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Abstract

Pre-trained language models (LMs) struggle
with consistent reasoning; recently, prompting
LMs to generate explanations that self-guide
the inference has emerged as a promising di-
rection to amend this. However, these ap-
proaches are fundamentally bounded by the
correctness of explanations, which themselves
are often noisy and inconsistent. In this work,
we develop MAIEUTIC PROMPTING, which
aims to infer a correct answer to a question
even from the unreliable generations of LM.
MAIEUTIC PROMPTING induces a tree of ex-
planations abductively (e.g. X is true, be-
cause . . . ) and recursively, then frames the in-
ference as a satisfiability problem over these
explanations and their logical relations. We
test MAIEUTIC PROMPTING for true/false QA
on three challenging benchmarks that require
complex commonsense reasoning. MAIEU-
TIC PROMPTING achieves up to 20% better
accuracy than state-of-the-art prompting meth-
ods, and as a fully unsupervised approach, per-
forms competitively with supervised models.
We also show that MAIEUTIC PROMPTING im-
proves robustness in inference while providing
interpretable rationales.1

1 Introduction

Following the remarkable success of few-shot
prompting over large language models (e.g. Brown
et al., 2020), recent studies on prompting meth-
ods suggest that LMs’ reasoning capability can be
further promoted by generating a sequence of ex-
planation for a given problem, prior to inferring
the answer (Wei et al., 2022; Wang et al., 2022;
Liu et al., 2021). The so-called explanation-based
prompting helps an LM better elicit its knowledge
and reason by leveraging its own generated expla-
nations - whether it be commonsense knowledge
(Liu et al., 2021), a solution for a math word prob-

1We share our code at https://github.com/
jaehunjung1/Maieutic-Prompting.

Explanation-based Prompting

Input 
Prompt

 Q: Captain Kirk is part of Star Wars?

 A: Captain Kirk is a character in Star Trek. Therefore, the answer is False.
…

 Q: At least one mayor is not male?

Output  A: There are female mayors. Therefore, the answer is True.

Type I 
(41%)

Smoke is not the source of fire?

Smoke is a result of fire. Therefore, the statement is False.

One is a number that comes before zero?

One is ... Therefore, the statement is True.

One is a number that comes after zero?

One is ... Therefore, the statement is True.

Type II 
(33%)

Butterflies fly with 3 wings?

Butterflies have 4 wings. Therefore, the statement is False.

Butterflies have 4 wings?
Butterflies have 2 wings on each side of their body. Therefore, 
the statement is False. 

Type III 
(35%)

???

Figure 1: Logical errors in explanation-based prompt-
ing: (1) explanation does not logically lead to the an-
swer, (2) model is invariant to negation, and (3) falsi-
fies its own explanation. We prompt 175B GPT-3 with
100 questions sampled from Talmor et al. (2021).

lem (Wei et al., 2022), or the intermediate steps of
program execution (Nye et al., 2021a).

Explanation-based prompting is intuitively mo-
tivated by the reasoning steps humans typically
employ to solve a problem (Hausmann and Van-
Lehn, 2007). However, we find that this intuition
is faulty in practice, as model-generated explana-
tions are often logically inconsistent and unreliable.
For example, we manually inspected 100 samples
from a QA task (Figure 1) and found that for a
considerable number of cases, (1) the explanation
does not logically lead to the inferred answer, (2)
the model infers the same label for a statement
and its negation (Kassner and Schütze, 2020), and
(3) falsifies its own generated explanation. These
findings raise fundamental questions on the role of
explanations in LM inference: If the explanation
is correct - is there a guarantee that the LM will
infer a label consistent with the explanation? And
if the explanation is wrong - is there a way to make
use of even the wrong explanation in inferring the
correct answer?

To this end, we propose MAIEUTIC PROMPT-
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Figure 2: An overview of MAIEUTIC PROMPTING. Given a question Q, we generate maieutic tree consisting of
abductive and recursive explanations, define the relations between them, and employ MAX-SAT to find the best
truth-value assignments to the explanations and Q.

ING, a novel few-shot inference method that in-
fers a correct answer by enumerating a structure of
explanations — possibly noisy and contradictory
— and resolving them with a symbolic inference
algorithm. Inspired by the maieutic method2 of
Socrates, MAIEUTIC PROMPTING induces the LM
to generate abductive explanations for diverse hy-
potheses with deep recursive reasoning, then col-
lectively eliminates the contradicting candidates,
resulting in consistent answers.

Figure 2 shows the overview of MAIEUTIC

PROMPTING. First, we prompt the LM to abduc-
tively (Peirce, 1974) rationalize both possible an-
swers, True and False, rather than generating a
single explanation and then connecting it to one
of the answer choices. Moreover, we do not ex-
pect the 1-hop explanations to be always correct;
thus, we further validate the LM’s confidence in its
explanations by recursively prompting the model
with its own generation as the question. Our gener-
ation process derives a tree structure of generated
propositions, where one proposition establishes a
logical ground for the correctness of one another.

