Yuanhe Tian


2021

pdf bib
Enhancing Aspect-level Sentiment Analysis with Word Dependencies
Yuanhe Tian | Guimin Chen | Yan Song
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Aspect-level sentiment analysis (ASA) has received much attention in recent years. Most existing approaches tried to leverage syntactic information, such as the dependency parsing results of the input text, to improve sentiment analysis on different aspects. Although these approaches achieved satisfying results, their main focus is to leverage the dependency arcs among words where the dependency type information is omitted; and they model different dependencies equally where the noisy dependency results may hurt model performance. In this paper, we propose an approach to enhance aspect-level sentiment analysis with word dependencies, where the type information is modeled by key-value memory networks and different dependency results are selectively leveraged. Experimental results on five benchmark datasets demonstrate the effectiveness of our approach, where it outperforms baseline models on all datasets and achieves state-of-the-art performance on three of them.

pdf bib
Relation Extraction with Type-aware Map Memories of Word Dependencies
Guimin Chen | Yuanhe Tian | Yan Song | Xiang Wan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Federated Chinese Word Segmentation with Global Character Associations
Yuanhe Tian | Guimin Chen | Han Qin | Yan Song
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Aspect-based Sentiment Analysis with Type-aware Graph Convolutional Networks and Layer Ensemble
Yuanhe Tian | Guimin Chen | Yan Song
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

It is popular that neural graph-based models are applied in existing aspect-based sentiment analysis (ABSA) studies for utilizing word relations through dependency parses to facilitate the task with better semantic guidance for analyzing context and aspect words. However, most of these studies only leverage dependency relations without considering their dependency types, and are limited in lacking efficient mechanisms to distinguish the important relations as well as learn from different layers of graph based models. To address such limitations, in this paper, we propose an approach to explicitly utilize dependency types for ABSA with type-aware graph convolutional networks (T-GCN), where attention is used in T-GCN to distinguish different edges (relations) in the graph and attentive layer ensemble is proposed to comprehensively learn from different layers of T-GCN. The validity and effectiveness of our approach are demonstrated in the experimental results, where state-of-the-art performance is achieved on six English benchmark datasets. Further experiments are conducted to analyze the contributions of each component in our approach and illustrate how different layers in T-GCN help ABSA with quantitative and qualitative analysis.

pdf bib
Exploring Word Segmentation and Medical Concept Recognition for Chinese Medical Texts
Yang Liu | Yuanhe Tian | Tsung-Hui Chang | Song Wu | Xiang Wan | Yan Song
Proceedings of the 20th Workshop on Biomedical Language Processing

Chinese word segmentation (CWS) and medical concept recognition are two fundamental tasks to process Chinese electronic medical records (EMRs) and play important roles in downstream tasks for understanding Chinese EMRs. One challenge to these tasks is the lack of medical domain datasets with high-quality annotations, especially medical-related tags that reveal the characteristics of Chinese EMRs. In this paper, we collected a Chinese EMR corpus, namely, ACEMR, with human annotations for Chinese word segmentation and EMR-related tags. On the ACEMR corpus, we run well-known models (i.e., BiLSTM, BERT, and ZEN) and existing state-of-the-art systems (e.g., WMSeg and TwASP) for CWS and medical concept recognition. Experimental results demonstrate the necessity of building a dedicated medical dataset and show that models that leverage extra resources achieve the best performance for both tasks, which provides certain guidance for future studies on model selection in the medical domain.

