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Abstract

Simultaneous machine translation (SiMT)
starts its translation before reading the whole
source sentence and employs either fixed or
adaptive policy to generate the target sentence.
Compared to the fixed policy, the adaptive pol-
icy achieves better latency-quality tradeoffs by
adopting a flexible translation policy. If the pol-
icy can evaluate rationality before taking action,
the probability of incorrect actions will also de-
crease. However, previous methods lack evalua-
tion of actions before taking them. In this paper,
we propose a method of performing the adap-
tive policy via integrating post-evaluation into
the fixed policy. Specifically, whenever a candi-
date token is generated, our model will evaluate
the rationality of the next action by measuring
the change in the source content. Our model
will then take different actions based on the
evaluation results. Experiments on three trans-
lation tasks show that our method can exceed
strong baselines under all latency1.

1 Introduction

Simultaneous machine translation (SiMT) (Gu
et al., 2017; Ma et al., 2019; Arivazhagan et al.,
2019; Ma et al., 2020) starts translation before
reading the whole source sentence. It seeks to
achieve good latency-quality tradeoffs and is suit-
able for various scenarios with different latency
tolerances. Compared to full-sentence machine
translation, SiMT is more challenging because it
lacks partial source content in translation (Zhang
and Feng, 2022d) and needs to decide on transla-
tion policy additionally.

The translation policy in SiMT directs the model
to decide when to take READ (i.e., read the next
source token) or WRITE (i.e., output the generated
token) action, so as to ensure that the model has
appropriate source content to translate the target

∗Corresponding author: Yang Feng.
1Code is available at https://github.com/ictnlp/
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Figure 1: The change in translation degree of source
tokens after generating a candidate token, and the
READ/WRITE action is taken accordingly.

tokens. Because READ and WRITE actions are
often decided based on available source tokens and
generated target tokens, it is difficult to guarantee
their accuracy. Therefore, if the SiMT model can
evaluate the rationality of actions with the help of
the current generated candidate token, it can reduce
the probability of taking incorrect actions.

However, the previous methods, including fixed
and adaptive policies, lack evaluation before taking
the next action. For fixed policy (Ma et al., 2019;
Elbayad et al., 2020; Zhang et al., 2021; Zhang
and Feng, 2021c), the model generates translation
according to the predefined translation rules. Al-
though it only relies on simple training methods,
it cannot make full use of the context to decide an
appropriate translation policy. For adaptive pol-
icy (Gu et al., 2017; Arivazhagan et al., 2019; Ma
et al., 2020; Zhang et al., 2022), the model can
obtain better translation performance. But it needs
complicated training methods to obtain translation
policy and takes action immediately after making
decisions, which usually does not guarantee the
accuracy of actions.

Therefore, we attempt to explore some factors
from the translation to reflect whether the action is
correct, thereby introducing evaluation into trans-
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lation policy. The goal of translation is to con-
vert sentences from the source language to the tar-
get language (Mujadia and Sharma, 2021), so the
source and target sentences should contain the same
semantics (i.e., global equivalence). To ensure
the faithfulness of translation (Weng et al., 2020),
the source content that has already been translated
should be semantically equivalent to the previously
generated target tokens at each step (i.e., partial
equivalence) (Zhang and Feng, 2022c). Further-
more, by comparing the changes between adjacent
steps, the increment of the source content being
translated should be semantically equivalent to the
current generated token (i.e., incremental equiva-
lence). Therefore, the rationality of the generated
target token can be reflected by the increment of the
source content being translated between adjacent
steps, which can be used to evaluate the READ and
WRITE actions.

In this paper, we propose a method of performing
the adaptive policy by integrating post-evaluation
into the fixed policy, which directs the model to
take READ or WRITE action based on the evalua-
tion results. Using partial equivalence, our model
can recognize the translation degree of source to-
kens (i.e., the degree to which the source token
has been translated), which represents how much
the source content is translated at each step. Then
naturally, by virtue of incremental equivalence, the
increment of translated source content can be re-
garded as the change in the translation degree of
available source tokens. Therefore, we can evaluate
the action by measuring the change in translation
degree. As shown in Figure 1, if the translation
degree has significant changes after generating a
candidate token, we think that the current gener-
ated token obtains enough source content, and thus
WRITE action should be taken. Otherwise, the
model should continue to take READ actions to
wait for the arrival of the required source tokens.
Experiments on WMT15 De→En and IWSLT15
En→Vi translation tasks show that our method can
exceed strong baselines under all latency.

