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Abstract

Recent visuolinguistic pre-trained models show
promising progress on various end tasks such
as image retrieval and video captioning. Yet,
they fail miserably on the recently proposed
Winoground dataset (Thrush et al., 2022),
which challenges models to match paired im-
ages and English captions, with items con-
structed to overlap lexically but differ in mean-
ing (e.g., “there is a mug in some grass” vs.
“there is some grass in a mug”). By annotat-
ing the dataset using new fine-grained tags, we
show that solving the Winoground task requires
not just compositional language understanding,
but a host of other abilities like commonsense
reasoning or locating small, out-of-focus ob-
jects in low-resolution images. In this paper, we
identify the dataset’s main challenges through
a suite of experiments on related tasks (prob-
ing task, image retrieval task), data augmenta-
tion, and manual inspection of the dataset. Our
analysis suggests that a main challenge in vi-
suolinguistic models may lie in fusing visual
and textual representations, rather than in com-
positional language understanding. We release
our annotation and code at https://github.
com/ajd12342/why-winoground-hard.

1 Introduction

Despite the success of large pretrained transformer
models on a wide variety of tasks, the extent
to which they are compositional (e.g., Kim and
Linzen, 2020; Soulos et al., 2020; Hewitt and Man-
ning, 2019; Sinha et al., 2021a; Clouatre et al.,
2021) and grounded (Bender and Koller, 2020;
Bisk et al., 2020) is debated. Taking compositional-
ity and groundedness as key desiderata, the recent
Winoground dataset (Thrush et al., 2022) provides
a clever way to test multimodal vision and language
models. Given two images and two captions, the
goal is to pair them correctly. The key insight is
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the cat on the left of the 
photo has its right paw 

ahead of its left

the cat on the left of the 
photo has its left paw 

ahead of its right
original

NonCompositional

AmbiguouslyCorrect

VisuallyDifficult ✓

UnusualImage

UnusualText

ComplexReasoning ✓

(A) The original Winoground task…

the cat on the left hand 
side of the photo has the 

right paw in front of the left

the cat on the left of 
the photo has ahead of 

its right its left paw
variants the animal on the left of 

the photo has its right 
paw ahead of its left

the cat that is on the left 
of the photo has its left 
paw ahead of its right

(B) With new tags…
(Section 4)

(C) Evaluated with caption variants! (Section 5)

Figure 1: Extending the (A) original Winoground task,
which presents a minimal semantic pair of image cap-
tions and their corresponding images, we (B) create new
fine-grained tags, identify their main challenges, and
evaluate performance separately on each subcategory
(Section 4); further, we (C) also create textual variants
of the original captions where they are no longer mini-
mal semantic pairs. Models are still unable to succeed
on the Winoground task (Section 5) when given such
linearly separable pairs.

that, inspired by the Winograd schema (Levesque
et al., 2012), the two captions contain the same
set of words/morphemes, only in a different order.
Figure 1(A) shows a representative example.

Pretrained multimodal transformer models (e.g.
Radford et al., 2021; Tan and Bansal, 2019; Chen
et al., 2019) have achieved impressive performance
in multimodal tasks like image retrieval, image
captioning, and visual question answering, as mea-
sured on a variety of datasets (e.g., Johnson et al.,
2017; Suhr et al., 2017; Bitton et al., 2021). But, on
Winoground, they all fall down: not one performs
meaningfully better than random chance—despite
the fact that humans can easily do the task.

Citing evidence from Sinha et al. (2021a) that
large language models don’t need word order in-
formation to do well on tasks (see also Sinha et al.,
2021b; Hessel and Schofield, 2021; Pham et al.,
2021; Gupta et al., 2021; O’Connor and Andreas,
2021), the Winoground authors suggest that models
track word co-occurrences, thus giving “the illu-
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sion of an understanding of word order” without
actually achieving that understanding (Thrush et al.,
2022). Indeed, given that information about seman-
tic meaning can be uncovered without word order
information (e.g., Papadimitriou et al., 2022) and
that seemingly syntactic and semantic tasks can be
solved with lexical heuristics (e.g., McCoy et al.,
2019; Sinha et al., 2021b), Winoground failures
may offer another evidence that language models
solve complex tasks in a relatively superficial way.

To assess this possibility, we examine the
Winoground task and conduct a series of novel
experiments on the dataset, testing three models
(CLIP, Radford et al. 2021; UNITER, Chen et al.
2019; LXMERT, Tan and Bansal 2019) that re-
flect three broad categories of Transformer-based
vision-and-language architectures. First, we test
these models on the more general (and standard)
text-to-image and image-to-text Recall@K task us-
ing the Winoground images and captions. Some
models fail at this simpler task, suggesting that fail-
ure on Winoground may not be just because of a
failure in semantic composition but due to broader
difficulty with atypical images in the dataset. We
show that even fine-tuning probes specifically on
Winoground does not help, implying a potential
absence of information necessary to succeed at the
task.

Second, to understand what the source of fail-
ure might be, we develop a new taxonomy of
Winoground examples consisting of six classes
(Section 4). Our taxonomy reflects various abil-
ities required to solve the task, and model’s per-
formances vary significantly among our classes.
Given an explosion of interest in testing image
generation models (e.g., DALL-E 2 and Imagen)
on their compositional ability (e.g., Marcus et al.,
2022), Winoground can be a crucial benchmark,
which motivates the need for a deeper analysis of
its properties; prior work has performed such deep
analyses for other benchmarks (Alt et al., 2020;
Luccioni and Rolnick, 2022; Luo et al., 2022). We
tag every example in Winoground with our scheme
(see Appendix E for full reporting) and provide a
performance breakdown of models. Figure 1(B)
shows these tags. We show high variability in
performances based on our proposed tags and ob-
serve low performance on tags that are challeng-
ing for reasons beyond compositional language un-
derstanding (e.g., a low-res version of the image
simply lacks the visual detail necessary for answer-

ing the question). Thus, we conclude that not all
Winoground items test what they aim to, and iden-
tify a subset of 171 items which directly measure
compositionality.

