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Abstract

Recent advances in distilling pretrained lan-
guage models have discovered that, besides
the expressiveness of knowledge, the student-
friendliness should be taken into considera-
tion to realize a truly knowledgeable teacher.
Based on a pilot study, we find that over-
parameterized teachers can produce expres-
sive yet student-unfriendly knowledge and are
thus limited in overall knowledgeableness. To
remove the parameters that result in student-
unfriendliness, we propose a sparse teacher
trick under the guidance of an overall knowl-
edgeable score for each teacher parameter. The
knowledgeable score is essentially an inter-
polation of the expressiveness and student-
friendliness scores. The aim is to ensure that
the expressive parameters are retained while
the student-unfriendly ones are removed. Ex-
tensive experiments on the GLUE benchmark
show that the proposed sparse teachers can be
dense with knowledge and lead to students with
compelling performance in comparison with a
series of competitive baselines.1

1 Introduction

Pretrained language models (LMs) built upon trans-
formers (Devlin et al., 2019; Liu et al., 2019; Raffel
et al., 2020) have achieved great successes. How-
ever, the appealing performance is usually accom-
panied with expensive computational costs and
memory footprints, which can be alleviated by
model compression (Ganesh et al., 2021). Knowl-
edge distillation (Hinton et al., 2015), as a domi-
nant method in model compression, concentrates
on transferring knowledge from a teacher of large
scale to a student of smaller scale.

Yi Yang and Chen Zhang contribute equally to this
work, and the order is determined alphabetically.

Dawei Song is the corresponding author, who is also
with The Open University, UK.

1Code is available at https://github.com/GeneZC/
StarK.
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Figure 1: Performance and confidence on RTE (Ben-
tivogli et al., 2009) of BERTbase and BERTlarge at small
sparsity levels. Task metric and output distribution vari-
ance are used as the measures of performance and con-
fidence, respectively. Distribution variance is compar-
atively equivalent to distribution negative entropy as
employed in Pereyra et al. (2017). Proof of the equiva-
lence can be found in Appendix A.

Conventional studies (Sun et al., 2019; Jiao et al.,
2020) mainly expect that the expressive knowl-
edge would be well transferred, yet largely ne-
glecting the existence of student-unfriendly knowl-
edge. Recent attempts (Zhou et al., 2022; Zhao
et al., 2022) are made to adapt the teacher to more
student-friendly knowledge and have yielded per-
formance gains. Based on these observations, we
posit that over-parameterized LMs, on the one
hand, can produce expressive knowledge due to
over-parameterization, but on the other hand can
also produce student-unfriendly knowledge due to
over-confidence (Hinton et al., 2015; Pereyra et al.,
2017). From a pilot study shown in Figure 1, we
find that LMs of large scale tend to have a good
performance and high confidence, and that both per-
formance and confidence can be degraded through

3904

https://github.com/GeneZC/StarK
https://github.com/GeneZC/StarK


randomly sparsifying a small portion of parame-
ters.2 This indicates that some parameters resulting
in student-unfriendliness can be rather removed, to
improve student-friendliness of the teacher without
sacrificing too much its expressiveness.

Motivated by this finding, we propose a sparse
teacher trick (in short, STARK ) under the guid-
ance of an overall knowledgeable score for each
teacher parameter, which accords not only with the
expressiveness but also the student-friendliness of
the parameter by interpolation. The aim is to re-
tain the expressive parameters while removing the
student-unfriendly ones. Specifically, we introduce
a three-stage procedure consisting of 1) trial distil-
lation, 2) parameter sparsification, and 3) actual
distillation. The trial distillation distills the dense
teacher to the student so that a trial student is ob-
tained. The parameter sparsification first estimates
the expressiveness score and student-friendliness
score of each teacher parameter via feedbacks re-
spectively from the teacher itself and the trial stu-
dent, and then sparsifies the teacher by removing
the parameters associated with adequately low in-
terpolated knowledgeable scores. The actual distil-
lation distills the sparsified teacher to the student
so that an actual student is obtained, where the stu-
dent is initialized in the same manner as that used
in trial distillation following the commonly-used
rewinding technique (Frankle and Carbin, 2019).

