Yejin Choi


2021

pdf bib
Discourse Understanding and Factual Consistency in Abstractive Summarization
Saadia Gabriel | Antoine Bosselut | Jeff Da | Ari Holtzman | Jan Buys | Kyle Lo | Asli Celikyilmaz | Yejin Choi
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We introduce a general framework for abstractive summarization with factual consistency and distinct modeling of the narrative flow in an output summary. Our work addresses current limitations of models for abstractive summarization that often hallucinate information or generate summaries with coherence issues. To generate abstractive summaries with factual consistency and narrative flow, we propose Cooperative Generator-Discriminator Networks (Co-opNet), a novel transformer-based framework where the generator works with a discriminator architecture to compose coherent long-form summaries. We explore four different discriminator objectives which each capture a different aspect of coherence, including whether salient spans of generated abstracts are hallucinated or appear in the input context, and the likelihood of sentence adjacency in generated abstracts. We measure the ability of Co-opNet to learn these objectives with arXiv scientific papers, using the abstracts as a proxy for gold long-form scientific article summaries. Empirical results from automatic and human evaluations demonstrate that Co-opNet learns to summarize with considerably improved global coherence compared to competitive baselines.

pdf bib
Challenges in Automated Debiasing for Toxic Language Detection
Xuhui Zhou | Maarten Sap | Swabha Swayamdipta | Yejin Choi | Noah Smith
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Biased associations have been a challenge in the development of classifiers for detecting toxic language, hindering both fairness and accuracy. As potential solutions, we investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection. Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English). Our comprehensive experiments establish that existing methods are limited in their ability to prevent biased behavior in current toxicity detectors. We then propose an automatic, dialect-aware data correction method, as a proof-of-concept. Despite the use of synthetic labels, this method reduces dialectal associations with toxicity. Overall, our findings show that debiasing a model trained on biased toxic language data is not as effective as simply relabeling the data to remove existing biases.

pdf bib
GO FIGURE: A Meta Evaluation of Factuality in Summarization
Saadia Gabriel | Asli Celikyilmaz | Rahul Jha | Yejin Choi | Jianfeng Gao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
On-the-Fly Attention Modulation for Neural Generation
Yue Dong | Chandra Bhagavatula | Ximing Lu | Jena D. Hwang | Antoine Bosselut | Jackie Chi Kit Cheung | Yejin Choi
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
proScript: Partially Ordered Scripts Generation
Keisuke Sakaguchi | Chandra Bhagavatula | Ronan Le Bras | Niket Tandon | Peter Clark | Yejin Choi
Findings of the Association for Computational Linguistics: EMNLP 2021

Scripts – prototypical event sequences describing everyday activities – have been shown to help understand narratives by providing expectations, resolving ambiguity, and filling in unstated information. However, to date they have proved hard to author or extract from text. In this work, we demonstrate for the first time that pre-trained neural language models can be finetuned to generate high-quality scripts, at varying levels of granularity, for a wide range of everyday scenarios (e.g., bake a cake). To do this, we collect a large (6.4k) crowdsourced partially ordered scripts (named proScript), that is substantially larger than prior datasets, and develop models that generate scripts by combining language generation and graph structure prediction. We define two complementary tasks: (i) edge prediction: given a scenario and unordered events, organize the events into a valid (possibly partial-order) script, and (ii) script generation: given only a scenario, generate events and organize them into a (possibly partial-order) script. Our experiments show that our models perform well (e.g., F1=75.7 on task (i)), illustrating a new approach to overcoming previous barriers to script collection. We also show that there is still significant room for improvement toward human level performance. Together, our tasks, dataset, and models offer a new research direction for learning script knowledge.

pdf bib
NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints
Ximing Lu | Peter West | Rowan Zellers | Ronan Le Bras | Chandra Bhagavatula | Yejin Choi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Conditional text generation often requires lexical constraints, i.e., which words should or shouldn’t be included in the output text. While the dominant recipe for conditional text generation has been large-scale pretrained language models that are finetuned on the task-specific training data, such models do not learn to follow the underlying constraints reliably, even when supervised with large amounts of task-specific examples. We propose NeuroLogic Decoding, a simple yet effective algorithm that enables neural language models – supervised or not – to generate fluent text while satisfying complex lexical constraints. Our approach is powerful yet efficient. It handles any set of lexical constraints that is expressible under predicate logic, while its asymptotic runtime is equivalent to conventional beam search. Empirical results on four benchmarks show that NeuroLogic Decoding outperforms previous approaches, including algorithms that handle a subset of our constraints. Moreover, we find that unsupervised models with NeuroLogic Decoding often outperform supervised models with conventional decoding, even when the latter is based on considerably larger networks. Our results suggest the limit of large-scale neural networks for fine-grained controllable generation and the promise of inference-time algorithms.

pdf bib
I’m Not Mad”: Commonsense Implications of Negation and Contradiction
Liwei Jiang | Antoine Bosselut | Chandra Bhagavatula | Yejin Choi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Natural language inference requires reasoning about contradictions, negations, and their commonsense implications. Given a simple premise (e.g., “I’m mad at you”), humans can reason about the varying shades of contradictory statements ranging from straightforward negations (“I’m not mad at you”) to commonsense contradictions (“I’m happy”). Moreover, these negated or contradictory statements shift the commonsense implications of the original premise in interesting and nontrivial ways. For example, while “I’m mad” implies “I’m unhappy about something,” negating the premise does not necessarily negate the corresponding commonsense implications. In this paper, we present the first comprehensive study focusing on commonsense implications of negated statements and contradictions. We introduce ANION, a new commonsense knowledge graph with 624K if-then rules focusing on negated and contradictory events. We then present joint generative and discriminative inference models for this new resource, providing novel empirical insights on how logical negations and commonsense contradictions reshape the commonsense implications of their original premises.

pdf bib
TuringAdvice: A Generative and Dynamic Evaluation of Language Use
Rowan Zellers | Ari Holtzman | Elizabeth Clark | Lianhui Qin | Ali Farhadi | Yejin Choi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose TuringAdvice, a new challenge task and dataset for language understanding models. Given a written situation that a real person is currently facing, a model must generate helpful advice in natural language. Our evaluation framework tests a fundamental aspect of human language understanding: our ability to use language to resolve open-ended situations by communicating with each other. Empirical results show that today’s models struggle at TuringAdvice, even multibillion parameter models finetuned on 600k in-domain training examples. The best model, T5, writes advice that is at least as helpful as human-written advice in only 14% of cases; a much larger non-finetunable GPT3 model does even worse at 4%. This low performance reveals language understanding errors that are hard to spot outside of a generative setting, showing much room for progress.

pdf bib
Reflective Decoding: Beyond Unidirectional Generation with Off-the-Shelf Language Models
Peter West | Ximing Lu | Ari Holtzman | Chandra Bhagavatula | Jena D. Hwang | Yejin Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Publicly available, large pretrained Language Models (LMs) generate text with remarkable quality, but only sequentially from left to right. As a result, they are not immediately applicable to generation tasks that break the unidirectional assumption, such as paraphrasing or text-infilling, necessitating task-specific supervision. In this paper, we present Reflective Decoding, a novel unsupervised algorithm that allows for direct application of unidirectional LMs to non-sequential tasks. Our 2-step approach requires no supervision or even parallel corpora, only two off-the-shelf pretrained LMs in opposite directions: forward and backward. First, in the contextualization step, we use LMs to generate ensembles of past and future contexts which collectively capture the input (e.g. the source sentence for paraphrasing). Second, in the reflection step, we condition on these “context ensembles”, generating outputs that are compatible with them. Comprehensive empirical results demonstrate that Reflective Decoding outperforms strong unsupervised baselines on both paraphrasing and abductive text infilling, significantly narrowing the gap between unsupervised and supervised methods. Reflective Decoding surpasses multiple supervised baselines on various metrics including human evaluation.

