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Abstract

Recently, the relationship between automated
and human evaluation of topic models has been
called into question. Method developers have
staked the efficacy of new topic model vari-
ants on automated measures, and their failure
to approximate human preferences places these
models on uncertain ground. Moreover, exist-
ing evaluation paradigms are often divorced
from real-world use.

Motivated by content analysis as a dominant
real-world use case for topic modeling, we
analyze two related aspects of topic models
that affect their effectiveness and trustworthi-
ness in practice for that purpose: the stabil-
ity of their estimates and the extent to which
the model’s discovered categories align with
human-determined categories in the data. We
find that neural topic models fare worse in both
respects compared to an established classical
method. We take a step toward addressing
both issues in tandem by demonstrating that
a straightforward ensembling method can reli-
ably outperform the members of the ensemble.

1 Introduction

Topic models provide an unsupervised way both
to discover implicit categories in text corpora, and
to estimate the extent to which any given category
applies to a specific text item. As such, topic mod-
eling can be viewed as an automated variety of
content analysis for text: those two capabilities
directly correspond to the practice of developing
an emergent coding system via examination of a
text collection, and then coding the text units in the
collection (Stemler, 2000; Smith, 2000). This form
of content analysis is a dominant use case for topic
models and therefore it is our focus here.

Explicitly identifying topic models as a tool for
content analysis allows us to characterize what
makes topic models good: we can measure the ex-
tent to which a model achieves the goals of content
analysis. This careful consideration of the criteria

for “good” topic models is essential because recent
results have challenged the validity of the prevail-
ing model evaluation paradigm (Hoyle et al., 2021;
Doogan and Buntine, 2021; Doogan, 2022; Har-
rando et al., 2021). In particular, Hoyle et al. iden-
tified a validation gap in the automatic evaluation
of topic coherence: metrics like the widely-used
normalized pointwise mutual information (NPMI)
were never validated using human experimentation
for the newer neural models once they emerged,
and the authors demonstrated that such metrics
exaggerate differences between models relative
to human judgments. Given that the majority of
claimed advances in topic modeling are predicated
on these metrics (per Hoyle et al.’s meta-analysis),
it would appear that much of the topic model de-
velopment literature now rests on uncertain ground.
Doogan and Buntine also challenged the validity
of current automated evaluation measures, and
highlighted the disconnect between these measures
and use of topic models in real-world settings.

In this paper, we begin with the needs of con-
tent analysis, and we use those needs to argue for
specific choices of how to measure topic model
performance. We then report on comprehensive ex-
perimentation using two English-language datasets,
four neural topic models that are representative
of the current state of the art, and classical LDA
with Gibbs sampling as implemented in MALLET

(McCallum, 2002). The results indicate that MAL-
LET is a more reliable choice than the more recent
neural models from a content analysis perspective.
Taking a step toward addressing these issues, we
use a straightforward ensemble method that com-
bines the output of models across runs, which reli-
ably yields better results than the usual practice of
running a single model.

To summarize our argument and contributions:
• Automated comparison of topic models

should be grounded in a use case, and con-
tent analysis is a dominant use case for topic
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models (§2.2).
• Stability and reliability are necessary—

although not sufficient—criteria to ensure the
value of a content analysis (§2.3).

• Stability and reliability can be directly mea-
sured from model outputs, unlike automated
coherence, which prior work has shown is an
unreliable proxy for human judgment (§2.4).

• On these metrics, we show that LDA with
Gibbs sampling (as implemented in Mallet)
is significantly more stable and reliable than
newer neural models (§4).

• We present a straightforward ensembling
method to mitigate the stability problem (§6).
We release all code and data.1

2 What makes a topic model “good”?

In considering how to characterize a topic model
that works well, we focus on text content analysis
as a dominant use case for topic modeling.

2.1 Traditional content analysis
Although content analysis is an extremely broad
concept (Krippendorff, 2018), a very widely used
paradigm across many disciplines is a manual pro-
cess of inductive discovery of codesets via emer-
gent coding (Stemler, 2000), which “allows cat-
egories to emerge from the material without the
influence of preconceptions” (Smith, 2000). We-
ber (1990) describes a “data-reduction process by
which the many words of texts are classified into
much fewer content categories,” and this invoca-
tion of data reduction in a manual setting provides
a sense of why topic modeling, a dimensionality-
reduction technique, can be a good fit when consid-
ering ways to automate the process.2

Typically the inductive process involves multiple
researchers independently reading samples of the
text units being analyzed, and proposing categories
(usually called “codes”) that they see as present
and relevant; they then reconcile their independent
proposed categories to produce a candidate codeset

1github.com/ahoho/topics
2This process of inductive category discovery contrasts

with the use of pre-existing categories, e.g. those coming from
relevant theory, and from the use of “manifest” or directly
observable characteristics of text. Discussions in the litera-
ture often distinguish “quantitative” from “qualitative” content
analysis, with the inductive process we describe being associ-
ated with the latter category. This terminological distinction
may be overly sharp, however; see Schreier (2012) for useful
discussion of relationships and differences among quantitative
content analysis, qualitative content analysis, and other forms
of qualitative research.

with associated definitions and coding guidelines.
The candidate codeset is then used by two or more
people to independently code (i.e. manually label)
a sample of the data, and inter-coder reliability is
measured using a chance-corrected agreement mea-
sure like Krippendorff’s α (cf. Artstein and Poesio,
2008). If an acceptable level of reliability has not
yet been achieved, the codeset and coding guide-
lines are revisited and revised, and another iteration
of independent coding and reliability measurement
takes place. Once reasonable reliability has been
achieved, the final set of categories is considered
to reflect true structure underlying the text collec-
tion. Sometimes the texts in the collection are then
manually coded using those categories in order to
support quantitative analysis — possibly with fur-
ther inter-coder reliability measurement for quality
control — although sometimes the set of categories
itself is the intended result, not item-level coding.

2.2 Topic modeling for content analysis

The models of interest in this paper are exemplified
by Latent Dirichlet Allocation (LDA, Blei et al.,
2003), within which each of N documents d is rep-
resented as an admixture θd of K topics, and each
topic is itself represented as a distribution βk over
the vocabulary V . Topics can thus be viewed in two
complementary ways, as ranking either the words
in the vocabulary or the documents in the collection.
These views can be interpreted as corresponding
closely to two central elements of a traditional text
content analysis. First, the rows in the topic-word
distributions matrix B ∈ RK×|V | constitute an in-
ductively determined set of categories analogous
to a human-determined codeset; for example, the
presence of a topic with top (most probable) words
artist, museum, exhibition might correspond
to a human analyst identifying the code ART. Sec-
ond, the columns of the document-topic matrix
Θ ∈ RN×K constitute a soft coding of documents
using the categories in B.3 To help illustrate the
first step, Table 1 shows the top words from in-
ferred topic-word distributions βk for two model
types over multiple runs.

