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Abstract

The existence and pervasiveness of textual ad-
versarial examples have raised serious concerns
to security-critical applications. Many methods
have been developed to defend against adver-
sarial attacks for neural natural language pro-
cessing (NLP) models. Adversarial training is
one of the most successful defense methods by
adding some random or intentional perturba-
tions to the original input texts and making the
models robust to the perturbed examples. In
this study, we explore the feasibility of improv-
ing the adversarial robustness of NLP models
by performing perturbations in the parameter
space rather than the input feature space. The
weight perturbation helps to find a better so-
lution (i.e., the values of weights) that mini-
mizes the adversarial loss among other feasible
solutions. We found that the weight perturba-
tion can significantly improve the robustness of
NLP models when it is combined with the per-
turbation in the input embedding space, yield-
ing the highest accuracy on both clean and ad-
versarial examples across different datasets.

1 Introduction

Deep neural networks (DNNs) have achieved im-
pressive results in a wide range of domains, but they
were found to be vulnerable to adversarial exam-
ples maliciously crafted by adding a small pertur-
bation to original examples (Szegedy et al., 2014).
Many studies have demonstrated the vulnerability
of DNNs on various natural language processing
(NLP) tasks, including machine translation (Zhao
et al., 2018; Cheng et al., 2020), dialogue systems
(Cheng et al., 2019) and text classification (Liang
et al., 2018; Zhao et al., 2018; Gao et al., 2018;
Ren et al., 2019; Jin et al., 2020). These methods
attack an NLP model by replacing, scrambling, and
erasing characters or words under certain semantic
and syntactic constraints.

The existence and pervasiveness of textual adver-
sarial examples have raised serious concerns, espe-

cially when NLP models are deployed to security-
sensitive applications. Many methods have been
proposed to defend against adversarial attacks for
neural NLP models, including adversarial data aug-
mentation (Zheng et al., 2020; Si et al., 2021), ad-
versarial training (Madry et al., 2018; Zhu et al.,
2020) and certified defense (Jia et al., 2019; Huang
et al., 2019; Ye et al., 2020). Most of them improve
the adversarial robustness of NLP models by apply-
ing some perturbations on input data and making
the models robust to these perturbations in the input
space. For example, one of the most effective meth-
ods is adversarial training that applies a min-max
optimization into the training process by adding
(usually gradient-guided) perturbations to the input
embeddings (Miyato et al., 2017; Sato et al., 2018;
Zhu et al., 2020). By augmenting these perturbed
examples with the original training data, the mod-
els are robust to such perturbations. However, it
is infeasible to enumerate and explore all possible
inputs that would be fed to models by adversaries.
In this study, we want to explore the feasibility of
enhancing the robustness of neural NLP models by
performing weight perturbations in the parameter
space. The weight perturbation is useful to find
a better solution in the parameter space (i.e., the
weights) that minimizes the adversarial loss among
other feasible solutions.

Adversarial weight perturbation (Wu et al., 2020;
Foret et al., 2021) has been investigated in the im-
age domain, but our preliminary experiments show
that their methods to implement weight perturba-
tion cannot be trivially applied to NLP models. The
existing weight perturbation results in inferior ro-
bustness and requires a long training time due to the
discrete nature of texts. We found that the weight
perturbation works better for NLP models when
it is combined with the perturbation in the input
feature space. Based on this finding, we propose
a mixed adversarial training method with accu-
mulated weight perturbation, named MAWP. The
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mixed adversarial training was designed to boost
the model’s robustness by combining the weight
perturbation with the traditional adversarial train-
ing (i.e., perturbation in the input embedding space
like FreeLB (Zhu et al., 2020)). In this way, the
resulting models can benefit more from the weight
perturbation by exposing them to the input pertur-
bation during the training process. The accumu-
lated weight perturbation was mainly introduced to
accelerate the training process while the model’s
robustness can be further improved. The accumu-
lated perturbation takes the smoothed form of a
weighted sum of gradient descents calculated in the
previously-performed weight perturbations, which
carries the global gradient information and gives
a clear signal in which direction the parameters
should move to aggressively if the successive gradi-
ents point in a similar direction. Through extensive
experiments, we demonstrate that our method can
boost the robustness of NLP models to a great ex-
tent while suffering no or little performance drop
on the clean data across three different datasets.

