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Abstract

In education applications, knowledge tracing
refers to the problem of estimating students’
time-varying concept/skill mastery level from
their past responses to questions and predicting
their future performance. One key limitation
of most existing knowledge tracing methods is
that they treat student responses to questions
as binary-valued, i.e., whether they are cor-
rect or incorrect. Response correctness analy-
sis/prediction ignores important information on
student knowledge contained in the exact con-
tent of the responses, especially for open-ended
questions. In this paper, we conduct the first
exploration into open-ended knowledge tracing
(OKT) by studying the new task of predicting
students’ exact open-ended responses to ques-
tions. Our work is grounded in the domain of
computer science education with programming
questions. We develop an initial solution to
the OKT problem, a student knowledge-guided
code generation approach, that combines pro-
gram synthesis methods using language models
with student knowledge tracing methods. We
also conduct a series of quantitative and quali-
tative experiments on a real-world student code
dataset to validate OKT and demonstrate its
promise in educational applications.

1 Introduction

Knowledge tracing (KT) (Corbett and Anderson,
1994) refers to the problem of estimating student
mastery of concepts/skills/knowledge components
from their responses to questions and using these
estimates to predict their future performance. KT
methods play a key role in many of today’s large-
scale online learning platforms to automatically
estimate the knowledge levels of a large number
of students and provide each of them with person-
alized feedback and recommendation, leading to
improved learning outcomes (Ritter et al., 2007).
KT methods consist of two essential components.

*The first two authors contributed equally.

First, a knowledge estimation (KE) component, i.e.,

ht+1 = KE((p1,x1), . . . , (pm,xt)), (1)

estimates a student’s current knowledge state ht+1

using questions (p) and responses (x) from previ-
ous (discrete) time steps for this student. Second, a
response prediction (RP) component predicts the
student’s response to the next question (or future
questions), i.e., xt+1 ∼ RP(ht+1,pt+1). Section 4
contains a detailed overview of existing KT meth-
ods and how the question, responses, and knowl-
edge state variables are represented.

One key limitation of almost all existing KT
methods is that they only analyze and predict
binary-valued student responses to questions, i.e.,
the correctness of the response. That is, the RP is
typically a simple binary classifier. As a result, one
can broadly apply KT methods to any question as
long as student responses are graded. However, this
approach loses important information regarding stu-
dent mastery, since it does not make use of the con-
tent of questions and student responses, especially
for open-ended questions. Past work has shown
that students’ open-ended responses to such ques-
tions contain useful information on their knowledge
states, e.g., having a “buggy rule” (Brown and Bur-
ton, 1978), exhibiting misconceptions (Feldman
et al., 2018; Feng et al., 2019; Smith III et al., 1994),
or a general lack of knowledge (Anderson and Jef-
fries, 1985); this information is highly salient for
instructors but cannot be captured by response cor-
rectness alone.

Generative language models such as GPT
(Brown et al., 2020) provide an opportunity to
fully exploit the rich information contained in open-
ended student responses in various domains for the
purposes of KT. In this paper, we focus on com-
puter science education, where short programming
questions require students to write code chunks that
satisfy the question’s requirements. The program
synthesis capabilities of variants of pre-trained neu-
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ral language models such as CodeX (Chen et al.,
2021) enable the generation of short chunks of
code from natural language instructions, which we
can leverage for open-ended response prediction.
However, two key challenges make this task diffi-
cult: First, as students learn through practice, their
knowledge on different programming concepts is
dynamic; students can often learn and correct their
errors given instructor-provided feedback or even
error messages generated by the compiler. There-
fore, we need new KE models that can effectively
trace time-varying student knowledge throughout
their learning process. Second, student-generated
code is often incorrect and exhibits various errors;
there may also exist multiple correct responses that
capture different lines of thinking among students.
This intricacy is not covered by program synthesis
models, since their goal is to generate correct code
and they are usually trained on code written by
skilled programmers. Therefore, we need new RP
models that can generate student-written (possibly
erroneous) code that reflects their (often imperfect)
knowledge of programming concepts.

1.1 Contributions

In this paper, we present the first attempt at ana-
lyzing and predicting exact, open-ended student
responses, specifically for programming questions
in computer science education. Our contributions
can be summarized as follows:

• We define the open-ended knowledge trac-
ing (OKT) framework, a novel KT frame-
work for open-ended student responses, and
a new KT task, exact student response pre-
diction. We ground OKT in the domain of
computer science education for student code
submission analysis and prediction but em-
phasize that OKT can be broadly applicable
to a wide range of subjects that involve open-
ended questions.

• We develop an initial solution to the OKT task,
a knowledge-guided code generation method.
Our method combines KE components in ex-
isting binary-valued KT methods with code
generation models, casting the OKT task as
a dynamic controllable generation problem
where the control, i.e., time-varying student
knowledge states, are also learned.

