
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 3369–3391
December 7-11, 2022 ©2022 Association for Computational Linguistics

RLPROMPT: Optimizing Discrete Text Prompts
with Reinforcement Learning

Mingkai Deng1∗, Jianyu Wang2∗, Cheng-Ping Hsieh2∗, Yihan Wang2, Han Guo1,
Tianmin Shu3, Meng Song2, Eric P. Xing1,4,5, Zhiting Hu2

1Carnegie Mellon University, 2UC San Diego,
3MIT, 4Mohamed bin Zayed University of Artificial Intelligence, 5Petuum Inc.

{mingkaid,hanguo}@cs.cmu.edu, {jiw102,c2hsieh,yiw007,zhh019}@ucsd.edu

Abstract

Prompting has shown impressive success in en-
abling large pre-trained language models (LMs)
to perform diverse NLP tasks, especially with
only few downstream data. Automatically find-
ing the optimal prompt for each task, how-
ever, is challenging. Most existing work re-
sorts to tuning soft prompts (e.g., embeddings)
which fall short of interpretability, reusabil-
ity across LMs, and applicability when gra-
dients are not accessible. Discrete prompts,
on the other hand, are difficult to optimize,
and are often created by “enumeration (e.g.,
paraphrasing)-then-selection” heuristics that do
not explore the prompt space systematically.
This paper proposes RLPROMPT, an efficient
discrete prompt optimization approach with re-
inforcement learning (RL). RLPROMPT formu-
lates a parameter-efficient policy network that
generates the optimized discrete prompt after
training with reward. To harness the complex
and stochastic reward signals from the large
LM environment, we incorporate effective re-
ward stabilization that substantially enhances
training efficiency. RLPROMPT is flexibly ap-
plicable to different types of LMs, such as
masked (e.g., BERT) and left-to-right models
(e.g., GPTs), for both classification and genera-
tion tasks. Experiments on few-shot classifica-
tion and unsupervised text style transfer show
superior performance over a wide range of ex-
isting fine-tuning or prompting methods. Inter-
estingly, the resulting optimized prompts are
often ungrammatical gibberish text; and surpris-
ingly, those gibberish prompts are transferrable
between different LMs to retain significant per-
formance, indicating that LM prompting may
not follow human language patterns.1

1 Introduction

Prompting has emerged as a promising approach to
solving a wide range of NLP problems using large

∗Equal contribution
1Code available at https://github.com/mingkaid/

rl-prompt

pre-trained language models (LMs), including left-
to-right models such as GPTs (Radford et al., 2019;
Brown et al., 2020) and masked LMs such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
etc. Compared to conventional fine-tuning that
expensively updates the massive LM parameters for
each downstream task, prompting concatenates the
inputs with an additional piece of text that steers the
LM to produce the desired outputs. A key question
with prompting is how to find the optimal prompts
to improve the LM’s performance on various tasks,
often with only a few training examples.

One of the most popular scheme is to tune soft
prompts (i.e., continuous embedding vectors) as
they are amenable to gradient descent (Li and
Liang, 2021; Vu et al., 2021; Gu et al., 2021; Liu
et al., 2021d; Mokady et al., 2021; Qian et al.,
2022; An et al., 2022, etc.). However, the result-
ing prompts are, by their nature, hard for humans
to understand (Khashabi et al., 2021; Lester et al.,
2021; Hambardzumyan et al., 2021) and incompat-
ible for use with other LMs. Besides, the required
LM internal gradients are often expensive to com-
pute, or simply unavailable for LMs deployed with
only inference APIs (e.g., GPT-3). It is thus of-
ten desirable to use discrete prompts which consist
of concrete tokens from a vocabulary. However,
their discrete nature renders the optimization very
difficult. Previous work has typically relied on man-
ual engineering (Petroni et al., 2019; Brown et al.,
2020; Schick and Schütze, 2021a; Tam et al., 2021),
or selecting from multiple paraphrased/generated
prompts (Jiang et al., 2020; Gao et al., 2021; Liu
et al., 2021b; Prasad et al., 2022; Hao et al., 2022).
AutoPrompt (Shin et al., 2020) uses gradient in-
formation to edit the prompt tokens, which suffers
from training instability as well as the same ap-
plicability issue as gradient-based soft prompting,
showing limited effectiveness in practice.

This paper presents RLPROMPT, a new discrete
prompt optimization approach based on reinforce-

3369

https://github.com/mingkaid/rl-prompt
https://github.com/mingkaid/rl-prompt

Methods Frozen
LMs Automated Gradient-

Free
Guided

Optimize
Few-
Shot

Zero-
Shot

Transferrable
b/w LMs

Interpret-
-ability

Fine-Tuning ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
Manual Prompt ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
Instructions ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
In-Context Demonstration ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓
Soft Prompt Tuning ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗
Discrete Prompt Enumeration ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
AutoPrompt (Shin et al., 2020) ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

RLPrompt (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of different (prompting) paradigms for using pre-trained LMs on downstream tasks, in terms of several
desirable properties. Gradient-Free methods do not require gradient information from the prompted LMs, which may be
inaccessible or expensive to compute. Guided Optimize means the optimization/search is guided by gradient or reward signals,
which tends to be more efficient than otherwise (e.g., enumeration). Prompts of discrete tokens (as opposed to embeddings) are
often transferrable/reusable by different LMs. Our approach with RL can optimize prompts using rewards without supervised
data (zero-shot). Discrete Prompt Enumeration selects the best prompt from a large number of candidates (e.g., from paraphrasing
or generation, Jiang et al., 2020; Gao et al., 2021; Liu et al., 2021b; Prasad et al., 2022). AutoPrompt (Shin et al., 2020) uses
gradients to edit the discrete prompt tokens. See §4 and Appendix §C for more discussion.

ment learning (RL). This approach brings together
a wide range of desirable properties for efficient
use on diverse tasks and LMs (Table 1). Cru-
cially, rather than directly editing the discrete to-
kens, which has been difficult and inefficient, RL-
PROMPT trains a policy network that generates
the desired prompts. Discrete prompt optimization
thus amounts to learning a small number of policy
parameters which we set as an MLP layer inserted
into a frozen compact model such as distilGPT-2
(HuggingFace, 2019). This formulation also al-
lows us to employ off-the-shelf RL algorithms (e.g.,
Guo et al., 2021) that learn the policy with arbi-
trary reward functions—defined either with avail-
able data (e.g., in few-shot classification) or other
weak signals when no supervised data is accessible
(e.g., in controllable text generation).

On the other hand, RL for prompt optimization
poses new challenges to learning efficiency: the
large black-box LM presents a highly complex en-
vironment that, given the prompt (i.e., actions),
goes through a long series of complex transitions
(e.g., reading the input and inferring the output) be-
fore computing the rewards. This makes the reward
signals extremely unstable and hard to learn from.
To overcome this difficulty, we propose two sim-
ple yet surprisingly effective ways to stabilize the
rewards and improve the optimization efficiency.

Experiments on few-shot classification and un-
supervised text style transfer show our approach
improves over a wide range of fine-tuning and
prompting methods (e.g., those described in Ta-
ble 1), and is robust to different modeling choices
(e.g., verbalizers in classification). The resulting
discrete prompts also facilitate rich interpretations
and analyses for new insights into LM prompting.

In particular, the optimized prompts, though in-
ducing strong task performance, tend to be gibber-
ish text without clear human-understandable mean-
ing, echoing recent research (Webson and Pavlick,
2021; Zhao et al., 2021; Prasad et al., 2022) that
LMs making use of prompts do not necessarily fol-
low human language patterns. Perhaps surprisingly,
those gibberish prompts learned with one LM can
be used in other LMs for significant performance,
indicating that those different pre-trained LMs have
grasped shared structures for prompting.

2 Discrete Prompt Optimization with RL

We present RLPROMPT, a framework for learning
prompts of discrete tokens for pre-trained LMs to
succeed in a wide range of NLP tasks.

As discussed in §1, discrete prompts can be eas-
ier to interpret and use than continuous prompts,
but also more challenging to learn due to intractable
optimization over discrete tokens. To solve this dif-
ficulty, we formulate discrete prompt optimization
as an RL problem, using a continuous policy net-
work to explore the prompt space. The network
is highly parameter-efficient, only training a small
MLP over a frozen compact LM (e.g., distilGPT-2).

Below, we present our RL formulation of dis-
crete prompt optimization (§2.1-2.2). We then
discuss the design of our policy network (§2.3).
Finally, we describe our reward engineering tech-
niques to improve RL training (§2.4).

2.1 Discrete Prompt Optimization Problem

Extensive recent work (Brown et al., 2020; Jiang
et al., 2020; Khashabi et al., 2021; Gao et al., 2021)
has shown it is possible to combine discrete text
prompt z with input x to directly perform vari-

3370

Masked LM

[MASK] [Prompt] I have a …

P(“Tech”) = 0.76

Mask Infilling Probabilities

LM

LM Head

reviewer information

Task-Specific MLP θ

Left-to-Right LM

[Prompt] Food is disgusting 🤢…

Generated Tokens

Food is delicious 😋Reward = 86.3

Prompt Policy

Reward = 76.0

…

Figure 1: Overview of RLPROMPT for discrete prompt optimization. All LMs (white boxes) are frozen. We build our policy
network by training a task-specific MLP module inserted into a frozen pre-trained LM. The figure above illustrates generation of a
prompt (left), example usages in a masked LM for classification and a left-to-right LM for generation (top-right and bottom-right,
respectively), and update of the MLP using RL reward signals.

ous NLP tasks using a pre-trained LM’s genera-
tive distribution PLM(y|z,x), without needing to
fine-tune the model. For instance, in classification,
the LM can be a masked language model (MLM)
such as BERT (Devlin et al., 2019), and y is the
class-label token (a.k.a. verbalizer like positive
or negative) in the mask position; in a generation
task, the LM can be a left-to-right model such as
GPT-2 (Radford et al., 2019), and y is the gener-
ated text. See Figure 1 for illustrative examples.
We use yLM(z,x) to denote the LM output on x
prompted by z.

Our goal is to find the optimal discrete prompt z∗

from vocabulary V to maximize some downstream
performance measure R of yLM(z∗,x).2 The met-
ric R(y) can be as simple as match with gold label
y∗ (e.g., in classification when data is available),
but can also be more complex like the success crite-
ria of controllable text generation, which composes
aspects such as style accuracy, language quality,
and content preservation. Assuming the prompts
have fixed length T , we write the task of discrete
prompt optimization in the general format below:

maxz∈VT R (yLM(z,x)) . (1)

The optimization above, however, can be in-
tractable because z’s discrete tokens are not
amenable to gradient-based optimization, while
brute-force search has the exponential complexity
of O(|V|T). Previous work has to either approxi-
mate gradients over z using continuous LM embed-
dings (Shin et al., 2020) or tweak human-written
prompts with heuristics (Jiang et al., 2020; Mishra
et al., 2021a; Prasad et al., 2022).

2Technically V can be any set of tokens. Here we simply
use the downstream LM’s vocabulary.

2.2 The Reinforcement Learning Formulation

To overcome the difficulty, we formulate discrete
text prompt optimization as an RL problem, in
which an agent selects prompt tokens [z1, . . . , zT]
one by one to maximize the reward R(yLM(z,x)).
At time step t, the agent receives previous prompt
tokens z<t and generates the next prompt token zt
according to a policy π(zt|z<t). After the agent
finishes the entire prompt ẑ, it receives the task
reward R(yLM(ẑ,x)). Parameterizing the policy
with θ, we can rewrite the problem above as

maxθ R(yLM(ẑ,x)), ẑ ∼
∏T

t=1
πθ(zt|z<t).

