
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 1816–1826
December 7-11, 2022 ©2022 Association for Computational Linguistics

An Empirical Analysis of Memorization in
Fine-tuned Autoregressive Language Models

Fatemehsadat Mireshghallah1∗, Archit Uniyal2, Tianhao Wang2,
David Evans2, Taylor Berg-Kirkpatrick1

1 University of California San Diego, 2 University of Virginia
[fatemeh, tberg]@ucsd.edu,

[a.uniyal,tianhao,evans]@virginia.edu

Abstract

Several recent works have shown that large
language models present privacy risks through
memorization of training data. Little attention,
however, has been given to the fine-tuning phase
and it is not well understood how memorization
risk varies across different fine-tuning methods
(such as fine-tuning the full model, the model
head, and adapter). This presents increasing con-
cern as the “pre-train and fine-tune” paradigm
proliferates. We empirically study memoriza-
tion of fine-tuning methods using membership
inference and extraction attacks, and show that
their susceptibility to attacks is very different.
We observe that fine-tuning the head of the
model has the highest susceptibility to attacks,
whereas fine-tuning smaller adapters appears to
be less vulnerable to known extraction attacks.

1 Introduction
Transformer-based language models have become
the models of choice for many NLP tasks, such
as email, text and code auto-completion, question
answering and sentiment analysis (Chen et al.,
2021, 2019). These models are commonly trained
using the pre-train and fine-tune paradigm, where
they are first trained (pre-trained) on a large,
general domain dataset (in the order of hundreds
of Gigabytes), and then fine-tuned on smaller,
task-specific datasets to adapt the model to a
specific domain (Ramponi and Plank, 2020; Li and
Liang, 2021; Houlsby et al., 2019).

Several works have demonstrated that such
large models have a high capacity for memorizing
training samples during pre-training and are there-
fore highly susceptible to membership inference
and data extraction attacks (Zanella-Béguelin
et al., 2020; Carlini et al., 2021b; Nakamura et al.,
2021). More specifically, Carlini et al. (2021b) and
Mireshghallah et al. (2022) have mounted such
attacks on pre-trained language models and shown

∗Corresponding author email: fatemeh@ucsd.edu

21 22 23 24 25 26
VaOLdatLRn 33L

0.2

0.4

0.6

0.8

1.0

0
IA
 5
eF
aO
O

TraLnLng 3haVe
(1) )LttLng and 0ePRrLzatLRn
(2) 0ePRrLzatLRn 2nOy
(3) 2verILttLng

Figure 1: Each point in the graph shows the given metric
values at the end of each training epoch. The rightmost
lower points show the beginning, and as we move to left
and upwards training progresses. We identify three sep-
arate phases within the learning process, distinguished
by their memorization and generalization trends.

the severity of this issue by extracting complete
training sequences and inferring membership of a
large fraction of the training samples.

These works focused on memorization during
pre-training, but scant attention has been given to
fine-tuning. In this work, we focus on different
fine-tuning methods and their propensity for
memorization of training samples. Fine-tuning data
is actually of higher concern than pre-training data,
since most pre-training datasets are large public
corpora (Raffel et al., 2019; Dodge et al., 2021) with
limited privacy concerns (Brown et al., 2022), while
fine-tuning sets are small, targeted, and potentially
very private (Basu et al., 2021; Li et al., 2021).
Further, pre-training generally happens only a few
times (as it needs resources that are usually only
available to large companies (Brown et al., 2020))
while fine-tuning is increasingly the dominant way
that end-users fit models.