*Find our code at https://github.com/lucy66666/
OKT

• Through extensive experiments on a real-
world student code dataset, we explore the
effectiveness of OKT in reflecting variations
of student code and especially errors in its
knowledge state estimates. We explore the ef-
fectiveness of our solution in making reason-
ably accurate predictions of student-submitted
code. We also discuss how these OKT capa-
bilities can help computer science instructors
and outline several new research directions.

2 OKT for Computer Science Education

We now define the OKT framework and detail spe-
cific model design choices in the domain of com-
puter science education, where we focus on ana-
lyzing students’ code submissions to programming
questions. Figure 1 illustrates the three key compo-
nents of OKT: knowledge representation (KR), KE,
and response generation (RG), the last of which
is the key difference between OKT and existing
KT methods. Our key technical challenges are (i)
how to represent programming questions and stu-
dent code submissions (KR, Section 2.1) and use
them to estimate student knowledge states (KE,
Section 2.2); (ii) how to combine knowledge states
with the question prompt to generate student code
(RG, Section 2.3); and (iii) how to efficiently per-
form optimization to train the OKT model compo-
nents (Section 2.4).

2.1 Knowledge Representation (KR)

The purpose of the KR component is to con-
vert the prompt/statement of questions that stu-
dents respond to and their corresponding code
submissions to continuous representations. Our
KR component is significantly different from ex-
isting binary-valued KT methods that ignore ques-
tion/response content and one-hot encode them us-
ing question/concept IDs and response correctness.
Question Representation: We adopt the popular
GPT-2 model1 (Radford et al., 2019) for prompt
representation: Given a question prompt p, GPT-
2 tokenizes it into a sequence of M word tokens,
where each token has an embedding p̄m ∈ RK .
For GPT-2, the dimension of these embeddings is
K = 768. This procedure produces a sequence
of token embeddings {p̄1, p̄2, . . . , p̄M}. We then
average the embeddings of each prompt token to

1One can use any language model; we choose GPT-2
since our RG component for student code is also built on
GPT-2.
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Figure 1: Open-ended knowledge tracing (OKT) block
diagram. We update the student’s current knowledge
state ht+1 using the last question pt and actual student
code xt. We then combine it with the next question
statement pt+1 to generate our prediction of the actual
student code x̂t+1.

get our prompt embedding q =
∑M

m=1
p̄m

M , where
the average is computed element-wise on vectors.
Code Representation: In order to preserve both
semantic and syntactic properties of programming
code in embedding vectors, we utilize ASTNN
(Zhang et al., 2019), a popular tool for code rep-
resentation. We first parse student-submitted code
into an abstract syntax tree (AST). We then split
each full AST into a sequence of non-overlapping
statement trees (ST-trees) through preorder traver-
sal. Each ST-tree contains a statement node as
the root and its corresponding AST nodes as chil-
dren. We then pass the ST-trees through a recurrent
statement encoder to obtain embedding vectors and
use a bidirectional gated recurrent unit network
(Bahdanau et al., 2014) to capture the naturalness
of the statements and further enhance the capabil-
ity of the recurrent layer. Eventually, we apply a
max-pooling layer to capture the most important
semantics for each dimension of the embedding.
We denote this entire process as c = ASTNN(x)
where x is student-submitted code and c is its code

embedding vector, which we use as input to the
KE component. We refer readers to (Zhang et al.,
2019) for more details on ASTNN.

2.2 Knowledge Estimation (KE)

The purpose of the KE component is to turn a
student’s past question/code information into es-
timates of their current knowledge state. Follow-
ing DKT (Piech et al., 2015a), a popular exist-
ing KT method, we use a long short-term mem-
ory (LSTM) model (Hochreiter and Schmidhuber,
1997) to update a student’s current knowledge state,
ht+1, given their previous response at the last time
step. We use the output of the KR component, i.e.,
question prompt and code embeddings, as the input
to the KE component as ht+1 = LSTM(ht,qt, ct)
and use it as input to the RG component to generate
predicted student code submissions. In principle,
we can use any existing binary-valued KT method
as OKT’s KE component. We validate in our ex-
periments (Section 3) that OKT is compatible with
two other popular KT methods, DKVMN (Zhang
et al., 2017) and AKT (Ghosh et al., 2020), that are
based on external memory and attention networks.

2.3 Response Generation (RG)

The purpose of RG, OKT’s core component, is
to predict open-ended responses, i.e., generate
predicted student code, which makes OKT signif-
icantly different from existing binary-valued KT
methods with binary classifiers of response cor-
rectness. We fine-tune a base GPT-2 generative
model into a text-to-code model PΘ with parame-
ter Θ on code data (see Section 2.5 for details). We
choose language models over other code genera-
tion approaches since their text-to-code generation
pipeline suits OKT well.

Our key technical challenge is how to use knowl-
edge states as control in the code generation
model to guide personalized code predictions for
each student. Given the current question prompt,
pt+1, and its sequence of M token embeddings
{p̄1, p̄2, . . . , p̄M}, where p̄m ∈ RK (we drop the
time step index t in prompt tokens for clarity), our
approach for injecting student knowledge states
into the code generation model is to replace raw
token embeddings with knowledge-guided embed-
dings using an alignment function, i.e., pm =
f(p̄m,ht+1) for m = 1, . . . ,M . Therefore, the
GPT-2 input embeddings are

{p1, . . . ,pM}={f(p̄1,ht+1), . . . , f(p̄M ,ht+1)}.
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Intuitively, this (possibly learnable) alignment func-
tion aligns the space of knowledge states with
the space of textual embeddings for the question
prompt. Thus, knowledge states are responsible
for predicting different code submitted to the same
programming question by different students.

