
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4330–4347
December 7-11, 2022 ©2022 Association for Computational Linguistics

DIALOGIC: Controllable Dialogue Simulation with In-Context Learning

Zekun Li1, Wenhu Chen2, Shiyang Li1, Hong Wang1, Jing Qian1, Xifeng Yan1

1University of California, Santa Barbara
2University of Waterloo, Vector Institute

{zekunli, shiyangli, hongwang600, jing_qian, xyan}@cs.ucsb.edu
wenhuchen@uwaterloo.ca

Abstract

Building dialogue systems requires a large cor-
pus of annotated dialogues. Such datasets are
usually created via crowdsourcing, which is ex-
pensive and time-consuming. In this paper, we
propose DIALOGIC1, a novel dialogue simu-
lation method based on large language model
in-context learning to automate dataset creation.
Seeded with a few annotated dialogues, DIA-
LOGIC automatically selects in-context exam-
ples for demonstration and prompts GPT-3 to
generate new dialogues and annotations in a
controllable way. Our method can rapidly ex-
pand a small set of dialogue data with minimum
or zero human involvement and parameter up-
date and is thus much more cost-efficient and
time-saving than crowdsourcing. Experimen-
tal results on the MultiWOZ dataset demon-
strate that training a model on the simulated di-
alogues leads to even better performance than
using the same amount of human-generated
dialogues under the challenging low-resource
settings, with as few as 85 dialogues as a
seed. When enough data is available, our
method can still serve as an effective data
augmentation method. Human evaluation re-
sults also show that our simulated dialogues
have near-human fluency and annotation ac-
curacy. The code and data are available at
https://github.com/Leezekun/dialogic.

1 Introduction

Task-oriented dialogue (TOD) systems can assist
users in completing tasks such as booking a restau-
rant or making an appointment. Building such a
dialogue system requires a large corpus of anno-
tated dialogues (Wu et al., 2020), which is costly
to obtain in terms of money and time.

One popular approach to collecting and annotat-
ing task-oriented dialogues is crowdsourcing via
a Wizard-of-Oz setup (Mrksic et al., 2017; Eric

1DIALOGUE SIMULATION WITH IN-CONTEXT LEARN-
ING

et al., 2017; Budzianowski et al., 2018), where
crowdworkers produce conversations. Significant
annotation efforts are further needed to label intent,
entities, etc. Prior work has been proposed to mini-
mize the cost and effort in data collection by hiring
crowdworkers or leveraging user simulators to in-
teract with existing dialogue systems (Williams
et al., 2013; Shah et al., 2018b,a; Papangelis et al.,
2019; Zhao et al., 2019; Rastogi et al., 2020; Tseng
et al., 2021). However, the dependency on exist-
ing dialogue systems leave the developers with a
classic chicken-and-egg problem. In addition, de-
veloping such user simulators typically requires
considerable handcrafting and human involvement.

In recent years, large language models
(LLMs) (Brown et al., 2020; Lieber et al., 2021;
Rae et al., 2021; Thoppilan et al., 2022; Smith et al.,
2022) demonstrate strong in-context learning ca-
pability. Provided with a few in-context examples,
the LLMs, such as GPT-3 (Brown et al., 2020),
can generate text with similar patterns without fine-
tuning. This capability has been leveraged to syn-
thesize training data in a few NLP tasks (Wang
et al., 2021b; Liu et al., 2022). Although there
have been methods that generate training data for
a single component in the TOD systems (Li et al.,
2022b), there hasn’t been a plausible solution to
generate whole dialogues with annotations for end-
to-end training due to its complex nature of involv-
ing multi-turn interactions, multiple possible logic
flows, and multiple types of annotations.

To address the challenge, we introduce a con-
trollable dialogue simulation method DIALOGIC

for dialogue dataset creation. Seeded with a few
seed dialogues, DIALOGIC automatically selects in-
context examples for demonstration and prompts
LLMs such as GPT-3 to generate annotated dia-
logues in a controllable way. DIALOGIC can play
the roles of both user and system simulator. Fig-
ure 1 illustrates a partial example. For the user
side, GPT-3 is prompted first to generate the turn-
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User([hotel]  type is guest house, area is center): 
I need a place to stay. It should be a guest house in the center of town .

GPT-3 Generation Turn-level Belief State            Dialog-level Belief  State Dialogue Act 

<hotel, type, guest house>
<hotel, area, center>

<hotel, request, day>
<hotel, request, people>

<hotel, type, guest house>
<hotel, area, center>
<hotel, book stay, 2>

<hotel, book people, 3>
<hotel, book day, Friday>

<hotel, type, guest house>
<hotel, area, center>

<hotel, book stay, 2>
<hotel, book people, 3>

<hotel, book day, Friday>

<hotel, offerbooked, reference>
<general, reqmore, none>

System([hotel] [request] day people):
how many days and people will be staying ?

System([hotel] [offerbooked] reference [general] [reqmore]): 
the booking was successful. You reference number is [value_reference] . 
Can I help you with anything else ?

User([hotel] stay is 2 , people is 3, day is Friday):
we have 3 people, and we plan to stay 2 nights starting from Friday .

Figure 1: Illustration of a part of an annotated dialogue generated by our method. Left: the conversations and
annotations are generated simultaneously by GPT-3, where the user utterances are in blue, the system responses are
in green, and the annotations are in red. Right: the structured annotation obtained by parsing the GPT-3’s generation
shown on the left. Best viewed in color. A complete generated dialogue is shown in Appendix C.2 as Table 9.

level user goal (belief state), conditioned on which
the user utterance that expresses the goal will be
generated. Likewise, we prompt GPT-3 to gen-
erate the dialog act for the system side and then
the corresponding system response. We also pro-
pose automatic verification and revision methods
to mitigate annotation errors.

This paper has two key insights. First, leverag-
ing the in-context learning ability of LLMs, our
method can simulate both the user and system side
to generate annotated dialogues by learning from
a few examples. Except for the minimal efforts in
collecting the small seed dataset and training an
auxiliary model on that, the simulation process is
free of human involvement and parameter update,
making our method much cheaper and faster than
crowdsourcing in dataset creation. Specifically, a
large-scale and high-quality dataset such as Multi-
WOZ (Budzianowski et al., 2018) can be created us-
ing our method within only several hours. Second,
we design controllable dialogue generation strate-
gies to overcome the deficiency of GPT-3 in lack of
reliability and interpretability. We also investigate
effective representations and selection strategies of
in-context dialogue examples for LLMs to better
leverage their in-context learning capabilities.

