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Abstract

Novel category discovery aims at adapting mod-
els trained on known categories to novel cat-
egories. Previous works only focus on the
scenario where known and novel categories
are of the same granularity. In this paper,
we investigate a new practical scenario called
Fine-grained Category Discovery under Coarse-
grained supervision (FCDC). FCDC aims at
discovering fine-grained categories with only
coarse-grained labeled data, which can adapt
models to categories of different granularity
from known ones and reduce significant la-
beling cost. It is also a challenging task
since supervised training on coarse-grained cat-
egories tends to focus on inter-class distance
(distance between coarse-grained classes) but
ignore intra-class distance (distance between
fine-grained sub-classes) which is essential
for separating fine-grained categories. Con-
sidering most current methods cannot trans-
fer knowledge from coarse-grained level to
fine-grained level, we propose a hierarchical
weighted self-contrastive network by build-
ing a novel weighted self-contrastive mod-
ule and combining it with supervised learn-
ing in a hierarchical manner. Extensive ex-
periments on public datasets show both ef-
fectiveness and efficiency of our model over
compared methods. Code and data are avail-
able at https://github.com/Lackel/
Hierarchical_Weighted_SCL.

1 Introduction

Discovering novel categories based on some known
categories has attracted much attention in both Nat-
ural Language Processing (Zhang et al., 2021; Zhao
et al., 2021) and Computer Vision (Zhong et al.,
2021; Han et al., 2019). Previous works assume
that novel categories are of the same granularity (or
of the same class hierarchy level) as known cate-
gories. However, in real-world scenarios, novel cat-
egories can be more fine-grained sub-categories of
known ones (e.g., sports and tennis). A typical ap-
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Figure 1: An example of proposed FCDC task (fine-
grained label names need to be assigned by experts).

plication of this scenario is when data analysts want
to perform more fine-grained analysis on data with
only coarse-grained annotations, where re-labeling
fine-grained categories can be time consuming and
labour intensive. For example, in the intent de-
tection field, discovering more fine-grained user
intents can help to provide better services to cus-
tomers, but labeling fine-grained intent categories
is often much more difficult than labeling coarse-
grained ones, since fine-grained annotation often
requires higher expertise. To meet this requirement,
we investigate a new scenario named Fine-grained
Category Discovery under Coarse-grained supervi-
sion (FCDC). As shown in Figure 1, FCDC needs
models to discover fine-grained categories (e.g.,
tennis and music) based only on coarse-grained
(e.g., sports and arts) labeled data which are easier
and cheaper to obtain.

In addition to being in line with above practical
needs, FCDC is also a challenging task. Firstly,
performing FCDC requires models to increase
intra-class distance to ensure fine-grained separa-
bility with only coarse-grained supervision. How-
ever, coarse-grained classification only focuses on
inter-class distance and does not care about intra-
class distance (Bukchin et al., 2021), so samples
with the same coarse-grained labels will be close
to each other and hard to be separated in fine-
grained feature space. Secondly, since fine-grained
differentiation depends on correct coarse-grained
classification, FCDC also requires models to con-
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trol inter-class distance to ensure coarse-grained
separability. Although increasing intra-class dis-
tance can contribute to fine sub-classes separabil-
ity, it will also decrease inter-class distance, which
can result in overlapping between different coarse-
grained classes and therefore lead to misclassifica-
tion. So how to control and coordinate inter-
class and intra-class distance to ensure both
coarse-grained and fine-grained separability is
the core challenge of FCDC.

To address above challenges and transfer knowl-
edge from coarse-grained level to fine-grained
level, we propose a hierarchical weighted self-
contrastive network. By performing different ex-
periments on each layer of BERT, Jawahar et al.
(2019) find bottom layers of BERT capture more
surface features and top layers capture more high-
level semantic features, which means BERT can
extract features of different granularities from shal-
low to deep (Xu et al., 2021). Inspired by this phe-
nomenon, the core motivation of our model is to
learn coarse-grained knowledge by shallow layers
of BERT and learn more fine-grained knowledge
by the rest of deep layers hierarchically. This moti-
vation is not only consistent with the feature extrac-
tion process of BERT, but also corresponding with
the shallow-to-deep learning process of humans.
Specifically, we use given coarse-grained labels to
train shallow layers of BERT to learn some sur-
face knowledge, then we propose a weighted self-
contrastive module to train deep layers of BERT
to learn more fine-grained knowledge based on the
learned surface knowledge.