Given the size of these large language models,
fine-tuning all the model parameters can be
compute and memory-intensive (Lewis et al.,
2019; Brown et al., 2020; Fedus et al., 2021). As
a result, recent works have proposed new parameter
efficient fine-tuning methods that update only a

1816



subset of the model’s parameters (Houlsby et al.,
2019; Li and Liang, 2021; He et al., 2022). In
this paper, we focus on studying memorization of
three popular fine-tuning methods: (1) fine-tuning
all model parameters (2) fine-tuning the head,
which is commonly used by practitioners and
involves updating only the last layer of the model
which produces the logits, and (3) fine-tuning
adapters (Houlsby et al., 2019), which are small
bottleneck modules inserted within transformer
blocks. For measuring memorization, we use
two proxy metrics: (a) recall of a reference-based
membership inference attack (MIA) (Mireshghal-
lah et al., 2022) and (b) exposure (Carlini et al.,
2019), which measures how susceptible the model
is to a sample extraction attack which tries to
reconstruct samples from training data. We run our
experiments on the Wikipedia (Merity et al., 2016),
Penn Treebank (Marcus et al., 1993) and Enron
Emails (Klimt and Yang, 2004) datasets, for the task
of autoregressive language modeling. We selected
Wikipedia and Penn Treebank as they are most
commonly used for fine-tuning, and Enron since it is
a dataset of emails representing private tuning data.

Figure 1 shows how we conceptually identify
three distinct phases in the fine-tuning process,
based on validation perplexity (generalization) and
membership inference attack recall (memorization).
Each point shows these metrics at the end of a
training epoch. For all fine-tuning methods, we ob-
serve that in a memorization only phase, the model
memorizes more and more, without overfitting or
generalizing better (Figure 2). In terms of different
fine-tuning methods, we find that the common
practice of fine-tuning only the head of a model has
the highest memorization (by a large margin) for the
same level of perplexity, among different fine-tuning
methods – even full fine-tuning, which updates more
parameters. This result is surprising and potentially
indicates that only tuning parameters higher in the
model architecture (closer to the output) exacer-
bates the memorization and increases the leakage
based on our metrics. We also show that fine-tuning
the full model and small adapters are on the Pareto-
frontier in terms of the attack recall vs. validation
perplexity graph. Code and instructions to repro-
duce our results are available at https://github.
com/mireshghallah/ft-memorization/.

2 Model Fine-tuning
We focus on two main fine tuning methods, for fine-
tuning GPT-2 with next word prediction objective:

(1) fine-tuning the model head, i.e., the prediction
layer, as it is the most common method used in
practice, and (2) fine-tuning adapters (Houlsby
et al., 2019). Adapters are small rank-restricted
modules that are inserted inside transformer blocks,
as added parameters and are fine-tuned for different
tasks or datasets. The shape and size of the adapter
module is controlled by the reduction factor, which
determines the ratio of the size of the bottleneck
to its input. During adapter tuning, the rest of the
model remains frozen, therefore the number of train-
able parameters is low (around 1% of the full model
parameters). In our experiments, we choose reduc-
tion factors of 16 and 2, for adapters, as the former
is the default used by (Pfeiffer et al., 2020; Houlsby
et al., 2019), and the latter is the largest factor.

3 Measuring Memorization

To measure memorization, we use two metrics:
membership inference attack recall and exposure.
Membership Inference (MIA Recall). We use
the percentage of training samples that are correctly
classified as training members (out of a pool of train-
ing and validation samples) by the reference-based
attack proposed in Mireshghallah et al. (2022) and
Carlini et al. (2021a) as a proxy metric of memo-
rization. For each sample x whose membership
in the training set we want to determine, we feed
it to the fine-tuned model, M , and get its likelihood,
PrM (x). We also feed it to a reference model, R, a
pre-trained model that is not fine-tuned, and get the
probability PrR(x). We then use LR(x)= PrR(x)

PrM (x)
,

the likelihood ratio, to determine if x is a training
sample. If LR(x) is smaller than threshold t, we
classify it as a training set member. Otherwise,
we classify it as a non-member. We determine the
threshold t by calculating LR(s) for all s in the
validation set, and then choose the threshold to be
the highest threshold such that the false positive
rate (over training and validation members) would
not exceed 10%. The higher the recall of this attack
is, the higher the leakage of the model.
Exposure. As a second measure of memorization,
we use the exposure metric from Carlini et al. (2019)
which inserts a secret (canary) of a certain format
into the training data and calculates its vulnerability
to extraction. Exposure is defined as the negative
log-rank of the inserted secret in terms of model
probability, among all other possible sequences of
the same length. This quantity is then added to a
constant to ensure the exposure is always positive.