Third, we run a series of probing experiments
to better understand whether the failure arise be-
cause of failures in visual discrimination, in lin-
guistic compositionality, or in the fusion of vision
and language. Specifically, we augment the orig-
inal captions with a set of textual variants (Dhole
et al., 2021). While these textual variants are in-
deed highly separable in embedding space, using
them fails to improve the task performance. Fig-
ure 1(C) shows these textual variants.

Taken together, our results suggest that failures
found on Winoground reflect meaningful model
failures. While some Winoground items may be ill-
suited to evaluate compositionality, even the most
straightforward items pose a challenge. Our evi-
dence suggests that the source of these robust fail-
ures lies in fusing visual and linguistic information,
not strictly in complex language understanding. We
hope our analysis will help future endeavors in in-
terpreting emerging models’ Winoground perfor-
mance.

2 Background

The Winoground dataset (Thrush et al., 2022)
contains 400 items (each consisting of two im-
age+text pairs with overlapping lexical content).
The items were categorized linguistically based
on whether the text swaps an object, a relation, or
both. The items were further categorized based on
if they involved: a Pragmatics tag indicating non-
literal/pragmatic reasoning required, a Symbolic
tag indicating reasoning about something in sym-
bolic space (e.g., children’s drawing), and a Series
tag (indicating whether the items come from the
same, as opposed to from unrelated, photos).

Evaluated models see one image/caption pair at
a time for a given item, where an item consists of
two pairs: I0 and its paired caption C0, and I1 and
its paired caption C1. They then compute an Image
Score, Text Score, and Group Score (by scoring
each item as either 1 or 0 and then aggregating).
For a given pair, the Image Score is 1 if and only if
for image I0 a higher score is assigned to caption
C0 than C1 and for I1 a higher score is assigned to
C1 than C0. Similarly, the Text Score is 1 if and
only if for text C0 a higher score is assigned to I0
than I1 (and vice versa for C1). Thus, for both the
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Image and Text Score, random chance is 1/4. An
item’s Group Score is 1 if and only if both its Text
and Image Scores are 1. The random chance for
Group Score is 1/6.

3 Relaxing Winoground Constraints

These metrics are relatively harsh in two respects.
First, they require perfect matching between the im-
ages and captions, implicitly evaluating an unusual
variant of Recall: Recall @ 1 over 2 candidates
(i.e., the best image must be ranked first between
the two candidates). Further, they do not allow
any adaptation to the task (i.e., zero-shot transfer
is required). We therefore relax each of these two
constraints in turn.

3.1 Recall at k > 1

Setting We evaluate using a standard Recall at
k (R@k) metric for retrieval, which asks whether
the correct caption (for Image-to-Text, or I2T, re-
trieval) or image (for Text-to-Image, or T2I, re-
trieval) is present in the top k candidates as ranked
by the model. We consider R@1, R@2, R@5,
and R@10 for CLIP, UNITER, and LXMERT (see
Appendix A for further model details).

Crucially, R@1 requires discriminating both
within semantic minimal pairs and between un-
related Winoground items, while all other metrics
can be solved without having to differentiate the
semantic minimal pairs (i.e., for R@2, the model
can simply return both relevant items).

Methods Each model is used to compute a sim-
ilarity score for all 800 × 800 possible pairs of
any image from Winoground with any caption
from Winoground. As in the original Winoground
methodology, we do not finetune the models. In
I2T retrieval, we score each image in turn and re-
trieve the top k highest-ranked captions. In T2I
retrieval, we score each caption in turn and retrieve
the k highest-ranked images. In either case, we
then compute R@k as the percentage of image
or caption prompts for which the correct match is
among the top k candidates.

Results Table 1 presents the results. CLIP per-
forms well on the less harsh R@5 and R@10 met-
rics, while LXMERT performs poorly across all
values of k, with UNITER’s performance falling
about halfway in between. Since neither UNITER
nor CLIP clearly outperforms the other on the
Winoground metrics (Thrush et al., 2022), the stark

CLIP UNITER LXMERT
T2I I2T T2I I2T T2I I2T

R@1 32.9 27.4 20.1 16.4 5.9 3.4
R@2 54.4 47.9 31.4 28.7 10.1 6.9
R@5 72.4 65.9 45.0 43.8 18.6 12.0

R@10 81.3 78.4 55.3 55.4 26.5 15.6

Table 1: Text to Image (T2I) and Image to Text (I2T)
Retrieval over Winoground.

difference in overall R@k that we see between
them here is surprising. One plausible explana-
tion for this pattern is that LXMERT sees only
about 180K unique images during pretraining (de-
spite seeing between 9M and 10M captions), while
UNITER sees about 4.2M and CLIP sees 400M.
We hypothesize that CLIP’s larger training set size
means that it can more easily adapt to unusual texts
and images. Our results suggests that while the
strict evaluation metric of Winoground leaves the
three models at similar baseline performance, they
clearly exhibit different levels of understanding
Winoground captions in easier setting.

3.2 Task Adaptation
Thrush et al. (2022) evaluate models on
Winoground zero-shot (with no fine-tuning to allow
it to adapt to the task) and in such a way that the
model is fed one caption Ti and one image Ii at a
time (meaning, in choosing the best image match
for T0, it does not get to simultaneously compare
I0 and I1 in the way that a human does). To test
whether performance is helped by addressing both
factors, we train probes to select between two con-
catenated cross-modal embeddings as to which
represents the better match for a given reference
item. This amounts to a binary classification task,
where the output is 0 if the first embedding is a
better match, or 1 if the second is better.

