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Abstract

Recently, dataset-generation-based zero-shot
learning has shown promising results by train-
ing a task-specific model with a dataset synthe-
sized from large pre-trained language models
(PLMs). The final task-specific model often
achieves compatible or even better performance
than PLMs under the zero-shot setting, with
orders of magnitude fewer parameters. How-
ever, synthetic datasets have their drawbacks.
They have long been suffering from low-quality
issues (e.g., low informativeness and redun-
dancy). This explains why the massive syn-
thetic data does not lead to better performance
– a scenario we would expect in the human-
labeled data. To improve the quality of dataset
synthesis, we propose a progressive zero-shot
dataset generation framework, PROGEN, which
leverages the feedback from the task-specific
model to guide the generation of new training
data via in-context examples. Extensive ex-
periments on five text classification datasets
demonstrate the effectiveness of the proposed
approach. We also show PROGEN achieves on-
par or superior performance with only 1% syn-
thetic dataset size compared to baseline meth-
ods without in-context feedback.

1 Introduction

Dataset generation with pre-trained language mod-
els (PLMs) has attracted enormous interest re-
cently due to the superior generative capacity of
PLMs. Given task-specific supervision, recent
work (Anaby-Tavor et al., 2020; Puri et al., 2020;
Kumar et al., 2020; Lee et al., 2021, inter alia)
manages to fine-tune the PLMs to synthesize high-
quality datasets for downstream applications. Nev-
ertheless, obtaining task supervision from human
experts can be expensive or even unrealistic. Re-
cent attempts (Schick and Schütze, 2021; Wang
et al., 2021; Meng et al., 2022, inter alia) turn
their eyes to the unsupervised dataset generation.

∗Work done while interning at Shanghai AI Lab.

Figure 1: Comparison of vanilla zero-shot dataset gen-
eration (ZEROGEN) and progressive zero-shot dataset
generation (PROGEN). In progressive zero-shot dataset
generation, we split the whole dataset generation pro-
cess into multiple phrases. In each phase, the generation
is steered by feedback from the previously generated
dataset, so as to synthesize a dataset with higher quality.

Among them, ZEROGEN (Ye et al., 2022) proposes
to first convert the task descriptions into carefully
designed prompts (Petroni et al., 2019; Brown et al.,
2020), and then use these prompts to steer the
PLMs to synthesize the training data for the final
task model. This approach allows highly efficient
inference as the final task model only has orders of
magnitude fewer parameters compared to PLMs,
yet achieves compatible or even better performance
than PLMs under the zero-shot setting.

The major drawback of synthetic datasets, how-
ever, is they often suffer from low-quality issues
(e.g., low informativeness, redundancy). Despite
we can generate as much data as computational re-
source allows, the massive generated data does not
automatically translate into better performances,
unlike in the human-labeling scenario.

To address this problem, we propose a
progressive zero-shot dataset generation frame-
work (Figure 1b), called PROGEN. In a nutshell,
PROGEN learns a model for a downstream task
by performing two phrases alternatively – using
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PLMs to create labeled examples leveraging the
feedback from the current task-specific model, and
training a task-specific model given the generated
labeled examples. To compute reliable signals as
feedback, we employ the influence function (Koh
and Liang (2017); IF) to quantify contribution to
the loss for each training point. In the context of
zero-shot learning where no human-annotated data
is assumed, we integrate a noise-resistant objec-
tive in the calculation of IF so that it can tackle
the noise in the synthetic dataset. To incorporate
feedback into PLMs, we sort the training samples
based on their quantified influence score, and for-
mulate those most influential ones as in-context
examples (Brown et al., 2020) to steer the gener-
ation. Overall, PROGEN has the following advan-
tages: 1) the quality estimation phrase requires no
human annotations, thus works in a purely zero-
shot learning setting; 2) unlike most controllable
generation methods that tune or require the access
to PLMs (Keskar et al., 2019; Dathathri et al., 2020;
Liu et al., 2021, inter alia), the in-context feedback
phrase does not need to modify parameters in the
PLM and incurs minimal disturbance to its gener-
ation procedure. Our main contributions are three
folds:

• We propose a progressive framework for zero-
shot dataset generation to generate higher-
quality dataset (§3);

• We propose noise-resistant influence function
to estimate the quality of each sample without
any human annotations (§3.1), and a learning-
free controllable generation method via in-
context feedback (§3.2);

• Across multiple text classification datasets,
we show our framework obtains better perfor-
mance over various prompt-based methods,
and achieves on-par zero-shot performance
with only 1% synthetic dataset size, when
compared to methods without in-context feed-
back (§4).

