Tiago Pimentel


2021

pdf bib
Disambiguatory Signals are Stronger in Word-initial Positions
Tiago Pimentel | Ryan Cotterell | Brian Roark
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Psycholinguistic studies of human word processing and lexical access provide ample evidence of the preferred nature of word-initial versus word-final segments, e.g., in terms of attention paid by listeners (greater) or the likelihood of reduction by speakers (lower). This has led to the conjecture—as in Wedel et al. (2019b), but common elsewhere—that languages have evolved to provide more information earlier in words than later. Information-theoretic methods to establish such tendencies in lexicons have suffered from several methodological shortcomings that leave open the question of whether this high word-initial informativeness is actually a property of the lexicon or simply an artefact of the incremental nature of recognition. In this paper, we point out the confounds in existing methods for comparing the informativeness of segments early in the word versus later in the word, and present several new measures that avoid these confounds. When controlling for these confounds, we still find evidence across hundreds of languages that indeed there is a cross-linguistic tendency to front-load information in words.

pdf bib
Modeling the Unigram Distribution
Irene Nikkarinen | Tiago Pimentel | Damián Blasi | Ryan Cotterell
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
SIGMORPHON 2021 Shared Task on Morphological Reinflection: Generalization Across Languages
Tiago Pimentel | Maria Ryskina | Sabrina J. Mielke | Shijie Wu | Eleanor Chodroff | Brian Leonard | Garrett Nicolai | Yustinus Ghanggo Ate | Salam Khalifa | Nizar Habash | Charbel El-Khaissi | Omer Goldman | Michael Gasser | William Lane | Matt Coler | Arturo Oncevay | Jaime Rafael Montoya Samame | Gema Celeste Silva Villegas | Adam Ek | Jean-Philippe Bernardy | Andrey Shcherbakov | Aziyana Bayyr-ool | Karina Sheifer | Sofya Ganieva | Matvey Plugaryov | Elena Klyachko | Ali Salehi | Andrew Krizhanovsky | Natalia Krizhanovsky | Clara Vania | Sardana Ivanova | Aelita Salchak | Christopher Straughn | Zoey Liu | Jonathan North Washington | Duygu Ataman | Witold Kieraś | Marcin Woliński | Totok Suhardijanto | Niklas Stoehr | Zahroh Nuriah | Shyam Ratan | Francis M. Tyers | Edoardo M. Ponti | Grant Aiton | Richard J. Hatcher | Emily Prud'hommeaux | Ritesh Kumar | Mans Hulden | Botond Barta | Dorina Lakatos | Gábor Szolnok | Judit Ács | Mohit Raj | David Yarowsky | Ryan Cotterell | Ben Ambridge | Ekaterina Vylomova
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This year's iteration of the SIGMORPHON Shared Task on morphological reinflection focuses on typological diversity and cross-lingual variation of morphosyntactic features. In terms of the task, we enrich UniMorph with new data for 32 languages from 13 language families, with most of them being under-resourced: Kunwinjku, Classical Syriac, Arabic (Modern Standard, Egyptian, Gulf), Hebrew, Amharic, Aymara, Magahi, Braj, Kurdish (Central, Northern, Southern), Polish, Karelian, Livvi, Ludic, Veps, Võro, Evenki, Xibe, Tuvan, Sakha, Turkish, Indonesian, Kodi, Seneca, Asháninka, Yanesha, Chukchi, Itelmen, Eibela. We evaluate six systems on the new data and conduct an extensive error analysis of the systems' predictions. Transformer-based models generally demonstrate superior performance on the majority of languages, achieving >90% accuracy on 65% of them. The languages on which systems yielded low accuracy are mainly under-resourced, with a limited amount of data. Most errors made by the systems are due to allomorphy, honorificity, and form variation. In addition, we observe that systems especially struggle to inflect multiword lemmas. The systems also produce misspelled forms or end up in repetitive loops (e.g., RNN-based models). Finally, we report a large drop in systems' performance on previously unseen lemmas.

