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Abstract

Large-scale generative language models such
as GPT-3 are competitive few-shot learners.
While these models are known to be able to
jointly represent multiple languages, their train-
ing data is dominated by English, potentially
limiting their cross-lingual generalization. In
this work, we train multilingual generative lan-
guage models on a corpus covering a diverse
set of languages, and study their few- and zero-
shot learning capabilities in a wide range of
tasks. Our largest model with 7.5 billion pa-
rameters sets new state of the art in few-shot
learning in more than 20 representative lan-
guages, outperforming GPT-3 of comparable
size in multilingual commonsense reasoning
(with +7.4% absolute accuracy improvement
in 0-shot settings and +9.4% in 4-shot set-
tings) and natural language inference (+5.4%
in each of 0-shot and 4-shot settings). On the
FLORES-101 machine translation benchmark,
our model outperforms GPT-3 counterparts on
171 out of 182 directions with 32 training ex-
amples, while surpassing the official super-
vised baseline in 45 directions. We conduct
an in-depth analysis of different multilingual
prompting approaches, showing in particular
that strong in-context few-shot learning perfor-
mance across languages can be achieved via
cross-lingual transfer through both templates
and demonstration examples.1

1 Introduction

Large autoregressive language models such as
GPT-3 can be adapted, via few- and zero-shot
learning, to a wide range of tasks with signifi-
cantly less cost than full fine-tuning (Brown et al.,
2020; Bommasani et al., 2021). These models have
been primarily developed for English. Although

* Equal contribution. Correspondence to:
⟨victorialin@meta.com, xianl@meta.com⟩.

1Our checkpoints, code and new dataset (XStoryCloze):
https://github.com/facebookresearch/
fairseq/tree/main/examples/xglm.

the training data of GPT-3 contains a small per-
centage of non-English text (7%) allowing it to
achieve some promising cross-lingual generaliza-
tion, the model is almost exclusively deployed for
use cases in English. Multilingual masked and
sequence-to-sequence language models have been
studied, including mBERT, XLM-R, mT5, and
mBART (Devlin et al., 2019; Conneau et al., 2020;
Xue et al., 2020; Fedus et al., 2021; Goyal et al.,
2021a; Liu et al., 2020). These models are typi-
cally fine-tuned on large amount of labeled data in
downstream tasks. Despite notable recent work at
smaller scales (Zhao and Schütze, 2021) and for
domain-specific tasks (Winata et al., 2021), the
multilingual few-shot learning capabilities of lan-
guage models are less well understood.

In this paper, we train four multilingual genera-
tive language models (up to 7.5 billion parameters),
XGLM’s, and present a comprehensive study of
multilingual zero- and in-context few-shot learning.
We train the models using a large-scale corpus of
500B tokens that comprises 30 diverse languages,
up-sampling the less-resourced languages to ren-
der a more balanced language representation. We
evaluate the models on multiple multilingual natu-
ral language understanding (NLU) tasks, machine
translation and a subset of English tasks demon-
strated in Brown et al. (2020).

We found XGLM demonstrate strong cross-
lingual capability where using English prompts
together with non-English examples yields com-
petitive zero- and few-shot learning performance.
Our largest model (XGLM7.5B) achieves strong
zero- and few-shot learning performance on lan-
guage completion and inference tasks (e.g. XS-
toryCloze: 65.4% 0-shot, 66.5% 4-shot; XNLI:
46.3% 0-shot, 47.3% 4-shot). It also establishes
a new state-of-the-art on few-shot machine trans-
lation across a large number of language pairs in
the FLORES-101 benchmark (Goyal et al., 2021b),
significantly outperforming the GPT-3 model of
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comparable size (6.7 billion parameters). On the
other hand, multilingual pre-training causes perfor-
mance drop on English. On 8 English NLU tasks,
XGLM 7.5B underperforms GPT-36.7B by 10.9% on
average in zero-shot learning. GPT-36.7B also sur-
passes XGLM 7.5B in machine translation on sev-
eral high-resource language pairs, including WMT-
14 en↔fr, WMT-16 en↔de and WMT-19 en↔zh.

We conduct an in-depth analysis of different
multilingual prompting approaches and examine
cross-lingual transfer through template and demon-
stration examples respectively. We show that non-
English templates sometimes yield unexpected low
zero- and few-shot learning accuracy even if they
are crafted by native speakers (§4.3). Both using
the English template (§4.4) and adding demon-
stration examples (§4.5) provide effective rem-
edy. However, using demonstration examples from
another language often cannot further improve
the zero-shot learning performance when a strong
prompting language (e.g. Engilsh) is used, which
indicates room for improvement in cross-lingual
pre-training and in-context transfer approaches.

2 Models and Pre-training Data

2.1 Pre-training Data

Language selection and pre-processing. We ex-
tend the pipeline used for mining the CC100 cor-
pus (Conneau et al., 2020; Wenzek et al., 2020) to
generate CC100-XL, a significantly larger multi-
lingual dataset covering 68 Common Crawl (CC)
snapshots (from Summer 2013 to March/April
2020) and 134 languages. Our pretraining data in-
clude 30 languages covering 16 language families.
The natural data distribution is skewed with the
number of English tokens being 6 times that of the
second largest language. Following previous work
on multilingual pre-training (Conneau et al., 2020;
Liu et al., 2020), we up-sampled the medium and
low resource languages to create a more balanced
language distribution (Appendix F.1).2 Figure 1
shows the language distribution of our pre-training
data before (blue) and after (green) up-sampling.

Joint sub-word vocabulary. We process all lan-
guages with a joint vocabulary of size 250k cre-

2We inadvertently over-sampled some of the less resourced
languages which is reflected in the statistics of ko, fi, th, bg,
ca, hi, et languages, as shown in Figure 1. We did not ablate
the effect of this mistake due to the extreme computational
cost. Studying optimal language balancing is an important
area for future work.

ated through unigram language modeling (Kudo,
2018), using the SentencePiece library (Kudo and
Richardson, 2018). We train the unigram-LM
model using 10 million sentences randomly sam-
pled from the filtered data, according to the multi-
nomial distribution defined in Lample and Conneau
(2019) with 𝛼 = 0.3.

2.2 Models and Training

We train decoder-only causal language models
with the Transformer architecture similar to GPT-3
(Brown et al., 2020). This allows us to study the
effect of scaling up model size along both width
and depth dimensions. As a result, we compare
four models with 564M, 1.7B, 2.9B and 7.5B pa-
rameters, respectively. The architecture details are
summarized in Table 1. Our models match that
of GPT-3 models3 except with the additional em-
bedding parameters from a larger vocabulary. All
models are trained for up to 500B tokens, with con-
text length of 2048 tokens. Further training details
are described in Appendix A.

GPT-3 XGLM

size 𝑙 ℎ size 𝑙 ℎ

125M 12 768 —
355M 24 1024 564M 24 1024
760M 24 1536 —
1.3B 24 2048 1.7B 24 2048
2.7B 32 2560 2.9B 48 2048
6.7B 32 4096 7.5B 32 4096

Table 1: Model details. size: number of parameters, 𝑙:
layers, ℎ: hidden dimension. Models within the same
row have comparable sizes.

3 Multilingual In-context Learning

We measure the performance of our multilingual
language models on downstream tasks in different
languages given the tasks and few-shot demonstra-
tions specified via prompts without further param-
eter updates (Appendix B).

3.1 Multilingual and Cross-lingual Prompting

Previous work on English in-context learning
has shown that performance heavily depends on

3For XGLM 2.9B we used the optimal depth-to-width
parameter allocation for GPT-3 architectures based on rank
bottleneck analysis (Levine et al., 2020). This allocation is
expected to have improved training efficiency. However, it did
not converge for XGLM 7.5B in our experiments, and we fell
back to the original GPT-3 setup.

11700

http://commoncrawl.org/2013/11/new-crawl-data-available/
https://commoncrawl.org/2020/04/march-april-2020-crawl-archive-now-available/
https://commoncrawl.org/2020/04/march-april-2020-crawl-archive-now-available/


en ru zh de es fr ja it pt el ko fi id tr ar vi th bg ca hi et bn ta ur sw te eu my ht qu105

107

109

1011

1013

# 
of

 to
ke

ns
 (l

og
 sc

al
e)

# of tokens in XGLM pre-training data

en ru zh de es fr ja it pt el ko fi id tr ar vi th bg ca hi et bn ta ur sw te eu my ht qu0%

2%

5%

8%

10%

Pr
(la

ng
ua

ge
i)

49
.0

%
32

.6
% 92

.6
% XGLM pre-training and pre-sharding (en: 49.0%)

XGLM pre-training and post-sharding(en: 32.6%)
GPT-3 pre-training and pre-sharding (en: 92.6%)

Figure 1: The % of each language 𝑙 (𝑙 = 1, 2, ..., 30) in XGLM’s pre-training data pre-upsampling (blue), post-
upsampling (green), and its corresponding % in GPT-3’s training data (orange). We truncate the y-axis at 10% to
better visualize the tail distribution.

Task Category Dataset Template Candidate Verbalizer

Reasoning
XCOPA

cause: {Sentence 1} because [Mask]

Identity
effect: {Sentence 1} so [Mask]

XStoryCloze {Context} [Mask]
XWinograd {Context} (with ’_’ replaced by [Mask])

NLI XNLI {Sentence 1}, right? [Mask], {Sentence 2} Entailment: Yes | Neural: Also | Contradiction: No

Paraphrase PAWS-X {Sentence 1}, right? [Mask], {Sentence 2} True: Yes | False: No

Translation WMT, FLORES-101 {Source sentence} = [Mask] Identity

Table 2: Handcrafted (English) prompts for multilingual natural language understanding and translation tasks.

the prompt construction, and it is challenging
to find the optimal prompt for a given language
model (Gao et al., 2021; Perez et al., 2021). This
problem is further complicated in the multilingual
setting, where we need to find the optimal prompts
for examples in different languages.

In this work, we consider three approaches for
obtaining the prompts for non-English tasks.

Handcrafting prompts. The first approach is
to ask native speakers of the target language to
handcraft the prompts. Prompts created this way
are expected to have the most natural surface form.
However, language expertise is expensive and we
further consider two alternatives.

Translating from English prompts. We assume
high-quality prompts of a task can be easily sourced
in English(Sanh et al., 2021; Mishra et al., 2021).
Non-verbal prompts do not contain words in any
particular language (e.g. the StoryCloze and WMT
prompts shown in Table 2), while verbal prompts
have different realizations in different languages
(Table 3). If the prompt is non-verbal, we simply
apply it to the other languages. If the prompt is
verbal, we translate it into the other languages using
automatic translation APIs.

Cross-lingual prompting. We consider the third
approach which directly applies the prompts in En-
glish (or another high-resource language) to non-
English examples. We expect this approach to be

competitive, as a result of the cross-lingual capa-
bility of the model after being trained on a diverse
set of languages.

3.2 Learning from Cross-lingual
Demonstrations

The cross-lingual nature of multilingual language
models further enable the possibility of learning
from a different language in context without pa-
rameter updates. To do so we simply append exam-
ples from another language as the demonstration
examples in the language model context. Such ca-
pability enables cheap transfer from high-resource
languages to the low-resource target languages.

4 Experiments and Results

4.1 Tasks

We evaluate the zero-shot and in-context few-shot
learning capabilities (Brown et al., 2020) of XGLM
on a spectrum of downstream tasks (Table 4).

Multilingual tasks. We select four multilingual
tasks spanning commonsense reasoning (XCOPA),
anaphora resolution (XWinograd), natural lan-
guage inference (XNLI) and paraphrasing (PAWS-
X). We also created a new dataset, XStoryCloze,
by professionally translating the validation split4 of

4We further split the translated data into train and test (20%
vs. 80%, respectively) for each language, keeping the parallel
sentence mapping in both splits.
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Task Lang Template
Candidate Verbalizer

Entailment Contradiction Neutral

XNLI
en {Sentence 1}, right? [Mask], {Sentence 2} Yes No Also
zh {Sentence 1}[Mask]，{Sentence 2} 由此可知， 所以，不可能 同时，
es {Sentence 1}, ¿verdad? [Mask], {Sentence 2} Sí No Además

XCOPA
en cause: {Sentence 1} because [Mask]| effect: {Sentence 1} so [Mask]

Identity
zh cause: 因为[Mask]，所以{Sentence 1} | effect: 因为{Sentence 1}，所以[Mask]

Table 3: Handcrafted multilingual prompts. English (en), Chinese (zh) and Spanish (es) for XNLI; English (en) and
Chinese (zh) for XCOPA.