2 Related Work

2.1 Textual Adversarial Defense

The goal of adversarial defenses is to learn a model
capable of achieving high accuracy on both clean
and adversarial examples. Recently, many defense
methods have been developed to defend against tex-
tual adversarial attacks, which can roughly be di-
vided into two categories: empirical (Miyato et al.,
2017; Sato et al., 2018; Zhou et al., 2021; Dong
et al., 2021) and certified (Jia et al., 2019; Huang
et al., 2019; Ye et al., 2020) methods.

Adversarial data augmentation is one of the most
effective empirical defenses (Ren et al., 2019; Jin
et al., 2020; Li et al., 2020) for NLP models. Dur-
ing the training time, they replace a word with one
of its synonyms to create adversarial examples, and
the models are trained on the dataset augmented
with these adversarial examples. By augmenting
these adversarial examples with the original train-
ing data, the model is robust to such perturbations.
Zhou et al. (2021) and Dong et al. (2021) relax a
set of discrete points (a word and its synonyms) to
a convex hull spanned by the word embeddings of
all these points, and use a convex hull formed by
a word and its synonyms to capture word substi-
tutions. Adversarial training (Miyato et al., 2017;
Zhu et al., 2020) is another one of the most suc-
cessful empirical defense methods by adding norm-

bounded adversarial perturbations to word embed-
dings and minimizes the resultant adversarial loss.

The downside of existing empirical methods is
that failure to discover an adversarial example does
not mean that another more sophisticated attack
could not find one. To address this problem, some
certified defenses (Jia et al., 2019; Huang et al.,
2019; Ye et al., 2020) have been introduced to guar-
antee the robustness to certain specific types of
attacks. However, the existing certified defense
methods make an unrealistic assumption that the
defenders can access the synonyms used by the
adversaries. They would be easily broken by more
sophisticated attacks by using synonym sets with
large sizes (Jin et al., 2020) or generating synonyms
dynamically with BERT (Li et al., 2020).

Most of the existing defense methods improve
the robustness by making the models adapt to the
training set augmented with the adversarial exam-
ples crafted by adding adversarial perturbations to
discrete tokens or distributed embeddings. How-
ever, it is infeasible to enumerate all possible inputs
that would be fed to the models by adversaries. In
contrast, we have full control over the values of
the model’s parameters. Therefore, we propose to
improve the robustness of neural NLP models by
performing weight perturbations in the parameter
space rather than in the input space.

2.2 Weight Perturbation

Weight perturbation has been explored to improve
the generalization of models in the image domain.
Graves (2011) first investigated the method to apply
the perturbations on the weights of neural networks
and introduced a stochastic variational method to
improve the generalization. Following this direc-
tion, Foret et al. (2021) proposed an optimization
method, named Sharpness-Aware Minimization
(SAM), to seek the values of parameters that yield
a uniformly low loss in their neighborhood.

Recently, researchers from the computer vision
community have also tried to improve the model’s
robustness by weight perturbation. He et al. (2019)
presented a Parametric Noise Injection method that
intentionally injects trainable noises on the activa-
tions and weights of neural networks. Wu et al.
(2020) showed the correlation of model’s perfor-
mance with the direction and scale of weight pertur-
bation by investigating the weight loss landscapes
of multiple adversarial training techniques. They
also proposed an Adversarial Weight Perturbation
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(AWP) method, which can be incorporated into ex-
isting adversarial training methods to narrow down
the gap in robustness between training and test sets.

However, the existing weight perturbation meth-
ods cannot trivially be applied to NLP models due
to the discrete nature of texts. To address the prob-
lem we faced when implementing the weight per-
turbation to train NLP models, we propose a mixed
adversarial training method to further improve the
adversarial robustness of neural NLP models and
introduce an accumulated weight perturbation to
speed up the training process. This study is among
the first ones to study how to apply the adversarial
weight perturbations in the text domain.

3 Preliminary

In the following, we first introduce the traditional
adversarial training that performs perturbation in
the input feature space, and then give a brief re-
view of the adversarial weight perturbation. Before
diving into the details, we need to set up some no-
tations. A training dataset D = {(xi, yi)}ni=1 with
n instances consists of a set of the feature vector
representation x ∈ Rd of an input text x and its
corresponding label y ∈ {1, ..., C} pairs, where
d is the size of feature vectors and C is the num-
ber of classes. Given a neural text classifier with
a set of trainable weights w and a loss function
of L(w,x, y), the regular training aims to find the
values of weights w that minimizes the empirical
risk of E(x,y)∼D[L(w,x, y)]. In adversarial train-
ing, we denote the adversarial perturbation to input
feature vectors x as δ, the weight perturbation to
model’s weights w as ϵw, and the number of ascent
steps as k ∈ {1, ...,K}.

