Shulin Cao


2021

pdf bib
TransferNet: An Effective and Transparent Framework for Multi-hop Question Answering over Relation Graph
Jiaxin Shi | Shulin Cao | Lei Hou | Juanzi Li | Hanwang Zhang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Multi-hop Question Answering (QA) is a challenging task because it requires precise reasoning with entity relations at every step towards the answer. The relations can be represented in terms of labels in knowledge graph (e.g., spouse) or text in text corpus (e.g., they have been married for 26 years). Existing models usually infer the answer by predicting the sequential relation path or aggregating the hidden graph features. The former is hard to optimize, and the latter lacks interpretability. In this paper, we propose TransferNet, an effective and transparent model for multi-hop QA, which supports both label and text relations in a unified framework. TransferNet jumps across entities at multiple steps. At each step, it attends to different parts of the question, computes activated scores for relations, and then transfer the previous entity scores along activated relations in a differentiable way. We carry out extensive experiments on three datasets and demonstrate that TransferNet surpasses the state-of-the-art models by a large margin. In particular, on MetaQA, it achieves 100% accuracy in 2-hop and 3-hop questions. By qualitative analysis, we show that TransferNet has transparent and interpretable intermediate results.

2018

pdf bib
OpenKE: An Open Toolkit for Knowledge Embedding
Xu Han | Shulin Cao | Xin Lv | Yankai Lin | Zhiyuan Liu | Maosong Sun | Juanzi Li
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We release an open toolkit for knowledge embedding (OpenKE), which provides a unified framework and various fundamental models to embed knowledge graphs into a continuous low-dimensional space. OpenKE prioritizes operational efficiency to support quick model validation and large-scale knowledge representation learning. Meanwhile, OpenKE maintains sufficient modularity and extensibility to easily incorporate new models into the framework. Besides the toolkit, the embeddings of some existing large-scale knowledge graphs pre-trained by OpenKE are also available, which can be directly applied for many applications including information retrieval, personalized recommendation and question answering. The toolkit, documentation, and pre-trained embeddings are all released on http://openke.thunlp.org/.