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Abstract

Bilingual lexicon induction (BLI) with limited
bilingual supervision is a crucial yet challeng-
ing task in multilingual NLP. Current state-of-
the-art BLI methods rely on the induction of
cross-lingual word embeddings (CLWEs) to
capture cross-lingual word similarities; such
CLWEs are obtained 1) via traditional static
models (e.g., VECMAP), or 2) by extracting
type-level CLWEs from multilingual pretrained
language models (mPLMs), or 3) through com-
bining the former two options. In this work,
we propose a novel semi-supervised post-hoc
reranking method termed BLICEr (BLI with
Cross-Encoder Reranking), applicable to any
precalculated CLWE space, which improves
their BLI capability. The key idea is to ‘extract’
cross-lingual lexical knowledge from mPLMs,
and then combine it with the original CLWEs.
This crucial step is done via 1) creating a word
similarity dataset, comprising positive word
pairs (i.e., true translations) and hard negative
pairs induced from the original CLWE space,
and then 2) fine-tuning an mPLM (e.g., mBERT
or XLM-R) in a cross-encoder manner to pre-
dict the similarity scores. At inference, we 3)
combine the similarity score from the original
CLWE space with the score from the BLI-tuned
cross-encoder. BLICEr establishes new state-of-
the-art results on two standard BLI benchmarks
spanning a wide spectrum of diverse languages:
it substantially outperforms a series of strong
baselines across the board. We also validate the
robustness of BLICEr with different CLWEs.

1 Introduction and Motivation

Bilingual lexicon induction (BLI) or word transla-
tion is one of the core tasks in multilingual NLP
(Rapp, 1995; Gaussier et al., 2004; Shi et al., 2021;
Li et al., 2022, inter alia), with its applications
spanning machine translation (Qi et al., 2018; Duan
et al., 2020), language acquisition and learning
(Yuan et al., 2020), as well as supporting NLP tasks

∗∗ Equal senior contribution.

Seed 
Dictionary

Cross-Lingual 
Word Embedding Space

BLI-Oriented 
Polarisation

Cross-Encoder  
Reranker

(Semi-)Supervised Training

Supervised Training

XLM-R
Training Process

Preparation of 
Training Data

Figure 1: An overview of the proposed BLICEr approach,
described in detail in §3.

in low-resource scenarios (Heyman et al., 2018;
Wang et al., 2022), among others. The predomi-
nant approach to BLI is based on the induction of
a shared cross-lingual word embedding (CLWE)
semantic space: word translation is then tackled by
searching for the nearest neighbour in the other lan-
guage. Recent BLI work has largely focused on the
so-called mapping-based or projection-based meth-
ods (Mikolov et al., 2013; Ruder et al., 2019). Their
prime advantage is strong performance coupled
with largely reduced bilingual supervision, typi-
cally spanning only 1k-5k seed word pairs (Glavaš
et al., 2019). This makes them fitting for weakly
supervised setups and low-resource languages.

In parallel, cross-encoders (CEs) have gained
popularity in sentence-level NLP tasks that involve
pairwise sentence comparisons. Unlike the so-
called embedding-based models (also called bi-
encoders or dual-encoders) which process two se-
quences independently and in parallel to create
their embeddings and only model their late in-
teraction (Henderson et al., 2020), CEs take the
concatenation of two sequences as input and di-
rectly predict the similarity of the two sequences
(Humeau et al., 2020). As the self-attention heads
in CEs can simultaneously attend to tokens from
both sequences, CEs are considered more power-
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ful sequence-pair models than embedding-based
models which can only perform post-hoc compar-
isons in the embedding space. A large volume of
evidence suggests that, under the same amount of
supervision, CEs typically substantially outperform
embedding-based models in information retrieval
(Qu et al., 2021), dialogue (Urbanek et al., 2019),
and semantic similarity tasks (Thakur et al., 2021;
Liu et al., 2022), and their benefits are especially
pronounced in low-data regimes with limited task
supervision (Geigle et al., 2022).

Motivated by the work on CEs in sentence-level
tasks, in this work, we propose to use CEs to ben-
efit BLI. In a nutshell, we aim to expose useful
word translation knowledge from multilingual pre-
trained language models (mPLMs) such as mBERT
or XLM-R via BLI-oriented CE fine-tuning; this
knowledge complements the knowledge stored in
the CLWEs. We demonstrate that CEs can be ef-
fectively leveraged with cross-lingual word pairs,
learning more accurate cross-lingual word similar-
ity scores required for BLI. We present BLICEr
(BLI with Cross-Encoder Reranking), a post-hoc
reranking method for BLI, illustrated in Figure 1
and described in detail in §3. BLICEr requires no
additional supervision beyond the seed dictionary
used for inducing (i.e., mapping) the CLWE space,
and it can be combined with any existing CLWE
approach, boosting their BLI performance.

We conduct extensive BLI experiments on two
standard BLI benchmarks spanning a diverse lan-
guage sample, covering 44 translation directions
and a total of 352 different BLI setups. We ob-
serve large and consistent improvements brought
about by BLICEr across the board: we report
gains in 351 out of the 352 BLI setups over the
very recent and strong BLI baseline of Li et al.
(2022), establishing new state-of-the-art (SotA)
performance. We also empirically validate that
BLICEr is universally useful, yielding gains with
different ‘CLWE backbones’, and run a series of
insightful ablations to verify the usefulness of in-
dividual components involved in the BLICEr de-
sign. Our code is publicly available at https:
//github.com/cambridgeltl/BLICEr.

2 Related Work

BLI and CLWEs. The predominant BLI meth-
ods depend on learning linear or non-linear func-
tions that map monolingual word embeddings to
a shared CLWE space (Xing et al., 2015; Lam-

ple et al., 2018; Joulin et al., 2018; Artetxe et al.,
2018; Grave et al., 2019; Patra et al., 2019; Jawan-
puria et al., 2019; Mohiuddin et al., 2020; Glavaš
and Vulić, 2020; Peng et al., 2021; Sachidananda
et al., 2021). There have also been attempts to
conduct BLI via monolingual and multilingual pre-
trained language models (Gonen et al., 2020; Vulić
et al., 2020a,b, 2021). However, empirical evi-
dence suggests that these approaches underperform
static CLWEs for BLI (Vulić et al., 2020b): this is
possibly because PLMs are primarily designed for
longer sequence-level tasks and thus may naturally
have inferior performance in word-level tasks when
used off-the-shelf (Vulić et al., 2022). Recent work
started to combine static and contextualised word
representations for BLI (Zhang et al., 2021). In
fact, the previous SotA CLWEs for BLI, used as
the baseline model in our work, are derived via a
two-stage contrastive learning approach combining
word representations of both types (Li et al., 2022).
Our work builds upon existing CLWE-based BLI
methods, and proposes a novel post-hoc reranking
method that universally enhances BLI performance
of any backbone CLWE method.

Cross-Encoders. They have wide applications in
text matching (Chen et al., 2020), semantic textual
similarity (Thakur et al., 2021; Liu et al., 2022), and
cross-modal retrieval (Geigle et al., 2022). They
typically outperform the class of Bi-encoder mod-
els (Reimers and Gurevych, 2019), but are much
more time-consuming and even prohibitively ex-
pensive to run for retrieval tasks directly (Geigle
et al., 2022). While mPLMs as bi-encoders for BLI
have been studied in very recent research (Li et al.,
2022), to the best of our knowledge, BLICEr is the
first work to leverage CEs for the BLI task.