pdf bib
Edited Media Understanding Frames: Reasoning About the Intent and Implications of Visual Misinformation
Jeff Da | Maxwell Forbes | Rowan Zellers | Anthony Zheng | Jena D. Hwang | Antoine Bosselut | Yejin Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Understanding manipulated media, from automatically generated ‘deepfakes’ to manually edited ones, raises novel research challenges. Because the vast majority of edited or manipulated images are benign, such as photoshopped images for visual enhancements, the key challenge is to understand the complex layers of underlying intents of media edits and their implications with respect to disinformation. In this paper, we study Edited Media Frames, a new formalism to understand visual media manipulation as structured annotations with respect to the intents, emotional reactions, attacks on individuals, and the overall implications of disinformation. We introduce a dataset for our task, EMU, with 56k question-answer pairs written in rich natural language. We evaluate a wide variety of vision-and-language models for our task, and introduce a new model PELICAN, which builds upon recent progress in pretrained multimodal representations. Our model obtains promising results on our dataset, with humans rating its answers as accurate 48.2% of the time. At the same time, there is still much work to be done – and we provide analysis that highlights areas for further progress.

pdf bib
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World
Rowan Zellers | Ari Holtzman | Matthew Peters | Roozbeh Mottaghi | Aniruddha Kembhavi | Ali Farhadi | Yejin Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We propose PIGLeT: a model that learns physical commonsense knowledge through interaction, and then uses this knowledge to ground language. We factorize PIGLeT into a physical dynamics model, and a separate language model. Our dynamics model learns not just what objects are but also what they do: glass cups break when thrown, plastic ones don’t. We then use it as the interface to our language model, giving us a unified model of linguistic form and grounded meaning. PIGLeT can read a sentence, simulate neurally what might happen next, and then communicate that result through a literal symbolic representation, or natural language. Experimental results show that our model effectively learns world dynamics, along with how to communicate them. It is able to correctly forecast what happens next given an English sentence over 80% of the time, outperforming a 100x larger, text-to-text approach by over 10%. Likewise, its natural language summaries of physical interactions are also judged by humans as more accurate than LM alternatives. We present comprehensive analysis showing room for future work.

pdf bib
DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts
Alisa Liu | Maarten Sap | Ximing Lu | Swabha Swayamdipta | Chandra Bhagavatula | Noah A. Smith | Yejin Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Despite recent advances in natural language generation, it remains challenging to control attributes of generated text. We propose DExperts: Decoding-time Experts, a decoding-time method for controlled text generation that combines a pretrained language model with “expert” LMs and/or “anti-expert” LMs in a product of experts. Intuitively, under the ensemble, tokens only get high probability if they are considered likely by the experts, and unlikely by the anti-experts. We apply DExperts to language detoxification and sentiment-controlled generation, where we outperform existing controllable generation methods on both automatic and human evaluations. Moreover, because DExperts operates only on the output of the pretrained LM, it is effective with (anti-)experts of smaller size, including when operating on GPT-3. Our work highlights the promise of tuning small LMs on text with (un)desirable attributes for efficient decoding-time steering.

pdf bib
TIMEDIAL: Temporal Commonsense Reasoning in Dialog
Lianhui Qin | Aditya Gupta | Shyam Upadhyay | Luheng He | Yejin Choi | Manaal Faruqui
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Everyday conversations require understanding everyday events, which in turn, requires understanding temporal commonsense concepts interwoven with those events. Despite recent progress with massive pre-trained language models (LMs) such as T5 and GPT-3, their capability of temporal reasoning in dialogs remains largely under-explored. In this paper, we present the first study to investigate pre-trained LMs for their temporal reasoning capabilities in dialogs by introducing a new task and a crowd-sourced English challenge set, TimeDial. We formulate TimeDial as a multiple choice cloze task with over 1.1K carefully curated dialogs. Empirical results demonstrate that even the best performing models struggle on this task compared to humans, with 23 absolute points of gap in accuracy. Furthermore, our analysis reveals that the models fail to reason about dialog context correctly; instead, they rely on shallow cues based on existing temporal patterns in context, motivating future research for modeling temporal concepts in text and robust contextual reasoning about them. The dataset is publicly available at https://github.com/google-research-datasets/timedial.

pdf bib
Moral Stories: Situated Reasoning about Norms, Intents, Actions, and their Consequences
Denis Emelin | Ronan Le Bras | Jena D. Hwang | Maxwell Forbes | Yejin Choi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In social settings, much of human behavior is governed by unspoken rules of conduct rooted in societal norms. For artificial systems to be fully integrated into social environments, adherence to such norms is a central prerequisite. To investigate whether language generation models can serve as behavioral priors for systems deployed in social settings, we evaluate their ability to generate action descriptions that achieve predefined goals under normative constraints. Moreover, we examine if models can anticipate likely consequences of actions that either observe or violate known norms, or explain why certain actions are preferable by generating relevant norm hypotheses. For this purpose, we introduce Moral Stories, a crowd-sourced dataset of structured, branching narratives for the study of grounded, goal-oriented social reasoning. Finally, we propose decoding strategies that combine multiple expert models to significantly improve the quality of generated actions, consequences, and norms compared to strong baselines.

pdf bib
Contrastive Explanations for Model Interpretability
Alon Jacovi | Swabha Swayamdipta | Shauli Ravfogel | Yanai Elazar | Yejin Choi | Yoav Goldberg
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Contrastive explanations clarify why an event occurred in contrast to another. They are inherently intuitive to humans to both produce and comprehend. We propose a method to produce contrastive explanations in the latent space, via a projection of the input representation, such that only the features that differentiate two potential decisions are captured. Our modification allows model behavior to consider only contrastive reasoning, and uncover which aspects of the input are useful for and against particular decisions. Our contrastive explanations can additionally answer for which label, and against which alternative label, is a given input feature useful. We produce contrastive explanations via both high-level abstract concept attribution and low-level input token/span attribution for two NLP classification benchmarks. Our findings demonstrate the ability of label-contrastive explanations to provide fine-grained interpretability of model decisions.

pdf bib
Surface Form Competition: Why the Highest Probability Answer Isn’t Always Right
Ari Holtzman | Peter West | Vered Shwartz | Yejin Choi | Luke Zettlemoyer
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Large language models have shown promising results in zero-shot settings. For example, they can perform multiple choice tasks simply by conditioning on a question and selecting the answer with the highest probability. However, ranking by string probability can be problematic due to surface form competition—wherein different surface forms compete for probability mass, even if they represent the same underlying concept in a given context, e.g. “computer” and “PC.” Since probability mass is finite, this lowers the probability of the correct answer, due to competition from other strings that are valid answers (but not one of the multiple choice options). We introduce Domain Conditional Pointwise Mutual Information, an alternative scoring function that directly compensates for surface form competition by simply reweighing each option according to its a priori likelihood within the context of a specific task. It achieves consistent gains in zero-shot performance over both calibrated and uncalibrated scoring functions on all GPT-2 and GPT-3 models on a variety of multiple choice datasets.

pdf bib
Conversational Multi-Hop Reasoning with Neural Commonsense Knowledge and Symbolic Logic Rules
Forough Arabshahi | Jennifer Lee | Antoine Bosselut | Yejin Choi | Tom Mitchell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

One of the challenges faced by conversational agents is their inability to identify unstated presumptions of their users’ commands, a task trivial for humans due to their common sense. In this paper, we propose a zero-shot commonsense reasoning system for conversational agents in an attempt to achieve this. Our reasoner uncovers unstated presumptions from user commands satisfying a general template of if-(state), then-(action), because-(goal). Our reasoner uses a state-of-the-art transformer-based generative commonsense knowledge base (KB) as its source of background knowledge for reasoning. We propose a novel and iterative knowledge query mechanism to extract multi-hop reasoning chains from the neural KB which uses symbolic logic rules to significantly reduce the search space. Similar to any KBs gathered to date, our commonsense KB is prone to missing knowledge. Therefore, we propose to conversationally elicit the missing knowledge from human users with our novel dynamic question generation strategy, which generates and presents contextualized queries to human users. We evaluate the model with a user study with human users that achieves a 35% higher success rate compared to SOTA.

pdf bib
CLIPScore: A Reference-free Evaluation Metric for Image Captioning
Jack Hessel | Ari Holtzman | Maxwell Forbes | Ronan Le Bras | Yejin Choi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Image captioning has conventionally relied on reference-based automatic evaluations, where machine captions are compared against captions written by humans. This is in contrast to the reference-free manner in which humans assess caption quality. In this paper, we report the surprising empirical finding that CLIP (Radford et al., 2021), a cross-modal model pretrained on 400M image+caption pairs from the web, can be used for robust automatic evaluation of image captioning without the need for references. Experiments spanning several corpora demonstrate that our new reference-free metric, CLIPScore, achieves the highest correlation with human judgements, outperforming existing reference-based metrics like CIDEr and SPICE. Information gain experiments demonstrate that CLIPScore, with its tight focus on image-text compatibility, is complementary to existing reference-based metrics that emphasize text-text similarities. Thus, we also present a reference-augmented version, RefCLIPScore, which achieves even higher correlation. Beyond literal description tasks, several case studies reveal domains where CLIPScore performs well (clip-art images, alt-text rating), but also where it is relatively weaker in comparison to reference-based metrics, e.g., news captions that require richer contextual knowledge.