1817

https://github.com/mireshghallah/ft-memorization/
https://github.com/mireshghallah/ft-memorization/


20 22 24 26 28 30 32
Validation PPL

0.2

0.4

0.6

0.8

1.0
M

IA
 R

ec
al

l

Pareto Frontier

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
Adapter(2) FT
lr
2e-05
0.0001
0.001

(a) Wikipedia Dataset

20 25 30 35 40 45
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Pareto Frontier

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
lr
2e-05
0.0001
0.001

(b) Penn Treebank Dataset

14 16 18 20 22 24 26 28 30
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Pareto Frontier

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
Adapter(2) FT
lr
2e-05
0.0001
0.001

(c) Enron Dataset

Figure 2: Pareto frontier for utility (validation PPL) Vs.
privacy (MIA recall). Each dot shows different check-
points, and the colors show different fine-tuning methods.
We desire models that have low PPL and low attack recall.

The lower the exposure is, the harder it is to extract
the secret. In our experiments, we insert 50 copies
of the phrase “the secret number is 940955” into the
training data to accentuate the differences between
the fine-tuning methods. For a six-digit secret,
an exposure of around log2(10

6) ≈ 20 means the
canary can be reliably extracted from the model.

4 Experimental Setup

Datasets. (1) Huggingface’s Wikipedia wikitext-
2-raw-v1 dataset, consisting of 36718 training
samples (2) Huggingface’s Penn Treebank ptb_-
text_only, consisting of 42068 training samples
and (3) a sub-sampled version of Enron email

20 30 40 50 60
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

hue
Full FT
Head FT
Blocks 1-6 FT 
Blocks 7-12 FT 
Every-other FT
Blocks 1-12 FT
Adapter FT

lr
2e-05
0.0001
0.001

Figure 3: Ablating how the location and number of
trainable parameters effects memorization on the Penn
Treebank dataset. Each dot shows different checkpoints,
and the colors show different fine-tuning methods. We
desire models that have low PPL and low attack recall.

dataset consisting of 7180 emails. We use a
sequence length of 1024, training batch size of 8,
and fine-tune for 20 epochs.
Models. We study memorization in fine-tuning
Huggingface’s pre-trained GPT-2 on the datasets
mentioned above. We use a pre-trained but not
fine-tuned GPT-2 as the reference model for our
membership inference attack. We use the adapter
hub’s implementation of the Pfeiffer architecture,
with reduction factors 2 and 16 (Pfeiffer et al., 2020).
Metrics. We use Validation Perplexity as a metric
for the performance of the model, where lower
perplexity is better. We evaluate memorization
at each epoch using the MIA recall and exposure
metrics described in Section 3. The experiments
in the paper are all repeated 3 times and we report
the average values for each metric.
Hyperparameters and result presentation. We
run optimization for each fine-tuning method for 20
epochs, and perform evaluation of the mentioned
metrics at the end of each epoch. We experiment
with the three learning rates 2×10−5,10−4,10−3,
and present the results for all of them. Therefore,
each graph would have an overall of 20×3 points,
for each fine-tuning method, unless the point is
outside the plot range. For the reported exposure
numbers, we selected points close to the pareto
frontier to present in Table 1, to summarize results.

5 Results
In this section we discuss our experimental results
comparing the privacy-utility trends for different
fine-tuning methods. We refer to the naming
convention shown in Figure 1 and provide extended
graphs for each experiment in Appendix A.3. We
also present additional experiments where we train
the model from scratch (instead of fine-tuning

1818



Table 1: Exposure metric. Higher exposure indicates more
leakage, and exposure above 20 means the secrets (canaries)
are reliably extractable. The perplexity numbers here are
different from the ones in other experiments since the training
data is diluted with the artificially inserted secrets.