3 Methodology

3.1 Background

BLI Task Description. We assume two lan-
guages, Lx (source) and Ly (target), with their
respective vocabularies X={wx

1 , . . . , w
x
|X |} and

Y={wy
1 , . . . , w

y
|Y|}. Let us denote the Cartesian

set of all possible cross-lingual word pairs as Π =
X × Y , and a word pair from Π as π=(wx, wy).
As in a large body of recent BLI work that focuses
on mapping-based BLI methods (Mikolov et al.,
2013; Glavaš et al., 2019; Li et al., 2022, inter
alia), we assume (i) DS , a set of seed word trans-
lation pairs for training, and (ii) DT , a test set of
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word pairs for evaluation, such that DS ,DT ⊂ Π
and DS ∩ DT = ∅. Similar to prior work, we then
formulate the BLI task as learning a mapping func-
tion f : Π → R; f in fact measures cross-lingual
word similarity between the words from the input
pair π (Heyman et al., 2017; Karan et al., 2020).
At inference, the BLI task in the Lx → Ly trans-
lation direction is then to retrieve the most similar
Ly word for each Lx word wx in DT : this is the
word ŵy from Y that maximises the cross-lingual
similarity score obtained by f . More formally:1

ŵy = argmaxwy∈Y f(wx, wy). In low-resource
setups where only a small seed dictionary DS is
available as bilingual supervision, most state-of-
the-art BLI approaches are still based on the induc-
tion of CLWEs (Ruder et al., 2019).

CLWEs. Let X∈R|X |×d and Y ∈R|Y|×d denote an
already aligned (or shared) CLWE semantic space,
where Lx words are represented by real-valued
vectors/CLWEs from X , and the representations
of Ly words are provided in Y . In other words, the
d-dimensional row vector xi from X correspond
to the specific word wx

i ∈ X , and the same holds
for the target language.

A plethora of different methods with various
data requirements and bilingual supervision can be
used to induce such CLWEs (Ruder et al., 2019).
Most commonly, due to reduced bilingual super-
vision requirements, the CLWEs are induced by
(i) pretraining monolingual word embeddings in-
dependently in two languages, and then (ii) map-
ping them by linear (Mikolov et al., 2013; Xing
et al., 2015; Joulin et al., 2018; Artetxe et al., 2018)
or non-linear transformations (Glavaš and Vulić,
2020; Mohiuddin et al., 2020), minimising the dis-
tance between the original monolingual word em-
bedding spaces. Optionally, such static CLWEs can
be combined or enhanced with external word-level
knowledge such as word translation knowledge em-
bedded in multilingual language models (Zhang
et al., 2021; Li et al., 2022; Vulić et al., 2022).

The actual similarity function f(π) is detached
from the chosen CLWE method to obtain X and
Y . Following prior work (Li et al., 2022), f(π) is
the Cross-domain Similarity Local Scaling (CSLS)

1It is possible that a single word can have several plau-
sible translations. Following previous work (Lample et al.,
2018; Glavaš et al., 2019; Li et al., 2022), given a query word
from the test set DT , as long as the model retrieves any of the
ground-truth translations in its top K predictions, it is consid-
ered a correct prediction based on the standard Precision@K
(P@K) BLI measure; see also §4.

measure (Lample et al., 2018) between the associ-
ated embeddings x ∈ X and y ∈ Y :

fC(π) = cos(x,y)− ΓX(y)− ΓY (x). (1)

Here, cos denotes the cosine similarity, ΓX(y) is
the average cosine similarity between y and its k
nearest neighbours (typically k = 10) in X; ΓY (x)
is defined similarly. CSLS is a standard similarity
function in BLI which typically outperforms the
‘vanilla’ cosine similarity, as it mitigates the hub-
ness problem during inference.2

3.2 BLICEr: Cross-Encoder Reranking
Method in a Nutshell. The proposed BLICEr
method is illustrated in Figure 1. The main idea
is to refine the initial cross-lingual word similar-
ity scores obtained from the original CLWE space
(see Eq. 1). In particular, assuming the seed dic-
tionary DS and the precalculated CLWEs, we first
derive positive translation pairs DP ⊇ DS (true
translation pairs) and hard negative pairs DN (se-
mantically similar words that do not constitute a
real translation pair). We then polarise the scores
for both DP and DN word pairs: the polarisation
step effectively increases semantic similarity scores
between positives and decreases them for nega-
tives. We then use the polarised scores to fine-tune
any mPLM (e.g., mBERT or XLM-R) to trans-
form them into BLI-oriented cross-encoders: that
is, we provide word pairs as input, aiming to predict
the correct similarity score. Finally, the mPLMs,
now transformed into BLI-focused cross-encoders,
produce cross-lingual similarity scores for unseen
word pairs, which work in synergy with and re-
fine the similarity scores produced by the original
cross-lingual word embeddings.

In what follows, we describe the main compo-
nents of the full BLICEr post-processing method.

Constructing Sets of Positive and Negative Pairs.
The cross-encoder fine-tuning crucially depends
on the positive and negative pair sets DP and DN .
The construction of DP starts from the set of gold
translation pairs DS . Prior work demonstrated
that additional highly reliable translation pairs can
be extracted automatically from the CLWE space
(Artetxe et al., 2018; Vulić et al., 2019). We thus
follow the approach of Li et al. (2022), and extract
additional Naug high-confidence pairs Daug: they

2We linearly scale fC scores to the range of [0, 1]. In the
rest of this paper, unless stated otherwise, we assume that all
fC scores are already scaled.
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are based on the most frequent Nfreq source and
target words in their respective vocabularies, where
we conduct both forward and backward BLI for
each of the Nfreq most frequent words in X and Y ,
and then retain word pairs with the highest CSLS
matching scores. The final augmentation set Daug

is obtained after removing the duplicates and word
pairs that contradict the pairs provided by DS . The
final set of positives is then DP = DS ∪ Daug.

In our preliminary analyses of CSLS similarity
scores within the original CLWE space, we have de-
tected that some non-translation pairs actually pro-
duce similar or even higher absolute CSLS scores
than the corresponding ground truth positive pairs.
Providing such information of hard negative pairs,
collected into the set of negatives DN , would be
a strong signal for CE fine-tuning: the core idea
is that the cross-encoder will be able to ‘overturn’
such wrong predictions from the original CLWE
space. In practice, for each (wx

+, w
y
+) ∈ DP , we

propose to retrieve their respective negative words
wx
−, w

y
− that satisfy the following:
{
fC(w

x
+, w

y
−) ⩾ fC(w

x
+, w

y
+)− δ,

fC(w
x
−, w

y
+) ⩾ fC(w

x
+, w

y
+)− δ,

(2)

where δ is a tunable margin. For a positive pair,
we include at most Nneg wx

− and wy
− words to

build negative pairs (wx
+, w

y
−), (w

x
−, w

y
+) ∈ DN .

We exclude pairs that already exist in DP , which
occasionally occurs due to polysemy; that is, it
holds DP ∩ DN = ∅.

We also define a reverse operation (·)⋆: π⋆ =
(wx, wy)⋆ = (wy, wx). Similarly, we extend the
definition on sets such that the reverse of a set is a
set of all its elements reversed, e.g., Π⋆ = Y × X .
It is evident that when using a set of fixed CLWEs,
it holds fC(π) = fC(π

⋆) (Eq. 1). However, CEs
are sensitive to the order of languages: for sym-
metry, we thus also provide D⋆

P and D⋆
N for CE

fine-tuning. Due to the imbalance between DP and
DN , we repeat each positive pair (in both DP and
D⋆

P ) Nrep times for CE fine-tuning. The choice
of the value Nrep impacts the distribution of word
pairs for CE fine-tuning: π ∼ pπ.

