Unsupervised commonsense question answering is appealing since it does not rely on any labeled task data. Among existing work, a popular solution is to use pre-trained language models to score candidate choices directly conditioned on the question or context. However, such scores from language models can be easily affected by irrelevant factors, such as word frequencies, sentence structures, etc. These distracting factors may not only mislead the model to choose a wrong answer but also make it oversensitive to lexical perturbations in candidate answers. In this paper, we present a novel SEmantic-based Question Answering method (SEQA) for unsupervised commonsense question answering. Instead of directly scoring each answer choice, our method first generates a set of plausible answers with generative models (e.g., GPT-2), and then uses these plausible answers to select the correct choice by considering the semantic similarity between each plausible answer and each choice. We devise a simple, yet sound formalism for this idea and verify its effectiveness and robustness with extensive experiments. We evaluate the proposed method on four benchmark datasets, and our method achieves the best results in unsupervised settings. Moreover, when attacked by TextFooler with synonym replacement, SEQA demonstrates much less performance drops than baselines, thereby indicating stronger robustness.
Generating informative and appropriate responses is challenging but important for building human-like dialogue systems. Although various knowledge-grounded conversation models have been proposed, these models have limitations in utilizing knowledge that infrequently occurs in the training data, not to mention integrating unseen knowledge into conversation generation. In this paper, we propose an Entity-Agnostic Representation Learning (EARL) method to introduce knowledge graphs to informative conversation generation. Unlike traditional approaches that parameterize the specific representation for each entity, EARL utilizes the context of conversations and the relational structure of knowledge graphs to learn the category representation for entities, which is generalized to incorporating unseen entities in knowledge graphs into conversation generation. Automatic and manual evaluations demonstrate that our model can generate more informative, coherent, and natural responses than baseline models.
Further pre-training language models on in-domain data (domain-adaptive pre-training, DAPT) or task-relevant data (task-adaptive pre-training, TAPT) before fine-tuning has been shown to improve downstream tasks’ performances. However, in task-oriented dialog modeling, we observe that further pre-training MLM does not always boost the performance on a downstream task. We find that DAPT is beneficial in the low-resource setting, but as the fine-tuning data size grows, DAPT becomes less beneficial or even useless, and scaling the size of DAPT data does not help. Through Representational Similarity Analysis, we conclude that more data for fine-tuning yields greater change of the model’s representations and thus reduces the influence of initialization.
Most existing approaches for goal-oriented dialogue policy learning used reinforcement learning, which focuses on the target agent policy and simply treats the opposite agent policy as part of the environment. While in real-world scenarios, the behavior of an opposite agent often exhibits certain patterns or underlies hidden policies, which can be inferred and utilized by the target agent to facilitate its own decision making. This strategy is common in human mental simulation by first imaging a specific action and the probable results before really acting it. We therefore propose an opposite behavior aware framework for policy learning in goal-oriented dialogues. We estimate the opposite agent’s policy from its behavior and use this estimation to improve the target agent by regarding it as part of the target policy. We evaluate our model on both cooperative and competitive dialogue tasks, showing superior performance over state-of-the-art baselines.
Despite the success of generative pre-trained language models on a series of text generation tasks, they still suffer in cases where reasoning over underlying commonsense knowledge is required during generation. Existing approaches that integrate commonsense knowledge into generative pre-trained language models simply transfer relational knowledge by post-training on individual knowledge triples while ignoring rich connections within the knowledge graph. We argue that exploiting both the structural and semantic information of the knowledge graph facilitates commonsense-aware text generation. In this paper, we propose Generation with Multi-Hop Reasoning Flow (GRF) that enables pre-trained models with dynamic multi-hop reasoning on multi-relational paths extracted from the external commonsense knowledge graph. We empirically show that our model outperforms existing baselines on three text generation tasks that require reasoning over commonsense knowledge. We also demonstrate the effectiveness of the dynamic multi-hop reasoning module with reasoning paths inferred by the model that provide rationale to the generation.
