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Abstract

The multimedia communications with texts and
images are popular on social media. However,
limited studies concern how images are struc-
tured with texts to form coherent meanings in
human cognition. To fill in the gap, we present
a novel concept of cross-modality discourse, re-
flecting how human readers couple image and
text understandings. Text descriptions are first
derived from images (named as subtitles) in
the multimedia contexts. Five labels – entity-
level insertion, projection and concretization
and scene-level restatement and extension —
are further employed to shape the structure of
subtitles and texts and present their joint mean-
ings. As a pilot study, we also build the very
first dataset containing 16K multimedia tweets
with manually annotated discourse labels. The
experimental results show that the multimedia
encoder based on multi-head attention with cap-
tions is able to obtain the-state-of-the-art re-
sults.

1 Introduction

The growing popularity of multimedia is revolu-
tionizing the communications on social media. The
conventional text-only form has been expanded to
cross modalities involving texts and images in in-
formation exchange. For multimedia messages, the
language understanding acquires more than mak-
ing sense of both visual and textual semantics; it
also matters to figure out what glues them together
to exhibit the coherent senses in human’s mind.

Nevertheless, most progress made in social me-
dia language understanding relies on texts to learn
the message-level semantics (Shen et al., 2018;
Nguyen et al., 2020), largely ignoring the rich
meanings conveyed in images (Cai et al., 2019a;
Wang et al., 2020b). Other recent multimodal stud-
ies focus on model designs to combine visual and
textual signals (Park et al., 2019; Li et al., 2020;

∗ Corresponding author

Yu et al., 2021), ignoring the insights from how hu-
mans understand the implicit structure underlying
a multimedia post.

In light of these concerns, we consider images as
an integral part of social media language and pro-
pose a novel concept of cross-modality discourse,
which defines how human readers structure the co-
herent meanings from image and text modalities.
Our work is inspired by Vempala and Preotiuc-
Pietro (2019) examining the information overlap
between images and texts, whereas we take a step
further to characterize how multimedia messages
make sense to humans, which is beyond a sim-
ple yes-or-no prediction to whether new thing is
observed. To the best of our knowledge, we are
the first to extend discourse — a pure linguistic
concept — to define the linguistic roles played by
images and their pragmatic relations with texts to
shape the coherent meanings.

In general, cross-modality discourse is defined
by the operations adopted in human perception to
couple image and text semantics. Readers may first
extract the information from the images acquired
to complete the cross-modality understanding, ei-
ther in form of the local objects (entities) or global
scenes (Rayner, 2009). Then, the extracted entities
or scenes are represented in texts, named as the
images’ subtitles, which can further contribute to
structure the entity-level or scene-level discourse
with the matching texts in the multimedia contexts.
Concretely, for entity-level discourse, it is detailed
into insertion, projection, and concretization, ac-
cording to whether the entity is omitted, described,
or mapped; similarly, scene-level restatement and
extension are employed to reflect whether the story
in one modality recurs or continues in the other.

To illustrate the definitions above, Figure 1
shows five multimedia Twitter posts. As can be
seen from (a), readers may concentrate on the ob-
ject “strawberry” and insert its name into the texts
omitting the entity. As for (b), the “coffee” object
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Tweet text
Freshly picked off my allotment 
(strawberry) today, well chuffed

One step closer to summer 
(track towards beach)

Happy Sunday! My best friend 
and I have coffee in the sunshine

This dog has to hold hands 
on the car

Cartel leader whose arrest 
sparked killings is sentenced 
to prison in Dallas court

Discourse
labels

Entity-level: insertion 
(strawberry)

Scene-level: extension 
(track towards beach)

Entity-level: concretization 
(coffee)

Scene-level: restatement
(dog hold hands in car)

Entity-level: projection
(court)

(a) (b) (c) (d) (e)

