Timothy O’Donnell

Also published as: Tim O’Donnell, Timothy J. O’Donnell


2021

pdf bib
Linguistic Dependencies and Statistical Dependence
Jacob Louis Hoover | Wenyu Du | Alessandro Sordoni | Timothy J. O’Donnell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Are pairs of words that tend to occur together also likely to stand in a linguistic dependency? This empirical question is motivated by a long history of literature in cognitive science, psycholinguistics, and NLP. In this work we contribute an extensive analysis of the relationship between linguistic dependencies and statistical dependence between words. Improving on previous work, we introduce the use of large pretrained language models to compute contextualized estimates of the pointwise mutual information between words (CPMI). For multiple models and languages, we extract dependency trees which maximize CPMI, and compare to gold standard linguistic dependencies. Overall, we find that CPMI dependencies achieve an unlabelled undirected attachment score of at most ≈ 0.5. While far above chance, and consistently above a non-contextualized PMI baseline, this score is generally comparable to a simple baseline formed by connecting adjacent words. We analyze which kinds of linguistic dependencies are best captured in CPMI dependencies, and also find marked differences between the estimates of the large pretrained language models, illustrating how their different training schemes affect the type of dependencies they capture.

2020

pdf bib
Recursive Top-Down Production for Sentence Generation with Latent Trees
Shawn Tan | Yikang Shen | Alessandro Sordoni | Aaron Courville | Timothy J. O’Donnell
Findings of the Association for Computational Linguistics: EMNLP 2020

We model the recursive production property of context-free grammars for natural and synthetic languages. To this end, we present a dynamic programming algorithm that marginalises over latent binary tree structures with N leaves, allowing us to compute the likelihood of a sequence of N tokens under a latent tree model, which we maximise to train a recursive neural function. We demonstrate performance on two synthetic tasks: SCAN, where it outperforms previous models on the LENGTH split, and English question formation, where it performs comparably to decoders with the ground-truth tree structure. We also present experimental results on German-English translation on the Multi30k dataset, and qualitatively analyse the induced tree structures our model learns for the SCAN tasks and the German-English translation task.

pdf bib
Probing Linguistic Systematicity
Emily Goodwin | Koustuv Sinha | Timothy J. O’Donnell
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recently, there has been much interest in the question of whether deep natural language understanding (NLU) models exhibit systematicity, generalizing such that units like words make consistent contributions to the meaning of the sentences in which they appear. There is accumulating evidence that neural models do not learn systematically. We examine the notion of systematicity from a linguistic perspective, defining a set of probing tasks and a set of metrics to measure systematic behaviour. We also identify ways in which network architectures can generalize non-systematically, and discuss why such forms of generalization may be unsatisfying. As a case study, we perform a series of experiments in the setting of natural language inference (NLI). We provide evidence that current state-of-the-art NLU systems do not generalize systematically, despite overall high performance.

pdf bib
Exploiting Syntactic Structure for Better Language Modeling: A Syntactic Distance Approach
Wenyu Du | Zhouhan Lin | Yikang Shen | Timothy J. O’Donnell | Yoshua Bengio | Yue Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

It is commonly believed that knowledge of syntactic structure should improve language modeling. However, effectively and computationally efficiently incorporating syntactic structure into neural language models has been a challenging topic. In this paper, we make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called “syntactic distances”, where information between these two separate objectives shares the same intermediate representation. Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.

2019

pdf bib
Morphological Irregularity Correlates with Frequency
Shijie Wu | Ryan Cotterell | Timothy O’Donnell
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present a study of morphological irregularity. Following recent work, we define an information-theoretic measure of irregularity based on the predictability of forms in a language. Using a neural transduction model, we estimate this quantity for the forms in 28 languages. We first present several validatory and exploratory analyses of irregularity. We then show that our analyses provide evidence for a correlation between irregularity and frequency: higher frequency items are more likely to be irregular and irregular items are more likely be highly frequent. To our knowledge, this result is the first of its breadth and confirms longstanding proposals from the linguistics literature. The correlation is more robust when aggregated at the level of whole paradigms—providing support for models of linguistic structure in which inflected forms are unified by abstract underlying stems or lexemes.