3.1 Traditional Adversarial Training

Traditional adversarial training can be formulated
as a min-max optimization problem (Madry et al.,
2018) as follows:

min
w

E(x,y)∼D

[
max

∥δ∥F≤ϵ
L(w,x+ δ, y)

]
, (1)

where δ is constrained in a Frobenius norm ball
with a radius ϵ. As pointed out by Zhu et al. (2020),
the outer minimization can be achieved by Stochas-
tic Gradient Descent (SGD) method, and the inner
maximization can be accomplished by Projected
Gradient Descent (PGD)-based attack algorithm.
Specifically, PGD-based algorithms take the fol-
lowing step (with a step size α) at k-th iteration

under the constraint of Frobenius norm:

δk+1 =
∏

∥δ∥F≤ϵ

(
δk +

αg(δk)

∥g(δk)∥F

)
, (2)

where g(δk) = ∇δkL(w,x + δk, y) denotes the
loss gradient with respect to δk, and

∏
∥δ∥F≤ϵ is

the projection of input perturbation δ within the
Frobenius norm ball with the radius ϵ.

3.2 Adversarial Weight Perturbation

We here give a brief introduction of adversarial
weight perturbation (Wu et al., 2020; Foret et al.,
2021) in the image domain. Given an adversarial
example x′ of a clean one x, the adversarial weight
perturbation seeks the values of parameters w that
have the lowest training loss within the surrounding
neighborhood, which can be formulated as follows:

min
w

E(x,y)∼D

[
max

∥ϵw∥2≤ρ
L(w + ϵw,x′, y)

]
, (3)

where ρ is the radius of weight perturbation under
the l2-norm. Since it is hard to directly maximize
the values of ϵw, the optimal values can be ap-
proximated via the first-order Taylor expansion of
L(w + ϵw,x

′, y) as follows:

ϵ∗w ≈ argmax
∥ϵw∥2≤ρ

ϵTw∇wL(w,x′, y). (4)

By this approximation, the value of ϵw can be
estimated as ρ∇wL(w,x′, y)/∥∇wL(w,x′, y)∥2.
Specifically, Wu et al. (2020) performs the adver-
sarial weight perturbations at layer level by setting
ϵw to η∥w∥2 ·∇wL(w,x′, y)/∥∇wL(w,x′, y)∥2.
Once the values of ϵw are obtained, they update w
based on the gradient of ∇wL(w,x′, y)|w+ϵw in
order to make the models generalize well on the
adversarial sample x′.

4 Method

In the following, we first introduce our accumu-
lated weight perturbation method that is designed
to accelerate the training process when fine-tuning
a pre-trained language model. After then, we dis-
cuss how to combine it with adversarial training to
further improve the robustness of NLP models.

4.1 Accumulated Weight Perturbation

Adversarial weight perturbation works by search-
ing for the worst case within the neighborhood of
current weights with respect to the training loss
and finding a better solution in the neighborhood
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Algorithm 1 A mixed adversarial training algo-
rithm with accumulated weight perturbation
Input:

K: the number of ascent steps;
D: a training dataset (xi, yi)

n
i=1;

α: the size of ascent steps;
H: the demensionality of the hidden layers;
w: the weights of a model;
τ : a learning rate;
η: the size of weight perturbation ϵw;
η2: the size of accumulated weight perturbation ϵg;
U : a uniform distribution with the bound of σ.

Output: the resulting weights w.
1: Initialize w
2: for epoch = 1, . . . , N do
3: ϵg ← 0
4: for minibatch B ⊂ D do
5: w0 ← w, g0 ← 0
6: δ0 ← 1√

H
U(−σ, σ)

7: for k = 0 . . . (K − 1) do
8: // Calculate weight perturbation ϵwk

9: dwk ← ∇wkL(wk,x+ δk, y)

10: ϵwk ← η∥wk∥2 · dwk
∥dwk

∥2
11: wk+1 ← wk + ϵwk

12: // Accumulate gradient gk for wk+1

13: gk+1 ← gk+
1
K
E(x,y)∈B∇wk+1L(wk+1,x+

δk, y)
14: // Update δk via input perturbation
15: gadv ← ∇δkL(wk+1,x+ δk, y)
16: δk+1 ←