(2)
Compared to typical (soft) prompt tuning ap-

proaches, the RL formulation above has the key ad-
vantage of not needing gradient access to the LM,
treating it instead as a black-box function. This
enables us to optimize prompts for LMs whose gra-
dients are too expensive to compute, or LMs that
are solely available as inference APIs (e.g., GPT-3).
Compared to previous discrete prompt enumera-
tion/paraphrasing, the RL approach explores the
prompt space more efficiently guided by the reward
signals. The policy network also brings added flex-
ibility, e.g., it can take other information such as
the input x, leading to input-specific prompts (e.g.,
as used in text style transfer in §2.4).

During training, we explore the prompt space
by sampling from the policy network. After the
policy is trained, we select tokens greedily during
inference to produce a deterministic prompt. The
reward objective in Eq.(2) can be optimized with
any off-the-shelf RL algorithm. We use the lat-
est soft Q-learning (SQL, Guo et al., 2021) which
has shown advanced learning efficiency and perfor-
mance on various text generation problems, with

3371

open-source implementation.3 Specifically, we use
only its on-policy component. We refer interested
readers to Guo et al. (2021) for more details.

2.3 Efficient Parameterization of Policy

We present an efficient parameterization of the pol-
icy network πθ, which adapts a frozen pre-trained
LM (i.e., policy LM) with a simple MLP layer that
contains all the parameters θ to be trained. The
policy LM need not be the same as the LM we opti-
mize the prompt for (i.e., task LM). Figure 1 (left)
illustrates the policy LM architecture. Specifically,
we use the LM to extract contextual embeddings of
partial prompt ẑ<t, apply the added task-specific
MLP layer to compute the adapted embeddings,
and pass the output into the model’s original LM
head to obtain the next prompt token probabili-
ties. We describe more implementation details in
Appendix §A.1. During training, we compute the
MLP gradients by back-propagating through the
policy LM. Our experiments (§3) show that chang-
ing only the small set of MLP parameters is suf-
ficient for producing strong performance. After
training, we discard the MLP and simply use the
learned discrete text prompt for inference.

2.4 Reward Engineering and Stabilization

Proper design of reward functions, a.k.a. reward
engineering, is crucial to training efficiency and
success in RL (Sutton and Barto, 2018). Discrete
prompt optimization, in particular, poses new chal-
lenges due to its highly complex reward functions,
which involve multiple steps (e.g., combining with
input, passing through a black-box LM, and infer-
ring the outputs), each introducing its own varia-
tions. This makes the reward signal unstable and
difficult to assess progress towards the task goal.
To solve these difficulties, we propose two sim-
ple reward engineering techniques that effectively
encourage and stabilize the RL training.

Input-Specific z-Score Reward Different inputs
can have different levels of difficulty for reason-
ing and prediction. Prompted LMs can thus see
different reward scales for different inputs. In text
style transfer (§3.2), for instance, some sentences
may only require changing a few words to alter
the style, so the LM naturally achieves higher re-
wards on them than on other more complex sen-
tences. Naively optimizing for all inputs with the

3Our preliminary experiments indicate SQL often achieves
superior performance than common policy gradient methods.

same reward scale, therefore, can lead to training
bias and instability. To mitigate this problem, we
propose to use input-specific z-score, which nor-
malizes the rewards by input-specific means and
standard deviations. This can be seen as a case
of adaptive reward normalization, a commonly-
used technique in RL (van Hasselt et al., 2016).
Formally, during prompt optimization, we sample
a batch of prompts Z(x) for each input x, and
compute the reward R(yLM(z,x)) for each prompt
z ∈ Z(x). After that, we compute the reward
z-scores across prompts Z(x). Using the short-
hand Rx(z) for R(yLM(z,x)), namely the reward
prompt z receives for input x, we write the trans-
formation as below:

z-score(z,x) =
Rx(z)−meanz′∈Z(x)Rx(z

′)

stdevz′∈Z(x)Rx(z′)
.

(3)
To distinguish the z-scores of different inputs in
the same batch, we condition our policy network
on the inputs, i.e., πθ(z|x).
Piecewise Reward If a reward function is mis-
specified or vulnerable, the policy may maximize
it without moving towards the desired goal. For
example, while learning classification using the
ground-truth probability as reward function, the
policy may find adversarial prompts (Wallace et al.,
2019; Xu et al., 2022) that lead to very high proba-
bilities for a single class given arbitrary inputs. To
overcome the issue, we propose to design piece-
wise reward functions (Yu et al., 2020; Rengarajan
et al., 2022) with both smooth and disjoint com-
ponents to better express the task priorities and
improve robustness. Typically, we can include a
dense, quantitative signal (e.g., label probability)
to measure fine-grained progress towards the goal,
and a sparse, qualitative signal only when certain
states are achieved (e.g., certain accuracy on each
class) by applying a large sudden increase in the re-
ward. We illustrate an example design of piecewise
reward in text classification (§3.1).

3 Experiments

The proposed RLPROMPT is generally applicable
to various types of LMs for performing different
NLP tasks using diverse prompt formats (Figure 1).
We evaluate our approach on both classification
(in few-shot setting, §3.1) and generation (unsuper-
vised text style transfer, §3.2), and perform rich
analyses for new insights on LM prompting (§3.3).
We will release all code and data upon acceptance.

3372

3.1 Few-Shot Text Classification
Learning text classification with few labeled exam-
ples has been a problem of interest in many appli-
cations (Xu et al., 2018; Yu et al., 2018). We adopt
the typical prompting setting (Brown et al., 2020;
Schick and Schütze, 2021b) which solves classifi-
cation by token infilling for an MLM like BERT
or next-token prediction for a left-to-right LM like
GPT-2. Classification, therefore, amounts to select-
ing tokens that correspond to a set of predetermined
class labels, a.k.a., verbalizers (e.g., “great” for
positive sentiment and “terrible” for negative
sentiment). For instance, to classify the sentiment
of an input sentence “food is delicious” using
an MLM, we first fill our prompt and the input into
a template “[Input] [Prompt] [MASK]”, and then
select the verbalizer token with the highest proba-
bility of filling into the [MASK] position.

Reward Function The text classification task
aims to correctly assign input text x to its ground
truth label c from a set of classes C. To miti-
gate the adversarial cases discussed in §2.4, we
design a piecewise reward function that encour-
ages prompts to classify each examples correctly.
Given prompt z and training example (x, c), we
compute the reward similarly to hinge loss as the
gap between the label probability and the highest
probability from other classes. Using the short
hand Pz(c) := PLM(c|z,x) to denote the probabil-
ity of label c, we can write the gap as Gapz(c) :=
Pz(c)−maxc′ ̸=c Pz(c

′). The gap value is positive
when the prediction is correct, and negative oth-
erwise. We denote Correct := 1[Gapz(c) > 0].
For a correct prediction, we multiply the positive
reward by a large number to signal its desirability.
The resulting reward function is as below:

R(x, c) = λ1−Correct
1 λCorrect

2 Gapz(c), (4)

We describe more details and present ablations on
reward design in Appendix §A.2.

Datasets Following previous work (Gao et al.,
2021; Sun et al., 2022), we experiment on a
wide range of popular few-shot classification tasks
including sentiment classification such as SST-
2 (Socher et al., 2013), Yelp Polarity (Zhang et al.,
2015), MR (PANG, 2005), CR (Hu and Liu, 2004),
SST-5 (Socher et al., 2013), and Yelp (Zhang
et al., 2015), and topic classification such as
AG’s News (Zhang et al., 2015). We addition-
ally experiment on Subj (Pang and Lee, 2004),

TREC (Voorhees and Tice, 2000), Yahoo (Zhang
et al., 2015), and DBPedia (Lehmann et al., 2015),
which we present in Appendix §A.2 due to space
restriction. We describe the dataset statistics in Ta-
ble 7 in the appendix. We train with 16 examples
per class, and validate using the same number of
examples, in keeping with the standard few-shot
setting (Perez et al., 2021).

Baselines We compare our approach with rep-
resentative methods in the diverse training and
prompting paradigms shown in Table 1. Addition-
ally, we compare with the latest Black-Box (BB)
Tuning (Sun et al., 2022), which mixes discrete and
soft prompts and tunes the soft part. We describe
more details in Appendix §A.2.

Experiment Setup We use RoBERTa-large (Liu
et al., 2019) as our backbone model. For our ap-
proach, we experiment with prompt lengths T ∈
{2, 5}, and insert the prompt tokens at the same
positions with our manual prompts (Schick and
Schütze, 2021a; Tam et al., 2021).4 Please see
Appendix §A.2 for more training details.

Results We present our few-shot classification
results in Table 2. Our method (5 tokens) out-
performs Manual Prompt and Instructions on all
datasets, as well as In-Context Demonstration and
Fine-Tuning on all but 1 and 2 datasets, respec-
tively. Compared to Prompt Tuning, our method
achieves higher average accuracy with lower stan-
dard deviations, showing our approach is less sen-
sitive to various training factors, a common issue
for few-shot prompt tuning (Li and Liang, 2021;
Gu et al., 2021). Our approach substantially out-
performs BB Tuning with soft prompts, and is
slightly better even after BB Tuning uses mixed
discrete/soft prompts with 50 soft tokens. Com-
pared to previous discrete prompt optimization
methods such as GrIPS (Prasad et al., 2022) and
AutoPrompt (Shin et al., 2020), our method reaches
superior accuracy on all benchmarks. On the ad-
ditional datasets which tend to be multi-way (e.g.,
16-class), Fine-Tuning shows higher performance,
but our method continues the lead over prompting
baselines, as we describe in more detail in Ap-
pendix §A.2.

Training Efficiency To assess the training effi-
ciency of our method, we compare our test accuracy

4It is known that increasing prompt length and/or inserting
prompt tokens in multiple positions can often lead to improved
performance. We leave further experiments to the future.

3373

SST-2 Yelp P. MR CR SST-5 Yelp AG’s News Avg.

