Zhengyuan Liu


2021

pdf bib
Improving Multi-Party Dialogue Discourse Parsing via Domain Integration
Zhengyuan Liu | Nancy Chen
Proceedings of the 2nd Workshop on Computational Approaches to Discourse

While multi-party conversations are often less structured than monologues and documents, they are implicitly organized by semantic level correlations across the interactive turns, and dialogue discourse analysis can be applied to predict the dependency structure and relations between the elementary discourse units, and provide feature-rich structural information for downstream tasks. However, the existing corpora with dialogue discourse annotation are collected from specific domains with limited sample sizes, rendering the performance of data-driven approaches poor on incoming dialogues without any domain adaptation. In this paper, we first introduce a Transformer-based parser, and assess its cross-domain performance. We next adopt three methods to gain domain integration from both data and language modeling perspectives to improve the generalization capability. Empirical results show that the neural parser can benefit from our proposed methods, and performs better on cross-domain dialogue samples.

pdf bib
DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing
Zhengyuan Liu | Ke Shi | Nancy Chen
Proceedings of the 2nd Workshop on Computational Approaches to Discourse

Text discourse parsing weighs importantly in understanding information flow and argumentative structure in natural language, making it beneficial for downstream tasks. While previous work significantly improves the performance of RST discourse parsing, they are not readily applicable to practical use cases: (1) EDU segmentation is not integrated into most existing tree parsing frameworks, thus it is not straightforward to apply such models on newly-coming data. (2) Most parsers cannot be used in multilingual scenarios, because they are developed only in English. (3) Parsers trained from single-domain treebanks do not generalize well on out-of-domain inputs. In this work, we propose a document-level multilingual RST discourse parsing framework, which conducts EDU segmentation and discourse tree parsing jointly. Moreover, we propose a cross-translation augmentation strategy to enable the framework to support multilingual parsing and improve its domain generality. Experimental results show that our model achieves state-of-the-art performance on document-level multilingual RST parsing in all sub-tasks.

pdf bib
Velocidapter: Task-oriented Dialogue Comprehension Modeling Pairing Synthetic Text Generation with Domain Adaptation
Ibrahim Taha Aksu | Zhengyuan Liu | Min-Yen Kan | Nancy Chen
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue

We introduce a synthetic dialogue generation framework, Velocidapter, which addresses the corpus availability problem for dialogue comprehension. Velocidapter augments datasets by simulating synthetic conversations for a task-oriented dialogue domain, requiring a small amount of bootstrapping work for each new domain. We evaluate the efficacy of our framework on a task-oriented dialogue comprehension dataset, MRCWOZ, which we curate by annotating questions for slots in the restaurant, taxi, and hotel domains of the MultiWOZ 2.2 dataset (Zang et al., 2020). We run experiments within a low-resource setting, where we pretrain a model on SQuAD, fine-tuning it on either a small original data or on the synthetic data generated by our framework. Velocidapter shows significant improvements using both the transformer-based BERTBase and BiDAF as base models. We further show that the framework is easy to use by novice users and conclude that Velocidapter can greatly help training over task-oriented dialogues, especially for low-resourced emerging domains.

pdf bib
Coreference-Aware Dialogue Summarization
Zhengyuan Liu | Ke Shi | Nancy Chen
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Summarizing conversations via neural approaches has been gaining research traction lately, yet it is still challenging to obtain practical solutions. Examples of such challenges include unstructured information exchange in dialogues, informal interactions between speakers, and dynamic role changes of speakers as the dialogue evolves. Many of such challenges result in complex coreference links. Therefore, in this work, we investigate different approaches to explicitly incorporate coreference information in neural abstractive dialogue summarization models to tackle the aforementioned challenges. Experimental results show that the proposed approaches achieve state-of-the-art performance, implying it is useful to utilize coreference information in dialogue summarization. Evaluation results on factual correctness suggest such coreference-aware models are better at tracing the information flow among interlocutors and associating accurate status/actions with the corresponding interlocutors and person mentions.

pdf bib
Controllable Neural Dialogue Summarization with Personal Named Entity Planning
Zhengyuan Liu | Nancy Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In this paper, we propose a controllable neural generation framework that can flexibly guide dialogue summarization with personal named entity planning. The conditional sequences are modulated to decide what types of information or what perspective to focus on when forming summaries to tackle the under-constrained problem in summarization tasks. This framework supports two types of use cases: (1) Comprehensive Perspective, which is a general-purpose case with no user-preference specified, considering summary points from all conversational interlocutors and all mentioned persons; (2) Focus Perspective, positioning the summary based on a user-specified personal named entity, which could be one of the interlocutors or one of the persons mentioned in the conversation. During training, we exploit occurrence planning of personal named entities and coreference information to improve temporal coherence and to minimize hallucination in neural generation. Experimental results show that our proposed framework generates fluent and factually consistent summaries under various planning controls using both objective metrics and human evaluations.