Our code can be found at https://github.
com/HKUNLP/ProGen.

2 Background

In this section, we briefly review the baseline ap-
proaches of zero-shot dataset generation and how
the synthesized dataset can be used for zero-shot
learning on downstream tasks.

Zero-shot Dataset Generation Take text clas-
sification task as an example, vanilla zero-shot
dataset generation methods (Meng et al., 2022; Ye
et al., 2022) aims to generate a synthetic dataset
D = {(x, y)} with the help of a PLM P . They first
sample a class label y from a uniform distribution:

y ∼ U(y1, y2, . . . , yk), (1)

where k is the number of classes. They then wrap
y up into a label-descriptive prompt T (y) to steer
the generation of x:

x ∼ P(·|T (y)). (2)

Since the parameters of P is frozen and the gen-
eration x for each y is deterministic, different
sampling algorithms (e.g., Top-k sampling (Fan
et al., 2018) and nucleus sampling (Holtzman et al.,
2020)) can be adopted to increase the diversity
of generated dataset. A synthetic dataset is con-
structed after pairing the generated x with y.

Dataset-generation-based Zero-shot Learning
The vast linguistic (Jawahar et al., 2019; Goldberg,
2019; Tenney et al., 2019) and factual (Petroni
et al., 2019; Jiang et al., 2020b) knowledge en-
coded in PLMs’ parameters is the key towards the
success of conventional prompt-based zero-shot
learning (PROMPTING) (Brown et al., 2020). How-
ever, PROMPTING fails to fully exert the capac-
ity of PLMs and heavily relies on gigantic PLMs
during inference. This motivates another line of
work (Meng et al., 2022; Ye et al., 2022) to ex-
plore a more flexible and efficient way of con-
ducting zero-shot learning based on dataset gen-
eration. Given the synthetic dataset generated as
above, a task-specific model is trained, allowing
any task-specific inductive bias and with an order-
of-magnitude smaller number of parameters com-
pared to PLMs. The performance of the final task-
specific model is mostly dominated by the quality
of the synthetic dataset. A low-quality dataset de-
grades the final zero-shot performance.

3 PROGEN

We now describe our framework for progressive
zero-shot dataset generation via in-context feed-
back (PROGEN), as shown in Figure 2. We fol-
low ZEROGEN (Ye et al., 2022) to build the back-
bone of our framework. Concretely, we first train
a task-specific model (TAM) with partially gener-
ated dataset. Then, assuming no access to human
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Figure 2: Framework of PROGEN for progressive zero-shot dataset generation. To update the prompt, we first train
a task-specific model (TAM) with the synthetic dataset, and then employ the noise-robust influence function to
measure the quality of each data point. Finally, the most influential subset is selected, which acts as feedback via
in-context learning. The whole framework works with a black-box PLM and requires no human annotations.

annotations, we estimate the influence of each sam-
ple via the noise-robust influence function. Finally,
with those identified most influential samples, we
explore the use of in-context learning to shift the
generation distribution towards that of influential
samples, so that the system generates more related
samples. The whole framework progressively con-
structs the synthetic dataset and enhances the per-
formance of the final task-specific model.

3.1 Annotation-free Quality Estimation

There are many factors in measuring the quality
of a dataset, e.g., diversity, annotation correctness,
spurious biases (Mishra et al., 2020; Wiegreffe and
Marasovic, 2021). However, it is often very subjec-
tive, making it unrealistic to calculate them all auto-
matically. Our solution to this is to infer the quality
of the individual samples in synthetic datasets us-
ing the performance of the final task-specific model
trained on the dataset as the surrogate. Concretely,
we propose to apply influence function (Koh and
Liang, 2017) on the task-specific model to give
sample-level influence scores with regard to the
loss of validation set. However, a clean valida-
tion set, which is crucial for producing reliable
influence scores, is inaccessible in the zero-shot
learning setting. Thus, we use a synthetic valida-
tion set and harness the influence function with a
noise-robust objective to handle the potential noise
in the synthetic validation set.

