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Abstract

Pretrained Language Models (LMs) have
demonstrated ability to perform numerical rea-
soning by extrapolating from a few examples
in few-shot settings. However, the extent to
which this extrapolation relies on robust rea-
soning is unclear. In this paper, we investigate
how well these models reason with terms that
are less frequent in the pretraining data. In par-
ticular, we examine the correlations between
the model performance on test instances and
the frequency of terms from those instances in
the pretraining data. We measure the strength
of this correlation for a multiple GPT-based lan-
guage models (pretrained on the Pile dataset)
on various numerical deduction tasks (e.g.,
arithmetic and unit conversion). Our results
consistently demonstrate that models are more
accurate on instances whose terms are more
prevalent, in some cases above 70% (absolute)
more accurate on the top 10% frequent terms
in comparison to the bottom 10%. Overall,
although LMs appear successful at few-shot
numerical reasoning, our results raise the ques-
tion of how much models actually generalize
beyond pretraining data, and we encourage re-
searchers to take the pretraining data into ac-
count when interpreting evaluation results.

1 Introduction

Large language models have demonstrated out-
standing zero- and few-shot performance on vari-
ous reasoning benchmarks (Brown et al., 2020;
Radford et al., 2019). In particular, their high
performance on numerical tasks, such as addition
and multiplication, suggests that models may have
learned the ability to perform the underlying reason-
ing operations simply through a combination of pre-
training and model size (Lewkowycz et al., 2022).
As these numerical reasoning tasks become increas-
ingly prevalent for evaluating the performance of
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Q: What is 24 times 18? Q: What is 23 times 18?
A: Model: 432 ✓ A: Model: 462 ✗
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Figure 1: Multiplication Performance: Plot of GPT-J-
6B’s 2-shot accuracy on multiplication (averaged over
multiple multiplicands and training instances) against
the frequency of the equation’s term in the pretraining
corpus. Each point represents the average performance
for that term (e.g., 24) multiplied by numbers 0-99 and
5 choices of random seeds. As in the example, the per-
formance difference for the numbers 24 and 23 is more
than 20%. We find a strong correlation between the
accuracy for a number and its frequency in pretraining.

large language models (Chowdhery et al., 2022),
it is crucial to understand the extent to which per-
formance on these tasks reflects robust reasoning
capabilities, especially since numerical reasoning
is an essential skill needed to perform other com-
plex reasoning tasks such as question answering
through reading comprehension (Dua et al., 2019),
and commonsense reasoning (Thawani et al., 2021;
Lin et al., 2020a).

Current schemes for evaluating the reasoning
of large language models, however, often neglect
or underestimate the impact of data leakage from
pretraining data. Although overlap between the
training and evaluation splits of public datasets and
its effect on the generalization of language models
has been studied (Elangovan et al., 2021; Lewis
et al., 2021a), the effect of the pretraining data has
received less attention, and very few studies have at-
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tempted to evaluate the effect of pretraining data on
model’s performance (Elazar et al., 2022). Ideally,
a model that has learned to reason in the training
phase should be able to generalize outside of the
narrow context that it was trained in. Specifically, if
the model has learned to reason numerically, its per-
formance on instances with less frequent numbers
(based on pretraining data) should not be signifi-
cantly lower than its performance on the instances
with common numbers.

For illustration, consider the arithmetic task of
multiplying two integers (shown in Figure 1). A
model that has learned proper arithmetic skills
should be able to answer the queries irrespective of
the frequencies of the operands in the pretraining
data. Therefore, it should have roughly equivalent
performance when answering the queries Q: what
is 24 times X? and Q: what is 23 times X? de-
spite the fact that 24 appears more frequently in
the pretraining data. This is not the case with cur-
rent LMs and we will study the effect of frequency
terms in details through this paper. To show the
effect of frequency, in this example, we plot the
average accuracy of GPT-J-6B (Wang, 2021) on
the numbers 0–99 (averaged over 0–99 as the other
operand) against the frequency of the number in the
pretraining data in Figure 1. We find a strong cor-
relation between the term frequency and the model
performance indicating that the model reasoning
is not robust to these frequencies. Note that even
“rare” terms still appear on the order of millions of
times in the pretraining data.