We conduct an extensive set of experiments
on the GLUE benchmark. Experimental results
demonstrate that the sparse teachers can be dense
with knowledge and lead to a remarkable perfor-
mance of students compared with a series of com-
petitive baselines.

2 Background

2.1 BERT Architecture

The BERT (Devlin et al., 2019) is composed
of several stacked encoder layers of transform-
ers (Vaswani et al., 2017). There are two blocks
in every encoder layer: a multi-head self-attention
block (MHA) and a feed-forward network block
(FFN), with a residual connection and a normaliza-
tion layer around each.

Given an l-length sequence of d-dimensional
input vectors X ∈ Rl×d, the output of the MHA
block with A independent heads can be represented

2https://pytorch.org/docs/stable/generated/
torch.nn.utils.prune.random_unstructured

as:

MHA(X)

=

A∑

i=1

Attn(X,W
(i)
Q ,W

(i)
K ,W

(i)
V )W

(i)
O ,

where the i-th head is parameterized by W
(i)
Q ,

W
(i)
K , W(i)

V ∈ Rd×dA , and W
(i)
O ∈ RdA×d. On

the other hand, the output of the FFN block is:

FFN(X) = GELU(XW1)W2,

where two fully-connected layers are parameterized
by W1 ∈ Rd×dI and W2 ∈ RdI×d respectively.

2.2 Knowledge Distillation
Knowledge distillation (Hinton et al., 2015) aims to
transfer the knowledge from a large-scale teacher
to a smaller-scale student, which is originally pro-
posed to supervise the student with the teacher
logits. With its prevalence, a tremendous amount
of work has been investigated to transfer various
knowledge from the teacher to the student (Romero
et al., 2015; Zagoruyko and Komodakis, 2017; Sun
et al., 2019; Jiao et al., 2020; Park et al., 2021b;
Li et al., 2020; Wang et al., 2020). PKD (Sun
et al., 2019) introduces a patient distillation scheme
where the student learns multiple intermediate layer
representations and logits from the teacher. More-
over, attention distributions (Sun et al., 2020; Jiao
et al., 2020; Li et al., 2020; Wang et al., 2020) and
even high-order relations (Park et al., 2021b) are
considered to further boost the performance.

Since a large capacity gap between the teacher
and the student can lead to an inferior distilla-
tion quality, TAKD (Mirzadeh et al., 2020) pro-
poses to insert teacher assistants of possible in-
termediate scales between the teacher and the
student so that the gap is drawn closer (Zhang
et al., 2022). More recently, teachers with student-
friendly architectures have exactly showed the
significance of student-friendliness (Park et al.,
2021a). MetaKD (Zhou et al., 2022) adopts meta-
learning to optimize the student-friendliness of
the teacher according to the student preference.
DKD (Zhao et al., 2022) decouples and amplifies
student-friendly knowledge in contrast to others.
Distinguished from these student-friendly teachers
that are achieved by altering teacher scales, archi-
tectures, parameters or knowledge representations,
our work, to our best knowledge, is the first one sug-
gesting that teacher parameters can produce both
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student-friendly and student-unfriendly knowledge
and aiming to find the sparse teacher with the best
student-friendliness.