2020

pdf bib
Social Chemistry 101: Learning to Reason about Social and Moral Norms
Maxwell Forbes | Jena D. Hwang | Vered Shwartz | Maarten Sap | Yejin Choi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Social norms—the unspoken commonsense rules about acceptable social behavior—are crucial in understanding the underlying causes and intents of people’s actions in narratives. For example, underlying an action such as “wanting to call cops on my neighbor” are social norms that inform our conduct, such as “It is expected that you report crimes.” We present SOCIAL CHEMISTRY, a new conceptual formalism to study people’s everyday social norms and moral judgments over a rich spectrum of real life situations described in natural language. We introduce SOCIAL-CHEM-101, a large-scale corpus that catalogs 292k rules-of-thumb such as “It is rude to run a blender at 5am” as the basic conceptual units. Each rule-of-thumb is further broken down with 12 different dimensions of people’s judgments, including social judgments of good and bad, moral foundations, expected cultural pressure, and assumed legality, which together amount to over 4.5 million annotations of categorical labels and free-text descriptions. Comprehensive empirical results based on state-of-the-art neural models demonstrate that computational modeling of social norms is a promising research direction. Our model framework, Neural Norm Transformer, learns and generalizes SOCIAL-CHEM-101 to successfully reason about previously unseen situations, generating relevant (and potentially novel) attribute-aware social rules-of-thumb.

pdf bib
Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning
Lianhui Qin | Vered Shwartz | Peter West | Chandra Bhagavatula | Jena D. Hwang | Ronan Le Bras | Antoine Bosselut | Yejin Choi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Abductive and counterfactual reasoning, core abilities of everyday human cognition, require reasoning about what might have happened at time t, while conditioning on multiple contexts from the relative past and future. However, simultaneous incorporation of past and future contexts using generative language models (LMs) can be challenging, as they are trained either to condition only on the past context or to perform narrowly scoped text-infilling. In this paper, we propose DeLorean, a new unsupervised decoding algorithm that can flexibly incorporate both the past and future contexts using only off-the-shelf, left-to-right language models and no supervision. The key intuition of our algorithm is incorporating the future through back-propagation, during which, we only update the internal representation of the output while fixing the model parameters. By alternating between forward and backward propagation, DeLorean can decode the output representation that reflects both the left and right contexts. We demonstrate that our approach is general and applicable to two nonmonotonic reasoning tasks: abductive text generation and counterfactual story revision, where DeLorean outperforms a range of unsupervised and some supervised methods, based on automatic and human evaluation.

pdf bib
PlotMachines: Outline-Conditioned Generation with Dynamic Plot State Tracking
Hannah Rashkin | Asli Celikyilmaz | Yejin Choi | Jianfeng Gao
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We propose the task of outline-conditioned story generation: given an outline as a set of phrases that describe key characters and events to appear in a story, the task is to generate a coherent narrative that is consistent with the provided outline. This task is challenging as the input only provides a rough sketch of the plot, and thus, models need to generate a story by interweaving the key points provided in the outline. This requires the model to keep track of the dynamic states of the latent plot, conditioning on the input outline while generating the full story. We present PlotMachines, a neural narrative model that learns to transform an outline into a coherent story by tracking the dynamic plot states. In addition, we enrich PlotMachines with high-level discourse structure so that the model can learn different writing styles corresponding to different parts of the narrative. Comprehensive experiments over three fiction and non-fiction datasets demonstrate that large-scale language models, such as GPT-2 and Grover, despite their impressive generation performance, are not sufficient in generating coherent narratives for the given outline, and dynamic plot state tracking is important for composing narratives with tighter, more consistent plots.

pdf bib
Unsupervised Commonsense Question Answering with Self-Talk
Vered Shwartz | Peter West | Ronan Le Bras | Chandra Bhagavatula | Yejin Choi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Natural language understanding involves reading between the lines with implicit background knowledge. Current systems either rely on pre-trained language models as the sole implicit source of world knowledge, or resort to external knowledge bases (KBs) to incorporate additional relevant knowledge. We propose an unsupervised framework based on self-talk as a novel alternative to multiple-choice commonsense tasks. Inspired by inquiry-based discovery learning (Bruner, 1961), our approach inquires language models with a number of information seeking questions such as “what is the definition of...” to discover additional background knowledge. Empirical results demonstrate that the self-talk procedure substantially improves the performance of zero-shot language model baselines on four out of six commonsense benchmarks, and competes with models that obtain knowledge from external KBs. While our approach improves performance on several benchmarks, the self-talk induced knowledge even when leading to correct answers is not always seen as helpful by human judges, raising interesting questions about the inner-workings of pre-trained language models for commonsense reasoning.

pdf bib
PowerTransformer: Unsupervised Controllable Revision for Biased Language Correction
Xinyao Ma | Maarten Sap | Hannah Rashkin | Yejin Choi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Unconscious biases continue to be prevalent in modern text and media, calling for algorithms that can assist writers with bias correction. For example, a female character in a story is often portrayed as passive and powerless (“_She daydreams about being a doctor_”) while a man is portrayed as more proactive and powerful (“_He pursues his dream of being a doctor_”). We formulate **Controllable Debiasing**, a new revision task that aims to rewrite a given text to correct the implicit and potentially undesirable bias in character portrayals. We then introduce PowerTransformer as an approach that debiases text through the lens of connotation frames (Sap et al., 2017), which encode pragmatic knowledge of implied power dynamics with respect to verb predicates. One key challenge of our task is the lack of parallel corpora. To address this challenge, we adopt an unsupervised approach using auxiliary supervision with related tasks such as paraphrasing and self-supervision based on a reconstruction loss, building on pretrained language models. Through comprehensive experiments based on automatic and human evaluations, we demonstrate that our approach outperforms ablations and existing methods from related tasks. Furthermore, we demonstrate the use of PowerTransformer as a step toward mitigating the well-documented gender bias in character portrayal in movie scripts.

pdf bib
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Swabha Swayamdipta | Roy Schwartz | Nicholas Lourie | Yizhong Wang | Hannaneh Hajishirzi | Noah A. Smith | Yejin Choi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Large datasets have become commonplace in NLP research. However, the increased emphasis on data quantity has made it challenging to assess the quality of data. We introduce Data Maps—a model-based tool to characterize and diagnose datasets. We leverage a largely ignored source of information: the behavior of the model on individual instances during training (training dynamics) for building data maps. This yields two intuitive measures for each example—the model’s confidence in the true class, and the variability of this confidence across epochs—obtained in a single run of training. Experiments on four datasets show that these model-dependent measures reveal three distinct regions in the data map, each with pronounced characteristics. First, our data maps show the presence of “ambiguous” regions with respect to the model, which contribute the most towards out-of-distribution generalization. Second, the most populous regions in the data are “easy to learn” for the model, and play an important role in model optimization. Finally, data maps uncover a region with instances that the model finds “hard to learn”; these often correspond to labeling errors. Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.

pdf bib
Generative Data Augmentation for Commonsense Reasoning
Yiben Yang | Chaitanya Malaviya | Jared Fernandez | Swabha Swayamdipta | Ronan Le Bras | Ji-Ping Wang | Chandra Bhagavatula | Yejin Choi | Doug Downey
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent advances in commonsense reasoning depend on large-scale human-annotated training sets to achieve peak performance. However, manual curation of training sets is expensive and has been shown to introduce annotation artifacts that neural models can readily exploit and overfit to. We propose a novel generative data augmentation technique, G-DAUGˆC, that aims to achieve more accurate and robust learning in a low-resource setting. Our approach generates synthetic examples using pretrained language models and selects the most informative and diverse set of examples for data augmentation. On experiments with multiple commonsense reasoning benchmarks, G-DAUGˆC consistently outperforms existing data augmentation methods based on back-translation, establishing a new state-of-the-art on WinoGrande, CODAH, and CommonsenseQA, as well as enhances out-of-distribution generalization, proving to be robust against adversaries or perturbations. Our analysis demonstrates that G-DAUGˆC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.