Fine-Tuning 80.6 (3.9) 88.7 (4.7) 67.4 (9.7) 73.3 (7.5) 40.7 (3.0) 51.0 (2.2) 84.9 (3.6) 69.5
Manual Prompt 82.8 83.0 80.9 79.6 34.9 42.1 76.9 68.6
Instructions 89.0 84.4 85.2 80.8 29.8 43.0 54.8 58.5
In-Context Demonstration 85.9 (0.7) 89.6 (0.4) 80.6 (1.4) 85.5 (1.5) 39.3 (0.9) 49.4 (0.3) 74.9 (0.8) 72.2
Prompt Tuning (Soft Prompt Tuning) 73.8 (10.9) 88.6 (2.1) 74.1 (14.6) 75.9 (11.8) 40.2 (6.5) 49.1 (3.1) 82.6 (0.9) 69.2
BB Tuning (2 soft tokens) 83.2 (3.5) 86.0 (1.6) 77.1 (3.9) 83.2 (2.5) 39.2 (2.4) 41.5 (1.9) 74.0 (1.9) 69.2
BB Tuning (5 soft tokens) 84.6 (4.0) 78.7 (2.3) 79.8 (1.5) 82.9 (3.6) 36.6 (2.1) 33.7 (2.3) 73.6 (3.6) 67.1
BB Tuning (Mixed, 50 soft tokens) 89.1 (0.9) 93.2 (0.5) 86.6 (1.3) 87.4 (1.0) 38.4 (1.1) 44.8 (1.3) 83.5 (0.9) 74.7
GrIPS (Discrete Prompt Enumeration) 87.1 (1.5) 88.2 (0.1) 86.1 (0.3) 80.0 (2.5) 32.0 (1.8) 47.2 (0.5) 65.4 (9.8) 69.4
AutoPrompt 75.0 (7.6) 79.8 (8.3) 62.0 (0.8) 57.5 (5.8) 27.8 (3.3) 29.0 (5.0) 65.7 (1.9) 56.7

RLPrompt (Ours, 2 discrete tokens) 90.3 (1.3) 94.1 (0.8) 86.5 (1.2) 87.4 (1.7) 40.1 (1.9) 45.6 (3.8) 76.8 (1.4) 74.4
RLPrompt (Ours, 5 discrete tokens) 92.5 (0.8) 95.1 (1.0) 87.1 (0.4) 89.5 (0.6) 41.4 (3.2) 44.8 (4.3) 80.2 (0.7) 75.8

Table 2: Results of few-shot text classification. The last column shows the average accuracy across all datasets in this table.
Additional results can be found in Table 8.

across training steps with BB Tuning, which is also
a gradient-free method but optimizes soft prompts.
As Figure 2 shows, our RL-based method is as effi-
cient as soft prompt tuning without access to LM
gradients, converging in similar number of steps
to BB Tuning, but with superior performance. Our
training is also relatively stable, for even the worst
prompts encountered after convergence perform
comparably to BB Tuning on average.

3.2 Unsupervised Text Style Transfer

Text style transfer (TST) (Jin et al., 2022) is a chal-
lenging problem, whose goal is to rewrite an input
sentence into a desired style, usually without su-
pervised training data. For instance, in a sentiment
transfer task, given a negative sentence “The food
is disgusting”, the model should generate a pos-
itive sentence “The food is delicious”, without
training on such paired data.

Even without supervision data, our method can
learn prompts with weak reward signals, which is
not possible for most previous prompt optimization
methods. Compared to previous TST work that
trained models from scratch (Hu et al., 2017; Shen
et al., 2017, etc.) or fine-tuned pre-trained LMs
(Krishna et al., 2020; Liu et al., 2021e; Hu and Li,
2021), our method presents a more efficient solu-
tion that learns discrete prompts for a LM without
updating the massive parameters.

Reward Function Given input sentence x, the
goal of TST is to generate output y that preserves
the information in x while showing style attribute
s. Following these priorities, we define the task
reward as a simple sum of content preservation and
target style intensity, described formally below:

R(x,y, s) = Content(x,y) + Style(y, s). (5)

0 1000 2000 3000 4000 5000 6000
Steps

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

SST-2 - Five tokens

RLPrompt
BB Tuning

Figure 2: Comparison of our method (orange) and Black-
Box (BB) Tuning (Sun et al., 2022) (blue) in terms of training
efficiency. The solid curves are the mean and the shaded
regions are the maximum and minimum test accuracy over 5
trials.

We implement the reward using common model-
based metrics, described with more detail in Ap-
pendix §A.3. Because the reward shows different
scales across inputs, we normalize the rewards us-
ing input-specific z-score as discussed in §2.4, and
present ablation studies on reward design along
with our results.

Datasets Due to space restriction, in the main pa-
per we evaluate on the popular Yelp sentiment trans-
fer dataset (Shen et al., 2017). To further demon-
strate our approach in few-shot setting, we include
experiments on Shakespeare authorship transfer
(Xu et al., 2012) in Appendix §A.3.

Baselines We evaluate our method against both
training and prompting baselines. We compare
with two strong training methods, Style Trans-
former (Dai et al., 2019) and DiRR (Liu et al.,
2021e). In particular, DiRR fine-tunes GPT-2
(Radford et al., 2019) with RL signals, which can
be seen as a full-model tuning analogue to our
method. For the prompting baselines, we com-
pare with (1) Null Prompt, which does not use

3374

Model Content Style Fluency J (C, S, F) GM(C, S, F)

Training Baselines
Style Transformer 75.2 96.4 58.6 46.1 75.2
DiRR 78.8 97.7 75.6 59.6 83.5
Prompting Baselines (GPT-2-xl)
Null Prompt 37.4 94.8 97.6 33.6 70.2
Random Prompt 39.6 93.8 97.8 34.7 71.3
Manual Prompt 64.2 (6.8) 91.5 (3.6) 93.2 (1.4) 53.4 (7.9) 81.8 (3.4)
RLPROMPT (Ours)
distilGPT-2 57.3 (1.7) 96.5 (0.1) 85.3 (1.3) 46.0 (0.9) 77.9 (0.4)
GPT-2-small 60.0 (0.4) 96.4 (0.3) 89.0 (2.8) 50.7 (1.3) 80.1 (0.8)
GPT-2-medium 65.7 (1.4) 95.2 (1.2) 89.3 (0.1) 56.1 (1.0) 82.3 (0.4)
GPT-2-large 65.1 (1.8) 94.6 (2.3) 91.6 (0.8) 56.5 (1.3) 82.6 (0.7)
GPT-2-xl 72.1 (1.5) 94.2 (2.4) 89.5 (0.5) 61.4 (2.2) 84.7 (1.0)

Table 3: Automatic evaluation of our method vs. baselines on the Yelp (Shen et al., 2017) sentiment transfer dataset. J(·) is our
main metric which measures the average joint sentence-level scores of Content, Style, and Fluency as defined in §3.2. We also
report the geometric mean (GM) of the three aspects. Numbers in (parentheses) are standard deviations across 3 sets of prompts.

Model Content Style Fluency GM(C, S, F)

DiRR 4.83 4.69 4.64 4.72
Manual Prompt 4.25 4.38 4.86 4.49
RLPROMPT (Ours) 4.41 4.68 4.80 4.63

Table 4: Human evaluation on Yelp on 5-Likert scale where
the best result on each aspect is bolded and the second best
result underscored. DiRR relies on model fine-tuning.

any prompt, (2) Random Prompt, which samples
5 tokens from the vocabulary as prompts, and (3)
Manual Prompt, which averages the performance
of 3 human-written templates, one by Reif et al.
(2021) and two written for this experiment.

Experiment Setup We experiment with GPT-
2 of varying sizes, ranging from the smallest
distilGPT-2 with 82M parameters to the largest
GPT-2-xl with 1.5B parameters. We fix the prompt
length T = 5. To generate output ŷ, for all com-
parison methods, we sample 32 candidates from
the respective models, and select the one with the
highest reward. More details are in Appendix §A.3.

Evaluation Following previous work, we per-
form both automatic and human evaluation on the
content preservation, style accuracy, and fluency of
model outputs. For automatic evaluation, we mea-
sure Content by the state-of-the-art input-output
alignment (Deng et al., 2021) using pre-trained
LM, Style by fine-tuned style classifiers, and Flu-
ency by a grammaticality classifier (Krishna et al.,
2020). To aggregate the quality dimensions, we
average the joint sentence-level scores of examples
x from the test set X , strictly following Krishna
et al. (2020)’s protocol defined below:

J(Content, Style, Fluency) = (6)

meanx∈X (Content(x) · Style(x) · Fluency(x)) ,

0 20 40 60 80 100 120
Steps

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Va
lid

at
io

n
Re

wa
rd

Yelp - Negative to Positive

RLPrompt
 z-Score

Figure 3: Comparison of our method with (orange) and
without (purple) z-score reward normalization. The format is
the same as Figure 2. Additional comparisons are in Figure 6.

which requires each sentence to preserve input con-
tent, have the correct style, and be fluent. We also
report the geometric mean (GM) of the three over-
all aspect scores. We conduct human evaluation for
Yelp by rating 100 outputs from each model with 5
annotators. We describe more evaluation metrics
and results in Appendix §A.3.

Results We present the automatic evaluation re-
sults for Yelp in Table 3. Compared to the ex-
pensive training baselines (Style Transformer and
DiRR), our method with GPT-2-xl shows slightly
lower content preservation and style accuracy, but
have markedly better fluency, which leads to higher
or competitive overall joint score J(·) and geo-
metric mean GM(·). This may be because our
method better preserves the LM’s fluent generation
capability by freezing its parameters. Relative to
prompting baselines, our optimization strongly im-
proves the default performance. In particular, our
trained prompts performs better on average with
lower variance than manual prompts, which sees
performance vary wildly across prompts with simi-
lar meanings. We present all manual and learned

3375

Method Prompt PPL↓ Content Style Fluency J(C, S, F) GM(C, S, F)

RLPROMPT 254K (238K) 72.1 (1.5) 94.2 (2.4) 89.5 (0.5) 61.4 (2.2) 84.7 (1.0)
+ Fluency 82.1 (2.4) 52.4 (1.5) 96.2 (0.9) 94.6 (1.0) 46.7 (0.7) 78.1 (0.4)

Table 5: Comparison of prompt optimization with fluency constraint vs no constraint on the Yelp dataset. Both experiments use
GPT-2-xl as the text generation model. Prompt PPL is the prompt’s perplexity under a GPT-2 langauge model. The text style
transfer metrics are the same as in Table 3.

distil base
RoBERTa

large distil small
GPT-2

med. large

Classification Model Size

distil
RoBERTa base

large
distil
small

medium
large

GPT-2

Pr
om

pt
 Tr

ai
ni

ng
 M

od
el

 S
ize 78.5 79.5 77.2 65.5 59.3 61.4 59.8

71.3 88.2 89.9 67.7 75.4 83.2 87.8
76.8 84.6 90.7 68.8 75.9 80.9 78.8
73.1 77.5 82.5 72.2 75.3 75.8 75.4
79.3 80.9 86.7 66.7 80.5 75.1 83.8
74.3 79.9 90.5 72.9 73.4 82.1 85.5
69.0 81.0 87.8 65.5 69.6 82.5 88.1

Prompt Transfer Performance on SST-2 Classification

60

65

70

75

80

85

90

Figure 4: Heatmap of sentiment analysis performance with
transferred discrete prompts of 2 tokens. The columns rep-
resent the models used to learn the prompts, and the rows
represent the models we perform classification with. Brighter
color represents higher accuracy.

prompts along with their performance in Table 15
in appendix. Within our own method, we can see
the performance increasing monotonically from the
smallest distilGPT-2 to the largest GPT-2-xl. Hu-
man evaluation results (Table 4) show similar con-
clusions, where our method is competitive with the
costly training method DiRR by obtaining slightly
lower content and style scores but higher fluency.
On Shakespeare, our method shows similar per-
formance patterns even under the few-shot setting,
which we discuss in more detail in Appendix §A.3.

Ablation Study As discussed earlier, we trans-
form the reward function for TST using input-
specific z-score to mitigate the training instabilities
caused by the different scales of reward across in-
puts. To study the impact of this technique on RL
training, we compare our training success with and
without z-score normalization. Specifically, we test
on Yelp (Shen et al., 2017) using the distilGPT-2
model as an example. Following typical practice
in RL, we run 5 experiments for each variant using
different random seeds and compute the validation
reward every 50 training steps. As the visualized
results in Figures 3 and 6 show, z-score normal-
ization achieves both superior performance and
more stable improvement across random seeds and
training tasks. Because training easily collapsed
without z-score using the original hyperparameters,
we tuned the reward shaping scheme to transform a
scale of [50,100] into [-50,50], which substantially
improved training stability and results.