Task Category Task |Train| |Dev| |Test| Non-En Sets |Lang.|

Reasoning
XStoryCloze ♠ 361 – 1,511 translations 11
XCOPA ♠ (Ponti et al., 2020a) 33,410+400 100 500 translations 11
XWinograd (Tikhonov and Ryabinin, 2021) – – 2,325† translations 6

NLI XNLI ♠ (Conneau et al., 2018) – 2,490 5,010 translations 15
Paraphrase PAWS-X (Yang et al., 2019) – 2,000 2,000 translations 7

Table 4: Multilingual tasks used in our few-shot learning evaluation. All tasks use accuracy as the evaluation
metrics. †: In XWinograd, each language has different number of test examples: en: 2,325, jp: 959, ru: 315, pt:
263. ‡: We use the COPA release in SuperGLUE (Wang et al., 2019). ♠: Held-out tasks.

the English StoryCloze dataset (Spring 2016 ver-
sion) to 10 other typologically diverse languages
(ru, zh Simplified, es Latin American, ar, hi, id,
te, sw, eu, my)5. In addition, we evaluate our mod-
els on machine translation (§4.8) and multilingual
social value tasks (Appendix E.1).

English tasks. We also evaluate our models on
English commonsense reasoning and QA, a subset
of benchmark tasks used by Brown et al. (2020),
and compare the performance to state-of-the-art
English-centric few-shot learning models. The
tasks are detailed in Table A1.

4.2 Setup
Scoring function and calibration. We follow
the guidelines suggested by Perez et al. (2021)
and adopt a cross-task generalization setting (Tri-
antafillou et al., 2020) to select our scoring func-
tion. We reserve three held-out tasks (XNLI,
XCOPA and XStoryCloze) to perform the selection
based on their development set performance, and
directly apply the selected settings to the rest of the
tasks. In the end, we use the averaged per-token
log-probabilities ignoring the common prefix of
different candidates as the scoring function for all

5For all of our multilingual NLU datasets, the non-English
sections of the data are (professionally) translated from the En-
glish section. Despite being the dominant approach adopted by
the community (Ruder et al., 2021), it was previously shown to
introduce data artifacts that inflate the measured cross-lingual
transfer of models (Artetxe et al., 2020). We leave collecting
native multilingual datasets that include non-English data as
future work, and strongly encourage the community to also
adopt this practice.

multilingual tasks with no additional calibration or
normalization. Appendix C.2 details the selection.

Few-shot learning evaluation. We focus on
benchmarking the 0- and 4-shot learning perfor-
mance of the models on all tasks. For cross-lingual
demonstration (§4.5), scaling law (§4.9) and trans-
lation (§4.8) we also reported 1-shot and 32-shot
performance. We report the average results across 5
runs, randomly sampling a different set of few-shot
examples each time. Without further specification,
we use few-shot examples in the same language
as the target example. Appendix C.3 details our
complete evaluation protocol.

4.3 Comparing Prompting Approaches

We first compare different multilingual prompting
approaches proposed in §3.1 using XGLM7.5B on
XNLI and XCOPA6. Native speakers among the
authors handcrafted7 the prompts for the following
tasks: XNLI (en, zh, es and hi) and XCOPA (en,
zh), as shown in Table 3. We compare the per-
formance of these human-written prompts to En-
glish prompts, machine-translated (MT) prompts
and human-translated (HT) prompts.

Table 5 and 6 show the performance of different

6The original XCOPA release (Ponti et al., 2020b) does
not contain the English section. We added the English release
from SuperGLUE (Wang et al., 2019) to facilitate cross-lingual
experiments.

7The native speakers were instructed to create a prompt
that convert the task into a natural cloze-style question in their
native language with no further restrictions.
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Temp. en zh es hi Avg

En (HW) 50.8/50.6 48.5/47.7 37.5/44.4 44.0/45.5 45.2/47.0
Zh (HW) 33.5/35.5 33.5/36.4 34.5/34.8 36.0/34.0 34.4/35.1
Es (HW) 39.2/49.9 44.8/45.3 46.2/48.2 41.5/43.5 42.9/46.7
Hi (HW) 45.0/43.5 39.5/41.0 34.2/40.5 36.2/40.5 38.8/41.4
Multi. (HW) 50.8/50.6 33.5/36.4 46.2/48.2 36.2/40.5 41.7/43.9
Multi. (MT) 50.8/50.6 35.8/39.5 36.5/45.0 41.0/39.9 41.0/43.8
Multi. (HT) 50.8/50.6 38.5/41.2 46.0/48.1 37.5/38.9 43.1/44.7

Table 5: 0/4-shot performance of XGLM7.5B, evalu-
ated on the first 400 examples of XNLI (development
set in en, zh, es and hi) using different prompting ap-
proaches. Top: all inputs are instantiated with templates
in the language specified in column 1. Bottom: all
inputs are instantiated with templates in the same lan-
guage as themselves. HW: human-written. MT: machine-
translated. HT: human-translated.

Temp. en zh th sw Avg

En (HW) 69.0/73.2 63.0/66.8 53.0/57.4 54.0/58.2 59.8/63.9
Zh (HW) 63.0/71.0 69.0/67.6 50.0/57.8 47.0/54.2 57.2/62.6
Multi. (HW) 69.0/73.8 69.0/67.6 – – –
Multi. (MT) 69.0/73.8 62.0/68.4 48.0/56.6 51.0/60.2 57.5/64.8

Table 6: 0/4-shot performance of XGLM7.5B, evaluated
on XCOPA (development set in en, zh, th and sw).

prompting approaches8. English templates perform
the best on average across languages for both tasks
except for the 4-shot setting of XCOPA, where it
slightly underperforms the machine translated tem-
plates. On the XNLI task, the English template
significantly improves the performance of Chinese
(zh) and Hindi (hi) over their native templates and
translated templates. Similar trends are observed
for Thai (th) and Swahili (sw) on XCOPA9. For
both tasks there exist languages where the native
templates strongly outperforms the English tem-
plates (Spanish (es) for XNLI and Chinese for
XCOPA), indicating significant room for future
work on language-specific prompt engineering.

4.4 Cross-lingual Transfer through Templates
We further examine if the ability of universal
prompting is English specific, and in addition, what
characterize a language pair for which cross-lingual
prompting can work. To this end, we apply each
of the human-written non-English templates to the
rest of the languages. As shown in Table 5 and 6,

8Appendix D.1 provides the comparison between English
prompts and the MT and HT prompts on the complete dev sets
of XNLI and XCOPA.

9The strong performance of English templates may be
partially contributed to the fact that the non-English evaluation
data on XNLI and XCOPA are obtained from translation.
Testing how well the English templates perform on native
non-English test sets is an interesting future work.

using the Spanish prompt yields competitive 0- and
4-shot performance across all languages, with the
4-shot average performance being comparable to
that of the English template. The Hindi template
also achieves significantly above random perfor-
mance on the XNLI tasks for most languages (espe-
cially en). The Chinese template, however, achieves
close-to-random performance for all languages on
XNLI, as well as close-to-random for Thai (0-shot)
and Swahili (0-shot) on XCOPA. We hypothesize
that the common sub-tokens and the amount of
code-switching text in the pre-training data play a
significant role in enabling cross-lingual prompt-
ing. And in general, high-resource languages with
large amounts of pre-training data and vocabulary
overlap with other languages act as better universal
prompting languages. We leave a more systematic
verification of this hypothesis to future work.

4.5 Cross-lingual Transfer through
Demonstration Examples

We examine the capabilities of learning from
cross-lingual demonstration examples (§3.2) of
XGLM7.5B on XNLI. We examine two settings
for each train-eval language pair: same-language-
prompting, where the prompt templates and the
example are in the same language, and source-
languauge-prompting where the prompt templates
for both the demo and test examples are in the
source language. We use the human-translated
prompts for same-language-prompting.

Table 7 shows results on a subset of language
pairs of XNLI, where we evaluate transfer through
demonstration examples from in-context demon-
stration examples from high-resource languages to
lower-resourced ones, and between languages that
are typologically similar. We report the difference
between the 32-shot learning results and the 0-
shot learning results. The non-English templates in
this experiment are obtained via human-translation.
While they typically underperform the in-language
few-shot setting (Figure A2), most cross-lingual
few-shot settings significantly improve over the 0-
shot setting for the target language. Bulgarian is
an exception as it does not benefit from Russian
despite being in the same language family. An-
other language that does not work well in the cross-
lingual settings is Swahili (low resource), for which
we examined transfer from English (high resource)
and Arabic (medium resource). In contrast, Thai
(medium) and Urdu (low resource) significantly
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high medium low
en ru tr ar hi

medium low medium low
prompt bg el th tr vi hi sw ur bg ur sw ur

Same-lang 2.55 0.98 2.16 1.27 2.23 2.51 -0.69 1.21 -2.49 -0.38 -1.64 3.31

Source-lang -4.59 -2.44 7.87 -4.97 -1.08 2.01 -1.15 7.42 -1.43 6.67 -5.86 2.31

Table 7: Learning from cross-lingual demonstrations on XNLI, evaluated on the test set. The results are the absolute
improvement over the zero-shot performance for the evaluated language using human-translated prompts. The first
language group refers to the source language and the second one refers to the target language. Same-lang refers to a
setting there the template is in the example language and source-lang refers to a setting where the template is only in
the source language.

Source prompt (instantiated) Target prompt (instantiated)

Same-lang The best thing that may be said of Podhoretz and
Decter is that their biological clocks can’t have many
more minutes left on them, right? Yes, Decter is old.

Vâng, tôi thậm chí không nghĩ về điều đó, nhưng tôi đã rất thất
vọng, và, tôi lại nói chuyện với anh ta lần nữa, đúng không? Đúng,
tôi đã không nói chuyện với anh ta nữa.

Source-lang The best thing that may be said of Podhoretz and
Decter is that their biological clocks can’t have many
more minutes left on them, right? Yes, Decter is old.

Vâng, tôi thậm chí không nghĩ về điều đó, nhưng tôi đã rất thất
vọng, và, tôi lại nói chuyện với anh ta lần nữa, right? Yes, tôi đã
không nói chuyện với anh ta nữa.

Table 8: XNLI example prompts for cross-lingual transfer from English (en) to Vietnamese (vi), with the same-
language and source-language settings. The underlined text shows the verbalized part of the prompt.

benefit from cross-lingual demonstrations10.
We also observed the benefit of cross-lingual

transfer from demonstration examples is gener-
ally canceled if a better prompt (e.g. the English
prompt) is used for the target language. We re-
port the crosslingual demonstration experiments
between all pairs of languages for XNLI, XCOPA
and XStoryCloze and provide more discussion in
Appendix D.2.

4.6 Performance on Multi-lingual Tasks

Using English as the universal prompting lan-
guage, we characterize the zero- and few-shot
in-context learning capabilities of XGLM7.5B on
XNLI, XCOPA and XStoryCloze and compare
them to English centric language models of com-
parable size.

Comparison to GPT-3. We compare XGLM7.5B
to GPT-36.7B on high, medium, low and extremely
low resources languages11. The results are sum-
marized in Table 9 and 10. On all three tasks,

10Both Thai and Urdu obtained close-to-random zero-shot
learning performances using the translated templates, which
might make them easier to be further improved. Besides, there
is inherent code switching in these languages (English pres-
ence in Thai and Urdu both lexical and morphological). Turk-
ish and Arabic also have influence on Urdu. We hypothesize
that these factors also positively impacted the cross-lingual
in-context learning performance.

11We use GPT-3 Curie: https://blog.eleuther.
ai/gpt3-model-sizes/

XGLM7.5B outperforms GPT-36.7B by a large mar-
gin according to the average performance across
languages, especially on medium, low and ex-
tremely low resource languages. On XNLI, GPT-
36.7B performs well on English and similar lan-
guages, surpassing XGLM7.5B on en, de (4-shot),
es (4-shot), fr (0-shot). A possible explanation is
that these languages have significant presence in
the GPT-3 training data (fr: 1.8%, de: 1.5%, es:
0.8% as shown in Figure 1) and can benefit more
from the lexical cognates from English.

Comparison to Translate-test Baseline. We
also create a translate-test baseline, where we trans-
late the non-English examples of the multilingual
tasks to English using the Google Cloud Transla-
tion API12 and use GPT-36.7B repl., an in-house
replication of GPT-36.7B, to perform inference. We
found the translate-test is a strong baseline of mul-
tilingual zero- and few-shot learning as is shown
in Table 9 and 10. Across all three tasks, it sig-
nificantly narrows the performance gap between
English and other languages, especially on XNLI13.

12https://cloud.google.com/translate
13The performance of translate-test baselines might be in-

flated given MT systems are often trained on backtranslations
which makes it good at translating translationese (Edunov
et al., 2019), which commonly exist in non-English evaluation
data. Besides, the translation-test approach relies on high-
quality machine translation (MT) systems trained on large
amounts of parallel data.
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high medium low Avg.
model # shot en de es fr ru zh ar bg el th tr vi hi sw ur

GPT-36.7B 0 55.4 36.8 37.0 51.2 44.8 42.6 38.5 42.9 38.8 38.4 40.6 41.3 36.5 34.6 34.5 40.9
4 53.0 46.4 48.5 48.3 44.3 45.8 38.2 41.7 42.1 36.8 38.7 42.3 34.3 33.7 34.5 41.9

XGLM7.5B 0 55.3 42.3 39.1 50.8 48.4 44.8 48.1 49.1 46.4 46.8 45.5 47.6 43.4 45.5 41.9 46.3
4 52.6 45.6 45.8 49.4 48.6 48.8 46.4 48.9 48.7 46.6 45.4 48.5 46.8 44.5 43.4 47.3

Translate + GPT-36.7B repl. 0 54.6 53.7 54.5 53.9 52.0 52.6 52.0 53.4 53.5 50.6 53.3 52.6 50.7 51.3 48.7 52.5
4 54.1 52.4 49.2 50.3 53.2 51.1 50.5 53.7 53.0 48.2 51.8 52.8 49.8 50.2 47.2 51.2

Table 9: Comparison of different models on XNLI.

