream expert finding task?” Different
from corpus-level pre-training in Natural Language
Processing (NLP), which focuses on learning gen-
eral language knowledge, expert pre-training needs
to consider the following two core capabilities:

1) Interest modeling. We could infer the expert
interests from the historical answered questions.
As shown in Figure 1, the expert has answered
multiple questions related to “Ancient Greece” and
“Alexandria”, which reflect that his interest about
the history of Ancient Greece. However, simply
adopting the existing PLMs or further pre-training
over the CQA corpus could not effectively capture
the expert-level interest.

2) Expertise modeling. The expertise of experts
plays an important role in expert findings. From
Figure 1, we can find that the expert is interested in
Ancient Greece and Mongol. And the vote scores
obtained for these two types of questions are very
different (e.g., +39 and −4), which indicate the ex-
pert different expertise of different questions. How-
ever, most existing PLMs fail to model the ability
of experts in answering different questions.

Hence it is necessary to design more effective
pre-training framework for learning comprehensive
expert representations.

For alleviating these gaps, we propose an Ex-
pert-level Pre-training Language Model for expert
finding (ExpertPLM), which could pre-train ex-
pert representation effectively. We empower the
typical corpus-level pre-training paradigm in the
following aspects: (1) Expert interest modeling.
We re-construct the model input via aggregating
the expert historical answered questions for pre-
training. Compared with the corpus-level input
paradigm (i.e., one line-one sentence) of PLMs,
our approach employs expert-level input, which
could learn more comprehensive interest features
based on histories during pre-training. (2) Expert
abilities modeling. Unlike modeling expert interest,
the expert ability is not explicitly reflected in his-
torical answered questions. Fortunately, the vote
score the answer received could indicate CQA user
satisfaction with the answer, which could reflect
the ability to answer this question of the expert (i.e.,
the higher vote score, the higher expertise). Hence,
we encode the vote score and integrate that with
the corresponding historical answered question in-
put embedding to indicate the expert ability for the
question.

To further prompt the expertise learning, we in-
troduce the expert reputation shown in Figure 1
which could indicate the expert overall ability
and design a reputation-augmented Masked Lan-
guage Model (MLM) pre-training strategy to cap-
ture the expert reputation information. In this way,
our method could pre-train expert representation
including interest and expertise effectively. In the
fine-tuning we utilize the weight to encode expert
and question, then accomplish the downstream ex-
pert finding task via a fine-tuning way.

In summary, the contributions of our method are:

• We propose a novel expert-level pre-training
language model for the expert finding task in
CQA websites, which could effectively pre-
train the expert representations.

• We unify the historical question titles, vote
scores during pre-training and design a
reputation-augmented MLM task to empower
the model for capturing the interest and exper-
tise of experts.

• Extensive experiments on six real-world
datasets show that our method could achieve
better performance than existing baselines and
validate the effectiveness of our approach Ex-
pertPLM.

2 Related Works

In this section, we briefly review some related
works about Pre-training for NLP, Pre-training for
RS, and Expert Finding.

2.1 Pre-training for NLP

There is a long history of pre-training general lan-
guage representations. Earlier methods, such as
Word2Vec (Mikolov et al., 2013), Glove (Penning-
ton et al., 2014) learned the word embedding by
capturing word co-occurrence information, which
can offer a significant improvement in various tasks.
However, these methods were incapable of consid-
ering contextual information. Recently, a series
of pre-training methods based on the Transform-
ers (Vaswani et al., 2017), such as BERT (Devlin
et al., 2018), BART (Lewis et al., 2020), have
changed original training paradigm. Through pre-
training and fine-tuning paradigms, they can jointly
capture general language knowledge on a large
corpus of text and task-specific knowledge, which
could improve downstream task performance.
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2.2 Pre-training for RS

Recently, some recommendation tasks (Sun et al.,
2019; Wu et al., 2020) employ the pre-training tech-
nology to learn item co-occurrence information for
improving recommendation performance. For ex-
ample, BERT4Rec (Sun et al., 2019) employed the
Cloze task to predict the masked items using the
left and right context based on the Transformer
structure, which could capture the contextual user
interaction representations. Then, the model was
fine-tuned on the pre-trained encoder to accomplish
the next item recommendation, which obtained bet-
ter performance.