Verbalizers RLPROMPT Manual

terrible, great 92.8 (0.8) 82.8
bad, good 91.2 (1.4) 79.7
negative, positive 92.2 (0.6) 76.8

Table 6: Comparison of RLPROMPT and manual prompt on
SST-2 using different verbalizers.

3.3 Analysis

Fluent vs. Gibberish Prompts We study the in-
teraction of prompt fluency with downstream task
performance, because fluent prompts are valuable
for interpretability and insights into useful task in-
structions for LMs. Our results show that good
optimized prompts for the downstream task are of-
ten incoherent gibberish. For instance, one learned
prompt for sentiment transfer is “Parameters
Comparison)=(Compare either”. The obser-
vation suggests that pre-trained LMs make use of
prompts differently from humans, in line with previ-
ous discoveries in prompt-based fine-tuning (Web-
son and Pavlick, 2021). To understand how prompt
fluency could impact the model performance, we
evaluate on text style transfer (§3.2). Specifically,
we optimize fluent prompts by constraining the
prompt policy’s action space (see Appendix §B
for the constraint), and compare with our standard
method (without fluency constraint) in Table 5. Re-
sults show that the fluency-constrained prompts
have remarkably lower perplexity, which indicates
higher language coherence. For instance, one flu-
ent prompt we learned for to-positive transfer is
“I love my life (”. However, these prompts
receive much lower task performance in terms of
J(·) and GM(·). We present the learned fluent and
gibberish prompts in Table 15 in the appendix.

Transferring Prompts across LMs One unique
advantage of discrete prompts over soft prompts
is they are transferrable across models, due to the
common text space instead of the model-specific la-
tent space. This enables us to study the connections
between different LMs by comparing the transfer
performance of prompts trained from these mod-
els (e.g., taking a prompt trained on distilGPT-2,
and applying it to GPT-2-xl). Interestingly, exper-
iments show that the optimized prompts, though

3376

largely gibberish text, can indeed retain significant
performance after transferring to different LMs.
Furthermore, prompts can transfer from smaller
to larger models for similar or even better perfor-
mance. More concretely, for this study, we use
both few-shot classification (§3.1) and style trans-
fer (§3.2). Specifically for classification, we train
prompts on various sizes of RoBERTa and GPT-2
and apply them to every other model for classifi-
cation. We tabulate the average performance over
5 runs in the heatmap of Figure 4. Overall, all
prompts can transfer between models, but the suc-
cess depends on both the source and target LMs.
For example, prompts learned from larger mod-
els see sharp performance declines when applied
to smaller models, indicating that the structures
they activate in large LMs may be less present in
smaller ones. In contrast, prompts learned from
smaller models reach similar or better performance
on larger models (e.g., RoBERTa-base to -large).
Experiments on TST exhibit similar patterns as
shown in Figure 7 in Appendix §B. Perhaps surpris-
ingly, prompts learned from MLMs like RoBERTa
transfer well to left-to-right LMs like GPT-2 and
vice versa, showing the LM structures they activate
are largely shared across model types. These find-
ings open up a promising and exciting direction
for future research—enabled by the transferrabil-
ity across LMs, we may learn a prompt cheaply
from smaller models, and apply it to a larger, more
powerful model for inference.

Robustness to Classification Verbalizers It is
known that prompted classification is sensitive to
verbalizer choices. Manual design requires domain
expertise and understanding of the base LMs. Pre-
vious research devised various methods for auto-
matic verbalizer search (Schick et al., 2020; Shin
et al., 2020; Gao et al., 2021). In few-shot classifi-
cation, our method can discover well-performing
prompts given a wide variety of verbalizers. Table 6
shows the results on SST-2 with several intuitive
verbalizers, averaged over 3 random seeds for each
verbalizer pair. Across different verbalizers, our
prompts consistently outperform manual prompt
with smaller variation, showing our approach is ro-
bust to the choice of verbalizers. We report similar
results on AG’s News in Table 11 in the appendix.

4 Related Work

We discuss briefly the various prompting paradigms
in previous work, and provide more comprehen-

sive discussion in Appendix §C. The conventional
usage for pre-trained LMs is fine-tuning on down-
stream datasets (Devlin et al., 2019; Lewis et al.,
2020, etc.), which expensively updates all model
parameters and shows limited success with small
datasets. Brown et al. (2020) show that manual
prompts can steer large LMs to perform NLP tasks
without any training (Raffel et al., 2020; Schick and
Schütze, 2021a; Sanh et al., 2021). Another line
of work (Weller et al., 2020; Efrat and Levy, 2020;
Mishra et al., 2021b; Wang et al., 2022) develop
instructional prompts which provide task descrip-
tions instead of fill-in-the-blank questions. With
few-shot training examples, Brown et al. (2020)
and follow-ups (Gao et al., 2021; Liu et al., 2021b;
Lu et al., 2021; Min et al., 2022) achieve remark-
able performance by inserting in-context demon-
strations. Replacing discrete prompts with contin-
uous embeddings, several works (Qin and Eisner,
2021; Li and Liang, 2021; Liu et al., 2021d) tune
soft prompts using gradient descent. By their con-
tinuous nature, however, soft prompts are difficult
to understand (Lester et al., 2021; Hambardzumyan
et al., 2021; Khashabi et al., 2021), require expen-
sive gradient information (Sun et al., 2022; Diao
et al., 2022) and are incompatible for reuse across
models due to mismatched latent spaces (Su et al.,
2021). Some existing works seek to locate bet-
ter discrete prompts by augmenting human-written
prompts with heuristics such as paraphrasing (Jiang
et al., 2020), editing (Prasad et al., 2022), and re-
framing (Mishra et al., 2021a), and selecting by
some downstream metric. AutoPrompt (Shin et al.,
2020) edits discrete prompts with guidance from
model gradients, which sees some success with
large training data but limited general applicability
due to unstable approximations.

5 Conclusion

We have presented RLPROMPT, an efficient and
flexible approach for discrete prompt optimization
using RL, which improves over a wide range of
fine-tuning and prompting methods in experiments
on few-shot classification and unsupervised text
style transfer. Analysis reveals that strong opti-
mized prompts are incoherent but transferrable be-
tween LMs for remarkable performance. The ob-
servation opens up many promising possibilities
for prompting, such as learning prompts cheaply
from smaller models and performing inference with
larger models. We are excited to explore further.

3377

6 Limitations

While our prompt optimization method performs
well on regular-sized LMs like RoBERTa and GPT-
2, we have not experimented with more recent huge
models like GPT-3 (Brown et al., 2020). As is
the case for typical RL methods, designing reward
functions may need domain expertise. However,
we may solve this problem using techniques such as
inverse RL, which learns the reward function from
data. In terms of transferrability across models,
we have not looked closely into the patterns of the
learned prompts, or so-called “secret language"
of LMs. We look forward to studying all these
questions in future work.

Acknowledgements

We thank all reviewers for their invaluable com-
ments and feedback. Mingkai Deng and Han Guo
are supported by US NGA NURI No. HM0476-20-
1-0002 and the National Science Foundation un-
der Grant No. IIS-15-63887, CCF-16-29559, IIS-
16-17583, IIS-19-55532, CNS-20-08248, IIS-21-
23952, and BCS-20-40381. Any opinions, findings,
and conclusions or recommendations expressed in
this material are those of the authors and do not
necessarily reflect the views of the NGA or the U.S.
Government.

Ethics Statement

We acknowledge the ACL Code of Ethics and the
ACM Code of Ethics and Professional Conduct and
strictly adhere to the rules throughout the course of
this research. We would like to note that massive
pre-trained language models (with prompting or
not) could be used maliciously to generate fake,
toxic, or offensive content. On the other hand,
we hope the proposed prompting technique can be
useful for harnessing and controlling the LMs from
the unethical behaviors.

References
Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Bei Chen,

Qiang Fu, Weizhu Chen, Nanning Zheng, and Jian-
Guang Lou. 2022. Input-tuning: Adapting unfamiliar
inputs to frozen pretrained models. arXiv preprint
arXiv:2203.03131.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. NeurIPS, pages 1877–1901.

Jordan Clive, Kris Cao, and Marek Rei. 2021. Con-
trol prefixes for text generation. arXiv preprint
arXiv:2110.08329.

Ning Dai, Jianze Liang, Xipeng Qiu, and Xuan-Jing
Huang. 2019. Style transformer: Unpaired text style
transfer without disentangled latent representation.
In ACL, pages 5997–6007.

Giannis Daras and Alexandros G. Dimakis. 2022. Dis-
covering the hidden vocabulary of dalle-2. ArXiv,
abs/2206.00169.

Mingkai Deng, Bowen Tan, Zhengzhong Liu, Eric Xing,
and Zhiting Hu. 2021. Compression, transduction,
and creation: A unified framework for evaluating
natural language generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7580–7605, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Shizhe Diao, Xuechun Li, Yong Lin, Zhichao Huang,
and Tong Zhang. 2022. Black-box prompt learn-
ing for pre-trained language models. arXiv preprint
arXiv:2201.08531.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning:
A comprehensive study of parameter efficient meth-
ods for pre-trained language models. arXiv preprint
arXiv:2203.06904.

Avia Efrat and Omer Levy. 2020. The turking test: Can
language models understand instructions? arXiv
preprint arXiv:2010.11982.

Joseph L Fleiss and Jacob Cohen. 1973. The equiva-
lence of weighted kappa and the intraclass correlation
coefficient as measures of reliability. Educational
and psychological measurement, 33(3):613–619.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In ACL, pages 3816–3830.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2021. Ppt: Pre-trained prompt tuning for few-shot
learning. arXiv preprint arXiv:2109.04332.

Han Guo, Bowen Tan, Zhengzhong Liu, Eric P Xing,
and Zhiting Hu. 2021. Text generation with efficient
(soft) q-learning. arXiv preprint arXiv:2106.07704.

3378

https://doi.org/10.18653/v1/2021.emnlp-main.599
https://doi.org/10.18653/v1/2021.emnlp-main.599
https://doi.org/10.18653/v1/2021.emnlp-main.599
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversarial
reprogramming. In ACL-IJCNLP, pages 4921–4933.

Shibo Hao, Bowen Tan, Kaiwen Tang, Hengzhe Zhang,
Eric P Xing, and Zhiting Hu. 2022. BertNet: Har-
vesting knowledge graphs from pretrained language
models. arXiv preprint arXiv:2206.14268.

Junxian He, Xinyi Wang, Graham Neubig, and Taylor
Berg-Kirkpatrick. 2020. A probabilistic formulation
of unsupervised text style transfer. arXiv preprint
arXiv:2002.03912.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle
Pineau, Doina Precup, and David Meger. 2018. Deep
reinforcement learning that matters. In AAAI, vol-
ume 32.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In
ICML, pages 2790–2799. PMLR.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In KDD, pages 168–177.

Zhiting Hu and Li Erran Li. 2021. A causal lens for
controllable text generation. Advances in Neural
Information Processing Systems, 34:24941–24955.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward con-
trolled generation of text. In International conference
on machine learning, pages 1587–1596. PMLR.

HuggingFace. 2019. Distilgpt2. https://
huggingface.co/distilgpt2.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, and Eric
Nyberg. 2017. Shakespearizing modern language
using copy-enriched sequence to sequence models.
In Proceedings of the Workshop on Stylistic Variation,
pages 10–19, Copenhagen, Denmark. Association for
Computational Linguistics.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? TACL, 8:423–438.

Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova,
and Rada Mihalcea. 2022. Deep learning for text
style transfer: A survey. Computational Linguistics,
48(1):155–205.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Daniel Khashabi, Shane Lyu, Sewon Min, Lianhui Qin,
Kyle Richardson, Sameer Singh, Sean Welleck, Han-
naneh Hajishirzi, Tushar Khot, Ashish Sabharwal,
et al. 2021. Prompt waywardness: The curious case
of discretized interpretation of continuous prompts.
arXiv preprint arXiv:2112.08348.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kalpesh Krishna, John Wieting, and Mohit Iyyer. 2020.
Reformulating unsupervised style transfer as para-
phrase generation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 737–762, Online. Asso-
ciation for Computational Linguistics.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167–195.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In EMNLP, pages 3045–3059.

Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes,
Daniel Jannai, Dor Muhlgay, Yoni Osin, Opher
Lieber, Barak Lenz, Shai Shalev-Shwartz, et al. 2022.
Standing on the shoulders of giant frozen language
models. arXiv preprint arXiv:2204.10019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. In ACL, pages 7871–7880.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to senti-
ment and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
ACL, pages 4582–4597.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. 2021a. Dexperts: Decoding-time
controlled text generation with experts and anti-
experts. In ACL-IJCNLP, pages 6691–6706.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021b. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

3379

https://huggingface.co/distilgpt2.
https://huggingface.co/distilgpt2.
https://doi.org/10.18653/v1/W17-4902
https://doi.org/10.18653/v1/W17-4902
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://doi.org/10.18653/v1/N18-1169
https://doi.org/10.18653/v1/N18-1169

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,
Zhilin Yang, and Jie Tang. 2021c. P-tuning v2:
Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint
arXiv:2110.07602.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021d. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yixin Liu, Graham Neubig, and John Wieting. 2021e.
On learning text style transfer with direct rewards. In
NAACL, pages 4262–4273.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Remi Mir, Bjarke Felbo, Nick Obradovich, and Iyad
Rahwan. 2019. Evaluating style transfer for text. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 495–504,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin
Choi, and Hannaneh Hajishirzi. 2021a. Refram-
ing instructional prompts to gptk’s language. arXiv
preprint arXiv:2109.07830.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021b. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv peprints arXiv:2104.08773.

Ron Mokady, Amir Hertz, and Amit H Bermano. 2021.
Clipcap: Clip prefix for image captioning. arXiv
preprint arXiv:2111.09734.

Bo PANG. 2005. Seeing stars: Exploiting class rela-
tionships for sentiment categorization with respect to
rating scales. In ACL.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. arXiv preprint cs/0409058.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai,
Roman Ring, John Aslanides, Amelia Glaese, Nat

McAleese, and Geoffrey Irving. 2022. Red team-
ing language models with language models. arXiv
preprint arXiv:2202.03286.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho.
2021. True few-shot learning with language mod-
els. NeurIPS, 34.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In EMNLP-IJCNLP, pages 2463–2473.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
arXiv preprint arXiv:2203.07281.

Jing Qian, Li Dong, Yelong Shen, Furu Wei, and Weizhu
Chen. 2022. Controllable natural language genera-
tion with contrastive prefixes. In Findings of ACL,
pages 2912–2924.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and
Yejin Choi. 2022. COLD decoding: Energy-based
constrained text generation with langevin dynamics.
arXiv preprint arXiv:2202.11705.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21:1–67.

Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen,
Chris Callison-Burch, and Jason Wei. 2021. A recipe
for arbitrary text style transfer with large language
models. arXiv preprint arXiv:2109.03910.

3380

https://doi.org/10.18653/v1/N19-1049
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410

Desik Rengarajan, Gargi Nikhil Vaidya, Akshay
Sarvesh, Dileep M. Kalathil, and Srinivas Shakkottai.
2022. Reinforcement learning with sparse rewards
using guidance from offline demonstration. In ICLR.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Timo Schick, Helmut Schmid, and Hinrich Schütze.
2020. Automatically identifying words that can serve
as labels for few-shot text classification. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5569–5578, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In EACL, pages 255–269.

Timo Schick and Hinrich Schütze. 2021b. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. Advances in neural information
processing systems, 30.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In EMNLP, pages
4222–4235.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP, pages 1631–1642.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Zhiyuan Liu, Peng Li, Juanzi Li, Lei
Hou, Maosong Sun, et al. 2021. On transferability
of prompt tuning for natural language understanding.
arXiv preprint arXiv:2111.06719.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022. Black-box tuning
for language-model-as-a-service. arXiv preprint
arXiv:2201.03514.

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment learning: An introduction. MIT press.

Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank
Srivastava, and Colin Raffel. 2021. Improving and
simplifying pattern exploiting training. In EMNLP,
pages 4980–4991.

Zhixing Tan, Xiangwen Zhang, Shuo Wang, and Yang
Liu. 2022. MSP: Multi-stage prompting for mak-
ing pre-trained language models better translators.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6131–6142, Dublin, Ireland.
Association for Computational Linguistics.

Hado P van Hasselt, Arthur Guez, Matteo Hessel,
Volodymyr Mnih, and David Silver. 2016. Learning
values across many orders of magnitude. Advances
in neural information processing systems, 29.

Ellen M Voorhees and Dawn M Tice. 2000. Building a
question answering test collection. In Proceedings
of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 200–207.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and
Daniel Cer. 2021. Spot: Better frozen model adap-
tation through soft prompt transfer. arXiv preprint
arXiv:2110.07904.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing nlp. In EMNLP.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Benchmarking generalization via in-context instruc-
tions on 1,600+ language tasks. arXiv preprint
arXiv:2204.07705.

Albert Webson and Ellie Pavlick. 2021. Do prompt-
based models really understand the meaning of their
prompts? arXiv preprint arXiv:2109.01247.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022a. Finetuned language
models are zero-shot learners. In International Con-
ference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022b.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Orion Weller, Nicholas Lourie, Matt Gardner, and
Matthew E Peters. 2020. Learning from task de-
scriptions. In EMNLP, pages 1361–1375.

Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. 2018.
Lifelong domain word embedding via meta-learning.
arXiv preprint arXiv:1805.09991.

Lei Xu, Yangyi Chen, Ganqu Cui, Hongcheng Gao, and
Zhiyuan Liu. 2022. Exploring the universal vulner-
ability of prompt-based learning paradigm. arXiv
preprint arXiv:2204.05239.

3381

https://doi.org/10.18653/v1/2020.coling-main.488
https://doi.org/10.18653/v1/2020.coling-main.488
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://aclanthology.org/2022.acl-long.424
https://aclanthology.org/2022.acl-long.424
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and
Colin Cherry. 2012. Paraphrasing for style. In Pro-
ceedings of COLING 2012, pages 2899–2914, Mum-
bai, India. The COLING 2012 Organizing Commit-
tee.

Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Sa-
loni Potdar, Yu Cheng, Gerald Tesauro, Haoyu Wang,
and Bowen Zhou. 2018. Diverse few-shot text clas-
sification with multiple metrics. arXiv preprint
arXiv:1805.07513.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan C.
Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. 2020. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning.
In CoRL, pages 1094–1100. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. NeurIPS, 28.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
ICML, pages 12697–12706. PMLR.

Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein.
2021. Adapting language models for zero-shot learn-
ing by meta-tuning on dataset and prompt collections.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2856–2878, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy,
and Ziwei Liu. 2022. Conditional prompt learn-
ing for vision-language models. arXiv preprint
arXiv:2203.05557.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019a. Fine-tuning
language models from human preferences. arXiv
preprint arXiv:1909.08593.

Zachary M Ziegler, Luke Melas-Kyriazi, Sebastian
Gehrmann, and Alexander M Rush. 2019b. Encoder-
agnostic adaptation for conditional language genera-
tion. arXiv preprint arXiv:1908.06938.

Xu Zou, Da Yin, Qingyang Zhong, Hongxia Yang,
Zhilin Yang, and Jie Tang. 2021. Controllable gener-
ation from pre-trained language models via inverse
prompting. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
pages 2450–2460.

3382

https://aclanthology.org/C12-1177
https://doi.org/10.18653/v1/2021.findings-emnlp.244
https://doi.org/10.18653/v1/2021.findings-emnlp.244

A Experiment Details

A.1 Policy Network
For all tasks, we uniformly use distilGPT-2 ((Hug-
gingFace, 2019)) with 82M parameters as a com-
pact policy LM, and implement a generously pa-
rameterized MLP with 1 hidden layer and 2048
hidden states. Given distilGPT-2’s hidden size of
768, we only add 3.1M parameters, or 3.8% of the
LM parameters.

A.2 Few-Shot Text Classification
Reward Function Details During training, we
compute the reward for prompt z by averaging
over all our few-shot training examples. We set
the balancing weights λ1 = 180 and λ2 = 200 by
tuning on the validation set.

Baseline Implementation Details For Manual
Prompt, we take the hand-crafted prompts from
Schick and Schütze (2021a). For Instructions, we
manually create task descriptions and label defi-
nitions following Mishra et al. (2021b)’s protocol
(shown in Table 14) and prepend the instructions to
the inputs. For In-Context Demonstration (Brown
et al., 2020), we randomly select one training exam-
ple per class and concatenate them with the input
texts. For Prompt Tuning (Lester et al., 2021), we
replace the Manual Prompt tokens with five soft to-
kens in the same positions for fair comparison, and
optimize them using Adam optimizer with learning
rate 1×10−2 and batch size 16 for 400 epochs. For
Black-Box Tuning (Sun et al., 2022) with mixed
prompt, we use 50 soft tokens and 8,000 budget fol-
lowing the default setting. For its soft-prompt-only
setting, we also optimize with the same budget. For
Fine-Tuning, we train with Adam optimizer with
learning rate 1 × 10−5 and batch size 16 for 100
epochs. For Discrete Prompt Enumeration, we take
GrIPS (Prasad et al., 2022) as a state-of-the-art ex-
ample. For AutoPrompt (Shin et al., 2020), we
use 5 prompt tokens and perform prompt search
with a batch size of 16 using the few-shot training
examples. For each baseline, we pick the model
with the best validation accuracy for evaluation.

Additional Training Details During training, we
explore the prompt space using top-256 sampling
from the policy network, whose input is just one
placeholder word “classification”. To update the pa-
rameters, we use an Adam (Kingma and Ba, 2014)
optimizer with learning rate 5 × 10−5. Further-
more, we multiply all rewards by 5 to increase the

0 1000 2000 3000 4000 5000 6000
Steps

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
Ac

cu
ra

cy

SST-2 - Five tokens

RLPrompt
 Piecewise

0 1000 2000 3000 4000 5000 6000
Steps

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
Ac

cu
ra

cy

AG's News - Five tokens

Figure 5: Comparison of our method with (orange) and
without (green) piecewise reward function for few-shot
classification. The format is the same as Figure 2.

reward scale of well-performing prompts, and ap-
ply z-score normalization (§2.4) across prompts for
more efficient learning. We train the policy with
16 prompts per batch for 6K steps for 2 tokens,
12k steps for 5 tokens, and compute validation
performance every 10 steps. Using an NVIDIA
GeForce RTX 3090 GPU, each experiment typi-
cally takes from 1.5 hours using distilRoBERTa-
base to 4 hours using RoBERTa-large. During eval-
uation, we average the performance of 3 prompts
with the highest validation accuracy for each ex-
periment. Due to the instability and inherent ran-
domness of the few-shot setup (Henderson et al.,
2018; Gao et al., 2021), we sample 5 different train-
ing and validation sets, run 3 experiments per set
with different random seeds, and report the average
accuracy and standard deviation.

