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Abstract

In this paper, we propose a self-distillation
framework with meta learning (MetaSD) for
knowledge graph completion with dynamic
pruning, which aims to learn compressed graph
embeddings and tackle the long-tail samples.
Specifically, we first propose a dynamic prun-
ing technique to obtain a small pruned model
from a large source model, where the pruning
mask of the pruned model could be updated
adaptively per epoch after the model weights
are updated. The pruned model is supposed to
be more sensitive to difficult-to-memorize sam-
ples (e.g., long-tail samples) than the source
model. Then, we propose a one-step meta self-
distillation method for distilling comprehensive
knowledge from the source model to the pruned
model, where the two models co-evolve in a
dynamic manner during training. In particu-
lar, we exploit the performance of the pruned
model, which is trained alongside the source
model in one iteration, to improve the source
model’s knowledge transfer ability for the next
iteration via meta learning. Extensive exper-
iments show that MetaSD achieves competi-
tive performance compared to strong baselines,
while being 10x smaller than baselines.

1 Introduction

Knowledge graphs (KG) have become the key tech-
nology to represent structural relations between
entities and play an important role in question an-
swering (Shen et al., 2018), dialogue systems (Yan
et al., 2017), and entity disambiguation (Mulang’
et al., 2020). However, most KGs are growing at
a rapid pace and are far from complete. Therefore,
it is necessary to develop knowledge graph com-
pletion (KGC) approaches to add missing triples to
the KGs, so as to improve the quality of KGs.

Recent advances in KGC primarily work on
knowledge graph embedding (KGE) by convert-

*Min Yang and Chengming Li are corresponding authors.
The dataset and code are publicly available at https:
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Figure 1: The MRR scores w.r.t. the graph embedding
sizes of DURA and RP on FB15k-237.

ing the entities and relations in KGs into low-
dimensional vectors. Early studies on KGE in-
troduce a margin-based pairwise ranking function
to measure the Euclidean distance or similarity be-
tween the relational projection of entities (Nickel
et al., 2011; Bordes et al., 2013; Yang et al., 2014;
Trouillon et al., 2016). Among them, TransE (Bor-
des et al., 2013) is the most widely used KGE
method, which views the relation as translation
from a head entity to a tail entity. Recently, neu-
ral networks, such as neural tensor network (NTN)
(Socher et al., 2013) and neural association model
(NAM) (Liu et al., 2016) have been proposed to en-
code semantic matching and achieved remarkable
predictive performance for KGC.

To increase the capacity of the KGE models,
a larger embedding size with more parameters is
a common technique in practice. As shown in
Figure 1, the prediction performance of the KGC
models such as DURA (Zhang et al., 2020) and
RP (Chen et al., 2021) can be largely improved by
increasing the graph embedding size. Although
the large graph embedding often bring obvious
performance improvements, it may also become
the major obstacle for model deployment and real-
time prediction, especially for memory-limited and
resource-constrained devices.

In addition, the distribution of samples with long-
tail is prevalent in KGs (Zhang et al., 2019), where
a large portion of relations have much fewer triples
than other relations. However, most previous stud-
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ies mainly focus on the predictive performance on
overall test data, without taking long-tail samples
into consideration. These models suffer from ro-
bust and generalization performance in the practical
scenario. Although several recent works (Xiong
et al., 2018; Sheng et al., 2020) have been proposed
for few-shot KGC, these models are not adapted to
the model compression frameworks.

In this paper, we propose a self-distillation
framework with meta learning (MetaSD) for knowl-
edge graph completion with dynamic pruning.
First, we propose a dynamic pruning technique
to obtain a small pruned model from a large source
model at the start of each training epoch. Con-
cretely, the pruning mask of the pruned model
could be updated adaptively per epoch after up-
dating the model weights. The pruned model is
supposed to be more sensitive to the difficult-to-
memorize samples (e.g., long-tail samples) than the
source model. Second, we propose a one-step meta
self-distillation method to distill comprehensive
knowledge from the source model to the pruned
model, where the two models co-evolve in a dy-
namic manner during the whole knowledge distilla-
tion process. The key idea is to use the performance
of the pruned model, which is trained alongside the
source model in one iteration, to improve the source
model for the next iteration by borrowing the idea
of learning to learn from meta learning (Finn et al.,
2017). In particular, we define the objectives of the
source model as functions of the pruned model’s
performance on a quiz set. The usage of “gradient
by gradient” strategy makes the source model ad-
just to the learning state of the pruned model, and
improves both the source and pruned models.