Formally, influence function measures the
change in the model’s loss on the test data-point
ztest = (x, y) if we up-weight the loss of a training
data-point z by ϵ:

Iup,loss (z, ztest )
def
=

dL
(
ztest, θ̂ϵ,z

)

dϵ

∣∣∣∣∣∣
ϵ=0

= ∇θL
(
ztest, θ̂

)⊤ dθ̂ϵ,z
dϵ

∣∣∣∣∣
ϵ=0

= −∇θL
(
ztest, θ̂

)⊤
H−1

θ̂
∇θL(z, θ̂),

(3)

where θ̂ϵ,z
def
= argminθ∈Θ 1

n

∑n
i=1 L (zi, θ) +

ϵL(z, θ) is the parameter if z were upweighted by
some small ϵ and Hθ̂ is the Hessian. Our noise-
robust validation-set level influence function is de-
fined as:

Iup,loss (z,Dval) = −∇θL
′
(
Dval, θ̂

)⊤
H−1

θ̂
∇θL(z, θ̂),

(4)

where L′ is a noise-tolerant loss. In this work, we
adopt Reverse Cross-Entropy (RCE) loss (Wang
et al., 2019), which has the following form:

L′
(
Dval, θ̂

)
=

|Dval|∑

i=1

ℓθ̂(ŷi, yi) = −
|Dval|∑

i=1

C∑

c=1

ŷc
i log(y

c
i ),

(5)

where ŷi is the predicted class for sample i, C is
the number of classes.1 A smaller negative value of

1log(0) is approximated to a constant A in the case of
yc
i = 0.
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Iup,loss indicates that upweighting the correspond-
ing training sample will decrease the validation
loss more, thus the sample is more valuable. Af-
ter sorting training samples with Iup,loss ascend-
ingly, we select top-M (e.g., 50) most valuable
samples to form a tiny dataset, which we denote as
Dhelpful = {(x, y)}.

In practice, we randomly sample a subset of
Dtrain and adopt the stochastic estimation method
described in Koh and Liang (2017) to efficiently
compute Iup,loss.

3.2 Feedback via In-context Learning
After identifying influence scores for each previ-
ously generated sample, we hypothesize that in-
cluding additional samples similar to those most
helpful ones can boost downstream performance.
Instead of purely paraphrasing those helpful sam-
ples individually, which may hinder the diversity
of synthetic dataset, we expect the model to learn
from the overall distribution of those helpful sam-
ples and generate new samples of similar quality.

Motivated by the striking capability of the in-
context Learning (Brown et al., 2020) for PLMs,
we propose to use the identified important samples
as in-context examples, so that they can shift the
generation distribution of PLMs to the ones that
are more beneficial to the training of the final task-
specific model. Formally, each x is now generated
as follows:

x ∼ P(·|T (y1,x1), . . . , T (yk,xk), T (y)), (6)

where all the in-context examples {(xi, yi)}ki=1 are
randomly selected from Dhelpful. Compared with
controllable text generation methods that directly
modify the parameters in the PLM, we argue that
the in-context learning methods incur minimal dis-
turbance to the model’s generation procedure.

The overall framework of PROGEN is elaborated
in Algorithm 1.

4 Experiments

4.1 Setup
Datasets We evaluate our method on five nat-
ural language text classification datasets, includ-
ing IMDb (Maas et al., 2011), SST-2 (Socher
et al., 2013), Rotten Tomatoes (Pang and Lee,
2005), Elec (McAuley and Leskovec, 2013) and
Yelp (Zhang et al., 2015). Among these datasets,
IMDB, SST-2, and Rotten Tomatoes are binary
classification benchmarks for movie reviews, Elec

Algorithm 1 Progressive Zero-shot Dataset Gener-
ation
Require: a PLM, a TAM, feedback interval I , it-

erations T .
1: Dtrain ← ∅
2: Dhelpful ← ∅
3: Dval ← Generate a validation set with PLM.
4: for feedback iteration t = 1, 2 . . . T do
5: Dnew ← Generate a dataset of size I with

PLM and Dhelpful via Eqn. 6.
6: Dtrain ←Dtrain ∪ Dnew.
7: TAM← Training with Dtrain and Dval.
8: Dhelpful ← Select most helpful subset from

Dtrain with TAM and Dval via Eqn. 4.
9: end for

Output: Dtrain.

and Yelp are binary classification tasks for elec-
tronic product reviews and restaurant reviews, re-
spectively. The sizes of the training and test set
are 25k/25k, 6.9k/0.8k, 8.5k/1k, 25k/25k, and
560k/38k for IMDb, SST-2, Rotten Tomato, Elec
and Yelp, respectively.

