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Abstract

The latest batch of research has equipped lan-
guage models with the ability to attend over
relevant and factual information from non-
parametric external sources, drawing a comple-
mentary path to architectural scaling. Besides
mastering language, exploiting and contextual-
izing the latent world knowledge is crucial in
complex domains like biomedicine. However,
most works in the field rely on general-purpose
models supported by databases like Wikipedia
and Books. We introduce BIOREADER

1, the
first retrieval-enhanced text-to-text model for
biomedical natural language processing. Our
domain-specific T5-based solution augments
the input prompt by fetching and assembling
relevant scientific literature chunks from a neu-
ral database with ≈60 million tokens centered
on PubMed. We fine-tune and evaluate BIORE-
ADER on a broad array of downstream tasks,
significantly outperforming several state-of-the-
art methods despite using up to 3x fewer pa-
rameters. In tandem with extensive ablation
studies, we show that domain knowledge can
be easily altered or supplemented to make the
model generate correct predictions bypassing
the retraining step and thus addressing the liter-
ature overload issue.

1 Introduction

In the last decade, deep learning advancements
have boosted the development of many solutions
for effectively extracting knowledge from biolog-
ical data (Domeniconi et al., 2014a, 2016a) and
biomedical literature (di Lena et al., 2015)—widely
accessible through repositories such as PubMed,
PMC, and ScienceDirect. Large pre-trained lan-
guage models (PLMs) have become the dominant
NLP paradigm, achieving unprecedented results in
a panoply of tasks, from named entity recognition
(Lee et al., 2020) and semantic parsing (Frisoni
et al., 2021, 2022b) to information retrieval (Moro

1https://github.com/disi-unibo-nlp
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Figure 1: Illustration of BIOREADER, a text-to-text
model conditioned on scientific evidence retrieved from
an explicit PubMed-based datastore. Every biomedical
task is cast as translating text spans with the help of
external domain knowledge retrieved on the fly.

and Valgimigli, 2021) and document summariza-
tion (Moro et al., 2022).

To justify this success, PLMs have been shown
to implicitly hold a substantial amount of in-
depth knowledge in their parameters (Petroni et al.,
2019; Davison et al., 2019), resulting from self-
supervised learning on extreme-scale text corpora.

Efforts to this point have mainly focused on
predictably improving NLP performance by in-
creasing datasets, training compute, or model sizes.
Notably, the most recent Transformer-based solu-
tions reach up to 10

11 parameters (Brown et al.,
2020; Rae et al., 2021), with benefits due to ex-
tended memorization of training data (Carlini et al.,
2021; Tirumala et al., 2022). However, encoding
all factual and domain-specific competencies into
opaque weight matrices is inefficient, especially for
specialized, dynamic, and trust-demanding fields
like biomedicine (Lötsch et al., 2021)—where
the volume of scientific publications evolves and
grows continuously (Landhuis, 2016). Indeed,
capturing more world facts requires training ever-
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larger networks, which can be prohibitively slow
or expensive. Similarly, changing what a PLM
knows entails retraining the entire model with
new documents. Moreover, high-dimensional non-
interpretable parametric spaces make it difficult
to determine what knowledge is stored where, to
update the theoretical background, or to provide
provenance for decisions.

Recent developments in the field (Lewis et al.,
2020b; Nakano et al., 2021; Borgeaud et al., 2021)
have reversed the architectural scaling trend by
showing that smaller PLMs can perform on par
with massive models if we augment them with
a way to search for external information. The
key intuition is following a retrieve-then-predict
approach by asking the PLM to directly fetch
potentially relevant unlabeled world knowledge—
even structured (Yasunaga et al., 2021)—from
highly-comprehensive datastores, and use it as ad-
ditional context during inference. Remarkably,
semi-parametric (or hybrid) contributions com-
bine "closed-book" (parametric-only) and "open-
book" (retrieval-based) methods to complement
each source. They allow for revising or even sup-
plementing knowledge dynamically, treating the
latter in a more modular and interpretable way.
On the other hand, semi-parametric models have
so far been only investigated for general-domain
knowledge bases and NLP tasks, e.g., context-free
question answering conditioned on Wikipedia and
Books evidence. Based on previous publications
(Beltagy et al., 2019; Lee et al., 2020; Gu et al.,
2022), the word distribution shift from general cor-
pora to health informatics corpora prevents or seri-
ously limits the direct application of such models
to biomedical NLP.

In this paper, we introduce BIOREADER, the
first retrieval-enhanced transformer for biomedi-
cal literature, empowered by a differentiable access
towards a large-scale text memory grounded on
PubMed (≈60M tokens). We continue and build
on a broad spectrum of retrieval work in the re-
search community (Li et al., 2022), exploring effi-
cient means of augmenting biomedical PLMs with
a domain-specific memory, avoiding expanding
computations significantly. With BIOREADER, the
biomedical knowledge is not necessary to be im-
plicitly stored in model parameters but is explic-
itly acquired in a plug-and-play manner, leading to
great scalability. Mechanically, BIOREADER is a
novel encoder-decoder model based on T5 (Raffel

et al., 2020) and RETRO (Borgeaud et al., 2021),
with a frozen neural retriever. It splits the input se-
quence into chunks and autoregressively retrieves
scientific text semantically similar to the previous
fragment. In this way, it expands the input prompt
context for better-predicting tokens in the current
chunk thanks to a cross-attention mechanism.

Our main contributions are the following:
1. We devise BIOREADER, a novel text-to-text

biomedical language model fusing memory
retrieval and generative components (§3).

2. We advance biomedical NLP research, push-
ing the state-of-the-art in several knowledge-
intensive and non-knowledge-intensive tasks
via fine-tuning (§4 and §5), outperforming
previous methods by a significant margin with
up to 3x fewer parameters. We extensively
prove the contribution of each module with
ablation studies.

3. We show that BIOREADER can be improved
at evaluation time by updating the knowledge
base and the number of retrieved neighbors
without retraining (§5), also offering qualita-
tive benefits in terms of interpretability.

2 Related Work

We first give a bird’s-eye view of existing work
on biomedical language modeling and retrieval-
enhanced neural networks (see Table 1).

Biomedical Language Models Transformer-
based PLMs have become the first choice for any
task in biomedical NLP, counting 40+ models pro-
posed in just two years (Kalyan et al., 2022). Do-
main adaption milestones include contributions
like BIOBERT (Lee et al., 2020), PUBMEDBERT
(Gu et al., 2022), BIOMEGATRON (Shin et al.,
2020), and SCIFIVE (Phan et al., 2021), as well as
knowledge-enhanced encoders (Liu et al., 2021).
Crucially, existing models still struggle to encap-
sulate high amounts of biomedical knowledge in
their parameters (Frisoni et al., 2020b; Meng et al.,
2022). As far as we can tell, we are the first to
inspect retrieval-enhanced biomedical text genera-
tion, where open-book language models are osten-
sibly scarce.

Retrieval-Augmented Neural Networks The re-
trieval and knowledge grounding paradigms have
lately attracted many computational linguists, aim-
ing to design modular architectures capable of sep-
arating memory storage and computational pro-
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Model Granularity Retriever training Retrieval
integration

Unsupervised
Retriever

Retrieval
Source Task(s)

kNN-LM
Khandelwal et al. (2020) Token Frozen (Transformer) Add to probs ✓ Wikipedia, Books LM

SPALM

Yogatama et al. (2021a) Token Frozen (Transformer) Gated logits ✓ Wikipedia OpenQA

DPR

Karpukhin et al. (2020) Prompt Contrastive proxy Extractive QA Wikipedia OpenQA

REALM

Guu et al. (2020) Prompt End-to-End Prepend to prompt ✓ Wikipedia OpenQA

RAG

Lewis et al. (2020b) Prompt Fine-tuned DPR
Cross-attention
(concatenation) Wikipedia OpenQA, QG, FV

FID
Izacard and Grave (2021) Prompt Fine-tuned DPR Cross-attention Wikipedia OpenQA