To ensure both coarse-grained and fine-grained
separability, we further propose a weighted self-
contrastive module to better coordinate inter-class
and intra-class distance in the fine-grained feature
space. Specifically, given a query sample, we firstly
propose a weighting strategy by weighting differ-
ent negative samples to control both inter-class
and intra-class distance. Then we propose a self-
contrastive strategy to generate positive samples
to coordinate inter-class and intra-class distance
to avoid the overlapping between different coarse-
grained classes. We further verify effectiveness and
efficiency of our model both theoretically (Section
3.2.4) and experimentally (Section 4.5).

The main contributions of our work can be sum-
marized as threefold:

• We propose to investigate a practical scenario
called Fine-grained Category Discovery un-

der Coarse-grained supervision (FCDC), we
further propose a hierarchical model to learn
fine-grained knowledge from shallow to deep
to facilitate the FCDC task.

• To better coordinate inter-class and intra-class
distance, we propose a novel weighted self-
contrastive module to ensure both coarse-
grained and fine-grained separability.

• Extensive experiments on public datasets
show that our model significantly advances
best compared methods with a large margin
and gets double training efficiency than state-
of-the-art contrastive learning methods.

2 Related work

2.1 Contrastive learning
Contrastive Learning (CL) aims at grouping simi-
lar samples closer and separating dissimilar sam-
ples far from each other in a self-supervised way
(Jaiswal et al., 2021), which has gained popular-
ity in both Natural Language Processing (NLP)
(Wu et al., 2020) and Computer Vision (CV) (Chen
et al., 2020). A critical point for CL is to build
high-quality positive and negative samples. The
simplest way to construct negative samples is to
use other in-batch data as negatives (Chen et al.,
2017). Further, He et al. (2020) built a dynamic
queue with momentum-updated encoder to keep
consistency of representations of negatives. How-
ever, these methods consider all negatives equally
important, which may lose discriminative informa-
tion of different negatives. As for positive samples,
in CV, one common way is taking two different
transformations of the same image as the query and
positive sample (Dosovitskiy et al., 2014). And in
NLP, augmentation techniques such as word dele-
tion (Meng et al., 2021), adversarial attack (Yan
et al., 2021) and dropout (Gao et al., 2021) were
proposed to generate positives. Although there are
some recent works (Bae et al., 2021) using out-
puts from different levels of a network as positives,
we have totally different motivations: they aim at
providing more high-quality positives for represen-
tation learning while we aim at better adjusting
intra-class and inter-class distance.

2.2 Novel Category Discovery
With data volume increases, novel categories espe-
cially novel fine-grained categories may be intro-
duced into datasets (Mekala et al., 2021). To dis-
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Figure 2: The overall architecture of our model. CE means Cross Entropy.

cover novel categories without human annotation,
most previous work adopted clustering methods
and transfer learning methods to generate pseudo
labels for unlabeled data to train their models (Zhan
et al., 2020). For example, Zhang et al. (2021)
proposed an alignment strategy to perform Deep-
Cluster (Caron et al., 2018) to discover novel cat-
egories. Ge et al. (2020) proposed a mutual mean
teaching network to refine noisy pseudo labels to
perform unsupervised person re-identification. Re-
cently, Two similar tasks as FCDC are proposed.
Bukchin et al. (2021) proposed to perform fine-
grained image classification under coarse-grained
supervision with angular contrastive learning, and
they performed this task in a few-shot learning way
which needs extra fine-grained labels for each cate-
gories. Mekala et al. (2021) proposed to perform
fine-grained text classification with coarse-grained
annotations, but they need extra fine-grained label
hierarchy and corresponding label names to assist
in the task. These two tasks both rely on extra
fine-grained knowledge from human annotations,
which is usually unavailable when novel categories
appear in real-world applications. Comparatively,
our FCDC is a category discovery task which does
not require fine-grained knowledge and is more
adapted to real world scenarios.