Tweet image

Vempalaet al. 
(2019) labels

Image adds meaning 
Text not represented

Image not adds meaning 
Text represented

Image not adds meaning 
Text not represented

Image not adds meaning 
Text represented

Image adds meaning 
Text not represented

Figure 1: The five cross-modality discourse labels and their examples. The rows from top to bottom display their
texts, images, the image-text relation labels in Vempala and Preotiuc-Pietro (2019), and our cross-modality discourse
categories. The labels in Vempala and Preotiuc-Pietro (2019) concern whether new meanings are added by images
to texts, whereas ours define the linguistic roles of images and their pragmatic relations with texts for coherence.

should be extracted from the image to concretize
the word “coffee” in the text. In (c), the word
“court” in text is linked with the “gavel” object.
The image in (d) helps restate the texts scene (a
dog holds hands in the car). In (e), the global scene
works as an extension to texts and completes the
story: “We are one step closer to summer following
the track towards beach.”.

On the contrary, the image-text relations in
Vempala and Preotiuc-Pietro (2019) are limited to
whether images add new meanings to texts, which
is nonetheless insufficient to reflect how language
is understood in multimedia contexts.

As a pilot study of cross-modality discourse, we
also present the very first dataset to explore the task.
It is collected from Twitter and contains 16K high-
quality multimedia posts with manual annotations
on their discourse labels.1 We believe our task and
the associated dataset, being the first of its kind,
will be potentially beneficial to help machines gain
the ability to understand social media language
with multimodal elements.

To that end, we present a framework to learn
the discourse structure across texts and images. In-
spired by the recent advances in multimodal learn-
ing (Wang et al., 2020b; Yu et al., 2020), we employ
the multi-head attention mechanism (Vaswani et al.,
2017) to explore the visual-textual representations
reflecting cross-modality interactions. Besides, to
characterize subtitles for discourse learning, image
captions generated from model trained on COCO
captioning dataset (Lin et al., 2014b) are leveraged
as additional features.

For empirical studies on cross-modality dis-
course, we conduct comprehensive experiments

1The dataset and code are released at https://github.
com/cpaaax/Multimodal_Discourse.

on our dataset. The comparison results on classi-
fication show the challenges for machines to infer
discourse structure and it is beyond the capability
of advanced multimodal encoders to well handle
our task. Nevertheless, exploring correlations of
texts, captions, and visual-textual interactions helps
exhibit the state-of-the-art performance in both the
intra-class and overall evaluation. We further exam-
ine the effects of varying modalities and text length
and find that text signals are crucial for discourse
inference while joint effects of texts, images, and
captions present the best results. At last, the qual-
itative analysis demonstrates how the multi-head
attention in our model interprets discourse struc-
ture.

2 Related Work

Our paper crosses the lines of multimedia learning
and discourse analysis in natural language process-
ing. Here comes more details.

Multimedia Learning. Our paper is in the line
with cross-media research that attempts to fuse tex-
tual and visual features. There are various deep
learning methods proposed to leverage crossmodal
features, either based on advanced neural architec-
tures like co-attentions (Xu and Saenko, 2016; Lu
et al., 2016) and multi-head attentions (Vaswani
et al., 2017; Wang et al., 2020a), or pre-trained
visual-lingual representations (Lu et al., 2019; Su
et al., 2020; Zhang et al., 2021). Their effective-
ness are demonstrated in both conventional vision-
language tasks, such as image captioning (Park
et al., 2019; Zhou et al., 2020; Shi et al., 2021) and
visual question answering (VQA) (Yu et al., 2019;
Tan and Bansal, 2019; Si et al., 2021), and social
media applications, such as sarcasm detection (Cai
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et al., 2019a), event tracking (Li et al., 2020; Abav-
isani et al., 2020b), keyphrase prediction (Zhang
et al., 2019; Wang et al., 2020b).

It is seen that most progress to date made in
this line focus on advancing methodology designs
for general purposes (Su et al., 2020; Zhou et al.,
2020) or specific applications (Wang et al., 2020b)
to better capture the matched semantics across vary-
ing modalities. However, their effectiveness over
social media data would be inevitably compro-
mised resulted from the intricate image-text inter-
actions (Vempala and Preotiuc-Pietro, 2019). We
thus borrow the insights from human perception
to interpret image-text relations from the linguistic
viewpoints and propose the task to learn discourse
structure in multimedia contexts. It is a fundamen-
tal research exhibiting the potential to help the mod-
els gather cross-modality understanding capability
and might benefit various downstream applications.