We explore four different alignment functions to
combine knowledge states with question prompt
token embeddings:

• Addition, i.e., pm = p̄m + ht+1.

• Averaging, i.e., pm = (p̄m + ht+1)/2.

• Weighted addition, i.e., using a learnable
weight for knowledge states, pm = p̄m +
α · ht+1.

• Linear combination, i.e., applying a learnable
affine transformation to the knowledge states
before adding it to token embeddings, pm =
p̄m +Aht+1 + b.

The latter two functions are learnable with parame-
ters α ∈ R, A ∈ RD×K , and b ∈ RK . Therefore,
the predicted student code (with N code tokens),
x = {x1, x2, . . . , xN}, is generated in an autore-
gressive manner by the RP component given the
knowledge-guided question prompt token embed-
dings {p1, . . . ,pM}.

2.4 Optimization
During the training process, we jointly optimize the
parameters of the KE and RG components of OKT;
in essense, we are learning both a controllable gen-
eration model for student responses and the control
itself, which is the student’s time-varying knowl-
edge state. We keep the knowledge representation
encoders E1 and E2 fixed. The objective for one
student code submission is given by

Loss =
∑N

n=1− logPΘ

(
xn| {p1, . . . ,pM},

{xn′}n−1
n′=1

)
, (2)

where Θ denotes the set of parameters in the RP
component, including both the GPT-2 text-to-code
model parameters and learnable parameters in the
alignment function f(·). The final training objec-
tive is the sum of this loss over all code submissions
made by all students.

We also design an efficient training setup for
OKT. For existing neural network-based KT meth-
ods, at each training step, we use a batch of student
(question, response) sequences to compute the cor-
rectness prediction loss across all time steps and

all students in the batch. We cannot use this train-
ing method since OKT’s loss for one student is the
sum of code prediction losses over all time steps,
whereas the loss at each time step is itself the sum
of a sequence of cross entropy losses for code to-
ken predictions. As a result, if we use the training
setup for existing KT methods, at each training
step, we need to call the response generator for
a total of T × B times where T is the number
of time steps and B is the batch size, which will
significantly slow down training. Instead of batch-
ing over students, we use a batch of (student, time
step) pairs. Then, at each training step, we first
apply the knowledge update component in OKT to
compute the knowledge states for students in the
batch, extract the knowledge states corresponding
to the sampled time steps in the batch, and then
feed them into the response generator. This setup
enables efficient training for OKT.

2.5 Pre-training Models

Before training OKT, we pre-train its KE compo-
nent using the binary-valued correctness predic-
tion loss with question and code embeddings as in-
put, following (Mao et al., 2021; Zhu et al., 2021).
Since we cannot directly use CodeX (Chen et al.,
2021) due to our need to adjust the input embed-
dings with student knowledge states, we pre-train
a text-to-code pipeline by fine-tuning a standard
GPT-2 model on the Funcom dataset (LeClair and
McMillan, 2019), which contains 2.1 million Java
code snippets and their textual descriptions.

3 Experiments

We now present a series of experiments to explore
the capabilities of OKT. We first introduce the
dataset, various quantitative metrics on which we
evaluate various methods, and detail quantitative
results. We then qualitatively illustrate that OKT
(i) learns a meaningful latent student knowledge
space and (ii) generates predicted student code that
capture their coding patterns and error types.
Dataset: We use the dataset from the CSEDM
Data Challenge, henceforth referred to as the
CSEDM dataset.2 To our knowledge, this is the
only college-level, publicly-available dataset with
students’ actual code submissions; a concurrent
work (Singla and Theodoropoulos, 2022) uses the

2Challenge: https://sites.google.com/ncsu.edu/
csedm-dc-2021/. The dataset is called “CodeWorkout data
Spring 2019” in Datashop (pslcdatashop.web.cmu.edu).
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Hour of Code dataset, which has some similari-
ties with this dataset but only has two questions.
The CSEDM dataset contains 246 college students’
46,825 full submissions on each of the 50 pro-
gramming questions over the course of an entire
semester. The dataset contains rich textual informa-
tion on question prompt and students code submis-
sions as well as other relevant metadata such as the
programming concepts involved in each question
and all error messages returned by the compiler.
See Section A in the Supplementary Material for
detailed data statistics and preprocessing steps.