XStoryCloze XCOPA

# high medium low ex-low Avg. high medium low ex-low Avg.
model shot en es ru zh ar id hi sw te eu my zh id it th tr vi et sw ta ht qu

GPT-36.7B 0 73.4 62.4 56.9 55.8 48.4 56.6 50.1 49.4 52.8 51.2 49.5 55.1 55.0 60.2 61.6 53.6 53.4 52.8 50.8 52.2 55.0 51.8 50.0 54.2
4 74.4 62.2 56.4 54.7 47.7 55.4 49.6 49.3 52.8 51.1 49.5 54.8 57.8 60.8 64.5 54.2 52.9 54.8 51.8 52.0 54.9 51.5 49.7 55.0

XGLM7.5B 0 75.0 68.1 71.0 66.6 58.3 70.1 60.9 65.0 61.7 62.3 60.7 65.4 62.4 66.6 60.8 56.8 56.8 61.4 61.6 57.6 56.2 57.0 47.4 58.6
4 75.9 69.2 72.4 67.7 59.8 70.8 62.5 65.2 63.4 63.8 61.2 66.5 67.2 68.9 69.2 62.0 58.5 65.6 65.9 62.9 56.3 58.9 47.1 62.0

Translate 0 81.2 75.6 75.4 72.9 71.5 71.2 70.5 70.0 66.9 70.5 72.7 72.6 75.0 73.2 76.0 53.8 72.4 72.2 72.4 63.8 67.2 65.0 - 67.4†

+ GPT-36.7B repl. 4 82.6 75.0 75.3 73.1 71.8 72.0 71.6 71.0 68.4 72.2 72.0 73.2 78.5 75.8 80.6 57.7 73.7 76.0 73.6 67.2 69.9 67.0 - 70.0†

Table 10: Comparison of different models on XStoryCloze and XCOPA. †Google Translation API is not available
for qu. For the averaged translate-test results we directly used the GPT-36.7B repl. model for qu entry.

4.7 Performance on English Tasks

We also benchmark the performance of XGLM7.5B
on English tasks. Figure 2 shows the compari-
son between XGLM7.5B, GPT-36.7B and GPT-36.7B
repl. on a subset of English tasks used by Brown
et al. (2020). Our replication of GPT-36.7B, GPT-
36.7B repl., performs better than or close to GPT-
36.7B on all tasks. While XGLM7.5B performs com-
petitively on all tasks, there remains a consider-
able performance gap comparing to GPT-36.7B and
GPT-36.7B repl.. On most tasks XGLM7.5B and
GPT-36.7B repl. show similar performance trend as
𝑘 changes. For example, both models show a per-
formance dip at 1-shot on HellaSwag and PIQA,
and 128-shot on COPA.

There are multiple reasons why XGLM7.5B un-
derperforms English centric models on the English
tasks. First, only 32.6% of XGLM7.5B’s 500B-
token training data is English while both English-
centric models are trained on close to 300B English
tokens. Second, the model capacity of XGLM7.5B
is shared by 30 languages, and the “curse of mul-
tilinguality” can degrade the performance across
all languages (Conneau et al., 2020). Further scal-
ing up the model capacity and training data can
potentially close this gap. 14

14The differences between the training corpora of the three
models may have also contributed to the performance dif-
ference. While both English centric models incorporate
high-quality English monolingual corpora such as BookCor-
pus (Zhu et al., 2019) in their training data (GPT-36.7B also

4.8 Performance on Machine Translation

We report machine translation results on popular
WMT pairs in Table 11, and a subset of FLORES-
101 (Goyal et al., 2021b) in Table 12. We use
greedy decoding for both GPT-3 and our own
model, and use the same 32 examples for few-shot
learning in each case.

GPT-3 yields strong results on a few languages
that are best represented in its training data, nar-
rowly surpassing our model on WMT French-
English, German-English, and Chinese-English,
as well as a few pairs the FLORES-101 set. GPT-
3 is particularly strong when English is the target
language, presumably due to its strong English lan-
guage modeling capability. However, it does poorly
on the broader set of less-resourced languages. For
instance, GPT-3 fails completely when translating
into Korean, Arabic, Swahili, Hindi, Burmese and
Tamil in FLORES-101, with a spBLEU score of
1.2 in the best case.

In contrast, our model obtains solid results
across the board. In addition to surpassing GPT-3
in 171 out of 182 language pairs in the FLORES-
101 set, our model is also competitive with the
official supervised baseline for this dataset, even

upsamples such high-quality data), XGLM7.5B is trained solely
on data extracted from Common Crawl. However, we do not
expect this to be the main impact factor. Scao et al. (2022)
conducted a similar experiment showing that a multilingual
model (1.3B parameters) pre-trained over 13 languages also
significantly underperforms an English model trained from
the same data source in terms of zero-shot generalization.
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Figure 2: Performance on English tasks. For XGLM7.5B and GPT-36.7B repl., we plot the confidence interval from 5
different runs corresponding to different training sets when 𝑘 > 0. For GPT-36.7B we use the performance reported
by Brown et al. (2020).

WMT-14 WMT-16 WMT-19 Avg.

fr-en en-fr de-en en-de fi-en en-fi ru-en en-ru zh-en en-zh xx-en en-xx

GPT-3
(API)

Ada 22.4 13.0 19.9 10.3 4.5 2.7 8.9 1.0 4.5 3.5 12.0 6.1
Babbage 29.8 22.4 30.5 16.9 12.3 5.4 20.8 4.1 12.3 9.1 21.1 11.6

Curie 35.3 28.7 36.1 23.7 18.4 9.9 28.6 9.8 17.6 17.4 27.2 17.9

XGLM7.5B 33.2 28.5 34.6 23.5 20.2 15.5 29.3 18.7 16.7 17.4 26.8 20.7

Table 11: Machine translation results on WMT (detokenized BLEU). We use 32 examples from the previous edition
for few-shot learning. BLEU scores computed using SacreBLEU with default settings (Post, 2018).

en de fr ca fi ru bg zh ko ar sw hi my ta Avg.

avg out of xx
Supervised 24.0 21.0 20.4 19.1 17.5 18.6 20.2 15.5 14.9 16.1 16.6 16.2 7.2 4.8 16.6
GPT-36.7B 9.9 9.1 9.4 9.3 6.4 7.0 5.5 4.9 2.4 2.9 1.7 0.5 0.2 0.3 5.0

XGLM7.5B 21.1 16.5 17.1 13.6 13.4 13.2 13.9 9.1 6.5 10.4 12.1 9.8 6.9 7.1 12.2

avg into xx
Supervised 26.0 20.2 26.7 20.0 16.7 18.5 24.5 14.1 13.5 11.8 16.3 19.3 2.1 2.5 16.6
GPT-36.7B 18.9 9.9 14.2 9.3 4.2 4.8 2.7 4.0 0.6 0.5 0.2 0.3 0.1 0.1 5.0

XGLM7.5B 28.5 14.9 20.6 14.4 10.9 12.4 18.5 10.9 5.9 6.1 8.5 9.7 5.8 3.5 12.2

Table 12: Machine translation results on FLORES-101 devtest (spBLEU). GPT-36.7B and XGLM7.5B use 32 examples
from the dev set for few-shot learning. Supervised results correspond to the M2M-124 615M model from Goyal
et al. (2021b). spBLEU computed using the implementation from Goyal et al. (2021b). Full results in Appendix D.3.

surpassing it in 45 language pairs. This suggests
that large-scale multilingual language models have
a great potential for building machine translation
systems for low-resource languages, even if little or
no parallel data is available.

4.9 Scaling up Model Size

Finally, we study the impact of scaling up the
model parameter size on its 0- and few-shot learn-
ing capabilities. Figure 3 shows the performance
(𝑘 = 0, 4, 32, 128) of the four XGLM models
(564M, 1.7B, 2.9B, 7.5B) on the five multilingual
tasks. The 𝑦-axis represents the average accuracy
across languages for each task. On commonsense
reasoning tasks (XStoryCloze, XCOPA, XWino-

grad), the performance of all models increases as
𝑘 increases from 0 to 32. The performance gain
from demonstration examples also gets larger as
the model size increases, indicating bigger mod-
els can better leverage the in-context examples. On
XNLI, the performance of all models increases as 𝑘
increases from 0 to 4, but decreases for 𝑘 at 32 and
above. With the same number of demonstration ex-
amples, larger models do not always benefit more.
PAWS-X is a task where in-context learning strug-
gles – the performance of all models oscillates near
random (50%) as 𝑘 changes. A possible reason is
the adversarial nature of PAWS-X, where the para-
phrase and non-paraphrase pairs by design have
high lexical overlap. We expect scaling to be an
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Figure 3: Zero-shot and in-language few-shot learning
performance as a function of model size. The last plot
shows the average performance over all five tasks in 0-
and 4-shot learning.

effective recipe for building stronger multilingual
language models, given the current trend.

5 Related Work

Language model prompting. Brown et al.
(2020) first demonstrated in-context few-shot learn-
ing using the GPT-3 model. This method removes
the need for task-specific updates to the model pa-
rameters: the few-shot examples that one would
normally use for fine-tuning are provided at infer-
ence time to the same model for each task. On
several high-resource Latin language pairs, GPT-3
achieves machine translation performance that is
close to or better than state-of-the-art supervised
models, given only a handful of demonstration ex-
amples.15 Such change in the learning paradigm
raises new questions about multilinguality, which
has not been studied as extensively. Winata et al.

15Study shows that language contamination in pre-training
data can effectively boost the cross-lingual capability of
English-centric language models (Blevins and Zettlemoyer,
2022). With a heavier tail of deliberately introduced multilin-
gual data, PALM-540B (Chowdhery et al., 2022) later achieves
even stronger few-shot machine translation performance.

(2021) evaluates the in-context few-shot learning
abilities of several GPT-2, GPTNEO and T5 on three
additional languages (de, es, fr) using multiple
NLU tasks, considering monolingual prompts as
well as cross-lingual prompts, demonstrating the
multilingual in-context learning skills of the En-
glish GPT and T5 models. Zhao and Schütze
(2021) evaluated different fine-tuning and prompt-
tuning (Liu et al., 2021) approaches on XLM-R
and demonstrates the effectiveness of prompting
in few-shot crosslingual transfer and in-language
training of a multilingual masked language model.

Multilingual pre-training. Early multilingual
pre-training work train word embeddings over mul-
tilingual corpora (Mikolov et al., 2013). The
multilingual versions of contextualized embed-
ding models such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), BART (Lewis et al.,
2019) and T5 (Raffel et al., 2020) were also de-
veloped: mBERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020), mBART (Liu et al., 2020),
and mT5 (Xue et al., 2020). Such models were
trained on a single, multilingual text corpus such as
mC4 (Xue et al., 2020) or CC25 (Liu et al., 2020).

Several approaches have been developed to fa-
cilitate cross-lingual transfer, including sub-word
tokenizers which enabled efficient, shared vocabu-
lary learning across languages (Kudo and Richard-
son, 2018), joint training for efficient knowledge
transfer across languages (Pires et al., 2019; Jiang
et al., 2020; Kassner et al., 2021), etc. A notable
concurrent work is BLOOM 16, which scales multi-
lingual pre-training to 46 languages and 175 billion
parameters.

6 Conclusion

We introduce four multilingual generative language
models (XGLMs) at different scales, and study
their in-context few- and zero-shot learning capa-
bilities. We show that the few-shot learning capa-
bility of XGLM steadily improves as it scales. Our
largest model (7.5B parameters) sets a new state
of the art for few-shot learning in more than 20
languages (including mid- and low-resource lan-
guages) on commonsense reasoning, NLI and ma-
chine translation tasks. An in-depth analysis shows
the models are highly cross-lingual, which leads
to strong few-shot learning performance in non-
English languages.

16https://bigscience.huggingface.co/
blog/bloom
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Limitations

Although the multilingual language model is an
important step towards building inclusive general-
purpose foundation models, our current models
have the following limitations.

Training Data. Our models are trained on a static
multilingual corpus extracted from CommonCrawl,
with English text comprising 32.6% of the total
number of tokens corresponding to 163B tokens.
The English data portion of the corpus corresponds
to roughly 54% only of GPT-3’s training data. We
applied several data filtering strategies as proxies
for data quality assurance (see a comprehensive list
in the Data Card in Appendix F), such as removing
duplicated documents and paragraphs by URLs,
filtering out paragraphs with high ratio of digits and
punctuation, removing paragraphs with profanity,
filtering by max number of URLs and minimum
length, etc. Such filtering may potentially result
in bias of the remaining data used in pretraining,
which would need further analysis to understand.
Furthermore, the raw data were taken from static
CommonCrawl snapshots, which may not include
entities and events beyond the time span of the
snapshots (till March 2020), such as COVID-19,
etc. As such we also note the potential difference in
genres between CommonCrawl and the genres used
in GPT-3 comprising in addition to CommonCrawl,
corpora such as BookCorpus and Wikipedia.