We conduct experiments on MultiWOZ2.3 (Han
et al., 2021) dataset. Remarkably, in the challeng-
ing low resource settings where as low as only 85
seed dialogues (1% of the whole training dataset)
are given, the dialogues simulated by our method
lead to even better model performance than the
same amount of human-generated dialogues. DIA-
LOGIC can also serve as an effective data augmen-
tation method when the full training set is provided.
Human evaluations indicate that our simulated dia-
logues have comparable fluency, annotation accu-

racy, and more diverse dialogue flows than human-
generated dialogues. Our results demonstrate the
promise of leveraging large language model to au-
tomate the complex dialogue dataset creation. We
have released the code and simulated data to facili-
tate future studies.2

2 Related Work

2.1 Dialogue Collection and Simulation

Building end-to-end dialogue systems heavily re-
lies on annotated training data. Wizard-of-Oz (Kel-
ley, 1984), as a popular approach, is able to pro-
duce high-quality conversations but totally relies
on human efforts (Mrksic et al., 2017; Eric et al.,
2017; Asri et al., 2017; Budzianowski et al., 2018).
There are also dialogue corpora of interactions be-
tween humans and existing dialogue systems or
APIs (Williams et al., 2013, 2014; Raux et al.,
2005). To further reduce human efforts, user sim-
ulators are leveraged to interact with the system
via reinforcement learning or self-play (Shah et al.,
2018b,a; Papangelis et al., 2019; Zhao et al., 2019;
Rastogi et al., 2020; Tseng et al., 2021). However,
existing dialogue systems or APIs are still needed,
which restricts these solutions to existing domains.
To this end, Mohapatra et al. (2020) proposed a
method that utilizes GPT-2 (Radford et al., 2019)
to simulate both the user and system side. How-
ever, this method still needs many dialogues to train
the simulators and cannot guarantee the simulation
quality in low-resource settings.

2.2 Task-oriented Dialogue

A task-oriented dialogue system usually consists of
three components: natural language understanding

2https://github.com/Leezekun/dialogic
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Figure 2: Overview of the proposed method.

(NLU) for dialogue state tracking, dialogue man-
agement (DM) for predicting the dialog act based
on the dialogue states, and natural language gen-
eration (NLG) for mapping dialog act to natural
language response. The annotated data of belief
states, dialog acts, and system responses are needed
to train these components whether in a separate
way (Wu et al., 2019; Lee et al., 2019; Heck et al.,
2020), or an end-to-end fashion (Peng et al., 2021;
Hosseini-Asl et al., 2020; Lin et al., 2020; Yang
et al., 2021; Su et al., 2021). In this paper, we
aim to generate dialogues and their complete set of
annotations.

2.3 In-Context Learning

As an alternative to finetuning, in-context learning
with LLMs, such as GPT-3 (Brown et al., 2020),
can perform a new task by learning from a few in-
context examples without training model parame-
ters. Due to the superior few-shot performance and
scalability, in-context learning has been applied to a
wide range of NLP tasks. As for dialogue tasks, in-
context learning has been increasingly deployed in
tasks such as intent classification (Yu et al., 2021),
semantic parsing (Shin and Van Durme, 2021), and
dialogue state tracking (Hu et al., 2022). Madotto
et al. (2021) built an end-to-end dialogue system
solely based on in-context learning. Despite its suc-
cess, GPT-3 requires a large number of resources
to be deployed. And its public API is charged
based on the length of input text. What’s worse,
the limitation of input length restricts the number
of in-context examples and thus the generation per-
formance. Consequently, a few methods have been
proposed to leverage GPT-3 to synthesize data to
train smaller models for inference (Wang et al.,
2021a,b; Liu et al., 2022; Li et al., 2022a). Al-
though it is especially desirable for dialogue tasks
as the input prompt of dialogues is usually lengthy,
there hasn’t been a plausible solution to generating
annotated dialogues for developing TOD systems
due to its complex nature of involving multi-turn
interactions and multiple types of annotations.

3 Method

In this paper, we introduce a novel method DIA-
LOGIC to simulate annotated dialogues for building
task-oriented dialogue systems based on language
model in-context learning. The only requirements
are a small seed dataset Ds consisting of a few
annotated dialogues and an ontology O that in-
cludes all slots and possible slot values for each do-
main. An auxiliary TOD model M such as Simple-
TOD (Hosseini-Asl et al., 2020) and PPTOD (Su
et al., 2021) trained on Ds will be used to verify
and revise generated annotations. Our goal is to
expand Ds by generating new dialogues. For each
turn of the dialogues, we need to generate the user
utterance U , belief state B, database (DB) query
result Q, dialog act A, and system responses S (we
omit the turn index for brevity).

We will elaborate the design of our method us-
ing a well-studied task-oriented dialogue dataset
MultiWOZ (Budzianowski et al., 2018; Eric et al.,
2020; Han et al., 2021), which covers 7 domains
such as hotel and restaurant, and 24 slots such as
hotel-area and restaurant-food (see Appendix A
for more details). To simulate the low-resource
environment, we use 1%, 5%, 10% of the training
dataset as the seed dataset Ds.

3.1 Overview
A partial example of a simulated dialogue is shown
in Figure 1. The pipeline of our method is illus-
trated in Figure 2. For a domain, the goal generator
will take the ontology O as input to generate a new
user goal Gi. Then we select a few seed dialogues
with similar user goals from Ds as the in-context
example for GPT-3. Given the user goal Gi and the
selected in-context examples, we leverage GPT-3
to generate a new dialogue Ci. As the generated
data may fail to satisfy our requirement, we design
methods for automatic verification and revision.

3.2 In-context Example
User Goal. A task-oriented dialogue is a conver-
sation where the dialogue system helps accomplish
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the user’s goal. For a new dialogue Ci, we first gen-
erate its user goal Gi based on the ontology. The
user goal and belief state are a set of domain-slot-
value triplets: (domain, slot_name, slot_value). For
example, when a user wants to book a 4-star ho-
tel for 2 nights, and a cheap restaurant that serves
Chinese food, his user goal will be {(hotel, stars,
4), (hotel, book stay, 2), (restaurant, pricerange,
cheap), (restaurant, food, chinese)}. We investi-
gate several ways to generate the user goal, i.e.,
determining the domains, slots, and slot values to
be selected, which will be discussed as follows.
Example Selection. Given the target user goal Gt,
we select a few seed dialogues as in-context exam-
ples, from which GPT-3 can learn to generate the
target dialogue Ci. To achieve that, the selected di-
alogue examples should contain as much ontology
information needed in the target dialogue (i.e., men-
tioned slots) as possible so that GPT-3 can mimic
the “in-domain” generation. To measure how two
dialogue goals Gi and Gj overlap, we calculate their
similarity as:

wij =

∣∣∣∣
D(Gi)

⋂
D(Gj)

D(Gi)
⋃
D(Gj)

∣∣∣∣ ·
∣∣∣∣
S(Gi)

⋂
S(Gj)

S(Gi)
⋃
S(Gj)

∣∣∣∣ , (1)

where D(Gi) and S(Gi) denote the set of domains
and slots in the user goal Gi, respectively. The first
part is the Jaccard similarity (Niwattanakul et al.,
2013) of the domain set, while the second part is
that of the slot set. The probability of a dialogue
Cj from the seed dataset Ds being sampled as in-
context examples for the target dialogue Ci is:

pj =
ewij/τ

∑
Ck∈Ds

ewik/τ
, (2)

where τ is the temperature. A higher temperature
will introduce more randomness and diversity in
example selection.

We investigate several ways to generate user
goals and select in-context examples:

• Random Sampling: we randomly select do-
mains, slots, and slot values to form a user
goal and sample in-context examples as de-
scribed in Equation 2. In this way, we can
generate any unseen user goal and thus the
corresponding dialogues. However, as the
number of seed dialogues is limited, it is hard
to guarantee that the sampled dialogue exam-
ples can cover all the information required for
generating the target dialogue.

Instruction: You are going to book a hotel, and your requirements for
the hotel are ([hotel] type is hotel , pricerange is cheap , parking is yes ,
stay is 2 , day is tuesday , people is 6). Make sure you get the booking
information once booked.