Evaluation Metrics: In the context of predicting
students code submissions, we need a variety of
different metrics to fully understand the effective-
ness of OKT. We thus use two types of evaluation
metrics. First, we need metrics that can measure
OKT’s ability to predict student code on the test set
after training. For this purpose, we use two metrics,
including CodeBLEU (Ren et al., 2020), a variant
of the classic BLEU metric adapted to code that
measures the similarity between predicted code and
actual student code. The other metric is the aver-
age test loss across code tokens computed using
OKT methods with the lowest validation loss. Sec-
ond, we need metrics that can measure the diversity
of predicted student code since we do not want
OKT to simply memorize frequent student code
in the training data. For this purpose, we use the
dist-N metric (Li et al., 2016) that computes the
ratio of unique N -grams in the predictions over all
N -grams. We choose N = 1 in this work since
uni-gram setting is more compatible with the lim-
ited coding vocabulary size. We note that predict-
ing whether a student code submission passes test
cases is another important task for OKT evaluation;
however, since test cases are not included in the
CSEDM dataset, we cannot conduct this evaluation
and leave it for future work.

Methods for Comparison: Since exact student
code prediction is a novel task, there are no exist-
ing baselines that we can compare against. We thus
compare among variants of OKT to demonstrate
that it is highly flexible and extensible. First, we
test three different existing binary-valued KT meth-
ods, DKT, DKVMN, and AKT, as the KE compo-
nent; one can apply any existing binary-valued KT
method as the KE component that is suitable. As a
strong baseline, we also test a version of OKT with-
out KE and use the question prompt and code em-
beddings from the previous time step as additional

setting KT model CodeBLEU ↑ Dist-1 ↑ Test Loss ↓

first submission
DKT 0.690 0.422 0.178
AKT 0.581 0.401 0.193
DKVMN 0.580 0.388 0.196
None 0.518 0.426 0.215

all submissions
DKT 0.726 0.403 0.111
AKT 0.632 0.396 0.125
DKVMN 0.570 0.399 0.135
None 0.471 0.385 0.151

Table 1: OKT results comparing different KT models as the
KE component of OKT. AKT slightly outperforms DKVMN
while DKT performs best under both settings.

input to the text-to-code RG component. Second,
we compare different alignment functions between
the knowledge and question prompt embedding
spaces listed in Section 2.3. Third, we compare sev-
eral training settings, including pre-training the KE
and RG components and using a multi-task train-
ing objective by adding the binary-valued response
correctness prediction loss to the code generation
loss in Eq. 2, following (An et al., 2022).

Experimental Setup: Following typical settings
in the KT literature, our goal is to predict the code
a student submits to a question at the next time
step t, xt+1, given their question prompts and
code submissions in all previous time steps, i.e.,
(p1,x1), . . . , (pt,xt). We use two experimental
settings in our experiments that capture different
aspects of OKT: First, we analyze only the first sub-
mission to each question, ignoring later attempts.
In this setting, knowledge states mostly capture a
student’s overall mastery of programming concepts.
Second, we analyze all code submissions from each
student, including multiple consecutive attempts at
the same question. In this setting, knowledge states
capture not only a student’s programming concept
mastery but also their debugging skills. We choose
not to study only the final attempt since most stu-
dents were able to submit correct code in the end.
See Section B of the Supplementary Material for
detailed experimental settings. Additionally, we
perform another experiment on predicting student
code submissions to new questions that are unseen
during training; see Section 3.4 for details.

3.1 Quantitative Results
Table 1 shows the quantitative results evaluating
OKT on the CSEDM dataset comparing DKT,
AKT, and DKVMN as the KE component, aver-
aged over all students and time steps. Overall, we
observe that our initial OKT method performs rea-
sonably well; as a reference, the CodeBLEU value
for the examples in Table 3 are 0.8 and 0.65, respec-
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tively. Using existing binary-valued KT methods
as the KE component significantly outperforms
the baseline that relies on a standard text-to-code
generation pipeline without this component, which
suggests that KT is a key component in student-
generated code prediction. Across the two experi-
mental settings, analyzing first submissions leads
to higher test loss and lower CodeBLEU score than
analyzing all submissions, while performance on
the Dist-1 metric does not vary much. These re-
sults can be explained by our observation that stu-
dents rarely make substantial changes to their code
across different submissions, often making minor
tweaks; therefore, predicting a later code submis-
sion given the previous submissions becomes an
easier task than predicting the first submission to
a new question. Since these metrics are computed
over all questions, we break down OKT’s perfor-
mance across questions in Section C of the Sup-
plementary Material; performance varies signifi-
cantly across questions (between 0.55 and 0.85 on
CodeBLEU). This observation suggests that there
is considerable room for improvement on the task
of exact student code prediction since they have
many nuanced variations, which we further illus-
trate in the qualitative experiments below.

We also see that using using DKT as the KE
component of OKT significantly outperforms using
AKT and DKVMN on all metrics in both experi-
mental settings, while using AKT also outperforms
DKVMN. These results suggest that DKT is more
effective than AKT or DKVMN as the KE com-
ponent of OKT, which also reported in (Zhu et al.,
2021) for standard binary-valued KT on program-
ming exercises, likely because DKT relies on a sim-
ple and robust LSTM model. In contrast, AKT and
DKVMN have complicated model architectures
and may require further parameter tuning and/or
more training data in the context of OKT; typical
binary-valued KT datasets are much larger in scale
(up to ∼10M responses (Choi et al., 2020)).

