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Abstract

While Pre-trained Language Models (PLMs)
internalize a great amount of world knowl-
edge, they have been shown incapable of re-
calling these knowledge to solve tasks requir-
ing complex & multi-step reasoning. Similar
to how humans develop a “chain of thought”
for these tasks, how can we equip PLMs with
such abilities? In this work, we explore an
iterative prompting framework, a new prompt-
ing paradigm which progressively elicits rele-
vant knowledge from PLMs for multi-step in-
ference. We identify key limitations of existing
prompting methods, namely they are either re-
stricted to queries with a single identifiable re-
lation/predicate, or being agnostic to input con-
texts, which makes it difficult to capture vari-
abilities across different inference steps. We
propose an iterative context-aware prompter,
which addresses these limitations by learning
to dynamically synthesize prompts conditioned
on the current step’s contexts. Experiments on
three datasets involving multi-step reasoning
show the effectiveness of the iterative scheme
and the context-aware prompter design.1

1 Introduction

Humans can develop a “chain of thought” for com-
plex decision making. For example, when asked
the question (Q) shown in Figure 1, which involves
composition, an important type of multi-step rea-
soning, humans apply two consecutive steps to de-
rive the final answer: 1) find “father” of the topic
entity “Gwilym Lloyd George” (C1); 2) find “birth-
place” of the entity returned in the first step (C2).

Recently, large-scale pre-trained language mod-
els (PLMs) have been shown capable of internal-
izing a great amount of simple factual knowledge
such as C1 and C2, yielding competitive perfor-
mance on a range of knowledge-intensive tasks
without resorting to any external knowledge source

1Our source code is available at https://github.
com/sunlab-osu/IterPrompt.

Iterative Prompting

Standard Probing

C1: “David Lloyd George is the 
father of Gwilym Lloyd George”

Q: “What is the place of birth of Gwilym Lloyd George’s father?”
(Answer: Manchester)

PLM

“Who is the father of 
Gwilym Lloyd George?”

“David Lloyd George”

“Unknown”

QPrompter

Q Q & C1Prompter

C2: “Manchester is the place of 
birth of David Lloyd George”

Figure 1: Our Iterative Prompting approach (on the
right), compared with Standard Probing (on the left). In
Standard Probing, a question is directly fed to the PLM
to output the final answer, which could work for simple
factual questions but fails for complex questions that
require multi-step reasoning. In contrast, we augment
the PLM with a Prompter, which learns to iteratively
prompt the PLM to recall a series of knowledge and
derive a “chain of thought”.

(Petroni et al., 2019; Shin et al., 2020; Zhong et al.,
2021; Roberts et al., 2020; Lee et al., 2020). How-
ever, work such as (Talmor et al., 2020a; Kassner
et al., 2020; Rae et al., 2021) reveals that PLMs
face difficulties in complex, multi-step reasoning.
For example, they struggle with answering complex
questions like Q without using external sources, no
matter whether they are fine-tuned based on QA
pairs or simply prompted to produce the answer
(where even if they have memorized C1 and C2).

In this paper, we study the following question:
How to shepherd a PLM to recall a series of stored
knowledge (e.g., C1 and C2) that is necessary for
multi-step inference (e.g., answering Q), analogous
to how humans develop a “chain of thought” for
complex decision making?

A direct way would be to fine-tune the PLM to
generate the series of knowledge all at once (as-
suming such supervision is available), but soon
one realizes the practical issue in this approach:
PLMs which internalize a great amount of knowl-
edge are inevitably large in scale, and fine-tuning
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all their parameters would become more and more
costly as they keep scaling up. There is also the
concern that fine-tuning PLMs may interfere with
their implicit knowledge storage, a phenomenon
observed in (Wang et al., 2021) which is more gen-
erally related to the catastrophic forgetting problem
of deep learning models (McCloskey and Cohen,
1989; Kirkpatrick et al., 2017; Howard and Ruder,
2018). Therefore, lightweight methods such as
prompting (Liu et al., 2021) which keep a PLM’s
parameters intact would be preferable for our pur-
pose of eliciting knowledge. However, we find that
no matter whether it is fine-tuned or prompted to
generate the series of knowledge all at once, the
PLM tends to lose its “chain of thought” during
the process, generating irrelevant facts or suffering
from hallucination.

Motivated by the iterative nature of multi-
step reasoning problems, we explore an iterative
prompting framework in this paper, which elicits
knowledge from PLMs step by step for a given
inference task. We have two desiderata in itera-
tive prompting: (1) At different inference steps, the
prompts need to focus on different components of
the complex query. (2) The prompts should appro-
priately integrate knowledge gathered in previous
steps into the current step; for instance, during the
2nd step in the example in Figure 1, the prompts
need to combine the entity “David Lloyd George”
(from knowledge recalled in the 1st step) with the
unresolved part “What is the place of birth of” in
the query.

A natural thought is to directly apply existing
prompting methods in an iterative fashion. Un-
fortunately, their prompts are either restricted to
queries with a single, identifiable relation/predicate
(Jiang et al., 2020; Petroni et al., 2019; Zhong et al.,
2021; Shin et al., 2020; Qin and Eisner, 2021), or
being agnostic and insensitive to step-wise inputs
(Lester et al., 2021; Li and Liang, 2021; Brown
et al., 2020), and hence not ideal for our desiderata.

We design a novel iterative prompting method
towards that end. We augment the PLM with an
iterative Context-Aware Prompter, a model which
learns to dynamically synthesize prompts based on
the current step context. At each step, the Prompter
learns to process the query and previously gathered
evidence, and composes a prompt which steers the
PLM to recall the next piece of knowledge. Like
other prompting methods, the PLM is kept fixed
throughout the learning process. In addition, as

the PLM size increases, the number of trainable
parameters in our method scales comparably with
or slower than previous prompting methods.