Reviewing the use of topic models. Bearing
these correspondences in mind, we reviewed the
literature to confirm our subjective impression that
text content analysis is indeed the dominant use

3This could be converted into traditional discrete coding
in a number of ways, e.g. assigning the most probable topic
for a document as its code.
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Model Type Run Top Words

MALLET base storm tropical hurricane winds depression mph september damage cyclone system
nearest storm tropical hurricane winds depression mph september damage cyclone system
median tropical storm hurricane depression winds september cyclone mph system august
farthest tropical storm depression hurricane cyclone system season winds september mph

D-VAE base tropical mph storm hurricane winds cyclone extratropical utc rainfall
nearest tropical cyclone hurricane storm winds landfall depression dissipated convection extratropical
median convection landfall shear nhc utc tropical mbar northwestward cyclone extratropical
farthest dvorak southwestward depressions dissipation intensifying conventionally southeastward

Table 1: Sets of WEATHER topics for two model types for different runs with different hyperparameters on
a Wikipedia dataset, represented in conventional fashion using the most probable ten words per topic. The
table visually illustrates MALLET’s dramatically greater stability: the top words from the base topic appear in
corresponding topics across the the full range of the other nine runs (overlap with base topic in orange), while for
D-VAE, a neural topic model, consistency with the base topic begins to show a significant drop-off even with the
nearest topic (overlap in blue). See §4 and §5 for discussion.

case for topic modeling.4 Using Semantic Scholar
(semanticscholar.org), we collected research
studies outside the field of computer science pub-
lished in 2019–2022 that cite Blei et al. (2003),
and selected 50 at random. We excluded studies
that cite Blei et al. but do not actually use any
topic model, as well as studies that do not involve
language data. We retain those that employ topic
model variants, such as STM (Roberts et al., 2013).
Using Semantic Scholar’s reported field of study,
disciplines represented include medicine, sociol-
ogy, business, political science, psychology, eco-
nomics, and history. We find that 94% of the papers
use a topic model for inductive discovery of cate-
gories for human consumption, 68% of which go
on to actually assign human-readable code labels
to topics; and 64% of papers use document-topic
probabilities as a form of coding for individual text
units. We interpret these results as strongly sug-
gesting that, outside topic model development, the
primary use of topic models is an automated form
of text content analysis as characterized in §2.1.

2.3 Criteria for good content analysis

Having established text content analysis as a central
topic modeling use case, we consider criteria for
“good” analysis motivated by that use case. These
then inform the selection of topic model evaluation
metrics in §2.4, helping to ensure a correspondence
between the way topic models are evaluated and
the reasons people are using them.

One key issue in content analysis is stability or
intra-coder reliability: if the same coder were to

4This review is in the spirit of Liberati et al. (2009), al-
though we are not striving for that level of formality. See
Appendix A.2 for more details.

look at the same data again (say, separated by a long
interval to achieve some degree of independence),
would they produce the same results? When an
individual coder cannot produce stable output, this
calls into question the quality of the results they
have produced any one of those times.

A second central concern in content analysis is
reproducibility or inter-coder reliability: do two or
more independent coders looking at the same data
agree with each other? In the absence of externally
provided coding to compare against, what estab-
lishes trust in categories or coding is consensus,
what Weber (1990) refers to as “the consistency of
shared understandings” between coders.

A third concern that is often discussed is validity:
do categories or measurements actually correspond
to whatever they are intended to measure (Rubio,
2005)? As Weber (1990) notes, in content anal-
ysis this often goes only as far as face validity,
i.e. a subjective perception that a measure (or cate-
gory) appears to be valid. In contrast, Shapiro and
Markoff (1997) argue that content analysis “is only
valid and meaningful to the extent that the results
are related to other measures”.

Research in content analysis typically focuses
on these three issues — stability, reproducibility,
and validity — as necessary considerations when
considering whether a content analysis should be
used as the basis for inferences about a dataset. Va-
lidity, however, is challenging to assess outside the
context of specific research questions (see Grim-
mer and Stewart, 2013, for an example in political
science). We therefore focus on stability and re-
producibility as the basis for developing metrics
to assess topic models for the automated content
analysis use case.
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Note that the criteria we emphasize—stability
and reproducibility—are necessary to ensure the
value of a content analysis, but not sufficient: topic
coherence is a complementary and crucial concern
(Newman et al., 2010) that requires further inves-
tigation, since prior work has shown automated
coherence measurements are an unreliable proxy
for human judgment (Hoyle et al., 2021).

2.4 Operationalizing the criteria

Because they are generative models, the develop-
ment community initially evaluated topic models
using held-out perplexity, i.e. their ability to pre-
dict unseen text. However, focusing on the goal of
producing categories that humans can understand,
Chang et al. (2009) established that perplexity ac-
tually correlated negatively with human determina-
tions of coherence as estimated using behavioral
measures. Lau et al. (2014) went on to introduce
NPMI as an automated coherence metric positively
correlated with human preferences. Since then,
NPMI has been the most prevalent way to establish
that a new topic modeling method is better than the
old ones, including the new generation of neural
topic models. However, Hoyle et al. (2021) recently
identified a validity gap for NPMI: its correspon-
dence to human judgments was never validated
for neural topic models, and although recent neu-
ral topic models can attain relatively high NPMI,
human annotators fail to meaningfully distinguish
them from a classical LDA baseline.

That result suggests taking a fresh, well moti-
vated look at topic model evaluation. Any model
evaluation should be grounded in consideration of
the model’s intended purpose, which leads us to
suggest grounding formal evaluation metrics in the
content analysis use case.5

2.4.1 Stability

§2.3 notes stability as an important criterion in con-
tent analysis. Whether codes are being produced by
a human coder or a topic model, if there is mean-
ingful latent structure in the text collection, one

5It should be noted that we are focusing on only the most
central part of the content analysis use case. Smith (2000)
situates codeset discovery and coding within a broader process
that begins with identifying the research problem, selecting
appropriate materials, etc., and ends with actually using the
codeset and coding to generate research findings. Bayard de
Volo et al. (2020) situate topic model creation within a cor-
responding end-to-end workflow; see also Boyd-Graber et al.
(2014) for practical discussion of topic modeling including
discussion of other use cases.

would expect either humans or models to consis-
tently uncover that structure.

To ground our evaluation in our use case, we
measure the stability of models across hyperparam-
eter settings (for a fixed topic number K). In the
absence of an unsupervised metric to optimize or
reliable “default” values, a practitioner is forced
to explore different hyperparameter settings. All
else equal, a topic model that is less sensitive to
changes in hyperparameter settings is preferable to
one that is more sensitive (we also evaluate results
for fixed hyperparameters with different random
seeds, see Appendix A.1).