Methods We first divide the 400 Winoground
items into 300 for training and 100 for testing.
Stratified sampling is used to ensure that the orig-
inal ratios of each Winoground tag (Pragmatic,
Symbolic, etc.) are preserved in each subset. Our
probes are 4-layer MLPs with a hidden dimension
of 1024 trained for 200 epochs on the embeddings
of the training items. We consider the Pooled Out-
put embeddings produced by both UNITER and
LXMERT, which are generated by applying a linear
projection and Tanh activation to the hidden state
of the CLS token at the last layer of each model;
these are the embeddings used to predict similar-
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LXMERT UNITER

Text Image Text Image

Target (Test) 49.0-54.5 48.5-51.8 53.5-59.5 52.2-55.0
Control (Test) 42.2-58.5 48.2-57.2 44.0-54.8 44.2-54.5

Table 2: Training and test accuracies over pooled out-
puts results for 4-layer probe. For each measure, we
report min and max accuracies over 11 runs with ran-
dom seeds.

ity scores in the retrieval setting. Two variants of
each probe are learned: one which picks between
embeddings of the same caption with two differ-
ent images (roughly corresponding to Text Score
or I2T retrieval), and one which picks between
embeddings of the same image with two different
captions (roughly corresponding to Image Score or
T2I retrieval). We report additional methodological
details in Appendix C.

In addition to our target task of picking the cor-
rect match within each Winoground item, we train
another set of probes which learn a control task.
For our control task, we randomly pick 50% of the
training items and 50% of the testing items and
flip their labels, then train the probes the same way.
All probes are trained and evaluated 11 times with
different random seeds, and the min and max score
across trials is recorded.

Results Probing results are reported in Table 2.
None of the probes achieve an appreciably higher
accuracy than either chance (50%) or the control
on the test set (although the UNITER text and im-
age probe test accuracies trend somewhat higher
than the UNITER control accuracies). This implies
that the representations produced by LXMERT or
UNITER may not contain the information required
to succeed on Winoground, although it is possible
that a different probe design or probing technique
may be able to extract such information.

4 Characterizing the Challenges
Presented by Winoground Items

The results of our more traditional evaluation sug-
gest that the Winoground text/image pairs are,
even without focusing on semantic minimal pairs,
interestingly different from other visuolinguistic
datasets. In this section, we seek to characterize
what makes the Winoground task challenging. See
Appendix B for details on our annotation method
and Table 5 for tag to dataset item mappings. We in-
troduce our taxonomy below, and present examples

of each new tag in Figure 2.

4.1 Potentially Easy Pairs
NonCompositional While these items are tex-
tual minimal pairs, they are actually not semanti-
cally compositional variants of one another. This
may be because the swapped words appear in a
compound (e.g. “banana split” in WG #133, “down-
fall” in WG #325), because they are part of an
idiom (e.g. “fishing for compliments” in WG
#333), or because they are two different lexemes
exhibiting polysemy. Items with this tag do not
require compositional reasoning to resolve, since
they don’t contain the same semantic entities.

4.2 Potentially Difficult Pairs: In-Domain
We identify two challenging categories of exam-
ples that are in-domain, but involve additional chal-
lenges beyond visual or linguistic understanding.

AmbiguouslyCorrect These items can be re-
solved when both images and both captions are
considered together, but when considered sepa-
rately, at least one of the captions is either a correct
description of both images or not quite a correct
description of either. SOTA Transformer-based VL
models are trained to distinguish valid captions
from invalid captions, but not to select the best cap-
tion from a set of valid candidates. Humans, while
capable of making such fine-grained judgments,
were queried differently than models in Thrush
et al. (2022): rather than rating the quality of an
image-caption pair along a continuum (analogous
to models’ similarity scores), humans were asked
for a binary judgment. Even a perfect respondent,
if asked to evaluate some of these image/text pairs
in isolation (without seeing the competitor pair),
could receive zero Winoground scores since the
correct answer is only discernible when both com-
petitors are present.

VisuallyDifficult For items given this tag, at
least one element required to correctly sort the im-
ages is small, blurry, in the background, out-of-
focus, indistinct, blends with the background, or
otherwise difficult to detect. Since most VL models
have low input image resolution, they may simply
be unable to detect visual elements which are key
to resolving these Winoground items.

4.3 Potentially Difficult Pairs: Out-of-Domain
We also identify three kinds of out-of-domain rea-
soning required to solve the Winoground task: ei-
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NonComposition-
al (n=30): “leaves” is 
a verb in one case and a 

noun in the other.

AmbiguouslyCor-
rect (n=46): “the 

person with the kids is 
sitting" is true of  both 

cases.

VisuallyDifficu
lt (n=38): The eye 

color of  the woman in 
the bottom image is 
very difficult to see.

UnusualImage 
(n=56): Sad and 

surprised lollipops are 
unlikely to occur in 

most data sets.

UnusualText 
(n=50): “the brave" is 

an unusual way to refer 
to people on a 
rollercoaster.

ComplexReason-
ing (n=78): Complex 
reasoning required to 

see the steam and know 
the steaming mug has 

been poured into.

NoTag (n=171): 
Vanilla Winoground 

examples

leaves its shedding the person with the kids 
is sitting

the person with hair to 
their shoulders has 
brown eyes and the 

other person’s eyes are 
blue

the orange lollipop is 
sad and the red lollipop 

is surprised

the brave in the face of  
fear

the cup on the left is 
filled first and the cup 
on the right is filled 

second

there is a mug in some 
grass

shedding its leaves the person is sitting 
with the kids

the person with hair to 
their shoulders has blue 

eyes and the other 
person’s eyes are brown

the orange lollipop is 
surprised and the red 

lollipop is sad

fear in the face of  the 
brave

the cup on the left is 
filled second and the 

cup on the right is filled 
first

there is some grass in a 
mug

Text Image Group Text Image Group Text Image Group Text Image Group Text Image Group Text Image Group Text Image Group

CLIP 76.6
7

36.67 33.33 30.43 15.22 13.04 15.79 0.00 0.00 25.00 8.93 5.36 30.00 16.00 10.00 24.36 7.69 3.85 30.41 11.11 8.19
UNITER 43.33 33.33 26.67 30.43 13.04 8.70 31.58 7.89 5.26 19.64 10.71 5.36 18.00 8.00 2.00 29.49 6.41 3.85 35.67 10.53 7.02
LXMERT 10.00 13.33 3.33 10.87 2.17 0.0 21.05 7.89 2.63 12.50 7.14 1.79 10.00 6.00 0.00 16.67 3.85 1.28 19.88 4.68 4.09

Figure 2: A taxonomy of Winoground schemes, with scores on CLIP in the bottom row for Text/Image/Group score
respectively and with above-chance performance in bold.

ther because the image is unusual, the text is un-
usual, or because they require extensive real-world
knowledge or reasoning ability. While humans can
adapt to out-of-domain tasks and it is desirable to
build systems that can as well, this goes beyond
mere compositionality.

