Xiang Lin


2021

pdf bib
Rethinking Coherence Modeling: Synthetic vs. Downstream Tasks
Tasnim Mohiuddin | Prathyusha Jwalapuram | Xiang Lin | Shafiq Joty
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Although coherence modeling has come a long way in developing novel models, their evaluation on downstream applications for which they are purportedly developed has largely been neglected. With the advancements made by neural approaches in applications such as machine translation (MT), summarization and dialog systems, the need for coherence evaluation of these tasks is now more crucial than ever. However, coherence models are typically evaluated only on synthetic tasks, which may not be representative of their performance in downstream applications. To investigate how representative the synthetic tasks are of downstream use cases, we conduct experiments on benchmarking well-known traditional and neural coherence models on synthetic sentence ordering tasks, and contrast this with their performance on three downstream applications: coherence evaluation for MT and summarization, and next utterance prediction in retrieval-based dialog. Our results demonstrate a weak correlation between the model performances in the synthetic tasks and the downstream applications, motivating alternate training and evaluation methods for coherence models.

2019

pdf bib
A Unified Linear-Time Framework for Sentence-Level Discourse Parsing
Xiang Lin | Shafiq Joty | Prathyusha Jwalapuram | M Saiful Bari
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We propose an efficient neural framework for sentence-level discourse analysis in accordance with Rhetorical Structure Theory (RST). Our framework comprises a discourse segmenter to identify the elementary discourse units (EDU) in a text, and a discourse parser that constructs a discourse tree in a top-down fashion. Both the segmenter and the parser are based on Pointer Networks and operate in linear time. Our segmenter yields an F1 score of 95.4%, and our parser achieves an F1 score of 81.7% on the aggregated labeled (relation) metric, surpassing previous approaches by a good margin and approaching human agreement on both tasks (98.3 and 83.0 F1).

pdf bib
Hierarchical Pointer Net Parsing
Linlin Liu | Xiang Lin | Shafiq Joty | Simeng Han | Lidong Bing
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Transition-based top-down parsing with pointer networks has achieved state-of-the-art results in multiple parsing tasks, while having a linear time complexity. However, the decoder of these parsers has a sequential structure, which does not yield the most appropriate inductive bias for deriving tree structures. In this paper, we propose hierarchical pointer network parsers, and apply them to dependency and sentence-level discourse parsing tasks. Our results on standard benchmark datasets demonstrate the effectiveness of our approach, outperforming existing methods and setting a new state-of-the-art.