Translating these ideas into a formal measure-
ment, we follow Greene et al. (2014) in operational-
izing model stability by measuring the total dis-
tances between the topic-word estimates for each
run, extending their method to measure stability of
both the sorted rows of the topic-word estimates
B or the sorted columns of the document-topic es-
timates Θ; the smaller these distances, the more
stable the estimates.

Without loss of generality, we focus on the
topic-word distributions to operationalize stabil-
ity as total topic distance. We collect a set of
β
(i)
k , i ∈ 1 . . . ,m, k ∈ 1 . . .K estimates from m

model runs on the same dataset. For each pair
of

(
m
2

)
runs, we compute the pairwise distance

d between all K topics in each run. We use the
Rank-Biased Overlap distance (RBO, Webber et al.,
2010), which is used to measure the distance be-
tween two rankings giving more importance to sim-
ilarity of the top-ranked items, i.e., the measure
is top-weighted, making it ideal for measuring the
distance between topics (Mantyla et al., 2018).6

Within a pair of runs B(i),B(j), the goal is to find a
permutation of rows π(·) to minimize

T D(B(i),B(j)) =
1

K

∑

k

d
(
β
(i)
k ,β

(j)
π(k)

)
(1)

This problem is an instance of bipartite matching
distance minimization, which we solve with the
modified Jonker-Volgenant algorithm of Crouse
(2016). If the set of

(
m
2

)
total distances T D (i.e.,

the minimized costs) for one model are signifi-
cantly less than a second model, the first model
is more stable.

Prior topic modeling work has identified stability
as a crucial concern for robust application to social

6Experiments with distances that used the full distribution,
like Jensen-Shannon divergence, led to matched topics that
were less interpretable.
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sciences (Koltcov et al., 2014; Ballester and Pen-
ner, 2022), for better incorporation of topic mod-
els in downstream automated NLP tasks (Miller
and McCoy, 2017), as a criterion for tuning LDA
parameters (Greene et al., 2014), and has offered
ways to improve it for LDA estimates (Agrawal
et al., 2018; Mantyla et al., 2018). Chuang et al.
(2015) introduced an interactive tool to help hu-
mans assess a topic model’s stability. However, in
a meta-analysis of 35 papers proposing new “state-
of-the-art” neural topic models over the past three
years (2019-2022), we find that none of them com-
pared the models on stability.7

2.4.2 Inter-coder reliability
§2.3 notes that reproducibility or inter-coder relia-
bility is also a central consideration in content anal-
ysis. Going beyond intra-coder consistency, if a set
of codes cannot be applied consistently by multi-
ple coders, this also calls into question whether it
is doing a good job capturing meaningful content
categories.

We treat a topic model ⟨B,Θ⟩ as a coder, and
approach inter-coder reliability from the perspec-
tive of reproducing categories from other coders
who are human, instantiated as a set of human-
assigned “ground truth” labels for the documents
in the collection. Since what we care about here
are the categories discovered by a topic model, not
actual labels, we measure the extent to which cate-
gories induced by the model align with that ground
truth. Intuitively, for example, if documents that
are assigned to a topic by the model all have the
same ground-truth label, the topic is a good fit for
human categorization of the data (and this can be
determined just using documents assigned to the
topic, without any generation or evaluation of la-
bels). Conversely, if documents all assigned to the
same topic in the model have a wide variety of
ground truth labels, this mismatch suggests that the
topic is missing something important relative to the
underlying category structure in the collection.

By taking the most probable topic for a docu-
ment ℓ̂d = argmaxk′ θd,k′ as its assigned topic or
“code”, we can apply standard metrics of cluster
quality.8 We borrow exposition of cluster quality

7We select publications from the meta-analysis in Hoyle
et al. (2021), updated with recent work from the most com-
mon venues in that list. Although papers do not measure the
stability of the estimates directly as we do here, six papers do
report variance over chosen metrics.

8It is common in the topic model development literature
to evaluate models by learning a mapping f : θd → ℓd from

metrics from Poursabzi-Sangdeh et al. (2016), with
all metrics using the predicted clustering from a
model, L̂ = {ℓd : d = 1, . . . , n}, and a given set
of gold labels L∗.

Adjusted Rand Index. The Rand Index com-
pares all pairs of the two labelings over documents,
counting the proportion of pairs that have the same
(TP) or different (TN) assignments (Rand, 1971).

RI =
TP + TN

TP + FP + TN + FN

The adjusted rand index further corrects for chance
(Steinley, 2004).

Normalized Mutual Information (NMI) mea-
sures the mutual information between two cluster-
ings, and is invariant to cluster permutations (Strehl
and Ghosh, 2002). Here, I is the mutual informa-
tion and H are the entropies for each clustering.

NMI =
2I

(
L̂,L∗

)

Ĥ+H∗ (2)

Purity takes all documents contained in a single
predicted cluster and measures the number of asso-
ciated gold labels that appear in it — it is roughly
akin to precision (Zhao and Karypis, 2002). A
small number of gold labels present in a predicted
cluster means that there is high alignment between
the discovered “concept” and the true one.

P (L̂,L∗) =
1

n

∑

k

maxk′ |L̂k ∩ L∗
k′ | (3)

With Lk = {ℓd : d = 1, . . . , n; ℓd = k}. Purity
is not symmetrical, so we define inverse purity as
P−1 = P (L∗, L̂), and P1 as their harmonic mean
(analogous to F1).

Prior topic modeling work has looked at how
well topics discovered by a model align with ref-
erence codes (Chuang et al., 2013; Korenčić et al.,
2021). However, in the same meta-analysis dis-
cussed above, only six of the 35 neural topic model-
ing development papers compared models on a ver-
sion of alignment. This suggests that even though
stability and alignment have been identified as im-
portant and useful criteria in topic modeling liter-
ature in prior work — especially when using and
examining LDA and its variants — they have seen
precious little uptake. We hope that our strong
use-case motivations and experimental results will
change this.
training data and calculating a held-out F1 score—i.e., to
train a classifier—but this process does not correspond to any
common real-world use of topic models.
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3 Experiments

Having argued that topic models should be sub-
ject to evaluations designed with real-world uses
in mind, and having motivated specific ways to
operationalize evaluative measurements based on
criteria that matter for text content analysis, we
evaluate nominally “state-of-the-art” topic models
to understand how well they perform relative to
those criteria.

3.1 Datasets

We use two standard English datasets of vary-
ing characteristics: 14,000 “good” articles from
Wikipedia (Wiki, Merity et al., 2017) and 32,000
bill summaries from the 110-114th U.S. congresses
(Bills).9 The documents in both datasets have hi-
erarchical labels, which serve as ground truth when
evaluating the quality of the document-topic poste-
riors (§2.4). The Wiki dataset has 45 labeled high-
level and 279 low-level labels; the Bills dataset
has 21 high-level and 114 low-level labels. We
process each with the standardized setup of Hoyle
et al. (2021), setting the vocabulary size to either
5,000 or 15,000 terms, limiting by term-frequency
(Blei and Lafferty, 2006).