pdf bib
Dependency-driven Relation Extraction with Attentive Graph Convolutional Networks
Yuanhe Tian | Guimin Chen | Yan Song | Xiang Wan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Syntactic information, especially dependency trees, has been widely used by existing studies to improve relation extraction with better semantic guidance for analyzing the context information associated with the given entities. However, most existing studies suffer from the noise in the dependency trees, especially when they are automatically generated, so that intensively leveraging dependency information may introduce confusions to relation classification and necessary pruning is of great importance in this task. In this paper, we propose a dependency-driven approach for relation extraction with attentive graph convolutional networks (A-GCN). In this approach, an attention mechanism upon graph convolutional networks is applied to different contextual words in the dependency tree obtained from an off-the-shelf dependency parser, to distinguish the importance of different word dependencies. Consider that dependency types among words also contain important contextual guidance, which is potentially helpful for relation extraction, we also include the type information in A-GCN modeling. Experimental results on two English benchmark datasets demonstrate the effectiveness of our A-GCN, which outperforms previous studies and achieves state-of-the-art performance on both datasets.

pdf bib
Improving Arabic Diacritization with Regularized Decoding and Adversarial Training
Han Qin | Guimin Chen | Yuanhe Tian | Yan Song
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Arabic diacritization is a fundamental task for Arabic language processing. Previous studies have demonstrated that automatically generated knowledge can be helpful to this task. However, these studies regard the auto-generated knowledge instances as gold references, which limits their effectiveness since such knowledge is not always accurate and inferior instances can lead to incorrect predictions. In this paper, we propose to use regularized decoding and adversarial training to appropriately learn from such noisy knowledge for diacritization. Experimental results on two benchmark datasets show that, even with quite flawed auto-generated knowledge, our model can still learn adequate diacritics and outperform all previous studies, on both datasets.

pdf bib
Relation Extraction with Word Graphs from N-grams
Han Qin | Yuanhe Tian | Yan Song
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Most recent studies for relation extraction (RE) leverage the dependency tree of the input sentence to incorporate syntax-driven contextual information to improve model performance, with little attention paid to the limitation where high-quality dependency parsers in most cases unavailable, especially for in-domain scenarios. To address this limitation, in this paper, we propose attentive graph convolutional networks (A-GCN) to improve neural RE methods with an unsupervised manner to build the context graph, without relying on the existence of a dependency parser. Specifically, we construct the graph from n-grams extracted from a lexicon built from pointwise mutual information (PMI) and apply attention over the graph. Therefore, different word pairs from the contexts within and across n-grams are weighted in the model and facilitate RE accordingly. Experimental results with further analyses on two English benchmark datasets for RE demonstrate the effectiveness of our approach, where state-of-the-art performance is observed on both datasets.

pdf bib
Improving Federated Learning for Aspect-based Sentiment Analysis via Topic Memories
Han Qin | Guimin Chen | Yuanhe Tian | Yan Song
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Aspect-based sentiment analysis (ABSA) predicts the sentiment polarity towards a particular aspect term in a sentence, which is an important task in real-world applications. To perform ABSA, the trained model is required to have a good understanding of the contextual information, especially the particular patterns that suggest the sentiment polarity. However, these patterns typically vary in different sentences, especially when the sentences come from different sources (domains), which makes ABSA still very challenging. Although combining labeled data across different sources (domains) is a promising solution to address the challenge, in practical applications, these labeled data are usually stored at different locations and might be inaccessible to each other due to privacy or legal concerns (e.g., the data are owned by different companies). To address this issue and make the best use of all labeled data, we propose a novel ABSA model with federated learning (FL) adopted to overcome the data isolation limitations and incorporate topic memory (TM) proposed to take the cases of data from diverse sources (domains) into consideration. Particularly, TM aims to identify different isolated data sources due to data inaccessibility by providing useful categorical information for localized predictions. Experimental results on a simulated environment for FL with three nodes demonstrate the effectiveness of our approach, where TM-FL outperforms different baselines including some well-designed FL frameworks.