CE Fine-Tuning with Polarised Similarity
Scores. As mentioned, we observed that in the orig-
inal CLWE space there are frequent cases where a
true translation pair from the training set obtains
a lower CSLS score than one or more hard nega-
tive pairs (i.e., non-translations): fC(wx

+, w
y
+) <

fC(w
x
+, w

y
−). Such cases can be fixed or mitigated

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 =0.2

=0.6
=0.8

Figure 2: Linear polarisation functions with different
values of the hyper-parameter α.

by polarising similarity scores for the word pairs
in the sets DP and DN (and also D⋆

P and D⋆
N )

before CE fine-tuning. The polarisation step in
practice means 1) increasing the score fC(wx

+, w
y
+)

of positive pairs, and 2) decreasing fC(w
x
+, w

y
−).

The key rationale behind polarisation is exactly the
following: cross-encoders can resolve or mitigate
the difficult cases of highly similar hard negatives,
where polarisation enables us to provide the correct
learning signal for this purpose.

In practice, we construct a pair of monotonically
increasing polarisation functions g+, g− : R → R
to adjust the CSLS scores from the original CLWE
space, such that for a positive word pair it holds
g+ ◦ fC(π) ⩾ fC(π); for a negative word pair it
holds g− ◦ fC(π) ⩽ fC(π). We adopt a pair of
simple linear functions, where their domains and
codomains are within the [0, 1] interval, which is
the same interval of the output values of CEs.3 The
functions are as follows:

{
g+(z) = α · z − α+ 1,
g−(z) = α · z. (3)

α ∈ [0, 1] is a hyper-parameter, with its im-
pact on the polarisation function illustrated in Fig-
ure 2.When α = 1, the original unaltered CSLS
scores are used to fine-tune multilingual LMs;
when α = 0, binary labels (1: true translation pairs
, 0: negative pairs) are used for CE fine-tuning. The
linear polarisation function can be seen as a more
expressive function that generalises over the two
special cases.4

We then use the adjusted (i.e., polarised) scores
to fine-tune multilingual pretrained LMs. For a

3This is because the sigmoid function is applied on the
output logits of CEs.

4In our preliminary experiments, we also investigated non-
linear polynomials as polarisation functions, but such func-
tions led to only small to negligible BLI performance gains;
we thus omit them for brevity.
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word pair π, we denote the CE prediction as uπ =
σ(fθ(π)), where σ(·) is the sigmoid function. The
polarised similarity score for fine-tuning is denoted
as vπ = g+/− ◦ fC(π), where g+/−(π) is g+(π)
if π ∈ DP ∪ D⋆

P , and g−(π) if π ∈ DN ∪ D⋆
N . θ

represents the entire set of parameters of the cross-
encoder. We then train BLICEr with the standard
Binary Cross-Entropy loss:

L=− Eπ∼pπ[vπ ·log(σ(uπ))
+(1−vπ)·log(1−σ(uπ))].

Providing Text Input to Cross-Encoders. Cross-
encoders must ‘consume’ word pairs π as input.
We enclose the word pairs into text templates that
are fed to the CE. Given a word pair (wx, wy),
the final input is then in the format T (wx), T (wy),
where a template-based transformation is applied
to each word from the pair. There is a spectrum
of possible templates (e.g., see Appendix B for
a list of 16 templates we designed), and in our
main experiments we rely on the following one:
T (w) = [w] ([Lw])!, where [w] is replaced by the
actual word, and [Lw] is the word for the language
to which w belongs (i.e., more precisely w can
be found in the corresponding vocabulary of lan-
guage Lw) in that actual language. For instance, the
CE input for an English-French word pair (apple,
pomme) is apple (english)!, pomme (français)!.

In practice, each mPLM’s dedicated tokeniser
then splits the template text input of two words
into two sequences of WordPiece/subword tokens,
inserts the special separation token between them,
and appends and prepends other special tokens.5

Combining Similarity Scores. At BLI inference,
we combine the similarity scores computed by the
fine-tuned CE with the original CLWE scores, via
a standard linear interpolation:

f̃θ(π) =
σ(fθ(π)) + σ(fθ(π

⋆))

2
. (4)

fMix(π) = (1− λ)fC(π) + λf̃θ(π), (5)

where λ ∈ [0, 1] is a tunable hyper-parameter.

CE Reranking. One major drawback of cross-
encoders is their high computation overhead for
retrieval tasks with a large number of items in the

5Different CEs may have different input text formats.
XLM-R: [s] ... [/s] [/s] ... [/s]; mBERT: [CLS]
... [SEP] ... [SEP]. In the two examples ... denotes a
subword sequence, [s] and [CLS] are special prefix tokens,
and [/s] and [SEP] are special separation/suffix tokens.

target set (Karpukhin et al., 2020; Humeau et al.,
2020; Geigle et al., 2022, inter alia). In particular,
given a source word wx, in order to predict its trans-
lation in Y , CE models need to calculate similarity
scores over all candidate pairs in Y . We thus fol-
low the body of work in information retrieval (Lin
et al., 2021), and adopt a more efficient, two-stage
‘retrieve-and-rerank’ approach (Karan et al., 2020;
Geigle et al., 2022). First, we use more efficient
CLWEs to retrieve the Ncand ≪ |Y| candidate
pairs with the highest similarity scores, and then
rerank them relying on the additional knowledge
from the CEs, based on Eq. 5. Feeding only the
Ncand pairs to the CEs substantially decreases the
computational overhead.

4 Experimental Setup

4.1 BLI Setups and Datasets

We use two standard and established BLI datasets:
1) XLING (Glavaš et al., 2019) and 2) PanLex-BLI
(Vulić et al., 2019). XLING provides BLI train-
ing and test lexicons covering 8 languages from
diverse language families (Croatian: HR, English:
EN, Finnish: FI, French: FR, German: DE, Ital-
ian: IT, Russian: RU, Turkish: TR). We consider
all 14 EN→∗ and ∗→EN BLI directions. Further,
for each BLI direction, we run experiments in su-
pervised settings (i.e., where the training set DS

covers 5k word pairs) and semi-supervised settings
(i.e., |DS | = 1k). PanLex-BLI is a BLI benchmark
oriented towards low-resource languages. We use
a subset of PanLex-BLI comprising six diverse lan-
guages (Bulgarian: BG, Catalan: CA, Estonian:
ET, Georgian: KA, Hebrew: HE, Hungarian: HU),
yielding a total of 30 BLI directions. Since we
deal with lower-resource languages in PanLex-BLI,
we consider only semi-supervised setups with 1k
pairs for training. Both XLING and PanLex-BLI
trim the vocabularies of each language to the most
frequent 200k words, and the standard choice of
pretrained fastText word embeddings (Bojanowski
et al., 2017) is used to derive CLWEs (see also
Appendix F).

Both datasets provide a test set of 2k work pairs
for each language pair, without any overlap with the
training pairs. We report the standard Precision@1
(P@1) scores.6 CSLS with k=10 (see Eq. 1) is used
as the CLWE-based similarity function.

6We observed very similar performance trends for P@5
and Mean Reciprocal Rank (MRR) as BLI measures.
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4.2 CLWE Models (Baselines)

Our BLI method is evaluated against a represen-
tative set of strong SotA BLI models from recent
literature; all of them are CLWE-based and with
publicly available implementations. Here, we pro-
vide brief summaries:7

RCSLS (Joulin et al., 2018) is a representative
CLWE model trained directly with the BLI-style
objective and displays strong performance in super-
vised BLI tasks. It first learns an initial mapping via
Procrustes (Xing et al., 2015) and then fine-tunes
the mapping via a relaxed CSLS loss.

