Zhou Xiao


2020

pdf bib
MovieChats: Chat like Humans in a Closed Domain
Hui Su | Xiaoyu Shen | Zhou Xiao | Zheng Zhang | Ernie Chang | Cheng Zhang | Cheng Niu | Jie Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Being able to perform in-depth chat with humans in a closed domain is a precondition before an open-domain chatbot can be ever claimed. In this work, we take a close look at the movie domain and present a large-scale high-quality corpus with fine-grained annotations in hope of pushing the limit of movie-domain chatbots. We propose a unified, readily scalable neural approach which reconciles all subtasks like intent prediction and knowledge retrieval. The model is first pretrained on the huge general-domain data, then finetuned on our corpus. We show this simple neural approach trained on high-quality data is able to outperform commercial systems replying on complex rules. On both the static and interactive tests, we find responses generated by our system exhibits remarkably good engagement and sensibleness close to human-written ones. We further analyze the limits of our work and point out potential directions for future work

pdf bib
Diversifying Dialogue Generation with Non-Conversational Text
Hui Su | Xiaoyu Shen | Sanqiang Zhao | Zhou Xiao | Pengwei Hu | Randy Zhong | Cheng Niu | Jie Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural network-based sequence-to-sequence (seq2seq) models strongly suffer from the low-diversity problem when it comes to open-domain dialogue generation. As bland and generic utterances usually dominate the frequency distribution in our daily chitchat, avoiding them to generate more interesting responses requires complex data filtering, sampling techniques or modifying the training objective. In this paper, we propose a new perspective to diversify dialogue generation by leveraging non-conversational text. Compared with bilateral conversations, non-conversational text are easier to obtain, more diverse and cover a much broader range of topics. We collect a large-scale non-conversational corpus from multi sources including forum comments, idioms and book snippets. We further present a training paradigm to effectively incorporate these text via iterative back translation. The resulting model is tested on two conversational datasets from different domains and is shown to produce significantly more diverse responses without sacrificing the relevance with context.