We are also related with previous categorization
tasks on social media to understand image-text re-
lations, such as information overlap (Vempala and
Preotiuc-Pietro, 2019), point-of-interest types (Vil-
legas and Aletras, 2021), author purposes (Kruk
et al., 2019), object possessions (Chinnappa et al.,
2019), and so forth. Besides, interestingly, the “dis-
course” concept is also employed to examine the
image-text relations in cooking recipes (Alikhani
et al., 2019). Compared with these studies concate-
nating visual and textual embeddings in a “com-
mon” space, we craft text-formed subtitles to con-
vey visual stories and explore how they shape the
coherent meanings with the post texts in linguistic
space. It will consequently allow deep semantic
learning to capture the implicit structure holding
image and text modalities, while the existing mod-
els might be incapable to gather senses of language
understanding via simple feature concatenation.

Discourse Analysis. This work is related to prior
studies on text-level discourse structures. The pop-
ular tasks in the styles of either RST (Rhetorical
Structure Theory) (Mann and Thompson, 1988; Liu
et al., 2019) or PDTB (Penn Discourse Tree Bank)
(Prasad et al., 2008; Xu et al., 2018) explore the
rhetorical relations of discourse units (e.g., phrases
or sentences) that cohesively connect them form
a sense of coherence. These studies have demon-
strated their helpfulness in diverse stream of NLP
applications (Choubey et al., 2020), such as sen-
timent analysis (Bhatia et al., 2015), text catego-
rization (Ji and Smith, 2017), and microblog sum-

marization (Li et al., 2018). Nevertheless, limited
work examines a social media image as a discourse
unit of the pragmatic structure in multimedia con-
texts, which is a gap to be filled in this work.

3 Study Design

In this section, we first define the task to predict
cross-modality discourse in §3.1. Then, we intro-
duce how we construct the dataset in §3.2, followed
by the data analysis in §3.3 and the potential appli-
cations in §3.4.

3.1 Task Definition

In our task, the input is an image-text pair from a
multimedia post on social media, following the pre-
vious practice (Vempala and Preotiuc-Pietro, 2019).
For each pair, the goal is to output a label from a
predefined set that cover the major categories of
cross-modality discourse on social media. Our intu-
ition is that images are relatively more eye-catching
and likely to be processed before the texts. For
image understandings, the previous findings from
psychological experiments (Rayner, 2009) point
out that humans may first recognize and extract the
meanings from global scenes to fill the information
gap in contexts; if the gap still exists, they may go
back to capture the local objects. Based on that, we
first coarsely categorize the discourse label set into
the level of entity (object) and scene, depending on
whether object or scene is extracted to make sense
of the joint meanings of images and texts.

To further elaborate the label design, the ex-
tracted information from an image (as an object
or scene) is mapped to the text modality to form
the subtitle, which allows us to formulate how hu-
man senses structure the coherent meaning with
subtitles and post texts.

For entity-level discourse, three cases are exam-
ined: the entity is omitted, mentioned or linked in
the texts. For the absent entity (e.g., Fig. 1(a)), the
subtitle, in form of entity name, should be inserted
into the post text to complete the meanings of a
message, while the entity in Fig. 1(b) is concer-
tized by the object in images. And the entity in Fig.
1(c) is implicitly projected into the relevant object.
We henceforth design entity-level insertion, con-
cretization, and projection to describe the above
three cases, respectively.

Similarly, scene-level discourse can be separated
into restatement and extension categorizes. The
former refers to image serving as texts description
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(e.g., Fig. 1(d)) and for the latter, posts presenting
image scenes to elaborate the story left as white
space in the texts (e.g., Fig. 1(e)).

