Tong Zhang


2021

pdf bib
TILGAN: Transformer-based Implicit Latent GAN for Diverse and Coherent Text Generation
Shizhe Diao | Xinwei Shen | Kashun Shum | Yan Song | Tong Zhang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Multi-Hop Transformer for Document-Level Machine Translation
Long Zhang | Tong Zhang | Haibo Zhang | Baosong Yang | Wei Ye | Shikun Zhang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Document-level neural machine translation (NMT) has proven to be of profound value for its effectiveness on capturing contextual information. Nevertheless, existing approaches 1) simply introduce the representations of context sentences without explicitly characterizing the inter-sentence reasoning process; and 2) feed ground-truth target contexts as extra inputs at the training time, thus facing the problem of exposure bias. We approach these problems with an inspiration from human behavior – human translators ordinarily emerge a translation draft in their mind and progressively revise it according to the reasoning in discourse. To this end, we propose a novel Multi-Hop Transformer (MHT) which offers NMT abilities to explicitly model the human-like draft-editing and reasoning process. Specifically, our model serves the sentence-level translation as a draft and properly refines its representations by attending to multiple antecedent sentences iteratively. Experiments on four widely used document translation tasks demonstrate that our method can significantly improve document-level translation performance and can tackle discourse phenomena, such as coreference error and the problem of polysemy.

pdf bib
Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation
Shizhe Diao | Ruijia Xu | Hongjin Su | Yilei Jiang | Yan Song | Tong Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Large pre-trained models such as BERT are known to improve different downstream NLP tasks, even when such a model is trained on a generic domain. Moreover, recent studies have shown that when large domain-specific corpora are available, continued pre-training on domain-specific data can further improve the performance of in-domain tasks. However, this practice requires significant domain-specific data and computational resources which may not always be available. In this paper, we aim to adapt a generic pretrained model with a relatively small amount of domain-specific data. We demonstrate that by explicitly incorporating multi-granularity information of unseen and domain-specific words via the adaptation of (word based) n-grams, the performance of a generic pretrained model can be greatly improved. Specifically, we introduce a Transformer-based Domain-aware N-gram Adaptor, T-DNA, to effectively learn and incorporate the semantic representation of different combinations of words in the new domain. Experimental results illustrate the effectiveness of T-DNA on eight low-resource downstream tasks from four domains. We show that T-DNA is able to achieve significant improvements compared to existing methods on most tasks using limited data with lower computational costs. Moreover, further analyses demonstrate the importance and effectiveness of both unseen words and the information of different granularities. Our code is available at https://github.com/shizhediao/T-DNA.

pdf bib
Point, Disambiguate and Copy: Incorporating Bilingual Dictionaries for Neural Machine Translation
Tong Zhang | Long Zhang | Wei Ye | Bo Li | Jinan Sun | Xiaoyu Zhu | Wen Zhao | Shikun Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper proposes a sophisticated neural architecture to incorporate bilingual dictionaries into Neural Machine Translation (NMT) models. By introducing three novel components: Pointer, Disambiguator, and Copier, our method PDC achieves the following merits inherently compared with previous efforts: (1) Pointer leverages the semantic information from bilingual dictionaries, for the first time, to better locate source words whose translation in dictionaries can potentially be used; (2) Disambiguator synthesizes contextual information from the source view and the target view, both of which contribute to distinguishing the proper translation of a specific source word from multiple candidates in dictionaries; (3) Copier systematically connects Pointer and Disambiguator based on a hierarchical copy mechanism seamlessly integrated with Transformer, thereby building an end-to-end architecture that could avoid error propagation problems in alternative pipe-line methods. The experimental results on Chinese-English and English-Japanese benchmarks demonstrate the PDC’s overall superiority and effectiveness of each component.