Additional Results We present our results on the
additional datasets described in Section §3.1 in Ta-
ble 8. Again, our method outperforms prompting
baselines on average. Methods tuning continuous
parameters such as Fine-Tuning, Prompt Tuning,
and BB Tuning show better performance on Ya-
hoo and DBPedia, both multi-way datasets which
have much more training data under our setting

3383

Dataset Type |C| |Train|=|Dev| |Test| Manual template Label words
SST-2 Sentiment (Movie reviews) 2 16× |C| 1.8k <S> It was [MASK] . terrible, great

Yelp P. Sentiment (Yelp reviews) 2 16× |C| 38k <S> It was [MASK] . terrible, great

MR Sentiment (Movie reviews) 2 16× |C| 2k <S> It was [MASK] . terrible, great

CR Sentiment (Product reviews) 2 16× |C| 2k <S> It was [MASK] . terrible, great

SST-5 Sentiment (Movie reviews) 5 16× |C| 2.2k <S> It was [MASK] . terrible, bad, okay, good, great

Yelp Sentiment (Yelp reviews) 5 16× |C| 50k <S> It was [MASK] . terrible, bad, okay, good, great

Subj Subjectivity (Movie reviews) 2 16× |C| 2k <S> This is [MASK] . subjective, objective

AG’s News Topic (News articles) 4 16× |C| 7.6k [MASK] News: <S> World, Sports, Business, Tech

TREC Topic (Question types) 6 16× |C| 0.5k [MASK]: <S>
Description, Entity, Expression, Human,
Location, Number

DBPedia Topic (Wikipedia ontologies) 14 16× |C| 70k [Category: [MASK]] <S>
Company, Education, Artist, Sports, Office,
Transportation, Building, Natural, Village,
Animal, Plant, Album, Film, Written

Yahoo Topic (Question types) 10 16× |C| 60k Topic [MASK]: <S>
culture, science, health, education, computer,
sports, business, music, family, politics

Table 7: Main datasets evaluated in this work. |C|: # of classes for classification tasks. <S>: input sentence. All
our label words have a prepended special character Ġ to represent a space before a word. Note that we follow the
true few-shot learning setting (Perez et al., 2021) by taking the same number of validation and training, which is
consistent with previous prompting works.

Subj TREC Yahoo DBPedia Avg.

Fine-Tuning 89.0 (3.5) 83.9 (5.5) 65.6 (2.4) 97.7 (0.8) 84.1
Manual Prompt 51.5 31.8 18.1 59.2 40.2
Instructions 50.4 26.2 21.4 15.9 28.5
In-Context Demonstration 51.9 (1.3) 29.2 (2.0) 36.7 (2.1) 76.6 (0.4) 48.6
Prompt Tuning (Soft Prompt Tuning) 73.0 (7.3) 49.6 (6.1) 59.7 (1.3) 84.2 (5.3) 66.6
BB Tuning (2 soft tokens) 75.7 (3.4) 40.4 (2.5) 41.7 (1.4) 60.9 (6.0) 54.7
BB Tuning (5 soft tokens) 75.8 (4.4) 39.8 (4.6) 38.2 (1.8) 62.7 (4.1) 54.1
BB Tuning (Mixed, 50 soft tokens) 71.8 (5.1) 46.4 (8.2) 50.0 (0.9) 90.2 (0.8) 64.6
GrIPS (Discrete Prompt Enumeration) 74.8 (1.1) 9.5 (0.2) 22.5 (0.4) 22.1 (2.9) 32.2
AutoPrompt 78.9 (4.5) 38.8 (4.3) 35.5 (2.0) 63.1 (2.0) 54.1

RLPrompt (2 discrete tokens) 81.9 (1.2) 60.5 (3.3) 48.6 (0.6) 76.0 (0.6) 66.8
RLPrompt (5 discrete tokens) 81.2 (1.7) 57.6 (4.6) 48.6 (1.0) 84.6 (1.9) 68.0

Table 8: Additional results of few-shot text classification. The best result on each dataset is bolded and the second
best result underscored. The remaining format follows Table 2.

(e.g., Yahoo with 16 classes has 256 training ex-
amples, whereas SST-2 with 2 classes has only 32
examples). Expensively updating all parameters,
Fine-Tuning achieves the highest average accuracy
on these larger datasets.

Ablation Study As mentioned before (§2.4),
misspecified or vulnerable reward functions can
prevent the policy from discovering truly strong-
performing prompts. To address this challenge,
we propose to design piecewise reward functions
that provide bonus to qualitative behaviors such as
achieving certain accuracies on each class. As our
reward function for few-shot classification adopts
this design, we assess its effectiveness by ablat-
ing the piecewise component. Specifically, we test
on SST-2 (Socher et al., 2013) and AG’s News
(Zhang et al., 2015) using 5 prompt tokens with

the distilRoBERTa-base model as an example. We
run 5 RL experiments on the same few-shot dataset
using different random seeds, and compute the val-
idation accuracy every 50 steps. As the results
in Figure 5 show, our piecewise reward function
improves training stability by leading to strong-
performing prompts more consistently, resulting in
better average performance across random seeds
and datasets.

A.3 Text Style Transfer

Reward Function Details We implement our
content preservation reward using its CTC met-
ric (Deng et al., 2021), which measures the bi-
directional information alignment between input
x and output y. We compute the alignment by
matching token embeddings from RoBERTa-large

3384

Content Preservation Fluency
Model Content Style Fluency J (C, S, F) GM(C, S, F) BLEU BERTScore PPL↓
Training Baselines (Full Data)
Deep Latent 47.1 70.8 49.8 17.8 55.0 19.2 38.3 78.2
STRAP 54.6 69.3 85.0 30.3 68.5 16.3 46.3 33.3
Prompting Baselines (GPT-2-xl)
Null Prompt 41.9 (2.4) 56.1 (5.0) 87.6 (1.1) 17.3 (1.2) 59.0 (0.8) 9.3 (0.8) 32.7 (1.0) 48.1 (1.4)
Random Prompt 46.8 (2.6) 55.0 (4.7) 89.4 (0.8) 17.7 (1.3) 61.2 (0.8) 10.9 (0.7) 34.8 (1.0) 50.5 (1.6)
Manual Prompt 58.8 (2.7) 52.9 (4.5) 82.2 (1.7) 22.2 (1.9) 63.4 (1.5) 14.0 (0.7) 40.4 (0.7) 62.4 (1.5)
RLPROMPT (Ours – 100-Shot)
GPT-2-xl 51.8 (1.5) 65.1 (2.7) 85.2 (0.3) 26.7 (1.3) 66.0 (0.9) 13.1 (0.4) 39.0 (0.8) 63.2 (1.3)

Table 9: Automatic evaluation of our method vs. baselines on the Shakespeare (Xu et al., 2012) authorship transfer
dataset. For this dataset, our method only uses 100 examples per style, and numbers in (parentheses) are standard
deviations across 3 randomly-drawn training sets. The metrics are the same as Tables 3 and 10.

Content Preservation Fluency
Model BLEU BERTScore PPL↓
Training Baselines
Style Transformer 27.6 56.1 78.2
DiRR 30.0 61.7 40.6
Prompting Baselines (GPT-2-xl)
Null Prompt 6.6 35.8 59.5
Random Prompt 7.3 37.4 60.5
Manual Prompt 19.2 (4.1) 53.1 (5.0) 35.5 (9.0)
RLPROMPT (Ours)
distilGPT-2 15.7 (0.7) 49.1 (0.6) 43.6 (0.6)
GPT-2-small 16.5 (0.4) 51.3 (0.6) 37.8 (4.8)
GPT-2-medium 20.0 (1.2) 55.1 (1.1) 34.4 (0.8)
GPT-2-large 19.8 (0.5) 54.7 (0.7) 34.9 (1.4)
GPT-2-xl 24.2 (1.2) 59.0 (0.8) 34.3 (0.9)

Table 10: Additional automatic evaluation results on
Yelp (Shen et al., 2017) sentiment transfer. BLEU and
BERTScore are computed between outputs and refer-
ences. PPL is the perplexity under a GPT-2 language
model. Numbers in (parentheses) are standard devia-
tions across 3 sets of prompts.

similarly to BERTScore (Zhang et al., 2019), a
technique that shows the highest correlation with
human judgments. For the style reward, we com-
pute the target style probability under a BERT-base-
uncased classifier learned from the training data.

Dataset Statistics (1) Yelp (Shen et al., 2017)
contains 266K positive and 177K negative reviews
for training, 38K and 25K for validation, and 76K
and 50K for testing, respectively. We perform eval-
uation on a separate dataset consisting of 500 re-
views for each sentiment, with reference outputs
collected by Li et al. (2018). (2) We use the Shake-
speare (Xu et al., 2012) dataset compiled by Jham-
tani et al. (2017), which contains 18K parallel sen-
tence pairs from Shakespeare’s plays and their mod-
ern translations for training, 1.2K for validation,
and 1.4K for testing. We treat the dataset as a
non-parallel corpus for training, but use the paired
sentences as reference during evaluation. We pre-

0 1000 2000 3000 4000 5000 6000
Steps

60

65

70

75

80

85

Va
lid

at
io

n
Re

wa
rd

Yelp - Positive to Negative

RLPrompt
 z-Score

Figure 6: Additional comparison of our method with
(orange) and without (purple) z-score reward normal-
ization. The format is the same as Figure 2.

process both datasets with a simple text cleaning
function to remove tokenization artifacts (e.g., “it
’s great .” becomes “it’s great.”). We in-
clude the function in our public codebase for repro-
ducibility.

Additional Training Details In training, we sam-
ple 4 prompts for each input using top-50 sampling
from our policy network. During sampling, we bias
all logits by -10 to encourage exploration. For each
prompt, we generate outputs using top-10 sampling,
and bootstrap the reward 4 times to reduce variance.
For SQL training, we set the target learning rate to
be 10−3, and shape the reward from a scale of [0,1]
to [-20,80]. We optimize the prompt generator us-
ing an Adam optimizer with learning rate 10−4, ex-
cept for Yelp negative-to-positive and Shakespeare
using GPT-2-large and GPT-2-xl models, which
we train with learning rate 5 × 10−5. We train
2 inputs per batch for 6K steps if learning rate is
10−4, and 12K steps if the learning rate is 5×10−5.
Also using the RTX 3090 GPU, each experiment
typically takes from 10 hours using distilGPT-2
to 1 day using GPT-2-xl. To reduce the perfor-
mance variance caused by sample selection and

3385

RL initialization, we average the performance from
5 evaluation runs for each of 3 RL experiments
using our own method. Additionally, we perform
the same sample selection for all our baselines for
comparable performance. For Shakespeare training
baselines, we do not perform sample selection in
order to avoid biasing the full-dataset models with
our few-shot style classifiers.