We conduct experiments on three datasets in-
volving multi-step reasoning, including two recent
multi-hop Question Answering datasets: 2Wiki-
MultiHopQA (Ho et al., 2020) and R4C (Inoue
et al., 2020), and a scientific dataset (Talmor et al.,
2020b) for reasoning over taxonomic relations. Our
experimental results show (1) effectiveness of the
iterative scheme; (2) our proposed Context-Aware
Prompter design outperforms existing prompting
methods by notable margins; (3) quantitative and
qualitative analysis which reveal the faithfulness of
our learned prompter.

2 Methodology

In this section, we first formalize our problem setup
(§2.1), and then introduce our iterative prompting
framework (§2.2), followed by our context-aware
prompter design (§2.3) which addresses key limita-
tions of previous prompting methods when applied
in this iterative scheme.

2.1 Problem Setup

Given a complex query q, our goal is to drive a
PLM M to recall a sequence of simple knowledge
statements Cq = [c1, ..., cnq ] which is sufficient
for deciding the response to q. In particular, we
focus on developing prompting methods, where the
parameters of M are fixed and we aim to construct
prompt T which steer M to recall Cq. Note that
here we treat T as a variable, which may or may
not depend on other variables based on different
modelings. Writing M(T ) as M augmented with
prompt T , our training objective is to learn how to
find T which could maximize the log-likelihood

L(T ) =
N∑

i=1

logP (Cqi |qi;M(T ))

with a set of training data {qi, Cqi}Ni=1.
Our formulation here is general and applicable

to all prompting-based methods, where the settings
in previous work such as (Zhong et al., 2021; Shin
et al., 2020; Lester et al., 2021; Li and Liang, 2021;
Qin and Eisner, 2021) correspond to the reduced
case where |Cq| = 1 for any query q. In our ex-
periments, we also consider PLM fine-tuning, in
which case there’s no prompt T in the pipeline, and
instead the parameters of M are optimized.
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2.2 Iterative Prompting Framework
Inspired by the sequential nature of multi-step infer-
ence tasks, we approach the problem in an iterative
way:

P (Cq|q;M(T )) =

nq∏

j=1

P (cj |q, c1, ..., cj−1;M(T ))

where at each step j, M(T ) recalls the next piece
of knowledge cj conditioned on the query q and all
previously gathered knowledge c1, ..., cj−1 (con-
catenated with q).

2.3 Context-Aware Prompter
Previous prompting methods which take single-
relation inputs clearly fail to apply in this iterative
setting due to the complexity of the input context
q, c1, ..., cj−1. Task-level prompting methods such
as Prompt-Tuning (Lester et al., 2021) and Prefix-
Tuning (Li and Liang, 2021) are applicable here,
where T is treated as a static parameter. However,
as described earlier, this modeling is not ideal for T
to fully capture variabilities across different infer-
ence steps. In this work, we model T as the output
of our Prompter, a learnable function mapping fW
which dynamically synthesizes T w.r.t. the current
step input context:

T = fW (q, c1, ..., cj−1),∀j

Prompter Instantiation. While there are many
plausible design choices for the Prompter fW , here
we instantiate it with a transformer-based language
model (shown in Figure 2). The prompts are de-
signed to be contextualizations (by the Prompter)
of a set of special tokens w.r.t. the current step input
context, linearly projected into the PLM’s embed-
ding space by a trainable matrix (omitted in the
figure due to space limit). In this work, we adopt
an Encoder-Decoder PLM and use prefix-prompts
in the implementation; hence we have prompts that
are prepended to both the PLM’s encoder inputs
and decoder inputs. Note that our design could
be easily adapted to other types of PLMs (e.g.,
encoder-only/decoder-only models) and different
prompt positionings (e.g., infix, postfix).
Comparison with Prompt/Prefix-Tuning. Both
Prompt-Tuning (Lester et al., 2021) and Prefix-
Tuning (Li and Liang, 2021) model the prompt T
as a context-agnostic parameter. In Prompt-Tuning,
T has the same identity as in our approach which
is a set of virtual input tokens (Encoder Prompts

Encoder 
Special Tokens

Encoder Prompts Decoder Prompts

…

PLM Encoder Block (fixed) PLM Decoder Block (fixed)

Prompter

Decoder 
Special Tokens

…

…

Figure 2: Our context-aware prompter design. The
prompter contextualizes a set of special tokens w.r.t. the
current step context q, c1, ..., cj−1 to get the resulting
prompts, which steers the PLM to recall the next piece
of knowledge cj .

& Decoder Prompts in Figure 2). In Prefix-Tuning,
T is modeled to be the set of activations (keys &
values in the transformer attention blocks) of the
virtual prompt tokens across all PLM layers. Let
D be the embedding dimension of the PLM, h be
the number of layers in the PLM, d be the embed-
ding dimension of the Prompter (d ≤ D), and l be
the length of the prompt tokens (both encoder &
decoder prompts). Then the number of trainable pa-
rameters is Θ(d ·(D+ l)) for our proposed method,
Θ(l · D) for Prompt-Tuning and Θ(l · h · D) for
Prefix-Tuning. It can thus be seen that our proposed
method scales comparatively with Prompt-Tuning,
slower than Prefix-Tuning, and overall maintains
a manageable amount of trained parameters as the
PLM scales up (which increases D and h).
Continuous v.s. Discrete Prompts. While model-
ing T as discrete tokens in the PLM’s vocabulary
could increase the readability of the prompts, a dis-
crete space is much less expressive than its contin-
uous counterpart, and optimization over a discrete
space could be highly inefficient. Also, despite
being inside the vocabulary, the searched discrete
prompts could still have low interpretability as seen
by the given examples in (Shin et al., 2020). Hence,
we follow prior work (Zhong et al., 2021; Li and
Liang, 2021; Lester et al., 2021; Qin and Eisner,
2021) and model the prompts to be continuous vir-
tual tokens instead of discrete tokens.