2020

pdf bib
Improving Constituency Parsing with Span Attention
Yuanhe Tian | Yan Song | Fei Xia | Tong Zhang
Findings of the Association for Computational Linguistics: EMNLP 2020

Constituency parsing is a fundamental and important task for natural language understanding, where a good representation of contextual information can help this task. N-grams, which is a conventional type of feature for contextual information, have been demonstrated to be useful in many tasks, and thus could also be beneficial for constituency parsing if they are appropriately modeled. In this paper, we propose span attention for neural chart-based constituency parsing to leverage n-gram information. Considering that current chart-based parsers with Transformer-based encoder represent spans by subtraction of the hidden states at the span boundaries, which may cause information loss especially for long spans, we incorporate n-grams into span representations by weighting them according to their contributions to the parsing process. Moreover, we propose categorical span attention to further enhance the model by weighting n-grams within different length categories, and thus benefit long-sentence parsing. Experimental results on three widely used benchmark datasets demonstrate the effectiveness of our approach in parsing Arabic, Chinese, and English, where state-of-the-art performance is obtained by our approach on all of them.

pdf bib
ZEN: Pre-training Chinese Text Encoder Enhanced by N-gram Representations
Shizhe Diao | Jiaxin Bai | Yan Song | Tong Zhang | Yonggang Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

The pre-training of text encoders normally processes text as a sequence of tokens corresponding to small text units, such as word pieces in English and characters in Chinese. It omits information carried by larger text granularity, and thus the encoders cannot easily adapt to certain combinations of characters. This leads to a loss of important semantic information, which is especially problematic for Chinese because the language does not have explicit word boundaries. In this paper, we propose ZEN, a BERT-based Chinese text encoder enhanced by n-gram representations, where different combinations of characters are considered during training, thus potential word or phrase boundaries are explicitly pre-trained and fine-tuned with the character encoder (BERT). Therefore ZEN incorporates the comprehensive information of both the character sequence and words or phrases it contains. Experimental results illustrated the effectiveness of ZEN on a series of Chinese NLP tasks, where state-of-the-art results is achieved on most tasks with requiring less resource than other published encoders. It is also shown that reasonable performance is obtained when ZEN is trained on a small corpus, which is important for applying pre-training techniques to scenarios with limited data. The code and pre-trained models of ZEN are available at https://github.com/sinovation/ZEN.

pdf bib
Improving Chinese Word Segmentation with Wordhood Memory Networks
Yuanhe Tian | Yan Song | Fei Xia | Tong Zhang | Yonggang Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Contextual features always play an important role in Chinese word segmentation (CWS). Wordhood information, being one of the contextual features, is proved to be useful in many conventional character-based segmenters. However, this feature receives less attention in recent neural models and it is also challenging to design a framework that can properly integrate wordhood information from different wordhood measures to existing neural frameworks. In this paper, we therefore propose a neural framework, WMSeg, which uses memory networks to incorporate wordhood information with several popular encoder-decoder combinations for CWS. Experimental results on five benchmark datasets indicate the memory mechanism successfully models wordhood information for neural segmenters and helps WMSeg achieve state-of-the-art performance on all those datasets. Further experiments and analyses also demonstrate the robustness of our proposed framework with respect to different wordhood measures and the efficiency of wordhood information in cross-domain experiments.

pdf bib
Joint Chinese Word Segmentation and Part-of-speech Tagging via Two-way Attentions of Auto-analyzed Knowledge
Yuanhe Tian | Yan Song | Xiang Ao | Fei Xia | Xiaojun Quan | Tong Zhang | Yonggang Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Chinese word segmentation (CWS) and part-of-speech (POS) tagging are important fundamental tasks for Chinese language processing, where joint learning of them is an effective one-step solution for both tasks. Previous studies for joint CWS and POS tagging mainly follow the character-based tagging paradigm with introducing contextual information such as n-gram features or sentential representations from recurrent neural models. However, for many cases, the joint tagging needs not only modeling from context features but also knowledge attached to them (e.g., syntactic relations among words); limited efforts have been made by existing research to meet such needs. In this paper, we propose a neural model named TwASP for joint CWS and POS tagging following the character-based sequence labeling paradigm, where a two-way attention mechanism is used to incorporate both context feature and their corresponding syntactic knowledge for each input character. Particularly, we use existing language processing toolkits to obtain the auto-analyzed syntactic knowledge for the context, and the proposed attention module can learn and benefit from them although their quality may not be perfect. Our experiments illustrate the effectiveness of the two-way attentions for joint CWS and POS tagging, where state-of-the-art performance is achieved on five benchmark datasets.