Table 2 shows the quantitative results compar-
ing different OKT designs and training settings
with DKT as the KE component on first submis-
sions. First, we see that aligning the knowledge
state space with the prompt token embedding space
with a learnable linear function is the most effective
(with p-value of 0.01 for CodeBLEU), although
other alignment functions are only slightly worse.
Developing better alignment functions may further
improve performance, which we leave for future

CodeBLEU ↑ Dist-1 ↑ Test Loss ↓

Alignment

add 0.681 ± 0.003 0.423 ± 0.004 0.179 ± 0.006
average 0.680 ± 0.003 0.425 ± 0.003 0.179 ± 0.006
weight 0.684 ± 0.008 0.422 ± 0.004 0.182 ± 0.007
linear 0.696 ± 0.005 0.425 ± 0.004 0.178 ± 0.006

Pre-train LSTM yes 0.681 ± 0.003 0.423 ± 0.004 0.179 ± 0.006
no 0.678 ± 0.003 0.425 ± 0.002 0.180 ± 0.004

Pre-train GPT yes 0.702 ± 0.004 0.423 ± 0.003 0.174 ± 0.003
no 0.678 ± 0.005 0.415 ± 0.004 0.219 ± 0.006

Multi-task yes 0.706 ± 0.002 0.423 ± 0.002 0.362 ± 0.008
no 0.664 ± 0.019 0.426 ± 0.008 0.198 ± 0.009

Table 2: Linearly combining knowledge states and the prompt
token embeddings, pre-training both KE and RG components,
and using a multi-task loss lead to best OKT performance.

work. Second, we see that pre-training the KE
and RG components result in limited improvement
in OKT’s performance. This result suggests that
there are significant differences between (i) the na-
ture of the binary-valued KT task and OKT’s exact
code prediction task and (ii) code written by pro-
fessionals and by students who are still learning
programming. Third, we see that a multi-task OKT
training objective improves both code prediction
performance and model robustness in our experi-
ments. (with p-value of 0.018) This result suggests
that multi-task learning with multiple objectives
helps us learn better representations of the data,
i.e., student knowledge state representations, in
OKT.

3.2 Interpreting Learned Knowledge States
We now use a case study to show that the knowl-
edge state space learned by OKT captures the vari-
ation in the content and structure of student code.
Figure 2 visualizes the learned knowledge states,
projected to a 2-D space via t-SNE (van der Maaten
and Hinton, 2008), for the following question:

Write a function in Java that implements the

following logic: Your cell phone rings. Return

true if you should answer it. Normally you answer,

except in the morning you only answer if it is

your mom calling. In all cases, if you are asleep,

you do not answer.

The right part of Figure 2 shows the knowledge
states of all students when they respond to this ques-
tion, where each dot represents the submission at a
time step (a student may have multiple submissions
at multiple time steps) and each color represents a
student. We see that there are distinct clusters in
these knowledge states that correspond to different
student code. To further demonstrate this observa-
tion, we zoom in into two areas in the knowledge
state space, shown in the two small plots on the
left part of Figure 2 together with the correspond-
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ing actual student code submissions. We clearly
see that the codes within each cluster share similar
structural and syntactic properties and that codes
from different clusters differ significantly. See Sec-
tion D for a case study on how OKT’s knowledge
state space captures student code revisions across
multiple submissions. These results suggest that
the OKT-learned knowledge state space aligns with
actual student code submissions.

In Figure 3, we compare the learned knowledge
state space for OKT against that for existing KT
methods. We see that binary-valued DKT learns
knowledge states that belong to a few highly over-
lapping groups with little difference within each
group. The KT method in (Mao et al., 2021) that
uses code embeddings only as input to binary-
valued KT learns a slightly more disentangled
knowledge state space. In contrast, OKT’s knowl-
edge state space is highly informative with obvi-
ous clusters that correspond to actual student code.
Overall, these results demonstrate that the knowl-
edge state space learned by OKT captures impor-
tant aspects of programming knowledge for each
student. Therefore, OKT has potential in student
and instructor-facing tasks such as hint generation
and predicting when a student gets stuck and needs
help. We can use OKT in a human-in-the-loop pro-
cess for student modeling: First, OKT can identify
clusters among student responses in an unsuper-
vised way. Then, instructors and domain experts
can supervise OKT by providing fine-grained con-
cept or error labels on these clusters to further in-
terpret the latent knowledge state space.