To infer the answer for the original question, we
quantify the strength of the LM’s belief in each
proposition and the logical relationships between
propositions in the maieutic tree. We then employ
the weighted MAX-SAT (Battiti, 2009) solver to
collectively infer the truth-values of all the propo-
sitions (including the original question) that best
satisfy the set of observed relations. This way, we
symbolically induce the subset of generations that
makes the most probable and consistent inference.
Our proposed method can run completely unsu-
pervised with any few-shot promptable LM (e.g.,
GPT-3; Brown et al., 2020).

2Maieutic method brings out definitions implicit in the
interlocutor’s beliefs, ... is a method of hypothesis elimina-
tion, steadily identifying and eliminating those that lead to
contradictions (Vlastos, 1991).

Our experiments show that the performance of
MAIEUTIC PROMPTING exceeds that of all the few-
shot prompting baselines (e.g., Chain of Thought;
Wei et al., 2022) in three commonsense reason-
ing and fact verification benchmarks. MAIEUTIC

PROMPTING performs up to 20% better than other
prompting methods, and performs on par or even
better than supervised models. Further analyses
show that MAIEUTIC PROMPTING is robust to per-
turbations in both the questions and prompts, and
offers an interpretable interface to understand the
rationale behind the model’s inference.

2 Problem Setup and Background

Our goal is to infer whether a given statement Q
makes sense, i.e. inferring the truth value A of Q.
Conventionally, this can be done through prompt-
ing an LM with the following two methods:

Standard Prompting Let Q be a statement we
want to infer the truth value of (i.e., either True or
False). In standard few-shot prompting, the model-
inferred answer Â is defined as:

Â = argmax
A∈{T,F}

pLM (A|Q,C), (1)

where C = {(q1, a1), · · · , (qk, ak)} denotes the k
examples for in-context learning.

Explanation-based Prompting In explanation-
based prompting, the inference process is factor-
ized into two steps:

Â = argmax
A∈{T,F}

∫

E

pLM (A|Q,E,C) pLM (E|Q,C) (2)

Here, E denotes the explanation generated
prior to inferring the answer label, and C =
{(q1, e1, a1), · · · , (qk, ek, ak)} includes k exam-
ples of questions, explanations and answers. Since
marginalizing over all E is intractable, prior works
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resort to a sampling based approximation:

Â = argmax
A∈{T,F}

pLM (A|Q,E,C),

where E ∼ pLM (E|Q,C)
(3)

3 Maieutic Prompting

In this section, we introduce MAIEUTIC PROMPT-
ING, which performs inference over a maieutic tree
of generated explanations. First, we introduce logi-
cal integrity, a key concept that is used to determine
the reliability of propositions.

Language models often generate logically incon-
sistent propositions; for instance, in Figure 1, the
model infers True when prompted with either “One
is a number that comes before zero.” or “One is
a number that comes after zero.”. In this sense,
p(True|Q) does not provide a reliable value to de-
termine whether Q is true or not. We formalize
this idea as logical integrity: a proposition Q is
logically integral when the LM consistently infers
the truth value of Q and ¬Q (i.e. Q as True and
¬Q as False, or vice versa). Formally, we define a
boolean function integral(E) as follows:3

1. argmax
A∈{T,F}

pLM (A|E,C) = T and

argmax
A∈{T,F}

pLM (A|¬E,C) = F

2. argmax
A∈{T,F}

pLM (A|E,C) = F and

argmax
A∈{T,F}

pLM (A|¬E,C) = T

integral(E) = 1{1 or 2 is satisfied}.

(4)

A statement is considered to be logically integral
/ True when condition 1 is met, and logically inte-
gral / False when condition 2 is met. Intuitively,
the truth values of logically integral propositions
are more credible than non-integral ones, to which
LMs are inconsistent given a simple negation. For
example, “One is a number that comes before zero.”
in Figure 1 would not be logically integral, as the
model assigns same truth value to both Q and ¬Q.

For the rest of section, we first search for log-
ically integral propositions by constructing the
maieutic tree (Section 3.1), then quantify the rela-
tions between the propositions (Section 3.2), based
on which we infer the final answer (Section 3.3).

3Given E, ¬E can be automatically generated simply by
inserting a prefix (e.g. It is wrong to say that), or prompting
LM to negate the given sentence.

3.1 Maieutic Tree Generation

3.1.1 Abductive Explanation Generation
Given a question, we require the LM to post-hoc
rationalize both True and False labels. This ab-
ductive explanation generation has several advan-
tages over an ad-hoc approach that first generates
an explanation, then predicts the label. First, in the
ad-hoc setting, the model is required to generate
a discriminative explanation that helps in choos-
ing one label over the other. Abductive generation
(Bhagavatula et al., 2019), on the contrary, exposes
the model to consider different possible answers
rather than discriminating one, which often reveals
an explanation that otherwise would not have been
generated. Second, the label information would
intuitively help LM elicit more specific explana-
tions, mitigating the issue of a bland and generic
generation which does not help the inference, a
well-known weakness of LMs (Adiwardana et al.,
2020).