EMDR
2

Sachan et al. (2021)
Prompt End-to-end Cross-attention ✓ Wikipedia OpenQA

RETRO

Borgeaud et al. (2021) Chunk Frozen (BERT)
Chunked
cross-attention ✓

Web, Books, News,
Wikipedia, GitHub OpenQA

BIOREADER

(ours) Chunk Frozen (CONTRIEVER)
Chunked
cross-attention ✓ PubMed† NER, RE, DC,

NLI, QA, OpenQA

Table 1: Comparison of BIOREADER with existing retrieval approaches. LM = language modeling, QG = question
generation, FV = fact verification, NER = named entity recognition, RE = relation extraction, DC = document
classification, NLI = natural language inference, (Open)QA = (open-domain) question answering. † highlights
retrieval sources that are different from training data.

cessing. A popular strategy (Chen et al., 2017;
Yang et al., 2019; Nie et al., 2019) relies on collect-
ing passages employing untrained sparse-vector
retrieval methods with inverted index matching,
such as TF-IDF (Domeniconi et al., 2015) and
BM25 (Robertson and Zaragoza, 2009), eventually
improved by re-ranking (Wang et al., 2018). Other
works identify relevant neighbors through latent
topic modeling (Wei and Croft, 2006; Domeniconi
et al., 2016c), edit-distance (Zhang et al., 2018;
Gu et al., 2018), or algebraic methods (Domeni-
coni et al., 2016b; Frisoni et al., 2020a; Frisoni
and Moro, 2020; Frisoni et al., 2020c). The source
database may also be structured (Ahn et al., 2016;
Yasunaga et al., 2021), and graphs may serve as a
foundation for non-parametric retrievers guided
by entity links to find chains of evidence doc-
uments (Asai et al., 2020). With the success
of deep learning, retrieving systems have partly
switched to dense learned semantic representations
and distances in embedding spaces, mostly involv-
ing BERT-based architectures. Encodings can be
pre-computed and indexed offline for greater ef-
ficiency and scalability (Grave et al., 2017; Seo
et al., 2018; Khandelwal et al., 2020; Yogatama
et al., 2021b; Borgeaud et al., 2021). For instance,
kNN-LM (Khandelwal et al., 2020) extends a PLM
by linearly interpolating its next token distribution
with a k-nearest neighbors mechanism, without in-
corporating the retrieval process into the training
pipeline. In this sense, k-nearest-neighbors have

been largely investigated in NLP tasks (Domeni-
coni et al., 2014b). Retrieval metrics may also be
learned from data in a task-dependent way instead
of relying on pre-existing PLMs. Following this
vision, DPR (Karpukhin et al., 2020) fine-tunes two
BERT models utilizing a contrastive loss to align
labeled query and key embeddings, thereby work-
ing with passage (or chunk) granularities. RAG

(Lewis et al., 2020b) and FID (Izacard and Grave,
2021) build upon DPR to incorporate retrieval into
seq2seq models. Nevertheless, source-target pairs
preclude the use of abundant unlabeled data. Still,
except for RAG, the retriever network is trained in
isolation from the downstream task. To overcome
this potential issue, end-to-end approaches have
been recently proposed, including REALM (Guu
et al., 2020) and EMDR

2 (Sachan et al., 2021), also
exploiting unsupervised pre-training objectives to
reward informative retrieval, like perplexity maxi-
mization and inverse cloze task as in SPALM (Lee
et al., 2019). On the flip side, joint retriever-reader
learning comes with the extra complexity of back-
propagating while making queries on an entire cor-
pus and periodically updating the embedding ta-
ble, severely limiting scalability. In open-ended
text generation, BLENDERBOT 2.0 (Komeili et al.,
2022) and WEBGPT (Nakano et al., 2021) learn
to make contextualized internet search queries to
leverage up-to-the-minute information, but need
huge amounts of annotations. Most pertinent to
our work is RETRO (Borgeaud et al., 2021), a flexi-
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ble autoregressive PLM conditioned on document
chunks retrieved from trillions of tokens, signifi-
cantly outperforming GPT-3 (Brown et al., 2020)
with an order of magnitude fewer parameters. Like
kNN-LM, SPALM and RETRO, BIOREADER uses
frozen retrieval representations to easily accom-
modate the biomedical literature evolution, not re-
quiring retraining in the event of a knowledge base
change. Inspired by the promises of RETRO, whose
code and models have not been released, BIORE-
ADER processes arbitrary text sequences by reason-
ing at a sub-sequence level and retrieving different
biomedical passages for the different chunks of a
sequence, thus allowing for repeated retrieval dur-
ing text generation. As suggested by the latest re-
search thread for future directions (Borgeaud et al.,
2021), we adopt a brand-new architecture derived
from T5 to depend more on the encoder output at
inference time. T5 fine-tuning has become a sta-
ple of natural language generation, marking off the
prominent technique of many tasks (Paolini et al.,
2021; Geng et al., 2022; Frisoni et al., 2022a), char-
acterized by better grammatical correctness and
transfer learning. In contrast to the majority of
works that either interpolate output probabilities
(Khandelwal et al., 2020) or use input concatena-
tion (Yogatama et al., 2021a; Lewis et al., 2020b;
Guu et al., 2020) to combine retrieved documents,
BIOREADER separately encodes input prompts and
neighbors, then assembled with a chunked cross-
attention. Our work contrasts previous efforts on
building T5 closed-domain models without access
to any external context for knowledge-intensive
tasks (Roberts et al., 2020).

Multi-Task Retrieval Prior work has shown
that retrieval improves performance across various
NLP tasks—especially extractive (Guu et al., 2020;
Lee et al., 2019)—when considered in isolation.
Such downstream tasks include open-domain ques-
tion answering (Chen et al., 2017), fact-checking
(Thorne et al., 2018), machine translation (Zhang
et al., 2018), multi-document summarization (Moro
et al., 2022), and data-to-text (Su et al., 2021). As
first proposed by RAG, we demonstrate that a sin-
gle retrieval-based seq2seq architecture can outper-
form several abstract biomedical benchmarks, also
in multi-task settings. Further, we evince the ad-
vantages of merging retrieval and generative com-
ponents also in non-knowledge-intensive tasks.

3 Method

Motivated by a recent stream of architectural con-
tributions and training modalities (Guo et al., 2021;
Sanh et al., 2021), our proposed text-to-text model
BIOREADER extends T5 with the nimble ability
to generate a sequence conditioned by a collection
of passages retrieved from a specialized datastore
with several millions of biomedical evidence to-
kens, other than the input. Coarse-grained retrieval
of contiguous token chunks allows us to retain stor-
age and computation requirements. The unique
characteristics of the biomedical text and the re-
lated design choices are summarized in §A. Fig-
ure 2 sketches the overall framework.

Input segmentation We split the tokenized in-
put X (max-length n) into a sequence of l chunks
of size m=n

l
. We use n=512 and m=16. Our ap-

proach uses retrieval as a way to augment input
examples at the granularity of small chunks.

3.1 Retrieving scientific evidence
Evidence Datastore We use a retrieval pool dif-
ferent from the training corpus, which is suit-
able for domain adaptation and knowledge update
(Li et al., 2022). Our database D is an external
key-value store queried during inference. We de-
rive D from PubMed-RCT (Dernoncourt and Lee,
2017), consisting of ≈200K English abstracts of
randomized controlled trials (RCTs) from the 2016
MEDLINE/PubMed Baseline Database. We fo-
cus on RCTs as they are commonly considered
the best source of medical evidence (Dickersin and
Li, 2015). Let f(⋅) be the function that maps a
textual context to a fixed-length vector represen-
tation given by a frozen non-causal bi-directional
encoder. Within D, each value consists of two con-
tiguous unlabeled chunks [N,F ], where N is the
neighbor chunk and F is its continuation in the
original abstract. The corresponding key is f(N),
pre-computed to enable online database modifi-
cation and retrieval from huge amounts of data.
Using both N and F as retrieved tokens helps in-
crease model performance (see §D). We implement
f(⋅) using CONTRIEVER (Izacard et al., 2021), a
dual-encoder architecture based on BERT-base un-
cased (WordPiece tokenizer) and trained with the
MoCo contrastive loss (He et al., 2020) for unsu-
pervised retrieval, where queries and documents
are encoded independently using the same model.
Average pooling is applied over the outputs of the
last layer to obtain one-vector representations. Our
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Figure 2: An illustration of the BIOREADER architecture. Left: simplified version where a sequence X of length
n=15 is divided into l=3 chunks of size m=5. For each chunk, we retrieve k=2 scientific evidence neighbors of
r=10 tokens each (including continuations). The current input prompt X and the fetched tokens are given as input
to our encoder-decoder architecture based on T5. The fusion of their learned representations is done in the decoder
via chunked-cross attention (CCA). Right: autoregressive CCA interaction details.

document index can be seen as a large external
human-readable/writable memory for PLMs to at-
tend to, on a par with memory networks (Moro
et al., 2018).