2.3 Problem Formulation

Denote by Ycoarse = {C1, C2, ..., CM} a set of
coarse-grained classes. The training set of FCDC is
a set of textsDtrain = {D1,D2, ...,DN}with their
coarse-grained labels {c1, c2, ..., cN}, where ci ∈
Ycoarse. Different from previous tasks (Bukchin

et al., 2021; Mekala et al., 2021) where the fine-
grained label set Yfine = {F1,F2, ...,FK} is al-
ready known, FCDC assumes that we do not have
any prior knowledge about fine-grained labels. So
FCDC requires models to perform clustering meth-
ods (e.g., K-Means) to discover fine-grained clus-
tersYfine withDtrain. Since performing clustering
will assign each input with a specific cluster assign-
ment, FCDC can also classify inputs into proper
fine-grained categories {f1, f2, ..., fN}. Although
the number of fine-grained clusters K can be es-
timated with various methods from the clustering
area, we assume it is known in FCDC following pre-
vious similar works (Zhang et al., 2021; Bukchin
et al., 2021) to make a fair comparison.

3 Proposed Approach

As shown in Figure 2, our model mainly contains
three components: BERT, Dynamic Queue and
Momentum BERT. BERT is used to extract both
coarse-grained and fine-grained features. Dynamic
Queue can store more negative samples grouping
by their coarse-grained labels following Bukchin
et al. (2021). Momentum BERT is used to update
representations of samples in Dynamic Queue. In-
spired by the "shallow to deep" learning process of
humankind and the ability of pre-trained models to
extract features from coarse-grained to fine-grained
(Jawahar et al., 2019; Xu et al., 2021), a core
motivation of our model is to learn fine-grained
knowledge in a progressive way. Specifically, our
model can learn coarse-grained knowledge at shal-
low layers under coarse-grained supervision and
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learn more fine-grained knowledge at deep layers
with the proposed weighted self-contrastive learn-
ing.

3.1 Supervised Learning
We firstly perform supervised learning on Trans-
former layer L of BERT to learn coarse-grained
knowledge. Given the i-th document Di with its
coarse-grained label ci, we use all token embed-
dings from the L-th layer of BERT as its shallow
features. Then we apply a mean-pooling layer to
get its shallow feature representation hLi :

hLi = mean-pooling(BERTL(Di)) (1)

where hLi ∈ Rh is the hidden state of feature
representations, h is the dimension of hidden rep-
resentations. Then we perform supervised learning
with cross entropy loss on coarse-grained labels to
get supervised loss LLsup at layer L:

zLi = σ(Wah
L
i + ba) (2)

LLsup = −
1

N

N∑

i=1

log
exp((zLi )

ci)
∑M

j=1 exp((z
L
i )
j)

(3)

where zLi ∈ RM is the output logits, M is the
number of coarse-grained classes. σ is the Tanh
activation function, Wa ∈ Rh∗M and ba ∈ RM
are learnable weights and bias terms, respectively.
(zi)

j is the j-th element of output logits zi.

3.2 Weighted Self-contrastive Learning
As shown in Figure 3, denote the coarse-grained
inter-class and intra-class distance by dcoarse and
dfine, respectively. Supervised learning on coarse-
grained labels can ensure dcoarse � 0 but will also
make dfine ≈ 0, which can bring difficulties for
fine-grained categorization. So how to increase
dfine to ensure separability of fine-grained sub-
classes is a severe challenge. Meanwhile, increas-
ing dfine without restraint will result in overlap-
ping between different coarse-grained classes and
therefore lead to misclassification. So how to con-
strain dfine to ensure the proper classification on
coarse-grained classes is the other challenge. In
summary, our total goal can be described as:

0� dfine < dboundary � dcoarse (4)

where dboundary is a threshold to ensure that sam-
ples fall into proper coarse-grained classes.

To achieve above objectives, we propose a
weighted self-contrastive module by introducing a
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Figure 3: The effectiveness of our self-contrastive mod-
ule, which can ensure both intra-class and inter-class
distance.

novel generation strategy for positive samples and
a weighting strategy for negative samples.