Concretely, we define a function abduction
which gets the statement Q as the input and outputs
a tuple of two abductive explanations with True,
False given as the answer, respectively:

abduction(Q) = (ET , EF )

where EA∈{T,F} ∼ pLM (E|Q,A,C).
(5)

Figure 2 shows a concrete example of generating
ET given Q. With Q, we prompt the model to
rationalize True as the answer: “War cannot have
a tie? True, because”, which then is completed by
an explanation by LM “In a context of war, there’s
always a victor and a loser.”.

3.1.2 Depth-wise Knowledge Spanning
As shown in Figure 1, LM-generated explanations
are noisy and inaccurate by nature. Prior works
indirectly compensate for the untrustworthy gen-
erations by independently sampling multiple gen-
erations then aggregating them at the answer level
(e.g. through majority voting; Wang et al., 2022).
Despite better performance, such an aggregation
could still be brittle, as the inference fundamentally
depends on the correctness of 1-hop explanations.

To enhance the robustness of reasoning, we hy-
pothesize that the inference process should entail
not only the breadth of reasoning, but also the depth
of reasoning - whether the reasoning paths them-
selves are credible and consistent with each other.
To do this, we require the LM itself to validate
its own generations - by recursively prompting the
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 : If you travel west far enough from the 
west coast, you will reach the east cost?
Q

 :You cannot reach the 
east coast by going west.
EF

True, because

False, because

Depth 1 generation

 : The Earth is round and if you travel 
in any direction long enough, you will 
eventually return to where you started.

ET

integral(ET)= 1

integral(EFT)= 1

integral(EF)= 0

Q

ET  : You cannot reach the east 
coast by going west?
EF

 : You can reach the east coast 
by going west by traveling around 
the world.

EFT

 : If you travel in a specific 
straight line, you will eventually 
reach the other side.

EFF

True, because False, because

False, because

integral(EFF)= 0

Q

ET

True, because False, because

EF

True, because

EFT EFF

Logically Integral

Prune non-integral Branch

True, because

Depth 2 generation

Logically Integral

Figure 3: Illustrative example of maieutic tree generation, with the max tree depth set to 2. For visual clarity, we
generate only 1 ET and 1 EF per question and omit the width-wise spanning of knowledge.

LM with the generated explanations. As Figure
2 shows, this corresponds to a depth-wise span-
ning of knowledge that induces a maieutic tree, a
multi-depth structure of generated propositions and
relations between them.

Let Si denote the set of nodes at depth i in the
maieutic tree T . Each node in Si is an explanation
for an answer label (True or False), recursively
generated given its parent node as the question:

Si ⊆
⋃

l∈{T,F}i−1

{ElT , ElF },

(ElT , ElF ) = abduction(El).

(6)

Note that T is a full tree when the equality holds
for all depths. For instance, in Figure 2, ETF is
generated by prompting the LM with its parent
node ET and False, i.e. ETF ∼ pLM (·|ET ,F, C).

In practice, we sample multiple explanations
with the same Q and A through nucleus sampling
(Holtzman et al., 2019). This corresponds to the
width-wise spanning of knowledge, enhancing the
diversity and coverage of generated explanations.

3.1.3 When to Stop Generating
Generating a full tree could be computationally ex-
pensive, as the number of generation grows expo-
nentially with the maximum tree depth. Therefore,
in each branch, we stop generating further once we
reach a logically integral proposition; intuitively,
this aligns with our goal to identify propositions
that can be validated by the LM with confidence.

Figure 3 illustrates an example of maieutic tree
generation where the maximum depth of the tree
is set to 2. For visual clarity, we only generate
one explanation per Q and A. Given Q, we first
generate ET and EF , then validate whether each
of them is logically integral. Since ET is logically
integral, we stop generating in this branch, but con-
tinue generating from EF which is not logically
integral. After reaching the maximum depth, we

prune the branches leading to leaf nodes that are
still not logically integral. This way, the final tree
keeps only the generations that lead to a logically
integral proposition. We provide a formal descrip-
tion of the generation process in Appendix A.

3.2 Defining the Relations
Now that we have generated the maieutic tree, we
seek to define the relations between propositions
and quantify their strength into scalar weights. For
illustration, assume that an LM has generated the
following EF for the given Q:

Q: Captain Kirk is part of Star Wars?
A: False, because Captain Kirk is a
character in Star Trek.

The generation can be logically interpreted as fol-
lows: (1) the LM believes that Captain Kirk is a
character in Star Trek, (2) the LM believes that
the proposition Captain Kirk is a character in Star
Trek can be a reason to deny that Captain Kirk is
part of Star Wars. Accordingly, we define belief
and consistency to represent the two dimensions of
the logical relationship.

Belief wE corresponds to the LM’s belief that the
proposition E is true (and therefore, ¬E is false).
To quantify belief, we prompt the LM with E and
¬E respectively as a question, then comparing the
probability assigned to True:

wE :=
pLM (T |E,C)− pLM (T |¬E,C)

pLM (T |E,C) + pLM (T |¬E,C)
. (7)

Note that calculating this does not require any ad-
ditional prompting, as we already gained access to
these values while checking for the logical integrity
of each proposition.