Nearest neighbor retrieval For each input
chunk Cu with u∈{1, l}, we select its top k
most similar documents using the dot product
d(Cu, N)=f(Cu)⊗f(N) (empirically better than
L2 distance according to preliminary experiments).
Time- and memory-efficient retrieval is performed
using FAISS (Johnson et al., 2021), an open source
library for approximate nearest neighbor search
in high dimensional spaces (sub-linear memory
access). We denote retrieved token-values as
RET(Cu)=([N1

, F
1], . . . , [Nk

, F
k]). A length

of 16 is used for both N
j and F

j , thus RET(Cu)
has a k × r shape, with r=32.

3.2 Model architecture

BIOREADER relies on an extended T5 architecture,
receiving X chunks as input. Concretely, we keep
the T5 encoder unchanged, while we interleave the
RETRO-blocks proposed by Borgeaud et al. 2021
and standard T5-blocks in the decoder—design
choices are motivated in §D. Symbolizing inter-
mediate input activations by H ∈ Rn×d, RETRO-
blocks incorporate information also from the en-
coded neighbors E—for which we take the T5-
encoded RET(Cu) tokens, already supplied with

positional information. RETRO-blocks compose
three different residual operators with signature
Rn×d→Rn×d: a fully connected layer FFW, a stan-
dard self-attention layer ATT, and a chunked cross-
attention layer CCA(⋅, E).

RETRO(H,E) = FFW(CCA(ATT(H), E)) (1)

T5(H) = FFW(ATT(H)) (2)

The hyperparameter P⊆[1, L] determines at which
layers a RETRO-block is placed in the decoder
stack; referring to T5-base (L=12, d=768), we use
P={9, 12}. In these points, the neighbor encodings
and the trainable BIOREADER input encodings are
merged with CCA, replacing the original encoder
outputs; the resulting representation is then used
for the Encoder-Decoder Attention. Our final con-
figuration consists of 229.5M parameters.

Chunked cross-attention Following Borgeaud
et al. 2021, we use chunked-cross attention (CCA),
an autoregressive operator that incorporates the
retrieved literature evidence into the model. To
compute it, a given activation H is first di-
vided into l−1 chunks, shifting the tokens com-
posing each chunk of one position to the left(H+

u =(hu m+i−1)i∈[1,m] ∈ Rm×d)u∈[1,l−1]. Note
that H+

u holds the embeddings of the last token
in chunk Cu and of the first m−1 tokens in Cu+1.
The cross-attention between H

+
u and Eu is then cal-

culated across time and neighbors simultaneously.
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This means that each input chunk attends only to
the neighbors of the preceding chunk; autoregres-
sion is ensured by the one-token overlap (i.e., the
dependencies over previous neighbors are propa-
gated via self-attention operations). The activations
of the i

th token in the u
th chunk therefore poten-

tially depend upon the set of all previous neighbors
and continuations RET(Cu′)u′<u. A graphical ex-
ample is reported in §F.

Retrieval-enhanced autoregressive decoding
Token likelihoods during decoding (i-th token, u-
th chunk)—with BIOREADER parameterized by
θ—depend on both previously seen tokens PXu,i

and antecedent-chunk neighbors PNu recovered
by D, nailing down a retrieval-enhanced sequence
log-likelihood, following Borgeaud et al. 2021.

PXu,i = x(u−1) m+i∣(xj)j<(u−1) m+i, (3)

PNu = (RET(Cu′))u′<u, (4)

L(X∣θ,D)= l

∑
u=1

m

∑
i=1

ℓθ(PXu,i, PNu). (5)

We can select the next token by directly sam-
pling from the D-conditioned distribution with log-
probability ℓ. Specifically, we adopt the standard
T5 greedy decoding approach and set RET(C1)=∅,
namely, the likelihood of tokens from the first
chunk does not depend on any neighbor.

Differences compared to RETRO Differently
from RETRO, BIOREADER is characterized by
an original T5 skeleton (instead of GPT and a
decoder-modulated transformer encoder), differ-
ent architectural and retrieval pool design choices,
a biomedical-specific model (also for encoding re-
trieved tokens), a non-training-based retrieval pool,
and a dual-encoder retrieval module trained specifi-
cally for fetching short documents given a query.

4 Experimental Setup

Implementation details, computing infrastructure,
and experiment hyperparameters are described in
§B.1 and §B.2.

4.1 Training
Pre-training corpora In biomedical PLMs, there
are two main sources for pre-training corpora:
PubMed abstracts and PMC articles. As demon-
strated by prior work (Phan et al., 2021; Gu et al.,
2022), training on both corpora surprisingly leads

to a slight degradation in performance compared to
solely training on PubMed abstracts. Consequently,
we operate on a cleaned and masked version of the
PubMed database (>32M abstracts)2.

Pre-training and fine-tuning setup We first ini-
tialize BIOREADER’s T5-blocks by loading the pre-
trained weights of SCIFIVE(PubMed)-base, a state-
of-the-art T5 model pre-trained on large biomedi-
cal corpora. Referring to the findings of Borgeaud
et al. 20213, we freeze all the pre-trained weights
and train only the new CCA parameters (less than
5% of total weights) with span-based mask learn-
ing. Thus, the original SCIFIVE performance is
precisely maintained when BIOREADER language
modeling is evaluated without retrieval. We pre-
train CCA layers by using only ≈3% of pre-training
corpora instances (≈982K)—a design choice sup-
ported by Borgeaud et al. 2021 as well. Consis-
tently with the authors of RETRO, we find that
allowing the entire model to resume training at this
stage ends in performance worsening. Since the
size of PubMed abstracts rarely exceeds 512 to-
kens (Yuan et al., 2022), we truncate all the input
texts to a 512 maximum length for the sake of pre-
training efficiency. Subsequently, we fine-tune all
the layers on the supervised target tasks (see §4.2),
also making use of a task-specific prefix to let the
model know the requested transformation for each
input. During training, we retrieve from D with 9
neighbors; we raise and reduce the k value in the
evaluation phase (§D).

Objective BIOREADER is trained with a max-
imum likelihood objective using teacher forcing
(Raffel et al., 2020) for all tasks so as to unlock
multi-task learning.

4.2 Downstream Benchmark Tasks
We fine-tune BIOREADER on 18 widespread NLP
human-annotated biomedical datasets for 6 down-
stream task categories. Evaluation datasets mostly
come from BLURB (Gu et al., 2022), a broad-
coverage benchmark for PubMed-based biomedical
NLP applications, tracking progress by the com-
munity. Unless otherwise specified, we follow the
same preprocessing techniques and train/dev/test
sets as Phan et al. 2021. Descriptive statistics and
preprocessing details are in §C.

2gs://scifive/pretrain/pubmed_cleaned
3Uniquely tuning the new weights of CCA-augmented

PLMs attains results close to full training from scratch, quickly
surpassing the performance of baseline models.

5775

gs://scifive/pretrain/pubmed_cleaned


• Named entity recognition (NER). Locate
and classify named biomedical entities us-
ing IOB tagging (Ramshaw and Marcus,
1995). We take into account 7 influential
datasets: NCBI-disease (Dogan et al., 2014),
BC5CDR-disease (Li et al., 2016), BC5CDR-
chemical (Li et al., 2016), BC4CHEMD
(Krallinger et al., 2015), BC2GM (Smith et al.,
2008), JNLPBA (Collier and Kim, 2004), and
Species800 (Pafilis et al., 2013). For all NER
tasks, we evaluate results with the entity-level
F1-score, ensuring fairness with the other
baselines. We italicize that the entity-level
evaluation does not count the partial predic-
tion of an entity as true (if the entity has more
than one token), tending to show lower scores
than plain F1.

• Relation extraction (RE). Detect and clas-
sify semantic relationships involving biomed-
ical entities. We test on CHEMPROT (Do-
gan et al., 2019) and DDI (Herrero-Zazo
et al., 2013) for chemical-protein and disease-
disease interactions, respectively. We evaluate
the F1-score of each class in the two datasets.

