Existing dialog system models require extensive human annotations and are difficult to generalize to different tasks. The recent success of large pre-trained language models such as BERT and GPT-2 (Devlin et al., 2019; Radford et al., 2019) have suggested the effectiveness of incorporating language priors in down-stream NLP tasks. However, how much pre-trained language models can help dialog response generation is still under exploration. In this paper, we propose a simple, general, and effective framework: Alternating Recurrent Dialog Model (ARDM). ARDM models each speaker separately and takes advantage of the large pre-trained language model. It requires no supervision from human annotations such as belief states or dialog acts to achieve effective conversations. ARDM outperforms or is on par with state-of-the-art methods on two popular task-oriented dialog datasets: CamRest676 and MultiWOZ. Moreover, we can generalize ARDM to more challenging, non-collaborative tasks such as persuasion. In persuasion tasks, ARDM is capable of generating human-like responses to persuade people to donate to a charity.
Linguistically informed analyses of language models (LMs) contribute to the understanding and improvement of such models. Here, we introduce the corpus of Chinese linguistic minimal pairs (CLiMP) to investigate what knowledge Chinese LMs acquire. CLiMP consists of sets of 1000 minimal pairs (MPs) for 16 syntactic contrasts in Chinese, covering 9 major Chinese linguistic phenomena. The MPs are semi-automatically generated, and human agreement with the labels in CLiMP is 95.8%. We evaluate 11 different LMs on CLiMP, covering n-grams, LSTMs, and Chinese BERT. We find that classifier–noun agreement and verb complement selection are the phenomena that models generally perform best at. However, models struggle the most with the ba construction, binding, and filler-gap dependencies. Overall, Chinese BERT achieves an 81.8% average accuracy, while the performances of LSTMs and 5-grams are only moderately above chance level.
Persuasion dialogue system reflects the machine’s ability to make strategic moves beyond verbal communication, and therefore differentiates itself from task-oriented or open-domain dialogues and has its own unique values. However, the repetition and inconsistency problems still persist in dialogue response generation and could substantially impact user experience and impede the persuasion outcome. Besides, although reinforcement learning (RL) approaches have achieved big success in strategic tasks such as games, it requires a sophisticated user simulator to provide real-time feedback to the dialogue system, which limits the application of RL on persuasion dialogues. To address these issues towards a better persuasion dialogue system, we apply RL to refine a language model baseline without user simulators, and distill sentence-level information about repetition, inconsistency, and task relevance through rewards. Moreover, to better accomplish the persuasion task, the model learns from human demonstration to imitate human persuasion behavior and selects the most persuasive responses. Experiments show that our model outperforms previous state-of-the-art dialogue models on both automatic metrics and human evaluation results on a donation persuasion task, and generates more diverse, consistent and persuasive conversations according to the user feedback. We will make the code and model publicly available.
Emotional support is a crucial ability for many conversation scenarios, including social interactions, mental health support, and customer service chats. Following reasonable procedures and using various support skills can help to effectively provide support. However, due to the lack of a well-designed task and corpora of effective emotional support conversations, research on building emotional support into dialog systems remains lacking. In this paper, we define the Emotional Support Conversation (ESC) task and propose an ESC Framework, which is grounded on the Helping Skills Theory. We construct an Emotion Support Conversation dataset (ESConv) with rich annotation (especially support strategy) in a help-seeker and supporter mode. To ensure a corpus of high-quality conversations that provide examples of effective emotional support, we take extensive effort to design training tutorials for supporters and several mechanisms for quality control during data collection. Finally, we evaluate state-of-the-art dialog models with respect to the ability to provide emotional support. Our results show the importance of support strategies in providing effective emotional support and the utility of ESConv in training more emotional support systems.