3.2 Data Collection and Annotation
Our dataset is gathered from Twitter2, which is
drawing attentions to research digital communica-
tions (Mozafari et al., 2019; Nikolov and Radi-
vchev, 2019; Müller et al., 2020) and exhibits
prominent use of multimedia posts (Vempala and
Preotiuc-Pietro, 2019; Wang et al., 2020b). We
first crawled the raw data using Twitter streaming
API3 and removed non-English posts and those
with texts only or multiple images. Afterwards,
to better model discourse from the noisy Twitter
data (Vempala and Preotiuc-Pietro, 2019), we re-
moved samples that might hinder the learning of
non-trivial discourse signals. Here, four types of
“bad” image-text pairs might provide tremendous
noise in the learning, which are shown in Fig. 2.

The first type refers to image portraits with some
quotes to share the insights of life (henceforth por-
traits), where images and texts are not coherently
related (from linguistic viewpoints) and discourse
structure are unable to be defined for them. More-
over, many of them contain authors’ selfies, which
might raise privacy concerns. The second type
of posts, namely background, relies on external
knowledge to capture the meanings (e.g., Fig. 2(b)),
which is beyond the capability of language under-
standing given only the images and the matching
texts. For the third, we consider low-quality im-
ages (e.g., low resolution and blurred ones like
Fig. 2(c)), from which it is hard to capture the
visual meanings. The last one refers to OCR sub-
titles (Fig. 2(d)), where the subtitles appear in the
images as optical characters. It may result in a de-
generation of cross-modality discourse to text-level
discourse and render the learning of trivial features.

In the data annotation, we first selected 25 typ-
ical examples corresponding to each discourse la-
bel and provide them together with the annotation
guidelines (with the detailed description of each
label) for quality control. Then, two postgraduate
students majoring in linguistics were recruited to
manually label the discourse categories, given an
image-text pair. “Bad” samples falling in the above
four types should also be indicated in the anno-
tation process. The inter-annotator agreement is

2twitter.com
3developer.twitter.com/en/docs/

tutorials/stream-tweets-in-real-time

(a) Portrait:
one taught me love, 
one taught me 
patience, and one 
taught me pain

(d) OCR:
Saturday 1st  
December Thought 
Of The Day From 
Oval Station

(c) Quality:
When you spend all 
season watching 
Matt Chapman

(b) Background: 
SpaceX announces 
the identity of the 
world’s first private 
lunar passenger

Figure 2: Examples tweets of the four “bad” types. (a)
Portrait image with quotes in texts. (b) Background is
externally required for understanding (rocket trajectory
scenes here). (c) Low-quality image where objects
could be barely observed. (d) OCR Subtitle (“Thought
Of The Day") appear in the image in optical characters.

Total Ins Con Pro Res Ext
Num 16,000 839 10,558 690 1,826 2,087
Len 10.69 9.11 10.85 10.98 11.24 9.92

Table 1: Statistics of the total data and that with each
label: Ins: Insertion; Con: Concretization; Pro: Projec-
tion; Res: Restatement; Ext: Extension. Len: average
word number in texts. Num: tweet number.

79.8% and we only kept the data with labels agreed
by both annotators to ensure the feature learning
quality in noisy data. At last, posts in “bad” types
were taken away and the final dataset presents 16k
multimedia tweets with manual labels in five dis-
course categories.

3.3 Data Analysis

Here we conduct a preliminary analysis of our
dataset and show the statistics in Table 1. There
exhibits imbalanced labels, where concretization
and extenstion labels are relatively more popular
compared to the other three. This indicates the di-
verse preferences of Twitter users in the way they
choose to structure texts and images and the poten-
tial challenge for models to handle our task.

For the text length, it is seen that most tweets
contain limited words, challenging the models to
capture essential features from textual signals. In-
terestingly, we compare our statistics with other
text-only Twitter datasets in previous work (Wang
et al., 2019) and find our multimedia tweets have
30% fewer words on average. This implies that au-
thors may tend to put less content in the text of mul-
timedia posts, and figure the missing information
in images for compensation. We also notice that
insertion and extension discourse exhibit relatively
shorter texts on average. It is probably because they
exhibit the omitted content in texts, which presents
in images.

To further characterize text length in our dataset,
Fig. 3 shows the word number distribution of tweet
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Figure 3: Text lengths (token number) distribution of
posts with varying discourse labels.

texts with varying labels. All the curves demon-
strate the sparse distribution over text length, owing
to the freestyles of social media writings. Insertion
and extension curves first peak at 8 words while
the others at 10-12, then all present long tails after-
wards. This again shows that texts in multimedia
posts may provide limited content and those in in-
sertion and extension contain fewer words.