Moreover, GPT-3 is trained on 118 languages
despite the fact that 93% of the data is English.17

In contrast our models are trained on 30 languages
after rigorous language identification and filtering.

Performance on English tasks. As is shown in
Section 4.7 and Figure 2, our model underperforms
English-centric models on eight tasks ranging from
commonsense reasoning to QA. There are several
factors which could be contributing to this gap,
such as

• Difference in training data quality (XGLM is
trained on filtered CommonCrawl data only,
while the English-centric models are trained
on data including both CommonCrawl as well
as high-quality corpora such as BookCorpus
and Wikipedia) and quantity (as is described
in the previous paragraph, the multilingual

17https://github.com/openai/gpt-3/blob/
master/dataset_statistics/languages_by_
word_count.csv

model was trained on 54% of the English data
used in English-centric models);

• Curse of multilinguality. Previous work in
multilingual training has shown that increas-
ing the number of languages in model with
shared parameters hurts performance on all
training languages, e.g. English (Conneau
et al., 2020).

Additional experiments controlling for these factors
would shed more light on the observed gap.

Model architecture and training objective. In
this work, we only experimented with causal lan-
guage models with a decoder-only architecture,
which had previously demonstrated promising few-
shot learning capabilities (Brown et al., 2020).
However, such architecture and pretraining objec-
tive do not leverage bidirectional context such as
those used by masked language models (MLM), or
sequence-to-sequence architectures with denoising
autoencoder pretraining objectives.

Model evaluation via in-context learning. We
compare our language models to the baselines pri-
marily in the in-context learning paradigm, using
the same prompts for all language models in the
comparison unless explicitly specified. Despite
minimal effort engineering the prompts for any
model, it is possible that the prompts work better
with some models than the others, which intro-
duces bias to the evaluation. However, we expect
this factor to have small impact and the relative
strengths of the models can be reliably measured
given the volume of tasks they were evaluated on.

Evaluation on social value tasks for more lan-
guages. We evaluate and analyze the models’ per-
formance on hate speech detection and gender bias
for professional occupations. These studies are
limited by the available evaluation datasets. We
are limited in our study as we only investigate this
problem space for six languages (English, French,
Spanish, Italian, Portuguese, and Polish) where a
majority of them (5) pertain to the Romance lan-
guage family. It would be pertinent to investigate
the impact of multilingual models on social value
tasks across a wider and more diversified set of
languages before drawing solid conclusions. More-
over, we contend that studies on other tasks such
as stereotype (Nangia et al., 2020; Nadeem et al.,
2021), ethics (Hendrycks et al., 2020) would pro-
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vide a more comprehensive view of model behavior
for social value tasks.

Ethical Considerations

Devising multilingual pre-trained language models
can serve as a powerful tool in the NLP arsenal for
multiple reasons.

Energy and maintenance efficiency. From an
engineering perspective, XGLM pertains to a fam-
ily of models that represent single unified models
catering to many languages which have wide ap-
plication across many applications. Such a unified
single model saves on carbon footprint as well as
energy consumption (comparing to the alternative:
separate models for different languages) leading to
more energy efficiency. A single model, despite
having the risk of being a single point of failure, has
the powerful incentive of being easier to maintain,
access, distribute, and track.

Diversity and inclusion. Models such as XGLM
represent a paradigm shift from the Anglo-centric
view of the world of NLP to being able to cater to
all languages on an equal footing. Paying attention
to the design of such models is critical to ensure
equitability and inclusion, exemplified here by at-
tempting to balance language representation. The
further power of XGLM specifically is its ability
to perform comparably to Anglo-centric models
in zero to few shot settings. Possessing powerful
multilingual models that can perform well in such
settings especially for medium to extremely low re-
source languages helps alleviate the burden of cre-
ating supervised data for such languages especially
for economically challenged languages (medium to
low digital presence typically goes hand in hand
with economic disparities). Moreover, having such
models catering to scarcer languages spurs scien-
tific research in such languages leading to more
diversified NLP, and more diversified science in
the broader sense.

Social values. We further investigate the impact
of our models on social valued problems such as
hate speech detection and bias (Appendix §E). De-
spite inconclusive results overall (bordering on neg-
ative), we note that for the relatively scarcer data
setting (Polish) the multilingual models outperform
the Anglo-centric models indicating that XGLM
will be performant for less resourced languages.
This is especially significant for social value tasks
where obtaining training data is quite problematic

due to the inherent expense of obtaining high qual-
ity annotated data.

Transparency and Accountability. In the spirit
of transparency and accountability for large-scale
language modeling we include detailed model card
and data card with the model and paper release.

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2020.

Translation artifacts in cross-lingual transfer learning.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 7674–
7684. Association for Computational Linguistics.

Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Terra Blevins and Luke Zettlemoyer. 2022. Lan-
guage contamination explains the cross-lingual ca-
pabilities of english pretrained models. CoRR,
abs/2204.08110.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob

11709

https://doi.org/10.18653/v1/2020.emnlp-main.618
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://doi.org/10.48550/arXiv.2204.08110
https://doi.org/10.48550/arXiv.2204.08110
https://doi.org/10.48550/arXiv.2204.08110
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay Ghe-
mawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fe-
dus, Denny Zhou, Daphne Ippolito, David Luan,
Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,
Ryan Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan Sankara-
narayana Pillai, Marie Pellat, Aitor Lewkowycz,
Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta,
Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff
Dean, Slav Petrov, and Noah Fiedel. 2022. Palm:
Scaling language modeling with pathways. CoRR,
abs/2204.02311.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: evaluat-
ing cross-lingual sentence representations. CoRR,
abs/1809.05053.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kentha-
padi, and Adam Tauman Kalai. 2019. Bias in bios: A
case study of semantic representation bias in a high-
stakes setting. In proceedings of the Conference on
Fairness, Accountability, and Transparency, pages
120–128.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In North American Association for Com-
putational Linguistics (NAACL).

Sergey Edunov, Myle Ott, Marc’Aurelio Ranzato, and
Michael Auli. 2019. On the evaluation of machine
translation systems trained with back-translation.
arXiv preprint arXiv:1908.05204.

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon Hare, Frederique
Laforest, and Elena Simperl. 2018. T-rex: A large
scale alignment of natural language with knowledge
base triples. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018).

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguis-
tics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 3816–3830. Association for Computa-
tional Linguistics.

Aaron Gokaslan and Vanya Cohen. 2019. Open-
webtext corpus. http://web.archive.org/
save/http://Skylion007.github.io/
OpenWebTextCorpus.

Andrew S. Gordon, Zornitsa Kozareva, and Melissa
Roemmele. 2012. Semeval-2012 task 7: Choice
of plausible alternatives: An evaluation of com-
monsense causal reasoning. In Proceedings of the
6th International Workshop on Semantic Evaluation,
SemEval@NAACL-HLT 2012, Montréal, Canada,
June 7-8, 2012, pages 394–398. The Association for
Computer Linguistics.

Naman Goyal, Jingfei Du, Myle Ott, Giri Ananthara-
man, and Alexis Conneau. 2021a. Larger-scale trans-
formers for multilingual masked language modeling.
CoRR, abs/2105.00572.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2021b. The FLORES-101 evalu-
ation benchmark for low-resource and multilingual
machine translation. CoRR, abs/2106.03193.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197, Edinburgh, Scotland. Association for Com-
putational Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.
2020. Aligning ai with shared human values. arXiv
preprint arXiv:2008.02275.

Xiaolei Huang, Linzi Xing, Franck Dernoncourt, and
Michael Paul. 2020. Multilingual twitter corpus and
baselines for evaluating demographic bias in hate
speech recognition. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
1440–1448.

Zhengbao Jiang, Antonios Anastasopoulos, Jun Araki,
Haibo Ding, and Graham Neubig. 2020. X-FACTR:
Multilingual Factual Knowledge Retrieval from Pre-
trained Language Models. pages 5943–5959.

11710

https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
http://arxiv.org/abs/1809.05053
http://arxiv.org/abs/1809.05053
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://aclanthology.org/S12-1052/
https://aclanthology.org/S12-1052/
https://aclanthology.org/S12-1052/
http://arxiv.org/abs/2105.00572
http://arxiv.org/abs/2105.00572
http://arxiv.org/abs/2106.03193
http://arxiv.org/abs/2106.03193
http://arxiv.org/abs/2106.03193
https://www.aclweb.org/anthology/W11-2123
https://www.aclweb.org/anthology/W11-2123
https://doi.org/10.18653/v1/2020.emnlp-main.479
https://doi.org/10.18653/v1/2020.emnlp-main.479
https://doi.org/10.18653/v1/2020.emnlp-main.479


Nora Kassner, Philipp Dufter, and Hinrich Schütze.
2021. Multilingual LAMA: investigating knowledge
in multilingual pretrained language models. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, EACL 2021, Online, April
19 - 23, 2021, pages 3250–3258. Association for
Computational Linguistics.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pages 66–75.
Association for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
EMNLP 2018 - Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, Proceedings, pages 66–71.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Yoav Levine, Noam Wies, Or Sharir, Hofit Bata, and
Amnon Shashua. 2020. Limits to depth efficiencies
of self-attention. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2019. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. pages 7871–7880.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham.
2021. Jurassic-1: Technical details and evaluation.
Technical report, AI21 Labs.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT
understands, too. CoRR, abs/2103.10385.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transactions
of the Association for Computational Linguistics,
8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? A new dataset for open book question an-
swering. CoRR, abs/1809.02789.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013.
Exploiting Similarities among Languages for Ma-
chine Translation.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv preprint arXiv:2104.08773.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James F. Allen. 2016. A corpus
and evaluation framework for deeper understanding
of commonsense stories. CoRR, abs/1604.01696.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Association for Computational
Linguistics (ACL).

Sebastian Nagel. 2016. Cc-news. http:
//web.archive.org/save/http:
//commoncrawl.org/2016/10/
news-dataset-available.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R Bowman. 2020. Crows-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. arXiv preprint arXiv:2010.00133.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. FAIRSEQ: A fast, extensible toolkit for
sequence modeling. In North American Associa-
tion for Computational Linguistics (NAACL): System
Demonstrations.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. CoRR,
abs/2105.11447.
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A Pretraining Details

XGLM. All models are trained with the Fairseq library (Ott et al., 2019). We use Adam optimizer with
𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 1𝑒− 8. We adjust the learning rate based on model size, e.g. 1.5𝑒− 3 for the
564M and 1.7B model, 7.5𝑒− 4 for the 2.9B model, and 1.2𝑒− 4 for the 7.5B models. Learning rates
were adjusted with a 2000 warm-up updates followed by a polynomial decay schedule. All models are
trained with data parallel and an effective batch size of 4M tokens. The XGLM 7.5B model was trained
on 256 A100 GPUs for about 3 weeks, at a speed of 311.6k words per second18.

GPT-36.7B repl.. We replicate the GPT-36.7B architecture and optimization hyperparameters to the best of
our knowledge for training this model. The most significant difference between this model and GPT-36.7B
is in the training data. The training data used by GPT-36.7B repl. is a combination of six English-language
datasets, totaling 453GB and 112B tokens (which we up-sampled to 300B tokens):

• BookCorpus (Zhu et al., 2019), a dataset consisting of more than 10K unpublished books (4GB);

• English Wikipedia, excluding lists, tables and headers (12GB);

• CC-News (Nagel, 2016), a dataset containing 63 millions English news articles crawled between
September 2016 and February 2019 (76GB);

• OpenWebText (Gokaslan and Cohen, 2019), an open source recreation of the WebText dataset used to
train GPT-2 (38GB);

• CC-Stories (Trinh and Le, 2018), a dataset containing a subset of CommonCrawl data filtered to match
the story-like style of Winograd schemas (31GB);

• English CC100 (Wenzek et al., 2020), a dataset extracted from CommonCrawl snapshots between
January 2018 and December 2018, filtered to match the style of Wikipedia (292GB).

The data are encoded using the same Byte-Pair Encoding (BPE) as GPT-2 (Radford et al., 2019) and
RoBERTa (Liu et al., 2019) with a vocabulary of 50K subword units.

A.1 Validation Perplexity

We use in-domain validation perplexity to validate the convergence status of the models. Figure A1 shows
the average perplexity of the four models evaluated using a validation dataset sampled from CC100-XL.
The validation data contains 30k sentences for each language that do not overlap with the pre-training
data. We group the results by resource level.
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Figure A1: XGLM perplexity on CC100_XL validation set as a function of model size.

18On 256 A100 GPUs, the inference speed can reach 1.47 million words per second. Besides, inference can be done with
significantly less resources. For example, using 8 v100 GPUs, it took 6 hrs to evaluate XGLM 7.5B on XStoryCloze.
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B Multilingual In-context Learning Formulation

We extend the in-context learning framework proposed by Brown et al. (2020) to the multilingual setting.
Let ℳ be a causal language model and 𝒟 be a task. 𝒟 = (𝒫, ℰ) consists of a task description 𝒫 and a
few demonstration examples in one or more languages

ℰ =

|ℒ|⋃︁

𝑙=1

ℰ 𝑙.