pdf bib
A Non-Linear Structural Probe
Jennifer C. White | Tiago Pimentel | Naomi Saphra | Ryan Cotterell
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Probes are models devised to investigate the encoding of knowledge—e.g. syntactic structure—in contextual representations. Probes are often designed for simplicity, which has led to restrictions on probe design that may not allow for the full exploitation of the structure of encoded information; one such restriction is linearity. We examine the case of a structural probe (Hewitt and Manning, 2019), which aims to investigate the encoding of syntactic structure in contextual representations through learning only linear transformations. By observing that the structural probe learns a metric, we are able to kernelize it and develop a novel non-linear variant with an identical number of parameters. We test on 6 languages and find that the radial-basis function (RBF) kernel, in conjunction with regularization, achieves a statistically significant improvement over the baseline in all languages—implying that at least part of the syntactic knowledge is encoded non-linearly. We conclude by discussing how the RBF kernel resembles BERT’s self-attention layers and speculate that this resemblance leads to the RBF-based probe’s stronger performance.

pdf bib
What About the Precedent: An Information-Theoretic Analysis of Common Law
Josef Valvoda | Tiago Pimentel | Niklas Stoehr | Ryan Cotterell | Simone Teufel
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In common law, the outcome of a new case is determined mostly by precedent cases, rather than by existing statutes. However, how exactly does the precedent influence the outcome of a new case? Answering this question is crucial for guaranteeing fair and consistent judicial decision-making. We are the first to approach this question computationally by comparing two longstanding jurisprudential views; Halsbury’s, who believes that the arguments of the precedent are the main determinant of the outcome, and Goodhart’s, who believes that what matters most is the precedent’s facts. We base our study on the corpus of legal cases from the European Court of Human Rights (ECtHR), which allows us to access not only the case itself, but also cases cited in the judges’ arguments (i.e. the precedent cases). Taking an information-theoretic view, and modelling the question as a case out-come classification task, we find that the precedent’s arguments share 0.38 nats of information with the case’s outcome, whereas precedent’s facts only share 0.18 nats of information (i.e.,58% less); suggesting Halsbury’s view may be more accurate in this specific court. We found however in a qualitative analysis that there are specific statues where Goodhart’s view dominates, and present some evidence these are the ones where the legal concept at hand is less straightforward.

pdf bib
Finding Concept-specific Biases in Form–Meaning Associations
Tiago Pimentel | Brian Roark | Søren Wichmann | Ryan Cotterell | Damián Blasi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

This work presents an information-theoretic operationalisation of cross-linguistic non-arbitrariness. It is not a new idea that there are small, cross-linguistic associations between the forms and meanings of words. For instance, it has been claimed (Blasi et al., 2016) that the word for “tongue” is more likely than chance to contain the phone [l]. By controlling for the influence of language family and geographic proximity within a very large concept-aligned, cross-lingual lexicon, we extend methods previously used to detect within language non-arbitrariness (Pimentel et al., 2019) to measure cross-linguistic associations. We find that there is a significant effect of non-arbitrariness, but it is unsurprisingly small (less than 0.5% on average according to our information-theoretic estimate). We also provide a concept-level analysis which shows that a quarter of the concepts considered in our work exhibit a significant level of cross-linguistic non-arbitrariness. In sum, the paper provides new methods to detect cross-linguistic associations at scale, and confirms their effects are minor.

pdf bib
How (Non-)Optimal is the Lexicon?
Tiago Pimentel | Irene Nikkarinen | Kyle Mahowald | Ryan Cotterell | Damián Blasi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The mapping of lexical meanings to wordforms is a major feature of natural languages. While usage pressures might assign short words to frequent meanings (Zipf’s law of abbreviation), the need for a productive and open-ended vocabulary, local constraints on sequences of symbols, and various other factors all shape the lexicons of the world’s languages. Despite their importance in shaping lexical structure, the relative contributions of these factors have not been fully quantified. Taking a coding-theoretic view of the lexicon and making use of a novel generative statistical model, we define upper bounds for the compressibility of the lexicon under various constraints. Examining corpora from 7 typologically diverse languages, we use those upper bounds to quantify the lexicon’s optimality and to explore the relative costs of major constraints on natural codes. We find that (compositional) morphology and graphotactics can sufficiently account for most of the complexity of natural codes—as measured by code length.