2.4 Learning and Inference

We use teacher-forcing for model training, namely,
at each step, the ground truth contexts at that step
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(query and previous knowledge pieces) are pre-
sented to the model. We maximize L(T ) using stan-
dard sequence-to-sequence (seq2seq) objectives.
During inference, we proceed autoregressively by
feeding the recalled knowledge at step t− 1 as the
additional context at step t, and execute for some
predefined number of steps. We also explore jointly
training the prompter with a “stopper” which learns
to stop the knowledge recall process when it de-
cides that the recalled evidence is adequate enough;
details are included in Appendix A.4.

3 Experimental Setup

Our research question is how to shepherd a PLM
to recall a series of knowledge and derive a “chain
of thought" for multi-step reasoning. To this end,
we conduct experiments on several datasets that
require complex multi-step reasoning and com-
pare different methods to guide the PLM via
prompt/prefix tuning, fine-tuning, and our prompter
design. We use both intrinsic and extrinsic metrics
to evaluate the quality of recalled knowledge, con-
sidering both end answer accuracy and coverage of
intermediate evidence.

3.1 Datasets & Preprocessing

We conduct experiments on three datasets involv-
ing multi-step reasoning which include annotations
for knowledge statements relevant to the queries:
2WikiMultiHopQA (abbreviated as 2Wiki) (Ho
et al., 2020), R4C (Inoue et al., 2020), and a scien-
tific commonsense reasoning dataset (abbreviated
as LoT2) constructed by (Talmor et al., 2020b).
2WikiMultiHopQA (Ho et al., 2020). 2Wiki is
a recent large scale multi-hop QA dataset, which
contains in total over 192k (167k train, 12.5k de-
velopment, and 12.5k test) samples constructed
jointly from Wikipedia and Wikidata. Since the
test set is private, we randomly split the original de-
velopment set into our development & test set (6k
samples each). The dataset format largely follows
HotpotQA (Yang et al., 2018), but includes more
diverse reasoning types of questions and detailed
annotations of evidence paths for each question.
Here, an evidence path is an ordered list of (sub-
ject entity, relation, object entity) knowledge base
triplets. We use the question as the query q, and
use a simple template to convert each triplet in the
evidence path into a natural language statement,

2The abbreviation here comes from the phrase “Leap-of-
Thought” in the paper title of (Talmor et al., 2020b).

forming Cq. Due to the large training set size and
limited computing budget, we randomly sample
10% of the training data to form our final training
set, which has the side benefit of largely reducing
the test/train overlap (more details in §4.2).

R4C (Inoue et al., 2020). R4C is another re-
cent multi-hop QA dataset containing annotated
evidence paths. The dataset contains 4.6k exam-
ples (2.4k train, 2.2k development) constructed on
top of HotpotQA, where the authors used crowd-
sourcing efforts to collect the evidence paths in
the form of simple subject-verb-object natural lan-
guage sentences. Again, we randomly split the
development set (there’s no test set given) into our
development and test set (1.1k samples each). We
use the question as our query q and use the anno-
tated evidence sentences as Cq.

LoT (Talmor et al., 2020b). The dataset involves
reasoning over a set of taxonomic relations, con-
structed from ConceptNet and WordNet. Each ex-
ample consists of a hypothesis (e.g., “A whale has
a belly button”) which we treat as query q, and a set
of simple facts including hypernym rules (e.g., “A
whale is a mammal”, “A whale is a vertebrate”) and
properties (e.g., “A mammal has a belly button”, “A
vertebrate has a tail”). By reasoning over the facts
and selecting the correct chain of hypernym rule &
property (“A whale is a mammal”, “A mammal has
a belly button”), one could verify or deny the given
hypothesis. One subtle issue of directly using the
gold hypernym rule and property as Cq is, during
the first step, it would be difficult to directly iden-
tify the correct object entity without looking ahead
on the properties in the second step. Therefore, for
the first step, we concatenate all the hypernymic
objects appearing in the dataset w.r.t. to the same
subject to form c1. We drop samples from the orig-
inal training set where the relevant facts are not (or
only partially) provided, and obtain 9.4k/1.2k/1.2k
samples for training/development/testing.

For 2Wiki and R4C, the number of steps during
inference is set to be 4 since over 99% of the sam-
ples have less or equal to 4 inference steps. For
LoT, we set the number of inference steps to be 2.
Overall, we regard 2Wiki as our “major” evaluation
dataset due to its largest scale (despite our down-
sampling) and diverse types of queries, and use it to
conduct a faithfulness study of prompting in §4.2.
Some examples of the processed data samples are
shown in Appendix A.6.
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3.2 Compared Methods

We compare our proposed iterative Context-Aware
Prompter (iCAP) along with Prompt Tuning
(Prompt-T), Prefix Tuning (Prefix-T) and PLM
fine-tuning (PLM-FT) under both non-iterative
and iterative setting. The iterative setting is de-
scribed in §2.2 and for the non-iterative setting, we
simply concatenate all the knowledge statements in
Cq to form one single piece of knowledge for each
query. In extrinsic evaluation, we also compare
with fine-tuning the PLM on (query, answer) pairs
without knowledge recall (PLM-QA), which mea-
sures how much the PLM can solve these multi-step
inference problems directly, a skill which PLMs
are poor at as shown by previous work. We addi-
tionally report final inference results when feeding
ground truth contexts to the reader (Oracle-RD) as
an upper bound for extrinsic evaluation. Relation-
specific prompting methods such as (Shin et al.,
2020; Zhong et al., 2021; Petroni et al., 2019) are
not included since they’re not directly applicable
to our problem setup as discussed earlier.

Our focus in this work is on knowledge elici-
tation from PLMs, and hence we do not aim to
compare with previous dataset-specific methods
which typically have different problem formula-
tions & focus than ours and utilize other attributes
in the datasets which we do not use (e.g., gold &
distractor evidence paragraphs).