2020

pdf bib
Named Entity Recognition for Social Media Texts with Semantic Augmentation
Yuyang Nie | Yuanhe Tian | Xiang Wan | Yan Song | Bo Dai
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing approaches for named entity recognition suffer from data sparsity problems when conducted on short and informal texts, especially user-generated social media content. Semantic augmentation is a potential way to alleviate this problem. Given that rich semantic information is implicitly preserved in pre-trained word embeddings, they are potential ideal resources for semantic augmentation. In this paper, we propose a neural-based approach to NER for social media texts where both local (from running text) and augmented semantics are taken into account. In particular, we obtain the augmented semantic information from a large-scale corpus, and propose an attentive semantic augmentation module and a gate module to encode and aggregate such information, respectively. Extensive experiments are performed on three benchmark datasets collected from English and Chinese social media platforms, where the results demonstrate the superiority of our approach to previous studies across all three datasets.

pdf bib
Supertagging Combinatory Categorial Grammar with Attentive Graph Convolutional Networks
Yuanhe Tian | Yan Song | Fei Xia
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Supertagging is conventionally regarded as an important task for combinatory categorial grammar (CCG) parsing, where effective modeling of contextual information is highly important to this task. However, existing studies have made limited efforts to leverage contextual features except for applying powerful encoders (e.g., bi-LSTM). In this paper, we propose attentive graph convolutional networks to enhance neural CCG supertagging through a novel solution of leveraging contextual information. Specifically, we build the graph from chunks (n-grams) extracted from a lexicon and apply attention over the graph, so that different word pairs from the contexts within and across chunks are weighted in the model and facilitate the supertagging accordingly. The experiments performed on the CCGbank demonstrate that our approach outperforms all previous studies in terms of both supertagging and parsing. Further analyses illustrate the effectiveness of each component in our approach to discriminatively learn from word pairs to enhance CCG supertagging.

pdf bib
Improving Constituency Parsing with Span Attention
Yuanhe Tian | Yan Song | Fei Xia | Tong Zhang
Findings of the Association for Computational Linguistics: EMNLP 2020

Constituency parsing is a fundamental and important task for natural language understanding, where a good representation of contextual information can help this task. N-grams, which is a conventional type of feature for contextual information, have been demonstrated to be useful in many tasks, and thus could also be beneficial for constituency parsing if they are appropriately modeled. In this paper, we propose span attention for neural chart-based constituency parsing to leverage n-gram information. Considering that current chart-based parsers with Transformer-based encoder represent spans by subtraction of the hidden states at the span boundaries, which may cause information loss especially for long spans, we incorporate n-grams into span representations by weighting them according to their contributions to the parsing process. Moreover, we propose categorical span attention to further enhance the model by weighting n-grams within different length categories, and thus benefit long-sentence parsing. Experimental results on three widely used benchmark datasets demonstrate the effectiveness of our approach in parsing Arabic, Chinese, and English, where state-of-the-art performance is obtained by our approach on all of them.

pdf bib
Improving Named Entity Recognition with Attentive Ensemble of Syntactic Information
Yuyang Nie | Yuanhe Tian | Yan Song | Xiang Ao | Xiang Wan
Findings of the Association for Computational Linguistics: EMNLP 2020

Named entity recognition (NER) is highly sensitive to sentential syntactic and semantic properties where entities may be extracted according to how they are used and placed in the running text. To model such properties, one could rely on existing resources to providing helpful knowledge to the NER task; some existing studies proved the effectiveness of doing so, and yet are limited in appropriately leveraging the knowledge such as distinguishing the important ones for particular context. In this paper, we improve NER by leveraging different types of syntactic information through attentive ensemble, which functionalizes by the proposed key-value memory networks, syntax attention, and the gate mechanism for encoding, weighting and aggregating such syntactic information, respectively. Experimental results on six English and Chinese benchmark datasets suggest the effectiveness of the proposed model and show that it outperforms previous studies on all experiment datasets.

pdf bib
Joint Aspect Extraction and Sentiment Analysis with Directional Graph Convolutional Networks
Guimin Chen | Yuanhe Tian | Yan Song
Proceedings of the 28th International Conference on Computational Linguistics