Evaluation Strategy Following Ye et al. (2022),
we evaluate the quality of the synthetic dataset by
first training a task-specific model (TAM) with the
dataset, and then testing it on a human-annotated
dataset (i.e., test set). We also explore other evalua-
tion metrics in § 4.4.

Baselines The TAM trained with the synthetic
dataset can perform zero-shot inference, hence, we
compare PROGEN with other zero-shot learning
baselines:

• PROMPTING. The prompt-based zero-shot
classification method based via PLMs (Brown
et al., 2020).

• PROMPTING∗. The calibrated prompting
method that reweighs each option according
to its priori likelihood (Holtzman et al., 2021).

• ZEROGEN. A recent zero-shot learning work
via dataset generation (Ye et al., 2022). They
first generate a dataset with a carefully de-
signed instruction, and then train a tiny task-
specific model (TAM) to conduct zero-shot
inference.

We also provide a non-zero-shot learning baseline
SUPERVISED where the same TAM is used but
trained on the human-annotated training set.

3674



TAM #Param Setting IMDb SST-2 Rotten Tomato Elec Yelp Avg.
#Gold Data

SUPERVISED
25k 6.7k 8.3k 25k 560k -

DistilBERT 66M 87.24 89.68 83.67 92.63 95.42 89.73
LSTM ∼7M 84.60 76.30 77.49 86.36 91.30 83.21

- 1.5B PROMPTING 70.50±14.3 71.05±26.0 68.58±22.2 72.76±6.62 75.52±10.2 71.68±15.9

PROMPTING∗ 77.31±2.23 82.63±8.35 78.66±7.23 78.03±2.29 80.30±6.69 79.39±5.36

DistilBERT 66M ZEROGEN 80.41±5.38 82.77±6.24 78.36±7.68 85.35±3.07 87.84±2.45 82.94±4.96

PROGEN 84.12±0.26 87.20±1.21 82.86±1.27 89.00±1.16 89.39±0.30 86.51±0.84

LSTM ∼7M ZEROGEN 70.18±8.53 75.53±10.1 72.48±9.36 75.84±5.74 83.75±2.17 75.56±7.19

PROGEN 77.85±0.84 80.96±1.78 77.27±1.51 82.85±3.17 86.03±1.62 80.99±1.78

Table 1: Evaluation results with two different scales of TAM. The scale of synthetic dataset is 100k for both
ZEROGEN and PROGEN. We report the average accuracy and corresponding standard deviation across multiple
prompts. The detailed results for each prompt are shown in Appendix B.

Implementation Details Following Ye et al.
(2022), we use GPT2-XL (Radford et al., 2018)
and Nucleus Sampling (Holtzman et al., 2020) with
p = 0.9 for dataset generation. Regarding prompt
selection, we adopt a series of prompts for each
task. The details of prompt selection are provided
in Appendix A. By default, the feedback interval I
is set to 1k, and iteration T is set to 100, which ends
up with a dataset of size 100k in total. Calculating
IF score for all training points is computationally
expensive, thus we only sample 10k samples in
each iteration. In practice, we find generate data
using feedback all the time hinders diversity, thus
we only apply feedback half of the time.

We implement an LSTM-based model and a
DistilBERT model as TAM to measure the qual-
ity of the synthetic dataset. For the LSTM-based
model, we use Adam optimizer (Kingma and Ba,
2015), a learning rate of 1e-3, an embedding dim
of 100, a hidden size of 300, and a layer num-
ber of 1. For DistilBERT, we fine-tune on each
dataset with Adam optimizer, with a learning rate
of 2e-5, a weight decay of 0.01, and other default
hyper-parameters as suggested by HuggingFace
Transformers library (Wolf et al., 2019). While us-
ing stochastic estimation in the influence function,
we randomly sample 10k samples from the whole
synthetic dataset, and calculate influence score for
those samples over the whole validation set. This
operation roughly costs 7 minutes. For all the ex-
periments, we run on a single NVIDIA A100 GPU,
and generating 100k examples cost 28h on average
for PROGEN.

