Yekun Chai


2021

pdf bib
Counter-Contrastive Learning for Language GANs
Yekun Chai | Haidong Zhang | Qiyue Yin | Junge Zhang
Findings of the Association for Computational Linguistics: EMNLP 2021

Generative Adversarial Networks (GANs) have achieved great success in image synthesis, but have proven to be difficult to generate natural language. Challenges arise from the uninformative learning signals passed from the discriminator. In other words, the poor learning signals limit the learning capacity for generating languages with rich structures and semantics. In this paper, we propose to adopt the counter-contrastive learning (CCL) method to support the generator’s training in language GANs. In contrast to standard GANs that adopt a simple binary classifier to discriminate whether a sample is real or fake, we employ a counter-contrastive learning signal that advances the training of language synthesizers by (1) pulling the language representations of generated and real samples together and (2) pushing apart representations of real samples to compete with the discriminator and thus prevent the discriminator from being overtrained. We evaluate our method on both synthetic and real benchmarks and yield competitive performance compared to previous GANs for adversarial sequence generation.

pdf bib
COIN: Conversational Interactive Networks for Emotion Recognition in Conversation
Haidong Zhang | Yekun Chai
Proceedings of the Third Workshop on Multimodal Artificial Intelligence

Emotion recognition in conversation has received considerable attention recently because of its practical industrial applications. Existing methods tend to overlook the immediate mutual interaction between different speakers in the speaker-utterance level, or apply single speaker-agnostic RNN for utterances from different speakers. We propose COIN, a conversational interactive model to mitigate this problem by applying state mutual interaction within history contexts. In addition, we introduce a stacked global interaction module to capture the contextual and inter-dependency representation in a hierarchical manner. To improve the robustness and generalization during training, we generate adversarial examples by applying the minor perturbations on multimodal feature inputs, unveiling the benefits of adversarial examples for emotion detection. The proposed model empirically achieves the current state-of-the-art results on the IEMOCAP benchmark dataset.

2020

pdf bib
Highway Transformer: Self-Gating Enhanced Self-Attentive Networks
Yekun Chai | Shuo Jin | Xinwen Hou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Self-attention mechanisms have made striking state-of-the-art (SOTA) progress in various sequence learning tasks, standing on the multi-headed dot product attention by attending to all the global contexts at different locations. Through a pseudo information highway, we introduce a gated component self-dependency units (SDU) that incorporates LSTM-styled gating units to replenish internal semantic importance within the multi-dimensional latent space of individual representations. The subsidiary content-based SDU gates allow for the information flow of modulated latent embeddings through skipped connections, leading to a clear margin of convergence speed with gradient descent algorithms. We may unveil the role of gating mechanism to aid in the context-based Transformer modules, with hypothesizing that SDU gates, especially on shallow layers, could push it faster to step towards suboptimal points during the optimization process.