pdf bib
CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning
Bill Yuchen Lin | Wangchunshu Zhou | Ming Shen | Pei Zhou | Chandra Bhagavatula | Yejin Choi | Xiang Ren
Findings of the Association for Computational Linguistics: EMNLP 2020

Recently, large-scale pre-trained language models have demonstrated impressive performance on several commonsense-reasoning benchmark datasets. However, building machines with commonsense to compose realistically plausible sentences remains challenging. In this paper, we present a constrained text generation task, CommonGen associated with a benchmark dataset, to explicitly test machines for the ability of generative commonsense reasoning. Given a set of common concepts (e.g., dog, frisbee, catch, throw); the task is to generate a coherent sentence describing an everyday scenario using these concepts (e.g., “a man throws a frisbee and his dog catches it”). The CommonGen task is challenging because it inherently requires 1) relational reasoning with background commonsense knowledge and 2) compositional generalization ability to work on unseen concept combinations. Our dataset, constructed through a combination of crowdsourced and existing caption corpora, consists of 77k commonsense descriptions over 35k unique concept-sets. Experiments show that there is a large gap between state-of-the-art text generation models (e.g., T5) and human performance (31.6% v.s. 63.5% in SPICE metric). Furthermore, we demonstrate that the learned generative commonsense reasoning capability can be transferred to improve downstream tasks such as CommonsenseQA (76.9% to 78.4 in dev accuracy) by generating additional context.

pdf bib
Natural Language Rationales with Full-Stack Visual Reasoning: From Pixels to Semantic Frames to Commonsense Graphs
Ana Marasović | Chandra Bhagavatula | Jae sung Park | Ronan Le Bras | Noah A. Smith | Yejin Choi
Findings of the Association for Computational Linguistics: EMNLP 2020

Natural language rationales could provide intuitive, higher-level explanations that are easily understandable by humans, complementing the more broadly studied lower-level explanations based on gradients or attention weights. We present the first study focused on generating natural language rationales across several complex visual reasoning tasks: visual commonsense reasoning, visual-textual entailment, and visual question answering. The key challenge of accurate rationalization is comprehensive image understanding at all levels: not just their explicit content at the pixel level, but their contextual contents at the semantic and pragmatic levels. We present RationaleˆVT Transformer, an integrated model that learns to generate free-text rationales by combining pretrained language models with object recognition, grounded visual semantic frames, and visual commonsense graphs. Our experiments show that free-text rationalization is a promising research direction to complement model interpretability for complex visual-textual reasoning tasks. In addition, we find that integration of richer semantic and pragmatic visual features improves visual fidelity of rationales.

pdf bib
RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models
Samuel Gehman | Suchin Gururangan | Maarten Sap | Yejin Choi | Noah A. Smith
Findings of the Association for Computational Linguistics: EMNLP 2020

Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment. We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration. We create and release RealToxicityPrompts, a dataset of 100K naturally occurring, sentence-level prompts derived from a large corpus of English web text, paired with toxicity scores from a widely-used toxicity classifier. Using RealToxicityPrompts, we find that pretrained LMs can degenerate into toxic text even from seemingly innocuous prompts. We empirically assess several controllable generation methods, and find that while data- or compute-intensive methods (e.g., adaptive pretraining on non-toxic data) are more effective at steering away from toxicity than simpler solutions (e.g., banning “bad” words), no current method is failsafe against neural toxic degeneration. To pinpoint the potential cause of such persistent toxic degeneration, we analyze two web text corpora used to pretrain several LMs (including GPT-2; Radford et. al, 2019), and find a significant amount of offensive, factually unreliable, and otherwise toxic content. Our work provides a test bed for evaluating toxic generations by LMs and stresses the need for better data selection processes for pretraining.

pdf bib
Thinking Like a Skeptic: Defeasible Inference in Natural Language
Rachel Rudinger | Vered Shwartz | Jena D. Hwang | Chandra Bhagavatula | Maxwell Forbes | Ronan Le Bras | Noah A. Smith | Yejin Choi
Findings of the Association for Computational Linguistics: EMNLP 2020

Defeasible inference is a mode of reasoning in which an inference (X is a bird, therefore X flies) may be weakened or overturned in light of new evidence (X is a penguin). Though long recognized in classical AI and philosophy, defeasible inference has not been extensively studied in the context of contemporary data-driven research on natural language inference and commonsense reasoning. We introduce Defeasible NLI (abbreviated 𝛿-NLI), a dataset for defeasible inference in natural language. Defeasible NLI contains extensions to three existing inference datasets covering diverse modes of reasoning: common sense, natural language inference, and social norms. From Defeasible NLI, we develop both a classification and generation task for defeasible inference, and demonstrate that the generation task is much more challenging. Despite lagging human performance, however, generative models trained on this data are capable of writing sentences that weaken or strengthen a specified inference up to 68% of the time.

pdf bib
Do Neural Language Models Overcome Reporting Bias?
Vered Shwartz | Yejin Choi
Proceedings of the 28th International Conference on Computational Linguistics

Mining commonsense knowledge from corpora suffers from reporting bias, over-representing the rare at the expense of the trivial (Gordon and Van Durme, 2013). We study to what extent pre-trained language models overcome this issue. We find that while their generalization capacity allows them to better estimate the plausibility of frequent but unspoken of actions, outcomes, and properties, they also tend to overestimate that of the very rare, amplifying the bias that already exists in their training corpus.

pdf bib
Recollection versus Imagination: Exploring Human Memory and Cognition via Neural Language Models
Maarten Sap | Eric Horvitz | Yejin Choi | Noah A. Smith | James Pennebaker
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We investigate the use of NLP as a measure of the cognitive processes involved in storytelling, contrasting imagination and recollection of events. To facilitate this, we collect and release Hippocorpus, a dataset of 7,000 stories about imagined and recalled events. We introduce a measure of narrative flow and use this to examine the narratives for imagined and recalled events. Additionally, we measure the differential recruitment of knowledge attributed to semantic memory versus episodic memory (Tulving, 1972) for imagined and recalled storytelling by comparing the frequency of descriptions of general commonsense events with more specific realis events. Our analyses show that imagined stories have a substantially more linear narrative flow, compared to recalled stories in which adjacent sentences are more disconnected. In addition, while recalled stories rely more on autobiographical events based on episodic memory, imagined stories express more commonsense knowledge based on semantic memory. Finally, our measures reveal the effect of narrativization of memories in stories (e.g., stories about frequently recalled memories flow more linearly; Bartlett, 1932). Our findings highlight the potential of using NLP tools to study the traces of human cognition in language.

pdf bib
Social Bias Frames: Reasoning about Social and Power Implications of Language
Maarten Sap | Saadia Gabriel | Lianhui Qin | Dan Jurafsky | Noah A. Smith | Yejin Choi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Warning: this paper contains content that may be offensive or upsetting. Language has the power to reinforce stereotypes and project social biases onto others. At the core of the challenge is that it is rarely what is stated explicitly, but rather the implied meanings, that frame people’s judgments about others. For example, given a statement that “we shouldn’t lower our standards to hire more women,” most listeners will infer the implicature intended by the speaker - that “women (candidates) are less qualified.” Most semantic formalisms, to date, do not capture such pragmatic implications in which people express social biases and power differentials in language. We introduce Social Bias Frames, a new conceptual formalism that aims to model the pragmatic frames in which people project social biases and stereotypes onto others. In addition, we introduce the Social Bias Inference Corpus to support large-scale modelling and evaluation with 150k structured annotations of social media posts, covering over 34k implications about a thousand demographic groups. We then establish baseline approaches that learn to recover Social Bias Frames from unstructured text. We find that while state-of-the-art neural models are effective at high-level categorization of whether a given statement projects unwanted social bias (80% F1), they are not effective at spelling out more detailed explanations in terms of Social Bias Frames. Our study motivates future work that combines structured pragmatic inference with commonsense reasoning on social implications.

pdf bib
Commonsense Reasoning for Natural Language Processing
Maarten Sap | Vered Shwartz | Antoine Bosselut | Yejin Choi | Dan Roth
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

Commonsense knowledge, such as knowing that “bumping into people annoys them” or “rain makes the road slippery”, helps humans navigate everyday situations seamlessly. Yet, endowing machines with such human-like commonsense reasoning capabilities has remained an elusive goal of artificial intelligence research for decades. In recent years, commonsense knowledge and reasoning have received renewed attention from the natural language processing (NLP) community, yielding exploratory studies in automated commonsense understanding. We organize this tutorial to provide researchers with the critical foundations and recent advances in commonsense representation and reasoning, in the hopes of casting a brighter light on this promising area of future research. In our tutorial, we will (1) outline the various types of commonsense (e.g., physical, social), and (2) discuss techniques to gather and represent commonsense knowledge, while highlighting the challenges specific to this type of knowledge (e.g., reporting bias). We will then (3) discuss the types of commonsense knowledge captured by modern NLP systems (e.g., large pretrained language models), and (4) present ways to measure systems’ commonsense reasoning abilities. We will finish with (5) a discussion of various ways in which commonsense reasoning can be used to improve performance on NLP tasks, exemplified by an (6) interactive session on integrating commonsense into a downstream task.