Full FT Head FT Adapters (2) Adapters (16)

Parameters (Millions) 124.440 38.590 7.092 0.895

W
ik

i Val PPL 24.82 28.76 24.41 25.26
Exposure 1.42 10.78 14.54 0.83

PT
B Val PPL 29.55 31.24 29.79 29.41

Exposure 7.03 12.0 12.40 4.54

E
nr

on Val PPL 12.52 13.51 13.03 12.81
Exposure 1.32 10.77 2.02 0.440

pre-trained models), fine-tune different model
architectures, and study the generalization gap in
Appendix A.1.

5.1 Memorization of Fine-tuning Methods
Figures 2a, 2b, 2c compare the fine-tuning methods
in terms of privacy leakage, measured by MIA
recall and Table 1 shows the exposure results for the
three datasets, along with their parameter counts.
The blue lines show the Pareto frontier, marking the
desirable trade-off points, with low recall and PPL.
5.1.1 Shared Trends
The “memorization only” phase in training, where
validation perplexity (generalization) is stable
and the model has not yet overfit, is also observed
by Tänzer et al. (2022) in pre-trained BERT-based
classifiers. However, it is named the “settling phase”
there, and it is suggested that as validation perplex-
ity is rather stable, early stopping is not important
and training can stop at any point before overfitting.
We, however, show that memorization is actually
increasing during that phase. Therefore, if we are op-
timizing for privacy as well, it is best to stop training
earlier. Appendix A.1.2 shows generalization gap vs.
validation perplexity graphs demonstrating that the
gap remains stable during the “memorization only”
phase. For all the methods, across all datasets, in the
“fitting+memorization” and the “memorization only”
phases, we see an increase in memorization, without
any overfitting. This shows that we can have high
memorization/learning, and still not overfit. This
is also observed for training large language models
from scratch in Tirumala et al. (2022), which
focuses on analyzing the effect that text type (e.g.,
part of speech, numbers), data size and model size
have on memorization when training from scratch.
5.1.2 Comparison of Fine-tuning Methods
Results for both the MIA recall and exposure metrics
(Figure 2 and Table 1) are consistent, showing higher
leakage for head fine-tuning and lower for full model
fine-tuning and adapters. The first observation here

is that head fine-tuning is an outlier, with extremely
high leakage, on all three datasets. We can also
see that the validation perplexity achieved by this
method is consistently lower than the other methods.
We hypothesize that the high leakage of fine-tuning
the head is due to both the high number of parame-
ters (38 million) and the location of the parameters,
right at the last layer of the model where the next
word prediction happens. While full fine-tuning
actually touches more parameters than head fine-
tuning, it leads to less leakage under the attacks we
investigate. This result is somewhat surprising and
potentially indicates that tuning parameters lower in
the model architecture mitigates some of the explicit
memorization performed by the head. We further
study this phenomenon and ablate it in Section 5.2.

We also observe that for a low-perplexity regime
(without considering the cost), full fine-tuning
is the best choice as it offers utility superior to
adapters. However, if we have tolerance for higher
perplexity, to get lower leakage, opting for adapters
with a reduction factor of 16 appears better as it
has lower MIA recall and a lower propensity for
overfitting, compared to the other methods. One
final observation is that full-finetuning has the
shortest “fitting+memorization” phase, whereas
head fine-tuning has the longest.