pdf bib
A surprisal–duration trade-off across and within the world’s languages
Tiago Pimentel | Clara Meister | Elizabeth Salesky | Simone Teufel | Damián Blasi | Ryan Cotterell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

While there exist scores of natural languages, each with its unique features and idiosyncrasies, they all share a unifying theme: enabling human communication. We may thus reasonably predict that human cognition shapes how these languages evolve and are used. Assuming that the capacity to process information is roughly constant across human populations, we expect a surprisal–duration trade-off to arise both across and within languages. We analyse this trade-off using a corpus of 600 languages and, after controlling for several potential confounds, we find strong supporting evidence in both settings. Specifically, we find that, on average, phones are produced faster in languages where they are less surprising, and vice versa. Further, we confirm that more surprising phones are longer, on average, in 319 languages out of the 600. We thus conclude that there is strong evidence of a surprisal–duration trade-off in operation, both across and within the world’s languages.

pdf bib
Revisiting the Uniform Information Density Hypothesis
Clara Meister | Tiago Pimentel | Patrick Haller | Lena Jäger | Ryan Cotterell | Roger Levy
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The uniform information density (UID) hypothesis posits a preference among language users for utterances structured such that information is distributed uniformly across a signal. While its implications on language production have been well explored, the hypothesis potentially makes predictions about language comprehension and linguistic acceptability as well. Further, it is unclear how uniformity in a linguistic signal—or lack thereof—should be measured, and over which linguistic unit, e.g., the sentence or language level, this uniformity should hold. Here we investigate these facets of the UID hypothesis using reading time and acceptability data. While our reading time results are generally consistent with previous work, they are also consistent with a weakly super-linear effect of surprisal, which would be compatible with UID’s predictions. For acceptability judgments, we find clearer evidence that non-uniformity in information density is predictive of lower acceptability. We then explore multiple operationalizations of UID, motivated by different interpretations of the original hypothesis, and analyze the scope over which the pressure towards uniformity is exerted. The explanatory power of a subset of the proposed operationalizations suggests that the strongest trend may be a regression towards a mean surprisal across the language, rather than the phrase, sentence, or document—a finding that supports a typical interpretation of UID, namely that it is the byproduct of language users maximizing the use of a (hypothetical) communication channel.

pdf bib
A Bayesian Framework for Information-Theoretic Probing
Tiago Pimentel | Ryan Cotterell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Pimentel et al. (2020) recently analysed probing from an information-theoretic perspective. They argue that probing should be seen as approximating a mutual information. This led to the rather unintuitive conclusion that representations encode exactly the same information about a target task as the original sentences. The mutual information, however, assumes the true probability distribution of a pair of random variables is known, leading to unintuitive results in settings where it is not. This paper proposes a new framework to measure what we term Bayesian mutual information, which analyses information from the perspective of Bayesian agents—allowing for more intuitive findings in scenarios with finite data. For instance, under Bayesian MI we have that data can add information, processing can help, and information can hurt, which makes it more intuitive for machine learning applications. Finally, we apply our framework to probing where we believe Bayesian mutual information naturally operationalises ease of extraction by explicitly limiting the available background knowledge to solve a task.

pdf bib
On Homophony and Rényi Entropy
Tiago Pimentel | Clara Meister | Simone Teufel | Ryan Cotterell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Homophony’s widespread presence in natural languages is a controversial topic. Recent theories of language optimality have tried to justify its prevalence, despite its negative effects on cognitive processing time, e.g., Piantadosi et al. (2012) argued homophony enables the reuse of efficient wordforms and is thus beneficial for languages. This hypothesis has recently been challenged by Trott and Bergen (2020), who posit that good wordforms are more often homophonous simply because they are more phonotactically probable. In this paper, we join in on the debate. We first propose a new information-theoretic quantification of a language’s homophony: the sample Rényi entropy. Then, we use this quantification to revisit Trott and Bergen’s claims. While their point is theoretically sound, a specific methodological issue in their experiments raises doubts about their results. After addressing this issue, we find no clear pressure either towards or against homophony—a much more nuanced result than either Piantadosi et al.’s or Trott and Bergen’s findings.

