Yefeng Zheng


2021

pdf bib
OntoEA: Ontology-guided Entity Alignment via Joint Knowledge Graph Embedding
Yuejia Xiang | Ziheng Zhang | Jiaoyan Chen | Xi Chen | Zhenxi Lin | Yefeng Zheng
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Refining BERT Embeddings for Document Hashing via Mutual Information Maximization
Zijing Ou | Qinliang Su | Jianxing Yu | Ruihui Zhao | Yefeng Zheng | Bang Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Existing unsupervised document hashing methods are mostly established on generative models. Due to the difficulties of capturing long dependency structures, these methods rarely model the raw documents directly, but instead to model the features extracted from them (e.g. bag-of-words (BOG), TFIDF). In this paper, we propose to learn hash codes from BERT embeddings after observing their tremendous successes on downstream tasks. As a first try, we modify existing generative hashing models to accommodate the BERT embeddings. However, little improvement is observed over the codes learned from the old BOG or TFIDF features. We attribute this to the reconstruction requirement in the generative hashing, which will enforce irrelevant information that is abundant in the BERT embeddings also compressed into the codes. To remedy this issue, a new unsupervised hashing paradigm is further proposed based on the mutual information (MI) maximization principle. Specifically, the method first constructs appropriate global and local codes from the documents and then seeks to maximize their mutual information. Experimental results on three benchmark datasets demonstrate that the proposed method is able to generate hash codes that outperform existing ones learned from BOG features by a substantial margin.

pdf bib
Imperfect also Deserves Reward: Multi-Level and Sequential Reward Modeling for Better Dialog Management
Zhengxu Hou | Bang Liu | Ruihui Zhao | Zijing Ou | Yafei Liu | Xi Chen | Yefeng Zheng
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

For task-oriented dialog systems, training a Reinforcement Learning (RL) based Dialog Management module suffers from low sample efficiency and slow convergence speed due to the sparse rewards in RL. To solve this problem, many strategies have been proposed to give proper rewards when training RL, but their rewards lack interpretability and cannot accurately estimate the distribution of state-action pairs in real dialogs. In this paper, we propose a multi-level reward modeling approach that factorizes a reward into a three-level hierarchy: domain, act, and slot. Based on inverse adversarial reinforcement learning, our designed reward model can provide more accurate and explainable reward signals for state-action pairs. Extensive evaluations show that our approach can be applied to a wide range of reinforcement learning-based dialog systems and significantly improves both the performance and the speed of convergence.

pdf bib
Integrating Semantics and Neighborhood Information with Graph-Driven Generative Models for Document Retrieval
Zijing Ou | Qinliang Su | Jianxing Yu | Bang Liu | Jingwen Wang | Ruihui Zhao | Changyou Chen | Yefeng Zheng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

With the need of fast retrieval speed and small memory footprint, document hashing has been playing a crucial role in large-scale information retrieval. To generate high-quality hashing code, both semantics and neighborhood information are crucial. However, most existing methods leverage only one of them or simply combine them via some intuitive criteria, lacking a theoretical principle to guide the integration process. In this paper, we encode the neighborhood information with a graph-induced Gaussian distribution, and propose to integrate the two types of information with a graph-driven generative model. To deal with the complicated correlations among documents, we further propose a tree-structured approximation method for learning. Under the approximation, we prove that the training objective can be decomposed into terms involving only singleton or pairwise documents, enabling the model to be trained as efficiently as uncorrelated ones. Extensive experimental results on three benchmark datasets show that our method achieves superior performance over state-of-the-art methods, demonstrating the effectiveness of the proposed model for simultaneously preserving semantic and neighborhood information.

pdf bib
Guiding the Growth: Difficulty-Controllable Question Generation through Step-by-Step Rewriting
Yi Cheng | Siyao Li | Bang Liu | Ruihui Zhao | Sujian Li | Chenghua Lin | Yefeng Zheng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper explores the task of Difficulty-Controllable Question Generation (DCQG), which aims at generating questions with required difficulty levels. Previous research on this task mainly defines the difficulty of a question as whether it can be correctly answered by a Question Answering (QA) system, lacking interpretability and controllability. In our work, we redefine question difficulty as the number of inference steps required to answer it and argue that Question Generation (QG) systems should have stronger control over the logic of generated questions. To this end, we propose a novel framework that progressively increases question difficulty through step-by-step rewriting under the guidance of an extracted reasoning chain. A dataset is automatically constructed to facilitate the research, on which extensive experiments are conducted to test the performance of our method.

pdf bib
PRGC: Potential Relation and Global Correspondence Based Joint Relational Triple Extraction
Hengyi Zheng | Rui Wen | Xi Chen | Yifan Yang | Yunyan Zhang | Ziheng Zhang | Ningyu Zhang | Bin Qin | Xu Ming | Yefeng Zheng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Joint extraction of entities and relations from unstructured texts is a crucial task in information extraction. Recent methods achieve considerable performance but still suffer from some inherent limitations, such as redundancy of relation prediction, poor generalization of span-based extraction and inefficiency. In this paper, we decompose this task into three subtasks, Relation Judgement, Entity Extraction and Subject-object Alignment from a novel perspective and then propose a joint relational triple extraction framework based on Potential Relation and Global Correspondence (PRGC). Specifically, we design a component to predict potential relations, which constrains the following entity extraction to the predicted relation subset rather than all relations; then a relation-specific sequence tagging component is applied to handle the overlapping problem between subjects and objects; finally, a global correspondence component is designed to align the subject and object into a triple with low-complexity. Extensive experiments show that PRGC achieves state-of-the-art performance on public benchmarks with higher efficiency and delivers consistent performance gain on complex scenarios of overlapping triples. The source code has been submitted as the supplementary material and will be made publicly available after the blind review.

pdf bib
CONNER: A Cascade Count and Measurement Extraction Tool for Scientific Discourse
Jiarun Cao | Yuejia Xiang | Yunyan Zhang | Zhiyuan Qi | Xi Chen | Yefeng Zheng
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents our wining contribution to SemEval 2021 Task 8: MeasEval. The purpose of this task is identifying the counts and measurements from clinical scientific discourse, including quantities, entities, properties, qualifiers, units, modifiers, and their mutual relations. This task can be induced to a joint entity and relation extraction problem. Accordingly, we propose CONNER, a cascade count and measurement extraction tool that can identify entities and the corresponding relations in a two-step pipeline model. We provide a detailed description of the proposed model hereinafter. Furthermore, the impact of the essential modules and our in-process technical schemes are also investigated.

2020

pdf bib
An Industry Evaluation of Embedding-based Entity Alignment
Ziheng Zhang | Hualuo Liu | Jiaoyan Chen | Xi Chen | Bo Liu | YueJia Xiang | Yefeng Zheng
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track

Embedding-based entity alignment has been widely investigated in recent years, but most proposed methods still rely on an ideal supervised learning setting with a large number of unbiased seed mappings for training and validation, which significantly limits their usage. In this study, we evaluate those state-of-the-art methods in an industrial context, where the impact of seed mappings with different sizes and different biases is explored. Besides the popular benchmarks from DBpedia and Wikidata, we contribute and evaluate a new industrial benchmark that is extracted from two heterogeneous knowledge graphs (KGs) under deployment for medical applications. The experimental results enable the analysis of the advantages and disadvantages of these alignment methods and the further discussion of suitable strategies for their industrial deployment.