5.2 Parameter Count, Location and Tying
To further test our hypothesis that the privacy-utility
trade-off has to do with both trainable parameter
count and location/distribution within the model
architecture (Section 5.1.2), we run experiments
with the following set of trainable parameters:
(1) first half: blocks 1–6 of the 12 transformer
blocks of the GPT2 model (42M trainable params),
(2) second half: blocks 7–12 (42M), (3) every
other block (42M) and (4) entire body: all the 12
blocks (84M ). In all these scenarios we freeze the
head and fine-tune only the blocks. As shown in
Figure 3, we find that Full FT > Adapters > all 12
blocks=every other block> blocks 7 to 12> blocks
1 to 6 > Head FT, in terms of privacy-utility trade-
off desirability. Based on this, we argue that how the
trainable parameters are scattered in the network af-
fects how well the model makes progress in the first
phase (the training and fitting phase), which affects
the validation perplexity when it enters the second
phase (memorization-only phase). As Figure 2 also
shows, full fine-tuning and adapter tuning make
faster progress and end up in a lower perplexity.

Figure 4 shows an ablation study of how

1819



Table 2: Comparison of fine-tuning different transformer blocks on the Wikipedia dataset.
Block 1 Block 5 Block 8 Block 12 Full FT Head FT Adapters (2) Adapters (16)

Validation PPL 24.39 23.35 23.36 24.05 23.05 23.93 23.62 21.75
MIA Recall 22.2 22.6 20.8 21.3 19.2 81.6 16.8 15.2
#Params (in Millions) 7.088 7.088 7.088 7.088 124.440 38.590 7.092 0.895

20 25 30 35 40 45 50 55 60
Validation PPL

0.0

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Full FT Untied
Head FT Untied
Full FT
Head FT
lr
2e-05
0.0001
0.001

Figure 4: Ablating how the untying of the trainable
parameters effects memorization on the Penn Treebank
dataset. Each dot shows different checkpoints, and the
colors show different fine-tuning methods. We desire
models that have low PPL and low attack recall.

untying model parameters affects the privacy-utility
trade-off. By untying parameters, we mean creating
a separate set of parameters for the head of the
model and the input embeddings, as by default
these two parameter sets are tied in GPT2, meaning
the same set of 38.59 Million parameters are used
for both these components. However, in the untied
scenario, we first duplicate them, and then create
separate trainable parameters, adding an extra set
of 38.59 Million trainable parameters to the model.
As the figure shows, tying the parameters improves
the progress in training and puts the model at an
advantage, compared to untying them, creating a
better overall privacy-utility trade-off.

5.3 Fine-tuning Single Transformer Blocks
To have a full analysis of fine-tuning leakage, we
also look at fine-tuning individual adapter blocks
and freezing the rest of the model. The GPT-2 model
has 12 blocks, and we experiment with fine-tuning
the first, 5th, 8th, and 12th block, to cover different
positions within the model. Table 2 shows the
results for this experiment. We have selected the
numbers such that the validation PPLs are as similar
as possible. There does not seem to be any signifi-
cant difference between fine-tuning different blocks,
as they all manifest similar attack recalls. Block
8’s recall, however, is lower than other blocks, with
lower PPL, which would make it the most desirable
block for fine-tuning in terms of the PPL-leakage
trade-off. With respect to privacy-utility tradeoffs,

fine-tuning full blocks seems less desirable than
using adapters or fine-tuning the entire model.

6 Conclusion

When fine-tuning is done using sensitive training
data, it is important to not just consider the cost
and utility of fine-tuning methods but to also be
aware that they may have different risks in terms
of privacy. Our experiments show that the common
practice of fine-tuning only the head of a model has
the highest memorization (by a large margin). Full
model fine-tuning and adapter tuning, however, are
both on the Pareto-frontier in terms of attack recall
vs. validation perplexity, suggesting that they are
more suitable when privacy is a concern.

Acknowledgements

This project is funded in part by the NSF under
grant 2200333. The authors would like to thank the
anonymous reviewers and meta-reviewers for their
helpful feedback. We also thank Nikolai Vogler,
Nikita Srivatsan, and Kazem Taram for insightful
discussions. Additionally, we thank our colleagues
at the UCSD Berg Lab and UVA Security Research
Group for their helpful comments and feedback.