Prior evidence suggests that neural topic models
may produce topics with narrower scope than clas-
sical models (e.g., agnes_martin, sol_lewitt,
minimalism rather than art, painting, museum,
cf. Hoyle et al., 2021). We therefore generate held-
out sets for both datasets to facilitate exploration
of this phenomenon. Namely, we ensure that both
the training and held-out sets contain documents
from all high-level categories, but partition the low-
level categories into seen and unseen labels. For
example, Wikipedia articles about television are
present in both subsets, but those about 30 Rock
episodes are exclusively in the training set whereas
Simpsons episodes are unseen. Although not an
emphasis of the present work, our high-level con-
clusions remain the same for the held-out data
(i.e., MALLET is better-aligned, Appendix A.1);
we leave further analysis to future efforts.

3.2 Models and experimental contexts

Classical topic models use Gibbs sampling or vari-
ational inference to infer the posteriors over the la-
tent variables; more recent neural topic models use

9“Featured” Wikipedia articles have an incompatible la-
beling scheme and are therefore excluded. Raw bill data was
extracted from https://www.govtrack.us/data/us/.

contemporary techniques that involve neural net-
works, such as variational auto-encoders (Kingma
and Welling, 2014).

We evaluate one classical topic model and four
neural topic models. Each model is evaluated in
one of 16 experimental contexts: a tuple of dataset
(Bills, Wiki), vocabulary size (5k, 15k), and num-
ber of topics (25, 50, 100, 200).

In light of the finding that automated coherence
cannot meaningfully reproduce human judgments
(Hoyle et al., 2021), there is no unsupervised met-
ric that we can optimize to avoid the problem of
instability, while optimizing for K remains an open
research problem. Therefore we vary K and, for all
contexts, we train the models ten times using a dif-
ferent set of randomly-selected hyperparameters,
where value ranges are based on prior literature
(§A.3).

Although “optimal” hyperparameters will often
change depending on context, we also report results
with fixed hyperparameters and varying seeds in
Appendix A.1.

MALLET. Given its prevalence among practition-
ers and strong qualitative human ratings in prior
work (Hoyle et al., 2021), as a classical model
we use LDA estimated with Gibbs sampling (Grif-
fiths, 2002), implemented in MALLET (McCallum,
2002). While LDA is a common baseline in the
topic model development literature, it is often esti-
mated with variational methods, which anecdotally
produce lower-quality topics (Goldberg, 2020).10

SCHOLAR. A popular neural alternative to the
structural topic model (Roberts et al., 2014), flexi-
bly incorporating supervised signals and external
covariates into the model (Card et al., 2018).

SCHOLAR+KD. Hoyle et al. (2020) apply
knowledge distillation (KD) to improve on
SCHOLAR using a BERT-based autoencoder. Gao
et al. (2021) show that domain experts prefer the
outputs of an adapted SCHOLAR+KD over other
models (MALLET, ETM, Dieng et al., 2020).

Dirichlet-VAE. The Dirichlet-VAE (D-VAE,
Burkhardt and Kramer, 2019) is a variant of LDA
that (a) uses a VAE to approximate the posterior
over the latent document-topic distribution, and

10Mimno (2022) provides discussion of why stochastic vari-
ational Bayes, which has seen widespread use in topic model-
ing using the gensim library (https://radimrehurek.com/
gensim/), may be particularly problematic.
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(b) follows PRODLDA by using unnormalized esti-
mates of the topic-word values β, as opposed to a
proper distribution. Annotators rate D-VAE’s topics
similarly to MALLET (Hoyle et al., 2021).

Contextualized Topic Model. Typically, VAE-
based neural topic models encode the bag-of-words
representation of a document with a neural network
to parameterize that document’s distribution over
topics. The popular model introduced in Bianchi
et al. (2021a) extends this representation with a
contextualized document embedding from a large
pretrained language model.

4 Results

Recall that measuring stability is motivated by intra-
coder reliability in content analysis: producing the
same result every time increases confidence that
the analysis reflects actual latent structure in the
data. MALLET is significantly more stable than
other models across the vast majority of contexts,
often by a large margin (Table 2). Most striking are
the topic-word distributions B: none of the neural
models even approach its consistent level of stabil-
ity. CTM sometimes achieves comparable stability
for Θ; this may be due to its use of pretrained doc-
ument embeddings, which are transformed in order
to parameterize the estimate.

Recall also that alignment is motivated by inter-
coder reliability in content analysis: is the model,
in the role of analyst, agreeing with human-derived
categorization for the data? MALLET shows strong
consistency in providing the numerically best align-
ment with human categorization across datasets
(Table 3).11 Among neural models, D-VAE and
SCHOLAR sometimes achieve statistically indistin-
guishable performance, but they do not approach
MALLET’s consistency across datasets, number of
topics, and metrics.

Now, we argued in §2.4.1 that practitioners do
not have access to optimal hyperparameters for a
given model, because what is optimal will depend
on the dataset, number of topics, preprocessing,
and other experimental decisions. The above re-
sults show that model estimates can be very sensi-
tive to different hyperparameter settings and they
clearly favor MALLET on our metrics. However,
in many real-world scenarios, a practitioner may
simply rely on some “default” settings. We there-

11The distribution of scores across runs and results for other
contexts are shown in Appendix A.4.

fore also evaluate models for fixed hyperparameters
using reasonable default values.12

To generate the defaults, for each dataset and
model we find the hyperparameter settings that
yield the best alignment performance across experi-
mental contexts (vocabulary size, number of topics,
alignment metric, and label hierarchy). Specifically,
within each context, we first rescale the alignment
metric values over the 10 runs for that model to
avoid differences in metric values; we then select
the hyperparameters which have the largest aver-
age values across all contexts, for a given dataset.
Finally, to approximate a common use case and to
avoid overfitting to the dataset, we use the hyperpa-
rameters obtained from one dataset to train models
on the other dataset (e.g., we select defaults based
on the Bill alignment metrics and set those for new
models run on Wiki; defaults in Appendix A.3).

Results are in Appendix A.1. Unsurprisingly, fix-
ing “good default” hyperparameters for the neural
models improves their stability and alignment. In
particular, D-VAE has competitive alignment met-
rics in the |V | = 5k case, although it is hampered
by its relatively poor stability. MALLET’s stabil-
ity is marginally affected: while it is no longer as
consistently dominant, it remains more stable and
better-aligned in the majority of contexts.