Consistency wE,Q,A corresponds to the consis-
tency of the generated E with the given Q and
A. Intuitively, if the LM is logically consistent, the
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likelihood of E being generated given an answer
(e.g., EF being generated given False) should be
larger than its likelihood given the opposite answer
(e.g., EF being generated given True). Following
this intuition, we compute the consistency as:

wE,Q,A :=
pLM (E|Q,A,C)

pLM (E|Q,A,C) + pLM (E|Q,¬A,C)
. (8)

3.3 Inference
The two types of relations formulate a set of unary
and binary logical constraints, based on which we
assign the truth values to all nodes in the maieutic
tree T , and in consequence, infer the answer to the
original question. First, we represent Cblf as the set
of unary constraints. For each leaf node E in T ,

cblf =

{
E if E is logically integral / True
¬E if E is logically integral / False.

(9)

Note that all the leaf nodes in T are logically inte-
gral, hence we can count on the credibility of belief
for these nodes. We now define the set of all belief
constraints Cblf as:

Cblf = {cblf for ∀E ∈ leaf(T )}. (10)

For example, the nodes EF and ETF in Figure 2
would have a belief constraint in Cblf.

Likewise, for consistency, we define Ccon as the
set of binary constraints using logical implication.
For each edge (El, ElA) in T ,

ccon =

{
ElA → El if A = True
ElA → ¬El if A = False

Ccon = {ccon for ∀(El, ElA) ∈ edge(T )}.
(11)

Our objective is to assign the truth values for all Es
and the root node Q in T , such that we maximize

∑

c∈Cblf∪Ccon

wc · 1{c=True}, (12)

which sums up the weights of satisfied constraints.
This problem is naturally formulated as weighted

MAX-SAT, which is a problem of determining
truth values of variables that maximize the weight
of satisfied clauses. The problem can be algorith-
mically solved using an off-the-shelf solver.

3.4 Verifier Model
One limitation of the consistency definition in Sec-
tion 3.2 is that it only considers the relationship
between a parent node and a child node. Since the
definition builds upon the likelihood of each gen-
eration from an LM, we cannot take into account

the relationships across branches, e.g. ET and EF

in Figure 3. This motivates us to introduce a small
NLI model as a verifier, which can infer the rela-
tionship between an arbitrary pair of nodes in T .
Following previous works (Minervini and Riedel,
2018; Wang et al., 2019), we convert the NLI labels
into logical relations as following:

Entail(E1, E2) : E1 → E2

Contradict(E1, E2) : E1 → ¬E2.
(13)

For all pairs of nodes (E1, E2) ∈ node(T )2, E1 6=
E2, we obtain either E1 → E2 or E1 → ¬E2 if E1

entails or contradicts E2. For NLI-based clauses,
we fix the weights to 1.4 While the objective func-
tion (Eq. 12) stays the same, Ccon is now replaced
with CNLI, a set of clauses induced by the verifier
model.

4 Experiments

Datasets We evaluate MAIEUTIC PROMPTING

on three commonsense reasoning and fact verifica-
tion benchmarks in binary QA format: Com2Sense
(Singh et al., 2021), CSQA 2.0 (Talmor et al.,
2021), CREAK (Onoe et al., 2021). Despite the
simple format, these datasets require a substan-
tial amount of knowledge and robust reasoning,
making them challenging even for the billion-scale
fine-tuned LMs (Table 1).

Baselines We compare our method with both the
few-shot prompting methods and supervised mod-
els. Along with the standard prompting, we in-
clude Chain of Thought (Wei et al., 2022), Self-
Consistency (Wang et al., 2022) and Generated
Knowledge Prompting (GKP) (Liu et al., 2021).
For supervised models, we consider the strong base-
lines used for the respective dataset, such as T5
(Raffel et al., 2020), UnifiedQA (Khashabi et al.,
2020) and Unicorn (Lourie et al., 2021).

Configuration Details For all prompting meth-
ods, we use the same set of 6 demonstration exam-
ples and the same version of GPT-3 (text-davinci-
001) as the LM. We determine the hyperparameters
of MAIEUTIC PROMPTING and baselines based
on the dev set performance on the benchmarks.
In maieutic tree generation, we set the maximum
depth to 2. For depth 1, we use nucleus sampling
(p = 1.0) (Holtzman et al., 2019) to generate 3 ET s

4We also tried using the label probability assigned by NLI
model as weight, but fixing it to 1 yielded better results.
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Dataset Com2Sense CSQA 2.0 CREAK

Model dev test pairwise dev test dev test contrast
Su

pe
rv

is
ed

RoBERTa-large (Liu et al., 2019) 62.8 59.4 33.3 - - 80.6 80.3 61.5
T5-large (Raffel et al., 2020) 62.8 60.6 41.8 53.8 54.6 - - -
T5-3B (Raffel et al., 2020) 73.2 - - - 60.2 85.6 85.1 70.0
UnifiedQA-3B (Khashabi et al., 2020) 75.1 71.3 51.3 - - - - -
T5-11B (Raffel et al., 2020) 77.2 - - 68.5 67.8 89.5 - 75.2
Unicorn-11B (Lourie et al., 2021) - - - 69.9 70.2 - - -