In this work, we investigate this impact of the
frequency of test instance terms in a model’s pre-
training data on the model’s performance. We ex-
periment on numerical reasoning tasks of addition,
multiplication, and unit conversion. We count oc-
currences of the numbers and units in instances of
these tasks in the pretraining data, including co-
occurrences of term pairs or triples within a fixed
window. This procedure allows us to aggregate
over instances in which these terms appear and
observe the relationship between term frequency
and model accuracy on instances that include those
terms. We summarize this behavior through the per-
formance gap between instances that have the most
frequent terms and instances that have the least
frequent terms. Intuitively, models that exhibit a
high performance gap are much more accurate on
instances that are more common in the pretraining
data, suggesting that the model does not generalize

appropriately and is affected by dataset overlap.
We present analysis on these numerical reason-

ing tasks for three sizes of the EleutherAI/GPT
models pretrained on the Pile dataset (Gao et al.,
2020), which has been publicly released and thus
permits this kind of analysis (in contrast to the data
that, e.g., GPT-3 (Brown et al., 2020) was trained
on). Our results consistently show a large perfor-
mance gap between highest- and lowest-frequency
terms; in some cases there is a more than 70% av-
erage accuracy gap between the top and bottom
10% terms. We also investigate whether this per-
formance gap can be explained by strong memo-
rization effects, i.e. by instances that are memo-
rized by the language model. To achieve this, we
remove instances that contain frequent combina-
tions of numbers from our analysis, and study the
performance on the remaining instances. Even in
this case, we still find a strong correlation between
frequency of terms and average performance, indi-
cating that our results cannot be explained solely
by direct memorization.

These observations suggest that any evaluation
of reasoning that does not take the pretraining data
into account is difficult to interpret, and that we
need to revisit evaluation of language models with
respect to their pretraining data before making any
conclusion about the models generalization abili-
ties beyond the pretraining data.

2 Background and Methodology

Numerical reasoning has been essential part of com-
plex multi-step reasoning tasks for natural language
understanding (Dua et al., 2019; Wei et al., 2022).
Recently, large language models have exhibited
an ability to perform numerical reasoning tasks in
few-shot settings without requiring any modifica-
tions to their parameters through a method called
in-context learning (Brown et al., 2020; Chowd-
hery et al., 2022). Our goal is to evaluate this
reasoning skill in-depth and with respect to the pre-
training data. This section provides background
information on in-context learning and introduces
our method for measuring the performance gap of
the models on numerical reasoning tasks based on
differences in pretraining term frequency.

The demonstration of all experiments in this paper is avail-
able at https://nlp.ics.uci.edu/snoopy (Razeghi et al.,
2022) and the code is available at https://github.com/
yasamanrazeghi7/TermFrequency
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2.1 In-context Learning

Brown et al. (2020) show that the large GPT-3
model is able to perform well on few-shot rea-
soning tasks without requiring any changes to its
internal parameters, through the usage of a tech-
nique called in-context learning. In place of a typi-
cal learning procedure, in-context learning instead
places training examples in a prompt format, which
is subsequently fed to a language model as its input.
Recently, a few studies have researched the role of
prompt and investigated the aspects that make in-
context learning successful (Min et al., 2022; Zhao
et al., 2021; Chan et al., 2022).

Among numerous experiments, Brown et al.
(2020) show that GPT3 performs well on a variety
of arithmetic questions such as addition and sub-
traction with 2–5 digit numbers. For example, they
show that the largest model can perform zero-shot
2-digit addition with 76.9% accuracy. Although
impressive, due to the large volume of data GPT-3
is trained on, it is possible that the model is repeat-
ing answers seen during pretraining. To attribute
this performance to the model’s reasoning capabil-
ities, we need to make sure that the model is not
affected by statistical overlaps between the terms
of the arithmetic questions and the pretraining data.

In the following sections, we introduce metrics
that we use to investigate the relationship between
the frequency of terms in the pretraining data and
the model performance on reasoning instances con-
taining those terms. To assess this relation, we first
define an approach for measuring term frequencies
in a large pretraining dataset (Section 2.2). We con-
nect these frequencies to reasoning performance by
introducing the performance gap ∆ (Section 2.3).

2.2 Frequency

We consider numerical reasoning tasks (Table 1)
whose instances consist of input terms, x =
(x1, . . . , xi, . . . xn), and a derived output term y,
where the xi’s are either positive integers or units
of time (e.g., 1, 2, hour, etc.) and y is a positive
integer. For example, for the task of multiplication,
an instance might be x = (23, 18) and y = 414,
representing the equation 23× 18 = 414.

For each instance, we extract counts of the
number of times that a subset of its terms X ⊆
{x1, . . . , xn, y} appear within a specified window
in the pretraining data. We refer to this count as the
frequency, ωX , of X .

In this paper, we restrict our attention to fre-

quencies involving three or less input terms, e.g.,
x = (x1) or (x1, x2) or (x1, x2, x3) and optionally
the output term y, e.g.:
• ω{x1}: the number of times that x1 (one of the

terms, e.g., 23) appears in the pretraining data.
• ω{x1,x2}: the number of times that the input terms
x1 (e.g., 23) and x2 (e.g., 18) appear in the pre-
training data within a specific window size.

