Learning a good latent representation is essential for text style transfer, which generates a new sentence by changing the attributes of a given sentence while preserving its content. Most previous works adopt disentangled latent representation learning to realize style transfer. We propose a novel text style transfer algorithm with entangled latent representation, and introduce a style classifier that can regulate the latent structure and transfer style. Moreover, our algorithm for style transfer applies to both single-attribute and multi-attribute transfer. Extensive experimental results show that our method generally outperforms state-of-the-art approaches.
Conventional approaches for formality style transfer borrow models from neural machine translation, which typically requires massive parallel data for training. However, the dataset for formality style transfer is considerably smaller than translation corpora. Moreover, we observe that informal and formal sentences closely resemble each other, which is different from the translation task where two languages have different vocabularies and grammars. In this paper, we present a new approach, Sequence-to-Sequence with Shared Latent Space (S2S-SLS), for formality style transfer, where we propose two auxiliary losses and adopt joint training of bi-directional transfer and auto-encoding. Experimental results show that S2S-SLS (with either RNN or Transformer architectures) consistently outperforms baselines in various settings, especially when we have limited data.
Formality text style transfer plays an important role in various NLP applications, such as non-native speaker assistants and child education. Early studies normalize informal sentences with rules, before statistical and neural models become a prevailing method in the field. While a rule-based system is still a common preprocessing step for formality style transfer in the neural era, it could introduce noise if we use the rules in a naive way such as data preprocessing. To mitigate this problem, we study how to harness rules into a state-of-the-art neural network that is typically pretrained on massive corpora. We propose three fine-tuning methods in this paper and achieve a new state-of-the-art on benchmark datasets
Detecting changes within an unfolding event in real time from news articles or social media enables to react promptly to serious issues in public safety, public health or natural disasters. In this study, we use on-line Latent Dirichlet Allocation (LDA) to model shifts in topics, and apply on-line change point detection (CPD) algorithms to detect when significant changes happen. We describe an on-line Bayesian change point detection algorithm that we use to detect topic changes from on-line LDA output. Extensive experiments on social media data and news articles show the benefits of on-line LDA versus standard LDA, and of on-line change point detection compared to off-line algorithms. This yields F-scores up to 52% on the detection of significant real-life changes from these document streams.
Detecting events from social media data has important applications in public security, political issues, and public health. Many studies have focused on detecting specific or unspecific events from Twitter streams. However, not much attention has been paid to detecting changes, and their impact, in online conversations related to an event. We propose methods for detecting such changes, using clustering of temporal profiles of hashtags, and three change point detection algorithms. The methods were tested on two Twitter datasets: one covering the 2014 Ottawa shooting event, and one covering the Sochi winter Olympics. We compare our approach to a baseline consisting of detecting change from raw counts in the conversation. We show that our method produces large gains in change detection accuracy on both datasets.
The goal of keyphrase extraction is to automatically identify the most salient phrases from documents. The technique has a wide range of applications such as rendering a quick glimpse of a document, or extracting key content for further use. While previous work often assumes keyphrases are a static property of a given documents, in many applications, the appropriate set of keyphrases that should be extracted depends on the set of documents that are being considered together. In particular, good keyphrases should not only accurately describe the content of a document, but also reveal what discriminates it from the other documents. In this paper, we study this problem of extracting discriminative keyphrases. In particularly, we propose to use the hierarchical semantic structure between candidate keyphrases to promote keyphrases that have the right level of specificity to clearly distinguish the target document from others. We show that such knowledge can be used to construct better discriminative keyphrase extraction systems that do not assume a static, fixed set of keyphrases for a document. We show how this helps identify key expertise of authors from their papers, as well as competencies covered by online courses within different domains.