Tianxiang Sun


2021

pdf bib
Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa
Junqi Dai | Hang Yan | Tianxiang Sun | Pengfei Liu | Xipeng Qiu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Aspect-based Sentiment Analysis (ABSA), aiming at predicting the polarities for aspects, is a fine-grained task in the field of sentiment analysis. Previous work showed syntactic information, e.g. dependency trees, can effectively improve the ABSA performance. Recently, pre-trained models (PTMs) also have shown their effectiveness on ABSA. Therefore, the question naturally arises whether PTMs contain sufficient syntactic information for ABSA so that we can obtain a good ABSA model only based on PTMs. In this paper, we firstly compare the induced trees from PTMs and the dependency parsing trees on several popular models for the ABSA task, showing that the induced tree from fine-tuned RoBERTa (FT-RoBERTa) outperforms the parser-provided tree. The further analysis experiments reveal that the FT-RoBERTa Induced Tree is more sentiment-word-oriented and could benefit the ABSA task. The experiments also show that the pure RoBERTa-based model can outperform or approximate to the previous SOTA performances on six datasets across four languages since it implicitly incorporates the task-oriented syntactic information.

pdf bib
Accelerating BERT Inference for Sequence Labeling via Early-Exit
Xiaonan Li | Yunfan Shao | Tianxiang Sun | Hang Yan | Xipeng Qiu | Xuanjing Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Both performance and efficiency are crucial factors for sequence labeling tasks in many real-world scenarios. Although the pre-trained models (PTMs) have significantly improved the performance of various sequence labeling tasks, their computational cost is expensive. To alleviate this problem, we extend the recent successful early-exit mechanism to accelerate the inference of PTMs for sequence labeling tasks. However, existing early-exit mechanisms are specifically designed for sequence-level tasks, rather than sequence labeling. In this paper, we first propose a simple extension of sentence-level early-exit for sequence labeling tasks. To further reduce the computational cost, we also propose a token-level early-exit mechanism that allows partial tokens to exit early at different layers. Considering the local dependency inherent in sequence labeling, we employed a window-based criterion to decide for a token whether or not to exit. The token-level early-exit brings the gap between training and inference, so we introduce an extra self-sampling fine-tuning stage to alleviate it. The extensive experiments on three popular sequence labeling tasks show that our approach can save up to 66%∼75% inference cost with minimal performance degradation. Compared with competitive compressed models such as DistilBERT, our approach can achieve better performance under the same speed-up ratios of 2×, 3×, and 4×.

2020

pdf bib
CoLAKE: Contextualized Language and Knowledge Embedding
Tianxiang Sun | Yunfan Shao | Xipeng Qiu | Qipeng Guo | Yaru Hu | Xuanjing Huang | Zheng Zhang
Proceedings of the 28th International Conference on Computational Linguistics

With the emerging branch of incorporating factual knowledge into pre-trained language models such as BERT, most existing models consider shallow, static, and separately pre-trained entity embeddings, which limits the performance gains of these models. Few works explore the potential of deep contextualized knowledge representation when injecting knowledge. In this paper, we propose the Contextualized Language and Knowledge Embedding (CoLAKE), which jointly learns contextualized representation for both language and knowledge with the extended MLM objective. Instead of injecting only entity embeddings, CoLAKE extracts the knowledge context of an entity from large-scale knowledge bases. To handle the heterogeneity of knowledge context and language context, we integrate them in a unified data structure, word-knowledge graph (WK graph). CoLAKE is pre-trained on large-scale WK graphs with the modified Transformer encoder. We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks. Experimental results show that CoLAKE outperforms previous counterparts on most of the tasks. Besides, CoLAKE achieves surprisingly high performance on our synthetic task called word-knowledge graph completion, which shows the superiority of simultaneously contextualizing language and knowledge representation.