4.2 Main Results

We evaluate the generated datasets by training
two different task-specific models and testing
their performance on multiple downstream tasks.
The results are shown in Table 1. We find that

SST-2 Elec Yelp
Baseline (ZEROGEN) 82.77 85.35 87.84
+ syn-random 86.81 87.94 87.96
+ syn-helpfulce 86.77 87.74 89.12
+ syn-helpfulrce(PROGEN) 87.20 89.00 89.39
+ gold 90.20 91.02 91.43

Table 2: Evaluation results when harnessing base-
line with different types of in-context examples. syn-
random: random generated samples. syn-helpfulce:
generated samples selected by influence function with
cross-entropy loss. syn-helpfulrce: generated sam-
ples selected by influence function with reverse cross-
entropy loss. gold: test set examples. We report the
average results across multiple prompts.

PROMPTING suffers from high variance over var-
ious prompts in zero-shot learning, and PROMPT-
ING∗ substantially improves average accuracy and
reduces variance across different choices of the
prompt through calibration, which is also ob-
served by previous work (Zhao et al., 2021; Holtz-
man et al., 2021; Min et al., 2022a). Compared
with PROMPTING and PROMPTING∗, ZEROGEN

achieves superior performance by distilling task-
related knowledge through dataset generation and
handling the downstream tasks with a discrimina-
tor rather than a generator. Despite ZEROGEN’s
success, PROGEN further boosts both average ac-
curacy and variance by improving the quality of the
synthesized dataset via a generate-then-feedback
framework.

4.3 Ablations

One of the main contributions of the proposed pro-
gressive zero-shot dataset generation framework is
that it incorporates the previously generated dataset
as feedback to steer generation. We provide an ab-
lation study over various types of feedback, and
summarize the results in Table 2. We find that
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Figure 3: Comparison of various ways to select impor-
tant examples and the corresponding effects on test set
accuracy and loss when removing them. Helpful-CE:
helpful examples identified by vanilla influence function
with cross-entropy loss. Helpful-RCE: helpful exam-
ples identified by robust influence function with reverse
cross-entropy loss.

providing random synthetic examples as feedback
consistently outperforms the baseline method. Our
hypothesis is that task-related in-context examples
may demonstrate further task-related information
than the prompt, and thus benefit the generation
process. Selecting examples with vanilla influence
function (i.e., CE), only achieves on-par perfor-
mance with random selection, due to the fact that
the signal comes from the noisy validation set is not
reliable.2 In contrast, applying a noise-tolerant ob-
jective (i.e., RCE) on the validation set achieves su-
perior performance, which is resistant to the noise
in validation set and is able to find more accurate
important examples. This proves better task-related
signals can further improve the generation quality.
Moreover, we find selecting in-context examples
from test set examples.3 obtains the best results,
which indicates the model does learn from better
in-context examples.

4.4 Analysis

Noise-tolerant influence function provides bet-
ter estimation in a noisy-validation set scenario.
To see whether using a robust loss function on the
validation set contributes to a more accurate esti-
mate, we use a fixed synthetic dataset, remove the
estimated important examples, and show how the
accuracy and loss of a task-specific model trained
with the remained dataset changes. We study three
estimation methods, various remove ratios, and

2It assumes the validation set objective is the same as the
training set.

3To prevent trivial solutions (i.e., directly copying in-
context examples), we remove the generated texts that are
highly overlapped with any given in-context examples.
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Figure 4: Comparison of different number and format
of in-context examples. F-∗ are different format of in-
context examples, see § 4.4 in detail.

evaluate on SST-2 gold test set, as shown in Fig-
ure 3. We find filtering random synthetic examples
almost does not hurt accuracy and achieves simi-
lar accuracy with only 10% examples. Removing
helpful examples identified by influence function
with cross-entropy increases loss to some extent,
but the degree of change is less than using reverse
cross-entropy. This shows reverse cross-entropy
augmented influence function could offer a more
accurate estimate. We also compare results on the
test set and artificial noisy test set as validation set
in Appendix C, and demonstrate that the two losses
are similar when the validation set is clean, but
reverse cross-entropy is more effective when the
validation set is noisy.