3.4 Potential Applications

In this subsection, we further discuss the potential
downstream applications of our task and datasets,
which might inspire the design of future work. A
straightforward application is microblog summa-
rization — an important task to distill the salient
content from massive social media data. As many
state-of-the-art summarization models only allow
textual input while multimedia posts are promi-
nent on social media, it may require the compres-
sion of these posts into text for easy processing. It
is different from the traditional image captioning
task (Anderson et al., 2018; Rennie et al., 2017;
Huang et al., 2019), where the generated captions
are translated from images. For a social media post,
the text cannot trivially be seen as a “translation”
of image, because of possibly ambiguous image-
text interactions therein. Considering crucial roles
played by discourse analysis in summarization (Xu
et al., 2020), it is not hard to envision that our
cross-modality discourse, describing how image
and text structure coherence, would contribute to
the research of multimedia summarization.

In addition, cross-modality discourse can be
viewed as a fundamental task and might be helpful
to other downstream tasks on social media (e.g.,
multimodal NER (Yu et al., 2020), multimodal cri-
sis events classfication (Abavisani et al., 2020a),
multimodal sarcasm detection (Cai et al., 2019b),
multimodal sentiment analysis(Truong and Lauw,
2019), and multimodal hashtag prediction (Wang
et al., 2020c)). However, most previous efforts
focus on the leverage of visual and lingual rep-
resentations yet ignore the linguistic essence that
glue the two modalities. Recently, some work pro-

pose multitask learning to consider image-text re-
lations in multimodal learning. For example, Sun
et al. (2021) investigate the relation propagation
between text and image to improve the accuracy
of NER in tweets. Ju et al. (2021) utilize multi-
modal relation types as auxiliary labels to explore
multimodal aspect-sentiment analysis. The posi-
tive results from these studies imply the potential
of cross-modality discourse (as a linguistic descrip-
tion of image-text relations) to benefit a wide range
of multimodal applications. Besides, the training
data of image-text relation used in (Sun et al., 2021;
Ju et al., 2021) is the TRC dataset proposed by
Vempala and Preotiuc-Pietro (2019). Compared to
the TRC dataset, our proposed discourse dataset
exhibits a tremendously larger scale (i.e., 16K VS
4.5K) and fine-grained labels for image-text rela-
tion, as shown in Fig. 1. We therefore believe our
dataset would also helpfully advance the perfor-
mance of various multimodal models.

4 The Discourse Learning Framework

In this section, we describe our framework that
couples the signals from images and texts to pre-
dict their discourse labels. As shown in Fig. 4,
the model architecture leverages representations
learned from texts, images, and image captions
(to reflect subtitles), which will be introduced in
§4.1. Then, we will discuss how we combine
multi-modality representations §4.2. At last, §4.3
presents how we predict the discourse labels and
design the training processes.

4.1 Encoding Text, Image, and Captions
Texts Encoding. Here we describe how to learn
text features. The text encoder is based on the
bottom 6-layers of pre-trained Bertweet (Nguyen
et al., 2020). It is fed with an L-length token se-
quence and embed its representations into a sequen-
tial hidden states Htext = (h1, ...,hL), where each
element reflects a token embedding. Htext further
goes through a max-pooling layer and produces
H̄text to represent the text.

Image Encoding. To explore visual signals, im-
ages are encoded by CNN-based ResNet-101 (He
et al., 2016) pre-trained on ImageNet (Russakovsky
et al., 2015). The output of the last convolutional
layer in ResNet-101 is extracted as the representa-
tion of the input image. The size of the feature map
is first reduced to M×M×2048 and then reshaped
into M2 × 2048. Each 1× 2048 vector represents
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Figure 4: Our framework to learn cross-modality dis-
course via representations encoded from texts (bottom),
captions (upper left), and images (upper right). The
encoded captions and texts are compared at output layer
in visual-textual contexts.

the visual features in a corresponding image area
and is projected to the same dimension of text fea-
ture h by liner layer. The post-level visual feature is
denoted as Himg = (v1, ..., vM2), where vi refers
to an 1× 2048 vector that represents the feature of
an area in the image.