Conversation:
User ([hotel] type is hotel , pricerange is cheap): I am looking for a place
to to stay that has cheap price range it should be in a type of hotel .
Assistant ([hotel] [request] area): okay , do you have a specific area you
want to stay in ?
User ([hotel] parking is yes , pricerange is cheap): no , i just need to
make sure it is cheap . oh , and i need parking .
Assistant ([hotel] [inform] price choice parking type [offerbook]): i
found [value_choice] [value_price] [value_type] for you that include -s
parking . do you like me to book it ?
User ([hotel] stay is 3 , day is tuesday , people is 6): yes , please . 6
people 3 nights starting on tuesday .
Assistant ([hotel] [nobook] day [request] stay day): i am sorry but i was
n’t able to book that for you for [value_day] . is there another day you
would like to stay or perhaps a shorter stay ?
User ([hotel] stay is 2): how about only 2 nights .
Assistant ([hotel] [offerbooked] reference [general] [reqmore]): booking
was successful . reference number is : [value_reference] . anything else i
can do for you ?
User ([general]): no , that will be all . goodbye .
Assistant ([general] [bye]): thank you for using our services .

Figure 3: Illustration of an in-context example from the
MultiWOZ dataset. The user goal, belief states, and
dialog acts are in red. User utterances are in blue, while
system responses are in green. Best viewed in color.

• Value Substitution: we only substitute the slot
values of the seed dialogues’ user goal to form
a new user goal. This method can ensure that
all the required slots are mentioned in the in-
context examples. However, GPT-3 will tend
to replicate the in-context examples, and thus
few diversity can be introduced.

• Combination: we first select a few dialogues
from the seed dataset and then combine their
user goals to create a new goal. As the new
user goal might involve too many domains
and slots, we randomly drop some slots. This
method can ensure that all the mentioned slots
in the target user goal are covered in the ex-
amples and encourage the GPT-3 to generate
diverse data.

We experimentally found the Combination method
yields the best performance. More details, compar-
ison, and discussion of different goal generation
methods can be found in Appendix A.2.
Demonstration. To better demonstrate the desired
pattern of generated data for a dialogue to GPT-3,
we design the format for the example dialogues as
shown in Figure 3. The user goal and belief state
are converted from a sequence of triplets to the
natural language via a template. For example, the
user goal of {(hotel, stars, 4), (hotel, book stay, 2),
(restaurant, pricerange, cheap), (restaurant, food,
chinese)} will be converted to [hotel] star is 4 ,
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The following are conversations between a user and an 

assistant.  The assistant can help the user to find 

things that satisfy his requirements. Try to speak 

differently in different conversations.

1. Instruction: {xxx}

Conversation: {xxx}

2. Instruction: {xxx}

Conversation: {xxx}

3. Instruction: {target user goal description}

Conversation:

Task
description

In-context 
examples

Incomplete
entry

Figure 4: Template for the prompt of GPT-3 to generate
new dialogues. An actual example of the complete
prompt is shown in Appendix C.1 as Table 8.

book stay is 2 [restaurant] pricerange is cheap ,
food is chinese, where [domain] separates domains
and the comma separates slots in each domain.

As for the conversation part, the desired annota-
tions are incorporated with the utterances for each
turn. For the user side, GPT-3 will generate the user
utterance and the turn-level belief state, i.e., the
user goal mentioned in this turn. Dialog acts and
their corresponding system response are needed for
the system side. Similarly, the dialog act is also a
set of triplets (domain, action_type, slot_name) and
is converted to natural language similarly to belief
states. An actual example of the demonstration can
be seen in Table 8.

3.3 Prompt Design

Given a prompt consisting of the task description,
a few in-context examples, and an incomplete en-
try, we instruct GPT-3 to generate text to complete
the entry. A template of our prompt is shown in
Figure 4. The format of in-context examples is de-
scribed in Section 3.2, which consists of an instruc-
tion (user goal), and the conversation. As for the
incomplete entry, the target user goal description
is used as the instruction, and GPT-3 will generate
the corresponding conversation in a controllable
way, which will be described in the next section.

3.4 Controllable Dialogue Generation

Considering GPT-3’s known deficiencies in lack of
reliability and interpretability, we propose methods
to control GPT-3 when it generates dialogue data.
In addition, we design automatic revision methods
to minimize potential annotation errors. Figure 5
illustrates the controllable generation process of a
dialogue turn.

For the user side, GPT-3 will generate the belief
state B̂ and the corresponding user utterance U .

I am looking for a place to stay 
on sunday night . it does n't
matter where , but must be a 

guest house . 

we have a [value_type] in the 
[value_area] . it is called 

[value_name] . would you like 
me to book it for you ?

<hotel, day, sunday>
<hotel, type, guest house>
<hotel, pricerange, cheap>
<hotel, area, don’t care>

<hotel, inform, area>
<hotel, inform, name>

<hotel, offerbook, none>

Automatic Revision

Belief !𝐵

User 𝑈 Belief 𝐵

Action 𝐴

<hotel, day, sunday>
<hotel, type, guest house>
<hotel, pricerange, cheap>

<hotel, request, pricerange>

System 𝑆

Action &𝐴

Figure 5: Illustration of the controllable generation pro-
cess of a dialogue turn. An example of the genera-
tion process of a complete dialogue is shown in Ap-
pendix C.1 as Table 9.

The belief state is expected to be consistent with
the the user utterance. We keep U unchanged as
the final user utterance and check the annotation
errors in the generated belief state B̂, which can be
categorized into two types. Taking the example in
Figure 5 for illustration, (hotel, stay, 1), as a part of
the original generated belief B̂, doesn’t appear in
the user utterance, which is called over-generation.
On the contrary, the value don’t care for slot hotel-
area is mentioned by the user but not included in U ,
which is called de-generation (Li et al., 2020). We
utilize an auxiliary generator and slot-value match
filter to mitigate de-generation and over-generation
issues, respectively.
Auxiliary Generator. To tackle the de-generation
issue, we try to detect as many mentioned slots in
the user utterances as possible. To this end, we uti-
lize an auxiliary TOD model M trained on the seed
dataset Ds to generate its predicted belief state B̄,
conditioned on the dialogue context of all previous
turns and user utterance U of the current turn. B̄
could be complementary to B̂ generated by GPT-3.
We found that GPT-3 sometimes forgets to generate
all or even any belief state. If not corrected, GPT-
3 will continue the errors in the following turns.
Therefore, it is nontrivial to utilize the auxiliary
generator, though not well trained when the seed
data is limited, to complement belief states. With
increasing seed data to train the auxiliary model,
we can better detect belief state slots forgotten by
GPT-3 and mitigate the de-generation issue.
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User: I am looking for a place to to stay that has cheap price range . 

System: Okay , do you have a specific area you want to stay in ?

User: No , but it should have free parking , please

User: I need it to be in center of the town, and in the type of hotel .

Dialogue flow Turn-level Belief State            Dialog-level Belief  State                  Dialogue Act

<hotel, pricerange, cheap>

<hotel, request, area>

<hotel, pricerange, cheap>

<hotel, parking, yes> <hotel, pricerange, cheap>
<hotel, parking, yes>

<hotel, area, center>
<hotel, type, hotel>

<hotel, pricerange, cheap>
<hotel, area, center>
<hotel, type, hotel>

Previous 
turns

Original 
turn

Augmented
turn

Figure 6: Illustration of the turn-level generation for DST augmentation. The turn-level belief state is decided on
the dialog act of the last turn. The user utterance, which is underlined, is generated conditioned on the turn-level
belief state. The newly generated user turn will be concatenated with previous turns of the original dialogue to form
a new dialogue. An example of the generated user turn is shown in Appendix C.2 as Table 11.