Format of in-context examples is important.
Given the identified important examples, it’s also
unknown how to organize these examples as in-
context examples. Previous work suggests the or-
der of these examples plays a key role in model
performance (Kumar and Talukdar, 2021; Lu et al.,
2022), and the performance improves as the num-
ber of in-context examples increase (Brown et al.,
2020). However, these effects are still under-
explored in zero-shot dataset generation.

Suppose we have identified a bunch of positive
and negative important examples, and are going
to generate with a positive sentiment prompt (e.g.,
"The movie review in positive sentiment is: ""), we
study the following formats of in-context examples:

• Base: no in-context examples (ZEROGEN).
• F-1: positive and negative examples are ran-

domly placed.
• F-2: positive examples are placed before neg-

ative.
• F-3: positive examples are placed after nega-

tive.
• F-4: only positive examples are placed.
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Figure 5: Zero-shot performance with TAM trained under various scale of synthetic dataset.

• F-5: only positive examples are placed, but
the label information is not expressed (e.g.,
using prompt "The movie review is: "<X>""
for each in-context example, where <X> is the
text placeholder to fill in for each in-context
example.).

Besides, we also study the number of in-context ex-
amples, and the results are shown in Figure 4. We
have the following observations. First, a modest
number of in-context examples (e.g., no more than
8) consistently improves the performance, how-
ever, more in-context examples do not always turn
into better performance. We leave the study on
larger PLMs (e.g., GPT-3) and PLMs supporting
more in-context examples as future work. Second,
the performance of different orders of positive and
negative examples varies in different tasks, while
masking the label information (i.e., F-5) consis-
tently improves performance.

Prompt selection is less important for PROGEN
while scaling dataset is still valuable. In this
part, we visualize the performance change over
two representative prompts (i.e., a good prompt
P2 and a relatively bad prompt P1) and various
scales of dataset, and the comparison is shown in
Figure 5.

Overall, we find that PROGEN is more effec-
tive for the bad prompt than the good one, and the

bad prompt can achieve comparable results with
the good one with PROGEN on all the datasets.
This indicates the quality of dataset can be it-
eratively improved with previous lower-quality
dataset slice, which shares a similar spirit with Self-
Training (Lee et al., 2013) that also learns from its
own predictions. Besides, we find PROGEN can
achieve similar or superior performance to ZERO-
GEN with only 1% (100k vs. 1k) size of synthetic
dataset. This becomes more meaningful when we
only have restricted access to PLMs in real-world
applications.

In-depth analysis of the synthetic dataset. In
previous sections, we measure the quality of the
synthetic dataset by training a TAM with that
dataset and evaluating on downstream human-
annotated data. In this section, we provide other
measurements for a more comprehensive under-
standing of the synthetic dataset. We measure D
from two perspectives, i.e., texts and labels. Re-
garding texts, we use Self-BELU (Zhu et al., 2018)
to measure its own diversity and MAUVE (Pillutla
et al., 2021) to measure the similarity between pre-
diction distribution and ground-truth distribution.
We measure the correctness of labels with an ora-
cle model trained on human-annotated data as done
in Ye et al. (2022). The comparison of different
metrics on the Elec dataset is reported in Table 3.
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Self-BLEU MAUVE Correctness TAM
Granularity f(X ) f(X , X̂ ) f(X ,Y, X̂ , Ŷ) f(X ,Y, X̂ , Ŷ)
Prompt P1

ZEROGEN 19.46 79.13 62.44 81.85
PROGEN 20.70 81.69 74.48 88.00
PROGEN (Gold) 27.37 92.45 89.01 90.67
Prompt P2

ZEROGEN 15.98 68.99 79.64 86.62
PROGEN 17.66 74.64 80.86 90.27
PROGEN (Gold) 28.12 94.34 87.61 90.87
Prompt P3

ZEROGEN 16.08 77.61 82.99 87.58
PROGEN 19.80 80.55 84.30 88.72
PROGEN (Gold) 26.16 93.75 89.59 91.52

Table 3: Quality of various generated datasets measured
by metrics in different granularity. PROGEN (Gold)
refers to selecting in-context examples from gold test
set. X and X̂ represent synthetic set and test set, respec-
tively.