3.3 Evaluation Metric

We use both intrinsic and extrinsic metrics to eval-
uate the PLM recalled knowledge.
Intrinsic Evaluation. Here, we directly measure
the quality of recalled knowledge. While there are
standard metrics for evaluating text generation such
as BLEU and ROUGE, these metrics generally fail
to capture the entity-centric nature of the recalled
knowledge we wish to examine (more details are in-
cluded in Appendix A.3). Therefore, we propose a
set of measures that are better suited for the tasks in
our experiments. For 2Wiki and R4C, we evaluate
the ratio where the recalled knowledge contains the
answer entity (Ans.R); we also compute the ratio
among only those samples where the answer entity
does not appear in the query (Ans.R̂). For 2Wiki
and LoT, we also evaluate the evidence coverage
of recalled contexts by computing the average ratio
of gold evidence appearing in the recalled context
(Evi.R) and the ratio of samples where all gold
evidence are recalled (Evi.R∗) as a more strict

measure. For 2Wiki, we use the entities from the
annotated KB triples as evidence. For LoT, we
consider the hypernym rule/property as evidence,
where in the 1st step, we deem the hypernym rule
as correct if the gold object is recalled, and use
exact match for the recalled property in the 2nd
step.
Extrinsic Evaluation. We also conduct extrin-
sic evaluation by measuring how much the recalled
knowledge help find the response to the query. Sim-
ilar to reading comprehension, we concatenate all
recalled knowledge as the contexts, and use a reader
which tries to infer the answer given the query and
contexts. For 2Wiki and R4C, we first pre-train the
reader using the ground truth contexts, and then
fine-tune it on the recalled contexts3; for LoT, we
use a rule-based reader directly4. We report Exact
Match (EM) and Answer F1 scores for 2Wiki &
R4C, and EM score for LoT where the answer is
restricted to yes/no.

3.4 Implementation Details

Architectures & hyperparameters. We use
BART-large (Lewis et al., 2020) for our PLM and
RoBERTa-base (Liu et al., 2019) for our prompter,
which is several times smaller than the PLM5. We
also include some results & discussion for different
prompter scales in Appendix A.7. We use another
BART-large for the reader in extrinsic evaluation6.

Our implementation is based on Hugging Face
Transformers (Wolf et al., 2020). We use AdamW
optimizer (Loshchilov and Hutter, 2019) and a lin-
ear learning rate scheduler with a warmup ratio of
0.06 for optimization. For hyperparameters, we use
a batch size of 32, 128, 32 for 2Wiki, LoT and R4C
respectively, and tune the learning rate from {4e-5,
8e-5, 4e-4, 8e-4, 4e-3, 8e-3, 4e-2} & length of en-
coder/decoder prompts7 from {15, 30, 45, 60, 80,
100}; more details are included in Appendix A.1.
We run most experiments with three random seeds
and report the mean scores.

3We found in our preliminary experiments that this ap-
proach gives the best results across different methods.

4LoT is constructed using templates, and therefore a rule-
based reader can perfectly solve the inference task (100%
accuracy when ground truth contexts are given, see Table 2).

5While our prompter is also initialized using a Pre-trained
Language Model, we’ll use the term “PLM” to refer only to
the larger & more knowledgeable one.

6For the reader, we intentionally choose the same architec-
ture with the PLM for a fair comparison with PLM-QA.

7We set the length of encoder & decoder prompts to be
the same, as we do not observe improvements otherwise in
preliminary experiments.
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2Wiki LoT R4C

Evi.R∗ Evi.R Ans.R̂ Ans.R Evi.R∗ Evi.R Ans.R̂ Ans.R

PLM-FT 10.3 33.8 12.3 45.3 41.8 70.8 38.1 43.9
PLM-FT (Iter) 26.3 48.9 35.4 60.6 41.3 70.1 43.1 48.5

Prompt-T 5.5 22.3 6.6 41.3 35.3 62.8 28.2 33.4
Prompt-T (Iter) 10.8 27.5 16.7 46.2 33.3 63.4 30.6 36.0
Prefix-T 6.7 25.9 7.6 44.2 31.8 64.0 27.2 33.9
Prefix-T (Iter) 14.8 33.9 22.5 53.2 31.6 64.9 33.7 39.8

iCAP 22.0 42.1 28.6 54.6 34.1 65.0 36.8 41.5

Table 1: Results for Intrinsic Evaluation, where “(Iter)” indicates the iterative setting. All metrics are defined in §3.3
and overall measure the gold (answer) entity/object coverage of the recalled knowledge from different perspectives.

2Wiki LoT R4C

EM F1 EM EM F1

Oracle-RD 97.8 98.9 100.0 75.7 86.8
PLM-QA 24.1 29.3 68.3 22.6 28.8

PLM-FT 33.6 37.8 76.0 25.3 36.8
PLM-FT (Iter) 45.5 50.9 77.8 32.2 42.5

Prompt-T 26.9 31.0 65.9 16.6 25.9
Prompt-T (Iter) 25.0 30.2 68.8 22.4 30.4
Prefix-T 31.6 35.6 69.0 19.2 29.2
Prefix-T (Iter) 31.1 36.4 72.6 24.0 34.2

iCAP 42.8 47.9 73.8 25.7 35.2

Table 2: Results for Extrinsic Evaluation, where the
recalled knowledge of each method is used for final
inference, except for Oracle-RD and PLM-QA.

Knowledge Enhancement for PLM. Since our fo-
cus is on how to make PLMs better at recalling rel-
evant knowledge for multi-step inference, we need
to make sure the PLM actually memorizes all the
relevant knowledge in the first place, so that the re-
sults can be attributed solely to the effectiveness of
knowledge recall. Hence, we conduct knowledge
enhancement for the PLM, where we additionally
pre-train the PLM to recover separately masked
elements in the triplets which form the knowledge
statements, a strategy similar to salient span mask-
ing (Roberts et al., 2020; Guu et al., 2020). More
details could be found in Appendix A.2. Note the
same PLM after knowledge enhancement is used
across different compared methods.