2.3 Model Pruning

Model pruning is imposed to remove the less ex-
pressive parameters for model compression. Previ-
ous work applies either structured (Li et al., 2017;
Luo et al., 2017; He et al., 2017; Yang et al., 2022)
or unstructured pruning (Han et al., 2015; Park
et al., 2017; Louizos et al., 2018; Lee et al., 2019)
to transformers. Unstructured pruning focuses on
pruning parameter-level parameters based on zero-
order decisions derived from magnitudes (Gordon
et al., 2020) or first-order decisions computed from
both gradients and magnitudes (Sanh et al., 2020).
In contrast, structured pruning prunes module-
level parameters such like MHA heads (Michel
et al., 2019) and FFN layers (Prasanna et al., 2020)
guided by the expressive score (Michel et al., 2019).
It is noteworthy that while some pruning methods
leverage post-training pruning (Hou et al., 2020),
others can take advantage of training-time prun-
ing (Xia et al., 2022). Although training-time prun-
ing can result in slightly better performance, it can
consume much more time to meet a convergence.
Our work mainly exploits structured pruning to ob-
tain sparse teachers, yet also explores the use of
unstructured pruning, in a post-training style.

3 Sparse Teacher Trick

Our trick involves three stages in the student learn-
ing procedure as shown in Figure 2. First, we distil
a trial student from the dense teacher on a specific
task (trial distillation). Then, we sparsify the pa-
rameters of the dense teacher that are associated
with adequately low knowledgeable scores (param-
eter sparsification). Finally, rewinding is applied,
where the student is set to the initialization exactly
used in the trial distillation stage and is learned
from the sparse teacher during (actual distillation).

3.1 Trial and Actual Distillations

Trial distillation and actual distillation share the
same distillation regime. We employ the widely-
used logits distillation (Hinton et al., 2015) as the
distillation objective, as depicted below:

LKD = −softmax(zt/τ) log softmax(zs/τ),

LTK = −y logys,

L = LKD + α · LTK,

where zt, zs separately stand for logits of the
teacher and student, and ys, y separately stand
for prediction normalized probabilities of the stu-
dent and ground-truth one-hot probabilities. Two
subscripts KD and TK indicate distillation and task
losses respectively. τ is a temperature controlling
the smoothness the logits (Hinton et al., 2015), and
α is a term balancing two losses.

The trial distillation and actual distillation also
reuse the initialization of the student for better
convergence, which is known as rewinding tech-
nique (Frankle and Carbin, 2019).

3.2 Parameter Sparsification

For parameter sparsification, we design a knowl-
edgeable score, which is essentially an in-
terpolation of the already-proposed expressive
score (Molchanov et al., 2017) and our proposed
student-friendly score, to measure the knowledge-
ableness of each teacher parameter. Thanks to
the knowledgeable score, we can safely exclude
student-unfriendly parameters without harming ex-
pressive parameters too much.

We mainly sparsify the attention heads of MHA
blocks and intermediate neurons of FFN blocks in
the teacher. Following the literature on structured
pruning in a post-training style (Michel et al., 2019;
Hou et al., 2020), we attach a set of variables ξ(i)

and ν to the attention heads and the intermediate
neurons, to record the parameter sensitivities for a
specific task through accumulated absolute gradi-
ents, as shown below:

MHA◦(X)

=

A∑

i=1

ξ(i)Attn(X,W
(i)
Q ,W

(i)
K ,W

(i)
V )W

(i)
O ,

FFN◦(X) = GELU(XW1)diag(ν)W2,

where ξ(i) ≡ 1 and ν ≡ 1dI . We set the values of
the ξ(i) and ν to ones to ensure the functionalities
of corresponding heads and neurons are retained.

The implementation is mathematically equiva-
lent to the prevalent first-order taylor expansion
of the absolute variation between before and after
removing a module (i.e., a head or a neuron) akin
to Molchanov et al. (2017). Take the i-th attention
head as an example, its parameter sensitivity can
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Figure 2: The overview of STARK. trial distillation distils a trial student from the dense teacher on a specific
task. parameter sparsification sparsifies the parameters of the dense teacher that are associated with adequately
low knowledgeable scores. actual distillation rewinds the trial distillation by replacing the dense teacher with the
proposed sparse teacher.

be written as:

∣∣∣∣
∂L
∂ξ(i)

∣∣∣∣ =
∣∣∣∣∣

∂L
∂ξ(i)O(i)

∂ξ(i)O(i)

∂ξ(i)

∣∣∣∣∣ =
∣∣∣∣
∂L

∂O(i)
O(i)

∣∣∣∣

≈
∣∣∣∣(L0 +

∂L
∂O(i)

(O(i) − 0) + r)− L0

∣∣∣∣
= |L − L0| ,

where L stands for an arbitrary objective with abuse
of notation, and O(i) is utilized for i-th attention
head output. L0 actually means L|O(i)=0, and r
represents residuals in taylor expansion.