Image Caption Encoding In order to capture
more semantic information from images, we fur-
ther exploit image captions (henceforth captions)
as an additional modality. Our intuition is that cap-
tions may inject essential visual semantics underly-
ing images into a descriptive language in texts (Xu
et al., 2015). They are potentially helpful to reflect
the rich interactions between image objects and
discover subtitle-style clues as essential discourse
indicators. We first employ the model presented
by Anderson et al. (2018) to predict the captions of
each image. The captioning model is pre-trained
on the COCO captioning dataset (Lin et al., 2014b),
which mostly consists of natural pictures outside
social media domain. Then, we encode the token
sequence of captions following the same process of
text encoding (discussed above) and yield caption
representation: Hcap = (h1, ...,hN ). Here N indi-
cates the number of tokens in the caption, hi refers
to the i-th hidden state of the Bertweet encoder.

4.2 Integrating Multimodal Representations
As pointed out in previous work (Wang et al.,
2020b), modalities on social media data exhibit
much more intricate interactions compared with the
widely-studied vision-language datasets (Lin et al.,
2014a; Young et al., 2014). To allow the framework
to attend various types of cross-modality interac-
tions, we employ multi-head attentions (Vaswani

et al., 2017) to comprehensively explore the inter-
actions between the encoded image features (Himg)
and max-pooled text representations (H̄text).

Concretely, we set text features as the query Q,
image features as the key and value K,V, and com-
pute the multi-head attention MA(·) as follows:

MA(Q,K,V) = [hd1; ...;hdn]WO (1)

where n is the number of heads, [·] indicates the
concatenation operations, and the attention of the
j-th head is:

hdj = A(QWQ
j ,KWK

j ,VWV
j ) (2)

A(Q,K,V) = θ(
QKT

√
dk

)V (3)

Here dk is the normalization factor, θ(·) means
softmax function. WO,WQ

j ,WK
j ,WV

j are learn-
able variables. The attended images (in aware of
texts) are denoted as Ĥimg, which further serves
as the context to help explore the discourse clues
from captions and texts.

For discourse modeling, the encoded texts
(H̄text) are compared with captions (carrying
subtitle-style features) to infer how the subtitles
can be structured with texts. To that end, we first
employ a multi-head attention mechanism to en-
code text-aware attended caption Ĥcap, which cap-
tures salient contents from captions to indicate
discourse categories. Furthermore, Ĥcap are con-
catenated with H̄text to model their structure; also
concatenated are the attended images Ĥimg as the
image-text interaction contexts for cross-modality
discourse learning.

4.3 Discourse Prediction and Model Training
The discourse labels are predicted with a
multi-layer perceptron (MLP) fed with H =
[Ĥcap; H̄text; Ĥimg], the integrated feature vectors,
which is further activated with a softmax function
to predict the likelihood over the four discourse la-
bels. For training, recall that in Table 1, we observe
the severe label imbalance on our task. To deal
with the issue, we adopt weighted cross-entropy
loss, whose weights are set by the proportions of
labels in training data.

5 Experimental Setup

Model Settings. The length of tweet texts (L)
and captions (N ) are both capped at 20 by trunca-
tion. The batch size is set to 100, the learning rate
to 5 × 10−5. The head number of all multi-head
attention layers are set to 6. For image encoding,
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Method Insertion Concretization Projection Restatement Extension F1