2 Background

Transformer (Vaswani et al., 2017), which con-
sists of encoder and decoder, is the most widely
used neural machine translation model. Given a
source sentence x = (x1, ..., xI), the encoder maps
it into a sequence of hidden states z = (z1, ..., zI).
The decoder generates target hidden states h =

(h1, ..., hM ) and predicts the target sentence y =
(y1, ..., yM ) based on z autoregressively.

Our method is based on wait-k policy (Ma
et al., 2019) and Capsule Networks (Hinton et al.,
2011) with Guided Dynamic Routing (Zheng et al.,
2019b), so we briefly introduce them.

2.1 Wait-k Policy
Wait-k policy, which belongs to fixed policy, takes
k READ actions first and then takes READ and
WRITE actions alternately. Define a monotonic
non-decreasing function g(t), which represents the
number of available source tokens when translating
target token yt. For wait-k policy, g(t) can be
calculated as:

g(t; k) = min{k+t−1, I}, (1)

where I is the length of the source sentence.
To avoid the recalculation of the encoder hidden

states when a new source token is read, unidirec-
tional encoder (Elbayad et al., 2020) is proposed
to make each source token only attend to its previ-
ous tokens. Besides, multi-path method (Elbayad
et al., 2020) optimizes the model by sampling k uni-
formly during training and makes a unified model
obtain the translation performance comparable to
wait-k policy under all latency.

2.2 Capsule Networks with Guided Dynamic
Routing

Guided Dynamic Routing (GDR) is a variant of
routing-by-agreement mechanism (Sabour et al.,
2017) in Capsule Networks and makes input cap-
sules route to corresponding output capsules driven
by the decoding state at each step. In detail, en-
coder hidden states z are regarded as a sequence
of input capsules, and a layer of output capsules is
added to the top of the encoder to model different
categories of source information. The decoding
state then directs each input capsule to find its affil-
iation to each output capsule at each step, thereby
solving the problem of assigning source tokens to
different categories.

3 The Proposed Method

The architecture of our method is shown in Figure
2. Our method first guides the model to recognize
the translation degree of available source tokens
based on partial equivalence during training via the
introduced GDR module. Then based on the in-
cremental equivalence between adjacent steps, our
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Figure 2: The architecture of our method. The R/W
prediction module obtains the translation degree of the
available source tokens and evaluates the next action
based on the change in translation degree.

method utilizes the changes in translation degree
to post-evaluate the rationality of the READ and
WRITE actions and accordingly make corrections,
thereby performing an adaptive policy during in-
ference. Besides, to enhance the robustness of the
model in recognizing the translation degree dur-
ing inference, our method applies a disturbed-path
training based on the wait-k policy, which adds
some disturbance to the translation policy during
training. The details are introduced in the following
sections in order.

3.1 Recognizing the Translation Degree

As mentioned above, the translation degree repre-
sents the degree to which the source token has been
translated and is the prerequisite of our method.
Therefore, we introduce Capsule Networks with
GDR to model the translation degree, which is
guided by our proposed two constraints according
to partial equivalence during training.

Translation Degree We define the translation
degree of all source tokens at step t as d(t) =
(d

(t)
1 , ..., d

(t)
I ). To obtain the translation degree, we

need to utilize the ability of Capsule Networks with
GDR to assign the source tokens to different cate-

gories. Assume that there are J+N output capsules
modeling available source information that has al-
ready been translated and has not yet been trans-
lated, among which there are J translated capsules
ΦT = (Φ1, ...,ΦJ) and N untranslated capsules
ΦU = (ΦJ+1, ...,ΦJ+N ), respectively. The encoder
hidden states z are regarded as input capsules. To
determine how much of zi needs to be sent to Φj

at step t, the assignment probability c
(t)
ij in SiMT

is modified as:

c
(t)
ij =





exp b
(t)
ij∑

l exp b
(t)
il

if i ≤ g(t)

