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Abstract

Zero-Resource Cross-Lingual Named Entity
Recognition aims at training an NER model of
the target language using only labeled source
language data and unlabeled target language
data. Existing methods are mainly divided into
three categories: model transfer based, data
transfer based and knowledge transfer based.
Each method has its own disadvantages, and
combining more than one of them often leads
to better performance. However, the perfor-
mance of data transfer based methods is often
limited by inevitable noise in the translation
process. To handle the problem, we propose a
framework named TransAdv to mitigate lexical
and syntactic errors of word-by-word translated
data, better utilizing the data by multi-level ad-
versarial learning and multi-model knowledge
distillation. Extensive experiments are con-
ducted over 6 target languages with English as
the source language, and the results show that
TransAdv achieves competitive performance to
the state-of-the-art models.

1 Introduction

Named Entity Recognition (NER) is a fundamental
task that aims to locate named entities in a given
sentence and assign them to predefined types, i.e.,
person, location, organization, etc. In recent years,
neural NER models have achieved remarkable per-
formance on this task with a large amount of la-
beled data. However, many low-resource languages
do not have enough data for supervised learning.
Therefore, transferring labeled data or trained mod-
els from high-resource to low-resource languages
is gaining increasing attention.

In this paper, we concentrate on zero-resource
cross-lingual NER where no labeled data in the
target language is available. Existing methods fall
into three main categories: i) model transfer based
methods (Wu and Dredze, 2019; Wu et al., 2020c),
which train a source model on the labeled source
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language data to learn language-independent fea-
tures and then directly apply it to the target lan-
guage; ii) data transfer based methods (Mayhew
et al., 2017; Xie et al., 2018), which translate the la-
beled source language data and map all entity labels
to generate pseudo target language data; iii) knowl-
edge transfer based methods (Wu et al., 2020a;
Chen et al., 2021), which train a source model on
the labeled source language data and then apply it
over the unlabeled target language data to distill a
student model.

Each kind of method has its drawbacks, (Wu
et al., 2020b) is the first to unify the three kinds of
methods with great success. However, the noise
in the translation process significantly limits its
performance. There are two common translation
strategies for cross-lingual NER tasks: i) sentence
translation followed by entity alignment, where the
propagation of entity alignment errors is inevitable;
ii) directly word-by-word translation (Wu et al.,
2020b), where the generated sentence is noisy in
terms of word order.

To better utilize the translated data, we propose
a translation-based adversarial learning framework
named TransAdv for zero-resource cross-lingual
NER, and the overview architecture is shown in
Figure 1. The contributions of our work can be
summarized as follows:

• We better unify data transfer and knowledge
transfer for cross-lingual NER, mitigating lex-
ical and syntactic errors of word-by-word
translated data through multi-level adversarial
learning and multi-model knowledge distilla-
tion.

• We conduct extensive experiments over 6 tar-
get languages with English as the source lan-
guage, and the results validate the effective-
ness and reasonableness of our model.
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Figure 1: The overall architecture of our proposed TransAdv.

2 Methodology

2.1 Task Definition

Following previous works, we formulate cross-
lingual NER as a standard sequence labeling
problem. When given an input sentence x =
{x1, x2, · · · , xn} of length n, a model aims to
extract all named entities appearing in the sen-
tence by generating a sequence of labels y =
{y1, y2, · · · , yn} over the set of entity labels Y .
We denote the labeled source language data as
DS = {(x,y)} and the unlabeled target language
data as Du

T = {x̃}. In the case of zero-resource
cross-lingual NER, a model is trained with DS and
Du

T , then evaluated on the labeled test data of the
target language.

2.2 Data Creation

In this section, we construct multiple datasets based
on the labeled source language data as shown in
Figure 2.

Following (Wu et al., 2020b), we apply MUSE
(Lample et al., 2018) to translate a source language
sentence xS into a target language sentence xT
word-by-word. The entity label of each source
language word is then directly copied to its cor-
responding translated word. Since MUSE has in-
evitable translation errors that it may not strictly
translate each word into the target language, we
also try Google translate API for more accurate
word-by-word translation. After word-by-word
translating and copying entity labels, we construct
a pseudo target language training dataset DT from
DS .