However, different from the general recommen-
dation task, the expert finding in CQA is always
cold-start and have quite unique characteristics,
such as the expertise modelling of experts.

2.3 Expert Finding

In CQA websites, expert finding aims to find ca-
pable experts for providing satisfactory answers
to questions (Yuan et al., 2020; Liu et al.; Peng
et al., 2022b). The majority of previous works
fall into two categories: traditional methods and
deep learning-based methods. Traditional meth-
ods mostly employed feature-engineering or topic-
modeling to model the questions and experts and
then routed questions to suitable experts. For exam-
ple, Yang et al. (Yang et al., 2013) proposed a topic
expertise model to jointly model expert topical in-
terests and expertise for help better recommending.
Deep learning-based methods employ the neural
network to model experts and measure the match-
ing relevance with target questions (Li et al., 2019;
Fu et al., 2020; Ghasemi et al., 2021). For example,
TCQR (Zhang et al., 2020) employed a question
encoder to learn question words and learned the
answerers’ representation in the context of both
the semantic and temporal information for expert
representation learning.

3 Problem definition

In this section, we formulate the problem of expert
finding in CQA websites. Suppose that there is a
target question qt and a candidate expert set Cu =
{cu1 , · · · , cuM} respectively, where M is the number
of experts. Given a candidate expert cui ∈ Cu with
rui as the reputation, she/he is associated with a set
of her/his historical answered questions, which can
be denoted as Qu

i = {q1, · · · , qn} where n is the
number of historical questions. And vote scores

corresponding to the expert historical answered
questions can be denoted as V u

i = {v1, · · · , vn}.
The question is represented by a question title,
which consists of a sequence of words. The pri-
mary objective of the expert finding is to predict
the most suitable expert for answering the target
question. Note that the expert who provides the
“accepted answer” for the question will be regarded
as the ground truth. It is noted that one question
only have one “accepted answer”.

4 Proposed Method

In this section, we will introduce our method Ex-
pertPLM in detail. The expert pre-training lan-
guage model is demonstrated in Figure 2. In the
pre-training stage, we pre-train the model based on
the concatenated expert historical answered ques-
tions (i.e., one input line is one expert all historical
question titles) from different CQA domains for
capturing expert interest. For indicating the ex-
pert different abilities to answer different questions,
we integrate the vote score embedding with the
corresponding question input embedding. Further-
more, we design a reputation-augmented MLM
pre-training task for capturing the expert overall
expertise and CQA language knowledge. In the
fine-tuning stage, as shown in Figure 3, via con-
ducting the supervised expert finding task on expert
and question representations generated by the pre-
trained weight, we can obtain an improved expert
finding model for a specific domain.

4.1 Pre-training Expert Representation

The goals of the pre-training stage are: 1) teach-
ing ExpertPLM how to capture the expert interest
and expertise; 2) learning general CQA domain
language knowledge. Next, we will introduce the
ExpertPLM from Input Layer, Model Architecture
and Pre-training Task three aspects.

Input Embedding As shown in Figure 2, for em-
powering the BERT to model expert interest, we
simply concatenate the words of the expert’s his-
torical answered questions into a whole sequence
as one expert-level input. Then, we add the spe-
cial tokens [CLS] and [SEP] at the begining and
end of the input word sequence respectively. Fur-
thermore, for distinguishing different historical an-
swered questions, we add the special token [HSEP]
between the histories (e.g., [HSEP] between the q1
and q2).
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Figure 2: ExpertPLM Pre-training Framework. Expert historical answered questions (q1, q2, · · ·) and vote scores
are aligned as the input for indicating the expert interest and expertise. The first token [CLS] will be always masked
to pretrain the user reputation during pre-training.

