Tianyu Cao


2021

pdf bib
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data
Haoming Jiang | Danqing Zhang | Tianyu Cao | Bing Yin | Tuo Zhao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Weak supervision has shown promising results in many natural language processing tasks, such as Named Entity Recognition (NER). Existing work mainly focuses on learning deep NER models only with weak supervision, i.e., without any human annotation, and shows that by merely using weakly labeled data, one can achieve good performance, though still underperforms fully supervised NER with manually/strongly labeled data. In this paper, we consider a more practical scenario, where we have both a small amount of strongly labeled data and a large amount of weakly labeled data. Unfortunately, we observe that weakly labeled data does not necessarily improve, or even deteriorate the model performance (due to the extensive noise in the weak labels) when we train deep NER models over a simple or weighted combination of the strongly labeled and weakly labeled data. To address this issue, we propose a new multi-stage computational framework – NEEDLE with three essential ingredients: (1) weak label completion, (2) noise-aware loss function, and (3) final fine-tuning over the strongly labeled data. Through experiments on E-commerce query NER and Biomedical NER, we demonstrate that NEEDLE can effectively suppress the noise of the weak labels and outperforms existing methods. In particular, we achieve new SOTA F1-scores on 3 Biomedical NER datasets: BC5CDR-chem 93.74, BC5CDR-disease 90.69, NCBI-disease 92.28.

pdf bib
MetaTS: Meta Teacher-Student Network for Multilingual Sequence Labeling with Minimal Supervision
Zheng Li | Danqing Zhang | Tianyu Cao | Ying Wei | Yiwei Song | Bing Yin
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Sequence labeling aims to predict a fine-grained sequence of labels for the text. However, such formulation hinders the effectiveness of supervised methods due to the lack of token-level annotated data. This is exacerbated when we meet a diverse range of languages. In this work, we explore multilingual sequence labeling with minimal supervision using a single unified model for multiple languages. Specifically, we propose a Meta Teacher-Student (MetaTS) Network, a novel meta learning method to alleviate data scarcity by leveraging large multilingual unlabeled data. Prior teacher-student frameworks of self-training rely on rigid teaching strategies, which may hardly produce high-quality pseudo-labels for consecutive and interdependent tokens. On the contrary, MetaTS allows the teacher to dynamically adapt its pseudo-annotation strategies by the student’s feedback on the generated pseudo-labeled data of each language and thus mitigate error propagation from noisy pseudo-labels. Extensive experiments on both public and real-world multilingual sequence labeling datasets empirically demonstrate the effectiveness of MetaTS.