Shane Storks


2021

pdf bib
Beyond the Tip of the Iceberg: Assessing Coherence of Text Classifiers
Shane Storks | Joyce Chai
Findings of the Association for Computational Linguistics: EMNLP 2021

As large-scale, pre-trained language models achieve human-level and superhuman accuracy on existing language understanding tasks, statistical bias in benchmark data and probing studies have recently called into question their true capabilities. For a more informative evaluation than accuracy on text classification tasks can offer, we propose evaluating systems through a novel measure of prediction coherence. We apply our framework to two existing language understanding benchmarks with different properties to demonstrate its versatility. Our experimental results show that this evaluation framework, although simple in ideas and implementation, is a quick, effective, and versatile measure to provide insight into the coherence of machines’ predictions.

pdf bib
Tiered Reasoning for Intuitive Physics: Toward Verifiable Commonsense Language Understanding
Shane Storks | Qiaozi Gao | Yichi Zhang | Joyce Chai
Findings of the Association for Computational Linguistics: EMNLP 2021

Large-scale, pre-trained language models (LMs) have achieved human-level performance on a breadth of language understanding tasks. However, evaluations only based on end task performance shed little light on machines’ true ability in language understanding and reasoning. In this paper, we highlight the importance of evaluating the underlying reasoning process in addition to end performance. Toward this goal, we introduce Tiered Reasoning for Intuitive Physics (TRIP), a novel commonsense reasoning dataset with dense annotations that enable multi-tiered evaluation of machines’ reasoning process. Our empirical results show that while large LMs can achieve high end performance, they struggle to support their predictions with valid supporting evidence. The TRIP dataset and our baseline results will motivate verifiable evaluation of commonsense reasoning and facilitate future research toward developing better language understanding and reasoning models.