3.2.1 Negative Key Generation
Given the i-th document Di, we use all token em-
beddings from the output layer of BERT as its deep
features. Then we apply a mean-pooling layer to
get its deep feature representation hoi ∈ Rh:

hoi = mean-pooling(BERTo(Di)) (5)

In-batch negative keys Given hoi with its coarse-
grained label ci as a query q, we treat shal-
low and deep features of other in-batch samples
as its in-batch negative keys, where kin− (i) =
{hLj , hoj}j=1...N,j 6=i. In this way, we can increase
distance between different samples so that satis-
fying dfine � 0 and dcoarse � 0. To satisfy
dcoarse � dfine, we propose a weighting strategy
by giving more weights to samples with different
coarse-grained labels as the query q to further in-
crease their distance. So kin− can be divided into
two groups according to the coarse-grained labels:

kdiff− (i) = {k ∈ kin− (i) : ck 6= ci} (6)

ksame− (i) = {k ∈ kin− (i) : ck = ci} (7)

Momentum negative keys To provide more neg-
ative keys, we build a momentum BERT and a set
of dynamic queues {Qi}Mi=1 to store previous sam-
ples grouped by their coarse-grained labels follow-
ing Bukchin et al. (2021), where M is the number of
coarse-grained classes. Specifically, given hoi with
its coarse-grained label ci as a query, we treat sam-
ples from the queue Qci as its momentum negative
keys:

km− (i) = {k ∈ Qci} (8)

Feature representations of samples in dynamic
queues are extracted by momentum BERT, and
parameters of momentum BERT are updated in
a momentum way (He et al., 2020). At the end
of each iteration, the dynamic queues will be up-
dated by adding novel samples and removing the
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earliest samples. Since samples in km− (i) have the
same coarse-grained labels as the query, they are
much harder to be separated and beneficial to better
representation learning.

The overall negative keys for the query hoi is :

k−(i) = {kdiff− (i), ksame− (i), km− (i)} (9)

3.2.2 Positive Key Generation
By weighting different negative samples, we can
satisfy the condition 0 � dfine � dcoarse. But
increasing dfine without restraint will violate the
condition dfine < dboundary and make some sam-
ples fall into incorrect coarse-grained classes. To
solve this problem, we propose a self-contrastive
strategy by treating shallow features of a query as
its positive key. Specifically, given the deep feature
representation hoi for document Di as a query, we
treat hLi as its positive key:

k+(i) = hLi (10)

As shown in Figure 3, after supervised learning on
coarse-grained labels at layer L, hLi can be very
close to the class center of ci, so pulling hoi close to
hLi will also pull hoi close to the class center of ci.
In this way, we can increase dfine with restraint and
satisfy the condition dfine < dboundary without
computing the specific value of dboundary. Another
advantage of our self-contrastive strategy is that we
can get double training efficiency than traditional
data augmentation-based methods (Wu et al., 2020;
Gao et al., 2021) since we only need to perform
forward and backward propagation only once to get
and update both queries and positive keys (Section
5.2).

3.2.3 Weighted Self-contrastive Loss
Given the query hoi with its positive key k+(i)
and negative keys k−(i), the overall loss of our
weighted self-contrastive module is:

Lcont =
N∑

i=1

−log esim(hoi ,h
L
i )/τ

∑
l∈k−(i)

αl
∑
k∈l

esim(hoi ,hk)/τ

(11)
where αl ∈ {αsame, αdiff , αm} are weighting fac-
tors for different negative keys, sim(hi, hj) is co-

sine similarity hTi hj
‖hi‖·‖hj‖ and τ is a temperature hy-

perparameter.
By weighting different negative keys and select-

ing shallow features as the positive key, our model
can satisfy the goal in Inequation 4 and provide

conditions for subsequent fine-grained categoriza-
tion.

3.2.4 Theoretical Analysis
The effectiveness of our weighted self-contrastive
learning compared with traditional contrastive
learning from the gradient perspective is analyzed
below.
Self-contrastive Strategy Compared with tradi-
tional contrastive loss which only aims at grouping
queries and their transformations closer, our self-
contrastive strategy aims at pulling queries and
their shallow features closer:

sim(hoi , h
L
i ) := sim(hoi , h

L
i ) +

1

τ
(12)

Since τ is positive, the positive similarity will
increase and hoi will be grouped closer to hLi . Af-
ter supervised learning on coarse-grained labels
at layer L, hLi can be close to the class center
of ci, so pulling hoi closer to hLi will also pull
hoi closer to the class center of ci. So our Self-
Contrastive strategy can guarantee queries fall into
correct coarse-grained categories and get double
training efficiency since we only need to perform
forward and backward propagation only once to
get and update both queries and positive keys.
Weighting Strategy Since negatives with the
same coarse-grained labels as queries have larger
gradients (Wang and Liu, 2021), traditional con-
trastive loss will push these negatives farther from
queries than those with different coarse-grained la-
bels as queries, which leads to dcoarse < dfine and
is opposite of what we expect to solve the FCDC
task. To mitigate this limitation, we propose a
weighting strategy to give more weights to samples
with different coarse-grained labels as the query to
further increase their distance:

sim(hoi , h
o
j) := sim(hoi , h

o
j)− αl · Pi,j (13)