• ω{x1,y}: the number of times that the first input
term x1 (e.g., 23) and the output term y (e.g.,
414) appear in the pretraining data within a spe-
cific window size.

Note that our usage of set notation in the sub-
script is deliberate; although x = (x1, x2) and
x′ = (x2, x1) are not necessarily the same (e.g.,
order is important when representing the task in-
stance), frequency is symmetric (e.g., ω{x1,x2} =
ω{x2,x1}∀x1, x2).

2.3 Performance Gap
We want to measure how much more accurate the
model is on instances containing more versus less
frequent terms in the pretraining data. We do this
by calculating the differences in average accuracies
of the instances in the top and bottom quantiles of
the distribution over term frequencies, which we
call the performance gap.

Formally, let {(X(n), ω
(n)
X )}, n ∈ [1, N ], be a

set of terms for a task and their associated term
frequencies in the pretraining corpus. Given a task
(e.g. addition), we create reasoning instances for
each element of this set by instantiating values of
xi, and deriving y. We then measure the LM’s
accuracy a(n) over the set of instances, and repeat
this process for all n ∈ [1, N ], producing a set Ω =

{(ω(n)
X , a(n))}. The formula for the performance

gap is then given by:

∆(Ω) = Acc(Ω>90%)− Acc(Ω<10%) (1)

where Ω>90% is the top 10% of elements in Ω or-
dered by frequency, Ω<10% is the bottom 10%, and
Acc(Ω′) is the average accuracy of elements in Ω′.
We introduce the following convenient abuses of
notation ∆1, ∆1,2, ∆1,y, . . . , to denote the per-
formance gap over the frequency distributions of
ω{x1}, ω{x1,x2}, ω{x1,y}, . . . , respectively.

Concretely, for the multiplication example from
Figure 1, x = (x1, x2) and we consider the per-
formance gap over frequencies ω{x1}. For each
number (say 23), we count the number of times
it appears in the pretraining corpus (ω{23}), and
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Pretraining Corpus

(24) 
(23) 
(60, hour)

107
107

106

24 ⨉ 18 = ?   (432) 
23 ⨉ 18 = ?   (414) 
60 hours → mins? 
                     (3600) 

Q: What is [x1] times [x2]? A: 

Q: What is 24 times 31? 
A: 1152

Q: What is 24 times 48? 
A: 1152
Q: What is 24 times 18? 
A:

Language 
Model Q: What is 23 times 18? 

A: 462

Q: What is 24 times 18? 
A: 432

Reasoning QueriesTerm Counts

Count 
Occurrences

Render 
Prompts

Prompt Templates

Q: What is [x1] times [x2]? A: [y]

Figure 2: Pipeline for Data Construction: We use the term counts processed from the pretraining data to develop
the reasoning queries and render them with prompts templates to a proper language model input format.

Table 1: Prompt templates and the number of test cases
(#) investigated for each numerical reasoning task.

Task Prompt Template #

Arithematic
Multiplication Q:What is x1 times x2? A: y 104

Addition Q:What is x1 plus x2? A: y 104

Operation Inference
Mult. # Q:What is x1 # x2? A: y 104

Add. # Q:What is x1 # x2? A: y 104

Time Unit Inference
Min�Sec Q:What is x1 minutes in seconds? A: y 79
Hour�Min Q:What is x1 hours in minutes? A: y 100
Day�Hour Q:What is x1 days in hours? A: y 100
Week�Day Q:What is x1 weeks in days? A: y 100
Month�Week Q:What is x1 months in weeks? A: y 100
Year�Month Q:What is x1 years in months? A: y 100
Decade�Year Q:What is x1 decades in years? A: y 100

compute the average accuracy of the model over
all instances where one of the operands is 23. The
performance gap w.r.t. to ω{x1} for this task is the
difference between the average accuracy over the
top 10% and the bottom 10% most frequent num-
bers in the pretraining corpus. We picked 10% as
the threshold to have a simple, intuitive metric that
captures how accuracy differs between the most
and least frequent terms. We also provide the plots
to show the full distribution in the frequency range.

3 Experiment Setup

In this section, we describe our setup to measure
the effect of pretraining data on the few-shot evalu-
ation of a number of numerical reasoning tasks for
different language models.

Language Models We experiment on the follow-
ing models from EleutherAI: GPT-J-6B (Wang,
2021), and GPT-Neo-1.3B, GPT-Neo-2.7B (Black
et al., 2021). These models are publicly available,
but more importantly, they are among the few mod-
els that their pretraining corpus has also been re-
leased. These language models are trained on the
Pile dataset (Gao et al., 2020), a large-scale lan-

guage modeling dataset consisting of English doc-
uments in 22 academic or other professional data
sources. We count the frequency of all integers
with less than seven digits using a slightly modified
version of Spacy English tokenizer (Honnibal and
Montani, 2017). To calculate the frequencies of
the numbers we use Amazon Elastic Map Reduce
(EMR) platform. We use the HuggingFace1 Trans-
former integration of the models for experiments.