4 Results

4.1 Effectiveness of iCAP
The results for intrinsic & extrinsic evaluation are
summarized in Table 1 and 2 respectively, which
are highly consistent. We elaborate on the results

in what follows.
Effectiveness of Iterative Scheme & Context-
Aware Prompter. Across different datasets, it
can be seen that most compared methods bene-
fit from the iterative setting (Iter) over the non-
iterative setting. Moreover, our proposed itera-
tive Context-Aware Prompter (iCAP) further out-
performs Prompt/Prefix Tuning by notable gains
across different datasets and metrics, approaching
the performance of PLM fine-tuning (PLM-FT);
in particular, on the 2Wiki dataset which has the
largest scale and diversity of reasoning types, iCAP
achieves more than 15% and 10% absolute gains
in F1 over Prompt-Tuning & Prefix-Tuning respec-
tively. Overall, the results clearly show the effec-
tiveness of the iterative scheme and our proposed
context-aware prompter design. However, we note
that even the best results (prompting based or fine-
tuning based) still far lag behind Oracle-RD which
uses ground truth contexts as input, which suggests
a large room for improvements with better methods
for knowledge elicitation from PLMs. Some failure
cases of iCAP are included in Appendix A.6.
Helpfulness of Knowledge Recall for Multi-step
Inference. The result obtained by fine-tuning the
PLM on (query, answer) directly without knowl-
edge recall (PLM-QA) is outperformed by almost
all other compared methods, verifying the previous
findings that PLMs face difficulties in using their
stored knowledge to perform multi-step inference
tasks. The large gain obtained from methods based
on knowledge recall shows the helpfulness of de-
riving a “chain of thought” (especially iteratively)
from PLMs for multi-step inference.

4.2 Faithfulness of Prompting

(Zhong et al., 2021) raised and studied some im-
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Random Model Random Embedding

Evi.R∗ Evi.R Ans.R̂ Ans.R Evi.R∗ Evi.R Ans.R̂ Ans.R

PLM-FT 1.77 5.20 3.76 37.48 4.10 11.47 6.52 37.18
Prompt-T 0.0 0.0 0.0 0.0 0.006 0.013 0.003 0.002
Prefix-T 0.001 0.0 0.0 0.0 0.009 0.014 0.004 0.002
iCAP 0.001 0.001 0.0 0.0 1.49 2.83 0.98 0.59

Table 3: Intrinsic Evaluation Results on Random Control Experiments. Here we only focus on the iterative setting
using the 2Wiki dataset.

portant questions in optimization-based prompting
methods: Are the prompts “really” doing prompt-
ing? Is it possible that they capture dataset reg-
ularities too? The issue is related to the notion
of test-train overlap (Lewis et al., 2021), where
the dataset may contain some underlying spurious
patterns that the model exploits, and thus standard
evaluations could not truthfully measure their gen-
eralization behaviors. Here, we take this concern
seriously and conduct a series of analysis to faith-
fully interpret the results we obtained. We focus on
2Wiki under iterative setting for our analysis.

Test-Train Overlap. For each development & test
sample, we compute the ratio of knowledge state-
ments in Cq that also appear in the training set,
meaning that during certain steps for some train-
ing samples, the model has “seen” the exact same
piece of knowledge. Note that this is a rather strict
measure: even if all the knowledge pieces in Cq

are seen during training, they may come from com-
pletely different samples & steps and hence orga-
nized in different ways. We summarize the over-
lapping ratios of development & test set samples
in Table 7 in Appendix A.5. It can be seen that
the down-sampling has the side benefit of greatly
reducing the test-train overlap; in particular, the
percentage of examples where all knowledge state-
ments are seen during training is reduced from
almost 30% to less than 2%, and more importantly,
over 70% of the samples have no overlap. This sug-
gests a rather low risk for the existence of strong
spurious regularities in our setup.

Random Control Experiments. Examining the
data-level statistics is helpful, but still not sufficient
in terms of revealing the spurious regularities that
different methods may capture. Hence, we follow
(Zhong et al., 2021) to conduct two random control
experiments. In the Random Model experiment,
we re-initialize all parameters of the PLM to clean
out its internal knowledge, and proceed with the

same training procedure as earlier. In this way, any
positive signal obtained could only be attributed to
dataset regularities captured by the method. In the
Random Embedding experiment, we re-initialize
only the input embeddings of the PLM, a setting
analogous to the control task introduced in (He-
witt and Liang, 2019) (more discussions can be
found in (Zhong et al., 2021)). Here we only pro-
ceed with the iterative setting and conduct intrinsic
evaluation, where the results are summarized in
Table 3. It can be seen that 1) PLM fine-tuning cap-
tures significantly more regularities in the dataset
than prompting-based methods; 2) While our pro-
posed method captures a bit more regularities than
Prompt/Prefix Tuning, they still remain at a very
small level. Overall, our random control experi-
ments show that the exploitation of spurious dataset
patterns by the evaluated prompting methods is
rather mild, and that by PLM fine-tuning could
potentially be larger.

Prompter Attention Visualization. To see
whether our proposed iCAP behaves in the way we
expect, one direct approach is to examine the inner
workings of the prompter. Towards this end, we vi-
sualize the attentions during the prompter forward
pass at different steps. We randomly choose exam-
ples in the development/test set, and use BertViz
(Vig, 2019) to visualize the attentions within the for-
ward pass of the prompter after the following pro-
cessing steps: 1) we aggregate the attention weights
of different attention heads within the same trans-
former layer; 2) to better view the prompt tokens as
one single unit, we average the attentions across dif-
ferent prompt tokens to form one “master” prompt
token; 3) we drop all special tokens (BOS, EOS) for
cleaner visualization. One example (the same ex-
ample which we use in Figure 1) is in Figure 3, and
we include more examples in Appendix A.8. As
briefly illustrated earlier in §1, during the 1st step
towards solving this query, the prompter should
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Figure 3: Prompter Attention Visualization. Attentions
during the forward pass for the 1st & 2nd step are shown
on the left & right respectively. Different colors corre-
spond to different transformer layers. More examples of
different reasoning types are included in Appendix A.8.

focus on the part concerning “father” of “Gwilym
Lloyd George”; during the 2nd step, the prompter
should integrate the answer “David Lloyd George”
from the 1st step evidence and the “place of birth”
part in the query to synthesize the prompt. We can
see that the attention distributions at different steps
accord well with our expectations. However, we
note that attention visualization is only a qualitative
approach; more systematic ways for examining the
inner working behaviors of transformers remain an
open challenge.