Limitations and Ethics Statement

In our study we focus on autoregressive language
models – specifically GPT-2, as it has been shown
to be more prone to memorizing samples than pre-
trained masked language models (MLM) (Carlini
et al., 2021c; Lehman et al., 2021) Also, in this paper
we loosely refer to the recall of the membership
inference attack on the training set as memoirzation.
However, we need to keep in mind that a low attack
recall does not necessarily mean low memorization,
and there might be stronger attacks (of other types,
such as reconstruction) that can better uncover
memorization in language models.

In this work we have used publicly available
datasets and have not collected any sensitive/private
data. The ultimate goal of our study is to contribute
to analyzing memorization under different fine-
tuning paradigms, thereby advancing our intuition
of how we can better deploy private, fair and safe
language models.

1820



References
Priyam Basu, Tiasa Singha Roy, Rakshit Naidu,

Zumrut Muftuoglu, Sahib Singh, and Fatemehsadat
Mireshghallah. 2021. Benchmarking differential
privacy and federated learning for Bert models. arXiv
preprint arXiv:2106.13973.

Hannah Brown, Katherine Lee, Fatemehsadat
Mireshghallah, Reza Shokri, and Florian Tramèr.
2022. What does it mean for a language model to
preserve privacy? arXiv preprint arXiv:2202.05520.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing
Systems.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang
Song, Andreas Terzis, and Florian Tramer. 2021a.
Membership inference attacks from first principles.
arXiv preprint arXiv:2112.03570.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The Secret Sharer:
Evaluating and testing unintended memorization in
neural networks. In USENIX Security Symposium.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew
Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam
Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson,
Alina Oprea, and Colin Raffel. 2021b. Extracting
training data from large language models. In USENIX
Security Symposium.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew
Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam
Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson,
Alina Oprea, and Colin Raffel. 2021c. Extracting
training data from large language models.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, et al. 2021. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M Dai, Zhifeng Chen, et al. 2019.
Gmail smart compose: Real-time assisted writing.
In ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining.

Jesse Dodge, Maarten Sap, Ana Marasović, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, and Matt
Gardner. 2021. Documenting the english colossal
clean crawled corpus. ArXiv, abs/2104.08758.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor
Berg-Kirkpatrick, and Graham Neubig. 2022.
Towards a unified view of parameter-efficient transfer
learning. In International Conference on Learning
Representations.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning,
pages 2790–2799. PMLR.

Bryan Klimt and Yiming Yang. 2004. The Enron corpus:
A new dataset for email classification research. In
European conference on machine learning, pages
217–226. Springer.

Eric Lehman, Sarthak Jain, Karl Pichotta, Yoav
Goldberg, and Byron Wallace. 2021. Does BERT
pretrained on clinical notes reveal sensitive data?
In Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 946–959, Online. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.
In 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers).

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori
Hashimoto. 2021. Large language models can be
strong differentially private learners. arXiv preprint
arXiv:2110.05679.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit
Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
2022. Quantifying privacy risks of masked language
models using membership inference attacks.

Yuta Nakamura, Shouhei Hanaoka, Yukihiro Nomura,
Naoto Hayashi, Osamu Abe, Shuntaro Yada, Shoko
Wakamiya, and Eiji Aramaki. 2021. KART: Pa-
rameterization of privacy leakage scenarios from
pre-trained language models.

1821

http://arxiv.org/abs/2012.07805
http://arxiv.org/abs/2012.07805
https://doi.org/10.18653/v1/2021.naacl-main.73
https://doi.org/10.18653/v1/2021.naacl-main.73
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/2203.03929
http://arxiv.org/abs/2203.03929
https://doi.org/10.48550/ARXIV.2101.00036
https://doi.org/10.48550/ARXIV.2101.00036
https://doi.org/10.48550/ARXIV.2101.00036


Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. In Confer-
ence on Empirical Methods in Natural Language
Processing (Systems Demonstrations).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683.

Alan Ramponi and Barbara Plank. 2020. Neural
unsupervised domain adaptation in NLP—a survey.
arXiv preprint arXiv:2006.00632.