Given an expert-level input, considering that
the original pre-trained BERT weight (e.g.,
bert-base-uncased) has already carried a great
deal of language knowledge, we utilize that to ini-
tialize the token, segment and position embeddings.
Hence, the input token representation matrix Et is
constructed by summing its corresponding token,
segment and position embedding:

Et = Etoken +Eseg +Epos . (1)

Furthermore, the vote scores an expert has re-
ceived could indicate his/her expertise to answer
different questions. Generally speaking, the higher
the vote score the answer received, the more sat-
isfied the community is with the answer, and the
answerer has the stronger professional expertise to
answer such questions. For example, as shown in
Figure 2, the vote score of answer (i.e., −4) about
Mongol represent the expert may lack the ability to
answer Mongol related questions, but have much
expertise to answer Ancient Greece related ques-
tions (vote score: +39). Hence, we introduce the
vote scores corresponding to each historical ques-
tion for measuring the expert abilities in different
question fields effectively. We encode the normal-
ized vote score and integrate that with the input
representation Et as follows:

Ein = Et +Ev . (2)

It is mentioned that the dimension of vote score
embedding coincides with the corresponding his-

torical question. In other words, for the historical
question q1 and the corresponding vote score v1,
the dimension of vote score embedding is mapped
to the same dimension as the question q1 input
embedding. In this way, the BERT model could
capture the expert interests and expertise for differ-
ent questions.

BERT Layer BERT model architecture consists
of multi-layer bidirectional Transformer encoder
layers. Each Transformer encoder layer has the
following two major sub-layers, i.e., multi-head
self-attention and position-wise feed-forward. Let
El

in denote the input representation of the (l + 1)-
th Transformer encoder layer. We omit the layer
subscript l of each parameter for convenience.

Multi-Head Self-Attention. This sub-layer aims
to capture the contextual representations for each
word. The self-attention function is defined as:

Att(Q,K,V) = Softmax(QKT /
√
d)V , (3)

where Q, K and V represent the query, key and
value matrix correspondingly. Multi-head self-
attention layer MH(·) will project the input to mul-
tiple sub-spaces and capture the interaction infor-
mation, which is denoted as:

MH(Ein) = [head1; · · · ;headh]W , (4)

headi = Att(EWq
i ,EWw

i ,EWv
i ) , (5)

where Wq
i ,W

w
i ,W

v
i ∈ Rd× d

h and W ∈ Rd×d

are parameters. Via the multi-head self-attention,
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the input representation E is transformed to H ∈
Rn×d, where n is the token number.

Position-wise feed-forward. For the input H, the
calculation is defined as:

FFN(H) = RELU(HWf
1+bf1)W

f
2+bf2 , (6)

where Wf
1 , Wf

2 and bf1 , bf2 are learnable parame-
ters. Furthermore, the residual connection is intro-
duced into each of the two sub-layers, and layer
normalization is applied to each sub-layer.

4.2 Pre-training Task

In this section, we will present the reputation-
augmented MLM training task in the pre-training
stage, which is the core task to enforce the PLMs
to model expert abilities and capture the CQA lan-
guage knowledge.

Firstly, considering that the original MLM task
has the power capable ability to train the PLMs, we
adopt the MLM task to learn the language knowl-
edge in CQA scenario, which is first randomly
masking some words and then using the bidirec-
tional context information to re-construct the input
sequence. However, the origin MLM is only for
the input corpus and would be incapable to learn
the expert-level features (e.g., the ability).

As denoted above, the reputation the expert re-
ceived (as shown in Figure 1) in CQA could reflect
the overall expertise in answering questions. Gen-
erally speaking, the higher reputation, the higher
expertise, and the answer provided by the expert
would be more satisfied users from CQA commu-
nity. Hence, we design a reputation-augmented
MLM task to pre-train the model for empower-
ing the model to capture the overall expertise of
experts. Specifically, given the example input illus-
trated in Figure 2, the output of the special token
[CLS] could capture the whole input sequence in-
formation. Hence, we adopt the token [CLS] as a
special indicator to predict the expert reputation.
We normalize all expert reputations to 0− 11, and
transform them as special tokens (e.g., [0]− [11])
for convenient prediction. It is noted that the rep-
utation [CLS] token is always masked during the
pre-training phase.

In this way, our model ExpertPLM could pre-
train expert-level representation containing expert
interests and capabilities, which are beneficial to
downstream expert finding task.

⋯
⋯

Pre-trained
Encoder

⋯
⋯

Predictor

Expert Historical 
Answered Questions

Target Question

⋯⋯
Pre-trained

Encoder

⋯ ⋯𝒒𝒒𝟏𝟏 𝒒𝒒𝒊𝒊 𝒒𝒒𝒏𝒏 𝒒𝒒𝒕𝒕

𝑆𝑆𝑐𝑐

Figure 3: ExpertPLM Fine-tuning.

