Tianwei Zhang


2021

pdf bib
Layer-wise Model Pruning based on Mutual Information
Chun Fan | Jiwei Li | Tianwei Zhang | Xiang Ao | Fei Wu | Yuxian Meng | Xiaofei Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Inspired by mutual information (MI) based feature selection in SVMs and logistic regression, in this paper, we propose MI-based layer-wise pruning: for each layer of a multi-layer neural network, neurons with higher values of MI with respect to preserved neurons in the upper layer are preserved. Starting from the top softmax layer, layer-wise pruning proceeds in a top-down fashion until reaching the bottom word embedding layer. The proposed pruning strategy offers merits over weight-based pruning techniques: (1) it avoids irregular memory access since representations and matrices can be squeezed into their smaller but dense counterparts, leading to greater speedup; (2) in a manner of top-down pruning, the proposed method operates from a more global perspective based on training signals in the top layer, and prunes each layer by propagating the effect of global signals through layers, leading to better performances at the same sparsity level. Extensive experiments show that at the same sparsity level, the proposed strategy offers both greater speedup and higher performances than weight-based pruning methods (e.g., magnitude pruning, movement pruning).

pdf bib
kFolden: k-Fold Ensemble for Out-Of-Distribution Detection
Xiaoya Li | Jiwei Li | Xiaofei Sun | Chun Fan | Tianwei Zhang | Fei Wu | Yuxian Meng | Jun Zhang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Out-of-Distribution (OOD) detection is an important problem in natural language processing (NLP). In this work, we propose a simple yet effective framework kFolden, which mimics the behaviors of OOD detection during training without the use of any external data. For a task with k training labels, kFolden induces k sub-models, each of which is trained on a subset with k-1 categories with the left category masked unknown to the sub-model. Exposing an unknown label to the sub-model during training, the model is encouraged to learn to equally attribute the probability to the seen k-1 labels for the unknown label, enabling this framework to simultaneously resolve in- and out-distribution examples in a natural way via OOD simulations. Taking text classification as an archetype, we develop benchmarks for OOD detection using existing text classification datasets. By conducting comprehensive comparisons and analyses on the developed benchmarks, we demonstrate the superiority of kFolden against current methods in terms of improving OOD detection performances while maintaining improved in-domain classification accuracy.