(Zhang et al., 2021a) propose an aspect code-
switching mechanism to augment the training data
for cross-lingual aspect-based sentiment analysis.
In this section, we apply a similar mechanism to

switch named entities between the source and trans-
lated sentences to construct two bilingual sentences:
xswi
S is derived from xS with named entities in xT ,

and xswi
T is derived from xT with named entities in

xS . The entity label of each word in xswi
S and xswi

T

is also the same as its corresponding word in xS
and xT benefiting from word-by-word translation.
Therefore, we can construct two bilingual datasets
Dswi

S and Dswi
T .

Due to the difference between the word orders
of the source language and the target language, we
also design a word shuffling method for NER data.
Since NER is a coarse-grained sequence labeling
task, completely shuffling all words in a sentence
will affect the internal relations of the words within
entities. Therefore, we separately shuffle the words
in each entity or each context between entities, with
all entity labels retained. For sentences xS and xT ,
two shuffled sentences are denoted as xshuS and
xshuT . Based on DS and DT , we can build two
shuffled datasets Dshu

S and Dshu
T .

2.3 Multi-Level Adversarial Learning for
Cross-Lingual NER

In cross-lingual tasks, the source and the target
language usually have differences in lexical and
syntactic features. To avoid the model overfitting
on the source language data and make the model
better fine-tuned on the word-by-word translated
target language data, we follow (Chen et al., 2021)
and propose a multi-level adversarial network. It
is formulated as a multi-task problem with NER,
word-level language classification and sentence-
level order classification. Different modules in the
network and their loss functions are defined as be-
low:
Generator We choose multilingual BERT (Devlin
et al., 2019) as the generator and feed a given sen-
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Figure 2: The process of data creation.

tence x = {x1, x2, · · · , xn} into mBERT to gen-
erate the feature vectors h = {h1, h2, · · · , hn}:

h = mBERT(x) (1)

NER Classifier We feed h into a fully-connected
layer followed by a softmax layer to yield a proba-
bility distribution over the entity label set Y:

pneri = softmax(W nerhi + bner) (2)

where hi ∈ Rdg denotes the feature vector of the
ith word with dg being the dimension of h, pneri ∈
R|Y|, Wner ∈ R|Y|×dg and bner ∈ R|Y| .
Language Discriminator We feed h into two fully-
connected layers followed by a sigmoid layer to
classify the language of each word:

pli = sigmoid(W l
1ReLU(W l

2hi)) (3)

where pli ∈ R1, W l
1 ∈ R1×dl and W l

2 ∈ Rdl×dg

with dl being the hidden dimension of the language
discriminator.
Order Discriminator We first feed h into a one-
layer LSTM to encode sequence features of the
sentence, then the hidden state of the last word
is fed into a fully-connected layer followed by a
sigmoid layer to classify the order of the sentence:

h′i =
−−−−→
LSTM(hi, h

′
i−1)

po = sigmoid(W oh′n)
(4)

where po ∈ R1, W o ∈ R1×do with do being the
hidden dimension of the order discriminator.

During training, different datasets will first be
fed into mBERT separately as shown in Figure 1,
then the generated h will be sent to the correspond-
ing module. We have a total of 4 loss functions:
the NER task loss Lner, the language discriminator

loss Ll, the order discriminator loss Lo, and the
generator loss Lg:

Lner = −
n∑

i=1

∑

k∈Y
I(yneri = k)log(pneri )

Ll = −
n∑

i=1

[ylilog(p
l
i) + (1− yli)log(1− pli)]

Lo = −[yolog(po) + (1− yo)log(1− po)]

Lg = −
n∑

i=1

[ylilog(1− pli) + (1− yli)log(p
l
i)]

− [yolog(1− po) + (1− yo)log(po)]
(5)

where yneri and yli denote the ground truth entity
tag and language tag of the word xi, yo denotes the
ground truth order tag of the sentence x.