4.3 Fine-tuning for Expert finding
Though the ExpertPLM has pre-trained the expert-
level representation, the downstream task is still
slightly different from the pre-training, since it fo-
cuses not only on modeling expert but also on mod-
eling interaction between expert and target ques-
tion. Considering the pre-trained model based
MLM can naturally capture the CQA language
knowledge, we use the pre-trained model to learn
the features of questions. As illustrated in Figure 3,
we enter the expert historical answered questions
and the target question into two same pre-trained
encoders separately. Then, we concatenate two
[CLS] representations for predicting the matching
score Sc between the expert and the target question.
We employ negative sampling technology (Huang
et al., 2013) and the cross-entropy loss to fine-tune
our model as follows:

Sc =
exp(Sc)∑K+1

j=1 exp(Sj)
, Loss = −

K+1∑

c=1

Ŝclog(Sc) ,

(7)
where Ŝc is the ground truth label and Sc is the
normalized probability predicted by the model.

5 Experiments

5.1 Datasets and Experimental Settings
We construct a dataset containing 103,005 expert-
level input data for pre-training expert represen-
tation, which is from StackExchange2. For fine-
tuning and verifying the effect of the model in
specific domains, we select six different domains,
i.e., English, Biology, Es, Electronics, Gis and
CodeReview. Each dataset includes a question set,
in which, each question is associated with its title,
an “accepted answer” among several answers pro-
vided by different answerers. And the provider of

2https://archive.org/details/stackexchange
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Dateset English Gis CodeReview

Method
Metric

MRR P@1 P@3 NDCG@20 MRR P@1 P@3 NDCG@20 MRR P@1 P@3 NDCG@20

Doc2Vec 0.2326 0.1523 0.2946 0.3522 0.2912 0.1608 0.2873 0.3519 0.3015 0.1731 0.3199 0.4246
CNTN 0.2968 0.1837 0.3936 0.4225 0.4012 0.2312 0.4015 0.4201 0.3553 0.2013 0.5077 0.5035

NeRank 0.4895 0.2716 0.6143 0.5641 0.4697 0.3032 0.5577 0.5836 0.4947 0.3089 0.6055 0.6154
TCQR 0.3425 0.1927 0.4987 0.4822 0.4553 0.2634 0.5489 0.5637 0.4253 0.2112 0.5382 0.5839
RMRN 0.4677 0.2522 0.6162 0.5675 0.4897 0.3239 0.5777 0.5832 0.4311 0.2517 0.5580 0.5892

UserEmb 0.3173 0.1956 0.4236 0.4551 0.3223 0.2433 0.4477 0.4562 0.3915 0.2031 0.5126 0.5246
PMEF 0.4947 0.2865 0.6314 0.5875 0.4861 0.3311 0.5888 0.5911 0.5020 0.3139 0.6161 0.6170

ExpertPLM 0.5250 0.3168 0.6512 0.6117 0.5085 0.3456 0.6058 0.6178 0.5115 0.3263 0.6313 0.6242

Dateset Es Biology Electronics

Method
Metric

MRR P@1 P@3 NDCG@20 MRR P@1 P@3 NDCG@20 MRR P@1 P@3 NDCG@20

Doc2Vec 0.3587 0.2557 0.3613 0.3821 0.3561 0.2146 0.3699 0.4793 0.3871 0.2693 0.4138 0.4863
CNTN 0.3897 0.2720 0.4078 0.4693 0.3358 0.2017 0.3369 0.3691 0.4952 0.2740 0.6538 0.6146

NeRank 0.5647 0.3932 0.6413 0.6617 0.4371 0.2886 0.5361 0.4991 0.5105 0.3459 0.5976 0.6221
TCQR 0.4716 0.3059 0.5941 0.6053 0.3962 0.2406 0.4422 0.4716 0.5016 0.3233 0.5953 0.6004
RMRN 0.5516 0.3761 0.6304 0.6453 0.4662 0.3153 0.5562 0.5578 0.5622 0.4038 0.6759 0.6729

UserEmb 0.4703 0.3032 0.5735 0.4869 0.3497 0.2263 0.3675 0.4672 0.4175 0.2954 0.4541 0.5170
PMEF 0.5735 0.4269 0.6520 0.6661 0.4719 0.3216 0.5693 0.5688 0.5872 0.4238 0.6950 0.6829

ExpertPLM 0.5840 0.4380 0.6588 0.6793 0.4956 0.3353 0.5868 0.5929 0.6003 0.4356 0.7025 0.7046

Table 1: Expert finding results of different methods. The best performance of the baselines is underlined. We
perform t-test and the results show that ExpertPLM outperforms other baselines at significance level p-value<0.05.