2019

pdf bib
Reinforced Training Data Selection for Domain Adaptation
Miaofeng Liu | Yan Song | Hongbin Zou | Tong Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Supervised models suffer from the problem of domain shifting where distribution mismatch in the data across domains greatly affect model performance. To solve the problem, training data selection (TDS) has been proven to be a prospective solution for domain adaptation in leveraging appropriate data. However, conventional TDS methods normally requires a predefined threshold which is neither easy to set nor can be applied across tasks, and models are trained separately with the TDS process. To make TDS self-adapted to data and task, and to combine it with model training, in this paper, we propose a reinforcement learning (RL) framework that synchronously searches for training instances relevant to the target domain and learns better representations for them. A selection distribution generator (SDG) is designed to perform the selection and is updated according to the rewards computed from the selected data, where a predictor is included in the framework to ensure a task-specific model can be trained on the selected data and provides feedback to rewards. Experimental results from part-of-speech tagging, dependency parsing, and sentiment analysis, as well as ablation studies, illustrate that the proposed framework is not only effective in data selection and representation, but also generalized to accommodate different NLP tasks.

2018

pdf bib
Multi-Head Attention with Disagreement Regularization
Jian Li | Zhaopeng Tu | Baosong Yang | Michael R. Lyu | Tong Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Multi-head attention is appealing for the ability to jointly attend to information from different representation subspaces at different positions. In this work, we introduce a disagreement regularization to explicitly encourage the diversity among multiple attention heads. Specifically, we propose three types of disagreement regularization, which respectively encourage the subspace, the attended positions, and the output representation associated with each attention head to be different from other heads. Experimental results on widely-used WMT14 English-German and WMT17 Chinese-English translation tasks demonstrate the effectiveness and universality of the proposed approach.

pdf bib
QuaSE: Sequence Editing under Quantifiable Guidance
Yi Liao | Lidong Bing | Piji Li | Shuming Shi | Wai Lam | Tong Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We propose the task of Quantifiable Sequence Editing (QuaSE): editing an input sequence to generate an output sequence that satisfies a given numerical outcome value measuring a certain property of the sequence, with the requirement of keeping the main content of the input sequence. For example, an input sequence could be a word sequence, such as review sentence and advertisement text. For a review sentence, the outcome could be the review rating; for an advertisement, the outcome could be the click-through rate. The major challenge in performing QuaSE is how to perceive the outcome-related wordings, and only edit them to change the outcome. In this paper, the proposed framework contains two latent factors, namely, outcome factor and content factor, disentangled from the input sentence to allow convenient editing to change the outcome and keep the content. Our framework explores the pseudo-parallel sentences by modeling their content similarity and outcome differences to enable a better disentanglement of the latent factors, which allows generating an output to better satisfy the desired outcome and keep the content. The dual reconstruction structure further enhances the capability of generating expected output by exploiting the couplings of latent factors of pseudo-parallel sentences. For evaluation, we prepared a dataset of Yelp review sentences with the ratings as outcome. Extensive experimental results are reported and discussed to elaborate the peculiarities of our framework.

pdf bib
Exploiting Deep Representations for Neural Machine Translation
Zi-Yi Dou | Zhaopeng Tu | Xing Wang | Shuming Shi | Tong Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Advanced neural machine translation (NMT) models generally implement encoder and decoder as multiple layers, which allows systems to model complex functions and capture complicated linguistic structures. However, only the top layers of encoder and decoder are leveraged in the subsequent process, which misses the opportunity to exploit the useful information embedded in other layers. In this work, we propose to simultaneously expose all of these signals with layer aggregation and multi-layer attention mechanisms. In addition, we introduce an auxiliary regularization term to encourage different layers to capture diverse information. Experimental results on widely-used WMT14 English-German and WMT17 Chinese-English translation data demonstrate the effectiveness and universality of the proposed approach.