∏
∥δ∥2≤ϵ(δk + α gadv

∥gadv∥2 )
17: end for
18: // Calculate accumulated perturbation ϵg
19: ϵs ←

∑K−1
k=0 ϵwk

20: ϵg ←
∏

∥ϵg∥2≤η2
(ϵs +

ϵg∥ϵs∥2
∥ϵg∥2+ϵ0

)

21: w ← w − τgK − ϵg
22: end for
23: end for
24: return w

through minimizing the adversarial loss. Note that
the gradient calculated to find the worse case by
the weight perturbation can be reused to optimize
the value of the current weight, which would be
updated in the reverse direction of the gradient al-
ready computed. For example, starting from a point
of weight we can calculate its gradient with respect
to the loss function to locate the worse case around
this point to perform the weight perturbation. The
normalized version of this gradient also can be used
to update the model’s parameters by the gradient
descent. By reusing such a gradient calculated at
each step of weight perturbation, we can improve
both the generalization and robustness with less
computational cost.

We also found experimentally that the robustness
of models can be further improved by introducing
a global term that takes the form of the accumu-
lated gradients obtained at previous perturbation
steps. The accumulated gradient carries the global

information and gives a clear signal in which direc-
tion the parameters should move to aggressively if
the gradients obtained at different steps point in a
similar direction.

At each step k, we can perform the weight pertur-
bation ϵwk

that finds the worse case in the neighbor-
hoods of weight wk. Meanwhile, an accumulated
weight perturbation is also calculated which takes
the smoothed form of a weighted sum of gradient
descents calculated in the previously-performed
weight perturbations. Specifically, for each mini-
batch B, the values of weight perturbation ϵs are
obtained by summing up all the perturbations as
ϵs =

∑K−1
k=0 ϵwk

. Then, we can calculate the accu-
mulated weight perturbation ϵg as follows:

ϵg =
∏

∥ϵg∥2≤η2

(
ϵs +

ϵg · ∥ϵs∥2
∥ϵg∥2 + ϵ0

)
, (5)

where η2 is the radius of the accumulated weight
perturbation, ϵ0 a constant introduced for numeri-
cal stability in the computation, and

∏
∥ϵg∥2≤η2

the
projection function.

4.2 Mixed Adversarial Training Method

We here describe our adversarial weight pertur-
bation and how to combine it with FreeLB (Free
Large-Batch) (Zhu et al., 2020), a popular adver-
sarial training algorithm. The algorithm of FreeLB
adds adversarial perturbations to word embeddings
and minimizes the resultant adversarial loss inside
different regions around input samples. It also adds
norm-bounded adversarial perturbations to the in-
put sentences’ embeddings using a gradient-based
method and enlarges the batch size with diversified
adversarial samples under such norm constraints.
By the mixed adversarial training, NLP models can
benefit more from the adversarial weight perturba-
tion by exposing the models to the input perturba-
tion during the training process.

Specifically, at the k-th ascent step, we calculate
the weight perturbation ϵwk based on the input
perturbations δk and the weights wk as follows:

ϵwk = η∥wk∥2 ·
∇wkL(wk,x+ δk, y)

∥∇wkL(wk,x+ δk, y)∥2
. (6)

The input perturbation δ0 is initialized from a
uniform distribution, and δ0 ∼ 1√

H
U(−σ, σ). Af-

ter calculating the weight perturbation ϵwk
, the

perturbed weights of wk+1 can be updated by
wk + ϵwk

. Following the gradient accumulating
operation in FreeLB, we compute the gradients of
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Datasets Methods Clean%
TextFooler BERT-Attack TextBugger TextFooler* BERT-Attack* TextBugger*

Aua% #Query Aua% #Query Aua% #Query Aua% #Query Aua% #Query Aua% #Query

SST-2

Base 92.24 11.77 101.22 11.10 128.23 28.00 52.44 19.93 102.81 18.97 107.94 21.63 99.99
PGD 90.78 10.87 114.16 8.67 131.56 33.73 49.87 29.37 106.73 22.53 106.29 29.60 103.88
FreeLB++ 92.35 13.33 112.86 11.40 136.90 33.07 51.10 33.83 110.43 27.63 111.22 33.93 109.16
TA-VAT 93.08 13.89 117.06 11.56 133.47 32.89 53.45 28.00 106.11 22.33 106.84 27.33 106.64
InfoBERT 93.14 10.56 111.95 10.33 138.74 33.33 53.09 26.67 105.50 22.45 111.87 28.89 106.15
PGD-AWP 91.14 11.87 113.53 9.93 129.50 32.33 50.27 29.17 106.68 22.50 106.33 27.90 104.66
FreeLB-AWP 92.35 14.80 118.97 13.67 142.30 35.63 53.89 35.37 121.32 29.00 113.61 36.73 129.45
MAWP 91.96 31.30 146.01 24.57 184.02 43.07 88.02 41.47 174.01 32.60 167.06 39.23 187.00