• Natural language inference (NLI). Deter-
mine the validity of a hypothesis (i.e., true or
false). We utilize the MedNLI dataset from
MIMIC-III (Romanov and Shivade, 2018)
with an accuracy-based evaluation.

• Document classification (DC). Assign a text
document to a predetermined category. We
consider the HoC dataset (Baker et al., 2016),
judging the F1-score on the sample average.

• Question answering (QA). Find an answer
to a question from a gold context snippet. We
take factoid questions from BioASQ 4b, 5b,
and 6b challenges (Tsatsaronis et al., 2015).

• Open-domain QA (OpenQA). Answer nat-
ural questions without relying on any spec-
ified context paragraph. OpenQA is a com-
mon knowledge-intensive testbed for retrieve-
then-generate models. We refer to MedQA-
USMLE (Jin et al., 2021), a 4-way multiple
choice QA benchmark entailing biomedical
and clinical knowledge, where the questions
originate from practice tests for the United
States Medical License Exams (USMLE). We
preprocess the dataset by treating questions
and correct answers as input-output text pairs.
In all cases where a question refers to a spe-
cific set of answers (e.g., "which of the fol-

lowing..."), we append the possible choices to
the input text.

For QA and OpenQA, we observe standard con-
ventions and evaluate the predicted free text with
the Exact Match metric, as initiated by Rajpurkar
et al. 2016. A generated answer (lenient for QA)
is considered correct if it matches any reference
answer after normalization (i.e., lowercasing and
removal of articles, punctuation, and duplicated
whitespace).

Comparison We head-to-head compare BIORE-
ADER to representative closed-book PLMs, en-
compassing prevalent BERT-based models re-
quiring task-specific architectural choices (predic-
tion heads) and more flexible encoder-decoder
generative models. The first category includes
BIOBERT (Lee et al., 2020), SCIBERT (Beltagy
et al., 2019), BLUEBERT (Peng et al., 2019), CLIN-
ICALBERT (Alsentzer et al., 2019), PUBMEDBERT

(Gu et al., 2022), PUBMEDELECTRA (Tinn et al.,
2021), BIOLINKBERT (Yasunaga et al., 2022),
and BIOMEGATRON (Shin et al., 2020). The
second, T5 (Raffel et al., 2020) and SCIFIVE

(Phan et al., 2021). Please note that BIOMEGA-
TRON authors evaluate NER performance by la-
beling sub-tokens separately, except for the NCBI-
disease dataset, where they observe better results
with whole-entity labeling. We also mention BIO-
ROBERTA (Lewis et al., 2020a) and BIOBART

(Yuan et al., 2022), which are not included due
to the impossibility of replicating them on the
BLURB dataset splits.

4.3 Qualitative Analysis

Online evidence datastore update Facts memo-
rized within traditional PLMs are opaque and stuck
in time at the point of training (Lazaridou et al.,
2021). Such static knowledge fails to cope with the
dynamic state of the biomedical world, where more
than 3 papers are registered per minute (Frisoni
et al., 2021). With BIOREADER, we can control
what the model knows by swapping out or integrat-
ing the documents it uses for knowledge retrieval.
We test this behavior by adding to D the abstracts
of 10 recent RCTs on COVID-194, checking for
factual answers to target open questions without
retraining. We consider the OpenQA-tuned model,
assessed on two relevant questions created by us

4We select RCTs by employing "review covid19 symp-
toms" (x3), "review covid19 prevention" (x3), and "review
covid19" (x4) as keywords on the PubMed search engine.
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according to new RCT contents.

Question answering human evaluation In QA
and OpenQA benchmarks, BIOREADER outputs
full-sentence answers that often do not correspond
to the ground truth but continue to be semantically
correct. We hypothesize that exact matching under-
estimates our model performance. For this reason,
we hire three expert human annotators proficient in
English and with biomedical competencies to man-
ually scrutinize model predictions, randomly sam-
pling 120 test set instances (30 from each BioASQ
dataset and 30 from MedQA-USMLE). We ask the
graders to (i) binary label the scientific accuracy
(factual correctness) of the generated answers, (ii)
assess language fluency on a 3-point Likert scale
from 1 (worst) to 3 (best). Human evaluation is
conducted on SCIFIVE and BIOREADER outputs
(presented in random order) to inspect the retrieval-
augmentation contribution.

5 Results

Table 2 and Table 3 showcase our main results. Our
scores come from the checkpoint with the lowest
loss and the best k discovered at evaluation time.

We push the state-of-the-art on 2/7 NER, 1/2 RE,
1/1 DC, and 3/3 QA, staying highly competitive
in all the other cases. We beat SCIFIVE-large (3x
our size) on 5 different tasks, while, in the major-
ity of cases, we considerably outperform models
which have a comparable number of parameters
to ours. Overall performances testify to consistent
retrieval effectiveness. Predicting tokens with the
aid of relevant human-written references alleviates
the difficulty of text generation. As expected, we
notice that NER, RE, and NLI are the tasks where
BIOREADER contributes less. Naturally, all these
translations are strictly related to the provided in-
puts and hardly take advantage of additional exter-
nal context, which often acts as noise.

The strength of BIOREADER is accentuated
when limited training data is available; we point
up that our biomedical benchmarks only have few
thousand annotated instances (§C).

Unexpectedly, the adoption of in-domain vocab-
ularies appears to be non-correlated with higher
downstream task scores.

From Table 3, we verify our conjecture about the
insufficiency of Exact Match as an OpenQA evalu-
ation metric. Expert assessment results are signif-
icantly higher than the automatic ones. The aver-
age Kendall’s coefficient ([−1, 1] bound) among

all evaluators’ inter-rater agreement is 0.91. We
recognize many cases where the predicted answer
is correct though different from the ground truth
(e.g., "pd-1" vs. "programmed cell death 1", "olfac-
tory groove meningioma" vs. "meningioma"). Our
qualitative analysis suggests that neighbors help
the model to produce not only more syntactically
fluent but also more factually correct outputs.

Although not retrained, BIOREADER adapts cor-
rectly to unseen questions on the COVID-19 lit-
erature in "zero-shot datastore" settings (Table 4).
This suggests that it learns to use world informa-
tion independently of the information itself. Input-
output examples, accompanied by their retrieved
neighbors, are exhibited in §F.

Replicating our solution (see §B) only asks
for CCA calibration and task-specific model fine-
tuning, ultimately saving a vast amount of compu-
tation and memory. Our model can be handled on
a single GPU machine, while a fully end-to-end
retriever generally demands industry-scale compu-
tational resources for training (Seo et al., 2019).

6 Conclusions

In this paper, we introduce BIOREADER, a new
state-of-the-art semi-parametric biomedical lan-
guage model steered by literature passages re-
trieved from explicit memory. Our experimental re-
sults show that augmenting the generation process
by accessing scientific repositories during training
and evaluation induces performance gains greater
than raw parameter scaling, both on knowledge-
intensive and non-knowledge-intensive tasks. Not
only do we provide a way of handling the opaque-
ness of large language models, but we also prove
that updating the datastore helps the model with
domain adaption without retraining, a property
of paramount importance for rapidly evolving do-
mains like biomedicine. Future work should aim to
integrate a differentiable write-to-memory opera-
tor (Wu et al., 2022), structured retrieval databases
(e.g., multi-relational graphs from semantic pars-
ing, symbolic knowledge graphs), long text-to-
text tasks (Guo et al., 2021; Moro and Ragazzi,
2022), knowledge-augmented self-alignment pre-
training to rewire the space before retrieval (Liu
et al., 2021), and the evaluation of distributed and
parallel learning approaches to scale to big data
repositories (Cerroni et al., 2013).
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Model #params In-Domain
Vocabulary

NER
(F1)

RE
(F1)

DC
(F1*)

NLI
(Acc.)