2020

pdf bib
Pareto Probing: Trading Off Accuracy for Complexity
Tiago Pimentel | Naomi Saphra | Adina Williams | Ryan Cotterell
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The question of how to probe contextual word representations in a way that is principled and useful has seen significant recent attention. In our contribution to this discussion, we argue, first, for a probe metric that reflects the trade-off between probe complexity and performance: the Pareto hypervolume. To measure complexity, we present a number of parametric and non-parametric metrics. Our experiments with such metrics show that probe’s performance curves often fail to align with widely accepted rankings between language representations (with, e.g., non-contextual representations outperforming contextual ones). These results lead us to argue, second, that common simplistic probe tasks such as POS labeling and dependency arc labeling, are inadequate to evaluate the properties encoded in contextual word representations. We propose full dependency parsing as an example probe task, and demonstrate it with the Pareto hypervolume. In support of our arguments, the results of this illustrative experiment conform closer to accepted rankings among contextual word representations.

pdf bib
Speakers Fill Lexical Semantic Gaps with Context
Tiago Pimentel | Rowan Hall Maudslay | Damian Blasi | Ryan Cotterell
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Lexical ambiguity is widespread in language, allowing for the reuse of economical word forms and therefore making language more efficient. If ambiguous words cannot be disambiguated from context, however, this gain in efficiency might make language less clear—resulting in frequent miscommunication. For a language to be clear and efficiently encoded, we posit that the lexical ambiguity of a word type should correlate with how much information context provides about it, on average. To investigate whether this is the case, we operationalise the lexical ambiguity of a word as the entropy of meanings it can take, and provide two ways to estimate this—one which requires human annotation (using WordNet), and one which does not (using BERT), making it readily applicable to a large number of languages. We validate these measures by showing that, on six high-resource languages, there are significant Pearson correlations between our BERT-based estimate of ambiguity and the number of synonyms a word has in WordNet (e.g. 𝜌 = 0.40 in English). We then test our main hypothesis—that a word’s lexical ambiguity should negatively correlate with its contextual uncertainty—and find significant correlations on all 18 typologically diverse languages we analyse. This suggests that, in the presence of ambiguity, speakers compensate by making contexts more informative.

pdf bib
SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection
Ekaterina Vylomova | Jennifer White | Elizabeth Salesky | Sabrina J. Mielke | Shijie Wu | Edoardo Maria Ponti | Rowan Hall Maudslay | Ran Zmigrod | Josef Valvoda | Svetlana Toldova | Francis Tyers | Elena Klyachko | Ilya Yegorov | Natalia Krizhanovsky | Paula Czarnowska | Irene Nikkarinen | Andrew Krizhanovsky | Tiago Pimentel | Lucas Torroba Hennigen | Christo Kirov | Garrett Nicolai | Adina Williams | Antonios Anastasopoulos | Hilaria Cruz | Eleanor Chodroff | Ryan Cotterell | Miikka Silfverberg | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

A broad goal in natural language processing (NLP) is to develop a system that has the capacity to process any natural language. Most systems, however, are developed using data from just one language such as English. The SIGMORPHON 2020 shared task on morphological reinflection aims to investigate systems’ ability to generalize across typologically distinct languages, many of which are low resource. Systems were developed using data from 45 languages and just 5 language families, fine-tuned with data from an additional 45 languages and 10 language families (13 in total), and evaluated on all 90 languages. A total of 22 systems (19 neural) from 10 teams were submitted to the task. All four winning systems were neural (two monolingual transformers and two massively multilingual RNN-based models with gated attention). Most teams demonstrate utility of data hallucination and augmentation, ensembles, and multilingual training for low-resource languages. Non-neural learners and manually designed grammars showed competitive and even superior performance on some languages (such as Ingrian, Tajik, Tagalog, Zarma, Lingala), especially with very limited data. Some language families (Afro-Asiatic, Niger-Congo, Turkic) were relatively easy for most systems and achieved over 90% mean accuracy while others were more challenging.