pdf bib
Modeling Localness for Self-Attention Networks
Baosong Yang | Zhaopeng Tu | Derek F. Wong | Fandong Meng | Lidia S. Chao | Tong Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Self-attention networks have proven to be of profound value for its strength of capturing global dependencies. In this work, we propose to model localness for self-attention networks, which enhances the ability of capturing useful local context. We cast localness modeling as a learnable Gaussian bias, which indicates the central and scope of the local region to be paid more attention. The bias is then incorporated into the original attention distribution to form a revised distribution. To maintain the strength of capturing long distance dependencies while enhance the ability of capturing short-range dependencies, we only apply localness modeling to lower layers of self-attention networks. Quantitative and qualitative analyses on Chinese-English and English-German translation tasks demonstrate the effectiveness and universality of the proposed approach.

pdf bib
Learning to Remember Translation History with a Continuous Cache
Zhaopeng Tu | Yang Liu | Shuming Shi | Tong Zhang
Transactions of the Association for Computational Linguistics, Volume 6

Existing neural machine translation (NMT) models generally translate sentences in isolation, missing the opportunity to take advantage of document-level information. In this work, we propose to augment NMT models with a very light-weight cache-like memory network, which stores recent hidden representations as translation history. The probability distribution over generated words is updated online depending on the translation history retrieved from the memory, endowing NMT models with the capability to dynamically adapt over time. Experiments on multiple domains with different topics and styles show the effectiveness of the proposed approach with negligible impact on the computational cost.

2017

pdf bib
Deep Pyramid Convolutional Neural Networks for Text Categorization
Rie Johnson | Tong Zhang
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper proposes a low-complexity word-level deep convolutional neural network (CNN) architecture for text categorization that can efficiently represent long-range associations in text. In the literature, several deep and complex neural networks have been proposed for this task, assuming availability of relatively large amounts of training data. However, the associated computational complexity increases as the networks go deeper, which poses serious challenges in practical applications. Moreover, it was shown recently that shallow word-level CNNs are more accurate and much faster than the state-of-the-art very deep nets such as character-level CNNs even in the setting of large training data. Motivated by these findings, we carefully studied deepening of word-level CNNs to capture global representations of text, and found a simple network architecture with which the best accuracy can be obtained by increasing the network depth without increasing computational cost by much. We call it deep pyramid CNN. The proposed model with 15 weight layers outperforms the previous best models on six benchmark datasets for sentiment classification and topic categorization.

2015

pdf bib
Effective Use of Word Order for Text Categorization with Convolutional Neural Networks
Rie Johnson | Tong Zhang
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2006

pdf bib
A Discriminative Global Training Algorithm for Statistical MT
Christoph Tillmann | Tong Zhang
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics

2005

pdf bib
A High-Performance Semi-Supervised Learning Method for Text Chunking
Rie Ando | Tong Zhang
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05)

pdf bib
A Localized Prediction Model for Statistical Machine Translation
Christoph Tillmann | Tong Zhang
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05)

2003

pdf bib
Updating an NLP system to fit new domains: an empirical study on the sentence segmentation problem
Tong Zhang | Fred Damerau | David Johnson
Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003

pdf bib
Named Entity Recognition through Classifier Combination
Radu Florian | Abe Ittycheriah | Hongyan Jing | Tong Zhang
Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003

pdf bib
A Robust Risk Minimization based Named Entity Recognition System
Tong Zhang | David Johnson
Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003

pdf bib
HowtogetaChineseName(Entity): Segmentation and Combination Issues
Hongyan Jing | Radu Florian | Xiaoqiang Luo | Tong Zhang | Abraham Ittycheriah
Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing

2001

pdf bib
Text Chunking using Regularized Winnow
Tong Zhang | Fred Damerau | David Johnson
Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics