Xiaofei Ma


2021

pdf bib
Contrastive Fine-tuning Improves Robustness for Neural Rankers
Xiaofei Ma | Cicero Nogueira dos Santos | Andrew O. Arnold
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Contrastive Document Representation Learning with Graph Attention Networks
Peng Xu | Xinchi Chen | Xiaofei Ma | Zhiheng Huang | Bing Xiang
Findings of the Association for Computational Linguistics: EMNLP 2021

Recent progress in pretrained Transformer-based language models has shown great success in learning contextual representation of text. However, due to the quadratic self-attention complexity, most of the pretrained Transformers models can only handle relatively short text. It is still a challenge when it comes to modeling very long documents. In this work, we propose to use a graph attention network on top of the available pretrained Transformers model to learn document embeddings. This graph attention network allows us to leverage the high-level semantic structure of the document. In addition, based on our graph document model, we design a simple contrastive learning strategy to pretrain our models on a large amount of unlabeled corpus. Empirically, we demonstrate the effectiveness of our approaches in document classification and document retrieval tasks.

2020

pdf bib
Beyond [CLS] through Ranking by Generation
Cicero Nogueira dos Santos | Xiaofei Ma | Ramesh Nallapati | Zhiheng Huang | Bing Xiang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Generative models for Information Retrieval, where ranking of documents is viewed as the task of generating a query from a document’s language model, were very successful in various IR tasks in the past. However, with the advent of modern deep neural networks, attention has shifted to discriminative ranking functions that model the semantic similarity of documents and queries instead. Recently, deep generative models such as GPT2 and BART have been shown to be excellent text generators, but their effectiveness as rankers have not been demonstrated yet. In this work, we revisit the generative framework for information retrieval and show that our generative approaches are as effective as state-of-the-art semantic similarity-based discriminative models for the answer selection task. Additionally, we demonstrate the effectiveness of unlikelihood losses for IR.

2019

pdf bib
Multi-passage BERT: A Globally Normalized BERT Model for Open-domain Question Answering
Zhiguo Wang | Patrick Ng | Xiaofei Ma | Ramesh Nallapati | Bing Xiang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

BERT model has been successfully applied to open-domain QA tasks. However, previous work trains BERT by viewing passages corresponding to the same question as independent training instances, which may cause incomparable scores for answers from different passages. To tackle this issue, we propose a multi-passage BERT model to globally normalize answer scores across all passages of the same question, and this change enables our QA model find better answers by utilizing more passages. In addition, we find that splitting articles into passages with the length of 100 words by sliding window improves performance by 4%. By leveraging a passage ranker to select high-quality passages, multi-passage BERT gains additional 2%. Experiments on four standard benchmarks showed that our multi-passage BERT outperforms all state-of-the-art models on all benchmarks. In particular, on the OpenSQuAD dataset, our model gains 21.4% EM and 21.5% F1 over all non-BERT models, and 5.8% EM and 6.5% F1 over BERT-based models.

pdf bib
Domain Adaptation with BERT-based Domain Classification and Data Selection
Xiaofei Ma | Peng Xu | Zhiguo Wang | Ramesh Nallapati | Bing Xiang
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

The performance of deep neural models can deteriorate substantially when there is a domain shift between training and test data. For example, the pre-trained BERT model can be easily fine-tuned with just one additional output layer to create a state-of-the-art model for a wide range of tasks. However, the fine-tuned BERT model suffers considerably at zero-shot when applied to a different domain. In this paper, we present a novel two-step domain adaptation framework based on curriculum learning and domain-discriminative data selection. The domain adaptation is conducted in a mostly unsupervised manner using a small target domain validation set for hyper-parameter tuning. We tested the framework on four large public datasets with different domain similarities and task types. Our framework outperforms a popular discrepancy-based domain adaptation method on most transfer tasks while consuming only a fraction of the training budget.