Note that our trick can be flexibly extended to
a training-time style (Xia et al., 2022) or unstruc-
tured pruning, which will be discussed in our ex-
periments.

Expressiveness. The expressiveness of the
teacher is tied to the expressiveness score. A higher
expressiveness score indicates that the correspond-
ing parameter has bigger contribution towards the
performance. Concretely, the expressiveness scores
of the attention heads in MHA and the intermediate
neurons in FFN can be depicted as:

P(i)
head = ED

∣∣∣∣
∂LTK

∂ξ(i)

∣∣∣∣ ,

Pneuron = ED

∣∣∣∣
∂LTK

∂diag(ν)

∣∣∣∣ ,

where D is a data distribution, and LTK is the task
loss of the teacher. E represents expectation.

Student-friendliness. Likewise, the student-
friendliness of the teacher can be described as
student-friendliness scores, which are approxi-
mated from distillation loss of the trial distillation.

Q(i)
head = ED

∣∣∣∣
∂LKD

∂ξ(i)

∣∣∣∣ ,

Qneuron = ED

∣∣∣∣
∂LKD

∂diag(ν)

∣∣∣∣ ,

where LKD is the distillation loss as computed with
the trial student from the trial distillation. Accord-
ingly, the higher the student-friendliness score is,
the more friendliness the teacher offers.

Referring to Molchanov et al. (2017), we nor-
malize the expressiveness and student-friendliness
scores with ℓ2 norm. In view that the teacher
needs to balance the expressiveness and student-
friendliness, we introduce a coefficient λ to quan-
tify the tradeoff. Therefore, the knowledgeable
score can be written in an interpolated form:

I(i)head = λ · P(i)
head + (1− λ) ·Q(i)

head,

Ineuron = λ · Pneuron + (1− λ) ·Qneuron,

Parameter sparsification sparsifies the parame-
ters in the teacher with adequately low knowledge-
able scores. The adequacy is met by enumerating
diverse sparsity levels and obtaining the one lead-
ing to the best student during the actual distillation.

4 Experiments

4.1 Data & Metrics
We evaluate our approach on GLUE bench-
mark (Wang et al., 2019) that contains a collec-
tion of NLU tasks, including CoLA (Warstadt
et al., 2019) for linguistic acceptability, SST-
2 (Socher et al., 2013) for sentiment analysis,
MRPC (Dolan and Brockett, 2005), QQP3 and
STS-B (Cer et al., 2017) for paraphrase similarity

3https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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Dataset #Train exam. #Dev exam. Max. length Metric

SST-2 67K 0.9K 64 Accuracy
MRPC 3.7K 0.4K 128 F1
STS-B 7K 1.5K 128 Spearman Correlation
QQP 364K 40K 128 F1
MNLI-m/mm 393K 20K 128 Accuracy
QNLI 105K 5.5K 128 Accuracy
RTE 2.5K 0.3K 128 Accuracy

Table 1: The statistics, maximum sequence lengths, and metrics of the GLUE benchmark.

matching, MNLI (Williams et al., 2018), QNLI (Ra-
jpurkar et al., 2016) and RTE (Dagan et al., 2005;
Haim et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009) for natural language inference.
Note that we exclude CoLA (Warstadt et al., 2019)
on which general knowledge distillation methods
transfer knowledge poorly (Xia et al., 2022).

Accuracy is adopted as the evaluation metric for
MNLI-m, MNLI-mm, QNLI, RTE and SST-2, and
F1-score is used for MRPC, QQP. The Spearman
correlation is used for STS-B. We also report the
Average results on development sets of all datasets.
We display the statistics of GLUE in Table 1.