Slot-value Match Filter. B̂ and B̄ contain the
belief states detected by GPT-3 and auxiliary gen-
erator and are complementary. We thus combine
them. When the predictions of GPT-3 and auxiliary
generators have overlapped slots, we take the slot
value detected by GPT-3, i.e., GPT-3 has a higher
priority. We then filter out the over-generated slots
whose values couldn’t be matched in the user utter-
ance, resulting in the final belief state B.

The auxiliary generator and slot-value match fil-
ter are used jointly to automatically detect and cor-
rect annotation errors, mitigating the de-generation
and over-generation issues. Taking the example
in Figure 5 for illustration, the auxiliary model
detects the correct belief state (hotel, area, don’t
care), which is missing in B̂. On the contrary,
the slot value cheap of the slot hotel-pricerange
couldn’t be detected in the user utterance, and thus
is removed from the belief state. The resulting final
belief state B is used to automatically retrieve the
DB entry Q from a pre-defined database.

As for the system side, GPT-3 can generate the
dialog act Â by concatenating the generated user
utterance U and belief state B with the prompt. We
also utilize the auxiliary TOD model M to gen-
erate its prediction Ā conditioned on the dialogue
context X and the user utterance U , revised belief
states B, and DB query result Q. To ensure some
dialogue logic is followed and the database queried
result is taken into account, we write some rules to
filter out invalid dialog acts and decide the final di-
alog act annotation A, which is then concatenated
with the prompt to continue generating the system
response S.

In most cases, GPT-3’s generation is acceptable
without requiring revision, and we cannot guaran-
tee that all the errors can be detected and corrected
(we list the frequency in Appendix B). However,
the automatic revision on the fly is still essential,
as GPT-3 tends to imitate the errors in following

turns. Therefore, each revision can not only correct
the current error but also avoid numerous potential
mistakes in the following turns. In addition, when
there is enough data Ds to train the auxiliary TOD
model M, DIALOGIC plays a more significant role
as user simulator to interact with the well-trained
system M.

3.5 Turn-level Generation for DST
For the dialogue state tracking (DST) task, the
belief states at each step are an accumulation of
previous steps. Any errors from earlier steps will
propagate to later steps. In addition, when focus-
ing on the DST task and belief state annotations,
it is not necessary to generate them along with the
whole dialogue and other annotations. To avoid er-
ror accumulation and unnecessary cost, we propose
a method that only generates user utterances and
corresponding belief states at a turn level.

As shown in Figure 6, for each turn of the seed
dialogue, we will simulate a new user turn with
turn-level belief states and user utterances as an
alternative to the original turn to form a new di-
alogue. To preserve the consistency of dialogue
flow, we generate turn-level belief states according
to the dialog act of the previous turn:

• Request means that the system is requesting
user’s requirements on some attributes (slots),
and the user is expected to answer the question
by mentioning values for requested slots. We
thus generated new turn-level belief states by
selecting some or all of the requested slots and
adding some other unmentioned slots.

• Reqmore means that the system asks the user
whether he wants service for other domains.
Under this circumstance, we select an unmen-
tioned domain and randomly select several
slots in this domain to form a new turn-level
belief state.

For the other dialog acts, we can randomly select
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unmentioned slots in the current domain. Some
examples of these three kinds of dialog acts are
provided in Appendix as Table 10. Given the new
belief state, we prompt GPT-3 to generate the cor-
responding user utterance, which is then verified
and revised as described in Section 3.4. As for
in-context examples, we only need to sample user
turns instead of whole dialogues, which largely
reduces the length of prompts and, thus, the gener-
ation cost.

Similarly, Li et al. (2020) proposed a method
that can only substitute the slot values of turn-level
belief states to form new belief states (Value Sub-
stitution), and trains GPT-2 to generate the corre-
sponding user utterance. However, it requires a
large set of data to train the utterance generator,
which is not available in low-resource settings.

4 Experiments

4.1 Experimental Setup

Seed Dataset. We implemented our method on
the MultiWOZ (Budzianowski et al., 2018) dataset,
which consists of 8,438 training, 1,000 validation,
and 1,000 test dialogues across 7 domains. As
annotation errors exist in the original dataset, we
conduct experiments on a cleaner version Mul-
tiWOZ2.3 (Han et al., 2021). To simulate the
challenging low-resource scenarios, we use 1%
(85/8438), 5% (422/8438), and 10% (843/8438)
as the seed training dataset and adopt the stan-
dard val/test set for evaluation. We also simulate
422/843 dialogues given the full training set to
evaluate its effectiveness as a data augmentation
method under the full-shot setting.
Simulated Dataset. We select the largest version
of GPT-3 API text-davinci-002 and use the top-p de-
coding, where p = 0.7. When generating the user
goal, we limit the maximum number of requested
domains in a dialogue to 4 and the maximum of
slots in each domain to 6. We stop generating a
dialogue if the number of turns exceeds 12. We
use two in-context examples for all generations.
More details are provided in Appendix A.1. PP-
TOD trained on the seed dataset is utilized as the
auxiliary model for automatic revision.
Cost Comparison. MultiWOZ dataset cre-
ation required 1,249 workers and cost around
$30k except for the additional cost of postprocess-
ing (Budzianowski et al., 2018). Assuming a mini-
mum hourly wage of $8, the whole process would
take up to 3,750 work hours. In comparison, our

approach doesn’t require either human involvement
or parameter update, except for the minimal efforts
in collecting the small seed dataset and training an
auxiliary model on it. The cost and time are thus
mainly derived from GPT-3 API call.3 Averagely,
generating a dialogue using GPT-3 only cost $0.52,
while generating a training sample (turn) for DST
augmentation only cost $0.006. Using other open-
resourced LLMs such as OPT-175B (Zhang et al.,
2022) can avoid the cost and make our method al-
most free. Each dialogue can be generated within a
few seconds, meaning we can create a large-scale
dataset such as MultiWOZ within several hours,
which largely shortens the time for dataset creation.
Evaluation Metric. To assess the quality of the
simulated dialogues, we evaluate the performance
of models trained on these simulated dialogues on
two benchmark TOD tasks: (1) end-to-end dia-
logue modeling (E2E) and (2) dialogue state track-
ing (DST). For E2E evaluation, we use the metrics
defined in MultiWOZ (Budzianowski et al., 2018):
Inform, Success, BLEU, and an overall metric Com-
bined Score: BLEU+0.5×(Inform+Success).
For DST evaluation, we report the joint accuracy.
Baselines. We select the following three recent
end-to-end TOD models as baseline models: Sim-
pleTOD (Hosseini-Asl et al., 2020), MinTL (Lin
et al., 2020), and PPTOD (Su et al., 2021). These
three models are all based on pre-trained trans-
formers. SimpleTOD is initialized with GPT-2small,
while MinTL and PPTOD are initialized with
T5small. PPTOD has also been pretrained on hetero-
geneous dialogue corpus, making it more powerful
in low-resource settings. These three models are all
capable of performing end-to-end dialogue model-
ing tasks and DST tasks. We also experiment on
a classic DST model TRADE (Wu et al., 2019).
For a fair comparison, we use the delexicalized sys-
tem response in the same format and the evaluation
script as in (Zhang et al., 2020; Lin et al., 2020; Su
et al., 2021) for E2E evaluation on all these models.
During inference, we didn’t use any oracle infor-
mation. For DST evaluation, we use lexicalized
utterances. We use the default hyperparameters in
their original implementations.