The main contributions of our method can be
three-fold. (1) We propose a self-distillation frame-
work to compress KG embeddings for KGC. The
source and pruned models co-evolve in a dynamic
manner during training, thus we can avoid pre-
training a large model in advance, and the perfor-
mance of the pruned model is not limited to that of
a pre-trained large model. (2) We exploit the feed-
back from the pruned model to guide the source
model with meta learning, making the source
model transfer better knowledge to the pruned net-
work. (3) Experimental results on two benchmark
datasets show that our model achieves competitive
performance compared to strong baselines, while
being 10x smaller than other KGC models.

2 Methodology

Problem Definition Suppose a KG can be
viewed as a graph G = {(h, r, t)} ∈ E × R × E,
where E and R represent the entity (node) set and
relation (edge) set respectively. (h, r, t) represents
a triple, where h, t and r indicate head entity, tail
entity and the relation between two entities, respec-
tively. Given the KG G, the goal of KGC is to infer
missing links based on existing triples in the KG.

Model Overview The overview of our MetaSD
method is illustrated in Figure 2. We adopt Com-
plEx (Trouillon et al., 2016) as our backbone
model, which is treated as the source model T .
First, we use a magnitude-based weight pruning
method (Han et al., 2015; Zhu and Gupta, 2017)
to obtain a pruned model S from the source model
T . Second, we propose a one-step meta self-
distillation method for distilling comprehensive
knowledge from the source model T to the pruned
model S, where the two models co-evolve in a dy-
namic manner during training. Next, we introduce
the proposed MetaSD method in detail.

2.1 Network Pruning

We use the magnitude-based weight pruning
method (Han et al., 2015; Zhu and Gupta, 2017)
to create a self-competitive compressed model S
by pruning the source model T . In particular, we
fix the pruning rate γ during the whole training
process. At each iteration, we first calculate the
sum of parameter numbers of all layers be pruned
as P , and sort all the weights by their absolute val-
ues. Then, we prune a certain fraction (i.e., γ) of
weights that have lowest absolute weight values.
In particular, to dynamically adjust the pruned net-
work S during each iteration, we prune the chosen
weight by setting the corresponding values in a bi-
nary mask to zero, instead of directly setting the
weights to zero.

2.2 Self-Distillation via Meta Learning

We exploit the performance of the pruned model,
which is trained alongside the source model in one
iteration, to improve the source model’s knowledge
transfer ability for the next iteration via meta learn-
ing. In particular, we alternately update the pruned
model S based on the output of the source model
T and optimize the source model T based on the
pruned model’s performance via meta learning.
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Figure 2: The overview of MetaSD framework. (a) We prune the teacher T to obtain the student S and perform
knowledge distillation on training data to update the temporary copy S ′ from S. Then, the source model T is
optimized based on the feedback of S ′ on a held-out quiz set Q; (b) We discard S ′ and optimize the meta-updated
T and real S alternately by performing mutual learning on the training data.

Model S with Knowledge Distillation Formally,
we use the function S(xi; θS) to denote the soft
prediction of the compressed model, where θS rep-
resents the parameters of the pruned model S. We
calculate the cross-entropy loss LSCE(θS) on the
training data in current batch as:

LSCE(θS) =
1

N

N∑

i=1

CE(yi,S(xi; θS)) (1)

where N denotes the number of training samples.
CE(·) represents the cross-entropy function.