Pr
om

pt
in

g

Standard 58.1 - - 54.1 - 60.3 - 55.2
Chain of Thought (Wei et al., 2022) 61.6 - - 59.6 - 64.8 - 59.4
Self Consistency (Wang et al., 2022) 61.4 - - 60.8 - 70.5 - 64.8
GKP (Liu et al., 2021) 61.8 - - 59.7 - 75.4 - 68.2
MAIEUTIC PROMPTING (Ours) 72.5 75.0 68.7 69.5 68.3 85.2 85.3 77.4

Table 1: Experimental results of MAIEUTIC PROMPTING and baseline methods on three benchmark datasets. We
differentiate supervised baselines (upper section) from prompting methods (lower section), and bold the best num-
bers for each section. MAIEUTIC PROMPTING with GPT-3 outperforms all prompting baselines with the same
model, while being competitive against billion-scale supervised LMs.

and 3 EF s from Q. For depth 2, we use greedy de-
coding to generate 1 ET and 1 EF from each parent
node. This constrains the generated tree to have
at most 18 nodes excluding the original Q.5 In
Section 4.3, we conduct an ablation study on this
depth-adaptive decoding scheme and analyze the
effect of the tree size. For the main experiments,
we use RoBERTa (Liu et al., 2019) fine-tuned on
MNLI (Williams et al., 2018) as a verifier with
90.2% accuracy on MNLI dev set, and RC2 (Mor-
gado et al., 2014) as a MAX-SAT solver.

4.1 Benchmark Performance
Table 1 presents overall evaluation results of
MAIEUTIC PROMPTING along with the prompting
and supervised baselines. MAIEUTIC PROMPTING

significantly outperforms all prompting methods
across all benchmarks. Notably, GKP and Self Con-
sistency ensembled more 1-hop explanations than
the maximal size of the maieutic tree; our supe-
rior performance compared to these methods con-
firms the sample efficiency of depth-wise knowl-
edge spanning. Moreover, MAIEUTIC PROMPT-
ING is the only prompting method that performs
better than even the smallest supervised baseline
(RoBERTa-large) in Com2Sense and CREAK. In
fact, MAIEUTIC PROMPTING allows us to use an
off-the-shelf LM to achieve comparable perfor-
mance to a large fine-tuned LM by simply plugging
in our inference algorithm. In Appendix C we also

5Both GKP and Self Consistency employ an ensemble
strategy, generating N different samples of explanations then
aggregating their answers. For a fair comparison with ours, we
set N = 20 for both methods, generating more explanations
than the maximal possible size of the maieutic tree.
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Figure 4: Robustness of prompting methods under dif-
ferent few-shot examples / different order of exam-
ples. We compare the mean and standard deviation of
Com2Sense dev set accuracy.

provide experiments on StrategyQA (Geva et al.,
2021), to evaluate the generalizability of MAIEU-
TIC PROMPTING in multi-hop setting.

4.2 Robustness Analysis

We perform additional analyses to understand the
working of our method under semantic perturba-
tions and different prompt formats.

Robustness to semantic perturbations In addi-
tion to the standard accuracy, we report two addi-
tional metrics called pairwise accuracy and con-
trast set accuracy in Table 1. In Com2Sense test set
and CREAK contrast set, each question is paired
with its complimentary counterpart, of which the
surface form is similar but the answer should be the
opposite (e.g. “Barack Obama has daughters.” vs

“Barack Obama has no daughter.”), testing the mod-
els’ robustness to semantic perturbations. In these
metrics, the gap between MAIEUTIC PROMPTING

and baselines widens substantially, indicating the
robustness of our method against semantic pertur-
bations.
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Model Accuracy

Non-abductive generation 68.4
All greedy decoding (no depth-adaptive) 67.2
All nucleus sampling (no depth-adaptive) 72.0
Likelihood-based consistency 65.6

Maieutic Prompting 72.5

Table 2: Ablation study on Com2Sense Dev set. The
best configuration is with abductive generation, depth-
adaptive decoding and verifier-based consistency.

Dimension 1 2 3 5 10

Depth 61.3 72.5 72.4 - -
Width 62.4 66.5 72.5 71.5 72.1

Table 3: Performance of MAIEUTIC PROMPTING on
Com2Sense with different maieutic tree sizes.

Robustness to different prompts Prior works
revealed that prompting performance could be sen-
sitive to few-shot examples and their order (Lu
et al., 2021b; Zhao et al., 2021). We investigate
whether this holds true for MAIEUTIC PROMPT-
ING, as shown in Figure 4. We compare different
prompting methods run with 3 different sets of few-
shot examples (left), and 5 different permutations
of the few-shot examples (right). In both settings,
while Self Consistency and MAIEUTIC PROMPT-
ING are much more stable then the other two, our
method has slightly less variance.

4.3 Ablation Study

We ablate different components of MAIEUTIC

PROMPTING to investigate their respective contri-
butions as shown in Table 2.

Generation First, we consider MAIEUTIC

PROMPTING without abductive generation — we
generate each explanation without providing an an-
swer label, i.e. in an identical fashion to Chain
of Thought. In this setting, the performance of
MAIEUTIC PROMPTING degrades by 4%, alluding
to the importance of abductive generation in elicit-
ing the latent knowledge from LM. Next, we ablate
the depth-adaptive decoding mechanism (Section
4), by applying either greedy decoding or nucleus
sampling for all depths of the maieutic tree. All
greedy decoding restrains width-wise spanning of
knowledge, hence leads to large degradation of per-
formance. All nucleus sampling performs much
more comparably with our best configuration, al-
though the stochastic decoding produces slightly
more errors in the explanations.