Pi,j =
1

τ
· esim(hoi ,h

o
j )/τ

∑
l∈k−(i)

αl
∑
k∈l

esim(hoi ,hk)/τ
(14)

By increasing the weighting factor αl for nega-
tives with different coarse-grained labels as queries,
the corresponding similarity will decrease faster.
So negatives with different coarse-grained labels
from queries will be pushed farther than those with
the same coarse-grained labels as queries, which
can guarantee dfine < dcoarse for the FCDC task.
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Table 1: Statistics of datasets. # indicates the number of
samples. |C|, |F | means the number of coarse-grained
and fine-grained classes, respectively.

Dataset |C| |F | # Train # Test
CLINC 10 150 18,000 1,000
WOS 7 33 8,362 2,420
HWU64 18 64 8,954 1,031

3.3 Overall Loss

To further guarantee samples to be classified into
proper coarse-grained categories, we also add su-
pervised learning on coarse-grained labels at the
output layer. So the overall loss for our hierarchical
weighted self-contrastive network is:

L = Losup + γ1LLsup + γ2Lcont (15)

where Losup is the cross entropy loss at the output
layer. γ1 and γ2 are weighting factors.

After representation learning, we simply perform
the non-parametric clustering method K-Means to
discover fine-grained categories based on features
extracted by the output layer of BERT.

4 Experiments

4.1 Datasets

To evaluate effectiveness of our model, we conduct
experiments on three public datasets. Statistics of
three datasets can be found in Table 1.
CLINC is an intent classification dataset released
by Larson et al. (2019).
Web of Science (WOS) is a paper classification
dataset released by Kowsari et al. (2017).
HWU64 is a personal assistant query classification
dataset released by Liu et al. (2021).

4.2 Implementation Details

We use the pre-trained BERT model (bert-base-
uncased) implemented by Pytorch (Wolf et al.,
2020) as our backbone and adopt most of its sug-
gested hyper-parameters. We use the cuml li-
brary (Raschka et al., 2020) to perform K-Means
on GPU to speed up calculations. We use the
AdamW optimizer with 0.01 weight decay. Gra-
dient clipping is also used with the norm 1.0. For
hyper-parameters, temperature τ is set to 0.1, layer
L is set to 8, and the weighting factors αl for
{kdiff− (i), ksame− (i), km− (i)} are set to {1.4, 1.0,
1.0}, weighting factors {γ1, γ2} are set to {0.001,
0.008}. The training batch size is set to 128, and

the testing batch size is set to 64. The momentum
queue size for each coarse-grained category is set
to 128, and the momentum factor for Momentum
BERT is set to 0.9. The hidden dimension h is 768,
the learning rate is set to 5e−5, the dropout rate is
set to 0.1. The training epoch is set to 20.

For a fair comparison, we use the same BERT
model as ours to extract features for all compared
methods and adopt hyper-parameters in their origi-
nal papers.

4.3 Compared Methods
Baselines We perform FCDC with BERT in un-
supervised and coarse-supervised way as baselines.
Self-supervised Methods DeepCluster (Caron
et al., 2018) and DeepAligned (Zhang et al., 2021)
are self-supervised methods using self-training
techniques and achieve state-of-the-art results in
many category discovery tasks. Ancor (Bukchin
et al., 2021) is a self-supervised method designed
for few-shot fine-grained classification with coarse-
grained labels. SimCSE (Gao et al., 2021) and
Delete One Word (Wu et al., 2020) are contrastive
learning methods in NLP with different data aug-
mentation techniques.
Self-supervised + Cross Entropy To investigate
the influence of coarse-grained supervision on com-
pared models, we further add cross entropy loss on
coarse-grained labels Losup to their loss function.

4.4 Evaluation Metrics
We use fine-grained labels as ground truth to eval-
uate model performance on testing sets. Since no
fine-grained knowledge is available for the FCDC
task, we need to perform clustering to discover
fine-grained categories. Clustering performance
can reflect the quality of discovered fine-grained
clusters (more compact clusters usually mean better
discovered categories). And classification perfor-
mance can reflect the semantic overlap between
discovered clusters and real categories.