End-to-end aspect-based sentiment analysis (EASA) consists of two sub-tasks: the first extracts the aspect terms in a sentence and the second predicts the sentiment polarities for such terms. For EASA, compared to pipeline and multi-task approaches, joint aspect extraction and sentiment analysis provides a one-step solution to predict both aspect terms and their sentiment polarities through a single decoding process, which avoid the mismatches in between the results of aspect terms and sentiment polarities, as well as error propagation. Previous studies, especially recent ones, for this task focus on using powerful encoders (e.g., Bi-LSTM and BERT) to model contextual information from the input, with limited efforts paid to using advanced neural architectures (such as attentions and graph convolutional networks) or leveraging extra knowledge (such as syntactic information). To extend such efforts, in this paper, we propose directional graph convolutional networks (D-GCN) to jointly perform aspect extraction and sentiment analysis with encoding syntactic information, where dependency among words are integrated in our model to enhance its ability of representing input sentences and help EASA accordingly. Experimental results on three benchmark datasets demonstrate the effectiveness of our approach, where D-GCN achieves state-of-the-art performance on all datasets.

pdf bib
Summarizing Medical Conversations via Identifying Important Utterances
Yan Song | Yuanhe Tian | Nan Wang | Fei Xia
Proceedings of the 28th International Conference on Computational Linguistics

Summarization is an important natural language processing (NLP) task in identifying key information from text. For conversations, the summarization systems need to extract salient contents from spontaneous utterances by multiple speakers. In a special task-oriented scenario, namely medical conversations between patients and doctors, the symptoms, diagnoses, and treatments could be highly important because the nature of such conversation is to find a medical solution to the problem proposed by the patients. Especially consider that current online medical platforms provide millions of public available conversations between real patients and doctors, where the patients propose their medical problems and the registered doctors offer diagnosis and treatment, a conversation in most cases could be too long and the key information is hard to be located. Therefore, summarizations to the patients’ problems and the doctors’ treatments in the conversations can be highly useful, in terms of helping other patients with similar problems have a precise reference for potential medical solutions. In this paper, we focus on medical conversation summarization, using a dataset of medical conversations and corresponding summaries which were crawled from a well-known online healthcare service provider in China. We propose a hierarchical encoder-tagger model (HET) to generate summaries by identifying important utterances (with respect to problem proposing and solving) in the conversations. For the particular dataset used in this study, we show that high-quality summaries can be generated by extracting two types of utterances, namely, problem statements and treatment recommendations. Experimental results demonstrate that HET outperforms strong baselines and models from previous studies, and adding conversation-related features can further improve system performance.

pdf bib
Joint Chinese Word Segmentation and Part-of-speech Tagging via Multi-channel Attention of Character N-grams
Yuanhe Tian | Yan Song | Fei Xia
Proceedings of the 28th International Conference on Computational Linguistics

Chinese word segmentation (CWS) and part-of-speech (POS) tagging are two fundamental tasks for Chinese language processing. Previous studies have demonstrated that jointly performing them can be an effective one-step solution to both tasks and this joint task can benefit from a good modeling of contextual features such as n-grams. However, their work on modeling such contextual features is limited to concatenating the features or their embeddings directly with the input embeddings without distinguishing whether the contextual features are important for the joint task in the specific context. Therefore, their models for the joint task could be misled by unimportant contextual information. In this paper, we propose a character-based neural model for the joint task enhanced by multi-channel attention of n-grams. In the attention module, n-gram features are categorized into different groups according to several criteria, and n-grams in each group are weighted and distinguished according to their importance for the joint task in the specific context. To categorize n-grams, we try two criteria in this study, i.e., n-gram frequency and length, so that n-grams having different capabilities of carrying contextual information are discriminatively learned by our proposed attention module. Experimental results on five benchmark datasets for CWS and POS tagging demonstrate that our approach outperforms strong baseline models and achieves state-of-the-art performance on all five datasets.