Different orders

71.68
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Figure 5: Human evaluation results (Krippendorff’s
alpha = 0.64; substantial inter-annotator agreement).
To minimize subjectivity, we use a strict 3-level scale,
where annotators choose All only when all the state-
ments in the true Es are desirable (e.g. grammatical)
on its own, Mixed when at least one E is undesirable,
and None otherwise.

Consistency We ablate the NLI-based clauses
and replace them with the original Ccon discussed
in Section 3.2. With the likelihood-based Ccon, the
accuracy reduces by about 7%, but still prevails
over the prompting baselines in Table 1. The veri-
fier model indeed benefits the inference process by
providing more accurate relations between gener-
ated explanations, although our method performs
competently even without the access to the verifier.

Effect of tree size We also investigate how the
size of the maieutic tree influences the performance.
In Table 3, we present the performance of MAIEU-
TIC PROMPTING on Com2Sense dev set with var-
ious values of maximal depth and width. In both
dimensions, the accuracy saturates after a certain
threshold. We attribute this to (1) the topic drift
in generation which intensifies as the depth grows,
(2) larger overlaps in generated knowledge as we
sample more explanations width-wise.

4.4 Human Evaluation

We qualitatively analyze actual inference results
of MAIEUTIC PROMPTING through human evalu-
ation. For each sample, we first retrieve true Es
(the set of generated Es that are inferred to be True
by MAIEUTIC PROMPTING), then evaluate them
over the four criteria from Liu et al. (2021): (1)
Grammaticality of the explanations, (2) Relevance
of the explanations to the question, (3) Factuality:
whether the explanations states facts, and (4) Help-
fulness: whether the explanation explicitly leads to
the correct answer. Six NLP experts scored 100 ex-
amples sampled from CSQA 2.0 dev set, of which
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Q

ET0 ET2 EF0 EF1

ET2T0 ET2F0

 : War cannot have a tie. 
 : In order for one side to win a war, the other side must lose. 
 : In the context of a war, there is always a victor and a loser. 
   : In any conflict there is a winner and a loser. 
   : There can be cases where both sides claim victory or where the 
               loser is not clear. 
 : Historically there have been many wars where no victor was declared. 
 : The Korean War ended in a military armistice, meaning that the war  

         ended in a draw and  neither side could claim victory.

Q
ET0
ET2

ET2T0
ET2F0

EF0EF1

integral / True integral / Trueintegral / True

integral / False integral / True

True s : , ,  

False s : , ,  
 
Inferred Answer : False 
Ground-Truth : False

E ET2F0 EF0 EF1

E ET0 ET2 ET2T0

Maieutic Tree Explanations Max-SAT

Q

ET2 EF0ET1

ET2T0 EF0T0

integral / True

integral / False integral / True

 : In football, the top division almost always contains the same clubs. 
 : The Football League is a hierarchical organization with a promotion and 

         relegation system between its member clubs. 
 : There is little movement of clubs between football's top division, known as the 

          Premier League, and the second division, known as the Championship. 

   : There is a high level of parity between clubs in the Premier League and  

               the Championship. 
 : There are many teams that change divisional placements from one year to the next. 
 : There are many teams that get relegated (move down a division) in football.

Q
ET1

ET2

ET2T0

EF0EF1

True s : , ,  

False s : ,  
 
Inferred Answer : False 
Ground-Truth : True

E ET1 EF0 EF1

E ET2 ET2T0

Figure 6: Examples of MAIEUTIC PROMPTING, each with correct and wrong answer. Even in the latter case, the
generated explanations make sense toward the inferred answer. We provide more examples in Appendix D.

50 were answered correctly (Set 1) and 50 were
answered wrongly by the model (Set 2).

Figure 5 presents the evaluation results. For both
sets, over 99% of the true Es are grammatically per-
fect, and most of them provide relevant evidence to
the question.6 Surprisingly, the LM often generates
both factual and helpful explanations even when its
answer is different from the ground truth: 42% of
the true Es for incorrectly answered examples are
perfectly factual, and 23% of them are completely
helpful in correctly answering the question. We
find that in many of these cases, the questions did
not have a clear-cut answer; as exemplified in Fig-
ure 6, the explanations generated and validated by
MAIEUTIC PROMPTING are compelling enough as
an alternative to the ground-truth answer.