2017

pdf bib
Evaluating Hierarchies of Verb Argument Structure with Hierarchical Clustering
Jesse Mu | Joshua K. Hartshorne | Timothy O’Donnell
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Verbs can only be used with a few specific arrangements of their arguments (syntactic frames). Most theorists note that verbs can be organized into a hierarchy of verb classes based on the frames they admit. Here we show that such a hierarchy is objectively well-supported by the patterns of verbs and frames in English, since a systematic hierarchical clustering algorithm converges on the same structure as the handcrafted taxonomy of VerbNet, a broad-coverage verb lexicon. We also show that the hierarchies capture meaningful psychological dimensions of generalization by predicting novel verb coercions by human participants. We discuss limitations of a simple hierarchical representation and suggest similar approaches for identifying the representations underpinning verb argument structure.

pdf bib
A Generative Model of Phonotactics
Richard Futrell | Adam Albright | Peter Graff | Timothy J. O’Donnell
Transactions of the Association for Computational Linguistics, Volume 5

We present a probabilistic model of phonotactics, the set of well-formed phoneme sequences in a language. Unlike most computational models of phonotactics (Hayes and Wilson, 2008; Goldsmith and Riggle, 2012), we take a fully generative approach, modeling a process where forms are built up out of subparts by phonologically-informed structure building operations. We learn an inventory of subparts by applying stochastic memoization (Johnson et al., 2007; Goodman et al., 2008) to a generative process for phonemes structured as an and-or graph, based on concepts of feature hierarchy from generative phonology (Clements, 1985; Dresher, 2009). Subparts are combined in a way that allows tier-based feature interactions. We evaluate our models’ ability to capture phonotactic distributions in the lexicons of 14 languages drawn from the WOLEX corpus (Graff, 2012). Our full model robustly assigns higher probabilities to held-out forms than a sophisticated N-gram model for all languages. We also present novel analyses that probe model behavior in more detail.

2015

pdf bib
Proceedings of the 6th Workshop on Cognitive Modeling and Computational Linguistics
Tim O’Donnell | Marten van Schijndel
Proceedings of the 6th Workshop on Cognitive Modeling and Computational Linguistics

pdf bib
Evaluating Models of Computation and Storage in Human Sentence Processing
Thang Luong | Timothy O’Donnell | Noah Goodman
Proceedings of the Sixth Workshop on Cognitive Aspects of Computational Language Learning

pdf bib
Unsupervised Lexicon Discovery from Acoustic Input
Chia-ying Lee | Timothy J. O’Donnell | James Glass
Transactions of the Association for Computational Linguistics, Volume 3

We present a model of unsupervised phonological lexicon discovery—the problem of simultaneously learning phoneme-like and word-like units from acoustic input. Our model builds on earlier models of unsupervised phone-like unit discovery from acoustic data (Lee and Glass, 2012), and unsupervised symbolic lexicon discovery using the Adaptor Grammar framework (Johnson et al., 2006), integrating these earlier approaches using a probabilistic model of phonological variation. We show that the model is competitive with state-of-the-art spoken term discovery systems, and present analyses exploring the model’s behavior and the kinds of linguistic structures it learns.

pdf bib
A model of rapid phonotactic generalization
Tal Linzen | Timothy O’Donnell
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
Proceedings of the Fifth Workshop on Cognitive Modeling and Computational Linguistics
Vera Demberg | Timothy O’Donnell
Proceedings of the Fifth Workshop on Cognitive Modeling and Computational Linguistics

2013

pdf bib
Learning non-concatenative morphology
Michelle Fullwood | Tim O’Donnell
Proceedings of the Fourth Annual Workshop on Cognitive Modeling and Computational Linguistics (CMCL)

pdf bib
Arguments and Modifiers from the Learner’s Perspective
Leon Bergen | Edward Gibson | Timothy J. O’Donnell
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)