AGNEWS

Base 94.50 14.20 320.72 21.87 433.90 38.23 178.74 23.90 345.58 36.73 380.99 28.10 371.26
PGD 94.56 30.43 413.93 25.80 456.81 57.03 169.74 50.03 416.89 42.60 389.03 56.67 416.02
FreeLB++ 95.33 28.20 410.36 29.83 494.79 55.17 185.76 47.60 421.38 47.10 415.16 53.63 437.54
TA-VAT 94.97 28.44 404.81 28.00 470.20 52.00 185.56 43.11 405.67 44.22 403.80 49.44 422.24
InfoBERT 95.04 17.11 351.46 23.33 448.84 46.00 187.95 30.22 367.01 37.67 389.81 34.78 391.28
PGD-AWP 94.38 28.53 407.12 23.77 446.69 57.60 165.08 48.40 410.16 39.83 380.61 55.70 405.38
FreeLB-AWP 94.39 32.03 425.13 29.03 481.79 58.57 178.73 51.57 425.95 46.07 406.96 57.43 435.43
MAWP 95.23 31.37 423.78 29.97 481.29 58.40 178.99 50.70 424.20 46.23 407.66 57.33 436.20

IMDB

Base 92.09 8.53 866.73 6.10 878.57 18.27 576.04 26.90 672.57 26.60 526.46 26.80 691.31
PGD 92.70 10.33 1059.83 7.33 862.28 17.41 590.15 40.73 788.64 24.93 562.40 34.60 769.36
FreeLB++ 93.31 15.80 1298.17 10.33 1149.16 26.08 757.12 48.20 937.28 37.53 641.63 44.67 1005.66
TA-VAT 92.84 12.60 1270.00 9.77 1105.95 28.11 830.73 45.77 885.73 35.53 638.21 41.40 1008.66
InfoBERT 92.60 10.67 882.74 8.44 906.67 16.33 596.63 28.67 713.80 25.67 567.49 26.89 774.45
PGD-AWP 93.18 12.83 1258.87 8.77 1068.43 22.22 733.80 47.47 879.47 33.80 628.32 42.60 915.04
FreeLB-AWP 93.25 18.80 1353.93 13.47 1184.38 28.58 778.54 49.23 897.46 37.53 636.53 44.93 948.74
MAWP 93.24 35.97 1594.49 15.90 1501.68 39.90 1033.27 58.40 2522.56 43.20 1795.51 56.07 3167.35

Table 1: The experimental results of different defense methods on SST-2, AGNEWS, and IMDB datasets. The best
performance is highlighted in bold fonts. The symbol ∗ indicates the attack algorithms on which we impose some
constraints for fair comparison by ensuring the quality of adversarial examples (see Section 5.2 for details).

gk+1 with respect to the perturbed weights wk+1,
the perturbed inputs x+ δk and the accumulated
gradient gk in k − 1-th step:

gk+1 = gk +
1

K
∇wk+1L(wk+1,x+ δk, y) (7)

where g0 is initialized to 0. When we calculate the
accumulated gradient gk+1, it is free for us to calcu-
late the input perturbation without additional cost.
Therefore, we can calculate the input perturbation
δk+1 based on the perturbed weights wk+1 and the
former input perturbation δk as follows:

δk+1 =
∏

∥δ∥2≤ϵ

(
δk + α

∇δkL(wk+1,x+ δk, y)

∥∇δkL(wk+1,x+ δk, y)∥2

)
.

(8)

We list the proposed MAWP in Algorithm 1. Af-
ter the weights w0 and the input perturbations δ0
are initialized, we calculate the weight perturba-
tions ϵwk

and add them to the model’s weight wk

at each ascent step. We then calculate the gradient
gk (Line 14) and the next input perturbations δk+1

(Line 16). Finally, the accumulated weight per-
turbations ϵg are calculated to update the model’s
weights with the adversarial loss.