We consider the setting where the task description comes in the form of a prompt 𝒫 = (𝒯 , 𝑣). 𝒯 is a
cloze-style template that converts an example input 𝑥 into a string 𝒯 (𝑥) that contains a [Mask]symbol.19

For classification and multiple-choice problems, 𝑣 : 𝒴 → 𝒱* is a verbalizer that maps each candidate
label or choice 𝑦 ∈ 𝒴 into a string 𝑣(𝑦). Both 𝒯 (𝑥) and 𝑣(𝑦) can be tokenized into a sequence of one
or more tokens in the language model vocabulary 𝒱 . An instantiated prompt 𝒫(𝑥, 𝑦) is obtained by
substituting the [Mask]symbol in 𝒯 (𝑥) with 𝑣(𝑦). Table 2 shows the prompts used by all tasks in our
main experiments.

Zero-shot learning. Given a test example �̃�𝑡 in any target language 𝑡, the zero-shot prediction is 𝑦 which
maximizes a language model based scoring function (§C.2).

𝑦 = argmax
𝑦

𝜎(ℳ,𝒫(�̃�𝑡, 𝑦)). (1)

This general formulation can cover most NLP tasks. For classification problems, 𝑣 is a mapping from
classes to strings; for multiple-choice problems, 𝑣 is an identity function that maps each candidate choice
to itself. For text generation problems, 𝑣 is identity and we decode free-form text from [Mask], which in
this case is positioned at the end of 𝒯 (𝑥).

Few-shot learning. Suppose we have 𝑘 demonstration examples available in a source language:

ℰ𝑠 = {(𝑥𝑠𝑖 , 𝑦𝑖)}𝑘𝑖=1.

In this case, we concatenate the instantiated prompts of the demonstration examples {𝒫(𝑥𝑠𝑖 , 𝑦𝑖)}𝑘𝑖=1 and
make it the prefix of the input string used in the zero-shot learning setting to form the objective:

𝑦 = argmax
𝑦

𝜎(𝒫(𝑥𝑠1, 𝑦1) [Sep] . . . 𝒫(𝑥𝑠𝑘, 𝑦𝑘) [Sep] 𝒫(�̃�𝑡, 𝑦)), (2)

where [Sep] is a separator symbol chosen empirically.

• When 𝑠 = 𝑡, we have the in-language few-shot learning setup.

• When 𝑠 ̸= 𝑡, we have the cross-lingual few-shot learning setup.

C Evaluation Details

C.1 English Evaluation Tasks

Table A1 shows all the English tasks used in our evaluation.

19We relaxed the prompt format of GPT-3 by allowing the [Mask]symbol to appear anywhere in 𝒯 (𝑥) instead of just in
the end. Having this additional flexibility leads to better performance on some tasks. This is inspired by the masked language
modeling prompts constructed by recent work (Schick and Schütze, 2021; Zhang et al., 2021).
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Reasoning

StoryCloze (Mostafazadeh et al., 2016) – 1,871 1,871 N/A 1
COPA‡ (Gordon et al., 2012) 400 100 499 N/A 1
WinoGrande (Sakaguchi et al., 2020) 40,398 1,267 1,767 N/A 1
HellaSwag (Zellers et al., 2019) 39,905 10,042 10,003 N/A 1

QA

ARC-easy (Clark et al., 2018) 2,251 570 2,376 N/A 1
ARC-cha. (Clark et al., 2018) 1,119 299 1,172 N/A 1
PIQA (Bisk et al., 2020) 16,113 1,838 3,084 N/A 1
OpenbookQA (Mihaylov et al., 2018) 4,957 500 500 N/A 1

Table A1: English tasks used in our few-shot learning evaluation. All tasks use accuracy as the evaluation metrics.

C.2 Scoring Functions
We considered the following functions for scoring an instantiated prompt using a language model:

(1) sum of per-token log probabilities;

(2) average of per-token log probabilities;

(3) average of per-token log probabilities, ignoring the common prefix of different candidates.

We also considered the calibration approach proposed by Zhao et al. (2021) and character normalization
proposed by Lieber et al. (2021).

In the end, we use the average of per-token log-probabilities ignoring the common prefix of different
candidates as the scoring function for all multilingual tasks. This is selected based on the development set
performance of StoryCloze and XNLI.

For English tasks, we use the same modeling choices as Brown et al. (2020). Specifically, we use the
task prompts as detailed in Appendix G of Brown et al. (2020), and a single newline as the separator for
few-shot learning. For WinoGrande, we take the log-likelihood of the common suffix of the different
candidates as the scoring function. For ARC-easy, ARC-challenge and OpenBookQA, we normalize by the
unconditional probability of each candidate by taking 𝑝(completion|context)

𝑝(completion|answer_context) , where we use the string
“Answer: ” as answer_context. For all the other tasks, we take the average of per-token log-probabilities,
ignoring the common prefix of the different candidates.

C.3 Evaluation Protocol
All few-shot learning results are obtained with the in-language setting (both the training and test examples
are in the same language) unless otherwise specified. We report results on the test set for all multilingual
tasks (including the held-out tasks). For English tasks, we report results on the test set for ARC-easy,
ARC-challenge, OpenBookQA and StoryCloze, and on the development set for the rest, following Brown
et al. (2020). For few-shot learning, we report the average results across 5 runs, randomly sampling
a different set of few-shot examples each time. For tasks with a training set, we sample the few-shot
examples from the training set; for tasks with no training set, we sample from the dev set and report
evaluation results on the test set; for dev-set examples on XNLI and XCOPA, we sample few-shot examples
from the test set, since these two tasks do not have the training sets for all languages. While Brown et al.
(2020) tuned the few-shot value 𝑘 as a hyperparameter on the dev set, we pre-selected a few 𝑘 values (0,
1, 4, 32, 128) and report the corresponding results.

C.3.1 Example Truncation
Following Brown et al. (2020), we truncate the input such that they fit the maximum context length of
XGLM (𝑛ctx = 2048) and preserve only the complete demonstration examples after truncation. For each
task, we report results up to the 𝑘’s corresponding to the maximum fit.20 Table A2 shows the average
number of demonstration examples that fit the maximum context length of XGLM (𝑛ctx = 2048) for each
task in our experiments.

20XWinograd has only a test split, and we sampled few-shot examples directly from it, following the practice used by Brown
et al. (2020) for evaluating GPT-3 on Winograd. As a result we only report 0-, 1- and 4-shot results for XWinograd to minimize
inflating the few-shot performance by training and testing on the same examples.
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XStoryCloze
en zh ru es id ar hi sw te eu my

32.0 31.6 30.6 31.5 32.0 27.6 24.7 29.5 25.2 25.6 18.8

XCOPA
en zh it id th vi tr et ta sw ht qu

100.0 100.0 98.0 100.0 100.0 99.4 100.0 100.0 75.2 97.9 95.4 84.9

XWinograd
en ru ja pt

93.7 63.7 62.4 83.1

XNLI
en zh ru es de fr el th vi tr ar bg hi ur sw

48.3 47.6 43.4 44.7 43.1 39.3 37.8 44.8 39.8 46.8 42.3 41.4 37.4 38.4 42.9

PAWS-X
en zh es ja de fr ko

34.5 27.2 31.3 23.1 32.0 29.1 28.0
en

COPA 124.3
Winogrande 84.6
HellaSwag 21.4
ARC-easy 62.9
ARC-challenge 53.2
PIQA 59.6
OpenbookQA 106.4

Table A2: Average # of few-shot examples that fit the maximum context length of XGLM (𝑛ctx = 2048) in our
few-shot evaluation benchmark. The languages are sorted according to the amount of pre-training data (high to low).

Representation Bias. We observe that the language model tend to fit more examples in a high-
resource language in context compared to those in a low-resource language.21 English, as the highest
resourced language (Table A10), always fit the most examples. This reflects the unequal representation
of different languages in our joint multilingual BPE vocabulary (§2.1). With this vocabulary induction
scheme (Sennrich et al., 2015), the underrepresented languages tend to have smaller sub-word units and
higher fertility (defined as number of subwords per linguistic word), making it more challenging to learn
word- and higher-level semantics for such languages. Other factors can also impact the tokenization
granularity. For example, sharing sub-strings with other high resource languages can boost the granularity
of a language; and some languages have smaller tokenization granularity as a result of their alphabet
system (e.g. Chinese has an average sub-word length of 1.4, indicating the dominance of single-character
tokens, despite being the third largest language in our pre-training data according to disk size).

D Additional Results

D.1 Comparing Multilingual Prompting Approaches on XNLI and XCOPA

We compare the performance of English prompts and MT and HT prompts on two of our held-out tasks,
XNLI and XCOPA, using their development sets. For MT prompts, we translate the English prompts
into the target languages using the Google Cloud Translation API. We use the exact prompts as shown
in Table 2 as the input of the translation API and manually recover the placeholders in the API output
based on brackets markers (e.g. “{Sentence 1} because [Mask]” is translated to “{Sentence
1}因为[Mask]”). When the candidate set is closed, we replace [Mask]with each verbalized label and
translate them separately. For example, “{Sentence 1}, right? Yes, {Sentence 2}” is translated
to “{Sentence 1}，对吗？是的，{Sentence 2}”. On XNLI, we also compared to prompts
manually translated from English to eliminate the impact of translation noise on the comparison.22

As shown in Table A3 and Table A4, the in-context learning performance is sensitive to the prompting
choices across all languages. For both XNLI and XCOPA, using the English prompts on average
yield significantly better performance than using the machine-translated prompts. For XNLI, human
translated (HT) prompts significantly improve over machine translated (MT) prompts for most languages.
Surprisingly, the performance of human translated prompts lags behind that of the English prompts in the

21XStoryCloze, XCOPA, XNLI and PAWS-X all contain parallel examples, which allows us to compare the maximum fit of
the same set of examples across different languages.

22We ask native speakers to translate the English template into zh, es, fr, el, hi, vi, ar and bg. For the rest of the languages, one
of the authors verified and corrected the machine translated templates using bilingual dictionaries.

11717



hi medium low
# shot prompt en zh ru es de fr el th vi tr ar bg hi ur sw Avg.

0 En 54.5 45.0 47.2 38.2 42.4 50.7 47.1 46.1 47.5 44.6 47.5 50.0 43.4 42.7 46.2 46.2
MT 54.5 34.6 40.7 37.5 37.6 47.8 45.4 33.3 35.4 37.1 46.5 49.3 38.8 33.5 44.4 41.1
HT 54.5 34.1 47.4 50.0 49.5 50.4 47.1 34.9 45.2 46.3 46.0 49.3 37.5 33.7 44.4 44.7

4 En 51.8 48.0 48.2 45.1 45.2 49.2 48.4 46.3 48.2 45.1 46.4 49.1 46.6 43.5 44.9 47.1
MT 51.8 39.8 45.1 45.8 43.6 49.4 44.3 33.7 41.9 35.0 45.5 48.6 39.9 35.4 43.5 42.9
HT 51.8 39.8 50.0 49.9 49.8 45.7 44.0 37.3 41.9 47.0 45.7 48.6 40.2 35.0 43.5 44.7

32 En 53.4 50.4 40.0 46.4 46.2 46.7 47.3 46.8 48.6 44.3 43.3 42.8 45.6 45.6 46.5 46.3
MT 53.4 40.7 38.0 47.0 43.1 49.1 48.5 35.0 44.5 35.2 41.9 51.9 37.2 34.8 43.8 42.9
HT 53.4 43.1 51.8 51.7 49.6 46.2 48.9 38.0 47.0 47.5 43.9 51.9 40.9 34.6 43.8 46.2

Table A3: Comparison between English prompts, MT (machine-translated) prompts and HT (human-translated)
prompts for 0, 4 and 32-shot learning on XNLI dev set using XGLM7.5B.

hi medium low ex-low
# shot prompt zh ru it id th vi tr et ta sw ht qu Avg.

0 En 63.0 64.0 59.0 54.0 53.0 63.0 65.0 63.0 59.0 54.0 57.0 70.0 60.3
MT 62.0 59.0 69.0 51.0 48.0 64.0 64.0 60.0 59.0 51.0 60.0 69.0 59.7

4 En 66.8 73.8 66.2 54.6 57.4 68.8 69.8 69.2 60.6 58.2 62.6 62.2 64.2
MT 68.4 65.4 68.8 54.0 56.6 67.2 67.4 66.6 62.2 60.2 60.8 61.8 63.3

Table A4: Comparison bewtween English prompts and MT (machine-translated) prompts for 0-shot and 4-shot
learning on XCOPA dev set using XGLM 7.5B.

0-shot and 4-shot settings.
Further examination of the per-language performance reveals that the relative strengths of different

prompting approaches vary across languages. For es and de, HT prompts offer large gains compared to
the MT prompts and the English prompts. However, for zh and ur, using translated prompts (either HT or
MT) significantly hurts the performance. For zh, fr, vi, ar and hi, using native-speaker translated prompts
still yields significantly lower performance compared to using the English prompts in at least one setting,
suggesting that translation error is not the sole cause of the performance drop.