0 otherwise
, (2)

where b
(t)
ij measures the cumulative similarity be-

tween zi and Φj . Then c
(t)
ij is updated iteratively

driven by the decoding state and is seen as the
affiliation of zi belonging to Φj after the last iter-
ation. For more details about Capsule Networks
with GDR, please refer to Zheng et al. (2019b).
On this basis, the translation degree of xi is calcu-
lated by aggregating the assignment probability of
routing to the translated capsules at step t:

d
(t)
i =

J∑

j=1

c
(t)
ij . (3)

Segment Constraint To ensure that the model
can recognize the translation degree of source to-
kens, the model requires additional guidance. Ac-
cording to partial equivalence, the translated source
content should be semantically equivalent to the
generated target tokens. On the contrary, the un-
translated source content and unread source tokens
should be semantically equivalent to target tokens
not generated. So we introduce mean square error
to induce the learning of output capsules:

LS =
1

M

M∑

t=1

(∥ΦT
t −WTHT

t ∥
2

+ ∥ΦU
t +WU

e Zt −WU
d H

U
t ∥

2
)

, (4)

where WT , WU
e and WU

d are learnable parame-
ters. HT

t and HU
t are the averages of hidden states

of the generated target tokens and target tokens not
generated, which are calculated respectively:

HT
t =

1

t−1
t−1∑

τ=1

hτ , (5)
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HU
t =

1

M−t+ 1

M∑

τ=t

hτ . (6)

where M is the length of the target sentence. Zt

is the average of hidden states of unread source
tokens at step t:

Zt =
1

I−g(t)
I∑

τ=g(t)+1

zτ . (7)

ΦT
t and ΦU

t are the translated and untranslated
source information at step t, respectively.

Token Constraint To recognize the changes in
translation degree more accurately, we propose
token constraint according to incremental equiv-
alence. It encourages the translated capsules to pre-
dict the generated tokens and combines translated
and untranslated capsules to predict the available
source tokens at each step. It can be calculated as:

LT = − 1

M

M∑

t=1

[log pd(y<t|ΦT
t )

+ log pe(x≤g(t)|ΦT
t ;Φ

U
t )]

, (8)

where pd(y<t|ΦT
t ) represents the probability of

generated target tokens based on translated source
information and pe(x≤g(t)|ΦT

t ;Φ
U
t ) is the prob-

ability of available source tokens based on both
translated and untranslated information. Then we
can get the training objective of our model:

L(θ) =−log pθ(y|x) + λSLS + λTLT , (9)

where −log pθ(y|x) is negative log-likelihood.

3.2 Post-Evaluation Policy
With the help of token and segment constraints,
our model can accurately recognize the translation
degree, which can be utilized to perform our Post-
Evaluation (PE) policy by measuring the changes
in translation degree between adjacent steps.

Generally speaking, the core of the adaptive pol-
icy is to decide the conditions for taking different
actions (Zhang and Feng, 2022b). According to
incremental equivalence, the current generated to-
ken should be semantically equivalent to the in-
crement of the source content that has been trans-
lated, which can be measured by the changes in
translation degree. Therefore, we can evaluate the
rationality of actions by measuring the change in

the translation degree of available source tokens.
We define the change in the translation degree
of source tokens after generating yt as ∆d(t) =
(∆d

(t)
1 , ...,∆d

(t)
I ) and ∆d

(t)
i is calculated as:

∆d
(t)
i = max{d(t+1)

i −d(t)i , 0}, (10)

where d
(t)
i and d

(t+1)
i are calculated in Eq.(3) and

max(·) function ensures that the translation degree
is undiminished considering incremental equiva-
lence. Furthermore, we introduce hyperparameter
ρ, which is the threshold to measure the change in
translation degree.