5 Experiments

We conducted three sets of experiments. The first
one is to evaluate our MAWP in both clean accu-
racy and adversarial robustness on several datasets

under three representative attack algorithms, com-
pared to seven baseline methods. The goal of the
second one is to investigate the impact of the num-
ber of ascent steps and training epochs on the per-
formance. In the third experiment, we would like to
better understand the interpretability of adversarial
training via visualizations.

Three widely-used text classification datasets
were used for evaluation: Stanford Sentiment Tree-
bank (SST-2) (Socher et al., 2013), AG-News cor-
pus (AGNEWS) (Zhang et al., 2015) and Internet
Movie Database (IMDB) (Maas et al., 2011). SST-
2 has about 67, 000 sentences for binary categories,
and IMDB consists of about 50, 000 movie reviews
for positive and negative sentiment classification,
and AGNEWS is a text classification dataset per-
taining to four categories containing about 30, 000
news articles. For fair comparison, we used a
BERT-based model (Devlin et al., 2019) as the base
model for all the defense methods.

5.1 Implementation Details

We implemented MAWP based on Huggingface
Transformers1. We chose to use PGD (Madry et al.,
2018), FreeLB++ (Li et al., 2021), TA-VAT (Li
and Qiu, 2020), and InfoBERT (Wang et al., 2020)
as baselines. They are widely-used defense meth-
ods against textual adversarial attacks or have been

1https://github.com/huggingface/transformers
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proposed most recently. We also developed two
strong baselines. One is the combination of AWP
(Wu et al., 2020) (a weight perturbation method
proposed for computer vision tasks) and PGD, de-
noted as PGD-AWP. Another is the combination
of AWP with FreeLB, denoted by FreeLB-AWP.
These two baselines were also designed for the
ablation study and used to compare our mixed ad-
versarial training method. For fair comparison, we
also implemented PGD-AWP and FreeLB-AWP as
describe in Algorithm 1 except using AWP instead
of the proposed weight perturbation.

The size of the weight perturbation η was set to
1×10−5 for all the training methods compared, and
that of the accumulated perturbation η2 was set to
2× 10−5. All the experimental results are obtained
over three runs with different random initialization.

5.2 Attack Algorithms and Evaluation
Metrics

Three representative attack algorithms were used
to evaluate the adversarial robustness of models:
TextFooler (Jin et al., 2020), BERT-Attack (Li et al.,
2020) and TextBugger (Li et al., 2019). We use
these attack algorithms reimplemented by TextAt-
tack toolkit 2 (Morris et al., 2020). TextFooler and
BERT-Attack adversarially perturb text inputs by
synonym-based substitutions, whereas TextBugger
can perform adversarial perturbation to inputs at
both character and word levels. TextFooler gener-
ates synonyms using 50 nearest neighbors in the
word embedding space, while BERT-Attack uses
BERT to generate synonyms dynamically, and thus
no defender can know in advance the synonyms
used to replace original words by BERT-Attack.

Following Li et al. (2021), we used three met-
rics to evaluate our methods and other competitors:
clean accuracy (the accuracy of models on clean
examples) is denoted as Clean%, accuracy under
attack (the accuracy of models on adversarial exam-
ples under a certain attack) denoted as Aua%; and
number of queries (the average number of queries
an attacker needs to perform successful attacks)
denoted as #Query.

The clean accuracy is calculated on the entire
test set while the other two metrics are evaluated
on the 1, 000 examples randomly sampled from the
test set. In Table 1, we also report the experimental
results under the attack algorithms imposed with
some constraints suggested by Li et al. (2021) to

2https://github.com/QData/TextAttack

ensure the quality of adversarial examples gener-
ated. For all the attack algorithms, the maximum
percentage of words that are allowed to be modified
is set to 0.2 on SST-2, 0.3 on AGNEWS, and 0.1
on IMDB. We set the minimum semantic similarity
between original sample and adversary to 0.84, set
the maximum number of one word’s synonyms to
50 and set the maximum number of queries to the
victim model for each sample text to 50L, where L
serves as the length of sample text. For a fair com-
parison, the number of ascent steps K was set to
10 for all adversarial training methods considered.