To further improve the performance of S, we
also design a knowledge distillation loss LSKD that
encourages the output of S to mimic that of T .
In particular, we minimize the Kullback-Leibler
Divergence (KL-divergence) between the output
distributions of S and T by:
LSKD(θS , θT ) =

1
N

∑N
i=1KL

(
S(xi; θS)||T (xi; θT )

)
(2)

where θT represents the parameters of T .
The cross-entropy loss LSCE and the knowledge

distillation lossLSKD are combined to form the over-
all loss LS for the compressed model S as:
LS(θS , θT ) = αLSCE(θS) + (1− α)LSKD(θS , θT ) (3)

where α is a hyperparameter to balance the relative
importance of the two loss functions.

Model T with Meta Learning We exploit feed-
back from the compressed model’s learning state
to improve the source model’s knowledge transfer
ability throughout the distillation process, instead
of keeping the source model T fixed in the training
process. We train both T and S in an iterative man-
ner until convergence. This interaction between the
two models can be seen as a form of meta learning
with a bi-level optimization process, which com-

prises three steps: Virtual-Train, Meta-Train, and
Actual-Train (Xu et al., 2021). That is, the com-
pressed model S is the inner-learner and the source
model T is the meta-learner.

For each training step, we first copy the param-
eters θS of the compressed model S to a “virtual”
compressed model S ′, and then update the parame-
ters θ

′
S(θT ) of the “virtual” compressed model S ′

with SGD (Bottou, 2012) for the Virtual-Train as:

θ
′
S(θT ) = θS − λ∇θSLS(θS , θT ) (4)

Then, the source model T is optimized based on
the feedback of S on a held-out quiz set Q. We
perform a derivative over a derivative (a Hessian
matrix) to update θT , by using a retained computa-
tional graph of θ

′
S in order to compute derivatives

with respect to θT . The source model T is opti-
mized by minimizing the cross-entropy loss over
the quiz set Q for the Meta-Train as:
LTCE

(
θ
′
S
(
θT )

)
= 1

M

∑M
i=1CE(y

′
i,S(x′i; θS)

)
(5)

where M is the training samples in the quiz set Q.
x′ and y′ denote the input sample and correspond-
ing label in quiz set q ∈ Q, respectively.

Finally, we update the source model T with SGD
(Bottou, 2012) as follows:

θT ← θT − µ∇θT LTCE(θ
′
S
(
θT )

)
(6)

where µ is the learning rate for the Meta-Train.

Mutual Update of T and S for Self-Distillation
In our self-distillation framework, the source model
T and the compressed model S co-evolve in a dy-
namic manner during the whole KD process. In-
stead of updating T with cross-entropy loss, we
learn both T and S models mutually.
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Model FB15k-237 WN18RR Dim
MRR Hits@1 Hits@3 Hits@10 Size MRR Hits@1 Hits@3 Hits@10 Size

TransE ⋆ 0.313 0.221 0.347 0.497 - 0.228 0.053 0.368 0.520 - -
RotatE ⋆ 0.333 0.240 0.368 0.522 - 0.478 0.439 0.494 0.553 - -
CP 0.333 0.247 0.360 0.508 50M 0.438 0.414 0.444 0.485 156M 2k
RESCAL 0.353 0.264 0.383 0.528 125M 0.455 0.419 0.460 0.493 26M -
ComplEx 0.346 0.256 0.370 0.525 60M 0.460 0.428 0.475 0.522 156M 2k
DURA 0.371 0.276 0.408 0.560 60M 0.491 0.449 0.503 0.571 156M 2k
RP 0.388 0.298 0.425 0.568 60M 0.488 0.443 0.505 0.568 156M 2k
KD 0.371 0.282 0.408 0.550 6M 0.470 0.427 0.485 0.530 15M 0.2k
DML 0.373 0.280 0.410 0.563 6M 0.472 0.429 0.485 0.535 15M 0.2k
MetaSD 0.391 0.300 0.428 0.571 6M 0.491 0.447 0.504 0.570 15M 0.2k

Table 1: Experimental results on FB15k-237 and WN18RR test sets for KGC. The results with ⋆ are taken from
LibKGE (Broscheit et al., 2020). CP, ComplEx and RESCAL are implemented by following (Zhang et al., 2020).