4.2 Implementation & Baselines

We conduct experiments on an Nvidia V100.
AdamW (Loshchilov and Hutter, 2019) is applied
as the optimizer. We search the learning rate within
{1, 2, 3}×10-5 and the batch size within {16, 32}.
All training procedures are carried out within 10
epochs, with an early-stopping. We empirically
find that, when temperature τ is 2.0 and distilla-
tion balance α is 1.0, reasonable performance is
attained. The optimal sparsity is searched within
{10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90%}. Knowledgeableness tradeoff λ is set to 0.5
for acceptable performance and its impact on the
performance will be discussed later.

We finetune the original BERT4 as the teacher
and distil it to the student of a smaller scale ini-
tialized by dropping 2/3 layers or pruning 70%
parameters (with above-mentioned expressiveness
pruning) of the teacher, which is initialized from
the teacher. We first directly finetune the student as
a solid baseline (FT). Then we compare our method
to conventional baselines, such as KD (Hinton et al.,
2015), PKD (Sun et al., 2019), CKD (Park et al.,
2021b), and DynaBERT (Hou et al., 2020). Further,
we compare our method to student-friendly base-

4https://github.com/google-research/bert

lines, including TAKD that employs a reasonable
assistant (Mirzadeh et al., 2020), MetaKD (Zhou
et al., 2022) that adapts the teacher with the stu-
dent feedback, and DKD (Zhao et al., 2022) that
amplifies the student-friendly knowledge.

4.3 Main Comparison

Table 2 shows the main experimental results. We
can observe that STARK has a significant perfor-
mance gain by comparing STARK with the origi-
nal KD. Numerically, the absolute improvements
brought by STARK are 1.0% and 0.4% in term of
Average. This result implies that sparse teachers
can be dense with knowledge. On another note, this
possibly indicates a good teacher should be a mod-
est one. Moreover, STARK achieves 0.7% and 0.3%
absolute improvements when compared to the com-
petitive TAKD, illustrating that sparse teachers can
be more expressive and student-friendly, thereby
more knowledgeable to the student than teacher
assistants. It seems that student-friendly baselines
can only realize a comparable performance to the
conventional baselines. We argue this is not the
case when student-friendly baselines, say DKD,
are armed with advanced distillation objectives, say
PKD. Also note that the performances of MetaKD
and DynaBERT are lower than those originally re-
ported, as the original work either initialized the
student from a pretrained LM of the same scale or
utilized extra augmented data.

4.4 Analyses

Knowledgeableness Tradeoff To investigate the
impact of the tradeoff between expressiveness and
student-friendliness, we conduct more experiments
by varying λ values. Figure 3 illustrates the per-
formance variation along with the change of λ.
The performance generally exhibits a concave cur-
vature, which hints that the sparsification of the
teacher does face a tradeoff between expressiveness
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Method MNLI-m
Acc

MNLI-mm
Acc

MRPC
F1

QNLI
Acc

QQP
F1

RTE
Acc

STSB
SpCorr

SST-2
Acc Average

BERTbase 84.9 84.9 91.2 91.7 88.4 71.5 88.3 93.8 86.8

layer-dropped student

FT4 77.5 77.7 86.0 85.3 86.1 65.0 86.5 89.5 81.7
KD4 77.7 77.7 86.9 85.1 86.1 65.3 86.4 89.6 81.8
PKD4 77.7 77.7 87.6 85.0 86.0 65.3 86.4 89.9 82.0
CKD4 77.7 77.9 87.2 85.0 86.2 64.6 86.4 89.6 81.8

MetaKD4 \ \ 85.1 \ \ 63.9 86.5 89.5 \
DKD4 77.9 78.0 86.9 84.8 86.0 66.3 86.5 88.8 81.9
TAKD4 77.1 77.3 87.2 84.5 86.3 67.9 86.7 89.9 82.1
STARK4 78.8 79.0 87.4 85.7 86.5 67.5 87.2 90.6 82.8