5 A close reading of model stability

Table 1 illustrates corresponding versions of a topic
from different runs of D-VAE and MALLET. For a
given context (here, K = 50, |V | = 15, 000), we
collect the topic-word estimates B across the 10
runs for each of the two models, each run using
a different set of randomly-selected hyperparam-
eters. One weather-related topic across runs was
chosen manually as the “base” run, and then the
corresponding topics in the other nine runs for the
same model were ranked by their RBO distance to
that topic. The nearest, median, and most-distant
topics in that ranking, shown in the table, there-
fore capture the range of variation across different
hyperparameter settings.

It is immediately clear that even the nearest topic
for D-VAE has fewer words in common with the
base topic, compared to MALLET. And as distance
increases, the top words for MALLET stay consis-
tent, whereas those for D-VAE change dramatically,
even if they relate to the same weather concept.

12We thank an anonymous reviewer for pointing this out
and suggesting the additional experimentation.
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|V | = 5k |V | = 15k

k = 25 k = 50 k = 100 k = 200 k = 25 k = 50 k = 100 k = 200

Θ B Θ B Θ B Θ B Θ B Θ B Θ B Θ B

Bills

MALLET 0.78 0.27 0.74 0.28 0.74 0.32 0.79 0.41 0.79 0.29 0.80 0.33 0.77 0.35 0.76 0.39
SCHOLAR 0 .88 0.63 0.82 0.56 0.76 0.50 0.78 0.57 0.86 0.82 0.85 0.76 0.83 0.71 0.84 0.71
SCHLR+KD 0.91 0.67 0.89 0.59 0.87 0.64 0.83 0.65 0.90 0.75 0.88 0.69 0.85 0.67 0.88 0.70
D-VAE 0.97 0.62 0.97 0.77 0.96 0.73 0.96 0.76 0.97 0.75 0.97 0.81 0.97 0.84 0.95 0.83
CTM 0.79 0.43 0.80 0.51 0.76 0.54 0.74 0.58 0.81 0.44 0.83 0.55 0.81 0.60 0.76 0.65

Wiki

MALLET 0.70 0.22 0.69 0.29 0.62 0.30 0.67 0.37 0.71 0.26 0.70 0.32 0.66 0.34 0.70 0.39
SCHOLAR 0.82 0.49 0.73 0.38 0.80 0.45 0.83 0.52 0.84 0.66 0.77 0.54 0.77 0.67 0.79 0.61
SCHLR+KD 0.83 0.47 0.80 0.47 0.86 0.52 0.83 0.42 0.88 0.65 0.84 0.60 0.86 0.64 0.89 0.60
D-VAE 0.92 0.46 0.92 0.55 0.91 0.54 0.92 0.67 0.92 0.67 0.92 0.63 0.90 0.76 0.87 0.72
CTM 0.76 0.42 0.73 0.39 0.73 0.46 0.72 0.51 0.76 0.39 0.76 0.43 0.76 0.50 0.73 0.56

Table 2: Stability for topic-word B and document-topic Θ estimates, over 10 runs. Smallest per-column values are
bolded and are sig. smaller than unbolded values (2-sided t-test, p < 0.05); underlined values have p > 0.05.

k = 25 k = 50 k = 100 k = 200

ARI NMI P1 ARI NMI P1 ARI NMI P1 ARI NMI P1

Bills
ℓ = 114

MALLET 0.30 0.45 0.46 0.34 0.48 0.47 0.32 0.50 0.43 0.22 0.50 0.35
SCHOLAR 0.12 0.28 0.27 0.19 0.40 0.34 0.15 0.40 0.29 0.12 0.39 0.25
SCHLR+KD 0.11 0.28 0.27 0.16 0.37 0.35 0.14 0.41 0.33 0.11 0.38 0.25
D-VAE 0.26 0.45 0.44 0.24 0.43 0.40 0.24 0.46 0.40 0.24 0.46 0.38
CTM 0.21 0.40 0.38 0.26 0.45 0.41 0.25 0.48 0.39 0.19 0.49 0.34

Wiki
ℓ = 279

MALLET 0.23 0.65 0.41 0.32 0.69 0.50 0.37 0.71 0.53 0.32 0.70 0.48
SCHOLAR 0.21 0.61 0.38 0.31 0.68 0.48 0.34 0.69 0.50 0.29 0.68 0.44
SCHLR+KD 0.19 0.61 0.37 0.26 0.65 0.43 0.29 0.65 0.44 0.22 0.62 0.36
D-VAE 0.22 0.64 0.39 0.30 0.68 0.48 0.27 0.65 0.45 0.30 0.68 0.49
CTM 0.21 0.60 0.36 0.27 0.64 0.43 0.31 0.67 0.46 0.34 0.69 0.47

Table 3: Average alignment metrics across 10 runs, measured against gold labels at the lowest hierarchy level,
|V | = 15, 000. Largest values in each column are bolded, which are significantly greater than unbolded values in a
two-sided t-test (p < 0.05); underlined values have p > 0.05.

Note that in this example, consistent with anecdo-
tal reports from other practitioners and our own
experience, the neural model tends toward less fre-
quent or more specific words. The idea that neural
models may be capturing topics that are in some
sense narrower, with instability leading to differ-
ent such topics in each run, leads directly to the
idea that a cross-run ensemble might be expected
perform better than the individual runs—which is
important in the absence of a reliable automated
method for optimizing hyperparameters.

6 Ensembling estimates

We have highlighted lack of stability as a serious
problem for neural topic models, but neural models
can also have desirable properties. How can we
increase the odds of obtaining a good neural topic
model in the face of extreme variation? The dis-
tance metrics we use to measure instability offer
one solution: clustering to aggregate similar esti-
mates over runs to form an ensemble. We adopt
an approach similar to prior work (Miller and Mc-

Coy, 2017; Mantyla et al., 2018), going further
by accounting for the document-word estimates Θ
and by evaluating ensembles’ alignment against
human categorization. Specifically, we concate-
nate run estimates over the m runs B̄ =

[
B(i)

]m
i

and Θ̄ =
[
Θ⊤(i)

]m
i

, where each row in the con-
catenated matrix is a topic. We then compute pair-
wise distances between topics, D(B̄) and D(Θ̄),
and cluster based on a linear interpolation of the
two distances, λD(B̄) + (1 − λ)D(Θ̄), where λ
is a hyperparameter. The estimate of each topic k

from each run i, ⟨θ⊤(i)
k ,β

(i)
k ⟩, is assigned to a clus-

ter, and to infer new document-topic or topic-word
scores for the ensemble, we take the element-wise
mean over the estimates assigned to each cluster.13

13We experimented with k-medoids (Lloyd, 1957; Kaufman
and Rousseeuw, 2008) and hierarchical agglomerative cluster-
ing (Day and Edelsbrunner, 1984), and also varied the distance
metric — either RBO (§2.4.1) or the Average Jaccard score
(Greene et al., 2014). Both metrics are used to measure the
distance between topics in prior work (Mantyla et al., 2018;
Greene et al., 2014). Clustering algorithms were implemented
using scikit-learn (Pedregosa et al., 2011).
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Figure 1: Ensembling performance on alignment (purity metric, § 2.4.2) for the Wiki dataset. Each box represents a
context: the columns identify model type and the label granularity used in evaluation (e.g. top left is MALLET with
High-level categories), and the rows correspond to different values K for the number of topics. Dots are alignment
scores for individual runs; the horizontal line is the alignment score for that ensemble of runs using our method.
Shading indicates when the ensemble method has beaten the score of the best individual run (darkest), the median
(middle), or has outperformed the worst individual run (lightest). The ensemble is typically in the top quartile of the
component runs. Ensembles virtually always outdo the median, and frequently outperform the best individual run.