NCBI
disease

BC5CDR
disease

BC5CDR
chemical BC4CHEMD BC2GM JNLPBA Species-800 ChemProt DDI HoC MedNLI

BIOBERT
†,‡ 110M ✓ 89.71 87.15 93.47 92.36 84.72 77.49 74.06 76.46 80.88 81.54 —

SCIBERT
‡ 110M ✓ 88.25 84.70 92.51 — 83.36 78.51 — 75.00 81.22 81.16 —

BLUEBERT-base‡ 110M × 88.04 83.69 91.19 — 81.87 77.71 — 71.46 77.78 80.48 —
CLINICALBERT

‡ 110M × 86.32 83.04 90.80 — 81.71 78.07 — 72.04 78.20 80.74 —
PUBMEDBERT-base‡ 110M ✓ 87.82 85.62 93.33 — 84.52 79.10 — 77.24 — — —
PUBMEDBERT-large§ 340M ✓ 88.25 85.77 93.22 — 84.72 79.44 — 78.77 82.39 82.57 —
PUBMEDELECTRA-base§ 110M ✓ 87.68 84.99 93.19 — 83.79 78.60 — 76.54 80.58 81.45 —
PUBMEDELECTRA-large§ 340M ✓ 87.93 84.82 92.90 — 83.87 78.77 — 76.80 78.92 82.37 —
BIOLINKBERT-base∥ 110M × 88.18 86.10 93.75 — 84.90 79.03 — 77.57 82.72 84.35 —
BIOLINKBERT-large∥ 340M × 88.76 86.39 94.04 — 85.18 80.06 — 79.98 83.35 84.87 —
BIOMEGATRON

¶ 345M ✓ 87.10 88.50 92.90 — — — — 77.00 — — —
T5-base† 220M × 88.54 86.83 93.61 89.73 82.29 74.56 74.32 84.82 82.04 85.22 83.90
T5-large† 770M × 88.78 86.31 94.22 89.96 82.36 75.83 74.66 85.41 83.35 85.68 83.80
SCIFIVE-base† 220M × 87.96 87.44 94.35 92.02 83.92 75.60 76.55 88.83 83.15 85.89 85.30
SCIFIVE-large† 770M × 89.17 86.98 94.66 91.96 83.60 76.08 75.50 87.88 83.67 86.36 86.36
BIOREADER (ours) 229.5M × 88.90 87.62 94.43 92.81 84.77 77.82 77.44 88.16 84.34 87.78 85.76

Table 2: Test results on NER, RE, DC, and NLI after fine-tuning. F1* is F1 on sample average. Bold and
underline denote the best and second best scores; the gradient of green indicates our improvement compared to
the previous state-of-the-art (the deeper, the more). †, ‡, §, ∥ and ¶ baseline results (correctly replicated except for
PUBMEDBERT-large, PUBMEDELECTRA, BIOMEGATRON) are from Phan et al. (2021), Gu et al. (2022), Tinn
et al. (2021), Yasunaga et al. (2022), and Shin et al. (2020), respectively. “—” denotes no results are available.

Model # params In-Domain
Vocabulary

Automatic Evaluation Human Evaluation
QA OpenQA QA OpenQA Fluency

(Avg)BioAsq 4b BioAsq 5b BioAsq 6b MedQA-USMLE BioAsq 4b BioAsq 5b BioAsq 6b MedQA-USMLE
BIOLINKBERT-base 110M × — — — 40.00 — — — — —
BIOLINKBERT-large 340M × — — — 44.60 — — — — —
SCIFIVE-base 220M × 60.80 59.53 55.56 34.57 79.98 80.02 70.05 38.03 2.49
SCIFIVE-large 770M × 62.98 61.67 61.74 35.12 80.23 80.12 71.54 39.78 2.65
BIOREADER (ours) 229.5M × 64.13 62.02 62.18 42.96 82.12 81.88 73.35 48.57 2.86

Table 3: Exact Match accuracy (left) and human-evaluated scientific accuracy (right) on QA and OpenQA tasks.
Bold and underline denote the best and second best scores; our relative human evaluation improvement compared
to the baseline is picked out with green gradients (the deeper, the more).

Question BIOREADER w/ D BIOREADER w/ D′

medqa: question*: January 2020. A 69-year-old Chinese man comes to the physician
with fever, tiredness, cough, dyspnoea, and severe respiratory issues. The clinical
picture suggests an infectious disease. What is the most likely diagnosis?

✗ bronchiolitis ✓ COVID-19

medqa: question*: Coronaviruses are viruses that can cause illnesses in humans,
including severe respiratory disease and even death. Corona disease-19 virus
(COVID-19) spread and caused a pandemic that affected people all over the world.
As COVID-19 cases continue to rise globally, which are the most effective options
to prevent contamination and infection transmission?

✗
disinfect the
respiratory tract ✓

vaccinate against
COVID-19

Table 4: Answers generated by BIOREADER to context-free COVID-19 questions before (D) and after (D′)
integrating SARS-CoV-2 evidence into the datastore.

7 Ethical Considerations

The language model’s ability to make the most of
pre-existing domain knowledge could have poten-
tial ramifications for society, especially in health-
care contexts. From an application perspective, re-
searchers need better NLP tools to skim the biomed-
ical literature efficiently. Grounding in real fac-
tual evidence (in this case PubMed’s RCTs) re-
duces hallucination phenomena and offers more
control and interpretability. Users could endow
BIOREADER with a sizeable medical index and
ask it open-domain questions to avoid reading thou-

sands of publications. Analogously, they could
classify documents or perform structured predic-
tion with a broader and up-to-date vision, going
beyond the information provided (in a common-
sense fashion) and taking advantage of similarities
between tasks thanks to multi-task learning. By
including a retrieval method, BIOREADER remains
relatively small in size: plenty of users can de-
ploy it on affordable GPUs and tweak it as needed.
Furthermore, the applications of this paper are be-
yond the biomedical domain only, being suitable
for targeting (i) limited resource domains, (ii) out-
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of-distribution issues in downstream tasks (Parmar
et al., 2022), and (iii) domain-adaption with limited
fine-tuning datasets.

With these benefits also come potential down-
sides. Indeed, any external knowledge source will
probably never be entirely factual, coherent, and
completely devoid of bias, particularly on large
scales. We urge the users to undertake the nec-
essary quality-assurance testing to understand the
presence of such issues and evaluate how much
they impact the model. On the other side, one
advantage of using an explicit external memory
is that the latter can be easily cleared, edited, or
retroactively filtered. The same is not true of siloed
knowledge in traditional PLMs. Like any large
language model, BIOREADER could be the sub-
ject of concern about its malicious use, although
arguably to a lesser extent. For example, it might
be used to automate the production of faked or mis-
leading content, which could be critical in sensitive
healthcare domains.

We honor and support the ACL code of Ethics.
All pre-trained models and corpora used in this
work are publicly available.

8 Limitations

Chunks may contain only partial information about
biomedical evidence, with the risk of generating in-
complete or nonfactual text. Also, multiple chunks
can refer to the same fact; even if such retrieved
passages have the prospect of complementing each
other, they can cause repetitions or contradictions.
Managing contradictions—which are natural in the
scientific evolution of a field over time—is pre-
cisely one of the main future research directions
we envisage. Context-sensitive chunks may also
be considered when building the knowledge base
to avoid splitting within word or entity boundaries,
which is especially risky in biomedicine.

We take only abstracts for constructing our
knowledge base: future work should explore
massive-scale full-texts and their implications with
respect to the results presented in this paper. In-
deed, BIOREADER performances are capped by the
contained topic coverage of the selected datastore.

We believe that a quantitative assessment of the
link between the datastore modifications and their
effect on model predictions is imperative, drawing
attention to the need for new benchmarks.

Additionally, given the high memory consump-
tion and large space on disk potentially required

by FAISS indexes, we suggest the reader adopt a
Binary Passage Retriever model (Yamada et al.,
2021), which reduces the index size without losing
too much in performance.

Finally, our model backbone (SCIFIVE) may be
undertrained, reckoning on significantly fewer com-
putational resources (i.e., a single TPUv2-8) than
the ones employed for the original T5 and baselines
like PUBMEDBERT. We show promising results
in constrained settings imposed by our GPU limi-
tations, striving to make our work as reproducible
as possible and leaving the possibility of adapting
it to more performing hardware. We encourage
future researchers to replicate our paper and unveil
its real potential with well-trained seq2seq models
such as BIOBART (Yuan et al., 2022), pre-trained
on biomedical corpora with 16 40GB A100 GPUs
for 7 days. Alternatively, we suggest bettering
the pre-train of bio-T5 models, possibly using the
DeepNarrow strategy proposed by Tay et al. 2021,
which reduces costs by training 50% fewer param-
eters and being 40% faster.