UnusualImage and UnusualText Items that we
tag UnusualImage have at least one image which
is either entirely unrealistic or highly unusual and
therefore likely out-of-distribution for most VL
models. UnusualText captions may be difficult
for models to resolve because they include a mis-
spelled word (only found in WG #327); because
non-standard capitalization is used in one of the
captions (found in 3 Winoground items); because
they’re ungrammatical in Standard English (found
in 5 Winoground items); or, most commonly, be-
cause the wording of the caption is awkward. These
may be descriptions a human would be highly un-
likely to generate (e.g. WG #10, which captions an
image of a boat “the water rests below the sail”) or
phrases which are difficult to parse.

ComplexReasoning This category encompasses
any item which requires common-sense reasoning
or world knowledge to resolve. This may be nu-
merical reasoning, as in WG #396 (which requires
counting to 3 and 8 and identifying even and odd
numbers); understanding of non-English languages,
as in WG #298 (which requires the model to first
perform OCR, then understand French text suffi-
ciently to know “chaud” is hot and “froid” is cold);

recognition of scientific terminology, as in WG
#303 (which requires the model to know that a
lizard is cold-blooded while a polar bear is warm-
blooded); or causal inference regarding the ongoing
events depicted, as in the example in Figure 2.

4.4 Results on New Tags

We compare Text, Image, and Group Score (as in
Thrush et al. 2022) over the splits corresponding to
each of our new tags, as well as on the 171 items
which don’t receive any tag. Results for CLIP,
LXMERT and UNITER are reported in the table
in Figure 2, with scores beating random chance in
bold.

As predicted, all of the potentially difficult tags
are harder than the NonCompositional tag, in
some cases strikingly so. For CLIP, performance
on the 38 VisuallyDifficult tags is actually 0
for the Image and Group Score metrics, suggest-
ing that for at least some items there may just not
be sufficient visual information available for the
model to make an accurate judgement. CLIP per-
forms above random chance on all three metrics
only for the NonCompositional tag, which tests
the models’ response to highly similar texts with-
out testing their compositional reasoning. CLIP
also performs better on the AmbiguouslyCorrect
tag than it does on the full dataset: it appears
that CLIP is able to discriminate between multi-
ple valid or multiple invalid captions for an im-
age to some extent, even if distinguishing between
multiple valid or multiple invalid images for a cap-
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tion remains out of reach. CLIP’s much higher
scores on the NonCompositional split compared
to all other splits, including the NoTag split, im-
plies that it is compositional reasoning in particular
which makes Winoground so difficult, at least for
the CLIP model evaluated here.

For LXMERT, the AmbiguouslyCorrect and
UnusualText tags appear to be particularly chal-
lenging, and the VisuallyDifficult tag doesn’t
appear to present much of a problem. However, it’s
worth noting that all LXMERT scores are below
random chance–we therefore cannot be certain that
any particular score difference is not a coincidence.
LXMERT’s failure to perform coarse-grained re-
trieval over the full Winoground dataset makes it
unsuprising that it cannot correctly match even the
potentially easy NonCompositional tag.

UNITER is able to beat random chance on Text
Score in all cases except for the UnusualImage
and UnusualText, suggesting that out-of-domain
samples are a particularly salient challenge for
UNITER. In terms of Image and Group Score,
UNITER is only able to beat random chance on
the NonCompositional tag. This again implies
that it is not just textual minimal pairs that cause
catastrophic failure, but specifically textual and
semantic minimal pairs.

5 Generating Non-Minimal Winoground
Data with Textual Variants

In this section, we look in depth at whether the min-
imal textual pairs are simply not sufficiently distin-
gushable with existing vision and language models.
That is, at the level of text, does the model not un-
derstand that “grass in the mug” is distinguishable
from “mug in the grass”? Or is the problem instead
that the images are not distinguishable—or that the
fusion of the visual and linguistic information is
too difficult?

To tease apart these hypotheses, we run experi-
ments using caption variants: we modify each cap-
tion in each Winoground item so that the captions
are no longer minimally contrastive. We obtain
caption variants by using 9 manually selected aug-
mentation strategies from NLAugmenter (Dhole
et al., 2021) and categorize them by the type of
modification they make (see Table 3 for an exam-
ple). For a given Winoground item (I0, I1, T0, T1),
the n caption variants are denoted by T0,0:n−1 and
T1,0:n−1. For more details about these augmenta-
tion strategies, refer to Appendix D.

We first investigate the separability of textual
variants of T0 from textual variants of T1 in model
embedding space for the three models (LXMERT,
UNITER, CLIP) in Section 5.1. Then, we test
whether providing models access to textual vari-
ants helps performance on the Winoground task
in Section 5.2. Finally, we analyze the ability of
models to distinguish the right caption conditioned
on its textual variant in Section 5.3.

5.1 Separability of Caption Variants

Our core question in this experiment is whether
textual variants of T0 and textual variants of T1 are
effectively partitioned in each model’s embedding
space. If semantic differences aren’t captured by
the language branch, then no matter how well fine-
grained semantics are extracted from images and no
matter how well text semantics and image seman-
tics are aligned, these models cannot be expected
to succeed on Winoground. On the other hand, if
there’s a clear linear division between the caption
groups, then the semantic distinctions between T0

and T1 are already easily retrievable from a model’s
text branch, and the model’s overall failure cannot
be resolved by improvements to its ability to dis-
criminate text.