2019

pdf bib
The Risk of Racial Bias in Hate Speech Detection
Maarten Sap | Dallas Card | Saadia Gabriel | Yejin Choi | Noah A. Smith
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We investigate how annotators’ insensitivity to differences in dialect can lead to racial bias in automatic hate speech detection models, potentially amplifying harm against minority populations. We first uncover unexpected correlations between surface markers of African American English (AAE) and ratings of toxicity in several widely-used hate speech datasets. Then, we show that models trained on these corpora acquire and propagate these biases, such that AAE tweets and tweets by self-identified African Americans are up to two times more likely to be labelled as offensive compared to others. Finally, we propose *dialect* and *race priming* as ways to reduce the racial bias in annotation, showing that when annotators are made explicitly aware of an AAE tweet’s dialect they are significantly less likely to label the tweet as offensive.

pdf bib
COMET: Commonsense Transformers for Automatic Knowledge Graph Construction
Antoine Bosselut | Hannah Rashkin | Maarten Sap | Chaitanya Malaviya | Asli Celikyilmaz | Yejin Choi
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge with canonical templates, commonsense KBs only store loosely structured open-text descriptions of knowledge. We posit that an important step toward automatic commonsense completion is the development of generative models of commonsense knowledge, and propose COMmonsEnse Transformers (COMET) that learn to generate rich and diverse commonsense descriptions in natural language. Despite the challenges of commonsense modeling, our investigation reveals promising results when implicit knowledge from deep pre-trained language models is transferred to generate explicit knowledge in commonsense knowledge graphs. Empirical results demonstrate that COMET is able to generate novel knowledge that humans rate as high quality, with up to 77.5% (ATOMIC) and 91.7% (ConceptNet) precision at top 1, which approaches human performance for these resources. Our findings suggest that using generative commonsense models for automatic commonsense KB completion could soon be a plausible alternative to extractive methods.

pdf bib
HellaSwag: Can a Machine Really Finish Your Sentence?
Rowan Zellers | Ari Holtzman | Yonatan Bisk | Ali Farhadi | Yejin Choi
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Recent work by Zellers et al. (2018) introduced a new task of commonsense natural language inference: given an event description such as “A woman sits at a piano,” a machine must select the most likely followup: “She sets her fingers on the keys.” With the introduction of BERT, near human-level performance was reached. Does this mean that machines can perform human level commonsense inference? In this paper, we show that commonsense inference still proves difficult for even state-of-the-art models, by presenting HellaSwag, a new challenge dataset. Though its questions are trivial for humans (>95% accuracy), state-of-the-art models struggle (<48%). We achieve this via Adversarial Filtering (AF), a data collection paradigm wherein a series of discriminators iteratively select an adversarial set of machine-generated wrong answers. AF proves to be surprisingly robust. The key insight is to scale up the length and complexity of the dataset examples towards a critical ‘Goldilocks’ zone wherein generated text is ridiculous to humans, yet often misclassified by state-of-the-art models. Our construction of HellaSwag, and its resulting difficulty, sheds light on the inner workings of deep pretrained models. More broadly, it suggests a new path forward for NLP research, in which benchmarks co-evolve with the evolving state-of-the-art in an adversarial way, so as to present ever-harder challenges.

pdf bib
Conversing by Reading: Contentful Neural Conversation with On-demand Machine Reading
Lianhui Qin | Michel Galley | Chris Brockett | Xiaodong Liu | Xiang Gao | Bill Dolan | Yejin Choi | Jianfeng Gao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Although neural conversational models are effective in learning how to produce fluent responses, their primary challenge lies in knowing what to say to make the conversation contentful and non-vacuous. We present a new end-to-end approach to contentful neural conversation that jointly models response generation and on-demand machine reading. The key idea is to provide the conversation model with relevant long-form text on the fly as a source of external knowledge. The model performs QA-style reading comprehension on this text in response to each conversational turn, thereby allowing for more focused integration of external knowledge than has been possible in prior approaches. To support further research on knowledge-grounded conversation, we introduce a new large-scale conversation dataset grounded in external web pages (2.8M turns, 7.4M sentences of grounding). Both human evaluation and automated metrics show that our approach results in more contentful responses compared to a variety of previous methods, improving both the informativeness and diversity of generated output.

pdf bib
MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms
Aida Amini | Saadia Gabriel | Shanchuan Lin | Rik Koncel-Kedziorski | Yejin Choi | Hannaneh Hajishirzi
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver by learning to map problems to their operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, we significantly enhance the AQUA-RAT dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model with automatic problem categorization. Our experiments show improvements over competitive baselines in our dataset as well as the AQUA-RAT dataset. The results are still lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at https://math-qa.github.io/math-QA/

pdf bib
Benchmarking Hierarchical Script Knowledge
Yonatan Bisk | Jan Buys | Karl Pichotta | Yejin Choi
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Understanding procedural language requires reasoning about both hierarchical and temporal relations between events. For example, “boiling pasta” is a sub-event of “making a pasta dish”, typically happens before “draining pasta,” and requires the use of omitted tools (e.g. a strainer, sink...). While people are able to choose when and how to use abstract versus concrete instructions, the NLP community lacks corpora and tasks for evaluating if our models can do the same. In this paper, we introduce KidsCook, a parallel script corpus, as well as a cloze task which matches video captions with missing procedural details. Experimental results show that state-of-the-art models struggle at this task, which requires inducing functional commonsense knowledge not explicitly stated in text.

pdf bib
DREAM: A Challenge Data Set and Models for Dialogue-Based Reading Comprehension
Kai Sun | Dian Yu | Jianshu Chen | Dong Yu | Yejin Choi | Claire Cardie
Transactions of the Association for Computational Linguistics, Volume 7

We present DREAM, the first dialogue-based multiple-choice reading comprehension data set. Collected from English as a Foreign Language examinations designed by human experts to evaluate the comprehension level of Chinese learners of English, our data set contains 10,197 multiple-choice questions for 6,444 dialogues. In contrast to existing reading comprehension data sets, DREAM is the first to focus on in-depth multi-turn multi-party dialogue understanding. DREAM is likely to present significant challenges for existing reading comprehension systems: 84% of answers are non-extractive, 85% of questions require reasoning beyond a single sentence, and 34% of questions also involve commonsense knowledge. We apply several popular neural reading comprehension models that primarily exploit surface information within the text and find them to, at best, just barely outperform a rule-based approach. We next investigate the effects of incorporating dialogue structure and different kinds of general world knowledge into both rule-based and (neural and non-neural) machine learning-based reading comprehension models. Experimental results on the DREAM data set show the effectiveness of dialogue structure and general world knowledge. DREAM is available at https://dataset.org/dream/.

pdf bib
Robust Navigation with Language Pretraining and Stochastic Sampling
Xiujun Li | Chunyuan Li | Qiaolin Xia | Yonatan Bisk | Asli Celikyilmaz | Jianfeng Gao | Noah A. Smith | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Core to the vision-and-language navigation (VLN) challenge is building robust instruction representations and action decoding schemes, which can generalize well to previously unseen instructions and environments. In this paper, we report two simple but highly effective methods to address these challenges and lead to a new state-of-the-art performance. First, we adapt large-scale pretrained language models to learn text representations that generalize better to previously unseen instructions. Second, we propose a stochastic sampling scheme to reduce the considerable gap between the expert actions in training and sampled actions in test, so that the agent can learn to correct its own mistakes during long sequential action decoding. Combining the two techniques, we achieve a new state of the art on the Room-to-Room benchmark with 6% absolute gain over the previous best result (47% -> 53%) on the Success Rate weighted by Path Length metric.