pdf bib
Improving Chinese Word Segmentation with Wordhood Memory Networks
Yuanhe Tian | Yan Song | Fei Xia | Tong Zhang | Yonggang Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Contextual features always play an important role in Chinese word segmentation (CWS). Wordhood information, being one of the contextual features, is proved to be useful in many conventional character-based segmenters. However, this feature receives less attention in recent neural models and it is also challenging to design a framework that can properly integrate wordhood information from different wordhood measures to existing neural frameworks. In this paper, we therefore propose a neural framework, WMSeg, which uses memory networks to incorporate wordhood information with several popular encoder-decoder combinations for CWS. Experimental results on five benchmark datasets indicate the memory mechanism successfully models wordhood information for neural segmenters and helps WMSeg achieve state-of-the-art performance on all those datasets. Further experiments and analyses also demonstrate the robustness of our proposed framework with respect to different wordhood measures and the efficiency of wordhood information in cross-domain experiments.

pdf bib
Joint Chinese Word Segmentation and Part-of-speech Tagging via Two-way Attentions of Auto-analyzed Knowledge
Yuanhe Tian | Yan Song | Xiang Ao | Fei Xia | Xiaojun Quan | Tong Zhang | Yonggang Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Chinese word segmentation (CWS) and part-of-speech (POS) tagging are important fundamental tasks for Chinese language processing, where joint learning of them is an effective one-step solution for both tasks. Previous studies for joint CWS and POS tagging mainly follow the character-based tagging paradigm with introducing contextual information such as n-gram features or sentential representations from recurrent neural models. However, for many cases, the joint tagging needs not only modeling from context features but also knowledge attached to them (e.g., syntactic relations among words); limited efforts have been made by existing research to meet such needs. In this paper, we propose a neural model named TwASP for joint CWS and POS tagging following the character-based sequence labeling paradigm, where a two-way attention mechanism is used to incorporate both context feature and their corresponding syntactic knowledge for each input character. Particularly, we use existing language processing toolkits to obtain the auto-analyzed syntactic knowledge for the context, and the proposed attention module can learn and benefit from them although their quality may not be perfect. Our experiments illustrate the effectiveness of the two-way attentions for joint CWS and POS tagging, where state-of-the-art performance is achieved on five benchmark datasets.

2019

pdf bib
ChiMed: A Chinese Medical Corpus for Question Answering
Yuanhe Tian | Weicheng Ma | Fei Xia | Yan Song
Proceedings of the 18th BioNLP Workshop and Shared Task

Question answering (QA) is a challenging task in natural language processing (NLP), especially when it is applied to specific domains. While models trained in the general domain can be adapted to a new target domain, their performance often degrades significantly due to domain mismatch. Alternatively, one can require a large amount of domain-specific QA data, but such data are rare, especially for the medical domain. In this study, we first collect a large-scale Chinese medical QA corpus called ChiMed; second we annotate a small fraction of the corpus to check the quality of the answers; third, we extract two datasets from the corpus and use them for the relevancy prediction task and the adoption prediction task. Several benchmark models are applied to the datasets, producing good results for both tasks.

pdf bib
WTMED at MEDIQA 2019: A Hybrid Approach to Biomedical Natural Language Inference
Zhaofeng Wu | Yan Song | Sicong Huang | Yuanhe Tian | Fei Xia
Proceedings of the 18th BioNLP Workshop and Shared Task

Natural language inference (NLI) is challenging, especially when it is applied to technical domains such as biomedical settings. In this paper, we propose a hybrid approach to biomedical NLI where different types of information are exploited for this task. Our base model includes a pre-trained text encoder as the core component, and a syntax encoder and a feature encoder to capture syntactic and domain-specific information. Then we combine the output of different base models to form more powerful ensemble models. Finally, we design two conflict resolution strategies when the test data contain multiple (premise, hypothesis) pairs with the same premise. We train our models on the MedNLI dataset, yielding the best performance on the test set of the MEDIQA 2019 Task 1.