4.2 Experimental Results

4.2.1 End-to-end Dialogue Modeling
We here investigate a realistic question when build-
ing a TOD system for a new task or domain: would

3https://openai.com/api/pricing/
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Seed
data

Augmented
data

SimpleTOD MinTL-T5 PPTOD Avg.
Improv.

I S B C I S B C I S B C

1%
(85)

Base 37.94 25.53 6.40 38.13 56.81 40.38 12.16 60.76 55.36 38.44 12.25 59.14 -

+Orig.(85) 46.45 33.73 6.96 47.05 64.93 50.20 12.37 70.13 60.26 44.94 12.85 65.45 16.50%
+Sim.(85) 49.65 36.74 6.90 50.09 69.44 50.30 12.46 72.33 68.67 44.54 12.82 69.43 22.60%

5%
(422)

Base 55.96 42.44 7.66 56.86 74.05 60.42 14.71 82.70 68.17 53.55 13.58 74.44 -

+Orig.(422) 57.96 46.85 8.04 60.44 72.24 60.42 14.91 81.24 72.07 61.26 15.94 82.61 5.17%
+Sim.(422) 58.96 47.35 7.86 61.02 77.45 64.93 13.98 85.17 74.67 60.06 14.20 81.56 6.62%

10%
(843)

Base 57.96 46.85 8.04 60.44 72.24 60.42 14.91 81.24 72.07 61.26 15.94 82.61 -

+Orig.(843) 59.26 47.45 8.30 61.65 78.76 68.74 15.92 89.67 78.48 64.46 15.22 86.69 5.77%
+Sim.(843) 62.86 51.75 8.16 65.47 79.96 69.84 15.41 90.31 77.98 63.36 14.39 85.06 7.48%

100%
(8438)

Base 68.67 61.05 10.21 75.08 80.06 72.85 17.87 94.33 83.88 69.47 16.33 93.01 -

+Sim.(422) 68.38 61.82 10.32 75.42 79.46 73.45 18.52 94.98 82.88 70.97 19.22 96.15 1.57%
+Sim.(843) 68.97 62.46 10.21 75.93 80.76 74.15 18.72 96.18 83.08 71.77 18.44 95.87 2.12%

Table 1: End-to-end dialogue modeling evaluation on MultiWOZ2.3 (Han et al., 2021), where I, S, B, C stand for
the Inform, Success, BLEU, and Combined Score metrics, respectively. Sim. and Orig. stand for simulated and
original dialogues. The highest scores are bolded. The average improvements are w.r.t. the combined scores.

Statistics 1% 5% 10%

Sim. Orig. Sim. Orig. Sim. Orig.
Total dialogs 85 85 422 422 843 843
Total turns 616 599 3510 2778 6634 5617
Total domains 229 147 1076 738 2203 1471
Avg. turns 7.25 7.05 8.32 6.58 7.87 6.66
Avg. domains 2.69 1.73 2.55 1.75 2.61 1.74
Uniq. tokens 550 561 1095 1084 1336 1373
Uniq. 3-grams 3413 4300 10662 13815 15063 22261

Table 2: Comparison of the statistics of simulated dia-
logues (Sim.) with human generated dialogues from the
original MultiWOZ dataset (Orig.).

our method be a good alternative to crowdsourcing
in expanding a small corpus of dialogue data? To
answer this question, we combine the seed dataset
with (1) simulated dialogues with our method from
the seed dataset (Sim.); (2) human-generated dia-
logues from the original dataset, excluding the seed
data (Orig.). We then train several representative
TOD models with these two datasets and compare
their performance. For a fair comparison, we use
the same amount of simulated dialogues and orig-
inal dialogues and the same set of seed data across
all setups.

As seen in Table 1, the models trained on sim-
ulated dialogues along with the seed dataset per-
form much better than those only trained on the
seed dataset. Remarkably, compared with human-
generated dialogues, the same amount of our sim-
ulated dialogues can lead to even more significant
performance improvement in most cases. Our simu-
lated dialogues can still improve performance when
the full training data are provided. We only show
the result of using a small amount of simulated
dialogues (422/843) here. One can also generate
more dialogues to further improve the performance.

Model I S B C
SimpleTOD 49.65 36.74 6.90 50.09

w/o revision 43.92 29.13 6.21 42.74
MinTL-T5 69.44 50.30 12.46 72.33

w/o revision 61.68 46.34 11.83 65.84
PPTOD 68.67 44.54 12.82 69.43

w/o revision 62.41 40.27 11.97 63.31

Table 3: Ablation study on the automatic revision under
1% low-resource setting.

The results suggest the effectiveness of our method
as a data augmentation method. This is expected
as when we have more seed data to select from as
in-context examples for GPT-3 and train the auxil-
iary revision model, we can generate more diverse
dialogues, more accurate annotations, and thus dia-
logues with better quality.

To understand the observations, we further
analyze the statistics of simulated and human-
generated dialogues and present them in Table 2.
We found that our simulated dialogues have more
requested domains and dialogue turns compared
with human-generated dialogues, which are con-
trolled by the generated user goals. The much more
sub-tasks and sub-conversations in the simulated
dialogues improve the model’s ability to deal with
more complex and challenging multi-domain tasks,
thus leading to a higher Inform rate and Success
rate. On the contrary, the system responses gen-
erated by our method have a comparable amount
of unique tokens but fewer 3-grams than the orig-
inal ones, which explains why the BLEU score is
slightly lower than the human-generated dialogues.
Effect of Automatic Revision. Table 3 shows
performances of PPTOD trained with dialogues
generated in the presence and absence of the au-
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Model Base Augmentation size

x1 x2 x3 x4
TRADE 12.98 14.41 15.96 16.60 17.17
SimpleTOD 13.69 16.43 17.81 18.51 19.15
MinTL 23.25 27.30 27.69 28.71 29.27
PPTOD 34.48 36.71 37.74 38.12 38.51

Table 4: DST evaluation with 1% of training data and
different sizes of augmented data.

tomatic revision under the 1% setting. Without
automatic revision, the generated dialogues lead
to lower performance improvement in all metrics,
which suggests the importance of our controllable
generation strategy and automatic revision meth-
ods. We list the frequency of the automatic revision
in Appendix B.

4.2.2 Dialogue State Tracking
Next, we investigate the effectiveness of belief state
annotations generated by our method as augmented
data for DST training in low resources settings. We
simulate the low-resource setting using 1% of the
MultiWOZ training set as seed data. Table 4 shows
the performance of various models trained on differ-
ent sizes of augmented data. The augmented data
can consistently improve the model performance
across different models. With the increase of aug-
mented data, the accuracy keeps increasing, though
the upward trend is gradually slowing down.