We hope that our work may trigger the commu-
nity toward the development of new open-book
biomedical models and datasets, lowering the en-
try barrier and helping to accelerate progress in
this vitally important field for positive societal and
human impact.
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A Biomedical Needs

Compared to the open domain, biomedicine raises
substantial challenges and constraints:

• specialized jargon and professional language;
• overarching information truly hard to inter-

pret;
• synonyms (see UMLS) and special tokens;
• narrow margin for interpretation, rephrasing,

and creativity;
• clauses are often interdependent and express

complex interactions;
• non-tolerance of factual mistakes;
• knowledge rapidly evolves over time.

We cope with these needs by utilizing a domain-
specific model, a semantic dense retrieval of com-
monsense or domain-specific related knowledge
(disjoint from the training dataset), and an in-depth
evaluation (also with multi-task learning).

B Reproducibility

B.1 Implementation and Training Details

Hardware Setup We ran each experiment on a
workstation having one Nvidia GeForce RTX3090
GPU with 24GB of dedicated memory, 64GB of
RAM, and an Intel® Core™ i9-10900X1080 CPU
@ 3.70GHz.
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Model We implement BIOREADER using Py-
Torch 1.9 (Paszke et al., 2019) as framework, evolv-
ing the T5ForConditionalGeneration
code5 from HuggingFace and taking LabML6

and open contributions7 as references for RETRO-
blocks. We only use the T5-base configuration
(12 layers, 768-dimensional hidden size, and 12
attention heads) as a baseline due to GPU memory
constraints. Nevertheless, we believe that our
results would generalize to larger configurations.

Evidence datastore Each abstract in PubMed-
RCT gets split into the desired chunk length and
then padded if the last chunk is too short. We com-
pute chunk embeddings by taking the mean pooling
of the hidden states produced by the encoder8. We
leverage Autofaiss9 for automatically building
the document indices and then calculating the k-
nearest neighbors for all chunks. Creating an entire
FAISS index on our knowledge base D with ap-
proximately 200K abstracts and 60M tokens takes
2 hours (≈1.5GB index file, ≈0.7GB chunk file).
Data leakage is not possible with different sources
for queries and neighbors; so we do not filter out
neighbors originating from the same document as
the training sequence.

Experiment tracking We track all our trainings
with Weights & Biases10 and monitor CO2 emis-
sions with CodeCarbon11. Moreover, we profile
the neighbors’ retrieval speed with custom code.

Pre-training After initializing the model param-
eters (warm-up) with SCIFIVE(PubMed)-base, we
continuously pre-train BIOREADER for 122K steps
with a batch size of 8. We take two SCIFIVE pre-
training files as our corpus12. Here, spans of text
(i.e., consecutive tokens) are randomly replaced
by a sentinel unique masked token <M>; the target
sequence consists of the concatenation of the same

5https://huggingface.co/docs/
transformers/model_doc/t5

6https://nn.labml.ai/transformers/
retro/model.html

7https://github.com/lucidrains/
RETRO-pytorch

8We also tried [CLS] but found no consistent best strategy
(the optimal one varies on different encoders).

9https://github.com/criteo/autofaiss
10https://wandb.ai
11https://github.com/mlco2/codecarbon
12Masked pre-training files: gs://scifive/

pretrain/pubmed_cleaned/abs_1_30.tsv
and gs://scifive/pretrain/pubmed_cleaned/
abs_1_16.tsv

sentinel tokens and the real dropped-out spans (self-
supervised learning). We use Adam (Kingma and
Ba, 2015) as optimizer with a constant learning
rate of 1e-4 and a dropout rate of 10%. With k=9
and max-length n=512, the training time is ≈10
hours (1 second per iter), 0.2682 kg CO2 impact.
We highlight that decreasing the retrieved chunks
to k=2 reduces the time required to 0.7 seconds
per iter while increasing the max-length to n=1024
leads to >20 hours. We perform the retrieval of
all chunks in parallel by putting them into a sin-
gle batch; retrieving one chunk at a time causes a
strong deterioration in performance (≈2.5 days for
k=9).

Fine-tuning After pre-training, we fine-tune
BIOREADER on the various downstream tasks,
choosing a multi-task learning configuration for
the NER datasets. Due to its unavailability in
the original paper, we re-calculate SCIFIVE Exact
Match accuracy for QA. We perform training for
30 epochs with a batch size of 4 for tasks with 256
input length (2 otherwise), AdamW (Loshchilov
and Hutter, 2019), learning rate 2e-4, and dropout
rate 10%. We find a large batch size to be very ben-
eficial; we simulate a batch size of 128 with 32
and 64 gradient accumulation steps, thus helping
to prevent overfitting. Maximum input and output
lengths for each task are in Table 7. Each fine-
tuning takes between 13 and 20 hours.

Used models Table 5 enumerates all the models
used in this study, linking to specific versions.

B.2 Hyperparameters
We list the hyperparameters used for training
BIOREADER in Table 6. An insight into their effect
is given in §D.

C Evaluation Datasets Insights

Table 7 reports a complete overview of our bench-
mark datasets and their composition.

D Ablations

We study several research questions to understand
the effect of important design choices and hyper-
parameters on downstream biomedical NLP per-
formance. We test on lightweight settings to save
computation time without affecting comparability.
We pre-train on ≈15K instances13 and fine-tune for

13gs://scifive/pretrain/pubmed_cleaned/
abs_1_23.tsv

5786

https://huggingface.co/docs/transformers/model_doc/t5
https://huggingface.co/docs/transformers/model_doc/t5
https://nn.labml.ai/transformers/retro/model.html
https://nn.labml.ai/transformers/retro/model.html
https://github.com/lucidrains/RETRO-pytorch
https://github.com/lucidrains/RETRO-pytorch
https://github.com/criteo/autofaiss
https://wandb.ai
https://github.com/mlco2/codecarbon
gs://scifive/pretrain/pubmed_cleaned/abs_1_30.tsv
gs://scifive/pretrain/pubmed_cleaned/abs_1_30.tsv
gs://scifive/pretrain/pubmed_cleaned/abs_1_16.tsv
gs://scifive/pretrain/pubmed_cleaned/abs_1_16.tsv
gs://scifive/pretrain/pubmed_cleaned/abs_1_23.tsv
gs://scifive/pretrain/pubmed_cleaned/abs_1_23.tsv


Model URL

BIOBERT https://huggingface.co/dmis-lab/biobert-base-cased-v1.1
BIOBERT-NLI https://huggingface.co/gsarti/biobert-nli
SCIBERT https://huggingface.co/allenai/scibert_scivocab_cased
BLUEBERT https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
CLINICALBERT https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
PUBMEDBERT-base https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
BIOLINKBERT-base https://huggingface.co/michiyasunaga/BioLinkBERT-base
BIOLINKBERT-large https://huggingface.co/michiyasunaga/BioLinkBERT-large
T5-base https://huggingface.co/t5-base
T5-large https://huggingface.co/t5-large
SCIFIVE-base https://huggingface.co/razent/SciFive-base-Pubmed
SCIFIVE-large https://huggingface.co/razent/SciFive-large-Pubmed_PMC

Table 5: List of the models used in this study.

Hyperparameter Search space

Pre-training learning rate
{1e-5, 3e-5, 5e-5,

1e-4∗ (Yuan et al., 2022),
2e-4 (Borgeaud et al., 2021)}

Fine-tuning learning rate 2e-4 (linear scheduler)
Pre-training and fine-tuning dropout rate 0.10
Pre-training Optimizer Adam

Fine-tuning Optimizer
AdamW,

(0.9 β1, 0.99 β2, no weight decay)
Pre-training batch size {2, 6, 8∗}

Fine-tuning batch size
4 for RE, DC, and NLI,

2 for NER, QA, and OpenQA,
gradient_accumulation_steps=32

Pre-training iterations on PubMed sample 122K (0.3 epochs)
Fine-tuning epochs on downstream tasks 30
Pre-training and fine-tuning CCA position P {6, 9, 12}, {9, 12}∗, {6, 9}, {12}
Pre-training and fine-tuning number of neighbors k [2, 9] (9∗)
Chunk size m {8,16∗, 32 (Borgeaud et al., 2021)}
Pre-training and fine-tuning checkpoint frequency 10.000 steps

Table 6: Hyperparameters along with their search grid. ∗ marks the values used to obtain the reported results.

one epoch on a small corpus version of each down-
stream task (5k train data and 500 test data), batch
size of 2. We exclude QA and OpenQA bench-
marks due to their need for human judgment as a
proper quality indication (§5).