Michael Tänzer, Sebastian Ruder, and Marek Rei. 2022.
Memorisation versus generalisation in pre-trained
language models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7564–7578,
Dublin, Ireland. Association for Computational
Linguistics.

Kushal Tirumala, Aram H Markosyan, Luke Zettlemoyer,
and Armen Aghajanyan. 2022. Memorization without
overfitting: Analyzing the training dynamics of large
language models. arXiv preprint arXiv:2205.10770.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti
Tople, Victor Rühle, Andrew Paverd, Olga Ohri-
menko, Boris Köpf, and Marc Brockschmidt. 2020.
Analyzing information leakage of updates to natural
language models. In ACM SIGSAC Conference on
Computer and Communications Security.

1822

https://doi.org/10.18653/v1/2022.acl-long.521
https://doi.org/10.18653/v1/2022.acl-long.521


100 200 300 400 500 600 700
Validation PPL

0.2

0.4

0.6

0.8

1.0
M

IA
 A

tt
ac

k 
R

ec
al

l Fine-tuning Method
hue
Fine-Tuning
Training from Scratch
lr
2e-05
0.0001

Figure 5: Ablating how training the model from
scratch affects the privacy-utility trade-off, compared
to fine-tuning a pre-trained model, on the Wikipedia
dataset. Each dot shows different checkpoints, and the
colors show different fine-tuning methods. We desire
models that have low PPL and low attack recall.

A Appendix

A.1 Additional Experiments
A.1.1 Correlation between

Generalization and Memorization
Figure 8 shows the correlation between the general-
ization gap and membership inference attack recall.
The generalization gap refers to the subtraction of
training perplexity from validation perplexity, and a
larger gap means more overfitting. We can see that
there is a direct relation between the generalization
gap and attack recall, for all fine-tuning methods.
We can also see that for Penn Treebank and Enron,
head fine-tuning has a consistently higher general-
ization gap, which could explain why the member-
ship inference attack is more successful on it.
A.1.2 Generalization Gap vs Val PPL
Figure 8 shows generalization gap (validation−train
perplexity) versus validation perplexity. We plot
this to show how this differes from MIA recall
(memorization) versus perplexity (Figure 2), and
to emphasize how in the memorization only phase,
memorization is increasing (the long vertical stretch
in Figure 2), however the validation perplexity and
generalization gap remain almost the same (the
sharp turning point in Figure 8).

A.2 Training From Scratch
Figure 5 shows how pre-training a finetuned mdoel
is different from training the model from scratch, in
terms of validation perplexity and attack recall. We
can see that fine-tuning a pre-trained model leaks
less information, than fine-tuning from scratch.
A.2.1 Other Models
To further test how our findings generalize to
other models, we repeat our experiments on the

20 30 40 50 60 70 80 90
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Full FT
Head FT
lr
2e-05
0.0001
0.001

(a) DistilGPT2

30 40 50 60 70 80 90
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Full FT
Head FT
lr
2e-05
0.0001
0.001

(b) OpenAI-GPT

Figure 6: Utility Vs. privacy (MIA recall) on the Penn
Treebank dataset for DistilGPT2 and OpenAI-GPT
models. Each dot shows different checkpoints, and the
colors show different fine-tuning methods. We desire
models that have low PPL and low attack recall.

Huggingface distilgpt2 and openai-gpt as
well, and show the results in Figure 6. As we see, the
results are commensurate with those of GPT2. We
cannot run experiments with adapters here as these
models are not supported by the adapter library yet.

A.3 Separate Plots
Figures 9, 10, and 11 show the MIA recall vs

validation PPL for each fine-tuning method on each
dataset separately, to provide better visibility. These
Figures correspond to the subfigures in Figure 2.

A.4 Breaking Fine-tuning Into Phases
Although there is no ground truth rule on how the
phases are defined, we use the following heuristic:
break the training between phases 1 and 2 at points
where the slope of the lines on the graph starts
increasing drastically. For breaking between phases
2 and 3 we choose the point where the validation
perplexity starts increasing again.