VECMAP (Artetxe et al., 2018) leverages a self-
learning procedure and demonstrates strong perfor-
mance in unsupervised and semi-supervised BLI
settings. It also supports unsupervised BLI. For the
supervised setting, its self-learning is switched off,
producing better BLI results.

ContrastiveBLI (Li et al., 2022) is the current
SotA BLI model outperforming all existing meth-
ods in supervised and semi-supervised BLI settings.
It is a two-stage model where both stages, termed
C1 and C2, leverage contrastive fine-tuning. Stage
C1 is based purely on static CLWEs (i.e., CLWEs
derived from static WEs such as fastText) and it
refines an initial CLWE mapping via BLI-oriented
contrastive fine-tuning with a self-learning proce-
dure, attracting true translation pairs together and
pushing away hard negative pairs. Stage C2 first
derives ‘decontextualised’ mBERT word embed-
dings via contrastively tuning a pretrained mBERT
model, and then linearly combines C1-induced
CLWEs with mBERT-based word vectors. C2
typically further improves BLI performance over
C1’s output. In this work, we provide comparisons
against CLWEs from both stages.8

For all the baselines, we follow their original
suggested settings and hyper-parameter choices for
supervised and semi-supervised BLI settings.

7For further technical details and descriptions of each BLI
model, we refer to their respective publications. We used the
publicly available implementations of all the baseline models.

8Li et al. (2022) empirically validated that other standard
BLI methods such as LNMap (Mohiuddin et al., 2020) or
FIPP (Sachidananda et al., 2021) yield BLI performances
which are on average similar to or weaker than those obtained
by RCSLS and VECMAP. Moreover, all the methods: RCSLS,
VECMAP, FIPP, and LNMap, are consistently outperformed
by ContrastiveBLI’s C1 and C2 stages (Li et al., 2022), which
serve as our strongest BLI baselines. Because of that and for
clarity, we omit FIPP and LNMap from the experiments.

4.3 BLICEr: Training Setup and
Hyper-parameters

Training Setup. Since BLI datasets typically
do not provide separate development sets, previ-
ous work conducted hyper-parameter search on
a randomly selected language pair (Glavaš et al.,
2019; Karan et al., 2020; Li et al., 2022) from the
BLI benchmark. We adopt this approach, and
tune BLICEr’s hyper-parameters on the (EN,TR)
pair from XLING. For PanLex-BLI, we inherit all
hyper-parameter values from the XLING experi-
ments, and only further tune the λ value on the
randomly sampled (HU,KA) pair. We also select
the final text template (see §3 and Appendix B) in
the same fashion.

Multilingual Pretrained Language Models. We
test three mPLMs: mBERT (Devlin et al., 2019),
XLM-Rbase, and XLM-Rlarge (Conneau et al.,
2020). Unless noted otherwise, XLM-Rlarge is
used as the main model for BLICEr.

Hyper-parameters. For supervised setups, BLICEr
is fine-tuned for 3 epochs, Naug=0, Nrep=8, δ=0.1,
and α=0.7; for semi-supervised setups, BLICEr is
trained for 5 epochs, Naug=4k, Nrep=4, δ=0.2, and
α=1.0. The λ values for different setups are listed
in Appendix E. In all BLI setups, we use AdamW
(Loshchilov and Hutter, 2019) with the learning
rate of 1.2e-5, and the weight decay is 0.01; the
maximum sequence length is 20, the batch size is
256, Nfreq=20k, Nneg=28, and Ncand=28 (see §3
again for the description of each hyper-parameter).

5 Results and Discussion

The main results on XLING and PanLex-BLI are
presented in Table 1 and Table 2, with additional
results available in Appendix D). The tables span
14 + 30 = 44 BLI directions, in supervised and
semi-supervised scenarios, and with four CLWE
methods respectively, which yields a total of 352
different BLI setups. One major quantitative find-
ing is that the proposed BLICEr method derives
gains in 351/352 setups. In what follows, we delve
deeper into the analyses across multiple aspects.

Supervised and Semi-Supervised Setups. Our
results on XLING demonstrate that BLICEr yields
outstanding performance in both supervision se-
tups. In the 5k-setup, the average gain over four
CLWE models is 7.76 P@1 points, and the value
is 7.35 for the 1k-setup. Combining BLICEr with
the two strongest baseline BLI models, C1 and
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[5k] Pairs EN→DE DE→EN EN→FI FI→EN EN→FR FR→EN EN→HR HR→EN EN→IT IT→EN EN→RU RU→EN EN→TR TR→EN Avg.

RCSLS 57.60 56.55 42.05 41.25 66.55 63.11 37.90 35.67 64.05 61.50 49.40 48.66 39.05 37.43 50.06
RCSLS + BLICEr 64.00 58.95 53.60 52.60 71.75 66.17 53.15 48.92 70.50 65.79 60.45 56.26 50.35 45.74 58.44

VECMAP 51.00 55.24 37.75 43.51 63.10 62.75 34.05 39.08 60.40 62.17 39.65 49.35 32.05 39.24 47.81
VECMAP + BLICEr 59.95 58.16 53.05 53.65 69.70 65.44 54.60 52.55 69.80 65.79 56.95 55.53 48.65 46.17 57.86

C1 54.90 57.64 44.50 46.24 65.05 63.84 40.60 42.29 63.45 63.57 49.15 51.86 41.35 42.60 51.93
C1 + BLICEr 62.75 59.68 54.25 54.02 70.75 66.48 55.40 53.55 70.05 66.10 59.25 57.41 51.05 48.14 59.21

C2 58.05 59.31 47.15 49.97 67.55 65.39 47.85 49.13 65.25 64.65 50.80 55.21 45.05 44.46 54.99
C2 + BLICEr 63.45 60.67 55.95 55.33 70.90 67.36 57.55 55.65 70.25 66.87 60.40 58.25 52.85 48.88 60.31
[1k] Pairs EN→DE DE→EN EN→FI FI→EN EN→FR FR→EN EN→HR HR→EN EN→IT IT→EN EN→RU RU→EN EN→TR TR→EN Avg.

RCSLS 46.10 48.25 28.35 28.38 56.50 55.56 22.50 22.88 55.20 53.64 35.50 36.62 23.00 24.65 38.37
RCSLS + BLICEr 56.50 55.97 45.90 44.56 63.65 61.87 41.10 40.03 64.45 60.83 52.25 49.40 40.20 38.55 51.09

VECMAP 48.25 54.25 27.75 41.30 60.30 61.25 25.50 37.56 57.45 60.88 24.80 46.31 26.55 37.11 43.52
VECMAP + BLICEr 50.50 57.43 33.30 51.92 63.35 65.29 37.75 51.76 61.00 64.50 28.60 52.80 34.40 46.22 49.92

C1 50.45 56.29 42.15 45.35 61.65 63.27 35.65 40.77 59.50 62.74 42.55 50.34 38.10 42.23 49.36
C1 + BLICEr 52.50 59.36 50.95 54.02 64.40 65.75 49.30 53.34 65.05 65.12 50.80 56.21 46.55 48.40 55.84

C2 51.00 57.17 44.45 48.34 62.05 64.25 42.35 46.82 61.35 64.03 46.15 53.17 41.30 43.56 51.86
C2 + BLICEr 51.05 58.95 50.15 53.91 63.00 65.24 50.90 54.81 62.85 64.65 52.70 56.68 46.35 47.82 55.65

Table 1: BLI scores (P@1×100%) on the XLING BLI benchmark in supervised and semi-supervised scenarios.
We apply the proposed BLICEr method to all four CLWE-based baselines (i.e., the ‘baseline + BLICEr’ rows). The
scores in bold denote the highest score per column and supervision setup.