RQ1. What is the best architectural setting (po-
sition and quantity) for the CCA layers? We
study three architecture variants for CCA layers.

• Encoder-only (Enc). CCA is done within the
encoder after the standard self-attention layer.

• Encoder-Decoder (EncDec). CCA is done
between the encoder and the decoder. After
the encoder, the encoded retrieved neighbors
are incorporated once with the encoder out-
put through CCA and are saved as an inde-
pendent variable. In the decoder, there is a
second layer of Encoder-Decoder Attention to
blend the CCA output with the decoder hidden

states.
• Decoder-only (Dec). CCA is done within the

decoder, after the standard self-attention layer,
and before the Encoder-Decoder Attention
layer. Encoded neighbors are integrated into
encoder outputs with CCA and replace the en-
coder outputs themselves.

We find that the Dec architecture is the best setting
for the CCA layers, while the EncDec architecture
is a close second. The Enc architecture is not ef-
fective, and we hypothesize that it is important for
the raw inputs without neighbor information to be
initially seen by the decoder. Furthermore, we find
that 2 layers for CCA in a 12-layer model represent
an optimal setting. The best results are obtained by
comparing in contrast to 3 and 4 CCA layers.

RQ2. How does the chunk size impact the re-
sults? We examine how the chunk size (m in Eq.
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Task Dataset Biomedical
Domain

# Instances Task Type Input Length Target LengthTrain Dev Test

Self-Supervised
Learning PubMed All 512 512

NER

NCBI-disease Disease 5,134 787 960

Multi-Task 512 512

BC5CDR-disease Disease 4,182 4,244 4,424
BC5CDR-chemical Chemical 5,203 5,347 5,538
BC4CHEMD Chemical 30,682 26,364 26,364
BC2GM Chemical 12,574 5,038 5,038
JNLPBA Gene 46,750 4,551 8,662
Species-800 Species 10,771 1,630 1,630

RE
Chemprot Protein-chemical 18,035 11,268 15,745 Single-Task 256 16
DDI Disease-disease 25,296 2,496 5,716 Single-Task 256 16

DC HoC Cancer 1,295 186 371 Single-Task 256 64

NLI MedNLI Clinical 11,232 1,395 1,422 Single-Task 256 12

QA
BioASQ4-factoid All 3,264 3,590 652 Single-Task 512 128
BioASQ5-factoid All 3,264 496 495 Single-Task 512 128
BioASQ6-factoid All 4,772 478 531 Single-Task 512 128

OpenQA MedQA-USMLE Clinical 10,178 1,272 1,273 Single-Task 512 128

Table 7: Basic statistics of the biomedical evaluation datasets with input and target sequence length settings,
including self-supervised learning. "# Instances" denotes the number of entity or relation mentions (NER, RE) /
labeled documents or sentence pairs (DC, NLI) / queries (QA, OpenQA).

5) affects the model performance. To this end, we
re-build the datastore D and re-run pre-training and
fine-tuning by varying m ∈ {8, 16, 32}, where 32
represents the same input to chunk ratio as RETRO.
Results are quite similar (Figure 3). Surprisingly,
m=16 has average better accuracies/F1-scores. Af-
ter scanning some neighborhood examples, we be-
lieve this is due to the greater compression of in-
formation content within RCTs’ abstracts. Reason-
ably, the increase in the chunk size is directly pro-
portional to the memory occupation and inversely
proportional to the computation time required (23
minutes for m=8, 12 minutes for m=16, 7 minutes
for m=32). Low NER F1 scores are justified by the
need for more training data and time to accomplish
adaption. Clearly, the text-to-text instances belong-
ing to this task type are more distant from human
language due to entity labels directly inserted in
the text through augmentation.

RQ3. What is the most effective neural retriever
for building the evidence datastore? The prove-
nance of the continuous representations used for
the neural retrieval phase is pivotal. Previous work
like RETRO exploits BERT embeddings indepen-
dently of the architecture, assuming that the non-
frozen encoder part of the model will learn to adapt.
We explore different frozen bi-directional models
for encoding neighbors within the datastore D: (i)
PUBMEDBERT—one of the most effective biomed-
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Figure 3: Overall test performance and GPU memory
occupation for different chunk sizes (Dec CCA, SCI-
FIVE neighbor encoder).
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ical *BERT (Liu et al., 2021), (ii) BIOBERT-NLI
sentence transformer—pre-trained on sentence sim-
ilarity, (iii) the SCIFIVE encoder, and (iv) the
CONTRIEVER query/document encoder. Table 8
shows the results. We can see that utilizing a CON-
TRIEVER-based encoder for both chunked input
prompts (queries) and neighbors give general better
results, rewarding space-homogeneity. Moreover,
from qualitative analysis, we find that the tokens
retrieved by CONTRIEVER are more relevant than
the ones obtained through the SCIFIVE-encoder.

Dataset (Metric) PubMedBert BioBert SciFive Contriever

ChemProt (F1) 81.82 83.84 87.60 87.77
DDI (F1) 51.65 60.32 64.70 49.91
MedNLI (Acc) 63.36 72.86 76.71 75.59
NER (F1) 15.17 16.82 18.31 18.33
HoC (F1*) 60.28 57.84 64.70 77.06

Table 8: Downstream test results with different query-
neighbors encoders (chunk size 16, Dec CCA). Best
scores are in bold.

RQ4. What is the contribution of continuation
chunks? A BIOREADER model is trained by at-
tending, for a given chunk, to both the neighbors of
the preceding chunk N and their continuation F in
time. We measure how training and evaluating only
on neighbors affects performance (Table 9). We
observe that attending to both neighbors and their
continuation is generally the most effective choice.
One exception to this claim is NLI, for which we
register a decrease in accuracy of more than 20
points. We believe it is normal behavior: as the
external context increases (i.e., higher k-values or
continuations), the model tends to divert attention
from the two sentences under evaluation and make
erroneous predictions.

Dataset (Metric) NNN -only N + FN + FN + F

NER (F1) 19.37 19.98
ChemProt (F1) 80.79 84.96
DDI (F1) 58.79 64.66
HoC (F1*) 70.42 72.32
MedNLI (Acc) 76.54 52.63

Table 9: Downstream test results with and without con-
tinuation chunks (chunk size 16, Dec CCA, SCIFIVE
neighbor encoder). Best scores are in bold.

RQ5. What is the impact of the number of
training neighbors? During training, we retrieve
the top-k neighboring chunks for each query. We
weigh the effect of training with multiple numbers

of neighbors, considering k∈{2, 3, . . . , 9}. Figure
4 summarizes the resulting performance. We find
that results are quite stable within the small tested
range, with no particular k-value giving substantial
performance improvement. We emphasize that a
simple solution for reducing the required compu-
tational budget consists in training the model with
fewer retrieval passages. In this paper, we select
k=9 due to the tiny superior performance and the
contained overhead (see §B). We have the flexibil-
ity to adjust the number of retrieved neighbors at
evaluation time, which can affect performance and
runtime.
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Figure 4: Impact of the number of nearest neighbors
k during training (chunk size 16, Dec CCA, SCIFIVE
neighbor encoder).

RQ6. How the model scales with the number of
retrieved passages during the evaluation? We
investigate the performance of BIOREADER as we
vary k during evaluation. In a general way, we ob-
serve that when k is small (2<k<15), performances
are relatively the same. However, as k approaches
30, the results drop notably (more than 2 points
less on average). The reason for such degenera-
tion is that, as k increases, the top-k neighbors are
likely to contain more information that is irrelevant
to the input prompt or repeated by other chunks.
k=1 or k=2 lead to minor improvements in non-
knowledge-intensive tasks like RE or NLI.

E Loss and Perplexity

We outline the loss and perplexity curves at the
end of the pre-training process (Figure 5). In doing
this, we compare BIOREADER with our baseline,
i.e., training continuation of SCIFIVE-base with all
the layers unfrozen (no architectural changes, no
neighbors, no CCA). Both the loss for tokens and
the perplexity (which indicates better generaliza-
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tion performance) are reduced by BIOREADER in
a pronounced way.