Numerical Reasoning Tasks We create three
types of datasets that target the mathematical ca-
pabilities of language models since solving mathe-
matical questions is a useful reasoning capability
of the models (Brown et al., 2020).
• Arithmetic, 2 tasks As the first task, we consider

simple arithmetic operations: addition x1+x2 �
y and multiplication x1 × x2 � y. In both cases,
the both operands (x1 and x2) are numbers less
than 100 (these numbers are in the top 200 most
frequent numbers in the pretraining data).

• Operation Inference, 2 tasks Instead of directly
specifying the operation, we also create a varia-
tion where the model needs to infer, from a few
examples, the operation itself, as well as the re-
sult, as introduced in the evaluation of Megatron-
Turing model.2 We replace the arithmetic oper-
ation with a “#”, with the same operations and
operands as previous, to create these datasets.

• Time Unit Conversion, 7 tasks Apart from di-
rect arithmetic expressions, we are also interested
in evaluating model capability to implicitly rea-
son about these operations. To this end, we con-
struct a unit conversion dataset by identifying the
most frequent numbers that co-occur with time
unit words (“second”, “minute”, “hour”, “day”,
“week”, “month”, “year”, and “decade”) as the
primary operand x1, the time units themselves as
additional operands (x2 � x3), i.e. converting 24

1Source code at https://huggingface.co/EleutherAI
2
https://turing.microsoft.com/
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(a) Arithmetic-Addition (b) Arithmetic-Multiplication (c) Op.Inference-Addition (d) Op. Inference-Mult.

Figure 3: The GPT-J-6B accuracy on arithmetic and operator inference, with k shots. The average accuracy of
the binned instances is highly correlated with their term frequencies ω{x1} in the pretraining corpus (x-axis).

hours to minutes is represented as (24, “hours”,
60). We expect converting time values to be math-
ematically more straightforward than two-digit
multiplication since the model need only multi-
ply with the same (implicit) second operand, e.g.,
×60 for converting hours to minutes.

The pipeline for creating instances in our evaluation
is illustrated in Figure 2. We compute occurrences
and co-occurrences (assuming a window of 5) of
the terms in the corpus, i.e. the time units and num-
bers. We generate instances for the reasoning tasks
using the most frequent terms with less than 3 dig-
its (the top 200) as operands. We focus on the top
terms since we expect the models to have a fairly
reliable and robust representations for these words.
Each reasoning instance is rendered as a natural
language query using the prompt templates from
Table 1, and input to the language model to gener-
ate the answer. For example, to create a multiplica-
tion instance given the terms (x1 = 23, x2 = 18),
we use the instance template to create a natural
language input for the model as “Q: What is 23
times 18? A: ”, with the goal of producing “414”
(y = 23× 18 = 414). For few-shot evaluation, we
prompt the language models with k = 0, 2, 4, 8, 16
shots, and average performance over five random
selection of the prompt instances.

4 Results

With the three types of numerical reasoning tasks
(consisting of 11 total datasets), we present an eval-
uation of the effect of pretraining term frequency on
the performance of the language models. For each
dataset, we measure the performance gap on in-
stances that consist of rarer (relatively) terms, for a
few different choices of what to compute frequency

over (different combinations of the instance terms).
We also investigate the effect of the model size on
this performance gap and do a case study to further
clarify if all this impact is due to memorization.

Arithmetic We first study the performance on
simple addition and multiplication of numbers. The
results for the GPT-J-6B model is provided in Ta-
ble 2, with performance gap computed just for x1
(any of the multiplicands), for (x1, x2) (both multi-
plicands), and for (x1, y) (any of the multiplicands
and the golden answer). In multiplication, we ob-
serve a very high performance gap for all these def-
initions of frequencies, suggesting a strong effect
of frequency in the pretraining data on the model’s
ability to perform multiplication. For better illus-
tration of the performance gap, we plot the mean
accuracy across the frequency of x1 in Figure 3b.
The plot demonstrates the strong correlation be-
tween the models accuracy on specific instances,
and the instance element frequency in the pretrain-
ing data. For addition, we observe an overall higher
performance of the GPT-J-6B model in compari-
son to the multiplication experiments. However,
the performance gap on all of the definitions of the
instance frequencies still shows an strong effect on
the models accuracy. As shown in Figure 3a, the
average accuracy of the model still has a positive
slope, indicating the effect of instance frequencies.