Similarly to (Chen et al., 2021), for the NER
task, the parameters of the generator and the NER
classifier are updated based on Lner; for the adver-
sarial task, the parameters of two discriminators
are updated based on Ll and Lo respectively, while
the parameters of the generator are updated based
on Lg. Finally, we denote the trained source model
as Θsrc.

2.4 Multi-Model Knowledge Distillation on
Unlabeled Data

Based on Θsrc, we further fine-tune it on differ-
ent datasets to derive teacher models with differ-
ent emphases. Actually, three combinations of the
datasets constructed in section 2.2 are considered
in our network, including Dentity = DT ∪ Dswi

T ,
Dcontext = DT ∪ Dswi

S and Dorder = DT ∪ Dshu
T .

Dentity contains the word-by-word translated
dataset DT to involve knowledge of the target lan-
guage and the code-switch dataset Dswi

T to share
the same contexts but entities with different lan-
guages. Dcontext contains DT and the code-switch

744



dataset Dswi
S to share the same entities but con-

texts with different languages. Dorder contains
DT and the shuffled dataset Dshu

T to share the
same sentences but different orders of words. An
entity-enhanced teacher model Θentity, a context-
enhanced teacher model Θcontext and an order-
enhanced teacher model Θorder are derived by fine-
tuning Θsrc on Dentity, Dcontext and Dorder with
the same loss function Lner as in Eq. 5.

During fine-tuning, the language discriminator
trained in section 2.3 is also loaded to continue
adversarial fine-tuning with Θentity and Θcontext

while the adversarial strategy is more fine-grained.
For Θentity we only discriminate languages of en-
tity words and for Θcontext we only discriminate
languages of context words. The new language
discriminator losses are shown as in Eq. 6. These
two discriminators are adapted to characteristics
of Dentity and Dcontext with the aim of enabling
Θentity and Θcontext to better fuse representations
of entity or context words respectively of the source
and the target languages.

Lel=−
∑

xi∈entity
[ylilog(p

l
i)+(1−yli)log(1−pli)]

Lcl=−
∑

xi∈context
[ylilog(p

l
i)+(1−yli)log(1−pli)]

(6)
We then implement a multi-model distillation

on the unlabeled target language dataset Du
T . Let

x̃i denotes the ith word in an unlabeled sentence
x̃ ∈ Du

T and pner(x̃i,Θ) denotes the probability
distribution predicted by model Θ. We combine
soft labels generated by Θsrc and three enhanced
teacher models to obtain the united soft label:

puni(x̃i) = w1p
ner(x̃i,Θsrc) + w2p

ner(x̃i,Θentity)

+ w3p
ner(x̃i,Θcontext) + w4p

ner(x̃i,Θorder)
(7)

where wk is the weight for each model.
Finally, we distill a student model Θstu by min-

imizing the mean squared error (MSE) between
puni(x̃i) and the probability distribution predicted
by Θstu:

Lkd =
1

n

n∑

i=1

MSE(puni(x̃i), p
ner(x̃i,Θstu))

(8)
For inference on the labeled test data of the tar-
get language, we only employ the distilled student
model Θstu.

3 Experiments

3.1 Baselines
We compare our model with the following zero-
resource cross-lingual NER models to evaluate the
performance of TransAdv: mBERT-FT (Wu and
Dredze, 2019) fine-tune the multilingual BERT. Ad-
vCE (Keung et al., 2019) improve upon mBERT’s
performance via adversarial learning. TSL (Wu
et al., 2020a) propose a teacher-student learning
method. Unitrans (Wu et al., 2020b) propose an
approach to unify both model and data transfer.
RIKD (Liang et al., 2021) propose a reinforced
knowledge distillation framework. AdvPicker
(Chen et al., 2021) attempt to select language-
independent data by adversarial learning. TOF
(Zhang et al., 2021b) design a target-oriented fine-
tuning framework to exploit various data.

3.2 Datasets and Metrics

(a) Statistics of CoNLL.