F Visualization

F.1 Chunked-Cross Attention
Figure 6 illustrates the simplified functioning of
chunked-cross attention, the step where the model
can glance at the external information it needs to
correctly predict the next token.

F.2 Input-Neighbors-Output Examples
We check out how the retrieved chunks guide the
decoding (Table 10), seeking overlapping between
sampled and neighbor tokens. Using a contextual-
aware PLM encoder, we capture lexical varia-
tions and semantic relationships between the input
prompt and the searched chunks. Retrieval supplies
more insights on the output of BIOREADER, as the
user can directly visualize or modify the neighbors
that are being used. One can also verify the source
documents from which the utilized knowledge orig-
inates, which means our model also has increased
interpretability and debuggability compared to stan-
dard language models. So, BIOREADER engenders
appropriate user trust, supporting a great under-
standing of the modeled process. We find that
BIOREADER uses its non-parametric memory to
cue the encoder-decoder model into generating cor-
rect tokens. We note that the role of the retrieved
knowledge changes depending on the task. In non-
knowledge intensive scenarios, neighbors offer an
extended view of the meaning of the phrases men-
tioned in the input prompt, giving to BIOREADER

related examples that can be helpful to predict a
class label better. In knowledge-intensive tasks re-
quiring free-text generation, retrieved neighbors
suggest factual evidence fragments that guide the
construction of the output text token-after-token, re-
ducing hallucinations and making the model more
knowledgeable.

F.3 Zero-shot Generalization Via Datastore
Update

Figure 7 displays a graphical representation of the
BIOREADER output in Table 3. To the best of
our knowledge, we are the first to test PLM trans-
fer learning by explicit memory substitution only
instead of closed-book generalization. For this rea-
son, we coin the term "zero-shot datastore".
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Figure 5: Loss and perplexity curves after pre-training.
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BioREADER

Type 1 diabetes mellitus ( is a chronic disease that starts early in lifeT1DM )N1

The diseaseN2 process leading to clinical type 1 diabetes often starts during the first yearslife

When does type 1 diabetes start ?X Type 1 diabetes starts
Chunked
Cross-Attention

Figure 6: BIOREADER decoder block retrieving information from nearest neighbor chunks using CCA. Adapted
from https://jalammar.github.io/illustrated-retrieval-transformer/.
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Task Input Output N
1−3
1N
1−3
1N
1−3
1 N

1−3
2N
1−3
2N
1−3
2 N

1−3
3N
1−3
3N
1−3
3

RE
ddi: The concomitant intake of * DRUG *

and * DRUG * does not affect the
pharmacokinetics of either alcohol or

acamprosate.

Ground truth:
DDI-false

Ours:
DDI-false

This was a multicentre, randomised,
double-blind, placebo - and
active-controlled

require more medication than
younger children to achieve a
similar therapeutic response

greater ease of administration

when compared with oxytocin

used in these doses seems to be
safe for day care surgery

with only a tiny increase in

circulating plasma.

the uniform injection of vaccine
antigen into muscle tissue in
infants.

No adverse events could be related
to the use PSD .

Habitual caffeine use appears
to minimally reduce caffeine
effects .

to sodium benzoate containing
pharmaceutical formulations

DC
hoc: The present study suggests that
MGN-3 may represent an
immunologically relevant product for

activating innate immunity in
multiple myeloma patients and

warrants further testing to

demonstrate clinical efficacy

Ground truth:
avoiding immune
destruction

Ours:
avoiding immune
destruction

MGN-3/BioBran is an arabinoxylan
extracted from rise bran

cell-mediated immune response

plays a role in wart resolution.
from their disease and therapy .

inflammatory response through
modulation of the neurohumoral
response to stress.

efficacy by way of modulating
cellular immune function .

a probe for challenge studies .

boosting the immune system .
decrease in receptor-mediated
apoptosis .

can be a diagnostic parameter .

QA
bioasq4b: question*: what is targeted
by monoclonal antibody pembrolizumab ?
context*: pembrolizumab versus
ipilimumab in advanced
melanoma . background: the

immune checkpoint inhibitor ipilimumab
is the standard-of-care treatment

for patients with advanced
melanoma. pembrolizumab inhibits the
programmed cell death 1 (pd-1) immune

checkpoint and has antitumor activity
in patients with advanced melanoma . . .

Ground truth:
programmed cell death 1

Ours:
pd-1

bevacizumab when added to standard
chemotherapy in a real-world

In randomized sequence,
patients received oral

montelukast

Rotavirus is a leading cause
of morbidity and mortality
in children younger

a novel selective estrogen-receptor

modulator, in postmeno
lerability and safety

of TMC278, a non-nu

Ziprasidone is not
currently approved by
the United States Food
and Drug Administration

acy and safety of Fibrocaps,
a ready-to-use

acy and safety of Fibrocaps,
a ready-to-use

Although platin-based
chemotherapy has become

a standard treatment for
non-small cell

OpenQA
medqa: question*: A 73-year-old man has
type 2 diabetes mellitus, hypertension ,
hypercholesterolemia , and coronary artery disease .

The physician prescribes a drug that inhibits
intestinal cholesterol absorption.
The addition of this drug is most likely to increase
the risk of which of the following adverse effects?
Hepatotoxicity Hyperkalemia Cutaneous

flushing Hyperuricemia

Ground truth:
Hepatotoxicity

Ours:
Hepatotoxicity

Arterial hypertension is a prime
cause of morbidity and mortality in

years or younger who were
discharged from the hospital after
a coronary heart disease

hypothalamic cholinergic

neurotransmission plays a major

Obesity is a highly prevalent
medical condition and is
commonly accompanied by

ised on a cholesterol-lowering

diet and simvastatin 40 mg daily
hepatotoxicity have been

observed in obese patients

Capillary glucose levels

decreased by 2.9 and 2.6
mmol

obesity-related renal failure
after lower torso ischemia

hyperglycemia and the
frequency of white!75!greenhypoglycemia.
we conducted

Table 10: Cherry picked input-output examples and retrieval influence. We show the first three neighbors N1−3
u of

the chunks u∈{1, 2, 3}. We highlight the latent semantic overlap between the input and the retrieved neighbors.
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OpenQA fine-tuning with retrieval from the PubMed-RCT datastore

Zero-shot generalization with retrieval from a Covid-19 specialized datastore

Biomedical 
Scientific 
Evidence

Indexing

Related 
contextQuery

Biomedical 
Scientific 
Evidence

Additional Indexing

Covid-19 Literature

BioREADER

A 37-year-old man with no significant past medical history is rear-ended
in a motor vehicle accident. He reported significant neck pain to

emergency responders, but otherwise denies weakness, numbness or
�ngling in his extremi�es. His vitals on presenta�on to the ED are HR 90,

BP 140/80, RR 20, SpO2 98%. What is the most appropriate next step
upon presenta�on to the emergency room?

Cervical immbolization

A thymic sample from a fetus is examined. One cell
type found was double-positive for the CD4 and

CD8 receptors. What is the identity of these
double-positive cells?

Immature T-cells of the thymic cortex

Parents bring an 11-month-old baby to the clinic because the baby has
a fever of 39.0°C (102.2°F). The baby is irritated and crying constantly.
She is up to date on immuniza�ons. A complete physical examina�on
reveals no significant findings, and all laboratory tests are nega�ve.

Five days a�er resolu�on of her fever, she develops a transient
maculopapular rash. What is the most likely diagnosis?

Roseola

January 2019. A chinese 69-year-old man comes to the physician with
fever, tiredness, cough, dyspnoea, and severe respiratory issues. The
clinical picture suggests an infectious disease. What is the most likely
diagnosis?

Coronaviruses are viruses that can cause illnesses in humans,
including severe respiratory disease and even death. Corona
disease-19 virus (COVID-19) spread and caused a pandemic
that affected people all over the world. As COVID-19 cases
continue to rise globally, which are the most effective options
to prevent contamination and infection transmission?

COVID-19

Vaccinate against COVID-19

Figure 7: BIOREADER adapts and provides correct answers to unseen context-free Covid-19 questions only through
a datastore enrichment (no retraining).
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