Evaluation Details For automatic evaluation, We
measure Content using the CTC metric (Deng et al.,
2021) discussed earlier. To compute Style, we train
BERT-base-uncased classifiers on both training and
testing data, with validation accuracies of 98.4%
and 93.7% on Yelp and Shakespeare, respectively.
To evaluate Fluency, we rate output grammaticality
using the classifier from Krishna et al. (2020).5 We
also report popular metrics such as BLEU (using
sacreBLEU, Post, 2018) and BERTScore (Zhang
et al., 2019) for content preservation, and perplexity
(PPL) for fluency. To compute PPL, we fine-tune
GPT-2 LMs on each TST dataset. For human eval-
uation, we enlist 5 graduate students who are fluent
in English to rate Content, Style, and Fluency on a
Likert scale of 1-5, and collect 3 ratings for each
output. The average inter-rater agreement is 0.35
in terms of Fleiss’ kappa (Fleiss and Cohen, 1973),
which is fair and similar to previous work (Mir
et al., 2019).

Few-Shot Experiment Details As discussed be-
fore, we experiment with few-shot text style trans-
fer on the Shakespeare dataset. For the training
baselines, we compare with Deep Latent (He et al.,
2020) and STRAP (Krishna et al., 2020), both
trained on the full data. STRAP fine-tunes a GPT-2
(Radford et al., 2019) with self-supervised para-
phrasing signals, which can be seen as a full-model
tuning analogue to our method. We also compare
with the same prompting baselines tested for Yelp.
Both prompting baselines and our method use GPT-
2-xl as the task LM.

Few-Shot Experiment Results We present the
automatic evaluation results for Shakespeare in Ta-
ble 9 to illustrate our few-shot performance. Even
with only 100 training examples and no update to
the model, our method outperforms or gets close
to training baselines using the full dataset such as
Deep Latent and STRAP. STRAP is also limited to
a subset of styles (e.g., authorship and formality),

5https://huggingface.co/cointegrated/
roberta-large-cola-krishna2020

whereas our method accommodates a wider range
of styles. Compared to prompting baselines, our
method not only improves the performance, but
also shows higher robustness to randomly-drawn
training sets, as evidenced by the lower standard
deviations for Content and Style.

B Additional Analysis

Fluent vs. Gibberish Prompts We propose to
optimize fluent prompts with top-k filtering (Qin
et al., 2022). That is, we limit our policy’s action
space at each step t to the tokens with top-20 prob-
abilities under a GPT-2 LM, conditioning on the
previous prompt tokens z<t. Other than that, we
train the policy using the same routine. To evaluate
prompt perplexity, we use an out-of-the-box GPT-2
model.

Transferring Prompts across LMs Previously,
we presented our prompt transfer results for few-
shot classification in Section §3.3. For text style
transfer, We use the prompts trained for each size
of GPT-2 (from the smallest distil to the largest
xl) to perform generation using every other model,
and present the average performance over 5 eval-
uations in the heatmap of Figure 7. We also in-
clude Manual Prompt for comparison and Random
Prompt for the baseline performance without trans-
fer. Manual Prompt shows uniformly worse perfor-
mance than learned prompts with smaller models
like distilGPT-2 and GPT-2-small, but generally
better results with larger models like GPT-2-large
and -xl, suggesting that human-written prompts
may better activate larger models. Overall, all op-
timized prompts see some transfer, as evidenced
by the uniformly better performance than Random
Prompt, and the level of success depends on both
the prompt training and generation models, simi-
larly to classification.

Qualitative Analysis of Prompt Tokens Em-
powered by the transparency of discrete tokens,
we investigate the prompts we learned for classifi-
cation to characterize the similar patterns learned
by different LMs discovered by the prompt trasfer
analysis (§3.3). In particular, we frequently find
semantically similar tokens among our learned
prompts, which we name “strong words” and list
in Table 12. These strong words make sense in the
context of their specific tasks, indicating the LMs
may indeed capture certain human-understandable
patterns during pre-training. For instance, “abso-

3386

https://huggingface.co/cointegrated/roberta-large-cola-krishna2020
https://huggingface.co/cointegrated/roberta-large-cola-krishna2020

distil small medium
GPT-2

large xl

Text Generation Model Size

Manual
Random

distil
small

GPT-2 medium
large

xl

Baseline

Pr
om

pt
 Tr

ai
ni

ng
 M

od
el

 S
ize 37.0 42.1 46.2 50.1 53.4

34.4 34.3 34.9 35.5 34.7
46.0 45.4 46.0 47.1 45.6
44.2 50.7 47.3 47.4 48.9
40.1 46.6 56.1 48.5 51.0
39.7 43.9 46.9 56.5 52.2
39.5 44.4 48.9 56.5 61.4

Prompt Transfer Performance on Yelp Style Transfer

35

40

45

50

55

60

Figure 7: Heatmap of Yelp style transfer performance
with transferred discrete prompts. The columns repre-
sent the models used to learn the prompts, and the rows
represent the models we perform text generation with.
Manual and Random refer to the baselines presented in
Table 3. Brighter color represents better joint score J(·).

Verbalizers RLPROMPT Manual

World, Sports, Business, Tech 77.6 (1.5) 76.9
Global, Athletics, Finance, Technology 65.3 (0.5) 63.5

Table 11: Comparison of our method vs. Manual
Prompt on AG’s News using different verbalizers. The
manual prompt is “News:" and our prompts consist of 2
tokens.

lutely” may signal strong opinion before judging
a sentence as positive or negative, whereas “News”
appears to be a hint for classifying the topic of a
news piece. Besides these semantically meaning-
ful prompt tokens, we also find some unintelligi-
ble prompts that nevertheless achieve good perfor-
mance on downstream tasks, or so-called “secret
language (Daras and Dimakis, 2022) of the LM”
(e.g., “imentariesariesaryary” can reach 80%
accuracy with RoBERTa-large on AG’s News).

Beyond finding strong words, we also study
whether we can construct strong-performing
prompts by arbitrarily composing these strong
words, which can provide insight into whether LMs
use these strong words compositionally. To this
end, we construct several prompts, evaluate their
downstream performance, and tabulate the results
in Table 13. Interestingly, composing more strong
words indeed can lead to improved performance,
but the level of success is sensitive to various fac-
tors, such as word order and the specific tokens we
choose, indicating that existing LMs are still brittle
even when responding to discrete tokens learned
from optimization.

Task Category Strong Words

Sentiment Analysis Absolutely, absolutely, Totally,
downright, profoundly, VERY,
Very, Really, highly

News Classification News, Reviewer, Reports, re-
ported, Staff, Information,
Statement, Stories, Guide, say,

Table 12: Strong words from RLPROMPT for different
task categories. The words are all sensitive to cases and
to whether we prepend the special character Ġ.

Template RoBERTa GPT-2

SST-2
<S> downright [MASK] . 80.6 86.7
<S> Really downright [MASK] . 90.4 89.1
<S> Absolutely [MASK] . 91.7 87.8
<S> AbsolutelyAbsolutely [MASK] . 89.2 72.3
<S> Absolutely VERY absolute
VERY absolute [MASK] . 92.7 73.8

AG’s News
[MASK] Reviewer <S> 74.5 —
[MASK] Reviewer Stories <S> 81.0 —
[MASK] StaffInformationStatement <S> 76.8 —
[MASK] StaffInformationStatement
Reviewer Stories <S> 79.8 —

Table 13: The performance of manual prompt examples
by composing strong words from Table 12 for both
sentiment analysis and news topic classification across
RoBERTa-large and GPT-2-large.

C Additional Related Work

C.1 Prompting Paradigms
Fine-Tuning The conventional approach to using
pre-trained LMs is fine-tuning model parameters on
downstream datasets (Devlin et al., 2019; Liu et al.,
2019; Lewis et al., 2020; Raffel et al., 2020; Rad-
ford et al., 2019). While driving progress in a wide
range of NLP tasks, fine-tuning expensively up-
dates all model parameters and shows limited suc-
cess with small datasets. Prompt-based fine-tuning
(Gao et al., 2021; Schick and Schütze, 2021b) uses
prompting to improve few-shot performance, but
the problem of costly training remains unsolved.

Manual Prompt As LMs show remarkable
progress in understanding natural language (Pe-
ters et al., 2018; Devlin et al., 2019), researchers
first use hand-crafted fill-in-the-blank prompts to
extract knowledge from pre-trained LMs for prob-
ing analyses (Petroni et al., 2019; Jiang et al.,
2020). Later on, Brown et al. (2020) show that
using manually-written prompts, large LMs can
perform a number of NLU and NLG tasks without
any training examples. Meanwhile, other studies
(Raffel et al., 2020; Schick and Schütze, 2021a;
Sanh et al., 2021) formulate various NLP tasks as

3387

manual prompts.

Instructions Separate from but related to manual
prompts, another line of work (Weller et al., 2020;
Efrat and Levy, 2020; Mishra et al., 2021b; Wang
et al., 2022) makes use of instructional prompts
which provide task descriptions instead of fill-in-
the-blank questions. In particular, instruction meta-
tuning (Mishra et al., 2021b; Zhong et al., 2021;
Wei et al., 2022a) trains models on some tasks with
instructions and supervised data in order to gen-
eralize to unseen tasks formulated as instructions
without training examples.

In-Context Demonstration Besides zero-shot
learning, Brown et al. (2020) achieve more remark-
able performance on few-shot learning by inserting
training examples into the input context. More
recent works (Gao et al., 2021; Liu et al., 2021b;
Lu et al., 2021; Min et al., 2022) further explore
the selection and analysis of in-context demonstra-
tions. Reif et al. (2021) propose augmented zero-
shot learning, which inserts training examples from
related tasks as demonstrations for tasks without
supervised training data, such as text style transfer.

Discrete Prompt Enumeration Because dis-
crete prompts are difficult to optimize and suscep-
tible to small design variations (Zhao et al., 2021;
Webson and Pavlick, 2021; Lu et al., 2021), a num-
ber of existing works seek to locate better prompts
by augmenting human-written prompts with heuris-
tics such as paraphrasing (Jiang et al., 2020; Gao
et al., 2021), editing (Prasad et al., 2022), and re-
framing (Mishra et al., 2021a). The final prompt is
typically selected to maximize some downstream
performance metric.

AutoPrompt Shin et al. (2020) optimize discrete
prompts by editing prompt tokens with guidance
from model gradients. While seeing some success
with large training data, the method relies heavily
on approximation, which leads to less stable train-
ing and limited applicability to few-shot settings.

Soft Prompt Tuning Replacing discrete prompts
with continuous embeddings, several parallel
works (Qin and Eisner, 2021; Li and Liang, 2021;
Liu et al., 2021d) propose to optimize soft prompts
with gradient-based tuning. Soft prompt tuning can
be seen as a variant of parameter-efficient trans-
fer learning (Houlsby et al., 2019; He et al., 2021;
Ding et al., 2022), and inspires a number of follow-
up works that boost its performance (e.g., Liu et al.,

2021c; Gu et al., 2021; Vu et al., 2021; Clive et al.,
2021) or explore novel applications (e.g., Tan et al.,
2022; Zhou et al., 2022; Levine et al., 2022). By its
nature, however, soft prompts are difficult for hu-
mans to understand because of its continuous form
(Khashabi et al., 2021; Lester et al., 2021; Ham-
bardzumyan et al., 2021; Mokady et al., 2021). De-
fined in the latent space of specific models, learned
prompts are also virtually impossible to use with a
different model. Furthermore, their training typi-
cally requires gradient information from the models
they prompt, which can be expensive to compute or
simply inaccessible for models deployed as infer-
ence API, such as GPT-3 (Brown et al., 2020). Sun
et al. (2022) and Diao et al. (2022) propose black-
box tuning, which updates continuous prompts us-
ing gradient-free techniques to some success.