5 Related Work

Memorization and Reasoning in PLMs. With the
recent success of large-scale pre-trained language
models (PLMs), there has been growing interest in
investigating what is captured by these PLMs dur-
ing pre-training (Talmor et al., 2020a; Rogers et al.,
2020; Kassner et al., 2020). Studies have shown
that in addition to learning linguistic knowledge
about language use, PLMs are capable of memo-
rizing a great amount of world knowledge (Rogers
et al., 2020), yielding competitive performance on
knowledge probing (Petroni et al., 2019; Shin et al.,
2020; Zhong et al., 2021) and other knowledge-
intensive tasks such as question answering (Roberts
et al., 2020) and fact checking (Lee et al., 2020),
without resorting to any external knowledge source.
On the other hand, other work such as (Talmor

et al., 2020a; Kassner et al., 2020; Rae et al., 2021)
reveals that PLMs face difficulties in recalling their
stored knowledge for multi-step inferences (such as
answering complex, multi-hop questions), which
is also verified in our experiments.

Prompt Learning. One type of method for elicit-
ing knowledge from PLMs is prompting (Liu et al.,
2021), which is gaining increasing research inter-
ests & potential recently. Prompting methods seek
to re-frame queries into prompts which accord with
the PLM’s input format, and extract useful infor-
mation from the predicted results. The benefit of
not needing to tune PLMs makes prompting es-
pecially appealing as PLMs scale up in size. In
this work, we are interested in developing prompt-
ing methods which could enable PLMs to recall a
series of relevant knowledge for multi-step infer-
ence. Previous work along this direction mainly
use manually designed prompts/templates suited
for specific datasets (Paranjape et al., 2021; Mishra
et al., 2021; Shwartz et al., 2020); instead, we seek
to develop a general method which can learn to con-
struct appropriate prompts automatically. Concur-
rent to our work, Chain-of-Thought (CoT) prompt-
ing (Wei et al., 2022b) shares similar high-level
ideas as ours, where the authors propose to provide
intermediate reasoning steps in the prompts to en-
courage the PLM to perform step-by-step inference.
While CoT shows great successes, we note it is one
of the emergent abilities of large language mod-
els (Wei et al., 2022a) and only works well with
extremely large PLMs (>100B typically) such as
GPT-3 (Brown et al., 2020) and PaLM (Chowdhery
et al., 2022). In our work, we use PLMs that are
several orders of magnitude smaller than those used
in CoT and demand much less computing resources.
We hope our efforts could contribute towards de-
veloping LM-based systems with better multi-step
reasoning abilities but also moderate scale.

For existing work on learning-based prompting,
(Shin et al., 2020) proposes to use gradient-guided
search to find appropriate discrete prompt tokens
in the PLM’s vocabulary to form prompt templates.
While the resulting prompts are readable, most of
them have very low fluency and interpretability.
(Zhong et al., 2021; Qin and Eisner, 2021) pro-
pose to optimize the prompts in continuous space
instead, which shows large benefits in both ef-
fectiveness and optimization efficiency. (Zhong
et al., 2021) also raises and studies the question
of whether learning-based prompting could exploit
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spurious dataset regularities which would weaken
the validity of standard evaluation results, a con-
cern we seriously address in our work. (Lester et al.,
2021; Li and Liang, 2021) follow the continuous
prompting paradigm, and tune task-level prompts
for lightweight adaptation of PLMs. Overall, exist-
ing prompt learning methods are either restricted
to cases where there exists a single & identifiable
relation/predicate within the query (Zhong et al.,
2021; Qin and Eisner, 2021; Shin et al., 2020), or
being static and not sensitive to sample-wise inputs
(Lester et al., 2021; Li and Liang, 2021).
Iterative Knowledge Retrieval. We are also in-
spired by methods that iteratively retrieve knowl-
edge from explicit knowledge sources for multi-
step reasoning, such as (Xiong et al., 2021; Qi
et al., 2019; Khattab et al., 2021; Mo et al., 2022b).
Our problem setting could be viewed as iterative
retrieval over implicit knowledge in PLMs, instead
of from explicit knowledge sources.

6 Conclusion & Future Work

We explore an iterative prompting framework to-
wards driving a “chain of thought” from PLMs for
multi-step reasoning tasks. We show the superi-
ority of this iterative scheme, and also the effec-
tiveness of our proposed context-aware prompter
design, which addresses key limitations of previ-
ous prompting methods when applied in this new
scheme. In addition, we conduct both quantitative
& qualitative analysis on the faithfulness of the
learned prompting behaviors. In the future, we aim
to further extend and apply our ideas to language
model pretraining, with the hope that PLMs can
be inherently equipped with stronger multi-step
reasoning capabilities. The iterative framework
we explore here also opens the possibility of hu-
man intervention and interaction during inference;
namely, a human can track along the PLM’s chain
of thought and make edits and corrections at differ-
ent steps, similarly as in (Mo et al., 2022a), which
improves the transparency and trustworthiness of
inference and also helps reduce error propagation
along the reasoning process. We leave these inves-
tigations as future work.