Language Type Train Dev Test

English-en
(CoNLL-2003)

Sentence 14987 3466 3684
Entity 23499 5942 5648

German-de
(CoNLL-2003)

Sentence 12705 3068 3160
Entity 11851 4833 3673

Spanish-es
(CoNLL-2002)

Sentence 8323 1915 1517
Entity 18798 4351 3558

Dutch-nl
(CoNLL-2002)

Sentence 15806 2895 5195
Entity 13344 2616 3941

(b) Statistics of WikiAnn.

Language Type Train Dev Test

English-en
Sentence 20000 10000 10000

Entity 27931 14146 13958

Arabic-ar
Sentence 20000 10000 10000

Entity 22500 11266 11259

Hindi-hi
Sentence 5000 1000 1000

Entity 6124 1226 1228

Chinese-zh
Sentence 20000 10000 10000

Entity 25031 12493 12532

Table 1: Statistics of the datasets.

We conducted experiments on the following
NER benchmark datasets: CoNLL-2002 (Sang
and Erik, 2002) for Spanish[es] and Dutch[nl],
CoNLL-2003 (Sang and De Meulder, 2003) for
English[en] and German[de], and WikiAnn (Pan
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et al., 2017) for English[en], Arabic[ar], Hindi[hi]
and Chinese[zh]. Each dataset of a certain language
is split into train, dev and test sets and statistics of
all datasets are shown in Table 1. All datasets are
annotated with 4 entity types: LOC, MISC, ORG
and PER, using the BIO entity labeling scheme.

Following previous work (Sang and Erik,
2002), we employ entity level F1 score as the
metric of evaluation. We run each experiment
5 times with different random seeds and re-
port the average F1 score on the test set for
reproducibility. More details of implementation
details and model analysis are in appendix A and B.

3.3 Main Results

(a) Results on CoNLL.

Model es nl de Average

mBERT-FT 74.96 77.57 69.56 73.57
AdvCE 74.3 77.6 71.9 74.60

TSL 76.94 80.89 73.22 77.02
RIKD 77.84 82.46 75.48 78.59

AdvPicker 79.00 82.90 75.01 78.97
Unitrans 79.31 82.90 74.82 79.01

TOF 80.35 82.79 76.57 79.90

TransAdv 80.93 83.78 75.52 80.08

(b) Results on WikiAnn.

Model ar hi zh Average

mBERT-FT 42.30 67.60 52.90 54.27
TSL 43.12 69.54 48.12 53.59

RIKD 45.96 70.28 50.40 55.55

TransAdv 42.53 74.24 54.25 57.01

Table 2: Results of TransAdv and baselines. (F1%). All
results are from original papers or the paper of RIKD.

The main results of baselines and TransAdv on
CoNLL and WikiAnn are shown in Table 2. Ac-
cording to the results, TransAdv outperforms all
baselines, proving our model’s effectiveness.

In general, due to the strong effect of knowledge
distillation, knowledge transfer based methods
such as TSL, RIKD, AdvPicker and our TransAdv
significantly surpass model transfer based methods
like mBERT-FT and AdvCE which directly apply
the model to the target language.

For western languages in CoNLL, TransAdv
achieves 1.62%, 0.88% and 0.7% absolute gain

of F1 scores over Unitrans which also employs
word-by-word translation. Despite using the same
translation resources, our model still has a signif-
icant improvement over it, which may due to the
adversarial network mitigating the lexical and syn-
tactic errors of the translated data. Compared with
TOF, which is the state-of-the-art model, TransAdv
achieves an absolute F1 scores increase of 0.58%,
0.99% on es, nl and decrease of 1.05% on de. TOF
requires extra labeled data of Machine Reading
Comprehension (MRC) for both the source lan-
guage and target language, which is costly and not
in a strictly zero-resource case. For many low-
resource languages, word-by-word translation is
much more available than labeled MRC data.

As for non-western languages in WikiAnn,
TransAdv also shows significant improvements
over the baselines on hi, zh. We even achieve
0.68% absolute F1 scores gain on zh over mBERT-
FT, which re-tokenizes the Chinese dataset and
obtains relatively high results.