pdf bib
Phonotactic Complexity and Its Trade-offs
Tiago Pimentel | Brian Roark | Ryan Cotterell
Transactions of the Association for Computational Linguistics, Volume 8

We present methods for calculating a measure of phonotactic complexity—bits per phoneme— that permits a straightforward cross-linguistic comparison. When given a word, represented as a sequence of phonemic segments such as symbols in the international phonetic alphabet, and a statistical model trained on a sample of word types from the language, we can approximately measure bits per phoneme using the negative log-probability of that word under the model. This simple measure allows us to compare the entropy across languages, giving insight into how complex a language’s phonotactics is. Using a collection of 1016 basic concept words across 106 languages, we demonstrate a very strong negative correlation of − 0.74 between bits per phoneme and the average length of words.

pdf bib
A Corpus for Large-Scale Phonetic Typology
Elizabeth Salesky | Eleanor Chodroff | Tiago Pimentel | Matthew Wiesner | Ryan Cotterell | Alan W Black | Jason Eisner
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

A major hurdle in data-driven research on typology is having sufficient data in many languages to draw meaningful conclusions. We present VoxClamantis v1.0, the first large-scale corpus for phonetic typology, with aligned segments and estimated phoneme-level labels in 690 readings spanning 635 languages, along with acoustic-phonetic measures of vowels and sibilants. Access to such data can greatly facilitate investigation of phonetic typology at a large scale and across many languages. However, it is non-trivial and computationally intensive to obtain such alignments for hundreds of languages, many of which have few to no resources presently available. We describe the methodology to create our corpus, discuss caveats with current methods and their impact on the utility of this data, and illustrate possible research directions through a series of case studies on the 48 highest-quality readings. Our corpus and scripts are publicly available for non-commercial use at https://voxclamantisproject.github.io.

pdf bib
Information-Theoretic Probing for Linguistic Structure
Tiago Pimentel | Josef Valvoda | Rowan Hall Maudslay | Ran Zmigrod | Adina Williams | Ryan Cotterell
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The success of neural networks on a diverse set of NLP tasks has led researchers to question how much these networks actually “know” about natural language. Probes are a natural way of assessing this. When probing, a researcher chooses a linguistic task and trains a supervised model to predict annotations in that linguistic task from the network’s learned representations. If the probe does well, the researcher may conclude that the representations encode knowledge related to the task. A commonly held belief is that using simpler models as probes is better; the logic is that simpler models will identify linguistic structure, but not learn the task itself. We propose an information-theoretic operationalization of probing as estimating mutual information that contradicts this received wisdom: one should always select the highest performing probe one can, even if it is more complex, since it will result in a tighter estimate, and thus reveal more of the linguistic information inherent in the representation. The experimental portion of our paper focuses on empirically estimating the mutual information between a linguistic property and BERT, comparing these estimates to several baselines. We evaluate on a set of ten typologically diverse languages often underrepresented in NLP research—plus English—totalling eleven languages. Our implementation is available in https://github.com/rycolab/info-theoretic-probing.