Formally, for the Actual-Train, we first update
the compressed model’s parameters θS with the
training data and the updated parameters θT as:

θS = θS − λ∇θSLS(θS , θT ) (7)
The source model T is also optimized by the

combination of the cross-entropy loss LTCE and the
knowledge distillation loss LTKD as:
LTCE(θT ) =

1
N

∑N
i=1CE(yi, T (xi; θT )

)
(8)

LTKD(θS , θT ) =
1
N

∑N
i=1KL

(
S(xi; θS)||T (xi; θT )

)
(9)

LT (θS , θT ) = βLTCE(θS) + (1− β)LTKD(θS , θT ) (10)
where β is a hyperparameter to balance the rela-
tive importance of the two loss functions. We first
update the source model’s parameters θT with the
training data and the updated parameters θS as:

θT = θT − λ∇θT LT (θS , θT ) (11)
We train the source and compressed models in

an iterative manner until convergence. Overall, the
self-distillation with meta learning is defined in
Algorithm 1.

Algorithm 1 Self-Distillation with Meta Learning

Require: train setD, quiz setQ, source model θT
Require: learning rate λ, learning rate µ, i← 0

1: repeat
2: i← i+ 1
3: Sample a batch of training data x from D
4: Get pruned model θS by pruning θT
5: Copy pruned model’s parameters θS to a

“virtual” pruned model θ
′
S

6: Update θ
′
S with x and θT : # Virtual-Train

θ′S(θT ) = θS − λ∇θSLS(x; θS , θT )
7: Sample a batch of quiz data q from Q
8: Update θT with q and θ′S : # Meta-Train

θT ← θT − µ∇θT LTCE(q; θ
′
S(θT ))

9: Mutual update θT and θS : # Actual-Train
θS(θT ) = θS − λ∇θSLS(x; θS ; θT )
θT (θS) = θT − λ∇θT LT (x; θS ; θT )

10: until i == max iterations
Output: source model θT and pruned model θS

3 Experimental Setup

3.1 Datasets

We conduct experiments on two KGC bench-
mark datasets: WN18RR (Toutanova and Chen,
2015) and FB15k-237 (Dettmers et al., 2018).
WN18RR consists of 40,943 entities and 11 re-
lations, and there are 86k/3k/3k instances for
training/validation/testing respectively. FB15k-
237 contains 14,541 entities and 237 relations,
and there are 272k/17k/20k instances for train-
ing/validation/testing.

3.2 Baseline Methods

We compare MetaSD with several strong
KGC baselines, including CP (F.L, 1927),
RESCAL (Nickel et al., 2011), TransE (Bordes
et al., 2013), ComplEx (Trouillon et al., 2016),
RotatE (Sun et al., 2019), DURA (Zhang et al.,
2020), and RP (Chen et al., 2021). We also com-
pare MetaSD with two widely used KD methods:
knowledge distillation (KD) (Hinton et al., 2015)
and deep mutual learning (DML) (Zhang et al.,
2018), where the pre-trained RP (Chen et al., 2021)
is used as their teacher model.

3.3 Implementation Details

The source model of MetaSD is initialized with
ComplEx (Trouillon et al., 2016), following the pre-
vious work (Zhang et al., 2020). Similar to Chen
et al. (2021), we add relation prediction as an aux-
iliary task. We set the pruning rate γ to 0.9 to
strike a balance between the effectiveness and effi-
ciency of the model. We set balance hyperparam-
eters α = β = 0.5. We choose Adagrad (Duchi
et al., 2011) as the optimizer and the learning rate
µ to 1e−4 and λ to 1e−1. The quiz set is randomly
sampled from training data and then fixed. We
adopt widely used filtered evaluation metrics of
mean reciprocal rank (MRR), Hits@1, Hits@3,
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Model MRR H@1 H@3 H@10
DURA 0.452 0.354 0.498 0.644
RP 0.462 0.372 0.504 0.645
MetaSD-T 0.468 0.380 0.510 0.642
MetaSD 0.471 0.381 0.512 0.646

Table 2: Results on long-tail data from FB15k-237.