D.2 Full Results on Learning from Cross-lingual Demonstrations
We evaluated XGLM 7.5B on XNLI in the learning from cross-lingual demonstration setting, using both
the same-language-prompting and English-prompting setups. In same-language-prompting, the prompt
fields and the examples are always in the same language. And in English-prompting, English prompts are
used for all examples. All few-shot performances in this section are obtained using the 𝑘-shot per label
setting as described in §D.4.

As shown in Figure A2, for many language pairs transferring from source language demonstration
can significantly improve over the zero-shot performance in the target language when human-translated
templates is used. The improvement is especially significant for languages such as Chinese (zh), Thai
(th) and Urdu (ur), whose zero-shot performance is close to random with human translated templates.
However, we found that the effect of cross-lingual transfer from template and cross-lingual transfer from
demonstration examples typically do not add up. As shown in Figure A3, using the English template
significantly improves the zero-shot performance of most languages, including Chinese, Thai and Urdu.
In this case, the demonstration examples in general do not help unless they are in the same language as the
target example (diagonals).

Figure A4 shows the results on XCOPA.
Figure A5 shows the results on XStoryCloze, where we observed almost no improvement for any

language pair. Possible reasons for the poor transfer results on XStoryCloze is that it requires reasoning
about implicit relations between multiple sentences which is much harder to do especially in a cross-lingual
setting.
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(a) Same-language prompting with human-translated templates (b) English prompting for all languages

Figure A2: Cross-lingual few-shot in-context learning on XNLI development set. The leftmost column shows
the 0-shot performance (with human-translated templates) of each language. The rest of the matrix shows the
difference between 4-shot (per label) and 0-shot (with human-translated templates) performance. Row: target
language. Column: source language. The languages are ordered from the highest to the lowest resource level. We
observe that using demonstration examples from the source language improves the zero-shot performance in the
target language over a number of language pairs, and the improvement is more significant from higher-resourced
languages to lower-resourced languages.

(a) Same-language prompting with human-translated templates (b) English prompting

Figure A3: Cross-lingual few-shot in-context learning on XNLI development set. The leftmost column shows the
0-shot performance (with English templates) of each language. The rest of the matrix shows the difference between
4-shot (per label) and 0-shot (with English templates) performance. Row: target language. Column: source language.
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(a) Same language prompting with human-translated templates (b) English prompting

Figure A4: Cross-lingual few-shot in-context learning on XCOPA development set. The leftmost column shows the
0-shot (with machine translated templates) performance. The rest of the matrix shows the difference between 4-shot
(per label) and 0-shot (with machine translated templates) performance. Row: target language. Column: source
language.

Figure A5: Cross-lingual few-shot in-context learning on XStoryCloze test set. The matrix shows the difference
between 4-shot (per label) and 0-shot performance. For XStoryCloze, there is no difference between same-language
prompting and English prompting since the task does not use a verbalized template. Row: target language. Column:
source language.
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D.3 Full Results in FLORES-101
Table A5 reports our full results in FLORES-101.

en de fr ca fi ru bg zh ko ar sw hi my ta avg

en
Supervised – 32.6 42.0 31.2 24.2 27.1 37.4 19.3 18.5 17.9 26.9 28.1 3.5 3.4 24.0
GPT-36.7B – 25.9 36.1 23.8 10.2 11.2 5.9 12.5 1.2 1.1 0.5 0.3 0.1 0.0 9.9

XGLM7.5B – 27.6 36.0 34.0 23.3 24.2 33.1 15.6 12.0 11.5 18.0 19.9 11.0 8.5 21.1

de
Supervised 35.8 – 35.5 25.8 22.6 24.6 31.5 17.2 16.6 14.8 21.0 23.4 2.3 2.3 21.0
GPT-36.7B 40.4 – 26.2 17.2 8.1 9.3 4.8 9.0 1.0 0.9 0.5 0.3 0.1 0.1 9.1

XGLM7.5B 38.8 – 27.9 19.1 20.5 19.7 25.8 12.3 3.4 6.6 11.7 14.3 9.9 4.8 16.5

fr
Supervised 37.2 28.5 – 28.7 21.9 24.5 32.2 17.6 16.7 15.4 17.2 22.9 2.1 0.8 20.4
GPT-36.7B 42.8 20.9 – 23.7 8.0 9.7 4.6 9.1 1.0 1.0 0.4 0.3 0.1 0.0 9.4

XGLM7.5B 40.4 20.4 – 32.1 19.4 19.8 26.3 10.6 2.4 5.9 14.5 13.7 9.7 6.6 17.1

ca
Supervised 33.4 24.8 35.1 – 19.0 21.1 28.6 15.1 13.9 13.4 18.7 20.5 2.1 2.6 19.1
GPT-36.7B 40.2 18.6 31.4 – 7.0 9.3 4.3 8.0 0.9 0.9 0.3 0.4 0.1 0.1 9.3

XGLM7.5B 41.1 18.9 33.8 – 11.3 3.3 23.9 10.8 1.3 0.8 13.8 6.1 7.9 3.1 13.6

fi
Supervised 27.2 23.0 29.3 21.6 – 20.6 26.4 16.0 14.8 12.4 14.2 19.8 1.7 0.9 17.5
GPT-36.7B 25.3 13.5 17.1 10.0 – 6.4 2.8 5.7 0.7 0.7 0.3 0.3 0.1 0.0 6.4

XGLM7.5B 29.2 17.4 22.2 17.0 – 16.5 17.5 12.4 7.5 7.6 8.0 10.1 6.2 2.0 13.4

ru
Supervised 27.5 23.5 30.1 22.0 19.4 – 31.0 16.5 15.3 13.5 18.1 20.9 2.2 2.3 18.6
GPT-36.7B 28.1 14.8 20.4 13.1 5.4 – 7.4 1.2 0.2 0.2 0.1 0.2 0.1 0.1 7.0

XGLM7.5B 30.4 17.9 24.0 14.6 8.0 – 26.3 11.6 5.5 7.4 7.1 9.1 7.3 3.1 13.2

bg
Supervised 33.0 26.1 33.7 24.9 20.8 26.5 – 17.5 16.4 14.5 20.9 23.1 2.3 2.4 20.2
GPT-36.7B 21.6 11.4 16.0 9.7 4.3 6.5 – 1.2 0.2 0.2 0.1 0.2 0.1 0.1 5.5

XGLM7.5B 35.5 19.2 26.3 12.9 14.2 22.9 – 11.9 6.8 9.2 9.4 7.5 3.2 1.0 13.9

zh
Supervised 20.9 17.6 24.3 17.4 16.0 17.2 22.1 – 15.9 11.6 15.5 18.5 1.9 2.5 15.5
GPT-36.7B 21.1 9.5 14.3 8.2 4.3 3.6 1.3 – 1.1 0.4 0.2 0.2 0.1 0.0 4.9

XGLM7.5B 20.7 8.3 8.5 10.5 4.4 4.8 14.8 – 9.3 4.2 5.6 12.0 8.6 6.2 9.1

ko
Supervised 20.9 16.7 22.1 16.5 14.9 15.5 21.1 15.7 – 10.6 15.1 18.7 1.9 4.0 14.9
GPT-36.7B 8.3 4.6 6.4 4.4 2.1 1.7 0.8 2.5 – 0.2 0.1 0.1 0.1 0.1 2.4

XGLM7.5B 19.9 10.3 13.7 5.3 1.4 1.2 10.9 11.9 – 2.7 3.2 1.0 2.2 1.4 6.5

ar
Supervised 25.5 18.7 25.7 18.9 15.6 17.8 23.8 13.1 13.3 – 15.4 19.4 1.8 0.9 16.1
GPT-36.7B 10.5 5.3 9.6 6.0 2.2 2.2 0.9 0.9 0.1 – 0.1 0.1 0.2 0.0 2.9

XGLM7.5B 27.7 12.2 17.9 8.8 8.5 9.1 18.4 8.9 0.8 – 7.7 7.8 3.4 3.7 10.4

sw
Supervised 30.4 19.4 26.7 20.1 15.6 17.6 23.8 13.2 12.2 12.0 – 19.2 2.1 4.0 16.6
GPT-36.7B 5.0 2.9 3.9 2.8 1.7 1.8 1.3 1.3 0.5 0.5 – 0.4 0.1 0.1 1.7

XGLM7.5B 31.6 13.4 21.8 15.4 10.2 13.1 15.2 9.5 6.0 8.9 – 7.6 3.4 1.0 12.1

hi
Supervised 27.9 19.4 25.9 18.9 15.7 16.9 23.9 13.5 13.9 12.2 16.8 – 2.5 3.8 16.2
GPT-36.7B 1.2 0.9 1.4 0.8 0.4 0.4 0.3 0.2 0.1 0.1 0.1 – 0.1 0.2 0.5

XGLM7.5B 25.2 12.3 15.4 8.8 9.8 11.5 11.3 10.8 8.5 6.1 4.7 – 1.5 1.9 9.8

my
Supervised 10.0 6.9 10.4 8.5 6.0 6.7 9.5 5.7 6.1 4.6 7.2 9.1 – 2.5 7.2
GPT-36.7B 0.5 0.3 0.4 0.4 0.2 0.1 0.2 0.0 0.0 0.0 0.1 0.2 – 0.1 0.2

XGLM7.5B 14.1 7.6 10.1 3.8 5.7 7.1 8.9 7.1 6.9 3.6 3.5 8.9 – 2.6 6.9

ta
Supervised 8.3 4.9 6.8 5.8 5.0 4.7 7.0 2.5 2.3 1.1 5.2 6.9 1.2 – 4.8
GPT-36.7B 1.0 0.5 0.8 0.5 0.2 0.3 0.3 0.1 0.2 0.1 0.1 0.2 0.0 – 0.3

XGLM7.5B 16.3 8.4 10.3 5.1 5.2 8.1 7.6 8.1 6.2 5.4 2.8 7.2 0.9 – 7.1

avg
Supervised 26.0 20.2 26.7 20.0 16.7 18.5 24.5 14.1 13.5 11.8 16.3 19.3 2.1 2.5 16.6
GPT-36.7B 18.9 9.9 14.2 9.3 4.2 4.8 2.7 4.0 0.6 0.5 0.2 0.3 0.1 0.1 5.0

XGLM7.5B 28.5 14.9 20.6 14.4 10.9 12.4 18.5 10.9 5.9 6.1 8.5 9.7 5.8 3.5 12.2

Table A5: Machine translation results on FLORES-101 devtest (spBLEU). Source language in rows, target language
in columns. GPT-36.7B and XGLM7.5B use 32 examples from the dev set for few-shot learning. Supervised results
correspond to the M2M-124 615M model from Goyal et al. (2021b). Underline denotes better than supervised, bold
denotes best of GPT-3 and XGLM. spBLEU computed using the implementation from Goyal et al. (2021b).

D.4 Majority Label Bias
In the main paper, we define 𝑘-shot learning as learning from 𝑘 unique examples randomly drawn from
the entire training population. This setting may lead to skewed few-shot training sets, especially when 𝑘 is
small. As shown in Table A6, the XNLI task is a three-way classification problem where the model needs
to judge whether the relationship between a pair of sentences is “entailment”, “neurtral” or “contradiction”.
While the original XNLI dev set has a uniform class distribution, the few-shot training sets randomly
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24-shot 48-shot
Seed E N C E N C

0 9 7 8 22 11 15
1 6 11 7 12 16 20
2 9 7 8 20 11 17
3 8 11 5 16 16 16
4 6 4 14 14 16 18

Table A6: Distribution of XNLI few-shot training sets obtained by randomly sampling from the original dev set. E:
entailment, N: neutral, C: contradition.

#
shots

high medium low
en zh ru es de fr el th vi tr ar bg hi ur sw Avg Std

24
rand.

54.0
(±2.3)

50.0
(±1.9)

41.5
(±6.1)

47.1
(±4.0)

46.1
(±2.1)

47.7
(±4.1)

48.8
(±2.2)

47.8
(±2.7)

48.8
(±3.5)

44.8
(±2.0)

45.4
(±3.7)

44.4
(±4.8)

45.8
(±2.4)

45.6
(±1.4)

46.4
(±3.0)

47.0 2.9

unif.
56.0

(±1.4)
52.1

(±0.8)
42.9

(±1.2)
47.6

(±0.8)
49.2

(±1.0)
49.2

(±1.6)
50.9

(±1.6)
48.0

(±1.2)
50.2

(±1.5)
47.5

(±1.0)
47.3

(±0.8)
47.0

(±2.2)
49.4

(±1.2)
46.6

(±0.9)
47.4

(±0.8)
48.7 2.9

Max
rand.