Datasets # questions # answerers # answers

Es 36,271 3,260 50,801
Gis 50,718 3,168 70,034

Biology 8,704 630 11,411
English 46,692 4,781 104,453

Electronics 56,614 3,084 102,214
CodeReview 36,947 2,242 57,622

Table 2: Statistical details of the datasets.

the “accepted answer” is the ground truth expert.
We follow the preprocessing method in previous
work (Peng et al., 2022a). The detailed statistical
characteristics of the datasets are shown in Table 2.
We split each dataset into a training set, a validation
set and a testing set, with the ratios 80%, 10%, 10%
respectively in chronological order.

We adopt the pre-trained weight bert-base-
uncased as the base model. The ExpertPLM pre-
training weight contains 110M parameters. To al-
leviate the overfitting problem, we utilize dropout
technology (Srivastava et al., 2014) and set the
dropout ratio as 0.2. We adopt Adam (Kingma
and Ba, 2015) optimization strategy to optimize
our model and set the learning rate to 5e-5 in fur-
ther pre-training and 5e-2 in fine-tuning. We in-
dependently repeat each experiment 5 times and
report the average results. All experiments are
implemented using Pytorch frame and using two
24GB-memory RTX 3090 GPU servers with In-
tel(R) Xeon(R)@2.20GHz CPU. Our code, pre-

Datasets
Biology English

Vote score Reputation Vote score Reputation

Max +287 65,677 +828 140,445
Min -8 1 -69 1
Avg 3.49 81.46 3.38 75.25

Table 3: Biology and English datasets. Statistical details
of Vote score and Reputation. It is noted that, in CQA
websites, the initial value of Reputation is 100.

trained weight and the validation data are anony-
mously available on the Dropbox 3.

We briefly list statistical information of vote
score and reputation in two datasets as examples,
which is shown in Table 3. Since the vote score and
the reputation exhibit similar characteristics, we
only describe the pre-processing process for vote
score, and the reputation is pre-processed in a simi-
lar way. First, we perform an overall translation of
the vote score to eliminate negative numbers. Then,
we perform a logarithmic operation on the vote
score (i.e., ln(·)) to mitigate the effects of exces-
sive variance. To facilitate model calculation and
make the number of scores contained in each score
segment is approximately similar, we normalize
the vote score to integer between 1 and 10, which
is calculated as follows:

vmin = min(V u), vmax = max(V u) , (8)

where vmin and vmax represent the minimum score
3https://github.com/pengqy/EMNLP2022_ExpertPLM
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and the maximum score in vote score sequence V u.

v∗i = round(
9

vmax − vmin
∗(vi−vmin)+1) (9)

where v∗i is the normalized score of the i-th vote
score vi in V u, round is the rounding operator.

5.2 Baselines and Evaluation metrics

We compare our method ExpertPLM with re-
cent competitive methods including: (1) Doc2Vec
selects experts who have previously answered
questions relevant to the target question. (2)
CNTN (Qiu and Huang, 2015) employs the CNN
to model questions and computes ranking scores
between questions and experts. (3) NeRank (Li
et al., 2019) learns question, raiser and expert rep-
resentations via a HIN embedding algorithm and
utilizes the CNN to match them. (4) TCQR (Zhang
et al., 2020) utilizes a temporal context-aware
model in multiple temporal granularities to learn
the temporal-aware expert representations. (5)
RMRN (Fu et al., 2020) equips with a recur-
rent memory reasoning network to explore the
implicit relevance between expert and question.
(6) UserEmb (Ghasemi et al., 2021) utilizes a
node2vec to capture social features and uses a
word2vec to capture semantic features, then in-
tegrates them to improve the expert finding. (7)
PMEF (Peng et al., 2022a) designs a personal-
ized expert finding method under a multi-view
paradigm, which could comprehensively model ex-
pert and question. The evaluation metrics include
Mean Reciprocal Rank (MRR) (Craswell, 2009),
P@1 (i.e., Precision@1), P@3 (i.e., Precision@3)
and Normalized Discounted Cumulative Gain
(NDCG@20) (Järvelin and Kekäläinen, 2002) to
verify the expert ranking quality.