As shown in Figure 3, we can get the conditions
for taking different actions by comparing ∆d(t)

and ρ. We first define function max_select(·),
which returns the maximum element in a vec-
tor. According to incremental equivalence, if the
change in the translation degree exceeds the thresh-
old (i.e, max_select(∆d(t))≥ρ), then the current
generated token obtains enough source content, and
the model should take WRITE action. Otherwise,
the model should continue to take READ action.
However, the generation of auxiliary tokens such as
‘the’ in English can not lead to a change in transla-
tion degree. This misleads the model to take READ
actions consecutively, so we force the model to take
WRITE actions by setting the restriction of consec-
utive READ actions as r. PE policy is shown in
Algorithm 1. Our model will only take WRITE
action after reading the whole source sentence.

3.3 Disturbed-Path Training
Up to now, we have proposed our adaptive policy
by introducing post-evaluation, which utilizes the
translation degree. Because the adaptive policy
adopts different translation paths (i.e., the sequence
of READ and WRITE actions) for different con-
texts, this requires the model to learn as many trans-
lation paths as possible. However, the previous
training methods (Ma et al., 2019; Elbayad et al.,
2020) can only cover a small number of predefined
translation paths. To enhance the ability to recog-
nize the translation degree on different translation
paths, our model is optimized across our proposed
disturbed-path.

Specifically, the log-likelihood estimation based
on sentence pair (x, y) through the single path gk
is computed as:

log p(y|x,gk) =
M∑

t=1

log p(yt|y<t,x≤g(t;k)),

(11)
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Figure 3: Change in translation degree of available sources token after generating yt. The model takes WRITE
action when the translation degree has significant changes. Otherwise, the model should take READ action.

Algorithm 1: Post-Evaluation Policy
Input: Threshold ρ, Restriction on READ

actions r, y0 ← ⟨bos⟩, Prefix with k
source tokens x≤k, t← 1, i← k

while yt−1 ̸= ⟨eos⟩ do
if Evaluation(x≤i, y<t, ρ) then

Take WRITE action
t← t+ 1

else
Take READ action
i← i+ 1

end
Function Evaluation(x≤i, y<t, ρ):

calculate d(t) as Eq.(3)
generate yt //▷Candidate

calculate d(t+1) as Eq.(3)
calculate ∆d(t) as Eq.(10)
if max_select(∆d(t)) ≥ ρ then

return True
else

return False
end

where gk = (g(1; k), ..., g(M ; k)) defines the num-
ber of available source tokens at each step and k
is the number of source tokens read in advance be-
fore generation. For translation path gk, g(t; k) is
updated as:

g(t; k) =

{
min{g(t− 1; k) + γ, I}, t > 1

min{k + γ, I}, t = 1
,

(12)
where γ is uniformly sampled from [0, ..., r] and
r is the restriction on READ actions in PE policy
and controls the degree of disturbance to a single
translation path. This essentially simulates the situ-
ation where the model makes decisions on the next
action. For (x, y), we then make the model have

the ability to recognize the translation degree under
all latency by changing k. Thus, the log-likelihood
estimation in Eq.(11) is modified:

Ek[log p(y|x,gk)] =
∑

k∼U(K)

log p(y|x,gk),

(13)
where k is uniformly sampled form K = [1, ..., I]
and I is the length of source sentence. Therefore,
our method can perform our adaptive policy under
all latency by only using a unified model.

4 Experiments

4.1 Datasets
We evaluate our proposed method on IWSLT152

English→Vietnamese (En→Vi) task, IWSLT143

English→German (En→De) task, and WMT154

German→English (De→En) task.
For En→Vi task (Cettolo et al., 2016), our set-

tings are the same as Arivazhagan et al. (2019). We
replace tokens whose frequency is less than 5 with
⟨unk⟩. We use TED tst2012 as the development
set and TED tst2013 as the test set.

For En→De task, the model settings remain the
same as Cettolo et al. (2014).

For De→En task, we keep our settings consistent
with Ma et al. (2020). We apply BPE (Sennrich
et al., 2016) with 32K subword units and use a
shared vocabulary between source and target. We
use newstest2013 as the development set and new-
stest2015 as the test set.