2020

pdf bib
Conditional Neural Generation using Sub-Aspect Functions for Extractive News Summarization
Zhengyuan Liu | Ke Shi | Nancy Chen
Findings of the Association for Computational Linguistics: EMNLP 2020

Much progress has been made in text summarization, fueled by neural architectures using large-scale training corpora. However, in the news domain, neural models easily overfit by leveraging position-related features due to the prevalence of the inverted pyramid writing style. In addition, there is an unmet need to generate a variety of summaries for different users. In this paper, we propose a neural framework that can flexibly control summary generation by introducing a set of sub-aspect functions (i.e. importance, diversity, position). These sub-aspect functions are regulated by a set of control codes to decide which sub-aspect to focus on during summary generation. We demonstrate that extracted summaries with minimal position bias is comparable with those generated by standard models that take advantage of position preference. We also show that news summaries generated with a focus on diversity can be more preferred by human raters. These results suggest that a more flexible neural summarization framework providing more control options could be desirable in tailoring to different user preferences, which is useful since it is often impractical to articulate such preferences for different applications a priori.

pdf bib
Multilingual Neural RST Discourse Parsing
Zhengyuan Liu | Ke Shi | Nancy Chen
Proceedings of the 28th International Conference on Computational Linguistics

Text discourse parsing plays an important role in understanding information flow and argumentative structure in natural language. Previous research under the Rhetorical Structure Theory (RST) has mostly focused on inducing and evaluating models from the English treebank. However, the parsing tasks for other languages such as German, Dutch, and Portuguese are still challenging due to the shortage of annotated data. In this work, we investigate two approaches to establish a neural, cross-lingual discourse parser via: (1) utilizing multilingual vector representations; and (2) adopting segment-level translation of the source content. Experiment results show that both methods are effective even with limited training data, and achieve state-of-the-art performance on cross-lingual, document-level discourse parsing on all sub-tasks.

pdf bib
Uncertainty Modeling for Machine Comprehension Systems using Efficient Bayesian Neural Networks
Zhengyuan Liu | Pavitra Krishnaswamy | Ai Ti Aw | Nancy Chen
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track

While neural approaches have achieved significant improvement in machine comprehension tasks, models often work as a black-box, resulting in lower interpretability, which requires special attention in domains such as healthcare or education. Quantifying uncertainty helps pave the way towards more interpretable neural networks. In classification and regression tasks, Bayesian neural networks have been effective in estimating model uncertainty. However, inference time increases linearly due to the required sampling process in Bayesian neural networks. Thus speed becomes a bottleneck in tasks with high system complexity such as question-answering or dialogue generation. In this work, we propose a hybrid neural architecture to quantify model uncertainty using Bayesian weight approximation but boosts up the inference speed by 80% relative at test time, and apply it for a clinical dialogue comprehension task. The proposed approach is also used to enable active learning so that an updated model can be trained more optimally with new incoming data by selecting samples that are not well-represented in the current training scheme.

2019

pdf bib
Reading Turn by Turn: Hierarchical Attention Architecture for Spoken Dialogue Comprehension
Zhengyuan Liu | Nancy Chen
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Comprehending multi-turn spoken conversations is an emerging research area, presenting challenges different from reading comprehension of passages due to the interactive nature of information exchange from at least two speakers. Unlike passages, where sentences are often the default semantic modeling unit, in multi-turn conversations, a turn is a topically coherent unit embodied with immediately relevant context, making it a linguistically intuitive segment for computationally modeling verbal interactions. Therefore, in this work, we propose a hierarchical attention neural network architecture, combining turn-level and word-level attention mechanisms, to improve spoken dialogue comprehension performance. Experiments are conducted on a multi-turn conversation dataset, where nurses inquire and discuss symptom information with patients. We empirically show that the proposed approach outperforms standard attention baselines, achieves more efficient learning outcomes, and is more robust to lengthy and out-of-distribution test samples.

pdf bib
Fast Prototyping a Dialogue Comprehension System for Nurse-Patient Conversations on Symptom Monitoring
Zhengyuan Liu | Hazel Lim | Nur Farah Ain Suhaimi | Shao Chuen Tong | Sharon Ong | Angela Ng | Sheldon Lee | Michael R. Macdonald | Savitha Ramasamy | Pavitra Krishnaswamy | Wai Leng Chow | Nancy F. Chen
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

Data for human-human spoken dialogues for research and development are currently very limited in quantity, variety, and sources; such data are even scarcer in healthcare. In this work, we investigate fast prototyping of a dialogue comprehension system by leveraging on minimal nurse-to-patient conversations. We propose a framework inspired by nurse-initiated clinical symptom monitoring conversations to construct a simulated human-human dialogue dataset, embodying linguistic characteristics of spoken interactions like thinking aloud, self-contradiction, and topic drift. We then adopt an established bidirectional attention pointer network on this simulated dataset, achieving more than 80% F1 score on a held-out test set from real-world nurse-to-patient conversations. The ability to automatically comprehend conversations in the healthcare domain by exploiting only limited data has implications for improving clinical workflows through red flag symptom detection and triaging capabilities. We demonstrate the feasibility for efficient and effective extraction, retrieval and comprehension of symptom checking information discussed in multi-turn human-human spoken conversations.

pdf bib
Exploiting Discourse-Level Segmentation for Extractive Summarization
Zhengyuan Liu | Nancy Chen
Proceedings of the 2nd Workshop on New Frontiers in Summarization

Extractive summarization selects and concatenates the most essential text spans in a document. Most, if not all, neural approaches use sentences as the elementary unit to select content for summarization. However, semantic segments containing supplementary information or descriptive details are often nonessential in the generated summaries. In this work, we propose to exploit discourse-level segmentation as a finer-grained means to more precisely pinpoint the core content in a document. We investigate how the sub-sentential segmentation improves extractive summarization performance when content selection is modeled through two basic neural network architectures and a deep bi-directional transformer. Experiment results on the CNN/Daily Mail dataset show that discourse-level segmentation is effective in both cases. In particular, we achieve state-of-the-art performance when discourse-level segmentation is combined with our adapted contextual representation model.