To evaluate this method, we compare the align-
ment score of the ensemble (§2.4.2) combining the
m = 10 runs, versus the alignment score of each
individual member run. We do so across each of the
400 contexts (model, dataset, K, high versus low
label granularity, and metric). Figure 1 illustrates a
summary of results for the purity alignment metric
on the Wikipedia dataset. Across the full range of
our experimentation, the ensemble improves on the
median member in 97% of all the contexts, and it
is always better than the worst member (full results
in Appendix A.5).

7 Conclusions

A tool can be considered broken when it doesn’t
work well for its intended use. In this paper we
have focused on a widespread use case for topic
models, their application in text content analysis;
we have carefully motivated criteria for measuring
the extent to which a topic model is serving those
needs; and we have demonstrated through compre-
hensive and replicable experimentation that, when
measured on those criteria, recent and represen-
tative neural topic models fail to improve on the
classical implementation of LDA in MALLET. In
particular, MALLET is much more stable, reduc-
ing concerns from the content analysis perspective
that different runs could yield very different code-
sets. Equally important, across the vast majority of
contexts, its discovered categories are reliable as
measured via alignment with ground-truth human
categories. For people seeking to use topic mod-
eling in content analysis, therefore, MALLET may
still be the best available tool for the job.

That said, there are still good reasons to investi-
gate neural topic models. Foremost among these
is the fact that they can benefit from pretraining
on vast, general samples of language (e.g. Hoyle
et al., 2020; Bianchi et al., 2021a; Feng et al., 2022).
Neural realizations of topic models can also be in-
tegrated smoothly for joint modeling within larger
neural architectures (e.g. Lau et al., 2017; Wang
et al., 2019, 2020), and hold the promise of be-
ing more straightforward to use multilingually (e.g.
Wu et al., 2020; Bianchi et al., 2021b; Mueller and
Dredze, 2021) or multimodally (e.g. Zheng et al.,
2015).14 We therefore introduced one possible way
to address the shortcomings we identified using a
straightforward ensemble technique.

Perhaps the most important take-away we would
suggest is that development of new topic models—
indeed, of all NLP models—should be done with
use cases firmly in mind. Some models are en-
abling technologies, without a direct user-facing
purpose, and others are intended to produce results
directly for human consumption. But whatever the
goal, the driving question for methodological de-
velopment and evaluation should not be how to
demonstrate an improvement in “state of the art”,
it should be why the model is being created in the
first place and what measurements will demonstrate
improved performance for that intended purpose.

Limitations

Our studies used only English datasets, while topic
modeling has been used to characterize texts in

14See Zhao et al. (2021) for more potential advantages of
neural topic modeling.
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many languages. While theoretically we see no
reason why our results and findings should not
generalize beyond the English language, empiri-
cal generalizability across languages remains to be
determined.

Our method for measuring alignment of model-
induced categories with human-determined cate-
gories relies on ground-truth human labels, poten-
tially limiting its broader applicability. In addition,
the categories in the Wikipedia data were not, to our
knowledge, produced via a traditional human con-
tent analysis process. We are currently designing
a follow-up study in which human subject matter
experts perform traditional content analysis from
scratch on the same dataset used for topic model-
ing, in order to provide a head-to-head comparison
between automated and traditional methods and
to establish human upper bounds on inter-coder
reliability.

Our literature review of topic modeling use cases
was not a formal systematic review (Moher et al.,
2009). It relied on Semantic Scholar’s content
and its discipline categorization, and potentially ex-
cluded papers in computer science that were about
the use of topic models rather than method devel-
opment. It seems clear that text content analysis
a dominant use case for topic modeling, if not the
dominant use case. In the social sciences, we also
note frequent use of the Structural Topic Model
(Roberts et al., 2014) which, like SCHOLAR, can
incorporate metadata into model estimation—we
leave an evaluation of this use case to future work.
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A Appendix

A.1 Additional Results

Fixed Hyperparameters. In tables 4 and 5, we
report the equivalents of tables 2 and 3 when hold-
ing hyperparameters fixed, rather than letting them
vary. We identify the hyperparameters for each
model that achieve the highest average alignment
metrics on across experimental contexts for one
dataset, then use those hyperparameters to estimate
models on the other dataset (hyperparameter values
in appendix A.3). In this way, we follow a com-
mon paradigm in practical application of machine
learning models: hyperparameters are determined
based on an initial experimental context, then used
in another. Broadly, MALLET is more stable and
better-aligned than its neural counterparts in this
setup, although the difference is not as stark as
when hyperparameters are allowed to vary.

Held-out data. In table 6, we report the align-
ment metrics for unseen category labels. To form
the held-out data, we keep all high-level categories
consistent between the training and held-out sets,
but partition the low-level categories such that
some are never seen during training (e.g., although
documents from the high-level architecture cat-
egory will be included in both splits, documents
on bridges are only seen in training while those
on lighthouses are held-out). Here too, MALLET

generally has the highest alignment metrics over
experimental contexts.

A.2 Details of LDA applications
meta-analysis

Summary statistics of our meta-analysis of studies
using LDA outside computer science are shown
in Table 7. The major results were discussed in
Section 2.2. We find that about half of the papers
did not specify the exact LDA implementation they
used in their study, which raises larger reproducibil-
ity concerns for scientific research. Note that one
paper can be assigned multiple subject or fields of
study by Semantic Scholar. All the papers used for
the meta-analysis are shown in tables 9 and 10.