For each Winoground item, we construct four
sets of CLS @ l embeddings (the embedding for the
[CLS] token at layer l): variants of caption 0 con-
ditioned on image 0 (E(I0, T0,0:n−1)), variants of
caption 0 conditioned on image 1 (E(I1, T0,0:n−1)),
variants of caption 1 conditioned on image 0
(E(I0, T1,0:n−1)), and variants of caption 1 con-
ditioned on image 1 (E(I1, T1,0:n−1)). We fix the
image input, and compare the target task of dis-
tinguishing variants of caption 0 from variants of
caption 1 with a control task where variants of both
captions are randomly assigned to one of two ar-
birary sets.

Separately, for each of the 400 Winoground
items with textual variants, we use a Linear Sup-
port Vector Classifier probe to measure separability,
with hyperparameter C = 100 to prioritize com-
plete separation over margin width. We obtain
two key measures: the binary variable of whether
the sets are linearly separable (true if and only if
every variant is correctly labeled by the learned
probe), and the width of the discovered margin
(computable by M = 2/∥w∥). We train one SVC
over CLS @ l embeddings for each combination
of task, layer, Winoground item, model, and (for
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Augmentation Example Sentence

Original Sentence (1): no changes from Winoground a human viewing a cat on a screen

Hyponyms (2): replace noun with hyponym, from CheckList (Ribeiro et al., 2020) a human viewing a lion on a screen
Hypernyms (2): replace noun with hypernym, from CheckList (Ribeiro et al., 2020) a human viewing a device on a screen
SynonymSubstitution (3): replace word with WordNet (Miller, 1998) synonym a human view a cat on a screen
Slangificator (3): replaces a word with a slang word from a curated word list a human viewing a moggie on a screen
Backtranslation (1): translate to German and back using FSMT (Ng et al., 2019) a human looking at a cat on a screen
DiverseParaphrase (3): diverse paraphrases (Kumar et al., 2019) what is it like to look at a cat on screen
ProtAugmentDiverseParaphrase (5): diverse paraphrases (Dopierre et al., 2021) a person who looks at a cat on a screen
Syntactic (3): use hardcoded syntactic rules to generate text with a new word order
but same semantics using the AllenNLP of SRL BERT (Shi and Lin, 2019)

a human viewing on a screen a cat

Table 3: Text augmentations (modifications from the original sentence colored in blue) and examples. The
parenthetical number states the maximum number of variants we produced for each augmentation type. For a given
caption, if an augmentation did not apply (either because it reproduced the original sentence or produced the empty
string), it was not included.

LXMERT and UNITER) which image is input
alongside the text, then average across items and
images to analyze high-level trends.

The first row of Figure 3 shows the results. For
LXMERT, we find that embeddings only become
separable with a margin size of at least 1.0 at layer
6 and remain separable for the rest of the lay-
ers. The introduction of cross-modal attention at
layer 9 is followed by a slowing of margin growth
and an eventual decrease. Control sets are much
less likely than target sets to be linearly separa-
ble. For UNITER, which is always cross-modal,
the margin increases steadily across layers until
dropping sharply for the last two. The control task
peak for UNITER is similar to that of LXMERT,
but the target task peak is lower, suggesting that
LXMERT’s representations of fine-grained seman-
tic distinctions are slightly more linearly separable
than UNITER’s. For CLIP, we find that neither
target-task nor control-task captions can be linearly
separated in the embedding space after the first
layer. We investigate the possibility of non-linear
representations in 5.3.

Across all LXMERT layers, target task probes
find a linear decision boundary which perfectly
separates variants of one caption from variants of
the other caption 81.3% of the time, while control
task probes able to find a perfect decision boundary
only 10.9% of the time. Among perfect decision
boundaries discovered for the target task, the av-
erage margin width is 1.9, while among perfect
decision boundaries discovered for the control task,
the average margin width is only 0.7.

Across UNITER layers, target task probes find a
perfect decision boundary 84.7% of the time with
an average margin width of 1.018 while control
task probes only do so 19.0% of the time with an

average margin width of 0.48. CLIP target task
probes only find a perfect linear decision boundary
3.5% of the time with an average margin width of
only 0.13, while CLIP control task probes never
succeed in perfectly separating variant embeddings.

This gap suggests that LXMERT’s and
UNITER’s language layers are in principle able
to learn easily-extractable representations of
Winoground captions, which may capture the differ-
ences between semantic minimal pairs. Given this
result, we ask (in Section 5.2) whether using these
separable caption sets (as opposed to the original
textual minimal pairs) could be used to improve
Winoground performance. If so, it would suggest
that state-of-the-art VL models stumble only on lex-
ically overlapping captions; if not, it would suggest
that these models struggle with fine-grained seman-
tic distinctions even in the absence of significant
lexical overlap.

5.2 Do Caption Variants Help with the
Winoground Task?

To assess whether the separable captions help
on the main task, we develop a new test of the
Winoground task, using our augmented captions.
Using n different variant-generation methods as
defined in Section 5, we can obtain sets of captions
T0,0, T0,1, . . . , T0,n−1 and T1,0, T1,1, . . . , T1,n−1.
We then obtain augmentation-aware similarity
scores between an image I and a set of n cap-
tion variants of T , {T1, T2, . . . , Tn} as S(I, T ) =
(1− λ)S(I, T ) + λagg(S(I, Ti)) whereas the sim-
ilarity score interpolates, with a hyper parameter
λ, between the original similarity score and an ag-
gregate score across all n variants; we experiment
with both the max and the mean as possible ag-
gregation functions. We use these scores to see if
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Figure 3: Top: Average SVC Probe Margin Width Across Model Layers for LXMERT, UNITER, and CLIP.
Bottom: Test Set Accuracy of a 4-layer text-only probe over [CLS] Embeddings Across Model Layers for LXMERT,
UNITER, and CLIP.

Original Augmented

Text Img Grp Text Img Grp

Human 89.50 88.50 85.50 - - -
LXMERT 17.25 5.25 2.75 17.50 4.75 3.25
UNITER 31.75 10.50 7.25 31.50 12.50 8.25
CLIP 27.50 12.00 9.50 27.25 12.25 9.75

Table 4: Results with non-minimal caption variant pairs.

performance is improved on Winoground by us-
ing caption variants. We conduct a hyperparameter
search over the aggregation function and the value
for λ, as described in Appendix D.1.