54.2
(±2.2)

51.7
(±1.1)

37.4
(±1.3)

45.4
(±3.2)

44.7
(±3.2)

45.0
(±3.0)

46.9
(±2.6)

45.8
(±2.3)

47.9
(±2.7)

42.0
(±1.4)

42.3
(±1.8)

40.4
(±1.6)

45.6
(±2.2)

46.2
(±0.7)

46.5
(±2.2)

45.5 4.1

unif.
54.3

(±0.5)
52.2

(±0.4)
39.1

(±1.0)
45.8

(±0.9)
46.6

(±1.2)
46.4

(±1.8)
48.3

(±0.8)
47.3

(±0.9)
48.0

(±1.2)
45.0

(±2.3)
44.1

(±1.2)
42.9

(±2.1)
46.7

(±0.0)
46.3

(±0.0)
47.2

(±0.7)
46.7 3.5

Table A7: XGLM7.5B in-language few-shot learning performance of on XNLI dev set using training sets of
uniform class distribution and randomly sampled class distribution. We report the mean and standard deviation (in
parentheses) of 5 different training sets sampled via different random seeds for each sampling strategy.

sampled23 from it often has a much more skewed class distribution.
For a |𝒴|-way classification task, a skewed training set distribution can cause the model to score the

majority class as disproportionately more likely than the other classes. This was shown by Zhao et al.
(2021) as the majority label bias problem. As a result, previous work such as Zhao and Schütze (2021)
adopts a 𝑘-shot per class setting, where 𝑘 unique examples are randomly drawn from each class to form a
training set of size 𝑘 × |𝒴|.

We compare learning from a uniform class distribution (randomly sampling 𝑘 examples per class) to
learning from a more skewed distribution (randomly sampling 𝑘× |ℒ| examples from the total population)
on the XNLI task. We use the 24-shot and maximum fit (truncated 48-shot) settings. As shown in
Table A7, for both settings, learning from a uniform class distribution leads to significantly higher
accuracy in all languages compared to learning from the skewed distributions. de, tr, bg, hi suffer the
most learning from the skewed distributions (> 2 absolute accuracy gap in the 24-shot setting), while
es suffers the least. Moreover, the variances among few-shot trials using different random seeds shrink
considerably when the training set class distribution is uniform. These results highlight the severeness of
the majority label bias issue in the multilingual in-context learning framework.

D.5 Knowledge Probing

We evaluate to what extent our multilingual language model can effectively store factual knowledge in
different languages. To this end, we evaluate knowledge triplet completion using the mLAMA dataset
(Kassner et al., 2021), which was translated from the English benchmark LAMA (Petroni et al., 2019)
using Google Translate. The data is from TREx (Elsahar et al., 2018) with triples of the format ⟨object,
relation, subject⟩. Following the convention of LAMA, triples are converted to templates for querying the
language model. For example, a triple like ⟨Paris, capital-of, France⟩ is converted to template “Paris is the
capital of [MASK]". While each query in the original mLAMA dataset contains hundreds of candidates
on average, we restrict it to three candidates one of which is the ground truth candidate and the other two
candidates are randomly sampled to ensure fast inference and save API cost. Following the evaluation
protocol of mLAMA, we report precision @1 averaged over all relations per language.

23We implement our random sampling procedure using the numpy.random.choice function: https://numpy.org/
doc/stable/reference/random/generated/numpy.random.choice.html.
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Figure A6: Knowledge probing on 25 languages. The performance of a random baseline is 0.33 since we down-
sampled the candidate set of each query to contain three candidates.

We evaluate on the 25 languages covered in XGLM’s pre-training data. We compare to the GPT-36.7B
model. As shown in Figure A6, both our multilingual model and GPT-3 Curie perform well on English.
For non-English languages, our multilingual model maintains performance (above 0.6) while GPT-3
Curie drops drastically especially for medium and low resource languages. Overall, compared to an
English-centric language model, our multilingual language model are better at retaining factual knowledge
on a wider range of languages with +7.1 points on average.

E Safety and Bias Analysis

Given the centrality of large scale Language models, it is important to ensure such powerful models are
used responsibly. Accordingly, we further examine XGLM’s behavior on two tasks:

• Hate speech detection: A safety task to test language models’ ability to identify hateful and offensive
text;

• Occupation Identification: A bias task to study language models’ performance disparity between
different gender groups on the task of occupation identification.

Through extensive experiments, we have following findings: First, hate speech detection in an in-context
learning setting is quite challenging. Moreover, language models are not effectively leveraging few-
shot examples to improve the performance. Second, although language models have relatively good
performance on the occupation identification task, they run the risk of exhibiting strong gender bias for
certain occupations.

E.1 Hate Speech Detection
E.1.1 Setup
Datasets. We adopt datasets introduced by Huang et al. (2020) that include hate speech data from
Twitter in five languages: English, Italian, Portuguese, Polish and Spanish. All hyperlinks, usernames
and hashtags are replaced with generic symbols (URL, USER, HASHTAG) to anonymize user information.
We remove tweets containing more than 2 generic symbols to encourage more informative examples.
We further filter out tweets of length less than 5 tokens or more than 30 tokens. In the spirit of creating
balanced data, we randomly sample 500 each positive (hate speech) negative (not hate speech) examples
for each language. For further comparison, we translate non-English data into English by using Google
Translate and then evaluate English models performance on the task.

Prompts. We evaluate two approaches to prompting, similar to Section ??. For English prompts,
we prefix “The sentence is <candidate>” to the input sentence to form a prompt. We consider 10
verbalization candidates including 5 negative (normal., common., ok., usual., acceptable.) corresponding
to classification of not hate speech and 5 positive (sexist., racist., offensive., abusive., hateful.) representing
classification of hate speech. For code-switched prompt, we translate the English prefix and candidates
into the corresponding target language by using Google Translate. For example, “The sentence is normal”
is translated into “Questa frase è normale.” for Spanish. For few-shot learning, we randomly draw
examples from the training data and report the average performance across 5 runs.
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Model language condition # shot English Italian Portuguese Polish Spanish

Accuracy

GPT-36.7B repl. code switched
0 54.5 54.3 57.0 51.3 52.5
4 55.5* 53.4 48.5 52.5 52.2

GPT-36.7B code switched
0 59.2 61.8 55.8 58.7 55.6
4 53.6 54.8 53.2 54.5 53.7

XGLM7.5B code switched
0 56.0 60.4 50.8 47.0 53.1
4 50.4 50.7 56.8 51.0 50.7

GPT-36.7B repl. same language
0 - 50.5 60.2 50.1 52.4
4 - 51.0 47.2 50.9 50.7

XGLM 7.5B same language
0 - 57.5 41.8 50.0 53.1
4 - 53.2 56.5 51.1 52.7

GPT-36.7B repl. English
0 - 55.8 57.5 62.8* 55.0
4 - 52.5 49.2 53.9 52.8

Recall

GPT-36.7B repl. code switched
0 57.0 90.2 67.0 21.6 77.0
4 73.0* 76.7* 72.5 65.4 77.1*

GPT-36.7B code switched
0 62.4 88.6 51.5 49.0 76.4
4 65.7 69.2 59.6 58.5 61.1

XGLM7.5B code switched
0 77.2* 95.4* 80.4 53.8 95.8*

4 14.9 18.8 18.8 15.8 19.5

GPT-36.7B repl. same language
0 - 1.4 9.1 0.2 11.6
4 - 50.0 66.1 77.8 33.4

XGLM7.5B same language
0 - 87.4 39.5 0.0 79.4
4 - 39.0 24.9 55.8 44.6

GPT-36.7B repl. English
0 - 93.8 77.8 74.8* 77.6
4 - 72.4 71.2 75.7 73.7

Table A8: Accuracy and recall scores of our multilingual model and other English models on the Hate Speech
Detection task. We evaluate five target languages. For each target language, we bold the highest number for zero-shot
and four-shot respectively. * indicates the number is significantly higher than others. For language condition, we
consider three cases: “code switched” means the prefix, candidates are in English and tweets are in the target
language; “same language” means prefix, candidates and tweets are in the target language; “English” means prefix,
candidates and tweets are in English, i.e. note that, “same language" and “English" reduce to the same experimental
condition when the target language is English.

Metrics. We compute precision, recall and accuracy for all experimental conditions. Since the test data
is balanced, the accuracy of a random baseline is 50%.

E.1.2 Results

We show accuracy and recall scores in Table A8. Bolded results are the highest in the table and those with
an (*) are statistically significantly better than other comparable conditions. Hate speech detection is a
challenging task for all models. We observe that across the five languages, in-context learning results are
only slightly better than random (50%). The results are also unstable and sensitive to prompt changing.
Overall, the XGLM7.5B model has better recall compared to the English-centric models. For example, the
XGLM6.7B En-only model has very low recall score in the zero-shot setting with the language condition
set as “same language”, indicating that it blindly predicts almost everything as negative (not hate speech).
Another interesting observation is that most few-shot results are worse than zero-shot, which indicates that
with the prefix described above, language models are not able to utilize examples. Interestingly, we also
find that in one-shot experiments models tend to copy the label of the given example instead of predicting
based on the input tweet. This further demonstrates that language models are struggling with learning
from few-shot examples in this task.

11724



English Spanish French
Model Avg.↑ |Diff|↓ Avg.↑ |Diff|↓ Avg.↑ |Diff|↓

XGLM 6.7B En-only 90.73 3.19 91.23 2.65 83.46 4.85
GPT-36.7B 90.42 3.53 86.91 5.18 90.85 2.30

XGLM 7.5B 86.49 2.83 82.93 4.28 76.55 2.95

XGLM 6.7B En-only + translate - 3.19 91.18 3.75 90.07 2.35

Table A9: Accuracy and bias scores of our multilingual model and other English models on the occupation
identification task. “|Diff|” stands for the average absolute accuracy gap between male and female groups aggregated
across all occupations. We bold the highest accuracy score for each language.

E.2 Gender Bias in Occupation Identification

E.2.1 Setup
Datasets We use the English bio dataset introduced in (De-Arteaga et al., 2019) to study gender bias
based on identifying a person’s occupation from their bios. For multilingual bio datasets we use those
created by (Zhao et al., 2020). Originally there are 28 occupations in English, 69 occupations in Spanish
and 27 occupations in French. To ensure we have plenty of test data for each occupation, we only keep
occupations with at least 1000 male examples and 1000 female examples. This leads to 16 occupations in
English, 6 occupations in Spanish and 4 occupations in French. We follow the setup in (Zhao et al., 2020)
where people’s names and pronouns are removed from the bios. We then prefix “The occupation of this
person is <candidate>” to the input bio to form a prompt. The candidate set consists of five occupations,
including the ground truth one and four other randomly sampled male and female occupations (two male
and two female). Male (female) occupations refer to ones having predominantly more male (female)
samples.
Metrics Similar to the metric for Hate Speech detection, we first obtain the scores for 5 candidates and
consider a prediction correct if the ground truth candidate yields the highest score among five candidates.
We then compute the bias score as the absolute gap between the accuracy scores on the male and female
samples,24 averaged across all occupations. A lower bias score indicates that a model has less divergence
in identifying occupations for men and women.

E.2.2 Results
We present the overall accuracy scores and the bias scores (|Diff|) in Table A9. Results indicate that the
XGLM 6.7B En-only model achieves the best performance on English and Spanish, while the GPT-36.7B
model achieves the best performance on French. XGLM 7.5B model, instead, falls behind on all three
languages, especially for Spanish and French. We think this is potentially due to that all pronouns and
people’s names are removed from the test data but not training data. The training data for XGLM 7.5B
contains more Spanish and French compared to the other two models. Thus, XGLM 7.5B may have more
severe morphological mismatch on Spanish and English. Regarding the bias score, the GPT-36.7B model
is the most biased model on both English and Spanish but least biased on French. XGLM 6.7B En-only
and XGLM 7.5B exhibit the least bias on Spanish and English, respectively.

F Data Card

We follow the recommendations of Gebru et al. (2018) and provide a datacard for the dataset used to train
XGLM, which is a subset of CC100-XL, a larger multilingual dataset we curated.

F.1 Data Sources

Following the recent success of multilingual self-supervised pre-training (Devlin et al., 2019; Lample and
Conneau, 2019; Conneau et al., 2020; Xue et al., 2020; Goyal et al., 2021a; Liu et al., 2020), we train
our language models on a mixture of monolingual text of different languages. We extend the pipeline
used for mining the CC100 corpus (Conneau et al., 2020; Wenzek et al., 2020) to generate CC100-XL,

24We only consider gaps that are statistically significant.
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a significantly larger multilingual dataset covering 68 Common Crawl (CC) snapshots (from Summer
2013 to March/April 2020) and 134 languages. As the first step to balance the language distribution, we
sampled 30% of the data from the languages that contain more than 15 billion tokens and more than 20
million documents. This resulted in a 8.4 TB multilingual corpus with 1.9 trillion tokens.

F.2 Motivation

• For what purpose was the dataset created? Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please provide a description. The CC100-XL dataset
was collected to create a high quality monolingual dataset for at least 100 languages. It was mainly
used for training foundation multilingual language models which may be applied to a broad list of
language tasks, including neural machine translation, speech translation, question answering, etc.
CC100-XL involves sentence level filtering, preserves context, improves the filtering mechanism,
and paves a way for mining 200+ languages.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? Meta AI.

• Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number. Meta AI.

• Any other comments? No.

F.3 Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? Please provide a description. The instances are
textual documents sampled from Commoncrawl snapshots.