Operation Inference These tasks aim to assess
the model capability to both infer the math oper-
ation and to perform the actual computation. As
we see in Table 2, the model is much less accurate
here as compared to the arithmetic experiments.
However, the model has better performance on the
frequent instances even for these low performance
tasks (see detailed trend in Figures 3d and 3c). The

844



Table 2: GPT-J-6B results on arithmetic, operation inference (#) tasks ∆1, ∆1,2 and ∆1,y represent the
performance gap over the frequency distributions of ω{x1}, ω{x1,x2} and ω{x1,y} respectively. x1 represent the first
operand, x2 second operand and y the answer of the arithmetic question.

k
Multiplication Addition Multiplication (#) Addition (#)

Acc. ∆1 ∆1,2 ∆1,y Acc. ∆1 ∆1,2 ∆1,y Acc. ∆1 ∆1,2 ∆1,y Acc. ∆1 ∆1,2 ∆1,y

0 2.6 13.2 13.3 21.4 1.6 8.2 7.3 9.9 - - - - - - - -
2 25.5 69.2 83.9 87.0 80.6 29.2 32.1 44.5 2.0 10.2 11.6 12.1 5.2 11.3 17.8 17.1
4 23.9 61.1 76.1 77.2 86.2 20.8 26.4 31.2 2.2 9.1 12.9 14.3 21.8 34.7 51.0 49.4
8 25.0 61.8 75.1 76.3 84.1 19.8 26.6 25.8 2.9 10.7 17.6 16.1 20.3 18.8 32.1 26.8
16 25.4 64.1 76.1 77.8 83.9 17.9 24.8 22.4 5.2 21.1 28.7 28.5 15.1 17.2 28.1 23.8
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Figure 4: GPT-J-6B performance on Year�Month:
Interpolation lines show the correlation between the av-
erage accuracy and the ω{x1,x2} (k is number of shots).

performance gap here suggests that the effect of
pretraining is not only for tasks that the model is
accurate on, but even for operation inference that
is more challenging and require deeper reasoning.
Moreover, the lower accuracy here as compared to
addition experiments in the previous section sug-
gests that the model is unable to infer the operation
from the few-shot prompts, and it may be perform-
ing some form of pattern matching based on the
pretraining data on the common instances.

Time-Unit Conversion The performance gap
evaluated on the time unit conversion experiments
is in Table 3. We first observe a relatively high
performance gap on all the tasks except the con-
version from decade to year. We also observe a
general pattern of increase in the performance gap
as the number of shots (training examples in the
prompt) increases. These results suggest that even
though the model gets more accurate, the improve-
ments focus on more frequent instances of the task.
(Example figures for time units experiments is pro-
vided in Figures 4, 5)
Decades to years: As we observe in Table 3, the
model performs nearly perfectly on this task with
as few as 8 shots, and we only see very small per-
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Figure 5: GPT-J-6B performance on Decade�Year:
The interpolation average accuracy line over the
ω{x1,x2} show that the model reaches a high perfor-
mance with the number of shots k = 8, there is still a
performance gap in the case of k = 2.

formance gap. This is likely due to the task being
quite simple (appending a “0” to the input number)
so, the model is able to generalize in the manner we
are evaluating it. However, it is also possible that
we are simply not identifying the right frequency
statistics for this task, and there is an effect that our
current evaluation setup does not capture.

Studying the Size of Language Models To fur-
ther study the impact of language models sizes on
the performance gap caused by the instance fre-
quencies, we perform the arithmetic experiments
for 2, 8 shots using the smaller models (GPT-Neo-
1.3B and GPT-Neo-2.7B). We can see the trends
of the average accuracy of the models in Figures
6. The smaller models overall are less accurate
on the arithmetic tasks, which is consistent with
observations in related work (Brown et al., 2020).
However, their success is still focused on the more
frequent terms from the pretraining corpus, suggest-
ing that even the smaller models show the effect
of reliance on the pretraining data, although to a
much lower extent than the larger ones.
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Table 3: GPT-J-6B results on Time-Unit Conversion: ∆1,2, ∆1,2,3 and ∆1,2,y represent the performance gap over
the frequency distributions of ω{x1,x2}, ω{x1,x2,x3} and ω{x1,x2,y} respectively, where x1 is the number operand,
x2 is the source unit, x3 is the number operand needed for performing the conversion and the y is the true answer.

k
Min�Sec Hour�Min Day�Hour Week�Day

Acc. ∆1,2 ∆1,2,3 ∆1,2,y Acc. ∆1,2 ∆1,2,3 ∆1,2,y Acc. ∆1,2 ∆1,2,3 ∆1,2,y Acc. ∆1,2 ∆1,2,3 ∆1,2,y