§ 40% 50% 50% 50% 30% 60% 40% 50% 46%

parameter-pruned student

FT30% 82.0 82.6 88.5 89.5 87.7 69.0 87.2 91.9 84.8
KD30% 82.5 82.4 89.1 89.5 87.8 69.3 87.0 91.9 84.9
PKD30% 82.5 82.8 89.5 89.9 88.0 68.6 86.4 91.9 84.9
DynaBERT30% 81.5 82.8 87.4 89.1 86.6 68.1 87.2 90.3 84.1

DKD30% 82.4 82.4 88.4 89.6 87.7 70.4 87.0 91.9 85.0
TAKD30% 82.7 82.3 89.1 89.8 87.8 68.6 87.6 91.9 85.0
STARK30% 82.8 82.9 89.4 90.0 87.8 69.7 87.9 92.2 85.3

§ 30% 20% 30% 70% 40% 20% 30% 40% 35%

Table 2: The results of main comparison on GLUE development set. The best results on datasets are boldfaced. § is
the optimal sparsity on each dataset. *4 and *30% mean the student is initialized by dropping 2/3 layers or pruning
70% parameters of the teacher. STARK4 and STARK30% exactly mean KD4 and KD30% w/ STARK. We only report
MetaKD on small datasets due to limited resources, and DynaBERT without data augmentation due to unavailable
augmented data.

and student-friendliness, and an ideal λ should be
not too large or too small.
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Figure 3: Performance of STARK4 with different λ.

Scalability To examine the scalability of STARK
to larger teachers (i.e., BERTlarge) and smaller
students (i.e., *2), where distillation methods
can in fact suffer more severely from student-
unfriendliness, we distil from BERTlarge to an eight-
layer student with KD and STARK, and also distill

from BERTbase to an two-layer student. The re-
sults shown in Table 3 suggest that STARK works
well on large teachers and smaller students, and
the capacity gap between large teachers and small
students can be drawn closer by selecting a sparse
teacher. However, the eight-layer student distilled
from BERTlarge performs only slightly better than
the four-layer student distilled from BERTbase even
with STARK (see Table 2). With 1/3 parame-
ters, STARK4 can achieve 95% performance of
BERTbase, and such 95%/33% scale-performance
tradeoff is acceptable in real-world applications.
In contrast, the two-layer student can only get a
85%/17% tradeoff, limiting its practical usage.

Training Efficiency STARK indeed requires
more training time compared to KD due to the ex-
haustive search during the actual distillation stage.
However, it dose not introduce heavy compute
since the search mainly involves additional distilla-
tions with sparsified teachers that are smaller than
the original teacher. Table 4 indicates that actual
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Method MNLI-m
Acc

MNLI-mm
Acc

MRPC
F1

QNLI
Acc

QQP
Acc

RTE
Acc

STSB
SpCorr

SST-2
Acc Average

BERTlarge 86.6 86.1 92.3 92.2 89.0 75.5 89.9 93.9 88.2

KD8 78.9 79.5 84.9 86.1 86.4 63.9 85.6 90.5 82.0
STARK8 79.4 80.5 85.0 86.3 87.0 65.7 88.7 90.9 82.9

§ 30% 20% 90% 10% 30% 60% 20% 20% 35%

BERTbase 84.9 84.9 91.2 91.7 88.4 71.5 88.3 93.8 86.8

KD2 73.2 72.8 82.9 78.9 83.5 58.5 46.5 86.8 72.9
STARK2 73.9 74.3 83.1 80.4 83.8 57.8 48.6 88.1 73.7

§ 50% 50% 30% 50% 30% 40% 30% 40% 40%

Table 3: The results of scalability to larger teachers and smaller students.

