Most undeciphered lost languages exhibit two characteristics that pose significant decipherment challenges: (1) the scripts are not fully segmented into words; (2) the closest known language is not determined. We propose a decipherment model that handles both of these challenges by building on rich linguistic constraints reflecting consistent patterns in historical sound change. We capture the natural phonological geometry by learning character embeddings based on the International Phonetic Alphabet (IPA). The resulting generative framework jointly models word segmentation and cognate alignment, informed by phonological constraints. We evaluate the model on both deciphered languages (Gothic, Ugaritic) and an undeciphered one (Iberian). The experiments show that incorporating phonetic geometry leads to clear and consistent gains. Additionally, we propose a measure for language closeness which correctly identifies related languages for Gothic and Ugaritic. For Iberian, the method does not show strong evidence supporting Basque as a related language, concurring with the favored position by the current scholarship.1
Sequence-to-sequence models have been applied to a wide variety of NLP tasks, but how to properly use them for dialogue state tracking has not been systematically investigated. In this paper, we study this problem from the perspectives of pre-training objectives as well as the formats of context representations. We demonstrate that the choice of pre-training objective makes a significant difference to the state tracking quality. In particular, we find that masked span prediction is more effective than auto-regressive language modeling. We also explore using Pegasus, a span prediction-based pre-training objective for text summarization, for the state tracking model. We found that pre-training for the seemingly distant summarization task works surprisingly well for dialogue state tracking. In addition, we found that while recurrent state context representation works also reasonably well, the model may have a hard time recovering from earlier mistakes. We conducted experiments on the MultiWOZ 2.1-2.4, WOZ 2.0, and DSTC2 datasets with consistent observations.
Over the last few years two promising research directions in low-resource neural machine translation (NMT) have emerged. The first focuses on utilizing high-resource languages to improve the quality of low-resource languages via multilingual NMT. The second direction employs monolingual data with self-supervision to pre-train translation models, followed by fine-tuning on small amounts of supervised data. In this work, we join these two lines of research and demonstrate the efficacy of monolingual data with self-supervision in multilingual NMT. We offer three major results: (i) Using monolingual data significantly boosts the translation quality of low-resource languages in multilingual models. (ii) Self-supervision improves zero-shot translation quality in multilingual models. (iii) Leveraging monolingual data with self-supervision provides a viable path towards adding new languages to multilingual models, getting up to 33 BLEU on ro-en translation without any parallel data or back-translation.
In this paper we propose a novel neural approach for automatic decipherment of lost languages. To compensate for the lack of strong supervision signal, our model design is informed by patterns in language change documented in historical linguistics. The model utilizes an expressive sequence-to-sequence model to capture character-level correspondences between cognates. To effectively train the model in unsupervised manner, we innovate the training procedure by formalizing it as a minimum-cost flow problem. When applied to decipherment of Ugaritic, we achieve 5% absolute improvement over state-of-the-art results. We also report first automatic results in deciphering Linear B, a syllabic language related to ancient Greek, where our model correctly translates 67.3% of cognates.
While current state-of-the-art NMT models, such as RNN seq2seq and Transformers, possess a large number of parameters, they are still shallow in comparison to convolutional models used for both text and vision applications. In this work we attempt to train significantly (2-3x) deeper Transformer and Bi-RNN encoders for machine translation. We propose a simple modification to the attention mechanism that eases the optimization of deeper models, and results in consistent gains of 0.7-1.1 BLEU on the benchmark WMT’14 English-German and WMT’15 Czech-English tasks for both architectures.
Translation of the output of automatic speech recognition (ASR) systems, also known as speech translation, has received a lot of research interest recently. This is especially true for programs such as DARPA BOLT which focus on improving spontaneous human-human conversation across languages. However, this research is hindered by the dearth of datasets developed for this explicit purpose. For Egyptian Arabic-English, in particular, no parallel speechtranscription-translation dataset exists in the same domain. In order to support research in speech translation, we introduce the Callhome Egyptian Arabic-English Speech Translation Corpus. This supplements the existing LDC corpus with four reference translations for each utterance in the transcripts. The result is a three-way parallel dataset of Egyptian Arabic Speech, transcriptions and English translations.
Discriminative training for MT usually involves numerous features and requires large-scale training set to reach reliable parameter estimation. Other than using the expensive human-labeled parallel corpora for training, semi-supervised methods have been proposed to generate huge amount of “hallucinated” data which relieves the data sparsity problem. However the large training set contains both good samples which are suitable for training and bad ones harmful to the training. How to select training samples from vast amount of data can greatly affect the training performance. In this paper we propose a method for selecting samples that are most suitable for discriminative training according to a criterion measuring the dataset quality. Our experimental results show that by adding samples to the training set selectively, we are able to exceed the performance of system trained with the same amount of samples selected randomly.