A.3 Hyperparameters

Hyperparameters are included in the supplemen-
tary materials as <model name>.yml files. The
full range of hyperparameters can also be found in
Table 11.
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|V | = 5k |V | = 15k

k = 25 k = 50 k = 100 k = 200 k = 25 k = 50 k = 100 k = 200

Θ B Θ B Θ B Θ B Θ B Θ B Θ B Θ B

Bills

MALLET 0.76 0.26 0.75 0.29 0.73 0.30 0.70 0.36 0.73 0.26 0.74 0.30 0.72 0.34 0.70 0.37
SCHOLAR 0.72 0.42 0.67 0.39 0.67 0.38 0.68 0.38 0.78 0.52 0.73 0.47 0.70 0.44 0.71 0.43
SCHLR+KD 0.84 0.43 0.78 0.38 0.70 0.31 0.69 0.29 0.83 0.46 0.80 0.38 0.74 0.31 0.72 0.29
D-VAE 0.91 0.34 0.86 0.54 0.85 0.68 0.74 0.81 0.95 0.40 0.90 0.57 0.90 0.71 0.91 0.79
CTM 0.78 0.43 0.77 0.47 0.73 0.51 0.70 0.52 0.80 0.44 0.81 0.53 0.79 0.60 0.73 0.62

Wiki

MALLET 0.70 0.22 0.60 0.26 0.56 0.28 0.54 0.31 0.69 0.26 0.62 0.29 0.55 0.29 0.50 0.31
SCHOLAR 0.77 0.39 0.66 0.31 0.62 0.33 0.59 0.32 0.75 0.45 0.69 0.38 0.65 0.38 0.60 0.37
SCHLR+KD 0.77 0.41 0.66 0.33 0.62 0.33 0.53 0.28 0.78 0.52 0.70 0.44 0.62 0.38 0.54 0.34
D-VAE 0.93 0.24 0.88 0.25 0.83 0.26 0.82 0.29 0.95 0.28 0.90 0.30 0.83 0.32 0.78 0.33
CTM 0.75 0.39 0.73 0.39 0.72 0.45 0.70 0.51 0.77 0.42 0.74 0.41 0.75 0.51 0.73 0.57

Table 4: Stability for topic-word B and document-topic Θ estimates, across 10 seeds, for fixed hyperparameters.
Smallest per-column values are bolded and are sig. smaller than unbolded values (2-sided t-test, p < 0.05);
underlined values have p > 0.05.

k = 25 k = 50 k = 100 k = 200

ARI NMI P1 ARI NMI P1 ARI NMI P1 ARI NMI P1

Bills
ℓ = 114

MALLET 0.30 0.46 0.47 0.35 0.49 0.48 0.34 0.51 0.45 0.22 0.51 0.37
SCHOLAR 0.25 0.45 0.42 0.25 0.48 0.43 0.21 0.51 0.40 0.15 0.52 0.34
SCHLR+KD 0.24 0.42 0.40 0.23 0.46 0.43 0.20 0.49 0.40 0.13 0.49 0.34
D-VAE 0.26 0.45 0.45 0.21 0.45 0.45 0.10 0.43 0.42 0.04 0.39 0.41
CTM 0.23 0.40 0.39 0.27 0.46 0.43 0.24 0.48 0.40 0.18 0.49 0.34

Wiki
ℓ = 279

MALLET 0.23 0.65 0.41 0.32 0.70 0.50 0.39 0.73 0.56 0.39 0.74 0.56
SCHOLAR 0.22 0.62 0.39 0.33 0.68 0.49 0.39 0.72 0.54 0.38 0.74 0.54
SCHLR+KD 0.20 0.61 0.37 0.30 0.67 0.47 0.39 0.71 0.53 0.39 0.74 0.54
D-VAE 0.24 0.66 0.41 0.32 0.70 0.50 0.36 0.72 0.54 0.36 0.72 0.54
CTM 0.21 0.60 0.36 0.28 0.65 0.44 0.32 0.67 0.47 0.35 0.70 0.48

Table 5: Average alignment metrics across 10 seeds, for fixed hyperparameters. Measured against gold labels at the
lowest hierarchy level, |V | = 15, 000. Largest values in each column are bolded, which are significantly greater
than unbolded values in a two-sided t-test (p < 0.05); underlined values have p > 0.05.

A.4 Additional alignment results

Results summarized in Table 3 are shown in fig-
ure 2. Results for rest of the settings for vocabulary
and label hierarchy level are shown in figs. 3 to 5.

A.5 Additional ensembling results

In Table 8, we list the best-performing ensemble
per model type, alongside a method that fares well
across all models. For two out of the five models,
the ensemble outperforms the median member in
all 40 settings. Most ensembles improve upon the
best member at least half the time. We also identify
a set of hyperparameters (distance metric, λ, and
clustering algorithm) that can ensemble the results
of any of our models (Overall row in Table 8).

A.6 Compute infrastructure

We used AWS ParallelCluster to provide a cloud-
computing computing cluster. Neural topic models
ran on NVIDIA T4 GPUs using g4dn.xlarge in-

stances with 16 GiB memory and 4 CPUs.15 MAL-
LET ran on CPU only, with m5d.2xlarge instances
(with 32 GiB memory, 8 CPUs).16

15https://aws.amazon.com/hpc/parallelcluster/
16See https://aws.amazon.com/ec2/

instance-types/ for further details.
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Figure 2: Training set alignment metrics across five models, measured against gold labels at the lowest hierarchy
level, |V | = 15, 000.
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Figure 3: Training set alignment metrics across five models, measured against gold labels at the lowest hierarchy
level, |V | = 5, 000.
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Figure 4: Training set alignment metrics across five models, measured against gold labels at the highest hierarchy
level, |V | = 15, 000.
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Figure 5: Training set alignment metrics across five models, measured against gold labels at the highest hierarchy
level, |V | = 5, 000.
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k = 25 k = 50 k = 100 k = 200

ARI NMI P1 ARI NMI P1 ARI NMI P1 ARI NMI P1

Bills
ℓ = 114

MALLET 0.17 0.34 0.37 0.17 0.37 0.37 0.17 0.40 0.37 0.15 0.41 0.35
SCHOLAR 0.06 0.18 0.22 0.09 0.27 0.26 0.07 0.27 0.23 0.05 0.26 0.19
SCHLR+KD 0.06 0.19 0.24 0.07 0.25 0.27 0.06 0.27 0.26 0.04 0.26 0.19
D-VAE 0.13 0.30 0.34 0.11 0.29 0.32 0.11 0.32 0.32 0.10 0.34 0.31
CTM 0.11 0.28 0.31 0.12 0.32 0.31 0.10 0.35 0.29 0.08 0.37 0.26

Wiki
ℓ = 279

MALLET 0.34 0.65 0.53 0.37 0.66 0.53 0.37 0.68 0.53 0.33 0.68 0.51
SCHOLAR 0.29 0.61 0.48 0.32 0.64 0.51 0.30 0.63 0.47 0.24 0.61 0.41
SCHLR+KD 0.28 0.61 0.48 0.31 0.63 0.49 0.28 0.63 0.46 0.19 0.59 0.35
D-VAE 0.32 0.64 0.51 0.35 0.66 0.52 0.28 0.62 0.48 0.31 0.64 0.48
CTM 0.32 0.61 0.49 0.32 0.63 0.48 0.29 0.64 0.46 0.27 0.65 0.45