Model MRR H@1 H@3 H@10
MetaSD 0.391 0.300 0.428 0.571

w/o P 0.381 0.292 0.415 0.561
w/o M 0.378 0.287 0.412 0.555
w/o P&M 0.373 0.280 0.410 0.563

Table 3: Results of ablation study on FB15k-237. P
and M denote the pruning and meta learning techniques.

and Hits@10 as described in (Bordes et al., 2013).

4 Experimental Results

4.1 Overall Performance
As shown in Table 1, we report the results of the
compressed model (denoted as MetaSD). Note that
the parameters of RASCAL are proportional to the
square of the number of relations, resulting in large
differences in size between the two datasets. We
observe that MetaSD achieves competitive perfor-
mance compared to other high-dimensional base-
line models on the two datasets for KGC, while
being 10x smaller than baseline methods. In ad-
dition, MetaSD also outperforms than two widely
used KD methods that have the same size and di-
mension with MetaSD.

4.2 Long-tail Evaluation
We investigate the effectiveness of MetaSD for
dealing with the long-tail samples. In particular, we
collect the long-tail samples from the FB15k-237
test set by choosing the relations that have fewer
than 1000 training instances. In total, there are 187
relations, which accounts for 79% of the total rela-
tion types but only 24% of train set. Table 2 reports
the results of MetaSD and compared methods on
the long-tail set. MetaSD significantly outperforms
other models on the long-tail samples, which ver-
ifies the effectiveness of MetaSD in tackling the
long-tail samples.

4.3 Ablation Study
In order to verify the effectiveness of the pruning
and meta learning modules, we conduct ablation
evaluation on the proposed MetaSD on the FB15k-
237 dataset. As shown in Table 3, we can observe
that the meta learning technique has great impact
on the performance of the proposed MetaSD. This

Model MRR H@1 H@3 H@10 Size
CP 0.333 0.247 0.360 0.508 50M
RESCAL 0.353 0.264 0.383 0.528 125M
MetaSD-CP 0.367 0.270 0.396 0.557 5M
MetaSD-RESCAL 0.372 0.276 0.405 0.561 12.5M

Table 4: Results of MetaSD on FB15k-237 by using
different backbone models.

is because that meta learning can make the source
network transfer rich knowledge to the pruned net-
work effectively in the self-distillation process. In
addition, the improvement of the self-pruning strat-
egy is also significant since self-pruning can help
the model learn discriminative representations and
deal with the long-tail samples. It is no surprise
that combining both factors achieves the best per-
formance on in terms of four evaluation metrics.

4.4 Generalization

To demonstrate the robustness of our framework,
we also implement MetaSD on two additional back-
bone models (e.g., CP and RESCAL). These two
backbone models are implemented and initialized
by following the paper (Zhang et al., 2020). As
shown in Table 4, our compressed model achieves
substantially better performance than the larger
baseline models based on two different backbone
models.

5 Conclusion

In this paper, we proposed a self-distillation frame-
work with meta learning for graph embedding
compression. Concretely, we proposed a one-step
meta self-distillation method for distilling compre-
hensive knowledge from the source model to the
pruned model, where the two models co-evolved in
a dynamic manner during training. Experimental
results showed that our model achieved competitive
performance compared to strong baseline methods,
while being 10x smaller than baseline methods.
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Limitations

To better understand the limitations of the proposed
model, we carry out an analysis of the error pre-
dictions made by MetaSD. In particular, we pri-
marily analyze the relations in the FB15k-237 test
set, whose MRR scores are less than 0.2. Most
of the incorrectly predicted relations are the “lo-
cation” and “relationships” related relation types,
such as place of birth/death, spouse, and sibling.
We reveal several reasons of the bad cases, which
can be divided into two primarily categories. First,
MetaSD fails to predict some instances that require
the multi-hop reasoning to get the correct answers,
since our model does not consider the complex
multi-hop paths during the knowledge graph repre-
sentation learning. Second, MetaSD fails to predict
some instances, where there are a large number of
candidate entities to reason for a relation type (e.g.,
the location relation). One possible solution is to
devise a two-step ranking method by filtering most
of the irrelevant entities in a coarse-grained way
and then distinguish the confusing entities with a
fine-grained method.
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