To evaluate clustering performance, we use two
broadly used external evaluation metrics. Adjusted
Rand Index (ARI) is used to evaluate the degree of
agreement between cluster assignments and ground
truth. And Normalized Mutual Information (NMI)
is used to evaluate the mutual information between
cluster assignments and ground truth. To evaluate
classification performance, we use metric Accu-
racy (ACC), which is obtained from Hungarian al-
gorithm (Kuhn, 1955) to align cluster assignments
and ground truth.
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Table 2: Model comparison results (%) on fine-grained categories. Average results over 5 runs are reported. ’+ CE’
means adding coarse-grained supervision with cross entropy loss. We have also performed statistical significance
test and all the p-values are less than 10−6, which means our improvement is significant.

Methods
CLINC WOS HWU64

ACC ARI NMI ACC ARI NMI ACC ARI NMI
Unsupervised 33.38 16.42 63.46 32.32 18.21 47.12 33.66 16.88 56.78
Coarse Supervised 45.91 32.27 75.04 39.42 33.67 61.60 42.41 33.74 71.57
DeepCluster 26.40 12.51 61.26 29.17 18.05 43.34 29.74 13.98 53.27
DeepAligned 29.16 14.15 62.78 28.47 15.94 43.52 29.14 12.89 52.99
SimCSE 40.22 23.57 69.02 25.87 13.03 38.53 24.48 8.42 46.94
Anchor 45.60 33.11 75.23 41.20 37.00 65.42 37.34 34.75 74.99
Delete One Word 47.11 31.28 73.39 24.50 11.68 35.47 21.30 6.52 44.13
DeepCluster + CE 30.28 13.56 62.38 38.76 35.21 60.30 41.73 27.81 66.81
DeepAligned + CE 42.09 28.09 72.78 39.42 33.67 61.60 42.19 28.15 66.50
Anchor + CE 44.44 31.50 74.67 39.34 26.14 54.35 32.90 30.71 74.73
Delete One Word + CE 47.87 33.79 76.25 41.53 33.78 61.01 35.13 31.84 74.88
SimCSE + CE 52.53 37.03 77.39 41.28 34.47 61.62 34.04 31.81 74.86
Ours 74.67 64.77 89.14 63.64 51.55 72.46 58.45 48.20 78.66

4.5 Main Results

Model performance on fine-grained categories
are reported in Table 2. From the results we can
draw following conclusions. Our model signifi-
cantly outperforms other compared methods across
all datasets. We contribute reasons of better per-
formance of our model to following two points.
Firstly, we propose a hierarchical architecture to
learn fine-grained knowledge from shallow to deep,
which is consistent with the feature extraction pro-
cess of BERT and the shallow-to-deep learning pro-
cess of humans. Secondly, we propose a weighted
self-contrastive module to coordinate inter-class
and intra-class distance so that we can better learn
both coarse-grained and fine-grained knowledge.
Self-training methods perform badly on all datasets
and evaluation metrics since they rely on abun-
dant labeled data to generate high-quality pseudo
labels for unlabeled data. Contrastive learning
methods perform better than self-training methods
since they do not need fine-grained labels to ini-
tialize their models. However, their performance
is still much worse than ours since they cannot
fully utilize given coarse-grained labels to control
inter-class and intra-class distance between sam-
ples. We also find that model performance of most
compared methods increases with the addition of
coarse-grained supervision, which means coarse-
grained supervision can boost model performance
on fine-grained tasks.

Our model performance on coarse-grained

Table 3: Classification accuracy (%) on coarse-grained
categories on test sets.

Model CLINC WOS
Coarse Supervised 98.58 91.86
Ours 98.71 91.45

Table 4: Results (%) of different model variants. ’-’
means that we remove the component from our model.

Model ACC ARI NMI
ALL 74.67 64.77 89.14
- Momentum 73.38 64.47 88.91
- LLsup 72.93 63.72 88.06
- Weighting 71.75 62.99 88.47
- Self-Contrast 53.21 40.05 75.36

categories are reported in Table 3. From the table
we can see that our model gets similar classifica-
tion accuracy as the upper-bound coarse-supervised
BERT, which means that our model can control
not only intra-class distance to ensure fine-grained
separability, but also inter-class distance to ensure
coarse-grained variability.