[1k] Pairs BG→∗ ∗→BG CA→∗ ∗→CA HE→∗ ∗→HE ET→∗ ∗→ET HU→∗ ∗→HU KA→∗ ∗→KA Avg.

RCSLS 14.97 15.36 12.61 13.54 9.37 7.57 10.30 10.58 14.48 14.30 6.80 7.18 11.42
RCSLS + BLICEr 30.92 31.15 26.31 26.84 19.73 17.43 23.96 25.64 28.96 28.51 17.69 18.01 24.60

VECMAP 32.25 31.35 26.08 32.62 26.06 24.41 26.43 23.94 30.65 33.56 22.76 18.35 27.37
VECMAP + BLICEr 42.15 40.60 32.39 39.20 34.14 35.54 38.05 34.75 38.38 41.20 33.90 27.70 36.50

C1 35.96 34.97 31.41 35.04 26.37 25.69 28.06 26.85 36.45 36.38 22.34 21.65 30.10
C1 + BLICEr 47.21 44.75 41.31 43.21 36.31 37.67 41.21 40.45 45.28 44.21 34.73 35.77 41.01

C2 40.14 38.98 35.67 39.41 30.05 29.51 33.31 33.21 39.78 38.89 25.22 24.17 34.03
C2 + BLICEr 48.29 45.88 42.76 44.46 38.25 39.07 43.23 42.82 45.74 44.86 36.06 37.23 42.39

Table 2: BLI scores (P@1×100%) on PanLex-BLI. L →∗ and ∗ →L denote the average scores where L is the
source and target language respectively. Detailed results for each language pair are in Appendix D.

[5k] Pairs EN→∗ ∗→EN Avg.

C1 51.29 52.58 51.93
C1 + BLICEr (off-the-shelf) 50.9 52.40 51.65
C1 + BLICEr (w/o Template) 59.81 57.51 58.66

C1 + BLICEr 60.50 57.91 59.21

C2 54.53 55.45 54.99
C2 + BLICEr (off-the-shelf) 54.46 55.51 54.99
C2 + BLICEr (w/o Template) 61.31 58.39 59.85

C2 + BLICEr 61.62 59.00 60.31

[1k] Pairs EN→∗ ∗→EN Avg.

C1 47.15 51.57 49.36
C1 + BLICEr (off-the-shelf) 47.14 51.59 49.37
C1 + BLICEr (w/o Template) 53.96 56.89 55.43

C1 + BLICEr 54.22 57.46 55.84

C2 49.81 53.91 51.86
C2 + BLICEr (off-the-shelf) 49.81 53.91 51.86
C2 + BLICEr (w/o Template) 53.94 57.00 55.47

C2 + BLICEr 53.86 57.44 55.65

Table 3: Ablation study. P@1×100% scores.

C2, yields average gains of 6.3 (5k-setup) and 5.14
points (1k-setup). The baseline BLI scores in the
5k-setup are already much higher than in the 1k-
setup, intuitively offering less room for further per-
formance boosts. However, we observe substantial
gains with BLICEr in the 5k-setup across the board,
suggesting that BLICEr effectively leverages the

more abundant ‘gold’ bilingual supervision in the
5k-setup, as well as the ‘silver’ supervision derived
from the CLWE space, which is more accurate in
the 5k-setup than in the 1k-setup.

Compatibility with Different CLWEs. The re-
sults indicate that BLICEr is compatible with all
CLWE baselines. The ‘C2 + BLICEr’ model
achieves the highest average score in the XLING
(5k) and PanLex-BLI (1k) setups. The ‘C1 +
BLICEr’ variant is the best-performing one in the
XLING (1k) setup. Overall, we observe a gen-
eral trend: 1) BLICEr derives a larger absolute gain
when applied to a weaker input CLWE space, but
2) starting from a stronger CLWE backbone still
yields a stronger ‘CLWE + BLICEr’ model in terms
of the absolute BLI performance.9

Performance over Languages. The results fur-
ther indicate that the usefulness of BLICEr, while
observed for all language pairs, is especially pro-

9There are still some slight deviations from the general
trend: e.g., the baseline VECMAP outperforms RCSLS in
the XLING (1k) setup on average, but ‘RCSLS + BLICEr’
surpasses ‘VECMAP + BLICEr’ by 1.17 points.
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nounced for typologically more distant and lower-
resource language pairs. The average gain over
four CLWE backbones in the PanLex-BLI (1k) ex-
periments is 10.4 P@1 points. Directly modeling
interaction between two text items (e.g., two words
turned into two text templates in our case) which
allows them to learn finer-grained ‘interaction fea-
tures’ (Thakur et al., 2021; Geigle et al., 2022), CEs
seem especially important in low-resource setups.

Ablation Study and Further Analysis. We now
study the effectiveness of each key component of
BLICEr, basing our analyses on the best-performing
baseline CLWEs: C1 and C2.

First, the effectiveness of CE fine-tuning is indi-
cated by the results in Table 3. Combining off-the-
shelf mPLMs with the baseline CLWEs derives no
gains at all. We further investigate the usefulness
of templates (see §3), with results also provided in
Table 3. In general, the scores indicate that tem-
plates are not crucial for BLI performance, and
simply providing two words to the CE without any
extra template also yields very strong BLI perfor-
mance across the board. We observe only slight
average gains in both supervision setups. We also
provide average results per each tested template in
Appendix B, further suggesting that strong gains
are achieved irrespective of the chosen template.

Further, we study the impact of the underlying
mPLM on the final BLI performance, with the re-
sults summarised in Table 4. The scores render
our BLICEr method useful with all mPLMs. As
expected, the largest XLM-Rlarge model yields the
best performance, and we also note a slight edge of
XLM-Rbase over mBERT.

Figure 3 further plots the impact of polarisation.
First, we note that there are substantial gains with
all the α values (cf. Table 1). In the 5k-setup, polar-
isation achieves a further average gain of 2 points
(α=0.7 versus α=1.0). In the 1k-setup, it seems that
using the original CLWE similarity scores without
polarisation (i.e., α=1.0) yields slightly better re-
sults. We attribute this behaviour to potentially
noisy ‘silver’ positive pairs in the 1k-setup, which
might dilute the gold knowledge from DS as the po-
larisation step might amplify the noise further. Five
times more abundant ‘gold’ supervision and more
reliable CLWEs in the 5k-setup yield a stronger
learning signal for BLICEr, and this undesirable
phenomenon then gets mitigated.

Finally, Figure 4 demonstrates the impact of in-
terpolation of the CE-based scores and the original

[5k] Pairs EN→∗ ∗→EN Avg.

C1 51.29 52.58 51.93
C1 + BLICEr (mBERT) 55.25 54.84 55.05

C1 + BLICEr (XLM-Rbase) 57.09 55.76 56.43
C1 + BLICEr (XLM-Rlarge) 60.50 57.91 59.21

C2 54.53 55.45 54.99
C2 + BLICEr (mBERT) 56.29 55.82 56.06

C2 + BLICEr (XLM-Rbase) 57.59 56.57 57.08
C2 + BLICEr (XLM-Rlarge) 61.62 59.00 60.31

[1k] Pairs EN→∗ ∗→EN Avg.

C1 47.15 51.57 49.36
C1 + BLICEr (mBERT) 50.36 54.25 52.30

C1 + BLICEr (XLM-Rbase) 51.46 55.17 53.31
C1 + BLICEr (XLM-Rlarge) 54.22 57.46 55.84

C2 49.81 53.91 51.86
C2 + BLICEr (mBERT) 50.28 54.58 52.43

C2 + BLICEr (XLM-Rbase) 51.19 55.38 53.28
C2 + BLICEr (XLM-Rlarge) 53.86 57.44 55.65

Table 4: BLICEr based on different pretrained LMs.
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Figure 3: Average BLI scores on XLING with different
values of the polarisation hyper-parameter α.