3.3 Knowledge-aware Prediction of Students’
Code Submissions

We now use a case study to demonstrate OKT’s
ability to predict student-submitted code. Similar
to most existing text-to-code models (Iyer et al.,
2018; Lu et al., 2021), exact prediction of the ac-
tual student code is very difficult. However, OKT
can still be effective in capturing coding styles and
even predicting some error types with the help of
the learned knowledge states. Table 3 shows the
predicted code vs. actual student code for two ques-
tions. For the top example, we see that our gen-
eration model is able to predict the student’s code
structure, capturing their use of for loops (instead
of another popular choice of while loops). In the
bottom example, we see that while code predic-
tion for this question is less accurate than for the

predicted code actual student code

Table 3: OKT generated code vs. actual student code
for two questions (differences highlighted in red boxes).

first question, OKT can still capture the main logic
and most important parts of the student’s actual
code. These examples show that OKT can cap-
ture both code structure and knowledge gaps on
programming concepts for individual students and
even predict their possible errors; this capability
has much more potential for student and instructor
support than standard binary-valued KT methods.

3.4 Generalizing to Unseen Questions
One important limitation of binary-valued KT
methods is that they cannot really generalize to
new questions; if a question is not present during
training, these methods can only predict a student’s
probability of responding to it correctly using its
concept labels (which are often unavailable). On
the contrary, OKT’s KR and RG components uti-
lize exact question and response content, enabling
it to generalize to new questions and predict ex-
act responses to these questions and specific errors.
We conduct a preliminary experiment to demon-
strate this advantage of OKT: we first remove one
question from the dataset (say it occurs at time step
t for a student) and then predict the response to this
question using the estimated knowledge state ht.
We explore two ways to estimate ht: i) averaging
the knowledge states from neighboring time steps,
i.e., ht−1 and ht+1, and ii) using the knowledge
state from the previous time step, i.e., ht−1. As a
baseline, we also use randomly generated knowl-
edge state vectors to predict the response.

Table 4 shows the average results over removing
each question, using DKT on first submissions. We
use a smaller amount of epochs for this experiment
(10 compared to 25 epochs from Table 1), which
explains some of the significant drop in CodeBLEU
scores. Nevertheless, OKT still significantly out-
performs the baseline approach with no KE compo-
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Figure 2: Visualization of latent student knowledge states (best viewed in color; each color corresponds to one
student) and corresponding actual code. Knowledge states reflect the variation in student-generated code.

Figure 3: Comparison of the knowledge state spaces
learned by DKT (left), DKT with code embeddings
as input (Mao et al., 2021) (middle), and OKT (right).
OKT learns a knowledge space with distinct clusters
that capture variations in actual student code.

Method CodeBLEU ↑ Dist-1 ↑
Previous 0.484 0.431
Average 0.504 0.419
Random 0.328 0.452

Table 4: OKT’s generalization performance to new ques-
tions that are unseen during training, using knowledge
states from the previous time step, neighboring time
steps, and random values.

nent, with averaging knowledge states from neigh-
boring time steps slightly outperforming using the
previous time step. Figure 4 visualizes predicted
code vs. actual student code embeddings for an
unseen question with an average CodeBLEU value
of 0.538 over all students. Blue dots correspond to
actual student responses and green dots represent
RG predicted responses in 2-D, while red dots cor-
respond to pairs of predicted and actual code that
are highly similar (76 out of 225). We clearly see
that OKT is able to capture the majority of student
code variations on this new question from their re-
sponses to other questions and left no parts of the

code embedding space unaccounted for. OKT’s
capability of generalizing to new questions can po-
tentially be used to provide feedback to teachers
plan homeworks, by predicting typical errors in
programming questions that students in their class
may exhibit, before assigning them.

Figure 4: Visualization of actual student code (blue)
compared to predicted code (green) for a new question
unseen during training. Code pairs that are close in the
code embedding space are connected (red).

4 Related Work

Knowledge Tracing: Existing methods for binary-
valued KT can be broadly grouped by how they
represent the student knowledge level variable, h,
in Eq. 1. For example, classic Bayesian knowledge
tracing methods (Khajah et al., 2014; Pardos and
Heffernan, 2010; Yudelson et al., 2013) treat stu-
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dent knowledge as a binary-valued latent variable.
The KE and RP components are noisy binary chan-
nels, resulting in excellent interpretability of the
model parameters. Factor analysis-based methods
(Cen et al., 2006; Choffin et al., 2019; Pavlik Jr
et al., 2009) use features and latent ability parame-
ters to model student knowledge. The RP compo-
nent in these methods relies on item response the-
ory models (van der Linden and Hambleton, 2013).
More recently, deep learning-based KT methods
(Ghosh et al., 2020; Pandey and Srivastava, 2020;
Piech et al., 2015a; Shin et al., 2021; Zhang et al.,
2017) treat student knowledge as hidden states in
neural networks. The KE component often relies
on variants of recurrent neural networks (Hochre-
iter and Schmidhuber, 1997), resulting in models
that excel at future performance prediction but have
limited interpretability.