5 Discussion

5.1 Ablation Study

To investigate contributions of different compo-
nents to our model, we compare the performance
of our model with its variants on the CLINC dataset.
As shown in Table 4, removing different compo-
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Figure 4: Training efficiency comparison.

nents will affect model performance more or less,
which indicates the effectiveness of different com-
ponents of our model. Removing Momentum En-
coder has minimal impact, since our model is in-
sensitive to the number of negative samples. Re-
moving weighting strategy or cross entropy loss at
shallow layers also hurt model performance since
they can help to learn coarse-grained knowledge
and lay foundation for learning fine-grained knowl-
edge. Above all, removing self-contrastive strategy
results in a significant decrease, since it is respon-
sible for controlling intra-class and inter-class dis-
tance.

5.2 Training Efficiency

In this section, we compare the training efficiency
of our model with contrastive methods SimCSE
and Delete One Word on the CLINC dataset. We
test all methods using the BERT base model trained
on the same hardware platform (an AMD EPYC
CPU 7702 and a RTX 3090 GPU) with the batch
size 128. Average results over 100 epochs are
shown in Figure 4. Compared with SimCSE and
Delete One Word, our model gets double train-
ing efficiency both when adding or removing Mo-
mentum Encoder, which benefits from our self-
contrastive strategy. Specifically, our model uti-
lizes shallow features of queries as positive keys,
which only needs to perform forward and backward
propagation once to get and update both queries
and positive keys.

5.3 Visualization

We further visualize the learned embeddings of our
model and SimCSE using t-SNE on the CLINC
dataset in Figure 5. Our model can separate differ-
ent coarse-grained categories with a larger margin
than SimCSE (Top in Figure 5), which benefits

Ours SimCSE + CE

C
oa

rs
e

Fi
ne

Figure 5: TSNE visualization of learned embeddings.
Top: coarse-grained categories. Bottom: fine-grained
categories of one arbitrary coarse-grained category.
Left: Ours. Right: SimCSE + CE.

from our strategy of combining supervised learn-
ing and contrastive learning in a hierarchical way.
Furthermore, our model can also separate different
fine-grained categories with a larger margin (Bot-
tom in Figure 5), which benefits from the weighted
self-contrastive module. In summary, our model
can better control both inter-class and intra-class
distance between samples to facilitate the FCDC
task than traditional contrastive learning methods.

5.4 Choices of L and weighting factors

Effect of Shallow Layer L The influence of the
choice of shallow layer L on model performance
is shown in Figure 6. Our model achieves the best
performance when L=8. In this way, our model
can learn coarse-grained knowledge at shallow
layers (L<8) and provide enough model capacity
to learn fine-grained knowledge at deeper layers
(L>8), which is consistent with the feature extrac-
tion process of BERT (Jawahar et al., 2019).

Effect of Weighting Factors We investigate the
influence of the ratio β = αdiff/αsame in Figure 7
(We fixed αm = 1 since it has little influence). As
analyzed in Section 3.2.4, by giving more weights
to negatives with different coarse-grained labels
as queries (β > 1), our weighting strategy can
keep these negatives further away from queries and
guarantee dfine < dcoarse. On the contrary, when
β < 1, negatives with the same coarse-grained
labels as queries will be further away from the
queries, which can hurt our model performance.
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Figure 6: Effect of shallow layer L.
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Figure 7: Effect of ratio β = αdiff/αsame.

6 Conclusion

In this paper, we investigate a novel task named
Fine-grained Category Discovery under Coarse-
grained supervision (FCDC), which can reduce sig-
nificant labeling cost and adapt models to novel cat-
egories of different granularity from known ones.
We further propose a hierarchical weighted self-
contrastive model to approach the FCDC task by
better controlling intra-class and inter-class dis-
tance. By performing supervised and contrastive
learning on shallow and deep layers of pre-trained
models, our model can learn fine-grained knowl-
edge from shallow to deep with only coarse-grained
supervision. Extensive experiments on public
datasets show that our approach is more effective
and efficient than compared methods.

Limitations

The limitations of our method lies in two aspects.
Firstly, following previous works, we need to know
the number of fine-grained clusters K as prior
knowledge, which is usually difficult to get in real-
world scenarios. Secondly, our method cannot pre-
dict semantic meanings (e.g., label names) of dis-
covered fine-grained categories, which is also an
unexplored question in the field of novel category

discovery.
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