5.3 Performance Comparison

We report experimental results of ExpertPLM and
other comparative methods in Table 1. There are
some findings in these results. Some earlier meth-
ods (e.g., Doc2Vec, CNTN) obtain poor results
on almost datasets, the reason may be that they
usually employ max or mean operation on histo-
ries to model expert, which omits different his-
tory importance. On the contrary, recent methods
(e.g., RMRN, PMEF, etc.) achieve better results
on different datasets, which is due to these meth-
ods focusing on modeling the different interest for
different questions.

As we can see, our model ExpertPLM outper-
forms other comparative methods and achieves
great improvements. Our method introduces the
expert-level representation pre-training mechanism
to pre-train the expert interests and expertise for
different questions on different CQA domains.
Via pre-training, the expert representation can be
roughly captured by the model, which could be ben-
eficial to the downstream expert finding task. Mean-
while, this paradigm captures general CQA lan-
guage knowledge during pre-training, which could
enhance the modeling of questions and experts in
the downstream task and yield better performance.

5.4 Ablation Study
To highlight the effectiveness of our designing
reputation-augmented MLM pre-training task, we
design three model variants: (a) Only Cm, adopt
corpus-level MLM to pre-train over CQA corpus
(i.e., one question title one input line) and then
fine-tune instead of the expert-level pre-training;
(b) Only Em, adopt expert-level input for MLM
pre-training but remove the vote score informa-
tion and the reputation task during expert-level pre-
training; (c) w/o Rep, adopt expert-level MLM
task for pre-training but remove the reputation task
during expert-level pre-training.

As shown in Table 4, we can have the follow-
ing observations: (1) Only Em outperforms Only
Cm. This is because Only Em employs expert-
level input and pre-trains specifically for experts,
and hence it could learn the more precise represen-
tation of experts compared with the corpus-level
pretraining in Only Cm. (2) w/o Rep outperforms
Only Em. Compared with Only Em, the w/o Rep
introduces the vote score information additionally
to pre-train the expert in different abilities to an-
swer different questions, which is the core of down-
stream task. (3) Our complete model ExpertPLM
obtains the best results. The reason is it can pre-
train the expert-level representations including in-
terest and expertise. Further, the pre-trained model
also captures the CQA language knowledge, which
could yield better performance. In all, the results of
ablation studies meet our motivation and validate
the effectiveness of our proposed pre-training task.

5.5 Pre-trained Weight Analysis
In this section, we conduct two experiments to fur-
ther explore the influences of the pre-trained weight
in the following two aspects through comparing
with the origin Bert weight.
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Dateset Es Gis CodeReview

Method
Metric

MRR P@1 P@3 NDCG@20 MRR P@1 P@3 NDCG@20 MRR P@1 P@3 NDCG@20

Only Cm 0.5671 0.4084 0.6398 0.6567 0.4827 0.3239 0.5866 0.5967 0.4965 0.3071 0.6017 0.6034
Only Em 0.5763 0.4252 0.6476 0.6635 0.4933 0.3298 0.6011 0.6011 0.5011 0.3103 0.6157 0.6118
w/o Rep 0.5768 0.4311 0.6522 0.6719 0.5018 0.3376 0.6054 0.6129 0.5089 0.3189 0.6205 0.6196

ExpertPLM 0.5840 0.4380 0.6588 0.6793 0.5085 0.3456 0.6058 0.6178 0.5115 0.3263 0.6313 0.6242

Table 4: The variants of ExpertPLM pre-training experiment results.

MRR P@1 P@3 NDCG@20

0.4

0.6

(a) Gis

Bert-Base-Uncased
ExpertPLM

MRR P@1 P@3 NDCG@20

0.4

0.6

(b) Biology

Bert-Base-Uncased
ExpertPLM

Figure 4: Effects of ExpertPLM Pre-training Weight.