Firstly, we find ZEROGEN achieves the high-
est diversity, and PROGEN degrades diversity.
This indicates PLMs can generate texts simi-
lar to in-context examples, and the high Self-
BLEU score for PROGEN (Gold) is mainly due
to the limited number of in-context examples
(i.e., 38k for Elec test set vs. 100k for synthetic
dataset). Secondly, PROGEN well shifts the gen-
eration distribution towards ground-truth distribu-
tion, and PROGEN (Gold) achieves significantly
higher MAUVE scores. Finally, both PROGEN and
PROGEN (Gold) increase label correctness, which
is also highly reflected in TAM. Overall, providing
feedback improves synthetic datasets in both text
distribution and label correctness, but also sightly
decreases diversity.

5 Related Work

5.1 Dataset Generation with PLMs

The accuracy of neural models highly depends
on the availability of large-scale human-annotated
training data, which, however, can be prohibitively
expensive to obtain at scale. Recent advances in
generative language models (Radford et al., 2019;
Brown et al., 2020) arouse great interests on gen-
erating synthetic dataset with PLMs. Some works
generate data with a generative model fine-tuned
on the public human-annotated dataset (Anaby-
Tavor et al., 2020; Puri et al., 2020; Kumar et al.,
2020; Lee et al., 2021). Regarding the low quality
generations, sample selection (Yang et al., 2020;
Liu et al., 2022a) have also been used as postpro-
cessing, which is complementary to our method
that improves the dataset quality during generation.

In the context of zero-shot dataset generation,
previous approaches adopt prompt-based meth-

ods (Jiang et al., 2020a; Shin et al., 2020; Mishra
et al., 2021) to generate data without any human-
annotations (Schick and Schütze, 2021; Meng et al.,
2022; Ye et al., 2022; Gao et al., 2022). The syn-
thetic dataset can be used to train a task-specific
model and perform zero-shot inference on down-
stream tasks. In contrast to our work, all the pre-
vious works generate the whole dataset at once,
while we consider the quality of previously gen-
erated instances and improve the dataset quality
during generation.

5.2 In-context Learning

Brown et al. (2020) suggest that large PLMs can
learn a task by conditioning on a few input-output
demonstration pairs as prompt. This paradigm,
known as In-context learning, is especially at-
tractive as it eliminates the need for updating pa-
rameters of the large language model. Subse-
quent works include better ways of choosing in-
context examples (Liu et al., 2022b; Lu et al., 2022;
Rubin et al., 2021), learning with an in-context
learning objective (Min et al., 2022a; Chen et al.,
2022), empirical analysis of why in-context learn-
ing works (Min et al., 2022b), theoretical analy-
sis that in-context learning can be formalized as
Bayesian inference (Xie et al., 2021), and explo-
rations on other tasks (e.g., semantic parsing (Pasu-
pat et al., 2021), dialogue state tracking (Hu et al.,
2022; Xie et al., 2022)). To the best of our knowl-
edge, all previous works study in-context learning
in a few-shot learning setting. In contrast, this work
focuses on a zero-shot learning setting for dataset
generation task and the PLMs’ ability to learn from
in-context synthetic important examples to produce
better dataset.

6 Conclusions

This work proposes PROGEN for zero-shot dataset
generation, which progressively improves the
dataset quality by leveraging feedback from a task-
specific model trained on the current dataset. By
evaluating zero-shot performance with the trained
model, we show PROGEN can generate a much
smaller (e.g., 1%) synthetic high-quality dataset
that achieves comparable or superior performance
to baseline method. We also provide a variety of
analyses, including formats of in-context examples,
other measurements on synthetic datasets, and the
influence of prompt selection.
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Limitations

Our work depends on the PLMs’ following abil-
ities: (1) learning from in-context examples; (2)
generating relatively high-quality data when using
only the manual prompt. This means that if the
task can not be well described by a prompt or the
PLM is not exposed to enough task-related data
in the pre-training stage, the progressive dataset
generation process may fail due to the extremely
low-quality initial dataset slice and validation set.
It can also affect the task-specific model’s abil-
ity to identify important examples: a noisy valida-
tion data point can fool the classifier into trusting
mislabeled examples that fall close to it, further
degrading the generation quality. In addition, cal-
culating influence function in practice suffers from
low-efficiency issues. In practice, we sample a
subset from the entire synthesized dataset in each
iteration to reduce the computation, which can be
sub-optimal in quality estimation accuracy.
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A Prompt Design

Table 4 summarizes the text prompts used in this
work. We choose prompts with the most representa-
tive "Control Code" and "Natural Language" styles
as discovered by Ye et al. (2022). We also include
a two-stage prompt P3 that uses an additional gen-
erated text by PLM as condition, e.g., the movie
name is generated by prompt "Movie: "".