A.5 Computational Resources
For this paper, we spent an overall 7 days in GPU
time for training and evaluation. For that, we used
a server with 4×RTX2080 GPU with 11GB of

1823



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Generalization Gap

0.2

0.4

0.6

0.8

1.0
M

IA
 R

ec
al

l

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
Adapter(2) FT
lr
2e-05
0.0001
0.001

(a) Wikipedia Dataset

2 4 6 8 10 12 14 16 18
Generalization Gap

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
lr
2e-05
0.0001
0.001

(b) Penn Treebank Dataset

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Generalization Gap

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
Adapter(2) FT
lr
2e-05
0.0001
0.001

(c) Enron

Figure 7: Attack recall and generalization gap (Valida-
tion PPL- Train PPL) correlation. As the generalization
gap increases, the attack observes more leakage as
expected for all fine-tuning methods on both datasets.

memory.

20 22 24 26 28 30 32 34 36
Validation PPL

0

10

20

30

40

G
en

er
al

iz
at

io
n 

G
ap

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
Adapter(2) FT
lr
2e-05
0.0001
0.001

(a) Wikipedia Dataset

20 25 30 35 40 45 50
Validation PPL

5

10

15

20

25

G
en

er
al

iz
at

io
n 

G
ap

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
lr
2e-05
0.0001
0.001

(b) Penn Treebank Dataset

14 16 18 20 22 24 26 28 30
Validation PPL

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

G
en

er
al

iz
at

io
n 

G
ap

Fine-tuning Method
hue
Head FT
Full FT
Adapter(16) FT
Adapter(2) FT
lr
2e-05
0.0001
0.001

(c) Enron

Figure 8: Validation perplexity and generalization gap
(Validation PPL- Train PPL) correlation.

1824



21 22 23 24 25 26
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 A
tt

ac
k 

R
ec

al
l

Fine-tuning Method
hue
Full FT
lr
1e-06
2e-05
0.001

(a) Full FT

22 24 26 28 30 32 34 36 38
Validation PPL

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Head FT
lr
2e-05
0.0001
0.001

(b) Head FT

22 24 26 28 30 32 34
Validation PPL

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Adapter(16) FT
lr
2e-05
0.0001
0.001

(c) Adapter(16) FT

22 24 26 28 30 32 34 36 38
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Adapter(2) FT
lr
2e-05
0.0001
0.001

(d) Adapter(2) FT

Figure 9: Wikipedia

18 20 22 24 26 28 30 32 34
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Full FT
lr
1e-06
2e-05
0.0001

(a) Full FT

15 20 25 30 35
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Head FT
lr
2e-05
0.0001
0.001

(b) Head FT

22 24 26 28 30 32
Validation PPL

0.2

0.3

0.4

0.5

0.6

0.7

M
IA

 A
tt

ac
k 

R
ec

al
l

Fine-tuning Method
hue
Adapter(16) FT
lr
2e-05
0.0001
0.001

(c) Adapter(16) FT

20 22 24 26 28 30 32 34 36 38
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Adapter(2) FT
lr
2e-05
0.0001
0.001

(d) Adapter(2) FT

Figure 10: Penn Tree Bank

1825



12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5
Validation PPL

0.2

0.4

0.6

0.8

1.0

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Full FT
lr
1e-06
2e-05
0.0001

(a) Full FT

15 20 25 30 35
Validation PPL

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Head FT
lr
2e-05
0.0001
0.001

(b) Head FT

16 18 20 22 24 26 28
Validation PPL

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Adapter(16) FT
lr
2e-05
0.0001
0.001

(c) Adapter(16) FT

15 20 25 30 35
Validation PPL

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
IA

 R
ec

al
l

Fine-tuning Method
hue
Adapter(2) FT
lr
2e-05
0.0001
0.001

(d) Adapter(2) FT

Figure 11: Enron

1826