pdf bib
Predicting Declension Class from Form and Meaning
Adina Williams | Tiago Pimentel | Hagen Blix | Arya D. McCarthy | Eleanor Chodroff | Ryan Cotterell
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The noun lexica of many natural languages are divided into several declension classes with characteristic morphological properties. Class membership is far from deterministic, but the phonological form of a noun and/or its meaning can often provide imperfect clues. Here, we investigate the strength of those clues. More specifically, we operationalize this by measuring how much information, in bits, we can glean about declension class from knowing the form and/or meaning of nouns. We know that form and meaning are often also indicative of grammatical gender—which, as we quantitatively verify, can itself share information with declension class—so we also control for gender. We find for two Indo-European languages (Czech and German) that form and meaning respectively share significant amounts of information with class (and contribute additional information above and beyond gender). The three-way interaction between class, form, and meaning (given gender) is also significant. Our study is important for two reasons: First, we introduce a new method that provides additional quantitative support for a classic linguistic finding that form and meaning are relevant for the classification of nouns into declensions. Secondly, we show not only that individual declensions classes vary in the strength of their clues within a language, but also that these variations themselves vary across languages.

pdf bib
A Tale of a Probe and a Parser
Rowan Hall Maudslay | Josef Valvoda | Tiago Pimentel | Adina Williams | Ryan Cotterell
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Measuring what linguistic information is encoded in neural models of language has become popular in NLP. Researchers approach this enterprise by training “probes”—supervised models designed to extract linguistic structure from another model’s output. One such probe is the structural probe (Hewitt and Manning, 2019), designed to quantify the extent to which syntactic information is encoded in contextualised word representations. The structural probe has a novel design, unattested in the parsing literature, the precise benefit of which is not immediately obvious. To explore whether syntactic probes would do better to make use of existing techniques, we compare the structural probe to a more traditional parser with an identical lightweight parameterisation. The parser outperforms structural probe on UUAS in seven of nine analysed languages, often by a substantial amount (e.g. by 11.1 points in English). Under a second less common metric, however, there is the opposite trend—the structural probe outperforms the parser. This begs the question: which metric should we prefer?

pdf bib
Metaphor Detection using Context and Concreteness
Rowan Hall Maudslay | Tiago Pimentel | Ryan Cotterell | Simone Teufel
Proceedings of the Second Workshop on Figurative Language Processing

We report the results of our system on the Metaphor Detection Shared Task at the Second Workshop on Figurative Language Processing 2020. Our model is an ensemble, utilising contextualised and static distributional semantic representations, along with word-type concreteness ratings. Using these features, it predicts word metaphoricity with a deep multi-layer perceptron. We are able to best the state-of-the-art from the 2018 Shared Task by an average of 8.0% F1, and finish fourth in both sub-tasks in which we participate.

2019

pdf bib
Meaning to Form: Measuring Systematicity as Information
Tiago Pimentel | Arya D. McCarthy | Damian Blasi | Brian Roark | Ryan Cotterell
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

A longstanding debate in semiotics centers on the relationship between linguistic signs and their corresponding semantics: is there an arbitrary relationship between a word form and its meaning, or does some systematic phenomenon pervade? For instance, does the character bigram ‘gl’ have any systematic relationship to the meaning of words like ‘glisten’, ‘gleam’ and ‘glow’? In this work, we offer a holistic quantification of the systematicity of the sign using mutual information and recurrent neural networks. We employ these in a data-driven and massively multilingual approach to the question, examining 106 languages. We find a statistically significant reduction in entropy when modeling a word form conditioned on its semantic representation. Encouragingly, we also recover well-attested English examples of systematic affixes. We conclude with the meta-point: Our approximate effect size (measured in bits) is quite small—despite some amount of systematicity between form and meaning, an arbitrary relationship and its resulting benefits dominate human language.

bib
Rethinking Phonotactic Complexity
Tiago Pimentel | Brian Roark | Ryan Cotterell
Proceedings of the 2019 Workshop on Widening NLP

In this work, we propose the use of phone-level language models to estimate phonotactic complexity—measured in bits per phoneme—which makes cross-linguistic comparison straightforward. We compare the entropy across languages using this simple measure, gaining insight on how complex different language’s phonotactics are. Finally, we show a very strong negative correlation between phonotactic complexity and the average length of words—Spearman rho=-0.744—when analysing a collection of 106 languages with 1016 basic concepts each.
Search