4.2 Model Settings
Since our experiments involve the following mod-
els, we briefly introduce them. Wait-k (Ma et al.,

2https://nlp.stanford.edu/projects/nmt/
3https://wit3.fbk.eu/2014-01
4www.statmt.org/wmt15/
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Figure 4: Performance of different methods on En→Vi (Transformer-Small), En→De (Transformer-Small) and
De→En (Transformer-Base) tasks. It shows the results of our methods, wait-k, multi-path, adaptive-wait-k and
offline model.

2019) policy is the benchmark method in SiMT.
It takes k READ actions first, and then alternates
between READ and WRITE actions. Multi-path
(Elbayad et al., 2020) achieves comparable per-
formance to wait-k policy under all latency with
a unified model. Adaptive-wait-k (Zheng et al.,
2020) implements the adaptive policy through a
heuristic composition of several fixed policies. Of-
fline refers to conventional Transformer (Vaswani
et al., 2017) for full-sentence machine translation.
PED represents that our model is trained through
disturbed-path and performs PE policy during in-
ference. For all the models mentioned above, we
apply Transformer-Small (6 layers, 4 heads) on
En→Vi and En→De tasks and Transformer-Base
(6 layers, 8 heads) on De→En task. Other model
settings follow Ma et al. (2020).

We implement all models by adapting Trans-
former from Fairseq Library (Ott et al., 2019). The
settings of Capsule Networks with GDR are con-
sistent with Zheng et al. (2019b). For our method,
we empirically set r = 2 and ρ = 0.24 for all experi-
ments, and use k as free parameter to achieve dif-
ferent latency. Our proposed method is fine-tuned
based on the pre-trained multi-path model. We use
greedy search in decoding and evaluate these meth-
ods with translation quality measured by tokenized
BLEU (Papineni et al., 2002) and latency estimated
by Average Lagging (AL) (Ma et al., 2019).

4.3 Main Results

The translation performance between our method
and the previous methods is shown in Figure 4. It
can be seen that our method can exceed previous
methods under all latency on all translation tasks.

Compared to wait-k policy, our method obtains
significant improvement, especially under low la-

tency. This is because wait-k policy performs trans-
lation according to the predefined path, which usu-
ally leads to uncertain anticipation or introduces
redundant latency (Ma et al., 2019). Both Multi-
path and our methods can generate translation un-
der all latency with a unified model. But our PED
method transcends its performance by performing
Post-Evaluation (PE) policy, which can evaluate
the rationality of actions and then decide whether
to take them. Therefore, compared with fixed pol-
icy, our PE method can achieve better performance
by adjusting its translation policy.

Compared to Adaptive-wait-k policy, our model
also surpasses its performance and is more reli-
able under high latency. Adaptive-wait-k generates
translation through a heuristic composition of sev-
eral models with different fixed policies, which
restricts the performance under high latency and
leads to a decrease in translation speed caused by
frequent model switching (Zheng et al., 2020). Our
method generates translation with only a unified
model and integrates post-evaluation into fixed pol-
icy to evaluate the rationality of actions. In par-
ticular, our model can approach the performance
of full-sentence machine translation with lower la-
tency on two tasks.

5 Analysis

To understand our proposed method, we conduct
multiple analyses. All of the following results are
reported on De→En task.

5.1 Ablation Study
We conduct an ablation study on PE policy and
disturbed-path training method to verify their ef-
fectiveness, respectively. As shown in Table 1,
both PE policy and disturbed-path method can
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AL BLEU
PED 7.63 30.28

w/o PE 7.9 30.10
w/o disturbed-path 7.81 29.68
w/o PE, disturbed-path 7.59 29.48

Table 1: Ablation study of our method when k = 9. ‘w/o
PE’ denotes our model is trained across disturbed-path
and performs fixed policy. ‘w/o disturbed-path’ denotes
our model is trained across multi-path and performs our
PE policy.

improve the translation performance, and better
latency-quality tradeoffs can be obtained by their
joint contributions.

We also carry out comparative experiments to
understand the two constraints in subsection 3.1.
The results are shown in Table 2. Both token and
segment constraints have positive effects on transla-
tion performance respectively. Although the trans-
lation quality is slightly worse when the model is
guided by them concurrently, the translation degree
of available source tokens can be greatly improved
and the latency is also reduced by their combined
contributions.