Results are presented in Table 4. Augmentation
does not improve the Text or Group Score by much,
indicating that these interventions to increase tex-
tual discriminability do not make it easier for the
model to pick the correct text given the image. This
suggests the high lexical similarity between the cap-
tion pairs is unlikely to be the main challenge, since
models fail to pick between semantically-similar,
lexically-different caption candidates.

5.3 Distinguishing Captions Conditioned on
Caption Variants

Finally, we evaluate whether the partitions of the
embedding space found in Section 5.1 are meaning-
ful by training MLP probes to select between two
captions conditioned on a different variant of one
of the captions (all paired with the same reference
image). These probes, unlike the SVC ones, have
the ability to identify and use non-linear patterns in
the embeddings. Intuitively, we are asking: can a

probe over the text embeddings produced by each
model correctly identify that the caption “a human
viewing a cat on a screen” is correctly paired with
the paraphrase “a person who looks at a cat on a
screen” (which is a semantic match) and not with
a variant of its semantic minimal pair (e.g., “a cat
who looks at a person on a screen”)? In this ex-
periment we do not train a separate SVC for each
Winoground item, but use a single MLP across
all Winoground items, increasing the task diffi-
culty significantly. If the partitions found for each
Winoground item are arbitrary, then a probe trained
to distinguish between caption variants should fail
on any Winoground item not seen during training.
On the other hand, if a probe is able to distinguish
between caption variants for unseen Winoground
items, then it must have learned a semantically
meaningful partition of the embedding space. We
use the same train/test splits as in Section 3.2, and
a similar control task, in which the labels of a fixed
random 50% of Winoground items are swapped.

Results Our results are depicted in the second
row of Figure 3. Performance for LXMERT and
UNITER falls between the catastrophic failure of
the cross-modal probes in Section 3.2 and the clear
success of the unimodal probes in Section 5.1. Per-
formance on the test set is never higher than 60%
for any probe size or embedding layer. However,
target task probes clearly outperform control task
probes on test set accuracy, as shown in Figure
3. On the other hand, MLP probes over CLIP’s
text branch are much more successful than the lin-
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ear SVC probes from Section 5.1, achieving over
80% accuracy on the test set for the target task
by the final layers. This suggests that CLIP is in
fact encoding semantic distinctions well, but that
the representations produced by CLIP layers are
non-linear.

Test set accuracy clearly improves with layer
depth for all three models in early layers, but be-
gins decreasing when cross-modal attention is intro-
duced at layer 9 in LXMERT, and for the final two
layers of UNITER. This finding mirrors our results
from Section 5.1. Performance above chance on
this task, especially using CLIP layer embeddings,
constitutes further evidence for our hypothesis that
text processing is not the primary cause of failure
on Winoground for the best current VL models.

6 Conclusion

We initially asked whether failures on Winoground
occur because SOTA models rely more on bag-of-
words than they let on and cannot tell the difference
between sentences that contain the same words but
differ in meaning. We found that the story is more
complicated: high lexical overlap between captions
is not the only—or even the most likely—cause of
failure.

First, we showed that it’s not only the textual dif-
ference between “a mug in some grass” and “a
grass in some mug” that makes Winoground hard.
Indeed, using Recall@k, we showed that models
struggle to identify that either minimally different
caption matches a particular image.

Next, we re-categorized the Winoground
dataset using a set of tags that identify signif-
icant challenges beyond semantic composition-
ally. For instance, we identified 38/400 items as
VisuallyDifficult, meaning they require identi-
fying a subtle visual feature of the image such as
the eye color of a person in an image. Performance
is very low on this subset, for reasons that may
have nothing to do with language. Moreover, some
of the images (56/400) and captions (50/400) are
unusual or hard to parse: these images and captions
are challenging for reasons having nothing to do
with their inclusion in a minimal pair.

Even ignoring these cases, we still found that per-
formance on the 171 vanilla Winoground items was
low. To determine whether this is due to the par-
ticular zero-shot evaluation setting used by Thrush
et al. (2022), we trained small probes to distinguish
between LXMERT or UNITER embeddings of cor-

rect matches and incorrect matches. These probes’
performance was not consistently better than those
trained on a parallel control task, suggesting that
zero-shot evaluation is not the source of model fail-
ure.

So are these examples hard because models do
not understand word order? We ran a set of ex-
periments in which we made the textual minimal
pairs more different from each other: by augment-
ing the Winoground dataset with variants of each
caption, we produced sets of captions which were
semantic but not lexical minimal pairs. Probing
the embeddings of these variants, we found that
semantic distinctions were linearly separable from
LXMERT and UNITER layer representations, and
the best CLIP layer representations could be used to
correctly distinguish variants of captions not seen
during training with over 80% accuracy. Even still,
all three models fail to match each set of caption
variants with the correct image. Thus, we observe
robust failure on the task even when we use caption
variants known to be distinguishable. It seems that
the problem is not simply that the model cannot
distinguish between captions with overlapping text,
but likely lies in associating those distinctions with
images.

Overall, Winoground remains a challenging and
promising way to test visuolinguistic ability. We
would encourage future work to report results on
each of the tags we introduce separately, given the
clear performance differences across tags we found
for CLIP, UNITER, and LXMERT. And we urge
care in drawing conclusions about the composi-
tional abilities of vision-and-language models.

Limitations

Like the original Winoground dataset, we evaluate
only English. Because English is highly word-
order dependent, less word-order dependent lan-
guages may behave very differently, and, in fact,
constructing a Winoground-like dataset in such a
language would be non-trivial. Thus, we should not
assume these results generalize to all languages.

We test only 3 types of multimodal models.
While we chose our models to be representative
and amenable to the kinds of experiments we were
running, we cannot guarantee that our findings ap-
ply to all multimodal models.