0 1.3 0.0 0.0 12.5 1.0 0.0 0.0 5.0 1.0 0.0 0.0 10.0 1.0 0.0 0.0 10.0
2 25.5 60.0 62.5 62.5 19.4 62.0 40.5 60.5 12.1 26.0 26.0 16.0 13.1 44.0 46.0 52.0
4 35.5 60.7 65.0 50.6 29.1 71.5 49.9 56.5 22.7 54.0 52.0 39.5 19.2 50.0 48.0 50.0
8 49.9 72.7 82.3 42.1 36.3 78.0 52.5 52.9 31.0 67.0 61.0 61.0 28.6 68.0 64.0 53.5
16 58.4 87.5 88.5 64.2 42.8 79.0 50.4 57.8 43.3 67.7 57.7 48.0 28.0 30.9 24.5 51.3

Shots, k Month�Week Year�Month Decade�Year

Acc. ∆1,2 ∆1,2,3 ∆1,2,y Acc. ∆1,2 ∆1,2,3 ∆1,2,y Acc. ∆1,2 ∆1,2,3 ∆1,2,y

0 1.0 0.0 0.0 10.0 1.0 0.0 0.0 10.0 3.1 14.3 0.0 28.6
2 30.1 9.0 13.0 13.0 21.8 58.0 64.0 62.0 76.5 47.4 30.0 20.0
4 63.3 21.5 25.5 5.5 31.9 64.8 62.8 70.0 96.7 2.9 0.0 2.9
8 80.9 37.5 24.0 5.0 45.4 55.0 62.0 59.0 99.6 0.0 0.0 0.0
16 84.5 54.0 51.0 21.2 56.7 58.7 57.3 66.8 100.0 0.0 0.0 0.0

(a) Arithmetic-Mult. (b) Arithmetic-Add.

Figure 6: The effect of model size on performance
Smaller models only perform well on instances with
more frequent terms in the pretraining data. k represents
the number of shots.

Impact Due to Memorization In this section,
we will study the extent to which the impact of
the pretraining term frequencies on model perfor-
mance can be explained due to pure memorization.
To tease apart direct memorization, we perform
similar analysis as above, but do so without the
instances that have already been memorized by the
language model in their entirety. It is worth men-
tioning that finding such instances is not trivial. In
other words, it is not trivial to identify purely mem-
orized instances. Prior work (Magar and Schwartz,
2022; Carlini et al., 2022) has shown that the mod-
els perform more accurately on the instances with
higher exact match counts from the pertaining data;
we first verify this trend by observing a similar
trend for our setting by plotting ω{x1,x2,y}, the co-
occurrence of all three numbers in Appendix Fig-
ure 9). Based on these studies and results, we treat

the number triples with the highest average accu-
racy (more than 85%), as the ones the model has
most likely memorized. Specifically, we remove
these memorized instances from our evaluation to
see the impact of lower order term frequencies on
the remaining instances. As shown in Figure 7,
the dependency of model performance on lower
order frequencies (ω{x1} and ω{x1,x2}) is still very
high even after removing the memorized instances.
These observations suggest that the impact of term
frequencies on model performance is beyond pure
memorization of the numerical terms.

Summary Overall, we observe high positive per-
formance gap for almost all of the experiments on
the three definition levels of the frequency for each
task. This suggests a strong effect of frequency of
the instances in the pretraining data on the model
performance. In particular, evaluation using perfor-
mance gap with ω{x1} shows that even the unigram
statistics of the instances have strong correlation
with the models performance on the instance.

Other than some exceptional cases, we observe
an increasing trend in the performance gap as we
put more training examples in the prompt (the
number of shots); this can be a further indication
that the model is directed through the patterns in
the pretraining data to answer the reasoning ques-
tions. Our experiments with the smaller sizes of
the model also show that they can only solve the
frequent instances of the tasks, which further sup-
ports our observation that model performance is
correlated with the term frequencies.
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Figure 7: The effect of term frequencies after re-
moving memorized instances on 2-shot GPT-J-6B. De-
pendence of model performance on unigram and co-
occurrence frequencies (after removing the memorized
instances) shows the effect exists beyond memorization.

5 Related Work

A large and growing body of literature has inves-
tigated a number of related concerns with large
language models (for discussion of more tangen-
tially related work see Appendix A.1).

Numeracy and Temporal Reasoning in LMs
Our work contributes to the larger body of work
studying numeracy in word embeddings and lan-
guage models (Spithourakis and Riedel, 2018; Wal-
lace et al., 2019). Geva et al. (2020), Zhou et al.
(2020) Zhou et al. (2022) and Lewkowycz et al.
(2022) propose training schemes to help improve
LMs’ temporal and numerical reasoning capabili-
ties. Patel et al. (2021) show that NLP math solvers
rely on simple heuristics to answer math questions.
We expect that the performance gap metric pro-
posed in this work will be useful to better under-
stand the impact of such schemes.

