Zixuan Zhang


2021

pdf bib
EventKE: Event-Enhanced Knowledge Graph Embedding
Zixuan Zhang | Hongwei Wang | Han Zhao | Hanghang Tong | Heng Ji
Findings of the Association for Computational Linguistics: EMNLP 2021

Relations in most of the traditional knowledge graphs (KGs) only reflect static and factual connections, but fail to represent the dynamic activities and state changes about entities. In this paper, we emphasize the importance of incorporating events in KG representation learning, and propose an event-enhanced KG embedding model EventKE. Specifically, given the original KG, we first incorporate event nodes by building a heterogeneous network, where entity nodes and event nodes are distributed on the two sides of the network inter-connected by event argument links. We then use entity-entity relations from the original KG and event-event temporal links to inner-connect entity and event nodes respectively. We design a novel and effective attention-based message passing method, which is conducted on entity-entity, event-entity, and event-event relations to fuse the event information into KG embeddings. Experimental results on real-world datasets demonstrate that events can greatly improve the quality of the KG embeddings on multiple downstream tasks.

pdf bib
Abstract Meaning Representation Guided Graph Encoding and Decoding for Joint Information Extraction
Zixuan Zhang | Heng Ji
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The tasks of Rich Semantic Parsing, such as Abstract Meaning Representation (AMR), share similar goals with Information Extraction (IE) to convert natural language texts into structured semantic representations. To take advantage of such similarity, we propose a novel AMR-guided framework for joint information extraction to discover entities, relations, and events with the help of a pre-trained AMR parser. Our framework consists of two novel components: 1) an AMR based semantic graph aggregator to let the candidate entity and event trigger nodes collect neighborhood information from AMR graph for passing message among related knowledge elements; 2) an AMR guided graph decoder to extract knowledge elements based on the order decided by the hierarchical structures in AMR. Experiments on multiple datasets have shown that the AMR graph encoder and decoder have provided significant gains and our approach has achieved new state-of-the-art performance on all IE subtasks.

pdf bib
Fine-grained Information Extraction from Biomedical Literature based on Knowledge-enriched Abstract Meaning Representation
Zixuan Zhang | Nikolaus Parulian | Heng Ji | Ahmed Elsayed | Skatje Myers | Martha Palmer
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Biomedical Information Extraction from scientific literature presents two unique and non-trivial challenges. First, compared with general natural language texts, sentences from scientific papers usually possess wider contexts between knowledge elements. Moreover, comprehending the fine-grained scientific entities and events urgently requires domain-specific background knowledge. In this paper, we propose a novel biomedical Information Extraction (IE) model to tackle these two challenges and extract scientific entities and events from English research papers. We perform Abstract Meaning Representation (AMR) to compress the wide context to uncover a clear semantic structure for each complex sentence. Besides, we construct the sentence-level knowledge graph from an external knowledge base and use it to enrich the AMR graph to improve the model’s understanding of complex scientific concepts. We use an edge-conditioned graph attention network to encode the knowledge-enriched AMR graph for biomedical IE tasks. Experiments on the GENIA 2011 dataset show that the AMR and external knowledge have contributed 1.8% and 3.0% absolute F-score gains respectively. In order to evaluate the impact of our approach on real-world problems that involve topic-specific fine-grained knowledge elements, we have also created a new ontology and annotated corpus for entity and event extraction for the COVID-19 scientific literature, which can serve as a new benchmark for the biomedical IE community.