CLWE scores. The bell-shaped curves across dif-
ferent BLI setups 1) clearly indicate the synergistic
effect and the usefulness of interpolation across the
board, and also 2) show that the (near-)optimal λ
values depend on the amount of supervision. In
the 5k-setup, the peak λ values put more weight to
the original CLWE space (λ=0): this is expected
as the starting CLWE space is more accurate when
induced with more ‘gold’ supervision, and the CE-
based knowledge helps to a lesser extent. The peak
λ values are higher for the resource-leaner 1k-setup.
Figure 4 also reveals that using only the CE output
(λ=1) yields sub-optimal BLI performance, and the
true benefit of CE fine-tuning is displayed only in
the synergy with the original CLWE space.

Unsupervised and Zero-Shot Setups. While this
paper mainly focuses on arguably more practical
supervised and semi-supervised settings,10 we also

10For instance, Vulić et al. (2019) empirically prove that
using even a small amount of supervision (e.g., 200, 500
or 1,000 word translation pairs) always outperforms fully
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Figure 4: Average BLI scores on XLING with different
values of the interpolation hyper-parameter λ.

conduct preliminary investigations of BLICEr in
fully unsupervised and zero-shot settings, where
no direct bilingual supervision between the source
and the target is assumed: see Appendix C for the
overview of the experimental setup. The results
in these extreme settings, provided in Appendix C,
further validate the usefulness of BLICEr as a post-
processing method: it again yields substantial and
consistent gains when applied to the backbone fully
unsupervised VECMAP CLWE space.

6 Conclusion

We presented BLICEr, a simple and effective
post-hoc reranking method for improved bilin-
gual lexicon induction (BLI). BLICEr is applica-
ble to any underlying cross-lingual word embed-
ding (CLWE) space. It is based on fine-tuning
multilingual pretrained language models into BLI-
oriented cross-encoders with a limited amount of
direct bilingual supervision (i.e., seed word trans-
lation pairs). At BLI inference, the BLICEr output
refines cross-lingual word similarities from the un-
derlying CLWE space. We conducted extensive
empirical studies covering a total of 352 supervised
and semi-supervised BLI setups, and observe sub-
stantial gains against representative and strong BLI
baselines across the board. We also performed a
series of ablation studies and validated the unsu-
pervised and zero-shot capabilities of BLICEr. In
future research we plan to experiment with other
multilingual language models (He et al., 2021) and
their ensembles, and we will extend the work to
other languages and multilingual lexical tasks.

unsupervised BLI methods, while Artetxe et al. (2020) and
Wang et al. (2022) discuss that at least some word translation
pairs such as PanLex dictionaries (Kamholz et al., 2014) are
available for thousands of the world’s languages.
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Limitations

There are almost 7, 000 languages worldwide
(Lewis, 2009). However, publicly available fast-
Text word embeddings currently only cover 294 lan-
guages,11 mBERT supports only 104 languages,12

and XLM-R only 100.13 More effort is needed to-
wards building bilingual dictionaries and language
technology tools for under-represented and low-
resource languages. Researchers, in the future, may
also consider to develop techniques to address low-
resource languages even without enough monolin-
gual data for pretraining language models. Our
work does not extend the scope to additional lan-
guages, and is by proxy also constrained by the
current limitations of the underlying models such
as fastText, mBERT, and XLM-R.

Some of the existing established BLI datasets
were built with publicly available translation tools
such as Google Translate plus some simple post-
hoc refinements (Lample et al., 2018; Glavaš et al.,
2019). There are occasionally noisy data points
in the supposedly ‘gold standard’ datasets (Ke-
mentchedjhieva et al., 2019), they are typically
not fully adapted to languages with more produc-
tive morphosyntactic systems (Czarnowska et al.,
2019), and the control of synonyms and polysemy
is difficult. While these evaluation data deficiencies
do not impact relative comparisons between BLI
models, for real-world applications gold standard
ground-truth data of higher quality are needed for
a vast number of language pairs. Their careful cre-
ation and annotation should involve native speakers
of (low-resource) target languages, bilingual speak-
ers and linguists.

11https://fasttext.cc/docs/en/
pretrained-vectors.html

12https://github.com/google-research/bert
13https://github.com/facebookresearch/XLM
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Mladen Karan, Ivan Vulić, Anna Korhonen, and Goran
Glavaš. 2020. Classification-based self-learning for
weakly supervised bilingual lexicon induction. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics (ACL’20),
pages 6915–6922, Online. Association for Computa-
tional Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP’20), pages
6769–6781, Online. Association for Computational
Linguistics.

Yova Kementchedjhieva, Mareike Hartmann, and An-
ders Søgaard. 2019. Lost in evaluation: Misleading
benchmarks for bilingual dictionary induction. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP’19), pages 3336–3341,

Hong Kong, China. Association for Computational
Linguistics.

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Proceed-
ings of the International Conference on Learning
Representations (ICLR’18).

M. Paul Lewis, editor. 2009. Ethnologue: Languages of
the World, sixteenth edition. SIL International.

Yaoyiran Li, Fangyu Liu, Nigel Collier, Anna Korhonen,
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A Languages in Experiments

Family Language [Lw] Code
Afro-Asiatic Hebrew HE

Germanic
English english EN

German deutsch DE

Kartvelian Georgian KA

Romance
Catalan català CA

French français FR

Italian italiano IT

Slavic
Bulgarian BG

Croatian hrvatski HR

Russian RU

Turkic Turkish türkçe TR

Uralic
Estonian eesti ET

Finnish suomi FI

Hungarian magyar HU

Table 5: Languages involved in our experiments, cat-
egorized by language family. We also show their ISO
639-1 codes and [Lw] used in some text templates (see
§3 and Appendix B).

B Text Templates

We experiment with 16 different templates as fol-
lows. Among the 16 templates, T1−T4 are 4 basic
templates. T5 − T8 add a quotation mark (i.e., ‘’)
to each [w]. T9 − T12 add a full stop (i.e., ‘.’) at
the end of the template, and T13 − T16 append the
exclamation mark (i.e., ‘!’) to each sequence.

T1: [w]
T2: the word [w]
T3: [w] ([Lw])
T4: the word [w] in [Lw]
T5: ‘[w]’
T6: the word ‘[w]’
T7: ‘[w]’ ([Lw])
T8: the word ‘[w]’ in [Lw]
T9: [w].
T10: the word [w].
T11: [w] ([Lw]).
T12: the word [w] in [Lw].
T13: [w]!
T14: the word [w]!
T15: [w] ([Lw])!
T16: the word [w] in [Lw]!

An analysis supplementing the main analysis
in the main paper (see §5) shows the average re-
sults with each template; the model variant is ‘C2 +
BLICEr’ evaluated on XLING (5k) covering 14 BLI
directions. The results are summarized in Table 6.