Also, we focus here mainly on the separability
of embeddings in text space. There are a parallel
set of experiments that could be done for the visual
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space, but we did not conduct such experiments
here. Therefore, our conclusions should be limited
to what can be concluded from text augmentations.

Finally, we draw some conclusions based on fail-
ures to improve models. While we believe these
negative results are informative, it is of course pos-
sible that a better method could be used that would
give different results and so one should remain
open to this possibility.
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A Details on Evaluation Methods

A.1 Models

Specifically, we use UNITER-base pretrained on
COCO Captions, Visual Genome, Conceptual Cap-
tions, and SBU Captions as described in Chen
et al. (2019); LXMERT-base pretrained on COCO
Captions, Visual Genome, VQA v2.0, GQA bal-
anced, and VG-QA as descrbed in Tan and Bansal
(2019); and CLIP with a ViT-B/32 image encoder
pretrained on WebImageText as described in Rad-
ford et al. (2021).

B Method for tagging

The development of these tags occurred in four
stages, or “passes” through the dataset. In our
first pass, we looked briefly at all items to get a
broad sense of the dataset, reflecting on and dis-
cussing with colleagues any items which caught
our interest. The second pass through the dataset
looked at each Winoground item carefully one at a
time, taking notes on the type of swap performed
and any particular challenges or interesting fea-
tures present in that item. From the 29 pages of
notes produced during the second pass, our final
set of 6 tags was selected to encapsulate broad
patterns found throughout the dataset (this num-
ber was not fixed in advance, but determined by
the number of unique patterns identified). A third
pass over the dataset was performed to assign these
tags to each image. Finally, since the second and
third passes were initially performed by one an-
notator to ensure consistency, a fourth pass was
performed by the other authors to verify the tag-
ging, and Winoground items for which any two
annotators disagreed about the tagging were care-
fully examined and discussed by all annotators to
reach a consensus.

After retagging the dataset, the frequency of each
new tag was computed, and tag-level performance
was measured.

C Task Adaptation methods

We consider the following embeddings as potential
inputs to our probes:

• Pooled Outputs: The hidden state for the CLS
token at the last layer of the model, further
processed by a linear projection followed by
a Tanh activation.

• CLS @ l: The hidden state for the CLS token
at layer l

• Mean @ l: The vector produced by mean-
pooling across all hidden states at layer l

• Max @ l: The vector produced by max-
pooling across all hidden states at layer l

Let the function E(I, T ) be application of a
given model to input image I and caption T , fol-
lowed by extraction of the embedding being probed
over. Our probes are then given a pair of concate-
nated embeddings for two candidate image-caption
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pairs, and asked to output 0 if the first pair is a bet-
ter match or 1 if the second pair is a better match.
Specifically, we define the following task corre-
sponding to Text Score for a probe P (·):

P (E(I0, T0)∥E(I0, T1)) → 0

P (E(I0, T1)∥E(I0, T0)) → 1

P (E(I1, T0)∥E(I1, T1)) → 1

P (E(I1, T1)∥E(I1, T0)) → 0

An equivalent probing task corresponding to Image
Score is defined:

P (E(I0, T0)∥E(I1, T0)) → 0

P (E(I1, T0)∥E(I0, T0)) → 1

P (E(I0, T1)∥E(I1, T1)) → 1

P (E(I1, T1)∥E(I0, T1)) → 0

Our control task is formulated nearly identically
to the target task, except that a random 50% of the
Winoground items in each split are chosen at the
start of training, and the labels for these items are
flipped. That is, if our target task has the label 0
and the given item is not flipped, the control task
also has the label 0; if our target task has the label
0 and the given item is flipped, the control task has
the label 1.

Since the flipped items are selected before train-
ing, a probe which simply memorizes the data will
perform well on this control task for items it has
already seen. We therefore split the data into a
training and a testing set, the latter of which is
never seen during training. This means we are di-
viding the 400 Winoground items into four new
splits: 150 training samples whose labels are not
flipped in the control task, 150 training samples
whose labels are flipped, 50 testing samples whose
labels are not flipped, and 50 testing samples whose
labels are. In order to ensure each split is represen-
tative of overall the Winoground benchmark, we
perform stratified sampling, where are buckets are
any combination of the “Pragmatics”, “Symbolic”,
and “Morpheme-Level” visual tags and the “Both”
linguistic tag. We subsequently confirm that the
ratio of each visual and linguistic tag, as well as
of each new tag introduced here, is similar across
each split.

We test a variety of small Multi-Layer Percep-
tron (MLP) probes over these extracted embed-
dings, each of which maps from the input dimen-
sion of 2× 768 to a single output. ReLU activation

is applied at intermediate layers, and Sigmoid acti-
vation is used at the final layer to ensure the output
is in the range [0, 1]. We empirically select a hid-
den size of 1024, a learning rate of 0.0001, 4 MLP
layers, and 200 epochs of training to use for every
probe, after ablating each of these hyperparameters
for all combinations of probe and embedding types.

We use a single NVIDIA RTX 8000 GPU for all
our experiments. All probes took no more than 10
hours to run.

D Textual Variants Methods

D.0.1 Syntactic augmentations
We generate a maximum of 3 variants using the
PropbankSRLRoles augmentation. This augmen-
tation extracts semantic role labels for the provided
sentence using the AllenNLP implementation 1 of
SRL BERT (Shi and Lin, 2019) and applies its hard-
coded syntactic rules (if applicable) to generate a
new sentence.

D.0.2 Semantic, word-based augmentations
We use 4 different augmentation methods, each of
which randomly replace words in the sentence with
new approximately meaning-preserving words. All
methods use SpaCy (Honnibal et al., 2020) to parse
the sentence to perform POS tagging.
ReplaceHyponyms, ReplaceHypernyms. The first
augmentation replaces a noun with a hyponym and
the second replaces a noun with a hypernym. We
generate a maximum of 2 variants per augmenta-
tion. This method uses CheckList (Ribeiro et al.,
2020) for the list of hyponyms/hypernyms.
Slangificator. It replaces a word with a slang
word. This uses a manually curated list of word ->
slang word mappings. We generate a maximum of
3 variants.
SynonymSubstitution. It replaces a word with
a synonym based on WordNet (Miller, 1998) via
NLTK (Bird, 2006). We generate a maximum of 3
variants.

