Zhen Huang


2020

pdf bib
Using a Penalty-based Loss Re-estimation Method to Improve Implicit Discourse Relation Classification
Xiao Li | Yu Hong | Huibin Ruan | Zhen Huang
Proceedings of the 28th International Conference on Computational Linguistics

We tackle implicit discourse relation classification, a task of automatically determining semantic relationships between arguments. The attention-worthy words in arguments are crucial clues for classifying the discourse relations. Attention mechanisms have been proven effective in highlighting the attention-worthy words during encoding. However, our survey shows that some inessential words are unintentionally misjudged as the attention-worthy words and, therefore, assigned heavier attention weights than should be. We propose a penalty-based loss re-estimation method to regulate the attention learning process, integrating penalty coefficients into the computation of loss by means of overstability of attention weight distributions. We conduct experiments on the Penn Discourse TreeBank (PDTB) corpus. The test results show that our loss re-estimation method leads to substantial improvements for a variety of attention mechanisms, and it obtains highly competitive performance compared to the state-of-the-art methods.

pdf bib
Interactively-Propagative Attention Learning for Implicit Discourse Relation Recognition
Huibin Ruan | Yu Hong | Yang Xu | Zhen Huang | Guodong Zhou | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

We tackle implicit discourse relation recognition. Both self-attention and interactive-attention mechanisms have been applied for attention-aware representation learning, which improves the current discourse analysis models. To take advantages of the two attention mechanisms simultaneously, we develop a propagative attention learning model using a cross-coupled two-channel network. We experiment on Penn Discourse Treebank. The test results demonstrate that our model yields substantial improvements over the baselines (BiLSTM and BERT).

pdf bib
Argumentation Mining on Essays at Multi Scales
Hao Wang | Zhen Huang | Yong Dou | Yu Hong
Proceedings of the 28th International Conference on Computational Linguistics

Argumentation mining on essays is a new challenging task in natural language processing, which aims to identify the types and locations of argumentation components. Recent research mainly models the task as a sequence tagging problem and deal with all the argumentation components at word level. However, this task is not scale-independent. Some types of argumentation components which serve as core opinions on essays or paragraphs, are at essay level or paragraph level. Sequence tagging method conducts reasoning by local context words, and fails to effectively mine these components. To this end, we propose a multi-scale argumentation mining model, where we respectively mine different types of argumentation components at corresponding levels. Besides, an effective coarse-to-fine argumentation fusion mechanism is proposed to further improve the performance. We conduct a serial of experiments on the Persuasive Essay dataset (PE2.0). Experimental results indicate that our model outperforms existing models on mining all types of argumentation components.

2019

pdf bib
Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification
Minghao Hu | Yuxing Peng | Zhen Huang | Dongsheng Li | Yiwei Lv
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Open-domain targeted sentiment analysis aims to detect opinion targets along with their sentiment polarities from a sentence. Prior work typically formulates this task as a sequence tagging problem. However, such formulation suffers from problems such as huge search space and sentiment inconsistency. To address these problems, we propose a span-based extract-then-classify framework, where multiple opinion targets are directly extracted from the sentence under the supervision of target span boundaries, and corresponding polarities are then classified using their span representations. We further investigate three approaches under this framework, namely the pipeline, joint, and collapsed models. Experiments on three benchmark datasets show that our approach consistently outperforms the sequence tagging baseline. Moreover, we find that the pipeline model achieves the best performance compared with the other two models.

pdf bib
Retrieve, Read, Rerank: Towards End-to-End Multi-Document Reading Comprehension
Minghao Hu | Yuxing Peng | Zhen Huang | Dongsheng Li
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper considers the reading comprehension task in which multiple documents are given as input. Prior work has shown that a pipeline of retriever, reader, and reranker can improve the overall performance. However, the pipeline system is inefficient since the input is re-encoded within each module, and is unable to leverage upstream components to help downstream training. In this work, we present RE3QA, a unified question answering model that combines context retrieving, reading comprehension, and answer reranking to predict the final answer. Unlike previous pipelined approaches, RE3QA shares contextualized text representation across different components, and is carefully designed to use high-quality upstream outputs (e.g., retrieved context or candidate answers) for directly supervising downstream modules (e.g., the reader or the reranker). As a result, the whole network can be trained end-to-end to avoid the context inconsistency problem. Experiments show that our model outperforms the pipelined baseline and achieves state-of-the-art results on two versions of TriviaQA and two variants of SQuAD.

pdf bib
A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning
Minghao Hu | Yuxing Peng | Zhen Huang | Dongsheng Li
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Rapid progress has been made in the field of reading comprehension and question answering, where several systems have achieved human parity in some simplified settings. However, the performance of these models degrades significantly when they are applied to more realistic scenarios, such as answers involve various types, multiple text strings are correct answers, or discrete reasoning abilities are required. In this paper, we introduce the Multi-Type Multi-Span Network (MTMSN), a neural reading comprehension model that combines a multi-type answer predictor designed to support various answer types (e.g., span, count, negation, and arithmetic expression) with a multi-span extraction method for dynamically producing one or multiple text spans. In addition, an arithmetic expression reranking mechanism is proposed to rank expression candidates for further confirming the prediction. Experiments show that our model achieves 79.9 F1 on the DROP hidden test set, creating new state-of-the-art results. Source code (https://github.com/huminghao16/MTMSN) is released to facilitate future work.

2018

pdf bib
Attention-Guided Answer Distillation for Machine Reading Comprehension
Minghao Hu | Yuxing Peng | Furu Wei | Zhen Huang | Dongsheng Li | Nan Yang | Ming Zhou
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Despite that current reading comprehension systems have achieved significant advancements, their promising performances are often obtained at the cost of making an ensemble of numerous models. Besides, existing approaches are also vulnerable to adversarial attacks. This paper tackles these problems by leveraging knowledge distillation, which aims to transfer knowledge from an ensemble model to a single model. We first demonstrate that vanilla knowledge distillation applied to answer span prediction is effective for reading comprehension systems. We then propose two novel approaches that not only penalize the prediction on confusing answers but also guide the training with alignment information distilled from the ensemble. Experiments show that our best student model has only a slight drop of 0.4% F1 on the SQuAD test set compared to the ensemble teacher, while running 12x faster during inference. It even outperforms the teacher on adversarial SQuAD datasets and NarrativeQA benchmark.