4.3 Human Evaluation

To get a more comprehensive measure of the qual-
ity of the simulated data compared with the original
human-generated data, we conducted a blind hu-
man evaluation study. Three participants with NLP
backgrounds are given 50 dialogues simulated from
1% of the training data and another 50 dialogues
from the original dataset without knowing their
source (simulated or original). Following (Mohapa-
tra et al., 2020), we ask the participants to check the
quality of the conversation and annotations of each
dialogue turn by answering the following questions:
(1) “Are the utterances grammatically correct?” (2)
“Is the user utterance fluent and natural?” (3) “Is
the system response fluent and natural?” (4) “Is
the belief state annotation consistent with the user
utterance?” (5) “Is the dialog act consistent with
the system response?”. For each question, the par-
ticipants should answer “yes” or “no”. We adopt a
majority vote approach to decide the final answer
with at least two votes. Table 5 shows the per-
centage of dialogue turns that satisfy each quality

Measure Simulated Original
Grammar 99.00 96.32
User fluency 94.55 95.22
System fluency 88.61 94.48
User consistency 84.65 96.69
System consistency 73.76 94.12

Table 5: Human evaluation on the simulated dialogues
and original dialogues w.r.t. the percentage of dialogue
turns that satisfy each quality measure.

measure (with the answer of “yes”).
We find that our method can generate even more

grammatically correct conversations than human
crowdworkers leveraging the strong generation
ability of GPT-3. The generated user utterances are
comparably fluent and natural to original human-
generated ones. In contrast, the generated system
responses are not that fluent. We suspect this is
because the system responses are delexicalized,
which is more challenging for GPT-3 to under-
stand and imitate. As for the annotation quality,
although humans generate original dialogues, an-
notation errors still exist, suggesting the difficulty
of task-oriented dialogue annotations. As expected,
our generated dialogue data has more annotation
errors than human-generated ones. Considering
only as few as 85 dialogues are given and no hu-
man involvement is required, we believe the gap
is acceptable and can be bridged with more seed
data provided. Overall, the conversations gener-
ated by our method have comparable quality to
human-generated ones. However, the generated an-
notations are not as accurate as human annotations.
Satisfyingly, the noisy annotation still introduces
considerable performance improvement.

5 Conclusion

In this paper, we propose a dialogue simulation
method based on large language model in-context
learning to automate dataset creation. Our pro-
posed method can generate dialogues and anno-
tations given only a few seed dialogues. The
simulation process requires zero or minimum hu-
man involvement and model training, making our
method much more cost-efficient and time-saving
than crowdsourcing. Human and automatic eval-
uations demonstrate that the simulated dialogues
have comparable quality to human-generated ones,
which shows the potential of our method as an
alternative to crowdsourcing in dialogue dataset
creation.
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Limitations

In this paper, we investigate ways to leverage in-
context learning with GPT-3 to automatically gen-
erate high-quality task-oriented dialogues for build-
ing dialogue systems. Although our method can
already generate high-quality dialogues without re-
quiring human involvement, there are still some
limitations in real-world applications. GPT-3 has
a deficiency in lack of reliability and is inevitable
to generate some unexpected data even with auto-
matic revision. Human review and revision are still
necessary to ensure the annotation is completely
correct. However, it is challenging as the revision
at each step will influence the latter steps. There-
fore, an effective and efficient human and machine
collaboration approach is our future direction. In
addition, as the dialogues along with annotations
are very lengthy, it is essential to reduce their length
to lower the generation cost and enable the use of
more in-context examples.

Ethics Statement

Our proposed method instructs LLMs to generate
dialogues for building dialogue systems. However,
LLMs such as GPT-3 (Brown et al., 2020) are ob-
served to generate toxic or biased text (Brown et al.,
2020; Lucy and Bamman, 2021; Chan, 2022). Al-
though a new version of GPT-3 called InstructGPT
has been released, trying to reduce these toxic lan-
guages, the issue hasn’t been sufficiently addressed.
Thus, automatic filtering or human review meth-
ods is necessary to exclude some parts of training
data to avoid the models generating undesirable
responses containing toxicity and bias from the
simulated dialogues.
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Appendix

A Implementation Details

We conduct experiments on MultiWOZ2.34, which
corrects annotations in dialogue acts from dialogue
states and adds co-reference annotation. The on-
tology information of MultiWOZ2.3 dataset is pre-
sented in Table 6. There are 12 dialog acts and
24 slots in total. We use the released source codes
and default hyperparameters of the baseline mod-
els SimpleTOD5, MinTL6, PPTOD7, and TRADE8.
For a fair comparison, we use the same set of train-
ing data and dev/test data across all these models.
In addition, we use the same evaluation script pro-
vided in PPTOD for all these models. The delexi-
calized utterances are used for end-to-end evalua-
tions, while lexicalized utterances are used for DST
evaluation. All the experiments are run on a server
with 8 NVIDIA RTX A6000 GPUs.

A.1 Dialogue Generation

We select the most powerful version of GPT-3 API
text-davinci-0029. The temperature is set as 0.7, the
top_p and frequency penalty are both set as 1.0 to
encourage the generation of more diverse data and
avoid the repetition of the in-context examples. We
use 2 shots for demonstrations. When generating
the dialogues, we set the maximum number of turns
as 12 to avoid endless generations.

We test three strategies to generate the user goals
and prompt: (1) Random Sampling; (2) Value Sub-
stitution; and (3) Combination. For Random Sam-
pling strategy, the sampling distribution of the num-
ber of domains, the minimal number of slots in each
domain, and the maximum number of slots in each
domain are presented in Table 7. For the Random
Sampling strategy, we keep all the slots and sub-
stitute the slots values of the original user goal to
create new goals. For the Combination strategy,
we set the temperature in Equation 2 as 0.2 when
sampling similar dialogues from the seed dataset.

A.2 Goal Generation Methods

As mentioned in Section 3.2, we investigate the
following methods to generate user goals and re-
trieve dialogues as in-context examples: (1) Ran-

4https://github.com/lexmen318/MultiWOZ-coref
5https://github.com/salesforce/simpletod
6https://github.com/zlinao/MinTL
7https://github.com/awslabs/pptod
8https://github.com/jasonwu0731/trade-dst
9https://openai.com/api/pricing/
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Figure 7: The combined score of PPTOD trained with
dialogues simulated with different methods and augmen-
tation size with 1% training data as the seed data.

dom Sampling (RS), (2) Value Substitution (VS),
and (3) Combination (Comb.). We show the perfor-
mance of PPTOD trained on dialogues simulated
with different goal generation methods and varying
augmentation sizes in Figure 7. We also show the
model performance trained on the same amount of
original dialogues in the dashed line as a baseline
(Ori.).

We can see that the VS method performs worst,
as it can only change the slot values. Thus, GPT-3
tends to simply replicate the in-context examples.
As the Combination method can cover most of the
information needed in the target dialogues and en-
courage GPT-3 to generate diverse data, it achieves
the best performance. However, it is harder to im-
prove further with the increased augmentation size
as there are limited seed dialogues and, thus, their
combinations. On the contrary, as the RS method
can generate any user goals, the model performance
keeps increasing. However, there is still an upper
bound of performance, which depends on the num-
ber of provided seed dialogues.