Impact of Frequency on LM Performance
Kassner et al. (2020) and Wei et al. (2021) perform
controlled experiments varying pretraining data to
characterize the extent to which pretraining affects
LMs’ ability to memorize and reason with facts
as well as learn generalizable syntax rules. In line

with our results, both of these find that frequency is
a distinguishing factor in whether or not the model
memorizes a particular fact or syntactic rule for
a verb form. Sinha et al. (2021) further demon-
strate that shuffling word order during pretrain-
ing has minimal impact on an LMs’ accuracy on
downstream tasks, and, concurrent with this work,
Min et al. (2022) similarly find that shuffling la-
bels in in-context learning demonstrations has min-
imal impact on few-shot accuracy. These results
further suggest that LMs’ performance is largely
driven by their ability to model high-order word co-
occurrence statistics. Data privacy researchers have
shown that LMs may memorize sensitive sequences
occurring in training data even if they are rare (Car-
lini et al., 2019; Song and Shmatikov, 2019).

Memorization Feldman (2020) provide a theo-
retical definition of memorization as the difference
between the accuracy of a model on a training data
point when that point is included vs. excluded
from training. They also develop an approach for
approximating memorization using influence func-
tions Feldman and Zhang (2020). This framework
is applied to study memorization in language mod-
els by Zhang et al. (2021), who find that training
examples that are memorized by the LM tend to
have high influence of LM predictions on similar
validation instances. Their result may provide a
plausible explanation that the frequency effects ob-
served in this work are due to memorization.

6 Discussion

In this work, we consider how to conduct few-shot
evaluations in light of the analysis with the pre-
training data. Prior work has attempted to control
for overlap between pretraining data and the test
instances, but as we have seen, those methods are
insufficient. For example, Brown et al. (2020) mea-
sure the impact of removing instances from evalua-
tion datasets that share 13-gram overlap with their
pretraining data on GPT-3’s accuracy, and also ar-
gue that the low occurrence of exact phrases such as
“NUM1 + NUM2 =” and “NUM1 plus NUM2” in
the pretraining data indicate that the model’s strong
performance on arithmetic tasks is likely due to fac-
tors other than memorization. However, we show
that LM performance is impacted by much simpler
statistical patterns, as small as unigram overlap
with the pretraining data.

For these reasons, we strongly recommend that
evaluation of reasoning capabilities should take the
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pretraining corpus into account, and any claims
of reasoning can only be made after demonstrat-
ing robustness to the effect of pretraining. Cur-
rent LM benchmarks, that are dissociated from the
model’s pretraining data, make it impossible to
interpret few-shot reasoning performance results.
It is worth mentioning that, even a performance
gap of 0 is likely not sufficient to claim reasoning
capabilities—what exactly constitutes “reasoning”
remains ill-defined—but it may be a necessary con-
dition, and one that current models do not meet.

In this study, we are not making a causal claim,
and in general, there may be confounders that we
have not eliminated in our setting. Recently, Elazar
et al. (2022) introduced a causal framework based
on pretraining data statistics for understanding lan-
guage model’s factual predictions. To be able to
use the causal inference techniques they construct
and assume a causal graph for the task of extract-
ing factual knowledge from pretrained language
models. We recommend further research in the
proposed direction for other NLP tasks such as rea-
soning and interventions during training to provide
finer-grained analysis of the effect of pretraining.

One potential concern is that our experiments do
not distinguish whether incorrect answers are due
to lack of reasoning or lack of recognition, i.e. it is
possible that the model has the ability to multiply
but the embeddings for rare terms are not adapted
to that algorithm. However, recognizing numbers
is a prerequisite to numerical reasoning, thus if
the models lack the ability to identify numbers,
this still means that they lack numerical reasoning
skills. That said, we also suspect that the errors are
not due to recognition. Even the most infrequent
terms in our experiments have been seen millions
of times—they are not unknown tokens.

7 Conclusion

We show that in-context language model perfor-
mance on numerical reasoning tasks can be im-
pacted significantly by low-order co-occurrence
statistics in the pretraining data, raising questions
on the extent to which these models are actually
reasoning to solve these tasks. These observations
suggest the necessity for reconsidering and redefin-
ing the reasoning evaluation schemes for the large
language models. Further characterizing the im-
pacting factors on the models reasoning capacities
is also an important tasks for the community. Most
importantly, we suggest that the community should

not treat the pretraining data of the large language
models as unknown black boxes. Overlooking the
impact of the pretraining data can be misleading in
evaluating the model reasoning skills.
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Limitations

