Si Sun


2021

pdf bib
Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision
Si Sun | Yingzhuo Qian | Zhenghao Liu | Chenyan Xiong | Kaitao Zhang | Jie Bao | Zhiyuan Liu | Paul Bennett
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The effectiveness of Neural Information Retrieval (Neu-IR) often depends on a large scale of in-domain relevance training signals, which are not always available in real-world ranking scenarios. To democratize the benefits of Neu-IR, this paper presents MetaAdaptRank, a domain adaptive learning method that generalizes Neu-IR models from label-rich source domains to few-shot target domains. Drawing on source-domain massive relevance supervision, MetaAdaptRank contrastively synthesizes a large number of weak supervision signals for target domains and meta-learns to reweight these synthetic “weak” data based on their benefits to the target-domain ranking accuracy of Neu-IR models. Experiments on three TREC benchmarks in the web, news, and biomedical domains show that MetaAdaptRank significantly improves the few-shot ranking accuracy of Neu-IR models. Further analyses indicate that MetaAdaptRank thrives from both its contrastive weak data synthesis and meta-reweighted data selection. The code and data of this paper can be obtained from https://github.com/thunlp/MetaAdaptRank.

2020

pdf bib
Adapting Open Domain Fact Extraction and Verification to COVID-FACT through In-Domain Language Modeling
Zhenghao Liu | Chenyan Xiong | Zhuyun Dai | Si Sun | Maosong Sun | Zhiyuan Liu
Findings of the Association for Computational Linguistics: EMNLP 2020

With the epidemic of COVID-19, verifying the scientifically false online information, such as fake news and maliciously fabricated statements, has become crucial. However, the lack of training data in the scientific domain limits the performance of fact verification models. This paper proposes an in-domain language modeling method for fact extraction and verification systems. We come up with SciKGAT to combine the advantages of open-domain literature search, state-of-the-art fact verification systems and in-domain medical knowledge through language modeling. Our experiments on SCIFACT, a dataset of expert-written scientific fact verification, show that SciKGAT achieves 30% absolute improvement on precision. Our analyses show that such improvement thrives from our in-domain language model by picking up more related evidence pieces and accurate fact verification. Our codes and data are released via Github.