(a) Random hyperparameters

k = 25 k = 50 k = 100 k = 200

ARI NMI P1 ARI NMI P1 ARI NMI P1 ARI NMI P1

Bills
ℓ = 114

MALLET 0.17 0.34 0.37 0.17 0.37 0.38 0.17 0.40 0.38 0.15 0.42 0.36
SCHOLAR 0.14 0.32 0.34 0.13 0.34 0.34 0.14 0.38 0.34 0.12 0.40 0.32
SCHLR+KD 0.10 0.27 0.31 0.09 0.29 0.32 0.08 0.33 0.30 0.06 0.32 0.31
D-VAE 0.11 0.27 0.32 0.05 0.26 0.31 0.03 0.25 0.32 0.01 0.21 0.34
CTM 0.11 0.28 0.31 0.12 0.32 0.31 0.10 0.34 0.29 0.07 0.36 0.26

Wiki
ℓ = 279

MALLET 0.33 0.65 0.52 0.37 0.66 0.54 0.38 0.68 0.54 0.34 0.69 0.52
SCHOLAR 0.31 0.62 0.50 0.33 0.64 0.50 0.34 0.67 0.51 0.32 0.68 0.49
SCHLR+KD 0.30 0.63 0.49 0.38 0.67 0.54 0.37 0.69 0.52 0.34 0.70 0.51
D-VAE 0.34 0.65 0.52 0.37 0.67 0.54 0.36 0.67 0.52 0.32 0.66 0.49
CTM 0.31 0.61 0.48 0.32 0.63 0.49 0.30 0.65 0.47 0.28 0.66 0.46

(b) Fixed hyperparameters

Table 6: Average alignment metrics across 10 runs for unseen category labels. Measured against gold labels at the
lowest hierarchy level, |V | = 15, 000. Largest values in each column are bolded, which are significantly greater
than unbolded values in a two-sided t-test (p < 0.05); underlined values have p > 0.05.

Coding Question Answer Count

Is LDA used for inductive discovery of categories
for human consumption?

Yes 47 (94%)

Which LDA estimates were used for the above
discovery?

B only 33 (70%)

Both B and Θ 11 (23%)

Is LDA used to categorize or represent individual
units of text (using Θ estimate)?

Yes 32 (64%)

Are human-readable code labels assigned to topics
(formal content analysis)?

Yes 34 (68%)

Is the exact LDA implementation specified? Yes 27 (54%)

Field of study Medicine 21 (42%)
Sociology 9 (18%)
Business 7 (14%)
Political Science 7 (14%)
Psychology 4 (8%)
Economics 2 (4%)
History 2 (4%)

Table 7: Meta-analysis of fifty topic modeling papers
outside the field of computer science (denominator may
change, as not all conditions are always applicable).
Content analysis is the dominant use case for topic mod-
els. The reliability, validity, and reproducibility of LDA
estimates is critical to this use-case.

Algo. d λ > Worst Med. Best

Overall k-med. RBO 1.00 100% 97% 52%

MALLET k-med. RBO 1.00 100% 98% 55%
SCHOLAR k-med. Jcd. 0.25 100% 100% 66%
SCHLR+KD Aggl. RBO 0.75 100% 99% 60%
D-VAE Aggl. Jcd. 0.25 100% 92% 29%
CTM Aggl. Jcd. 0.25 100% 100% 90%

Table 8: Alignment metrics for ensembles of each
model, and how often they improve over the worst,
median, and best member of the ensemble across 80
evaluation settings.
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Table 9: Part one of all papers and their assessment for the meta-analysis of LDA use (Section 2.2).5342
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Table 10: Part two of all papers and their assessment for the meta-analysis of LDA use (Section 2.2).5343



Model: MALLET
α β Optim. Interval #Steps

{0.01, 0.05, 0.1, 0.25, 1.0∗†} {0.01, 0.05∗, 0.1†} {0, 10∗†, 500} {2000}

(a) Hyperparameter ranges for MALLET. α is the topic density parameter. β is the word density parameter. Optim. Interval sets
the number of iterations between Mallet’s own internal hyperparameter updates. #Steps are training iterations.

Model: SCHOLAR
α η ηBN #Steps

{0.001, 0.005, 0.01, 0.5†, 1.0∗} {0.001∗†, 0.002} {0.25∗, 0.5†, 0.75} {200†, 500∗}

(b) Hyperparameter ranges for SCHOLAR. α is the Dirichlet prior. η is the learning rate. ηBN is the epoch when batch-norm
annealing ends (i.e., η × Steps). #Steps are training epochs.

Model: SCHLR+KD
α η ηBN clipping T λ #Steps

{0.001, 0.005,
0.01, 0.5†, 1.0∗}

{0.001∗,
0.002†} {0.25, 0.5∗, 0.75†} {0.0∗, 1.0†, 2.0} {1.0†, 2.0∗}

{0.5∗,
0.75, 0.99†} {200†, 500∗}

(c) Hyperparameter ranges for SCHLR+KD. α is the Dirichlet prior. η is the learning rate. ηBN is the epoch when batch-norm
annealing ends. λ is weight on the teacher model logits, T is the softmax temperature, and clipping controls how much of the
logit distribution to clip. #Steps are training epochs.

Model: D-VAE
α η βreg. γBN γKL #Steps

{0.001†, 0.01∗, 0.1} {0.001†, 0.01∗} {0.0, 0.01, 0.1∗, 1.0†} {0, 1, 100∗, 200†} {100∗†, 200} {500}

(d) Hyperparameter ranges for D-VAE. α is the Dirichlet prior. η is the learning rate. βreg. is the L1-regularization of the
topic-word distribution. γBN and γKL are the number of epochs to anneal the batch normalization constant and KL divergence
term in the loss, respectively. #Steps are training epochs.

Model: CTM
e(·) Learn Priors? γη #Steps

{ paraphrase-distilroberta-base-v2,
multi-qa-mpnet-base-dot-v1∗†,

all-mpnet-base-v2 } {False†,True∗} {0.001∗, 0.002} {100, 200∗†}

(e) Hyperparameter ranges for CTM. e(·) is the Sentence Transformers document-embedding model(Reimers and Gurevych,
2019). η is the learning rate. Wdecay is the L2 regularization constant. γη is an indicator of whether learning rate is annealed.
#Steps are training epochs.

Table 11: Hyperparameter settings for MALLET, D-VAE, CTM, SCHLR+KD and SCHOLAR. ∗: Best setting
for Bills, †: best setting for Wiki; based on the best average alignment metrics across experimental contexts.
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