There are a few limitations to our study that open
up avenues for future research. First, our approach
aggregates fairly simple patterns and the effect we
observe might be stronger if a wider variety and
complexity of patterns is considered in the pre-
training corpus. Similarly, our work is limited to
simple numerical reasoning tasks, and it would
be worthwhile to study how much other reasoning
evaluations and more complex quantitive reason-
ing tasks such as GSM8K (Cobbe et al., 2021) are
impacted by the same effect, which could be mea-
sured using the performance gap metric introduced
here. Defining appropriate instance terms for other
reasoning tasks such as commonsense reasoning
will be a challenging but important direction for fu-
ture work. Lastly, we do not propose a solution for
changing language models to robust reasoners. We
hope that the insights in this work inspire further
studies into the effect of pretraining on language
model’s performance, improvements in evaluation
schemes, and better training mechanisms for more
robust language models with true generalization
capabilities.
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A Appendix

A.1 Additional Related Work

In this section, we further discuss the related work.

Prompting Prompting has been widely applied
to study the factual (Petroni et al., 2019), common-
sense (Davison et al., 2019; Weir et al., 2020; Lin
et al., 2020b), mathematical (Saxton et al., 2019),
and other NLP task-related (Radford et al., 2019;
Shin et al., 2020) knowledge LMs acquire during
pretraining. In this work, we focus on the in-context
learning setup of Brown et al. (2020), who use
prompts that include training examples to diagnose
LMs’ few-shot learning capabilities.

Training Artifacts Challenge Evaluation Our
results raise the issue that in-context learning
probes may overestimate an LM’s ability gener-
alize from few examples when biases are present
in the training data. This is consistent with prior
work that has exposed the similar effects of bi-
ases from: lexical cues in natural language in-
ference datasets (Gururangan et al., 2018; Poliak
et al., 2018; McCoy et al., 2019), question-passage
overlap and entity cues in reading comprehension
datasets (Chen et al., 2016; Sugawara et al., 2018;
Jia and Liang, 2017; Lewis et al., 2021b), gender
cues in coreference resolution datasets (Rudinger
et al., 2018), popularity in named entity disam-
biguation (Chen et al., 2021), similarity between
training and test instances in information extraction
and sentiment analysis datasets (Elangovan et al.,
2021), and effects of how data is split (Gorman
and Bedrick, 2019; Søgaard et al., 2021). Relat-
edly, data poisoning research studies how to ad-
versarially introduce artifacts into training data to
produce unwanted model behaviors (Nelson et al.,
2008; Chan et al., 2020; Wallace et al., 2021). A
general statistical procedure to test for artifacts is
presented in Gardner et al. (2021), who also theo-
retically show that large datasets are almost certain
to contain artifacts under reasonable assumptions.
Techniques for mitigating biases in the presence
of dataset artifacts are covered by Romanov et al.
(2019) and Karimi Mahabadi et al. (2020).

Documenting Pretraining Data To better under-
stand the risks of dataset artifacts, there has been
a call to better document the characteristics and
intended uses of datasets (Gebru et al., 2021; Ben-
der et al., 2021). However, due to the sheer size of

(a) Arithmetic-Addition (b) Arithmetic-Multiplication

(c) Op.Inference-Addition (d) Op. Inference-Mult.

Figure 8: The GPT-J-6B accuracy on arithmetic
and operator inference tasks, with k shots. The aver-
age accuracy (y-axis) of the binned instances is highly
correlated with their co-occurrences term frequencies
ω{x1,x2} in the pretraining corpus (x-axis).

LM pretraining datasets—which range from 100’s
of GBs to 10’s of TBs—doing so can pose a sub-
stantial challenge. Despite this, researchers have
been able to estimate word frequencies, topics, and
genres of documents (Sharoff, 2020), as well as pro-
portions of toxic text (Gehman et al., 2020) appear-
ing in OpenWebText (Gokaslan and Cohen, 2019).
Similar efforts have been made to characterize the
top-level domains, amount of hate speech, and cen-
sured text appearing in the C4 corpus (Raffel et al.,
2020; Dodge et al., 2021; Luccioni and Viviano,
2021). Our work documents co-occurrence statis-
tics of numbers and dates of documents appearing
in the Pile dataset.

A.2 Examples of time unit conversion plots
We provide the figures showing the dependence
between the average accuracy and the ω{x1,x2} for
time unit experiments of Minute, Year and Decade
in Figures 10, 4 and 5, respectively.
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Figure 9: The impact of ω{x1,x2,y} (the frequency of
all numbers (x1, x2, y) in an arithmetic instance) on
GPT-J-6B’s 2-shot performance, the high dependence
of models average accuracy on ω{x1,x2,y} may be due
to memorization specifically in highest frequencies
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Figure 10: GPT-J-6B performance on
Minute�Second: The interpolation lines show
the correlation between the average accuracy and the
ω{x1,x2}. k is the number of shots.
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