5.2 Analysis of Translation Degree

To describe the translation degree intuitively, we
visualize it in Figure 5. Obviously, the translation
degree of each source token gradually accumulates

LT LS AL BLEU
× × 7.77 29.48
✓ × 7.86 29.57
× ✓ 7.78 29.73
✓ ✓ 7.59 29.48

Table 2: Comparison among the combinations of two
constraints when decoding with k = 9. The model is
optimized through multi-path and performs fixed policy.

with the progress of translation, which means that
the source content is gradually utilized by the target
to generate translation and observes partial equiva-
lence. Besides, our PE policy can take WRITE ac-
tions when the translation degree of source tokens
has significant changes, which obeys incremental
equivalence and ensures the rationality of actions.
Therefore, our PED policy can adaptively adjust
the translation path based on context to achieve
better translation performance.

Following Zheng et al. (2019b), we evaluate the
accuracy of the translation degree at each step by
using overlapping rate, which measures the coin-
cidence between the predicted tokens and ground-
truth tokens. We introduce the prediction function
in token constraint to predict the target and source
tokens respectively. Then we obtain target over-
lapping rate RT by comparing the predicted target
tokens with the generated tokens and source over-
lapping rate RS by comparing the predicted source
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Latency 1 3 5 7 9

RT (↑) 0.60 0.62 0.63 0.62 0.61

RS(↑) 0.80 0.78 0.77 0.77 0.78

Table 3: The results of overlapping rate under all latency,
where the higher rate is better. The model is trained
across disturb-path and performs fixed policy.

tokens with available source tokens. RT is calcu-
lated as:

RT =
1

M

M∑

t=1

|Top7(pd(ΦT
t )) ∩ y<t|

|y<t|
,

where pd(·) in subsection 3.1 predicts the target
tokens based on translated capsules and Top7(·)
obtains 7 tokens (7 is just half of the average length
of the target sentence in test set) with the highest
probability. RT measures the ability of translated
capsules to express target information. Similarly,
RS is calculated as:

RS =
1

M

M∑

t=1

|Top15(pe(ΦT
t ; Φ

U
t )) ∩ x≤g(t)|

|x≤g(t)|
,

where pe(·) in subsection 3.1 to predict the source
tokens based on output capsules. Top15(·) ob-
tains 15 tokens (15 is just the average length of
the source sentence in test set) with the highest
probability. RS measures the ability of output cap-
sules to express available source information. The
results are shown in Table 3. The output capsules
can well represent the available source information
and generated target information under all latency.
Therefore, our method can recognize the transla-
tion degree accurately at each step according to
partial equivalence, thereby providing the basis for
our policy.

5.3 Analysis on Translation Path
The purpose of the translation policy is to get a bet-
ter translation path, which is composed of READ
and WRITE actions. To verify the effectiveness of
our PE policy, we introduce sufficiency and neces-
sity (Zhang and Feng, 2022c) as evaluation metrics.
Essentially, sufficiency measures the faithfulness
of the generated translation and necessity measures
how much the redundant delay is introduced.

We take manually aligned alignments for
De→En corpus in RWTH dataset5 as ground-truth

5https://www-i6.informatik.rwth-aachen.de/
goldAlignment/
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Figure 6: Comparison of adequacy and necessity of
translation path between different translation policies.

alignments (Zhang and Feng, 2021b). The com-
parison of sufficiency and necessity of different
methods is shown in Figure 6. Obviously, the trans-
lation path decided by our PE policy exceeds other
methods in terms of sufficiency and necessity. The
sufficiency of wait-k policy is similar to PE policy,
but it introduces too much unnecessary delay under
all latency. Compared to wait-k policy, Adaptive-
wait-k performs better in terms of necessity, but it
is obtained at the cost of partial sufficiency.