Most of the existing pre-trained language representation models neglect to consider the linguistic knowledge of texts, which can promote language understanding in NLP tasks. To benefit the downstream tasks in sentiment analysis, we propose a novel language representation model called SentiLARE, which introduces word-level linguistic knowledge including part-of-speech tag and sentiment polarity (inferred from SentiWordNet) into pre-trained models. We first propose a context-aware sentiment attention mechanism to acquire the sentiment polarity of each word with its part-of-speech tag by querying SentiWordNet. Then, we devise a new pre-training task called label-aware masked language model to construct knowledge-aware language representation. Experiments show that SentiLARE obtains new state-of-the-art performance on a variety of sentiment analysis tasks.
Story generation, namely, generating a reasonable story from a leading context, is an important but challenging task. In spite of the success in modeling fluency and local coherence, existing neural language generation models (e.g., GPT-2) still suffer from repetition, logic conflicts, and lack of long-range coherence in generated stories. We conjecture that this is because of the difficulty of associating relevant commonsense knowledge, understanding the causal relationships, and planning entities and events with proper temporal order. In this paper, we devise a knowledge-enhanced pretraining model for commonsense story generation. We propose to utilize commonsense knowledge from external knowledge bases to generate reasonable stories. To further capture the causal and temporal dependencies between the sentences in a reasonable story, we use multi-task learning, which combines a discriminative objective to distinguish true and fake stories during fine-tuning. Automatic and manual evaluation shows that our model can generate more reasonable stories than state-of-the-art baselines, particularly in terms of logic and global coherence.
To advance multi-domain (cross-domain) dialogue modeling as well as alleviate the shortage of Chinese task-oriented datasets, we propose CrossWOZ, the first large-scale Chinese Cross-Domain Wizard-of-Oz task-oriented dataset. It contains 6K dialogue sessions and 102K utterances for 5 domains, including hotel, restaurant, attraction, metro, and taxi. Moreover, the corpus contains rich annotation of dialogue states and dialogue acts on both user and system sides. About 60% of the dialogues have cross-domain user goals that favor inter-domain dependency and encourage natural transition across domains in conversation. We also provide a user simulator and several benchmark models for pipelined task-oriented dialogue systems, which will facilitate researchers to compare and evaluate their models on this corpus. The large size and rich annotation of CrossWOZ make it suitable to investigate a variety of tasks in cross-domain dialogue modeling, such as dialogue state tracking, policy learning, user simulation, etc.
The research of knowledge-driven conversational systems is largely limited due to the lack of dialog data which consists of multi-turn conversations on multiple topics and with knowledge annotations. In this paper, we propose a Chinese multi-domain knowledge-driven conversation dataset, KdConv, which grounds the topics in multi-turn conversations to knowledge graphs. Our corpus contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics. To facilitate the following research on this corpus, we provide several benchmark models. Comparative results show that the models can be enhanced by introducing background knowledge, yet there is still a large space for leveraging knowledge to model multi-turn conversations for further research. Results also show that there are obvious performance differences between different domains, indicating that it is worth further explore transfer learning and domain adaptation. The corpus and benchmark models are publicly available.
We present ConvLab-2, an open-source toolkit that enables researchers to build task-oriented dialogue systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. As the successor of ConvLab, ConvLab-2 inherits ConvLab’s framework but integrates more powerful dialogue models and supports more datasets. Besides, we have developed an analysis tool and an interactive tool to assist researchers in diagnosing dialogue systems. The analysis tool presents rich statistics and summarizes common mistakes from simulated dialogues, which facilitates error analysis and system improvement. The interactive tool provides an user interface that allows developers to diagnose an assembled dialogue system by interacting with the system and modifying the output of each system component.
Existing neural methods for data-to-text generation are still struggling to produce long and diverse texts: they are insufficient to model input data dynamically during generation, to capture inter-sentence coherence, or to generate diversified expressions. To address these issues, we propose a Planning-based Hierarchical Variational Model (PHVM). Our model first plans a sequence of groups (each group is a subset of input items to be covered by a sentence) and then realizes each sentence conditioned on the planning result and the previously generated context, thereby decomposing long text generation into dependent sentence generation sub-tasks. To capture expression diversity, we devise a hierarchical latent structure where a global planning latent variable models the diversity of reasonable planning and a sequence of local latent variables controls sentence realization. Experiments show that our model outperforms state-of-the-art baselines in long and diverse text generation.