5.3 Experimental Results

From the numbers reported in Table 1, a handful of
trends are readily apparent: (1) MAWP consistently
outperforms all the competitors by a significant
margin on the adversarial data across three differ-
ent attacks on SST-2 and IMDB datasets, and it
also achieves comparable results on the predication
accuracy of clean examples; (2) Although the gap
in the accuracy under attack between MAWP and
other baseline methods is slightly reduced under the
attack algorithms imposed by some constraints as
recommended by (Li et al., 2021), the adversaries
require much more queries to find adversarial ex-
amples for the models trained with MAWP. Note
that the greater the average number of queries re-
quired by the adversaries is, the more difficult it
is for the defense model to be compromised; (3)
MAWP outperforms most of the competitors and
achieves a relatively high clean accuracy of 95.23
on the test set of AGNEWS.

5.4 Impact of Different Training Epochs

The accumulated weight perturbation was intro-
duced to accelerate the training process and further
improve the adversarial robustness of models. To
evaluate its effectiveness, we implemented a vari-
ant of MAWP, denoted as “MAWP w/o Accum”, in
which the accumulation operation is not used (i.e.,
reset the value of ϵg to 0 at every minibatch).

As shown in Figure 1, we found that: (1) Both
MAWP and its variant outperform FreeLB++ and
FreeLB-AWP in the accuracy under attack espe-
cially after 10 epochs; (2) MAWP requires fewer
training epochs than its variant of “MAWP w/o
Accum” in order to achieve the same or similar
Aua%; (3) The robustness of the model trained
with FreeLB-AWP still can be improved even after
35 epochs while the Aua% of the model trained
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Figure 1: Accuracy under attack versus the number of
training epochs. The experiments were conducted on
SST-2 under the attack algorithm of TextFooler.

with FreeLB++ drops obviously at the end of the
training process.

5.5 Impact of the Number of Ascent Steps

We would like to understand how the choice of the
number of ascent steps K impacts the adversarial
robustness of models. MAWP was compared to
FreeLB++ with different numbers of ascent steps,
and the results on SST-2 dataset are reported in
Table 2.

Methods Step K Clean% TextFooler* Bert-Attack* TextBugger*

FreeLB++

3 92.53 24.67 22.00 26.07
5 93.10 27.53 24.87 28.90

10 92.17 33.83 27.63 33.93
15 91.14 36.20 28.27 37.40

MAWP

3 92.53 30.27 27.27 29.47
5 92.53 36.80 30.27 35.03

10 92.07 42.60 34.23 40.00
15 91.21 38.43 29.10 36.80

Table 2: The impact of different ascent steps in clean
accuracy and adversarial robustness on the validation
set of SST-2.

MAWP outperforms FreeLB++ in all the cases
of K under three different attack algorithms. As
the number of ascent steps grows, the clean accu-
racy of the two models drops to 91.14 and 91.21
respectively, and the performance in adversarial ro-
bustness also drops slightly. It shows that too much
perturbation does harm the model’s clean accuracy
and adversarial robustness. Therefore, we chose
to set K = 10 in all the experiments except those
reported in this subsection.

5.6 Input Loss Landscape

To give a reasonable explanation of the effect of
an enlarged number of ascent steps, we visualized
the input loss landscapes produced by the models
trained with FreeLB++ and MAWP with the step
K ∈ {5, 10, 15}. The visualization was provided

(a) (b)

(c) (d)

(e) (f)

Figure 2: The input loss landscapes produced by the
models trained with FreeLB++ and MAWP. Sub-figures
(a), (c), and (e) are the loss landscapes produced by the
models trained with FreeLB++-5, FreeLB++-10, and
FreeLB++-15 respectively, while sub-figure (b), (d), (f)
are the loss landscapes produced by those trained with
MAWP-5, MAWP-10, and MAWP-15 respectively.

by the models trained on SST-2 dataset.
Specifically, we perturb the original input embed-

ding x to x+ αδ1 + βδ2, where δ1 and δ2 denote
two random Gaussian direction vectors with nor-
malization, and α and β are two scalar parameters.
Then, the corresponding input loss landscapes can
be obtained and are shown in Figure 2. As we can
see from Figure 2-(a), (c) and (e), the input loss
landscapes will gradually become more flattened
as the number of ascent steps K grows when the
BERT-based model is trained by FreeLB++ (an
enhanced adversarial training method of FreeLB).
The similar trend also can be observed from Fig-
ure 2-(b), 2(d) and 2(f) when MAWP is used to
train the models. As the number of ascent steps
K grows, the region with lower loss will become
larger, leading to more robust models. However,
too strong perturbations without the norm-bounded
constraints will distort the decision boundary of the
models, which reduces the models’ generalization
and robustness.