5.4 Translation Efficiency

In order to compare the translation efficiency be-
tween our method and the previous methods, we
measure it by using the average time of generating
each token. The results in Table 4 are tested on
GeForce GTX TITAN-X. It can be seen that the
translation speed of our methods is less than wait-k
policy, but about three times faster than Adaptive-
wait-k policy. Besides, the translation speed of
PED is about twice as slow as ‘PED w/o PE’, which
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Method Seconds per token
Adaptive-wait-k 0.1057 s

PED 0.0358 s
PED w/o PE 0.0175 s

Wait-k 0.0146 s

Table 4: The comparison of average time to generate a
target token in different methods.

is roughly in line with our expectation for our Post-
Evaluation policy.

6 Related Work

SiMT policy can be divided into fixed and adap-
tive policy according to whether the translation
path is dynamically decided based on context. For
fixed policy, the number of READ actions between
adjacent WRITE actions always keeps constant.
Dalvi et al. (2018) proposed STATIC-RW, and Ma
et al. (2019) proposed wait-k policy, which reads
and writes a token alternately after reading k to-
kens. Elbayad et al. (2020) proposed multi-path
training method to make a unified model perform
multiple wait-k policies and get the performance
comparable to the wait-k policy under all latency.
Zhang et al. (2021) proposed future-guided train-
ing to help SiMT model invisibly embed future
information via knowledge distillation. Zhang and
Feng (2021a) proposed a char-level wait-k pol-
icy to improve the robustness of SiMT. Zhang
and Feng (2021c) proposed MoE wait-k policy,
which treats the attention heads as a set of wait-k
experts, thereby achieving state-of-the-art perfor-
mance among the fixed policies.

For adaptive policy, Zheng et al. (2019a) trained
the agent with oracle actions generated by full-
sentence neural machine translation model. Ari-
vazhagan et al. (2019) proposed MILk to decide
the READ and WRITE actions by introducing
a Bernoulli variable. Ma et al. (2020) proposed
MMA, which implemented MILk on Transformer.
Zheng et al. (2020) implemented the adaptive pol-
icy through a composition of several fixed policies.
Miao et al. (2021) proposed a generative framework
to perform the adaptive policy for SiMT. Zhang and
Feng (2022c) introduced duality constraints to di-
rect the learning of translation paths during training.
Instead of predicting the READ and WRITE ac-
tions, Zhang and Feng (2022a) implemented the
adaptive policy by predicting the aligned source
positions of each target token.

Our method focuses on the accuracy of READ
and WRITE actions during inference. Our PE pol-
icy can evaluate the rationality of actions by utiliz-
ing the increment of source content before taking
them, which reduces the probability of incorrect
actions. Besides, our method achieves good perfor-
mance under all latency with a unified model.

Capsule Networks (Hinton et al., 2011) and its
assignment policies (Sabour et al., 2017; Hinton
et al., 2018) initially attempted to solve the problem
of parts-to-wholes in computer vision. Dou et al.
(2019) first employed capsule network into NMT
(i.e, neural machine translation) model for layer
representation aggregation. Zheng et al. (2019b)
proposed a novel assignment policy GDR to model
past and future source content to assist translation.
Wang et al. (2019) proposed a novel capsule net-
work for linear time NMT.

Our PED method introduces Capsule Networks
with GDR into SiMT model and recognizes the
translation degree of source tokens under the re-
striction of partial source information. Further-
more, we evaluate the rationality of the actions
by measuring the changes in translation degree, to
implement the adaptive policy.

7 Conclusion

In this paper, we propose a new method of per-
forming the adaptive policy by integrating post-
evaluation into the fixed policy to evaluate the ra-
tionality of the actions. Besides, disturbed-path
training is proposed to enhance the robustness of
the model to recognize the translation degree on
different translation paths. Experiments show that
our method outperforms the strong baselines under
all latency and can recognize the translation degree
on different paths accurately. Furthermore, PE pol-
icy can enhance the sufficiency and necessity of
translation paths to achieve better performance.

Limitations

We think our methods mainly have two limitations.
On the one hand, although our method can recog-
nize the translation degree of each source token, it
still has some deviations. On the other hand, al-
though the inference speed of our method is slightly
slower than the wait-k policy, it is still faster than
the Adaptive-wait-k policy, which is enough to
meet the needs of the application.
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A Hyperparameters

All systems in our experiments use the same hyper-
parameters, as shown in Table 5.