pdf bib
Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning
Lifu Huang | Ronan Le Bras | Chandra Bhagavatula | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Understanding narratives requires reading between the lines, which in turn, requires interpreting the likely causes and effects of events, even when they are not mentioned explicitly. In this paper, we introduce Cosmos QA, a large-scale dataset of 35,600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. In stark contrast to most existing reading comprehension datasets where the questions focus on factual and literal understanding of the context paragraph, our dataset focuses on reading between the lines over a diverse collection of people’s everyday narratives, asking such questions as “what might be the possible reason of ...?", or “what would have happened if ..." that require reasoning beyond the exact text spans in the context. To establish baseline performances on Cosmos QA, we experiment with several state-of-the-art neural architectures for reading comprehension, and also propose a new architecture that improves over the competitive baselines. Experimental results demonstrate a significant gap between machine (68.4%) and human performance (94%), pointing to avenues for future research on commonsense machine comprehension. Dataset, code and leaderboard is publicly available at https://wilburone.github.io/cosmos.

pdf bib
BottleSum: Unsupervised and Self-supervised Sentence Summarization using the Information Bottleneck Principle
Peter West | Ari Holtzman | Jan Buys | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The principle of the Information Bottleneck (Tishby et al., 1999) produces a summary of information X optimized to predict some other relevant information Y. In this paper, we propose a novel approach to unsupervised sentence summarization by mapping the Information Bottleneck principle to a conditional language modelling objective: given a sentence, our approach seeks a compressed sentence that can best predict the next sentence. Our iterative algorithm under the Information Bottleneck objective searches gradually shorter subsequences of the given sentence while maximizing the probability of the next sentence conditioned on the summary. Using only pretrained language models with no direct supervision, our approach can efficiently perform extractive sentence summarization over a large corpus. Building on our unsupervised extractive summarization, we also present a new approach to self-supervised abstractive summarization, where a transformer-based language model is trained on the output summaries of our unsupervised method. Empirical results demonstrate that our extractive method outperforms other unsupervised models on multiple automatic metrics. In addition, we find that our self-supervised abstractive model outperforms unsupervised baselines (including our own) by human evaluation along multiple attributes.

pdf bib
Social IQa: Commonsense Reasoning about Social Interactions
Maarten Sap | Hannah Rashkin | Derek Chen | Ronan Le Bras | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We introduce Social IQa, the first large-scale benchmark for commonsense reasoning about social situations. Social IQa contains 38,000 multiple choice questions for probing emotional and social intelligence in a variety of everyday situations (e.g., Q: “Jordan wanted to tell Tracy a secret, so Jordan leaned towards Tracy. Why did Jordan do this?” A: “Make sure no one else could hear”). Through crowdsourcing, we collect commonsense questions along with correct and incorrect answers about social interactions, using a new framework that mitigates stylistic artifacts in incorrect answers by asking workers to provide the right answer to a different but related question. Empirical results show that our benchmark is challenging for existing question-answering models based on pretrained language models, compared to human performance (>20% gap). Notably, we further establish Social IQa as a resource for transfer learning of commonsense knowledge, achieving state-of-the-art performance on multiple commonsense reasoning tasks (Winograd Schemas, COPA).

pdf bib
Counterfactual Story Reasoning and Generation
Lianhui Qin | Antoine Bosselut | Ari Holtzman | Chandra Bhagavatula | Elizabeth Clark | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Counterfactual reasoning requires predicting how alternative events, contrary to what actually happened, might have resulted in different outcomes. Despite being considered a necessary component of AI-complete systems, few resources have been developed for evaluating counterfactual reasoning in narratives. In this paper, we propose Counterfactual Story Rewriting: given an original story and an intervening counterfactual event, the task is to minimally revise the story to make it compatible with the given counterfactual event. Solving this task will require deep understanding of causal narrative chains and counterfactual invariance, and integration of such story reasoning capabilities into conditional language generation models. We present TIMETRAVEL, a new dataset of 29,849 counterfactual rewritings, each with the original story, a counterfactual event, and human-generated revision of the original story compatible with the counterfactual event. Additionally, we include 81,407 counterfactual “branches” without a rewritten storyline to support future work on semi- or un-supervised approaches to counterfactual story rewriting. Finally, we evaluate the counterfactual rewriting capacities of several competitive baselines based on pretrained language models, and assess whether common overlap and model-based automatic metrics for text generation correlate well with human scores for counterfactual rewriting.

2018

pdf bib
SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference
Rowan Zellers | Yonatan Bisk | Roy Schwartz | Yejin Choi
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Given a partial description like “she opened the hood of the car,” humans can reason about the situation and anticipate what might come next (”then, she examined the engine”). In this paper, we introduce the task of grounded commonsense inference, unifying natural language inference and commonsense reasoning. We present SWAG, a new dataset with 113k multiple choice questions about a rich spectrum of grounded situations. To address the recurring challenges of the annotation artifacts and human biases found in many existing datasets, we propose Adversarial Filtering (AF), a novel procedure that constructs a de-biased dataset by iteratively training an ensemble of stylistic classifiers, and using them to filter the data. To account for the aggressive adversarial filtering, we use state-of-the-art language models to massively oversample a diverse set of potential counterfactuals. Empirical results demonstrate that while humans can solve the resulting inference problems with high accuracy (88%), various competitive models struggle on our task. We provide comprehensive analysis that indicates significant opportunities for future research.

pdf bib
Neural Metaphor Detection in Context
Ge Gao | Eunsol Choi | Yejin Choi | Luke Zettlemoyer
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We present end-to-end neural models for detecting metaphorical word use in context. We show that relatively standard BiLSTM models which operate on complete sentences work well in this setting, in comparison to previous work that used more restricted forms of linguistic context. These models establish a new state-of-the-art on existing verb metaphor detection benchmarks, and show strong performance on jointly predicting the metaphoricity of all words in a running text.

pdf bib
QuAC: Question Answering in Context
Eunsol Choi | He He | Mohit Iyyer | Mark Yatskar | Wen-tau Yih | Yejin Choi | Percy Liang | Luke Zettlemoyer
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total). The dialogs involve two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context, as we show in a detailed qualitative evaluation. We also report results for a number of reference models, including a recently state-of-the-art reading comprehension architecture extended to model dialog context. Our best model underperforms humans by 20 F1, suggesting that there is significant room for future work on this data. Dataset, baseline, and leaderboard available at http://quac.ai.

pdf bib
Ultra-Fine Entity Typing
Eunsol Choi | Omer Levy | Yejin Choi | Luke Zettlemoyer
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce a new entity typing task: given a sentence with an entity mention, the goal is to predict a set of free-form phrases (e.g. skyscraper, songwriter, or criminal) that describe appropriate types for the target entity. This formulation allows us to use a new type of distant supervision at large scale: head words, which indicate the type of the noun phrases they appear in. We show that these ultra-fine types can be crowd-sourced, and introduce new evaluation sets that are much more diverse and fine-grained than existing benchmarks. We present a model that can predict ultra-fine types, and is trained using a multitask objective that pools our new head-word supervision with prior supervision from entity linking. Experimental results demonstrate that our model is effective in predicting entity types at varying granularity; it achieves state of the art performance on an existing fine-grained entity typing benchmark, and sets baselines for our newly-introduced datasets.

pdf bib
Event2Mind: Commonsense Inference on Events, Intents, and Reactions
Hannah Rashkin | Maarten Sap | Emily Allaway | Noah A. Smith | Yejin Choi
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We investigate a new commonsense inference task: given an event described in a short free-form text (“X drinks coffee in the morning”), a system reasons about the likely intents (“X wants to stay awake”) and reactions (“X feels alert”) of the event’s participants. To support this study, we construct a new crowdsourced corpus of 25,000 event phrases covering a diverse range of everyday events and situations. We report baseline performance on this task, demonstrating that neural encoder-decoder models can successfully compose embedding representations of previously unseen events and reason about the likely intents and reactions of the event participants. In addition, we demonstrate how commonsense inference on people’s intents and reactions can help unveil the implicit gender inequality prevalent in modern movie scripts.