B Detailed Results on Each Prompt

The detailed results on each prompt are reported in
Table 5 and Table 6.

C Robust Influence Function on Artificial
Noisy Data

To investigate the ability of robust influence func-
tion in a noisy-validation set scenario, we create
an artificial noisy dataset based on the human-
annotated dataset. Specifically, we reverse a por-
tion (e.g., 40%) of ground-truth labels in the train-
ing and validation set, and compare the results of
using gold validation set and mislabeled validation
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Figure 6: Comparison on artificial noisy dataset.

set when calculating influence function. We show
the result comparison in Figure 6, where we remove
examples based on the calculated score, retrain the
model with the rest of dataset, and evaluate it on a
held-out human-annotated set. We find when the
validation set is well labeled, both cross entropy-
based and reverse cross entropy-based influence
function achieve on-par performance. However, a
noisy validation set with cross-entropy has a great
impact on the quality estimation – removing iden-
tified helpful examples only slightly degrades ac-
curacy. In contrast, a noise-resistant objective still
provides reliable estimates.
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Setting Id Prompt Details Label word <Y>

PROMPTING / PROMPTING∗ P1 <Y> <TASK> Review: "<X>" Positive/Negative
P2 The <TASK> review in <Y> sentiment is: "<X>" positive/negative

ZEROGEN / PROGEN

P1 <Y> <TASK> Review: " Positive/Negative
P2 The <TASK> review in <Y> sentiment is: " positive/negative
P3 The <TASK> review in <Y> sentiment for <TASK> "<C>" is: " positive/negative

Table 4: Multiple text prompts for each setting. "<X>" refers to the test input for PROMPTING setting. "<TASK>"
represents "movie", "electronic product" and "restaurant" for IMDb/SST-2/Rotten Tomatoes, Elec, Yelp datasets,
respectively. "<C>" is a generated text formulated as additional condition to steer generation.

Setting Prompt IMDB SST-2 Rotten Tomato Elec Yelp Avg.
SUPERVISED - 87.24 89.68 83.67 92.63 95.42 89.73

PROMPTING
P1 60.36 52.64 52.91 68.08 68.33 60.46
P2 80.64 89.45 84.24 77.44 82.70 82.89

PROMPTING∗ P1 75.73 76.72 73.55 76.41 75.57 75.60
P2 78.89 88.53 83.77 79.65 85.03 83.17

ZEROGEN

P1 74.20 75.57 69.50 81.85 85.08 77.24
P2 83.27 86.12 82.46 86.62 88.67 85.43
P3 83.76 86.61 83.11 87.58 89.76 86.16

PROGEN

P1 84.22 87.16 83.02 88.00 89.06 86.29
P2 84.31 86.01 81.52 90.27 89.48 86.32
P3 83.82 88.42 84.05 88.72 89.63 86.93

Table 5: Results on each prompt with DistilBERT as task-specific model.

Setting Prompt IMDB SST-2 Rotten Tomato Elec Yelp Avg.
SUPERVISED - 84.60 76.30 77.49 86.36 91.30 83.21

PROMPTING
P1 60.36 52.64 52.91 68.08 68.33 60.46
P2 80.64 89.45 84.24 77.44 82.70 82.89

PROMPTING∗ P1 75.73 76.72 73.55 76.41 75.57 75.60
P2 78.89 88.53 83.77 79.65 85.03 83.17

ZEROGEN

P1 60.33 63.88 61.73 71.16 81.29 67.68
P2 74.80 80.50 76.92 74.12 84.58 78.18
P3 75.40 82.22 78.80 82.24 85.39 80.81

PROGEN

P1 77.43 81.08 76.64 79.21 84.44 79.76
P2 77.30 79.13 76.17 84.38 85.97 80.59
P3 78.81 82.68 78.99 84.96 87.68 82.62

Table 6: Results on each prompt with LSTM as task-specific model.
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