D.0.3 Paraphrasing
Backtranslation. It translates a sentence to Ger-
man and back using FSMT (Ng et al., 2019). We
generate a maximum of 1 variant.
DiverseParaphrase. It generates diverse para-
phrases using DiPS (Kumar et al., 2019) equipped
with Diverse Beam Search (Vijayakumar et al.,
2018). We generate a maximum of 3 variants.

1https://demo.allennlp.org/
semantic-role-labeling
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ProtAugmentDiverseParaphrase. It generates
diverse paraphrases using ProtAugment (Dopierre
et al., 2021). We generate a maximum of 5 variants.

D.0.4 Identity
We also define the original input text as a ‘variant’
that has undergone the identity transformation.

D.1 Discriminable Caption Pair Experiment
To assess whether the separable captions help
on the main task, we develop a new test of the
Winoground task, using our augmented captions.
Using n different variant-generation methods as
defined in Section 5, we can obtain sets of captions
T0,0, T0,1, . . . , T0,n−1 and T1,0, T1,1, . . . , T1,n−1.
Then, every multimodal model under consideration
outputs a similarity score S(I, T ) given an image I
and text T as input. We define augmentation-aware
similarity scores between a given image I and a set
of n caption variants of T , {T0, T1, . . . , Tn−1} as
follows:

Saug,mean(I, T ) =(1− λ) S(I, T0)+

λmeani[S(I, Ti)]

Saug,max(I, T ) =(1− λ) S(I, T0)+

λmax
i

[S(I, Ti)]

where the choice of using Saug,mean vs.
Saug,max and the value of λ are hyperparameters.
This similarity score interpolates, using λ, between
the original similarity score and an aggregated
(max/mean) score across all n variants. We can
use these scores to see if performance is improved
on Winoground by using caption variants.

We conduct a hyperparameter search over the
similarity function and the value for λ. We found
that Saug,mean works best for LXMERT while
Saug,max works best for UNITER and CLIP. We
picked the best value for λ by testing every λ value
between 0 and 1 in steps of 0.25 and picking the
value that maximizes the group score. λ = 0.5
works best for LXMERT, λ = 0.75 for UNITER
and CLIP.

E Winoground: New Tags

Our new tags appear in Table 5. For the full
Winoground dataset, see https://huggingface.
co/datasets/facebook/winoground.
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Tag Winoground Items
NonCompositional 72, 73, 74, 95, 96, 133, 149, 150, 164, 218, 221, 222, 224, 235, 237, 246, 274, 275, 321,

325, 326, 327, 332, 333, 334, 350, 364, 365, 398, 399
AmbiguouslyCorrect 3, 13, 36, 46, 75, 76, 77, 78, 82, 86, 88, 113, 119, 121, 131, 132, 133, 148, 189, 220, 221,

262, 263, 287, 295, 300, 303, 305, 307, 310, 319, 322, 332, 340, 343, 344, 348, 353, 355,
356, 363, 374, 377, 381, 386, 394

VisuallyDifficult 4, 22, 23, 25, 27, 28, 31, 36, 58, 65, 69, 70, 77, 97, 116, 118, 134, 138, 159, 163, 172, 176,
182, 187, 200, 214, 226, 227, 232, 241, 255, 268, 286, 335, 352, 356, 373, 376

UnusualImage 31, 36, 38, 41, 42, 61, 62, 70, 78, 84, 93, 110, 114, 116, 128, 133, 136, 155, 159, 164, 173,
174, 188, 201, 203, 204, 206, 209, 218, 223, 239, 245, 246, 247, 254, 274, 275, 277, 280,
282, 293, 303, 307, 314, 319, 320, 327, 329, 339, 362, 367, 383, 384, 388, 393, 395

UnusualText 10, 41, 49, 58, 63, 68, 70, 152, 156, 159, 163, 174, 198, 201, 209, 214, 215, 221, 229, 233,
237, 253, 257, 264, 275, 287, 303, 315, 318, 323, 324, 326, 327, 335, 338, 342, 343, 345,
346, 351, 354, 359, 364, 376, 383, 385, 386, 387, 390, 394

ComplexReasoning 16, 40, 44, 46, 55, 58, 81, 83, 93, 97, 103, 111, 116, 118, 128, 130, 135, 143, 144, 176,
190, 191, 192, 193, 199, 206, 208, 209, 210, 211, 217, 218, 219, 227, 228, 230, 234, 238,
241, 242, 249, 254, 258, 260, 262, 264, 267, 268, 275, 276, 281, 284, 286, 287, 292, 295,
296, 298, 299, 304, 311, 312, 316, 330, 331, 334, 336, 342, 347, 358, 361, 371, 373, 375,
382, 383, 392, 396

NoTag 0, 1, 2, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 20, 21, 24, 26, 29, 30, 32, 33, 34, 35, 37, 39,
43, 45, 47, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 64, 66, 67, 71, 79, 80, 85, 87, 89, 90, 91,
92, 94, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 112, 115, 117, 120, 122, 123,
124, 125, 126, 127, 129, 137, 139, 140, 141, 142, 145, 146, 147, 151, 153, 154, 157, 158,
160, 161, 162, 165, 166, 167, 168, 169, 170, 171, 175, 177, 178, 179, 180, 181, 183, 184,
185, 186, 194, 195, 196, 197, 202, 205, 207, 212, 213, 216, 225, 231, 236, 240, 243, 244,
248, 250, 251, 252, 256, 259, 261, 265, 266, 269, 270, 271, 272, 273, 278, 279, 283, 285,
288, 289, 290, 291, 294, 297, 301, 302, 306, 308, 309, 317, 328, 337, 341, 349, 357, 360,
366, 368, 369, 370, 372, 378, 379, 380, 389, 391, 397

Table 5: Winoground Tags with which items fall into each number, using numbering scheme from (Thrush et al.,
2022)
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