First, among T1−T4, there is a very minor varia-
tion in the results, where T3 seems to be slightly bet-
ter than the other three templates. Second, adding

T1 T2 T3 T4

59.85 59.59 60.15 60.04

T5 T6 T7 T8

58.60 58.38 58.34 58.47

T9 T10 T11 T12

59.16 59.80 60.12 59.88

T13 T14 T15 T16

59.85 59.82 60.31 59.97

Table 6: ‘C2 + BLICEr’ with different templates.
P@1×100% scores (average over all 14 BLI directions
in the XLING benchmark (5k pairs).

quotation marks (T5−T8) results in decreased BLI
performance when compared to the basic templates
(or using no template at all). Third, adding a full
stop or an exclamation mark (T9 − T16) does not
have any real impact on the results. We again em-
phasize 1) that in our main experiments we pick the
template T15 that achieves best performance on a
single language pair (EN,TR), which we also use to
tune all the hyper-parameters, but 2) not using any
template (effectively using the template T1) also
yields very strong results across the board (see also
the main paper).

C Unsupervised and Zero-shot Setups

This paper mainly focuses on the more practical su-
pervised and semi-supervised settings, but as men-
tioned in the main paper (see the last paragraph of
§5) we also conduct preliminary investigations of
BLICEr in fully unsupervised and zero-shot settings,
where no direct bilingual supervision between the
source and the target is assumed. We rely on the
unsupervised variant of VECMAP, a strong un-
supervised BLI method (Glavaš et al., 2019), as
the CLWE backbone for BLICEr: among our four
CLWE baselines, VECMAP is the only one that
supports fully unsupervised BLI.

We consider BLI tasks between several (ran-
domly sampled) language pairs from the XLING
benchmark that do not include English as one of
the languages, and dispose of any direct bilingual
supervision. First, the fully unsupervised setup is
in fact a variant of our semi-supervised setup: for
CE fine-tuning we now use only ‘silver’ word trans-
lation pairs obtained from the unsupervised CLWE
space. We rely on the same hyper-parameters as
in the semi-supervised setups (see §4). Second,
in the zero-shot setup, while translating from the
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DE→TR TR→DE FI→HR HR→FI IT→FR FR→IT Avg.

VECMAP 23.79 26.46 28.80 27.72 65.22 63.42 39.24
+BLICEr (unsuper) 29.53 35.78 37.78 37.19 64.44 64.46 44.86

+BLICEr (zero-shot) 33.54 35.68 35.16 37.09 63.10 64.82 44.90

Table 7: BLICEr in unsupervised and zero-shot setups.

language Lx to Ly, we assume that we only pos-
sess sets of word translations for the language pairs
(EN, Lx) and (EN, Ly). This experiment aims to
verify if BLICEr can effectively leverage the inher-
ent multilinguality of the underlying mPLMs.14

In particular, we assume 2k seed word pairs for
(EN, Lx) and another 2k pairs for (EN, Ly).15 For
CE fine-tuning, we then use the 4k positive word
pairs, together with negative pairs retrieved from
the two CLWE spaces,16 without any augmentation
with ‘silver’ translation pairs. We adopt the hyper-
parameter values from the supervised setup (see §4
again).

The results in Table 7 demonstrate that BLICEr
is also effective in unsupervised and zero-shot set-
tings, yielding substantial gains over the unsuper-
vised VECMAP baseline on average. The only
exception is the highly similar language pair IT-FR,
where the baseline CLWE model already strikes
extremely high P@1 performance. Importantly, the
results in zero-shot setups validate that BLICEr im-
plicitly benefits from the multilingual information
stored in the underlying XLM-Rlarge model.

In addition, we also show ‘VECMAP + BLICEr’
results on XLING EN→∗ and ∗→EN in fully un-
supervised setups. Table 8 presents BLICEr re-
sults where the unsupervised VECMAP model is
used as the CLWE backbone. Note that the hyper-
parameters are also tuned on the language pair (EN,
TR). Consequently, we point out that the ‘VECMAP

+ BLICEr’ results below in Table 8 for the EN→TR

14The input domains during training and evaluation are
totally different. The zero-shot capability of BLICEr may show
that the zero-shot training with (EN, Lx) and (EN, Ly) input
can expose the word translation knowledge from mPLMs for
BLI between the pair (Lx, Ly).

15We randomly sample the 2k pairs from the respective 5k
training sets in XLING. We additionally ensure that there is no
overlap of English words between the two sets. This constraint
prevents naively deriving word pairs between Lx and Ly from
the two seed dictionaries via using the same word as the pivot.

16The negatives are derived from the semi-supervised C2-
based CLWE spaces which are based on the provided dictio-
naries of 2k pairs. We rely on semi-supervised C2 only for
deriving bilingual supervision for CE fine-tune, where (EN,
Lx) and (EN, Ly) input is fed to the CE. At BLI inference, we
use instead cross-lingual word similarity scores obtained from
unsupervised VECMAP for (Lx, Ly).

and TR→EN are in fact not unsupervised (we in-
clude them only for completeness).

D BLI Results on PanLex-BLI for
Individual Language Pairs

In Table 9, we present full BLI results per each
PanLex-BLI language pair, while the results in the
main paper are aggregated over a particular source
or target language (see Table 2).

E Values of the λ Hyper-parameter

The hyper-parameter values of λ are tuned on
(EN, TR) and (HU, KA) translation directions
for XLING and PanLex-BLI, respectively; λ ∈
{0, 0.01, 0.02, ..., 0.98, 0.99, 1}. Here, we show
the finally selected λ values in our experiments,
spanning the results in §5 and Appendix C.

F Reproducibility Checklist

• BLI Data: BLI datasets used in our experi-
ments are publicly available.17 18

• Static Word Embeddings: We adopt the stan-
dard monolingual word embeddings for deriv-
ing CLWEs, used in a body of prior work on
BLI. In fact, the XLING benchmark already
provides a set of preprocessed fastText WEs
trained on Wikipedia, which is then our start-
ing point.19 Panlex-BLI does not provide pro-
cessed WEs, so we follow the original instruc-
tions from the authors and adopt fastText WEs
trained on Common Crawl + Wikipedia.20

The WEs are trimmed to the most frequent
200k words for each language. The same WEs
are used for all CLWE baselines.

• Pretrained LMs: We derive CEs by fine-
tuning pretrained LMs includings the mBERT
variant ‘bert-base-multilingual-uncased’, and

17https://github.com/codogogo/xling-eval
18https://github.com/cambridgeltl/panlex-bli
19https://fasttext.cc/docs/en/

pretrained-vectors.html
20https://fasttext.cc/docs/en/crawl-vectors.

html
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EN→DE DE→EN EN→FI FI→EN EN→FR FR→EN EN→HR HR→EN EN→IT IT→EN EN→RU RU→EN EN→TR TR→EN Avg.

VECMAP 48.45 54.51 28.15 41.04 60.10 61.51 24.10 36.30 57.40 60.78 25.10 46.41 26.50 36.90 43.37
VECMAP + BLICEr (unsuper) 51.30 57.07 36.95 52.92 63.35 64.20 36.45 50.34 62.05 64.03 29.15 52.65 37.05 46.11 50.26

Table 8: BLI scores (P@1×100%) on the XLING benchmark, EN→∗ and ∗→EN unsupervised BLI tasks. Unsu-
pervised VECMAP is used as the CLWE backbone, and we use only ‘silver’ word translation pairs for cross-encoder
fine-tuning (see Appendix C).