Student responses, i.e., x in Eq. 1, are almost
always treated as a binary-valued scalar indicat-
ing response correctness. Few methods charac-
terize them as non-binary-valued such as option
tracing (Ghosh et al., 2021), which analyzes the ex-
act option students select on each multiple-choice
question, and predict partial analysis (Wang and
Heffernan, 2013). Questions, i.e., q in Eq. 1, are of-
ten one-hot encoded, either according to question
IDs/concept tags, or in a few cases, represented
with graph neural networks using question-concept
dependencies (Yang et al., 2020). Few existing
works use exact question content for q. For ex-
ample, (Liu et al., 2019; Wang et al., 2021) use
pre-trained word embeddings such as word2vec
(Mikolov et al., 2013) to encode questions in the
RP component. Specifically for programming ques-
tions, (Wang et al., 2017; Mao et al., 2021; Zhu
et al., 2021) use code representation techniques
such as ASTNN (Zhang et al., 2019) and code2vec
(Alon et al., 2019) to convert student code into vec-
tors and use them as input to the KE component.

Program Synthesis and Computer Science Edu-
cation: Program synthesis from natural language
instructions (Desai et al., 2016) has attracted sig-
nificant recent interest since pre-trained language
models (Chen et al., 2021) or language model archi-
tectures (Li et al., 2022) have demonstrated their
effectiveness on hard tasks such as solving cod-
ing challenge problems (Hendrycks et al., 2021a).
These methods are pre-trained on large datasets
containing publicly available code on the inter-
net, which is primarily written by skilled program-

mers. There is a line of existing work on analyzing
student-generated code, most noticeably using the
Hour of Code dataset released by Code.org (Piech
et al., 2015b; Singla and Theodoropoulos, 2022;
Wang et al., 2017), for tasks such as error anal-
ysis and automated feedback generation that are
meaningful in computer science education settings.

5 Conclusions and Future Work

In this paper, we have proposed a framework for
open-ended knowledge tracing (OKT) to track stu-
dent knowledge acquisition while predicting their
full responses to open-ended questions. We have
demonstrated how OKT can be applied to the com-
puter science education domain, where we analyze
students’ code submissions to programming ques-
tions. We addressed the key technical challenge of
integrating student knowledge representations into
code generation methods, e.g., text-to-code models
based on fine-tuning GPT-2. Our experiments on
real-world computer science student data indicate
that OKT has considerable promise for tracking
and predicting student mastery and performance.

There are many avenues for future work. First,
we can use code standardization techniques (Rivers
and Koedinger, 2017) to further pre-process student
code using semantic equivalence. Second, we can
explore the applicability of OKT to other domains
such as mathematics, where many pre-trained mod-
els for mathematical problem solving have been
developed (Cobbe et al., 2021; Hendrycks et al.,
2021b; Saxton et al., 2019) and explore whether stu-
dents consistently exhibit certain errors (VanLehn,
1982). Third, we can develop knowledge tracing
models that capture more specific aspects of knowl-
edge, i.e., debugging skills, which is reflected in the
change in student code across submissions to the
same question after receiving automated feedback
generated by the compiler or test cases. Fourth, we
can further enhance the validity and interpretability
of OKT by adding more human supervision, such
as adding an additional loss on the test case scores
of generated code. We can also use instructor- or
expert-provided labels on student errors to make
the latent knowledge state space more informative.
Finally, we can further evaluate our framework
on tasks relevant to instructor feedback, including
compilation/runtime error category prediction and
test case outcome prediction; see Section E in the
Supplementary Material for a detailed discussion.
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Limitations

Being the first attempt at the task of predicting
the exact content of open-ended student responses,
OKT has several obvious limitations. First, the
ability to predict variation in student responses de-
pends on the fine-tuned language model’s ability
to generate correct responses given the question
statement. Therefore, it is not clear whether OKT
can generalize to domains where language models
have not been shown to be highly accurate at gener-
ating correct open-ended responses. Second, OKT
requires a large amount of student coding data,
which may limit its applicability to learning plat-
forms in their early stages that do not have a large
number of student users. Third, the open-ended
response generation process is sequential and can
be time-consuming, which may limit OKT’s ability
to support instructors and students in real time in
real-world computer science education scenarios.

Ethics Statement

Our work should be seen as exploratory rather
than a finished tool that can readily be deployed in
real-world computer science educational scenarios.
Since OKT requires training on a large amount of
student-generated code, there is a need to systemat-
ically study any potential negative biases towards
underrepresented student populations. The effec-
tiveness of exact open-ended response prediction
in helping instructors adjust their instruction and
benefit students remains to be seen, which requires
principled evaluation using A/B testing.
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A Dataset Statistics and Preprocessing
Steps

Statistic Raw Processsed

#codes 46825 39796
#avg. lines of code per submission 17.52 17.64
#avg. submissions per student 190.34 161.77
#avg. submissions per problem 936.5 795.9

Table 5: Dataset statistics comparing the raw and our pro-
cessed dataset, the latter of which is used throughout our
experiments.

Since we choose to use the AST representation
for code, we perform a preprocessing step to re-
move student solutions that cannot be converted
to AST format. Overall, about 85% of all student
solutions are AST-convertible, which means that
this preprocessing step does not result in significant
data loss. Table 5 describes the summary statistics
of the original dataset and the resulting prepro-
cessed dataset that we use for all our experiments.
For KT, we follow standard procedure in the litera-
ture (Piech et al., 2015a; Ghosh et al., 2020; Zhang
et al., 2017) by setting the maximum solution se-
quence for any student to 200. For students with
more than 200 solutions, we split their solutions
into separate sequences of length 200.

