Automatic abstractive summaries are found to often distort or fabricate facts in the article. This inconsistency between summary and original text has seriously impacted its applicability. We propose a fact-aware summarization model FASum to extract and integrate factual relations into the summary generation process via graph attention. We then design a factual corrector model FC to automatically correct factual errors from summaries generated by existing systems. Empirical results show that the fact-aware summarization can produce abstractive summaries with higher factual consistency compared with existing systems, and the correction model improves the factual consistency of given summaries via modifying only a few keywords.
Cross-lingual Summarization (CLS) aims at producing a summary in the target language for an article in the source language. Traditional solutions employ a two-step approach, i.e. translate -> summarize or summarize -> translate. Recently, end-to-end models have achieved better results, but these approaches are mostly limited by their dependence on large-scale labeled data. We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks such as translation and monolingual tasks like masked language models. Thus, our model can leverage the massive monolingual data to enhance its modeling of language. Moreover, the architecture has no task-specific components, which saves memory and increases optimization efficiency. We show in experiments that this pre-training scheme can effectively boost the performance of cross-lingual summarization. In NCLS dataset, our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
With the abundance of automatic meeting transcripts, meeting summarization is of great interest to both participants and other parties. Traditional methods of summarizing meetings depend on complex multi-step pipelines that make joint optimization intractable. Meanwhile, there are a handful of deep neural models for text summarization and dialogue systems. However, the semantic structure and styles of meeting transcripts are quite different from articles and conversations. In this paper, we propose a novel abstractive summary network that adapts to the meeting scenario. We design a hierarchical structure to accommodate long meeting transcripts and a role vector to depict the difference among speakers. Furthermore, due to the inadequacy of meeting summary data, we pretrain the model on large-scale news summary data. Empirical results show that our model outperforms previous approaches in both automatic metrics and human evaluation. For example, on ICSI dataset, the ROUGE-1 score increases from 34.66% to 46.28%.
Text summarization aims to extract essential information from a piece of text and transform the text into a concise version. Existing unsupervised abstractive summarization models leverage recurrent neural networks framework while the recently proposed transformer exhibits much more capability. Moreover, most of previous summarization models ignore abundant unlabeled corpora resources available for pretraining. In order to address these issues, we propose TED, a transformer-based unsupervised abstractive summarization system with pretraining on large-scale data. We first leverage the lead bias in news articles to pretrain the model on millions of unlabeled corpora. Next, we finetune TED on target domains through theme modeling and a denoising autoencoder to enhance the quality of generated summaries. Notably, TED outperforms all unsupervised abstractive baselines on NYT, CNN/DM and English Gigaword datasets with various document styles. Further analysis shows that the summaries generated by TED are highly abstractive, and each component in the objective function of TED is highly effective.
Dialogue state tracking is an important component in task-oriented dialogue systems to identify users’ goals and requests as a dialogue proceeds. However, as most previous models are dependent on dialogue slots, the model complexity soars when the number of slots increases. In this paper, we put forward a slot-independent neural model (SIM) to track dialogue states while keeping the model complexity invariant to the number of dialogue slots. The model utilizes attention mechanisms between user utterance and system actions. SIM achieves state-of-the-art results on WoZ and DSTC2 tasks, with only 20% of the model size of previous models.
In task-oriented dialogues, Natural Language Generation (NLG) is the final yet crucial step to produce user-facing system utterances. The result of NLG is directly related to the perceived quality and usability of a dialogue system. While most existing systems provide semantically correct responses given goals to present, they struggle to match the variation and fluency in the human language. In this paper, we propose a novel multi-task learning framework, NLG-LM, for natural language generation. In addition to generating high-quality responses conveying the required information, it also explicitly targets for naturalness in generated responses via an unconditioned language model. This can significantly improve the learning of style and variation in human language. Empirical results show that this multi-task learning framework outperforms previous models across multiple datasets. For example, it improves the previous best BLEU score on the E2E-NLG dataset by 2.2%, and on the Laptop dataset by 6.1%.