A.3 Turn-level Generation

We generate user turns for DST augmentation
based on the human-generated seed dialogues. The
hyper-parameters for GPT-3 API call are the same
as dialogue generation as in Appendix A.1. We
use 2 in-context examples by default. One can also
increase the number for better generation quality.
For each turn from the original dialogues, we gen-
erate augmented user turns and concatenate them
with the previous turns in this dialogue to create a
new training sample. We generate the user turns
based on the dialog acts of the last system turn in
the context. Suppose the last system turn contains
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Table 6: Full ontology for all domains in MultiWOZ2.3 (Han et al., 2021). The upper script indicates which domains
it belongs to. *: universal, 1: restaurant, 2: hotel, 3: attraction, 4: taxi, 5: train, 6: hospital, 7: police. The table is
adapted from (Budzianowski et al., 2018) with some modification.

dialog acts
inform∗ / request∗ / select1235 / recommend/123 / nooffer1235 / offerbook125 /
offerbooked125 / nobook12 / welcome∗ / greet∗ / bye∗ / reqmore∗

slots

address12367 / postcode1367 / phone123467 / name123 / area123 / pricerange12 /
type23 / internet2 / parking2 / stars2 / departure45 / destination45 / leave45 /
arrive45 / people125 / reference1235 / id5 / price5 / time15 / department6 /
day125 / stay2 / car4 / food1

#domains Min #slots Max #slots Probability
1 4 6 0.3
2 3 5 0.6
3 2 5 0.1

Table 7: The sampling distribution of user goals w.r.t.
the number of domains, the minimal and maximum num-
ber of slots in each domain for the Random Sampling
strategy.

the request act. In that case, we will randomly se-
lect at least one slot from the requestable slots and
another at least two slots from the unmentioned
slots in the current domain to form the belief state
of the augmented user turn. If the last system turn
contains the reqmore act, we will randomly select
one unmentioned domain and at least 1, at most 4
slots in the domain. For the other cases, we will
randomly drop at least one slot from the original
belief state and add at least one unmentioned slot.
Having selected the slots in the belief state, we will
randomly select a possible slot value for each slot
to create the concrete belief state for the augmented
user turn.

B Automatic Revision Frequency

To investigate how often the data generated by GPT-
3 need to be revised and how many errors can be
corrected by our method, we randomly selected
20 dialogues simulated under the 1% low-resource
setting and manually checked the annotations. In a
total of 170 turns, GPT-3 generates incorrect belief
state annotations in 31 turns (18 de-generations
/ 13 over-generations). The auxiliary generator
corrects GPT-3 in 13 out of 18 de-generated turns,
while the slot-value match filter corrects in 10 out
of 13 over-generated turns. Finally, only 6.47% of
the revised belief states are still incorrect (11 out of
170), while that for dialog acts is 11.18% (19 out
of 170).

C Generation Examples

C.1 Dialogue Generation Example
An example of a complete prompt is shown in Ta-
ble 8, given which the controllable generation pro-
cess of the dialogue is presented in Table 9. The
process is fully automated.

C.2 Turn-level Generation Example
We provide the illustration of three different types
of augmented turns for DST in Table 10, and the
prompt and generation process of it in Table 11.
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Task

Description

The following are conversations between a user and an assistant. The assistant can help the user to find things that satisfy his requirements.

Try to speak differently in different conversations.

Example 1

(PMUL1576)

Instruction1: You are going to book a train, and your requirements for the train are ([train] destination is leicester , departure is

cambridge , leave is 08:45 , day is saturday , arrive is dontcare). You also want to book a hotel, and your requirements for the hotel

are ([hotel] name is cityroomz , stay is 4 , day is tuesday , people is 8). Make sure you get the booking information once booked.

Conversation1:

User([train] destination is leicester , departure is cambridge , leave is 08:45): i really need to get out of cambridge ! can you find

me a train to leicester ? sometime after 08:45 because i like to sleep in .

Assistant([train] [request] day): i would be happy to help with your request , what day will you be leaving ?

User([train] day is saturday): i ’ll be leaving this place on saturday .

Assistant([train] [request] arrive): what time would you like to arrive by ?

User([train] arrive is dontcare): it does not matter .

Assistant([train] [inform] destination arrive leave [offerbook]): there is a train that leaves at [value_leave] and arrive in leiester

at [value_arrive] . would you like me to book it for you ?

User([train]): no thank you . what is the cost of the ticket ?

Assistant([train] [inform] price [general] [reqmore]): the ticket price is [value_price] . can i be of further assistance ?

User([train]): i also need the travel time and arrival time please .

Assistant([train] [inform] arrive time): arrival time is [value_arrive] and travel time is [value_time] .

User([hotel] name is cityroomz): i ’ m also looking for a particular hotel . its name is called cityroomz .

Assistant(): sure , what kind of information do you need ?

User([hotel] stay is 4 , day is tuesday , people is 8): i would like to to book it for 8 people and 4 nights starting from tuesday

Assistant([hotel] [offerbooked] day people reference stay [general] [reqmore]): i have booked a room for [value_people] for [value_stay]

nights beginning on [value_day] . your reference number is [value_reference] . is there anything else i can help you with today ?

User([general]): not at this time . thank you .

Assistant([general] [bye]): have a fantastic day , goodbye .

Example 2

(SNG0955)

Instruction2: You are going to book a hotel, and your requirements for the hotel are (hotel] pricerange is expensive , area is east ,

parking is yes). Make sure you get the booking information once booked.

Conversation2:

User(([hotel] pricerange is expensive): i need a place to stay that does n’t have to have internet and is in the expensive price range please .

Assistant(([hotel] [inform] choice [request] area): i have [value_choice] different ones all around town . did you prefer to stay in a certain

area ?

User(([hotel] area is east): yes , on the east side please .

Assistant([hotel] [inform] name [offerbook]): [value_name] meets your needs , would you like to book it ?

User([hotel] parking is yes): does it have free parking ?

Assistant([hotel] [inform] parking): yes , it does .

User([hotel]): i ’ m not ready to book . can you just tell me what the address is ? oh , and how many stars is it ?

Assistant([hotel] [inform] type stars address [general] [reqmore]): sure . it is a [value_stars] star [value_type] and the address is

[value_address] . anything else ?

User([general]): no , that is all . thanks .

Assistant([general][bye]): you are welcome ! please contact us if you would like to make a reservation in the future .

Target

Dialogue

Prompt

Instruction3: You are going to book a hotel, and your requirements for the hotel are (([hotel] area is south , stay is 5 , people is 4).

You also want to book a train, and your requirements for the train are ([train] destination is birmingham new street , arrive is 13:06).

Make sure you get the booking information once booked.

Conversation3:

Table 8: Example of a complete prompt which contains a task description, two in-context examples (PMUL1576
and SNG0955 are from the MultiWOZ dataset), and the user goal (instruction) of the target dialogue. The user goal,
belief states, and dialog acts are in red color. The user utterances are in blue, while the system responses are in
green. Given the prompt, we can generate the conversation of the target dialogue as shown in Table 9.
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Turn 1

Original user turn generation User([hotel] area is south , stay is 5 , people is 4): i need a hotel in the south side please .

GPT-3 generated belief state <hotel, area, south> , <hotel, book stay, 5> , <hotel, book people, 4>

Revised belief state <hotel, area, south> , <hotel, book stay, 5> , <hotel, book people, 4>, <hotel, type, hotel>

Revised user turn generation User([hotel] area is south , type is hotel): i need a hotel in the south side please .

DB query result [db_1]

Revised dialog act <hotel, inform, area>, <hotel, inform, name>, <hotel, inform, internet>, <hotel, inform, parking>,
<hotel, inform, type>, <hotel, inform, stars>, <hotel, offerbook, none>

Revised system turn generation Assistant([hotel] [inform] area name internet price parking type stars [offerbook]): the [value_name]
hotel is in the south side and it has [value_internet] . the price is [value_price] per night and it has
[value_parking] . it is a [value_stars] star hotel .

Turn 2

Original user turn generation User([hotel] stay is 5 , people is 4): i would like to to book it for 4 people and 5 nights.