Effect of Pre-trained Weight In our method,
we employ the ExpertPLM pre-training weight
to accomplish expert finding via a fine-tuning
way. Hence, we will explore the effective-
ness of the pre-training weight in this section.
We replace the weight directly with the original
bert-base-uncased in the fine-tuning stage, i.e.,
we employ two bert-base-uncased weights to learn
the expert and question representations respectively,
then compute the matching score.

The results are illustrated in Figure 4. We find
that the ExpertPLM is useful for the downstream
expert finding task. As denoted above, accurately
learning expert representation is a critical task for
expert finding as it can encode expert interest and
expertise for answering different questions. Com-
pared with ExpertPLM, Bert-Base-Uncased could
not capture such expert characteristics, which re-
duces the performance of the downstream expert
finding task. This observation validates the effec-
tiveness of our ExpertPLM pre-training weight.

Effect of Train Data Ratio in Fine-tuning In
this part, we adjust the training data ratio in the
fine-tuning stage to explore the effect of differ-
ent data ratio on model training. We employ
[40%, 50%, 60%, 70%, 80%] all data in Gis dataset

40% 50% 60% 70% 80%
Train data Ratio

0.46

0.50

M
R

R

ExpertPLM
Bert-Base-Uncased

40% 50% 60% 70% 80%
Train data Ratio

0.26

0.32

P@
1

ExpertPLM
Bert-Base-Uncased

Figure 5: Impacts of Train Data Ratio (Gis).
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(a) Gis
0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.4

0.6

(b) CodeReview

MRR P@1 P@3 NDCG@20

Figure 6: Impacts of Different Mask Ratios.

as training data to fine-tune our model, meanwhile,
the ratios of validation data and testing remain the
same (i.e., 10%) with the main experiments.

As shown in Figure 5. We can find that there
are growing gaps between the results of Expert-
PLM and Bert-Base-Uncased with the reduction of
training data, which indicates the advantage of the
pre-trained expert model is larger when the train-
ing data is more scarce. This may be because the
ExpertPLM can exploit expert histories and vote
scores to capture the expert interest and expertise
during pre-training phase, which could reduce the
dependency on training data during the fine-tuning
stage. And the Bert-Base-Uncased could be in-
capable of capturing expert-level representation,
which could be affected by the ratio of training
data in the fine-tuning.

5.6 Effect of Mask Ratio in Pre-training

The mask ratio is an important hyperparameter of
ExpertPLM during pre-training and we have varied
the ratio in [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35] for
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exploring the parameter sensitivity of the Masked
Language Model in pre-training.

The results are shown in Figure 6. We can find
that all metric results increase at first as the ratio
of masked token increases, and reach the maxi-
mum value (i.e., the best model performance), and
then degrades. When the masked ratio is small, the
BERT model could not capture adequate CQA lan-
guage knowledge, which could reduce the perfor-
mance of downstream tasks. In the contrary, when
the mask ratio is large, the [MASK] symbol appears
in pre-training stage more frequently, which could
intensify the mismatch between pre-training and
fine-tuning. Hence, we set up the mask ratio to
0.15 during the pre-training stage.

6 Conclusion

In this paper, we propose ExpertPLM, a pre-
training language model for the expert finding task
in CQA. The core of our method is that we design
an expert-specific pre-training framework based on
a masked language model, towards precisely mod-
eling experts (i.e., interest and expertise) based on
the historical answered questions and vote scores.
Meanwhile, the pre-trained language model could
capture the CQA language knowledge, which is
beneficial to the downstream task. We conduct
detailed experiments on real world CQA datasets,
and the results fully validate the effectiveness of
our proposed pretraining method, In the future, we
would like to explore a larger scale comprehen-
sive expert pre-training model and extend the pre-
trained model to more downstream tasks.

7 Limitation

Although our model has achieved excellent perfor-
mance, there may be some limitations in this study
that could be addressed in future research. First,
the existing pre-training dataset is still a little small,
which would lead to inadequate pre-training. In
the future, we will construct a larger pre-training
dataset for larger-scale CQA pre-training. Second,
some users have more historical answered ques-
tions, which will cause that the input sequence
length is greater than 512. In the future, we will
explore CQA pre-training based on long-sequence
modelling. Third, during pre-training, we only
design the expertise learning task for users. In
the future, we will explore to introduce more user
modeling tasks (e.g., interest modeling) during pre-
training.
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