Baselines
Qin et al. (2016) 41.13 69.91 26.13 39.67 41.15 61.67
Rutherford and Xue (2016) 43.17 70.78 32.62 42.31 40.82 62.73
Nam et al. (2017) 46.49 74.83 33.33 39.33 42.39 65.76
Text+Image
CONCATFUSE 52.86 81.62 34.78 39.19 42.93 71.09
ATTENTION 54.30 82.64 33.71 39.23 39.41 71.48
CO-ATTENTION 51.90 83.31 36.36 42.57 40.59 72.37
MULTIHEADATT 53.69 84.33 36.96 42.11 42.01 73.33
Text+Caption
CONCATFUSE 52.00 81.11 33.33 41.18 43.02 70.82
ATTENTION 54.79 81.26 36.78 39.72 42.55 70.97
CO-ATTENTION 53.73 82.13 37.20 41.78 39.16 71.38
MULTIHEADATT 53.79 82.27 34.55 43.96 43.46 72.08
Img+Text+Caption
CONCATFUSE 52.48 82.41 32.97 43.01 42.39 71.88
ATTENTION 53.24 83.01 34.95 43.45 43.65 72.58
CO-ATTENTION 54.81 83.98 36.96 45.24 39.76 73.15
MULTIHEADATT(full model) 57.75* 84.88* 37.36 46.15* 44.19* 74.51*

Table 2: Comparison results of the baselines and our variants. Scores with * represent the significance tests of our
full model over the baseline models with p-value<0.05.

image feature map size M is set to 14. For text
and comment encoding, the representations are ex-
tracted from the bottom 6-layers of the Bertweet
model, which are further fine-tuned in training. In
the setup, we randomly split 80%, 10% and 10%
for training, validation, and test. For evaluation, we
report F1 scores in the prediction of each label and
the weighted F1 to measure the overall results.

Baselines and Comparisons. We first consider
two text-level discourse parsers proposed in Qin
et al. (2016) and Rutherford and Xue (2016), where
we extend their text encoders into multimodal en-
coders to fit the image-text pairs. Then, we com-
pare with a popular multimodal classifier (Nam
et al., 2017) that employs a dual attention network
to fuse the visual and textual features.

Besides, we evaluate varying sets of feature
combinations in our model Test + Image, Text +
Caption, and Text + Image + Caption (the full
set). Recall that our framework employs multi-
head attention to integrate features learned from
different modalities. In experiments, we also
test the performance of other modality fusion al-
ternatives based on simple feature concatenation
(CONCATFUSE), the conventional attention mech-
anism (ATTENTION), the co-attention mechanism
(CO-ATTENTION).

6 Experimental Discussions

This section first presents the main comparison re-
sults ( §6.1). Then, we discuss model sensitivity to
varying modalities and text length in §6.2. Finally,

§6.3 presents a case study to provide more insights.

6.1 Main Comparison Results

Table 2 shows the main comparison results of vari-
ous multimodal encoders. The following observa-
tions can be drawn.

First, all models do not exhibit good F1. This in-
dicates that cross-modality discourse prediction is
a challenging task. A good understanding for that
cannot be gained by trivially adapting discourse
parsers to the multimodal settings or applying the
existing vision-language encoders. Second, results
on the two entity-level discourse labels (i.e., inser-
tion and concretization) are relatively better than
scene-level, indicating that local objects are easier
to be captured than global scenes. Among all the
labels, models perform the best in concretization,
probably attributed to its richer data samples for
feature learning (as shown in Table 1). And models
obtains worst results in projection. The reasons
might be that additional knowledge are needed for
models to learn the implicit relation between the
object and the entity.

Last, images, texts, and captions all contribute to
building automatic discourse understanding. Joint
modeling of the three modalities enables the cor-
responding models to outperform their text+image
and text+caption counterparts.

6.2 Sensitivity to Modalities and Text Length

Varying Modalities. To further examine the ef-
fects of varying modalities, we compare the F1
scores of our full model with its caption-only,
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Figure 5: Full model performance compared with vary-
ing modality ablations in (a) and its results over varying
text length (b). X-axis: insertion, concretization, projec-
tion, restatement, and extension; Y-axis: F1 scores. For
each label, bars from left to right show the caption only,
image only, text only ablations, and the full model in (a)
and the tweet texts capped at 5, 10, 15, and 20 in (b).

image-only, and text-only ablations in Fig. 5(a).
It is seen that text modality contributes relatively
more to discourse modeling observed from all la-
bels, especially for insertion, where Name Entities
are omitted and makes the text style easy to recog-
nize. Nevertheless, the joint effects of images, texts,
and captions together present the best performance
over all labels.

