Zhou Zhao


2020

pdf bib
A Study of Non-autoregressive Model for Sequence Generation
Yi Ren | Jinglin Liu | Xu Tan | Zhou Zhao | Sheng Zhao | Tie-Yan Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Non-autoregressive (NAR) models generate all the tokens of a sequence in parallel, resulting in faster generation speed compared to their autoregressive (AR) counterparts but at the cost of lower accuracy. Different techniques including knowledge distillation and source-target alignment have been proposed to bridge the gap between AR and NAR models in various tasks such as neural machine translation (NMT), automatic speech recognition (ASR), and text to speech (TTS). With the help of those techniques, NAR models can catch up with the accuracy of AR models in some tasks but not in some others. In this work, we conduct a study to understand the difficulty of NAR sequence generation and try to answer: (1) Why NAR models can catch up with AR models in some tasks but not all? (2) Why techniques like knowledge distillation and source-target alignment can help NAR models. Since the main difference between AR and NAR models is that NAR models do not use dependency among target tokens while AR models do, intuitively the difficulty of NAR sequence generation heavily depends on the strongness of dependency among target tokens. To quantify such dependency, we propose an analysis model called CoMMA to characterize the difficulty of different NAR sequence generation tasks. We have several interesting findings: 1) Among the NMT, ASR and TTS tasks, ASR has the most target-token dependency while TTS has the least. 2) Knowledge distillation reduces the target-token dependency in target sequence and thus improves the accuracy of NAR models. 3) Source-target alignment constraint encourages dependency of a target token on source tokens and thus eases the training of NAR models.

pdf bib
SimulSpeech: End-to-End Simultaneous Speech to Text Translation
Yi Ren | Jinglin Liu | Xu Tan | Chen Zhang | Tao Qin | Zhou Zhao | Tie-Yan Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this work, we develop SimulSpeech, an end-to-end simultaneous speech to text translation system which translates speech in source language to text in target language concurrently. SimulSpeech consists of a speech encoder, a speech segmenter and a text decoder, where 1) the segmenter builds upon the encoder and leverages a connectionist temporal classification (CTC) loss to split the input streaming speech in real time, 2) the encoder-decoder attention adopts a wait-k strategy for simultaneous translation. SimulSpeech is more challenging than previous cascaded systems (with simultaneous automatic speech recognition (ASR) and simultaneous neural machine translation (NMT)). We introduce two novel knowledge distillation methods to ensure the performance: 1) Attention-level knowledge distillation transfers the knowledge from the multiplication of the attention matrices of simultaneous NMT and ASR models to help the training of the attention mechanism in SimulSpeech; 2) Data-level knowledge distillation transfers the knowledge from the full-sentence NMT model and also reduces the complexity of data distribution to help on the optimization of SimulSpeech. Experiments on MuST-C English-Spanish and English-German spoken language translation datasets show that SimulSpeech achieves reasonable BLEU scores and lower delay compared to full-sentence end-to-end speech to text translation (without simultaneous translation), and better performance than the two-stage cascaded simultaneous translation model in terms of BLEU scores and translation delay.

2019

pdf bib
Video Dialog via Progressive Inference and Cross-Transformer
Weike Jin | Zhou Zhao | Mao Gu | Jun Xiao | Furu Wei | Yueting Zhuang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Video dialog is a new and challenging task, which requires the agent to answer questions combining video information with dialog history. And different from single-turn video question answering, the additional dialog history is important for video dialog, which often includes contextual information for the question. Existing visual dialog methods mainly use RNN to encode the dialog history as a single vector representation, which might be rough and straightforward. Some more advanced methods utilize hierarchical structure, attention and memory mechanisms, which still lack an explicit reasoning process. In this paper, we introduce a novel progressive inference mechanism for video dialog, which progressively updates query information based on dialog history and video content until the agent think the information is sufficient and unambiguous. In order to tackle the multi-modal fusion problem, we propose a cross-transformer module, which could learn more fine-grained and comprehensive interactions both inside and between the modalities. And besides answer generation, we also consider question generation, which is more challenging but significant for a complete video dialog system. We evaluate our method on two large-scale datasets, and the extensive experiments show the effectiveness of our method.

2018

pdf bib
Investigating Capsule Networks with Dynamic Routing for Text Classification
Wei Zhao | Jianbo Ye | Min Yang | Zeyang Lei | Suofei Zhang | Zhou Zhao
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In this study, we explore capsule networks with dynamic routing for text classification. We propose three strategies to stabilize the dynamic routing process to alleviate the disturbance of some noise capsules which may contain “background” information or have not been successfully trained. A series of experiments are conducted with capsule networks on six text classification benchmarks. Capsule networks achieve state of the art on 4 out of 6 datasets, which shows the effectiveness of capsule networks for text classification. We additionally show that capsule networks exhibit significant improvement when transfer single-label to multi-label text classification over strong baseline methods. To the best of our knowledge, this is the first work that capsule networks have been empirically investigated for text modeling.

pdf bib
Discourse Marker Augmented Network with Reinforcement Learning for Natural Language Inference
Boyuan Pan | Yazheng Yang | Zhou Zhao | Yueting Zhuang | Deng Cai | Xiaofei He
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), is one of the most important problems in natural language processing. It requires to infer the logical relationship between two given sentences. While current approaches mostly focus on the interaction architectures of the sentences, in this paper, we propose to transfer knowledge from some important discourse markers to augment the quality of the NLI model. We observe that people usually use some discourse markers such as “so” or “but” to represent the logical relationship between two sentences. These words potentially have deep connections with the meanings of the sentences, thus can be utilized to help improve the representations of them. Moreover, we use reinforcement learning to optimize a new objective function with a reward defined by the property of the NLI datasets to make full use of the labels information. Experiments show that our method achieves the state-of-the-art performance on several large-scale datasets.

2017

pdf bib
Identifying and Tracking Sentiments and Topics from Social Media Texts during Natural Disasters
Min Yang | Jincheng Mei | Heng Ji | Wei Zhao | Zhou Zhao | Xiaojun Chen
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We study the problem of identifying the topics and sentiments and tracking their shifts from social media texts in different geographical regions during emergencies and disasters. We propose a location-based dynamic sentiment-topic model (LDST) which can jointly model topic, sentiment, time and Geolocation information. The experimental results demonstrate that LDST performs very well at discovering topics and sentiments from social media and tracking their shifts in different geographical regions during emergencies and disasters. We will release the data and source code after this work is published.