Limitations

Experiments with larger-scale models. We ex-
plored a novel framework to prompt (or elicit
knowledge from) PLMs for multi-step inference.
Although our iterative prompting approach outper-

forms the baselines by a large margin, there is still
much room to improve. One promising direction
is to experiment with PLMs larger than what is
used in our experiments (i.e., BART-large), which
have better capacities for internalizing knowledge.
However, when the models get larger, the associ-
ated computational cost will increase accordingly,
which was also the main obstacle for us to pursue
this front. We intend to conduct such experiments
in the future when we have access to better com-
puting resources.
Datasets with noisy knowledge statements. We
used three recently released datasets (2Wiki, R4C,
LoT) that require multi-step inference for our exper-
iments. Compared with alternative datasets such as
HotpotQA and StrategyQA (Geva et al., 2021), they
include knowledge statements that have cleaner for-
mats and are much more suitable for multi-step
inference (in fact, this is one of the main motiva-
tions behind the construction of 2Wiki & R4C).
For HotpotQA & StrategyQA, the knowledge state-
ments are given as raw sentences from the evidence
paragraphs and include information irrelevant to
the original question. We exercised our best ef-
fort to process them (e.g., resolving coreferences,
simplifying & decomposing nested sentences, etc.)
into our desired formats, but the resulting knowl-
edge statements are still very noisy. All methods
including ours cannot be trained well under such
knowledge statements. How to use such naturally
occurring but noisy knowledge statements as super-
vision to guide PLMs to develop a chain of thought
is an interesting topic to study in the future.
Exploring alternative architectural designs. An-
other limitation is that we only implemented an
intuitive and simple instantiation (Figure 2) of our
proposed context-aware prompter to illustrate its
promises. It is an interesting future direction to
further explore various design choices for iterative
prompting, e.g., alternative design for the Prompter-
PLM interface, dynamic prompt length across dif-
ferent inference steps, etc.
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2Wiki LoT R4C

lr pt_len lr pt_len lr pt_len

Prompt-T 8e-3 80 4e-3 80 4e-3 60
Prefix-T 8e-4 80 4e-4 60 4e-4 80
PLM-FT 4e-5 - 4e-5 - 4e-5 -
PLM-QA 4e-5 - 8e-5 - 4e-5 -
iCAP 8e-5 30 8e-5 60 8e-5 30

Table 4: Hyperparameter settings for all compared meth-
ods. lr: learning rate, pt_len: prompt length.

Rouge (R) BLEU
R-1 R-2 R-L

PLM-FT 74.3 62.4 72.7 52.9
PLM-FT (Iter) 83.6 76.3 82.3 70.8

Prompt-T 68.7 55.5 66.4 45.4
Prompt-T (Iter) 74.5 64.7 73.7 56.7
Prefix-T 70.8 57.8 68.9 48.7
Prefix-T (Iter) 79.0 70.3 77.6 64.0

iCAP 79.2 70.5 78.3 64.9

Table 5: Intrinsic evaluation on 2Wiki using standard
text generation metrics (ROUGE & BLEU).

A Appendix

A.1 Additional Details on Experiments

Hyperparameters. We set the batch size to be 32,
128, 32 and train for 70, 50, 40 epochs for 2Wiki,
LoT & R4C respectively. Table 4 summarizes other
hyperparameters used in our experiments.

A.2 More details on PLM Knowledge
Enhancement

To make sure the PLM knows all the relevant
knowledge for subsequent recall, we further pre-
train the PLM to recover separately masked ele-
ments in the triplets which form the knowledge
statements. For 2Wiki and LoT, we also addition-
ally include knowledge statements that are not used
in the dataset to make the setting more challenging;
one can think of these extra knowledge statements
as “distractors”. For 2Wiki, we filter from the pro-
cessed Wikidata triples provided by (Agarwal et al.,
2021) by keeping those with subject entities appear-
ing in the original knowledge statements, and in the
end, we obtain 383k extra knowledge statements
v.s. 240k original ones (note that while we down-
sample the training set during our main experiment,
the knowledge enhancement step is performed on
the full dataset). For LoT, we directly use the pro-
vided distractor knowledge in the original dataset.
We don’t add distractors for R4C because the pro-

Evi.R∗ Evi.R Ans.R̂ Ans.R

iCAP 20.0 39.1 26.5 54.0
iCAP (with stopper) 18.4 37.5 22.9 51.8

Table 6: Intrinsic evaluation results from jointly train-
ing the Prompter and the Stopper which learns to stop
the knowledge recall process when it decides that the
recalled knowledge is adequate enough for answering
the query.

vided knowledge statements are in natural language
and it’s hard to retrieve high quality knowledge
statements as such. We verified that the PLM after
knowledge enhancement can indeed recover the
masked elements in the knowledge statements in
near-perfect accuracy.

A.3 Standard Metrics for Intrinsic Evaluation

The intrinsic evaluation results obtained by using
standard text generation metrics (ROUGE 1/2/L &
BLEU) for 2Wiki are shown in Table 5. Comparing
with results using our proposed metrics (Table 1), it
could be seen that while overall they show the same
trend, the standard evaluation results tend to group
closer due to their lack of focus on the important
parts (e.g., entities) of the recalled evidence.

A.4 Prompter with Automatic Stopping

Here we explore augmenting an additional Stop-
per module which could learn to decide to stop the
knowledge recall process appropriately when the
recalled evidence pieces are enough to answer the
query. Since the representations from the Prompter
are already rich, we design the Stopper module to
be a simple feed-forward DNN on top of the [CLS]
embedding of the Prompter. The DNN has two
hidden layers of dimensions 500 and 100 respec-
tively, and outputs the probability of stopping the
knowledge recall process. The loss for the Stopper
is standard binary classification loss, which is com-
bined with the original Prompter loss with weight
factor 0.1. The Prompter and Stopper are jointly
trained under this combined objective.

We experiment on 2Wiki only and run the exper-
iment once due to efficiency considerations. We
first evaluate the frequency that the Stopper decides
to stop the recall at the same number of steps as in
the ground truth knowledge pieces. Note that this is
not a perfect measure, as the actual recalled knowl-
edge is different from the ground truth knowledge.
The frequency is 98.5%, which indicates that the
stopper can learn to stop the recall process appro-
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0% 1%-20% 21%-40% 41%-60% 61%-80% 81-99% 100%

2wiki (full) 36.0% 0.0% 0.5% 28.4% 5.2% 0.0% 29.8%
2wiki (down-sampled) 71.4% 0.1% 8.1% 16.2% 2.6% 0.0% 1.6%

Table 7: Test/Train simple knowledge overlap on 2Wiki. The horizontal bar represents the percentage range of
simple knowledge statements appearing in the training set, and the content values are the percentages of development
& test set examples that fall into the corresponding range.