• How many instances are there in total (of each type, if appropriate)? The training dataset of
XGLM contains 1.74 billion documents in total.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample
representative of the larger set (e.g., geographic coverage)? If so, please describe how this
representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were
withheld or unavailable). The dataset is a subset of CC100-XL. For each language, the data is
either a full set or a random subset of CC100-XL data. Especially, the medium- and low-resource
languages are upsampled. In terms of language representation, the CC100-XL dataset contains 134
languages extracted using fasttext25 from Common Crawl snapshots. We further selected a subset
of 30 languages to train XGLM, taking geo-location, language family and typology diversity of the
languages into account.

• What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description. Each instance consists of raw text data.

• Is there a label or target associated with each instance? If so, please provide a description. No.

• Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text. No.

25https://fasttext.cc/docs/en/language-identification.html
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ISO code Language Tokens (M) Size (GiB) ISO code Language Tokens (M) Size (GiB)

en English 803,527 3,324.45 - Arabic Romanized 685 1.65
ru Russian 147,792 1,007.38 mn Mongolian 681 4.26
zh Chinese 132,770 485.32 la Latin 635 2.20
de German 89,224 369.30 ne Nepali 600 5.32
es Spanish 87,303 363.83 si Sinhalese 524 3.96
fr French 77,420 303.76 mr Marathi 458 3.59
ja Japanese 66,054 293.39 kn Kannada 446 3.41
it Italian 41,930 170.76 so Somali 436 1.56
pt Portuguese 36,586 147.12 cy Welsh 398 1.27
el Greek 28,762 180.37 jv Javanese 389 1.23
ro Romanian 24,176 93.63 ps Pashto 387 1.97
uk Ukrainian 23,723 156.68 uz Uzbek 332 1.64
hu Hungarian 22,718 89.87 gu Gujarati 327 2.10
ko Korean 20,002 79.08 km Khmer 272 2.14
pl Polish 19,293 73.59 - Urdu Romanized 245 0.73
no Norwegian 17,600 70.89 am Amharic 169 0.85
nl Dutch 17,163 68.36 - Bengali Romanized 166 0.48
fi Finnish 16,804 67.28 pa Punjabi 153 0.93
da Danish 16,274 64.74 gl Galician 137 0.50
id Indonesian 15,424 67.51 ha Hausa 124 0.42
hr Croatian 14,455 54.27 mg Malagasy 116 0.38
tr Turkish 12,413 51.51 sa Sanskrit 107 0.42
ar Arabic 12,249 64.34 eu Basque 105 0.35
vi Vietnamese 11,199 50.45 my Burmese 101 0.74
th Thai 10,842 99.86 su Sundanese 91 0.30
bg Bulgarian 9,704 61.10 or Oriya 91 0.62
fa Persian 9,355 57.46 ht Haitian 87 0.28
sv Swedish 9,169 36.54 lo Lao 84 0.59
ms Malay 9,106 38.57 ky Kyrgyz 70 0.34
he Hebrew 8,637 42.13 br Breton 57 0.16
cs Czech 8,616 32.46 ga Irish 49 0.15
sk Slovak 8,251 30.70 yo Yoruba 48 0.14
ca Catalan 7,076 26.90 eo Esperanto 47 0.14
lt Lithuanian 4,847 18.38 - Tamil Romanized 40 0.13
sl Slovene 4,029 14.97 zu Zulu 40 0.14
hi Hindi 3,448 26.63 ti Tigrinya 40 0.19
et Estonian 3,287 12.18 - Telugu Romanized 37 0.11
lv Latvian 2,815 10.67 ku Kurdish 36 0.10
tl Tagalog 2,389 8.13 om Oromo 27 0.09
sq Albanian 2,382 8.76 xh Xhosa 26 0.09
sr Serbian 2,101 12.68 gd Scottish Gaelic 19 0.05
- Hindi Romanized 2,045 6.60 ig Igbo 18 0.06
az Azerbaijani 1,904 8.41 as Assamese 17 0.10
bn Bengali 1,627 11.19 lg Ganda 15 0.05
ta Tamil 1,477 12.36 wo Wolof 14 0.03
ur Urdu 1,352 7.77 fy Western Frisian 12 0.04
kk Kazakh 1,278 8.40 tn Tswana 11 0.03
hy Armenian 1,261 7.16 ff Fula 11 0.03
ka Georgian 1,261 10.48 gn Guaraní 10 0.03
is Icelandic 1,163 4.21 sd Sindhi 8 0.04
be Belarusian 1,004 5.81 ln Lingala 7 0.02
bs Bosnian 950 4.00 bm Bambara 6 0.02
ml Malayalam 935 8.08 iu Inuktitut 6 0.03
mk Macedonian 927 6.05 kg Kongo 4 0.01
sw Swahili 908 3.19 qu Quechua 3 0.01
af Afrikaans 819 3.04 ss Swati 2 0.01
te Telugu 689 5.28 - Unassigned 503 2.30

Table A10: Languages and statistics of the training data set selected from CC100 XL corpus.
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• Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit. A small
percentage of document instances (<2%) are duplicated. Other than that, there are no relationships
between individual instances.

• Are there recommended data splits (e.g., training, development/validation, testing)? If so,
please provide a description of these splits, explaining the rationale behind them. This dataset
is split into training and validation only. For each high resource language, at least 5,000 randomly
selected documents and 30,000 lines were split into validation set, and the rest documents are for
training; for low-resource languages, at least 100 randomly selected documents and 1,000 lines (a
couple of very low resource languages contain 80 documents) were split into valid set and leave the
rest for training. There are 3.5 million lines of text in total for the validation set. This split is mainly
to ensure a good size of validation data with the coverage and balance over all languages, meanwhile,
the validation size is not too large to affect the overall training speed.

• Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide
a description. 10% of Russian sample were lost during internal data transferring. Therefore, we
ended up taking 26.7% random subset of the whole Russian data from CC100-XL.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? It’s self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor-patient confidentiality, data that includes the content of individ-
uals’ non-public communications)? If so, please provide a description. CC100-XL is exclusively
extracted from Common Crawl; and the information in it is not considered confidential.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why. CC100-XL is a subset of public
Common Crawl data, which could contain sentences that, if viewed directly, might be offensive,
insulting, threatening, or might otherwise cause anxiety.

• Does the dataset relate to people? If not, you may skip the remaining questions in this section.
Some documents of this data relate to people, such as news articles, Wikipedia descriptions, etc.

• Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a description of their respective distributions
within the dataset. No.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe how
Other than the individuals who are celebrities, politicians, etc, and have their Wikipedia pages; it
is possible to identify other individuals by their names, twitter account names, etc. But we built
personally identifiable information (PII) identification tools following the guidelines of General Data
Protection Regulation (GDPR) and National Institute of Standards and Technology (NIST) and run
against this dataset, we did not found highly sensitive PII information, such as U.S. social security
number, login credentials, etc.

• Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms
of government identification, such as social security numbers; criminal history)? If so, please
provide a description. We use a curated special word list of 100 languages which covers profanities,
hate speech, bulling language, common slangs and profane multi-word expressions (MWEs) to tag
paragraphs and remove the docs containing them. Given the size of this data, it could still contain
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such sensitive information (as the above lists may not be exhaustive) but should be a very small
percent of instances.

• Any other comments? No

F.4 Collection Process
• How was the data associated with each instance acquired? Was the data directly observable

(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/ derived from other data (e.g., part-of-speech tags, model-based guesses for age or
language)? If data was reported by subjects or indirectly inferred/derived from other data,
was the data validated/verified? If so, please describe how. Please refer to the main document for
details.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mechanisms
or procedures validated? Please refer to the main document for details.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? Please refer to the main document for details.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? This data is mined,
filtered and sampled by machines.

• Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please
describe the timeframe in which the data associated with the instances was created. The data
was collected from 68 Common Crawl (CC) snapshots (from Summer 2013 to March/April 2020).
Therefore, it does not contain a lot of information about recent events such as COVID-19.

• Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link
or other access point to any supporting documentation. No.

• Does the dataset relate to people? If not, you may skip the remainder of the questions in this
section. No.

• Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)? N/A

• Were the individuals in question notified about the data collection? If so, please describe (or
show with screenshots or other information) how notice was provided, and provide a link or
other access point to, or otherwise reproduce, the exact language of the notification itself. N/A

• Did the individuals in question consent to the collection and use of their data? If so, please
describe (or show with screenshots or other information) how consent was requested and
provided, and provide a link or other access point to, or otherwise reproduce, the exact
language to which the individuals consented. N/A

• If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? If so, please provide a description, as well as a
link or other access point to the mechanism (if appropriate). N/A

• Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? If so, please provide a description of this analysis,
including the outcomes, as well as a link or other access point to any supporting documentation.
Some responsible AI related evaluations were performed. Please refer to the main document.
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• Any other comments? No

F.5 Preprocessing/cleaning/labeling
• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,

tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? If so, please provide a description. If not, you may skip the remainder of
the questions in this section. Yes, the detailed steps are as below:

– Downloading and Sharding Commoncrawl Snapshots We downloaded 68 Commoncrawl snap-
shots and divided the data in 240 shards based on web-domain. At this stage, textual data gets
extracted from the WET files provided by Common Crawl which involves cleaning excessive
tabs and newlines.

– Language Identification (LID) at Document Level For this stage, we used the fastText language
identification (LID) model on the entire document which helped further divide the data by
language. In addition to the original languages supported by fastText, we also added support for
28 romanized languages. In total, the data for each language contains 240 shards.

– Deduplicating Documents based on URL We aggregated the data based on URL which yields
60% reduction in volume. In case two documents had the same URL, we selected the document
having more recent text content.

– Document Splitting and LID at Paragraph Level We segmented the documents based on newline
and also stored the information about the order in which the paragraphs were appearing in the
original document (i.e. seq_num). Next, we performed LID at the paragraph level again in
order to divide the original documents into clusters of paragraphs where each cluster represents
sentences belonging to a particular language.

– Deduplicating Paragraphs Data extracted from Commoncrawl snapshots still have a lot of
duplicate text even if the document is different. In order to tackle this, we applied the normal-
ization function from CCNet (Wenzek et al., 2020) and then computed a SHA-1 hash of the
normalized text. This helped in reducing the content by 88%. Choosing which <paragraph,
url> combination to keep can be tricky as it can lead to a lot of fragmented documents. So we
devised a strategy to choose documents based on sorted <url, seq_num> order which would
help in preventing fragmentation as much as possible.

– Language Model Scores We scored every paragraph using a Language Model trained on data
collected from OPUS (Tiedemann, 2012) (monolingual data collected from the availble bitexts)
using a 4-gram KenLM (Heafield, 2011). Note that since the LMs were not trained on data
belonging to a specific domain, this feature helped in eliminating general non-fluent sentences.

– Heuristic based approaches We use the following techniques to further refine the filtering step
(especially useful for Low resource languages having no or poor quality LM)

* Ratio of digit+punctuation to total characters (current threshold <0.25)

* Maximum number of URLs per sentence (current value 1)

* Type-token ratio (current threshold >0.6 + removing bottom 1% per language)

* Minimum number of tokens per sentence (current value 3; not applied for agglutinative
languages)

– Tagging profane words and removing instances containing such words

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.
The “raw” data is publiclly available in in https://commoncrawl.org/the-data.

• Is the software used to preprocess/clean/label the instances available? If so, please provide a
link or other access point. The software is proprietary to Meta Platforms and currently unavailable
publicly.

• Any other comments? No
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F.6 Uses
• Has the dataset been used for any tasks already? If so, please provide a description. Yes, this

dataset and its precursor CC100 data have been used to train machine translations and multilingual
language models, which are foundation to many downstream language tasks.

• Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point. No.

• What (other) tasks could the dataset be used for? This data can be used to pretrain multilingual
language models, which are foundation to many current and future language tasks.

• Is there anything about the composition of the dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact future uses? For example, is there anything
that a future user might need to know to avoid uses that could result in unfair treatment of
individuals or groups (e.g., stereotyping, quality of service issues) or other undesirable harms
(e.g., financial harms, legal risks) If so, please provide a description. Is there anything a future
user could do to mitigate these undesirable harms? The pipeline for creating this dataset paves a
way for building a scalable infrastructure for mining datasets to be be used for training large-scale
models.

• Are there tasks for which the dataset should not be used? If so, please provide a description.
No.

• Any other comments? No.

F.7 Distribution
• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,

organization) on behalf of which the dataset was created? If so, please provide a description.
No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)? N/A

• When will the dataset be distributed? No.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or
ToU, as well as any fees associated with these restrictions. No.

• Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions. No.

• Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any supporting documentation. N/A

• Any other comments? No.

F.8 Maintenance
• Who is supporting/hosting/maintaining the dataset? Meta AI.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Refer to
the main document.
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• Is there an erratum? If so, please provide a link or other access point. Currently no.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? If so, please describe how often, by whom, and how updates will be communicated to
users (e.g., mailing list, GitHub)? No plan for updating.

• If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were individuals in question told that their data would be retained for
a fixed period of time and then deleted)? If so, please describe these limits and explain how
they will be enforced. N/A

• Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to users. N/A

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified?
If so, please describe how. If not, why not? Is there a process for communicating/ distributing
these contributions to other users? If so, please provide a description. No.

• Any other comments? No.
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