C.2 Controllable Text Generation
Current state-of-the-art models typically fine-tune
entire pre-trained LMs (e.g., Ziegler et al., 2019a;
Keskar et al., 2019; Ziegler et al., 2019b; Liu et al.,
2021e). Recent work instead employs various
prompts to steer the LM to generate text with prop-
erties such as topic (Guo et al., 2021; Qian et al.,
2022) and (lack of) toxicity (Liu et al., 2021a; Perez
et al., 2022), or from modalities such as image
(Mokady et al., 2021; Zhou et al., 2022), structured
data (Li and Liang, 2021; An et al., 2022), and
numbers (Wei et al., 2022b). However, these works
either control simple attributes, perform no explicit
prompt optimization, or have access to supervised
data. For unsupervised tasks with more complex
requirements such as text style transfer (Hu et al.,
2017; Jin et al., 2022), Reif et al. (2021) proposed
augmented zero-shot prompting, which achieves
some success using huge LMs (e.g., GPT-3). Com-
plementary to the works above which focus on
finding prompts, Zou et al. (2021) augment the
generation decoding objective using the prompt,
leading to improved performance in poetry genera-
tion and long-form QA.

3388

Dataset SST-2
Instruction In this task, you are given sentences from movie reviews. The task is to classify a sentence as "great" if

the sentiment of the sentence is positive or as "terrible" if the sentiment of the sentence is negative.
RLPROMPT 2 token template <S> VERY Absolutely [MASK] .
RLPROMPT 5 token template <S> AgentMediaGradeOfficials Grade [MASK] .

Dataset Yelp P.
Instruction In this task, you are given Yelp reviews. The task is to classify a review as "great" if the overall sentiment

of the review is positive or as "terrible" if the overall sentiment of the review is negative.
RLPROMPT 2 token template <S> Rating Absolutely [MASK] .
RLPROMPT 5 token template <S> ProductGradeTimeoutAbsolutely Absolutely [MASK] .

Dataset MR
Instruction In this task, you are given sentences from movie reviews. The task is to classify a sentence as "great" if

the sentiment of the sentence is positive or as "terrible" if the sentiment of the sentence is negative
RLPROMPT 2 token template <S> downright absolutely [MASK] .
RLPROMPT 5 token template <S> ouslyicals downright certainly consistently [MASK] .

Dataset CR
Instruction In this task, you are given sentences from customer reviews. The task is to classify a sentence as "great" if

the sentiment of the sentence is positive or as "terrible" if the sentiment of the sentence is negative.
RLPROMPT 2 token template <S> ITNESSALLY [MASK] .
RLPROMPT 5 token template <S> absoluteliterally absolute downright downright [MASK] .

Dataset SST-5
Instruction In this task, you are given sentences from movie reviews. Based on the given review, classify it to one of

the five classes: (1) terrible, (2) bad, (3) okay, (4) good, and (5) great.
RLPROMPT 2 token template <S> Movie entirely [MASK] .
RLPROMPT 5 token template <S> iciticititableually immediately [MASK] .

Dataset Yelp
Instruction In this task, you are given Yelp reviews. Based on the given review, classify it to one of the five classes:

(1) terrible, (2) bad, (3) okay, (4) good, and (5) great.
RLPROMPT 2 token template <S> =-=- Totally [MASK] .
RLPROMPT 5 token template <S> imalimalimalivable Totally [MASK] .

Dataset AG’s News
Instruction In this task, you are given a news article. Your task is to classify the article to one out of the four topics

"World", "Sports", "Business", "Tech" if the article"s main topic is relevant to the world, sports, business,
and technology, correspondingly. If you are not sure about the topic, choose the closest option.

RLPROMPT 2 token template [MASK] Reviewer Information <S> .
RLPROMPT 5 token template [MASK] StaffAreaFocusHardware Advisory <S> .

Dataset Subj
Instruction In this task, you are given sentences from reviews. The task is to classify a sentence as "subjective" if the

opinion of the sentence is subjective or as "objective" if the opinion of the sentence is objective.
RLPROMPT 2 token template <S> Friends pleasantly [MASK] .
RLPROMPT 5 token template <S> BufferActionDialogDialog downright [MASK] .

Dataset TREC
Instruction You are given a question. You need to detect which category better describes the question. Answer with

"Description", "Entity", "Expression", "Human", "Location", and "Number".
RLPROMPT 2 token template <S> DeveloperTermin [MASK] .
RLPROMPT 5 token template <S> BufferHttpRuntimeRunnerostics [MASK] .

Dataset Yahoo
Instruction You are given a passage. Using the information present in the passage, you need to classify it into one of

the 10 topics: 0 - Culture, 1 - Science, 2 - Health, 3 - Education, 4 - Computers, 5 - Sports, 6 - Business, 7
- Music, 8 - Family, 9 - Politics.

RLPROMPT 2 token template <S> Source Ireland [MASK] .
RLPROMPT 5 token template <S> AlertSource mentioning Besidesadays [MASK] .

Dataset DBPedia
Instruction You are given a passage. Using the information present in the passage, you need to classify it into one of

the 10 topics: 0 - Culture, 1 - Science, 2 - Health, 3 - Education, 4 - Computers, 5 - Sports, 6 - Business, 7
- Music, 8 - Family, 9 - Politics.

RLPROMPT 2 token template typeSection [MASK] : <S> .
RLPROMPT 5 token template CommonExamplesSenate Similar comparable [MASK] : <S> .

Table 14: Manual instructions (following natural instructions (Mishra et al., 2021b)) we tested with in our baseline
implementation and some template cases we learned by RLPROMPT for specific datasets.

3389

ID
Template
[to negative | to positive]

Content Style Fluency J (C, S, F) GM(C, S, F) BLEU BERTScore PPL↓

Null Prompt
1 "{input}" " 37.4 (0.1) 94.8 (0.1) 97.6 (0.1) 33.6 (0.1) 70.2 (0.1) 6.6 (0.1) 35.8 (0.1) 59.5 (2.0)

Manual Prompt

1

Here is some text: "{input}".
Here is a rewrite of the text,
which is more
[negative | positive]: "

72.1 (0.1) 94.8 (0.3) 91.6 (0.1) 62.3 (0.2) 85.6 (0.1) 23.9 (0.1) 58.8 (0.1) 29.6 (0.3)

2

Change the following sentence
from [positive | negative]
sentiment to [negative | positive]
sentiment but keep its
semantics. "{input}" "

60.4 (0.1) 91.9 (0.2) 94.0 (0.1) 50.5 (0.1) 80.5 (0.1) 17.4 (0.1) 51.3 (0.1) 31.0 (0.4)

3
"{input}". Rewrite the sentence
to be [sadder | happier] but
have the same meaning. "

60.2 (0.2) 87.7 (0.4) 94.0 (0.2) 47.4 (0.3) 79.2 (0.1) 16.2 (0.1) 49.3 (0.1) 45.8 (0.7)

Fluent Prompt

1
[I don’t like having |
I love my life (] "{input}" "

54.1 (0.5) 95.2 (0.4) 93.9 (0.7) 47.4 (0.4) 78.5 (0.3) 13.4 (0.4) 45.7 (0.2) 52.3 (1.9)

2
[This is not an example |
The best is good\n] "{input}" "

51.5 (0.1) 96.8 (0.4) 94.2 (0.6) 46.0 (0.4) 77.7 (0.1) 11.9 (0.3) 46.2 (0.2) 35.4 (2.3)

3
[I don’t like |
I love my work (] "{input}" "

51.5 (0.4) 96.6 (0.7) 95.7 (0.5) 46.7 (0.5) 78.1 (0.2) 12.3 (0.3) 46.2 (0.3) 43.5 (1.3)

RLPROMPT (Ours)

1
[Fixed (− contrasts (− contrasts |
Dutch English excellent Correct
(>] "{input}" "

71.5 (0.1) 96.6 (0.2) 90.1 (0.2) 62.8 (0.9) 85.4 (0.1) 23.5 (0.1) 58.7 (0.1) 34.1 (0.2)

2

[Fixed RemovedChanged
Prevent outcomes |
Parameters Comparison
)=(Compare either]
"{input}" "

71.0 (0.1) 91.9 (0.3) 89.3 (0.2) 58.9 (1.1) 83.5 (0.1) 23.7 (0.1) 58.3 (0.1) 35.3 (0.5)

3

[Affect differed judgments
(− analysis | Difference
experiences (− contrasting
experience] "{input}" "

73.8 (0.1) 94.0 (0.2) 89.2 (0.2) 62.6 (1.1) 85.2 (0.1) 25.6 (0.1) 59.9 (0.1) 33.5 (0.5)

Table 15: Text style transfer performance for various baseline and learned prompts. Manual refers to manually-
written prompts, with 1 from (Reif et al., 2021) and 2-3 written for this experiment. Fluent refers to prompts learned
using our method with fluency constraint (§3.3). RL refers to our main prompt optimization method. The metrics
are the same as in Table 3. All outputs are generated using GPT-2-xl and metrics are averaged over 5 runs. Numbers
in (parentheses) are standard errors of the averaged metrics.

3390

ID
Template
[to old | to modern]

Content Style Fluency J (C, S, F) GM(C, S, F) BLEU BERTScore PPL↓

Null Prompt
1 "{input}" " 41.9 (0.6) 56.1 (1.3) 87.6 (0.3) 17.3 (0.3) 59.0 (0.2) 9.3 (0.2) 32.7 (0.3) 48.1 (0.4)

Manual Prompt

1

Here is some text: "{input}".
Here is a rewrite of the text,
which is [old | modern]
English: "

61.5 (0.2) 51.0 (1.1) 80.1 (0.1) 22.6 (0.6) 63.1 (0.5) 14.6 (0.1) 40.9 (0.1) 62.6 (0.2)

2

Change the following sentence
from [modern | old] English
to [old | modern] English but
keep its semantics. "{input}" "

56.0 (0.9) 54.1 (2.3) 83.3 (0.4) 21.4 (0.8) 63.1 (0.7) 13.4 (0.3) 39.7 (0.3) 61.8 (0.9)

3
"{input}". Rewrite the sentence
to be [old | new] English
but have the same meaning. "

58.9 (0.7) 53.5 (2.4) 83.2 (0.6) 22.5 (1.1) 63.9 (0.9) 13.9 (0.3) 40.7 (0.2) 62.8 (0.7)

RLPROMPT (Ours)

1
[Measure·Psal Sanskrit thereto∗ |
TacomaExcellent happiness
verbs positives] "{input}" "

49.9 (0.1) 67.3 (0.4) 85.3 (0.1) 26.4 (0.1) 65.9 (0.1) 12.6 (0.1) 38.0 (0.1) 64.5 (0.4)

2
[Character Psal Quran verbsð |
Verb Effect verb Effect verb]
"{input}" "

52.2 (0.0) 61.7 (0.4) 85.0 (0.2) 25.4 (0.1) 64.9 (0.1) 13.3 (0.1) 39.0 (0.1) 63.2 (0.3)

3
[search (< Psal Ethiop
differentiate | Meaning Usage
phr phr phr] "{input}" "

53.3 (0.1) 66.3 (0.3) 85.3 (0.1) 28.3 (0.1) 67.1 (0.1) 13.3 (0.0) 39.9 (0.1) 61.9 (0.3)

Table 16: Text style transfer performance for various baseline and learned prompts on Shakespeare (Xu et al., 2012).
The metrics and format are the same as Table 15. ∗The dot in this prompt should be the “dagesh” character in
Hebrew, with unicode number U+05BC. Here we use \cdot for easier rendering.

3391