Stage Train time on MNLI

trial distillation ∼2.5h
actual distillation ∼7h

Table 4: The training time consumed during trial distil-
lation and actual distillation stages.

distillation consumes not that much more training
time than trial distillation. Hence, we believe the
tradeoff between training time and student perfor-
mance, along with training efficiency, is acceptable.

Pluggability We also show STARK is pluggable
to any distillation methods since it is orthogonal to
existing paradigms. We hence plug STARK to our
baselines KD, PKD, and CKD to distil a four-layer
student from BERTbase. As in Table 5, we observe
that STARK has universal pluggability to regarded
baselines, averagely improving the absolute perfor-
mance by 0.9%.

Unstructured Pruning As aforementioned,
STARK can be flexibly applied with unstructured
pruning. For unstructured pruning, we derive the
expressiveness and student-friendliness scores
in the same way as that used in our structured
STARK, except the recording variables are attached
to parameters rather than modules like heads.
The results in Table 6 verify that STARK with
unstructured pruning is slightly worse that STARK
with structured pruning, yet it still outperforms KD.
Thus, STARK is capable of unstructured pruning.

Automatic STARK An issue with STARK is that
the optimal sparsity is obtained by exhaustively
enumerating all candidate sparsity levels, leading
to some level of training-inefficiency. To address
it, we explore an alternative algorithm to get the

optimal sparsity so that STARK is enabled with
a pursued automatic property. To this end, an at-
tentive solution is proposed based on a surprising
observation that a sparse teacher under the guid-
ance of randomness (denoted as STARK-RAND4)
can achieve a promising Average score of 82.5%,
whereas the scores for KD4 and STARK4 are cor-
respondingly 81.8% and 82.8%. This weird phe-
nomenon drives us to put forward a proposition.

Assumption 1. Both expressiveness and student-
friendliness scores are densely located at their
clusters, where the cluster center of student-
friendliness scores owns a smaller magnitude than
that of expressiveness scores.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Student-friendliness Score
Expressiveness Score

Figure 4: Density of expressiveness and student-
friendliness scores of BERTbase attention heads fine-
tuned on MRPC (Dolan and Brockett, 2005). Interme-
diate neurons share similar characteristics, which are
supplied in Appendix B.

The assumption is intuitively verified in Figure 4.
When random pruning is conducted, firstly the
probability of sparsifying a student-unfriendly pa-
rameter is high, and secondly the joint probability
of sparsifying a student-unfriendly and inexpres-
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Method MNLI-m
Acc

MNLI-mm
Acc

MRPC
F1

QNLI
Acc

QQP
Acc

RTE
Acc

STSB
SpCorr

SST-2
Acc Average

BERTbase 84.9 84.9 91.2 91.7 88.4 71.5 88.3 93.8 86.8

KD4 77.7 77.7 86.9 85.1 86.1 65.3 86.4 89.6 81.8
w/ STARK 78.8 79.0 87.4 85.7 86.5 67.5 87.2 90.6 82.8

PKD4 77.7 77.7 87.6 85.0 86.0 65.3 86.4 89.9 82.0
w/ STARK 78.8 79.1 87.7 85.9 86.6 66.8 87.2 90.1 82.8

CKD4 77.7 77.9 87.2 85.0 86.2 64.6 86.4 89.6 81.8
w/ STARK 78.8 79.0 87.6 86.4 86.5 66.4 87.2 90.4 82.8

Table 5: The results of pluggability to baselines.

Method MNLI-m
Acc

MNLI-mm
Acc

MRPC
F1

QNLI
Acc

QQP
Acc

RTE
Acc

STSB
SpCorr

SST-2
Acc Average

BERTbase 84.9 84.9 91.2 91.7 88.4 71.5 88.3 93.8 86.8

KD4 77.7 77.7 86.9 85.1 86.1 65.3 86.4 89.6 81.8
STARK4 78.8 79.0 87.4 85.7 86.5 67.5 87.2 90.6 82.8
STARK4

* 79.0 79.0 87.4 85.3 86.8 66.1 87.3 89.8 82.6

Table 6: The results of compatibility with unstructured pruning. * indicates that unstructured pruning is otherwise
used.