4 Conclusion

In this paper, we propose a framework named
TranAdv for zero-resource cross-lingual NER,
which mitigates lexical and syntactic errors of
word-by-word translated data and better utilizes
it through multi-level adversarial learning and
multi-model knowledge distillation. We evaluate
TransAdv over 6 target languages with English as
the source language. Experimental results show
that TransAdv achieves competitive performance
to the state-of-the-art models.

5 Limitations

Although word-by-word translation data is easy
to obtain in most cases, high-quality translation
models are not available for some low-resource
languages that are extremely short of parallel cor-
pora. Moreover, when the difference in word order
between the source and target languages is slight,
adversarial training of word order may result in the
loss of valid order information.
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A Implementation Details

We implement TransAdv with Pytorch 1.10.21.
For word-by-word translation, we employ MUSE2

(Lample et al., 2018) based on fastText3 monolin-
gual word embeddings for western languages of es,
nl, de and Google Translate API4 for non-western
languages of ar, hi, zh. For pretrained model, the
cased multilingual BERT (Devlin et al., 2019) with
12 stacked Transformer blocks, 12 attention heads
and 768 hidden dimensions is implemented based
on HuggingFace’s Transformers5.

We empirically set the hyper-parameters of
TransAdv and employ them in all experiments. Fol-
lowing previous work (Wu et al., 2020c), we freeze
the parameters of the embedding layer and the bot-
tom three layers of the multilingual BERT used
in our model. We train all models for 10 epochs
with the batch size of 32, the maximum sequence
length of 128 and the dropout rate of 0.1, saving the
model with the best performance on the dev set of
the target language. We use AdamW (Loshchilov
and Hutter, 2018) as the optimizer with the weight
decay of 0.01 and the warmup rate of 0.05. For
sequence prediction, we apply Viterbi decoding to
generate the predicted results. In multi-level ad-
versarial learning, the learning rate is set to 6e-5
for Lner, 6e-7 for Lg and 5e-3 for Ll, Lo. The
hidden dimensions of the language discriminator
and order discriminator are set to 500 and 256
respectively. In multi-model knowledge distilla-
tion, hyper-parameters of corresponding modules

1https://pytorch.org/
2https://github.com/facebookresearch/MUSE
3https://fasttext.cc/docs/en/pretrained-vectors.html
4https://translate.google.com/
5https://github.com/huggingface/transformers
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in three enhanced teacher models are the same as in
the source model, and the student model is trained
with the learning rate of 6e-5 for Lkd. The weights
of four models in Eq. 7 are all set to 1/4.

All experiments are conducted on a Nvidia RTX
3090 GPU (24GB). Θsrc trains in ≈ 60min with
179.17M parameters, three enhanced teacher mod-
els train in ≈ 30min, 30min, 16min with 178.25M,
178.25M, 177.86M parameters respectively, and
Θstu trains in ≈ 23min with 177.86M parameters.

B Model Analysis

B.1 Ablation Study

To verify the validity of different modules in the
proposed model, we introduce the following vari-
ants of TransAdv to further carry out an ablation
study: 1) TransAdv w/o LDIS and TransAdv w/o
ODIS, which remove the language discriminator or
the order discriminator respectively during multi-
level adversarial learning. Moreover, when the lan-
guage discriminator is removed, the entity language
discriminator and the context language discrim-
inator during the adversarial learning of Θentity

and Θcontext are also removed. 2) TransAdv w/o
Θentity, TransAdv w/o Θcontext and TransAdv w/o
Θorder, which remove the corresponding teacher
model during multi-model knowledge distillation.
3) TransAdv w/o MLADV, which removes the
multi-level adversarial learning module with the
Θsrc directly trained on DS 4) TransAdv w/o
MMKD, which removes the multi-model knowl-
edge distillation module and then the student model
is directly distilled with Θsrc.

