Zikun Hu


2021

pdf bib
How Knowledge Graph and Attention Help? A Qualitative Analysis into Bag-level Relation Extraction
Zikun Hu | Yixin Cao | Lifu Huang | Tat-Seng Chua
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge Graph (KG) and attention mechanism have been demonstrated effective in introducing and selecting useful information for weakly supervised methods. However, only qualitative analysis and ablation study are provided as evidence. In this paper, we contribute a dataset and propose a paradigm to quantitatively evaluate the effect of attention and KG on bag-level relation extraction (RE). We find that (1) higher attention accuracy may lead to worse performance as it may harm the model’s ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns, which is closely related to real-world datasets; (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior; and (4) attention mechanism may exacerbate the issue of insufficient training data. Based on these findings, we show that a straightforward variant of RE model can achieve significant improvements (6% AUC on average) on two real-world datasets as compared with three state-of-the-art baselines. Our codes and datasets are available at https://github.com/zig-kwin-hu/how-KG-ATT-help.

2019

pdf bib
Low-Resource Name Tagging Learned with Weakly Labeled Data
Yixin Cao | Zikun Hu | Tat-seng Chua | Zhiyuan Liu | Heng Ji
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Name tagging in low-resource languages or domains suffers from inadequate training data. Existing work heavily relies on additional information, while leaving those noisy annotations unexplored that extensively exist on the web. In this paper, we propose a novel neural model for name tagging solely based on weakly labeled (WL) data, so that it can be applied in any low-resource settings. To take the best advantage of all WL sentences, we split them into high-quality and noisy portions for two modules, respectively: (1) a classification module focusing on the large portion of noisy data can efficiently and robustly pretrain the tag classifier by capturing textual context semantics; and (2) a costly sequence labeling module focusing on high-quality data utilizes Partial-CRFs with non-entity sampling to achieve global optimum. Two modules are combined via shared parameters. Extensive experiments involving five low-resource languages and fine-grained food domain demonstrate our superior performance (6% and 7.8% F1 gains on average) as well as efficiency.

2018

pdf bib
Few-Shot Charge Prediction with Discriminative Legal Attributes
Zikun Hu | Xiang Li | Cunchao Tu | Zhiyuan Liu | Maosong Sun
Proceedings of the 27th International Conference on Computational Linguistics

Automatic charge prediction aims to predict the final charges according to the fact descriptions in criminal cases and plays a crucial role in legal assistant systems. Existing works on charge prediction perform adequately on those high-frequency charges but are not yet capable of predicting few-shot charges with limited cases. Moreover, these exist many confusing charge pairs, whose fact descriptions are fairly similar to each other. To address these issues, we introduce several discriminative attributes of charges as the internal mapping between fact descriptions and charges. These attributes provide additional information for few-shot charges, as well as effective signals for distinguishing confusing charges. More specifically, we propose an attribute-attentive charge prediction model to infer the attributes and charges simultaneously. Experimental results on real-work datasets demonstrate that our proposed model achieves significant and consistent improvements than other state-of-the-art baselines. Specifically, our model outperforms other baselines by more than 50% in the few-shot scenario. Our codes and datasets can be obtained from https://github.com/thunlp/attribute_charge.