B Numerical Results

Table 6, 8, 7 respectively report the numerical re-
sults on IWSLT15 En→Vi, IWSLT14 En→De and
WMT15 De→En measured by AL and BLEU.
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Hyperparameter IWSLT15 En→Vi IWSLT14 En→De WMT15 De→En
encoder layers 6 6 6
encoder attention heads 4 4 8
encoder embed dim 512 512 512
encoder ffn embed dim 1024 1024 2048
decoder layers 6 6 6
decoder attention heads 4 4 8
decoder embed dim 512 512 512
decoder ffn embed dim 1024 1024 2048
dropout 0.3 0.3 0.3
optimizer adam adam adam
adam-β (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
clip-norm 0 0 0
lr 5e-4 5e-4 5e-4
lr scheduler inverse sqrt inverse sqrt inverse sqrt
warmup-updates 4000 4000 4000
warmup-init-lr 1e-7 1e-7 1e-7
weight decay 0.0001 0.0001 0.0001
label-smoothing 0.1 0.1 0.1
max tokens 16000 8192×4 2048×4×4

Table 5: Hyperparameters of our experiments.
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IWSLT15 En→Vi

Offline
AL BLEU

22.41 28.8

Wait-k
k AL BLEU
1 3.03 25.28
3 4.64 27.53
5 6.46 28.27
7 8.11 28.45
9 9.80 28.53

Multi-path
k AL BLEU
1 3.16 25.82
3 4.69 27.99
5 6.42 28.33
7 8.17 28.39
9 9.82 28.36

Adaptive-wait-k
(ρ1, ρ10) AL BLEU
(0.2, 0.0) 3.12 26.05
(0.4, 0.0) 4.38 27.72
(0.6, 0.0) 6.28 28.45
(1.0, 0.0) 7.96 28.47
(1.0, 0.4) 9.80 28.41

PED
k AL BLEU
1 3.16 26.78
3 4.74 28.69
5 6.46 28.74
7 8.18 28.82
9 9.80 28.77

Table 6: Numerical results of IWSLT15 En→Vi.

IWSLT14 En→De

Offline
AL BLEU

23.25 27.18

Wait-k
k AL BLEU
1 2.03 18.54
3 3.31 22.30
5 5.17 25.45
7 6.83 26.01
9 8.52 25.64

Multi-path
k AL BLEU
3 3.22 23.50
5 5.01 25.84
7 6.84 26.65
9 8.64 26.83

Adaptive-wait-k
(ρ1, ρ10) AL BLEU
(1.0, 0.3) 2.34 24.08
(1.0, 0.4) 3.79 24.63
(1.0, 0.6) 6.34 25.74
(1.0, 0.7) 7.07 25.88
(1.0, 0.8) 8.10 26.07

PED
k AL BLEU
3 3.05 24.14
5 5.03 26.16
7 6.91 26.81
9 8.71 27.12

Table 7: Numerical results of IWSLT14 En→De.
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WMT15 De→En

Offline
AL BLEU

27.45 30.62

Wait-k
k AL BLEU
1 -0.01 17.88
3 1.66 23.23
5 4.12 26.88
7 6.01 28.35
9 7.84 28.97

Multi-path
k AL BLEU
1 0.64 19.90
3 2.20 24.06
5 4.10 26.87
7 6.08 28.46
9 8.00 29.42

Adaptive-wait-k
(ρ1, ρ10) AL BLEU
(0.2, 0.0) 0.50 20.37
(0.4, 0.0) 1.39 22.81
(0.6, 0.0) 2.52 25.28
(0.8, 0.0) 4.39 27.63
(1.0, 0.0) 5.38 28.15
(1.0, 0.4) 7.32 28.78

PED
k AL BLEU
1 - 0.21 22.08
3 1.62 24.57
5 3.39 27.51
7 5.67 29.16
9 7.63 30.28

Table 8: Numerical results of WMT15 De→En.
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