Varying Text Length. As discussed above, text
features are crucial to predict cross-modality dis-
course. Here we further examine the effects of text
length on model performance and the results of our
full model are shown in Fig. 5(b). Better scores
are observed for longer texts as richer contents can
be captured. This again demonstrates the essential
signals provided by texts to infer cross-modality
discourse.

6.3 Qualitative Analysis
Discussions above mostly concern caption and text
modalities. Here we present a case study to probe
into how the model reflects discourse indicators
over vision signals.

Case Study. Visual features are analyzed by the
heatmap (in Fig. 6) visualizing the text-aware atten-

(a) Insertion: dog
T: ready for bed

(b) Concretization: jeep
T: jeep wrangler sport 2014 sport used

(c) Projection: drilling equipment
T: european oil majors adapt to low oil; 
break even in 2017

(d) Restatement: moon behind a tree
T: moon rising behind a tree

(e) Extension: beautiful sky and trees
with yellow leaves
T: fall in ohio

Note: T indicates the tweet text. Illuminated 
areas indicate higher attention weights. Texts
with red represent the image content.

Figure 6: Visualization of multi-head attention
heatmaps over sample images.

tion weights over images (Eq. 3), which is captured
from image-text interactions. As can be seen, at-
tentions are able to highlight salient regions that
signal the essential semantic links with the texts,
e.g., the entities (dog and jeep) in (a) and (b). It is
also observed that the attention would vary in their
focus in regions: for entity level discourse, it tends
to concentrate on the some parts of a salient object
(entity), while for scene level, attention also exam-
ines the background to capture the global view.

7 Conclusion

We have presented a novel task to learn cross-
modality discourse that advances models to gain
social media language understanding capability in
multimedia contexts. To handle the intricate image-
text interactions, the visual semantics are first con-
verted into text-formed subtitles and then compared
with post texts to explore deep syntactic relations in
linguistic space. For empirical studies, we further
contribute the first dataset presenting 16K human-
annotated tweets with discourse labels for image-
text pairs. The main comparison results on our
dataset have shown the effectiveness of multi-head
attentions in exploring interactions among text, im-
age, and caption modalities. Further discussions
demonstrate our potential to produce meaningful
representations indicating implicit image-text struc-
ture. These discourse features, conveying essential
linguistic clues consistent with human senses, may
largely benefit the future advances of automatic
cross-modality understanding on social media.
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Limitations

Class imbalance is one of the main limitations of
this work. As illustrated in Table 1, Concretiza-
tion is the majority category which occupies 66.0%
of the dataset, while the minority categories, e.g.
Projection and Insertion only account for 4.3% and
5.2% respectively. Although such uneven distribu-
tion reflects the real scenario of image-text relation-
ships among tweets, future work should acquire
a larger amount of minority categories for better
interpretation of image-text relationships.

Cross-lingual and multi-platform studies should
also be considered in later studies. It would be
interesting and insightful to investigate the cross-
modality discourse categories distribution among
different languages. Are there any cultural traits
that affect the use of image and text? Meanwhile,
social media platforms can also exhibit preference
for image and text usage. For example, will users
on Instagram prefer to omit the Name Entities (In-
sertion category) than Twitter users?

A more concrete model, e.g. vision-language
Transformers, could also be employed to encode
the text, caption, and image jointly. Current model
runs efficiently on single NVIDIA RTX3080Ti
GPU, while the training consumption of vision-
language Transformers could be costly and requires
larger dataset. Future studies could explore the
trade-off between computation cost and classifica-
tion performance.

Ethical Considerations

We declare our dataset will cause no ethics problem.
First, we follow the standard data acquisition pro-
cess regularized by Twitter API. We downloaded
the data for a purpose of academic research and is
consistent with the Twitter terms of use. Then, we
thoroughly navigated the data and ensured that no
content will rise any ethics concerns, e.g. toxic lan-
guages, human face images, and censored images.
Next, we perform the data anonymization to pro-
tect the user privacy. For the language use, we only
keep the posts with English text. For the human an-
notations, we recruited the annotators as part-time
research assistants with 16 USD/hour payment.
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