sive parameter is higher than that of sparsifying a
student-unfriendly yet expressive parameter. There-
fore, the performance of STARK-RAND is guar-
anteed with certain probability by Assumption 1.
However, we argue STARK is always a more robust
choice than STARK-RAND.
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Figure 5: Density and cumulative density of knowledge-
ableness scores of BERTbase attention heads finetuned
on MRPC (Dolan and Brockett, 2005). Intermediate
neurons share similar characteristics, which are supplied
in Appendix B. Full results on all tasks are supplied in
Appendix C.

A follow-up observation is that STARK-RAND4
expects a smaller average sparsity (25%) than
STARK4 does (46%). It is easy to understand that

the more parameters are sparsified, the lower prob-
ability above the performance guarantee will hold,
though. The evident phenomenon inspires us to
make another assumption.

Assumption 2. An optimal sparsity is positively
correlated to the first density peak of a sparsifica-
tion sequence.

The assumption is illustrated in Figure 5. Since
STARK-RAND sparsifies parameters at random, it
will have a small optimal sparsity as a consequence
of meeting the first density peak very early. For
STARK enjoys a sparsification sequence with only
one density peak, its optimal sparsity can be au-
tomatically estimated (denoted as STARK-AUTO)
through Assumption 2. Experimental results can
be found in Table 7, where STARK-AUTO approxi-
mates STARK in term of the Average metric. Never-
theless, we argue it is the last to use STARK-AUTO

otherwise for an extremely low practical compute
as the performance can suffer a subtle drop.

5 Conclusions

In this paper, we validate that sparse teachers can
be dense with knowledge under the guidance of
our designed knowledgeable score. The idea of
the sparse teacher is motivated from a pilot study,
and the knowledgeable score is carefully crafted
to make sure that the student-unfriendly knowl-
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Method MNLI-m
Acc

MNLI-mm
Acc

MRPC
F1

QNLI
Acc

QQP
Acc

RTE
Acc

STSB
SpCorr

SST-2
Acc Average

STARK4 78.8 79.0 87.4 85.7 86.5 67.5 87.2 90.6 82.8
§ 40% 50% 50% 50% 30% 60% 40% 50% 46%

STARK-AUTO4 78.1 79.0 86.6 85.7 86.0 67.5 87.2 90.0 82.6
§ 47% 51% 35% 46% 44% 42% 38% 38% 43%

Table 7: The results of STARK-AUTO.

edge can be reduced without hurting too much the
expressive knowledge. Extensive experimental re-
sults on the GLUE benchmark support our claim
to a large degree.

Limitations

STARK can be further explored under two addi-
tional settings: 1) in a task-agnostic setting (e.g.,
MiniLM) and 2) on large LMs (e.g., BERTlarge).
Moreover, our attentive automatic solution for
STARK can be enhanced so that its performance
can at least match the original performance.
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A Comparative Equivalence of
Distribution Variance and Negative
Entropy

Theorem 1. For any two distributions y and y′,
the negative entropy difference between them can
be approximated by their variance difference.

Proof.

−H(y)− (−H(y′))

=
∑
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yi logyi −
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i logy
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i − ȳ′)2)

∝
∑

i

(yi − ȳ)2 −
∑

i

(y′
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= V(y)− V(y′).

Corollary 1. Distribution variance, when taken as
the measure of confidence, is comparatively equiv-
alent to distribution negative entropy.
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Figure 6: Density of expressiveness and student-
friendliness scores of BERTbase intermediate neurons
finetuned on MRPC (Dolan and Brockett, 2005).
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Figure 7: Density and cumulative density of knowl-
edgeableness scores of BERTbase intermediate neurons
finetuned on MRPC (Dolan and Brockett, 2005).
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Figure 8: Density and cumulative density of knowledgeableness scores of BERTbase attention heads finetuned on
GLUE.
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