5 Related Work

Prior works have leveraged natural language ex-
planations (NLEs) to promote model reasoning,
either by training a model to explain (Rajani et al.,
2019; Camburu et al., 2018; Chen et al., 2022;
Wiegreffe and Marasović, 2021), or generating
answers to templated queries and distantly super-
vised rationales (Shwartz et al., 2020; Brahman
et al., 2021). Incorporated with in-context learn-
ing (Brown et al., 2020; inter alia), these efforts
have led to explanation-based prompting (Wei et al.,
2022; Wang et al., 2022; Liu et al., 2021; Lampinen
et al., 2022). Other works aim to improve model
interpretability with NLEs, training a model that

6It is natural that some of the true Es are not directly
relevant to Q, but still contribute to the inference by validating
other Es.

explains its inference post-hoc or in parallel with
the answer (Camburu et al., 2018; Narang et al.,
2020; Jacovi et al., 2021). Unlike these works, the
explanations in our work are designed to be intrin-
sic (Du et al., 2019); the explanations themselves
explicitly participate in the inference.

Meanwhile, recent observations reveal that LM
explanations are unreliable, as they often lack logi-
cal consistency and are not factually grounded (Ye
and Durrett, 2022; Kassner and Schütze, 2020).
This is in part due to the broader limitations of
generative LMs, which assign high probability to
unlikely sentences (Welleck et al., 2020; Holtzman
et al., 2021) and are sensitive to semantic perturba-
tions (Elazar et al., 2021). MAIEUTIC PROMPTING

overcomes these limitations by avoiding the use
of explanations “as-is”, and modeling the relation-
ships between explanations.

Another line of works apply symbolic methods
on top of LMs to improve their consistency, span-
ning from a lexical constraint on sequence decod-
ing (Lu et al., 2021a) to a symbolic world model
(Nye et al., 2021b) and discrete operations (Chen
et al., 2019; Cobbe et al., 2021). Other works ex-
plore how to train a model that simulates the sym-
bolic reasoning process, such as logical transfor-
mation (Bostrom et al., 2021) and consistent gener-
ation of beliefs (Kassner et al., 2021; Dalvi et al.,
2022). However, these models require a curated
set of human annotations that limits their applica-
tion to specific domains. MAIEUTIC PROMPTING

generalizes these neuro-symbolic approaches in an
unsupervised setup, employing MAX-SAT algo-
rithm to symbolically determine the true subset
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from a noisy pool of neural generations.

6 Conclusion

In this work, we propose MAIEUTIC PROMPTING,
a novel few-shot inference method inspired by the
Socratic way of conversation. We systematically
generate a tree of explanations that bear logical
relations between each other, then find the truth
values that max-satisfy these relations. Empirical
results show that MAIEUTIC PROMPTING is both
competitive and robust compared to diverse base-
lines, while providing intrinsic interpretations over
its inference.

Limitations

Extension to different task formats In this
work, we limit our experiments to validating a
given statement. In future works, we aim to ex-
tend our method over a broader range of tasks,
e.g. multiple-choice QA. A potential strategy could
be binarizing multiple-choice options to respec-
tive statements and scoring them with MAIEUTIC

PROMPTING, e.g. using the sum of weight of satis-
fied clauses from MAX-SAT.

Modeling relationships between trees MAIEU-
TIC PROMPTING models the relations between the
nodes in each maieutic tree to infer a consistent an-
swer. The scope of modeled relationships, however,
could be further generalized beyond a single tree
- a span of knowledge generated for one question
could serve as the evidence for another question.
Indeed, modeling the relationship between ques-
tions is an active area of research (Kossen et al.,
2021). We envision that the knowledge elicited
from MAIEUTIC PROMPTING could further be en-
riched through this type of generalization.
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A Tree Generation Algorithm

Algorithm 1 Maieutic tree generation
Input: Question Q, Max tree depth D
Output: Maieutic tree T
T ← init(Q) // initialize the tree with Q
for d ∈ {1, · · · , D} do // generate nodes

Si ← ∅
for E ∈ Si−1 do

if integral(E) = 1 then
Si ← Si ∪ abductive(E)

end if
end for
T .add(Si)

end for
V ← {E; integral(E) = 0 for all E ∈ leaf(T )} // set of non-integral leaf nodes
while V 6= ∅ do
T .remove(V ) // prune the non-integral leaf nodes
V ← {E; integral(E) = 0 for all E ∈ leaf(T )}

end while

B Dataset Details

Dataset Com2Sense CSQA 2.0 CREAK

Train / Dev / Test split size 804 / 402 / 2779 9282 / 2544 / 2517 10176 / 1371 / 1371
Average # of tokens 21 11.3 (words) 10.8

Table 4: We evaluate MAIEUTIC PROMPTING in three commonsense reasoning and fact verification benchmarks
- Com2Sense, CSQA 2.0 and CREAK. Com2Sense and CSQA 2.0 consist of adversarial commonsense questions
generated to mislead a proxy model. CREAK tests for a combination of commonsense reasoning and accurate fact
retrieval, consisting of long-tail questions such as “Harry Potter can teach how to fly on a broomstick?”. Table 4
presents key statistics of the three datasets.

C Multi-hop Reasoning on StrategyQA

Model Standard C-o-T Maieutic C-o-T (Multi-hop) Maieutic (Multi-hop)

Accuracy 56.3 58.2 60.7 57.9 61.4

Table 5: Results on StrategyQA

To further evaluate the generalizability of MAIEUTIC PROMPTING, we conduct additional experiments
on multi-hop reasoning over StrategyQA (Geva et al., 2021) dev split. Note that the original evaluation
setting for StrategyQA presupposes access to Wikipedia articles, from which the gold knowledge could
be retrieved from; hence the benchmark as-is may not represent the best evaluation setting for few-shot
prompting methods.