GPT-3 generated belief state <hotel, book stay, 5> , <hotel, book people, 4>

Revised belief state <hotel, book stay, 5> , <hotel, book people, 4>

Revised user turn generation User([hotel] stay is 5 , people is 4): i would like to to book it for 4 people and 5 nights.

DB query result [db_1]

Revised dialog act <hotel, offerbooked, reference>, <general, reqmore, none>

Revised system turn generation Assistant([hotel] [offerbooked] reference [general] [reqmore]): your booking reference number is
[value_reference] .

Turn 3

Original user turn generation User([train] destination is birmingham new street , arrive is 13:06): i need a train to birmingham new
street station that arrives by 13:06 please .

GPT-3 generated belief state <train, destination, birmingham new street> , <train, arrive, 13:06>

Revised belief state <train, destination, birmingham new street> , <train, arrive, 13:06>

Revised user turn generation User([train] destination is birmingham new street , arrive is 13:06): i need a train to birmingham new
street station that arrives by 13:06 please .

DB query result [db_3]

Revised dialog act <train, request, day>, <train, request, departure>

Revised system turn generation Assistant([train] [request] day departure): what day will you be leaving and what is your departure
station ?

Turn 4

Original user turn generation User([train] day is saturday , departure is cambridge): i will be leaving this saturday from cambridge
station .

GPT-3 generated belief state <train, day, saturday> , <train, departure, cambridge>

Revised belief state <train, day, saturday> , <train, departure, cambridge>

Revised user turn generation User([train] day is saturday , departure is cambridge): i will be leaving this saturday from cambridge
station .

DB query result [db_3]

Revised dialog act <train, inform, arrive>, <train, inform, id>, <train, inform, leave>, <train, offerbook, none>

Revised system turn generation Assistant([train] [inform] arrive id leave [offerbook]): the train arrives at [value_arrive] and the id is
[value_id] . would you like me to book it for you ?

Turn 5

Original user turn generation User([train]): no thank you . what is the cost of the ticket ?

GPT-3 generated belief state <train, none, none>

Revised belief state <train, none, none>

Revised user turn generation User([train]): no thank you . what is the cost of the ticket ?

DB query result [db_3]

Revised dialog act <train, inform, price>, <general, reqmore, none>

Revised system turn generation Assistant([train] [inform] price [general] [reqmore]): the ticket price is [value_price] . can i be of
further assistance ?

Turn 6

Original user turn generation User([general]): that is all for now . thanks

GPT-3 generated belief state <general, none, none>

Revised belief state <general, none, none>

Revised user turn generation User([general]): that is all for now . thanks

DB query result [db_nores]

Revised dialog act <general, bye, none>

Revised system turn generation Assistant([general] [bye]): you are welcome , please contact us if you need anything else .

Table 9: The controllable dialogue generation process of a dialogue given the prompt in Table 8. For each turn,
GPT-3 will first generate the belief state and the user utterance. We parse the belief state, which is then verified
and revised automatically. We replace the original generated belief state with the revised belief state in the user
turn generation. Then the revised user turn generation will be used to query the database and concatenated with the
dialogue context to continue the generation. As for the system turn, we use the revised dialog act, conditioned on
which we prompt GPT-3 to generate the system response. Note that the user goal of the target dialogue is allowed
to change during the generation. We will keep the updated user goal instead of the original one in the prompt
(instruction3), which is only used to initiate the generation of the target dialogue.
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Example 1 (request)

Context (SNG01856,

turn 1)

User: am looking for a place to to stay that has cheap price range it should be in a type of hotel

Assistant: i would be happy to help with your request , what day will you be leaving ?

Last dialog act

(turn 1)
<hotel, request, area>

Original user turn

(turn 2)

Belief state: <hotel, parking, yes>, <hotel, pricerange, cheap>

User: no , i just need to make sure it is cheap . oh , and i need parking

Augmented user turn

(turn 2)

Belief state: <hotel, star, 1>, <hotel, area, west>

User: a 1 star hotel in the west .

Example 2 (others)

Context (SNG01856,

turn 1-2)

User: am looking for a place to to stay that has cheap price range it should be in a type of hotel

Assistant: i would be happy to help with your request , what day will you be leaving ?

User: no , i just need to make sure it is cheap . oh , and i need parking

Assistant: i found [value_choice] [value_price] [value_type] for you that include -s parking .

do you like me to book it ?

Last dialog act

(turn 2)

<hotel, inform, price>, <hotel, inform, choice>, <hotel, inform, parking>, <hotel, inform, type>,

<hotel, offerbook, none>

Original user turn

(turn 3)

Belief state: <hotel, book stay, 3>, <hotel, book day, tuesday>, <hotel, book people, 6>

User: yes , please . 6 people 3 nights starting on tuesday .

Augmented user turn

(turn 3)

Belief state: <hote, book people, 8>, <hotel, stars, 3>, <hotel, book stay, 2>,

<hotel, book day, saturday>

User: please book me a room for 8 people on saturday . we will be staying for 2 nights

and would like a 3-star hotel .

Example 3 (reqmore)

Context (SNG01856,

turn 1-3)

User: am looking for a place to to stay that has cheap price range it should be in a type of hotel

Assistant: i would be happy to help with your request , what day will you be leaving ?

User: no , i just need to make sure it is cheap . oh , and i need parking

Assistant: i found [value_choice] [value_price] [value_type] for you that include -s parking .

do you like me to book it ?

User: how about only 2 nights .

Assistant: booking was successful . reference number is : [value_reference] . anything else

i can do for you ?

Last dialog act

(turn 3)
<hotel, offerbooked, reference>, <general, reqmore, none>

Original user turn

(turn 4)

Belief state: <general, none, none>

User: no , that will be all . goodbye .

Augmented user turn

(turn 4)

Belief state: <taxi, destination, avalon>

User: i need a taxi to avalon .

Table 10: Example of three augmented user turns for DST in SNG01856 (MultiWOZ). These three turns are
augmented according to different types of dialog acts in the last turn, which are request, others, and reqmore,
respectively. We show the prompt and generation of Example 2 in Table 11.
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Task

Description

Answer the assistant’s question on each feature you require when booking a train. Also mention

no preference on a feature when your requirement on it is "dontcare".

Features:

people: number of people for the hotel booking;

type: what is the type of the hotel, guesthouse, guest house, or hotel;

stay: length of stay at the hotel;

name: name of the hotel;

day: day of the hotel booking;

stars: star rating of the hotel;

Example 1

(PMUL1576,

turn 3)

Assistant: what is your requirement on day?

User([hotel] day is friday): yes , please book me a room for friday .

Example 2

(SNG1006,

turn 2)

Assistant: what is your requirement on type, name, stay, day, people?

User([hotel] type is hotel , name is gonville hotel , stay is 4 , day is saturday , people is 6):

okay , i would like to book a room at the gonville hotel for 4 nights . there will be 6 people and

we will be arriving on saturday .

Target

Turn

Prompt

User([hotel] people is 8 , stars is 3 , stay is 2 , day is tuesday):

Target

Turn

Completion

User([hotel] people is 8 , stars is 3 , stay is 2 , day is tuesday):

please book me a room for 8 people on tuesday . we will be staying for 2 nights and would like a

3-star hotel .

Table 11: Example of a complete prompt for the generation of Example 2 in Table 10. The task description contains
the description of the mentioned slots to help GPT-3 better understand. We sample some turns from seed dialogues
instead of the whole dialogues. Given the target turn-level belief state, GPT-3 is able to generate the user utterance
that expresses the user goal.
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