Methods es nl de Average

TransAdv 80.93 83.78 75.52 80.08

w/o LDIS 80.70 83.43 75.19 79.77 (0.31↓)
w/o ODIS 80.73 83.38 75.31 79.81 (0.27↓)

w/o Θentity 80.31 83.59 74.91 79.60 (0.48↓)
w/o Θcontext 80.16 83.26 75.20 79.54 (0.54↓)
w/o Θorder 80.38 83.10 75.26 79.58 (0.50↓)

w/o MLADV 80.18 83.31 75.16 79.55 (0.53↓)
w/o MMKD 77.34 81.60 74.14 77.69 (2.39↓)

Table 3: Results of ablation study for TransAdv (F1%).

The performance of each variant compared to
TransAdv is shown in Table 3. From the results,
we can draw out the following inferences:

1) Comparing TransAdv with TransAdv w/o
LDIS and TransAdv w/o ODIS, we can see the

performance drops. It confirms the effectiveness
of the two discriminators that they may avoid the
model overfitting on the source language and make
the model better fine-tuned on the word-by-word
translated target language data.

2) We observe that the performance of TransAdv
outperforms the performance of TransAdv w/o
Θentity, TransAdv w/o Θcontext and TransAdv w/o
Θorder, showing that teacher models derived from
different combinations of datasets may have differ-
ent emphases on improving the robustness of the
entire model.

3) TransAdv w/o MLADV and TransAdv w/o
MMKD both significantly decline in performance
compared with TransAdv, which illustrates that
the two main modules both play essential roles in
TransAdv.

B.2 Analysis of Translation Strategies

To evaluate the impact of different translation strate-
gies on TransAdv, we introduce the following trans-
lation methods: 1) MUSE: use the same word-by-
word translation as (Wu et al., 2020b) based on
fastText monolingual word embeddings. 2) Google
Word: use Google translate API to translate the
sentence word-by-word. 3) Google Phrase: split
a sentence into phrases based on entity labels and
then use Google translate API to translate the sen-
tence phrase-by-phrase. 4) Google Word&Phrase:
split a sentence into phrases based on entity labels
and then use Google translate API to translate the
sentence word-by-word for context phrases and
phrase-by-phrase for entity phrases.

The comparison of different translation strate-
gies for each language is shown in Figure 4. We
observe that for western languages in CoNLL, mod-
els with MUSE obtain the best F1 score on es, nl
and the second best F1 score on de; for non-western
languages in WikiAnn, models with Google Word
obtain the best F1 score on ar, hi and the second
best F1 score on zh. It may be because when En-
glish is the source language, for western languages
there are many word anchors that can be shared,
and using noisier MUSE can obtain more diverse
translation data without affecting the performance;
whereas for non-western languages, there are much
less word anchors that can be shared, so Google-
based direct translation can better introduce infor-
mation of the target language.

On the other hand, Google Phrase and Google
Word&Phrase are generally less effective than the
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(b) Entity-Enhanced Teacher model
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(c) Context-Enhanced Teacher model

Figure 3: Clusters of embeddings of models in different stages (Circles correspond to words in the source language,
triangles correspond to words in the target language).
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Figure 4: The comparison of different translation strate-
gies for each language.

other two strategies which are based entirely on
word-by-word translation. This may be due to the
fact that the word-by-word translated data is more
compatible with the sentence-level order adversar-
ial training in TransAdv.

B.3 Analysis of Language discriminators

To analysis the effect of language discriminators of
different grains, clusters of embeddings of models
in different stages trained on CoNLL with Dutch
(nl) as the target language are shown in Figure 3.

We find that in the source model Θsrc, embed-
dings corresponding to entity labels of the source
and the target languages have been partially fused
due to the original language discriminator while
embeddings corresponding to context labels are
too scattered. Moreover, in the entity-enhanced
teacher model Θentity, embeddings of different lan-
guages get further fused thanks to word-by-word
translated data and the entity language discrimi-
nator while embeddings corresponding to context

labels are still relatively scattered. In the context-
enhanced teacher model Θcontext, due to the con-
text language discriminator, the integration of em-
beddings corresponding to context labels is basi-
cally complete while embeddings corresponding
to entity labels are not. The above results together
demonstrate the effectiveness of different language
discriminators.
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