Humans are increasingly interacting with machines through language, sometimes in contexts where the user may not know they are talking to a machine (like over the phone or a text chatbot). We aim to understand how system designers and researchers might allow their systems to confirm its non-human identity. We collect over 2,500 phrasings related to the intent of “Are you a robot?”. This is paired with over 2,500 adversarially selected utterances where only confirming the system is non-human would be insufficient or disfluent. We compare classifiers to recognize the intent and discuss the precision/recall and model complexity tradeoffs. Such classifiers could be integrated into dialog systems to avoid undesired deception. We then explore how both a generative research model (Blender) as well as two deployed systems (Amazon Alexa, Google Assistant) handle this intent, finding that systems often fail to confirm their non-human identity. Finally, we try to understand what a good response to the intent would be, and conduct a user study to compare the important aspects when responding to this intent.
We present LEGOEval, an open-source toolkit that enables researchers to easily evaluate dialogue systems in a few lines of code using the online crowdsource platform, Amazon Mechanical Turk. Compared to existing toolkits, LEGOEval features a flexible task design by providing a Python API that maps to commonly used React.js interface components. Researchers can personalize their evaluation procedures easily with our built-in pages as if playing with LEGO blocks. Thus, LEGOEval provides a fast, consistent method for reproducing human evaluation results. Besides the flexible task design, LEGOEval also offers an easy API to review collected data.
In natural language processing (NLP), state-of-the-art (SOTA) semi-supervised learning (SSL) frameworks have shown great performance on deep pre-trained language models such as BERT, and are expected to significantly reduce the demand for manual labeling. However, our empirical studies indicate that these frameworks are not suitable for lightweight models such as TextCNN, LSTM and etc. In this work, we develop a new SSL framework called FLiText, which stands for Faster and Lighter semi-supervised Text classification. FLiText introduces an inspirer network together with the consistency regularization framework, which leverages a generalized regular constraint on the lightweight models for efficient SSL. As a result, FLiText obtains new SOTA performance for lightweight models across multiple SSL benchmarks on text classification. Compared with existing SOTA SSL methods on TextCNN, FLiText improves the accuracy of lightweight model TextCNN from 51.00% to 90.49% on IMDb, 39.8% to 58.06% on Yelp-5, and from 55.3% to 65.08% on Yahoo! Answer. In addition, compared with the fully supervised method on the full dataset, FLiText just uses less than 1% of labeled data to improve the accuracy by 6.59%, 3.94%, and 3.22% on the datasets of IMDb, Yelp-5, and Yahoo! Answer respectively.
Suicide prevention hotline counselors aid individuals during difficult times through millions of calls and chats. A chatbot cannot safely replace a counselor, but we explore whether a chatbot can be developed to help train human counselors. Such a system needs to simulate intimate situations across multiple practice sessions. Open-domain dialogue systems frequently suffer from generic responses that do not characterize personal stories, so we look to infuse conversations with persona information by mimicking prototype conversations. Towards building a “Crisisbot” hotline visitor simulation, we propose a counseling strategy annotation scheme and a multi-task framework that leverages these counselor strategies to retrieve similar examples, generate diverse sub-utterances, and interleave prototype and generated sub-utterances into complex responses. We evaluate this framework with crowdworkers and experienced hotline counselors. The framework considerably increases response diversity and specificity, with limited impact to coherence. Our results also show a considerable discrepancy between crowdworker and counselor judgements, which emphasizes the importance of including target populations in system development and evaluation.
Image paragraph captioning (IPC) aims to generate a fine-grained paragraph to describe the visual content of an image. Significant progress has been made by deep neural networks, in which the attention mechanism plays an essential role. However, conventional attention mechanisms tend to ignore the past alignment information, which often results in problems of repetitive captioning and incomplete captioning. In this paper, we propose an Interactive key-value Memory- augmented Attention model for image Paragraph captioning (IMAP) to keep track of the attention history (salient objects coverage information) along with the update-chain of the decoder state and therefore avoid generating repetitive or incomplete image descriptions. In addition, we employ an adaptive attention mechanism to realize adaptive alignment from image regions to caption words, where an image region can be mapped to an arbitrary number of caption words while a caption word can also attend to an arbitrary number of image regions. Extensive experiments on a benchmark dataset (i.e., Stanford) demonstrate the effectiveness of our IMAP model.