pdf bib
Learning to Write with Cooperative Discriminators
Ari Holtzman | Jan Buys | Maxwell Forbes | Antoine Bosselut | David Golub | Yejin Choi
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite their local fluency, long-form text generated from RNNs is often generic, repetitive, and even self-contradictory. We propose a unified learning framework that collectively addresses all the above issues by composing a committee of discriminators that can guide a base RNN generator towards more globally coherent generations. More concretely, discriminators each specialize in a different principle of communication, such as Grice’s maxims, and are collectively combined with the base RNN generator through a composite decoding objective. Human evaluation demonstrates that text generated by our model is preferred over that of baselines by a large margin, significantly enhancing the overall coherence, style, and information of the generations.

pdf bib
Modeling Naive Psychology of Characters in Simple Commonsense Stories
Hannah Rashkin | Antoine Bosselut | Maarten Sap | Kevin Knight | Yejin Choi
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Understanding a narrative requires reading between the lines and reasoning about the unspoken but obvious implications about events and people’s mental states — a capability that is trivial for humans but remarkably hard for machines. To facilitate research addressing this challenge, we introduce a new annotation framework to explain naive psychology of story characters as fully-specified chains of mental states with respect to motivations and emotional reactions. Our work presents a new large-scale dataset with rich low-level annotations and establishes baseline performance on several new tasks, suggesting avenues for future research.

pdf bib
Discourse-Aware Neural Rewards for Coherent Text Generation
Antoine Bosselut | Asli Celikyilmaz | Xiaodong He | Jianfeng Gao | Po-Sen Huang | Yejin Choi
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

In this paper, we investigate the use of discourse-aware rewards with reinforcement learning to guide a model to generate long, coherent text. In particular, we propose to learn neural rewards to model cross-sentence ordering as a means to approximate desired discourse structure. Empirical results demonstrate that a generator trained with the learned reward produces more coherent and less repetitive text than models trained with cross-entropy or with reinforcement learning with commonly used scores as rewards.

pdf bib
Deep Communicating Agents for Abstractive Summarization
Asli Celikyilmaz | Antoine Bosselut | Xiaodong He | Yejin Choi
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present deep communicating agents in an encoder-decoder architecture to address the challenges of representing a long document for abstractive summarization. With deep communicating agents, the task of encoding a long text is divided across multiple collaborating agents, each in charge of a subsection of the input text. These encoders are connected to a single decoder, trained end-to-end using reinforcement learning to generate a focused and coherent summary. Empirical results demonstrate that multiple communicating encoders lead to a higher quality summary compared to several strong baselines, including those based on a single encoder or multiple non-communicating encoders.

pdf bib
Neural Poetry Translation
Marjan Ghazvininejad | Yejin Choi | Kevin Knight
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

We present the first neural poetry translation system. Unlike previous works that often fail to produce any translation for fixed rhyme and rhythm patterns, our system always translates a source text to an English poem. Human evaluation of the translations ranks the quality as acceptable 78.2% of the time.

pdf bib
Sounding Board: A User-Centric and Content-Driven Social Chatbot
Hao Fang | Hao Cheng | Maarten Sap | Elizabeth Clark | Ari Holtzman | Yejin Choi | Noah A. Smith | Mari Ostendorf
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

We present Sounding Board, a social chatbot that won the 2017 Amazon Alexa Prize. The system architecture consists of several components including spoken language processing, dialogue management, language generation, and content management, with emphasis on user-centric and content-driven design. We also share insights gained from large-scale online logs based on 160,000 conversations with real-world users.

2017

pdf bib
Zero-Shot Activity Recognition with Verb Attribute Induction
Rowan Zellers | Yejin Choi
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

In this paper, we investigate large-scale zero-shot activity recognition by modeling the visual and linguistic attributes of action verbs. For example, the verb “salute” has several properties, such as being a light movement, a social act, and short in duration. We use these attributes as the internal mapping between visual and textual representations to reason about a previously unseen action. In contrast to much prior work that assumes access to gold standard attributes for zero-shot classes and focuses primarily on object attributes, our model uniquely learns to infer action attributes from dictionary definitions and distributed word representations. Experimental results confirm that action attributes inferred from language can provide a predictive signal for zero-shot prediction of previously unseen activities.

pdf bib
Dynamic Entity Representations in Neural Language Models
Yangfeng Ji | Chenhao Tan | Sebastian Martschat | Yejin Choi | Noah A. Smith
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Understanding a long document requires tracking how entities are introduced and evolve over time. We present a new type of language model, EntityNLM, that can explicitly model entities, dynamically update their representations, and contextually generate their mentions. Our model is generative and flexible; it can model an arbitrary number of entities in context while generating each entity mention at an arbitrary length. In addition, it can be used for several different tasks such as language modeling, coreference resolution, and entity prediction. Experimental results with all these tasks demonstrate that our model consistently outperforms strong baselines and prior work.

pdf bib
Connotation Frames of Power and Agency in Modern Films
Maarten Sap | Marcella Cindy Prasettio | Ari Holtzman | Hannah Rashkin | Yejin Choi
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

The framing of an action influences how we perceive its actor. We introduce connotation frames of power and agency, a pragmatic formalism organized using frame semantic representations, to model how different levels of power and agency are implicitly projected on actors through their actions. We use the new power and agency frames to measure the subtle, but prevalent, gender bias in the portrayal of modern film characters and provide insights that deviate from the well-known Bechdel test. Our contributions include an extended lexicon of connotation frames along with a web interface that provides a comprehensive analysis through the lens of connotation frames.

pdf bib
Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking
Hannah Rashkin | Eunsol Choi | Jin Yea Jang | Svitlana Volkova | Yejin Choi
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We present an analytic study on the language of news media in the context of political fact-checking and fake news detection. We compare the language of real news with that of satire, hoaxes, and propaganda to find linguistic characteristics of untrustworthy text. To probe the feasibility of automatic political fact-checking, we also present a case study based on PolitiFact.com using their factuality judgments on a 6-point scale. Experiments show that while media fact-checking remains to be an open research question, stylistic cues can help determine the truthfulness of text.

pdf bib
Neural AMR: Sequence-to-Sequence Models for Parsing and Generation
Ioannis Konstas | Srinivasan Iyer | Mark Yatskar | Yejin Choi | Luke Zettlemoyer
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Sequence-to-sequence models have shown strong performance across a broad range of applications. However, their application to parsing and generating text using Abstract Meaning Representation (AMR) has been limited, due to the relatively limited amount of labeled data and the non-sequential nature of the AMR graphs. We present a novel training procedure that can lift this limitation using millions of unlabeled sentences and careful preprocessing of the AMR graphs. For AMR parsing, our model achieves competitive results of 62.1 SMATCH, the current best score reported without significant use of external semantic resources. For AMR generation, our model establishes a new state-of-the-art performance of BLEU 33.8. We present extensive ablative and qualitative analysis including strong evidence that sequence-based AMR models are robust against ordering variations of graph-to-sequence conversions.

pdf bib
Verb Physics: Relative Physical Knowledge of Actions and Objects
Maxwell Forbes | Yejin Choi
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Learning commonsense knowledge from natural language text is nontrivial due to reporting bias: people rarely state the obvious, e.g., “My house is bigger than me.” However, while rarely stated explicitly, this trivial everyday knowledge does influence the way people talk about the world, which provides indirect clues to reason about the world. For example, a statement like, “Tyler entered his house” implies that his house is bigger than Tyler. In this paper, we present an approach to infer relative physical knowledge of actions and objects along five dimensions (e.g., size, weight, and strength) from unstructured natural language text. We frame knowledge acquisition as joint inference over two closely related problems: learning (1) relative physical knowledge of object pairs and (2) physical implications of actions when applied to those object pairs. Empirical results demonstrate that it is possible to extract knowledge of actions and objects from language and that joint inference over different types of knowledge improves performance.

pdf bib
Multilingual Connotation Frames: A Case Study on Social Media for Targeted Sentiment Analysis and Forecast
Hannah Rashkin | Eric Bell | Yejin Choi | Svitlana Volkova
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

People around the globe respond to major real world events through social media. To study targeted public sentiments across many languages and geographic locations, we introduce multilingual connotation frames: an extension from English connotation frames of Rashkin et al. (2016) with 10 additional European languages, focusing on the implied sentiments among event participants engaged in a frame. As a case study, we present large scale analysis on targeted public sentiments toward salient events and entities using 1.2 million multilingual connotation frames extracted from Twitter.