Most of the existing generative adversarial networks (GAN) for text generation suffer from the instability of reinforcement learning training algorithms such as policy gradient, leading to unstable performance. To tackle this problem, we propose a novel framework called Adversarial Reward Augmented Maximum Likelihood (ARAML). During adversarial training, the discriminator assigns rewards to samples which are acquired from a stationary distribution near the data rather than the generator’s distribution. The generator is optimized with maximum likelihood estimation augmented by the discriminator’s rewards instead of policy gradient. Experiments show that our model can outperform state-of-the-art text GANs with a more stable training process.
Sentence function is a significant factor to achieve the purpose of the speaker, which, however, has not been touched in large-scale conversation generation so far. In this paper, we present a model to generate informative responses with controlled sentence function. Our model utilizes a continuous latent variable to capture various word patterns that realize the expected sentence function, and introduces a type controller to deal with the compatibility of controlling sentence function and generating informative content. Conditioned on the latent variable, the type controller determines the type (i.e., function-related, topic, and ordinary word) of a word to be generated at each decoding position. Experiments show that our model outperforms state-of-the-art baselines, and it has the ability to generate responses with both controlled sentence function and informative content.
Sentence compression condenses a sentence while preserving its most important contents. Delete-based models have the strong ability to delete undesired words, while generate-based models are able to reorder or rephrase the words, which are more coherent to human sentence compression. In this paper, we propose Operation Network, a neural network approach for abstractive sentence compression, which combines the advantages of both delete-based and generate-based sentence compression models. The central idea of Operation Network is to model the sentence compression process as an editing procedure. First, unnecessary words are deleted from the source sentence, then new words are either generated from a large vocabulary or copied directly from the source sentence. A compressed sentence can be obtained by a series of such edit operations (delete, copy and generate). Experiments show that Operation Network outperforms state-of-the-art baselines.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
This paper deals with sentence-level sentiment classification. Though a variety of neural network models have been proposed recently, however, previous models either depend on expensive phrase-level annotation, most of which has remarkably degraded performance when trained with only sentence-level annotation; or do not fully employ linguistic resources (e.g., sentiment lexicons, negation words, intensity words). In this paper, we propose simple models trained with sentence-level annotation, but also attempt to model the linguistic role of sentiment lexicons, negation words, and intensity words. Results show that our models are able to capture the linguistic role of sentiment words, negation words, and intensity words in sentiment expression.
Knowledge embedding, which projects triples in a given knowledge base to d-dimensional vectors, has attracted considerable research efforts recently. Most existing approaches treat the given knowledge base as a set of triplets, each of whose representation is then learned separately. However, as a fact, triples are connected and depend on each other. In this paper, we propose a graph aware knowledge embedding method (GAKE), which formulates knowledge base as a directed graph, and learns representations for any vertices or edges by leveraging the graph’s structural information. We introduce three types of graph context for embedding: neighbor context, path context, and edge context, each reflects properties of knowledge from different perspectives. We also design an attention mechanism to learn representative power of different vertices or edges. To validate our method, we conduct several experiments on two tasks. Experimental results suggest that our method outperforms several state-of-art knowledge embedding models.
We propose a phrase-based approach for generating product review summaries. The main idea of our method is to leverage phrase properties to choose a subset of optimal phrases for generating the final summary. Specifically, we exploit two phrase properties, popularity and specificity. Popularity describes how popular the phrase is in the original reviews. Specificity describes how descriptive a phrase is in comparison to generic comments. We formalize the phrase selection procedure as an optimization problem and solve it using integer linear programming (ILP). An aspect-based bigram language model is used for generating the final summary with the selected phrases. Experiments show that our summarizer outperforms the other baselines.
Natural language generation (NLG) is an important component of question answering(QA) systems which has a significant impact on system quality. Most tranditional QA systems based on templates or rules tend to generate rigid and stylised responses without the natural variation of human language. Furthermore, such methods need an amount of work to generate the templates or rules. To address this problem, we propose a Context-Aware LSTM model for NLG. The model is completely driven by data without manual designed templates or rules. In addition, the context information, including the question to be answered, semantic values to be addressed in the response, and the dialogue act type during interaction, are well approached in the neural network model, which enables the model to produce variant and informative responses. The quantitative evaluation and human evaluation show that CA-LSTM obtains state-of-the-art performance.