To sum up, a larger number of ascent steps will
make the input landscape flatter and enable the
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model less impacted by the adversarial perturba-
tions. However, the model with a too flat landscape
(i.e., an over-smooth model) will result in poor
generalization and robustness.

5.7 The Features Captured with and without
Weight Perturbation

We want to gain a deeper understanding of why
the weight perturbation will lead to more robust
models. We examined the differences in the feature
vectors produced by the resulting models between
original and perturbed examples. Given a neural
model f , for an original example x we obtain a
perturbed example x̂ that stays very close to the de-
cision boundary of the model f and f(x) = f(x̂).
Note that the smaller the difference, the harder a
model can be compromised by the adversaries, and
the more robust the model will be generally.

We chose to use TextFooler∗ as the attack algo-
rithm when generating such perturbed examples.
Note that TextFooler∗ was imposed by some con-
straints highly recommended by (Li et al., 2021).
We used this variant of TextFooler because we want
the results yielded by different defense methods
can be compared in a more controlled manner. We
define the following distance function G(x, x̂) to
measure the difference between the feature vectors
of x and x̂:

G(x, x̂) = ∥h
j(x)− hj(x̂)∥2
∥hj(x)∥2

(9)

where hj(x) denotes the averaged feature vector
extracted from the j-th layer of the BERT-based
model for an input x. We chose to use l2-norm for
calculating the distances since the size of perturba-
tion in the embedding space is usually measured
based on l2-norm for almost all the textual attack
algorithms.

We first investigated a set of an input x and its
quasi-adversarial example x̂ (stays very close to
the decision boundary but does not make the model
change its prediction yet) produced by different
defense methods where x̂ was generated against
the BERT-based model. The reported differences
are averaged over all the examples in SST-2 test
set. As shown in Figure 3-(a), we found that: (1)
The distances between the features of x and x̂ gen-
erated at the 0-th layer (i.e., embeddings) are quite
similar for almost all the models except InfoBERT,
which aggressively compresses the embeddings;
(2) At the deeper layers, the differences in this dis-
tance gradually increase among the models. More
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Figure 3: The differences in the feature vector represen-
tations between original and perturbed examples pro-
duced at each BERT layer on SST-2, where the number
“0” denotes the word embedding layer, “13” the output
layer, and the numbers in between the hidden layers.
(a) The perturbed examples were generated against the
BERT-based model trained without any adversarial train-
ing method; (b) The perturbed examples were generated
against respective models under the text-time attack.

adversarially robust models have a lower distance
between the features of x and x̂ generated at every
layer, especially for the last few layers.

We also examined the differences between the
feature vectors of original examples and perturbed
ones generated against respective models (i.e., un-
der test-time attacks). As shown in Figure 3-(b),
the model trained with MAWP archived a relatively
low distance in the generated feature space com-
pared to other adversarial training methods, indicat-
ing that MAWP can keep such a distance smaller in
the feature space produced at every network layer,
which makes the model trained with MAWP more
resistant to the perturbations imposed in the inputs.

6 Conclusion

This study is among the first ones to explore the
feasibility of improving the adversarial robustness
of neural NLP models by performing the perturba-
tions in the parameter space (i.e., weights) rather
than the input feature space (i.e., word embed-
dings). We experimentally demonstrate that the
weight perturbation can be used to find a better
solution in the parameter space by minimizing the
adversarial loss with a multi-step, gradient-guided
optimization method. We also show that the pro-
posed method is complementary to existing adver-
sarial training methods, and the combination of our
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method and FreeLB achieved state-of-the-art ac-
curacy on both clean and adversarial examples on
multiple benchmark datasets.

Limitations

We evaluated the proposed mixed adversarial train-
ing method with accumulated weight perturbation
(MAWP) under the word substitution-based attacks
only in this study. We are aware that there are a
wide range of textual adversarial attacks, including
adding, deleting or modifying characters or words
or other language units under certain semantics-
preserving constraints. In the future, we would
like to investigate how well the MAWP can defend
against other types of adversarial attacks. In the
current implementation of the MAWP, the weight
perturbation needs to be calculated and applied at
each adversarial training step, which requires a rel-
atively longer training time. It is also planned to
implement the weight perturbations for training
NLP models in a more efficient way.
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