[1k] Pairs - First Half BG→CA BG→HE BG→ET BG→HU BG→KA CA→HE CA→ET CA→HU CA→KA HE→ET HE→HU HE→KA ET→HU ET→KA HU→KA

RCSLS 18.40 10.86 14.92 19.44 11.25 9.36 10.39 18.12 6.66 5.51 10.77 3.47 15.57 6.55 7.99
RCSLS + BLICEr 34.29 23.48 32.95 36.40 27.51 20.34 26.66 31.33 19.86 16.14 24.57 3.47 32.14 18.36 20.85

VECMAP 39.66 30.80 27.88 38.77 24.13 24.87 22.21 35.47 14.29 17.66 33.56 13.61 35.60 17.80 21.91
VECMAP + BLICEr 41.88 44.96 41.13 46.64 36.13 31.67 32.88 39.67 19.58 28.68 39.75 24.41 44.53 27.87 30.52

C1 41.88 33.92 33.47 41.49 29.02 30.39 26.72 38.78 23.02 16.54 35.34 11.45 40.23 17.43 27.33
C1 + BLICEr 45.39 46.08 49.19 49.54 45.86 40.62 41.29 44.31 36.17 30.82 41.41 25.07 47.99 32.08 39.69

C2 43.93 38.64 40.50 44.62 33.04 34.69 35.51 41.44 26.64 21.65 36.43 14.20 44.59 18.91 28.06
C2 + BLICEr 46.14 47.02 51.21 50.17 46.91 41.60 45.24 44.59 37.60 33.91 42.96 28.80 48.44 33.62 39.24

[1k] Pairs - Second Half CA→BG HE→BG ET→BG HU→BG KA→BG HE→CA ET→CA HU→CA KA→CA ET→HE HU→HE KA→HE HU→ET KA→ET KA→HU

RCSLS 18.53 14.22 15.01 18.95 10.10 12.87 9.34 19.91 7.17 5.03 9.73 2.87 15.81 6.27 7.59
RCSLS + BLICEr 33.37 29.14 31.49 35.14 26.62 25.33 23.04 34.93 16.61 14.78 21.21 7.34 32.66 19.76 18.11

VECMAP 33.54 31.14 30.19 36.52 25.37 34.32 26.08 39.88 23.15 22.47 24.89 19.01 30.03 21.89 24.38
VECMAP + BLICEr 38.19 39.31 43.73 46.31 35.47 38.55 37.40 45.71 32.48 36.71 30.83 33.56 38.51 32.54 35.42

C1 38.13 33.67 33.96 39.86 29.23 34.84 29.89 43.89 24.69 18.78 33.14 12.21 38.02 19.53 26.05
C1 + BLICEr 44.19 42.19 46.26 48.16 42.96 42.09 43.43 49.45 35.72 36.28 41.74 23.62 47.37 33.55 37.78

C2 40.06 38.37 38.49 43.03 34.94 39.59 39.34 47.14 27.08 25.20 36.09 12.94 44.58 23.79 27.37
C2 + BLICEr 44.76 43.60 47.44 47.98 45.63 41.97 47.40 50.61 36.18 39.25 43.21 24.28 47.65 36.09 38.13

Table 9: BLI scores (P@1×100%) on the PanLex-BLI benchmark, consiting of six lower-resource languages. We
apply the proposed BLICEr to the four CLWE baselines (compare the ‘baseline + BLICEr’ results with the results
from the ‘raw’ baselines).

λ Values XLING: [5k] Pairs XLING: [1k] Pairs XLING: Unsupervised XLING: Zero-shot PanLex-BLI: [1k] Pairs

RCSLS + BLICEr (XLM-Rlarge) 0.29 0.82 - - 0.74

VECMAP + BLICEr (XLM-Rlarge) 0.36 0.61 0.68 0.68 0.65

C1 + BLICEr (mBERT) 0.18 0.38 - - -
C1 + BLICEr (XLM-Rbase) 0.22 0.40 - - -
C1 + BLICEr (XLM-Rlarge) 0.35 0.51 - - 0.65

C1 + BLICEr (XLM-Rlarge, off-the-shelf) 0.82 0.66 - - -
C1 + BLICEr (XLM-Rlarge, w/o Template) 0.22 0.46 - - -

C1 + BLICEr (XLM-Rlarge, α=0.0) 0.09 0.20 - - -
C1 + BLICEr (XLM-Rlarge, α=0.1) 0.15 0.14 - - -
C1 + BLICEr (XLM-Rlarge, α=0.2) 0.11 0.21 - - -
C1 + BLICEr (XLM-Rlarge, α=0.3) 0.20 0.24 - - -
C1 + BLICEr (XLM-Rlarge, α=0.4) 0.21 0.32 - - -
C1 + BLICEr (XLM-Rlarge, α=0.5) 0.32 0.28 - - -
C1 + BLICEr (XLM-Rlarge, α=0.6) 0.19 0.29 - - -
C1 + BLICEr (XLM-Rlarge, α=0.7) 0.35 0.30 - - -
C1 + BLICEr (XLM-Rlarge, α=0.8) 0.37 0.33 - - -
C1 + BLICEr (XLM-Rlarge, α=0.9) 0.45 0.43 - - -
C1 + BLICEr (XLM-Rlarge, α=1.0) 0.43 0.51 - - -

C2 + BLICEr (mBERT) 0.17 0.17 - - -
C2 + BLICEr (XLM-Rbase) 0.15 0.21 - - -
C2 + BLICEr (XLM-Rlarge) 0.31 0.50 - - 0.57

C2 + BLICEr (XLM-Rlarge, off-the-shelf) 0.67 0 - - -
C2 + BLICEr (XLM-Rlarge, w/o Template) 0.25 0.43 - - -

C2 + BLICEr (XLM-Rlarge, α=0.0) 0.14 0.14 - - -
C2 + BLICEr (XLM-Rlarge, α=0.1) 0.16 0.15 - - -
C2 + BLICEr (XLM-Rlarge, α=0.2) 0.17 0.17 - - -
C2 + BLICEr (XLM-Rlarge, α=0.3) 0.20 0.19 - - -
C2 + BLICEr (XLM-Rlarge, α=0.4) 0.22 0.17 - - -
C2 + BLICEr (XLM-Rlarge, α=0.5) 0.26 0.26 - - -
C2 + BLICEr (XLM-Rlarge, α=0.6) 0.26 0.22 - - -
C2 + BLICEr (XLM-Rlarge, α=0.7) 0.31 0.28 - - -
C2 + BLICEr (XLM-Rlarge, α=0.8) 0.42 0.33 - - -
C2 + BLICEr (XLM-Rlarge, α=0.9) 0.35 0.43 - - -
C2 + BLICEr (XLM-Rlarge, α=1.0) 0.44 0.50 - - -

Table 10: λ values. The cells with ‘-’ represent BLI setups not covered in our experiments: only unsupervised
VECMAP is used for XLING unsupervised and zero-shot setups; we conduct ablation study and investigate model
variants on XLING 5k and 1k setups only.

the XLM-R variants ‘xlm-roberta-base’ and
‘xlm-roberta-large’, all publicly available from
the huggingface.co model hub.

• Parameter Counts: The number of pa-

rameters are 167, 356, 416 for mBERT,
278, 043, 648 for XLM-Rbase, and
559, 890, 432 for XLM-Rlarge.

• Source Code: We release our code at https:
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//github.com/cambridgeltl/BLICEr.

• Computing Infrastructure: We run our code
on Wilkes3, a cluster with 80 nodes. Each
node has 4 × Nvidia 80GB A100 GPUs and
128× CPU cores. All our experiments require
only one node with 1× GPU and 32× CPU
cores.

• Software: Slurm 20.11.8, Python 3.9.7,
PyTorch 1.10.1, Transformers 4.15.0, and
Sentence-Transformers 2.1.0.

• Runtime (Wall Time): The BLICEr training
(XLM-Rlarge, C2 as the CLWE backbone) on
a language pair typically costs 10 minutes in
both supervised and semi-supervised BLI se-
tups. It takes 3 minutes for one BLI evaluation
run.

• Robustness: We found that the improvements
of BLICEr are robust over all language pairs
with different random seeds, and thus use a
fixed random seed 33 over all experiments.
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