To better address the multi-hop nature of the dataset, we add a straightforward adjustment to both
C-o-T and Maieutic Prompting, to first decompose the original question into 2-3 minor questions and then
generate the explanation and answer. We denote this as Multi-hop in Table 5.

Consistent with the original experimental results, Maieutic Prompting yields promising improvement
compared to both the standard / C-o-T prompting. The result attests to both the generalizability of Maieutic
Prompting to multi-hop setting and the importance of reasoning algorithm in challenging scenarios.
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D Inference Examples

True s :  ,  ,  ,  ,  ,  ,  / False s :  ,  ,  ,  
 
Inferred Answer : True / Ground-Truth : True

E ET0 ET1 ET1T0 ET2 EF0T0 EF1 EF2F0 E ET1F0 EF0 EF1F0 EF2

: A straight line on a sphere makes a circle.ET1T0

: The world is round and if you continue to travel in a  
straight line, you will eventually reach the other side.

ET1

: The world is not round.ET1F0

: If you travel far enough in any direction, you will 
eventually reach the opposite coast.

EF1

: It is impossible to travel to the other side of the Earth.EF1F0

: You can only travel so far before you reach the 
end of the earth.

EF2

: The Earth is round.EF2F0

: The Earth is round and if you travel in any 
direction long enough, you will eventually return to 

where you started.

ET0

: You cannot reach the east coast by going west.EF0

: You can reach the east coast by going west by  
traveling around the world.

EF0T0 integral / True

integral / False

integral / True

integral / True

integral / False

integral / False

: All directions eventually meet at the  
North and South Poles.

ET2

integral / True

: If you travel west far enough from the west coast, you will reach the east coast.Q

Figure 7: Example of correct inference by MAIEUTIC PROMPTING. We show the generated maieutic tree along
with the assigned truth-values to each propositions.

: The earth is composed of gas, rocks and metal.ET1

: The empirically-based model of the Earth  
is the generally accepted model of the Earth's interior.

ET2T0

: The Earth is a planet that is made primarily of air and helium.Q

: The Earth's interior is not composed of  
a dense core, mantle or crust.

ET2F0

: The earth is made primarily of gas.ET0

: The earth is made of gas, rocks, and other materials.ET0T0 : The earth is not made primarily of air and helium.EF0

: Air and helium is only a part of the Earth's atmosphere.EF0T0

: The earth is made of a variety of elements including air and helium.EF0F0

: Air only makes up a small fraction of the Earth's mass.EF1

: The Earth's atmosphere (made up of air) is  
about 1% of the Earth's mass.

EF1T0

integral / True

integral / False

: According to the empirically-based model of the Earth, the Earth's 
interior is composed of a dense core, a mantle, and a crust. The crust is  
made up of the solid rock, the mantle is made of the hot rock, and the  

core is made of the solid metal.

ET2

integral / True integral / True

integral / True

integral / False

integral / True

True s :  ,  ,  ,  ,  ,  ,  ,  / False s :  ,  ,  
 
Inferred Answer : False / Ground-Truth : False

E ET0T0 ET1 ET2 ET2T0 EF0 EF0T0 EF0F0 EF1 E ET0 ET2F0 EF1T0

Figure 8: (continued) Example of correct inference by MAIEUTIC PROMPTING.
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: Every living being is capable of  
getting energy from lower in the food chain.

ET1

: Everyone is capable of moving lower in the food chain.Q

 : Humans are omnivores that can consume both 
plants and animals.

ET2

: Some people are not capable of digesting complex 
carbs and proteins and thus, must eat food from the higher 

end of the food chain.

EF1

 : Some people are not able to digest complex proteins,  
and therefore, need to eat food that is lower in the food chain.
EF0

integral / True

integral / True

True s :  ,  ,  ,   
 
Inferred Answer : True / Ground-Truth : False

E ET1 ET2 EF0 EF1

integral / True

integral / True

integral / True

Figure 9: Example of incorrect inference by MAIEUTIC PROMPTING.

integral / False
integral / True

True s :  ,  ,  ,  ,  ,  ,  ,  / False s :  
 
Inferred Answer : False / Ground-Truth : True

E ET1 ET2 ET2T0 ET2F0 EF0 EF1 EF2 EF2T0 E ET0

: A city is a place where many people live.ET2T0

: A city is a place where people live and work.ET2F0

: A city will have residents who have permanent 
addresses and commuters who have temporal addresses.

EF1

: People in a city are always coming and going.ET1

: A city will have a mix of both transient  
and local traffic.

EF2

integral / True

: People passing through a city will 
always be there.

ET0

integral / True

integral / False

integral / True

: A city will always have transient traffic.Q

integral / True

: A city will have people who live there and 
people who are just visiting.

EF2T0

: A city will have both transient and 
non-transient traffic.

EF0

integral / True

integral / True

: A city is a place where many people  
come and go.

ET2

Figure 10: (continued) Example of incorrect inference by MAIEUTIC PROMPTING.
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