B Experimental Setup Details

In both settings, we split all students in the dataset
into disjoint (train, validation, test) sets with a
80% − 10% − 10% ratio and report all metrics
on the test set. In the default setting, we add knowl-
edge states into token embeddings for the question
prompt as input to the RG component using a lin-
ear projection layer as detailed above. We pre-train
both the KE and RG components of OKT on the
training data with a correctness prediction objec-
tive (i.e., pre-train an existing KT method) and a
prompt-to-code supervised generation objective, re-
spectively. For the KE component, we follow the
original DKT, DKVMN, and AKT methods with
768 hidden units in their models. When combining
DKVMN or AKT with the answer generator, we
use the context reader output from DKVMN and
the hidden state from AKT, respectively, as input
to the answer generator at each time step. We refer
readers to (Zhang et al., 2017; Ghosh et al., 2020)
for more details. For the RG component, we use
a small GPT-2 with 12 transformer decoder layers
(Radford et al., 2019). We use the RMSProp opti-

mizer for the knowledge update component and the
Adam optimizer for the RG component, both with
a default learning rate of 0.00001. Also, we freeze
the parameters of the question and code representa-
tion models and only train the KT model and the
answer prediction model, Although the former two
components can also be optimized.

We run all experiments using a single NVIDIA
Quadro RTX 8000 GPU. The KT model pre-
training usually takes less than 5 minutes per epoch
of wall clock time. The OKT training with DKT
as the KT model takes about 10 minutes and 30
minutes per epoch of wall clock time for the the
two scenarios, namely, using only students’ first
submitted code and all submitted code that can be
converted to AST format, respectively. OKT train-
ing with AKT as the KT model takes about the
same time as DKT as the KT model while with
DKVMN, training is about 1.5 times slower due to
the more expensive memory computation (Zhang
et al., 2017).

C Visualizing Quantitative Results

Following the results in Section 3.1 and Table 1,
we additionally examine the model performance
across questions and measure the correlation be-
tween its CodeBLEU score and some features (i.e.
difficulty level, response diversity). Figure 5 shows
that model performance has a positive correlation
with student performance, i.e., the portion of cor-
rect responses, and a negative correlation with the
number of student responses. In other words, an
easy question with fewer submissions is more likely
to achieve better prediction results. However, Code-
BLEU is minimally correlated with the diversity in
student responses. Also, the range of CodeBLEU
performance across questions is relatively big, with
the highest of 0.86 and lowest of 0.56.

D Visualizing Code Revisions

We also show how the learnt knowledge state space
can be useful for tracing and understanding stu-
dents’ consecutive submissions to the same ques-
tion. On the right-hand side of Figure 6, we show
the knowledge state trajectories of two students re-
sponding to this question. The colors in these two
figures represent knowledge states that correspond
to wrong, partially correct and fully correct codes
at different time steps. We see that both students
start with a wrong solution. However, one student
gradually proceeded to the correct solution after
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Figure 5: Visualization of CodeBLEU metric versus number of student responses (left), rate of correct submissions
(middle) and Dist-1 metric (right) in each question. Each point represents one question.

Figure 6: Four sample submissions of two students corresponding to the top right figures, respectively. One student
gradually proceeded to a correct code while the other got stuck.

a few edits, whereas the other student got stuck
after a few unsuccessful edits and eventually gave
up on solving this prompt. The steady progress
versus getting stuck is clearly visualized in these
figures, where for the former student, the knowl-
edge states gradually moves from the upper right
corner in the knowledge state space to the lower
left, whereas for the latter student, the knowledge
states circle around and bounce back and forth in
the space. We also show four selected submissions
by each student during their response process, fur-
ther illustrating how the first student made steady
progress, i.e., adding the return statement (first two
code submissions) and correcting logic (last two
code submissions), and how the second student got
stuck, i.e., making reasonable changes initially but
then some repetitive edits.

E Real-World Use Cases and Implications
One crucial highlight of our work is that, through
OKT, we can predict students’ responses to open-
ended questions before actually assigning them.
On the contrary, existing student and teacher sup-

port tools can only be applied after observing their
responses. Therefore, OKT can be used in practice
in many ways by anticipating student errors and
struggles ahead of time. For example, for teacher
support, we can use OKT to provide diagnosis in-
formation to teachers via a dashboard. For any
open-ended question that the teacher wants to as-
sign to their class, we can predict the responses that
each student will write given their current knowl-
edge states and show teachers clusters that rep-
resent typical errors. This way, the teacher can
anticipate student performance, switch to an easier
(or more challenging) question if necessary, and
prepare feedback for individual students ahead of
time. For student support, if a student struggles,
we can use OKT to find other students stuck in a
similar place but ultimately succeeded in answer-
ing the question and provide incremental hints or
feedback on their errors. These advantages over tra-
ditional KT methods will potentially enable OKT
to become the next-generation workhorse for large-
scale, intelligent educational systems.
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