BERT-tiny BERT-small

Evi.R∗ Evi.R Ans.R̂ Ans.R Evi.R∗ Evi.R Ans.R̂ Ans.R

6.0 17.7 9.0 35.3 21.4 41.2 29.1 54.2

Table 8: 2Wiki intrinsic evaluation results with two smaller-scale prompter instantiations.

priately. Then we use our intrinsic measures to see
the quality of the recalled evidence after truncation
by the Stopper; the results are shown in Table 6.
Note that here, the “iCAP” setting (top row) is dif-
ferent from that in Table 1 (despite having the same
name) since the prompter is trained together with
the stopper for fair comparison. It can be seen from
the results that there’re small performance drops
after truncating by the Stopper, which suggests that
the Stopper can learn to stop the knowledge recall
process rather appropriately but not perfectly.

A.5 Test-Train Overlap

Table 7 shows the 2Wiki Test-Train knowledge
statement overlap, where 2Wiki (full) corresponds
to the statistics using the full training set, and
2Wiki (down-sampled) corresponds to the down-
sampled training set that we used in our actual ex-
periment. The inference steps in 2Wiki are mostly
2 or 4, so overall there’re higher chances for the
coverage ratio to be 50%.

A.6 Examples of processed data samples &
failure cases of iCAP

Table 9 shows examples of our processed data sam-
ples for each dataset and each sub-category, along
with some failure cases of our proposed method.

A.7 Variants of Prompter Scales

While we used RoBERTa-base to instantiate the
prompter in our main experiments, it is also inter-
esting to see how the performance varies along dif-
ferent scales of the prompter. Towards this end, we
conducted experiments on 2Wiki with two smaller
scale prompters: BERT-small (28.8 million param-
eters) & BERT-tiny (4.4 million parameters). The

intrinsic evaluation results are shown in Table 8.
It can be seen that the performance grows as the
prompter scale grows; in addition, BERT-small can
also achieve an impressive performance (under-
performing RoBERTa-base used in our main ex-
periments by just a small gap) while BERT-tiny
basically fails. This suggests that the prompter
still needs to be larger than a certain scale for our
method to work well.

A.8 More Examples on Prompter Attention
Visualizations

Figure 4, 5, 6, 7 show additional example prompter
attention visualizations in the 2Wiki dataset, each
corresponding to a different reasoning type as indi-
cated in the captions.

Figure 4: Prompter attention visualization. Reasoning
type: Composition.
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Figure 5: Prompter attention visualization. Reasoning
type: Comparison.

Figure 6: Prompter attention visualization. Reasoning
type: Inference.
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q: Which film whose director is younger, Khoon Ka Khoon or Idaho Transfer?
Cq: [ Sohrab Modi is director of Khoon Ka Khoon, 

Peter Fonda is director of Idaho Transfer,
2 November 1897 is date of birth of Sohrab Modi,
February 23, 1940 is date of birth of Peter Fonda ]

Figure 7: Prompter attention visualization. Reasoning type: Bridge-comparison.
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Query (2Wiki[Composition]) What is the place of birth of the performer of song La Terre Est Ronde?
Gold Knowledge Orelsan is performer of La terre est ronde; Alençon is place of birth of Orelsan
Recalled Knowledge Basshunter is performer of La Terre est ronde; Havana is place of birth of

Basshunter

Query (2Wiki[Comparison]) Who was born first out of Emma Kealy and Viktor Podloucký?
Gold Knowledge 29 May 1977 is date of birth of Emma Kealy; December 3, 1950 is date of birth

of Viktor Podloucký
Recalled Knowledge 30 March 1977 is date of birth of Emma Kealy; 9 October 1964 is date of birth

of Viktor Podloucký

Query (2Wiki[Inference]) Who is the maternal grandfather of Vyacheslav Yaroslavich?
Gold Knowledge Ingegerd Olofsdotter of Sweden is mother of Vyacheslav Yaroslavich; Olof

Skötkonung is father of Ingegerd Olofsdotter of Sweden
Recalled Knowledge Yaroslavlava of Avidia is mother of Vyacheslav Yaroslavich; Sovatoslav is

father of Yaroslavlava of Avidia

Query (2Wiki[Bridge comparison]) Which film has the director died later, One Day In The Life Of Andrei Ar-
senevich or Wolves Of The Range?

Gold Knowledge Chris Marker is director of One Day in the Life of Andrei Arsenevich; Sam
Newfield is director of Wolves of the Range; 29 July 2012 is date of death of
Chris Marker; November 10, 1964 is date of death of Sam Newfield

Recalled Knowledge Chris Marker is director of One Day in the Life of Andrei Arsenevich; Wallace
Fox is director of Wolves of the Range; 21 January 2013 is date of death of
Chris Marker; March 30, 1999 is date of death of Andrei Arsenevich

Query (LoT) A evergreen is a important food source.
Gold Knowledge A evergreen is a plant; A plant is not a important food source
Recalled Knowledge A evergreen is a material, tree; A tree is a important food source

Query (R4C[Comparison]) Which documentary was filmed first, Almost Sunrise or Hail! Hail! Rock ’n’
Roll?

Gold Knowledge Almost Sunrise was filmed in 2016; Hail! Hail! Rock ’n’ Roll was filmed in
1986

Recalled Knowledge Almost Sunrise (album) is credited to American singer-songwriter Taylor Swift;
Rock ’n’ Roll is filmed in the 1990s

Query (R4C[Bridge]) Who was the chief executive officer of the second largest US car rental company
by sales?

Gold Knowledge The Hertz Corporation is the second-largest US car rental company; Robert L.
Stone was chief executive officer of The Hertz Corporation

Recalled Knowledge The Hertz Corporation is the second-largest US car rental company; Enterprise
Rent-A-Car founder Jack Taylor was chief executive officer of Hertz

Table 9: Examples of our processed data samples for each dataset and sub-category (indicated in brackets), along
with failure cases of our method.
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