pdf bib
Story Cloze Task: UW NLP System
Roy Schwartz | Maarten Sap | Ioannis Konstas | Leila Zilles | Yejin Choi | Noah A. Smith
Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics

This paper describes University of Washington NLP’s submission for the Linking Models of Lexical, Sentential and Discourse-level Semantics (LSDSem 2017) shared task—the Story Cloze Task. Our system is a linear classifier with a variety of features, including both the scores of a neural language model and style features. We report 75.2% accuracy on the task. A further discussion of our results can be found in Schwartz et al. (2017).

pdf bib
The Effect of Different Writing Tasks on Linguistic Style: A Case Study of the ROC Story Cloze Task
Roy Schwartz | Maarten Sap | Ioannis Konstas | Leila Zilles | Yejin Choi | Noah A. Smith
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)

A writer’s style depends not just on personal traits but also on her intent and mental state. In this paper, we show how variants of the same writing task can lead to measurable differences in writing style. We present a case study based on the story cloze task (Mostafazadeh et al., 2016a), where annotators were assigned similar writing tasks with different constraints: (1) writing an entire story, (2) adding a story ending for a given story context, and (3) adding an incoherent ending to a story. We show that a simple linear classifier informed by stylistic features is able to successfully distinguish among the three cases, without even looking at the story context. In addition, combining our stylistic features with language model predictions reaches state of the art performance on the story cloze challenge. Our results demonstrate that different task framings can dramatically affect the way people write.

2016

pdf bib
Sketch-to-Text Generation: Toward Contextual, Creative, and Coherent Composition
Yejin Choi
Proceedings of the 9th International Natural Language Generation conference

pdf bib
Globally Coherent Text Generation with Neural Checklist Models
Chloé Kiddon | Luke Zettlemoyer | Yejin Choi
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Generating Topical Poetry
Marjan Ghazvininejad | Xing Shi | Yejin Choi | Kevin Knight
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Connotation Frames: A Data-Driven Investigation
Hannah Rashkin | Sameer Singh | Yejin Choi
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Document-level Sentiment Inference with Social, Faction, and Discourse Context
Eunsol Choi | Hannah Rashkin | Luke Zettlemoyer | Yejin Choi
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Learning Prototypical Event Structure from Photo Albums
Antoine Bosselut | Jianfu Chen | David Warren | Hannaneh Hajishirzi | Yejin Choi
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Mise en Place: Unsupervised Interpretation of Instructional Recipes
Chloé Kiddon | Ganesa Thandavam Ponnuraj | Luke Zettlemoyer | Yejin Choi
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Event Detection and Factuality Assessment with Non-Expert Supervision
Kenton Lee | Yoav Artzi | Yejin Choi | Luke Zettlemoyer
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Déjà Image-Captions: A Corpus of Expressive Descriptions in Repetition
Jianfu Chen | Polina Kuznetsova | David Warren | Yejin Choi
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2014

pdf bib
ConnotationWordNet: Learning Connotation over the Word+Sense Network
Jun Seok Kang | Song Feng | Leman Akoglu | Yejin Choi
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
TreeTalk: Composition and Compression of Trees for Image Descriptions
Polina Kuznetsova | Vicente Ordonez | Tamara L. Berg | Yejin Choi
Transactions of the Association for Computational Linguistics, Volume 2

We present a new tree based approach to composing expressive image descriptions that makes use of naturally occuring web images with captions. We investigate two related tasks: image caption generalization and generation, where the former is an optional subtask of the latter. The high-level idea of our approach is to harvest expressive phrases (as tree fragments) from existing image descriptions, then to compose a new description by selectively combining the extracted (and optionally pruned) tree fragments. Key algorithmic components are tree composition and compression, both integrating tree structure with sequence structure. Our proposed system attains significantly better performance than previous approaches for both image caption generalization and generation. In addition, our work is the first to show the empirical benefit of automatically generalized captions for composing natural image descriptions.

pdf bib
Keystroke Patterns as Prosody in Digital Writings: A Case Study with Deceptive Reviews and Essays
Ritwik Banerjee | Song Feng | Jun Seok Kang | Yejin Choi
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2013

pdf bib
Understanding and Quantifying Creativity in Lexical Composition
Polina Kuznetsova | Jianfu Chen | Yejin Choi
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Where Not to Eat? Improving Public Policy by Predicting Hygiene Inspections Using Online Reviews
Jun Seok Kang | Polina Kuznetsova | Michael Luca | Yejin Choi
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Success with Style: Using Writing Style to Predict the Success of Novels
Vikas Ganjigunte Ashok | Song Feng | Yejin Choi
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Connotation Lexicon: A Dash of Sentiment Beneath the Surface Meaning
Song Feng | Jun Seok Kang | Polina Kuznetsova | Yejin Choi
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Generalizing Image Captions for Image-Text Parallel Corpus
Polina Kuznetsova | Vicente Ordonez | Alexander Berg | Tamara Berg | Yejin Choi
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2012

pdf bib
Collective Generation of Natural Image Descriptions
Polina Kuznetsova | Vicente Ordonez | Alexander Berg | Tamara Berg | Yejin Choi
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Syntactic Stylometry for Deception Detection
Song Feng | Ritwik Banerjee | Yejin Choi
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
Detecting Visual Text
Jesse Dodge | Amit Goyal | Xufeng Han | Alyssa Mensch | Margaret Mitchell | Karl Stratos | Kota Yamaguchi | Yejin Choi | Hal Daumé III | Alex Berg | Tamara Berg
Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Characterizing Stylistic Elements in Syntactic Structure
Song Feng | Ritwik Banerjee | Yejin Choi
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

2011

pdf bib
Finding Deceptive Opinion Spam by Any Stretch of the Imagination
Myle Ott | Yejin Choi | Claire Cardie | Jeffrey T. Hancock
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Language of Vandalism: Improving Wikipedia Vandalism Detection via Stylometric Analysis
Manoj Harpalani | Michael Hart | Sandesh Singh | Rob Johnson | Yejin Choi
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Learning General Connotation of Words using Graph-based Algorithms
Song Feng | Ritwik Bose | Yejin Choi
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing

pdf bib
Domain Independent Authorship Attribution without Domain Adaptation
Rohith Menon | Yejin Choi
Proceedings of the International Conference Recent Advances in Natural Language Processing 2011

pdf bib
Gender Attribution: Tracing Stylometric Evidence Beyond Topic and Genre
Ruchita Sarawgi | Kailash Gajulapalli | Yejin Choi
Proceedings of the Fifteenth Conference on Computational Natural Language Learning

pdf bib
Composing Simple Image Descriptions using Web-scale N-grams
Siming Li | Girish Kulkarni | Tamara L Berg | Alexander C Berg | Yejin Choi
Proceedings of the Fifteenth Conference on Computational Natural Language Learning

2010

pdf bib
Hierarchical Sequential Learning for Extracting Opinions and Their Attributes
Yejin Choi | Claire Cardie
Proceedings of the ACL 2010 Conference Short Papers

pdf bib
Automatically Generating Annotator Rationales to Improve Sentiment Classification
Ainur Yessenalina | Yejin Choi | Claire Cardie
Proceedings of the ACL 2010 Conference Short Papers

2009

pdf bib
Adapting a Polarity Lexicon using Integer Linear Programming for Domain-Specific Sentiment Classification
Yejin Choi | Claire Cardie
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing

2008

pdf bib
Learning with Compositional Semantics as Structural Inference for Subsentential Sentiment Analysis
Yejin Choi | Claire Cardie
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing

2007

pdf bib
Structured Local Training and Biased Potential Functions for Conditional Random Fields with Application to Coreference Resolution
Yejin Choi | Claire Cardie
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference

2006

pdf bib
Joint Extraction of Entities and Relations for Opinion Recognition
Yejin Choi | Eric Breck | Claire Cardie
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing

2005

pdf bib
Identifying Sources of Opinions with Conditional Random Fields and Extraction Patterns
Yejin Choi | Claire Cardie | Ellen Riloff | Siddharth Patwardhan
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing

pdf bib
OpinionFinder: A System for Subjectivity Analysis
Theresa Wilson | Paul Hoffmann | Swapna Somasundaran | Jason Kessler | Janyce Wiebe | Yejin Choi | Claire Cardie | Ellen Riloff | Siddharth Patwardhan
Proceedings of HLT/EMNLP 2005 Interactive Demonstrations

Search
Co-authors